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Preface

We are proud to present the set of final accepted full papers for the 7th edition of the
IWBBIO conference—International Work-Conference on Bioinformatics and
Biomedical Engineering—held in Granada (Spain) during May 8–10, 2019.

IWBBIO 2019 sought to provide a discussion forum for scientists, engineers,
educators, and students about the latest ideas and realizations in the foundations,
theory, models, and applications for interdisciplinary and multidisciplinary research
encompassing disciplines of computer science, mathematics, statistics, biology,
bioinformatics, and biomedicine.

The aims of IWBBIO are to create a friendly environment that could lead to the
establishment or strengthening of scientific collaborations and exchanges among
attendees, and therefore IWBBIO 2019 solicited high-quality original research papers
(including significant work-in-progress) on any aspect of bioinformatics, biomedicine,
and biomedical engineering.

New computational techniques and methods in machine learning; data mining; text
analysis; pattern recognition; data integration; genomics and evolution; next-generation
sequencing data; protein and RNA structure; protein function and proteomics; medical
informatics and translational bioinformatics; computational systems biology; modeling
and simulation and their application in the life science domain, biomedicine, and
biomedical engineering were especially encouraged. The list of topics in the successive
Call for Papers has also evolved, resulting in the following list for the present edition:

1. Computational proteomics. Analysis of protein–protein interactions; protein
structure modeling; analysis of protein functionality; quantitative proteomics and
PTMs; clinical proteomics; protein annotation; data mining in proteomics.

2. Next-generation sequencing and sequence analysis. De novo sequencing,
re-sequencing and assembly; expression estimation; alternative splicing discovery;
pathway analysis; Chip-seq and RNA-Seq analysis; metagenomics; SNPs
prediction.

3. High performance in bioinformatics. Parallelization for biomedical analysis;
biomedical and biological databases; data mining and biological text processing;
large-scale biomedical data integration; biological and medical ontologies; novel
architecture and technologies (GPU, P2P, Grid etc.) for bioinformatics.

4. Biomedicine. Biomedical computing; personalized medicine; nanomedicine;
medical education; collaborative medicine; biomedical signal analysis; biomedicine
in industry and society; electrotherapy and radiotherapy.

5. Biomedical engineering. Computer-assisted surgery; therapeutic engineering;
interactive 3D modeling; clinical engineering; telemedicine; biosensors and data
acquisition; intelligent instrumentation; patient monitoring; biomedical robotics;
bio-nanotechnology; genetic engineering.

6. Computational systems for modeling biological processes. Inference of
biological networks; machine learning in bioinformatics; classification for



biomedical data; microarray data analysis; simulation and visualization of biological
systems; molecular evolution and phylogenetic modeling.

7. Health care and diseases. Computational support for clinical decisions; image
visualization and signal analysis; disease control and diagnosis; genome–phenome
analysis; biomarker identification; drug design; computational immunology.

8. E-health. E-health technology and devices; e-Health information processing;
telemedicine/e-health application and services; medical image processing; video
techniques for medical images; integration of classical medicine and e-health.

After a careful peer review and evaluation process (each submission was reviewed
by at least two, and on average 3.2, Program Committee members or additional
reviewer), 97 papers were accepted for oral, poster, or virtual presentation, according to
the recommendations of reviewers and the authors’ preferences, and to be included in
the LNBI proceedings.

During IWBBIO 2019 several special sessions were held. Special sessions are a
very useful tool to complement the regular program with new and emerging topics of
particular interest for the participating community. Special sessions that emphasize
multi-disciplinary and transversal aspects, as well as cutting-edge topics, are especially
encouraged and welcome, and in this edition of IWBBIO they were the following:

– SS1. High-Throughput Genomics: Bioinformatic Tools and Medical
Applications
Genomics is concerned with the sequencing and analysis of an organism’s genome.
It is involved in the understanding of how every single gene can affect the entire
genome. This goal is mainly afforded using the current, cost-effective,
high-throughput sequencing technologies. These technologies produce a huge
amount of data that usually require high-performance computing solutions and
opens new ways for the study of genomics, but also transcriptomics, gene
expression, and systems biology, among others. The continuous improvements and
broader applications on sequencing technologies is generating a continuous new
demand of improved high-throughput bioinformatics tools. Genomics is concerned
with the sequencing and analysis of an organism genome taking advantage of the
current, cost-effective, high-throughput sequencing technologies. Continuous
improvement of genomics is in turn leading to a continuous new demand of
enhanced high-throughput bioinformatics tools. In this context, the generation,
integration, and interpretation of genetic and genomic data are driving a new era of
health-care and patient management. Medical genomics (or genomic medicine) is
this emerging discipline that involves the use of genomic information about a
patient as part of the clinical care with diagnostic or therapeutic purposes to improve
the health outcomes. Moreover, it can be considered a subset of precision medicine
that is having an impact in the fields of oncology, pharmacology, rare and undi-
agnosed diseases, and infectious diseases. The aim of this special session is to bring
together researchers in medicine, genomics, and bioinformatics to translate medical
genomics research into new diagnostic, therapeutic, and preventive medical
approaches. Therefore, we invite authors to submit original research, new tools or
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pipelines, or their update, and review articles on relevant topics, such as (but not
limited to):

• Tools for data pre-processing (quality control and filtering)
• Tools for sequence mapping
• Tools for the comparison of two read libraries without an external reference
• Tools for genomic variants (such as variant calling or variant annotation)
• Tools for functional annotation: identification of domains, orthologs, genetic

markers, controlled vocabulary (GO, KEGG, InterPro, etc.)
• Tools for gene expression studies
• Tools for Chip-Seq data
• Integrative workflows and pipelines

Organizers: Prof. M. Gonzalo Claros, Department of Molecular Biology and
Biochemistry, University of Málaga, Spain

Dr. Javier Pérez Florido, Bioinformatics Research Area, Fundación Progreso y
Salud, Seville, Spain

Dr. Francisco M. Ortuño, Bioinformatics Research Area, Fundación Progreso y
Salud, Seville, Spain

– SS2. Omics Data Acquisition, Processing, and Analysis
Automation and intelligent measurement devices produce multiparametric and
structured huge datasets. The incorporation of the multivariate data analysis,
artificial intelligence, neural networks, and agent-based modeling exceeds the
experiences of classic straightforward evaluation and reveals emergent attributes,
dependences, or relations. For the wide spectrum of techniques, genomics, tran-
scriptomics, metabolomics, proteomics, lipidomics, aquaphotomics, etc., the
superposition of expert knowledge from bioinformatics, biophysics, and biocy-
bernetics is required. The series of systematic experiments have to also deal with
the data pipelines, databases, sharing, and proper description. The integrated
concepts offer robust evaluation, verification, and comparison.
In this special section a discussion on novel approaches in measurement, algo-
rithms, methods, software, and data management focused on the omic sciences is
provided. The topic covers practical examples, strong results, and future visions.

Organizer: Dipl-Ing. Jan Urban, PhD, Head of laboratory of signal and image
processing. University of South Bohemia in Ceské Budejovice, Faculty of Fisheries
and Protection of Waters, South Bohemian Research Center of Aquaculture and
Biodiversity of Hydrocenoses, Institute of Complex Systems, Czech Republic.

Websites:
www.frov.jcu.cz/en/institute-complex-systems/lab-signal-image-processing

– SS3. Remote Access, Internet of Things, and Cloud Solutions for
Bioinformatics and Biomonitoring
The current process of the 4th industrial revolution also affects bioinformatic data
acquisition, evaluation, and availability. The novel cyberphysical measuring
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devices are smart, autonomous, and controlled online. Cloud computing covers
data storage and processing, using artificial intelligence methods, thanks to mas-
sive computational power. Laboratory and medical practice should be on the apex
of developing, implementing, and testing the novel bioinformatic approaches,
techniques, and methods, so as to produce excellent research results and increase
our knowledge in the field.

In this special section, results, concepts, and ongoing research with novel approa-
ches to bioinformatics, using the Internet of Things (IoT) devices is presented.

Organizer: Antonin Barta, Antonin Barta, Faculty of Fishery and Waters
Protection, Czech Republic

– SS4: Bioinformatics Approaches for Analyzing Cancer Sequencing Data
In recent years, next-generation sequencing has enabled us to interrogate entire
genomes, exomes, and transcriptomes of tumor samples and to obtain
high-resolution landscapes of genetic changes at the single-nucleotide level. More
and more novel methods are proposed for efficient and effective analyses of cancer
sequencing data. One of the most important questions in cancer genomics is to
differentiate the patterns of the somatic mutational events. Somatic mutations,
especially the somatic driver events, are considered to govern the dynamics of
clone birth, evolution, and proliferation. Recent studies based on cancer sequencing
data, across a diversity of solid and hematological disorders, have reported that
tumor samples are usually both spatially and temporally heterogeneous and fre-
quently comprise one or multiple founding clone(s) and a couple of sub-clones.
However, there are still several open problems in cancer clonality research, which
include (1) the identification of clonality-related genetic alterations, (2) discerning
clonal architecture, (3) understanding their phylogenetic relationships, and
(4) modeling the mathematical and physical mechanisms. Strictly speaking, none
of these issues is completely solved, and these issues remain in the active areas of
research, where powerful and efficient bioinformatics tools are urgently demanded
for better analysis of rapidly accumulating data. This special issue aims to publish
the novel mathematical and computational approaches and data processing
pipelines for cancer sequencing data, with a focus on those for tumor
micro-environment and clonal architecture.

Organizers: Jiayin Wang, PhD, Professor, Jiayin Wang, PhD, Professor,
Department of Computer Science and Technology, Xian Jiaotong University,
China

Xuanping Zhang, PhD, Associate Professor, Xuanping Zhang, PhD, Associate
Professor, Department of Computer Science and Technology, Xian Jiaotong
University, China.

ZhongmengZhao,PhD,Professor, Zhongmeng Zhao, PhD, Professor, Department
of Computer Science and Technology, Xian Jiaotong University, China
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– SS5. Telemedicine for Smart Homes and Remote Monitoring
Telemedicine in smart homes and remote monitoring is implementing a core
research to link up devices and technologies from medicine and informatics.
A person’s vital data can be collected in a smart home environment and transferred
to medical databases and the professionals. Most often different from clinical
approaches, key instruments are specifically tailored devices, multidevices, or even
wearable devices respecting always individual preferences and non-intrusive
paradigms. The proposed session focused on leading research approaches, proto-
types, and implemented hardware/software co-designed systems with a clear net-
working applicability in smart homes with unsupervised scenarios.

Organizers: Prof. Dr. Juan Antonio Ortega. Director of the Centre of Computer
Scientific in Andalusia, Spain, Head of Research Group IDINFOR (TIC223),
University of Seville, ETS Ingeniería Informática, Spain

Prof. Dr. Natividad Martínez Madrid. Head of the Internet of Things Laboratory
and Director of the AAL-Living Lab at Reutlingen University, Department of
Computer Science, Reutlingen, Germany

Prof. Dr. Ralf Seepold. Head of the Ubiquitous Computing Lab at HTWG
Konstanz, Department of Computer Science, Konstanz, Germany

– SS6. Clustering and Analysis of Biological Sequences with Optimization
Algorithms
The analysis of DNA sequences is a crucial application area in computational
biology. Finding similarity between genes and DNA subsequences provides very
important knowledge of their structures and their functions. Clustering as a widely
used data mining approach has been carried out to discover similarity between
biological sequences. For example, by clustering genes, their functions can be
predicted according to the known functions of other genes in the similar clusters.
The problem of clustering sequential data can be solved by several standard pattern
recognition techniques such as k-means, k-nearest neighbors, and the neural net-
works. However, these algorithms become very complex when observations are
sequences with variable lengths, like genes. New optimization algorithms have
shown that they can be successfully utilized for biological sequence clustering.

Organizers: Prof. Dr. Mohammad Soruri Faculty of Electrical and Computer
Engineering, University of Birjand, Birjand, Iran. Ferdows Faculty of
Engineering, University of Birjand, Birjand, Iran
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– SS7. Computational Approaches for Drug Repurposing and Personalized
Medicine
With continuous advancements of biomedical instruments and the associated
ability to collect diverse types of valuable biological data, numerous recent
research studies have been focusing on how to best extract useful information from
the ‘big biomedical data’ currently available. While drug design has been one
of the most essential areas of biomedical research, the drug design process for the
most part has not fully benefited from the recent explosion in the growth of
biological data and bioinformatics algorithms. With the incredible overhead
associated with the traditional drug design process in terms of time and cost, new
alternative methods, possibly based on computational approaches, are very much
needed to propose innovative ways for effective drugs and new treatment options.
As a result, drug repositioning or repurposing has gained significant attention from
biomedical researchers and pharmaceutical companies as an exciting new alter-
native for drug discovery that benefits from the computational approaches. This
new development also promises to transform health care to focus more on indi-
vidualized treatments, precision medicine, and lower risks of harmful side effects.
Other alternative drug design approaches that are based on analytical tools include
the use of medicinal natural plants and herbs as well as using genetic data for
developing multi-target drugs.

Organizer: Prof. Dr. Hesham H. Ali, UNO Bioinformatics Core Facility College
of Information Science and Technology University of Nebraska at Omaha, USA

It is important to note, that for the sake of consistency and readability of the book, the
presented papers are classified under 14 chapters. The organization of the papers is in
two volumes arranged basically following the topics list included in the call for papers.
The first volume (LNBI 11465), entitled “Bioinformatics and Biomedical Engineering.
Part I,” is divided into eight main parts and includes contributions on:

1. High-throughput genomics: bioinformatic tools and medical applications
2. Omics data acquisition, processing, and analysis
3. Bioinformatics approaches for analyzing cancer sequencing data
4. Next-generation sequencing and sequence analysis
5. Structural bioinformatics and function
6. Telemedicine for smart homes and remote monitoring
7. Clustering and analysis of biological sequences with optimization algorithms
8. Computational approaches for drug repurposing and personalized medicine

The second volume (LNBI 11466), entitled “Bioinformatics and Biomedical Engi-
neering. Part II,’’ is divided into six main parts and includes contributions on:

1. Bioinformatics for health care and diseases
2. Computational genomics/proteomics
3. Computational systems for modeling biological processes
4. Biomedical engineering
5. Biomedical image analysis
6. Biomedicine and e-health
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This seventh edition of IWBBIO was organized by the Universidad de Granada. We
wish to thank to our main sponsor and the institutions, the Faculty of Science,
Department of Computer Architecture and Computer Technology, and CITIC-UGR
from the University of Granada for their support and grants. We wish also to thank to
the editors of different international journals for their interest in editing special issues
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Francisco Ortuño
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Abstract. We propose a coarse-grained representation for the solutions
of discretizable instances of the Distance Geometry Problem (DGP). In
several real-life applications, the distance information is not provided
with high precision, but an approximation is rather given. We focus
our attention on protein instances where inter-atomic distances can be
either obtained from the chemical structure of the molecule (which are
exact), or through experiments of Nuclear Magnetic Resonance (which
are generally represented by real-valued intervals). The coarse-grained
representation allows us to extend a previously proposed algorithm for
the Discretizable DGP (DDGP), the branch-and-prune (BP) algorithm.
In the standard BP, atomic positions are fixed to unique positions at
every node of the search tree: we rather represent atomic positions by a
pair consisting of a feasible region, together with a most-likely position
for the atom in this region. While the feasible region is a constant dur-
ing the search, the associated position can be refined by considering the
new distance constraints that appear at further layers of the search tree.
To perform the refinement task, we integrate the BP algorithm with a
spectral projected gradient algorithm. Some preliminary computational
experiments on artificially generated instances show that this new app-
roach is quite promising to tackle real-life DGPs.

1 Introduction

Let G = (V,E, d) be a simple weighted undirected graph, where vertices v rep-
resent certain objects (such as the atoms of a molecule), and the existence of
an edge {u, v} between two vertices u and v indicates that the distance between
the two corresponding objects is known [8]. The weight d(u, v) is a real interval
delimiting the lower and the upper bound on the distance values; exact distances
are represented by degenerated intervals. In this paper, we will use the compact
notation duv for the distances in the graph.
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4 A. Mucherino et al.

Definition 1.1. Given a simple weighted undirected graph G = (V,E, d) and
a positive integer K, the Distance Geometry Problem (DGP) asks whether a
function

x : v ∈ V −→ xv ∈ R
K

exists such that
∀{u, v} ∈ E, ||xu − xv|| ∈ duv. (1)

The function x is called a realization of the graph G. We say that a realization
x that satisfies all constraints in Eq. (1) is a valid realization.

The DGP is NP-hard [27], and has several different applications. In this
paper, we focus on the problem of determining the three-dimensional structure
of a molecule from available inter-atomic distances. This is a common problem
arising when molecules are subject to experiments of Nuclear Magnetic Reso-
nance (NMR), because they are able to provide estimations of distances between
atom pairs [1]. The reader can find in [8], for example, more details about the
biological application.

Other interesting applications of the DGP include multi-dimensional scaling
[15] and the manipulation of distance-guided animations [26].

The constraints in Definition 1.1 can naturally be specialized to particular
cases, on the basis of the nature of the distances. When the distance duv is
exact, the symbol “∈” can be replaced by an equality. When the distance duv is
instead represented by an interval [duv, d̄uv], then the generic constraint can be
replaced by two inequalities:

duv ≤ ||xu − xv|| ≤ d̄uv.

Let E′ be the subset of E containing exact distances; as a consequence, the
subset E \ E′ contains all approximated distances, the ones represented by a
real-valued interval.

Many approaches to the DGP reformulate it as a global unconstrained opti-
mization problem. A penalty function is employed, which is able to measure the
distance violations in a given realization x. One commonly used penalty function
for the DGP with only exact distances is the Mean Distance Error (MDE):

MDE(x) =
1

|E|
∑

{u,v}∈E

| ||xu − xv|| − duv |
duv

, (2)

whose value is 0 for all valid realizations. This penalty function can be generalized
to DGPs with interval distances.

In recent times, a multidisciplinary group of mathematicians, physics, com-
puter scientists and biologists has been working on a discretization process that
allows to represent the set of possible solutions for the DGP as a discrete domain
having the structure of a tree [5,7,16,21,25]. Particular emphasis is given to the
application in structural biology. We give the following definition of discretizable
subclass of DGP instances [19].
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Definition 1.2. A simple weighted undirected graph G represents an instance
of the Discretizable DGP (DDGP) if and only if there exists a vertex ordering
on V such that the following two assumptions are satisfied:

(a) G[{1, 2, . . . ,K}] is a clique whose edges are in E′;
(b) ∀v ∈ {K + 1, . . . , |V |}, there exist K vertices u1, u2, . . . , uK ∈ V such that

(b.1) u1 < v, u2 < v, . . . , uK < v;
(b.2) {{u1, v}, {u2, v}, . . . , {uK−1, v}} ⊂ E′ and {uK , v} ∈ E;
(b.3) VS(u1, u2, . . . , uK) > 0 (if K > 1),

where G[·] is the subgraph induced by a subset of vertices of V , and VS(·)
is the volume of the simplex generated by a valid realization of the vertices
u1, u2, . . . , uK .

In the following, we will refer to assumptions (a) and (b) as the discretization
assumptions. Such assumptions can be verified only if a vertex ordering is asso-
ciated to V . The problem of finding a suitable vertex order for V , which allows
to satisfy the discretization assumptions, was previously discussed, for example,
in [23] and [12].

Assumption (a) ensures the existence of an initial clique in G: the first K
vertices in the ordering belong to this clique, where all edges are related to dis-
tances in E′. A unique realization for this clique can be computed (modulo total
translations, rotations and reflections). Assumption (b) is the one that in fact
allows us to reduce the search space for the DGP instance to a discrete domain
having the structure of a tree, where the positions of vertices are organized layer
by layer [21].

The branch-and-prune (BP) algorithm is based on the idea to recursively
construct the search space (branching phase), and to immediately verify the
feasibility of newly generated branches (pruning phase) by using ad-hoc prun-
ing devices [25]. This algorithm has been proved to work very efficiently on
instances consisting of only exact distances [20]. Even though the BP algorithm
can deal with instances containing interval data [17], the presence of such inter-
val distances turns the algorithm into a heuristic, and some issues related to the
solution of this class of DDGP instances were recently pointed out in [14].

The main aim of this short paper is to propose a coarse-grained representation
for the DDGP class, to be exploited in conjunction with the BP algorithm’s main
framework. The basic idea is to combine the global search performed by the
BP algorithm over the search domain with a local search capable of correcting
the unavoidable approximation errors introduced by the presence of interval
distances. The coarse-grained representation allows us to bound the (continuous)
search space of the local search, so that every DDGP solution, belonging to a
particular branch of the tree, cannot lead to any other solution belonging to a
different branch.

This paper is organized as follows. In Sect. 2, we will give a quick overview on
the discretizable class of DGP instances, and we will briefly describe the BP algo-
rithm. Our coarse-grained representation of DDGP solutions will be introduced
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in Sect. 3, where we will discuss the potential benefits in using such a representa-
tion. Although in this short paper we focus on a particular problem in dimension
K = 3 and we will present the theory for K = 3 to simplify the notations, the
entire discussion can be generalized to any dimensions K ≥ 1. In Sect. 4, we will
give the details of an implementation of a Spectral Projected Gradient (SPG)
descent method, which we will couple with a BP algorithm implementing the
coarse-grained representation. Some preliminary computational experiments on
protein instances will be presented in Sect. 5, while Sect. 6 will conclude the
paper.

2 The Branch-and-Prune Algorithm

The branch-and-prune (BP) algorithm was formally introduced in [18]. It per-
forms a systematic exploration of the search tree obtained with the discretization
process (which is possible when the discretization assumptions (a) and (b) are
satisfied, see Introduction). When instances containing interval distances are
considered, the original search tree is replaced with an approximated tree where
arc nodes are substituted with a predefined number D of nodes representing
sample positions (which are extracted from the arcs, see [17] for more details).

The tree of possible solutions can be explored starting from its top, where
the first vertex belonging to the initial clique is placed. Subsequently, all other
vertices in the initial clique can be placed in their unique positions, and the
search can actually start with the vertex having rank K = 3 in the associated
discretization order. At each step, the candidate positions for the current vertex
v are computed, and the search is branched. Depending on the available distance
information, the set of candidate positions may contain either two singletons, or
two disjoint arcs. In the latter case, every arc can be approximated with a subset
of D sample positions.

Pruning devices can be employed for discovering infeasible positions that are
computed for the current vertex. The main pruning device exploits the so-called
“pruning distances” of DDGP instances, which correspond to all distances that
are not involved in the discretization. As soon as a vertex position is found
to be infeasible, then the corresponding branch is pruned and the search is
backtracked. Thanks to this pruning mechanism, the size of the tree, in terms
of nodes, remains relatively small, so that an exhaustive search becomes feasible
for certain instances. When this is the case, the BP algorithm is actually able
to enumerate all possible solutions to the problem, and not only to provide one
of the possible solutions.

As extensively discussed in [14], however, the approximation introduced in
the tree when it is necessary to deal with interval distances turns the BP algo-
rithm into a heuristic. Moreover, sampling points from the obtained arcs is not
the most efficient strategy to select vertex positions, because the probability to
sample two points for two different vertices which are supposed to satisfy the
same distance constraint is very low.
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For lack of space, we omit the sketch of the BP algorithm. The interested
reader can make reference to one of the given citations, and in particular to [18]
and [25].

3 A Coarse-Grained Representation

In the BP algorithm, a subset of distances is used for generating new vertex
positions (discretization distances), while the complementary subset is used for
verifying the feasibility of such newly generated positions (pruning distances).
The introduction of approximation errors, due to the presence of interval dis-
tances, can have the important consequence of invalidating the feasibility tests.

The first feasibility test that might fail occurs at the same layer of the current
vertex v, when the pruning distances are verified. In order to avoid situations
where vertex positions are generated and immediately discarded by the pruning
device, some adaptive branching schemes for BP have already been proposed
in [2,13]. However, even if all distances at the current layer v are satisfied, we
cannot guarantee all such selected positions for v will also satisfy the constraints
involving vertices associated to further layers of the tree.

This is the main motivation for a coarse-grained representation of DDGP
solutions. Instead of fixing, on every branch of the tree, all vertices in unique
positions, the idea is to rather associate a small region of the search space to
every vertex, together with a most-likely position. The shape of the region can be
chosen on the basis of the methods that are implemented for their manipulation.
In a similar representation [28], spheres are used to define a region around given
vertex positions; we will rather use box-shaped regions, because they are more
convenient for the local optimization solver that we consider in the experiments
proposed in this paper. We recall that our local solver is briefly described in
Sect. 4.

Before attempting the identification of a valid realization x for a given DDGP
instance, we propose to preliminary look for a feasible realization in the following
coarse-grained representation:

z : v ∈ V −→ (xv, Bv) ∈ R
3 × R

6,

where Bv is a box defined in the Cartesian system given by the initial clique
(see Sect. 2). We point out that Bv has 6 dimensions (in dimension K = 3, the
position of one vertex of the box, plus the corresponding depth, length and height
values are necessary for its unique definition). When a new vertex position xv is
generated for the current vertex v, the function z does not only allow to assign
a position xv to v, but also to keep track of the feasible region where it belongs
to. On further layers, in fact, the position xv may not be feasible w.r.t. some
other distances, and it could therefore be slightly modified in order to ensure
global feasibility. This can be done by employing solvers for local optimization
(see next section). The position xv is naturally constrained to stay in the original
box Bv for two main reasons. Firstly, the (continuous) search space of the local
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solver is in this way reduced; secondly, the situation where the local solvers can
move to solutions belonging to other tree branches is avoided.

We motivate the choice of employing a local solver with the fact that, at every
layer of the tree where an infeasibility is discovered, there are, in general, only a
few distances that are not satisfied. This makes the corresponding subproblem
to consider easier to tackle. Naturally, an important point concerning the use of
a local solver is its fast converge: in fact, when attempting the solution of harder
instances, we expect the local solver to be invoked at almost all recursive BP
calls.

When the BP algorithm reaches a leaf node, a valid realization x can be
extracted from z by simply taking the set of positions xv, for every v ∈ V .

4 A Spectral Projected Gradient

During a recursive call of BP at layer v̄, the new pair zv̄ consisting of a position
xv̄ and a box Bv̄ may be feasible or not with the pruning distances. If not, this
infeasibility may be due either to the current position xv̄, or to the position
of some previous vertices v ∈ {1, . . . , v̄ − 3}. We employ therefore a Spectral
Projected Gradient (SPG) to attempt the refinement all computed positions xv

belonging to the current branch of the search tree. If this attempt fails, then we
have the confirmation that the newly generated zv̄ is infeasible. If it does not
fail, then SPG outputs a new conformation where all distance constraints are
satisfied; the exploration can therefore continue on further layers.

The optimization problem that SPG solves is a global optimization reformu-
lation of a DGP related to the subgraph G[{1, 2, . . . , v̄}] ≡ G(Vv̄, Ev̄). Moreover,
the constraint that all xv need to be contained in their corresponding box regions
Bv is added. Notice, however, that the boxes Bv related to vertices v such that
no pruning distance {w, v̄} exists with w ≤ v < v̄ − 3 are shrunk so that only
the current position of xv is admitted (these vertices are not involved in the
feasibility check at current level). Finally, we remark that we use, for this global
optimization problem, a differentiable objective function σ that is different from
the MDE function in Eq. (2) (the MDE function is not differentiable on its entire
domain). The resulting optimization problem, which is strongly inspired by the
works in [10], is the following:

min
X,y

1
2

∑

{u,v}∈Ev̄

πuv (‖xu − xv‖ − yuv)
2 := σ(X, y),

s.t. ∀{u, v} ∈ Ev̄, duv ≤ yuv ≤ duv,

∀v ∈ {1, 2, . . . , v̄}, xv ∈ Bv,

(3)

where X ∈ R
v̄×3 is a matrix whose rows correspond to the vertex positions

xv ∈ R
3, y ∈ R

|Ev̄| and πuv is a non-negative weight of the distance constraint
related to the edge {u, v}.

As shown in [9] and discussed in [10,11], the function σ(X, y) is differentiable
at (X, y) if and only if ‖xu − xv‖ > 0 for all {u, v} ∈ Ev̄ such that πuvyuv > 0.
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In such case, the gradient, with respect to X, can be written as

∇Xσ(X, y) = 2(AX − B(X, y)X), (4)

where the matrix A is defined by

auv =

⎧
⎨

⎩

−πuv, if u �= v,∑

w �=u

πuw, otherwise.

In expression (4), the matrix B(X, y) = [buv(X, y)] is a function of (X, y) defined
by

buv(X, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− πuvyuv
‖xu − xv‖ , ifu �= v and ‖xu − xv‖ > 0,

0, ifu �= v and ‖xu − xv‖ = 0,

−
∑

w �=u

buw(X, y), otherwise.

The constraints defining the feasible set
{

(X, y) ∈ R
n×3 × R

|Ev̄| : ∀{u, v} ∈ E , duv ≤ yuv ≤ duv; ∀v ∈ {1, . . . , v̄} , xv ∈ Bv

}

of the optimization problem are box constraints on X and y. The projection of
the pair (X, y) in the feasible set is therefore trivial to perform.

We solve the optimization problem (3) with an implementation of the non-
monotone SPG method proposed in [6], where the current BP solution, up to
layer v̄, is given as a starting point. In our implementation, a spectral parameter
is employed to scale the negative gradient direction before the projection onto
the feasible set [3]. Then, a non-monotone line-search is performed in order to
ensure a sufficient decrease of the objective function after some iterations [30].
More information about the implementations of SPG in this context can be
found in [24].

5 Preliminary Computational Experiments

We present in this section some preliminary computational experiments on a
set of artificially generated instances. All codes were written in C programming
language and all experiments were carried out on an Intel Core i7 2.30 GHz
with 8 GB RAM, running Linux. The codes have been compiled by the GNU C
compiler v.4.9.2 with the -O3 flag.

We selected the protein conformations that were considered in the experi-
ments presented in [7]. However, in these preliminary experiments, we do not
use real NMR data, but we rather generate our protein instances from known
models of the selected proteins. The three considered proteins, having codes
2jmy, 2kxa and 2ksl in the Protein Data Bank (PDB) [4], have been experimen-
tally determined by NMR experiments, and, as it is usually the case, more than
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Table 1. Some computational experiments on artificially generated instances.

Protein |V | |E| |E′| MDE Time

2jmy 77 428 219 2.39161e−05 32 s

2kxa 121 700 367 1.30272e−05 1 m 4 s

2ksl 254 1388 684 2.51421e−05 5 m 15 s

2jmy* 264 2449 787 3.13574e−06 6 m 54 s

one model for each protein was deposited. In our instance generation, we have
simply considered the first model that appears in the corresponding PDB file.

Our instances are generated in a way to resemble NMR data. From the initial
conformation model, we compute all inter-atomic distances, and we include in
our instance the following distances:

– distances between bonded atoms (distances considered as exact);
– distances between atoms bonded to a common atom (distances considered as

exact);
– distances between the first and the last atom forming a torsion angle (dis-

tances represented by an interval);
– distances between hydrogen atoms that are shorter than 5 Å (distances rep-

resented by an interval).

In order to define the interval distances, we create an interval of range 0.1 Å for
the distances related to torsion angles, and an interval of range 0.5 Å for distances
related to hydrogens, and we place the true distance randomly inside such an
interval. The atoms are sorted accordingly to the order proposed in [22], which
ensures the discretizability of the instance. The instance 2jmy* also contains the
atoms belonging to the side chains of the amino acids forming the molecule.

We run our extended version of the BP algorithm which makes use of the
coarse-grained representation and of the SPG algorithm on the set of generated
instances. SPG is invoked at each recursive call of BP where at least one pruning
distance is not satisfied. It can terminate because of different criteria: either when
the objective function value becomes smaller than 10−6, or when the norm of the
search direction becomes smaller than 10−6, or when it reaches the maximum
number of allowed interactions, which is set to 20000 in our experiments.

Table 1 gives some details about the performed experiments. The MDE func-
tion (see Eq. (2)) indicates, for all experiments, that the overall set of distance
constraints is satisfied. It is important to remark that the standard BP imple-
mentation (see for example the experiments in [25]) can provide results where
the MDE function can decrease to 10−10 or more. However, this standard imple-
mentation is only able to deal with exact distances, and it would not be able to
provide any feasible conformation for the instances considered in this work. Con-
sidering that the maximal error over a distance is of order 10−1 in our instances
(when interval distances are generated), the fact that the final MDE value is of
order 10−5 is a quite promising result for our preliminary experiments.
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6 Conclusions

We have presented a new extension of the BP algorithm for a discretizable class
of DGP instances, which is based on a new coarse-grained representation of the
solutions. At every layer of the search tree, new candidate positions for the cur-
rent vertex are computed. However, they are not fixed for all subsequent layers,
but rather let free to “move” inside a feasible box. This movement possibility
allows us to adjust the actual position of the vertex inside the box in order to
make it compatible with the new distances that are considered at further tree lay-
ers. For adjusting the positions, we employ SPG as a local solver, which appears
to be able to perform well the refinement task in our proposed experiments.

This is a very initial step for the extension of the BP algorithm to more
general problems arising in the field of the DGP. In order to make it work with
real NMR data, we plan in the near future to tailor the SPG algorithm to this
particular class of problems (the optimization problem the SPG needs to solve
is a DGP problem where, in most of the cases, only one distance is not satisfied
at the starting point) and to control in a more efficient way the exploration of
the different tree branches. Moreover, our research does not have only real NMR
data as a final target: we intent to extend the entire discretization methodology
to harder DGP problems, such as, for example, the ones which are based on
genomics data [29].
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Abstract. Diabetes mellitus is among the highest cause of death in the world.
Medicinal treatment of diabetes mellitus can be achieved by inhibiting Dipep-
tidyl Peptidase-4 (DPP-4). This enzyme rapidly inactivates incretin, which acts
as a glucoregulatory hormone in the human body. Fragment-based drug design
through computational studies was conducted to discover novel DPP-4 inhibi-
tors. About 7,470 fragments out of 343,798 natural product compounds were
acquired from applying Astex Rule of Three. The molecular docking simulation
was performed on the filtered fragments against the binding site of DPP-4.
Fragment-based drug design was carried out by growing new structures from the
potential fragments by employing DataWarrior software. The generated ligand
libraries were evaluated based on the toxicity properties before underwent vir-
tual screening, rigid, and induced-fit molecular docking simulation. Selected
ligands were subjected to the pharmacological and toxicological property
analysis by applying DataWarrior, Toxtree, and SWISSADME software.
According to the ligand affinity, which based on the ΔG binding value and
molecular interaction along with the pharmacological properties of the ligand,
two best ligands, namely FGR-2 and FGR-3, were chosen as the novel inhibitor
of DPP-4. Further in vitro, in vivo, and clinical trial analysis must be executed in
order to validate the selected ligands therapeutic activity as drug candidates for
type 2 diabetes.

Keywords: Type 2 diabetes � Dipeptidyl Peptidase-4 � Natural compounds �
Fragment-based drug design � In silico

1 Introduction

Diabetes mellitus is a chronic hyperglycemic disease caused by a disturbance in car-
bohydrate, fat, and protein metabolism due to lack or insensitivity of insulin [1]. The
emergence of diabetes in adult have been increased significantly and become one of the
ten highest causes of death in the world [2]. According to the International Diabetes
Federation (IDF), in 2017, about 425 million people (age 20–79 years) living with
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diabetes worldwide and will probably reach 629 million by 2045 [3]. The majority of
diabetic patients are type 2 (non-insulin dependent) which frequently arises because of
unhealthy lifestyles such as smoking habit, lack of physical activity, consuming alcohol
and high carbohydrate foods, and also supported by the genetic factor [4, 5]. Prolonged
hyperglycemia can produce complications such as amputation, kidney failure, car-
diovascular, and stroke [1]. Therefore, diabetes emerges as a challenge for international
public health that is expected to prevent and control.

Medicinal treatment of diabetes can be carried out by inhibiting Dipeptidyl
Peptidase-4 (DPP-4). This enzyme has capable of degrading incretin hormones which
act as a glucoregulatory in the human body [6]. Some commercial DPP-4 inhibitors
such as sitagliptin, saxagliptin, linagliptin, and alogliptin may cause joint pain and lead
to paralysis [7]. Consequently, the discovery of the novel DPP-4 inhibitors which have
low toxicity is necessary.

Fragment-Based Drug Discovery (FBDD) was developed to start the lead generation
process in drug discovery. FBDD involves the modification of small molecules
(<300 Da) using three main approaches such as fragment merging, linking, and growing
[8]. Natural products and their derivatives still an important source of new drugs for
many years [9]. In drug development, natural products were explored into various lead
compounds, which can be used as templates for the discovery of new drugs by the
pharmaceutical industry [10]. In this study, FBDD through fragment growing approach
was conducted to discover novel DPP-4 inhibitors from natural product compounds.

2 Research Methodology

2.1 Preparation of DPP-4 Protein Structure and Standard Ligands

The preparation process was performed based on the drug design pipeline that was
developed by Tambunan et al. [11]. The three-dimensional structure of DPP-4 protein
was acquired from Protein Data Bank in the Research Collaboratory for Structural
Bioinformatics (RCSB PDB) with PDB ID: 4A5S [12]. The protein structure was
prepared using Molecular Operating Environment (MOE) 2014.09 software to remove
the unwanted molecules except for the unique ligand. The optimization method was
performed using Amber10: EHT forcefield. Then, the prepared protein was saved in
moe format. Standard ligands were collected from ZINC15 database and also prepared
with the same software using MMFF94x forcefield. The ligand database was saved in
MDB format.

2.2 Pharmacophore Generation

By using MOE 2014.09 software, pharmacophore construction was generated through
docking simulation of DPP-4 protein to standard ligands with ‘Triangle Matcher’ as the
docking placement methodology. Protein-Ligand Interaction Finger-prints (PLIF) from
the simulation result was analyzed to acquire the pharmacophore features. Afterward,
the feature was saved in the ph4 file format for the following pharmacophore-based
molecular docking simulation.
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2.3 Selecting and Growing Potential Fragment

Prior to selecting fragment, natural product compounds from ZINC15 database [13]
were screened by applying Astex Rule of Three to evoke the inadequate fragments [8].
Furthermore, the fragments which possessed drug-likeness score below than zero and
toxic properties were removed from the database. Then, the fragment database was
prepared using the same parameters as the previous ligands. The rigid receptor docking
simulation was performed on the filtered fragments against the binding site of DPP-4.
From the docking results, potential fragments were selected subsequently for fragment
growing process. DataWarrior software was used to create the evolutionary library
based on FragFp descriptor structural similarity and Lipinski Rule of Five [14, 15]. The
generated ligands were filtered based on the toxicity properties, and drug-likeness score
before underwent the virtual screening simulation.

2.4 Virtual Screening and Molecular Docking

Virtual screening and molecular docking simulation were performed by utilizing MOE
software with AMBER10: EHT as the forcefield in R-Field solvation. Before docking
simulation, the ligand libraries underwent the virtual screening process. The molecular
docking simulation of the ligands and standard drug were carried out based pharma-
cophore with some protocols, such as rigid receptor retain 30-1, 100-1 and induced-fit
retain 100-1.

2.5 ADME and Toxicity Prediction

The ten best ligands and standard molecules from induced-fit molecular docking
simulation were subjected to the ADME and toxicological properties prediction by
applying DataWarrior [14] and Toxtree [16] software. Furthermore, the medicinal
chemistry properties of the ligands were predicted using SWISSADME [17].

3 Results and Discussions

3.1 Visualization of Protein and Pharmacophore Features

DPP-4 is a serine protease (UniProtKB-P27487) consist of 766 residues which are
classified as a glycoprotein. The crystal structure of the protein was obtained from
RCSB PDB with PDB ID: 4A5S, which have resolution 1.62 Å and a novel heterocyclic
DPP-4 inhibitor (N7F) inside the binding site [12]. In Fig. 1a, the binding site of the
protein was shown in green and purple colors, which indicate polar and nonpolar
regions, respectively. The binding site consist of Arg125, Trp201, Glu205, Glu206,
Ser209, Phe357, Asp545, Tyr547, Gly549, Lys554, Trp627, Gly628, Trp629, Ser630,
Tyr631, Gly632, Val656, Trp659, Tyr662, Asp663, Tyr666, Arg669, Asn710, Val711,
His740, and Tyr752 amino acid residues. Two amino acid residues also act as active
sites such as Ser630 and His740, which plays an important catalytic function in the
degradation of the peptide hormone such as Glucagon-Like Peptide-1 (GLP-1) [18–20].
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The protein structure was prepared using MOE software with potential setup
Amber10: EHT as forcefield in R-Field solvation. AMBER is an appropriate parameter
for the common nucleosides and amino acid [21]. Besides removing unwanted mole-
cules, chain B was also removed because it has a fewer number of hydrogen bond
interactions with inhibitors than chain A [20]. Method of optimization was initiated by
‘Protonate 3D’ feature with selected parameters of 300K in temperature, pH equal to 7
and salt concentration of 0.1 mol/L. Then, it was continued with checked “adjust
hydrogens and lone pairs as required” option in ‘Partial Charge’ and unchecked “allow
ASN/GLN/HIS ‘flips’ in Protonate3D” option. In ‘LigX,’ the receptor strength of
100,000 and Root Mean Square (RMS) gradient of 0.05 kcal/mol Å were applied. On
the other hand, standard ligands were prepared by using default parameters in ‘wash’
and ‘energy minimization’ features with RMS gradient of 0.001 kcal/mol Å.
MMFF94x forcefield in Gas Phase solvation was suitably parameterized for small
organic molecules as the ligands in this research.

In pharmacophore generation, molecular docking of DPP-4 protein to standard
ligands was performed using two different protocols, namely rigid receptor and
induced-fit, with ‘Triangle Matcher’ as the docking placement methodology. The
docking result was analyzed to acquire pharmacophore features. PLIF method com-
pares ligand-protein interaction that exposed the similarity between the interaction of
docking pose and that of a reference protein-ligand complex, through fingerprints [22].
Visualization of the protein revealed that there are three pharmacophore features in the
binding site such as Cat&Don (Purple), HydA (Green), and Acc (Blue) (Fig. 1b).

3.2 Fragment Growing Process

In this research, as much as 343,798 natural product compounds were screened by
applying Astex Rule of Three, which using parameters such as molecular weight
<300 Da, c Log P <3, the number of hydrogen donor <3, the number of hydrogen

Fig. 1. Binding site visualization of DPP-4 with pharmacophore features (Color figure online)
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acceptor <3, rotatable bond <3 and polar surface area (TPSA) <60 Å2. These param-
eters were chosen because of its relevance to fragment-based drug design [8]. Besides,
the compounds which exhibited drug-likeness score lower than zero, and showed the
toxicity properties such as mutagenic, tumorigenic, reproductive effect and irritant were
also omitted.

From the initial screening, 7,470 selected fragments were then subjected to rigid
docking with ‘Pharmacophore’ as the docking placement. At first rigid docking retain
30-1, there were 493 fragments that bound to the pharmacophore feature in the binding
pocket and having the RMSD value <2.0 Å. Then, from the second docking process
retain 100-1, only 445 fragments that fulfilled the requirement. About 18 potential
fragments that bound to the binding site were chosen based on the observed number of
hydrogen bonds formed in the molecular interaction.

Fragment growing was conducted by utilizing DataWarrior software to create the
evolutionary library which restricted to the FragFp descriptor, Lipinski’s Rule of Five,
Veber rules, drug-likeness above than zero and toxicity properties. Potential fragments
were grown based on the Lipinski’s Rule of Five (RO5) and Veber rules such as
molecular weight <500 Da, rotatable bonds � 10, TPSA <140 Å2, and logP between
−0.5 and 5.6, number of hydrogen donor <5, and number of hydrogen acceptor <10
[23]. At the end fragment growing process, around 62,392 generated ligands were
stored in MDB format for the molecular docking simulation.

3.3 Molecular Docking Simulation

MOE 2014.09 software was employed for all molecular docking simulations. Both
ligands and standards underwent two types of docking protocols. The ‘rigid receptor’
protocol was used for the first docking simulation with retain 30 and the repetition with
retain 100. Whereas in the second docking, ‘induced-fit’ protocol with retain 100 was
performed. In the rigid docking, only 572 ligands attached to the binding site that have
RMSD value <2.0 Å and ΔG binding value lower than standard. Meanwhile, only 527
ligands that result from induced-fit docking which comply with the requirement. As the
standard ligands, we used linagliptin (ZINC03820029), saxagliptin (ZINC13648755),
and alogliptin (ZINC14961096), because they are commercial FDA-approved drug as
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Fig. 2. Structure molecules of 1-[(3-bromophenyl) methyl] piperidine-4-carboxamide (A) along
with fragment growing result, FGR-2 (B) and FGR-3 (C).
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the DPP-4 inhibitor [7, 24]. The ten best ligands with the lowest DG binding value and
the standard are shown in Table 1. These ligands are then analyzed for toxicity and
pharmacological properties to select the best drug candidates as shown as in the
research flowchart (Fig. 3).

Table 1. The DG binding and RMSD value of the best ligand and standard, from induced-fit
docking simulation

No. Molecule names H-
Bond

DG
(Kcal/mol)

RMSD

1. (3-(methyl((1Z,12E)-nonadeca-
1,3,4,6,7,9,10,12,14,15,17,18-dodecaen-1-yl)
amino)-5-(1H-pyrazol-1-yl) phenyl)
methanaminium

1 −13.4851 1.2968

2. 4-carbamoyl-1-(3-((((S)-3-carbamoyldeca-4,6,9-
triyn-1-yl) (methyl)ammonio) methyl)-5-
phosphaneylbenzyl) piperidin-1-ium

5 −12.5597 1.0192

3. 4-carbamoyl-1-(3-((((3S,6S)-3-carbamoyl-6-
methylnona-4,7-diyn-1-yl) (methyl)ammonio)
methyl)-5-phosphaneylbenzyl) piperidin-1-ium

6 −12.2777 0.8318

4. 1-(3-bromo-5-((((3S,6S)-3-ethyl-6-methylnona-
4,7-diyn-1-yl) (methyl)ammonio) methyl)
benzyl)-4-carbamoylpiperidin-1-ium

5 −12.2051 1.1632

5. 4-carbamoyl-1-(2-((3S)-3-carbamoyl-6-(isopentyl
(methyl) ammonio) hexa-1,4-diyn-1-yl)-6-
chlorobenzyl) piperidin-1-ium

2 −12.1617 1.1996

6. 1-(4-((4S,7S)-11-ammonio-4-(ammoniomethyl)-
7-(fluorocarbonyl) undeca-1,5,8-triyn-1-yl)
benzyl)-4-carbamoylpiperidin-1-ium

5 −12.1471 1.0965

7. (3-(((1Z,9E)-heptadeca-1,3,4,6,7,9,11,12,14,15-
decaen-1-yl) (methyl)amino)-5-(1H-pyrazol-1-yl)
phenyl) methanaminium

1 −11.9514 0.7797

8. 1-(2-((3R,6S)-10-ammonio-6-carbamoyl-3-
methyldeca-1,4,7-triyn-1-yl)-6-chlorobenzyl)-4-
carbamoylpiperidin-1-ium

3 −11.9257 0.7796

9. 1-(2-((3R)-6-((4-amino-4-oxobut-2-yn-1-yl)
(ethyl)ammonio)-3-ethylhexa-1,4-diyn-1-yl)-6-
chlorobenzyl)-4-carbamoylpiperidin-1-ium

5 −11.8711 1.5126

10. 4-carbamoyl-1-(3-((((S)-3-carbamoylundeca-
4,6,9-triyn-1-yl) (methyl)ammonio) methyl)-5-
phosphaneylbenzyl) piperidin-1-ium

5 −11.8654 1.2684

Std1 Linagliptin 0 −9.7260 1.6075
Std2 Saxagliptin 1 −7.8669 0.6046
Std3 Alogliptin 5 −7.3038 1.6650
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3.4 ADME and Toxicity Prediction

In this research, ADME (Adsorption, Distribution, Metabolism, and Excretion) and
toxicity were determined by computational prediction. Using DataWarrior and Toxtree
which are presented in Table 2. DataWarrior was used to predict mutagenic, tumori-
genic, reproductive effect and irritant [14], while Toxtree was used to analyzed
Genotoxic Carcinogenicity (GC), Non-Genotoxic Carcinogenicity (NGC), Potential
Salmonella typhimurium TA100 Mutagen (PSM) based on QSAR, and Potential
Carcinogen (PC) based on QSAR [16]. From the table, five ligands have carcinogenic
properties such as FGR-4, FGR-5, FGR-6, FGR-8, and FGR-9.

Medicinal chemistry of the ligands like PAINS (Pan-assay interference compounds)
and synthetic accessibility was predicted using SWISSADME together with bioavail-
ability score, gastrointestinal absorption, and CYP450 inhibitor [18], which the data are
shown in Table 3.

Fig. 3. Research flowchart. Inside the circle marks are the number of ligands that have been
used in every step, respectively.

Table 2. Toxicity prediction using DataWarrior and Toxtree

No. Ligands Mut Tum RE Irr GC NGC PSM PC
1. FGR-1 No No No No No No No No
2. FGR-2 No No No No No No No No
3. FGR-3 No No No No No No No No
4. FGR-4 No No No No No Yes No No
5. FGR-5 No No No No No Yes No No
6. FGR-6 No No No No Yes No No No
7. FGR-7 No No No No No No No No
8. FGR-8 No No No No No Yes No No
9. FGR-9 No No No No No Yes No No

10. FGR-10 No No No No No No No No
Std1 Linagliptin No No No No No No No No
Std2 Saxagliptin No No No No No No No No
Std3 Alogliptin No No No No No No No No
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Bioavailability score and PAINS were identical for all of the ligands which indi-
cated that the ligand was similarly absorbed in our body and not likely to produce false-
positives in the high-throughput screen test. From Table 3, some ligands were Cyto-
chrome P450 (CYP) inhibitor including the standard (linagliptin). Irreversible inhibi-
tion of CYP can trigger an autoimmune response. Therefore, it is essential to study the
inhibition of CYP during the drug discovery process [25].

Although FGR-2 showed good results on almost all ADME-Tox prediction, gas-
trointestinal absorption was still relatively low compared to other ligands, which
indicated that FGR-2 was not suitable for oral administration. On the other hand, the
prediction results of FGR-3 indicated that the ligand was approved as an oral drug
candidate that can be continued for the next stage testing.

According to all of the data analysis, two drug candidates, such as FGR-2 and
FGR-3 have lower DG binding value, more hydrogen bond interaction, and pharma-
cological properties are preferred than the standards. Both drug candidates are the
fragment growing product from a natural product compound that has a popular name as
1-[(3-bromophenyl) methyl] piperidine-4-carboxamide. The modification results from
this compound can be seen in Fig. 2.

As shown in Fig. 4, FGR-2 interacts with 21 amino acid residues, while FGR-3
interacts with 19 residues. On the other hand, both drug candidates have five important
residues when attaching to a protein that forms hydrogen bond interactions at Glu205,
Glu206, Tyr631, His740 residues, and p–p stacking interaction at Tyr666 residue.
Molecular properties of each drug candidates and standard were presented in Table 4.

Table 3. Pharmacokinetics and medicinal chemistry prediction using SWISSADME

No. Pharmacokinetics MedChem 

GI Absorption CYP inhibitor PAINS Bioavailability Synthetic 
Accessibility

1. High CYP2C19, 
CYP2C9, 
CYP2D6

0
0,55 3,94 

2. Low No 0 0,55 4,75
3. High No 0 0,55 5,05
4. High No 0 0,55 4,74
5. High No 0 0,55 5,04
6. High No 0 0.55 4.94
7. High CYP2C19, 

CYP2C9, 
CYP3A4

0
0,55 3,86

8. High No 0 0,55 4,69
9. High No 0 0,55 4,98
10. High No 0 0,55 4,86
Std1 High CYP2C9, 

CYP3A4 0 0,55 4,44 

Std2 High No 0 0,55 5,05
Std3 High No 0 0,55 3,54 
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4 Conclusion

The drug candidates were chosen as the novel inhibitor of DPP-4 are FGR-2 and FGR-
3 based on their low Gibbs free energy (DG) and favorable interactions. However,
based on the pharmacological properties of the ligands that was predicted by using
DataWarrior, Toxtree v2.6.13, and SWISSADME software, we only recommended
FGR-3, as an oral drug candidate. This ligand exhibited non-toxic, non-carcinogenic,

Fig. 4. The 3D (left) and 2D (right) visualization of ligand interaction FGR-2 (top) and FGR-3
(bottom)

Table 4. Molecular properties of candidates and standard drugs

No. Ligands Physico-chemical Properties
Weight TPSA H-Don H-Acc log P

1. FGR-2 466.564 95.06 4 6 −1.8233
2. FGR-3 470.596 95.06 4 6 −1.2259
Std1 Linagliptin 473.559 115.10 1 10 −1.1404
Std2 Saxagliptin 316.423 91.97 2 5 −2.8211
Std3 Alogliptin 340.406 95.29 1 7 −2.1591
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non-mutagenic, high gastrointestinal absorption, and no bad effect for metabolism in
the human body. Further in vitro, in vivo, and clinical trial analysis must be executed in
order to validate the therapeutic activity of drug candidates for type 2 diabetes.
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Abstract. Diabetes mellitus is a metabolic disorder leading to hyperglycemia
and organ damage. In 2017, the International Diabetes Federation (IDF) reported
that about 425 million people living with diabetes, most of which suffer from
type 2 diabetes mellitus. The drug development for controlling glucose level is
crucial to treat people with type 2 diabetes mellitus. Alpha-amylase plays an
imperative role in carbohydrate hydrolysis. Hence, the inhibition of alpha-
amylase, which halt the glucose absorption, can be a promising pathway for
developing type 2 diabetes mellitus drugs. Natural product has been known as
the lead drugs for various diseases. In this research, the fragment merging drug
design was performed by employing both the existing drug, voglibose, as the
template and the natural product compounds to generate newly constructed
ligands. The fragments were acquired from ZINC15 natural product database
and then were screened according to Astex’s Rules of Three, pharmacophore
properties, and molecular docking simulation. The 482 selected fragments were
evaluated under Lipinski’s Rule of Five and toxicity effects using DataWarrior
software. The ligands underwent molecular flexible docking simulation fol-
lowed by the ADME-Tox prediction by using Toxtree, AdmetSAR, and Swis-
sADME software. In the end, two lead compounds showed the best properties as
an alpha-amylase inhibitor based on their low DGbinding, acceptable RMSD
score, favorable pharmacological properties, and molecular interaction.

Keywords: Type 2 diabetes mellitus � Alpha-amylase �
Fragment-based drug design

1 Introduction

Type 2 diabetes mellitus is diabetes mellitus which is non-insulin-dependent. Diabetes
mellitus is caused by changes in carbohydrate metabolism which leads to hyper-
glycemia [1, 2]. The number of people with diabetes mellitus in the world has
quadrupled in the past three decades [3]. According to data from the International
Diabetes Federation (2017), around 425 million people suffer from diabetes and most
of them are residents living in urban areas. This number is expected to continue
increasing every year [4].
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Diabetes mellitus treatment is focused on securing the quality of life through
controlling and decreasing blood glucose levels to normal levels [5]. Inhibition of
alpha-amylase enzymes, enzymes that play an imperative role in the digestion of starch
and glycogen, can be targeted for the treatment of type 2 diabetes mellitus [6]. The
inhibition of alpha-amylase can significantly reduce the increase in post-prandial blood
glucose by blocking the hydrolysis of carbohydrates in the human body and reducing
glucose absorption [7].

Natural compounds have become a potential source of drug development. The use
of natural compounds in drug discovery is related to their presence in various species in
nature, their complex chemical structures, and the existence of supporting methods and
technologies. Also, the discovery of natural product-based drugs has enormous
potential to utilize the chemical diversity of natural products [8]. Numerous methods
have been developed to create and optimize lead compounds which have the potential
as new therapeutic agents, one on which is fragment-based drug design (FBDD).
Fragment-based drug design allows the identification of active fragments that can reach
the subpocket within the active site. In addition, a higher hit rate and more efficient
optimization capacity are interesting features offered by this method. The construction
of drug-like molecule utilizing fragment-based drug design methods can be achieved
by merging, linking, or growing the fragment [9–11]. Fragment merging is the
incorporation of structural parts of molecules which overlap with elements of a protein
substrate or inhibitor which are known to form a molecular complex [12]. In this
research, fragment merging was accomplished between the natural product and the
existing drug, voglibose, to acquire lead compounds as alpha-amylase inhibitors
through molecular docking simulations and ADME-Tox assay.

2 Material and Method

This research was conducted by utilizing the Molecular Operating Environment
(MOE) 2014.09, DataWarrior v04.06.01, Toxtree v2.6.13, ChemBioDraw Ultra 14.0,
SwissADME, and AdmetSAR software. The 3D structure of alpha-amylase and natural
product fragments were acquired from RCSB Protein Data Bank and ZINC15 database,
respectively.

2.1 Preparation of Alpha-Amylase

The 3D structure of alpha-amylase with PDB ID: 1HNY was obtained from RCSB
protein databank. The 3D structure preparation was conducted using MOE 2014.09
software by applying the Amber10: EHT parameter as forcefield and R-field as sol-
vation mode. Structure optimization was done by removing unwanted water molecules
and ions. Then, the LigX protocol was implemented with default settings.

2.2 Preparation of Natural Product Fragments and Standard Molecules

In this research, the fragments were obtained from ZINC15 natural product database.
These fragments were prepared through MOE 2014.09 with the default parameters in
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Wash and Energy Minimization. MMFF94x forcefield and RMS gradient of
0.001 kcal/mol.Å were used as the optimization parameters. Standard molecules such
as acarbose, miglitol, voglibose, and metformin were also prepared in the same steps
with the natural product fragments. Thereafter, the prepared natural product fragments
were screened according to Astex’s Rule of Three (RO3) and toxicity test by utilizing
DataWarrior software.

2.3 Molecular Docking Simulation of Standard Ligand
and Protein-Ligand Interaction Fingerprint (PLIF)

Molecular docking simulations of alpha-amylase and standard ligands were conducted
by performing rigid docking and flexible docking utilizing MOE 2014.09 software.
Molecular docking simulation results were used to determine the pharmacophore fea-
tures by operating the stages of Protein-Ligand Interaction Fingerprints (PLIF). PLIF
procedure was done according to the default parameter of MOE 2014.09 software.

2.4 Molecular Docking Simulation of Natural Product Fragments
and Fragment Merging

Natural product fragments were docked two times using virtual screening protocol and
followed by rigid receptor protocol. Molecular docking was operated into the active
site of alpha-amylase. In this simulation, parameters used include Pharmacophore/
London dG rescoring as placement and Forcefield/GBVI-WSA dG as refinement.

The fragments with proper Gibbs binding energy (DGbinding) and RMSD value were
chosen to be merged with voglibose as the template. The selected fragment should
overlap with standard ligand and comply with the Lipinski’s Rule of Five (RO5). This
process was conducted by utilizing MOE 2014.09, ChemBioDraw Ultra 14.0, and
DataWarrior software.

2.5 Molecular Docking of Ligands

Molecular docking of ligands was conducted by performing flexible docking with
potential setup AMBER 10: EHT and R-field as forcefield and solvation mode,
respectively. The best ligands were chosen according to the DGbinding, RMSD value,
and molecular interaction.

2.6 Pharmacological Prediction

The potential ligands were analyzed its pharmacological characteristic. Mutagenicity
and carcinogenicity were predicted using Toxtree software. The toxicity effects of the
ligands were evaluated utilizing DataWarrior and AdmetSAR, while the health effect of
human was determined using SwissADME.
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3 Results and Discussion

3.1 Visualization of Alpha-Amylase

In this research, the 3D structure of alpha-amylase was acquired from RCSB PDB. The
structure of human pancreatic alpha-amylase was determined using X-ray crystallog-
raphy with the resolution of 1.8 Å. Human pancreatic amylase consists of three
domains. The largest domain is domain A which serves as the location of active site
residues Asp197, Glu233, and Asp300 [13]. Energy minimization was also imple-
mented in the process of protein preparation to obtain stable conformations, configu-
rations with minimum energy [14], and gradient energy close to zero [15]. After the 3D
alpha-amylase structure was optimized, the ideal binding site of alpha-amylase was
predicted using the ‘Site Finder’ feature. The binding site used in this study based on
research of Brayer et al. in 1995. The visualization of the binding site alpha-amylase is
shown in Fig. 1.

3.2 Initial Screening of Natural Product Fragments

About 343,798 compounds were collected from ZINC15 database and saved in the .sdf
format file. Initial screening of natural product fragments was conducted using Data
Warrior software. The compounds were screened according to the Rule of Three (RO3)
with the following parameters: molecular weight <300 Da, the cLogP � 3, rotatable
bonds � 3, the number of hydrogen bond acceptors � 3, the number of hydrogen
donor � 3, and polar surface area � 60 Å2. Rule of three was used when constructing
fragment into lead compound [16]. Also, the natural products with druglikeness score
higher than 0 and did not show the mutagenic, tumorigenic, reproductive effect, and
irritant characteristic was selected and prepared for the generation of the lead com-
pound. Around 7,470 fragments were retrieved from the initial screening process.

Fig. 1. The 3D structure of human pancreatic alpha-amylase taken from PDB ID: 1HNY
(A) and visualization of the alpha-amylase binding site (B)
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3.3 Protein-Ligand Interaction Fingerprints (PLIF)

The standard ligands used were metformin, miglitol, and acarbose. The standard
ligands were subjected to molecular docking simulation with rigid receptor protocol
with retain 30 and 100 respectively and induce fit with retain 100 and 300. The results
of induce fit retain 300 were superposed using MOE 2014.09 software. This process
was also called the Protein-Ligand Interaction Fingerprints (PLIF).

PLIF is the encryption of structural information which shows all the similarities in
protein-ligand interactions. The assessments are accomplished quantitatively which
informed the interaction between the docking pose and the target protein similar to the
known ligand [17]. PLIF concises the interaction between ligands and protein through
fingerprint design. The similarity of these interactions can increase the likelihood of
finding hits over structure-based screening.

In addition, pharmacophore features were also generated from the PLIF process.
Pharmacophore feature was used to determine the interaction point of protein-ligands
as binding sites and biological activities [18]. Pharmacophore features have active sites
which are used to bind ligands to specific targets. In such a case, only the ligand which
has the desired characteristics in the drug molecule will be filtered [19]. Pharmacophore
feature constructed in this study is displayed in Fig. 2. Each color of the feature
pharmacophore recognizes different characteristic. The first feature is F1: Don&Acc
which has characteristic as hydrogen donors and acceptors. The second feature F2: Don
acts as hydrogen donors, and the third feature is F3: HydA which means hydrophobic
[20]. Pharmacophore was combined with molecular docking simulation to improve
success in finding lead compounds.

3.4 Molecular Docking Simulation of Alpha-Amylase and Fragments

Molecular docking is an essential step in drug discovery and design of the in silico
method. Molecular docking simulation predicts the ligand orientation in the target
proteins [21]. Docking simulation of fragments was done by using two protocols,
virtual screening, and rigid receptor. From the virtual screening protocol simulation,
588 compounds were obtained. Rigid docking was performed two times. The first rigid
docking was retained 30. Only 502 compounds bind the pharmacophore feature in the

Fig. 2. The pharmacophore feature that was used in this study
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pocket. While the second rigid docking applied retain 100. About 482 compounds
which pass the second rigid docking simulation could be used in the fragment merging
process.

3.5 Preparation of Natural Product Ligands

The fragments were merging was executed by employing MOE 2014.09 software. The
fragments were connected to the element of the voglibose, the existing drug of type 2
diabetes mellitus, by maintaining its crucial structure. The new ligands were con-
structed under the Lipinski’s Rule of Five (RO5) and Veber rule. The RO5 rule is
molecular weight lower than 500 Da, the number of hydrogen donor lower than 5, the
number of hydrogen acceptor lower than 10, LogP between −0.5 and 5.6 [22].
The TPSA no more than 140 Å2 and the rotatable bond lower than 10 are the Veber
rule parameters [23]. The ligands must also be screened based on the druglikeness and
toxicity properties following mutagenic, tumorigenic, reproductive effect, and irritant.
A total of seven ligands were constructed from the process of fragment merging. The
best ligands were shown in Fig. 3, with the pink color, is part of voglibose, and the
black color is the fragment.

3.6 Analysis of Molecular Docking Simulation of Alpha-Amylase
and the Ligands

A total of seven ligands and two standard molecules underwent flexible docking
simulation utilizing MOE 2014.09. Flexible docking was employed two times with the
retain 100 and 300, respectively. In this step, only 2 ligands have RMSD value lower
than 2.0 Å and DGbinding lower than standard. The result of best ligands and the
standards from flexible molecular docking simulation is presented in Table 1.

Fig. 3. The selected fragments and the merging position of (A) YS2156 and (B) UT3261
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As the best ligand, UT3261 exhibited the lowest DGbinding value than YS2156
ligand. It also bound on the best position in the binding pocket. Figure 4 shows the
molecular interaction between YS2156 and UT3261 with amino acids residues in the
binding site of alpha-amylase. YS2156 has 14 interactions with the amino acid resi-
dues. Seven hydrogen bonds were binding the ligand in the Asp197, Glu233, Asp300,
Arg195, His101, and His299. Trp59, Trp58, His305, Leu162, Tyr151, Ile235, Ala198,
and Tyr62 bind through van der Walls interaction. While UT3261 has 18 interaction
with the amino acids residue. Three hydrogen bonds were binding the ligands in the
Glu233 and Asp300. On the other hand, His101, Ala307, Leu165, His305, Leu162,
Tyr151, Lys200, His201, Asp197, Arg195, Ala198, Asn298, Ile235, Trp58, His299,
and Tyr62 interacted through van der Walls interaction. YS2156 has interaction with

Table 1. Pharmacological prediction results of ligands

Ligand ΔGbinding RMSD Weight LogP Hydrogen
acceptor

Hydrogen
donor

TPSA

YS2156 −9.0916 1.0376 371.455 0.1029 6 5 102.46
UT3261 −10.0346 1.0880 404.505 1.2611 7 5 113.26
Voglibose* −7.4587 1.2389 268.285 −5.1960 8 8 158.22
Acarbose* −9.0856 1.2720 646.631 −8.4018 19 14 325.75

DGbinding in Kcal/mol, RMSD in Å, TPSA in Å2, weight in Da, *standard.

Fig. 4. Molecular interaction visualization of (A) YS2156 and (B) UT3261 in 2D (left) and 3D
(right)
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Arg195, Asp197, Glu233, His201, and His299 on O hydroxyl atom and Asp300 on C
carboxyl. While UT3261 has interaction with Asp300 on O hydroxyl atom and Glu233
on O hydroxyl atom and N atom. It shows that Glu233 and Asp300 have an essential
role in inhibiting the alpha-amylase enzyme.

3.7 Pharmacological Prediction

The two ligands were analyzed for their pharmacological properties and toxicity by
employing admeSAR and SwissADME online software. ADMET test is one of the
important steps that must be passed by ligands in order to function as a drug candidate.
Table 2 shows the result of ADMET prediction. Blood-Brain Barrier (BBB), Ames
toxicity, carcinogen, and acute oral toxicity were predicted using admetSAR, while the
subcellular localization, gastrointestinal absorption, and CYP450 inhibitor were ana-
lyzed by using SwissADME.

The two ligands have difference subcellular localization with the standards. The
UT3162 and standard ligands show negative effects on the Blood-Brain Barrier (BBB).
It means that the ligands did not affect transport between the blood and the brain [24].
The gastrointestinal effect is related to the value of TPSA and molecular weight [25].
All ligands showed no inhibition potency of cytochrome P450 (CYP450) enzyme.
Major isoforms of the enzyme such as CYP1A2, CYP2C19, CYP2CG, CYP2D6, and
CYP3A4 plays a crucial role in the biotransformation of drugs. The most abundant
isoenzyme in the liver and involved in drug metabolism is CYP3A4, which is around
30–40% of drugs [26]. In addition, it is also crucial to analyze the ligand properties of
the hERG. The hERG I is a potassium ion channel that plays a role in cardiac repo-
larization. Compounds that inhibit the heart ion channel can cause cardiac arrhythmias
[27]. Both ligands and standards did not inhibit hERG I. Toxicity effect of ligands was
analyzed by determining the Ames toxicity and carcinogen. All ligands were not
showing toxicity effect based on those parameters.

The Ames test was used as an initial screening to analyze the mutagenic probability
of new ligands for hazard description by using Salmonella bacteria [28]. If the ligands
significantly induce the growth of the revertant colonies in at least one of the common
five strains, the ligands are categorized as Ames positive. While Ames negative if it

Table 2. ADME-Tox prediction of the ligand using admetSAR and SwissADME

Ligand BBB Subcellular
localization

GI
abs.

CYP450
inhibitor

hERG I
inhibitor

Ames
Tox.

Carcinogen Acute
oral
toxicity

YS2156 + Nucleus High No No No No III
UT3261 − Mitochondria Low No No No No III
Voglibose* − Lysosome Low No No No No IV
Acarbose* − Lysosome Low No No No No IV

BBB: Blood-Brain Barrier, GI abs.: Gastrointestinal absorption, Ames Tox.: Ames Toxicity,
*standard
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does not induce significant revertant colony growth in any strain [29]. All of the ligands
have no Ames toxicity properties. It means that all of the ligands did not cause
mutagenic in human.

Acute toxicity prediction aims to acquire data on the biologic activity of a chemical
and obtain insight into its mechanism of action [30]. Table 2 shows that the ligands in
category III of acute oral toxicity, it means that the ligands were slightly toxic, while
the standard ligands in IV category [31]. It means the Voglibose and Acarbose were
generally considered to be practically nontoxic.

The druglikeness of the ligands and standards were checked. As displayed in
Table 3, all ligands have good druglikeness based on the Lipinski’s, Veber’s, and
Egan’s Rule. The ligands have the highest oral bioavailability score compared to
acarbose and same as voglibose. It assumed that the ligands could be absorbed properly
in the body. The prediction of synthetic accessibility of the ligands using SwissADME
can describe molecule synthetic accessibility as a score between I (easy to make) and
10 (very difficult to make). The synthetic accessibility score of UT3261 was lower than
YS2156, which means UT3261 was more easy to synthesize than YS2156, but all the
ligands were easier to synthesize compared the standard ligands [32].

4 Conclusion

Fragment-based drug design method has been done on the natural product compounds
to find a potential inhibitor of alpha-amylase. YS2156 and UT3261 have lower Gibss
binding score than the existing drug, acarbose. UT3261 has greater potential as an
inhibitor according to low DGbinding, RMSD value, and ADME-Tox prediction. Thus,
the additional in silico method is needed to analyze the stability of the ligand in alpha-
amylase and also is continued to in vitro and in vivo experiment.
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Table 3. The druglikeness properties of ligands using SwissADME

Ligand Lipinski Veber Egan Bioavailability score Synthetic accessibility

YS2156 Yes Yes Yes 0.55 4.12
UT3261 Yes Yes Yes 0.55 5.18
Voglibose* Yes No No 0.55 3.69
Acarbose* No No No 0.17 7.38
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Guillermo Dufort y Álvarez1, Gadiel Seroussi1,2, Pablo Smircich3,4,
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Abstract. The research and development of tools for genomic data
compression has focused so far on data generated by second-generation
sequencing technologies, while third-generation technologies, such as
nanopore technologies, have received little attention in the data com-
pression research community. In this paper, we investigate compression
schemes for nanopore FASTQ files. We propose a nanopore quality scores
compressor, called DualCtx, which yields significant improvements in
compression performance with respect to the state-of-the-art. We also
extend DualCtx to a full FASTQ compressor, termed DualFqz, by sub-
stituting DualCtx for the quality score compression module in a variant
of Fqzcomp. We tested DualFqz and various existing compressors on a
large nanopore data set. The results show that DualFqz achieves the best
compression performance. The experiments also show that most current
implementations of compressors fail to execute correctly on files with
long variable length reads.

DualCtx and DualFqz are freely available for download at: https://
github.com/guidufort/DualFqz.

Keywords: Genomic data compression · FASTQ compression ·
Nanopore sequencing technology

1 Introduction

The rapid evolution of High-Throughput Sequencing (HTS) technologies over the
past few years has led, among other consequences, to accelerating reductions in
cost and sequencing time. In this context, there is a broad consensus that the
amount of genomic information that will be generated globally will see explosive
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growth, leading to increasingly large needs for processing, storage, and transmis-
sion resources, which motivates the development of efficient compression tools
for these data [24].

The usual theoretical framework to study this topic consists of considering
the data to be compressed as emitted by a source of information, which gener-
ates symbols according to some probability law. In this setting, the goal in data
compression is to minimize the expected length of an encoding of the data gen-
erated by the source, where expectation is taken with respect to the probability
distribution governing the source. In many cases, from this probability distribu-
tion (or an estimation of it), it is possible to efficiently implement a theoretically
optimal compressor by making use, for example, of an arithmetic encoder [20].
As a consequence, designing a good data compressor amounts, in essence, to
finding good statistical models for the data to be compressed.

For HTS technologies, the result of a sequencing process is a set of readings
of genome fragments, called reads, which are generally stored in text data files in
FASTQ format. For each read, a FASTQ file contains a base call sequence (also
referred to as a read), a quality score sequence, and a (possibly duplicated) iden-
tifier string. The base call sequence is a string of letters from the set {A,C,G, T}
that represents the nitrogenous bases in the read DNA fragment. In addition,
the base call sequence may contain special symbols that represent specific situa-
tions that occur during the sequencing process; for example, a letter N in certain
position of a base call sequence indicates that the sequencer failed to determine
the correct base at that position. The quality score sequence is a string of sym-
bols, of the same length as the base call sequence, where the i-th symbol encodes
an estimated probability of the i-th base call being incorrect. The alphabet of
symbols used to represent quality scores depends on the sequencing technology;
in general, the size of this alphabet is larger than the alphabet of symbols used
for base call sequences. Finally, the identifier string is a free text, generally short,
which identifies the read.

The set of reads stored in FASTQ files is generally the starting point for a
so-called pipeline of processing steps. The intermediate results throughout this
series of steps are represented by files in specific formats for each case. For
example, the result of aligning a set of reads with respect to a reference genome
is usually represented by files in SAM (text) or BAM (binary) formats.

The HTS technologies in most common use today are second-generation
sequencing technologies (also referred to as Next Generation Sequencing (NGS)
technologies), which produce short reads (a few hundreds base-pair long) gen-
erally of fixed length. For these technologies, the quality of the readings is gen-
erally high, and quality scores have little correlation to the base call sequence.
The alphabet of the quality scores in this case ranges from 4 values to about 40,
depending on the specific technology. The Single Molecule Real-Time (SMRT)
technology, developed by Pacific Biosciences (PacBio), is different in the follow-
ing sense: it produces long reads with comparatively high error rates. Similarly,
the recently developed nanopore sequencing technology, mainly driven by Oxford
Nanopore Technologies (ONT), also generates very long variable length reads of
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relatively low quality. In contrast to other technologies, dependencies between
the quality score sequence and the base call sequence have been observed for
nanopore sequencing [9]. In addition, the alphabet size of the quality scores is
94 (Sanger format using ASCII codes 33 to 126).

Many algorithms have been proposed in the literature and implemented as
specific tools for compression of different types of genomic data. Recent surveys
are available in [16,17]. For compression of SAM/BAM files, for example, some
of the most recent developments are presented in [2,3,7,14,18]. When the data to
be compressed are reads in FASTQ format that have not been aligned, but there
is a similar reference genome, some compression tools, such as [1,3,8,11,12,25],
perform a fast alignment of reads with respect to the reference as a step prior to
compression. The base call sequences are then encoded by describing how they
vary relative to the reference genome, which is generally more economical than
an independent encoding. The majority of compressors for FASTQ files, however,
are reference-free, in that they do not use any reference sequence for compression.
These compressors, which we focus on in this paper, may be preferred when
a reference genome is not available or a self-contained encoding of the data
is desirable. Nevertheless, some reference-free compressors, such as Quip [11],
Leon [1], and KIC [25], still obtain a reference genome by constructing and
encoding a draft assembly from the reads in the FASTQ file. Other tools, such
as SCALCE [6], FaStore [22] and Spring [4], reorder the reads in a FASTQ file
by base call sequence similarity; this reordering improves the performance of
the compression itself, which takes place in a second stage. Finally, compressors
like DSRC [21], Fqzcomp and Fastqz [3], and Slimfastq1 do not apply any pre-
processing to the data prior to compression.

As mentioned, all compression algorithms rely, either explicitly or implicitly,
on some statistical model, which determines what data is expected to be seen
more often than other. A common implementation of such a model consists of
capturing statistical characteristics of the data through context models. In a con-
text model, the probability distribution for a data symbol x is conditioned on the
values of other previously encoded symbols, which are referred to as the context
in which x occurs. On the decompressor side, context symbols have been decoded
and are available when decoding x, so the same probability distribution for x can
be determined in lockstep with the encoder. For example, in DSRC, the probabil-
ity distribution for a base call symbol x depends on the nine bases immediately
preceding x. Other compressors that make use of context models are Fqzcomp,
Fastqz, and Slimfastq. Fqzcomp, in particular, determines a context for each
quality score q as a function of the three quality scores immediately preceding
q. According to [17], Fqzcomp achieves the best quality score compression per-
formance among an extensive collection of compressors. The experimental data
for the evaluation in [17] covers different HTS technologies, but does not include
nanopore data. The reason is that most of the HTS data available today are gen-
erated by second-generation technologies, and hence, most of the compression
algorithms introduced above are optimized for these data. As such, they obtain

1 https://sourceforge.net/projects/slimfastq/.

https://sourceforge.net/projects/slimfastq/
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their best performance when applied to genomic files containing short reads of
fixed length, and many fail to work on data containing reads of variable length,
or on data produced by other sequencing technologies.

In particular, data compression schemes optimized for nanopore data have,
so far, received little attention in the research community. However, data pro-
duced by nanopore technologies is becoming increasingly popular, as the long
reads have the potential to decrease the ambiguity associated to short reads,
and help in the detection of large structural variants, including copy number
variants (CNVs), medium- and large-sized insertions and deletions (INDELs),
duplications, inversions, and translocations, among others [10,13,23].

With this in mind, in this paper we focus on compression schemes tailored
to nanopore data in FASTQ format. Our technical contributions are three-fold.
First, we propose a context model lossless compression scheme for nanopore
quality scores, called DualCtx, which exploits the statistical dependency among
neighbour quality scores and also between quality scores and the base call
sequence. We show that the proposed scheme results in a significant improve-
ment in compression performance with respect to the state of the art. Second,
we extend DualCtx to a full FASTQ compressor, referred to as DualFqz, by
substituting DualCtx for the quality score compression module in a variant of
Fqzcomp. To the best knowledge of the authors, DualFqz is the first FASTQ file
compressor optimized for nanopore data. In our experiments, DualFqz shows the
best compression performance on our experimental nanopore data set. Third, we
provide an evaluation of the performance of existing compression tools on a large
data set of nanopore FASTQ files, and show that most implementations fail to
execute correctly on files with long variable length reads.

2 Methods

Next, we introduce the proposed compressor for nanopore quality scores DualCtx
and its extension to a full FASTQ compressor DualFqz.

DualCtx: Dual Context Quality Score Compression

To compress a sequence of quality scores in a FASTQ file, DualCtx constructs
a context model that is comprised of both quality scores and base call symbols.
Denote by qi the quality score at position i within a read, and let q̂i be a Q-
bits quantized version of qi. The quantized quality score, q̂i, is obtained from
qi as q̂i = �(qi + 1)/2R−Q�, where R is the dynamic range of the quality scores
in bits, R ≥ Q. Denote also by xi the base call symbol at position i. The
context for compressing qi, denoted ctxi and depicted in Fig. 1, is determined
by the K quantized quality scores to the left of qi, q̂i−K , . . . , q̂i−1, and the L
base call symbols closest to qi, xi−(L−1)/2, . . . , xi, . . . , xi+(L−1)/2, with prescribed
conventions for border cases,2 where K, L are positive integers and L is odd.
2 For i ≤ K, we arbitrarily let qj = 0 and xj = A for all negative values of j. Similarly,

we let xj = A for all values of j that surpass the end of a read.
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Choices of values for the parameters Q, K, and L are discussed in the sequel. We
assume that the base call sequence is described before the quality score sequence,
so it is available to the decompressor when decoding qi, so base call symbols at
and following position i can be used for the context.

46 36 33 28 34

697580 59 7291

3530 38

T T T AT C

40

A CG

Base call sequence context of length L=5

66 55 68

Base call sequence

Quantized quality
scores

Unquantized quality
scores

Quantized previous quality scores context of
length K=2

Quality score being encoded 

Previously encoded quality scores

Fig. 1. Example of a context for R= 7, Q = 6, K = 2 and L = 5.

The compression of quality scores takes place in a single pass through the
data. As the FASTQ data is read, we collect, for each context, the number of
occurrences of each value of a quality score qj , j < i, in the sequence seen
so far in that context. This statistical information is used to compress qi, for
each position i, by feeding an adaptive arithmetic encoder with the statistics
collected in context ctxi through the sequence of quality scores that occur in
positions previous to i.

In our implementation of DualCtx the parameters are set to Q = 6, K = 2
and L = 5. This choice has been made as a good trade-off between compression
performance and complexity, and it is based on experimental results. Section 3
shows the effect of varying parameters K and L.

DualFqz

For an evaluation of the impact of DualCtx in an overall compression process
of FASTQ files, we construct DualFqz, a full FASTQ compressor adapted from
Fqzcomp.

When tested on nanopore FASTQ files, we found that the current imple-
mentation of Fqzcomp failed to execute correctly on several files. One of the
reasons is that the alphabet size of the quality scores and the length of the reads
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in nanopore data is much larger than that of second-generation technologies.
Hence, before constructing DualFqz, we fixed bugs, enlarged internal buffers,
and widened the range of quality scores values in Fqzcomp. We still refer to
this fixed version of the compressor as Fqzcomp. In particular, the experimental
results presented in Sect. 3 refer to this version.

In addition, Fqzcomp relies on the assumption that quality score values that
are equal to the lowest possible value correspond to unknown base calls (letter N
in the base call sequence) and vice-versa. Although there is a well grounded ratio-
nale behind this assumption, we observe that for various nanopore FASTQ files
this is not the case. In these cases, Fqzcomp alters the quality scores, resulting in
an encoding scheme that is not perfectly lossless and, therefore, not directly com-
parable to other lossless compressors (i.e., compressors for which the original file
is exactly the same as the file obtained after decompression). Hence, for a direct
comparison, we generated a variant of Fqzcomp, which we call FQZm, which
exactly preserves the quality scores in the original FASTQ file. We obtained
DualFqz from FQZm by substituting DualCtx for its quality score compression
module. The source code of DualFqz is available online3.

3 Experimental Results

In this section we report on a set of experiments performed on a large data set
of nanopore FASTQ files. The data set is described in Sect. 3.1. In Sect. 3.2 we
evaluate the performance of DualCtx for quality score compression on nanopore
FASTQ files; for comparison purposes, we also report on the compression of
files from other HTS technologies. In Sect. 3.3 we analyze the impact of the
parameters K and L on the compression performance of DualCtx. In Sect. 3.4
we compare the compression performance of various compression tools, including
DualFqz; we evaluate both the robustness and the compression ratio achieved by
each compressor. All experiments were conducted in a desktop PC with 32 GB
of RAM, an Intel I7 (3.4 GHz) processor, and Ubuntu OS (14.04.5 LTS).

3.1 Nanopore Data Set

To assess the performance of different compression algorithms on nanopore data
we created a data set consisting of nanopore FASTQ files, which we denote NP
DS. For this purpose, we downloaded a large set of publicly available sequencing
files, all generated by Oxford Nanopore technology, from the National Center
for Biotechnology Information4 (NCBI) database. The data set is comprised of
336 different files, with sizes ranging from 7.2 KB to 3.5 GB, including reads that
are up to hundreds of thousands base-pair long. The total size of the data set
amounts to 114.2 GB and the dynamic range of quality scores is 7 bits. The
sequenced samples correspond to viruses, bacteria, fungi, humans, animals, and

3 https://github.com/guidufort/DualFqz.
4 https://www.ncbi.nlm.nih.gov/.

https://github.com/guidufort/DualFqz
https://www.ncbi.nlm.nih.gov/
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metagenomic material. The list of SRA Ids of the files that compose the data
set is available online5.

3.2 Evaluation of DualCtx

As mentioned, comparative studies of current FASTQ data compression algo-
rithms report that Fqzcomp achieves the best quality scores compression ratios
on data sets from various HTS technologies [16,17]. Hence, we compare the
performance of DualCtx with that of Fqzcomp on both our nanopore data set
and data sets tested in [16,17]. To this end, we compress each data file sepa-
rately and calculate, for each data set, the quality score compression ratio, CRqs,
defined as CRqs = Cqs/Tqs, where Tqs is the total size in bytes of the quality
score sequences of all files in the data set, and Cqs is the total size in bytes of
the compressed streams for these sequences. Notice that smaller values of CRqs

correspond to better compression performance.
Table 1 shows the quality scores compression ratios obtained with Fqzcomp,

the variant FQZm, and DualCtx for the tested data sets. The table also shows the
percentage relative difference, CR1−CR2

CR1
× 100, between the compression ratios

CR1 and CR2 obtained by Fqzcomp and DualCtx, respectively, with respect to
CR1. Negative values (highlighted in green) correspond to better performance of
DualCtx compared to Fqzcomp. Notice that the proposed dual context scheme
does not improve the compression performance for Illumina data sets. This is
expected, as there is little correlation between base calls and quality scores
obtained with Illumina. On the other hand, for the nanopore data set (and,
to less extent, for PacBio), DualCtx yields significantly better results.

Table 1. Comparison of quality scores compression ratio obtained by Fqzcomp, FQZm,
and DualCtx for various HTS technologies. In bold we mark the best CR for each data
set, and in green we highlight the cases in which DualCtx outperforms Fqzcomp.

Sample MH0001.081026 SRR554369 ERR174310 SRR327342 SRR1284073 NP DS

Tech. Illum. GA Illum. GAIIx Illum. HiSeq Illum. GAII PacBio Nanopore

Size(GB) 1.9 0.8 102.3 6.0 1.3 114.2

Fqzcomp .404 .292 .290 .369 .384 .436
FQZm .404 .292 .290 .369 .391 .436
DualCtx .407 .313 .313 .368 .369 .410
Rel. diff. 0.6 % 7.4% 7.9% -0.5% -3.8% -6.0%

3.3 Impact of the Context Size on the CR of DualCtx

The choice of values for the parameters Q, K and L in the definition of DualCtx
determine the number of distinct context patterns in the statistical model under
consideration. Larger models can potentially capture more complex statistical
5 https://github.com/guidufort/DualFqz.

https://github.com/guidufort/DualFqz
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dependencies than simpler models, which may result in better compression per-
formance. However, since the model parameters are adjusted from the same data
that is compressed (simultaneously), for relatively small data files, large models
may suffer from a large model cost [19], which may render a poor compression
performance.

0 50 100 150 200 250 300 350 400
0.40
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0.50

0.55

0.60

0.65

Fig. 2. Dependence of CRqs on the size of the file being compressed, for different
combinations of values of K and L.

The impact of the model cost in DualCtx is illustrated in Fig. 2, where we
show the value of CRqs for different combinations of values of K and L and for
various file sizes.6 We also show the value of CRqs for Fqzcomp as a reference.

Notice from Fig. 2 that our choice of K = 2 and L = 5 becomes competitive
for relatively large files (about 200 MB). Small files of the data set are better
compressed with simpler models.

3.4 Robustness and Performance of FASTQ Compression Tools on
Nanopore Data Files

We evaluate several FASTQ compression tools, which are commonly considered
in the specific bibliography, on our nanopore data set. Namely, DSRC [21], Fqz-
comp [3], Fastqz [3], Slimfastq, FQC [5], LFQC [15], SCALCE [6], Quip [11],
Leon [1], and KIC [25]. Most of these tools are not specifically designed to com-
press long variable length reads and, as a consequence, many of them fail to

6 We obtained files of specific sizes from the original data set by splitting, when nec-
essary, large files into smaller pieces.
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execute successfully on some of the files in our nanopore data set. In partic-
ular, LFQC and the prototype version of SCALCE tailored to long variable
length reads fail on every file, and Fastqz specifically requires fixed length reads.
Therefore, we do not report specific results for LFQC, SCALCE, and Fastqz. For
comparison to other lossless compressors, we use the version FQZm of Fqzcomp
so that every tested compressor is perfectly lossless. In the comparison we also
include our proposed compressor DualFqz and, as baseline reference, the general
purpose compressors Gzip and Lzma.

To facilitate a comparison among the evaluated tools, we built a nested
sequence of subsets of our nanopore data set, starting with the full set of files,
and successively deleting the set of files that make a compressor fail, taking these
compressors in decreasing order of the number of files that they can successfully
compress. This process results in a profile of data sets in which smaller sets
are comprised, in general, of smaller files. For each data subset, we compressed
each file separately and calculated the overall compression ratio (CR), defined
as CR = C/T , where T is the sum of the sizes in bytes of all the original data
files, and C is the sum of the sizes in bytes of all the compressed files in the data
subset. Notice that smaller CR correspond to better compression performance.

The CR obtained by the evaluated tools on each of the successively larger
data subset is shown in Table 2. The table also shows the number of files in each
data subset, and the percentage fraction of the accumulated size of these files
with respect to the total size of the full data set.

Table 2. CR for the evaluated compressors on subsets of the nanopore data set (smaller
is better). The leftmost column shows the number of files of each data subset and the
percentage fraction, between brackets, of the accumulated file sizes with respect to the
full data set. In bold we highlight the best CR for each data subset.

Data subset size Compression ratio

FQC Leon Quip KIC Slim Gzip Lzma DSRC FQZm DualFqz

119 (4%) .282 .332 .289 .309 .283 .381 .319 .286 .290 .286

128 (7%) - .323 .279 .299 .272 .370 .310 .276 .279 .275

150 (11%) - - .290 .310 .284 .381 .322 .284 .288 .278

289 (76%) - - - .368 .353 .442 .369 .347 .344 .325

330 (95%) - - - - .353 .445 .372 .349 .345 .327

336 (100%) - - - - - .444 .371 .347 .344 .326

In addition to DualFqz, the only FASTQ specific compressors that success-
fully compress the full data set are DSRC and FQZm. Comparing FQZm to
DSRC, we notice that DSRC outperforms FQZm in the three smallest data sub-
sets. The substitution of DualCtx for the quality score compression algorithm
in FQZm reverts these cases, and the CR obtained by DSRC is never better
than that obtained by DualFqz. More generally, DualFqz yields the best CR
compared to any other compressor for the four largest data subsets. Indeed, we
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observe that the advantage in CR of DualFqz compared to other algorithms
becomes more significant as the size of the data set increases, consistently with
our analysis in Sect. 3.3.

Table 3. Comparison of the CR obtained by DualFqz to that obtained by other com-
pressors on the nanopore data set. Each compressor is tested on the data subset con-
sisting of all the files that it compresses successfully. In bold we mark the best CR for
each case.

Compressor FQC Leon Quip KIC Slim Gzip Lzma DSRC FQZm Fqzcomp

Comp. CR .321 .368 .294 .366 .353 .444 .371 .347 .344 .336

DualFqz CR .326 .315 .280 .324 .327 .326 .326 .326 .326 .326

Rel. diff. 1.4% −16.8% −5.1% −13.2% −7.9% −36.2% −13.9% −6.5% −5.6% −3.3%

Num. of files 194 185 157 295 330 336 336 336 336 336

% of full DS 10% 13% 15% 81% 95% 100% 100% 100% 100% 100%

An alternate view for a comparative analysis of the performance of DualFqz
is shown in Table 3, which includes a direct comparison between the CR obtained
by DualFqz and that obtained by other compressors, individually. In this case,
for each compressor we build a data subset that contains all the files that it
successfully compresses, and we calculate the CR obtained on this data subset
by both the competing compressor (first row) and DualFqz (second row). The
relative difference between both CRs is shown in the third row. The last two
rows show the number of files in each data subset, and the fraction of the size of
the full data set represented by these files. Except for the comparison with FQC,
which involves just 10% of the full data set, DualFqz achieves the best CR in
all cases. In particular, compared to FQZm, the use of DualCtx for quality score
compression is responsible for a 5.6% improvement in overall CR. Moreover,
DualCtx achieves a better CR than Fqzcomp, even though the latter is not
perfectly lossless.

4 Conclusions and Future Work

Currently available implementations of several FASTQ compression algorithms
are unable to perform robustly on files with very long variable length reads,
such as those generated by nanopore technologies. More importantly, we have
presented a new lossless compressor for nanopore FASTQ files, termed DualFqz,
and shown that it significantly improves the overall compression for these
files by exploiting statistical dependencies between quality scores and base call
sequences, in addition to inherent dependencies within the sequences. As an
example of the performance, we are able to reduce the size of our nanopore
dataset from 114.2 GB to 37.2 GB.

We have identified several improvements to the compressors we have proposed
that we plan to investigate in the near future; for now, the matter of fact is that
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a simple model, such as the one in DualCtx, suffices to booster the performance
of FASTQ compression algorithms when applied to nanopore data.

One line for such future work consists of applying model aggregation tech-
niques, for model cost reduction, and context mixing techniques for combining
different models. The former would allow for constructing richer models with no
increment in model cost, and the latter for achieving better compression per-
formance independently of the data file size. Moreover, mixing models suitable
for different sequencing technologies could yield good compression performance
with no a priori knowledge of the source that generated the data.
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Abstract. Senegalese sole is an economically important flatfish species
in aquaculture. Development of new bioinformatics resources allows the
optimization of its breeding in fisheries. Sequencing data from larvae
in different development stages obtained from different sequencing plat-
forms (more than 270 M of Illumina paired-end reads and more than
3 M of Roche/454 reads) were used. Due to the high complexity of
the samples, an optimized version of TransFlow, an automated, repro-
ducible and flexible framework for de novo transcriptome assembly, was
used to get the most complete de novo transcriptome assembly. Best
transcriptome selection was based on the principal component analysis
provided by TransFlow. Two transcriptomes, one all-Illumina and other
reconciling Illumina and Roche/454, were selected and annotated using
Full-LengtherNext, and the tentative transcripts were filtered by align-
ment to partial genomic sequences to avoid artifacts. The reconciled non-
redundant assembly composed by Illumina and Roche/454 reads seems
to be the best strategy. It consists of 55 440 transcripts of which 22 683
code for 17 570 different proteins described in databases. The obtained
v5.0 reduces the number of tentative transcripts by 79,33% compared
v4.0, what will increase the precision of future transcriptomic studies.

Keywords: Flatfish · Larvae · Transcriptome assembly · Illumina ·
Roche/454

1 Introduction

Solea senegalensis has become in an important cultivated flatfish species last
years producing more than 8 700 M$ in Spain [1]. Attached to improvements of
the cultivation system, bioinformatics studies have been crucial to achieve this.
There were several attempts to sequence and assembly S. senegalensis tran-
scriptome using Roche/454 and Illumina data, but they have not been entirely
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 48–59, 2019.
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satisfactory because they produced fragmented and redundant assemblies [2].
The 4th version of S. senegalensis transcriptome was de novo assembled by a
complex strategy using Roche/454 and Illumina sequencing data [2]. This tran-
scriptome comprises >690 000 transcripts of which 9.91% has similarity with pro-
tein sequences of UniProtKB but the remaining transcripts lack of any protein
correspondence. The great number of sequences of this transcriptome produces
unreliable results in differential expression analysis because of low sensitivity (M.
Manchado, in preparation) and is useless for genome structural characterization
due to the presence of assembly artifacts and chimerical sequences.

The aim of this study is to build an improved S. senegalensis transcriptome
in order to use as reference for gene expression analysis and gene identification in
genomic sources. Furthermore, in our laboratory, we have developed a versatile
de novo assembly workflow called TransFlow [12], that can produce up to 180
different assemblies using customised strategies. This tool, recently reviewed by
RNA-seq Blog, is able to use Roche/454 and Illumina read data and select the
best assembling strategy by principal components analysis (PCA) using a tar-
geted reference transcriptome of another related species. With this framework
and the read data of the 4th version [2] we have build the 5th version of S. sene-
galensis transcriptome with the following methodology: (1) read library selection
and raw read pre-processing, (2) optimal assembling using TransFlow, and (3)
assembly filtering to get the most reliable set of tentative transcripts. The rec-
onciled assembly including Illumina and Roche/454 data was finally selected as
Solea senegalensis transcriptome v5.0. It contains 55 440 tentative transcripts
with a mean length of 1 661 bp and N50 of 2 769 bp, coding for at least 17 570
different proteins.

2 Materials and Methods

2.1 Sequencing Data

An ongoing S. senegalensis draft genome was used to filter artefacts [11]. Regard-
ing the transcriptome data, 156 Illumina paired-read libraries with a mean read
count of 4 574 098 were inspected (Library description is listed on [2]). The
5 663 225 Roche/454 reads of the same study were used in the new assembly
process. Since the 156 Illumina libraries include at least three replicates from
a series of treatments [2], only one replicate was selected per experiment set.
When the experiment consisted of a time series, only first and last time points
were used. Using this criteria, we use only 30 Illumina libraries from the original
pool of 156 (a total of 454 422 926 paired reads). Roche/454 long single-reads
were pre-processed using SeqTrimNext [5] and Illumina paired-end reads were
pre-processed using SeqTrimBB, program developed in our laboratory based on
BBmap suite [3]. In each case, the specific default profile was used.

Illumina reads shorter than 60 bp were discarded, whereas the threshold was
set to 90 for Roche/454 reads. The final amount of useful reads were 360 529 552
Illumina paired reads and 3 104 734 Roche/454 long single reads after pre-
processing.

https://www.rna-seqblog.com/transflow-a-modular-framework-for-assembling-and-assessing-accurate-de-novo-transcriptomes-in-non-model-organisms/
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Finally, the selected Illumina paired read libraries were mapped onto the
genome reference with Bowtie2 [7], discarding unpaired alignment with option
--no-mixed, in order to identify the libraries with sequence artifacts manifested
by high mapping ratios in spite of use a mapper that not split reads across
the exon junctions. Libraries with mapping percentages higher than 70% were
discarded.

2.2 Transcriptome Assembly After TransFlow Optimization

The new Senegalese sole transcriptome was assembled from useful reads using the
automated and modular framework TransFlow [12] with the following param-
eters: kmer length of 45 and 55 (due to the great amount of Illumina reads),
minimal coverage of 10 reads for Illumina assemblies, and kmer length 29 for
Roche/454 assemblies. The Danio rerio GRCz11 build was used as reference
transcriptome and the reads downloaded from SRA accession ERR216329 was
used for its evaluation. The 180 original assembling strategies [12] were sim-
plified discarding Illumina primary assemblies (they were always beat by their
scaffolded counterparts), resulting in a total of 80 assemblies. A sequence redun-
dancy removal using CD-HIT-EST [10] step at 95% identity was added before
the combination of all generated assemblies into a general unique assembly.

2.3 Transcriptome Annotation and Removal of Unexpected
Sequences

The annotation was performed with Full-LengtherNext (P. Seoane and M.G.
Claros, in preparation). It was configured to use the UniProtKB Actinopte-
rigii taxon sequences as user database and the Uniprot Vertebrate division as
main database. Unexpected sequences were removed based on tentative tran-
script alignment against the S. senegalensis draft genome reference. Transcripts
were aligned onto genome using splice mode of Minimap2 [8] configured
for finding canonical splicing sites CT-AG in transcript strand (option -uf)
and penalising non-canonicals in 5 points (option -C5). Unmapped transcripts
and supplementary alignments were removed by SAMtools view (operation bit
encoding code 2052) [9]. Filtered SAM was converted to PAF using sam2paf
option of paftools.js (a script provided by Minimap2 authors in https://
github.com/lh3/minimap2/tree/master/misc) and SAM type CIGAR string was
merged to PAF. Coverage percentage, identity and exon numbers were calcu-
lated for each transcript using PAF fields (https://github.com/lh3/miniasm/
blob/master/PAF.md). Coverage percentage was calculated as the relationship
between number of residues matches and transcript length, identity was calcu-
lated as the relationship between number of residues matches and full alignment
length and exons was counted after CIGAR string splitting by N operation. Cov-
erage, identity and number of exons were used to remove transcripts with one
exon and more than 90% of identity, since they are suspected to be fragments
or chimeras that contains intronic sequences. Then transcripts with identity and
coverage <70% were removed since they are considered low quality transcripts.

https://github.com/lh3/minimap2/tree/master/misc
https://github.com/lh3/minimap2/tree/master/misc
https://github.com/lh3/miniasm/blob/master/PAF.md
https://github.com/lh3/miniasm/blob/master/PAF.md
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The described parameter calculation and filtering were programmed in-house
using Ruby scripting language (v2.4.1).

2.4 Gene Expresion Analysis

Last transcriptome version and new transcriptomes, before and after filtering
unexpected sequences, were used as reference for gene expression analysis, using
six Illumina libraries from [2] (three control and three treatment), with the aim
of evaluate which transcriptome produces more consistent results. Useful reads
were mapped on each transcriptome with Bowtie2 [7]. Reads that failed to align
and unpaired alignments records were suppressed from SAM file with options
--no-unal and --no-mixed respectively. SAM file was sorted and converted
to BAM by SAMtools sort [9]. Reads mapped per transcript were counted by
sam2counts (https://github.com/vsbuffalo/sam2counts) and the count matrix
was processed with DEGenesHunter [6].

3 Results and Discussion

3.1 Illumina Libraries Selection for Assembly

From the initial 156 Illumina libraries, 30 were selected using the selection cri-
teria described in methods. Selected libraries shown a broad mapping ratio
distribution (Fig. 1) from 55.56 to 75.43%. Of these libraries, 3 present a
mapping ratio higher that 70% and are part of the same experiment/batch
(PRJNA255461). The four selected libraries of this experiment were discarded
due to the highly probability of artifact presence. Finally, 26 Illumina paired
read libraries (275 501 704 paired reads) were used for assembly.
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Fig. 1. Distribution of Illumina read mapping ratio for the libraries tested when aligned
to the draft genome

https://github.com/vsbuffalo/sam2counts
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3.2 Assembly Selection

From a total of 80 different assembling strategies, TransFlow ranked as the
best transcriptome (PCA distance to D. rerio of 5.3e−3) the Illumina assembly
using Oases with kmer 45 (Oases k45). To take into account Roche/454 long
reads (they belong to different tissues than Illumina reads), the best reconciled
transcriptome (PCA distance to D. rerio of 0.1126) is also selected since it is close
to the zebrafish reference too. This reconciliation was performed by merging with
Minimus2 the non-redundant transcripts obtained from Illumina with Oases
kmers 45 and 55 and Roche/454 transcripts produced by Mira3 and Euler-SR
using Cap3 (Min2 Oases Cap3). This reconciled assembly contains almost 6 000
different orthologues IDs more than the one only with Illumina reads. Therefore,
we select the Illumina only and the Illumina-Roche/454 assemblies as putative
transcriptomes in this study for further analysis.

Table 1. Assembly features after annotation of old v4.0 and new candidates to v5.0
using Full-LengtherNext

Feature v4.0 Min2 Oases Cap3 Oases k45
Transcripts 697 125 153 847 87 362
Full transcriptome length 366 337 327 147 562 177 142 218 402
Indeterminations (%) 1.31 0.67 0.45
Indeterminations mean length 22.60 5.22 184.96
Transcripts >200 376 899 134 854 81 375
Transcripts >500 153 963 69 705 64 305
Longest transcript 40 163 41 091 23 792
N50 1 292 2 050 2 659
N90 180 360 826
Tentative transcripts(%) 81.98 99.45 93.14
Artifacts 125 614 842 105

Misassembled 305 124 20
Unmapped 125 309 718 85

With orthologue 69 108 30 973 27 712
Different orthologues IDs 37 438 22 868 16 412
Complete transcripts 27 254 14 657 15 687
Different complete transcripts 15 390 11 181 9 056

ncRNA 9 855 3 765 3 172
Without orthologue 492 547 118 267 56 373

Coding 57 854 25 091 20 540
Unknown 434 693 93 176 35 833
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3.3 Transcriptome Annotations and Removal of Unexpected and
Low Quality Transcripts

Full-LengtherNext based annotations show that although Oases k45 was the best
assembly, Min2 Oases Cap3 has more different orthologues. Moreover, both new
transcriptomes contain a high percentage of sequences without protein annota-
tion and without predictable coding region (labeled as ‘Unknown’; Table 1). This
hampered the selection of the reference transcriptome in spite of (i) the impor-
tant reduction of total transcripts with respect to S. senegalensis transcriptome
v4.0 (included in Table 1 for convenience), (ii) the lower ratio of indetermina-
tions (from 1.31 in v4 to 0.67-0.4 in current putative transcriptomes), and (iii)
important increase in N50 (nearly 2-fold) and N90 (from 2- to 4-fold).

Table 2. Transcripts classification depending on filtering criteria. Remaining tran-
scripts appertanins to low quality transcripts that did not aligned onto genome or they
did it irregularly.

Conditions Unexpected
(%) (I > 90)

High quality transcripts (%) (I > 70
& C > 70)�����������Transciptomes

Exons
1 1 2 3 4 5 >5

Min2 Oases Cap3 55,18 1,01 8,44 5,02 3,78 2,92 14,87
Oases k45 43,29 0,78 8,08 4,87 4,15 3,65 28,22
v4.0 54,98 1,10 6,53 2,88 1,91 1,42 6,84

I: identity, C: coverage. A high quality transcript is considered when its sequence is
splitted onto several exons on the draft genome and has coverage and identity
parameters of al least 70%

When the transcriptomes were aligned with the genome draft, a high percent-
age of highly identical transcripts and absence of introns was obtained (Table 2,
‘Unexpected’ column, only one exon). Furthermore, the low quality transcript
filtering is applied (Table 2, ‘High quality transcripts’ column) the v4.0 tran-
scripts presents, in general, lower percentages for each number of exons than the
candidate transcriptomes. In fact, when the percentage of removal is calculated,
the S. senegalensis v4.0 lose a 24.34% whereas the putative transcriptomes lose
only a 8.78% for Min2 Oases Cap3 and a 6.69% for Oases k45 assemblies. Other
remarkable aspect of the results is that the sequences of the putative transcrip-
tomes presents more putative exons than the v4.0 transcriptome (Table 2, High
quality transcripts, >5 column).

We consider the removal of the unexpected sequences since may not corre-
spond to any known biological sequence, in contrast to high quality transcripts
that can map over a variable number of exons. In fact, only a small fraction of
high quality transcripts has no introns (exon = 1).

Supporting this transcript removal is that most unexpected sequences where
those qualified as ‘Unknown’ in Table 1, as can be clearly seen in Fig. 2). More
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Fig. 2. Annotation statistics of v4.0 transcriptome and selected transcriptomes during
different filtering steps.

importantly, annotated transcripts were nearly invariable before and after this
filtering (Fig. 2).

The total number of transcripts after filtering was very similar in both tran-
scriptomes comparing with the raw (55 440 transcripts of Min2 Oases Cap3 and
43 453 of Oases k45), but Oases k45 has more transcripts containing a com-
plete coding sequence and less unknown sequences (Fig. 2). Min2 Oases Cap3
has however 17 570 different orthologue IDs, 3 928 more than Oases k45, and
has less sequence redundancy due to less Redundant Transcripts in all filtering
stages (Fig. 3). S. senegalensis v4.0 transcriptome also was filtered for comparing
purposes. This version have more than 400 000 unexpected sequences (Fig. 2)
and it have a greater number of Redundant Transcripts than putative transcrip-
tomes along the filtering stages (Fig. 3). This suggests that the v4 transcriptome
is a non optimal assembly and that the strategy proposed here, improves the
resulting transcriptome.
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Fig. 3. Evolution of the amount of Redundant Transcripts computed as the difference
between Full-LengtherNext measures “Total orthologues” and “Different orthologues
IDs” in both transcriptomes during filtering process. US*: Unexpected Sequences

3.4 Impact of Transcriptome Quality in Gene Expression Analysis

A differential expression analysis using six Illumina libraries [2], 3 controls and
3 treatments, was performed using each candidate transcriptome, their filtered
counterparts and the version 4.0. For convenience, an alignment ratio was defined
as the percentage of reads aligned per transcript. This alignment ratio increases
during filtering (Fig. 4) indicating that there were more reads per transcript,
a desirable feature in RNA-seq experiments to improve the statistical power.
This suggests that transcripts with low alignment rates were discarded with the
previous filtering processes. It is interestingly to note that, even filtered, the
v4 transcriptome presents a mapping ratio lower that any of the putative tran-
scriptomes of this study. In terms of differential expressed genes (DEGs), the
Table 3 shows that the filtered transcriptomes presents lower number of DEGs
than the raw versions. Also, the density of discovered DEGs is greater in filtered
transcriptomes, with the exception of the Oases k45 transcriptome. When the
P-value distribution for each DEG analysis are inspected in the Fig. 5 (first col-
umn) it can be observed that the Min2 Oases Cap3 transcriptome presents the
lower P-values for the raw transcriptomes and the v4 presents higher P-values.
When the transcriptomes are filtered, Fig. 5 (second column), the Min2 Oases -
Cap3 transcriptome has the same distribution but the v4 transcriptome improves
in its distribution. NOISeq P-values distribution is useful for transcriptome eval-
uation because the major changes of the distribution it is shown in the range of
0.75–1 (Fig. 5d). This P-value range indicates non DEGs and when the filtering
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Fig. 4. Alignment ratios for candidate transcriptomes before and after filtering unex-
pected sequences

Table 3. Number of DEGs discovered using different transcriptomes.

Stage Discovered DEGs % of trasncripts that are DEGs

Oases k45 Raw 207 0.23

Filtered 65 0.15

Min2 Oases Cap3 Raw 511 0.33

Filtered 290 0.52

v4 Raw 145 0.02

Filtered 126 0.09

process in applied, the v4 transcriptome filtered presents a high peak whereas
the putative transcriptomes have a lower amount of transcripts in this range.

3.5 Selection of the Best Transcriptome

Summarizing the results for the two filtered transcriptomes, (i) filtered Min2 -
Oases Cap3 has less redundant sequences (Fig. 3); (ii) filtered Min2 Oases -
Cap3 has the highest alignment ratio despite of filtered Oases k45 has less
sequences (Fig. 4); (iii) filtered Min2 Oases Cap3 also produces more DEGs than
their Oases k45 counterpart and v4.0 transcriptome (Fig. 3) with lower P-values
(Fig. 5); (iv) high percentage of Oases k45 annotated sequences were removed
and Oases k45 DEGs percentage decreased after filtering (Fig. 3).

Since, filtering steps reduced DEGs discovery in both transcriptomes and
reduces DEGs percentage in Min2 Oases Cap3 (Table 3), but this DEGs reduc-
tion is supported by more frequent low P-values in three different gene expres-
sion analysis algorithms after filtering (Fig. 5), results presented here support
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Fig. 5. P-value distribution for each DEG analisys algorithm and each transcriptome.
From top to bottom, results for each DEG algorithm and from left to right, results for
raw and filtered transcriptomes.

that filtering process as a good strategy to remove unexpected sequences and
obtain high quality transcriptomes (Table 4).

Taking together, those results prompt to the choice of filtered Min2 Oases -
Cap3 as the fifth version of S. senegalensis transcriptome, containing 55 440
transcripts (Fig. 4) including 22 683 sequences coding for 17 570 different protein
orthologues, a reasonable number compared with phylogenetically well-studied
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Table 4. Solea senegalensis transcriptome v4.0 and v5.0 features.

Feature v4.0 v5.0
Transcripts 697 125 55 440
Trancripts > 500 bp 153 963 41 645
Mean lengths 525 1 661
Longest transcript length 40 163 23 792
Sum lengths (bp) 366 337 327 92 121 772
N50 1 292 2769
N90 180 749
Indeterminations (%) 0.46 0.299
Average indeterminations length 22.60 3.00
Annotated with protein 69 108 22 683

Different orthologues IDs 37 438 17 570
ncRNAs 9 855 2 567
New coding 57 854 17 277
Unknown 434 693 12 914

near species such as the 21 516 different proteins described on Cynoglossus semi-
laevis genome [4]. The Illumina assembly improvement due to the presence of
Roche/454 reads was previously described in other species [12], and was con-
firmed in this study for sole.
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E.L., Sánchez-Vázquez, F.J. (eds.) The Biology of Sole, pp. 361–379. No. B6.1.
CRC Press (2019)

12. Seoane, P., et al.: TransFlow: a modular framework for assembling and assessing
accurate de novo transcriptomes in non-model organisms. BMC Bioinform. (2018).
https://doi.org/10.1186/s12859-018-2384-y

https://doi.org/10.18547/gcb.2017.vol3.iss3.e31
https://doi.org/10.18547/gcb.2017.vol3.iss3.e31
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1101/169557
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1186/s12859-018-2384-y


Deciphering the Role of PKC
in Calpain-CAST System Through

Formal Modeling Approach

Javaria Ashraf1, Jamil Ahmad2(B), and Zaheer Ul-Haq3

1 Research Center for Modeling and Simulation,
National University of Sciences and Technology, Islamabad, Pakistan

2 Department of Computer Science and Information Technology,
University of Malakand, Chakdara, Pakistan

jamil.ahmad@uom.edu.pk
3 Dr. Panjwani Center for Molecular Medicine and Drug Research,

International Center for Chemical Sciences, University of Karachi, Karachi, Pakistan

Abstract. Calcium-activated calpain has critical role in a variety of
calcium regulated processes. Calcium activates two other proteins, Cal-
pastatin (CAST) and Protein Kinase C (PKC) to make a regulatory
network which is pivotal in cell physiology. CAST binds with calpain to
form complex for hampering its hyperactivation. PKC phosphorylates
CAST while calpain proteolyzes active PKC and increases calcium influx.
Based on biological knowledge, a qualitative (discrete) model is con-
structed that provides new insights into the dynamics of calpain-CAST
and PKC relationship. The model predicts that PKC maintains calpain-
CAST complex by interacting with both active calpain and CAST. It
is also observed that in physiological condition, there is a homeostatic
behavior between calcium, CAST and PKC. Some significant discrete
cycles are also identified by analyzing betweenness centralities of the dis-
crete states. There is one stable state in the model in which calpain and
calcium are hyperactivated while CAST and PKC are inactivated. The
model is validated through the stochastic Petri Net model that further
reveals its quantitative dynamical behaviors. Physiology is perturbed by
hyperactivation of calpain which results in the deregulation of home-
ostasis. Both models suggest that inhibition of calpain by CAST is a
better therapeutic strategy which requires healthy assistance from PKC.
In conclusion, homeostasis of calcium, CAST and PKC is pivotal for a
healthy state.

Keywords: Calpain · Calpastatin (CAST) · Calcium homeostasis ·
Protein Kinase C (PKC) · Stochastic Petri net · Qualitative modeling

1 Introduction

Calpains (CALcium ion-dependent paPAIN-like cysteine) proteases are notori-
ous enzymes. There are multiple members in this family; in which, some are ubiq-
uitous and some are tissue specific [1]. The ubiquitous calpains mu(μ)-Calpain
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 60–71, 2019.
https://doi.org/10.1007/978-3-030-17938-0_6
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(Calpain1) and m-Calpain (Calpain2) require micro-molar concentration of cal-
cium (Ca2+) (10–50µM) and mili-molar concentration of Ca2+ (250–350µM)
[2], respectively. Their main function is to cleave membrane proteins or mem-
brane linked proteins. Hyper-activity of these enzymes can lead to acute inflam-
matory processes [3], neuro-degeneration [4], muscular dystrophy [5] and cardio-
vascular disorders [6]. To maintain cell physiology, calpains are tightly regulated
by calpastatin (CAST). This ubiquitous enzyme is described as an endogenous
and sole suicide substrate for calpains. CAST interacts calpain at two sites; first
it hinders pro-calpain at membrane (at low Ca2+ influx) and then it controls
concentration of active calpains at cytosol by forming reversible complex with
it [7]. In cytosol, active calpain modulates CAST slowly by proteolysing it into
smaller inactive fragments which results in hyperactivation of calpain in the cell
which contributes in patho-physiology (Fig. 1). CAST is also phosphorylated by
Protein Kinase C (PKC) to lower its inhibitory efficiency towards calpain, [8].
Inactive PKC is converted to Ca2+-bound activated form in the presence of dia-
cylglycerol (DAG). Meanwhile, active calpain regulates PKC by converting it
into constitutive active enzyme [9]. Ca2+ ions also play important physiological
role in a cell; the magnitude of Ca2+ ions inside a cell is very low (between
50–100/50–300 nM) and it can rise to several micromoles after activation [10].
Higher level of efflux and lower influx are maintained through multiple homeo-
static apparatuses (Fig. 1). The influx channels include voltage-gated channels
(VGCs) and receptor gated channels (RGCs). Different ATP-dependent mem-
brane pumps such as plasma membrane calcium ATPase channel (PMCA) and
sodium-calcium exchanger (NCX) which are dependent on sodium-potassium
ATPase (NKA) are used for Ca2+ efflux. Both types of apparatuses are working
in harmony to maintain homeostasis of Ca2+ ions. When there is homeostasis,
Ca2+ can perform its function properly such as mediation of hormones, neu-
rotransmitters and other stimuli. To understand the above stated mechanism
(Fig. 1), a biological regulatory network (BRN) is constructed using qualitative
modeling (Fig. 2). Qualitative modeling of Calp-CAST BRN results in a state
graph, there are state representing respective entities and they are evolving into
homeostatic states and stable state (disease state). The qualitative model is then
converted into stochastic Petri Net (SPN) for further validation. This extensive
study of Calp-CAST system provides useful insights; Over-activation of calpain
leads to epigenetics by disrupting Ca2+ homeostasis in the cytosol. The system
remains healthy when calpain is under the direct influence of CAST and CAST is
regulated by PKC. They all together maintain Ca2+ homeostasis that is pivotal
for many cellular and neuronal functions.
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Ca-Inflow
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Ca-Ouflow

Calcium ions

Fig. 1. In the cell, calcium channels are establishing homeostasis and regulating three
important proteins Calpain, CAST and PKC which are interlinked. Calcium home-
ostasis is controlled by Ca-Inflow and Ca-Outflow channels. Inactive CAST, PKC and
calpain (i-CAST, i-PKC, i-CALP) are converted into active CAST, PKC and CALP
by the addition of calcium. CAST is also regulated by PKC through phosphorylation
(i-CAST). CAST restricts activity of CALP by forming a complex (CC-complex) with
it in cytosol and the complex is degraded gradually by CALP. CALP also converts
PKC into protein kinase m (pkm).

2 Methods

The qualitative modeling of BRN is performed using GINsim [11] and Genotech
[12] tools which are based on the kinetic logic formalism of Thomas [13]. GINsim
is a tool for qualitative modeling and analysis; it has a graphical user interface
(GUI), a simulation core and a graph analysis tool [11]. Genotech has a sim-
ple GUI and it takes a directed graph with logical parameters as an input. It
generates a state graph as output, which can predict stable states and cyclic
trajectories. The behavior of entities of BRN depicted in state graph depends on
a particular set of logical parameters represented as K ent{resources} where ent
is a protein or gene which has set of regulators {resources} associated with it.
This parameter plays a major role in observing the dynamics of model and most
often they are not experimentally measurable. This can be solved using the mod-
eling tool SMBioNet [14]. It needs two inputs, BRN with unspecified parameters
and computational tree logic (CTL) formulas to express the biological observa-
tions. The output generates set of parameters verified by CTL formulas. The
tool help in accurate estimation of the parameters and saves time. The BRN
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with K-parameters form a logical regulatory graph which can be transformed
into a Petri Net (PN) through GINsim [11] using the method established by
[15]. Molecular processes can be best simulated by stochastic PN (SPN) as they
are random in nature. A detailed SPN model of neuronal network in Alzheimer’s
was studied by [16], which concluded that calpain-CAST system plays impor-
tant role in neuronal degradation. Here, role of calpain-CAST system was further
explored in neuronal and other biological processes using qualitative modeling
and SPN models. Formal definitions and examples of PNs are provided in [16]
which can be referred for understanding.

2.1 Construction of Calp-CAST System

From the existing literature on calpain CAST regulatory system, an abstracted
qualitative BRN was constructed. It consists of three proteins (calpain, CAST
and PKC) and one ion Channel (Ca2+) as shown in Fig. 2. The BRN is an
abstraction of three important pathways namely, calpain-CAST system, Calcium
influx efflux channel and PKC signaling pathway [16] that represents a specific
functionality of the system in human brain. The key protein of the BRN is
calpain; it is regulated by CAST that is the sole inhibitor of both calpains
(Calpain1 and Calpain2). Activation of both the substrate and inhibitor (Calpain
and CAST, respectively) takes place in the presence of Ca2+ ions in the cytosol
(Fig. 2). Ca2+ influx and efflux is the main event in regulating this system. In-
addition, CAST is inhibited by PKC whose activation is also dependent on Ca2+

ions. Normal working of the calpain-CAST system ensures healthy functioning
of human organs through homeostasis. Deregulation of this system may lead to
disease.

2.2 Logical Parameter Estimation

Estimation of logical parameters was performed by SMBioNet tool [17] on
the basis of biological observations extracted from literature [5,8,10,18]. These
observations were converted into CTL formulas, described in the form of
equations.

φ1 = (((PKC = 0 ∧ Calp = 0 ∧ CAST = 0 ∧ Ca = 0) =⇒ EX(EF(PKC = 0
∧Calp = 0 ∧ CAST = 0 ∧ Ca = 0))))

(1)

φ2 = ((PKC = 0 ∧ CAST = 0 ∧ Calp = 0 ∧ Ca = 0) =⇒ EF(AG(PKC = 0∧
Calp = 1 ∧ CAST = 0 ∧ Ca = 2)))

(2)

φ1 (Eq. 1) states that in a particular homeostatic behavior, all entities with
zero (0) expression levels after reaching next qualitative state (represented by
CTL X) will eventually reach the same expression levels (represented by CTL
F). φ2 (Eq. 2) describes the epigenetic condition that all entities with zero (0)
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Fig. 2. Biological Regulatory graph of Calpain-CAST regulatory system consists of
four entities namely, Protein Kinase C as PKC, Calpastatin as CAST, Calpain as Calp
and Calcium as Ca. The red arc represents inhibition while the green arc represents
activation. There is a negative self loop on Ca which regulates the calcium inflow and
outflow in the BRN. (Color figure online)

expression levels depicting homeostatic state will reach to pathological condition
in future from all paths and from all states of a path (represented by CTL A and
G, respectively). In pathological state, Ca=2 and Calp= 1 are over-expressed
while PKC=0 and CAST=0 are degraded by Calp.

3 Results

3.1 Selection of Qualitative Model

Equations 1 & 2 were verified in five qualitative models of Calp-CAST system.
Only one qualitative model (Fig. 2) was selected which shows more relevance to
biological inferences. The set of logical parameters for this model was given in
Table 1. The biological observations were verified in the state graph (Fig. 3) in
the form of an initial state (is):(Calp, CAST, Ca, PKC) →(1, 1, 0, 1), cycles
and a stable state (ss). Biological plausible ss: (Calp, CAST, Ca, PKC) →(1,
0, 2, 0) depicted hyperactivation of Calpain, depletion of CAST, deregulation of
Ca2+ homeostasis through high Ca2+ ions influx and inactivation of PKC. The
collective behavior of proteins involved in Calp-CAST system can only be deter-
mined by analyzing pathway transitions in the state transition graph. The state
graph (Fig. 3) showed complete behavior of Calp-CAST system in the cytosol by
showing important trajectories from is to cycles (homeostasis) and from is to ss
which are considered as the most lethal transitions. On the basis of betweenness
centrality, important cycles are also computed (Fig. 4) by using cytoscape tool
[19] that sort all states of the transition graph based on betweenness centralities
[20]. States with larger diameter represent higher betweenness centrality. Cycles
with maximum betweenness centrality are: (Calp, CAST, Ca, PKC)
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Table 1. Resources and logical parameters of the Calp-CAST BRN

No. Logical Resource Range Selected No. Logical Resource Range Selected

Parameter Values Parameter Values

1 KCAST {} {0} 0 11 KPKC {Ca} {0,1} 0

2 KCAST {PKC} {0,1} 0 12 KPKC {Calp, Ca} {0,1} 1

3 KCAST {Calp} {0,1} 0 13 KCa {} {0} 0

4 KCAST {Ca} {0,1} 0 14 KCa {Calp} {0,1,2} 2

5 KCAST {Ca, PKC} {0,1} 0 15 KCa {Ca} {0,1,2} 2

6 KCAST {Calp, PKC} {0,1} 0 16 KCa {Calp, Ca} {0,1,2} 2

7 KCAST {Calp, Ca} {0,1} 0 17 KCalp {} {0} 0

8 KCAST {Calp, Ca, PKC} {0,1} 1 18 KCalp {CAST} {0,1} 1

9 KPKC {} {0} 0 19 KCalp {Ca} {0,1} 1

10 KPKC {Calp} {0,1} 0 20 KCalp {CAST,Ca} {0,1} 1

(0, 0, 0, 0) → (0, 0, 1, 0) → (0, 0, 0, 0)
(0, 1, 0, 0) → (0, 1, 1, 0) → (0, 1, 0, 0)
(0, 0, 0, 0) → (0, 0, 1, 0) → (0, 1, 1, 0) → (0, 1, 1, 1) → (0, 1, 0, 1) → (0, 0, 0, 1) →
(0, 0, 0, 0) and
(0, 1, 0, 0) → (0, 1, 1, 0) → (0, 1, 1, 1) → (0, 1, 0, 1) → (0, 1, 0, 0)

Cycles are shown with circles having large diameter and lighter color. These
cycles represent the normal physiology of the calpain-CAST system. All the
crucial proteins are oscillating such as calcium ions showing equilibrium in influx
and efflux, regulation of CAST and PKC. States with smaller diameter and
darker shades are rendered as ss. There are also some states deviating from or
coming into the cycles, they have comparatively larger diameters than ss and
low betweenness centrality (Fig. 4).

Fig. 3. State graph of Calpain-CAST
BRN.
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Fig. 4. Betweenness centrality
extracted from the state graph of
Calpain-CAST BRN.
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3.2 Petri Net Modeling and Analysis

After studying the regulatory graph (combination of BRN and logical parame-
ters), it is converted into discrete PN (Fig. 5) using GINsim which implemented
the logic described in [21]. The PN is further converted into SPN using Snoopy
Petri net tool [22]. In the SPN (Fig. 5), each entity (Calp, CAST , PKC and
Ca) has its complementary state (inhibitory state) such as cCalp, cCAST ,
cPKC and cCa , respectively. There are also two types of transitions labeled
as p and n for representing activation and inhibition, respectively (Fig. 5). Calp
is the second entity in the SPN, which is connected by one n-labeled and two
p-labeled transitions. The protein PKC is represented by place PKC and com-
plementary place cPKC (Fig. 5). PKC has three transitions associated with it:
p PKC, n1 PKC and n2 PKC. The last protein in the pathway is CAST
represented by places CAST and cCAST (Fig. 5). The associated transitions
are p CAST, n1 CAST, n2 CAST and n3 CAST. All the transitions have
respective rates associated with them which is necessary to convert standard PN
into SPN. The kinetic rates were adjusted manually using available biological
observations and experiments (such as rate of cCa is higher than Ca , rate of
Calp activation slowly degrades CAST and Calp increases rate of Ca). These
rate parameters successfully reciprocated the qualitative model and biological
inferences. The value of rates were tabulated for both homeostatic (C1 & C2)
and stable state conditions. It is note worthy that in Table 2, rate of all the
transitions related to places Ca and cCa were constant in all cycles and cases.
It can be inferred that PKC, calpain and CAST effected the cell physiology.
Simulation with these tabulated values are in agreement with already known
biological observations. Results show that in Calp-CAST system, CAST and
PKC are crucial in regulating calpain in cell which will have positive effect on
cell by maintaining calcium homeostasis. Irregular calpain production lead to
deregulation of Ca2+ ions, PKC and CAST which will eventually cause death of
cell through apoptosis.

Homeostasis and Stable State. The state graph of the Calp-CAST BRN
(Fig. 2) and simulations of the SPN model (Fig. 5) predicted the same cyclic
conditions for homeostasis. Ca2+ is the most important ion in cell. It is main-
tained in homeostatic state before and after the activation of calpain (Calp).
Both conditions describe the physiology of cell. Before calpain activation, Ca2+

inside cell (Ca) is in homeostasis as depicted by the cycle no. 1 (C1). Ca2+ home-
ostasis is also maintained with oscillation of CAST and PKC regulation in cycle
no. 2 (C2). The homeostasis is disturbed when Ca2+ influx level rises (level = 2),
system moves to diseased state due to calpain hyperactivation (Fig. 3). The sim-
ulation graphs (Fig. 6) show the oscillation of Ca2+ influx and efflux represented
by places Ca and cCa respectively. The relative level of cCa is higher than Ca ,
as concentration of Ca2+ ions in extracellular space is higher than concentration
of Ca2+ in cytosol. The simulation graph (Fig. 6a) is generated from following
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Fig. 5. SPN model of Calp-CAST system derived from the BRN. Each protein is
depicted by two places (oval), one normal protein (green) and its counter part (red)
which shows the inhibited protein. When the normal protein e.g., Calp is inhibited the
token moves to counterpart (cCalp) and reciprocal happens in activation. The places
are connected by transitions (rectangle). p-labeled transitions represent activation and
n-labeled transitions show inhibitions. (Color figure online)

transition rates of C1 of Table 2. It shows oscillation of Ca and cCa while Calp
is absent or in infinitesimal concentration. Second cycle C2 has four variant, all
entities are oscillating except for calpain (Calp). This cycle, Fig. 6b, is closer
to biological phenomenon. All entities (proteins and ions) are playing their roles
in maintaining physiological state but with the passage of time, system even-
tually moves towards ss or diseased state. After studying the state graph of
the Calpain-CAST BRN (Fig. 3), it can be observed that sooner or later all the
states move to ss. It can also be observed that system either directly move to
ss (in fatal case) or first enters and stay in homeostasis then traverse to ss.

When calpain (Calp) inhibits PKC (PKC ), system either moves to ss
directly (Fig. 3): (Calp, CAST, Ca, PKC)

(1,1,0,1) → (1,1,0,0) → (1,1,1,0) → (1,1,2,0) → (1,0,2,0).
Or enters homeostasis for a short time and then proceeds to ss (Fig. 3):

(Calp, CAST, Ca, PKC)
(1,1,0,1) → (1,1,0,0) → (0,1,0,0) ←→ (0,1,1,0) → (0,1,1,1) → (0,0,1,1) → (1,0,
1,1) → (1,0,2,1) → (1,0,2,0).
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Table 2. Transitions with their rates in cycles (C1 & C2) and stable state

Transition C1 C2 Stable
State

Transition C1 C2 Stable
state(µ) (µ) (µ) (µ) (µ) (µ)

p CAST 0.01 100 0.5 p PKC 0.01 10 5

n1 CAST 100 0.5 0.5 n1 PKC 100 100 100

n2 CAST 100 1 0.1 n2 PKC 100 100 100

n3 CAST 0.01 0.007 0.05 p1 Calp 0.001 0 0.1

p1 Ca 10 10 10 p2 Calp 0.001 0.001 0.001

p2 CA 0.009 0.009 0.009 n Calp 100 100 100

n Ca 1 1 1

(1,1,0,1) → (1,1,0,0) → (1,1,1,0)→ (0,1,1,0)→(0,1,0,0) ←→ (0,1,1,0)→ (0,1,1,1)
→ (0,0,1,1) → (1,0,1,1) → (1,0,2,1) → (1,0,2,0).

Both homeostasis and ss are simulated in (Fig. 6b and c) after applying rates
of Table 2 of column labeled as Stable state to SPN model (Fig. 5).
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Fig. 6. a shows calcium homeostasis, (Ca and cCa are maintained at threshold, high
efflux rate and low influx rate). In b, PKC and CAST both are oscillating with
Calcium. In c, initially, system moves to homeostasis when Calp inhibits PKC for
short time. As Calp concentration level increases, the system moves to stable state by
breaking the homeostasis.

4 Discussion

There are some interesting inferences deduced from both the models. Firstly,
Calp-CAST BRN and SPN model have shown states and dynamics of underly-
ing mechanism. Formation of Calpain-CAST complex takes the system to phys-
iological state i.e., homeostasis, Ca2+ influx and efflux are in equilibrium with
CAST and PKC while calpain is in dormant form. The simulations showed that
there was a basal concentration of calpain present in (homeostasis) cell. CAST
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limits calpain activation without interfering with basal calpain activity, which
is required for physiology [23]. Homeostasis is primarily maintained through the
formation of calpain-CAST complex and it is further strengthened by homeosta-
sis of Ca2+ [24]. It is also necessary to keep PKC and CAST in homeostasis to
maintain calpain-CAST system for longer time. Phosphorylation of CAST by
PKC is the step through which localization of CAST takes place and is also a
mechanism to regulate CAST in homeostasis [25]. The homeostatic condition
is disturbed as active calpain degrades the substrate CAST to set itself free
[26]. Under pathological condition, tight regulation of calpain through CAST
is destroyed and Ca2+ homeostasis is lost as studied in ischemia/reperfusion,
Alzheimer’s (neuronal disorder), muscular and cardiovascular disorders [27].
Increase in calpain activity heightens Ca2+ sensitivity and sustained rise in Ca2+

levels causes cellular damage. Over activation of calpain, deregulation of Ca2+

ions, attenuation of CAST and degradation of PKC into pkm is observed in
neurodegeneration and coronary vascular diseases [5]. Moreover, it is observed
that association of calpain and CAST in the form of complex is also influ-
enced by PKC (simulation graphs Fig. 6). It has hormetic effect in calpain-CAST
system, suitable concentration level of PKC is beneficial in the form of home-
ostasis. Both models also showed that calpain has biphasic effect on PKC; at
low calpain level, Ca2+ ions favor PKC activation while at high level, calpain
causes down regulation of PKC [28]. One trajectory observed in the state graph
is (1,1,0,1) → (1,1,1,1) → (0,1,1,1)→ (0,0,1,1)→(0,0,0,1) →(0,0,1,1)→(1,0,1,1)
→ (1,0,1,0) → (1,0,2,0). (Green states and transitions are representing home-
ostasis)

This trajectory can possibly be used to explain the interaction of calpain
and PKC activation in ischemic tissue at high Ca2+ [29]. Kang et al., conducted
the study to observe the role of both protein in muscular heart tissues. This
trajectory and study of whole state graph can be useful in assessing the role and
functionalities of these protein in mayocardium and it would help in answer-
ing questions which remained unexplored in that study. A recent study carried
out on heart failure using human heart samples and animal models also proved
elevation of calpain is the main cause of heart failure [30]. Elevated activity
of calpain degrades PKC and CAST [30,31]. The devastating effect of calpain
activity can be lowered or controlled if calpain-CAST association remains ever-
lasting/eternal. This complex is long lasting during Ca2+ homoestasis and in the
presence of PKC. This formal modeling study will also be helpful in designing
in vitro experiments on all these crucial proteins.
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Abstract. Background: Chronic kidney disease (CKD) is a progressive and
heterogeneous disorder that affects kidney structures and functions. Now it
becomes one of the major challenges of public health. Early-stage detection,
specialized stage treatments can significantly defer or prevent the progress of
CKDs. Currently, clinical CKD stage diagnoses are mainly based on the level of
glomerular filtration rate (GFR). However, there are many different equations
and approaches to estimate GFR, which can cause inaccurate and contradictory
results.
Methods: In this study, we provided a novel method and used machine

learning techniques to construct high-performance CKD stage diagnosis models
to diagnose CKDs stages without estimating GFR.
Results: We analyzed a dataset of positive metabolite levels in blood sam-

ples, which were measured by mass spectrometry. We also developed a feature
selection algorithm to identify the most critical and correlated metabolite fea-
tures related to CKD developments. Then, we used selected metabolite features
to construct improved and simplified CKD stage diagnosis models, which sig-
nificantly reduced the diagnosis cost and time when compared with previous
prediction models. Our improved model could achieve over 98% accuracy in
CKD prediction. Furthermore, we applied unsupervised learning algorithms to
further validate our models and results. Finally, we studied the correlations
between the selected metabolite features and CKD developments. The selected
metabolite features provided insights into CKD early stage diagnosis, patho-
physiological mechanisms, CKD treatments, and drug development.
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1 Introduction

Chronic Kidney Diseases (CKDs) are progressive losses and abnormalities of kidney
functions and structures [1]. Now they become the major challenges of public health
and affect approximately 10% of the world population [2]. CKDs often result in Acute
Kidney Injury (AKI), which appears abruptly and further results in rapid deterioration
of kidney function [3, 4]. The final stage (stage 5) of CKD and AKI would cause renal
failure and require special treatments such as dialysis and renal transplant [5]. CKDs
are also associated with other severe complications, including cardiovascular diseases,
hypertension, diabetes [6], cognitive decline, anemia, mineral and bone disorders, and
fractures [7]. Screening and stage detection are critical to CKDs prognosis and inter-
ventions. Renal failure can be reversed if CKDs are detected and treated properly in the
early stage [6, 8]. Prompt treatments and management of specific CKD stages can
significantly prevent and delay the developments, as well as the progress of CKD [6–
8]. Meanwhile, different CKD stages require different management, treatments, and
medicines [9–11]. Proper management strategies can significantly reduce the incidence
of final-stage CKDs [7]. However, the early CKD stage (stage 1) is hard to recognize
[12] since no symptom could be found initially. Usually, treatments and management
for CKDs will not be determined until severe symptoms or accidental findings from
tests for other diseases [13].

Recent international guidelines classify CKDs into five stages based on the levels
of glomerular filtration rate (GFR) [1, 12]. GFR is computed by estimating equations
and other associated exogenous bio-factors [13]. In fact, there are many issues in the
current GFR estimation approaches. The equations may lead to inaccurate estimation
due to the variation of personal situations, which include age, race, gender, and serum
creatinine level [14]. Moreover, various GFR estimating approaches and equations will
also result in disagreements and errors for the same type of patients [15]. Recent Bland-
Altman analysis showed that CKD-EPI creatinine-cystatin C, BIS2, CKD-EPI cystatin
C and Simple cystatin C GFR equations were not accurate in estimating GFR for
elderly people [15]. Researchers also discovered that using the Schwartz formula to
estimate GFR for children would result in overestimation [16]. Muna et al. found that
the BIS equation was not a proper approach to predict the risk of death for older women
when compared with the CKD-EPI equations [17]. These inaccurate and contradictory
issues might result in misjudging of CKD stages, which might result in further under-
diagnoses and under-treatments [6].

Using machine learning algorithms to diagnose diseases has a few advantages.
Rather than solely relying on the doctor’s experiences and stereotyped formulas,
researchers can use learning algorithms to analyze sophisticated, high-dimensional and
multimodal biomedical data, as well as construct classification models to make deci-
sions even when some information was incomplete, unknown, or contradictory. Cur-
rent machine learning studies in CKD diagnostic have already shown high accuracies
and reliabilities in CKD diagnosis [18, 19]. Neves et al. used Artificial Neural Net-
works to build a classification model to classify 558 CKD/non-CKD patients based on
24 features, achieving a 92.3% accuracy [18]. Celik et al. used Decision Tree and
Support Vector Machine (SVM) algorithms to classify a CKD dataset with 400 patients
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and 24 features, which both achieved accuracies of over 96% in classifying the
CKD/non-CKD patients [20]. Polat et al. used SVM to classify Celik’s dataset and
reached an accuracy of 98.5% [19]. Chen et al. applied three different learning algo-
rithms to construct classification models for the datasets with CKD/non-CKD patients,
all achieving over 93% accuracies [21]. However, most present CKD diagnoses
machine learning studies only focused on the simple yes/no problems and cannot
classify among the multiple CKD stages [18–20]. Most of them were only performed
on small datasets with limited numbers of physiological features.

In this study, we provided a novel and independent way to diagnose six CKD
stages without measuring the GFR, which could overcome the inaccurate and con-
tradictory issues caused by various GFR estimating approaches. We used three
supervised learning algorithms to build CKD stage diagnosis models to diagnose the
six CKD stages (five CKD stages plus the non-CKD). We analyzed a large volume of
metabolites dataset that was obtained from positive ion mass spectrometry of clinical
blood samples. We first built three CKD stage diagnosis models based on all metabolite
features, achieving very high accuracies and low false positive rates. Then we devel-
oped a feature selection algorithm to identify the most critical and informative
metabolite features related to CKD development. We then used the selected metabolite
features to construct improved, simplified diagnosis models, which only required the
selected features to determine the CKD stages in practice. Furthermore, we applied
unsupervised learning algorithms to validate that the selected metabolites were the most
critical factors correlated with CKDs symptoms and progressive perturbations. Finally,
we studied the correlations among selected metabolite features and developments of
CKD stages. The selected metabolite features provided insights into CKD stage
diagnosis, pathophysiological mechanisms, CKD treatments, and drug development.

2 Result

2.1 CKD Stage Diagnosis Models Built on All Metabolite Features

In this section, we applied Random Forest, SVM, and Decision Tree three algorithms to
build CKD stage diagnosis models. To provide systematic evaluations of these diag-
nosis models, we ran ten parallel experiments with randomized datasets for each model
to compute their average performance metrics. Meanwhile, we also performed 10-fold
cross-validation on the entire dataset to test their robustness and reliabilities of the
constructed models.

As Table 1 showed, all three constructed models achieved very good performances
in the CKD stage classification and 10-fold cross-validations, which all reached over
95% accuracies. The model built from Random Forest achieved the best performance,
which had an accuracy of 95.6% in classification and an accuracy of 96% in cross-
validation. The SVM model had the least good performance with an accuracy of 95.4%
and 96%. The performance of the Decision Tree model lied in the middle of the other
two models. Table 1 also showed that all CKD stage diagnosis models had very high
average precisions, recalls and F-scores. Figure 1(A) showed the confusion matrices of
the constructed CKD stage classification/prediction models in predicting the CKD

74 B. Feng et al.



stages of 100 patients. All three models achieved high accuracies with only four
mispredictions each. No patient in non-CKD or early stage of CKD was mispredicted
into wrong CKD stages. Hence, we provided a novel and independent way to diagnose
the CKD stages based on the analyses of blood levels, which didn’t require the esti-
mation of GFR and overcame the contradictory issues caused by different GFR esti-
mation approaches.

2.2 CKD Stage Diagnosis Models Built on the Selected Metabolite
Features

In the last section, we constructed three CKD stage diagnosis models based on all
16382 metabolite features, which achieved very good performances. However, its
impractical to have all 16382 metabolites features measured properly for each clinical
test, due to the cost of data collections, efficiency and timeliness, and errors of data
observation and measurements. Therefore, brief, fast, and robust models were required
to perform reliable and fast CKD stage diagnoses for patients with potential risks. To
identify the critical biomarkers and metabolic components that were related to symp-
toms and developments of different CKD stages, we developed a feature selection
algorithm to identify the most critical and informative metabolite features from the
original 16382 features. As a result, we obtained 69 metabolite features, which were
utilized to construct simplified CKD stage diagnosis models.

As Table 2 showed, although the new models were significantly simplified, they
achieved improvements in all evaluation metrics when compared with the models built
with all 16382 features. Random Forest maintained the best performance over all three
models. Its accuracy was increased from 95.6% to 98.6%. The SVM model still had the
least good performance but displayed some improvement (accuracy increased from
95.4% to 97.2%). The accuracy of the Decision Tree model was increased from 95.5%
to 97.3%. Figure 1(B) showed the confusion matrices of the improved CKD stage
classification/prediction models built from the same training and testing dataset that
used in the last section. All of them obtained higher accuracies in diagnosing the CKD
stages of 100 patients. Only three patients were mispredicted by the models built by
Random Forest and Decision Tree, and one by the SVM model. Also, no patient in the
non-CKD or early stages (stage 1 and stage 2) of CKD was mispredicted into wrong
CKD stages in any of the three models.

Table 1. Performances of CKD stage diagnosis models built from all 16382 metabolite features.

Models Evaluation metrics of different models
Accuracy Precision Recall F-score Cross-validation

Random forest 95.6% 95.1% 95.3% 95.0% 96(±0.5)%
SVM 95.4% 95.0% 95.1% 94.9% 96(±0.4)%
Decision tree 95.5% 95.0% 95.0% 94.9% 95(±0.5)%
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Currently, a few studies had demonstrated that the levels of a few metabolites were
associated with the CKD pathophysiological processes. They also affected the CKD
stage development [23–25]. However, previous studies cannot determine the CKD
stages only by the analyses of a few metabolites. In this section, we identified the most
critical and correlated metabolite makers and components from 16382 features, which
could distinguish the CKD stages effectively. CKD stage diagnosis models built from
the selected metabolite features achieved even better performances than the previous
models, indicating the significances and effectiveness of the selected features.
Improved CKD stage diagnosis models had obvious practicabilities and feasibilities
since the chances of errors, consumption of time, and testing costs were significantly
reduced. We could use improved CKD stage diagnosis models to diagnose the CKD
stages through a regular blood test, especially for the early stages.

Fig. 1. Confusion matrices of the CKD stage classification/prediction models built from the
same training and testing data set.

Table 2. Performances of CKD stage diagnosis models built from the selected 69 metabolite
features.

Models Evaluation metrics of different models
Accuracy Precision Recall F-score Cross-validation

Random forest 98.6% 98.6% 98.7% 98.6% 98(±0.3)%
SVM 97.2% 97.1% 97.0% 97.0% 97(±0.5)%
Decision tree 97.3% 97.1% 97.3% 97.2% 98(±0.4)%
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2.3 Validation of Selected Metabolites Features Subset

Previous studies already revealed that metabolite levels were associated with the
pathophysiologic processes and development of CKD stages [23, 24]. In this section,
we applied unsupervised learning algorithms to further validate the results of selected
metabolites features. We demonstrated that the selected metabolite features were the
most correlated and informative bio-markers and components, which was associated
with the CKD pathogenesis and progressions. First of all, we removed the stage labels
and performed the Principal component analysis (PCA) for all 703 patients based on
both 16382 metabolite features and selected features. Then we projected all patient’s
data into three dimensions. After that, we marked the true CKD stages with six different
colors and showed stages distributions of all patients in 3D spaces. As Fig. 2(A) and
(B) showed, PCA results based on the selected metabolite features set could better
discriminate the CKD stages compared with the PCA results from all metabolite
feature set.

Fig. 2. Analyses of selected metabolites subset based on unsupervised learning algorithms.
Figure A and B are the PCA dimension reductions for all 16382 metabolite features dataset and
selected 69 metabolite features dataset. Figure C and D are the hierarchical/agglomerative
clustering heatmaps based on all 16382 metabolite features and selected 69 metabolite features.
The red bar (six color level) represents the original CKD stage of each patient. The green color
represents the levels for each feature. The hierarchical tree on the left represents patients sample
hierarchical/agglomerative clustering. The hierarchical tree on the top represents the features
hierarchical/agglomerative clustering. (Color figure online)
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In addition, we applied hierarchical/agglomerative clustering to cluster all patients
based on all 16382 metabolite features and the selected features. First, we removed the
class labels for all patients. Afterward, we used the Ward variance minimization
algorithm to compute the distances among all patients and then constructed hierarchical
trees. We further plotted the cluster heat maps to visualize the levels, patients’ hier-
archical trees, features hierarchical trees, and patients true CKD stage labels for two
feature sets. As Fig. 2(C) and (D) shown, the selected metabolites features could better
cluster the CKD patients into six stages when compared with the results from all
metabolites features. In Fig. 2(D), patients within the same stages could be better
clustered into the same hierarchical sub-trees when compared with Fig. 2(C). Patients
in Fig. 2(D) could also better match their true CKD stage labels (shown six red color
level) when compared with Fig. 2(C). In addition, in Fig. 2(C), there were lots of
features fluctuated in similar patterns according to the CKD stage changes. These
features were clustered into hierarchical sub-trees and showed as dense clusters in
green color. However, in Fig. 2(D), the levels of the metabolite features were not
clustered into dense clusters but were fluctuated with different patterns according to the
CKD stages changes. These results demonstrated that there were many redundant
features and redundant information in the original feature set. Our feature selection
method could remove these redundant features and kept the most critical and stage
correlated features. The results above demonstrated that the selected metabolites were
correlated and fluctuated with the developments of CKD stages, which were also the
best indicators to discriminate the CKD stages effectively. These results also explained
why we could construct better CKD stages of diagnosis models with the selected
metabolite features. The selected metabolite features were the most critical and infor-
mative metabolic components that correlated with the metabolic level pathognomonic
symptoms of CKD stages. Their variations could reflect the progressive abnormalities
and disorders due to the developments of CKD stages.

2.4 Correlation Analyses Among Metabolites Features and CKD Stages

Here, we studied the correlations among levels of selected metabolite features and
CKD stage developments. As Fig. 3(A) showed, the levels of these selected metabolic
features maintained similar levels within the same CKD stage. On the other hand, the
levels had changed significantly among different CKD stages. For example, the levels
of metabolites feature 6, 7 and 20 had significantly increased with the aggravation of
CKD stages. However, the levels of metabolites feature 58 of 65,66 had significantly
decreased with the aggravation of CKD stages. The levels of metabolites feature 17, 22
and 25 did not show any increase or decrease but showed distinct levels in different
CKD stages. Levels of these selected metabolites feature changed regularly with the
development of CKD stages. Therefore, levels of these selected features can affect, or
be affected by the progressive CKD developments and related abnormalities. The
variances of these selected metabolite features were essential information for the CKD
stage pathological studies and related medicine developments. In addition, Fig. 3(B)
showed the correlation coefficients heatmap among the selected metabolite features.
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The light color indicated weak correlations, which could be as low as 0. The dark color
indicated strong correlations, which was up to 1. Most features showed low correlation
levels, which had correlation coefficients between −0.4 and 0.4. The max correlation
between any two features is 1, which was the correlation with itself (showed in the
diagonal line). Most selected features were irrelevant to each other, indicating that there
was no redundant feature or information in the selected metabolite feature set. This
result was also consistent with the result in the heatmap of Fig. 2(D) in the section
above.

3 Discussion

Early CKD stage and Non-CKD detection are critical to the prognosis and intervention
of CKDs. Specific treatments and management for different CKD stages can signifi-
cantly prevent and delay the disease promotions and progressions [6–8]. Renal failure
can also be reversed if the CKDs were detected and treated in the early stage [6, 8].
However, diagnosis and management of CKD are usually made when symptoms
become severe or after accidentally findings from clinical testing for other diseases
[13]. Currently, clinical diagnoses are not reliable enough to determine the CKD stage
or make accurate decisions only based on the level of GRF and few additional bio-
factors. Because various GFR equations and approaches can cause inaccurate and
contradictory issues [6, 15, 17]. In this study, first, we used supervised learning
algorithms to construct high-performance CKD stage diagnosis models based on the
blood metabolic level of 16382 features, which overcame the contradictory issues
caused by different GFR estimation approaches. In practice, it’s impractical to have all
16382 features measured for each clinical test, due to the cost of data collections,
efficiency, and timeliness. Therefore, we further constructed improved and simplified

Fig. 3. Correlation analyses among metabolites features and CKD stages. Figure A shows the
correlations between CKD stages and the metabolic level of selected metabolite features.
Figure B shows the correlation levels among the selected metabolite features.
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diagnosis models by selecting 69 metabolite features from blood samples, which sig-
nificantly reduced the cost of CKD screening and stage diagnoses. On the other hand,
previous machine learning studies about CKD diagnosis focused on distinguishing the
CKD and Non-CKD. However, our CKD stages diagnosis models could diagnose
CKDs into six stages (five CKD stages and non-CKD) with very high accuracies and
low false-positive rate. Also, they had no error in determining the non-CKD or early
CKD stages (stage 1 and stage 2), which could be further used in CKD screening. We
provided a novel, brief, and feasible machine learning based approach to screening and
diagnosing CKDs without measuring the GFR.

Previous studies revealed that metabolite levels were highly associated with CKD
pathophysiologic processes of CKD [23–25]. Abnormalities of metabolites would
result in a higher risk of the final stage of CKD in patients with hypertensive
nephrosclerosis [26]. In this study, we developed a feature selection algorithm to
identify the most critical and correlated metabolite features that were involved in
progressive perturbations of CKD stage and related biological processes. Our method
selected the most critical and correlated 69 features from the original 16382 metabolites
features. These selected features not only helped us construct improved and simplified
CKD diagnosis models but also revealed the effects of the developments of CKD stages
and pathophysiologic mechanisms. Unsupervised PCA and hierarchical/agglomerative
clustering analysis demonstrated that selected metabolite features could better distin-
guish the CKD stages than the original 16382 features. Our results also showed that
most selected features had correlated incremental or decremental variations according
to the CKD developments. Even though some of the selected metabolite features did
not show any regular variations, they did show distinct levels in different CKD stages.
Therefore, the variation of selected metabolite levels could affect or could be affected
by the progressive developments of CKD. Furthermore, there was very little correlation
among selected metabolite features, indicating that there was no redundant information
in the selected features. Therefore, these selected metabolites were the critical factors
and components that were correlated with CKD stages. These results also explained
why these selected features could lead to better CKD stages of diagnosis models. They
also provided researchers with the opportunities to gain new insights into metabolic
profiling and pathophysiological mechanisms of the developments of CKD stages.
Thus, our studies could be further used for CKD early stage diagnosis, CKD treat-
ments, and drug development.

4 Method

4.1 Data

The dataset used in this study contained positive metabolites levels measured by mass
spectrometry of patients’ blood samples. There were 703 patients’ samples in total,
including 587 CKD patients of five different CKD stages and 116 healthy subjects
(non-CKD). 120 patients were in CKD stage 1; 104 patients were in CKD stage 2; 110
patients were in CKD stage 3; 119 patients were in CKD stage 4, and 134 patients were
in CKD stage 5 (the final stage). Each blood sample was analyzed by positive ion mass
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spectrometry first and then identified total 16382 positive metabolites, which were also
referred to as 16382 features. We further used MinMaxScaler algorithm to normalize
the metabolite levels into the [0,1] interval.

4.2 Feature Selection

Our feature selection algorithm was based on the ideas of univariate feature selection
algorithms, recursively elimination algorithms and embedded supervised learning
classifiers. We first applied univariate feature selection filter algorithm Select-K-Best to
select n most important features with the highest scores, which was based on the Chi-
squared statistics. Next, given the 10-fold cross-validation C-Support Vector Classi-
fication as the external estimator, we recursively assigned weights to each available
metabolite feature and eliminated the feature with the least weight from the current
feature set. This procedure was recursively repeated on the same feature set until the
feature number was eventually reached the threshold. Then we recursively pruned
features from the current n SelectKBest features and obtained a subset A. Meanwhile,
we used the embedded Random Forest classifier as a black box to find the b most
important feature subset B from the current n features that selected from SelectKBest.
At last, we obtained selected features that were in the intersections of subsets A and B.
We parallelly ran the above steps t times and got the unions of the intersections of
subsets A and B obtained in the last step. As a result, we selected 69 metabolite features
from the original 16382 features. This algorithm was implemented by Python and
Scikit Learn package [22].

4.3 Supervised Learning Algorithms

Our Random Forest algorithm used Gini impurity as the supported criteria. The
maximum number of features was set to the total number of features in the dataset. The
maximum depth of the tree was set to until all leaves are pure or all leaves contain less
than two examples. The Support Vector Machine algorithm was implemented by the
multi-class classification C-Support Vector Classification with the linear kernel and
one-against-one scheme. The penalty parameter C of the error term was set to 1.0. The
degree of the polynomial kernel function was set to 3. The coef0 was set to 0. The
Decision Tree algorithm used in this study was the Classification and Regression Tree,
which was similar to the C4.5 Decision Tree algorithm. This algorithm also used Gini
impurity to measure the quality of a split feature. The maximum number of features was
set to the total number of features in the dataset. There was no limit on the depth of this
Decision Tree. The threshold for early stopping tree growth was set to 1e-7. Before
constructing the CKD stage diagnosis models, we normalized all patients’ levels for
each metabolite features into the interval [0, 1]. Then we randomly selected the first
603 instances as the training set and used the rest 100 instances as testing sets. We also
ran 10-folds cross-validation for each classifier to provide a systematic evaluation
of the constructed CKD stage diagnosis models. All three supervised learning algo-
rithms used throughout this study were implemented by Python and Scikit Learn
package [22].
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4.4 Unsupervised Learning Algorithms

Our Principal Component Analysis (PCA), implemented by Python and Scikit Learn
package [22], utilized a linear dimensionality reduction by singular value decompo-
sition and projected all patient’s data into three dimensions. The hierarchical/
agglomerative clustering for all patients was implemented by SciPy package [22, 28],
which utilized the Ward variance minimization algorithm to compute the distances
among all patients. The correlation study among the selected features was computed by
the Kendall Tau correlation coefficient. All calculations in this section were performed
by Python, pandas, and Seaborn packages [22, 27, 28].
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Abstract. Recent studies using high-throughput sequencing technolo-
gies have demonstrated that transposable elements seem to be involved
not only in some cancer onset but also in cancer development. However,
their activity is not easy to assess due to the large number of copies
present throughout the genome. In this study NearTrans bioinformatic
workflow has been used with RNA-seq data from 16 local patients with
lung cancer, 8 with adenocarcinoma and 8 with small cell lung cancer.
We have found 16 TE-gene pairs significantly expressed in the first dis-
ease, and 32 TE-gene pairs the second. Interestingly, some of the genes
have been previously described as oncogenes, indicating that normal
lung cell compromised on an oncogenic change displays some transposon
expression reprogramming that seems to be genome-location dependent.
Supporting this is the finding that most differentially expressed trans-
posons change their expression in the same direction than their adjacent
genes, and with a similar level of change. The analysis of adjacent genes
may reveal or confirm important lung cancer biomarkers as well as new
insights in its molecular basis.
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1 Introduction

Cancer is one of the leading causes of morbidity and mortality, with lung can-
cer being the most common malignancy and the most common cause of can-
cer deaths in the past few decades [6]. Recent studies have demonstrated that,
besides the specific somatic or germinal mutations that drive tumor growth,
mobile elements, also known as transposable elements (TEs), are involved in
the development of cancer. For example, in epithelial cancer, activation of TEs
correlates with their mobilisation and genomic drift [8]. TE expression is known
to contribute to genomic instability and can cause many genetic disorders. Since
nearly 50% of the human genome is composed of TEs, many cells try to avoid
these deleterious consequences inducing the inactivation of most TEs. It has
been recently shown that some human endogenous viral elements (HEVEs) are
still active in somatic tissues and play a crucial role in, for example, placental
development in various mammalian species [10].

The study of TEs using high-throughput technologies is very difficult due to
the complexity of its measurement and processing, since there is a large number
of copies of TEs present throughout the genome. However, our laboratory has
recently developed NearTrans [9], a bioinformatic workflow that takes advantage
of well known software as well as the definition of the genomic positions of indi-
vidual transposable elements. Therefore, NearTrans makes possible the differen-
tial expression analyses of TEs and their location in genome, besides integrating
the calculation of differential expression of their nearby genes. It was presented
last year [9] illustrating prostate cancer studies. In the present study, NearTrans
is tested in two different lung cancers: lung adenocarcinoma (LAC) and small
celular lung cancer (SCLC). A significant number of TEs and nearby genes
were found differentially co-expressed (both up-regulated and down-regulated),
revealing them as putative lung cancer biomarkers and a source of new insights
in the cancer-specific genes.

2 Materials and Methods

2.1 Sample Data

Two lung cancers, LAC and SCLC, have been analysed using RNA-seq data from
tumoral and healthy lung tissues from the same patient. Sequencing reads for
SCLC can be downloaded from Bioproject EGAS00001000334 [12], containing
2 × 75 bp paired-reads for total RNA from 17 patients sequenced with Illumina
HiSeq2000. Sequencing reads for LAC were obtained from 8 samples from the
Regional Hospital of Malaga (Spain) and sequenced in our laboratory as previ-
ously described [1].

2.2 Bioinformatic Analyses

NearTrans can perform automatically the differential expression of TEs and
genes from the raw data a provide TE-closer gene pairs that are co-expressed in
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the same of opposite direction. To do so, raw sequencing reads were pre-processed
with SeqTrimNext [5] with the specific NGS Illumina configuration parameters to
remove low quality, ambiguous and low complexity stretches, adaptors, organelle
DNA, polyA/polyT tails, and contaminated sequences while keeping the longest
(at least >20 bp) informative part of the read. Useful reads were mapped to
human genome hg38 using STAR v2.5 [3]. Then, GFF of hg38 and a home-made
GFF based on gEVE [10] were used with CuffLinks/Cuffquant/Cuffdiff tools
(v.2.2.1 [13]) to assess expression levels of genes and TEs between healthy and
cancer lung tissues, as described in [7]. Differential expression was considered
significant when a gene or a TE has FDR < 0.05 and |log2FC| > 1. NearTrans
also includes the co-localisation of genes close to differentially expressed TEs in
the genome with the assistance of BedTools (v.2.26.0 [11]). Distances between
each TE and the closer gene is also given. Results can be filtered by distances
between gene and TE, the level of expression, and the log2FC sign.

3 Results

3.1 Sample and Sequencing Qualities

After preprocessing raw RNA-seq datasets data from the 17 SCLC cancer
patients, the mean percentage of useful reads is 98.00%, and in the case of LAC
the mean percentage of useful reads is 97.76%. The high mapping rate (>95%)
confirms that results will not be affected by inadequate sequencing. However,
BCV analysis revealed that one sample in SCLC (S585275) and other in LAC
(69160211009) could have an abnormal behavior, so they were filtered out [1,2],
resulting in 16 SCLC patients for 32 samples (16 healthy lung, 16 tumoral lung)
and 7 LAC patiens for 14 samples (7 from their healthy lung and 7 for the
corresponding tumoral lung).

3.2 TE-gene Pairs in LAC

A total of 45 TEs were identified as differentially expressed in LAC, where 22
TEs and their adjacent genes (what we call the TE-gene pair) were found both
up-regulated. Between these co-upregulated TE-gene pairs, 14 are LINEs, 7 are
LTR and 1 is SINE. Likewise, 18 TE-gene pairs were down-regulated (10 LINEs,
7 LTR and 1 SINE). We have found only 5 TE-gene pairs (where TEs are 3 LINEs
and 2 LTR) which provide opposite expression change between gene and TE.

When those TE-gene pairs were filtered for statistical significance in both TE
and gene (both having FDR < 0.05 and |log2FC| > 1), only 16 TE-gene pairs
can be obtained (Table 1). A total of 4 TE-gene pairs were up-regulated (corre-
sponding to 2 LINEs and 2 LTRs), and 9 TE-gene pairs were down-regulated
(including 7 LINEs, 1 LTR and 1 SINE). Finally, 3 TE-pairs (including 1 LINE
and 2 LTRs) present opposite differential expression. It is worth mentioning that
distance between co-upregulated TE-gene pairs are 10× longer (ranging from 21
to 82 kb) than co-downregulated TE-gene pairs (most ranging from 1.5 to 8.7 kb
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Table 1. The 16 differentially expressed TE-gene pairs in LAC including the distance
between gene and TE. Repeated instances of the same TE are referring to different
chromosome locations of the same TE.

TEa log2FCTE PTE Gene log2FCgene Pgene Distance (nt)b

Both having positive Log2FC (co-upregulation)

HERVIP10F-int Infc 5e−05 SERINC2 2.57469 5e−05 21863

HERVIP10F-int Infc 5e−05 SERINC2 2.57469 5e−05 −31352

L1PA4 5.14037 5e−05 LGSN 5.38051 5e−05 38833

L1PB1 2.89586 2e−04 GPR39 2.11901 0.00025 81934

Both having negative Log2FC (co-downregulation)

AluY −1.76328 0.00035 LONRF3 −0.734273 0.04125 −5586

HERVL-int −3.49372 5e−05 CRISPLD2 −1.52242 0.00015 1770

L1PA13 −3.06684 0.00025 PTPRC −1.51911 0.00025 2605

L1PA4 −2.38546 5e−05 IL1RL1 −3.41531 5e−05 8627

L1PA4 −2.69614 5e−04 PCAT19 −2.62722 5e−05 4203

L1PA6 −2.81211 2e−04 MGC27382 −2.72387 5e−05 27991

L1PA7 −2.05145 5e−05 SLC39A8 −2.25943 5e−05 −8690

L1PA7 −2.24649 5e−05 SPARCL1 −2.78843 5e−05 1541

L2 −3.07575 1e−04 ANO2 −2.69836 5e−05 1764

Independent expression of gene and TE

HERV9NC-int −5.98136 0.00055 CENPU 2.06716 0.017 −6385

HERV9NC-int −6.96764 0.00045 CENPU 2.06716 0.017 −4092

L1P1 3.27802 2e−04 AGR3 −0.678936 0.0483 170600
aTransposable element.
bDistance from the TE to its closest, adjacent gene; negative means that gene is upstream

the TE, while positive means that gene is downstream TE.
cInf means that TE is not expressed in normal lung, but it is on LAC cells.

and one at 28 kb). However, when TE-gene pairs follow independent expression,
the distances are more variant. This suggests that distances may play a role in
TE-gene pair expressions.

3.3 TE-gene Pairs in SCLC

Regarding SCLC, the same approach that with LAC was performed. Hence, 83
TEs were identified as differentially expressed, most of them (67) were down-
regulated and the remaining 16 were up-regulated. Up-regulated TEs can pro-
duce 14 (2 LINEs, 10 LTRs and 2 unknown) co-upregulated TE-gene pairs, while
47 TEs (30 LTRs, 15 LINEs and 2 SINEs) can form co-downregulated Te-gene
pairs. A non-negligible group of 22 TEs (15 LTRs, 7 LINEs) presented TE-gene
pairs with opposite expression changes.

When the three groups of TE-gene pairs were again filtered for statistical
significance in both gene and TE expression change, the number of differentially
expressed TE-gene pairs decreases to 36 (Table 2). A total of 9 TE-gene pairs
(including 5 LTRs and 2 LINEs) were co-upregulated and 22 (including 13 LTRs,
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Table 2. The 36 differentially expressed TE-gene pairs in SCLC including the distance
between gene and TE. Repeated instances of the same TE are referring to different
chromosome locations of the same TE.

TEa logFCTE PTE Gene logFCgene Pgene Distance (nt)b

Both having negative Log2FC (co-upregulation)

(CAA)n 3.26754 5e−05 PEG10 3.44881 5e−05 0

(CCG)n 3.25802 1e−04 PEG10 3.44881 5e−05 0

HERVH-int 3.36646 0.00265 RIMS2 1.94245 0.00015 −35548

HERVIP10F-int 1.66963 0.01035 LOC101928595 1.77794 0.02145 0

HERVS71-int 2.21337 0.00375 LINC00665 3.08854 5e−05 −2902

HERVS71-int 2.28517 0.0056 LINC00665 3.08854 5e−05 −3514

HERVS71-int 2.30486 0.00585 LINC00665 3.08854 5e−05 3337

L1P1 2.11549 0.00425 TMEM182 2.41653 0.0024 0

L1PA5 3.57967 0.00155 NCAM1 2.91979 5e−05 2678

Both having negative Log2FC (co-downregulation)

AluY −3.51472 9e−04 LONRF3 −1.87593 1e−04 −5586

HERVE a-int −3.38255 0.00085 KLF8 −1.48978 0.00205 −207223

HERVH-int −Infc 5e−05 NTM −1.20571 0.02165 −113215

HERVH-int −6.3376 5e−05 LINC01108 −4.353 5e−05 13889

HERVH-int −8.58592 5e−05 AKAP7 −1.05849 0.0294 −42761

HERVH-int −9.0489 5e−05 NTM −1.20571 0.02165 −112757

HERVI-int −4.80447 0.0123 ATF7IP2 −1.29798 0.01475 4512

HERVI-int −5.27054 0.0131 ATF7IP2 −1.29798 0.01475 4051

HERVI-int −5.64963 5e−05 ATF7IP2 −1.29798 0.01475 1987

HERVK3-int −4.44042 5e−05 ALDH2 −3.47048 5e−05 6828

HERVK9-int −1.98071 0.01095 IL32 −1.50026 5e−05 8605

HERVL-int −2.28606 0.00445 ARHGAP29 −1.39685 0.02475 −5513

HERVL-int −3.3239 0.01425 ARHGAP29 −1.39685 0.02475 −3899

L1MEd −Infc 5e−05 IL8 −3.15971 5e−05 2401

L1P1 −7.60885 5e−05 MGC27382 −5.83346 0.00265 −2128

L1PA10 −4.88943 0.0026 ATF7IP2 −1.29798 0.01475 −8169

L1PA3 −2.17051 0.0092 AC007743.1 −1.56602 0.0024 0

L1PA3 −5.76049 5e−05 ATF7IP2 −1.29798 0.01475 3023

L1PA4 −2.75346 0.0143 CYP3A5 −1.87053 0.00515 2633

L1PB2 −6.82712 5e−05 RNF145 −2.12989 5e−05 −5943

L1PB4 −3.21371 0.00415 CD33 −2.70422 5e−05 −4994

LTR10A −6.36865 5e−05 ATF7IP2 −1.29798 0.01475 −10538

Independent expression of gene and TE

HERVE-int −3.57984 0.00055 LOC101928803 1.37193 0.04085 40603

HERVH-int −3.04437 3e−04 MYO16 2.0961 0.0108 −60669

HERVH-int −6.27208 0.00775 PAWR 0.916712 0.00765 41707

L1PB1 −Infc 5e−05 FAM133A 2.6097 0.00075 569255

L1PB1 −7.93841 5e−05 FAM133A 2.6097 0.00075 586400
aTransposable element.
bDistance from the TE to its closest, adjacent gene; 0 means overlap; negative means that

gene is upstream the TE, while positive means that gene is downstream TE.
cInf means that TE is not expressed in normal lung, but it is on SCLC cells
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8 LINEs and 1 SINE) TE-gene pairs were down-regulated, which is clearly biased
to down-regulation, as we have previously found using Biobase [2]. Between these
TE-gene pairs, some of them are coincident in chromosome location, which com-
pletely justifies their co-expression. It also merits mention that most of these
co-regulated TE-gene pairs are within a range of 10 kb and only a few (HERVH-
in it co-upregulated and the 5 HERVE and HERVH in co-downregulated), indi-
canting, once again than the distance between gene and TE may play a role in
this co-expression. Finally, 5 TE-gene pairs (including 3 LTRs, 2 LINEs) present
opposite, differential expression, but the huge distance (ranging from 41 kb to
586 kb) between the TE and the closest gene makes us think that the opposite
expression change might to be considered as independent expression.

3.4 TE-gene Pairs in Both SCLC and LAC

Since LAC and SCLC are both lung cancers, we would like to expect, in addition
to cancer-specific TE-gene pairs, other TE-gene pairs that are common to both
lung cancers that may provide information about some common molecular basis
of the disease. Three TE-gene pairs (AluY, L1PA3 and LTR10A) are in common
Table 3 and, interestingly, the three were co-downregulated. That means that the
adjacent genes to these TEs (LONRF3, AC007743.1 and ATF7IP2) may play a
role in the common functional alterations produced by SCLC and LAC.

Table 3. Common TE-gene pairs with the same co-regulation in both SCLC and LAC.

Gene TE Distance (nt) Status

LONRF3 AluY −5586 Co-downregulated

AC007743.1 L1PA3 0 Co-downregulated

ATF7IP2 LTR10A −10538 Co-downregulated

4 Discussion

It is widely assumed that specific TEs could play a key role in lung cancer
development by controlling the expression of their adjacent genes. This is true
in some cases where TEs have LTRs that are known to act as transcriptional
enhancers. However, we suspect that most TEs change their expression as a
consequence of the expression of their neighbouring genes, and not the reverse,
as we have previously found in prostate cancer [9]. To further test this hypothesis,
RNA-seq data from total RNA from tumoral and healthy lung tissues of SCLC
and LAC has been analysed using our NearTrans pipeline. As a result, 45 and 83
genomic locations of TEs where found differentially expressed in LAC and SCLC,
respectively. When the differential expression was significative for both the TE
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and the closest, adjacent gene, the list was reduced to 16 and 36 differentially
expressed TE-gene pairs in LAC (Table 1) and SCLC (Table 2), respectively.

Several findings were striking with the two datasets. First, most TE-gene
pains were formed by TEs of HERV and LTR classes, which is consistent with
what we have previously observed using the transposon repeats in Biobase [2].
Second, the expression changes are not balanced for TEs, the majority of the
differentially expressed TEs being down-regulated. This finding made us think
that the need of tumour-suppressor gene repression implicates more genome
loci than the tumoural gene expression. TE down-regulation is not so widely
described in tumours as TE up-regulation, but we must remark that most studies
about TE and cancer use to study one or a few specific TEs, while here it
is described the overall behaviour of TEs. And third, most co-regulated TE-
gene pairs were located within 5 kb, while TE and gene presenting independent
expression use to be more far apart. This made us think co-regulated TE-gene
pairs are in the same regulatory region of the genome, among not yet identified
insulators.

The importance of the TE-gene pairs of Tables 1 and 2 is supported by the
nature of the genes. For example, SERINC2 (Table 1) is flanked by two copies of
the HERVIP10F-int, and the three are co-upregulated. SERINC2 is a member
of a transmembrane protein family that incorporate serine into membrane lipids
during synthesis. Recent studies have demonstrated that expression levels of
SERINC2 are significantly up-regulated in tumours with respect to healthy tis-
sues in patients with lung adenocarcinoma, providing them proliferation, migra-
tion and invasion capabilities [16]. GPR39 (Table 1) is another example, since
it is frequently over-expressed in primary esophageal squamous cell carcinoma,
which has been significantly associated with the lymph node metastasis. Func-
tional studies showed that GPR39 has a strong tumorigenic ability [14]. There
are also cases of functional consistency in the co-downregulated TE-gene pais,
with special attention to several oncogenes, including PTPRC [4]. But even
more important, nothing is described for LGSN (Table 1) and cancer, which
may reveal new or neglected molecular basis for LAC.

Regarding SCLC, PEG10, an oncogene implicated in the proliferation, apop-
tosis and metastasis of tumors [15], is co-upregulated with repetitive elements
in its locus. Also, PEG10 has been found to be positively expressed in a variety
of cancers with seemingly complex expression regulation mechanisms.

Regarding the TE-gene pairs in Table 3, TEs AluY, L1PA3 and LTR10A
could be suggested as positive marker of lung cancer. A few thing are known
about the genes in these TE-gene pairs as revealed by GeneCards (https://
www.genecards.org): LONRF3 can be involved in protein-protein and protein-
DNA interactions but with unknown function), AC007743.1 (uncharacterised
protein) or ATF7IP2 (a transcription factor involved in chromatine formation
and methylation; related with macular degeneration). The three are expressed,
between other tissues, in normal lung, so it would merit the effort to know why
they are repressed in LAC and SCLC, since nothing is known about their relation

https://www.genecards.org
https://www.genecards.org
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with cancer. Moreover, this supports the utility of a bioinformatic pipeline such
as NearTrans in the discovery of new biological information.

All those results confirm that NearTrans seem to be a suitable and useful tool
for correlation studies of TEs and their adjacent genes. It was essential to reveal
that a normal lung cell compromised on an oncogenic change displays some TE
expression reprogramming, highly biased to down-regulation. And even more
important, that the expression change of the adjacent gene had the same sign in
most cases. This reprogramming revealed to be genome-location dependent as
most differentially expressed TEs change their expression in the same direction
that their adjacent genes, and with a similar level of change. The analysis of TE-
gene pairs may reveal or confirm important lung cancer biomarkers as well as
new insights in its molecular basis. We propose that the study of TEs in cancer
could help in the discovery or corroboration of genes involved in cancer, and
could be used as specific biomarkers for the diagnosis, prognosis or treatment of
cancer.

Acknowledgements. This work was funded by the NeumoSur grants 12/2015 and
14/2016. The authors also thankfully acknowledge the computer resources and the tech-
nical support provided by the Plataforma Andaluza de Bioinformatica of the University
of Malaga.

References

1. Arroyo, M., Bautista, R., Larrosa, R., de la Cruz, J.L., Cobo, M.A., Claros,
M.G.: Potencial uso biomarcador de los retrotransposones en el adenocarcinoma
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Abstract. Copy number variation (CNV) plays important role in drug
resistance in bacterial genomes. It is one of the prevalent forms of struc-
tural variations which leads to duplications or deletions of regions with
varying size across the genome. So far, most studies were concerned with
CNV in eukaryotic, mainly human, genomes. The traditional labora-
tory methods as microarray genome hybridization or genotyping meth-
ods are losing its effectiveness with the omnipotent increase of fully
sequenced genomes. Methods for CNV detection are predominantly tar-
geted at eukaryotic sequencing data and only a few of tools is available
for CNV detection in prokaryotic genomes. In this paper, we propose
the CNV detection algorithm derived from state-of-the-art methods for
peaks detection in the signal processing domain. The modified method of
GC normalization with higher resolution is also presented for the needs
of the CNV detection. The performance of the algorithms are discussed
and analyzed.

Keywords: CNV · Copy number variant · Bacterial genomes ·
Signal processing · Sequencing

1 Introduction

Copy number variations, which belongs to structural variations, are parts of a
genome and with size bigger than 1000 bases and less than 5 megabases. That is
widely accepted size range for eukaryotic genomes [15]. However, much smaller
genome parts bigger than 50 bases can fit the CNV definition too [1]. These
genome parts are either increased or decreased in occurrence when compared
with reference. The process of creation of any structural variation needs several
steps involved: double-strand breakage at at least two locations, re-ligation of
the broken ends and producing new chromosomal arrangement [11].

Copy number variants are changes of the observation frequency of certain
DNA sequence, most easily manifested as deletions or duplications (tandem
or interspersed). Inversions, insertions or trans-locations are not considered
as CNV [11].

Several types of CNV can be described in eukaryotic genomes, but those
can not be taken into account when considering prokaryotic genomes with single
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circular chromosome. Also, the symmetrical organization of prokaryotic genomes
leads to also symmetrical rearrangements. Properties involved are theoretically
distance of a gene from origin of replication (oriC), difference in replication in
leading and lagging strand and constraint of keeping both replichores at the same
size, which leads to symmetrical inversions at oriC and terminus of replication
(ter) [11]. Large rearrangements, which disrupt the symmetry, have negative
impact on prokaryotic organism fitness [11,12].

Laboratory methods traditionally used for CNV detection are fluorescence in
situ hybridization (FISH) and array comparative genomic hybridization (aCGH),
but both suffer from low resolution, thus they are unable to detect short CNVs
[5]. Algorithm methods consists of several approaches and their combinations -
read-pair approach, read-depth approach, split-read approach, de-novo sequence
assembly methods and hybrid approaches [10,11,13].

Read-pair approach takes the distance and orientation of paired-end reads
and cluster the pairs in whose either the distance or orientation doesn’t match
the reference genome [1]. Several features can be implied, such as deletion exhib-
ited by long distance, insertions exhibited in the opposite way as too close,
whereas inconsistent orientation can be manifest of insertion or tandem dupli-
cation. Read-pair method is the most used among the other [10,11,13].

Read-depth approach is based on the graph of read depth aligned to the refer-
ence genome. It typically assumes either Poisson or another random distribution
and investigates the divergence from this distribution. Underlying premise is
that duplicated regions will manifest higher read depth, whereas the deletions
will manifest in lower read depth [10,11,13].

Split-read approach is based on broken alignment to the reference genome.
The local gapped alignment is performed and gaps are evaluated. A continuous
extension of gaps in the read indicate a deletion, oppositely, extension of gaps
in the reference indicates an insertion. If the reads are long (longer than MGE),
mobile genomic elements can also be discovered [10,11,13].

Sequence assembly approach contrary to the other ones does not perform
alignment of the reads to the reference genome, hence it is the challenging one.
Instead, the fully sequenced genome is assembled and the output is compared
with already known high quality reference [10,11,13].

None of the approaches covers the whole spectrum of the task. When dif-
ferent tools and approaches are used, the outputs differs and some are unique
to specific approach [1]. Read depth is the only methods effective at detecting
absolute copy numbers, its low resolution for breakpoints detection is disadvan-
tage. Read-pair approaches are computationally demanding by the process of
resolving ambiguous mapping to the reference genome. Split-reads are accurate
only in unique regions of the genome. Sequence assembly requires much higher
read depth, which is costly, and it is efficient in pairwise comparisons. However,
it is biased against the repeats and duplications created in the process of de-novo
assembly [1].
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2 Methods

2.1 GC Normalization

PCR-based sequencing methods are inducing GC bias [4]. Several models of
underlying mechanism were described - fragmentation model (GC counts are
tied with the stability of the sequence), read model (GC counts modify the base
sequencing), full-fragment models (GC count of the whole fragment determines
the amplification of fragments) and global models (consider GC counts at the
genome level). GC bias then can be described as proportion between the GC
counts in a region and number of fragments mapped to the region [2].

For further understanding, we defined read depth as number of bases aligned
to nucleotide in the reference genome.

The GC bias influences following analysis based on the read depth, i.e. copy
number detection. Thus, we developed the GC count normalization algorithm
suitable for our CNV detection algorithm. GC normalization is derived from the
already in use methods based on computing GC count in bin of variable length.
Instead of them, the GC counts are not obtained from static regions of sequence,
but in sliding overlapping windows. Also, the GC normalization is not applied
to the static regions, but for each nucleotide in the sequence. The only drawback
is higher computational demand, but the higher resolution is achieved.

The coverage file, as computed by SAMtools (depth command) [9], together
with consensual genome sequence computed from aligned reads, serve as the
input files of the GC normalization. The GC counts are computed in a sliding
overlapping window of variable length (70 bp). The property of overlapping
window creates the GC count for every base in the consensual sequence with
influence of neighboring regions. Only the bases belonging to regions with read
depth higher than 5 are calculated because of their noisiness property. Then,
the median of the read depth corresponding with certain level of GC count are
obtained. Normalization of the GC count is performed according to the modified
Eq. 1 from [3]:

RCcorr
i = RCi ×mRC/mRCGCi. (1)

Each value of read depth is corrected by weighting its value with division of
the overall median of read depth and the median of read depth with the same
GC count. The RCi denotes i-th value of read coverage (RC), mRC is median
of the whole read depth, mRCGCi is median value of read depth values with
corresponding GC count. Finally, Ccorr

i is corrected i-th value of read depth
with define GC count. The effect of GC normalization is in Fig. 1.
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Fig. 1. Effects of GC normalization on read depth signal

2.2 CNV Detection

The coverage data which are GC normalized serves as the input of the CNV
detection algorithm. Firstly, the read depth graph taken as signal needs to be
smoothed. The average moving windows was implemented for the smoothing
operation according to the formula 2, where x are data values, n is size of window:

xMA =
xM + xM−1 + · · · + xM−(n−1)

n
=

1
n

n−1∑

i=0

xM−i. (2)

The smoothing ensures higher robustness of peak detection algorithm imple-
mented for the CNV detection. Default size of moving average window is the
same as the GC normalization bin (70 bp). Signal processing based peaks detec-
tion is then applied to detect the position and width of the peaks detected. The
basic thresholds are applied, based on previous analysis, it was decided that the
detected peaks should be higher than double of the average of the read depth
along the whole signal and the peaks should be longer than at least 10 bp.

2.3 Dataset

Types of CNVs were artificially simulated in order to test the accuracy and
abilities of algorithms. The deletion, tandem duplication and interspersed dupli-
cation types of CNVs were simulated. As the source, the already assembled
and well-known genome of Klebsiella pneumoniae (strain NTUH-K2044, NCBI
Ref. NC 012731.1) was used. Klebsiella pneumoniae was chosen as an attractive
organism from the perspective of drug resistance in many studies [6,14].
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The original genome sequence was then modified to simulate the CNV. The
gene of suitable length was found in GenBank notation: the gene LysR (family
transcriptional regulator; 2450591:2451499, length of 908 bp). This gene was
either deleted, or duplicated in a tandem or interspersed way.

Genome sequences in FASTA file generated by this process served as an input
for ART next-generation sequencing read simulator [7]. ART package (version
2.5.8) serves as an artificial reads simulator, an have been already used for testing
CNV detection [3]. The parameters for ART was specified as follows: paired-end
read simulation of HiSeq 2500, length of reads 76, fold of read depth 100, the
mean size of DNA/RNA fragments 500, the standard deviation of DNA/RNA
fragment size 100. The output FASTQ files were mapped against the original
genome sequence of Klebsiella using Burrows-Wheeler aligner BWA [8]. The
following files necessary for CNV detection were acquired as mentioned in the
methods using SAMtools package. The whole analysis was performed on desktop
computer (Core i5-6500, 24 GB RAM) using Ubuntu Linux distribution. The
simulated CNV details are in Table 1.

Table 1. The positions of simulated CNVs in artificial genomes

Type of CNV # CNV position

Deletion of region 0 2,450,591:2,451,499

Tandem duplication 2 2,450,591:2,452,407

Interspersed duplication 2 2,450,591:2,451,499; 2,454,499:2,455,407

Interspersed duplication 3 2,450,591:2,451,499; 2,454,499:2,455,407; 2,948,499:2,949,407

3 Results and Discussion

The artificial data were created and the implemented algorithm for CNV detec-
tion based on signal processing was used to asses the algorithm accuracy and
abilities. Because of the foreknowledge about induced CNV, the tool can be
assess. The comparison with other state-of-the-art tools was not performed as
proposed algorithm is still in the development. The aim of the paper is to demon-
strate preliminary abilities and possible drawbacks of the design.

The default read depth signal is in Fig. 2. There are drops in read depth at
the beginning and at the end of reference genome coordinates. This is caused
by mapping algorithm and can be omitted from further analysis. Except for
the drops, there are no visible significant peaks. The average read depth along
coordinate is 99.9989 as defined in ART sequencing simulator (depth 100).
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Fig. 2. The read depth signal of reference genome of Klebsiella pneumoniae with no
CNV introduced

The first demonstrated CNV type is deletion in Fig. 3. The sequence of a gene
was deleted from template reference sequence and the process of sequencing
was simulated followed by the analysis. There is significant negative peak on
coordinates 2,449,683:2,451,573 with a length of 1890. The ending border of the
peak is only 73 bp after the real end, however, the start of the peak is detected
908 bp before the CNV region of deletion. It was necessary, to use the negative
values of signal, so the peak detection algorithm could detect positive peaks.
The negative signal together with detected peak is in Fig. 4.

Fig. 3. The read depth signal of deletion CNV
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Fig. 4. The read depth signal of deletion CNV - negative signal

CNV type of tandem repetition, the sequence was copied and putted exactly
after the original gene position. No gaps between these two were inserted.
The presumption is, that peak should be twice as high compared to average
depth as twice as reads should be theoretically sequenced from the region. The
read depth with detected peak is in Fig. 5. The detected peak is at position
2,450,631:2,451,413 with length of 782 bp. The highest value of the peak is 212.

Fig. 5. The read depth signal of tandem CNV

Following type of CNV tested is interspersed duplication. These are ran-
domly place across the genome. The first type is duplicated once and placed
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closely to the original gene location. The detected peak spans across the region
2,450,741:2,451,469 with length of 728 bp. The highest value of the peak is 216
(Fig. 6).

Fig. 6. The read depth signal of interspersed duplication (2x) CNV

The interspersed duplication placed three times across the genome is the last
type of induced CNV. Another duplication of gene sequence was added to the
previous two ones at the position 0.5 million bp after them. The detected peak
spans across the region 2,450,645:2,451,450 with length of 805 bp. The highest
value of the peak is 330 (Fig. 7).

Fig. 7. The read depth signal of interspersed duplication (3x) CNV
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Some of the theoretical assumptions were proven during analysis. The copy
number count can be denoted from the size of the peaks. The number of times
the peak is higher than the average of the read depth, indicates the number of
copy number. The general drawback of CNV detection derived from reference
sequence is inability to obtain either the position or genetic sequence of CNVs
in the sequenced genome. This can be done by employing further laboratory
methods, i.e. targeted sequencing or hybridization or using genome assembly
method. The further work will be aimed on achieving higher accuracy of the
CNV borders. This is challenging task, as the read depth signal has very noisy
character and establishing the strict borders of peak, so that it would match the
real border of CNV, is algorithmically demanding. The main advantage of the
proposed algorithm are low computational demands with accurate indication of
copy number variations.

The computational demands are following: the CNV detection algorithm per-
forms the task in average 15 s for the genome of length over 5 million bp. The
GC normalization is more computational demanding since of sliding window
computing GC counts and HDD operations. The overall computation time of
the whole process (including loading the input files) takes in average 350 s. The
algorithm was implemented in the Matlab environment.
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Abstract. The main idea of this research is the extension of the
aquaphotomics method to the visible range of the spectrum. Already
known as a fact that each chemical element has a unique pattern in the
absorption of electromagnetic radiation. Such a structure is a spectrum
bands absorbed by an element and is called its ‘fingerprint’. The fin-
gerprint section is presented in a wide range of spectrum, including the
visible part. Absorption in the visible spectrum provides unique infor-
mation about the elements or compounds present in water. This allows
to analyze the concentration of microparticles and chemical elements in
water due to changes in the molecular water system, presented in the
form of a spectral picture of water. The results presented in this paper
prove the existence of a correlation between some parameters of water
and its spectral characteristics.

Keywords: Spectrum · Aquaphotomics · Spectrophotometry ·
Biomonitoring · Aquaculture · Measurement · Nutrients

1 Introduction

Water is one of the most familiar substances on the Earth. Currently, about 70%
of our planet is covered with water. It has been studied using various tools and
methods, but its behaviour is still the subject of intensive scientific research.
On micro- and nano levels water is not a homogeneous structure, but rather
dynamic equilibrium among changing percentages of assemblages of different
oligomers and polymers species. The structure and these assemblages or units
themselves are dependent on its chemical contents, temperature and pressure [1].

Nowadays there are many different methods for examination the chemical
composition, the concentration of micro-particles and the micro-organism, and
c© Springer Nature Switzerland AG 2019
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other characteristics of water. An important place among them is occupied by
the methods of spectrophotometry. One of the modern methods of spectropho-
tometry is Aquaphotomics. Aquaphotomics (aqua - water; photo - light; omics
- all about) is a new discipline introduced by Prof. Roumiana Tsenkova from
the Kobe University, Japan [2]. Method is based on the knowledge, that water,
as a natural biological matrix containing only small molecules with a strong
potential for hydrogen bonding, changes its absorbance pattern every time it
adapts to physical or chemical change in the environment. In Aquaphotomics
near infrared (NIR) light is used to obtain the information about the hydro-
gen bonding in the water [3,4]. NIR light allows a penetration to a depth of
10 mm in water and even deeper for the short wavelength region (750–1098 nm).
Therefore, every absorbance spectrum of water solutions or biological systems
contains information at the molecular level with ‘one hydrogen bonding’ resolu-
tion. Aquaphotomics has been successfully applied in various fields from water
characterization, food quality control to early diagnosis of disease [5,6].

Studies of the spectral characteristics of chemical elements showed that each
element has its own pattern in absorbing of electromagnetic radiation. This pat-
tern is called ‘fingerprint’ of the element. Each chemical element, or compound,
has its own fingerprints in a wide range of the spectrum, including the visible
part. Generally, water only reflects in the visible light range. Based on this, it is
assumed that the chemical composition of water can be investigated by analyzing
the reflected spectrum of sample in visible range.

Water spectral changes permit measurement of small quantities of or struc-
tural changes in molecules of the system. Absorption pattern of water sample
depend not only on the chemical composition, but also on the physical parame-
ters. In order to obtain more information about the values of the parameters, it
is necessary to analyze whole range of the visible spectrum. This article discusses
the dependence of the spectral characteristics of water on the values of some of
the basic water parameters. The dependence was tested on such parameters:
temperature (T), electrical conductivity (EC), pH.

To characterize the water, it is necessary to find the dependence of the spec-
tral characteristics with the parameters of interest. For these purposes, multi-
variate analysis (MVA) is used. Multivariate analysis is a set of techniques used
for analysis of data sets that contain more than one variable, and the techniques
are especially valuable when working with correlated variables. The techniques
provide an empirical method for information extraction, regression, or classifica-
tion [7]. Multivariate analysis, due to the size and complexity of the underlying
data sets, requires much computational effort. With the continued and dramatic
growth of computational power, multivariate methodology plays an increasingly
important role in data analysis, and multivariate techniques, once solely in the
realm of theory, are now finding value in application [8].

Regression analysis is one of the most common methods used in statistical
data analysis. It estimates the relationship between two sets of values: the pre-
dicted (independent) and the actual (dependent). Regression analysis helps in
understanding how the typical value of the dependent variable changes when
any one of the independent variables varies.
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2 Correlation Between Spectral Characteristics and
Values of Parameters

During the first half of the 19th century, scientists such as John Herschel, For
Talbot, and William Swan studied the spectra of different chemical elements in
flames. Since then, the idea that each element produces a set of characteristic
emission lines has become well-established. Each element has several prominent,
and many lesser, emission lines in a characteristic pattern. Today spectropho-
tometry methods are widely used in the various scientific fields, such as physics,
materials science, chemistry, biochemistry, and molecular biology.

Spectral absorption is a measurement of the amount of light absorbed by a
water sample of a given path length. There are several different types of matter,
such as organics and nitrates that naturally absorb light in different regions of
the spectrum. Using absorbance data in combination with laboratory data for a
target parameter, it is possible to build a relationship between these two data
sets. This type of relationship makes possible to convert the measured absorbance
data into value of the parameter of interest [9].

The absorption of light is due to the interaction of light with the electronic
and vibrational modes of molecules. Each type of molecule has an individual set
of energy levels associated with the makeup of its chemical bonds and nuclei,
and thus will absorb light of specific wavelengths, or energies, resulting in unique
spectral properties [10]. Based on the fact that water molecules change their
absorption pattern each time it adapts to a physical or chemical change, we
can conclude that changes in some physical parameters of water can be also
estimated using spectral measurements.

In our work, a ColorMunki spectrophotometer (Fig. 1) was used for spectral
measurements, which measures the spectrum in the range from 360 to 740 nm.

Fig. 1. Spectrophotometer ColorMunki
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The available spectrophotometer from X-Rite company has a precision (min-
imal step) in 10 nm. Thus, a spectrum consisting of 36 bars (values) (Fig. 2) is
saved for each measurement.

Fig. 2. Example of measured spectrum (Color figure online)

Such precision is not sufficient to identify small changes in concentration of
a compound or the value of a physical parameter in water. Required patterns
differ in much smaller steps. To increase the amount of information obtained from
spectral measurements, we measured the spectrum of different color etalons. For
this purpose, we used the ColorChecker plate (Fig. 3). It includes 24 colors with
known RGB values and serves for the calibration of optical instruments. Only
18 etalons were used in experiments without different shades between black and
white colors.

Depending on the value of the parameter, the spectral absorption of water
will be different. This means that by changing the value of one of the tested
parameters, you will get a radically different spectrum. To find the relationship
between the spectral characteristic of a water sample and the parameter value,
the differences of 18 spectra were compared with the measured parameter value.
This gives information on how the spectrum changes in the entire visible range
with changing parameter values.
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Fig. 3. ColorChecker Classic card (X-Rite)

3 Experiment Setup

The experiment for data collection consisted of two types of measurements:
experimental and control. The first was to measure the spectral characteristics of
water samples. For these purposes, a spectrophotometer was used. Control mea-
surements were carried out parallel to the experimental for each sample. They
included measurements of such parameters: pH, electrical conductivity (EC) and
temperature. During the experiment, the parameters varied in such ranges: pH
from 2.56 to 10.5; EC from almost 0 to 6.51 mS/cm; temperature from 2 to
50.5 ◦C.

For the experiments, distilled water (as a zero etalon), pipe water, and water
from the aquaponic system were used. Samples were prepared for different types
of water, where only one parameter was changed, while the changes of remaining
parameters were close to 0. To minimize the error created by the user or device
for the same pH, EC, T values, 3 repetitions were performed.

The obtained data were divided into two sets readings of parameters (pH,
EC, temperature) and the results of reading spectra (Fig. 4).

For each color etalon, the spectrophotometer provides 36 values for different
wavelengths. Having 18 etalons for each water sample, 36 * 18 = 648 values
were obtained. And 91 combinations with different values of parameters for each
type of water. Total, the data consists of 176 904 values. All data were used
for multivariate analysis to confirm the existence of a relationship between the
values of the parameters and the spectrum in the visible range.
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Fig. 4. Experimental data

4 Multivariate Data Analysis

To determine the value of a parameter by the method of spectrophotometry
for each parameter, the absorption of one particular wavelength is usually used.
Since for our study we use the visible range of the spectrum, to determine the
value of the parameter we need to analyze the absorption in the whole range
of the visible spectrum. This means that, in our case, univariate analysis is not
suitable. For data processing and creating a model that is able to predict the
value of a parameter from spectral measurements, we used multivariate analysis.

To understand how the value of the spectral characteristics of water changes
when any of the independent variables changes, a regression analysis was used.
Regression analysis is a form of predictive modelling technique which inves-
tigates the relationship between a dependent (target) and independent (pre-
dictor) variables. There are various kinds of regression techniques available to
make predictions. These techniques are mostly driven by three metrics: number
of independent variables, type of dependent variables and shape of regression
line. Within multiple types of regression models, it is important to choose the
best suited technique based on type of independent and dependent variables,
dimensionality in the data and other essential characteristics of the data [11,12].

In our case, the predictors are the measurements that comprise the spectrum;
they number in the hundreds. The targets are the parameter values that we want
to predict in future samples. For this reason, we need a method which is the most
suitable to predict a set of dependent variables from a large set of independent
variables. From all possible regression analysis methods, the partial least square
(PLS) regression was choised.

PLS was developed in the 1966 by the Swedish statistician Herman Wold as
an econometric technique. Today, PLS regression most widely used in chemomet-
rics and related areas. It is also used in bioinformatics, sensometrics, neuroscience
and anthropology [13].
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The purpose of the PLS regression is to create a model capable to predict Y
(the values of T, EC, pH) from X (the results of spectrum measurements). When
Y is a vector and X is full rank, this goal could be accomplished using ordinary
multiple regression. When the number of predictors is large compared to the
number of observations, X is likely to be singular and the regression approach
is no longer feasible (i.e., because of multicollinearity) [14].

The PLS model combines multiple regression and principal component anal-
ysis (PCA). However, unlike PCA regression, where the latent factors maximize
the variance of the covariates, PLS regression searches for a set of components
that performs a simultaneous decomposition of X and Y with the constraint that
these components explain as much as possible of the covariance between X and
Y. Such set of components is called latent vectors [15].

In this work, a normal PLS regression model was created. As in multiple
linear regression, PLS regression is based on the linear model:

Y = Xβ + ε (1)

where, Y - vector of responses (the values of T, EC, pH);
X - matrix of covariates (the values of spectra);
β - vector of regression coefficients;
ε - vector of model errors.

5 Results

During preprocessing, we calculated the medians between three repetitions for
each sample (Fig. 5). This was done to avoid operator error.

Before using MVA data were standardized. The PLS regression method,
which was used for data analysis, rebuilds our data into a multidimensional
space consisting of the principal components.

Fig. 5. The difference in spectra measurements for the water sample with the same
attributes between three repetitions
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Fig. 6. Graph of data variance versus principal components. The value X indicates the
number of principal components, the value Y indicates how many of all possible events
describes a set of principal components.

As can be seen from the Fig. 6, the one-dimensional space (consisting of
1 principal component) describes 56% of the data variance, two-dimensional -
88%. To reach the 95%, it is enough to use 7 principal components. This means
that to create a dependency model, it will be sufficient to use only 7 principal
components out of 88.

Not all of the measured spectral characteristics are necessary to predict the
values of the parameters. To speed up the response of the model, it is necessary
to leave a minimum set of important parameters. Figure 7 shows the load (how
important) of the different bands of the spectrum among all measured.

As a result, a model was created that should predict the values of parameters
based on the spectral characteristics of water samples. As can be seen from the
Fig. 8, the deviation is very small and does not exceed the value 4 * 10−8.



Dependency Model for Visible Aquaphotomics 113

Fig. 7. Loadings of the spectrum bars. The X axis shows the indices of spectral mea-
surements from 1 to 648 (36 bars for each measured spectrum * 18 color etalons). The
Y axis represents the importance (load) of these values.

Fig. 8. Residuals of the results predicted by the regression model from the real

6 Conclusion and Discussion

At this stage, was created a regression model with excellent training results.
Fitting showed that dependence of the spectral characteristics of water on tested
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parameters can be modeled by linear combinations of the spectral values. To
expand this research to a full-fledged method, it is necessary to improve the
system capability for correct and stable prediction of the water parameter values
based on spectral measurements. For this purpose, more in-depth analysis of the
statistical data is required.

The initial model uses huge amount of spectral variables with different level of
significancy (as it is clear from the Fig. 7). To decrease problem dimensionality
it is necessary to properly chose not only the principal components, but also
spectral variables. In other words, we need to remove non-significant bars from
the spectra measurements. This will not only increase the speed of the model,
but also remove the distorting effect of uninformative values.

The residual analysis of the regression model promises strong dependency
between the spectral variables and water parameters. Therefore, the subsequent
predictive model should be feasible after intensive loadings analysis.
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Abstract. The paper deal with the individual fish identification of the same
species based on digital image of the fish. The proof of concept of image based
individual identification is introduced on the small group fish. The method is
completely noninvasive and can overcome the disadvantages of standard inva-
sive identification such as tagging. The experiments proved the hypothesis that
the visible patterns on Sumatra Barb (Puntigrus tetrazona) body can be used for
individual identification. In the first step, the database of 43 fish (was created by
the taking of the images of fish in different pose. Images were taken in an
aquarium with a water. After data collection, data was processed by the image
processing methods to determine the features. The simple nearest neighbor
classification was used to test individual identification. The accuracy of classi-
fication was 100%. The method proved the hypothesis that the visible pattern on
Sumatra Barb can be used for fully automated individual fish identification. It
can be substituted current practice of fish identification based on tagging and
marking. The long-term stability of the pattern and the classification power for
large fish group should be studied in the future.

Keywords: Individual identification � Classification � Image processing �
Machine vision � Fish biometric � Fish tagging

1 Introduction

Nowadays the role of aquaculture in the world is significant. The growing population
lead to rising of food production. According to FAO (2018), production of all aquatic
organisms in the world grow fast and this trend will not decline. Fish behavior mon-
itoring can give an important information in the field of fish nutrition, welfare, health
condition and environmental interaction with aquaculture system. All this measurement
can be done with using Machine Vision Systems (MVS) (Saberioon et al. 2017). Today
MVSs, becoming cheaper, more comfortable for untrained users and less stressful to
fish and even more accurate alternative in comparison with traditional methods (Del-
court et al. 2012). It is therefore important that the industry aspires to monitor and
control the effects of these challenges to avoid also upscaling potential problems when
upscaling production.
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The fish identification is very important in many fields of aquaculture and is one of
the cornerstones in the precise aquaculture. Precision Fish Farming (PFF) (Fore et al.
2017) concept whose aim is to apply control-engineering principles to fish production,
thereby improving the farmer’s ability to monitor, control and document biological
processes in fish farms. The standard procedure of fish individual identification is fish
tagging, which is invasive and has several limitations (Cousin et al. 2012)

The main aim of the study is the prove the concept that the visible features on a
Sumatra barb (Puntigrus tetrazona) body (in our case it is vertical black stripes on a
body) can be used for automatized identification of individuals. Fish identification of
individual fish of the same species done by human experts from the images of the skin
pattern was proved by Hirsch (Hirsch and Eckmann 2015). The study proved the
hypothesis that the skin pattern can be used to distinguish the individual fish of the
same species and that the pattern can be automatically determined, converted to the
features describing the fish and used for classification.

2 Materials and Methods

Sumatra barb small ornamental fish was used in this study. The fish was bought in the
local pet shop and kept for one month in the aquarium for acclimatization. The fish was
chosen for the study because of unique black vertical stripes on their body. These
patterns can be used as visible features for individual identification of commercial
important fish with this kind of patterns, for example pike-perch Sander lucioperca and
European perch Perca fluviatilis.

The digital camera (Camera Nikon D90), with controlled lighting, the background
and the fish position, was used for data collection. Fixed background and lighting
simplify the segmentation task. Data were collected under different angle and position.
Images were taken from one side view of all fish. The data were collected from fish
inside the aquarium to simulate the real conditions of fish cultivation (43 fish indi-
viduals). Four images of each individual were taken.

Data processing procedure consists of standard image segmentation based on the
know model of background, object detection, filtration and parametrization. To be able

Fig. 1. Data collection design (A) picture of the fish inside aquarium (B), segmented fish with
the region used for fish pattern parametrization (C)
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to perform object classification we have to describe the object by the specific features
of it. This process is called parametrization (Šajn and Kononenko (2008)). In our study
the parametrization was based on grayscale image of the part of the fish body con-
taining the pattern, see Fig. 1c. First the specific subpart of the fish body was localized
based on the fish length and fish height. The selected region was transformed into
grayscale and used as parametrization.

The fish database for identification (reference set) was constructed from the two
images of each fish. Two images of the fish were taken as a reference set and two
images as a test set. The identification was then tested on these two datasets (total
number of images from two datasets is 86 images).

The classification was based on the simple nearest neighbor classifier where the
measure of the similarity was based on the cross-correlation function of the two
images: two template images of the fish and unknown image of the fish. The method of
template matching was used to get the best math between the images and the similarity
was used to select the best fit to one of the 43 classes.

3 Results and Discussion

The first step of the identification was the image processing. The image processing,
consisting of fish object detection, did not negatively influence the result of the iden-
tification. The use of standardized background and illumination enables to easily detect
the fish in the image and do the parametrization. The only problem of the semi-
transparency of the fish tail was solved by removing the tail part from the fish object.
Therefore, there was no error in the detection and parametrization step. The identifi-
cation of individuals was demonstrated as the classification of the unknow fish into one
of 43 classes which correspond to the 43 individual images of the fish (2 images per
class). The overall accuracy of classification based on the selected part of fish body was
100%. The classification accuracy clearly show that the fish pattern is unique to dis-
tinguish between 43 individuals of the same species. The small-scale research studies
usually use comparable number of fish; therefore, the method is promising to substitute
conventional procedure of fish identification (e.g. tagging or marking). The restriction
in the data collection (illumination, background) does not allow to generalize the results
to the real conditions. To fully automatize the identification based on the visible pattern
more fish should be involved in the study and the data should be collected under the
real conditions of the experimental studies or fish cultivation.

4 Conclusion

This study successfully shows that fish individuals of the same species can be auto-
matically identified based on the visible pattern on the body and using computer vision.
The overall classification accuracy was 100%. The visible patterns, in our case it is
vertical stripes, can be used for identification of Sumatra Barb (Puntigrus tetrazona) in
the group of 43 individuals. However, this is not just limited to Sumatra Barb. The
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approach can be applied to any fish species with visible pattern on the body (stripes or
dots). The approach could be beneficial mainly for commercial fish species.
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Abstract. Unbalanced translocations take place when two unequal chro-
mosome sub-sequences swap, resulting in an altered genetic sequence.
Such large-scale gene modification are among the most frequent chro-
mosomal alterations, accounted for 30% of all losses of heterozygosity.
However, despite of their central role in genomic sequence analysis, little
attention has been devoted to the problem of aligning sequences allowing
for this kind of modification.

In this paper we investigate the sequence alignment problem when the
edit operations are non-overlapping unbalanced translocations of adja-
cent factors.

Specifically, we present an alignment algorithm for the problem work-
ing in O(m3)-time and O(m3)-space, where m is the length of the
involved sequences. To the best of our knowledge this is the first solution
in literature for the alignment problem allowing for unbalanced translo-
cations of factors.

Keywords: Sequence alignment · Unbalanced translocations ·
dna sequence analysis · Text processing

1 Introduction

Retrieving information and teasing out the meaning of biological sequences are
central problems in modern biology. Generally, basic biological information is
stored in strings of nucleic acids (dna, rna) or amino acids (proteins).

In recent years, much work has been devoted to the development of efficient
methods for aligning strings and, despite sequence alignment seems to be a well-
understood problem (especially in the edit-distance model), the same cannot be
said for the approximate string matching problem on biological sequences.

String alignment and approximate string matching are two fundamental
problems in text processing. Given two input sequences x, of length m, and y,
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of length n, the string alignment problem consists in finding a set of edit oper-
ations able to transform x in y, while the approximate string matching problem
consists in finding all approximate matches of x in y. The closeness of a match
is measured in terms of the sum of the costs of the elementary edit operations
necessary to convert the string into an exact match.

Most biological string matching methods are based on the Levenshtein dis-
tance [11], commonly referred to just as edit distance, or on the Damerau dis-
tance [8], which assume that changes between strings occur locally, i.e., only
a small portion of the string is involved in the mutation event. However, evi-
dence shows that in some cases large scale changes are possible [6,7,16] and
that such mutations are crucial in dna since they often cause genetic diseases
[10,14]. For example, large pieces of dna can be moved from one location to
another (translocations) [6,13,17,18], or replaced by their reversed complements
(inversions) [1–4].

Translocations can be balanced (when equal length pieces are swapped) or
unbalanced (when pieces with different lengths are moved). Interestingly, unbal-
anced translocations are a relatively common type of mutation and a major
contributor to neurodevelopmental disorders [18]. In addition, cytogenetic stud-
ies have also indicated that unbalanced translocations can be found in human
genome with a de novo frequency of 1 in 2000 [17] and that it is a frequent
chromosome alteration in a variety of human cancers [13]. Hence the need for
practical and efficient methods for detecting and locating such kind of large scale
mutations in biological sequences.

In the last three decades much work has been made for the alignment and
matching problem allowing for chromosomal alteration, especially for non over-
lapping inversions. Concerning the alignment problem with inversions, a first
solution based on dynamic programming, was proposed by Schöniger and Water-
man [15], which runs in O(n2m2)-time and O(n2m2)-space on input sequences
of length n and m. Several other papers have been devoted to the alignment
problem with inversions. The best solution is due to Vellozo et al. [16], who
proposed a O(nm2)-time and O(nm)-space algorithm, within the more general
framework of an edit graph.

Regarding the alignment problem with translocations, Cho et al. [6] presented
a first solution for the case of inversions and translocations of equal length fac-
tors (i.e., balanced translocations), working in O(m3)-time and O(m2)-space.
However their solution generalizes the problem to the case where edit operations
can occur on both strings and assume that the input sequences have the same
length, namely |x| = |y| = m.

In this paper we investigate the alignment problem under a string distance
whose edit operations are non-overlapping unbalanced translocations of adja-
cent factors. To the best of our knowledge, this slightly more general problem
has never been addressed in the context of alignment on biological sequences.
A related result has been very recently introduced by Cantone et al. [5] who
presented a O(nm3)-time and O(m2)-space algorithm for the approximate
string matching problem with unbalanced translocations based on the dynamic-
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programming approach, where n is the length of the text and m is the length
of the pattern. They also improved their solution by making use of the Directed
Acyclic Word Graph of the pattern achieving a O(n log2 m) average time com-
plexity still maintaining the same worst case time complexity.

In this paper we present an alignment algorithm for the same problem work-
ing in O(m3) worst case time and O(m3)-space. Given two input equal length
sequences x and y, our algorithm is able to establish if x can be transformed in
y by way of unbalanced translocations of adjacent factors.

The rest of the paper is organized as follows. In Sect. 2 we introduce some
preliminary notions and definitions. Subsequently, in Sect. 3 we present our align-
ment algorithm running in O(m3)-time, discussing its worst case time complex-
ity. Finally draw our conclusions in Sect. 4.

2 Basic Notions and Definitions

A string x of length m ≥ 0, over an alphabet Σ, is represented as a finite array
x[1 ..m] of elements of Σ. We write |x| = m to indicate its length. In particular,
when m = 0 we have the empty string ε. We denote by x[i] the i-th character
of x, for 1 ≤ i ≤ m. Likewise, the substring of x factor, contained between the
i-th and the j-th characters of x is indicated with x[i .. j], for 1 ≤ i ≤ j ≤ m.
We assume that x[i .. j] = ε when x > y.

A string w ∈ Σ∗ is a suffix of x (in symbols, w � x) if w = x[i ..m], for
some 1 ≤ i ≤ m. Similarly, we say that w is a prefix of x (in symbols, w � x) if
w = x[1 .. i], for some 1 ≤ i ≤ m. Additionally, we use the symbol xi to denote
the prefix of x of length i (i.e., xi = x[1 .. i]), for 1 ≤ i ≤ m, and make the
convention that x0 denotes the empty string ε. In addition, we write x.w for the
concatenation of the strings x and w.

A string w is a border of x if both w � x and w � x hold. The set of the
borders of x is denoted by borders(p). For instance, given the string x = atacgata,
we have that at � p, gata � p, while ata is a border of x. Moreover we have
borders(p) = {a, ata}.

The border set of a string x of length m can be efficiently computed in
O(m)-time by using the border-table of x, introduced for the first time in the
well known Morris-Pratt algorithm [9,12]. Formally the border table of x is a
function π : {1, . . . , m} → {0, 1, . . . ,m − 1} such that π(i) is the length of the
longest proper prefix of x[1..i] that is also a suffix of x[1..i].

A distance d : Σ∗ × Σ∗ → R is a function which associates to any pair of
strings x and y the minimal cost of any finite sequence of edit operations which
transforms x into y, if such a sequence exists, ∞ otherwise.

In this paper we consider the unbalanced translocation distance, utd(x, y),
whose unique edit operation is the translocation of two adjacent factors of the
string, with possibly different lengths. Specifically, in an unbalanced translocation
a factor of the form zw is transformed into wz, provided that both |z|, |w| > 0
(it is not necessary that |z| = |w|). We assign a unit cost to each translocation.
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Example 1. Let x = gtgaccgtccag and y = ggatcccagcgt be given two strings of
length 12. Then utd(x, y) = 2 since x can be transformed into y by translocating
the substrings x[3..4] = ga and x[2..2] = t, and translocating the substrings
x[6..8] = cgt and x[9..12] = ccag.

When utd(x, y) < ∞, we say that x and y have utd-match. If x has utd-match

with a suffix of y, we write x
utd� y.

3 A New utd-Alignment Algorithm

In this section we present a new solution for the string alignment problem
allowing for unbalanced translocations of adjacent factors. In the next sections
we start by describing the algorithm, named Unbalanced-Translocations-

Align (shown in Fig. 2), used for checking whenever an alignment exists between
two equal length strings x and y.

The corresponding approximate string matching algorithm allowing for
unbalanced translocations of adjacent factors can be trivially obtained by iter-
ating the given procedure for all possible subsequences of the text of length |x|.

Our alignment algorithm is composed by a preprocessing and searching
phase, which we describe in Sect. 3.1 and in Sect. 3.2, respectively. Then, in
Sect. 3.3, we prove the correctness of the algorithm and discuss its worst case
time complexity.

3.1 The Preprocessing Phase

During the preprocessing phase of procedure Unbalanced-Translocations-

Align three functions are computed, in the form of tables, which will be then
used during the alignment process.

We first define the next position function μx : Σ × {1, . . . , m} → {2, . . . , m},
associated to a given pattern x of length m, as the function which returns the
next position (to a given input position i) where a given character c ∈ Σ occurs.
Specifically μx(c, i) is defined as the position j > i in the pattern such that
x[j] = c. If such a position does not exist then we set μ(c.i) = m + 1. More
formally

μx(c, i) := min
(
{j | 1 ≤ i < j ≤ m and x[j] = c} ∪ {m + 1}

)

The next position function μx can be precomputed and maintained in a table of
size m × σ in O(mσ + m2) time by using procedure Compute-Next-Position

depicted in Fig. 1 (on the left).

Example 2. Let x = gtgtaccgtgt be a string of length m = 11. We have μx(g, 1) =
3, μx(g, 4) = μx(g, 5) = 8, μx(g, 8) = 10, while μx(g, 10) = 12.
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Fig. 1. Procedure Compute-Next-Position (on the left) for computing the next posi-
tion function μx which returns the next position (to a given input position i) where
a given character c ∈ Σ occurs in x; and procedure Compute-Border-Set (on the
right) for computing the border set function ψx as the set of the lengths of all borders
of a given string x.

We also define the border set function ψx of a given string x as the set of the
lengths of all borders of x. Specifically we define ψx(i, j), for each 1 ≤ i < j ≤ m,
as the set of the lengths of all borders of the string x[i..j], so that k ∈ ψx(i, j) if
and only if the string x[i..j] has a border of length k. Formally we have

ψx(i, j) := {k | 0 < k < j − i and x[i..i + k − 1] = x[j − k + 1..j]}

Example 3. Let x = gtgtaccgtgt be a string of length m = 11. We have

ψx(1, 11) = {2, 4, 11}, since the set of borders of gtgtaccgtgt is {gt, gtgt, gtgtaccgtgt};
ψx(1, 4) = {2, 4}, since the set of borders of gtgt is{gt, gtgt};
ψx(4, 9) = {1, 6}, since the set of borders of taccgt is{t, taccgt};
ψx(5, 7) = {3} since the set of borders of acc is{acc}.

For each i, j with 1 ≤ i ≤ j ≤ m, we can represent the set ψx(i, j) by using a
vector of (j − i+1) boolean values such that its k-th entry is set iff k ∈ ψx(i, j).
More formally the function ψx can be maintained using a tridimensional bit-table
Ψx, which we call border set table of x, defined as

Ψx[i, j, k] :=
{

1 if x[i..i + k − 1] = x[j − k + 1..j]
0 otherwise

for 1 ≤ i < j ≤ m and k < j − i.
The border set table Ψx can be computed in O(m3)-time and space by using

procedure Compute-Border-Set-Function depicted in Fig. 1 (on the right),
where Compute-Border-Table is the O(m) function used in the Knuth-
Morris-Pratt algorithm [9].

Observe that using Ψx we can answer in costant-time to queries of the the
type “is k the length of a border of the substring x[i..j]?”, which translates to
evaluate if Ψ [i, j, k] is set.
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In addition we define the shortest border function of a string x, as the func-
tion δx : {1, . . . , m} × {1, . . . , m} → {1, . . . , m} which associates any nonempty
substring of x to the length of its shortest border. Specifically we set δx(i, j) to
be the length of the shortest border of the string x[i . . . j], for 1 ≤ i < j ≤ m.
More formally we have

δx(i, j) := min{k | 0 ≤ k < j − i and x[i..i + k − 1] = x[j − k + 1..j]} = min(ψ(i, j))

It is trivial to observe that, if we already computed the border set function
ψx, for the pattern x, the shortest border function δx of x can be computed in
O(m3)-time using O(m2) space.

Example 4. Let x = gtgtaccgtgt be a string of length m = 11. According to
Example 3, we have

δx(1, 11) = 2, since gt is the shortest nonempty border of gtgtaccgtgt;
δx(1, 4) = 2, since gt is the shortest nonempty border of gtgt;
δx(4, 9) = 1, since t is the shortest nonempty border of taccgt;
δx(5, 7) = 3 since acc is the shortest nonempty border of acc.

In what follows we will use the symbols μ, ψ and δ, in place of μx, ψx and
δx, respectively, when the reference to x is clear from the context.

3.2 The Searching Phase

The proposed alignment procedure finds a possible utd-match between
two equal length strings. The pseudocode of our algorithm, Unbalanced-

Translocations-Align(y,x,m), is presented in Fig. 2 and is tuned to process
two strings x and y, of length m, where translocations can take place only in x.

In order to probe the details of the alignment procedure, let x and y be two
strings of length m over the same alphabet Σ. The procedure sequentially reads
all characters of the string y, proceeding from left to right and. While scanning
it tries to evaluate all possible unbalanced translocations in x which may be
involved in the alignment between the two strings.

We define a translocation attempt at position i of y, for 1 ≤ i ≤ m, as a
quadruple of indexes, (s1, k1, s2, k2), with all elements in {0, 1, 2, . . . ,m}∪{null}
and where, referring to the string x, s1 and k1 pinpoints the leftmost position
and the length of the first factor (the factor moved on the left), while s2 and k2
pinpoints the leftmost position and the length of the second factor (the factor
moved on the right). In this context we refer to s1 and s2 as the key positions
of the translocation attempt. In the special case where no translocation takes
place in the attempt we assume by convention that s1 = i and s2 = k1 = k2 =
null1. During the execution of the algorithm for each translocation attempt,
(s1, k1, s2, k2), at position i, the invariant given by the following lemma2 holds.
1 We use the value null to indicate the length of an undefined string in order to

discriminate it from the length of an empty string whose value is 0 by definition.
2 In this context we assume that s + null = s, for any s.
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Fig. 2. The pseudocode of the Unbalanced-Translocations-Align(y,x,m) for the
sequence alignment problem allowing for unbalanced translocations of adjacent factors.

Lemma 1. Let y and x be two strings of length m over the same alphabet Σ. Let
Γ (i) be the set of all translocation attempts computed by procedure Unbalanced-

Translocations-Align during the i-th iteration. If (s1, k1, s2, k2) ∈ Γ (i) then
it holds that:

(a) i = s1 + k1 + k2;
(b) xi

utd= yi;
(c) if s2 
= null then x[s1 + 1..s1 + k1] = y[s2 + 1..s2 + k1];
(d) if s2 
= null then y[s2 + 1..s2 + k2] = y[s1 + 1..s1 + k2];

��
For each 1 ≤ i ≤ m, we define Γ (i) as the set of all translocation attempts

tried for the prefix y[1..i], and set Γ (0) = {(0, null, null, null)}.
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However we can prove that it is not necessary to process all possible translo-
cation attempts. Some of them, indeed, leads to detect the same utd-matches so
that they can be skipped.

Lemma 2. Let y and x be two strings of length m over the same alphabet Σ.
Let s � y and u � x such that |s| = |x| and s

utd= u. Moreover assume that

(i) s.w.z � y and u.z.w � x
(ii) s.w′.z � y and u.z.w′ � x

with |z| > 0 and |w′| > |w| > 0. If we set i = |s.w.z| and j = |s.w′.z| then we
have x[i + 1..j] utd= y[i + 1..j]. ��

The procedure iterates on the values of i, for 1 ≤ i ≤ m, while scanning
the characters of y, and during the i-th iteration it computes the set Γ (i) from
Γ (i−1). For each translocation attempt (s1, k1, s2, k2) ∈ Γ (i−1) we distinguish
the following three cases (depicted in Fig. 3):

– Case 1 (s2 = k1 = k2 = null)
This is the case where no unbalanced translocation is taking place (line 5).
Thus we simply know that xi−1

utd= yi−1. If x[i] = y[i] the match is extended
of one character by adding the attempt (s1 + 1, null, null, null) to Γ i (line 7).
Alternatively, when possible, new translocation attempts are started (lines
9–12). Specifically for each occurrence of the character y[i] in x, at a position
r next to s1, a new right factor ur is attempted starting at position r (line
10) by extending Γ (i) with the attempt (s1, 0, r − 1, 1).

– Case 2 (k1 = 0 and k2 > 0)
This is the case where an unbalanced translocation is taking place and the
right factor ur is currently going to be recognized (line 14). Specifically we
know that x[s2+1..s2+k2] = y[i−k2..i−1] and that x[1..s1]

utd= y[1..i−k2−1].
If x[s2 +k2 +1] = y[i] the right factor ur can be extended of one character to
the right, thus Γ i is extended by adding the attempt (s1, k1, s2, k2 + 1) (line
16). Otherwise, if x[s2 +k2 +1] 
= y[i], the right factor ur cannot be extended
further, thus we start recognizing the left factor u�. Specifically, in this last
case, we update k1 to 0 (line 17) and move to the following Case 3.

– Case 3 (k1 ≥ 0)
This is the case where an unbalanced translocation is taking place, the right
factor ur has been already recognized and we are attempting to recognize the
left factor u�. Specifically we know that x[s1 + 1..s1 + k1] = y[i − k1..i − 1],
x[s2+1..s2+k2] = y[i−k1−k2..i−k1−1] and that x[1..s1]

utd= y[1..i−k1−k2−1].
We distinguish two sub-cases:

• Case 3.a (x[s1 + k1 + 1] = y[i])
In this case the left factor u� can be extended of one character to the right
(line 24). Thus if the left factor has been completely recognized, i.e. if s1+
k1 = s2, Γ i is extended by adding the attempt (s1+k1+k2, null, null, null)
(lines 27–28) which indicates that xi

utd= yi. Otherwise Γ (i) is extended by
adding the attempt (s1, k1 + 1, s2, k2) (line 30).
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• Case 3.b (x[s1 + k1 + 1] 
= y[i])
In this case the right factor u� cannot be extended. Before quitting the
translocation attempt we try to find some new factors rearrangements on
the same key positions, s1 and s2, but with different lengths, k1 and k2.
Specifically we try to transfer a suffix w of ur to the prefix position of u�,
reducing the length k2 and extending the length k1 accordingly. This can
be done only if we find a suffix w of ur which is also a prefix of x[s1+1..s2]
and, in addition, we can move u� to the right of |w| position along the
left factor. More formally, if we assume that |w| = b we must have:
1. |w| < |ur|, or rather b < k2 (indicating that w is a proper suffix of

ur);
2. b ∈ φ(s1+1, s2+k2) (indicating that w is a border of x[s1+1..s2+k2]);
3. (k1 − s1 + 1) ∈ φ(s1 + 1, k1 + b) (indicating that u� is a border of

x[s1 + 1..s1 + k1 + |w|]);
4. s1 + k1 + |w| < s2 (indicating that the updated u� does not overflow

onto ur);
5. x[s1 + k1 + |w| + 1] = y[i] (indicating that the updated u� can be

extended by y[i]).

3.3 Worst-Case Time and Space Analysis

In this section we discuss the worst-case time and space analysis of procedure
Unbalanced-Translocations-Align presented in the previous section. In
particular, we will refer to the implementation reported in Fig. 2.

Let x and y be two nonempty strings of length m ≥ 1 over the same alpha-
bet Σ and assume to run procedure Unbalanced-Translocations-Align(y,
x, m). Regarding the space analysis, as stated in Sect. 3.1 we need O(mσ) to
maintain the next position function, O(m3) to maintain the border set function
and O(m2) to maintain the shortest border function. Thus the overall space
complexity of the algorithm is O(m3).

Regarding the time analysis, let Γ (i) be the set of all translocation attempts
computed at iteration i, for 0 ≤ i ≤ m.

First of all we observe that each Γ (i) contains at most one translocation
attempt with k2 = null (i.e. of the form (s1, null, null, null)). We put Γ (0) =
{(0, null, null, null)} (line 1), thus the statement holds for i = 0. Observe that,
if i > 0 a translocation attempt of the form (s1, null, null, null) can be added to
Γ (i) only in line 6 or in line 26. However by condition at line 25, if it is added
to Γ (i) in line 6, it cannot be added again in line 26.

We now prove that the total number of translocation attempts processed
during the execution of the algorithm is bounded by m2. More formally we have

m∑
i=0

|Γ (i)| ≤ m3. (1)
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Fig. 3. Three cases of procedure Unbalanced-Translocations-Align(y, x, m)

while processing the translocation attempt (s1, k1, s2, k2) ∈ Γ (i−1) in order to extend it
by charcater y[i]. Character y[i] and its counterpart in x are depicted by a bullet sym-

bol. Case (1): xi−1
utd
= yi−1 and x[i] = y[i], then the match is extended of one character;

Case (2): the right factor ur is currently going to be recognized and x[s2+k2+1] = y[i],
then the right factor ur can be extended of one character; Case (3.a): the left factor u�

can be extended of one character to the right; Case (3.b): the right factor u� cannot be
extended, then we try to transfer a suffix w of ur to the prefix position of u�, reducing
the length k2 and extending the length k1 accordingly (w is a suffix of ur and also a
prefix of x[s1 +1..s2] and, in addition, we can move u� to the right of |w| position along
the left factor).

To prove that Eq. (1) holds observe that new translocation attempts are added
to Γ (i) only when we are in Case 1. When we are in Case 2 or in Case 3 a
translocation attempt is simply rearranged by extending the right factor (Case
2) or the left factor (Case 3). As observed above only one translocation attempt
in Γ (i) is in Case 1 and the while cycle of line 8 can add at most m − i new
translocation attempts to Γ (i+1). In the worst case each translocation attempt
added to Γ (i+1) will be closed only at iteration m, thus it will be extended along
the sets Γ (j), for j > i. Thus the overall contribute of each translocation attempt
added to Γ i+1 is m − i.
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Thus the total number of translocation attempts processed during the exe-
cution of the algorithm is bounded by

m∑
i=0

|Γ (i)| ≤ 1 +
∑m

i=1(m − i)2

= 1 +
m∑

i=1

m2 −
m∑

i=1

2im +
m∑

i=1

i2

= 1 + m3 +
m(m + 1)(2m + 1)

6
− m(m + 1)

2
=

1
3
m3 − 1

2
m2 +

1
3

≤ m3

Finally we observe that each translocation attempt in Case 2 and Case 3.a
is processed in constant time, during the execution of procedure Unbalanced-

Translocations-Align. A translocation attempt in Case 1 my be processed
in O(m − i) worst case time. However the overall contribution of the while cycle
at line 9 is at most O(m2) since, as observer above, there is a single translocation
attempt in Case 1 for each Γ (i).

For a translocation attempt in Case 3, observe that at each execution of line
19 the value of b is increased of at most 1. Then in line 21 we decrease k2 by b.
Since the value of k2 is increased only in line 16, this implies that overall number
of times the while cycle of line 22 is executed is bounded by k2, which is at most
m. Thus the overall contribution given by the while cycle of line 19 is O(m3).

We can conclude that the overall time complexity of procedure
Unbalanced-Translocations-Align is O(m3).

4 Conclusions and Future Works

We presented a first solution for the alignment problem allowing for unbal-
anced translocations of adjacent factors working in O(m3) worst case time using
O(m3)-space. As suggested in [5], an alternative solution working in O(m3) worst
case time can be obtained for the same problem by using a standard dynamic
programming approach. However our algorithm uses a constructive approach
could be more efficient in practice and which can be easily optimized. It turns
out, indeed, by our preliminary experimental results (not included in this paper)
that our solution has a sub-quadratic behaviour in practical cases. This suggests
us to focus our future works on an accurate analysis of the algorithm’s complex-
ity in the average case.

In addition we are also planning to modify the given algorithm in order to
compute the minimum number of translocations needed to transform x in y
and an additional procedure able to retrieve the correct alignment of the two
strings. Finally, we wonder if the problem can be solved in sub-cubical worst-case
time complexity by extending the result obtained in Lemma 2 with additional
restrictions.
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Abstract. This article is pinpointing the importance of the probabilis-
tic methods for the analysis of the HPLC-MS measurement datasets in
metabolomics research. The approach presents the ability to deal with
the different noise sources and the process of the probability assignment
is demonstrated in its general form.

The illustrative examples of the probability functions and propagation
into subsequent processing and analysis steps consist of precision correc-
tion, noise probability, segmentation, spectra comparison, and biomatri-
ces effects on calibration curve estimation.

The possible advantages of probability propagation in more data han-
dling are also discussed.

Keywords: Liquid chromatography · Mass spectrometry ·
Probability · Noise · Spectra comparison · Entropy

1 Introduction

The interpretation of any measurement often tends to dichotomous decisions,
which offer simple understanding, easy overview, and rapid publication. How-
ever, the possibility of oversimplification, misunderstanding, or even misinter-
pretation, could be enormous.

In fact, this is considered as significant crisis in the natural science, affecting
both, the trust and the reproducibility [1]. As a major cause behind such abuse
is given the continuous attempts to search for deterministic description and con-
sequently, the both underestimation and overestimation of what statistic could
describe or what it is really telling.

Probably the most deterrent example is the obsession with the p-value crite-
rion [2,3], which becomes a demanded mantra, often without any justified pur-
pose. Simply, if the p-value of the null hypothesis significance testing (NHST) is
not fulfilling the 0.05 criterion, it does not necessarily means that the hypothesis
is invalid, it only means that it is not acceptable at the predesigned 5% error
probability threshold - which is completely different answer.
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Therefore, to follow strictly the p-value criterion is decreasing the research
decision accuracy. Moreover, it is not possible to consider all possible hypothesis
in the NHST. Thus, even the strong results still do not prove that the correct one
was chosen and there should always exist more appropriate but omitted models,
theories, and explanations [4–6].

Fortunately, the paradigm slowly shifts into the incorporation of the stochas-
tic point of view [7–9]. In other words, we have to accept that there is no exact
deterministic dichotomy (binary yes or not), but only weak or strong likelihood
(maybe). This becomes crucial for false negative and false positive alarms in
drug testing, metabolic pathways investigation, medical treatments, new bio-
active compounds discovery, pollution and contamination detections, etc. One
measurement, no matter how complex and precise, is telling absolutely nothing
about the general event frequency distributions in nature or the specific law
instance behind. On the other hand, the knowledge of the probabilistic density
function can not predict or fully comprehend the result of a single event.

Especially in high performance liquid chromatography and mass spectrom-
etry (HPLS-MS), it is an unpleasant practice, that one of three repetitions is
completely different in some point. Even the perfectioned repetitions are never
equal, just congruent.

The stochastic behavior of the nature has to be accepted, studied, and always
taken into the account. Since the apriori probabilities are usually unknown or
roughly estimated, the confidences in the measurements are acquired by apos-
teriori (Bayesian) probabilities. As will be shown in this article, the confidence
values could be used in many subsequent analysis as an additional but signifi-
cantly relevant parameter [9–11] to improve the accuracy and precision of the
data processing steps, and increase the robustness of the obtained knowledge.

2 Data Acqusition and Precision

It was reported, that precision in value of the measured data is depending on
the file format, binary depth, and coding method [12]. Such dependency could
cause difficulties with oversegmentation, and therefore mass peak detection and
centroid computation. To detect and improve the false precision, it is powerful
yet simple the method of relative entropy (Fig. 1):

e(d) =
∑

d

pdlog2p(d), (1)

re = e(d) × kd (2)

where re is relative entropy, e(d) is entropy of dth binning, kd is length of the
bin in dth binning, p(d) is probability over dth binning, and d is index of binning
iteration. The oversegmented mass peaks are improved for the further analysis
[12,13].



134 J. Urban

Fig. 1. Example of file format dependency on the peak shape. Left raw data, right
relative entropy correction.

3 Probability of the Noise

Generaly, dataset structure of the HPLC-MC measurement consist of three
dimensional discrete points defined by axis of retention time (rt), molecular
mass (mz) and intensity (counts). Mathematically was the process described as
the mapping process from the rt and mz sets into the count set:

y : T × M → ∪t∈T,m∈M |y(t,m) ∈ I, I = 0, 1, ..., imax, (3)

where I is the indexing set (of natural numbers and zero). The value of mapping
y(t,m) ∈ I means intensity molecular mass m ∈ M in retention time t ∈ T [9].

Two basic principals of error occurrence are taken into account. The baseline
presence could be considered as a special type of systematic noise (q(t,m)),
produced by presence of mobile phase and solvents impurities. The random noise
(r(t,m)) includes all unwanted sources of transient disturbances, mostly during
MS ionization process.

The baseline and ionization influences are always presented, even if they are
delimited. Both of them affect the signal transparency and could be also formally
described as mappings:

q : T × M → ∪t∈T,m∈M |q(t,m) ∈ I, I = 0, 1, ..., imax, (4)

r : T × M → ∪t∈T,m∈M |r(t,m) ∈ I, I = 0, 1, ..., imax. (5)

Thus the relation between measured signal y(t,m), real analyte signal s(t,m)
and noises is in ideal case as follows

y(t,m) = s(t,m) + q(t,m) + r(t,m). (6)

The obvious object object of interest is the aposteriori description of s(t,m)
to reduce influence of presented noises, which can produce false peak or hide
analytes signal under reasonable level. Exact contributions are apriori unknown
because of the stochastic characteristics. However, the aposteriori estimation is
possible:

s̃(t,m) = y(t,m) − q̃(t,m) − r̃(t,m). (7)
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Fig. 2. Example of the dataset decomposition, removal of the random noise, blue curve
is for measured Total Ion Current Chromatogram (centroids), green curve for the signal
without random noise (so it is the analyte signal + baseline), and red for random noise.
Evaluation performed by Expertomica metabolite profiling Hi-Res, www.expertomica.
eu. (Color figure online)

Instead of direct value estimation of the analyte intensity s̃(t,m), it is more
appropriate to evaluate probability (confidence, significance) factor p(t,m) that
the measurement data output y(t,m) is the analyte signal s̃(t,m), probability
pr(t,m) that the measurement data output y(t,m) is not produced by random
noise r(t,m), the probability pr(t,m) that the measurement data output y(t,m)
is not produced by random noise r(t,m), the probability pq(t,m) that the mea-
surement data output y(t,m) is not produced by systematic noise q(t,m), and
final probaility p(t,m) repectively:

p(t,m) = p [y(t,m) = s(t,m)|λq, λr] , (8)
pr(t,m) = p [y(t,m) = s(t,m) + q(t,m)|λr] . (9)
pq(t,m) = p [y(t,m) = s(t,m) + r(t,m)|λq] , (10)
p(t,m) = pr(t,m) ∗ pq(t,m). (11)

where λx are estimated characteristic of mappings.
Random noise is considered any unwanted influence during the measuring

process witch causes inequality of measured data output y(t,m) to analyte inten-
sity s(t,m). There are many sources from small substances eluted from stationary
phase in HPLC column, through ionization disturbances, to short term fluctua-
tions in signal intensity on MS detector [14].

Range of detectable molecular mass is wide by 5–6 orders in typical mass
spectrum. It is advisable to reduce the intensity range by a compression function,
like logarithm [15] in probability computation (Fig. 3):

www.expertomica.eu
www.expertomica.eu
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Fig. 3. Example of the dataset decomposition, removal of the systemic noise (mobile
phase, baseline), blue curve for signal without random noise (the green one in Fig. 2,
green curve for signal without noise contribution (it is blue signal without baseline,
therefore signal without both noises, random and systemic), and red curve for baseline.
Evaluation performed by Expertomica metabolite profiling Hi-Res, www.expertomica.
eu. (Color figure online)

ly(m) = ln [y(m)] . (12)

pr(m) =
p [ly(m)|λls+lq] p(s + q)

p [ly(m)|λlr] p(r) + p [ly(m)|λls+lq] p(s + q)
. (13)

μr [lr(m) + ls(m)] ∼= μ [lr(m)] . (14)

where mean value is μr and standard deviation σr. In analogy, the mobile phase
contribution:

ly(t) = ln [y(t)] , (15)

pq(t) =
p [ly(t)|λls+lr] p(s + r)

p [ly(t)|λlq] p(q) + p [ly(t)|λls+lr] p(s + r)
. (16)

Those λ characteristics are a priory unknown and are usually detector type
dependent (Gaussian, Lorentzian, Trapezoid, Sync, ... [16]). Proper dataset cen-
troidization is required [16].

4 Generalization of the Signal to Noise Probability

The approach of the probability estimation and subsequent filtration could be
generally adopted to many bioinformatic signals, like two-dimensional gel elec-
trophoresis (2DE), where proteins are separated by the isoelectric focusing and

www.expertomica.eu
www.expertomica.eu
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molecular weight, using SDS-PAGE for visualization. The representation of the
gel information is affected by position uncertainity, inconsistent backgrounds,
shifts in both dimensions, and non-linear responses in staining (Fig. 4).

Fig. 4. Example of proteomics 2D gel probalistic analysis. Left: Captured image. Right:
Probabilities after filtration process

The 2DE gel could be considered again as 2D mapping generated as intensity
(greyscale) image. The partitioning of the data into background/signal contri-
butions could be carried out using previous probabilistic approach. The pro-
tein signal is then just a disturbance in the noise probability density function
(PDF). The probabilistic approach does not require any supervised parametriza-
tion, therefore it is resistant to over-segmentation as well as eliminating blurring
effects [13].

5 Spectra Comparison

The estimated probability p(t,m) for all y(t,m) is the only one parameter to
characterize quality of the measurement. Illustrative example of the probabilistic
p(t,m) information is a simple correlation between independent measured spec-
tra of known known antifungal drug Nystatin (C47H75NO17, mol. mass 926.09
[m/z]):

– Pure analyte in concentration 0.5 mg/ml as Reference.
– Pure analyte in concentration 0.5µg/ml as Pure.
– Mixture of analyte in concentration 0.05 mg/ml and addition of 70% MetOH

extract from cyanobacteria Nostoc sp, as Mix.

The correlation criterion was used to show the compared differences:

R(Y1, Y2) =
C(Y1, Y2)√

C(Y1, Y1)C(Y2, Y2)
, (17)

C(Y1, Y2) =
1

M − 1

M∑

m=1

[y1(m) − μ1][y2(m) − μ2]. (18)
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where Y1 is Reference spectrum, Y2 is probabilistically filtered spectrum, y1(m)
and y2(m) are molecular mass of spectra Y1 and Y2, respectively. μ1 and μ2 are
average values of spectra intensities.

The example shows correlation criteria for unfiltered data and principle of
using probabilistic approach. The information about p(t,m) is directly used dur-
ing the correlation evaluation (Fig. 5 and Table 1):

Fig. 5. Tic chromatograms of Nystatin

Table 1. Spectra correlation of Pure and Mix with Reference

R(Y1, Y2) Pure Mix

Unfiltered 98.37% 59.03%

Prob.Corr. 99.67% 95.93%

Rp(Y1, Y2, P ) =
Cp(Y1, Y2, P )√

Cp(Y1, Y1, P )Cp(Y2, Y2, P )
, (19)

Cp(Y1, Y2, P ) =
1

M − 1

∑M
m=1 p(m)[y1(m) − μ1][y2(m) − μ2]∑M

m=1 p(m)
. (20)

where P is p(t,m) in retention time t and Cp(Y1, Y2, P ) is weighted covari-
ance [17].

6 Estimation of Biomatrix Effect

In order to compare chromatographic methods, it is useful to estimate the
response of the given analyte in different biological matrixes. For example in the
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search for MCYST-LR heptapeptide with a molecular weight of 994.5 Da that is
produced by different cyanobacterial taxa e.g., Microcystis, Nostoc, Anabaena,
etc. It was proven that MCYST-LR causes hepatosis via the inhibition of pro-
tein phosphatases in the liver cells of mammals including humans. Moreover, the
stability of microcystin implies that it can accumulate in high concentrations in
fish organs [6]. Therefore, it is important to search for the analyte in different
extracts and determine/estimate the calibration curves.

Fig. 6. Calibration curves of the MCYST-LR molecular ion with cleavage of the Adda
moiety in MeOH and the estimated calibration curves in food additives matrices (shy-
drolyzate and Stigeoclonium extract). From top to bottom: the estimated calibra-
tion curve in salmon hydrolyzate and the estimated calibration curve in Stigeoclonium
extract. The blue stars represent the measured calibration curve of the MCYST-LR
molecular ion with cleavage of the Adda moiety in MeOH. The red circles represent
the measured calibration curve of the MCYST-LR molecular ion with cleavage of the
Adda moiety in a given food additive matrix. The green lines represent the estimated
calibration curve of the MCYST-LR molecular ion with cleavage of the Adda moiety
in a given food additive matrix. (Color figure online)

The calibration curves for MCYST-LR were constructed from the analysis
of 10 MCYST-LR concentration measurements in repetitions, pure MCYST-LR
standard (Sigma No. 33893), food additive filamentous green algae Stigeoclonium
sp. and salmon meat hydrolyzate. To estimate the effect of the different biological
matrices, the pure calibration curve (concentration/signal), and blank matrices
were used. The statistical attributes of the target analyte mass are obtained
from the blank measurements and hypothetical linear responsivity function:



140 J. Urban

Y 1 = s1 ∗ c + o1, (21)
X = R1 ∗ (s1 ∗ c + o1), (22)

Y 2 = (s1 ∗ c + o1) ∗ R1
R2

, (23)

Y 2 = (s1 ∗ c + o1 + CRO2 − CRO1) ∗ R1
R2

, (24)

Y 2 = s2 ∗ c + o2, (25)
s2 = s1 ∗ (R1/R2), (26)

o2 = (o1 + CRO2 − CRO1) ∗ R1
R2

, (27)

where s1 is the responsivity slope in matrix B1 and o1 is the responsivity offset
in matrix B1, s2 is the responsivity slope in matrix B2, o2 is the responsivity
offset in matrix B2. All values, as well as the estimation of calibration curve Y2,
have to be computed independently for all target m/z values (Fig. 6).

7 Conclusion and Discussion

As was presented, the simple additional information to the measurement, the
probability, is strongly affecting the subsequent analysis of the HPLC-MS
dataset.

The illustrative examples showed that it decrease the difficulties of spec-
tra comparison in the presence of heavy baseline background or noise level.
This is important especially in the metabolomic screening, where new and apri-
ori unknown bioactive compounds are searched. The probabilistic approach for
comparison, once implemented, could significantly increase the search within the
databases, even if the purity of the measurements is not ideal.

The filtration and the comparison [9,18,19] are not the only applications
of the probability values in metabolomics, these are rather the basic kinds of
direct usage. The additional topics cover more advanced tasks, including the
time alignment algorithms [20], resolution, accuracy, and precision analysis [12,
13,16], concentration response dependencies on biological matrices [6], or peak
decomposition [9,10].

Unfortunately, characterization of the probability distribution functions of
different noise sources is not a trivial task, and all performed computations are
still the estimations. It is necessary to understand, that no measurement, no
processing, and no estimation could be error free.

Therefore, there is still a demand of broad acceptance of stochastic principle
of the nature, and finally a time to discard or at least diminish the classical
dichotomous, deterministic, or binary point of view.
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Abstract. This article is summarizing the general subtask pipeline dur-
ing the processing and analysis of electron microscopy images. The
overview is going from data acquisition, through noise description, fil-
tration, segmentation, to detection. There are emphasized the differ-
ence from the expected conditions in macro-world imaging. The illus-
trative parameterization and statistical classification are explained on
the immunolabeling example.
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1 Introduction

Electron microscopy allows us to observe nanostructures within the organisms
(cellular organelles, photosystems, membranes). Examination of microsomes of
living organisms, ie functional units of biochemical and biophysical processes,
requires high quality measurements for correct understanding of function and
behavior, and understanding the structure and morphology of protein complex
subsystems or specific reactions (e.g. immunological) [1,2]. In the last decade,
microscopic methods (both optical and electron) have developed abruptly due to
breakthroughs in digital technology (sensitivity & contrast), quantum physics,
cryogenic techniques, laser-induced fluorescence and ptychography [3–8].

Electron microscopy has different properties than optical microscopy. The
difference is in the replacement of photons by electrons, and thus the limit res-
olution, which is much larger than the light microscope in the electron micro-
scope, is different, since it is proportional to the wavelength of the radiation used.
High voltage (up to 300 keV) accelerated electrons have a significantly shorter
wavelength (1.96–3.7 pm) compared to the visible light (380–780 nm). Thanks to
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higher resolving capability, it can also achieve higher effective magnification. The
maximum theoretical resolution is given by the so-called Abbe diffraction limit
[9] (for green light it is 210 nm, for 200 keV electrons it is 42 pm). Both these
theoretical limits have been virtually overcome (30 nm in optical microscopy at
2014; 39 pm in electron microscopy at 2018) [3,10]. This fundamental contradic-
tion between theory and practice evokes the necessity of fundamentally refining
the theory used, in particular, the variance and the diffraction of [11]. The reso-
lution of electron microscopes is theoretically infinite, depending on the applied
electron beam voltage. Practically, however, it is heavily limited by two factors:

– high energy deforms the sample (it becomes plastic)
– magnetic lenses suffer from aberrant defects, it is necessary to use the correc-

tors [12] for resolution below 200 pm

For calculating the resolution of electron microscopes, it is also necessary to
include relativistic effects.

2 Description of the Task and Relevant Features

The basic output of electron microscopy is typically a two-dimensional signal,
correctly referred to as a spatial variation of a sample, but more often only as a
photograph of an electron microscope. Thus, the bi-dimensionality of the signal
is the same as for a standard photograph given by the spatial coordinates x
and y (columns, rows). The signal value on the x, y co-ordinates is generated by
electron collisions on a fluorescence or luminescent emulsion emitting visible light
photons. Light photons create a contrast of brightness and darkness depending
on the intensity of the incident electrons. In 2015, EMPAD [8], an essentially
CMOS chip for direct electron detection, was developed at Cornell University.
Compared to previous detectors, it achieves a higher dynamic range. It was with
the use of this detector that the 2018 record was achieved at 39 pm.

2.1 Probability Distribution

Often, the Central Limit Theory (CLV) does not apply here, at most, the cumu-
lative measurement theorem can be used. This is due to the fact that the
distribution functions involved in signal interference are generally of a power
character, therefore, they do not have the ultimate central moments. Therefore,
their superposition always does not convert to Gaussian normal distribution.
Since a variety of signal processing and analysis tools have been developed for
macroworld (i.e. with the assumption of CLV validity), their use in microscopy
at larger magnifications than 20x can produce artifacts. Electron microscopes
increase 50 000x − 10 000 000x, so we are moving in order where this is already
very significant. From our point of view, this concerns mainly the distribution
of noise. There is no color noise (white, pink, red, · · · ) in the microcosm, only
shot noise (photon, shot noise) [13]. This noise has a quantum (discrete) nature.
Shot noise is dominant in situations where we work with the ultimate number of
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energy-carrying particles (photons, electrons). This noise is often modeled by the
Poisson process. For very large numbers (in the macro world), the observation
of shot noise is no longer distinguishable from white noise.

3 Methods

3.1 Distance of the Signal from the Noise

The used bit depths are based on photodetector standards, namely 8, 10 and
12 bits. From the user point of view, the most widely used bit depth of 8 bpc
(bits per channel), which we will work with later in the text. While multiple
channels can be used in optical microscopy due to the presence of color, only one
intensive channel (gray scale) is used in electron microscopy. The photodetector
is in principle an analogue-to-digital converter (ADC), so the measured signal
is quantized (rounded to the nearest quantization level). The theoretical best
possible signal-to-noise ratio (SNR) is therefore:

SNR =
[

S0

NQ

]
dB

= 10 log10 22b = 20 log10 2b ≈ 6b, (1)

where S0 is the output signal, NQ is the quantization noise, b is the bit depth
used. For b equal to 8 bpc is therefore:

SNR = 6b = 6 × 8 = 48 dB. (2)

Human senses are no longer recognizable by SNR ≥ 55 dB, which is approxi-
mately 10 bpc. Generally, the distance of 46 dB is considered the noise observ-
ability threshold. In normal digital photography SNR ≥ 32 dB is still considered
excellent quality. In electron microscopy, it is virtually impossible to measure the
unintentional signal. For the SNR calculation, therefore, an alternative definition
is used:

SNR = 3 + 20 log10
Sμ

Sσ
, (3)

where Sμ is the average value of the signal and Sσ is the standard deviation
of the signal. The 3 constant represents the thermal offset1 of the fluctuating
dissipation theorem of electric noise on the photodetector [14–16]. The presence
of shot noise in electron microscopy therefore fundamentally affects the SNR
value, which, regardless of the method used (SEM, TEM), is approximately in
the range 〈10; 20〉 dB. Often, Rose’s 14 dB criteria is not even reached [17].
Telecommunication is considered an unusable distance of 20 and less dB.

3.2 Point Spread Function

The most serious complication in the microscope is the so-called point spread
function. In a simplified way, this is the spatial propagation of the wave func-
tion of the point source. From a theoretical point of view, Maxwell’s description
1 Offset.
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of the dispersion of electromagnetic wavefloor for homogeneous spheres in vac-
uum, using diffraction and interference from splinters of other spheres. However,
physical objects are not homogeneous balls. Rayleigh’s variance approximation,
Fraunhofer’s diffraction approximation, and Airy surface interpretation (derived
for telescopic star observations) are used to describe the solution in microscopy.
Thus, between the theoretical description and the practical observation, there is
a contradiction again [18]. For example, theory assumes that PSF is always sym-
metrical in the z axis, which only applies in vacuum. Biological objects always
exist in an optically denser non-homogeneous environment (cytoplasm, solvent)
that causes non-linearity of PSF.

Point spread function is a function in space, but we only see its cut in
the plane of focus. In terms of system theory, it is the impulse characteris-
tic - the response of the imaging system (microscope) to the Dirac impulse.
Since the detector (generally each measuring device) requires some sampling
time to acquire the signal and the plane of field is non-zero, the measured two-
dimensional (x, y) signal is the integral of the point spread function in the time
and space intervals (depth or z-azis), ie the transient characteristic. Point spread
function negatively affects resolving ability, “blurring” the resulting signal. In the
macroworld, it has already been converted to Gaussian normal distribution, and
sharpening can be done easily, for example, by applying the Wiener-Kolmogor
filter. In practice, an optical transmission function (OTF) consisting of two parts
- the modulation (MTF) and phase (PhTF) defined by the ISO standard 9334, is
used to determine the resolution. As the name suggests, OTF is the transmission
characteristic of the microscope and is obtained by Fourier Laplace transforma-
tion (or Z-transformation). In general, OTF is a complex function and MTF is
real, is defined as the absolute value (size, magnitude, amplitude) OTF [19]:

OTF(ν) =
∫ ∞

0

PSF(x)e−j xνdx; (4)

OTF(ν) = A cos(ν) + Aj sin(ν); (5)

MTF(ν) =
√

A2 cos2(ν) + A2 sin2(ν) = A; (6)

PhTF(ν) = arg (OTF(ν)) = ν; (7)
OTF(ν) = MTF(ν) ej PhTF(ν), (8)

where x is a unit of space (nm, pm) and ν is a spatial frequency (rad · nm−1,
rad · pm−1) and variables A, x are real positive numbers. With the exception
of phase contrast microscopy, the phase transition function in microscopy is not
important, and most of the OTF and MTF are confused2 [20–22]. The simplest
interpretation of MTF is that it expresses the contrast for a given spatial fre-
quency ν with respect to low frequencies. For this reason, MTF is sometimes
reported as a percentage, with 100% taking the lowest cutoff rate [23]. MTF
9% corresponds to Rayleigh’s diffraction limit (effective resolution of the micro-
scope).
2 MTF refers to the microscope property, the CTF should be used correctly for each

particular specimen. However, some authors use different definitions.
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3.3 Spatial Frequency and Resolution

Due to the current technological impossibility of producing a calibration slide
with sufficiently small patterns (under 80 nm), the natural structures of the
two-part silicas boxes of single-cell brown diatoms microalgae are used in the
electron microscopy to determine the resolution (see Fig. 1). While we define a
one-dimensional frequency spectrum for a one-dimensional signal, we need to
define a two-dimensional spectrum in a two-dimensional signal. The dimension
character matches the character of the signal, or we solve the changes in the x
axis and the changes in the axis y:

Fig. 1. Left: Star-shaped test scheme for determining effective optical microscope res-
olution by optical transmission function. Close to the center is an already observable
aliasing effect. On the right: Microalgae from subsurface diatoms, individual pores
inside the clipboard structure are spaced from 170 nm.

ξ(λx) =
1
λx

;

η(λy) =
1
λy

; (9)

λ ∈ (0; FOV〉 ,

where ξ(λx), resp. η(λy) is the frequency spectrum in the axis x resp. y. λx,
λy are variable periods of cycles. Fourier analysis of optical systems is more
general than systems analysis in the time domain because objects and images
are essentially two-dimensional and therefore the basic set of sinusoids is also
two-dimensional. The sinusoid has a space period in the axis x and y, respec-
tively. λx, λy. If we invert these spatial periods, we get two spatial frequency
components that describe this spectrum: ξ(λx) a η(λy) see Eq. 9. To specify a
two-dimensional spatial frequency, therefore, the necessary information is two3

[19]. For digital images, we mostly use the matrix pixel coordinate system. For
the calibrated microscope, the corresponding pixel size is known and, therefore,
the FOV in units of length (nm, pm). In this case, the space frequency unit used
is the number of cycles (cy) or pairs (lp) per unit of length. Furthermore, with
the spatial frequency characteristic, we work analogously to the time frequency
characteristic (Fig. 2).
3 In magnetic resonance, the spatial frequency is called k-space and uses the negative

frequencies as it depends on the direction of change.
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Fig. 2. Example of converting a two-dimensional single-grid image into the frequency
domain using a two-dimensional discrete fast Fourier transform (bottom right). For
clarity, the transformation in each x, y axis is also shown separately. The resulting
frequency map contains all frequencies, their magnitude corresponds to the gray scale
intensity in the logarithmic scale.

3.4 Filtration

In electron microscopy images, we have 2 types of unwanted frequencies. Low
frequencies produced by inhomogeneity of luminescent emulsion and biological
background, and then high frequency caused by shot noise. To remove both types
of noise, it is best to use finite impulse response filters (FIR) [24] that differ only
in the width of the weight function. FIR filtering can generally be described as
a convolution of the signal f and the weight function h:

G [ξ, η] =
V∑

k=−V

W∑
l=−W

Hk,lF [ξ − k, η − l] , (10)

F [ξ, η] = F(f [x, y]),
H [ξ, η] = F(h [x, y]),
g [x, y] = F−1(G [ξ, η]),

where g is the resulting image, k, l are window indexes, V,W half the window
side sizes rounded down, h filter window, and f is the input image. The functions
of G, F, H are the respective Fourier transform of functions g, f, h, F is Fourier
transform, F−1 is inverse Fourier transform. Further, for the dimensions of the
u, w filter window, the following applies:

u = 2V + 1; (11)
w = 2W + 1,
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for symmetric filter windows (matrices of odd number of rows and columns). For
the square (regular) windows, then:

V = W ; (12)
u = w.

Fourier transform implicitly assumes that it is working with an infinite signal.
Because we use the final length filter windows, we require a window shape (weight
function) that suppresses the amplitude at its edges and focuses the center area.
For this reason, Hamming’s window of a certain width should be used [25,26]:

h(k) =
25
46

+
21
46

cos
πk

W
, (13)

but in our case we have to use a two-dimensional window θ:

θ = h(k) × h(k)T , (14)
Θ = F(θ).

Because we can assume that the power distribution is supposed to be a distri-
bution of noise in a microworld, we also have to take into account the propor-
tionality of the filter window size. The background of a two-dimensional signal
can be considered a special kind of noise that is reflected on a larger scale. It is
therefore a spatial frequency that is low. Assume the proportionality assumption
by filter window area m1:

m1 =
⌊√

N + 0.5
⌋

, (15)

where N is the number of pixels. This will ensure the same number of non-
overlapping image segments as the number of pixels in the segment. Because the
window is square, the w1 filter window side is

w1 =
√

m1 =
⌊

4
√

N + 0.5
⌋

. (16)

We use the same logic when choosing a filter window size for noise, which is
assumed to be at higher frequencies. In this case, the number of pixels in the
filter window m2 is equal to the number of non-overlapping segments in the one
previous segment (Figs. 3 and 4):

m2 =
√

m1 =
⌊

4
√

N + 0.5
⌋

(17)

and the square side w2 is

w2 =
√

m2 = 4
√

m1 =
⌊

8
√

N + 0.5
⌋

. (18)
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Fig. 3. Example of a large two-dimensional filter window m1.

Fig. 4. Example of a small two-dimensional filter window m2.

4 Bayes Classification

It is based on a conditional probability clause:

P (T |O) =
P (O|T )P (T )

P (O)
; (19)

P (O) =
∑
T

P (O|T )P (T ),

where O is an object, T is a class of objects, and probabilities:

– P (T |O) is the posterior probability of the class T for a given O object;
– P (T ) is the a priori probability of the class T ;
– P (O|T ) is the conditional probability of objects O (only) for a given T class;
– P (O) is the a priori probability of the O object.

In the defined task we have three types of source data from electron microscopy.
Objects can be distinguished from the background and parameterized after the
filtering [27,28]. Object can be expressed as the following vector of flags:
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O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

circumference
area

roundness
eccentricity
homogeneity

darkness/lightness
size

concavity/convexity

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

o1
o2
o3
o4
o5
o6
o7
o8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For classification purposes, it is necessary to define object classes based on the
assignment of the task:

– T1: Photosystem I (PSI) - circular;
– T2: Photosystem II (PSII) - oval;
– T3: Gold nanoparticles small 5–10 nm;
– T4: Gold nanoparticles large 15–20 nm;
– T5−T7: 3 various 2D projections of the 3D restriction enzyme;
– T8: Residual objects (peptides, membranes, cytochromes).

The relevant conditional probabilities can be estimated from the training set of
data, see the following table:

o1 o2 · · · o8
∑

T1 P (o1|T1)P (T1) P (o2|T1)P (T1) · · · P (o8|T1)P (T1) P (T1)
T2 P (o1|T2)P (T2) P (o2|T2)P (T2) · · · P (o8|T2)P (T2) P (T2)
...

...
...

. . .
...

...
T8 P (o1|T8)P (T8) P (o2|T8)P (T8) · · · P (o8|T8)P (T8) P (T8)∑

P (o1) P (o2) · · · P (o8) 1

The probability of P (O) then represents the distribution of all O objects inde-
pendently of the membership of a T class and is therefore the same for all classes.
For classification purposes, therefore, it is only a normalization factor and it is
not necessary to quantify it [29]. The Bayes classifier then decides to assign an
unknown object to the appropriate class based on the multiplication of condi-
tional and posterior probability:

P (O|Tα)P (Tα) > P (O|Tβ)P (Tβ), α �= β. (20)

5 Results and Discussions

Sets of collected images were divided into training (2/3) and test (1/3) sets. The
methods described above were performed, compared and tuned on training data.
The success of the approach was evaluated on test group data. Two-dimensional
signal processing was performed using Matlab development, computing and pro-
gramming environment. For the purpose of using segmentation image processing
methods, it was advisable to work with a negative input signal. The background
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obtained by the convolution of the negative and the large two-dimensional fil-
ter window (low frequencies) can then be subtracted from the negative. The
same analogy is used to obtain noise (high frequencies), ie, the convolution of
the image after subtracting the background and the small two-dimensional filter
window. The resulting filtered signal was further segmented using the interme-
diate variance [30] to obtain a set of objects for the Bayes classifier. The average
detection time was 58 s for the Intel Core2 Duo CPU E8400, 3 GHz, 4 GB.

The method of using FIR for filtering non-homogeneous backgrounds and
shot noise appears to be appropriate, computerized and sufficiently effective.
The key parameter of the filters used is the size of the filter window. The
assumption of proportionality in electron microscopy can be optimized by a
series of time-consuming additional measurements and by analyzing shot noise
in a particular type of task. Typical sample preparation for the electron micro-
scope, however, takes 1–4 weeks. For immunological labeling, at least 2 weeks
are required. The shot noise behavior can be modeled by the Poisson process and
its spatial distribution described by Bose-Einstein’s statistics [31], but unfortu-
nately this noise is also affected by Fano’s detector noise [32] and the detecting
noise of the detector. As has already been mentioned, there is a great deal of
discrepancy between the applied theory and the practically observed reality in
super-resolution microscopy. Analytical models of shot noise distribution only
approximate reality with respect to the electron energy, the diffractive limit,
and in the frequency domain as well as the Gabor localization limit used [33].
Frequency signal analysis options in this role have not been fully exhausted.
The use of wavelet transformation is not the most appropriate because of its
high computing abilities and non-invariance to shift in discretely sampled data
[34]. Conversely, in particular, cryEM can be expected to be used for modal
decomposition or phasor analysis, which is also successfully used, for example,
in fluorescence microscopy [35] for the classification of protein complexes.

Acknowledgments. The work has been partially supported by the SGS of the Uni-
versity of West Bohemia, project No. SGS-2019-027; and by the Ministry of Education,
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Abstract. Some somatic mutations are reported to present mutually exclusive
patterns. It is a basic computational problem to efficiently extracting mutually
exclusive patterns from cancer mutation data. In this article, we focus on the
inter-set mutual exclusion problem, which is to group the genes into at least two
sets, with the mutations in the different sets mutually exclusive. The proposed
algorithm improves the calculation of the score of mutual exclusion. The
improved measurement considers the percentage of supporting cases, the
approximate exclusivity degree and the pair-wise similarities of two genes.
Moreover, the proposed algorithm adopts a greedy strategy to generate the sets
of genes. Different from the existing approaches, the greedy strategy considers
the scores of mutual exclusion between both the genes and virtual genes, which
benefits the selection with the size restrictions. We conducted a series of
experiments to verify the performance on simulation datasets and TCGA dataset
consisting of 477 real cases with more than 10 million mutations within 28507
genes. According to the results, our algorithm demonstrated good performance
under different simulation configurations. In addition, it outperformed CoMEt, a
widely-accepted algorithm, in recall rates and accuracies on simulation datasets.
Moreover, some of the exclusive patterns detected from TCGA dataset were
supported by published literatures.

Keywords: Cancer genomics � Somatic mutation analysis �
Mutually exclusive pattern � Detection algorithm � Greedy strategy

1 Introduction

Some somatic mutations are reported to present mutually exclusive patterns. Detecting
such patterns are considered to facilitate a wide range of researches in cancer genomics,
such as exploring the roles of mutational events during tumor occurrence and evolution
[1, 2], identifying novel germline variants in cancer predisposition genes [3, 4], etc.
Thus, it is a basic computational problem to efficiently extract mutually exclusive
patterns from cancer mutation data. There are two types of patterns that the existing
approaches mainly focus on: intra-set mutual exclusion and inter-set mutual exclusion.
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For intra-set mutual exclusion, the existing approaches will generate one or multiple
sets of genes, and the genes in the same set are mutually exclusive. On the other hand,
for inter-set mutual exclusion, the existing approaches will generate at least two sets of
genes, with the genes in the different sets mutually exclusive.

Unfortunately, only a proportion of patients present the mutually exclusive patterns.
Normally, when the number of cases increases, it is often impossible to obtain a perfect set
of mutual exclusion. To solve this issue, the existing approaches usually adopt a mutual
exclusion score to measure the performance. Given a set of cases, the score is often
calculated based on the percentage of cases that follow the pattern(s). Then, based on the
scores, different approaches use different strategies to generate the sets for the patterns:
(1) Somemethods, such as PathScan [5] andMEMo [6], incorporate prior knowledge into
the searching processes of the mutation combinations. This additional information limits
the searching space, which improves the efficiency of the algorithm. However, the prior
knowledge is often unavailable or incomplete. (2) Some methods adopt approximate
algorithms for speedup. For example, RME [7] designs an improved online learning
linear-threshold algorithm. Dendrix [8] uses the greedy strategy and a Markov chain
Monte Carlo algorithm to optimize the gene sets. Thesemethods are simple to implement,
but may introduce bias when some hotspot genes present high mutation rates. (3) Some
other methods follow statistical models. For example, CoMEt [2] adopts a one-sided
Fisher test for a pair ofmutations. Formultiple geneswithmulti-dimensional contingency
tables, it introduces an accurate-tail enumeration algorithm (or an approximate algorithm)
to generalize Fisher’s exact test. Permutation test, used in MEMo and MEMCover [9] is
another idea of calculating p-value to compare the candidate sets to the null model.
A recent published method [10] proposed a weighted exclusive test (WExT) to estimate
the probabilities of mutations (a priori of mutual exclusion) from the null distribution of a
permutation test, which is able to approximate the genes efficiently.

However, most of the existing approaches are designed for intra-set patterns and
encounter a great challenge on computational complexity when dealing with inter-set
patterns. To overcome this weakness, in this article, we proposed an algorithm for
recognizing inter-set patterns. The proposed algorithm incorporated the advantages of
the existing scoring models and simplified the searching strategy to reduce the com-
plexity. Based on the Dendrix’s measurement, it improved the score calculation by
incorporating the measurements of the percentage of supporting cases, the approximate
exclusivity degree and the pair-wise similarities of two genes. Both genes and the sets
of genes were considered in calculating mutual exclusions. A greedy strategy was then
adopted: It traversed each pair of genes and generated two sets by the pair with the
highest mutual exclusion score. Then, it iteratively added genes into these sets by
updating the scores, until the number of genes in each set reached a pre-set threshold.
We conducted a series of experiments to test the performance of the proposed algo-
rithm. The proposed algorithm obtained satisfied results on accuracy, recall and genes
aggregation when applied on simulation datasets with different data configurations, and
outperformed a popular method, CoMEt, in most of the cases. In addition, the proposed
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algorithm is applied on a real TCGA mutation dataset that consists of 477 cases with
more than 10 million mutations within 28507 genes. Some of the results were in
agreement with the literatures.

2 Methods

Suppose that we are given a set of M cases with G genes (or mutational events). The
aim is to generate multiple clusters of genes, namely gene sets. Each set consists of a
number of genes from G. There is no overlap among all the sets. The genes in the same
set have no mutually exclusive patterns, while the genes from different sets are
mutually exclusive. In this case, a set of genes can be collapsed to a virtual “gene”: For
each case, if the genes in the same set carry one or more mutations, the virtual gene
carries a mutation. The aim is to generate at least two virtual genes with mutually
exclusive patterns. To simplify this problem, in this article, we only consider the
condition of two sets.

Based on the existing measurements, here, we introduce an integrated scoring
method for measuring mutual exclusion. This measurement considers the percentage of
supporting cases, the approximate exclusivity degree and the pair-wise similarities of
two genes. The score of mutual exclusion between two sets, G1 and G2, is:

E ¼ 1
M

1� a1 � a2ð Þ2
a1 þ a2ð Þ2

 !
a1 þ a2 � aa0ð Þ

Where E represents the score of mutual exclusion, a1 denotes the number of the cases
that carry at least one mutation inG2 and have no mutation inG1, a2 denotes the number
of the cases that carry at least one mutation inG1 and have no mutation inG2, a0 denotes
the number of samples which carry one or more mutations in both G1 and G2, and a is a
model parameter to control the tolerance. According to this equation, the score of each
pair of genes can be calculated and stored, whose time complexity is O n2ð Þ.

Then, based on the stored scores, we simply adopt a greedy strategy for generating
the two sets. The algorithm first sorts the scores and selects the pair with the highest
score. For this pair, the two genes are allocated into G1 and G2 respectively. Then, the
algorithm iteratively selects a gene from the remaining part of the given genes. In one
iteration, the algorithm computes the percentage of the mutually exclusive cases
between the selected gene and the two sets (virtual genes). If the score for one set, for
example G1, is higher than a preset threshold and the score for another set, G2, is lower
than the threshold, this gene seems to have a mutual exclusive pattern with G1. In this
case, the algorithm adds this gene to G2, if the number of genes in G2 does not reach a
preset threshold C. Here, we set a threshold C to control the size of the set because in
some cases, the size of a set may be limited by prior knowledge, such as pathway
information, etc. The algorithm continues until either both sets reach the size of C or no
gene satisfies the score threshold.

In the implementation for the case of given C, there is another issue: a mutation
carried by only a small number of cases may contribute less than a mutation carried by
a large number of cases. Thus, to improve the efficiency of the searching process, we
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further update the greedy strategy as follows: Suppose that gene i is selected from the
remaining part of the given genes. Let Ei;j be the score between gene i and gene j,
which is selected from a set, Eset be the scores between the virtual genes without gene i.
Then, gene i is added if one more condition is satisfied: if Ei;j reaches a percentage of
the highest Eset, the algorithm adds it to the set which achieved the highest score. In this
way, we have a higher probability of having a limit number of genes to maximize the
percentage of the mutual exclusions. Finally, the sets of genes are sorted by the scores,
where the top-ranked ones are retained. The pseudo code of the search algorithm is as
follows:

Algorithm1
INPUT: a 0-1 matrix
OUTPUT: a pair of gene sets, xset and yset, |ultimate|=U, U is a user-setting threshold

1. Begin
2. Initial: |Initial|=1000 {xset}+{yset}:xset={},yset={}
3. for(xset:|xset|=1, yset:|yset|=1 any two genes in the matrix) do
4. Initial:|Initial|=1000 ({xset}+{yset},Initial) with maximum score
5. while({xset}+{yset} each Initial) do
6. {already} {xset}+{yset}
7. for(Z each gene in the matrix) do
8. for(R each gene in {yset}) do
9. if(score of {Z,R} < score/3 of {xset,yset}) then goto 13
10. if(score of {xset+Z,yset} > score of {xset,yset}:|xset+Z| < C and Z maximizes score of

{xset+Z,yset}) then
11. C:gene number in a mutually exclusive gene set
12. {xset} {xset}+Z 
13. for(R each gene in {xset}) do
14. if(score of {Z,R} < score/3 of {xset,yset}) then goto 17
15. if(score of {xset,yset+Z} > score of {xset,yset}:|yset+Z| < C and Z maximizes score of

{xset,yset+Z}) then
16. {yset} {yset}+Z 
17. if(|yset|=C&|xset|=C) then
18. ultimate:|ultimate|=U({xset}+{yset},ultimate) with maximum score
19. Initial {xset}+{yset}:{xset}+{yset} Initial,{xset}+{yset}not in{already} 
20. End

3 Experiments and Results

We performed experiments on three datasets. The first dataset, named (a) in the fol-
lowing figures, was randomly generated according to the mutation rate 0.15 per gene
per case. The second dataset, named (b) in the following figures, was generated by ms
software [11]. ms is a widely used simulator for population genomics, whose com-
putational model follows a Wright–Fisher neutral model. The parameters were set as
follows: -t 0.02 -r 100 1000 -s 50. Specifically, we planted a pair of mutually exclusive
sets with 5 genes in each set. Half of the cases had a mutation rate q ¼ 0:4
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in one set of genes, while half of the cases had the same q in the other set of genes. The
genes with mutation rates of less than 1% were removed. For the simulation datasets,
we repeated experiments for 100 times to calculate the average performance. The third
dataset, named (c) in the following figures, was a set of real mutation calls from 477
TCGA cases across multiple cancer types, and the total number of the mutation sites
was 28507.

We set the size threshold C to 3 and set the percentage threshold for Eset to 1/3. For
a dataset, we enumerated all of the gene combinations limited by C, and then recorded
the top 200 results with the highest scores as the true results. Then, the proposed
algorithm was tested on the dataset, and the results were compared to the true results.
Based on the comparisons, we calculated the recall rates and accuracies to measure the
performance.

3.1 The Performance Tests on Accuracy and Recall Rate

We first verified the performance on the basis of the mutual relationship mining model,
and then verified the model advantages in the subsequent experiments. On one hand, to
speed up the calculation, the greedy strategy ignored a lot of calculations on mutual
exclusions during the selections of genes, which might hurt the recall rates. On the
other hand, the greedy strategy calculated the scores of the formed gene sets instead of
the final gene sets, and adopted an empirical threshold, which might reduce the
accuracies. Thus, we first tested these issues. On the three datasets without exceptions,
we obtained the recall rates and accuracies by comparing the results of the proposed
algorithm to the true results. Besides, the results were sorted by the scores. Since the
acceptances of the results were different between different scores. We computed the
recall rates and accuracies of results with score in the top 200 results, and drew the
trend line chart shown in Fig. 1(a), (b), (c).

Fig. 1. The recall rates of greedy strategy based on the datasets (a), (b) and (c), respectively.
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According to Fig. 1, the score of the xth result was gradually reduced. Along with
the decreasing of the scores, the recall rates of the first x results gradually decreased.
The trend was particularly evident on datasets (a) and (b). On dataset (c), although the
recall rates had relatively larger fluctuations, the overall trend was still declining. We
found that as scores of the results declined, the recall rates of the greedy strategy
gradually decreased. Moreover, it could even achieve a recall rate close to 100% in
some of the superior results. This was reasonable due to the definition of the superior
results and the acceptances of results.

In addition, we established the receiver operating characteristic (ROC) curve to
judge the accuracies of the results. The curves were shown in Fig. 2(a), (b), (c).
According to Fig. 2, both the trend line and the standard line passed through points (0,
0) and (1, 1). Based on a brief view of the curves, it was obvious that the curves were
almost above the standard line. This indicated that the slopes of the trend lines were
declining. Based on the definition, the more convex the curve was, the higher the
accuracy the superior results had. The curve indicates the results with the highest score
have higher accuracy. On average, the total numbers of the false positive results of the
datasets (a) and (b) among the first 200 results were 140 and 155, respectively.
However, some of the latter false positives were not completely wrong. Because when
we revisited these results, we found that there might be the mutually exclusive patterns
among some of those genes, while the patterns were not significant among the other
genes. It was also possible that those genes might have mutual exclusions not included
in the top 200 true sets.

Note that, we set the size threshold C to 3 before. However, for each dataset, if we
increased parameter C repeatedly until the results were stable, then the recall rate for
the common problem could be calculated. Here, we used the largest number of
exceptions in each result to count the recall rate. On average of 100 datasets, the recall
rates of datasets (a) and (b) were closer to 100% and 88.6%, respectively. In many
datasets, the parameter C stopped at 5. We also observed that, for dataset (a), when we

Fig. 2. The ROC curves of the results by greedy strategy on the datasets (a), (b) and (c),
respectively.
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set the mutation rate q\ 0:2 or q [ 0:4, the performance of the algorithm was sig-
nificantly decreased. For dataset (b), when we set the mutation rate q\0:4, the per-
formance of the algorithm was significantly decreased. We thought that these might be
caused by the large interference of the genes outside the exceptions.

3.2 Comparison Experiments with Existing Approaches

CoMEt is a popular method for identifying the intra-set mutually exclusive patterns. To
the best of our knowledge, we do not find a suitable algorithm for inter-set mutual
exclusion detection. Thus, we adopted CoMEt for comparisons. There is another ver-
sion, WExT, which is quite similar to CoMEt. The main difference between these two
methods is that WExT greatly shortens the computation time by introducing a saddle
point approximation. CoMEt and WExT have outperformed a series of computational
approaches including Dendrix, Multi-Dendrix, muex, mutex and MEMo on both recall
rate and accuracy [2]. Thus, it is meaningful to compare our method to CoMEt. We then
conducted the comparison on simulation datasets (a) and (b). To conduct a fair com-
parison, we set two methods to generate the same amount of the preset mutually
exclusive pairs of genes: k � s (a MCMC parameter) in CoMEt, and C and the output
number of results in our algorithm. We kept C � C � 100 ¼ 0:5 � k � k � 1ð Þ � s � 10.
Here, we reserved the top 100 results by using different values of C.

For simulation dataset (a), the dataset was generated following the way of CoMEt:
We planted a mutually exclusive set. The set consisted of k ¼ 2–4 genes, which was
randomly selected. The mutation rates for two genes were (0.15, 0.35), while for three
genes and four genes were (0.15, 0.35, 0.5) and (0.15, 0.35, 0.25, 0.25), respectively.
Then, for the rest genes, the mutation rates were ranged from 0.15 to 0.67. We com-
pared the two methods according to the averages of the true positive exceptions of pairs
of genes pairs, the true positive exception genes and the aggregated exceptions. The
results were listed in Table 1. For k ¼ 2, the experiments were repeated 5 times, where

Table 1. Comparisions on true positives on dataset (a) between CoMEt and proposed algorithm

Parameter
settings

True positives of pairs
of genes

True positives of genes Aggregated results

k C k � s CoMEt Our algorithm CoMEt Our algorithm CoMEt Our algorithm

2 1 NA NA 5/5 NA 10/10 NA (2/2)/(2/2)
2 2 * 40 2/5 5/5 10/10 6/10 (2/2)/(2/2) (2/2)/(2/2)
3 3 * 30 5/5 5/5 10/10 6/10 (2/2)/(2/2) (2/2)/(2/2)

3 2 2 * 40 3/9 9/9 5/9 9/9 (2/3)/(2/3) (3/3)/(3/3)
3 3 * 30 6/9 8/9 7/9 9/9 (3/3)/(3/3) (3/3)/(3/3)
4 4 * 28 7/9 6/9 8/9 8/9 (3/3)/(3/3) (3/3)/(3/3)

4 3 3 * 30 12/18 18/18 11/12 12/12 (3/4)/(4/4) (4/4)/(4/4)
4 4 * 28 11/18 13/18 11/12 11/12 (3/4)/(4/4) (4/4)/(4/4)
5 5 * 25 12/18 12/18 11/12 11/12 (3/4)/(4/4) (4/4)/(4/4)

160 C. Yang et al.



5 pairs and 10 genes were planted. For k ¼ 3, the experiments were repeated 3 times,
where 9 pairs and 9 genes were planted. For k ¼ 4, the experiments were repeated 3
times, where 18 pairs and 12 genes were planted. In Table 1, the result of true positives
of pairs of genes indicated the number of recalled pairs/the number of preset pairs. The
result of true positives of genes indicated the number of recalled genes/the number of
preset genes. The result of aggregated result denoted (the best result obtained/k)/(the
preset result/k). According to Table 1, our algorithm obtained higher recall rates than
CoMEt in most of the cases.

For the ms generated dataset, we updated the command to “./ms 10000 1 -t 0.02 -r
100 1000 -s 1000” because we found that CoMEt performed better under these settings.
After ms generated the raw dataset, we first selected 6 genes (sites) randomly, and then
removed the cases that did not conform to mutually exclusive patterns between the two
gene sets. For the cases carrying the mutually exclusive patterns, if the scores between
any pair of the 6 selected genes were positive, the dataset was accepted and sampled
with a certain number of cases. Here, we set the percentage of the mutually exclusive
cases between any pair of the selected genes not high enough, because we aimed to
accommodate and preserve the relationships among other mutations. Otherwise, the
genes would be re-selected randomly. The dataset was then roughly similar to a dataset
with k ¼ 6 or C ¼ 3. We kept C � C � 100 ¼ 0:5 � k � k � 1ð Þ � s � 10. We collected
the results by altering C ranging from 2 to 9, which were shown in Table 2. Similar to
Table 1, the result of true positives of pairs of genes indicated the number of recalled
pairs/the number of preset pairs. The result of true positives of genes indicated the
number of recalled genes/the number of preset genes. The result of aggregated result
denoted (the best result obtained/k)/(the preset result/k).

From Table 2, we observed that, when setting the same number of outputting the
mutually exclusive pairs, our algorithm achieved higher recall rates than CoMEt, in
more than half of the cases. Moreover, the results of our algorithm had more repeated
true positives, while CoMEt sometimes had more false positives. In addition, we found

Table 2. Comparisions on true positives on dataset (b) between CoMEt and proposed algorithm

Parameter
settings

True positive
exceptions of pairs of
genes

True positive
exceptions of genes

Aggregated exceptions

C k � s CoMEt Our algorithm CoMEt Our algorithm CoMEt Our algorithm

2 2 * 40 3/15 9/15 3/6 6/6 (2/6)/(2/6) (4/6)/(4/6)
3 3 * 30 4/15 9/15 4/6 6/6 (2/6)/(3/6) (5/6)/(6/6)
4 4 * 28 4/15 9/15 5/6 6/6 (2/6)/(4/6) (5/6)/(6/6)
5 5 * 25 3/15 9/15 4/6 6/6 (2/6)/(5/6) (5/6)/(6/6)
6 6 * 24 9/15 9/15 6/6 6/6 (3/6)/(6/6) (5/6)/(6/6)
7 7 * 23 6/15 9/15 5/6 6/6 (3/6)/(6/6) (6/6)/(6/6)
8 8 * 23 11/15 9/15 6/6 6/6 (3/6)/(6/6) (6/6)/(6/6)
9 9 * 23 9/15 9/15 6/6 6/6 (3/6)/(6/6) (6/6)/(6/6)
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that the results were a little better if C
k�s was slightly less than k, thus, empirically, it

might be better to choose a smaller C
k�s for unknown datasets.

As CoMEt is an MCMC-based approach, it is important to consider the stability on
different parameter configurations. Here we focus on the parameter configuration on C

k�s.
For the recalled true positives, we tried different settings of k � s, the results were
shown in Fig. 3. From Fig. 3, we might conclude that CoMEt seemed a little sensitive
when the value of k � s was changing. As CoMEt presented fluctuation along with the
altering of k � s, we used the overall trend of recalls in some results. According to the
experimental results, the numbers of genes clustering in one set was increasing along
with the increasing of k � s.

The results on the datasets (b) were somehow more important than results on the
datasets (a) because ms generated the datasets by considering the models in population
genetics, which were much closer to the real cases. Moreover, the mutation rates and
the percentage of perfect mutually exclusive cases were lower than those in datasets (a),
which significantly challenged the computational methods. Therefore, our algorithm
was a little better than CoMEt on dealing with the datasets with these features.

3.3 Real Data Application

Finally, we applied our approach on a real data dataset consisting of 477 cases with
28507 mutations. The mutation calls were obtained following the WashU MGI
mutation calling pipeline [3, 4]. For each case, the raw whole exome sequencing data
were mapped to reference genome hg19 by bwa under default parameter settings. Then,
three variant callers, GATK, VarScan2 and Pindel, were adopted to call the candidate
mutations. A two-out-of-three filter was applied to all of the candidate mutations,
which kept the mutation calls which were supported by at least two of these three
callers. The candidate mutations were also filtered by WashU mutation filters [4].
According to this computational pipeline, we obtained a total number of more than 10

Fig. 3. The recall trend graph of exception maximally aggregated with k * s changing
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million mutational events, including both SNVs and indels shorter than 75 bp, across
477 cases. We downloaded the gene annotations and located the mutations into the
genes. Figure 4 gave a brief view on the distribution of the numbers of the mutations in
the different numbers of the genes. The horizontal axis referred to the numbers of
genes, while the vertical axis referred to the numbers of the mutations harbored. The
trend line was similar to a power-rate distribution curve with a long tail.

The ROC curve was shown in Fig. 2(c). From the curve, there were no false
positives at the beginning 8 results, while the initial recall rates reached nearly 100%.
These results were considered the most important ones and demonstrated significant
mutual exclusive patterns across the datasets. The total number of the false positive
results was 81. Our algorithm detected multiple sets of genes. Many of them were
reported as cancer susceptibility genes. Here, we only highlighted some of the pairs
with high scores, such as GPRIN2, KDSR and IDH1, PTEN, which were reported to
have mutually exclusive patterns. GPRIN2 is a G protein-regulated inducer of neurite
outgrowth 2, which was reported to be mutually exclusive with TP53 and was con-
firmed in the enrichment of differentially expressed genes in some cancers [12, 13].
KDSR is 3-ketodihydrosphingosine reductase, which was tested to be mutually
exclusive with IDH1, PTEN, and was reported to cause recessive progressive sym-
metric erythrokeratoderma [14]. Some other genes appearing in our results were also
have potential mutually exclusive patterns, whose impacts on cancers were already
reported in some literatures: IFI44L [15], MTCP1 [16], LIPF [17], ZNF503 [18],
NR2F1-AS1 [19] and DSC1 [20]. Moreover, our results show that a large number of
pseudogenes, such as RP11-like, might also have the mutual exclusive patterns,
whereas researches about their roles in cancers are limited currently [21].

Fig. 4. The distribution of the mutations captured from the TCGA dataset
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4 Discussion

In this article, we propose an improved algorithm to efficiently detect the mutually
exclusive patterns from cancer mutation data. The proposed algorithm aims deal with
the inter-set mutual exclusion problem, which herein includes two sets of genes and the
genes/mutations in the different sets are mutually exclusive. The proposed algorithm
improves the calculation of the score of mutual exclusion. The improved measurement
considers the percentage of supporting cases, the approximate exclusivity degree and
the pair-wise similarities of two genes. Moreover, the proposed algorithm adopts a
greedy strategy to generate the sets of genes. Different from the existing approaches,
the greedy strategy considers the scores of mutual exclusion between both the genes
and virtual genes, which benefits the selection with the size restrictions. We conducted
a series of experiments to verify the performance, using simulation datasets and real
data from TCGA cases. According to the results, the proposed algorithm showed good
performance under different simulation configurations. The recall rates and accuracies
on simulation dataset outperformed the existing algorithm, CoMEt, in most of the
cases. Moreover, some of the exclusive patterns detected from TCGA dataset were
supported by published literatures. However, the proposed algorithm could only handle
two sets of genes, which should be further improved.
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Abstract. RNA sequencing (RNA-Seq) provides both gene expression
and sequence information, which can be exploited for a joint approach
to explore cell processes in general and diseases caused by genomic vari-
ants in particular. However, the identification of insertions and deletions
(indels) from RNA-Seq data, which for instance play a significant role
in the development, detection, and treatment of cancer, still poses a
challenge. In this paper, we present a qualitative comparison of selected
methods for indel detection from RNA-Seq data. More specifically, we
benchmarked two promising aligners and two filter methods on simu-
lated as well as on real RNA-Seq data. We conclude that in cases where
reliable detection of indels is crucial, e.g. in a clinical setting, the usage
of our pipeline setup is superior to other state-of-the-art approaches.

Keywords: RNA-Seq · Variant calling · Indels

1 Introduction

RNA-Seq is commonly applied for gene expression analysis to capture the abun-
dance of transcripts present in the cells or tissues of interest. Aside from costlier
whole-genome sequencing (WGS) and whole-exome sequencing (WES) methods,
it is also possible to detect variants from RNA-Seq data as the actual sequence of
the transcript is preserved [4,16]. Therefore, RNA-Seq provides a joint approach
to explore cell processes in general, and diseases caused by genomic variants in
particular, as it yields both expression and sequence information [19]. However,
while the variant detection for single nucleotide variants (SNVs) is fairly accu-
rate [15], the identification of indels, which for instance play a significant role in
cancer development, detection, and treatment, still poses a challenge due to an
increased complexity based on splicing events and allele-specific expression [22].

The main processing steps to generate genomic variants from RNA-Seq data
include quality control and trimming of the raw sequencing reads, alignment
of reads to a reference, filtering and preprocessing of aligned read information,
and finally the variant calling step (see Fig. 1). In Sect. 2 we describe related
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 166–177, 2019.
https://doi.org/10.1007/978-3-030-17938-0_16
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literature in which either separate instances of the above steps were thoroughly
benchmarked or full pipeline solutions were tested, with the main disadvantage
of focusing only on SNVs. Current pipeline solutions are able to reach a recall
in indel detection of up to 70% [22] when restricting on high coverage regions.

NovoAlign

STAR
2-pass

Alignment

FASTQ
HaplotypeCaller
RNA-Seq mode

Variant CallingFiltering and
Further Preprocessing

AddOrReplaceReadGroups
+ sor ng and indexing

SplitNCigarReads

Opossum

MarkDuplicates

Fig. 1. Processing steps of our pipeline include alignment, filtering and further pre-
processing, and variant calling. Proposed optimizations are colored green. Dashed lines
indicate a comparison to the standard procedure that is colored orange. Steps in black
are required in any setup. (Color figure online)

For our own approach we hypothesized that by using a splice-aware and indel-
sensitive aligner together with suitable filter methods (e.g, Opossum [15]), we can
improve the recall of indel detection from RNA-Seq data. In Sect. 3 we elaborate
on our proposed changes of the published standard procedure. In order to test
the performance, we benchmarked steps of our pipeline and their combinations
on simulated data as well as on real data. In Sect. 4 we demonstrate how our
approach increases the recall while maintaining precision and discuss strengths
and limitations when compared to similar approaches. We conclude our findings
in Sect. 5.

2 Related Work

In the following, we describe findings from aligner comparisons and filter steps,
followed by a summary of current optimized pipelines for SNV and indel detec-
tion. This is done in order to decide for suitable methods and evaluation
approaches on RNA-Seq data.

Baruzzo et al. (2017) extensively benchmark 14 RNA-Seq aligners on sim-
ulated data sets based on human and malaria genomes in different complexity
levels. In their study NovoAlign [14] reaches the highest recall of about 80% but
a comparably low precision of approximately 60% for insertions and 75% for
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deletions when utilizing annotations. Across all data sets, CLC [18], NovoAlign,
and GNSAP [23] perform best, while STAR [5] reaches a high precision but only
a mediocre recall for lower complexity levels. However, for the most complex
data set, STAR reaches the fourth-best recall.

Sun et al. (2016) specifically assess the performance for indel detection of
seven RNA-Seq aligners in combination with five variant callers [22]. Simulated
data as well as human lung cancer data with known indel sites are used for com-
parison. HISAT2 [9] and GSNAP [23] perform best in combination with GATK
HaplotypeCaller [17] and BCFTools [11]. GSNAP reaches a recall of approxi-
mately 70% with both variant callers, HISAT2 one of about 60%, and STAR
70% in combination with BCFTools and 60% with HaplotypeCaller. Sun et al.
emphasize that alignment is the most important step for indel identification.

The Broad Institute of MIT and Harvard develops and recommends Best
Practices based on their Genome Analysis Toolkit (GATK) for variant discovery
on NGS data [3]. For processing RNA-Seq data, GATK Best Practices sug-
gest STAR in two-pass mode for alignment based on the results of Engström
et al. [7] followed by various filtering and score recalibration methods for pre-
processing [3]. For variant discovery, GATK HaplotypeCaller with a filtering step
is proposed [2].

Oikkonen et al. (2017) developed an alignment filter approach called Opos-
sum [15] to enhance the detection of SNVs from RNA-Seq data. Different
pipelines are evaluated that include TopHat2 and STAR as aligners, GATK
Best Practices and Opossum as filters, and Platypus [20] and GATK Haplotype-
Caller as variant callers. The Opossum filter raises both precision and recall by
on average about 0.7% and 1.7% respectively compared to GATK Best Practices.
However, the evaluation has not yet been conducted for indels.

In our approach, we combine findings from aligner comparisons, i.e.
NovoAlign outperforms all other aligners in terms of recall in indel detection,
and new filtering methods (e.g. Opossum), that until now were only used for the
optimization on SNV detection, into a new pipeline setup.

3 Materials and Methods

Figure 1 depicts the general setup of a pipeline to call indels from RNA-Seq data
as adapted from the GATK Best Practices. Original steps are highlighted in
orange and our proposed changes in green. In the following, we first explain the
choice of included tools, before we describe evaluation methods.

3.1 Choice of Included Tools

RNA-Seq reads in form of FASTQ files are first aligned to a reference sequence.
We use STAR in two-pass mode as suggested by GATK Best Practices as

a baseline. Please note that a two-pass mode is comparable to using an aligner
with annotations. STAR reaches high precision with low run times. Additionally,
STAR is very popular in all benchmarks presented in Sect. 2, which enables us
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to compare our results to other studies. For our own approach we opted for
NovoAlign [14], since it achieves a high recall, especially for the identification of
indels [1]. In general, NovoAlign requires annotations to detect splice junctions
from RNA-Seq data. However, we were not able to include them as described
in the user guide [13] but were still able to run our experiments. The specific
consequences of the usage of annotations will be discussed in Sect. 4. We use
version 3.09.0 of NovoAlign and version 2.6.0c of STAR.

After the alignment, the mapped reads are processed by GATK AddOr-
ReplaceReadGroups to ensure compatibility with succeeding tools. Filtering is
applied as stated in Opossum [15] in its current revision fe8f72e provided on
GitHub that improves the detection of SNVs by filtering alignment results, but
has not yet been tested for indel detection. Alternatively, methods suggested by
the widely used GATK Best Practices are included, while omitting steps mainly
required for data with bad quality, such as indel realignment and base quality
recalibration [2,12]. Finally, the adapted alignment is analyzed by GATK Hap-
lotypeCaller [17] that also is proposed by GATK Best Practices and performs
well for indel detection [22]. All tools are run with their default parameters for
RNA-Seq data to assess their robustness and general applicability to unexplored
data sets. The GATK version we use is 4.0.9.0.

3.2 Evaluation Strategies

In a first experiment, the performance of aligners is compared on simulated data,
independent from other processing methods. We do this despite the exhaus-
tive evaluation of Baruzzo et al., since NovoAlign without annotations was not
assessed yet. Thereafter, we benchmark the full pipeline including further pre-
processing and variant calling on real data from the GM12878 cell line. We focus
on the performance of Opossum and GATK filters to select the methods best
suitable for an optimized setup. All experiments were conducted on a virtual
machine with the following specification: Eight cores of Intel(R) Xeon(R) CPU
E7- 8870 @ 2.40 GHz, 48 GB RAM, and 1 TB disk space.

Comparison of Alignments with Simulated Data Sets. For the alignment
evaluation, we use simulated data sets as generated with the Benchmarker for
Evaluating the Effectiveness of RNA-Seq Software (BEERS). They were pub-
lished by Baruzzo et al.1 in context of their comparative studies [1] and contain
data in three complexity levels. Each set holds 107 paired-end reads with a length
of 100 bases. T1 has low variation and error rates that are expected in a human
genome sequenced with Illumina (SNV rate 0.001, indel rate 0.0001, error rate
0.005), T2 and T3 increase the complexity with higher rates (T2: SNV rate
0.005, indel rate 0.002, error rate 0.01; T3: SNV rate 0.03, indel rate 0.005, error
rate 0.02). Simulations were based on the human genome (hg19).

1 http://bioinf.itmat.upenn.edu/BEERS/bp1/datasets.php.

http://bioinf.itmat.upenn.edu/BEERS/bp1/datasets.php
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The aligned sequences are compared with the true alignment given in a
CIGAR file that is generated when a data set is simulated using the scripts2

as provided by Baruzzo et al. The accuracy (ACC) is measured on read- and
base-level. Moreover, the false discovery rate and false negative rate for inser-
tions and deletions are provided on read- and junction-level, from which precision
(PREC) and recall (REC) are derived.

Evaluation of Pipelines with High-Confidence Calls. In order to test on
real RNA-Seq data sets, the GM12878 cell line can be used together with GIAB
high-confidence variant calls [24]. We analyze an RNA-Seq data set for GM12878
that is publicly available on ENCODE [6,21] with 117, 876, 320 paired-end reads
(GEO accession code: GSE86658, experiment ENCSR000COQ, sample ENCBS-
095RNA). As a reference, we use GIAB high-confidence variants in version 3.3.2.

To minimize run time, we decided to limit the analysis to single chromo-
somes, based on the distribution of indels in GIAB high-confidence variants. We
choose chromosome one, 17, and 21 to represent a large, medium, and small
indel abundance. Counts were obtained from variations that are present with
a minimum coverage of 2X in the STAR alignment using our custom script3.
With this low threshold we aim to reduce the number of excluded variants to a
minimum while keeping a rather large amount for the evaluation.

As an evaluation tool, the GIAB consortium prompts the use of Haplotype
Comparison Tools (hap.py) [10]. Two files are required as input for hap.py, a
truth set, in our case the high-confidence variant calls, and a query set, which
is the pipeline result. For the evaluation of RNA-Seq pipelines, the GIAB high-
confidence calls need to be restricted to regions present in the particular RNA-
Seq data. Separately for SNVs and indels, hap.py assesses true positives (TP),
false positives (FP), false negatives (FN), and non-assessed calls (UNK) that lie
outside confident call regions defined in a third input file. False negatives refer
to variants that were not identified, as well as genotype or allele mismatches.
From these counts, precision, recall, the F1 score, and the ratio of non-assessed
calls to all called variants are calculated. Precision and recall refer to genotype
matches.

4 Results and Discussion

In this section, evaluation results of the RNA-Seq aligners and pipelines defined
in Sect. 3 are presented and discussed.

4.1 STAR Shows High Precision—NovoAlign Shows High Recall

Figure 2 depicts the results of the aligner comparison, exact values are given
in Table 1. For the aligner comparison, we used simulated data sets in differ-
ent complexity levels. NovoAlign reaches higher recall values in the range of
2 https://github.com/khayer/aligner benchmark.
3 https://github.com/tamslo/koala/tree/master/scripts/count insertions and

deletions.

https://github.com/khayer/aligner_benchmark
https://github.com/tamslo/koala/tree/master/scripts/count_insertions_and_deletions
https://github.com/tamslo/koala/tree/master/scripts/count_insertions_and_deletions
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Fig. 2. Comparison of NovoAlign and STAR for simulated data based on hg19. For
each measure, results for NovoAlign and STAR are presented alternately, in order of
raising complexity levels.

Table 1. Results of experiments on simulated data sets with included indels collected
from BEERS evaluation results. H = Human, T1-3 data sets in increasing complexity.
For precision (PREC) and recall (REC) superior values of a comparison are bold.

Data IN DEL Aligner ACC

(read)

ACC

(base)

PREC

(IN)

REC

(IN)

PREC

(DEL)

REC

(DEL)

H T1 1,740 1,730 NovoAlign 0.965 0.982 0.936 0.639 0.933 0.655

STAR 0.971 0.969 0.983 0.557 0.985 0.654

H T2 7,110 6,800 NovoAlign 0.965 0.923 0.924 0.609 0.915 0.625

STAR 0.967 0.958 0.956 0.475 0.953 0.564

H T3 18,150 16,450 NovoAlign 0.936 0.837 0.784 0.385 0.764 0.387

STAR 0.803 0.749 0.836 0.125 0.824 0.145

0.385–0.655 and detects both insertions and deletions on a balanced level. STAR
achieves a higher precision in the range of 0.824–0.985 and shows a raised sensi-
tivity for deletions. However, the superiority of STAR in precision is rather low
with a mean (±standard deviation) of 4.7% (±0.9), while the increase in recall
is rather large 13.0% (±8.9) for NovoAlign. With increasing complexity, both
aligners show decreased performance, while the recall for NovoAlign declines
less severely than for STAR. For lower complexities, STAR is more accurate on
read- and base-level, but NovoAlign overcomes STAR for the T3 data sets.

Our results are consistent with the results of Baruzzo et al.: Compared to
STAR, NovoAlign reaches a higher recall with a lower precision. However, in
our study NovoAlign did not reach the 80% in recall as in Baruzzo et al., which
might be due to the lack of annotations. Because STAR in two-pass mode is
comparable to one-pass mode including annotations, STAR has a general advan-
tage over NovoAlign. Despite of the annotations NovoAlign still showed better
recall values and therefore confirms that NovoAlign is an indel-sensitive aligner,
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which will be further investigated in the pipeline comparison. However, the effect
of annotations—associated with the importance of splice-awareness—for indel
detection still needs further investigation.

4.2 NovoAlign and Opossum Show a Reliable Performance in a
Pipeline Setup

In this section, we present the variant calling results of the pipeline setups on the
GM12878 data set. We focus on our optimized approach that uses NovoAlign
with Opossum, and the reference pipeline, which includes STAR together with
GATK filter methods. For comparison, results for unfiltered alignments and the
combination of STAR with Opossum are included. Variant calling was executed
with GATK HaplotypeCaller and applied to chromosomes one, 17, and 21 to
cover the range of possible amounts of indels (decreasing from high to low). The
evaluation was conducted with GIAB high-confidence variant calls. All analysis
steps were run against the hg38 reference because it contains new findings, which
compared to hg19 improve the data analysis [8]. Figure 3 depicts pipeline results
for genotype matches. The underlying metrics are listed in Table 2, together with
results for a further restriction of high-confidence regions, on which we elaborate
later.

NovoAlign NovoAlign & Opossum STAR STAR & GATK filters STAR & Opossum

0.00
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0.15
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chr1 chr17 chr21
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Fig. 3. Results for indel detection of different pipelines. Precision is displayed on the
left, recall on the right.

In general, the filtered alignments reach higher precision and lower recall val-
ues than unfiltered approaches. In a direct comparison based on the STAR align-
ment, GATK filters reach slightly better results than Opossum. With regards
to whole pipelines, the STAR and GATK filters pipeline on average reaches a
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Table 2. Results of different pipelines. The count of actual positives can be computed
by adding true positives and false negatives. The number of predicted positives is
the sum of true positives, false positives, and non-assessed calls. Results for common
alignment regions of NovoAlign and STAR are marked with an ∗.

Pipeline Chr TP FN FP UNK PREC REC

NovoAlign chr1 1, 682 3, 446 1, 776 1, 126 0.488 0.328

chr17 637 1, 452 667 482 0.490 0.305

chr21 387 561 268 118 0.593 0.408

NovoAlign & Opossum chr1 1, 353 3, 775 649 563 0.676 0.264

chr17 493 1, 596 278 240 0.640 0.236

chr21 311 637 95 59 0.768 0.328

NovoAlign & Opossum* chr1 1, 351 3, 693 515 533 0.689 0.268

chr17 493 1, 577 271 247 0.646 0.238

chr21 311 616 88 66 0.781 0.335

STAR chr1 1, 455 21, 248 1, 757 669 0.453 0.064

chr17 554 9, 016 608 310 0.478 0.058

chr21 328 2, 933 252 95 0.567 0.101

STAR & GATK filters chr1 1, 251 21, 452 530 510 0.703 0.055

chr17 470 9, 100 204 210 0.698 0.049

chr21 276 2, 985 80 67 0.777 0.085

STAR & GATK filters* chr1 1, 243 3, 801 515 533 0.708 0.246

chr17 466 1, 604 199 219 0.702 0.225

chr21 276 651 78 69 0.781 0.298

STAR & Opossum chr1 1, 126 21, 577 529 455 0.681 0.050

chr17 420 9, 150 200 198 0.678 0.044

chr21 249 3012 88 60 0.740 0.076

precision of 72.6% and a recall of 6.3%; our optimized NovoAlign and Opossum
pipeline reaches a precision of 69.5% and a recall of 27.6%. Compared to STAR,
NovoAlign identifies more true positives; the precision is slightly decreased,
however, the recall is significantly higher. Nevertheless, the number of high-
confidence variant calls considered for STAR and GATK filters notably exceeds
the amount for NovoAlign and Opossum, on average multiplied by a factor of
four. As a consequence, we conducted an additional evaluation, in which we
restricted the high-confidence regions to common alignment regions of STAR
and NovoAlign. The results are depicted in Fig. 4. In the further limited regions,
8, 041 high-confidence variant calls are present for the selected chromosomes,
opposed to 8, 165 for NovoAlign alone and 35, 534 for STAR. While precision
and recall of the NovoAlign-based pipeline only increases marginally, the recall
for STAR benefits with an increase in the range of 6.3% to 25.6%. This is due
to the drastically decreased number of false negatives.
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Fig. 4. Pipeline results of NovoAlign with Opossum and STAR with GATK filters, the
high-confidence regions were restricted to common alignment regions. For comparison,
the previous results for pipelines restricted to their alignment regions are displayed
again. Precision is displayed on the left, recall on the right.

In summary, compared to the STAR and GATK filters pipeline, the recall
of the NovoAlign and Opossum pipeline is higher, while the precision remains
stable. As a consequence, the combination of NovoAlign and Opossum indeed
outperforms the reference pipeline. In addition, Opossum and GATK filters were
compared directly to each other, based on the alignment with STAR. The results
show that GATK filters perform slightly better than Opossum, for both, pre-
cision and recall. The improvement in SNV detection could therefore not be
reproduced for indels. For common regions of STAR and NovoAlign, the recall
of the STAR and GATK filters pipeline closes up to NovoAlign and Opossum,
however, does not reach it. Moreover, without another method to compare to,
it is not clear, to which regions the STAR alignment needs to be restricted
to increase the recall. Most considered high-confidence variants also appear in
NovoAlign aligned regions, which suggests that NovoAlign identifies regions with
callable insertions and deletions more reliably.

With respect to the results of Oikkonen et al., the precision and recall values
of our experiments turn out rather low. This is probably due to significantly
more indels in the version of GIAB high-confidence we used [24].

When it comes to real numbers and a clinical application of indel detection
from RNA-Seq data, the increase in recall means a larger amount of true inser-
tions and deletions that can, in a subsequent analysis, be considered for their
importance in the studied disease, e.g., in tumours.
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4.3 STAR and GATK Filters Are Faster than NovoAlign and
Opossum

We assessed run time and disk usage for our experiments to comprehend require-
ments of the included tools. All together, the NovoAlign and Opossum pipeline
takes more than three days on our machines, the STAR and GATK filters
pipeline two days and a half. The index creation of STAR takes much more
time than of NovoAlign, while the alignment is substantially faster. Opossum
takes considerably less time than GATK filters and significantly reduces the file
size, which diminishes the run time of the variant calling. With uncompressed
RNA-Seq data sets, the reference genome, and files with a size of less than 1 GB
ignored, the disk usage for the NovoAlign and Opossum pipeline sums up to
about 173.5 GB, for STAR and GATK filters to 185 GB.

While both pipelines require a comparable amount of disk space, the STAR
and GATK filters pipeline has a considerably lower run time than NovoAlign
with Opossum. This is mostly due to a significantly faster alignment. However,
Opossum only needs less than half of the run time of GATK filters and speeds
up succeeding steps by dramatically reducing the file size.

5 Conclusion

Based on the given results, we suggest to use NovoAlign rather than STAR in
alignment tasks that yield a high and reliable amount of insertions and deletions
detected from RNA-Seq data. Ultimately, the aligner choice highly depends on
the clinical use case; NovoAlign identifies more true variants at the cost of more
false positive calls. When a specific variant yields severe health risks or additional
tests can be conducted to verify variants, NovoAlign is the better choice. If
certainty of called variants is more important, STAR should be used. GATK
filters yield a slightly increased performance, however, Opossum is considerably
faster and additionally reduces run times for subsequent steps. Therefore, we
recommend Opossum, unless superior results are crucial and time is irrelevant.

In summary, we verify that the appliance of an indel-sensitive aligner in com-
bination with suitable filter methods improves the quality of indel detection from
RNA-Seq data. Our proposed pipeline with NovoAlign and Opossum achieves
a higher recall than the state-of-the-art pipeline recommended by GATK Best
Practices while reaching a similar precision. However, interchanging Opossum
with GATK filter methods yields the potential for further improvements as well
as the usage of NovoAlign with annotations.
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Abstract. The olive seed is a promising by product generated in the olive oil
related industries, with increasing interest because of its nutritional value and
potential nutraceutical properties. Knowledge concerning the antioxidant
capacity of this new alimentary material is scarce. Moreover, oxidative home-
ostasis and signaling involved physiological processes such as development,
dormancy and germination in the olive seed are also unknown. Glutathione (one
of the most abundant antioxidants in plant cells), is crucial for seeds physiology,
and for defense and detoxification mechanisms. The availability of glutathione
in its reduced (GSH) and oxidized (GSSG) forms, the ratio of both forms
(GSH/GSSG), and their concurrence in other numerous metabolic pathways is
tightly regulated by numerous enzymes. Prominent among these enzymes is
glutathione reductase (GR), which has been considered essential for seedling
growth and development. The present work aims to increase the knowledge
about the functional insights of GR in olive seeds. Searching in the olive
transcriptome, at least 19 GR homologues (10 from seed and 9 from vegetative
tissue) were identified and retrieved. An in silico analysis was carried out, which
included phylogeny, 3-D modelling of the N-terminus, and the prediction of
cellular localization and post-translational modifications (PTM) for these gene
products. The high variability of forms detected for this enzyme in olive seeds
and their susceptibility to numerous PTMs suggest a relevant role for this
enzyme in redox metabolism and signalling events.

Keywords: Antioxidant � Glutathione reductase � Modelling � Olive �
Post-translational modifications � Seed � Signalling

1 Introduction

Olive tree is the most economically important oil-producing crop in Mediterranean
countries. Olive fruits are consumed only after processing, which ends up to either table
olives or olive oil. Both types of products are well-known natural sources of phenolic
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and other antioxidants that exert multiple biological functions [1–3]. The exact profile
and content in these antioxidants may vary depending on the varietal origin and pro-
cessing procedures [4]. Along with developments in the traditional processing in the
olive sector, new alternative processing procedures are appearing, including the use of
de-stoning alternatives prior to olive milling. Thus, an increasing body of evidence has
highlighted the potential of the olive seed as a complementary emerging material. At
this regard, other potential properties of this material, such as its antioxidant capacity
and the presence of antioxidant enzymes, such as superoxide dismutase, catalase,
ascorbate peroxidase, glutathione reductase and others, is being explored, making olive
seed itself a material of interest determining a source for novel food applications in the
near future [5, 6].

The low-molecular weight tripeptide glutathione is the main antioxidant in mature
and stored seeds since ascorbate increases during early seed development but decreases
during maturation steps. During development, desiccation, aging, and germination,
GSH protects seeds from unregulated oxidative damage that may reduce viability and
vigour [7]. Sources of reactive oxygen species (ROS) may vary considerably in dif-
ferent stages of seed development [8]. Down-regulation of metabolism in seeds
decreases the generation of ROS, and minimizes membrane damage by lipid and
protein oxidation during dehydration. Such regulation of the cytosolic redox envi-
ronment is vital for cell endurance, which is largely maintained by glutathione
reductase (GR) –a flavo-protein oxidoreductase NAD(P)H-dependent cellular enzy-
matic antioxidant and an important component of ascorbate–glutathione (AsA–GSH)
pathway. GR converts oxidized glutathione (GSSG) to reduced glutathione (GSH) thus
helping in maintaining a high GSH/GSSG ratio under various abiotic stresses [9].
Thereby, GR helps in maintaining GSH pool and a reducing environment in the cell,
which is crucial for the active functioning of proteins. Also, GSH has been suggested to
be a potential regulator of epigenetic modifications, playing important roles in the
regulation of genes involved in the response of seeds to a changing environment. GRs
have been purified from diverse plant species. The native enzyme of most GRs is a
homodimer of c. 100–120 kDa, and its subunit size ranges between 53 kDa and
59 kDa [10].

Two plant GR genes, GR1 and GR2, have been identified in several plant species,
including pea, soybean, and Arabidopsis [11–14]. In Arabidopsis, GR1 encodes a
chloroplastidic GR, with 49% identity to Arabidopsis GR2. Pea GR1 targets to the
mitochondria a newly formed protein, while GR2 gene encodes a cytosolic form of the
enzyme as a response to oxidative stress at the transcriptional level, in contrast to GR1.
In the bean seed, GR activity was higher as the seeds were acquiring desiccation
tolerance. Contrarily, in the recalcitrant Quercus embryonic axes and in Triticum
durum seeds, GR activity remained constant in early development then abruptly
declined during desiccation [15]. Previous bioinformatics studies in the olive pollen
have been able to detect the existence of GR1 and GR2 genes, homologous to other GR
genes described in plant species such as A. thaliana or T. cacao [16]. Prediction of the
cellular location of these genes showed that GR2 expression occurs in the chloroplast,
thus confirming previous studies which suggested that this isoform is involved in
adequate pollen development [7].
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The present study aimed to identify signs of the presence of GR transcripts in olive
seeds at the transcriptomic level, and to perform an in silico analysis of these transcript,
which includes phylogeny and 3-D modelling of the N-terminus, as well as predictions
of their cellular localization and susceptibility to PTMs. Such analyses will represent
the basis for future experimental determinations of the enzyme levels and activity,
allowing us to determine the antioxidant capacity of these seeds. These data of great
importance for determining their use as new potential food ingredients.

2 Materials and Methods

2.1 Identification of GR Transcripts in the Olive Reproductive
Transcriptome

Different strategies for identification of GR full-length transcripts were applied. The
searches were conducted by using GO, EC, KEGG and InterPro terms and codes
definitions, as well as gene names and orthologues against the annotated seed tran-
scriptome, available at: http://reprolive.eez.csic.es/olivodb/ [17]. BLAST (Basic Local
Alignment Search Tool) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) searches were carried
on using homologous sequences from close species available in public databases and
library resources.

2.2 In silico Analysis of the Sequences

Nucleotide sequences were aligned using CLUSTALX2 multiple alignment tool with
default parameters [18]. Phylogenetic analyses were conducted and trees were con-
structed with the aid of the software Seaview [19] using the maximum likelihood
(PhyML) method and implementing the most probable nucleotide substitution model
(GTR) previously calculated by JmodelTest2 [20]. The branch support was estimated
by bootstrap resampling with 100 replications. Sequences obtained from the olive
transcriptome were translated into amino acid sequences using ExPASy program
(http://web.expasy.org/translate/). The software WoLF PSORT (https://wolfpsort.hgc.
jp/) was used for the prediction of protein cell localization. Prediction of serine,
threonine and tyrosine phosphorylation was implemented by using Scanprosite (http://
web.expasy.org/scanprosite/). Prediction of potential S-nitrosylation sites was made
with GPS-SNO 1.0 [21], and TermiNator was used to predict N-terminal methionine
excision, acetylation, myristoylation or palmitoylation [22]. Structure modelling for the
N-terminal region of GR was performed by using the fold recognition-based Phyre2
server [23], with c4dnaA as the template. 3D reconstruction was carried out by PDB
viewer (https://spdbv.vital-it.ch).
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3 Results and Discussion

3.1 Retrieval and Phylogenetic Analysis of GR Sequences from Olive
Seed and Olive Vegetative Transcriptomes

Table 1 describes either partial sequences or complete sequences corresponding to GR
retrieved from the olive seed transcriptome (11 sequences) and the olive vegetative
transcriptome (9 sequences), which are covered in the Reprolive (http://reprolive.eez.
csic.es/olivodb/) database. Additional data include putative subcellular localization,
organisms in which certain homology has been identified, length of the sequence, and
the correspondence with homologous sequences within the recently described olive tree
genome [24], as well as the percentage of identity between each pair of olive
sequences.

The most frequently matched genomic olive sequence entries are Oe6_s02429, a
chloroplastidial GR (GR2) sequence, and Oe6_s02433 identified as cytosolic (GR1). In
both cases, the identity with its homologous sequences in the transcriptome is greater

Table 1. Output sequences identified as GRs after searching ReprOlive database including seed
and a vegetative tissue transcriptome, predicted localization, and identity with the corresponding
olive genome sequences. Chl.: chloroplastidial; Cyt.: cytosolic; Mit.: mitochondrial; At:
Arabidopsis thaliana; Gm: Glycine max; Ps: Pisum sativum.

Tissue Sequence Sequence name in
ReprOlive db

Localization/
homology

Length
(pb)

Genomic
Sequence

Identity

Seed GR_Seed_1 se11_olive_027181 Chl./At 855 Oe6_s02429 100%

GR_Seed_2 se11_olive_025545 GR 869 Oe6_s07823 100%
GR_Seed_3 se11_olive_021387 Cyt. At 918 Oe6_s07823 100%

GR_Seed_4 se11_olive_001379 Cyt. Ps
complete

1626 Oe6_s02433 100%

GR_Seed_5 se11_olive_001019 Cyt. Ps 1705 Oe6_s02433 100%
GR_Seed_6 se11_olive_037697 Chl. At 769 – 0%

GR_Seed_7 se11_olive_036877 Cyt. Os 782 Oe6_s02433 100%
GR_Seed_8 se11_olive_034395 Chl. At 794 Oe6_s02429 100%
GR_Seed_9 se11_olive_042727 Cyt. At 738 Oe6_s03877 100%

GR_Seed_10 se11_olive_045783 Chl. At 721 Oe6_s02429 97,94%
GR_Seed_11 se11_olive_047071 Cyt. Ps 714 Oe6_s00818 100%

Vegetative
tissue

GR_vt_1 vg11_olive_027980 Cyt. At 556 Oe6_s07823 98,68%
GR_vt_2 vg11_olive_024788 Cyt. Ps 539 Oe6_s02433 100%
GR_vt_3 vg11_olive_026534 Chl. Gm. 547 Oe6_s02429 100%

GR_vt_4 vg11_olive_019974 GR 518 Oe6_s02433 100%
GR_vt_5 vg11_olive_037074 Chl./Mit. Ps 600 Oe6_s02429 99,57%

GR_vt_6 vg11_olive_016841 Chl./Mit. Ps 801 Oe6_s08493 100%
GR_vt_7 vg11_olive_007534 Cyt. Ps 435 Oe6_s03877 100%
GR_vt_8 vg11_olive_004742 Cyt. At 397 Oe6_s03877 100%

GR_vt_9 vg11_olive_000305 Cyt. Ps 712 Oe6_s02433 100%
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than 97%; GR_Seed_6 did not match with other sequences when compared with
genome, but exhibited correspondence with a chloroplastidial GR of Arabidopsis
thaliana (At3g54660.1). Searching the olive tree transcriptome, only the GR_seed_4
sequence was identified as a full-length sequence. Identity matrices were built to select
these sequences with high percentage of nucleotide/nucleotide identity, respectively
(not shown), considering as significant matches these surpassing 70% of ID and a E-
value of significance greater than 10–12, following the same significance criteria for
our complete GR_seed_4 sequence.

Two seed sequences (GR_Seed_4 and GR_Seed_5) reaching 73% of identity were
selected for further analyses, as well as two vegetative tissue sequences (GR_vt_6 and
GR_vt_9), and another two (GR_Seed_5 and 8) found in seed. All of them exhibited an
ID higher than 97%. Figure 1 shows a phylogenetic analysis built with the GR
sequences identified within the annotated transcriptome of the olive seed and the
vegetative tissues, together with a wide representation of GRs identified in different
taxonomical groups of interest (Solanum lycopersicum, Vitis vinífera, Camellia
sinensis, Populus euphratica, and Arabidopsis thaliana). Four clusters were identified,
with no clear differentiation between GR1 and GR2 isoforms. Both isoforms were
grouped in the same cluster, however showing different predicted cellular localization,
and maybe functional differences. Most of the seed and vegetative GR sequences from
the olive transcriptome were identified as cytosolic forms with abundant number (80%)
of the GR isoforms predicted in chloroplastidial cell localization.

Fig. 1. Phylogenetic relationships between olive seeds GRs, their homologues in vegetative
tissue, and heterologous sequences in several plant species of interest. GR_Seed, olive seed;
GR_vt, olive vegetative tissue; A_thaliana, Arabidopsis thaliana; P_euphratica, Populus
euphratica; V_vinifera, Vitis vinífera; C_sinensis, Camellia sinensis; S_lycopersicum, Solanum
lycopersicum.
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3.2 Predictive Analysis of Physical, Chemical and Functional Features
of Olive Seed and Vegetative GR Sequences

The analysis of the sequences with the Protparam program allowed us to identify and
characterize basic physical and chemical properties of the predicted proteins resulting
from the translation of the GR sequences from olive, such as molecular weight, iso-
electric point, and stability and aliphatic indexes. The results obtained from this
analysis are shown in Table 2.

Sequences with a molecular weight lower than 10,000 Da are unstable, since sta-
bility index values <40 indicate low stability. The aliphatic index does not establish a
clear relationship with the rest of the properties but has an average value of approxi-
mately 90 in all the sequences. The prediction of functional characteristics of proteins
with the Scanprosite program indicates that GR_Seed_3, 4 and 9 sequences exhibited

Table 2. Predictive analysis of the essential physical, chemical and functional features of GRs
from olive seed and vegetative tissues. (−): basic isoelectric point; (+): acid isoelectric point.

Tissue Sequence Molecular
weight (Da)

Isoelectric
point

Stability index Aliphatic
index

Seed GR_Seed_1 16935,71 7,74 (−) 35,55 79,75
GR_Seed_2 16492,12 5,67 (+) 30,15 80,71
GR_Seed_3 27985,69 8,83 (−) 28,84 92,93
GR_Seed_4 53705,92 5,89 (+) 23,15 90,81
GR_Seed_5 39266,03 5,46 (+) 23,96 91,64
GR_Seed_6 5218,07 5,48 (+) 41,25

(unstable)
82,22

GR_Seed_7 18092,35 5,00 (+) 25,10 91,14
GR_Seed_8 12635,65 9,80 (−) 37,60 91,62
GR_Seed_9 25908,22 8,54 (−) 33,39 89,96
GR_Seed_10 7595,62 6,53 (+) 57,70

(unstable)
62,69

GR_Seed_11 16634,72 8,46 (−) 15,74 90,52
Vegetative
tissue

GR_vt_1 18327,52 7,66 (−) 29,02 92,20
GR_vt_2 11740,56 5,82 (+) 26,08 102,91
GR_vt_3 10782,50 5,25 (+) 38,73 93,56
GR_vt_4 – – 17,40 91,37
GR_vt_5 5587,68 6,81 (+) 50,78

(unstable)
103,47

GR_vt_6 5926,82 7,80 (−) 51,99
(unstable)

95,66

GR_vt_7 3434,99 10,44 (−) 59,87
(unstable)

69,64

GR_vt_8 13079,94 6,07 (+) 35,66 81,78
GR_vt_9 39585,88 5,36 (+) 25,11 92,47
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an active class I site belonging to the family pyridine nucleotide-disulphide oxidore-
ductase (PS00076) (Table 3). This family includes flavoproteins with a pair of acti-
vated cysteines responsible of transferring reduced equivalents from the cofactor FAD
to the substrate, as does glutathione reductase. This domain also is also found in the
vegetative tissue sequences GR_vt_1 and GR_vt_8.

The “PIRIDINE_REDOX_1 domain does not appear in the rest of the GR
sequences analysed. This may be indicative of functional diversity in these isoforms of
the GR enzyme. In the majority of the GR sequences analysed, positions 6 and 7 of the
regions containing this domain are represented by amino acids such as N-V or N-I, with
the exception of the chloroplastidic GR of plants and cyanobacteria, whose amino acids
are I-R [25]. This modification is present in all transcriptome sequences retrieved from
ReprOlive database (Table 3), which are recognized as homologues of GR cytosolic
isoforms in Arabidopsis thaliana and Pisum sativum.

3.3 In silico Prediction of Cellular Localization and Occurrence of PTMs

Subcellular localization was predicted by using WoLF PSORT software. Most of the
sequences were predicted as cytosolic isoforms, with the exception of GR_Seed_8,
GR_vt_1 and 3, which were predicted to be localised in the nucleus, GR_Seed_10 and
GR_vt_4, expected as peroxisomal, and GR_vt_6, identified as chloroplastidial.
Potential N-myristoylation and phosphorylation in the amino acids serine (S), threonine
(T) and tyrosine (Y) was also assessed, and is described in Table 4 (this table contains
modifications predicted with a high degree of certainty only).

Recent studies, have demonstrated the importance of N-myristoylation in plant
viability. This lipid modification in the N-terminal residue of proteins is believed to
involve nearly 2% of all plant proteins [26]. Targeting of the modified protein to a
membrane (where they play crucial roles in signal transduction pathways) is one of the
best determined roles for this PTM. The presence of myristoylation susceptibility in
conserved sequences of the olive seed and vegetative GRs analysed here, likely
accounts for a regulative role of this PTM in the activity of this enzyme, as has been
described for other protein families predicted to undergo N-myristoylation in Ara-
bidopsis like the h-type thioredoxin protein family (h-TRX) [27]. Moreover, potential
S-nitrosylation sites were also identified in the olive seed and vegetative GRs, as
described in Table 5.

Table 3. Prediction of functional characteristics of GRs from olive seed and vegetative tissues
(functional domains).

Tissue Protein Start End Domain Region

Seed GR_seed_3 67 77 PYRIDINE_REDOX_1 GGtCVirGCVP
GR_seed_4 67 77 PYRIDINE_REDOX_1 GGtCVirGCVP
GR_seed_9 67 77 PYRIDINE_REDOX_1 GGtCVirGCVP

Vegetative tissue GR_vt_1 74 84 PYRIDINE_REDOX_1 GGtCVirGCVP
GR_vt_8 67 77 PYRIDINE_REDOX_1 GGtCVirGCVP
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Table 4. Predicted N-myristoylation & phosphorylation in GRs from olive seed/vegetative.

Tissue Sequence N-myristoilation Phosphorylations

Tyrosine kinase Protein
kinase C

Casein kinase 2

Seed GR_Seed_4 29 GAgsGG 34
33 GGvrAS 38
34 GVraSR 39
45 GAkvGI 50
64 GGvgGT 69
65 GVggTC 70
84 GAsfGS 89
158 GTkiSY 163
183 GQelAI 188
222 GMgaSV 227
351 GTcfAK 356
435 GAsmCG 440
449 GIavAL 454
457 GAtkAQ 462
468 GIhpSA 473

13
KpneEktqY 21

164 SaK 166
294 TgR 296
300 TkR 302
338 TdR 340
414 SgR 416
430 TdK 432
479 TmR 481
484 SrR 486

19 TqyD 22
89 SelE 92
189 TsdE 192
195 SleE 198
264 TltE 267
364 SkpD 367
472 SaaE 475

GR_Seed_5 29 GTkiSY 34
54 GQelAI 59
79 GGyiAV 84
92 GMgaSV 97
221 GTcfAK 226
305 GAsmCG 310
319 GIavAL 324
327 GAtkAQ 332
338 GIhpSA 343

35 SaK 37
164 TgR 166
170 TkR 172
208 TdR 210
284 SgR 286
300 TdK 302
349 TmR 351
354 SrR 356

60 TsdE 63
66 SleE 69
134 TltE 137
234 SkpD 237
342 SaaE 345

Vegetative
tissue

GR_vt_6 32 GTidGF 37 26 SlK 28
29 TnK 31

GR_vt_9 29 GTkiSY 34
54 GQelAI 59
79 GGyiAV 84
92 GMgasV 97
223 GTcfAK 228
307 GAsmCG 312
321 GIavAL 326
329 GAtkAQ 334
340 GIhpSA 345

35 SaK 37
172 TkR 174
210 TdR 212
286 SgR 288
302 TdK 304
351 TmR 353
356 SrR 358

60 TsdE 63
66 SleE 69
134 TltE 137
236 SkpD 239
344 SaaE 347

Table 5. Cys-containing peptides prone to S-nitrosylation in GRs from olive seed and
vegetative tissue.

Tissue Sequence Position Peptide

Seed GR_Seed_2 13 VALMEGSCFAKTVFG
GR_Seed_4 439 KVLGASMCGPDAAEI
GR_Seed_5 309 KVLGASMCGPDAAEI
GR_Seed_10 43 QSSWFAHCGEELTQE
GR_Seed_11 97 KVLGASMCGPDAAEI

Vegetative tissue GR_vt_7 17 NKDFSRNCHPLSSLR
GR_vt_9 311 KVLGASMCGPDAAEI
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The presence of a potential S-nitrosylation site in different sequences could be
implicated in the regulation of the seed desiccation process [28]. In order to determine
whether the olive GR sequences analysed here are grouped accordingly to the different
properties described above (susceptibility to PTMs), a graphical superimposition of
these properties was performed over the phylogenetic analysis previously described in
Fig. 1 (Fig. 2).

In relation to the isoelectric point (PI), sequences with an acidic IP are grouped in
cluster 2, while clusters 1, 3 and 4 are mainly composed of basic IP GR sequences.
Furthermore, the sequences of cytosolic isoforms taking part of cluster 2 exhibited
homology with a cytosolic GR of Pisum sativum, according to the olive transcriptome
data, and with the Oe6_s02433 sequence from the Olea europaea assembly and
annotation database (ReprOlive).

We have also observed that almost all sequences harbouring potential S-nitrosy-
lation sites are cytosolic. Regarding the PYRIDINE_REDOX_1 functional domain
sequence, most of GRs displaying it were identified as cytosolic isoforms as well, and
were almost entirely grouped in cluster 3. Sequences exhibited high identity among
them and even with sequences from vegetative tissues. Although two isoforms of the
enzyme were distinguished, the phylogenetic analysis carried out did not cluster the
two predicted isoforms predicted within specific group, thus we cannot suggest dis-
tinctive features for these GR homologous in seeds. However, by predicting the cellular
location of these genes we identified that most of the GRs are putatively expressed in

Fig. 2. Susceptibility of olive seed and vegetative sequences to different PTM superimposed
over the phylogenetic analysis of the same sequences as depicted in Fig. 1.
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the cytosol. This can be explained by the scarce presence of chloroplasts in the seed at
the mature stage. Noteworthy, physical and chemical analyses showed in the present
work also identify the cytosolic forms of GRs as those forms with the higher stability.

3.4 2-D and 3-D Structural Modelling and Functional Assessment
of Olive Seed and Vegetative GRs

The GR_Seed_4 sequence corresponding to a cytosolic GR type was chosen as a
representative protein to perform the analysis of the 2-D and 3-D modelling. This
sequence was identified within the olive transcriptome as a complete sequence, with a
high homology with the genomic Olea europaea assembly and annotation database
[24], where this olive genome sequence was annotated as a chloroplastidial GR. The
amino acid sequence predicted for a GR1 from the olive seed transcriptome displayed a
high identity with the one predicted as GR2 in a previous work [29]. Amino acids are
presented in groups of different colours according to some of their characteristics
(Fig. 3). Thus, A, S, T, G and P were represented in yellow (small or polar); M, I, L
and V were represented in green (hydrophobic); K, R, E, N, D, H and Q were rep-
resented in red (charged), and W, Y, F and C were represented in blue (aromatic and
containing cysteines). Among the amino acid sequence of the secondary structure the
potentially-modified cysteine at position 439 (as predicted by the GPS-SON program),
can be observed together with the highly conserved domain of interaction with the
FAD cofactor (GxGxxG(x)17E) present in all members of the GR family. This domain
was located at the N-terminal end and is part of the loop that connects the first beta
chain with an alpha helix within the Rossmann-type folding (Fig. 4). From amino acid
at position 202 onwards (and coinciding with a conserved area of the protein), a second
folding of the Rossmann type can be observed, which likely corresponds to the
dimerization domain of the enzyme. Moreover, a partially conserved domain (D(x)
6GxxP) [30], placed between beta chains b6 and b7, was observed.

The predicted secondary structure of the olive seed protein GR1 allowed distin-
guishing b1, a1 and b2 components of in the Rossmann loop folding encompassing the
conserved domain GxGxxG(x)17E (which is coincident with a region of high pre-
dictive confidence). We found next a beta sheet, which did not coincide with the
general model for GRs, and that was present in a zone with little confidence in the
prediction. In this region, a PYRIDINE_REDOX_1 domain characteristic of this type
of enzymes was also present. After this domain, an alpha helix and another beta chain
(in areas of great confidence) were detected, which could coincide with the a2 and b3
components of the Rossmann loop. Next, and after another alpha helix region, 5 beta
sheet areas were present, that would coincide with the b4, 5, 6, 7 and 8 represented in
Fig. 4. This last alpha helix, connecting b3 and b4, is an exceptional characteristic that
is present in the chloroplastidic isoforms of the enzyme [30]. Such feature, together
with the presence of modified amino acids within the GGtCVirGCVP region of the
PYRIDINE_REDOX_1 domain, might represent the reasons why the phylogenetic
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analysis of GR sequences from olive seed and vegetative tissues does not generates a
sharp separation between cytosolic and chloropastidic forms of the GR enzyme.

After performing 3-D modelling of GR1, we were able to identify this sequence as
a glutathione reductase with 93% coverage compared to the selected template
(c2v6oA_; structure of thioredoxinglutathione reductase 2 from Schistosoma mansoni)
and 100% confidence (Fig. 5). Figure 5 shows these characteristics on the 3D mod-
elling of the predicted protein. Some protein residues are tolerated others could disrupt
structure. Predictions of the most important residues are indicated with a colour scale.
In red, highly conserved areas are displayed, whereas areas with low conservation are
depicted in blue.

Fig. 3. Predicted secondary structure of the olive seed protein GR1. Blue arrows represent beta
sheet. Green loops represent alpha loops. Grey line represents turns and loops of protein
secondary structure. Confidence key is represented with a colour score (red: high/blue: low).
Conserved domains in the GR are shown with a red box (most conserved domains). Conserved
areas of the protein are shaded in Green. Catalytic residues of the CSA (Catalytic Site Atlas,
EMBL-EBI) are shown with a black box. Blue circles represent Rossmann loops, and red arrows
represent potentially S-nitrosylated sites. (Color figure online)
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4 Conclusions

The present study identifies the presence of at least four groups of GR transcripts in
olive seeds and olive vegetative tissues, whose sequences were recovered from the
ReprOlive database. In silico analysis allowed defining GRs from olive seed and
vegetative tissues like highly conserved as regard to the presence of functionally-
relevant motifs. However, the sequences identified display a large variety of forms,
likely with cytosolic and chloroplastidic cell localization. Additional features like
susceptibility to numerous post-translational modifications make these enzymes highly
polymorphic and prone to differential modulation of their activity, which may represent

Fig. 5. Structural modelling of the olive seed GR1. (Color figure online)

Fig. 4. Rossmann-type loop (b1a1b2a2b3) as present in the members of the GR family.
(Adapted from [30])
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an adaptive response to diverse scenarios, including all types of stresses. Such pre-
dictive properties are currently being tested using biochemical approaches, and the
biological and biotechnological significance of the forms identified here are also being
assessed like redox regulators and source for molecular tools (i.e. antibodies and
probes).
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Abstract. Thermophilic proteins have widely used in food, medicine,
tanning, and oil drilling. By analyzing the protein sequence, the superior
structure and properties of the protein sequence are obtained, which is
used to efficiently predict the protein species. In this paper, a voting
algorithm was designed independently. Protein features and dimensions
were extracted and reduced, respectively. Data was predicted by WEKA.
Next, the voting algorithm was applied to the data obtained by the
above processing. In this experiment, the highest accuracy rate of 93.03%
was achieved. This experiment has at least two advantages: First, the
voting algorithm was developed independently. Second, any optimization
method was not used for this experiment, which prevents over-fitting.
Therefore, voting is a very effective strategy for the thermal stability
of proteins. The prediction data set used in this paper can be freely
downloaded from http://lab.malab.cn/∼lijing/thermo data.html.

Keywords: Thermophilic proteins · Voting algorithm ·
Feature selection · Machine learning

1 Introduction

Since the extreme thermophilic microbe genome (the Methanococus jannaschii)
has been published, the method of comparing genomes (proteome) has been
widely used for the research of protein thermostability.

By mining the charged residues and hydrophobic residues, Bayesian rules,
logic functions, neural networks, support vector machines, decision trees are
used to distinguish between thermophilic proteins and non-thermophilic pro-
teins. For data of 4684 and 653 protein sequences, 85% and 91% were obtained
by neural network and 5-fold cross-validation [11]. By analyzing the distribution
of neighbouring amino acids, there are dramatic differences in thermophilic and
non-thermophilic proteins. A statistical method was designed for the detection of
dipeptide data. 86.3%, 85.5% and 89.7% were displayed, including comparative
experiments [30]. Structural information is applied to the logitboost classifiers by
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 195–203, 2019.
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recognition of the first-class protein structure, and the principle of 5-fold cross-
validation is set. Experiments show that 97% and 86.6% accuracy are captured
separately. It is found that the logitboost classifier has strong generalization
capacity and low demanding on the length of the protein sequence [32]. Exper-
imental material is used in a variety of protein identification patterns, which
has high degree of confidence. Among these methods, the credibility of the back
propagation neural network is up to 98%. The experimental results show that the
accuracy of 75% and 85% of thermophilic and non-thermophilic protein, respec-
tively [31]. Potential models and sealed information were mined and found by
Chaos game representation (CGR). The pseudo-amino acid information was cal-
culated and extended into protein sequences, which were visualized by the CGR
model. Features were extracted via CGR section and 87.92% was captured [17].
Considering the problem of mutations caused by the growth or shortening of
protein sequences, this article claims that protein stability can be promoted
by Support Vector Machine (SVM). Test results show that the classification
accuracy rate reaches 88% [18]. In order to distinguish thermophilic proteins
from non-thermophilic proteins and to deal with the stability changes of protein
mutations, this paper invented a new type scoring function. Feature weights were
taken into account by rewriting the random forest classifier. In the end, 97.3%
accuracy was completed [13].

In this paper, a new voting program was developed. By extracting 13 features
and integrating 24 classifiers, the better integrated combination was selected
for voting, and relatively high accuracy was captured. The extracted features
were CKSAAGP, AAC, CKSAAP, CTPC, GAAC, GTPC, GDPC, CTDC, DDE,
DPC, CTDT, KSCTRIAD and TPC. Because there are too many classifiers, only
voting classifiers will be explained in the following sections. Next, the dimen-
sions of all features are cut, appropriately. WEKA was applied to preliminar-
ily predict, and the results of preliminary prediction were used in the voting
program. Ultimately, the accuracy of 93.62% and 92.8% was achieved, sepa-
rately. The experiment found that data without dimension reduction has better
performance.

Compared with published schemes to distinguish between thermophilic and
non-thermophilic proteins, the strengths of this study are obvious.

(1) The accuracy is higher.
The result of the vote was 93.03%

(2) The voting program was developed, independent.
Without engineering contribution to support theory, many published papers
merely describe a general method for identifying thermophilic and non-
thermophilic proteins in the field of bioinformatics. In contrast, this research
has corresponding engineering as the theoretical basis. In other words, pro-
fessional ability of the operator is less demanding. This is crucial for the
development bioinformatics [4].

(3) The data has not been optimized to prevent over-fitting.
Sometimes, in order to get better results, optimizer will be applied to the
experimental process in the field of data mining. Most of the time, data
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optimization does more disadvantages than advantages. Optimization will
cause many problems that cannot be ignored and the prediction effect of the
model is poor [33].

2 Material and Method

2.1 Data Sources

The data source is http://lab.malab.cn/∼lijing/thermo data.html, including 915
thermophilic proteins and 793 non-thermophilic proteins. The labels of the data
are positive and negative.

2.2 Feature Extraction

The features extracted are significant, which will largely affect the experimen-
tal results. The theoretical basis of the amino acids features extracted is that
location information and structural composition. In the key step, 13 features
were extracted, namely CKSAAGP, AAC, CKSAAP, CTPC, GAAC, GTPC,
GDPC, CTDC, DDE, DPC, CTDT, KSCTRIAD. Given the limited space, fea-
ture extraction algorithms will be overly generalized and will not delve into the
details.

The features of AAC algorithm are extracted based on the number of appear-
ance. 20 different amino acids were found, respectively [3]. The DDE algorithm
is based on the formation of dipeptides. After a series of reversals, the ideal mean
and the ideal variance are calculated, which are used to obtain the final indica-
tor [12]. The design theory of the CKSAAGP algorithm is the frequentness of
amino acid, and the homologous eigenvalues are captured by reasoning [7]. The
number of protein species is a major consideration in the TPC algorithm [9].
Due to space constraints, only feature descriptors for voting are introduced.

2.3 Max Relevance Max Distance (MRMD)

After feature extracted, the MRMD [42] is used for feature selection. Cutting
the less relevant features is the primary task of MRMD [25].

2.4 Classifier Selection and Tools

In the preliminary classification of amino acids, WEKA is the main operating
environment for data before and after feature selection, which is fast and effi-
cient [20]. Besides, a large number of classifiers are built into WEKA, and 24
classifiers are screened out. The classifier for voting is discribed in the following
content.

LIBSVM is widely used in machine learning and data mining, whose software
packages can be used across platforms [22,24]. The goal of Simple Logistic clas-
sifier is to achieve the fitting regression effect through Logistic Boost. Through

http://lab.malab.cn/~lijing/thermo_data.html
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multiple iterations, the models are updated constantly. When the deviation value
of the logistic regression model reduces, the update ends [23]. The random com-
mittee classifier is an extension of the random tree classifier, which is mostly
used for the formation of low-level classifiers for different data sources [39].
The classification rule of the Logistic classifier is a function, which is derived
from the maximum likelihood function, the activation function and the gradi-
ent descent algorithm [16]. The principle of PART is the matching of data and
“decision lists”. When the match reports an error [10], the default category will
be called [15].

3 Experiment

In order to confirm the effectiveness of the voting algorithm, other experiments
were compared. In Experiment 1, 188D was used for feature extraction of raw
data (188D means 188 features were extracted from raw data, which includes
11 extraction principles of amino acid content, hydrophilicity, van der Waals
force and polarity, etc.). In Experiment 2, the features were extracted utilizing
IFEATURE [5] algorithm, and the WEKA and voting algorithms were used
in subsequent experimental procedures. In Experiment 3, MRMD was used to
select the extracted features to retain necessary features. WEKA and voting
procedures were used to expect better experimental results.

3.1 Performance of Evaluation Standards

SN = TP/(TP + FN) (1)

SP = TN/(TN + FN) (2)

ACC = (TP + TN)/(TP + TN + FP + FN) (3)

3.2 Performance of Experiments

Experiment 1. The raw data includes 915 thermophilic proteins and 793 non-
thermophilic proteins. The 188D was used for feature extraction of raw data.
After a series of conversions, the data results were processed into the ARFF
format, which was run on WEKA (cross-validation was set to 10-fold, and 8
classifiers were selected, namely Bayesian network, Naive Bayes, Decision tree
J4.8, Bagging meta learning, Logistic function, Multiclass classifier, Classifica-
tion via Regression and random forest). Experiment l finds that the multi-class
classifier and Logistic function classifier have the highest accuracy. The details
are demonstrated in Table 1.
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Table 1. The different classifiers performance of 188D.

Methods AAC

Bays Net 82.50%

Random Forest 88.64%

Decision tree J4.8 81.85%

Bagging meta learning 88.06%

Logistic function 88.93%

Multiclass classifier 88.93%

Classification via Regression 86.71%

Näıve Bayes 83.43%

Data of Experiment 2. Affected by the design principle of IFEATURE,
13 features were extracted from 1708 protein sequences, which are AAC,
CKSAAGP, CKSAAP, GTPC, GDPC, CTDC, DDE, DPC, CTDT, KSTRIAD,
TPC, GAAC, and CTDD. Besides, many classifiers were tested on WEKA, and
only Random Forest results were shown in the Table 2. The highest accuracy
rate is 90.57%.

Table 2. The different features accuracy of RF.

Feature Dimension ACC

AAC 20 90.57%

CKSAAGP 150 79.22%

CKSAAP 2400 88.23%

CTPC 125 79.04%

GDPC 25 79.63%

CTDC 39 88.06%

CTDT 39 83.49%

DDE 400 88.47%

TPC 8000 84.66%

KSCTRIAD 343 80.91%

CTDD 195 69.67%

GAAC 5 77.22%

DPC 400 88.0%

Data of Experiment 3. The extracted features is selected by MRMD. For com-
parison, Table 3 shows that the accuracy after dimension reduction with Random
Forest classifier on WEKA. For the purposes of comparison, the dimension infor-
mation is displayed in the Table 3.
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Table 3. The different features accuracy of RF after dimension reduction.

Feature Dimension ACC

AAC 19 90.93%

CKSAAGP 123 78.98%

CKSAAP 1501 88.23%

CTPC 113 79.04%

GDPC 23 79.63%

CTDC 35 87.7%

CTDT 38 83.49%

DDE 44 85.77%

TPC 25 79.74%

KSCTRIAD 343 80.91%

CTDD 136 68.27%

GAAC 4 76.93%

DPC 398 88.29%

3.3 Data of Voting

Lin’s experiment was recurrence. Since the Jackknife took a long time, the exper-
iment switched to 10-fold cross-validation and 92.15% accuracy was achieved.
The data of Experiment 2 and Experiment 3 were used for preliminary predic-
tion on WEKA, and a total of 24 classifiers were utilized. In this process, the
information of accuracy below 80% is deleted. After all the steps are completed,
a matrix of 1702 * 264 was obtained. For the comparison experiment, the data
before and after the feature selection were operated like above.

3.4 Performance of the Algorithm

The voting-based program was developed independently, whose design ideas are
as follows:

(1) BASE
After careful consideration, AAC’s LIBSVM information is used as a bench-
mark. The data source is Lin’s paper, and it is general accepted to use Lin’s
results as a voting benchmark.

(2) Based on the information of BASE, the data that is least relevant to BASE
is selected.

(3) The algorithm can directly calculate the voting composition, and the accu-
racy, confusion matrix, F-score and other indicators.

(4) Repeat steps (2) and (3) to achieve higher voting accuracy with fewer data
as far as possible.
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The data test results of Experiment 1 show that 93.03% is the best result.
Not only is higher accuracy achieved, but less information is utilized. The voting
combination are LIBSVM (c = 2, g = 2), Random Committee and PART of AAC,
LIBSVM (default parameters) and Logistic of DDE, Simple Logistic of TPC and
Multi-class classifier of CKSAAGP.

Compared with Experiment 1, the data results of Experiment 2 were rel-
atively poor. After comprehensive consideration, 92.8% was regarded as the
best performance. This result integrates information of LIBSVM (c = 2, g = 2) of
AAC, LIBSVM (c = 2, g = 2), Näıve Bayes and Logistic of CKSAAP, Multi-class
classifier and Simple Logistic of DPC, Logistic of CKSAAGP. It deserves special
explanation that the cross-validation of all experiments was set to 10-fold.

4 Conclusion

Amino acid classification is a major problem in bioinformatics. Since the devel-
opment of bioinformatics, many theories and algorithms based on amino acid
classification have been proposed. Due to the limitation of generalization ability,
the classification has not reached the ideal accuracy. In this paper, various fac-
tors are considered and a voting algorithm is proposed, whose execution result
is the integration of LIBSVM (c = 2, g = 2), Random Committee and PART of
AAC, LIBSVM (default parameters) and Logistic of DDE, Simple Logistic of
TPC and Multi-class classifier of CKSAAGP. The final accuracy rate was 93.03.

As a new interdisciplinary technology in the bioinformatics field, thermophilic
proteins play very important role in the study of human health. To systematically
present the experimental results and improve ease of use, a server for predicting
thermophilic proteins has been developed. The user only needs to input protein
sequence, and the highest accuracy of voting and corresponding protein data
can be obtained, automatically. On the other hand, Link prediction paradigms
[40] have been applied in the prediction of disease genes [27], circular RNAs [29],
miRNAs [6,8,21,37], drug side effects [35] and LncRNAs [1,34,36,38]. Also, com-
putational intelligence such as neural networks [2,19], evolutionary algorithms
[26,41] and unsupervised learning [14,28] can be applied to predict health related
thermophilic proteins.
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Abstract. Pathological diagnosis is the standard for the diagnosis and
identification of breast malignancies. Computer-aided diagnosis (CAD)
is widely applied in pathological image analysis to help pathologists
improving the accuracy, efficiency, and consistency in diagnosis. The
traditional CAD methods rely on the expert domain knowledge, time-
consuming feature engineering, which is insufficient to real-world sys-
tems. In recent studies, deep learning methods have been explored to
improve the performance of pathological CAD. However, typical deep
methods mainly suffer from the following limitations on pathological
image classification. (i) The model cannot extract rich and informa-
tive features due to the shallow network structure. (ii) The commonly
adopted patch-wise classification strategy makes it impossible to obtain
the global features at the image level. To address the two issues, in this
paper we propose to use a deep ResNet structure with Convolutional
Block Attention Module (CBAM), in order to extract richer and finer
features from pathological images. Moreover, we abandon the patch-wise
classification strategy and perform an end-to-end training instead. The
public BreakHis dataset is used to evaluate our proposed method. The
results show that our model achieves a significant improvement over the
baseline methods.

Keywords: Breast cancer · Histology image · Classification · ResNet ·
Deep learning

1 Introduction

Breast cancer is the most common malignant tumor among women worldwide.
According to the data of the International Agency for Research on Cancer
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(IARC) of the World Health Organization (WHO) [1], the age-standardized inci-
dence of Breast Cancer (43.1/100,000 people) in the World in 2012 ranked first
among female cancers, accounting for 35.3% of new tumors in women and 20.8%
of all cancer deaths in women.

Early detection and precise diagnosis are the keys to reduce the mortality
of breast cancer. In order to distinguish malignant breast tumor from benign
lesions, regular physical examination and imaging examination (mammography,
B-ultrasound, and breast MRI) are wildly used, with an accuracy of 90% [2].
However, pathological diagnosis remains the golden standard of breast cancer
diagnosis, which provides direct evidence for clinical treatment and progno-
sis evaluation. At present, immunohistochemical staining is the main method
in pathological diagnosis. 80% of benign and malignant breast tumors can be
diagnosed by hematoxylin-eosin (HE) staining [3]. During pathological analy-
sis, pathologists need to repeatedly observe the histological with high power
view and cytological morphological characteristics in different regions with low
power microscopy field, which requires a lot of time and leads to fatigue, even
experienced pathologists will lead to the deviation of diagnosis. The concor-
dance rate of breast cancer diagnosis by different pathologists was only 75.3%.
In some cases of atypical breast cancer, the concordance rate of diagnosis even
dropped to 48% [4].

Recently, thanks to the rapid development of image processing and machine
learning technology, Computer-aided diagnosis (CAD) has been widely used to
help pathologists analyze pathological images or other medical data [5–7]. As
the second optional system, CAD can help pathologists to be more efficient and
objective in diagnosis. The existing CAD methods can be roughly divided into
two categories. The first one is based on traditional manual feature extraction
[8–11], which is criticized by data scientists because of the required very profes-
sional domain knowledge and time-consuming feature engineering. The second
one is based on the recent deep learning methods [12,13], which can automat-
ically learn useful features from the data according to the loss function, and
usually have a weak dependence on domain knowledge. Existing deep learning
approaches for Breast Cancer (BC) histology images classification task include
cell nuclei segmentation [14,15] and the patch-wise classification [12,16]. The
nuclei segmentation based techniques require professional pathologists to label
the training image accurately at the cell level, which is very time-consuming.
Additionally, the nuclei segmentation based methods often suffer from over-
segmentation and do not perform well when some cells overlap [10]. Speak of
the patch-wise classification, typical approaches are to extract some patches
from the original images, and then use these patches to train a specific struc-
ture Convolutional neural network (CNN) [12,16]. However, in this way, CNN
usually extracts local features around the nucleus, ignoring the overall charac-
teristics of the entire tissue. Moreover, different patches extraction strategies
also have a great impact on the final classification performance, which makes
the patches-wise based approaches unstable. In addition to the disadvantage of
using patches, the shallow architecture of CNN used in the above methods is
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not sufficient to extract more abstract and finer features from patients’ breast
histology images.

In order to classify the BC pathological images steadily and accurately, in
this paper, we adopt an improved ResNet architecture to extract local and global
features from pathological images and perform end-to-end training. ResNet [17]
is a recently popular CNN architecture, it prevents vanishing gradient by using
the residual connection, which allows the network architecture to be deeper to
obtain richer and more abstract features. However, unlike general image clas-
sification tasks, the classification of pathological images usually requires finer
feature representation. To this end, we use Convolutional Block Attention Mod-
ule (CBAM) [18] to enhance the performance of the ResNet. CBAM enables
networks to focus on important features and suppress unnecessary ones. Hence,
the features of breast tissue extracted from each ResNet block can be adaptively
refined by the CBAM.

To evaluate the effectiveness of our method, we conduct a series of exper-
iments on the publicly available BreakHis dataset. The BreakHis dataset, a
benchmark proposed by [11] for the BC histological images classification, con-
sists of consists of 7909 breast histopathological images from 82 patients. We
compare the results of our method with those reported in other state-of-the-art
approaches and show that our method improves the performance by 1.8∼4.2%
patient-level accuracy, 5.3∼8.4% image-level accuracy and 0.7∼5.3% F1-score.
In summary, the main contributions of this work are as follows:

• We use the deeper ResNet CNN architecture to extract richer and more
abstract features of patients’ BC tissue.

• We use CABM to refine the tissue features extracted from each layer of
ResNet, which can improve the classification performance.

• We have significantly improved the accuracy of classification on the publicly
available BreakHis Dataset.

2 Related Work

Classifying histopathological images into non-cancerous or cancerous patterns
for analysis, which is the original target of the image analysis system, has been
explored in automatic assistant diagnosis of cancer for more than 40 years. How-
ever, dealing with the intrinsic complexity of histopathological images was still
a major challenge due to the complexity of image analysis [19]. Recently, the
development of computerized systems for automatic recognition of malignant
breast cancer has become an active area of research with the goal of developing
decision support systems to be able to relieve the workload of pathologists [9].

A number of recent works related to breast cancer classification were carried
out on small and private dataset. For example, Kowal et al. [8] report accu-
racy ranging from 96% to 100% on 500 images dataset for nuclei segmentation.
Besides, Filipczuk et al. [9] get a performance of 98% on 737 images of fine needle
biopsies. Similarly to [8] and [9], George et al. [20] use 92 images in experiment
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and get accuracy ranging from 76% to 94%. These datasets are usually not avail-
able to the scientific community, so their results are not comparable. Fortunately,
Breast cancer histopathology database provided 7,909 (2,480 benign and 5,429
malignant samples) microscopic images of breast tumor which collected from 82
patients by surgery [11]. Recently, many researchers have conducted research
based on this dataset and compared the results with each other. In [11], an eval-
uation of different combinations of six different feature descriptors and different
classifiers is presented. The mean accuracy is range from 80% to 85% due to
different image magnification factor. Sanchez-Morillo et al. [10] use the KAZE
method [21] to extract KAZE key points from every image. Then they use the K-
means for mapping the key points into vectors and use SVM as a binary classifier.
Both of the above methods are based on hand-crafted pipelines of feature extrac-
tion, which is time-consuming and unstable. Luckily, Deep learning has made
great breakthroughs in image classification. AlexNet is a typical deep learning
model, which [22] achieves a winning top-5 test error rate of 15.3%, which is
10.9% lower than the second one who uses SIFT [23] and FVS [24]. Afterward,
more research on deep learning has been absorbed. Inspired from AlexNet, [16]
and [12] use a similar CNN structure to extract features from breast pathological
images. They divide the original pathological image into patches, then train the
model with patches and perform classification at the patch level. However, the
patch-wise classification suffers from the incompleteness of feature extraction,
which means that the model can only extract local features at nuclear-level,
ignoring the global features of the larger organization. Additionally, AlexNet is
not deep enough to extract richer and more abstract features of BC pathology
images.

More recently, several pieces of research investigate some important factors
of networks to enhance the performance of CNNs. ResNet [17] increases the
depth of CNNs and uses residual connections to solve the problem of gradient
vanishing. It shows extraordinary abilities in auto-extracting and classification
when compared with AlexNet. From the perspective of refining features, CBAM
[18] uses two attention mechanisms to refine the features extracted by CNN,
which improve the performance of CNNs.

3 Dataset

The Breast Cancer Histopathological Image Classification (BreakHis) dataset
composes of 7909 microscopic images of breast tumor tissue. They are collected
from 82 patients in different magnifying factors include 40×, 100×, 200×, and
400×. The BreakHis dataset contains 2480 benign and 5429 malignant sam-
ples (700 × 460 pixels, 3-channel RGB, 8-bit depth in each channel, PNG for-
mat). Table 1 shows the class distribution of images in the Dataset. The dataset
contains four histological distinct types of benign breast tumors: adenosis (A),
fibroadenoma (F), phyllodes tumor (PT), and tubular adenona (TA), as shown
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in Fig. 1; and four malignant tumors (breast cancer): carcinoma (DC), lobular
carcinoma (LC), mucinous carcinoma (MC) and papillary (PC) as shown in
Fig. 2. In order to compare with the state-of-the-art methods fairly, we use the
same partitions for the five-fold replications as [10–13,16,25]. The partitioning
method can be obtained from the download page of the BreakHis dataset1.

Table 1. Class Distribution of the images in the BreakHis Dataset

Magnification Benign Malignant Total

40× 652 1370 1995

100× 644 1437 2081

200× 623 1390 2013

400× 588 1232 1820

Total 2480 5429 7909

(a) A (b) F (c) PT (d) TA

Fig. 1. Example of pathological images of benign breast tumors stained with HE:
Adenosis (A), Fibroadenoma (F), Phyllodes Tumour (PT), Tubular Adenoma (TA).
The magnification factor of the above is 100×.

(a) D (b) L (c) M (d) P

Fig. 2. Example of pathological images of malignant breast tumors stained with HE:
Ductal (D), Lobular (L), Mucinous (M), Papillary (P). The magnification factor of the
above is 100×.

1 https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-
breakhis/.

https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
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Fig. 3. An overview of the proposed model. Given a BC histology image, the model
first extracts and refines the features by each residual block with CBAM (represented
by blue boxes). Next, a global average-pooling is used to convert the refined features to
a vector. Finally, a fully connected layer is followed as a linear classifier. (Color figure
online)

Fig. 4. Details of Convolutional Block Attention Module (CBAM).

4 Method

4.1 Overall Framework

Figure 3 shows an overview of our proposed model. There are two core ideas
in our proposed methods. The first one is to adopt the ResNet [17] to extract
features of BC histology images. ResNet stacks the same topological of residual
blocks along with skip connections to build an extremely deep CNN architecture
[18]. The skip connections are used to solve the optimization issues when the net-
works become deeper. Thanks to the deep network structure but easier gradient
propagation, ResNet can effectively extract more abundant and abstract features
of BC histology images.

The second core idea of this work is to use CBAM [18] to refine the output
features of each residual block in ResNet. CBAM consists of two attention mod-
ules, which are channel attention module and spatial attention module. Figure 4
shows the details of the CBAM. The channel attention focuses on ‘what’ is
meaningful given an input BC histology, and it can be computed as:

Ac(F) = σ(MLP (AvgPool(F)) + MLP (MaxPool(F))) (1)

where F indicates the output features of previous residual block, Ac(F) ∈ R
c×1×1

is the 1D channel attention map, σ indicates the sigmoid function, MLP is a
shared Multi-Layer Perceptron neural network, AvgPool and MaxPool denote
the global average pooling and global max pooling respectively. Then, use the
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Fig. 5. The residual block with CBAM.

channel attention map Ac(F) and the input features F, we can obtain the new
features as follow:

F
′
= Ac(F) ⊗ F (2)

where the F
′

indicates the new feature map refined by the channel attention.
The spatial attention module focuses on ‘where’ is an informative part of the
given features, it can be formulated as:

As(F
′
) = σ(f7×7([AvgPool(F

′
);MaxPool(F

′
)])) (3)

where As(F
′
) ∈ R

1×h×w denotes the spatial attention map, σ indicates the
sigmoid function, f7×7 denotes a convolution operation with the filter size of 7
× 7. Note that the two pooling operations are performed across channels. Then
we compute the output features F

′′
of CBAM as:

F
′′

= As(F
′
) ⊗ F

′
(4)

The two attention modules complement each other to make the network focus
on important features and suppress unnecessary ones. Figure 5 shows the details
of the residual block with CBAM. Given a BC histology image, our model first
extracts and refines the features by each residual block with CBAM. After a
global average-pooling layer, we send the final vector to the linear classifier and
obtain the output classification probability.

4.2 Detailed Settings

There are different depths of ResNet structures to choose from, such as 18,
34, 50 and 101. In this work, we use the ResNet with 50 layers, which can be
represented by ResNet-50. Then we add CBAM to each block of the ResNet-50.
The original top layer of ResNet-50 is replaced by a global average-pooling layer.
A dropout of 0.3 is also used after the fully connected layer for helping reduce
overfitting. The loss is categorical cross-entropy and the optimizer is Stochastic
Gradient Descent (SGD). We set the learning rate at 0.001. We pre-train our
model on the ImageNet dataset, and then fine-tune our model on the BreakHis
dataset. The BC histology images are reshaped from 700×460 to 512×336. Data
augmentation strategies such as rotations and flip are also used for increasing
the amount and generality of the training data.
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5 Experiment

In this section, we conduct an extensive experimental for evaluation on the
BreaKHis dataset. The BreaKHis dataset is divided into a training (70%) and
a testing (30%) subset. Patients who are used in the training set are not in the
testing set. For fair comparison with the state-of-the-art methods, we use the
same partitions for the five-fold replications as [10–13,16,25]. For each fold, we
perform five replicate experiments. Finally, we report the average and standard
deviation of the total twenty five results. In the rest of this section, we will intro-
duce the evaluation metric used in this paper, and then we report and discuss
the results.

5.1 Evaluation Metric

There are three common performance measurements on the BreaKHis. The first
one is recognition rate at patient level. Let Np be the number of images of patient
p. For patient p, let Nrec represent the number of images correctly classified.
Then the patient score (Ps) for patient p can be defined as follow:

Psp =
Nrec

Np
(5)

If there are S patients in the test dataset. Then the global patient-level accu-
racy (Pacc) can be defined as follow:

Pacc =
S∑

p=1

Psp
S

(6)

The second one is the recognition rate at image level (Iacc), which can be
defined as follow:

Iacc =
Irec
NI

(7)

where Irec denotes the total number of correctly classified images, and NI is the
total number of images.

The third on is F1-score (F), which is used to take into account both the
precision Pr and recall Re of our method, they can be calculated as follows:

Pr =
TP

TP + FN
, Rc =

TP
TP + FN

, F = 2
PrRc

Pr + Rc
(8)

where TP is true positive, FP is false positive and FN is false negative cases.
Besides, some other metrics for evaluating binary classification, such as Sen-

sitivity (Se), Specificity (Sp), and area under the receiving operating character-
istic curve (AUC) are also reported.
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5.2 Results and Discussion

Table 2 reports the results of all evaluation metric corresponding to different
magnification factors. As we can see from the results, our method get the best
accuracy (both patient level and image-level), AUC, Specificity, F-score at the
200× magnification factor. And it get the best Sensitivity when the magnification
factor is 40×. Overall, our model seems to perform best at the magnification
factor of 200×.

Table 2. Accuracy at patient-level and image-level, AUC, Sensitivity, Specificity, F-
score of our method with different magnification factor

Magnification factor

40× 100× 200× 400×
Patient-level Accuracy 91.8± 3.5 92.1± 2.3 92.2± 3.2 87.9± 0.9

Image-level AUC 90.2± 4.4 90.8± 2.2 91.8± 3.6 88.2± 1.2

Sensitivity 95.9± 2.2 93.6± 2.4 94.7± 3.4 90.4± 2.0

Specificity 81.6± 7.2 88.1± 4.0 88.9± 6.4 86.6± 3.2

Accuracy 91.2± 3.5 91.7± 2.0 92.6± 3.1 88.9± 1.3

F1-score 93.6± 2.5 93.7± 1.6 94.1± 2.3 91.3± 1.1

To prove the effectiveness of using CBAM, Table 3 list the results of ResNet-
50 and ResNet-50 with CBAM in 200× magnification factor. As we can see, the
ResNet-50 with CBAM achieves better results, this is attributed to CBAM’s
feature refinement capability.

Table 3. Results of ResNet-50 and ResNet-50+CBAM in 200× magnification factor.

ResNet-50 ResNet-50 + CBAM

Patient-level Accuracy 91.7± 2.8 92.2± 3.2

Image-level AUC 91.0± 3.8 91.8± 3.6

Sensitivity 94.5± 2.2 94.7± 3.4

Specificity 87.5± 7.1 88.9± 6.4

Accuracy 92.1± 3.2 92.6± 3.1

F1-score 94.2± 1.8 94.1± 2.3

Table 4 shows the best F1-score of our method and that reported in [10–
12,16]. Note that in Table 4 we do not list the results of [13] and [25], because
these work did not report F-score. As we can see, our model outperform all
the approaches listed in Table 4. Specifically, when compared with the results of
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Table 4. F1-score of our methods and that of [10–12,16].

Approach Magnification factor

40× 100× 200× 400×
[10] 90.2 86.5 84.6 80.3

[11] 87.8 86.1 88.5 86.3

[12] 92.9 88.9 88.7 85.9

[16] 88.0 88.8 88.7 86.7

This work 93.6 93.7 94.1 91.3

other work, our method achieves 0.7%, 4.8%, 5.4%, and 4.6% improvements at
40×, 100×, 200×, and 400× magnification factors, respectively.

For a better understanding of the results in this work, in Table 5 we compare
the best accuracy (both patient-level and image-level) of our method and that in
[10–13,16,25]. Note that the image-level accuracy in [13] and [25] is not available.
The main observation is that our deeper CNN architecture with CBAM achieved
the best results when compared with traditional methods and other deep learning
methods. Compared with all the results on the BreakHis dataset, we achieved
1.8%, 3.7%, 4.2%, 1.8% improvements in patient-level accuracy, and 5.3%, 6.9%,
8.4%, 7.3% improvements in image-level accuracy at 40×, 100×, 200×, and 400×
magnification factors, respectively.

Table 5. Accuracy at patient-level and image-level of our method and others.

Accuracy at Approach Magnification factor

40× 100× 200× 400×
Patient-level [10] 86.4 81.6 77.8 72.9

[11] 83.8 82.1 85.1 82.3

[12] 90.0 88.4 84.6 86.1

[13] 83.0 83.1 84.6 82.1

[16] 84.0 83.9 86.3 82.1

[25] 87.7 85.8 88.0 84.6

This work 91.8 92.1 92.2 87.9

Image-level [10] 85.9 80.4 78.1 71.3

[11] 82.8 80.7 84.2 81.2

[12] 85.6 83.5 83.1 80.8

[16] 84.6 84.8 84.2 81.6

This work 91.2 91.7 92.6 88.9
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6 Conclusion

In this paper, we propose a breast cancer histology images classification frame-
work based on ResNet and Convolutional Block Attention Module (CBAM). The
proposed method can effectively extract richer and finer features associated with
benign and malignant tumors, thanks to the powerful deep structure of ResNet
and the good feature refinement capabilities of CBAM. When compared with
several state-of-the-art approaches on the publicly available BreakHis dataset,
our method shows a significant improvement in accuracy (both patient-level and
image-level) and F-score. Future work includes improving classification accuracy
and exploring a more granular classification of pathological images.
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Abstract. Automated Breast Ultrasound (ABUS) is widely applied in
breast screening mainly because of its non-invasive, and radiation-free
nature, and the high interoperator reproducibility. Due to the complex-
ity and high volume of data, reading ABUS images is a routine but time-
consuming task for sonographers. Accordingly, the computer-aided diag-
nosis (CAD) has been introduced to help, in order to detect breast lesion
efficiently. Traditional techniques such as watershed and fuzzy c-means
did not perform satisfactorily, due to the strong underlying assumptions
and complex image processing. Lately, deep learning has been explored
in medical image analysis. However, it often leads to high false positive
rates, which is mainly caused by its requirement of abundant training
data and the lack of domain knowledge. To address these issues, we pro-
pose a novel lesion detection framework based on the U-net segmentation
architecture, and explore a novel method using spatial feature map and
attention skip connection. We retrospectively evaluate our model on the
data of 142 patients with 305 lesions and 70 no-lesion volumes, and it
significantly outperforms the comparison methods with the sensitivity of
92.1% with 1.92 false positives per volume. The promising results sug-
gest that our proposed framework is a solid tool to assist ABUS in breast
screening.

Keywords: Deep learning · Fully convolutional network ·
Automated Breast Ultrasound · Lesion detection

1 Introduction

Breast cancer is the most common malignancy in women and is a leading cause of
cancer death among women worldwide [1]. The mortality rates for breast cancer
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in women have been declining steadily by 1.9% per year from 2003 through 2012
according to the Center for Disease Control. This observed decline may be a
reflection of early detection through screening and advances in treatment [2].

Ultrasonography (US) has been used as a first-line screening and routine
diagnostic tool for breast cancer in Europe since the 1980s due to its real-time,
non-invasion, radiation-free, as well as easy of operation, portability, convenience,
widespread availability [3]. Notably, women with dense breasts have higher risks
of breast cancer than those with less dense breasts, and US may detect these
dense breast lesions more readily than mammography [4]. Recently, automated
breast US (ABUS) has been developed as a new promising ultrasound technique
for early detection of breast lesions. The ABUS provides 3D scanning on differ-
ent views of the whole breast [5]. It also has several remarkable advantages over
traditional conventional handheld US (HHUS), such as higher reproducibility,
less operator dependence, and less required physician time. However, three to
four volumes including hundreds of slices of one breast make manual images-
reading extremely time-consuming and result in significant inter-observer vari-
ation. Designed with the intention of overcoming such limitations, automated
lesion detection in ABUS is highly expected to assist clinicians in facilitating
the identification of breast lesions.

Nevertheless, computer-aided detection (CADe) for ABUS images remains
very challenging. The low contrast of ABUS images and the blurred boundary
between the lesion and non-lesion regions make it difficult to accurately detect
lesions. The size and the morphology appearance of different lesions vary greatly
due to deformations and variations of the intensity distribution. In addition,
there is a disproportionate amount of lesions versus non-lesion regions data in
the ABUS voxels, which could cause biased predictions. Recently, there have
been a few studies which use CAD system for detection of breast lesions in
ABUS. The models can be roughly divided into two categories. The first is
based on traditional detection methods, which rely on hand-crafted pipelines of
feature extraction and techniques such as watershed [6,7], thresholding [4] and
clustering [8,9]. However, a hand-designed system is heavily constrained by the
assumptions made during feature extraction, which might be not adequate for
the detection of breast lesions, because the features are not specially designed for
the medical application. Furthermore, these methods usually depend on complex
image processing, which make them less generalizable to medical applications.
The second is based on the deep learning which learns to directly extract the
medical features. However, most of the deep learning approaches omit the spatial
distribution information of the lesions, which can cause a high false positive rate
[10]. For example, some normal areas in muscle layers are possibly predicted as
lesions because of their shape or texture similarities with the lesions, while the
lesions only appears in gland layers.

To cope with the challenges and the limitations mentioned above, we pro-
pose a new framework to segment and detect the lesions. The model is based
on the standard UNet segmentation architecture with a down-sampling and
upsampling path, where all the simply stacked convolutional layers are replaced
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with residual blocks to prevent gradient vanishing. We combine spatial informa-
tion into different layers of UNet to reduce the false positive rate. Besides, the
attention skip connection which combines the high-resolution information with
the low-resolution information is adopted to highlight possible lesion regions
and suppress unnecessary activations. Finally, considering the blurred bound-
aries between lesion and no-lesions, we adopt the sub-hard mining strategy in
loss function, which only computes the loss of the specific samples to update
the parameter of the network, in order to ensure the network learn correct
information.

To validate the effectiveness of the proposed framework, we conduct extensive
experiments on an ABUS dataset of 142 patients’ images with 375 volumes.
The experiment results demonstrate that our model outperforms all baseline
techniques, and the contributions of the paper are summarized as follows:

1. We introduce the spatial information into different layers of the segmentation
network, which significantly reduce the false positive rate.

2. The attention skip connection module is applied to generate soft region pro-
posals easily and highlight low-level features for this segmentation task.

3. We propose a new sub-hard mining strategy on both positive and negative
samples, which can address the problem of blurred annotations between the
lesion and non-lesion regions.

2 Related Work

The detection of objects of interest in medical images is a crucial part of diagnosis
and is one of the most labor-intensive for clinicians [11,12]. During the past few
years, a number of CADe approaches based on traditional machine learning
methods have been developed for ABUS lesion detection. Moon et al. developed
a CAD system based on a two-stage multi-scale blob analysis method, showed
sensitivities of 70% with 2.7 false positives (FPs) per volume [13]. Tan et al.
proposed a multi-stage system using an ensemble of neural networks to classify
breast cancers with 64% the sensitivity at 1 FPs per volume [14]. To filter false
positives caused by rib shadow under pectoral muscle layers or some normal
tissue out of the mammary gland layer, the author excludes the slices occupied by
the chestwall or the nipples. Lo et al. applied watershed segmentation to extract
potential abnormalities in ABUS and reduced FPs using various quantitative
features [15]. The sensitivities were 80% with 3.33 FPs per volume. In [4], the
fuzzy c-means clustering method was applied to detect tumor candidates from
these ABUS images. The sensitivity of the CADe system was 74.14% with 1.76
FPs per volume. Generally, those traditional methods are not robust due to the
dependence on complex image processing and specific assumptions.

Convolutional neural networks (CNNs) are currently most widely used in
medical image analysis, achieving state-of-the-art performances due to its abil-
ity to learn a hierarchical representation of the raw input data, without relying
on hand-crafted features. The first medical object detection system using CNNs
with four layers to detect nodules in x-ray images was proposed in 1995 [16].
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Ciresan et al. [17] trained a network for neuronal membranes segmentation in a
sliding-window setup to predict the class label of each pixel by providing a patch
around that pixel as input. To avoid computational redundancy, Ronneberger
et al. [18] proposed a fully convolutional network (FCN) known as UNet to
increase the efficiency by training on whole images. It produces segmentation by
pixelwise prediction rather than single probability distribution in the classifica-
tion task for each image. A similar approach was used by Cicek et al. [19] for 3D
data to get a full annotation from a sparsely annotated 3D MR volume. Milletari
et al. [20] proposed an extension of the UNet layout that incorporates residual
blocks and a dice loss layer, rather than the conventional cross-entropy so that
to minimize the commonly used segmentation error measure directly. Milletari
et al. [21], proposed a 3D-variant of U-net architecture, called V-net, performing
3D image segmentation using 3D convolutional layers with an objective function
directly based on the Dice coefficient.

More recently, some important factors that can improve the performance
of CNNs have been investigated. The ResNet architecture consists of residual
blocks was proposed by He et al. [22], which can increase the depth of CNNs and
solves the problem of gradient vanishing. The attention mechanism firstly derived
from neural machine translation [23], and then is applied in image captioning
which aims to highlight relevant activations for specific task [24]. To utilize
those effective factors and achieve better performance, we proposed a new lesion
detection system as follows.

3 Method

Our method is based on UNet. Figure 2 shows a standard UNet structure, which
consists of a downsampling path and an upsampling path with a skip connection
that concatenates the high-level and the low-level features. The image resolution
reduces by half after max pooling along the downsampling path, while the reso-
lution doubles via deconvolution operation along the upsampling path. Finally,
a softmax layer is used to transform the result into a two-class problem. We
improve UNet by replacing the simply stacked convolutional layers with residual
blocks to prevent vanishing gradient. Furthermore, the attention skip connection
is included to make the model pay more attention to useful spatial areas and
improve the ability of localization.

3.1 Feature Maps with Spatial Information

Figure 1 shows a heat map which denotes the distribution of lesions among the
ABUS images. The volumes are split along the traverse axis into 8 parts, every
subfigure indicates a part of average distribution probability. The lighter the area
is, the more possible it is that there are lesions in the corresponding regions.
The statistical results are consistent with medical knowledge that the lesions
only appear in breast gland layers rather than muscle layers or subcutaneous
fat layers. Therefore, at each resolution step, the proposed network utilizes the
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Fig. 1. The distribution probability of lesions. The lighter the area is, the higher prob-
ability there are lesions.

spatial information of ABUS images by concatenating spatial information with
the corresponding feature maps. The spatial information is calculated according
to the relative distance between every pixel and the nipple which is marked
manually.

The calculation of spatial information is shown in the formula below:

mi = (pi − oi)/w (1)

mj = (pj − oj)/h (2)

mk = (pk − ok)/z (3)

where m is the three-dimensional coordinates of each pixel, n is the coordinates
of the nipple, i,j,k correspond to different dimension, and w, h, z represent the
width, height, and length of the ABUS volume. According to the prior spatial
information, the model can learn to split the input volumes into several areas
automatically.

3.2 Residual Block

At each step of the proposed network, similarly to the approach presented in
[22], residual blocks are applied to prevent gradient vanishing. As is shown in
Fig. 3, it contains two 3 × 3 × 3 convolutional layers with stride 1, and the same
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Deconvolution (by 2)
Maxpooling  (by 2)

Skip Attention

Residual Block

Spatial Feature Map

Convolution (1,1,1) 

Input Volume Output 
Segmentation

Concatenate

Fig. 2. The network structure of our proposed framework. At each resolution step, we
concatenate a three channels spatial map with the corresponding feature map, so as to
utilize the prior information to reduce false positive rate.

padding is used to ensure the output has the same size with the input. The
reception field of two successive 3 × 3 × 3 convolutional layers is the same with
that of a 5×5×5 convolutional layer but with fewer parameters to be computed.
For the residual block we have:

Y = ReLU(W1 ∗ (ReLU(BN(W2 ∗ X)) + X) (4)

where X is the input of the residual block, W symbolizes the convolutional oper-
ation, ReLU is the non-linear function, and Y is the output. We also introduce
batch normalization (BN) [25] for faster convergence before each ReLU.

Conv 
3, 1, 1

Batch 
Norm ReLU

Conv 
3, 1, 1           YBatch 

Norm ReLUX

Fig. 3. The residual block.

3.3 Attention Skip Connection

As is shown in Fig. 4, the attention skip connection takes place of the simple
“copy and crop” approach in the UNet, which aims to teach the network to
focus on activations relevant to this segmentation task. Assuming P is the high-
resolution feature map from the down-sampling path, Q is the feature map
from corresponding up-sampling path, C is the computed context vector, in
this attention skip connection, the shape of P is twice that of Q, we have:

P
′
= W1 ∗ P (5)
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Q
′
= Upsample(W2 ∗ Q) (6)

C = Sigmod(W3 ∗ (P
′
+ Q

′
)) ∗ P (7)

Literally, the bilinear interpolation is used for up-sampling, and the sigmoid func-
tion maps the computed weight into 0–1. Every element in the context matrix
is an attention coefficient, which can identify the image regions and prune the
feature responses to preserve only the activation relevant to this segmentation
task. And the final output of the attention connection is the element-wise mul-
tiplication of the coefficients matrix and P , so that the model can learn how to
copy the more effective information from the high-resolution feature map.

W1

W2

P

Q

P'

ReLU

UpSample

W3

Sigmod

C

Convolution (1,1,1) 

Q'

Fig. 4. Attention skip connection

3.4 Sub-hard Mining

We use the cross-entropy loss function to learn to segment the lesion regions.
Since the extreme imbalance between normal regions and lesion regions, the
model tends to predict most areas as normal regions. In order to obtain better
performance, we adopt hard mining on the loss. However, the annotation bound-
aries between lesions and normal regions are usually blurred, and the hardest
pixels are near the boundaries. The existences of these pixels might make the
model thrash, especially when hard mining is used. Therefore, we propose a
sub-hard mining to alleviate this problem. During training, both the negative
and positive samples are sorted and divided into several parts according to their
predicted probability respectively. For the positive samples, those have low pos-
sibility to be 1 are excluded because most of them are near the blurred bound-
aries, and the unclear information may confuse the model. For the negative
samples, since most of them are easy to discriminate, those have a high proba-
bility to be 0 are excluded. In practice, the ratio between positive and negative
samples is 1:3.

4 Experiments

4.1 Materials

All the ABUS examinations are performed with ACUSON S2000 Automated
Breast Volume Scanner systems. This ABUS system acquires views of 154×168×
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60mm3 with a 14L5BV 5–14 MHz automatically driven high-frequency and large
footprint transducer. From May 2018 to December 2018, 142 female patients who
were detected with breast lesions by ABUS and subsequently underwent surgery
or biopsy recruited. 30 volunteer with 70 normal breast volumes were enrolled for
negative control. All the patients enrolled had definite histopathological results.
To ensure coverage of the entire breast two to four passes of scanning are per-
formed at predefined locations of each breast. Two radiologists with 3 to 6 years
of experience in breast imaging review the ultrasound images respectively and
independently. The manual delineation of lesions are done in every slice on the
axial plane of ABUS images with ITK-SNAP 31.

4.2 Data Preprocessing

The ABUS images have various resolutions and number of pixels in differ-
ent dimensions. To normally represent the actual shape and size of lesions,
we firstly normalize the pixel spacing of the ABUS volume in each direc-
tion. In our experiment, the original number of pixels in three directions
is 330 * 482 * 841, and the corresponding pixel spacings are 0.504 mm/pixel
(traverse plane), 0.082 mm/pixel (longitudinal plane), 0.200 mm/pixel (coronal
plane). After the normalization, the pixel spacings of the three directions are
adjusted to 0.5 mm/pixel by bilinear interpolation.

4.3 Implementation Details

Our proposed framework is implemented with PyTorch and trained on NVIDIA
Tesla M40 GPU. During training, in order to alleviate the computational com-
plexity in each batch and increase the augmentation, we randomly crop the
ABUS images into small patches with the size of 160 × 80 × 160, 70% of which
are lesion-centered. In addition, we adopt various data augmentations, e.g., con-
trast adjustment, rotation, cropping, flipping, especially the elastic transform
[26], which are widely used in small medical image dataset to increase the data
diversity. At test time, all the ABUS volumes are also split into many small
patches with the same size as the training phase. Then the outputs are con-
nected to reconstruct the whole volume prediction. The dataset is split into
three parts as training, validation, and test. The model achieved the best perfor-
mance on the validation set is used for testing. Adam optimizer is used to train
the whole network, and the learning rate is set as 1e-4, and training is stopped
when the model has similar performance on training and validation dataset.

4.4 Evaluation Metric

After the segmentation of the ABUS images, connected regions are generated
from the results with probability larger than a given threshold, which is set to 0.5
in our experiments. The connected regions are taken as lesion proposals. Each
1 http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage.

http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage
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proposal is considered as a True Positive (TP) if the detection center point is
placed within the ground truth bounding box. Otherwise, it is considered to be a
False Positive (FP). In this paper, the performances of lesion detection methods
in ABUS images are measured in sensitivity and False Positives per volumes
(FPs/volume):

Sensitivity =
number of TPs

number of actual lesions
(8)

FPs/volumes =
number of FPs

number of volumes
(9)

Sensitivity measures how many lesions are detected, while False Positives per
volume indicates how many useless candidates the system detects.

Fig. 5. Example results of lesion segmentation in ABUS. Top row: ABUS images in
traverse plane. Middle row: annoted groundtruth by experienced radiologists. Bottom
row: segmented probability map by the proposed attention model.

4.5 Detection Performance

We extensively compare our proposed detection framework with state of the art,
including Watershed [6], UNet [18], 3D-FCN [27]. To illustrate the efficiency of
the utilized spatial information and attention skip connection, we further con-
duct the proposed network with different versions. The four-fold cross-validation
is used to ensure the reliability of results.

Figure 5 visualizes the lesion detection results by our network. By utilizing the
proposed spatial attention and skip attention, our network can generate accurate
cancer probability maps even when the lesions are small or some mimicry tissues
exist. Table 1 lists the sensitivity and corresponding FPs per volume for different
methods. As is expected, the watershed achieved worst performance with poor
sensitivity and high false positive rate due to its requirements of complex image
processing procedure. Compared to FCN and 3D UNet, our framework signif-
icantly improve detection sensitivity while controlled false positive per volume
at 1.92. When the skip attention module is integrated into the residual network,
more candidates are detected so that both the sensitivity and FPs get higher. Yet
when the spatial information is included, our network learns to abandon some
unreasonable candidates but keeps the right predictions. In total, our network
obtained a sensitivity of 92.1% with 1.92 FPS per ABUS volume.
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Table 1. Sensitivities and corresponding FPs per volume for different methods

Method Sensitivity(%) FPs/volume

Watershed [6] 55.63 4.25

3D-Unet [18] 81.7 2.04

3D-FCN [27] 79.51 1.85

V-Net [21] 84.33 1.91

Attention-UNet 90.36 2.77

Spatial-UNet 86.74 1.89

Spatial Attention-UNet 92.1 1.92

5 Conclusion

In this paper, we propose a fast and effective 3D fully convolutional neural net-
work for the lesion detection in ABUS. In the proposed framework, we introduce
a spatial feature map in every resolution step to combine the prior medical infor-
mation with the convolution operation, thus to reduce false positive rate. Then
the skip attention is used to identify the image regions and prune the irrelevant
feature responses so as to preserve only the activation relevant to this segmen-
tation task. Furthermore, the sub-hard mining loss can alleviate the influences
caused by the data imbalance and blur boundary between lesion and non-lesion
areas. Therefore our method generates a segmentation map with higher accu-
racy. Experiments show our network obtains a sensitivity of 92.1% with 1.92 FPs
per ABUS volume. Our framework can provide a steady, accurate and automatic
cancer detection tool for breast cancer screening by maintaining high sensitivity
and low FPs.
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Abstract. The prediction of essential proteins in protein-protein interaction
(PPI) networks plays a pivotal part in improving the cognition of biological
organisms. This study presents a novel computational technique, called EPIA, to
discover essential proteins by employing immune algorithm. In EPIA, each
antibody denotes a candidate essential protein set, which is initialized in a
random way among all proteins in a PPI network. Then the vaccine is extracted
based on the prediction results of the existing essential protein identification
methods. Next, EPIA utilizes four operators, crossover, mutation, vaccination
and immune selection to update the antibody population and search for the
optimal candidate essential protein set. The experimental results on two species
(Saccharomyces cerevisiae and Drosophila melanogaster) demonstrate that
EPIA can obtain a better performance on identifying essential proteins compared
to other existing methods.

Keywords: Essential protein detection � Immune algorithm � PPI network �
GO annotation

1 Introduction

Essential proteins are known to be the structural and functional foundation of biological
organisms. Studying essential proteins assists in revealing the molecular mechanisms
and biological processes. Essential protein detection using experimental methods is time
consuming and costly. With the rapid advance of high-throughput experimental tech-
nologies, a huge volume of protein-protein interaction (PPI) data can be collected. As a
result, discovering essential proteins by utilizing computational methods has become a
hot spot in proteomics. Hitherto, various computational approaches have been proposed
to detect essential proteins, and the existing works could be divided into two categories:
the network topology-based approaches and the information fusion-based approaches.

Proteins in cells interact with each other and construct a PPI network [1]. Jeong
et al. proposed the centrality-lethality theory [2], which declared that those proteins at
the central position of a PPI network are more apt to express essentiality. Based on this,
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a series of topological centrality measures have been applied to essential protein pre-
diction, such as Degree Centrality (DC) [3], Betweenness Centrality (BC) [4], Close-
ness Centrality (CC) [5], Eigenvector Centrality (EC) [6], Information Centrality
(IC) [7] and Subgraph Centrality (SC) [8]. Moreover, Edge Clustering Coefficient
Centrality (NC) [9] and Local Average Connectivity (LAC) [10] are also effective
computational techniques based on network topology. All these approaches score
proteins according to their centralities in PPI networks and then use the ranking scores
to measure protein essentiality.

To improve the accuracy of essential protein prediction, several multi-information
fusion measures have been presented, among which the topological properties of PPI
networks are integrated with various types of biological information, such as gene
expression profiles (PeC [11] and WDC [12]), protein domains (UDoNC [13]), gene
ontology (GO) terms (TEO [14]), protein complexes (UC [15] and LBCC [16]), sub-
cellular localization (CIC [17] and SON [18]) and orthologous protein information
(ION [19]). Taking into account the high false positives and false negatives contained
in PPI networks, some researchers made efforts to enhance the reliability of PPI net-
works by combining topological and biological properties. Xiao et al. constructed a
noise-filtered active protein interaction network (NF-APIN) by using gene expression
data and static PPI network [20]. Luo et al. integrated the time-course gene expression
data and the PPI data to build a dynamic PPI network [21]. Li et al. refined PPI network
by using gene expression profiles and subcellular location information [22]. Extensive
experimental results show that the integration of PPI network and some biological data
can contribute to a better prediction of essential proteins in comparison to those pure
topological centrality measures.

Although the above computational approaches have made some progress, there are
still great room for accuracy improvement in essential protein prediction. In addition,
most of the existing methods follow the rule of scoring and sorting based on a certain
centrality measure, which are not always effective and reliable.

In this study, we take the process of essential protein detection as an optimization
problem and propose to tackle it with a novel approach EPIA based on immune
algorithm (IA) [23]. IA is a heuristic search algorithm, which is inspired by the
immunity mechanism in biology. Compared to other nature inspired algorithms, IA is
capable of solving optimization problems with higher stability and faster convergence
rate by performing immune operator [24]. In the EPIA approach, an antibody repre-
sents a candidate essential protein set, and the vaccines are extracted on the basis of the
prediction results of the existing method WDC. The update process of antibody pop-
ulation consists of crossover, mutation, vaccination and immune selection. When the
algorithm achieves convergence, those proteins forming the antibody with the best
fitness value are considered as detected essential proteins. We apply our proposed
EPIA algorithm on two species (Saccharomyces cerevisiae and Drosophila melano-
gaster) using three different PPI networks (DIP, Krogan and HINT), and compare it
with several existing classical methods including DC, SC, IC, LAC, NC, WDC, CIC,
PeC, UDoNC and LBCC. The experimental results indicate that the performance of
EPIA algorithm outperforms those of other competing methods.
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2 Methods

2.1 Immune Algorithm

Immune Algorithm (IA) is a heuristic search algorithm that mimics the mechanism of
antigen recognition and antibody reproduction in immune system [23]. IA assumes the
problem that needs to be optimized as an antigen and its candidate solutions as anti-
bodies, therefore the optimization target is searching for the antibody that has the highest
affinity for the antigen [23]. IA introduces the immune operator into classical Genetic
Algorithm (GA). In IA, genetic operators guarantee the diversity of antibodies; vacci-
nation improves the fitness of antibody population; and immune selection effectively
prevents the degeneration of population. The flowchart of IA is shown as Fig. 1 [24].

2.2 Initialization

In this step, initial antibody population whose number isN are generated randomly. Each
antibody is a candidate set of essential proteins and consists of p different proteins. An
antibody can be encoded as a p-dimensional integer set Ai = {ai1, ai2, …, aij, …, aip}
(i = 1, 2,…,N; j = 1, 2,…, p), where each of these elements denotes the serial number of
a protein in a PPI network. The affinity for the ith antibody can be calculated by Eq. (1).

Aff ið Þ ¼
Xp

j¼1

X
vk2Nj

Sjk � Fjk
� �� �

ð1Þ

Fig. 1. The flowchart of the Immune algorithm
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where Sjk and Fjk represent the structural similarity and functional similarity between
protein vj and vk, which can be calculated by Eq. (2) [25] and Eq. (3) [26], respec-
tively. vk is the direct neighbor of vj, Nj is the set of neighbors of protein vj.

Sjk ¼ C jð Þ \C kð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C jð Þj j � C kð Þj jp ð2Þ

where C jð Þ is a set of the neighborhood proteins of proteins vj plus itself, and C jð Þj j is
the size of this set.

Fjk ¼ G jð Þ \G kð Þj j
G jð Þ [G kð Þj j ð3Þ

where G jð Þ and G kð Þ are the GO term sets that annotate proteins vj and vk , respectively.

2.3 Vaccine Extraction

In the basic IA, the vaccine operation is introduced to solve the potential degradation
caused by crossover and mutation. In our EPIA algorithm, the vaccine is extracted on
the basis of the identification results of WDC [12], which is an effective method for
predicting essential proteins. The WDC value for a protein vj can be calculated by
Eq. (4).

WDC jð Þ ¼
X

vk2Nj
k� ECCjk þ 1� kð Þ � PCCjk
� � ð4Þ

where Nj is the set of neighbors of protein vj, and ECCjk and PCCjk represent the edge
clustering coefficient and Pearson correlation coefficient of the interaction between
protein vj and vk, respectively. The parameter k uses the default value 0.5 set by the
authors. Then we rank all the proteins in descending order according to their WDC
values and select the p top-ranked proteins as vaccine. That is to say, the number of
proteins contained in the vaccine is the same as that of an antibody.

2.4 The Process of Reproduction

Genetic Operation. The genetic operation includes crossover and mutation. Unlike
the traditional crossover operator adopted by many evolution algorithms, which
exchanges partial fragment between two selected parent individuals, in EPIA algo-
rithm, we select a proportion of antibodies with higher affinity values as crossover
templates to update those antibodies with lower affinity values. The modified crossover
operator can effectively speed up the convergence. After crossover, the antibody
subsequently will be further updated by mutation based on the mutation rate. Genetic
operation is shown in Algorithm 1.
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Immune Operation. The core of the IA lies on the conformation of immune operator
that is realized by means of vaccination and immune selection. The immune operation
is capable of effectively improving the fitness of antibody population. In the EPIA
algorithm, the vaccination is performed by injecting the vaccine extracted based on the
WDC method into those antibodies which have undergone crossover and mutation
operation. Furthermore, to prevent the degeneration of antibody population, the
immune selection is implemented after these operations above. Immune operation is
shown in Algorithm 2.

With all the steps above, EPIA generates a new descendant. Repeat the above process
until the termination condition of algorithm is reached. The pseudocode of EPIA
algorithm is shown in Algorithm 3.
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After the running of the algorithm EPIA, the antibody with the highest affinity
value can be obtained, in which all proteins are deemed to be detected essential
proteins.

3 Experiments and Discussion

3.1 Experimental Data

In this study, all the computational experiments and result analysis have been imple-
mented on two species, including two Saccharomyces cerevisiae data, namely DIP [27]
and Krogan [28], and one Drosophila melanogaster data, HINT [29]. The DIP PPIs
were downloaded from DIP database (http://dip.mbi.ucla.edu/dip/). The Krogan PPIs
were obtained from the BioGRID database version 3.4.142 [30]. HINT (High-quality
INTeractomes) is a curated compilation of high-quality protein-protein interactions
from 8 interactome resources (BioGRID, MINT, iRefWeb, DIP, IntAct, HPRD, MIPS
and the PDB). After pretreatment, DIP dataset included 5093 proteins and 24743
interactions, Krogan dataset included 2674 proteins and 7075 interactions, HINT
dataset contained 7285 proteins and 24436 interaction. The GO annotation data of
Saccharomyces cerevisiae and Drosophila melanogaster were derived from (http://
www.yeastgenome.org/download-data/curation) and the COMPARTMENTS database
(April 6, 2017), respectively. The essential proteins were collected from four databases,
MIPS [31], SGD [32], DEG [33] and OGEE [34]. There are 1285 essential proteins for
Saccharomyces cerevisiae in total, among which 1167 and 784 essential proteins
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appear in DIP dataset and Krogan dataset, respectively. For Drosophila melanogaster,
the number of essential proteins is 408, and 261 essential proteins can be mapped to the
HINT dataset.

3.2 Comparison with Other Methods

In order to evaluate the effectiveness of our EPIA algorithm, we compare it with ten
other typical methods, including five topology-based centrality measures (DC, SC, IC,
LAC and NC) and five information fusion-based centrality measures (WDC, PeC, CIC,
UDoNC and LBCC). The method UDoNC and LBCC are only executed on DIP
dataset as mentioned in their papers [13, 16] due to the unachievable source code and
relevant data corresponding to them. The comparison of histograms of different
methods on three different datasets are shown in Figs. 2, 3 and 4, which intuitively
visualize the proportion of essential proteins in top ranked proteins for all methods. For
the three datasets, we set N = 100, a ¼ 0:03, b ¼ 0:5, Pcross = 0.5, Pmutate = 0.99,
Pvaccine = 0.2, mp = 0.01, and p is set as 1, 5, 10, 15, 20 and 25 percent of the
quantities of proteins in a certain PPI network, respectively. As can be seen from these
figures, no matter which PPI network is used, the EPIA algorithm always has an
obvious superiority compared to the five topology-based centrality methods, all of
which depend on the topology properties and fail to take the biological properties into
account. Furthermore, EPIA also performs better than the other five information fusion-
based centrality methods. Specifically, the more candidate proteins are selected, the
more obvious the advantage that EPIA has in the identification of essential proteins.

Fig. 2. Comparison of the number of essential proteins detected by EPIA and other methods on
DIP dataset
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3.3 Assessment Using Statistical Measures

To further evaluate the detection performance of EPIA, we make a comparison between
EPIA and other methods by applying six statistical measures, including sensitivity
(SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV),
F-measure (F) and accuracy (ACC), which have been extensively used for the evalu-
ation of essential protein prediction in previous studies [16]. The comparison results in
terms of the six statistical indicators are shown in Table 1. It is obvious that our EPIA
algorithm obtains an excellent performance on the six statistics, all of which are higher
than those of any other methods on three different datasets.

Fig. 3. Comparison of the number of essential proteins detected by EPIA and other methods on
Krogan dataset

Fig. 4. Comparison of the number of essential proteins detected by EPIA and other methods on
HINT dataset
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4 Conclusions

In this study, we develop a novel EPIA algorithm that employs the immune algorithm
to detect essential proteins from PPI networks. In the EPIA, each antibody denotes a
candidate essential protein set and the whole algorithm consists of population initial-
ization, vaccine extraction, genetic operation and immune operation. Finally, upon
termination of the algorithm, those proteins contained in the optimal antibody are
considered as the detected essential proteins. Experimental results over three datasets
have demonstrated that our EPIA algorithm has the superiority compared with other
methods and can detect essential proteins more effectively and accurately.

Table 1. Comparison of the values of SN, SP, PPV, NPV, F and ACC for EPIA and other
methods

Dataset Methods SN SP PPV NPV F ACC

DIP DC 0.4293 0.8031 0.3932 0.8256 0.4105 0.7175
SC 0.4002 0.7944 0.3666 0.8167 0.3827 0.7041
IC 0.4319 0.8039 0.3956 0.8264 0.4130 0.7186
LAC 0.4730 0.8161 0.4333 0.8390 0.4523 0.7375
NC 0.4670 0.8143 0.4278 0.8371 0.4465 0.7347
WDC 0.4901 0.8212 0.4490 0.8442 0.4687 0.7453
PeC 0.4225 0.8011 0.3870 0.8235 0.4040 0.7143
CIC 0.4859 0.8199 0.4461 0.8429 0.4652 0.7434
UDoNC 0.4910 0.8214 0.4498 0.8445 0.4695 0.7457
LBCC 0.5201 0.8301 0.4765 0.8534 0.4973 0.7591
EPIA 0.5613 0.8423 0.5141 0.8659 0.5367 0.7779

Krogan DC 0.4056 0.8143 0.4753 0.7676 0.4377 0.6945
SC 0.3469 0.7899 0.4066 0.7446 0.3744 0.6601
IC 0.4005 0.8122 0.4694 0.7656 0.4322 0.6915
LAC 0.4145 0.8180 0.4858 0.7711 0.4473 0.6997
NC 0.4120 0.8169 0.4828 0.7701 0.4446 0.6982
WDC 0.4235 0.8217 0.4963 0.7746 0.4570 0.7049
PeC 0.4043 0.8138 0.4738 0.7671 0.4363 0.6937
CIC 0.4426 0.8296 0.5187 0.7820 0.4776 0.7162
EPIA 0.4949 0.8513 0.5800 0.8025 0.5341 0.7468

HINT DC 0.3563 0.7540 0.0511 0.9693 0.0894 0.7397
SC 0.3142 0.7524 0.0450 0.9672 0.0787 0.7367
IC 0.3487 0.7537 0.0500 0.9689 0.0875 0.7392
LAC 0.2605 0.7504 0.0373 0.9647 0.0653 0.7329
NC 0.2605 0.7504 0.0373 0.9647 0.0653 0.7329
WDC 0.2146 0.7487 0.0308 0.9625 0.0539 0.7296
PeC 0.1916 0.7479 0.0275 0.9614 0.0481 0.7279
CIC 0.3928 0.7553 0.0560 0.9709 0.0980 0.7422
EPIA 0.4100 0.7560 0.0588 0.9718 0.1028 0.7436
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Abstract. Investigating the evolution of complex diseases through dif-
ferent disease stages is critical for understanding the root cause of these
diseases, which is fundamental for their accurate prognosis and effective
treatment. There have been numerous studies that have identified many
single genes, static modules and individual pathways related cancer pro-
gression, but few attempt has been developed to identify specific genes and
pathways interactions related individual disease stages via data integra-
tion. To address these issues, we have proposed a general working flow, to
reveal disease stages dynamics by joint analysis ofmulti-level datasets.Our
contribution is two-fold. Firstly, we present a classical regression method
to identify stage-specific cancer genes, where the gene expression and DNA
methylation datasets are integrated. Secondly, we construct a pathway
evolution network, which considered interactions among specific mapped
pathways and their overlapped genes. Interestingly, the potential discov-
ered biological functions from this network together with the common
bridges and genes, not only help us to understand the functional evolution
and dynamics of complex diseases in a more deep fashion, but also useful
for clinical management to design customized drugs with more effective
therapy.
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1 Introduction

Complex diseases, such as cancers, are kinds of evolutionary diseases [1–3], which
involve successive stages from early initiation to advanced end-stages. Determin-
ing the possible biological changes associated with these stages is necessary for
understanding the progression of many diseases, thereby specifying their best
treatment strategy. Take the colorectal cancer for example, these stages can be
classified generally into four phases based on their level of extension, lymphatic
involvement and metastatic features. Specifically, stage I refers to a tumor of
small size confined to the organ of origin; stage II describes the disease that has
locally advanced beyond the site of origin; stage III characterize the disease that
has spread to the neighboring organs, and stage IV represents distant metastatic
disease. Here, cancers at early stages (stage I or II) are usually considered cur-
able and might only need an active surveillance compared to advanced stages
(stage III or IV) which might require more radical and active treatment.

Therefore, there was a critical need to characterize the dynamics associated
with these stages through extraction of reliable biomarkers, which generally
involve stage-specific cancer genes, dynamic modules and pathway dysregula-
tions [4–7].

With the recent developments on biological technologies and accumulation of
large amounts of omics-data, it has become more easy to investigate the dynam-
ics of many genes and pathways involved in diseases [8–10]. Furthermore, the
international consortia, such as The Cancer Genome Atlas (TCGA) [11], have
generated several large-scale cancer datasets and samples with various clini-
cal/pathological stages on, for example gene expression, DNA methylation and
Copy number variation (sCNA) together with clinical data, which also provides
a great opportunity to discover more robust predictive signatures for diseases.
Each of these genomic data have been widely used in many contributions, to
resolve many issues, but most of them focused on single genes, pathways and
static networks, which cannot fully reveal the dynamics of the molecular events
and patterns related to most human diseases including cancers. Since cellular
functions related-cancers are mediated through complex systems interconnected
by physical interactions [12,13]. In fact, these complex systems require (1) the
integration of diverse types of data over the genomic, epigenetic, transcriptome
and metabolome levels with interaction networks, for an unprecedented number
of patients, and (2) a large number of samples with various stages, taking into
account the considerable associations that can be made between their genomic
profiles, clinical parameters, modules and pathways [14–20]. To might get a more
comprehensive view of biology and specifically to cancer evolution or transition.

Fortunately, network/pathway analysis has been proved to be an effective way
to elucidate the biological features and molecular interactions that underlie each
stage of disease progression. Where each node can represents a gene or pathway
and each edge corresponds to an interaction between a pair of genes/pathways.
In this field, a considerable number of biological networks have been studied, but
unfortunately in a static context including gene regulation networks [21], protein-
protein interaction (PPI) networks [22] and disease networks [23]. In addition,
the pathway interaction network has recently confirmed to be a powerful tool
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in interpreting how gene perturbations can lead to disease [24,25]. Specifically,
across multiple stages, further shedding lights on the action mechanism on how
cellular systems functions operate [26].

Notably, and in a dynamic context, extracting pathway sub-networks, taking
interactions among specific pathways across specific stages. Different findings
can be captured such as (1) predicting the real evolution of complex diseases,
(2) understating the biological function role of the involved key genes and (3)
exploring the relations between the predicted cellular functions through their
common bridges and genes.

In this study, we proposed to investigate a general working flow that addresses
2 major issues concerning the staging evolution processes of complex diseases,
which including: (1) the identification of stage-specific cancer related genes, (2)
the extraction of stage-specific pathways and generation of their pathway inter-
action sub-network. The sections of this study are organized as follows: The
methods and related materials are presented in Sect. 2. The experimental results
are discussed in Sect. 3. The conclusion is provided in Sect. 4.

2 Materials and Methods

2.1 Data Collection and Preprocessing

Level 3 open access data for clinical and genomic datasets was accessed on 2016
from the Broad Institute of Harvard and MIT’s FireBrowse (http://firebrowse.
org/). These datasets include clinical data, gene expression and DNA methyla-
tion profiles for the same group of patients. The patient’s samples were grouped
into 4 stages based on clinical information, with a total size of 219 samples. The
summarized information can be found in Table 1.

Table 1. Summary of the incorporated datasets informations from TCGA.

Data type Platform Samples

Gene expression UNC-AgilentG4502A 219

DNA methylation JHU-USC-HumanMethylation27 219

Clinical data - 219

At the same time, pathway data were extracted from the Reactome database
(http://www.reactome.org), which is an online curated resource and peer-
reviewed knowledgebase of human reactions and pathways. As pathways with
less genes may not have sufficient biological information, we generated a set of
pathways by discarding the ones with one gene in this study. Overall, we ended
up with 269 informative pathways.

To also enhance the quality of the obtained datasets more accurate, standard
preprocessing steps were conducted. Further, for initially measured gene sets of
both gene expression and DNA methylation profiles, which contain 17505 gene
expressions and 26224 DNA methylations, we only consider the intersection of

http://firebrowse.org/
http://firebrowse.org/
http://www.reactome.org
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the two measured gene sets. Moreover, genes with missing values, such as NA
or NULL, were removed, and methylation CpG loci that related to multiple
genes were shared equally for those genes. Ultimately, a set of 12586 genes were
obtained and used for subsequent regression analysis. In addition, for clinical
data, where the clinical stage information for patients was available, we only
adopt the “pathology t stage” parameter, which describes the anatomic extent of
the cancer at the time of diagnosis for individual samples (t1, t2, t3 and t4). These
pathological variables were converted into binary values for further analysis. For
the sample selection, we count the number of patients across these pathological
stages, and a total of 219 samples are obtained and considered in this study. The
work flow of the whole process and analysis implemented is shown in Fig. 1.

Fig. 1. Workflow of the overall defined stage-specific cancer genes and pathways in the
evolution process based-pathological staging.

2.2 Stage-Specific Related Gene Identification

The first essential step to investigate the evolution progress of complex diseases
is to identify signature genes for individual stages. Various penalized methods
have been proposed in this regard, and we here consider the elastic-net method.

The elastic-net [27] is a widely used classical penalized regression approach
to deal with high-dimensional models with a large number of parameters. This
penalization can model more than one type of omics data, execute variable selec-
tion and parameter estimation, thus reducing the computation time. Interest-
ingly, it has already been applied to GWAS studies [28–30] as well as in the
context of integrative studies [31] and clinical findings [32,33].
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Consider the standard linear regression model with generally y response vari-
ables and x standardized predictors defined by:

B = ‖Y − Xβ‖2. (1)

where β = (β1, β2, . . . , βn)T is the coefficient vector for all predictors.
The problem of stage-specific related gene identification is to detect a set of

genes that minimize this standard objective function based on two preliminaries
parameter: m samples (patients) and n features (gene expression or methylation
profiles). Where, the feature matrix can be denoted as a m×n dimension matrix
X. Given a m dimension label vector Y (pathology stage labels).

Since, the Elastic-net penalty used here is a convex combination of the Least
Absolute Shrinkage and Selection Operator (LASSO) and ridge penalties, for
the model described above, we estimate the parameters β by the following opti-
mization problem equivalent to:

̂B = ‖Y − Xβ‖2 + λ1|β| + λ2‖β‖2. (2)

or

̂B = argmin
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where λ1, λ2 are the penalty parameters related to LASSO and ridge penalty,
respectively.

In this study, the gene expression profiles and the DNA methylation informa-
tion were integrated to form the feature matrix X, and four binary stage-specific
label vectors Yt, t = 1, 2, 3, 4 were employed to identify disease related genes for
individual stages, respectively (where an element in Yt represents if that sample
was recognized as the tth pathology stage in the clinical dataset).

The objective function (3) was implemented in Matlab R2015a with the
tuning parameter λ1 = λ2 = 0.5. The fitted least-squares regression coefficients
were used for gene selection. Giving a pair of X and Yt, the Matlab program
calculated the fitted coefficients at around 50 times (automatically determined by
Matlab). At each time, a set of signature genes could be selected, and we finally
selected all the genes determined across all the times of calculation. Remarkably,
50 times produce 323 genes in this study. More details are shown in Table 2, which
summarizes the times of running and the total number of selected genes at each
time of calculation across the 4 pathology stages.

2.3 Stage-Specific Pathways Extraction

The stage-specific genes obtained at every pathology stage were then aligned to
pathways from the Reactome pathway database. Totally, 1450 pathways were
collected from this database, including 361 pathways from Pathology t1, 376
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pathways from Pathology t2, 362 pathways from Pathology t3 and 351 pathways
from Pathology t4.

Since the same gene can be mapped to different pathways and different
pathways would have a different number of genes. At every pathology stage,
only pathways with a gene set size greater than one were reserved as the
study objectives owing to the fact that some pathways with considerably less
genes may have insufficient biological information [34]. Hence, a total of 478
(t1 = 121, t2 = 124, t3 = 117, t4 = 116) pathways were collected as shown in
Table 2. Finally, the duplicated pathways among 478 were filtered out, and thus
only 269 extracted pathways were considered as our stage-specific pathways or
seed pathways, and regarded for further analysis.

2.4 Pathway Interaction Network Construction

Once the signature genes were identified for each stage, and their specific Reac-
tome pathways were extracted and integrated. We then pooled these pathways
altogether, unify their terms and get their official annotated pathway descriptions
from the database. Next, a complete pathway evolution network was constructed
with each node representing a specific pathway, where one edge was laid between
two pathways if they share common genes.

The pathway network would serve as a better aspect to show the dynamic
evolution processes of the interested disease, since we can use the color of indi-
vidual vertices to indicate their pathology stage, and the width of edges can
show the overlapped score between two pathways. Here, the overlap score was
calculated as follows

W =
k2

p ∗ q
. (4)

where k is the number of the overlapped genes between a pair of pathway Pi and
pathway Pj , p and q are the total numbers of genes in Pi and Pj , respectively.

Notably, to uncover the biological significance of the generated evolution
network, only a sub-network of 29 pathways were considered and validated.

3 Results and Discussion

3.1 The Number of Stage-Specific Related Genes

In this contribution, we used elastic-net regression to estimate an optimal mul-
tiple linear regression of the pathological outcome on the space of genomic fea-
tures. Taking the advantage of the geometric sequence of its generated models,
we therefore selected all the genes that were detected by all these models. These
seed genes robustly delineate early and advanced pathological stages. Table 2
summarized the overall number of genes selected at different stages. To be more
specific, stage t1 has obtained 321 genes from 51 models; stage t2 has obtained
297 genes from 48 models; stage t3 has obtained 317 genes from 45 models,
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and finally stage t4 has obtained 323 genes from 50 models, respectively. All of
these potential biomarker genes were well characterized the dynamics of the 4
pathological stages, due to their possible role in cancer progression.

Table 2. The overall number of genes and pathways detected. This table illustrated the
number of the generated models resulted at each pathology stage, their total number
of genes and the corresponding aligned pathways.

Stages Models# Detected# of genes # of aligned pathways

Pathology t1 51 321 121

Pathology t2 48 297 124

Pathology t3 45 317 117

Pathology t4 50 323 116

3.2 Dynamic Pathway Interaction Network Generation and
Visualization

We built the informative pathway evolution network relying on the different
interaction dependencies between specific pathways related to disease-stages. It
comprised of 269 nodes and 2187 edges. Subsequently, the network was imported
into Cytoscape, an open source for visualizing molecular interaction networks
and integrated data. Different colors (green, blue, orange, red) were used to
highlight the important evolved pathways indicating their evolution through the
4 pathology stages, whereas the connections width denoted the overlapped score.
These further details are depicted in Fig. 2.

3.3 Pathway Interaction Sub-network Construction

To determine the most important and strongly connected related pathways about
cancer evolution, we extracted a minimum set of pathways and the corresponding
sub-network from the pathway evolution network. We employed two conditions
for the accurate selection: pathways with a considerable number of overlapped
genes between or within the 4 pathological stages. As a result, we ended up
with 29 seed pathways. These seed pathways are available in the supplemen-
tary material (see S1 Table) with extra informations (detected genes count and
official pathways genes count with their 3 level names), and the sub-network is
shown in Fig. 3.

3.4 Pathways-Specific Functions to Genes Evaluation

The analysis showed that the pathological-stages specific pathways and genes
obtained in this study were successfully involved in many critical cellular func-
tions related to cell cycle, disease, gene expression, Immune system and signal
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Fig. 2. Pathway interaction network (Color figure online)

transduction. More specifically, we show how the different discovered functions
connected with each other and how the involved genes related stages act in these
functions.

Among these functions, cell cycle was the most activated here including (1)
separation of sister chromatids, (2) condensation of prophase chromosomes and
(3) meiotic recombination. As it highly connected with developmental biology,
chromatin organization and cellular responses to external stimuli, crossing com-
mon bridges and sharing common genes. This is in accord with the established
paradigm that the dysfunction of cell cycle regulation is the primary cause of
tumor development leading to DNA division and replication [35].

Moreover, another worthy mention function named Disease included Con-
stitutive signaling by aberrant PI3K in cancer have also connected with
signal transduction which in turn included RAF/MAPK cascade. Where,
Phosphatidylinositol-4,5-bisphosphonate 3-kinase (PI3K) plays a crucial role in
the pathogenesis of many cancer types, including colorectal cancer, and serves as
a major therapeutic target in controlling cancer progression. It has the potential
to identify predictive biomarkers for response to treatments, and to guide the
development of targeted therapies for precision medicine. Additionally, MAPKs
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Fig. 3. Stages pathway interaction sub-network (Color figure online)

mediate intracellular signaling and are involved in diverse cellular processes that
include cell proliferation, differentiation and apoptosis. As such, they are impli-
cated in cancer development and progression. Whereas, the RAF proteins acti-
vate the MAPK pathway where inappropriate and/or persistent activation leads
to abnormal differentiation, proliferation, apoptosis and cancer development [36].

4 Conclusions

The mechanism of complex diseases evolution is too complex to be revealed by
only one type of genomic data, single genes and individual pathways.

There are considerable changes that happened across different disease types
and individual disease samples, owing to the fact that no disease directly end
up with a mortal situation. A complete understanding of these underlie changes
associated especially with cancers is essential to identify potential therapeutic
options and vulnerabilities.

In the present study, we tried to address these issues more deeply by using
many strategies. Therefore, to get a better biological and clinical insight into the
progression of cancer diseases, interestingly through pathological staging mech-
anism. These strategies including multi-omics data integration, specific genes
identification at specific stages, pathway interaction network generation rather
than gene networks, seed pathways-related stages selection, and finally specific
functions interpretation.

To the end, the biological findings confirmed the efficacy of the proposed
work, highlighting how specific indicators at specific pathological stages may
help improve clinical research endpoints and ultimately aid in clinical utility.
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Abstract. The genomic coverage of copy number variations (CNVs) ranges
from 5% to 10%, which is one of the essential pathogenic factors of human
diseases. The detection of large CNVs is still defective. However, the read
length of the third-generation sequencing (3GS) data is longer than that of the
next-generation sequencing (NGS) data, which can theoretically solve the defect
that the long variation can’t be detected. However, due to the low accuracy of
the 3GS data, it is difficult to apply in practice. To a large extent, it is a
supplement to the NGS data research. To solve these problems, we developed a
new mutation detection tool named AssCNV23 in this paper. Firstly, this tool
corrects the 3GS data to solve the problem of high error rate, and then combines
the results of a variety of mutation detection tools to improve the accuracy of the
initial mutation set and to solve the detection bias of a single detection tool. At
the same time, the high-quality 3GS data was introduced by AssCNV23 to guide
the NGS data to assemble, and then detects the CNV after getting enough length
data. Finally, to improve the detection efficiency, the tool generates images
containing the sequence depth information based on the read depth strategy and
uses the convolutional neural network to detect the existing CNVs. The
experimental results show that AssCNV23 guarantees a high level of breakpoint
accuracy and performs well in identifying large variation. Compared with other
tools, the deep learning model has advantages in accuracy and sensitivity, and
Matthew correlation coefficient (MCC) performs well in various experiments.
This algorithm is relatively reliable.

Keywords: NGS � 3GS � Assembly � Integrated detection � AssCNV23

1 Introduction

Copy Number Variation (CNV) is an integral part of Structural Variations (SVs). It
refers to submicroscopic variations in the size of the genomic fragment, ranging from
kb to Mb, including single-segment deletion and duplication, and complex SVs derived
from each other [1, 2]. The coverage of CNV on the genome reaches 5% to 10%, which
is much higher than that of single nucleotide variation (SNV). Being one of the most
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critical pathogenic factors of human diseases, CNV has been confirmed to be associ-
ated with many complex disorders: neonatal seizures are associated with intellectual
development and the whole-gene duplication of SCN2A and SCN3A [3, 4]. Moreover,
CNV is one of the most important types of variations in the cancer genome. CNV on
GSTM1 increases the incidence of bladder cancer [5], and CNV affects susceptibility
genes for breast and ovarian cancers [3]. Because of the association of CNV and
diseases, the accurate detection for CNV within the whole genome is of great
significance.

Now the most commonly used sequencing technology is the next-generation
sequencing (NGS) technology, also known as high-throughput sequencing technology.
Since its appearance in 2004, after continuous technological improvement [6] and other
sequencing technology development, it has far exceeded the Sanger sequencing tech-
nology regarding cost reduction and throughput enhancement [7], and completely
changed DNA sequencing. But the length of the read that NGS technology produced is
short, which makes genomic assembly and related genetic structural function analysis
difficult. Theoretical studies have shown that reducing the length of reads from
1,000 bp to 100 bp may result in a six-fold or more reduction in gene fragment
continuity [8]. The third-generation sequencing (3GS) technology, represented by
PacBio, uses Single Molecule Real Time (SMRT) DNA Sequencing technology [9] to
solve the problems in NGS technology. The emergence of long read provides new
ideas for solving the complex repetitive sequence problems in NGS data and the
problem of assembling the whole genome. The advantage of the 3GS data is that it
generates long read, far exceeding that of the Sanger sequencing technology and the
next-generation technology. However, the 3GS technology still has defects, the average
accuracy of reads is only 82%–85% [10]. This high error rate makes the mapping
between the various reads more complicated.

2 Methods

Given the shortcomings of the existing sequencing errors of the 3GS data, combined
with the advantages of the NGS data, we propose a method to correct the 3GS data
using the NGS high-quality data. And CNV detection of the NGS data using multiple
detection tools can compensate for the detection bias of single tool and obtain high-
quality mutation breakpoints. The read where the mutation breakpoint is located is
screened out from the NGS data, and it is assembled under the guidance of the 3GS
data, taking advantage of the long reading length of the 3GS data. The results after
assembly are analyzed to find out the variation of copy number. Combined with the
read depth strategy, the number of copies of each site is estimated, and the pictures that
contain the number of copies are generated for deep learning training. We have inte-
grated the above methods and compiled a set of tools for detecting CNVs, named
AssCNV23. Its workflow mainly includes the following four parts: the first step is to
correct the third generation sequencing data to obtain high-quality third generation
data. In the second step, multi-tool ensemble detection is carried out for the NGS data
to get highly reliable mutation site information and select read sets with mutation sites.
In the third step, under the guidance of the high-quality 3GS data with long read, read
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collections with long CNV can be obtained by assembling the selected reads. In the
fourth step, using the read depth strategy to count the number of copies and generate
pictures for training to get a model to detect CNVs.

2.1 3GS Data Corrected

The 3GS data were adjusted using the developed tool Cor3GS. The schematic diagram
of the operation process is shown in Fig. 1. The specific method is as follows:

(a) Data format conversion module: remove the low-quality read and the adapter
read of the original 3GS data, and then converted into .fasta format data and saved
and indexed as a reference genome for the NGS data.
(b) DNA mutation detection module: using the bwa-mem algorithm mapping the
NGS data to the 3GS data, and get the BAM file. According to the sequence quality
information in the BAM file, remove the low-quality sequence, and then perform
the sequence deduplication. Since there is a large number of base mismatches near
Indel, it is easy to be considered as the wrong base generated by the sequencing
error in the calibration process. So it is necessary to perform Indel Realigner on the
de-duplicated file to minimize the error rate. It is necessary to re-correct the base
quality value of the reads in the BAM file, so that the quality value of the reads in
the final output BAM file is close to the actual value. Using DNAseq to obtain the
variation information between the NGS data and the 3GS data, which is the location
of the sequencing error existing in the 3GS data.

Fig. 1. An overview of the AssCNV23. AssCNV23 takes both advantages of NGS data and
3GS data, using assembly-based and read depth strategy to improve the detection accuracy and
sensitivity.
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(c) Base correction module on mapping region: extract the name and the mutation
site and the base sequence of this site in 3GS data and the base sequence of this site
in NGS data, these four columns data are stored. Each sequence is replaced
according to the third and second base sequences of each variant site, and the third
generation base sequence is replaced with the next-generation base sequence to
complete the correction of the 3GS data (Fig. 2).

2.2 Multiple Tools for Detecting Copy Number Variation

Experiments were performed using the currently favorite tools for detecting CNV,
include BreakDancer, CNVnator, FREEC, DELLY Pindel. For their detection results,
only DEL and DUP with a length greater than 1000 bp were analyzed. Calculate the
accuracy and sensitivity of the test results. Set two thresholds e = 0.4 and m = 2000,
indicating that the deviations of the two detected breakpoints with the benchmark data
did not exceed 2000 bp and 40% of the variable length; such breakpoints were con-
sidered as true positive. Under this set of thresholds, if at least three tools have a
sensitivity higher than 0.45 and an accuracy greater than 0.4, their detection results are
combined into candidate variation breakpoints. Otherwise, the program will divide the
genome by a fixed length to obtain the variant breakpoint candidates.

2.3 Read Assembly with NGS and 3GS Data

After getting the local breakpoint candidates, the reads in the range were extracted from
the BAM file, and the high-quality reads were filtered to perform the subsequent
sequence assembly. The high-quality filtered reads are assembled using 3GS data, as
follows:

Fig. 2. Cor3GS flow chart. The workflow includes three modules. (a) Data format conversion
module. (b) DNA mutation detection module. (c) Base correction module on mapping region
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At first, according to the quality information of the partial base sequence reads in
the selected NGS data, delete the low-quality base reads, generate new partial base
reads. According to the k parameter input by the user, cut the new reads into k-mer,
store the k-mers and their number of occurrences in the hash table, and then using the
k-mers constructs the de Bruijn graph.

Secondly, the edges of the de Bruijn graph without multiple exits or entries are
compressed, merged into one edge, and a compressed de Bruijn graph is generated and
get the read multiplicity of the compressed edge in the compressed de Bruijn graph

Lastly, repost the 3GS data to the NGS data, and complete the assembly by dis-
assembling and compressing the de Bruijn graph, generating the contigs (Fig. 3).

2.4 Detection CNV Using Read Depth Strategy and Deep Learning
Method

Mapping the contigs generated by the assembly to the reference genome using ngmlr, a
BAM file that containing the mapping result of the long reads is created, and then the
CNV mutation detection is performed using the BAM file in combination with the read
depth strategy and deep learning method.

The average local coverage can be obtained by summing the coverage of each site
within the local breakpoints and then dividing by the local length. The base coverage at
a site can be obtained using the depth command of Samtools. We considered 200 bp as
a window, and 20 bp was overlapped between two adjacent windows to calculate the
average coverage depth. If the average coverage depth of a series of connected win-
dows was close, connected these continuous windows into one window, and then
obtained the new average coverage. In this way, the local range was divided into some
windows with a tremendous difference in average coverage. The Qualimap [11] was
used to obtain the mean coverage information about the original BAM file, so that these
windows can be tagged as normal, deletion, or duplication.

Then convert BAM file to pileup file using samtools. The circular binary seg-
mentation (CBS) algorithm was used to delineate segments by copy number and

Fig. 3. Repeat sequence selection diagram. The edges in the De Bruijn graph constructed by
NGS data may have multiple entries and exits, 3GS reads are used to determine which entry and
exit are correct.
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identify significant change-points. And the flowing formula was applied to generate the
file to create pictures to conduct deep learning (Fig. 4).

LRRI ¼ 2 � log10 CNi

2

� �

The relationship between LRR and CN as followed.

CN 1 2 3 4 5 6
LRR −0.6 0 0.35 0.6 0.8 0.95

The architecture of AssCNV23’s network contains four convolutional layers
intersected with three max pooling layers, three fully connected layers. Details are
presented in Table 1.

Fig. 4. The red line can be considered as LRR value. (a) The LRR value is more than −0.6 and
close to 0, this kind of image can be recognized don’t have variation. (b) The LRR value is close
to −0.6, this kind of picture can be considered as deletion. (c) The LRR value is between 0.8 and
0.95, this can be judged to have duplication, but can’t determine how many repetitions had
occurred. (d) The LRR value in the picture changed. The reason for the diversification is that it
comes to the breakpoint. (Color figure online)

Table 1. CNN architecture. I: input. C: convolutional layer. P: max pooling layer. NN: fully
connected neural network layer. ReLU: rectified linear function f(x) = max(0, x)

Layer Type Activation Feature maps Filter size Output size

0 100 � 100
1 C ReLU 96 11 � 11 90 � 90
2 P 96 3 � 3 30 � 30
3 C ReLU 256 4 � 4 26 � 26
4 P 256 3 � 3 9 � 9
5 C ReLU 384 3 � 3 7 � 7
6 C ReLU 256 3 � 3 5 � 5
7 P 256 3 � 3 2 � 2
8 NN ReLU 1 2304 1 � 2304
8 NN Softmax 1 3 1 � 3
9 NN Softmax 1 3 1
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3 Results

To simplify the complexity of the problem, only deletion and repetition are considered
as sub-types of CNV, and the length range of them are more than 1000 bp. The
detected results were compared to the benchmark data, and the performance of each
tool was evaluated by Precision (Pre), Sensitivity (Sen), F1-score (F1) and Matthews
correlation coefficient (MCC). MCC represents the reliability of the results of the
algorithm. Its value range is [−1, +1]. When FP and FN are all zero, MCC is 1,
indicating that the results of classification are completely correct. When TP and TN are
all zero, MCC value is −1, indicating that the results of classification are completely
wrong.

The precision is the correct ratio of the detected result, and the sensitivity is the
correct ratio of the benchmark data. F1-score is a comprehensive indicator of precision
and sensitivity. TP indicates true positive, FP indicates false positive, FN indicates false
negative. And the formulas are:

Precision ¼ TP
TPþ FP

ð1Þ

Sensitivity ¼ TP
TPþ FN

ð2Þ

F1 score ¼ 2 � Precision � Sensitivity
Precisionþ Sensitivity

ð3Þ

MCC ¼ TP � TN� FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TN þFPð Þ TN þFNð Þp ð4Þ

3.1 Generate Simulated Data

To simplify the problem and verify the feasibility of the method, we first experimented
with the simulated data. We utilized chromosome 11 to generate NGS data with a depth
of 20X using ART_illumina [12]. The read length was set to 150 bp. To avoid
interference from other mutations, only copy number variation is introduced, and SinC
[13] is used to simulate the generation of copy number variation of NGS data generated
by ART_illumina. The variable length range is set to three parts, which are 1000 bp–
5000 bp, 5000 bp–10000 bp and 10000 bp or more. Using the pbsim [14] tool to
generate simulated 3GS PacBio data using chromosome 11, the coverage depth was
30X, the shortest read length was 2000, the longest read length was 10,000, and the
sequencing error was 15%.

3.2 Calling CNV with Simulated Data

Count the number of CNVs of different lengths in the 20X simulation data, as shown in
Table 2:
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BreakDancer, CNVnator, DELLY, Pindel, FREEC and AssCNV23 were used to
detect CNV of simulated data using default parameters. The results are summarized in
Figs. 5 and 6.

According to the chart analysis, BreakDancer, DELLY, Pindel and AssCNV23
have better and stable performance on the simulation data. The detection accuracy and

Table 2. Simulation data variation statistics

Read
length

Insert size
length

Insert size
deviation

Read
coverage

CNV
length

DEL
count

DUP
count

150 200 10 20X 1k–5k 18975 5114
150 200 10 20X 5k–10k 7260 1933
150 200 10 20X 10k– 749 207

70
75
80
85
90
95

Pre% Sen% F1 score

Fig. 5. Tools comparison of DEL detection on simulated data

70
75
80
85
90
95

Pre% Sen% F1 score

Fig. 6. Tools comparison of DUP detection on simulated data
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sensitivity of AssCNV23 are the highest among all tools. Concerning F1-score,
AssCNV23 outperforms the other four tools. The precision of AssCNV23 is also
higher than the others, while AssCNV23’s MCC value is close to the best one. Because
of the high value of MCC, the algorithm is relatively reliable.

Next, the F1 scores of CNV variations of different lengths are counted separately,
as summarized in Table 3.

The analysis of CNVs of different lengths is carried out. With the increase of the
range of variation, the detection accuracy and sensitivity of all tools show a down-ward
trend. Among them, FREEC has the best stability, but its detection accuracy and
sensitivity have been low. DELLY, Pindel and AssCNV23 have high precision and
sensitivity in the short variation, and the precision and sensitivity decrease when the
variable length increases, but still higher than FREEC, and AssCNV23 maintains a
more senior level among the three tools, thus showing good stability. The reason is that
3GS data are introduced into AssCNV23 to participate in the assembling process,
which increases the length of the sequenced fragments, so that more long variations can
be detected in the detection than other tools.

In the whole simulation data experiment, the detection of different copy lengths of
the two types of copy number variants (DEL and DUP) respectively showed the
performance of different detection tools, which provides a reference of the high cov-
erage data experiment and real data experiment.

4 Conclusion

CNV is an important category of structural variation. In this paper, a simple method of
3GS data correction is proposed, and a CNV detection method AssCNV23 based on the
combination of NGS data and 3GS data is proposed. Combined with the initial
detection results of BreakDancer, CNVnator, FREEC, DELLY, Pindel and other
detection tools, the reliability of mutation breakpoints is ensured. At the same time,
under the guidance of high-quality 3GS data, NGS reads with breakpoints is partially
assembled. The transformation of sequence from short to long has been completed, and
the detection length of mutation has been improved. The structural variation of more
than 10 000 bp can be detected. Finally, based on the read depth strategy and the cyclic

Table 3. Statistics of F1 scores for different lengths of CNV variation detected by different
tools

Tools BreakDancer CNVnator FREEC DELLY Pindel AssCNV23

1000 bp−5000 bp DEL 93.78 89.81 73.11 96.87 97.55 98.39
DUP 90.82 87.14 73.57 94.67 91.13 95.27

5000 bp−10000 bp DEL 81.98 81.10 73.08 84.97 83.01 87.71
DUP 82.08 79.74 73.73 83.89 80.88 85.24

10000 bp+ DEL 82.43 81.25 71.63 84.09 84.17 87.27
DUP 81.69 81.05 72.12 82.05 82.02 86.99
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binary segmentation algorithm, the character data is transformed into an image con-
taining the depth information of sequencing, and a deep learning method is introduced
to train a model that can be applied to other data, which is helpful to the subsequent
detection process.

Compared with other tools, AssCNV23 can detect more copy number variations
and reduce the number of false positives. This makes AssCNV23 more accurate and
sensitive than other tools. AssCNV23 is not only limited to using the tools mentioned
in this paper to obtain the initial mutation set, but also can be combined with more tools
to further improve the accuracy of mutation breakpoints.
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Abstract. As a most important task in protein sequence analysis, protein
remote homology detection has been extensively studied for decades. Currently,
the profile-based methods show the state-of-the-art performance. Position-
Specific Frequency Matrix (PSFM) is a widely used profile. The reason is that
this profile contains evolutionary information, which is critical for protein
sequence analysis. However, there exists noise information in the profiles
introduced by the amino acids with low frequencies, which are not likely to
occur in the corresponding sequence positions during evolutionary process. In
this study, we propose one method to remove the noise information in the PSFM
by removing the amino acids with low frequencies and two a profile can be
generated, called Top frequency profile (TFP). Autocross covariance
(ACC) transformation is performed on the profile to convert them into fixed
length feature vectors. Combined with Support Vector Machines (SVMs), the
predictor is constructed. Evaluated on a benchmark dataset, experimental results
show that the proposed method outperforms other state-of-the-art predictors for
protein remote homology detection, indicating that the proposed method is
useful tools for protein sequence analysis. Because the profiles generated from
multiple sequence alignments are important for protein structure and function
prediction, the TFP will has many potential applications.

Keywords: Protein remote homology detection � Top Frequency Profile (TFP)

1 Introduction

Protein remote homology detection is important approaches for inferring the structures
and functions of proteins [1]. In this regard, some computational methods have been
proposed, which can be divided into three categories [2], including alignment methods,
discriminative methods, and ranking methods. Among these methods, the discrimi-
native methods achieved the-state-of-the-art performance, and have been widely used
in this field, which require fixed-length feature vectors as inputs [3, 4]. Methods based
on Support Vector Machines (SVMs) [5, 6] are the top performing methods due to the
advantages of the kernel tricks. Their performance mainly depends on how to accu-
rately represent protein sequences as feature vectors. The profile-based representation is
one of the most efficient approaches for extracting the features of proteins. Profiles are
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calculated based on the Multiple Sequence Alignments (MSAs) [7–9], which contains
the evolutionary information. However, it is not an easy task to convert the profile into
fixed length vector since it is a matrix with different length. Unfortunately, almost all
the machine learning and algorithms require fixed length feature vectors as inputs. In
this regard, some powerful vectorization methods have been proposed, such as top-n-
gram [10], autocross-covariance (ACC) transformation [11], secondary structure fea-
tures [12, 13], etc.

Although these methods did great contributions to the development of this
important field, there exist several disadvantages: (1) Although profiles contain the
evolutionary information, noise information also exists, for example, in Position
Specific Frequency Matrix (PSFM), the amino acids with low frequencies are unlikely
to occur in the corresponding sequence positions during evolutionary process, which
will prevent the predictive performance improvement of the predictors if these amino
acids are considered; (2) During the vectorization process, the sequence-order effects of
residues in proteins cannot be efficiently incorporated. However, as discussed in some
recent studies [14], this information is critical for extracting features with high dis-
criminative power.

To overcome these disadvantages in the field, in this study, we propose a new
profile by removing the noise information in the PSFM, called Top Frequency Profile
(TFP). A method considering both the global and local sequence-order effects of
proteins (Autocross-covariance (ACC) transformation [11]) is then performed on the
profiles. Experimental results on a widely used benchmark dataset showed that the
proposed approach outperforms other existing methods. Therefore, the proposed
method would be useful tool for protein sequence analysis.

2 Materials and Methods

2.1 Benchmark Datasets

We employ a widely used benchmark datasets constructed based on SCOP to evaluate
the performance of various methods for protein remote homology detection [15]. All
the protein sequences are extracted from Astral database [16] and the sequence iden-
tities of any pair of proteins in all these benchmark are no more than 95%.

The superfamily benchmark dataset [17] (for remote homology detection task)
contains 4352 proteins from 54 different families.

2.2 Profiles

For protein remote homology detection, the evolutionary information in the multiple
sequence alignments is useful for improving the predictive performance. In this regard,
two profiles are used in this study, and their detailed information will be introduced in
the followings.

Position Specific Frequency Matrix (PSFM). Position Specific Frequency Matrix
(PSFM) is a widely used profile, which is generated by running PSI-BLAST [18] to
search against a non-redundant protein NCBI’s nrdb90 database [19], and the
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parameters of PSI-BLAST are set as default except that the number of iterative is set as
10. PSFM can be represented as:

PSFM ¼

m1;1 m1;2 . . . m1;L

m2;1 m2;2 . . . m2;L

..

. ..
. ..

. ..
.

m20;1 m20;2 . . . m20;L

2
6664

3
7775 ð1Þ

where L is the length of the protein; 20 represents the total number of standard amino
acids. The element mi,j (0 � mi,j � 1) in this matrix reflects the frequency of amino
acid i occurring in column j (j = 1, 2, …, L).

In order to remove the noise in PSFM, here we are to propose a new profile: Top
frequency profile (TFP). This profile reduces the noise information in PSFM by
removing the amino acids with low frequencies, which will descript in more details in
the following sections.

Top Frequency Profile (TFP). Top Frequency Profile (TFP) removes the noise
information in the PSFM by only considering the most frequent amino acids during
evolutionary process, because previous studies show that these amino acids are critical
for protein remote homology detection, and amino acids with low frequency values are
unlikely to occur in the specific sequence position during evolutionary process [10]. In
this method, for each column in PSFM (Eq. 1), the top N most frequent amino acids are
considered as important residues in this sequence position during the evolutionary
process, the frequency values of all the other (20-N) standard amino acids were set as 0.

2.3 Matrix Transformation Methods

Evolutionary information in profiles is useful for protein remote homology detection.
However, how to efficiently extract this information is a difficult task due to the
different lengths of the profiles [14]. Therefore, powerful feature extraction techniques
are highly required. Here we employ the Autocross covariance (ACC) transformation
[11] to extract the evolutionary information from the three profiles: PSFM and
TFP. The detailed information of this method will be introduced in the following
sections.

Autocross-Covariance (ACC). Autocross covariance (ACC) transformation [11] is
able to transform profiles into fixed length vectors. ACC method is composed of two
approaches: AC and cross-covariance (CC).

AC measures the same property’s correlation of two amino acids separated by a
distance of d along the protein sequence, which can be calculated by [11]:

ACði; dÞ ¼
XL�d

j¼1

ðmi;j � �miÞðmi;jþ d � �miÞ=ðL� dÞ ð2Þ

where i represents the i-th row in PSFM (Eq. 1); j represents the j-th column in PSFM;
L is the length of the protein sequence; mi,j represents the element in PSFM; �mi is the
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average value of all the elements in the i-th row in PSFM. For each distance
d (d = 1, 2, …, D, where D is the maximum distance), AC will generate 20 different
features based on the 20 properties (number of standard amino acids), and therefore, the
dimension of the resulting feature vector is 20 * D.

CC measures any two different properties’ correlation between two amino acids
separated by a distance d along the protein [11]:

CCði1; i2; dÞ ¼
XL�d

j¼1

ðmi1;j � �mi1Þðmi2;jþ d � �mi2Þ=ðL� dÞ ð3Þ

where i1 and i2 represent the i1-th and i2-th rows in PSFM, respectively; mi1;j represents
the element in PSFM; mi1 and mi2 are the average values of the elements in the i1-th and
i2-th rows in PSFM, respectively. Since the number of asymmetric combinations of any
two different properties is 380, the dimension of the resulting feature vector is 380 * D.

In this study, each protein sequence is represented as a feature vector by ACC,
which is the combination of the feature vectors generated by AC and CC, whose
dimension is 400 * D. For more implementation of ACC, please refer to [11].

2.4 Construction of SVM Classifiers

The Support Vector Machine (SVM) is employed as the classifier to construct the
predictor, which has been successfully applied in many areas. Three profiles (PSFM
and TFP) of proteins are first generated, and then the three matrix transformation
methods are performed on these profiles so as to convert them into fixed length feature
vectors. Finally they are inputted into SVM for training and testing. In this study, the
publicly available Gist SVM package (http://www.chibi.ubc.ca/gist/) is used as the
implementation of the SVM algorithm with default parameter setting. Finally, nine
predictors are constructed based on the three profiles (PSFM and TFP), and one matrix
transformation method (ACC).

2.5 Evaluation Method of Performance

In this study, the average ROC score and ROC50 score [20] are used to evaluate the
performance of various methods. An ROC score is a quantification of performance by
the normalized area under a curve that plots true positives against false positives for
different classification thresholds. The ROC50 score is a specialization of ROC score,
which is the area under the ROC curve up to the first 50 false positives. For separation
of positive samples from negative ones, the score of better performance is closer to 1,
whereas a score around 0.5 means that the results are randomly predicted.

3 Results and Analysis

In this study, we propose the TFP method to remove the noise in the PSFM. The ACC
is then performed on the profiles, and finally, two predictors are constructed for protein
remote homology, including PSFM-ACC and TFP-ACC.
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3.1 The Impact of Parameters on ACC-Based Predictors

As introduced in the method section, N is a parameters in TFP. In this section, we will
investigate its impact on the performance of the TFP-ACC.

Parameter N in TFP approach is a threshold to remove the noise information. In this
approach, only the top N most frequent amino acids are considered in each column of
PSFM (Eq. 1), and the values of all the other elements are set as zero. The average
ROC50 scores of TFP-ACC predictors with different N values on the benchmark
dataset are shown in Fig. 1, from which we can see that the parameter N has little
impact on its performance. In this study, the value of N is set as 3 considering both the
computational cost and performance.

Based on the above analysis, we come to a conclusion that the parameter of N has
little impact on the performance of the corresponding predictors.

3.2 Performance Comparison Among the Three ACC-Based Predictors

It has been proofed that the noise information can be reduced by removing the elements
with low frequency values in profiles [10]. In this regard, we propose the TFP to extract
the evolutionary information and reduce the noise information. Here, we are to explore
if these methods can improve the performance of protein remote homology detection.
The pairwise comparisons between TFP-ACC and PSFM-ACC based on ROC50
scores on the benchmark dataset are shown in Fig. 2. In these two figures, we can see
that most of the points fall in the area below the diagonal line, indicating that for
protein remote homology detection, the methods labelled in x-axis (TFP-ACC) out-
performs the methods labelled in the y-axis (PSFM-ACC). These results further con-
firmed that the proposed approach TFP are useful for protein remote homology
detection, and removing the amino acids with low frequency values is an efficient way
to reduce the noise in PSFM.

Fig. 1. ROC50 scores of TFP-ACC with different N values on SCOP benchmark dataset.
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3.3 Performance Comparison with Other Existing Methods

The performance of the nine proposed methods are compared with 9 state-of-the-art
methods, including SVM-Bprofile [21], SVM-Top-n-gram [10], SVM-pattern [22],
SVM-motif [22], PSI-BLAST [18], SVM-pairwise [23], GPkernel [24], LSTM [24],
SVM-LA [23]. Table 1 summarizes their performance for protein remote homology
detection. From this table we can see that the proposed two methods all outperform
other predictors. Generally, the performance of the TFP-based method outperforms the
PSFM-based method, which is fully consistent with previous study [10]. In contrast,
the proposed TFP approach is able to efficiently remove the amino acids with low
frequency values, and therefore, performance improvement can be achieved.

Fig. 2. The pairwise comparisons between TFP-ACC and PSFM-ACC based on ROC50 scores
on SCOP superfamily benchmark dataset.

Table 1. Performance comparison on SCOP superfamily benchmark dataset.

Methods ROC ROC50 Source

PSFM-ACC (LG = 6) 0.954 0.853 This study
TFP-ACC (N = 3, LG = 6) 0.960 0.861 This study
SVM-Bprofile (Ph = 0.13) 0.903 0.681 [21]
SVM-Top-n-gram 0.933 0.763 [10]
SVM-Pattern 0.835 0.589 [22]
SVM-Motif 0.814 0.616 [22]
PSI-BLAST 0.675 0.330 [22]
SVM-Pairwise 0.896 0.464 [23]
GPkernel 0.899 – [24]
SVM-LA 0.925 0.649 [23]
LSTM 0.932 0.652 [24]
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4 Conclusion

In this study, we propose two predictors by combining three profiles (PSFM and TFP)
with ACC. Experimental results show that these two predictors outperform other
existing methods, and the TFP is able to efficiently improve the predictive performance
for protein remote homology detection by reducing the noise information in PSFM.
The profiles, such as PSFM, and PSSM have been widely used in the field of protein
sequence analysis, especially for the studies of protein structure and function, and
therefore, the TFP will have many potential applications.
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Abstract. Distribution of read starts over a sequences genetic entity
is studied. Key question was whether the starts are distributed uni-
formly and homogeneously along a sequence, or there exist some spots
of the increased local density of the starts. To answer the question, 15
bacterial genomes have been studied. It was found that some genomes
exhibit extremely far distribution pattern, from an homogeneity, while
others show lower level of the inhomogeneity. The inhomogeneity level
was determined through the Kullback-Leibler distance between the real
string distribution, and that one bearing the most probable continuations
of the shorter strings.

Keywords: Order · Digitalization · Entropy · Mutual entropy ·
Equilibrium

1 Introduction

Currently, the sequencing technologies are growing up rapidly. These technolo-
gies are both smart and complex, thus challenging researchers to figure out the
issues resulted from biology, and those resulted from the technology details.
These latter may be quite complicated and not obvious, at the first glance. A
variety and abundance of the problems ranging from biological issues (so called
“wet protocol”) to computational and ever hard mathematical (i.e. assembling
and the uniqueness of that latter) points hardly could be just outlined, not
speaking about a comprehensive analysis. Here we focus on the specific problem
that becomes acute due to the progress in sequencing and processing of genetic
data.
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There are many tools and pipelines to assemble the read ensemble into a set
of contigs, scaffolds, and further on. All of them are based on de Bruijn graph
methodology [1–4]. Regardless the specific details of the assembling algorithm,
all of them have one key idea standing behind the approach: the starts of reads
obtained by a sequencer from a genetic entity are supposed to be distributed
(almost) uniformly and homogeneously along the sequenced genetic sequence.
Our paper aims to prove (or disprove) the validity of this supposition, through
a simulation of read generation.

Coverage (local coverage, to be exact) HL(n) is the most common index of a
quality of sequencing. It is defined as a number of unique reads covering a given
nucleotide; here L stands for the length of reads (they are supposed to be of
equal length, for simplicity). Evidently, this index is not expected to the same,
for different fragments of a genetic sequence under consideration, that is why
the local index should be introduced [3,4]. Obviously

H = N−1
N∑

n=1

HL(n) (1)

is the average (over a genome) cover index. A quality of sequencing output could
be characterized with two figures: the former is the average cover (1), and the
latter is its variance (or standard deviation) determined over a genome.

Indeed, that is a common place that the figure of the standard deviation
of (1) is small, and a sequence is covered rather homogeneously by reads. Such
homogeneity is not observed, in reality: as a rule, local cover is extremely inhomo-
geneous. Of course, the up-to-date algorithms and software platforms are able
to process such inhomogeneous data flows, while it takes significantly greater
time and resources. Reciprocally, the assembling quality becomes doubtful, not
speaking about an uniqueness.

Here we aim to simulate a sequencer operation, in order to model the dis-
tribution of read starts over a sequence. Also, we study the patterns of real
distribution and compare them to simulation ensembles, in order to find out the
rules standing behind the distribution. Such rules are of great value for evalua-
tion of an assembling quality, for any genome entity, and any sequencing machine
and pipeline.

2 Study of the Real Distribution of Start Points of Reads
Along a Genome

To begin with, we have studied the distribution of the real read starts along a
genome sequence. To do that, we downloaded the assembled genomes and the
reads ensemble. Then, we mapped the reads back over the genome, and fixed
the positions of the starts of the reads. Mapping has been carried out with
Bowtie 2 software. Two output files were developed, due to the mapping: the
former was {0, 1}-sequence of the length N (here N is the length of a genome
under consideration), and the latter was the sequence of integers mj of the
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length N , 1 ≤ j ≤ N , where mj was the number of reads (of various lengths)
starting at the j-th position.

Consider firstly a binary sequence obtained from mapping of reads over a
genome. The key question here is whether zeros and ones are following in some
(statistically revealed) manner, or they run randomly, with no order or pattern
in their interlocation. Two approaches here should be explored:

1. Supposing the sequence of zeros and ones follows some probabilistic law, fit
the sequence with some proper distribution function and identify the param-
eters of the distribution for further analysis;

2. Considering the sequence of zeros and ones as a symbol one, convert it into
a series of frequency dictionaries {Wq} of increased thickness q, 1 ≤ q ≤ q∗

and figure out the most unexpected strings of the length q derived from the
frequencies of the strings of the length l < q.

Here we follow the second approach that is completely similar to that one used
to study the statistical properties of nucleotide sequences [5–11].

3 Simulation of Start Points of Reads: Theoretical
Background

Let now describe the approach to study the statistical properties of the start
points distribution in more detail. A digitalization described above converts a
genome sequence into a symbol one, with two types of alphabet: the former is
binary one {0, 1}, and the latter consists of M symbols, where M is the maximal
number of reads starting at the same point, in a genome.

As soon as a genome is converted into a symbol sequence, it must be trans-
formed into a series of frequency dictionaries {Wq} of increasing thickness q.
The thickness q is the length of words (strings) comprising a dictionary. More
exactly, let q be the length of window that identifies a fragment in a sequence.
Frequency dictionary Wq is the list of all the words (strings) observed within a
sequence, so that each word ω in a dictionary is supplied with its frequency. The
frequency

fω =
nω

N
, (2)

where nω is the number of copies of a word ω, and N is the length of a sequence;
to make the definition (2) feasible, one must connect a sequence into a ring, see
details in [5–11]. Such closure results in appearance of q − 1 phantom words in
a dictionary, while we neglect them.

Consider now the series

W1,W2,W3, . . . , Wq−1,Wq

of the frequency dictionaries in more detail. The key question here is the relation
between the dictionaries observed in this series. Actually, a “downward” transfer
(i.e., the transfer from Wj to Wj−1 dictionary) is obvious: to do it, one must sum
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Fig. 1. Information capacity (5), vertical axis, determined for the symbol sequence
representing the distribution of starts, with respect to the number of the starts observed
in each nucleotide. Horizontal axis represents the thickness q.

up the frequencies of all the words differing in the first (or in the last) symbol1.
The “upward” transfer Wj �→ Wj+1 is less evident.

Indeed, in general such transfer yields a family of dictionaries {Wj+1}, instead
of a single one. Of course, the family contains the real frequency dictionary Wj+1,
while there is no way to identify it. Simultaneously, there exists the specific fre-
quency dictionary W̃j+1 in this family that comprise the most expected contin-
uations of the words of the length j into the words of the length j + 1. This
specific dictionary (let’s call it reconstructed one) exhibits the maximal entropy,
among others comprising the family.

This extremal principle, together with the linear constraints of the “down-
ward” transfer in a series of frequency dictionaries, yields the expected frequency
explicitly:

f̃ν1ν2...νq−1νq
=

fν1ν2...νq−2νq−1 × fν2ν3...νq−1νq

fν2ν3...νq−2νq−1

; (3)

here we derive f̃(ωq) from f(ωq−1), see details in [5–11]. Finally, one must com-
pare the real frequency dictionary Wq to that one bearing the most expected con-
tinuations: W̃q. To do that, the specific entropy of real frequency dictionary Wq

against the reconstructed one must be calculated:

1 The equality of these two sums stands behind the connection of a sequence into a
ring.
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Table 1. Information capacity (5) for the genomes Acinetobacter baumannii (1),
Clostridium autoethanogenum DSM 10061 (2), E. coli K12 (3), E. coli O157 (4), Saccha-
ropolyspora erythraea (7), Stanieria spp. NIES-3757 (8), Staphilococcus aureus NCTC
8325 (9), Yersinia pseudotuberculosis YPIII (10) with respect to the number of starts
in each nucleotide.

q 1 2 3 4 7 8 9 10

2 0.006855 0.000151 0.017722 0.000194 0.001249 0.000003 0.006578 0.001581

3 0.007378 0.000131 0.010428 0.000194 0.001073 0.000004 0.008799 0.000969

4 0.009004 0.000318 0.006923 0.000620 0.001005 0.000006 0.012815 0.000998

5 0.009519 0.000899 0.004901 0.002075 0.001076 0.000008 0.013922 0.001346

6 0.009734 0.002810 0.005316 0.006755 0.001513 0.000012 0.015945 0.002269

7 0.010228 0.007856 0.005875 0.018833 0.001909 0.000018 0.020776 0.004497

8 0.011036 0.018508 0.005971 0.044770 0.001709 0.000024 0.031730 0.009182

9 0.013226 0.038805 0.005699 0.089915 0.001422 0.000042 0.050902 0.017498

10 0.017014 0.071194 0.005139 0.151169 0.001490 0.000052 0.078325 0.029912

11 0.022700 0.111794 0.004541 0.210797 0.001954 0.000066 0.109040 0.046115

12 0.030096 0.153165 0.003988 0.242604 0.002791 0.000077 0.134495 0.064515

13 0.038545 0.181569 0.003534 0.227371 0.003967 0.000105 0.148101 0.081751

14 0.047060 0.184315 0.003184 0.174954 0.005500 0.000132 0.141853 0.095160

15 0.054321 0.160808 0.002907 0.110638 0.007324 0.000151 0.120265 0.101762

16 0.059905 0.120647 0.002617 0.058855 0.009580 0.000176 0.089713 0.101649

17 0.062156 0.077580 0.002541 0.027123 0.012024 0.000208 0.059527 0.095004

18 0.060816 0.043650 0.002395 0.011079 0.014533 0.000228 0.035781 0.083791

19 0.057186 0.021745 0.002449 0.004268 0.017319 0.000249 0.019894 0.070384

20 0.050751 0.009841 0.002410 0.001649 0.020015 0.000303 0.010248 0.056214

N 4335793 4352205 4641652 5498578 8212805 5319768 2821361 4689441

Dth 98.40 198.67 203.79 234.70 102.74 108.72 188.51 84.03

σ 58.05 25.57 20.63 35.93 41.07 18.86 74.93 22.87

S
[
W̃q|Wq

]
=

∑

ω∈Ω

fω · ln
(

fω

f̃ω

)
. (4)

Keeping in mind the expression (3), one gets

Sq

[
W̃q|Wq

]
= 2Sq−1 − Sq − Sq−2; Sq

[
W̃2|W2

]
= 2S1 − S2. (5)

More details on these formulae could be found in [6–8].
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Table 2. Information capacity (5) for the genomes Acinetobacter baumannii (1),
Clostridium autoethanogenum DSM 10061 (2), E. coli K12 (3), E. coli O157 (4), Saccha-
ropolyspora erythraea (7), Stanieria spp. NIES-3757 (8), Staphilococcus aureus NCTC
8325 (9), Yersinia pseudotuberculosis YPIII (10) for binary genome representation.

q 1 2 3 4 7 8 9 10

2 0.000016 0.171241 0.016968 0.000051 0.032699 0.000071 0.000002 0.000690

3 0.000005 0.092698 0.009659 0.000044 0.022948 0.000067 0.000002 0.000358

4 0.000039 0.027254 0.005648 0.000078 0.017313 0.000188 0.000002 0.000296

5 0.000017 0.006960 0.002577 0.000107 0.012300 0.000296 0.000002 0.000282

6 0.000027 0.002292 0.001462 0.000147 0.008861 0.000321 0.000003 0.000252

7 0.000045 0.001216 0.000894 0.000209 0.006493 0.000287 0.000004 0.000241

8 0.000039 0.000672 0.000522 0.000241 0.004674 0.000261 0.000004 0.000224

9 0.000033 0.000516 0.000390 0.000240 0.003582 0.000209 0.000007 0.000245

10 0.000096 0.000508 0.000331 0.000246 0.002880 0.000201 0.000012 0.000256

11 0.000082 0.000485 0.000296 0.000220 0.002359 0.000165 0.000017 0.000268

12 0.000139 0.000743 0.000341 0.000238 0.001891 0.000180 0.000024 0.000323

13 0.000280 0.001145 0.000431 0.000333 0.001753 0.000216 0.000034 0.000438

14 0.000509 0.001630 0.000674 0.000481 0.001693 0.000337 0.000046 0.000638

15 0.000989 0.002188 0.001256 0.000825 0.001897 0.000604 0.000057 0.001061

16 0.001938 0.002616 0.002020 0.001567 0.002697 0.001074 0.000067 0.001930

17 0.003840 0.003202 0.002553 0.003088 0.004363 0.001666 0.000082 0.003718

18 0.007741 0.003807 0.002690 0.006113 0.008357 0.002521 0.000097 0.007337

19 0.016023 0.004396 0.002607 0.012768 0.015387 0.003796 0.000115 0.015557

20 0.035304 0.004948 0.002472 0.028037 0.021780 0.005396 0.000145 0.034443

4 Results

We examined 16 bacterial genomes that meet the criteria; namely, we need the
genome that

(1) sequenced by Illumina technology;
(2) are duly assembled and annotated, and
(3) there is a set of original reads available for the further analysis.

There are few non-bacterial genomes meeting these criteria; besides, a genome
consisting of several chromosomes poses some other technical and essential prob-
lems, so we kept ourselves within the prokaryotic genomes, twelve entities in
total.

Table 1 shows the data on information capacity (5) obtained for eight bacte-
rial genomes. The genomes gathered in the table have rather smooth and similar
pattern of the information capacity behaviour; the upper part of the table shows
the data obtained for the digitalization with number of starts taken into account.
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Fig. 2. Information capacity (5) determined for the binary symbol sequence represent-
ing the distribution of starts.

The lower part of that former shows similar data for binary digitalization (i.e.
regardless the number of starts occurred in a nucleotide). Also, this table lengths
of the bacterial genomes (denoted N), total genome cover depth (Dth), and the
standard deviation for the set of local cover indices (1). All these figures are
shown in the bottom of the table.

Figure 1 shows the patterns observed for four bacterial genomes; these
genomes exhibit quite variable behaviour and rough pattern of the information
capacity variation with the frequency dictionary thickness q growth. Similarly,
Table 2 and Fig. 2 show the figures and pattern, respectively, for the same set
of bacterial genomes, while transformed into a binary sequence each. Coprother-
mobacter proteolyticus genome yields a tremendous growth of information capac-
ity (5) (see Fig. 1) with maximum figure of 0.404645, for non-binary digitaliza-
tion. Reciprocally, the pattern of information capacity (5) observed for binary
digitalization of the genome has four local minima; probably, these two observa-
tions make an evidence of the increased complexity of the reads starts distribu-
tion along a sequence.

Let now concentrate on Figs. 1 and 2. They show the behavioural patterns
of information capacity (5), for four bacterial genomes each. First of all, all the
curves are bell-shaped and it results from the finite sampling effect: an abundance
of a frequency dictionary Wq grows exponentially, as q grows linearly. Hence, the
greatest majority of the strings occur in a single copy, as q becomes great enough.
Moreover, there exists specific figure q∗ that yields no word occurred in two or
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more copies, at all; this figure makes a redundancy measure of the frequency
dictionary of this thickness [11].

Figure 1 shows the pattern for the distribution of reads starts along a
sequence, with respect to the number of the starts taken place in each nucleotide.
The information capacity (5) of the frequency dictionaries of various thickness q
reflects a predictability of a continuation of a word of the given length q − 1
into a word of the length q; if Sq ≈ 0, then all the words (the frequency of each
word, to be exact) of the length q could be quite exactly predicted from the
frequencies of the words of the length q − 1. The predictability goes worse, in
general, as Sq grows up (see details in Sect. 5). Hence, the genomes shown in
these figures exhibit quite low level of predictability of the distribution of the
number of starts observed in a window of the given length q, as derived from
the frequency ensemble of the starts numbers distribution observed in a shorter
window.

Comparison of these two figures reveals significant smoothness in predictabil-
ity of the starts numbers distribution, when counting it with respect to the
specific numbers of starts observed in a nucleotide; probably, such behaviour
comes from combinatorial reasons rather than from biology. Indeed, the specific
numbers of starts taken into account for a dictionary implementation enlarge
the alphabet capacity, thus cutting-off the tail of the distribution. Such cut-off
manifests in a smoother pattern of the curve (5). Reciprocally, a multimodality
of the distributions shown in these figures is of great interest. An occurrence of
two (or more) local minima (and maxima, reciprocally) means an existence of
some meso-scale structuredness in the starts distribution. The patterns shown
in Figs. 1 and 2 differ in digitalization implemented for a study of the distribu-
tion of the reads starts numbers: the former shows the distribution with respect
to the number of starts observed in a nucleotide, while the letter represents
just the fact of a start, regardless to the specific number of reads starting in a
nucleotide. There are only two common genomes in these Figs: Campylobacter
jejuni and Enterococcus faecalis OG1RF; other genomes are different. It means
that predictability of the strings representing the distribution of starts number
is sensitive to digitalization version. In such capacity, those two genomes men-
tioned above exhibit the highest level of unpredictability in the starts numbers
distribution along a genome.

Another interesting question concerns the variation of the number of starts
to be observed in the same nucleotide, in different bacteria. Table 3 shows these
data, for nine bacterial genomes. The table contains a union of the records for
those genomes; blank cells in this Table mean that there was not a nucleotide
with such number of starts, in the genome. Definitely, the greatest majority of
nucleotides yields no start of a read; we shall not consider them. At a glance, the
number nucleotides with multiple starts decreases, as that latter grows up (see
Table 3). Here E. coli K12 genome completely falls out of the common pattern:
it shows permanent and consistent non-monotony in the number of starts dis-
tribution. Moreover, it looks like a kind of a cycle of the length 2; some reasons
of such behaviour are discussed below (see Sect. 5).
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Table 3. Acinetobacter baumannii (1), Clostridium autoethanogenum DSM 10061 (2),
Saccharopolyspora erythraea (3), Staphilococcus aureus NCTC 8325 (4), Stanieria spp.
NIES-3757 (5), Yersinia pseudotuberculosis YPIII (6), E. coli K12 (7), E. coli O157 (8),
Enterobacter cloacae (9).

ns 1 2 3 4 5 6 7 8 9

1 835013 1421481 1449801 736737 213175 1387796 34206 1687399 298955

2 228570 595816 190999 319300 13853 429958 66101 907832 221129

3 47061 195018 21748 105585 488 103255 8093 391783 49898

4 9859 55149 3205 33897 27 21449 19111 152246 27531

5 1788 14236 837 9888 1 4103 2899 54214 6285

6 463 3457 274 3041 815 5695 18568 3314

7 129 812 99 868 182 1094 6256 866

8 52 201 29 311 70 1748 1940 519

9 22 34 6 96 39 378 728 197

10 9 11 2 48 22 546 213 123

11 6 1 1 12 13 152 72 66

12 3 1 8 12 169 22 40

13 4 4 11 44 11 17

14 2 62 5 23

15 1 1 2 28 1 12

16 1 25 1 11

17 1 1 5 1 8

18 2 2 1

19 6 2

20 2

21 1

22 1 2

23 1 2

24 1

25 1

26 2

27 1

28 1 1

29 1 1

32 1

35 1

95 1

116 1

The table shows significant variation in the maximal number of starts found
in a nucleotide; probably, this fact results from the peculiarities of sequencing
procedure and may represent a quality of the sequencing rather than the biologi-
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cal issues. Extremely variable highest number of the starts (95 and 116 observed
for Staphylococcus aureus) supports indirectly this idea. In general, the number
of nucleotides giving the increasing starts number in a genome follows an expo-
nential law: indeed, one may calculate the ratio of the numbers in two subsequent
cells in Table 3 and find them to be quite proximal.

5 Discussion

The distribution of read starts along a nucleotide sequence is studied. This ques-
tion is rather acute, since numerous inhomogeneities in this distribution may
bring problems in assembling, annotation and further analysis of genetic enti-
ties. We explore the generalized approach to reveal some inhomogeneities in the
starts distribution similar to [5–11]. Here a genome is considered as a symbol
sequence, and we refrain from implementation of any biological knowledge “till
the end”; in other words, we seek for the highly unexpected sites in the symbol
sequences and the procedure is free from any biological knowledge. As soon as
the sites are found, their biological role is studied. Basically, the hypothesis is
that the sites tend to be located non-randomly, with a sounding preference to
some biologically charged loci. It was found that the sites are distributed along
a genome very non-randomly; whether the sites are located in the biologically
important parts of a genome, still awaits for the answer.

The results provided above definitely show that the distribution of start
points over a genetic entity is rather far from any equilibrium, or homoge-
nous one. Any experimentalist knows that sequencing may skip some (rather
extended) areas in a genetic sequence; the reasons of such distortion may follow
both from biological issues of a matter, and from peculiarities of the sequencing
technology. Here we tried to answer the question towards the character of this
inhomogeneity in starts distribution.

To begin with, it should be said that the results shown above are biased.
The problem may arise from the structure of reads ensemble. Indeed, we used
the assembled genome, and the reads used to do it. The point is that the reads
are obtained from both strands of DNA, while we used the leading one to align
them. We used BowTie 2 to map the reads, and some of them might be mapped
at the leading strand, while the have been sequenced from the ladder one. Thus,
it might increase, to some extent, the number of observed starts (both unique,
and multiple ones). The pattern of the number of starts distribution observed
for E. coli K12 genome (see Table 3) proves indirectly this assumption. Hence,
we plan to reconsider the starting points pattern with respect to the detailed
analysis of the reads from the point of view of their strand origin.

To reveal the structuredness in the strings containing the nucleotides with
various numbers of starts of reads, we used the idea of information capacity (3–
5); this is an averaged measure telling on the distribution character in general,
but nothing could be understood on individual level. To enhance the analysis,
an idea of information valuable words [5–10] could be implemented. The idea is
based on the detail analysis of (4) definition: if f̃ω ≈ fω, then the corresponding
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term in the sum (4) is close to zero. On the contrary, the greatest contribution
into the sum (4) is provided by the terms with the greatest deviation of f̃ω from
fω. Such words are claimed information valuable ones.

So, the idea of further analysis is as following:

(1) Count the expected frequency f̃ω for each ω ∈ Wq;
(2) Identify those with the deviation of f̃ω from fω exceeding some given level α;
(3) Match all such information valuable words over the genome, and check it

against the annotation.

The hypothesis is that such words would match some peculiar sites, within a
genome.

Another very important issue that falls beyond the scope of this paper, while
is expected to be done soon is the approximation of the distribution of starts
points located along a genome sequence with a number of various patterns,
among them are Poisson distribution, LaPlace distribution, geometric distribu-
tion, negative binomial one, and many others. The idea is to fit the observed
data best of all, with some specific distribution, so that some biologically sound-
ing results might be retrieved from this fitting. In particular, the patterns shown
in Figs. 1 and 2 support the hypothesis towards the feasible simulation of those
distributions by Markov chains of the order 5 to 7, and around.

All these data and observations would be used for further simulation studies
of the sequencing procedures implemented in various machines. Such simulation
is of great value for better understanding of the details of assembling, annotation
and comparison of sequenced genetic entities.
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Abstract. Zika virus (ZIKV) infection is considered to be an emerging viral
outbreak due to its link to diseases like microcephaly, Guillain-Barre Syndrome
in human which is an alarming concern. In this study, we implemented our
reproducible RNA-seq analysis pipeline to quantify RNA-seq data in terms of
transcripts, and gained common expression results from intersection of three
differential expression identification tools. This uncovered significant DEGs of
high consensus, significant DEGs of moderate consensus, significant DEGs of
low consensus. Moreover, the highly significant DEGs provided us with six
DEGs which are transcription factors, which may be involved in the altered
biological process somehow. The presented study provides researchers with
highly reproducible pipeline for viral studies as well as the novel computational
findings for the transcription factors (TFs) involved in ZIKV infection which
could enable the researchers to develop new therapeutic strategies to tackle the
infection.

Keywords: Zika virus � RNA-seq � Biomarkers � DEGs

1 Introduction

The WHO reveals several types of diseases and infections outbreak all over the world
of which majority were concerned with viral infections. Few of these are Ebola Virus
Disease [1], Middle East Respiratory Syndrome, H5N1 influenza infection and ZIKV
infection [2]. ZIKV is a flavivirus transmitted by Aedes mosquitoes [3]. The minor
infection results in low-grade fever, myalgia, maculopapular rashes and in severe cases,
adults suffer neurological and congenital structural defects [4]. It may also cause
congenital malformations in pregnant women, and newborns with microcephaly [5].
ZIKV infection also affects peripheral nervous systems (PNS) and central nervous
system (CNS), causing transcriptional dysregulation which results in cell death [6].

Infectious response mechanism of virus is supported by various findings. Xia et al.
[7] showed that ZIKV fixes the mutations in NS1 gene that enhances mosquito
infection and increases its ability to dodge immune response. Rolfe et al. [8] compared
the alterations in transcript expressions of the RNA-seq data for ZIKV-infected hNPCs
to CMV-infected iPSC-derived hNPCs which revealed several pathways correlated
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with ZIKV infection. They also reported top 30 upregulated and downregulated genes
related to ZIKV pathogenesis. On the basis of Ontologic, Phylogenetic and Pathway
analysis, Moni et al. [9] concluded that ZIKV infection highly resembles Dengue fever.
They reported that 929 genes were dysregulated, 47 were highly expressed in ZIKV
infection as well as dengue, whereas less than 15 transcripts were significant in ZIKV
as well as other flavivirus infections which were involved in the experiment. The
emerging threat of ZIKV outbreak laid urgent need of developing preventive vaccines
and treatments for infected patients. For developing potent vaccines, antiviral drugs and
other treatments against ZIKV infection, RNA-seq finds its great importance in terms
of availability of data and analysis tools.

The Next Generation Sequencing (NGS) technologies like RNA-seq (RNA
sequencing) find their application in the diagnostic virology (discovery, characteriza-
tion and detection of viruses), antiviral drug and vaccine development, analysis of host-
virus interaction, study of viral spread [2]. Due to being cost effective and having an
improved turnaround time, NGS methods specially RNA sequencing methods along
with other analytical and clinical tests validation methods, can serve as essential
diagnostic for viral spread [10]. The research in RNA-seq includes studying the altered
pathway during infection or disease, gene expression changes (differential expression
analysis) [11]. Though RNA-seq analysis is considered as the standard expression
profiling methodology, still easy, open and standard pipelines for performing this task
by non-expert research community with different background is a major challenge. This
study provides researchers as well as the non-experts with an easy implementable
RNA-seq analysis pipeline for DEGs identification. Mostly, the research interest for
differential studies lies in the comparison of the transcription result under different
experimental conditions, therefore the RNA-seq studies can be categorized into Dif-
ferential Gene Expression (DGE) studies, Differential Transcript Expression
(DTE) studies and Differential Transcript/exon Usage (DTU) studies, where compar-
isons are made between conditions on the basis of transcriptional measure by each
gene, each of the transcript measure, usage of transcript/exon, respectively [12].

In this study, we performed DGE analysis of ZIKV exposed patient using publi-
cally available RNA-seq data from the NGSfor DEGs identification. The identified
significant consensus of differentially expressed transcripts (DETs) from this pipeline
revealed the corresponding DEGs that may have key roles in significant biological
processes and functional pathways related to the disease; hence this would enable us to
search for putative vaccines and therapeutic strategies against ZIKV infections.

2 Methodology

In this pipeline the RNA-seq dataset of ZIKV infected human induced pluripotent stem
cells (hiPSCs) were retrieved from NCBI. Then after read quality check by FastQC
[13], the data was preprocessed using Trimmomatic [14]. Reads were then mapped to
reference human genome (hg38) using aligner named Bowtie2 [15]. The alignment
result was further subjected for quantification of expression values using HTSeq-count
[16]. These counts further served as input for transcript normalization. Bioconductor
package of ‘R’ language [17, 18] which provides several statistical tools for
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normalization such as edgeR [19, 20], DESeq2 [21]. In this study, we implemented
these statistical tools for normalization and differential expression identification.
Additionally, Cuffdiff [22, 23, 24], a program provided by Cufflinks tool, was also used
in this experimental study. In this research, we grouped significant DEGs with high
consensus, significant DEGs with moderate consensus, and significant DEGs with low
consensus derived from their respective differentially expressed transcripts (DETs)
which were identified using these three tools in a consensus manner. The complete
pipeline for our work is shown in Fig. 1.

2.1 Raw Data Collection

The dataset with NCBI-GEO accession GSE78711for ZIKV infected hiPSCs-derived
cortical neural progenitor cells (hNPCs) were retrieved [25]. The data consist of eight
sample files of which four were from control experiments (Mock-infected samples) and
other four from virus treated experiments (ZIKV-infected samples).

Fig. 1. Workflow diagram for Differentially Expressed Genes (DEGs) identification using ZIKV
infection RNA-Seq data from the NGS.

Differential Expression Analysis of ZIKV Infected Human RNA Sequence 285



2.2 Data Preprocessing

All the samples were first converted to fastq format and then read quality check using
FastQC tool was implemented. We used Trimmomatic 0.36 tool for adapter trimming
in order to remove the adapters from data. In order to segregate rRNAs from the
sequence, we used SortMeRNA 2.1 tool [26].

2.3 Read Mapping

We used Bowtie2 aligning tool for mapping the pre-processed reads against the human
reference genome (hg38).

2.4 Read Counting

In order to count the number of reads which were mapped to the human reference
genome, we used HTSeq-count tool.

2.5 Differential Expression Analysis

The differential expression analysis starts with the normalization step which is a
method to adjust read counts between samples in such a way to get a uniformly
distributed normalized expression values throughout the experiment. We applied fol-
lowing three tools which were run at benchmark value for Bejamini-Hochberg [27]
controlled FDR as 0.05.

edgeR: edgeR [19, 20] is the expression analysis tool which models the mapped
read count data using a negative binomial (NB) model. It moderates the estimated
dispersion calculated for each gene to a single common dispersion estimate, or to a
local dispersion estimate, which results from genes with similar expression weight
calculated using a weighted conditional likelihood method [21]. It is a measure of
assessing the inter-library variation of that gene.

For the classic edgeR analysis, we took gene transcripts IDs of eight sample
libraries which were grouped in two. After dispersion estimation, we performed
exactTest for determining differential expression. On normalized expression values, we
applied the tool.

DESeq2: The DESeq2 package uses the NB model in order to test the differential
expression. It estimates the shrinkage according to the data distribution, and then
adjusts the logarithmic fold changes to improvise the result stability and its interpre-
tation [21].

For analysis through DESeq2 package, we input the read-counts of all eight sample
libraries in form of matrix, and also specified sample condition i.e. whether the samples
are control-treated or virus-treated. It firstly estimated size factors, and then calculated
gene-wise dispersion. It finally fitted the model and tested for differential expression.

Cuffdiff: Cuffdiff [22, 23, 24] is the Cufflink transcript assembly package used to
identify significant changes in transcript expression. It models the variance in groups of
samples which lies beyond the expected variance calculated by Poisson model. It tests
for observed logfold change in its expression against the null hypothesis of no change.
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The normalization process in Cuffdiff is performed by classic-fpkm, geometric mode,
quartile mode. Cuffdiff needs count files in.bam format, therefore we first converted
.sam alignment file to .bam files using Samtools. After sorting it, we ran Cuffdiff
command.

2.6 Consensus Approach to DEGs

We assume that A is the set of differentially expressed transcripts (DETs) identified by
tool edgeR under the specified benchmark cutoffs and filters of FDR < 0.05, FDR-
adjusted p value or q value < 0.05 and log2FC > |2|, B is the set of DETs identified by
tool DESeq2 and C is the set of DETs identified by Cuffdiff tool. Using a consensus
approach, significant transcripts with high consensus (DETsHigh) in terms of differential
expression can be defined as Eq. (1).

DETsHigh ¼ A\B\Cð Þ ð1Þ

Similarly, using majority voting rule, significant differentially expressed tran-
scriptswith moderate consensus (DETsModerate) can be defined as Eq. (2),

DETsModerate ¼ A\Bð Þ [ A\Cð Þ [ B\Cð Þ ð2Þ

And significant differentially expressed transcripts with low consensus (DETsLow)
can be defined as Eq. (3),

DETsLow ¼ A[B[Cð Þ ð3Þ

With the help of open source browser developed by University of California, Santa
Cruz called UCSC Genome browser, we found the official gene names/symbols for
corresponding Refseq IDs (Transcript IDs). Then we extracted out the unique genes
(DEGs) in each category of DETs. Next, we identified which of the highly significant
DEGs were TFs or target, as we know TFs may be involved in disease pathways. This
was done by manual search from transcription databases (TRRUST [28] and Tf2DNA
[29]).The identified TFs were further validated for their relevance with ZIKV through
literature searches.

3 Results and Discussion

The complete protocol (depicted in Fig. 1) was implemented and performed on a
workstation with 8 GB RAM, multicore processors under Ubuntu 18.04.1 LTS oper-
ating system.

3.1 Data Preprocessing

On read quality check of raw data by FastQC, we found that four out of eight samples
had quality-score (Phred Score) above 20, which were considered to be good whereas
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remaining four samples below 20 were considered to poor quality reads. When poor
quality reads subjected for adaptor trimming; only 2–3% of the total reads got trimmed.
All types of rRNAs were separated from the samples.

3.2 Read Mapping

After read mapping to the human genome it was observed that the overall alignment
rate of all the eight samples was more than 99%, which implies to be very well aligned.

3.3 Read Counting and Normalization

As a standard assumption the number of reads mapped (read count) to a gene/transcript
is considered to be the proxy of its expression. For data analysis, read count data from
HTSeq-count further needs to be normalized by total fragment count in order to make
counts comparable across the experiments. edgeR, DESeq2 and Cuffdiff were used for
this task, which firstly transformed read count data into a continuous distribution. They
used NB model to estimate dispersion parameter for each transcript. This dispersion
parameter gave a measure of the degree of inter-library variation of particular transcript
between the samples. Estimation of common dispersion provided the idea of overall
variability across the dataset.

3.4 Differential Expression Analysis

When all the eight samples grouped in two were subjected for differential analysis
using edgeR tool, it was found that normalization factors calculated for each sample is
close to 1 which signified that all the eight libraries are similar in composition. The
input estimated common dispersion before estimating tagwise dispersions in order to
proceed differential expression analysis.

Firstly, Biological coefficient of variation (BCV) was applied to this input data.
BCV is mathematical square root of common dispersion estimated using NB model.
With an increase in the number of read counts, the BCV remains unaffected, though a
decrease in technical CV can be observed. Therefore, the accurate BCV estimation is
crucial for differential expression analysis studies in RNA-seq experiments. The BCV
calculated from the experiment was found to be 34%. Since, higher the BCV measure,
lower will be the number of differentially expressed genes/transcripts detected, there-
fore it is assumed that the test detected higher number of DETs. Moreover, in the Fig. 2
(a), a common dispersion (red line on BCV plot) lied between 0.2–0.4, hence con-
sidered to have detected higher number of DETs.

For Multidimensional Scaling (MDS), the input was provided inform of a distance
matrix where values represented distances between the pairs of objects. MDS plot
represents the relationship between different groups of samples and can be affected by
high BCVs. MDS plots show distances between the samples in terms of BCV spread in
two dimensions of the plot (dim 1 and dim 2) as shown in Fig. 2(b).

Dimension 1 (dim1) separates the control samples from the Virus-treated samples
which signified the possibility of detecting higher number of DETs. This plot can be
observed in the form of an unsupervised clustering.
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After fitting the NB models and estimation of dispersions, we proceeded with tests
determining the differential expression. The tagwise exactTest was applied. P-values
were calculated by combining over all sums of counts that have a probability less than
the probability under the null hypothesis of the observed sum of counts. The test
performed at FDR < 0.05, provided us with output result with all 153726 transcripts
arranged in tabular form with information regarding their geneID, logFC, logCPM, P-
value (that is the default FDR-adjusted P-value also called q value). It was observed
that 683 genes were down-regulated, 152668 genes were not differentially expressed
and 375 were up-regulated.

The smear plot of tagwise log-fold changes (logFC) against logCPM is shown in
Fig. 3. The differentially expressed tags are highlighted in the plot and the horizontal
blue lines show 4-fold changes.

For the consensus method in DEGs identification, we also applied DESeq2 tool
from R Bioconductor which gave the differential expression result along with nor-
malized count data for all eight samples with 153726 transcripts. The dispersion plot of
the normalized read count from DESeq2 tool is shown in Fig. 4.

We also performed a differential analysis of count data using Cuffdiff program. The
processed count files from HTSeq tool when subjected to Cuffdiff tool, gave expression
estimates of 153620 identified DETs in terms of FPKM and read counts.

a. b.

Fig. 2. (a) Plot for Biological coefficient of variation (BCV) depicts common dispersion to lie
between 0.2–0.4. (b) MDS plot of various samples. (Color figure online)

Fig. 3. Smear plot of dataset analogous to an MA-plot as for microarray data.
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Since results from these tools contains large number of transcripts which were
differentially expressed, when the filtering criteria was employed, we found the best
identified transcripts for each of the three tools. Using majority voting rule, we iden-
tified a total of 28 DETs as significant DETs with a high consensus, 248 DETs as
significant DETs with a moderate consensus and 654 as significant DETs with a low
consensus, as per Eqs. (1), (2) and (3), respectively. Further, 27 corresponding sig-
nificant unique DEGs with a high consensus were identified, along with 76 DEGs with
a moderate consensus and 270 significant DEGs with a low consensus (Fig. 5).

Out of these 27 DEGS with a high consensus, 6 were identified as Transcription
Factors (TFs), which are DDIT3, CEBPB, TRIB3, XBP1, KLF15 and JDP2 accord-
ingly. To validate the association of these identified DEGs in ZIKV infection, we
performed an exhaustive literature search and found to be associated except for JDP2
gene. Furthermore, DDIT3 [8, 30, 31, 32], CEBPB [8], TRIB3 [30], XBP1 [8, 33, 34,
35, 36, 37] were both experimentally and computationally validated, and KLF15 [8]
was computationally validated.

Fig. 4. Dispersion plot for mean of normalized read counts by DESeq2 tool.

Fig. 5. Differentially Expressed Genes (DEGs) identified by consensus.
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The information related to these identified TFs as high consensus DEGs in asso-
ciation to ZIKV infectionare listed in Table 1. It was observed that all the identified
genes were upregulated. Flavivirus (including ZIKV) translation and RNA replication
produces Endoplasmic Reticulum (ER) stress in cell causing ER. Most of these TFs are
found to be actively involved in Protein Kinase R (PKR)-like ER Kinase (PERK)
branch of ER-Unfolded Protein Response (UPR). CEBPB also induces the expression

Table 1. Functions of six identified significant DEGs with high consensus

RefSeq ID Official
gene
symbol

Gene name log2FC Association to
ZIKV infection

PMID/Reference

edgeR DESeq2 Cuffdiff

NM_001195056.1 DDIT3 DNA-damage-
inducible
transcript 3

2.328 2.332 2.269 Involved in the
PERK branch
ER-UPR due to
ER stress
triggered by
flavivirus
translation and
RNA replication.
It is also a
substrate for
Nonsense-
mediated mRNA
decay
(NMD) involved
in cell cycle
arrest and
induction of
apoptosis

27293547 [8],
29451494 [30],
30401782 [31],
30228241 [32]

NM_001285878.1 CEBPB CCAAT enhancer
binding protein
beta

2.739 2.833 3.182 Induces the
expression of
inflammatory and
ER stress
response factors

27293547 [8]

NM_001301188.1 TRIB3 Tribbles
pseudokinase 3

2.325 2.342 2.088 Involved in
PERK branch of
ER-UPR due to
ER stress
triggered by
flavivirus
translation and
RNA replication

29451494 [30]

NM_005080.3 XBP1 X-box binding
protein 1

2.297 2.301 2.468 Indicator of UPR
activation in
ZIKV infection
as IRE1-XBP1
and ATF6
pathways of UPR
in neural cells
gets activated

27293547 [8],
28190239 [33],
30670030 [34],
29321318 [35],
28592527 [36],
29976926 [37]

NM_014079.3 KLF15 Kruppel-like
factor 15

2.046 2.061 2.348 Upregulated in
ZIKV infection

27293547 [8]

XM_005247400.3 2.022 2.041 2.178

XM_017020973.1 JDP2 Jun dimerization
protein 2

2.098 2.115 2.431 – –
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of inflammatory and ER stress response factors. UPR is also involved in IRE1-XBP1
and ATF6 pathways of neural cells when infected with ZIKV. However, these iden-
tified DEGs need further experimental validation.

4 Conclusion

The outbreak of viral disease such as ZIKV has brought the attention of computational
biologists and bioinformaticians to perform the differential expression analysis of
ZIKV infected patients to understand transcriptomic changes in the body that helps in
designing better diagnostic tools, therapeutics and treatments. In this study, we com-
putationally analyzed the RNA-seq data of ZIKV infected patients to identify DEGs
through an easy reproducible pipeline. We report six most significant TFs using a
consensus of three tools (edgeR, DESeq2, Cuffdiff) as differentially expressed in ZIKV
infected patient. These genes are validated using an exhaustive literature recapitulation
for its reliability. In the future, we look forward to perform gene regulation and
pathway analysis, GO enrichment analysis and topological analysis for these DEGs in
order to further validate their role in ZIKV infection.
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Abstract. The immunoglobulin receptor represents a central molecule in
acquired immunity. The complete set of immunoglobulins present in an indi-
vidual is known as immunological repertoire. The identification of this reper-
toire is particularly relevant in immunology and cancer research and diagnostics.
In a seminal work we provided a proof of concept of the novel ARTISAN-PCR
amplification method, we adapted this technology for sequencing using Nano-
pore technology. This approach may represent a faster, more portable and cost-
effective alternative to current methods. In this study we present the pipeline for
the analysis of immunological repertoires obtained by this approach. This paper
shows the performance of immune repertoires sequenced by Nanopore tech-
nology, using measures of error, coverage and gene usage identification.
In the bioinformatic methodology used in this study, first, Albacore Base

calling software, was used to translate the electrical signal of Nanopore to DNA
bases. Subsequently, the sequons, introduced during amplification, were aligned
using bl2seq from Blast. Finally, selected reads were mapped using IMGT/
HighV-QUEST and IgBlast.
Our results demonstrate the feasibility of immune repertoire sequencing by

Nanopore technology, obtaining higher depth than PacBio sequencing and better
coverage than pair-end based technologies. However, the high rate of systematic
errors indicates the need of improvements in the analysis pipeline, sequencing
chemistry and/or molecular amplification.
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1 Introduction

Immunoglobulins are central proteins of the adaptive immune system since they fulfill
a fundamental role of defense against foreign agents. These proteins are synthesized for
B Cells and are constituted by two identical heavy chains and two identical light
chains, joined by disulfide bridges. Immunoglobulins that can be found forming part of
their membrane or being secreted outside of the cell [1, 2]. Its formation is the result of
two main phenomena: recombination of 3 gene segments (known as V (variable), D
(diversity) and J (junction)) and point mutations (Somatic hypermutation) [3]. Both
phenomena generate differences between each rearrangement of immunoglobulin
producing a repertoire close to 1011 per individual [4].

The sequencing and identification of the nucleic acids that codify for variable
region of these proteins has diverse applications in research, diagnosis and treatment of
cancer and other diseases of the immune system [5, 6].

However, the sequencing and analysis of the immune repertoire represents a unique
challenge for molecular biology and bioinformatics due to the intrinsic high variability
attained to recombinant gene segments and somatic hypermutation. Accurate repertoire
measurements requires unbiased PCR amplification, high depth, and full read coverage.
We have previously overcame the primer binding bias of standardmultiplex PCR [7] by a
novel ARTISAN-PCR strategy (Anchoring reverse transcription immunoglobulin
sequence and amplification by nested PCR) [8]. After amplification repertoire are sub-
jected to high throughput sequencing. Whereas PacBio sequencing provides the required
coverage (app. 1 Kb) the depth remains limited (10 K–100 K reads). On the other hand,
Illumina pair-end sequencing provides excellent depth, albeit with insufficient coverage
(app. 600 bp for Miseq 300 PE) [9]. Nanopore sequencing technology potentially pro-
vides high coverage and depth at a lower cost, therefore we tested the feasibility of
immune repertoire sequencing of indexed amplicons generated by ARTISAN-PCR.
These long-read technologies are very promising, but their error rates are higher than
other current sequencing methods and require computational-based corrections and/or
additional bioinformatics preprocessing before they can be valuable [10].

This work presents a pipeline for analysis of immune repertoire sequenced by
Nanopore technology, showing performance measurements as error rate, percentage of
substitutions and indels, coverage and identification of V(D)J genes of immunoglobulin.

2 Materials and Methods

2.1 Immunoglobulin Amplification, Library Preparation and Sequencing

In this study, 5 samples from healthy individuals were analyzed. All volunteers pro-
vided informed consent and the study as it was approved by the ethics review board of
the University of Magallanes (registry 1180882).

RNA was extracted from peripheral blood mononuclear cells obtained by gradient
centrifugation. Anchored cDNA was synthesized and amplified by ARTISAN-PCR as
previously described [8].
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A total of 5 amplicons representing each antibody chain: IgA, IgG, IgM, IgKappa
and IgLambda were individually indexed and the library was processed using the 1D2
Sequencing Kit (R9.5) following the manufacturer protocol.

Each amplicon has the following structure:

In the amplicons structure the Index identifies patient chain. The Constant Chain
identifies Immunoglobulin chain (IgA, IgG, IgM, IgKappa and IgLambda).

The library with 25 indexed amplicons was then sequenced during 24 h in a
MinION Nanopore Sequencing Device.

2.2 Basecalling and Qscore Stratification

The first bioinformatics step was to obtain the reads from the Nanopore electrical signal
by ONT Albacore Sequencing Pipeline Software (version 2.3.3). In this step it was
used the AXON server of the Universidad Católica del Maule, operating system
CentOS Linux 7.4.1708 (core). This server has a hard disk of 1.8 Tera Bytes.
32 Gigabytes of Memory and has 2 processors Intel (R) Xeon (R) CPU E5-2623 v4 @
2.60 GHZ with 4 cores each processor. This step took 70 h to work out the calculation.

Then sequencing quality was assessed by the internal Qscore (Qs) provided by
Albacore and the reads were classified according to this score.

2.3 Demultiplexing of Indexed Amplicons

The second step of data processing corresponds to aligning the reads generated by
Minion Nanopore to their respective sample indexes (Index, Anchor, Constant Chain,
and End Adaptor) by using a custom script based on a Smith-Waterman heuristic
algorithm using Bl2seq de BLAST software (Basic Local Alignment Search Tool) [11].

Consecutively, matching analysis was applied using the Levenshtein distance
written in the C programming language. In this case the characters or bases of DNA
that change are the product of insertions, deletions or substitutions of these. It is
considered as a match when two sequences are identical, the mismatch is considered
when at least one insertion, deletion or substitution. The reads that have up to 6
mismatches (6 differences between bases) contain motifs that align to their respective
sample indexes. Alignments to indexes with a greater difference were discarded for
subsequent analysis steps.

The general script for the demultiplexing of indexed amplicons was written in the R
programming language [12].

Fig. 1. Amplicons structure.
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2.4 Error Rate and Coverage

Each amplicon contains adapters and extensions located in 5’ and 3’ (Index, Anchor,
Constant Chain, and End adaptor) that contain known DNA sequences, which are used
to estimate sequencing error rate, substitution profiles, indel profiles, and coverage. The
error rate constitutes the percentage of mismatched bases in the alignment and that can
be subdivided into substitution, insertion and deletion rates, Eq. (1) [13].

The errors correspond to the total sum between substitutions, insertions and dele-
tions in the motives. The alignment length is the sum of the number of eligible
sequences (sequences that have up to 6 mismatch for the motif) multiplied by the
length of the motif.

error rate ¼ mismatchesþ P
length insertions 2 readð Þð Þþ P

length deletions 2 readð Þð Þ
matchesþmismatchesþ

X
length insertions 2 readð Þð Þþ

X
length deletions 2 readð Þð Þ

¼ errors
alignment length

� 100%

ð1Þ

The error rate was estimated according to the criteria of stage 1.3 demultiplexing of
indexed amplicons by using all motifs of the detected reads. The error rate was cal-
culated as Eq. (2).

error rate ¼ ðerrorsIndex þ errorsAnchor þ errorsConstant Chain þ errorsEnd AdaptorÞ
ðalignmentIndex þ alignmentAnchor þ alignmentConstant Chain þ alignmentEnd AdaptorÞ ð2Þ

Reads were selected according to their internal Qscore (Qscore greater than 6) for
subsequent analysis. Then, the reads were separated in forward and reverse comple-
ment to analysis of substitutions and indels. For these analysis, the sample indexes that
are recognized in each read were considered. The united motifs of a read form a
construct that eliminates the first 4 theoretical bases of Index and the last 4 bases of End
Adapter (these amplicons have low quality in their end, according to preliminary
analysis using FastQC tools [14]).

The profiles of each substitution analyzed were: C > A, C > G, C > T, T > A,
T > C, T > G, G > T, G > C, G > A, A > T, A > G and A > C. In addition, all
substitution were examined by incorporating information from the contiguous bases 5’
and 3’ for each mutated base generating 192 possible substitutions types (12 types of
substitution � 4 types of 5’ base � 4 types of 3’ base). For each of the 192 possible
substitutions types the percentage is obtained with respect to the total of substitutions.
The procedure described above is similar for calculating the percentages of the indels.

Then, the coverage of the reads was analyzed respect to the structure of the
amplicons (Fig. 1). The amplicons coverage is shown as the number of motifs that
cover an area of the amplicons (does not correspond to coverage of known reference
bases). In this case the presence of the motifs was quantified (Index, Anchor, Constant
Chain, and End Adapter). Which are the motives of the reads is quantified, based on the
criteria of stage 1.3 demultiplexing of indexed amplicons. In this stage, the presence of
the V(D)J rearrangement motif was also quantified using Igblast software and Change-
o tools for gene mapping [15].
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2.5 Immunoglobulin Identification

Reads with Qscore greater than 6 and demultiplexing according to stage 1.3 were
subsequently aligned using IMGT HighV-Quest and IgBlast. Then, sequences align-
ment using IMGT HighV-Quest were analyzed with the BcRep R package [16]. In case
of sequences alignment using IgBlast were then analyzed with Change-o tools [15].

3 Results

3.1 Sequencing Yield, Quality, and Error Rate

From the library of 25 indexed amplicons 1,450,507 reads were identified. The fre-
quency distribution of read quality and error rate is showed in Table 1.

The proportion of reads with a Qscore equal or greater than 7, considered with
acceptable quality, was 30.9% (n = 447,693) and the percentage of lower quality reads
was 69.1% (n = 1,002,814). Due to the high proportion of low quality reads we per-
formed a stratified analysis in order to establish whether lower quality reads contain
useful sequencing data. With this information it is decided to analyze reads with a
Qscore equal or greater than 6 (n = 914,069). It is observed that the reads with a
Qscore greater than 7 have an error rate of up to 10%, in the case of reads with higher
Qscore the error decreases by one percentage point.

In Fig. 2 is possible to see the reads that were demultiplexing for each type of
immunoglobulin chain (IgA, IgG, IgM, IgKappa and IgLambda) and patient chain
(DCR, JGP, LAH, MAN and MVC). Reads with Qscore between 5 and 9 were ana-
lyzed. 251,044 were identified with immunoglobulin chain and 317,395 reads were
detected with patient chain. Besides, the amount of identified sequences show the depth
and coverage of sequencing, allowing this technology as a greater platform in com-
parison to others commonly used for the sequencing of immunoglobulins [9].

Table 1. Numbers of reads according to Qscore.

Group Numbers of reads Error rate

1 � Qscore < 2 1,296 2.8 10−1

2 � Qscore < 3 10,305 1.8 10−1

3 � Qscore < 4 55,390 1.4 10−1

4 � Qscore < 5 158,765 1.4 10−1

5 � Qscore < 6 310,682 1.3 10−1

6 � Qscore < 7 466,376 1.2 10−1

7 � Qscore < 8 332,726 1 10−1

8 � Qscore < 9 100,646 9 10−2

9 � Qscore 14,321 8 10−2

Total 1,450,507
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The reads with a quality over 6, demultiplexing, were separated as forward and
reverse complement. The forward reads was 45% (n = 273,215) and the percentage of
reverse complement reads was 55% (n = 331,998). The substitutions, insertions and
deletions of the reads were calculated separately for each type of sequence. Figure 3A
and B shows the most important substitutions for forward and reverse complement
reads. In this case the two most important substitutions G > A are shown (where G is
the real base, being replaced by A) and A > G (where A is the real base, being replaced
by G). It should be mentioned that in this case it is true that both for reads forward and
reverse have as a maximum percentage the substitutions G > A and A > G. In the case
of substitutions in the forward reads (Fig. 3A), it is observed that the profile CGC with
the highest percentage (more than 20% of the substitutions in the forward reads), where
G is replaced by A, and between two equal bases (between two C) Nanopore errors
occur as expected. The second profile of the forward reads that has the highest per-
centage is AAC (more than 10%), where the central A is replaced by G, it is observed
that when there are two equal bases, in this case A, the second base cannot recognize it
and it is replaced.

In the case of substitutions of the reverse complement reads (Fig. 3B) it is observed
that the highest substitution profile is TAC (greater than 15%), where A is replaced by
G. The second most important profile corresponds to AGC with almost 15% of the
substitutions, where G is replaced by A which is contiguous to the base that we wish to
infer.

In summary, it is observed that in the case of forwards reads there are greater errors
when two bases are equal in the profile. In the case of the reverse complement reads the
substitutions change the base resembling a contiguous base.

The other substitution profiles are not shown in this document because of their
space and also they have very low percentages, all of which are less than 5%.

Fig. 2. Immunoglobulins (Ig) and Patient Chains identified. Sequences with a Qscore between 5
and 9 were analyzed.
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Figure 3C and D, shows the most important deletion profiles to forward and reverse
complement reads. It is observed that the deletion of A is the most important for the
two types of reads. The most important deletions for the forward reads are those of A
and G. The most important deletion for the forward reads is A> - with a percentage of
almost 40% of the total deletions for this type of reads. The profile corresponds to

Fig. 3. Substitutions and indels. Bar graphs show the most important percentages of
substitutions and indels.
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CAA, where the A base is not inferred by the neural network that uses the Nanopore
Albacore software’s neural network. The second deletion corresponds to the AGT
profile (with a percentage greater than 15%), where G is not inferred.

The most important deletion for reverse complement reads is A> - with a per-
centage of more than 45% of all deletions for this type of reads. The profile of the
deletion corresponds to GAG, where A is not inferred. The second most important
deletion profile is GGA, where the bold type G is not recognized.

Based on the results it is observed that the most important deletions occur in
profiles that have two equal bases. The deletions of C and T are not shown given that
the percentages of each are less than 5% for all.

In Fig. 3E, it is shown that the most important forward reads insertions correspond
to C and G. The profile with the highest percentage is T-C (greater than 25%), where a C
is inserted into the middle of the profile (mistakenly inferring a TCC profile). The
second most important profile corresponds to G-A where a G is inserted into the middle
of the profile (erroneously inferring a GGA profile). It is observed based on these results
that in the insertions an adjacent base is duplicated. The inserts of T and A, as the inserts
of the reverse complement reads have profiles with percentages less than 10%.

The coverage of the reads was analyzed (Fig. 4). We found that all sequences have
V(D)J Rearrangement (400 to 880 bp) when analyzing the results of IgBlast used
MakeDb.py of Change-o (using the partial option: which allows to include incomplete
alignments to V(D)J). However, very few complete amplicons were detected 6,682. It
is observed that a large number of reads that has the Anchor and Index motif.

3.2 Nanopore Sequencing Allows V(D)J Gene Usage Identification

Demultiplexed reads were aligned to the immunoglobulin databases HighV-Quest and
IgBlast. The results we have obtained using IgBlast can be better recognized incomplete
immunoglobulins compared to HighV-Quest, however HighV-Quest has more tools
used in the analysis of the sequence as BcRep R package that are presented below.

Fig. 4. Read coverage. The number of reads that have the patterns is marked in color. (Color
figure online)
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The overall V, D, and J gene segments usage for heavy and light chains is depicted
in Fig. 5. The frequency distribution is consistent with the previously reported usage in
repertoires obtained in healthy individuals.

Figure 6 represents the combinatorial gene segments usage according to each
individual index for demultiplexed samples. As expected for healthy individuals the
gene segments usage and combinations correlates.

Fig. 5. Percentage of variable region from V, D, and J segments associated with families. Bar
graphs in upper panels correspond to immunoglobulin heavy chains (blue bars) and graphs in the
lower section to light chains (orange bar). (Color figure online)
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Fig. 6. Heavy chain gene segments usage and V-D recombination in demultiplexed samples.
Each panel represents one individual.
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4 Conclusions

This work corresponds to the first description for feasibility to amplifiying immune
repertoire by ARTISAN-PCR protocol sequenced by nanopores.

The bioinformatic analysis obtained from the pipeline previously described allow
us the use of gene information for the assembly of the immunoglobulin variable region,
providing relevant information, for example, for the prognosis of various pathologies.
This method provides full rearrangement coverage and sequencing depth that could
potentially reach 106 sequences per flow cell.

In our previous experiments using PacBio we were able to identify an average of
50,000 reads, whereas with this novel approach we rescued more than 300,000 reads
with adequate quality.

Nevertheless, this technology still faces important challenges such as high error rate
[17, 18]. In our experiments error rate was as high as 10% for reads with a Qscore
between 7 and 8, selection of reads with higher Qscore only decreased this error rate by
1 percentual point. Although this error rates allows accurate identification of V(D)J
family usage, it is not sufficient for other analysis such as precise hypermutation rate
measurement. However, the principal disadvantage of this platform is the accuracy,
apparently driven by systematic errors [19]. Since most of the error rate could be
associated to predictable patterns, it is envisioned that bioinformatics tools could be
readily developed [10].
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Abstract. Approximate matching in strings is a fundamental and chal-
lenging problem in computer science and in computational biology,
and increasingly fast algorithms are highly demanded in many appli-
cations including text processing and dna sequence analysis. Recently
efficient solutions to specific approximate matching problems on genomic
sequences have been designed using a filtering technique, based on the
general abelian matching problem, which firstly locates the set of all
candidate matching positions and then perform an additional verifica-
tion test on the collected positions.

The abelian pattern matching problem consists in finding all substrings
of a text which are permutations of a given pattern. In this paper we
present a new class of algorithms based on a new efficient fingerprint
computation approach, called Heap-Counting, which turns out to be fast,
flexible and easy to be implemented. We prove that, when applied for
searching short patterns on a dna sequence, our solutions have a linear
worst case time complexity. In addition we present an experimental eval-
uation which shows that our newly presented algorithms are among the
most efficient and flexible solutions in practice for the abelian matching
problem in dna sequences.

Keywords: Approximate string matching ·
Abelian matching jumbled matching · Experimental algorithms

1 Introduction

Given a pattern x and a text y, the abelian pattern matching problem [10] (also
known as jumbled matching [6,13] or permutation matching problem) is a well
known special case of the approximate string matching problem and consists in
finding all substrings of y, whose characters have the same multiplicities as in x,
so that they could be converted into the input pattern just by permuting their
characters.
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Example 1. For instance, assume that y = ccgatacgcattgac is a text of length
15 and x = accgta is a pattern of length 6, then x has two abelian occurrences
in y, at positions 1 and 4, respectively, since both substrings cgatac and tacgca
are permutations of the pattern.

This problem naturally finds applications in many areas, such as string align-
ment [3], SNP discovery [4], and also in the interpretation of mass spectrometry
data [5]. We refer to the recent paper by Ghuman and Tarhio [13] for a detailed
and broad list of applications of the abelian pattern matching problem.

More interestingly related with scope of this paper abelian matching finds
application in the field of approximate string matching in computational biology,
where algorithms for abelian matching are used as a filtering technique [2], usu-
ally referred to as counting filter, to speed up complex combinatorial searching
problems. The basic idea is that in many approximation problems a substring
of the text which is an occurrence of a given pattern, under a specific distance
function, is also a permutation of it. For instance, the counting filter technique
has been used solutions to the approximate string matching problem allowing
for mismatches [16], differences [18], inversions [7] and translocations [15].

In this paper we are interested in the online version of the problem which
assumes that the input pattern and text are given together for a single instant
query, so that no preprocessing of the text is possible. Although its worst-case
time complexity is well known to be O(n), in the last few years much work has
been made in order to speed up the performances of abelian matching algorithms
in practice, and some very efficient algorithms have been presented, tuned for
specific settings of the problem [9,13].

Specifically we present two algorithms based on a new efficient fingerprint
computation approach, called Heap-Counting, which turns out to be fast, flexible
and ease to be implemented, especially for the case of dna sequences. The first
algorithm is designed using a prefix based approach, while the second one uses
a suffix based approach. We prove that both of them have a linear worst case
time complexity.

In addition we present also two fast variants of the above algorithms, obtained
by relaxing some algorithmic constraints, which, despite their quadratic worst
case time complexity, turn out to be faster in some specific practical cases.

From our experimental results it turns out that our newly presented algo-
rithms are among the most efficient and flexible solutions for the abelian match-
ing problem in genomic sequences.

The paper is organized as follows. After introducing in Sect. 2 the relevant
notations and describing in Sect. 3 the related literature, we present in Sect. 4 two
new solutions of the online abelian pattern matching problem in strings, based
on the Heap-Counting approach, and prove their correctness and their linear
worst case time complexity. Then, in Sect. 5, we present a detailed experimental
evaluation of the new presented algorithms, comparing them against the most
effective solutions known in literature.
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2 Basic Notions

Before entering into details we recall some basic notions and introduce some
useful notations.

We represent a string x of length |x| = m > 0 as a finite array x[0 ..m− 1] of
characters from a finite alphabet Σ of size σ. Thus, x[i] will denote the (i+1)-st
character of x, for 0 ≤ i < m, whereas x[i .. j] will denote the substring of x
contained between the (i + 1)-st and the (j + 1)-st characters of x.

Given a string x of length m, the occurrence function of x, ρx : Σ →
{0, . . . , m}, associates each character of the alphabet with its number of occur-
rences in x. Formally, for each c ∈ Σ, we have:

ρx(c) =
∣
∣
{

i : x[i] = c
}∣
∣.

The Parikh vector [1,20] of x (denoted by pvx and also known as com-
pomer [5], permutation pattern [11], and abelian pattern [10]) is the vector of
the multiplicities of the characters in x. More precisely, for each c ∈ Σ, we have

pvx[c] =
∣
∣
{

i : 0 ≤ i < m and x[i] = c
}∣
∣.

In the following, the Parikh vector of the substring x[i .. i+h− 1] of x, of length
h and starting at position i, will be denoted by pvx(i,h).

The procedure for computing the Parikh vector pvx of a string x of length m
needs an initialization of the vector which takes O(σ) time, and an inspection
of all characters of x which takes O(m) time. Thus the Parikh vector can be
computed in O(m + σ) time.

In terms of Parikh vectors, the abelian pattern matching problem can be
formally expressed as the problem of finding the set Γx,y of positions in y, defined
as

Γx,y =
{

s : 0 ≤ s ≤ n − m and pvy(s,m) = pvx

}

.

3 Previous Results

For a pattern x of length m and a text y of length n over an alphabet Σ of size
σ, the online abelian pattern matching problem can be solved in O(n) time and
O(σ) space by using a näıve prefix based approach [10,16,18,19], which slides a
window of size m over the text while updating in constant time the corresponding
Parikh vector.

Specifically, for each position 0 ≤ s < n − m, and character c ∈ Σ, we have

pvy(s+1,m)[c] = pvy(s,m)[c] − ∣
∣{c} ∩ {y[s]}∣∣ +

∣
∣{c} ∩ {y[s + m]}∣∣,

so that the vector pvy(s+1,m) can be computed from the vector pvy(s,m) by
incrementing the value of pvy(s,m)[y[s + m]] and by decrementing the value of
pvy(s,m)[y[s]]. Thus, the test “pvy(s+1,m) = px” can be easily performed in con-
stant time. This is done by maintaining an error value e such that

e =
∑

c∈Σ

∣
∣pvx[c] − pvy(s,m)[c]

∣
∣, for 0 ≤ s < n − m.
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At the beginning of the algorithm the value of e is set to
∑

c∈Σ

∣
∣pvx[c] −

pvy(0,m)[c]
∣
∣. Thus, when it becomes 0 an occurrence is reported.

A suffix-based approach to the problem has been presented in [10], as an
adaptation of the Horspool string matching algorithm [17] to abelian pattern
matching problem. Rather than reading the characters of the window from left
to right, characters are read from right to left. Every time the reading restarts in
a new window, starting at position s, the Parikh vector is initialized by setting
pvy(s,m)[c] = 0, for all c ∈ Σ. Then, during each attempt, as soon as a frequency
overflow occurs, the reading phase is stopped and a new alignment is attempted
by sliding the window to the right. An occurrence is reported when the whole
window is inspected without reporting any frequency overflow. The resulting
algorithm has an O(n(σ + m)) worst-case time complexity but performs well in
many practical cases, especially for long patterns and large alphabets.

Successive solutions to the problem tried to speed-up both the prefix-based
and suffix-based approaches described above by applying techniques of algorithm
engineering, where experimental evaluations play an important role.

In [8] Cantone and Faro presented the Bit-parallel Abelian Matcher (BAM),
which applies bit-parallelism to enhance the suffix-based approach for the abelian
pattern matching problem. It turns out to be very fast in practical cases. It has
been also enhanced in [9] by reading 2-grams (BAM2), obtaining best results in
most practical cases.

However, although the adaptive width of bit fields makes possible to handle
longer patterns than a fixed width, the packing approach used in BAM can be
applied only in the case where the whole Parikh vector fits into a single computer
word. This makes the algorithm particularly suitable for small alphabets or short
patterns, but not useful in the case of long patterns and large alphabets.

In [9], an attempt to adapt such strategy in the case of long patterns have
been presented. The authors proposed the BAM-shared algorithm (BAMs for
short) which uses a kind of alphabet reduction in order to make the bit-vector
fit into a single computer word. This implies that the algorithm works using a
filtering approach and, in case of a match, the candidate occurrence should be
verified.

In [9] the authors presented also a simple and efficient bit-parallel suffix-based
approach. Instead of packing the Parikh vector of a string, their algorithm,
named Exact Backward for Large alphabets (EBL for short) maintains a bit
vector B of size σ where, for each c ∈ Σ, B[c] is set to 1 if the character c occurs
in the pattern, and is set to 0 otherwise.

More recently, in [13], Ghuman and Tarhio enhanced the EBL suffix-based
solution by using SIMD (Single Instruction Multiple Data) instructions. Their
solution, named Equal-Any algorithm (EA for short), uses a SIMD load instruc-
tion for reading, at each iteration, the whole window of the text in one fell swoop
and storing it in a computer word w. Experimental results show that such solu-
tion is 30% faster than previous algorithms for short English patterns. However,
despite this results, it works only when the length of the pattern is less or equal
to 16.
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Some efficient variants of the prefix based approach have been also presented
in the last few years. Among them in [15] Grabowsky et al. presented a more
efficient prefix-based approach, which uses less branch conditions. In [9] Chhabra
et al. presented a prefix-based solution named Exact Forward for Small alphabets
(EFS for short) which applies the same packing strategy adopted by the BAM
algorithm to the prefix-based approach, obtaining very competitive results in
the case of short alphabets.

To delve into the problem we refer to a detailed analysis of the abelian pattern
matching problem and of its solutions presented in [10] and in [14].

4 The Heap-Counting Approach

Let x and y be strings of length m and n, respectively, over a common alpha-
bet Σ of size σ. As described above previous solutions for the abelian pattern
matching problem maintain in constant time the symmetric difference, e, of the
multisets of the characters occurring in the current text window and of those
occurring in the pattern, respectively. Thus, when e = 0, a match is reported.
Alternatively, they use a packed representation of the Parikh vector, where some
kind of overflow sentinel is implemented in order to take track that the frequency
of a given character has exceeded its corresponding value in the Parikh vector
of the pattern. The aim is to perform the initialization of the Parikh vector in
constant time and to perform vector updates in a very fast way.

Instead of using a structured representation of the Parikh vector of a string,
fitting in a single computer word, our approach tries to map the multisets of our
interest into natural numbers, using a heap-mapping function h that allows for
very fast updates.

Specifically we suppose to have a function h : Σ → N (the heap-function),
that maps each character c of the alphabet Σ to a natural number, h(c) indeed.
Then, we assume that the multiset of a given string w ∈ Σ∗, of length m, can be
univocally associated to a natural number, h(w), using the following relation:

h(w) =
m−1∑

i=0

h(w[i]) (1)

The value h(w) is called the heap-value of the string w. In this context a abelian
match is found at position s of the text when the heap-value associated to the
window starting at position s is equal to the heap-value of the pattern. This
approach, when applicable, leads to two main advantages: the multisets of the
characters occurring in string can be represented by a single numeric value,
fitting in a single computer word; modifications and updates of such multisets
can be done by means of simple integer additions.

Our heap-counting approach is based on the following elementary fact:

Let Σ = {c0, c1, . . . , cσ−1} be an alphabet of size |Σ| = σ, let m > 1 be an
integer, and let h : Σ → N be the mapping h(ci) = mi, for i = 0, . . . , σ−1.
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Compute-Heap-Mapping(x, m)
1. for each c ∈ Σ do h[c] ← 0
2. j ← 1
3. for i ← 1 to m do
4. if h(x[i]) = 0 then
5. h(x[i]) ← j
6. j ← j × m
7. return h

Heap-Counting-Abelian-Matching(x, m, y, n)
1. h ←Compute-Heap-Mapping(x, m)
2. δ ← γ ← 0
3. for i ← 0 to m − 1 do
4. δ ← δ + h(x[i])
5. γ0 ← γ0 + h(y[i])
6. if γ0 = δ then Output(0)
7. for s ← 1 to n − m do
8. γs ← γs−1 + h(y[s + m − 1]) − h(y[s − 1])
9. if γs = δ Output(s)

Fig. 1. The pseudocode of the Heap-Counting-Abelian-Matching for the online
exact abelian matching problem, implemented using a prefix-based approach.

Then for any two distinct k-multicombinations (i.e., k-combinations with
repetitions) ϕ1 and ϕ2 from the set Σ, with 1 ≤ k ≤ m, we have

∑

c∈ϕ1

h(c) �=
∑

c∈ϕ2

h(c). (2)

Example 2. Let x = agcga be an input pattern of length 5 over the alphabet
Σ = {a, c, g, t} of size 4. Based on Lemma 4, the heap-function h : Σ → N, is
defined as h(a) = 1, h(c) = 5, h(g) = 25, and h(t) = 125. The heap-value of x is
then h(x) = h(a) + h(g) + h(c) + h(g) + h(a) = 57.

Let � be a character such that � /∈ Σ and let Σx ⊆ Σ be the set of all (and
only) the characters occurring in x. We indicate with σx the size of the alphabet
Σx. Plainly we have σx ≤ min{σ,m}, thus we can think to this transformation
as a kind of alphabet reduction.

We define the reduced text ȳ, over Σx, as a version of the text y where each
character y[i], not included in Σx, is replaced with the special character � /∈ Σ.
Since, in general, σx < σ (especially in the case of short patterns), to process
the reduced version of the text, instead of its original version, allows the heap
function to be computed on a smaller domain, reducing therefore the size of the
heap-values associated to any given string.
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Example 3. Let x = agcac be an input dna sequence (the pattern) of length
5 and let y =agtcagaccatcagata be a text of length 17, both over the alphabet
Σ = {a, g, c, t} of size 4. We have that Σx = {a, c, d}. Thus the reduced version
of y is ȳ = ag�c�gacca�caga��

It can be proved that such alphabet reduction does not influence the output
of any abelian pattern matching algorithm.

We are now ready to describe in details the two new algorithms based on the
heap-counting approach. The algorithm described in Sect. 4.1 implements the
heap-counting approach i a prefix-based algorithm, while the algorithm described
in Sect. 4.2 uses a suffix-based mechanism.

4.1 A Prefix-Based Algorithm

Inspired by Lemma 4, the new algorithm precomputes the set Σx and the func-
tion h : Σx → N, defined as h(ci) = mi, for i = 0, . . . , σx − 1, where m is the
length of the pattern and σx is the size of Σx.

Figure 1 shows the Heap-Abelian-Matching algorithm and its the auxil-
iary procedure.

During the preprocessing phase (lines 1–7) the algorithm precomputes the
heap-mapping function h (line 1) by means of procedure Compute-Heap-

Mapping. Such procedure computes the mapping table over the alphabet
Σx ∪ {�} associating the value 1 with all characters not occurring in x, i.e.
we set h(�) = 1.

The heap values δ = h(x) and γ0 = h(y[0..m − 1]) are then precomputed
in lines 2–5, Likewise, during the searching phase (lines 8–10), the heap value
γi = h(y[i .. i + m − 1]) is computed for each window y[i .. i + m − 1] of the
text t, with 0 < i ≤ n − m. Specifically, starting from the heap value γs−1, the
algorithm computes the heap value γs by using the relation γs = γs−1 − h(y[s −
1]) + h(y[s + m − 1]) (line 8). Of course, in practical implementations of the
algorithm it is possible to maintain a single value γ, corresponding to the heap
value of the current window of the text.

The set Γx,y of all occurrences in the text is then

Γx,y =
{

i | 0 ≤ i ≤ n − m and γi = δ
}

In order to compute the space and time complexity of the algorithm, it can
be easily observed that the computation of the mapping h requires O(m + σ)-
time and -space. Moreover observe that γs = γs−1 −h(y[s−1])+h(y[s+m−1]),
so that γs can be computed in constant time from γs−1. Thus the set Γx,y can
be computed in O(n) worst case time. �

From a practical point of view it is understood that for an architecture, say,
at 64 bits, all operations will take place modulo 264. Thus, when mσx+1 exceeds
264 we could have some collisions in the set of the heap values and an additional
verification procedure should be run every time an occurrence is found. However
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it has been observed experimentally that, also in this specific cases, the collision
problem for the heap function h is negligible.

4.2 A Suffix-Based Algorithm

In this section we extend the idea introduced in the previous section and present
a backward version of the prefix-based algorithm described above which turns
out to be more efficient in the case of long patterns or large alphabets. It shows
a sub-linear behaviour in practice, while maintains the same worst case time
complexity.

Figure 2 shows the pseudocode of the new algorithm, called Backward-

Heap-Abelian-Matching, and its the auxiliary procedure.

Compute-Membership-Map(x, m)
1. for each c ∈ Σ do b(c) ← False
2. for i ← 1 to m do b(x[i]) ← True
3. return b

Backward-Heap-Counting-Abelian-Matching(x, m, y, n)
1. h ←Compute-Heap-Mapping(x, m)
2. b ←Compute-Membership-Mapping(x, m)
3. δ ← 0
4. for i ← 1 to m do δ ← δ + h(x[i])
5. y ← y.x
6. s ← 0
7. while ( True ) do
8. γ ← −δ
9. j ← m − 1
10. while (j ≥ 0) do
11. if (b(y[s + j])) then
12. γ ← γ + h(y[s + j])
13. j ← j − 1
14. else
15. γ ← −δ
16. s ← s + j + 1
17. j ← m − 1
18. do
19. if (γ = 0) then
20. if (s ≤ n − m) then Output(s)
21. else return
22. if (b(y[s + m]) =False) then break
23. γ ← γ − h(y[s]) + h(y[s + m])
24. s ← s + 1
25. while ( True )
26. s ← s + m + 1

Fig. 2. The pseudocode of the Backward-Heap-Counting-Abelian-Matching for
the online exact abelian matching problem, implemented using a suffix-based approach.
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During the preprocessing phase (lines 1–6) the algorithm precomputes the
heap-mapping function h (line 1) and the membership function b (line 2). We use
procedure Compute-Heap-Mapping, and procedure Compute-Membership-

Mapping, respectively.
The heap value δ = h(x) of the pattern x is then precomputed in lines 3–4.

A copy of the pattern is then concatenated at the end of the pattern (line 5), as
a sentinel, in order to avoid the window of the text to shift over the last position
of the text.

The main cycle of the searching phase (line 7) is executed until the value
of s becomes greater than n − m (line 20). An iteration of the main cycle is
divided into two additional cycles. The first cycle of line 10 performs a backward
scanning of the current window of the text and stops when the whole window
has been scanned or a character not occurring in Σx is encountered. The second
cycle of line 18, starting from the heap value of the current window of the text,
computes at each iteration the heap value of the next window in constant space
using a forward scan. The second cycle stops when a character not occurring in
Σx is encountered.

It can be proved that the algorithm Backward-Heap-Counting-

Abelian-Matching computes all abelian occurrences of x in y with O(σ +
m + n)-time and O(σ + m)-space complexity in the worst case.

4.3 Relaxed Filtering Variants

A simpler implementation of the above presented algorithms can be obtained by
relaxing the heap-counting approach presented at the beginning of this section,
in order to speed-up the computation of the heap values of a string and, as a
consequence, to spud-up the searching phase of the algorithm.

Specifically we propose to use the natural predisposition of the characters of
an alphabet to be treated as integer numbers. For instance, in many practical
applications, input strings can be handled as sequences of ASCII characters. In
such applications, characters can just be seen as the 8-bit integers corresponding
to their ASCII code.

In this context, if we indicate with ascii(c), the ASCII code of a character
c ∈ Σ, we can set h(c) = ascii(c). Thus the heap value of a string can be simply
computed as the sum of the ASCII codes of its characters.

As a consequence the resulting algorithms works as a filtering algorithm.
Indeed, when an occurrence is found we are not sure that the substring of the
text which perform a match is a real permutation of the pattern. This implies
that an additional verification phase is run for each candidate occurrences.

Plainly the resulting algorithms have an O(σ + nm) worst case time com-
plexity, since a verification procedure could be run for each position of the text.

5 Experimental Results

We report in this section the results of an extensive experimentation of the newly
presented algorithms against the most efficient solutions known in literature for
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the online abelian pattern matching problem. In particular we have compared 11
algorithms divided in three groups: prefix-based, suffix-based and SIMD based
algorithms. Specifically we compared the following 5 prefix based algorithms: the
Window-Abelian-Matching (WM) [10,16,18,19]; the Grabowsky-Faro-Giaquinta
(GFG) [15]; the Exact Forward form Small alphabets (EFS) [9]; the Heap-
Counting-Abelian-Matching (HCAM) described in Sect. 4.1; the Heap-Filtering-
Abelian-Matching (HFAM) described in Sect. 4.3.

We compared also the following 5 suffix based algorithms: the Backward-
Window-Abelian-Matching (BWM) [10]; the Bit-parallel Abelian Matching algo-
rithm (BAM) using 2-grams [8,9]; the Exact Backward for Large alphabets
(EBL) [9]; the Backward-Heap-Counting-Abelian-Matching (BHCAM) described
in Sect. 4.2; the Backward-Heap-Filtering-Abelian-Matching (BHFAM) described
in Sect. 4.3.

In addition We compared also the Equal Any (EA), an efficient prefix based
solution [13] implemented using SIMD instructions.

All algorithms have been implemented in C, and have been tested using the
Smart tool [12] and executed locally on a MacBook Pro with 4 Cores, a 2 GHz
Intel Core i7 processor, 16 GB RAM 1600 MHz DDR3, 256 KB of L2 Cache and
6 MB of Cache L3.1 Comparisons have been performed in terms of running times,
including any preprocessing time.

For our tests we used a genome sequence provided by the research tool
Smart, available online for download (for additional details about the sequences,
see the details of the Smart tool [12]).

In the experimental evaluation, patterns of length m were randomly extracted
from the sequences, with m ranging over the set of values {2i | 1 ≤ i ≤ 8}. Thus
at least one occurrence is reported for each algorithm execution. In all cases, the
mean over the running times (expressed in hundredths of seconds) of 1000 runs
has been reported.

Table 1 summarises the running times of our evaluations. The table is divided
into four blocks. The first block presents the results relative to prefix based solu-
tions, the second block presents the results for the suffix based algorithms, while
the third block presents the results for the algorithm based on SIMD instructions.
The newly presented algorithms have been marked with a star (	) symbol. Best
results among the two sets of algorithms have been bold-faced to ease their local-
ization, while the overall best results have been also underlined. In addition we
included in the last block the speedup (in percentage) obtained by our best newly
presented algorithm against the best running time obtained by previous algo-
rithms: positive percentages denote running times worsening, whereas negative
values denote performance improvements. Percentages representing performance
improvements have been bold-faced.

1 The Smart tool is available online at https://smart-tool.github.io/smart/.

https://smart-tool.github.io/smart/
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Table 1. Experimental results on a genome sequence.

m 2 4 8 16 32 64

prefix based WM 13.63 13.02 13.09 13.04 13.04 13.06

GFG 20.47 20.19 20.42 20.41 20.47 20.30

EFS 8.26 8.31 8.35 8.34 8.36 –

HCAM � 6.97 6.86 6.92 6.93 6.91 6.89

HFAM � 20.14 11.86 9.18 7.87 7.47 7.09

suffix based BWM 65.59 46.81 33.47 25.79 22.94 20.67

BAM 10.62 10.96 13.20 11.87 10.69 9.85

EBL 29.95 27.44 55.69 119.26 227.14 –

BHCAM � 26.82 18.03 9.98 7.74 7.55 7.32

BHFAM � 37.21 21.72 11.50 9.35 9.09 8.88

Speed-up +11.87% +11.40% +10.76% +10.55% −12.12% −29.16%

simd EA 4.01 4.03 4.56 4.67 – –

Consider first the case of small alphabets, and specifically abelian string
matching on strings over an alphabet of size σ ≤ 4 (Table 1). From experimental
results it turns out that prefix based solutions are more flexible and efficient
than suffix based algorithms. This is because the shift advancements performed
by suffix based solutions do not compensate the number of character inspections
performed during each iteration. Thus, while prefix based algorithms maintain
a linear behaviour which do not depend on the pattern length, suffix based
solutions shown an increasing trend (or a slightly decreasing trend), while the
length of the pattern increases, but with a very low performances on average.
Specifically the HCAM algorithm obtains the best results only for m ≥ 16,
where it is approximately 10% slower than the EA algorithm, in the case of
short patterns. However it remains always the best solution if compered with all
other standard algorithm, with a gain from 11% to 35%. Among the suffix based
solutions the BHCAM algorithm still remains the best choice in most cases, with
a less sensible variance if compared with the HCAM algorithm.

6 Conclusions

In this paper we have introduced the heap-counting approach for the abelian
pattern matching problem in strings and we have presented two new algo-
rithms based on a prefix-based approach (HCAM) and on a suffix-based app-
roach (BHCAM), respectively. We also presented two variants of these algo-
rithms, based on a relaxed version of the heap-counting approach: the HFAM
and BHFAM algorithms. From our experimental results it turns out that our
approaches obtain good results when used for searching text over small alpha-
bets, as the case of dna sequences. The resulting algorithms turns out to be
among the most effective in practical cases.
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Abstract. Computational network biology aims to understand cell
behavior through complex network analysis. The Chromatin Immuno-
Precipitation sequencing (ChIP-seq) technique allows interrogating the
physical binding interactions between proteins and DNA using Next-
Generation Sequencing. Taking advantage of this technique, in this study
we propose a computational framework to analyze gene regulatory net-
works built from ChIP-seq data. We focus on two different cell lines:
GM12878, a normal lymphoblastoid cell line, and K562, an immortalised
myelogenous leukemia cell line. In the proposed framework, we prepro-
cessed the data, derived network relationships in the data, analyzed their
network properties, and identified differences between the two cell lines
through network comparison analysis. Throughout our analysis, we iden-
tified known cancer genes and other genes that may play important roles
in chronic myelogenous leukemia.

Keywords: Biomolecular networks · Transcription factors ·
ChIP-seq · Next-Generation Sequencing · Cancer · Bioinformatics

1 Introduction

In biological sciences, network analysis is becoming one of the main tools to study
complex systems. Networks used to represent the regulation of gene expression
are known as Gene Regulatory Networks (GRNs) [1]. In network biology, partic-
ularly in disease/cancer research, comparisons are often performed on GRNs [2]
and DNA co-methylation networks [3], obtained from the gene expression and
DNA methylation profiles of healthy and disease tissues.

Here, we focus on normal and cancer GRNs that, differently from other works,
we inferred from Chromatin Immuno-Precipitation sequencing (ChIP-seq) data.
ChIP-seq is a Next-Generation Sequencing (NGS) technique designed to study,
map and understand protein-DNA interactions on a genome-wide scale. It pro-
vides measurements of epigenetic (transcription factor and histone) regulation
of genes, retaining all the advantages of the NGS technology thanks to its cover-
age, high resolution and cost-effectiveness. Our goal is to study the relationship
between gene-related epigenetic factors and genes in a normal vs. disease case,
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 319–331, 2019.
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possibly leading towards the discovery of novel molecular diagnostic and prog-
nostic signatures. Particularly, we focused on two immortalized human cell lines,
K562 and GM12878; they are both from blood tissue, the first one (K562) from
chronic myelogenous leukemia, whereas the second one (GM12878) from normal
lymphoblastoid cells.

A major contribution of this work is the study of the relation between
epigenetic transcription factors and human protein-coding genes in K562 and
GM12878 cell lines in the view of complex network comparison. This was pos-
sible by defining relationships between transcription factors and protein-coding
genes to create gene regulatory networks. Another major aspect of this study is
the creation of a computational framework with appropriate network compari-
son methods, according to our network characteristics, to extract differences and
similarities of the compared networks. The defined comparison models are fully
“data-driven”, as they do not take into consideration any form of prior biologi-
cal knowledge. Finally, using our analytic framework, we highlighted behaviours
directly emerging from the data, drawing insights that could drive further bio-
logical investigations.

2 Used Data Sets

Among the numerous publicly accessible available genomic databases, we chose
the following two: the ENCyclopedia Of DNA Elements (ENCODE) and GEN-
CODE [4]; the former one as source for the NGS experimental data, the second
one for the gene annotations we used. GENCODE genomic samples are orga-
nized as General Feature Format (GTF) text files, whose structure is described
in [4]. Each of their lines refers to a genomic feature annotation and is made up
of several tab-separated fields. The first eight fields are standard GTF fields that
convey information about the feature chromosome, annotation source, feature
type, start and stop genomic coordinates, score, strand, and genomic phase. The
ninth field is actually a sequence of key-value pairs made up of further informa-
tion about the feature.

Biosamples involved in the sequencing experiments generating our considered
data came from two immortalized cell lines, namely K562 and GM12878. These
two cell lines are among the most investigated ones in the ENCODE project [5],
being the object of a large number of sequencing experiments from research labs
all over the world, each identifying thousands of epigenetic events through the
whole genome. Both cell lines belong to human blood tissue, in particular: K562
cell line consists in a chronic myeloid leukemia (CML) cell line [6], GM12878 cell
line is made up of lymphoblastoid cells [7].

3 Analysis Framework

Networks provide a theoretical framework that allows a convenient conceptual
representation of interrelations among a large number of elements. Furthermore,
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they usually allow framing questions about the behavior of the underlying repre-
sented system, by applying well-established analyses on the network representing
the considered data. Here, we focus on cell line specific gene regulatory net-
works, where source nodes represent genes encoding transcription factors (TFs),
whereas target nodes are any genes. A link exists between a source TF encoding
gene and a target gene if the encoded TF binds the target gene promoter; the
links are weighted, and the weight represents the power of the binding.

We propose a network analysis framework to characterize commonalities and
differences in behavior across normal GM12878 cells and cancerous K562 cells,
using ChIP-seq datasets. We evaluate if some genes display extreme behaviors,
and whether or not such behaviors highlight aspects of the underlying biology.
The proposed framework includes the following steps: (1) High quality data
extraction from NGS and genomic annotation datasets, through the GenoMet-
ric Query Language (GMQL); (2) Transformation of the extracted metadata
and genomic region data to adjacency matrixes, representing the most valu-
able information and the data relationships extracted; (3) Numeric characteriza-
tion of each network structure through 8 topological measures; (4) Application
of comparison methodologies to identify the most common and different gene
connections.

3.1 Data Acquisition and Preprocessing

For the data acquisition and preprocessing, we chose GMQL [8] as the most suit-
able tool. GMQL is a high-level declarative query language, specifically designed
for genomic data retrieval and processing. The GMQL portal1 publicly pro-
vides reasonably high computational and storage capabilities and, moreover, it
hosts up-to-date GENCODE and ENCODE data, among others. This last aspect
allowed us to just write a GMQL query to perform the complete extraction and
filtering of the genes’ epigenetic status data described below, without the need
to download the related data files from the GENCODE and ENCODE pub-
lic repositories and write specific programs to extract the relevant data. In the
following paragraphs we describe the usage of GMQL to filter and extract the
highest quality epigenetic status data from ENCODE.

The goal of the defined GMQL query is to map transcription factors of the
two cell lines on each gene promoter region. Thus, the first step is the selection
of the transcription factors and the promoter regions. The ENCODE consortium
has defined and implemented a system of ‘audits’, i.e., flags meant to give addi-
tional, yet essential, quality information about the provided experimental data
to the research community. To extract high-quality data, we did not consider
all the experiment data files labeled with at least one of the following audits:
extremely low read depth, extremely low read length, or insufficient read depth.
Furthermore, to consider only data from higly reproducible NGS ChIP-seq exper-
iments, we selected only the called peak data files labeled as conservative IDR
threshold peaks. Finally, in the case of more replicate data files from the same

1 http://www.gmql.eu/.

http://www.gmql.eu/
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transcription factor targeting experiments, we chose to only consider one data
file for each transcription factor, the one with the largest number of called peaks.
By choosing the peak set with the highest cardinality, we retain a larger amount
of information, still being confident of its reasonably good quality thanks to the
foregoing audit-based and reproducibility-aware filtering performed.

In our study we are exclusively interested in promoter regions of human
known protein-coding genes, i.e., genomic regions around the starting position
of a gene transcript. Therefore, an important aspect is to consider the right posi-
tion along the human genome of each transcript of all genes of interest. The pro-
cess of identifying and designating locations of individual genes and transcripts
on the DNA sequence is called genome annotation. One of the most important
active projects about human genome annotation is GENCODE.2 Thus, for the
promoter region extraction we chose GENCODE repository annotations, specif-
ically the GENCODE v24 release version and the annotation type transcript;
so, an annotation file for transcript isoforms was selected, reporting all the tran-
script start sites (TSSs) of each human gene. In order to build the promoter
regions from the transcript isoforms, we used the typical −2k/+1k base interval
around their first base. All the selected transcription factor binding regions are
then mapped to the considered gene promoters. As a gene can have more than
one promoters, we selected for every TF only the gene with the highest signal
value. The dataset created by the performed GMQL mapping operation provides
a matrix-like structured outcome, ideal for subsequent data analysis. In partic-
ular, we created such a dataset/matrix for each considered cell line, where the
matrix rows represent transcription factors, columns represent genes, and each
matrix cell contains a value that represents the maximum binding signal of a TF
in a gene promoter. To create the gene regulatory network from the above data,
we finally considered each TF as representing its encoding gene, thus obtaining
a gene adjacency matrix for each cell line.

3.2 Gene Regulatory Network Analysis

A primary aspect in gene regulatory networks is to capture the interactions
between molecular entities from high-throughput data. The GRNs that we
constructed are weighted directed networks, where nodes represent genes and
links between nodes exist solely if the regulatory element, a transcription factor
encoded by a source gene, binds a target gene promoter.

The problem of detecting significant dissimilarities in paired biological net-
works is different from popular graph theory problems, like graph isomorphism
or subgraph matching, for which various graph matching and graph similarity
algorithms exist and have been also applied on biological networks [9,10]. Several
approaches to compare gene regulatory networks constructed from healthy and
disease samples have been developed [11,12]. The majority of them focuses on the
comparison of the entire networks, using statistics that describe network global
properties [13]; but these statistics are not sensitive enough to detect smaller,

2 https://www.gencodegenes.org/.

https://www.gencodegenes.org/
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yet important, differences. On the other hand, there are numerous alignment-
based methods that compare networks using the properties of the individual
nodes, e.g., local similarity [14]. The aim of these methods is to identify match-
ing nodes, and use these nodes to identify exact subnetwork matches. These
approaches are computational intensive, as exact graph matching is NP-hard.
In addition, alignment-free comparison methods exist, which have been used to
identify evolutionary relationships [15]. These methods are based on the fact
that differences in network structure is essential, as structural properties of bio-
logical networks can bring important biological insights, such as determining the
relationships between protein functions from protein interaction network topol-
ogy. To achieve network structure comparison, they count the occurrences of
subgraph shapes in the local neighbourhoods of all nodes in a network [16].

Our created networks have a peculiar structure, mainly due to the fact that
ChIP-seq experiment data exist only for a limited set of TFs; thus, in our GRNs
the number of source nodes (TFs) is much lower (about 100) than the number of
the target nodes (human protein-coding genes, about 19,000). This makes diffi-
cult to directly apply reliably the methodologies mentioned above. On the other
hand, motifs and modules have long been identified as important components
of biological networks [3]; thus, we focused on looking for strongly connected
components (SCCs) in each considered network, and on evaluating the one-step
ego-nets in each SCC. So, we avoid comparing the entire networks, and concen-
trate on their most informative nodes. The one-step ego-net of a node/gene g is
the (sub)network consisting of all the nodes within one edge distance from g, also
including all the edges between those nodes. For directed graphs, as in our case,
a node g ego-net contains the g “out” neighborhood, i.e., in our case the genes
where g points to and their connections. To analyse the ego-nets of each SCC
of the two networks under comparison, we applied standard approaches such as
pairwise (on matching nodes) metrics to quantify similarity based on network
properties, discover specific features, and detect anomalous nodes/genes.

The state-of-the-art offers a well-established set of graph metrics for com-
plex networks. The most important metrics for a detailed analysis of a weighted
directed network have been previously described in [2]; they are used in the cur-
rent study and here summarized. The degree of a node is the total number of
edges incident to it. Thus, the average value of the network degrees, measured
over all network nodes, is called the average degree of the network, as we han-
dle directed graph we computed in and out degrees. For the total weight, we
sum the weights of all the edges of the graph. The diameter of a network is
the maximal distance between any pair of nodes in the network. The modular-
ity measures to what extent the network is structured in communities. It takes
values between 0 and 1; a higher modularity means a stronger division between
well-delimited communities, i.e., subnetwotks with large internal edge density
but weakly connected each other, while a lower modularity means that no such
subnetwork exist. The metric that quantifies the degree correlation, i.e. to what
extent nodes with large degree are connected to nodes with large degree, is called
assortativity. The network’s heterogeneity can be measured by the degree distri-
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bution entropy. As principal eigenvalue we denote the largest eigenvalue of the
weighted adjacency matrix of the network. For each node/gene, the connectivity
is defined as the sum of the connection strengths with the other nodes/genes of
the network.

Our proposed analysis method compares not the networks themselves, but
instead the ensemble of all gene neighborhoods (ego-nets) in each SCC of the
networks, through a pairwise approach. This idea of using the content of sub-
graphs to build a comparison method between networks arises from the fact that
modules are important biological network components.

The statistical comparison measures we used in our method are the following:

– The cosine similarity (CS ), a measure of similarity between two vectors: it
expresses the cosine of the angle between them, not from the perspective of
magnitude, but from that of orientation. The resulting similarity between
the two vectors ranges from −1, meaning exactly opposite directions, to 1,
meaning exactly the same direction, with 0 usually indicating independence.
This measure is applied in our context by building a vector with elements
consisting of each metric of interest measured on the graph.

– The Jaccard index (J ), a statistic used for comparing the similarity of sample
sets. It measures similarity between finite sample sets, defined as the size of
the intersection divided by the size of the union of the sample sets. The
Jaccard index always gives a value between 0, which means no similarity, and
1, for identical sets. In our study we used the Jaccard similarity pairwise for
each matching node of the SCCs of the two compared networks. For each
node we built a set of its ego-net edges, with the edges being represented
as an object (source node, target node) since the networks are directed. This
measure gave us the percentage of similarity between the matched genes based
on their interactions with the other genes, and ranges from 0 to 100.

– The fidelity metric φ, another network similarity measure, computed following
the approach proposed in [17]. It is a statistical formula that generates a single
value to summarize the similarity between two sets of properties/topological
features (which characterize two entities of the same nature).

Additionally, in our network comparison analysis we included the identifica-
tion of patterns for neighborhoods (ego-nets) of the normal and cancer networks,
and the report of deviations, if any, as proposed in [18]. The detection of outliers
is intimately related with the pattern discovery: only if the majority of nodes
closely obey to a pattern, we can then confidently consider as outliers the few
nodes that deviate. In order to detect the patterns and the outliers of the SCCs
of the normal and cancer networks, we selected and grouped the topological
features of the ego-nets into pairs, where we expect to find patterns of normal
behavior and point out anomalies that deviate from the patterns. All methods
presented here were implemented using Python programming language and its
pyGMQL [28] and Networkx [29] packages.
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4 Results

Here, we present and discuss the results obtained for our considered normal
and cancer cell line networks, using two distinct network analysis approaches:
single-network analysis and differential network analysis, which answer different
questions. In our context, the single-network analysis aims at identifying both
the key genes (i.e., hub genes) and the similarities in the binding behavior of
the TFs present in a given data set. Conversely, the differential network analysis
aims to uncover similarities and differences in the TFs of the two data sets. More
specifically, using feature vectors with the aforementioned statistical measures,
we evaluated the similarity of the TFs present in both data sets, and also we
identified common behavior trends and outlier nodes for the two cell lines.

4.1 Single Network Analysis

The two weighted directed networks constructed, one for the normal GM12878
and one for the cancer K562 cell line, were individually analyzed. Both resulted
having a single giant strongly connected component (SCC), with only TF encod-
ing genes (source nodes), and a single out-component, i.e., a set whose nodes are
reachable with a directed path from the SCC, with about 90% of the network
nodes, including a few TF encoding genes not in the SCC. Table 1 reports the
topological feature values measured for the two networks and their SCCs.

Curiously, in both networks the most important (hub) nodes, identified using
the page-rank algorithm [19], were mitochondrial genes. The TFs with largest
degree were identified using the reverse page-rank algorithm (applying page-
rank to the networks obtained by reversing the directions of all links). For the
cancer network they were ATF7, RBFOX2, ATF1, NFIC, NRF1, PKNOX1,
RFX1, VEZF1 and L3MBTL2, whereas for the normal network they were IKZF1,
ELF1, FOXK2, PKNOX1, ZNF143 and BHLHE40. IKZF1 is a leukemia tumor
suppressor associated with chromatin remodeling, with also increasing evidence
that IKZF1 loss also affects signaling pathways that modulate therapy response
[20]. Also ELF1 is a key transcription factor in the regulation of genes involved

Table 1. Topological feature values for the two networks and their SCCs.

Features K562 GM12878 K562-SCC GM12878-SCC

Nodes 18,732 18,732 230 111

Isolated nodes 2,312 4,305 - -

Source nodes 238 115 230 111

Edges 923,025 481,704 20,320 5,556

Average degree in/out 56.261 33.384 88.343 55.051

Assortativity −0.054 −0.043 −0.021 −0.011

Diameter 4 4 4 3

Modularity 0.29 0.34 0.27 0.33
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(a) GM12878 (b) K562

Fig. 1. Heatmaps showing the cosine similarity between TFs in the two cell lines.

in hematopoiesis [21]. PKNOX1 is a Hox co-factor, whose function alteration
is directly linked to hematopoiesis and leukemia. ZNF143 is also involved in
leukemia development [22].

Using the cosine similarity function pairwise, we identified the TFs with
similar behavior in each network, i.e., that bind the same genes with similar
strength. Figure 1 reports the cosine similarity heatmaps we created for some
of such TFs; values closer to 1 show greater similarity. The heatmaps clearly
show some clusters with high similarity in each network. For the GM12878 one,
LARP7, MAX, MXI1 and POLR2A were the TFs with greatest similarity; con-
versely, ATF7, SKIL and WHSC1 had totally different bindings with respect
to the other TFs. In the K562 cancer network, HDAC1, MAX, PHF8, PML,
RBFOX2 and POLR2A created a cluster of similarity, and SMARCA4, TAL1
and TCF12 another one. The first cluster TFs resulted enriched in the Homo
sapiens transcriptional misregulation in cancer KEGG pathway. TSC22D4 and
ZNF354B resulted the TFs with the greatest dissimilarities to the others.

Table 2. Topological features for ego-nets of normal and cancer cell line SCCs.

Features GM12878 K562

Average Range (min; max) Average Range (min; max)

Nodes 33 (2; 67) 34 (4; 67)

Edges 798 (1; 2,153) 855 (8; 2,287)

Average degree in/out 18 (0.5; 32) 19.5 (2; 34)

Total weight 215,000 (21; 532,000) 273,000 (316; 618,000)

Density 0.633 (0.471; 1.500) 0.600 (0.511; 1.150)

Degree entropy 3.121 (0.630; 4.101) 3.330 (1.307; 4.105)

Assortativity −0.212 (−0.500; −0.011) −0.188 (−0.370; −0.060)

Principal eigenvalue 9,869 (0; 14,899) 29,290 (69; 39,138)

Connectivity 15,872 (1,002; 126,000) 18,389 (1,578; 164,000)
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4.2 Differential Network Analysis

For the network comparison analysis we focused on the single SCC in each of the
two networks, considering only the TFs whose data were available for both cell
lines, i.e., 68 TFs. The average, minimum and maximum values of the ego-net
features extracted for such TFs are reported in Table 2; no relevant differences
in the global features were found between the two cell lines.

The obtained global results led us to apply the comparison methods at local
level in order to highlight differences, if existing. As a first approximation, we
simply checked which were the most different TFs between the normal and can-
cer cell lines. Using the Jaccard, cosine and fidelity similarity measures, we com-
puted pairwise similarity scores for every pair of TFs. Despite the global topo-
logical features showed relatively similar values in both cell lines, at local level
we discovered interesting dissimilarities (data not shown). To further explore the
topological differences among the two cell lines, we characterized the structure
of the ego-net extracted for each TF using the same 9 standard measures for net-
work topology as in Table 2. These measures capture important characteristics
of a network structure, which in part determines its functionality. In particular,
we sought to detect the structural heterogeneity among TFs. For each ego-net
of a TF, we created a feature vector with these feature values, which we used
for pairwise cosine and fidelity similarity between each pair of TF/ego-nets. The
cosine similarity, however, proved to be not a good metric, as all results were
close to 1 (identical). In addition, we applied Jaccard similarity using as input
the TF/ego-nets edges, this metric demonstrated to be a good method. Most
different TFs found, according Jaccard similarity, are in Table 3.

All these TFs, except of BACH1, appeared to have greater activity in K562
than in GM12878 cell line (data not shown). Interestingly, CTBP1 appeared
to bind strongly in the cancer cell line, but it had only a bond in the normal
cell line data. An explanation of this behavior may be that, according to KEGG,
CTBP1 is a leukemia cancer gene. In the same context, ZBTB33 and CEBPB are

Table 3. Similarity values, from three different statistical measures of the most differ-
ent TFs in the compared SCCs according to Jaccard similarity.

Transcription factors Jaccard (%) φ CS

CTBP1 0.0 0.56 0.99

ZBTB33 0.22 0.58 0.99

CEBPB 0.37 0.57 0.99

NR2C2 0.41 0.55 0.99

KDM1A 0.52 0.52 0.97

BACH1 0.80 0.17 0.99

BCLAF1 1.19 0.34 0.96
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(a) GM12878 (b) K562

Fig. 2. Graphical representation of the compared SCCs. Colors denote the community
[26]; node size is according to node degree.

responsible for cancer-driven myelopoiesis, which promotes cancer progression
[23,24]. KDM1A plays an important role in hematopoiesis and was identified as
a dependency factor in leukemia stem cell populations [25]. BCLAF1 is in the
6q23.3 cytogenetic location, a genomic region that has been reported to exhibit
a high frequency of deletions in tumors such as lymphomas and leukemias. The
relation of NR2C2 and BACH1 functions to cancer progression remains unclear.

We also performed pathway enrichment analysis of the communities we iden-
tified in the SCCs (Fig. 2) using the Louvain algorithm [26]. In the two largest
communities in K562, which include 70% of the SCC nodes, the enriched KEGG
pathways were the Homo sapiens p53 signaling pathway and chronic myeloid
leukemia pathway. In the largest community of the GM12878 SCC, it was the
MAPK signaling pathway ; according to [27], the activation of this pathway is
essential for the antileukemic effects of dasatinib, a target therapy used to treat
certain cases of chronic myeloid leukemia.

Finally, using the approach of [18] we tried to identify TFs with significant
anomalous behavior in the two SCCs. Using the number of nodes and edges, we
were able to detect if the ego-nets of the TFs had a star or connected (complete)
shape, i.e., minimal or maximal density. Upper diagrams in Fig. 3 show that, in
both cell lines, all TFs created almost complete ego-nets, except CTBP1 that
bound only one TF gene. The total weight and the number of edges detected
TFs with considerable higher total edge weight compared to the number of
edges in their ego-net. As shown in Fig. 3 (lower diagrams), PKNOX1, ZBTB40,
NR2C1/2, FOXK2 and BCLAF1 bound with stronger connections other TF
genes in both cell lines. Interesting result from this analysis is that the number
of nodes and the number of edges of the ego-nets as well as the number of edges
and the total weight follow power-law, as we can observe from the linear function
in log-log scale.
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Fig. 3. (a) Ego-net edge count (|E|) vs. node count (|N |). Red line: linear function
fit on median values; blue line: (N-1) function, star graphs, whereas orange line is the
N(N-1) function, complete graphs, where n is the number of nodes. (b) Total weight
(|W |) vs. total count (|E|) of edges in the ego-nets for all nodes. (Color figure online)

5 Conclusions

In this manuscript we have shown how to build gene regulatory networks from
ChIP-seq data, and how to evaluate them individually or comparatively when
built from a normal and a cancer cell line. Through our analysis, we explored the
characteristics of the two compared cell lines and identified differences in their
transcription factor functions. As a future work, we will explore further the
biological meaning of our results trying to evaluate them using gene expression
data and we will extend our analysis to more cell lines.
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Abstract. We studied the relations between triplet composition of the
family of mitochondrial atp6, atp8 and atp9 genes, their function, and
taxonomy of the bearers. The points in 64-dimensional metric space cor-
responding to genes have been clustered. It was found the points are
separated into three clusters corresponding to those genes. 223 mito-
chondrial genomes have been enrolled into the database.

Keywords: Order · Clustering · K-means · Elastic map · Stability ·
Evolution

1 Introduction

The problem of the interrelation of structure of nucleotide sequences, functions
encoded in them, and taxonomy of their bearers still challenges researchers. A
rapid growth of sequenced genetic data supports a progress in this problem. Yet,
it is far from a completion, and the basic reason standing behind is the complexity
of the phenomenon under consideration. Besides, one should keep in mind that
the details of the problem statement may affect seriously both the answer, and
the problem itself. In particular, one should define what is function, structure,
and taxonomy, to get an exact, unambiguous and comprehensive answer on the
question.

Here we try to reveal the interrelation and contribution of each entity, i.e.
structure, function and taxonomy into their interplay and phenomenae observed
in nature. Evidently, the answer depends strongly on the exact notion of what
structure is, first of all. Luckily, the notion of a function is significantly less
arguable, as well as the notion of taxonomy. The point is that the diversity and
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 335–345, 2019.
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abundance of structure identified in nucleotide sequences is great enough (see,
e.g. [1–6]), and those structure are quite different and may not be reduce one to
another.

Everywhere below, structure is a frequency dictionary of triplets developed
over some nucleotide sequence. We shall consider two types of triplet dictionaries,
to be exact; they differ in the reading frame shift t. A triplet frequency dictionary
W3 is the set of all triplets ω1 = AAA to ω64 = TTT together with their frequency

fω =
nω

N
. (1)

Here nω is the number of specific triplet ω observed over a sequence, and the
reading frame (of the length 3) moves along a sequence with the step t = 1.
Triplet frequency W 3 is developed in the way similar to W3, but for t = 3. The
definition (1) must be changed then for

fω =
nω

M
, (2)

where M is the total number of triplets counted within a sequence; obviously,
M is three times less than N , for W 3. Such frequency dictionaries have been
used to reveal the relation between structure and taxonomy, see [7–9] for details.
Further, we stipulate that there are no other symbols in genetic matter, but
ℵ = {A,C,G,T}.

We studied 223 mitochondrial genomes of five fungal division: Basidiomycota
(24 entries), Ascomycota (185 entries), Blastocladiomycota (2 entries), Chytrid-
iomycota (6 entries) and Zygomycota (6 entries) were downloaded from NCBI
GenBank. To reveal the interplay between all three issues mentioned above, we
used the genes atp6, atp8 and atp9 belonging to ATP synthase genes family.
The primary function of mitochondria is a production of energy via oxidative
phosphorylation. In general, they encode 14 conserved protein-coding electron
transport and respiratory chain complexes genes (atp6, atp8, atp9, cob, cox1,
cox2, cox3, nad1, nad2, nad3, nad4, nad4L and nad6) and have no difference in
function [10–12]. Using CLC Genomic Workbench v.10 we retrieved the annota-
tions and the sequences of three standard mitochondrial protein encoding genes
involved into the oxidative phosphorylation (these are atp6, atp8, atp9). Next,
the sequence for each gene has been prepared in two versions:

(1) gene is a sequence containing exons and introns as it is presented in a
genome, and

(2) CDS (coding DNA sequence) is a sequence free from introns, in fact, it
corresponds to a mature RNA ready for protein translation.

Besides, ATP synthase genes are quite often used for phylogeny implementation
[13–15].

As soon, as all the genes are isolated (in two versions each), the sequences
have been transformed into the frequency dictionary W3 or W 3, respectively,
with ad hoc software. Next, due to VidaExpert1 freeware the distribution of
1 http://bioinfo-out.curie.fr/projects/vidaexpert/.

http://bioinfo-out.curie.fr/projects/vidaexpert/
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the points corresponding to genetic entities was analyzed. Transformation of
sequences into frequency dictionaries allows to implement powerful and efficient
tools of up-to-date statistical analysis and multidimensional data visualization.

1.1 Clustering Techniques

Clustering is the key tool of this research; we have used K-means and elastic
map technique. K-means is well known and exhaustively described method of
clustering, hence we shall not describe the method here in detail (see [16] for
more details).

Also, the elastic map technique has been used to cluster and analyze data
distribution, in triplets frequency space. Since this method is quite new, we
describe it here in few details. To start, one must find out the first and the second
principal components, and develop a plane over them (as on axes); next, each
data point must be projected on this plane. Secondly, each data point must be
connected to its projection with a mathematical spring. That latter has infinite
expansibility and the elasticity coefficient remains permanent, for any expansion.
Thirdly, figure out the minimal square comprising all the projections, and change
it with the elastic membrane. That latter is supposed to be homogeneous, so that
it may bend and expand. Next, release the system to reach the minimum of the
total deformation energy. The elastic membrane would transform into a jammed
surface, and this is the two-dimensional manifold approximating the data set.
Fourthly, redefine each point on the jammed surface through the orthogonal
projection. Finally, cut-off all the springs, so that the jammed surface comes
back to a plane. That is the elastic map representing the cluster structuredness,
if any, in the data set [17–19].

To identify clusters, we used the local density of points. That latter is defined
as following. Supply each point of an elastic map (in so called inner coordinates,
when the jammed surface is already flattened) with a bell-shaped function, e.g.

f(r) = A · exp
{

(r − rj)2

σ2

}
. (3)

Here rj is the coordinate vector of j-th point, and σ is an adjusting parameter
(that is a specific width of the bell-shaped function). Then the sum function

F (r) = A ·
N∑

j=1

exp
{

(r − rj)2

σ2

}
, (4)

is calculated; the function F (r) is then shown in elastic map.

2 Genes Distribution

We start from the clustering obtained due to elastic map technique and then
consider the structuredness provided by K-means classification.
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(a) (b)

Fig. 1. Distribution of atp genes over elastic map. atp6 is in red, atp8 is in green and
atp9 is in yellow; left is for W3 and right is for W 3 dictionaries. (Color figure online)

2.1 Elastic Map Clustering

Figure 1 shows the distribution of the genes on the soft elastic map (with 16 ×
16 grid) and elasticity coefficients defined by default. Also, this figure shows
the local density function, in grey scale. Figure 1(a) shows the distribution of
genes in triplet frequency space obtained for W3 dictionaries (developed for gene
sequences with introns and exons). Evidently, there are three distinct clusters in
this figure. Surprisingly, the clusters are gene specific, with a high accuracy: the
left cluster gathers mainly atp9 genes (shown in yellow), the right cluster gathers
mainly atp6 genes (shown in red) and the central one gathers mainly atp8 genes
(shown in green). Or course, there are some “escapees”: the genes that occupy
an opportunistic cluster. The key point here is that this distribution is obtained
for gene sequence (i.e. those with introns), and the reading frame shift t = 1.

Figure 1(b) shows similar distribution obtained for W 3 dictionaries, with t =
3. In fact, these transformation into a triplet frequency dictionary completely
corresponds to protein translation. There is no surprise in improved clustering
observed for these dictionaries: the number of “escapees” goes down here.

The cluster structure shown in Fig. 1 is doubtless. Local density visualization
technique makes it unambiguous. The clusters (in inner coordinates) are obvi-
ously isolated from each other. Coloring used to identify the peculiar gene type
also unambiguously proves very high coherence of a cluster identified through
triplet frequencies, and the gene type occupation. Of course, there are very few
exceptions in the occupation: some genes join an opportunistic cluster. Nonethe-
less, the greatest majority of specific genes (say, atp6) tend to occupy the cluster
that is identified through the triplet statistics, not with a functional role of a
gene.
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(a) (b)

Fig. 2. Distribution of species over elastic map. Candida spp. are in red, Saccha-
romyces spp. are in blue and Fusarium spp. are in green; left is for W3 and right
is for W 3 dictionaries. (Color figure online)

Originally, the basic goal of our paper is to compare the impact of each
entity from a triad structure – function – taxonomy on their common interplay
pattern. To reveal the impact of each entity into this interplay, we checked the
distribution of species in the patterns obtained through the clustering of fre-
quency dictionaries W3 and W 3, respectively. Figure 2 shows such distribution,
for three most abundant genera of fungi: Candida spp., Fusarium spp. and Sac-
charomyces spp. Again, Fig. 2(a) shows the distribution of W3 triplet frequency
dictionaries, and Fig. 2(b) shows the distribution of W 3. Evidently, these three
most abundant species are spread among the clusters rather equally; one may
expect that other species are spread in similar manner, with obvious constraint
coming from the finite (and small) number of some species comprising a genus.

2.2 K-means and Structure-Function Interplay

In Sect. 2.1, a direct evidence of the prevalence of function over the taxonomy is
shown, for ATP synthase genes family of fungi mitochondria. Here we consider
and analyze the structuredness obtained in the set of point corresponding to
triplet frequency dictionaries due to K-means.

For each database (i.e. that one with W3 dictionaries, and that one with W 3

dictionaries) a classification through K-means has been developed; we imple-
mented the classification for K = 2, K = 3, K = 4 and K = 5. Two issues
must be kept in mind here: the former is stability of classification, and the latter
is separability of classes. The first problem is immanent for K-means. Since a
classification starts from a random allocation of the points into K classes, then
there is no guarantee of the identity of the final configuration: it might change,
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for different runs of the procedure. So, the idea of stability is to check whether a
desirable number of runs converge to the same configuration, or not. If yes, then
the classification is stable, otherwise it is unstable.

Unlike the elastic map technique, K-means does not yield the “natural”
number of classes2; a researcher has to fix it at his own. On the other hand, one
can develop a classification for various number of classes, and trace the transfer
of elements of the classes, as they number grow up. This transfer is of special
interest. We have developed the classifications for 2 ≤ K ≤ 5 with K-means, for
two issues: the former is taxonomy, and the latter is function.

Let us consider this point in detail. First, we consider the results of K-
means implementation in terms of taxonomy. Figure 3 shows this series of four
classifications as a layered graph; the classes are the nodes, and arrows are the
edges. The edges indicate the transfer of the elements from a class to “younger”
one (i.e., the transfer observed in two classifications with K-means and K + 1-
means). Complete layered graph is defined rather apparently: that is the layered
graph where each node in K-th layer is connected to all nodes in K +1-th layer.
In such capacity, the graph shown in Fig. 3 is almost complete: it has 25 edges,
while the complete one must have 38 ones. In other words, the graph shown in
this figure is far from a tree.

Figure 4 shows the graph observed for genes distribution. At the first glance,
it looks pretty similar to that one shown in Fig. 3: it also has 22 edges (cf. to
28 in the graph shown in Fig. 3). Basic difference of that former consists in the
abundances of objects (genes, in our case) and their preferences when transferred
from node to node. This point is outlined with bold colored arrows connecting the
specific nodes that comprise the genes with high predominance. The subgraph
comprising the nodes and edges with high predominance of the genes makes a
tree.

The composition of species in the graph shown in Fig. 3 is rather uniform:
one can found any family in each node of the graph; in other words, the species
tend to distribute themselves over the classes almost equally, so that no order
or structuredness might be found. The pattern shown in Fig. 4 is drastically
different; first of all, there are two isolated leaves in the graph. These are the
classes with unique incident edge each, observed for K = 5; the former comprises
atp8 genes (169 entries), and the latter comprises atp9 genes (86 entries). It
should be stressed that atp8 genes differ, to some extent, from other ones, in this
pattern: they are always comprised into a single cluster, for all 2 ≤ K ≤ 5. The
clusters enlisting atp8 genes also contain atp6 genes, for 2 ≤ K ≤ 4. Evidently,
the genes atp6 exhibits quite similar behaviour to atp8 genes: they tend to occupy
the same cluster and split into two separated clusters only for K = 5, when atp8
comprise the isolated leaf in the graph, and atp6 comprise the cluster slightly
deteriorated with other genes (14 entries of atp8 and 5 entries of atp9).

The family of atp9 genes is the only one tending to occupy a separate cluster,
regardless the clustering technique used to identify the clusters. Such solidity

2 An advanced version of K-means yields the maximal number of distinguishable
classes, see Sect. 3.
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Fig. 3. Transfer of the elements in a series of K-means classifications, 2 ≤ K ≤ 5, for
species distribution under classification with W3 dictionaries.

remains even for a splitting of a cluster, as K exceeds 3. Indeed, a single cluster
comprising3 the genes of atp9 family splits into two clusters of approximately
equal abundance, for K = 4 and K = 5. Still, there is no significant presence of
the genes of other families in these two individual clusters.

3 With respect to a minor deterioration by other genes.
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Fig. 4. Transfer of the elements in a series of K-means classifications, 2 ≤ K ≤ 5,
for genes distribution under classification with W3 dictionaries developed over CDS.
(Color figure online)

Let now consider in more detail the composition of two clusters comprising
atp9 genes, as K = 4 (see Fig. 4). We examined the composition of these two
clusters. It was found that all five divisions are splitted out between these two
clusters almost homogeneously: the abundances of each specific division in a
cluster is approximately proportional to the total abundance of this division in
dataset. On the contrary, the genera are not split between these two clusters: it
means that two genera belonging to the same division may occupy opportunistic
clusters while the species belonging to a genus are mainly found in the same
cluster, with a single exclusion. Candida santjacobensis is the only species found
in the cluster comprising atp9 genes, only. All other genes of this genus (32
species) occupy the opportunistic cluster.

3 Discussion

Here we examined the mutual impact of three basic genetic entities (these are
structure, function and taxonomy) on the pattern of their interplay. To do that,
we created a database comprising the ATP synthase genes of fungal mitochon-
dria, namely, atp6 genes. The genes were then converted into triplet frequency
dictionaries, so that each gene is now represented as a point in 64-dimensional
Euclidean space where the triplet frequencies are the coordinates. Then we
checked whether an inner structuredness could be found in the set of such points,
and the answer was positive. We have found that there exist three clusters identi-
fied with non-linear statistics (called elastic map technique); besides, other type
of structuredness has been found through the implementation of linear classifi-
cation technique (K-means).

At the next step, we examined all the clusters in terms of



Clustering of Fungi Mitochondria ATP Synthase Genes 343

(i) species composition, and
(ii) genes composition of each cluster.

The composition of the clusters has been checked regardless the identification
technique used to figure them out.

Strong prevalence of gene (i.e. structure) in the cluster formation has been
found, for all the clusters developed due to various clustering techniques; see
Figs. 1 through 4. Such predominance is not self-evident, in advance. For exam-
ple, paper [7] unambiguously proves the strong prevalence of taxonomy over the
function, when studied over the entire mitochondrial genomes. One may expect
that genes are stronger that taxonomy, while it is not evident in advance, for
sure. The predominance of genes impact proves the superiority of function over
taxonomy, in pattern formation within the triad structure – function – taxon-
omy. Nonetheless, this is not an ultimate proof; there are few questions to be
answered to get a final evidence of the predominance mentioned above; let them
list here:

(i) class (or clusters) distinguishability,
(ii) implementation of other metrics that Euclidean one,
(iii) stability of classification obtained with K-means, and
(iv) indexing of a database used to reveal the interplay, in terms of various taxa

occurrence.

All these questions are rather technical than essential. Meanwhile, there are some
more questions with hard biology standing behind.

3.1 CDS, W 3 and Dimension Reduction

Previously, we presented structuredness observed in fungi mitochondrial ATP
synthase genes through K-means implementation to classify triplet frequency
dictionaries W 3 developed over CDS of those genes. In fact, CDS is equivalent
to mature RNA ready for translation; reciprocally, W 3 frequency dictionary is
the dictionary of the codons, not just common triplets, i.e. it contains the triplet
occupying the positions corresponding to the reading frame at the translation
process.

This fact allows to classify or cluster the genes in other space, with less
dimension. Indeed, one can easily change the codon frequencies into the fre-
quencies of corresponding amino acid residues. Since W 3 comprises the codons,
not the triplets, then the frequency of an amino acid residue is just the sum of
the frequencies of all synonymous codons. This apparent and clear transforma-
tion results in the change of 64-dimensional Euclidean space for 21-dimensional
one, where the frequencies of amino acid residues (plus Stop signal) are the
coordinates.

3.2 Gene Family Selection

We have carried out the study of the mutual interplay of taxonomy, function and
structure on the basis of ATP synthase genes of fungi mitochondria. Meanwhile,
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it may take sense to extend the set of genes incorporated into a study: in par-
ticular, the oxidative phosphorylation involves the proteins encoded with some
other genes, but atp family. Thus, an inclusion of the genes (nad1, nad2, nad3,
nad4, nad4L, nad5, nad6, cob, cox1, cox2, cox3 and cob) both all together in
isolated groups may bring a lot of new knowledge towards the relation within
the triad gene structure, function and taxonomy.

3.3 Genome Selection

Similar reasoning as that one discussed in the above subsection addresses the
choice of genomes to be considered for the analysis of the interplay in triad struc-
ture – function – taxonomy. There is no guarantee that the pattern with high
prevalence of structure over taxonomy is observed always, regardless a genetic
matter taken into consideration. Obviously, mitochondrion genomes are very
good object for such kind of study: they are extremely homogeneous in the func-
tion encoded in it, the have a single chromosome, and are very well studied.
Anyway, a universality of the observation done over these genomes must be ver-
ified through the examination of other genomes. Chloroplasts seem to be the
second to none, in such capacity, for the same reasons: a single chromosome,
perfect conservation of functions, good quality of sequencing and annotation.

Yet, a study of organella genomes may not be an ultimate proof of the pattern
presented above. Some other genetic system must be involved into consideration,
to approve it. All these issues fall beyond the scope of this paper and should be
done in due time.

Acknowledgement. We are thankful to Reviewer whose remarks made the paper
apparently better.
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Abstract. We studied the statistical properties of non-coding regions
of chloroplast genomes of 391 plants. To do that, each non-coding region
has been tiled with a set of overlapping fragments of the same length,
and those fragments were transformed into triplet frequency dictionaries.
The dictionaries were clustered in 64-dimensional Euclidean space. Five
types of the distributions were identified: ball, ball with tail, ball with
two tails, lens with tail, and lens with two tails. Besides, the multi-
genome distribution has been studied: there are ten species performing
an isolated and distant cluster; surprisingly, there is no immediate and
simple relation in taxonomy composition of these clusters.

Keywords: Order · Probability · Triplet · Symmetry · Projection ·
Clustering

1 Introduction

Non-coding regions in DNA sequences have been supposed to be a kind of an
evolutionary junk; currently, it is a well knows fact that such regions play essen-
tial role in gene regulation, and in the genetic information processing, in general
[1–6]. The role of non-coding regions is not absolutely clear yet, and a lot could
be found behind them. The non-coding regions are found elsewhere, in a genome
of any taxonomy level, including organelle genomes. Here we studied the non-
coding regions of chloroplast genomes, following the way present in [7–12].

Previously, a seven-cluster pattern claiming to be a universal one in bacterial
genomes has been reported and very elegant theory explaining the observed pat-
terns was proposed [7,8,11]. Later, we have expanded the approach for chloro-
plast genomes [12,13]. Here se present some preliminary results of a study of
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 346–355, 2019.
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statistical properties of non-coding regions of chloroplast genomes carried out
under the methodology described above [11–13].

In papers [7–12] the difference in triplet composition determined for coding
and non-coding regions has been established. Let now introduce more exact defi-
nitions and notions for further analysis. Consider a symbol sequence T from four
letter alphabet ℵ = {A,C,G,T} corresponding to a (chloroplast) genome stip-
ulating that T has no other symbols but those indicated above. The sequences
have been downloaded from NCBI bank (391 entities). Each sequence has been
tiled with the set of intersecting fragments of the length L; the fragments located
in a sequence with the step t. Next, for each genome every fragments were trans-
formed into a triplet frequency dictionary W3 (see Sect. 2). The transformation
changed a fragment with a point in 64-dimensional Euclidean space, and the
cluster structuredness of the points has been revealed and studied.

We aimed to check whether the fragments of each specific genome form a pat-
tern where each separate genome is clustered more or less separately. Speaking
in advance, the hypothesis both holds true, and it does not. More specifically,
the triplet frequency dictionaries may not be separated by various clustering
techniques; on the other hand, labeling each fragment with species reveals a non-
random distribution of the points in Euclidean space. Moreover, an individual
distribution of the fragments in the space reveals five types of the distribution.
A study of a common distribution exhibits extremely unusual behaviour of ten
genomes that form a kind of clearly and evidently separated dense cluster located
very far from the main body of the points of other genomes.

2 Frequency Dictionaries

391 chloroplast genomes have been retrieved from NCBI bank. Each genome has
been tiled with a set of (intersecting) fragments of the length L = 603 symbols;
the fragments moved along a sequence with the step t = 11. It should be noticed
that the length L is divisible by 3, but the step t is not; this choice of the
parameters of tiling is not accidental. The idea standing behind this pattern of
the tiling is described in detail in [8,11–13].

Next, each fragment was marked with the number of central nucleotide of
that former. Following the annotation of a genome, we selected the fragments
completely falling into non-coding regions. No overlaps to a coding region has
been permitted. Then each fragment has been transformed into a triplet fre-
quency dictionary. Formally, a triplet frequency dictionary W3 could be defined
ambiguously, in dependence on the reading frame shift. Indeed, let ω = ν1ν2ν3
be a triplet, i.e. three symbols in T standing next each other. Locate the frame
identifying a triplet at the very beginning of T; move then the frame along T
with the step t and count all the triplets occurred within T. Counting the num-
ber of copies nω of each triplet ω, one gets the finite dictionary W(3,t). Changing
then the number of copies for their frequency

fω =
nω

N
, where N =

TTT∑

ω=AAA

nω , (1)
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one gets the frequency dictionary W(3,t). Obviously, one may use a frequency
dictionary determined for an arbitrary t; we shall use the frequency dictionar-
ies W(3,3) type.

2.1 Clustering

We used the freely distributed software VidaExpert1 to analyze and visualize
the distribution of the non-coding regions of genomes, both individually, and
in a group. To do that, an ensemble of the fragments covering the non-coding
regions corresponding to a genome has been arranged into a data base, and the
distribution of the triplet frequency dictionaries has been studied, in the space
of principal components of the ensemble. Also, a set of ensembles was arranged
into a joint data base, with the same analysis technique applied for visualization.

3 Results

We examined 391 chloroplast genomes trying to identify a pattern of the tripe fre-
quency dictionaries distribution, in the principal components space. Here present
some preliminary results towards the patterns yielded by non-coding regions

︸ ︷︷ ︸

tail
︸ ︷︷ ︸

body

Fig. 1. Barley Hordeum vulgare subsp. Spontaneum chloroplast genome fragments dis-
tribution.

1 http://bioinfo-out.curie.fr/projects/vidaexpert/.

http://bioinfo-out.curie.fr/projects/vidaexpert/
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of chloroplast genomes, in the triplet frequency space. Subsection. 3.1 presents
the results concerning the shape of the distribution observed over individual
genomes, and Subsect. 3.2 presents similar results on the pattern observed for a
mutual distribution of many genomes.

Let us also explain the terms profile and above used below to identify var-
ious projections. All figures provided below show the points distribution; that
latter is a two-dimensional projection of a three-dimensional projection from 64-
dimensional Euclidean space of triplet frequencies. All the figures present the
distributions in three principal components (corresponding to the greatest, next
and the third eigenvalue of the covariance matrix). Profile view means that the
first principle components is located in the plane of a figure and directed from
left to right; the second principal component here is also located in the plane,
and directed from bottom to up. For above view the first principal components
is located in the same way, but the second one orthogonal to the figure plane so
that is looks out from the figure plane.

(a) (b)

Fig. 2. Ricinus communis chloroplast genome exhibits the lens with a tail structure.
Left is profile view, and right is above view.

3.1 Individual Genome Clustering

Figure 1 shows a pattern to explain some terms used below. We classify the
patterns in terms of body and tail: the patterns differ in the number of tails,
and in the shape of a body. An examination of 391 genomes yielded five classes.
These classes are:

(1) Ball. This is the pattern exhibiting no peculiar structuredness, the genome of
Erodium chrysanthum is the typical representor (see Fig. 3(a)). This pattern
differs from other ones due to a similitude of the distribution seen in various
projections: any projection yields a ball. There are 7 genomes exhibiting
this pattern.

(2) Ball and tail. This is the pattern where the main body (ball is supplied with a
clearly detectable other cluster (called tail); see Fig. 1 for details. The most
surprising thing is that this tail looks like a (quite thick) ring, or torus;
this is very unusual pattern, so the feasibility of minimum approximating
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manifold must be provided properly [14]. There are 209 genomes exhibiting
this pattern.

(3) Ball and two tails. This is the pattern resembling the previous one, while
tail comprises two rings, not a single one. In such capacity, it might be called
“scissors”. There are 49 genomes exhibiting this pattern.

(4) Lens and tail. This pattern looks like a ball with tail (see Fig. 2(a)), in
one projection, but in contrary to that former, it looks like a lens, or a ball
segment, in other projection (see Fig. 2(b)). There are 45 genomes exhibiting
this pattern.

(5) Lens and two tails. This pattern is similar to previous one, while it exhibits
two tails, not a single one. There are 81 genomes exhibiting this pattern;
see Fig. 4 for details.

(a) (b)

Fig. 3. Erodium chrysanthum chloroplast genome exhibits a ball-shaped structure
(left), and Liriodendron tulipifera chloroplast genome exhibits a structure of ball with
two tails (right).

Table 1. Divisions distribution over the
structure types; see text for details.

Division T L1 L2 B B2 B1

Anthocerotophyta 1 0 0 0 1 0

Bryophyta 2 0 0 0 0 2

Marchantiophyta 3 0 0 0 3 0

Tracheophyta 385 45 81 7 45 207

Total 391 45 81 7 49 209

Figures 1, 2 and 3 show all the struc-
tures observed in the family of 391
chloroplast genomes. The first question
here arises whether those structures
correlate to taxonomy of the genomes,
or not. It should be noticed that the
number of genomes exhibiting peculiar
structure differs quite strongly, see the
list of the structure above. In this Table, T means the total number of species
in a division, L1 (L2, respectively) are the numbers of species within a division
with lens with tail (lens with two tails, respectively) structures, B is the number
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of species with ball structure, and B2 (B1, respectively) is the number of species
within a division with ball with tail (ball with two tails, respectively) structure.

(a) (b)

Fig. 4. Lupinus luteus chloroplast genome exhibits the lens with two tails structure.
Left is profile view, and right is above view.

Table 1 shows the distribution of taxa at the division level. It should be said
that the taxonomy composition of the divisions is quite biased: there are 6 or
less species in three divisions; one hardly may expect to retrieve the taxonomy
relation to a structure type over these division, due to a finite sampling effect.
For Tracheophyta division is rather abundant and the distribution looks very far
from a uniform one; besides, no other simple random distribution law might be
fitted with these data (see Table 1).

3.2 Intergenomic Clustering

Previously, wonderful structuredness in bacterial genomes [7,8,11] has been
reported. The structuredness manifests in clustering of considerable short frag-
ments of a genome converted into triplet frequency arranged in seven clustering
pattern, where six clusters represent coding regions of a genome, with respect to
a reading frame shift, and the seventh one gathers fragments from non-coding
regions. Later, this approach has been applied to a study of chloroplast genomes
[12,13] and similar multi-cluster pattern has been found. The difference between
bacteria and chloroplasts consists in different number of clusters observed in a
pattern: bacteria genomes yield seven clusters, as maximum, while chloroplast
ones yield up to eight clusters.

The structures mentioned above comprise the fragments identified both for
coding and non-coding regions. In such capacity, the question arises whether one
can reveal a relation between triplet composition, and taxonomy (for instance)
of the genome bearers, in case of the comparison of a sufficiently abundant
ensemble of genomes. Both for chloroplasts [10], and bacteria [9] the answer is
positive: taxonomy may be traced in the system of clusters developed through K-
means or other clustering techniques. The success of those researches has been
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provided mainly by implementation of the entire genome into consideration,
namely, coding and non-coding regions. So, the question arises whether similar
relation between structure (namely, triplet composition) and taxonomy of the
bearers, if non-coding regions are taken into consideration, only.

(a) (b)

Fig. 5. Simultaneous distribution of triplet dictionaries of non-coding regions of chloro-
plast genomes of five species.

Here we answer this question: yes, there is relation between taxonomy and
triplet composition of the genome part comprising non-coding regions, solely.
Figure 5 shows the simultaneous distribution of the fragments of non-coding
regions converted into triplet frequency dictionaries of several species; to do it,
we merged several data bases developed for individual genomes, into a single
one and analyzed it. Different colors label different species; the cloud of the
point belonging to the same species tend to form quite dense cluster, while
these latter may not be separated with any unsupervised clustering technique.
Figure 5(a) shows the view from above, and Fig. 5(b) shows the profile view of
the distribution.

(a) (b)

Fig. 6. Ten genomes forming a distinct and outlying clusters; Fig. 6(a) shows the profile
view, and Fig. 6(b) shows from bottom view.
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3.3 Nine Mysterious Genomes

Nine genomes exhibit mysterious clustering behaviour: these are Psilo-
tum nudum, AC AP004638, Oryza sativa Indica Group, AC AY522329,
Oryza sativa Japonica Group, AC AY522330, Panax ginseng, AC AY582139,
Huperzia lucidula, AC AY660566, Helianthus annuus, AC DQ383815, Jas-
minum nudiflorum, AC DQ673255, Piper cenocladum, AC DQ887677, Pelargo-
nium × hortorum, AC DQ897681. These genomes form the distinct, apparent and
clearly identified cluster that is located unexpectedly far from the main body
formed by the other genomes. Figure 6 shows this clustering pattern. We have
examined the behaviour of all these ten genomes, both separately and individu-
ally. It means that we checked the clustering structure formed by those genomes
when combined with various number of other “normal” genomes.“Normal”
genomes form separately the cluster looking rather uniformly, from outer point
of view. Those ten “escapees” also form the cluster that looks very uniformly
from outer point of view. Meanwhile, together they exhibit the pattern where
two clusters are evidently split and isolated one from other.

It should be said that the set of “normal” genomes is quite abundant: it
comprises 381 genomes. Thus, we checked the separate cluster occurrence, for
various less abundant subsets of “normal” genomes comprising up to 20 genomes
and “escapees”. It has been found that the “escapees” form the separated cluster
in any combination of these latter, when compared to “normal” genomes.

4 Discussion

In papers [7,8,11] an approach to reveal a structuredness in bacterial genomes
based on the comparison of frequency dictionaries W(3,3) of the fragments of a
genome is presented; our results show that chloroplasts behave in other way. The
always cluster in two coinciding triangles. The vertices of that latter correspond
to phases of a reading frame shift and comprise the fragments with identical
reading frame shift figure (reminder value). Moreover, unlike in [7,8,11], the
chloroplast genomes exhibit a mirror symmetry.

Another important issue is that GC-content does not determine the position-
ing of the clusters, unlike for bacterial genomes. The pattern observed for bacte-
rial genomes (triangle vs. hexagon) with central body comprising the non-coding
regions of a genome is determined by GC-content. Both for bacteria [7,8,11]
and chloroplasts [12,13], the fragments corresponding to non-coding regions of
a genome always occupy the central part of a pattern; thus, the question arises
towards a fine structure of those non-coding regions expressed in terms of statisti-
cal properties (and clustering) of the fragments falling purely into the non-coding
regions. Here we present some preliminary results answering this question.

We analyzed non-coding regions separately from coding ones. First of all, the
structuredness observed in non-coding regions differs significantly from that one
observed over the whole genome. The patterns yielded by non-coding regions are
more diffusive, in comparison to those observed for whole genome. Probably, the
key difference consists in the lack of discernibility of the fragments belonging
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to different species with unsupervised statistically based clustering technique.
An inverse holds true: tracing the fragments belonging to the same species, one
may see they comprise a dense and apparent cluster, if the distribution of the
fragments belonging to different species is developed simultaneously.

Nonetheless, for each individual species the distribution of the fragments
yields a specific pattern. We have identified five types of the distribution: ball,
ball with tail, ball with two tails, lens with tail and lens with two tails. The
structure called ball with two tails is the most surprising one: it ay not be
approximated with good accuracy with a two-dimensional manifold of genus 0
(say, with a part of a plane, or hemisphere). On the contrary, the best starting
manifold to approximate the pattern is a two-dimensional manifold of genus 2,
i.e. a square with two holes in it.

Thus, we have proven an existence of a structuredness in the non-coding
regions of chloroplast genomes; moreover, some relation to taxonomy of the
bearers of the genomes may be traced. All the results show one can find a
lot standing behind the simple statistical properties of non-coding regions of a
genome, while more detailed study falls beyond the scope of this paper.
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Abstract. With the growth of the PDB and simultaneous slowing of the dis-
covery of new protein folds, we may be able to answer the question of how
discrete protein fold space is. Studies by Skolnick et al. (PNAS, 106, 15690,
2009) have concluded that it is in fact continuous. In the present work we extend
our initial observation (PNAS, 106(51) E137, 2009) that this conclusion
depends upon the resolution with which structures are considered, making the
determination of what resolution is most useful of importance. We utilize graph
theoretical approaches to investigate the connectedness of the protein structure
universe, showing that the modularity of protein domain architecture is of
fundamental importance for future improvements in structure matching,
impacting our understanding of protein domain evolution and modification. We
show that state-of-the-art structure superimposition algorithms are unable to
distinguish between conformational and topological variation. This work is not
only important for our understanding of the discreteness of protein fold space,
but informs the more critical question of what precisely should be spatially
aligned in structure superimposition. The metric-dependence is also investigated
leading to the conclusion that fold usage in homology reduced datasets is very
similar to usage across all of PDB and should not be ignored in large scale
studies of protein structure similarity.
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1 Introduction

The three dimensional structures of proteins are often grouped into hierarchical clas-
sifications in order to facilitate our understanding of their relationships with each other.
Using this concept, one can envision a “fold space” for protein structures where a fold
is defined as a specific spacial arrangement of secondary structures. These folds of
single domain proteins have been classified by a number of structural ontologies
including CATH [1] and SCOP [2] that group most known protein structures based
upon combinations of sequence homology, structural topology, and function. Pfam [3]
is another well used resource, but focuses more on functional classification, rather than
structural (though the two are often related). Presently, structural classifications such as
CATH and SCOP still rely heavily upon expert manual curation. The prevailing view
concerning protein fold space is that it is comprised of a finite number of discrete folds
that are described by these structural ontologies. Recent updates have yielded increased
coverage of the diverse types of folds that proteins can assume [4], with a noticeable
saturation being reached. The results of such efforts, largely driven by structural
genomics initiatives [6], may imply that we are reaching full enumeration of the single
domain folds [5]. As such, one of the interesting and important implications that arise
from these works is that fold space is discrete and not continuous.

Work by Skolnick et al. [7] challenges this view concerning the discreteness of
protein structure space using a graph theory approach to analyzing the topological
relatedness of protein structures. By considering a large representative set of structures,
and a graph based on pair-wise structural relatedness judged by TM-score [8] of 5906
protein chains with low homology from the PDB [9], it was shown that the average
shortest path in this network is seven. In the graph, a node represents each PDB file and
edges are placed between them whenever pair-wise TM-score is greater than 0.4. We
believe that this may not necessarily be informative about protein structure space [10],
but instead is likely a general network property since the same result can be obtained in
a simpler way using the approximation of Watts and Strogatz [11] for random small
world graphs. Multiple questions still arise such as the metric-dependence of this
conclusion, if state-of-the-art structure matching algorithms can distinguish topological
diversity from conformational, and the overall role of domain architecture. In this work
we seek a more detailed understanding of the properties of fold space graphs and their
implications for our perceptive on protein structure relatedness. Our main contributions
are as follows (1) Graphs generated based on various TM score cutoffs show a high
degree of modularity, however (2) we show that the TM algorithm is not well suited for
distinguishing topology from conformation based on our comparative analysis (uti-
lizing TM align) of reverse transcriptase (RT) structures gathered from Pfam to man-
ually curated categories in CATH. Thus (3) we explored structure space using a
domain-based comparison utilizing CATH and SCOP categories. Our comparison
showed that there exists one dominant, modular cluster with some discontinuities in
structure space outside of the larger cluster. Thus, we conclude that the continuity (or
discreteness) of protein structure fold space depends highly on the resolution one is
willing to impose for distinguishing folds.
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Modularity, graph partitioning efficiency, and community detection are three terms
that refer to roughly the same concept; determining if there exist regions of a network
with high connectivity of nodes within individual clusters, but relatively low con-
nectivity between different clusters. For our application to fold space, this translates
into groups of structures that are close structural matches to each other within a group,
but not to members of other groups. Therefore, for community structure to be prevalent
there must be groups of structures that are closely related, but few structures that are
simultaneously similar to members of a different group. High modularity combined
with a relatively large number of clusters would point to a discrete fold space. Low
modularity or a high modularity with very few clusters would point toward a contin-
uous view. Various metrics to evaluate the community structure in graphs have been
developed including the modularity score of Newman and Girvan [12] that we apply
here. The logic behind community structure and graph clustering to explain the small
average shortest path is the following: Consider a cluster A that is well connected. That
is, for every node ni in A, any other node nj in A is reachable, on average, via a greater
number of shorter paths compared to another node, nx that is a member of a different
cluster B. This means that any neighbor of any node in A is quickly reachable from any
node in the cluster. Strong community architecture does exist in fold space graphs and
further analysis is performed by employing the Markov Cluster (MCL) Algorithm [13,
14]. If a large number of well-connected clusters exist in the graph and relatively few
edges connect them, then either the dataset is not a complete representation of fold
space or the space is not continuous.

Many methods to determine the relatedness of proteins and protein structures have
developed. These are dominated by sequence algorithms because sequence data is
abundant and sequence-based algorithms are computationally efficient and fairly
intuitive. One such scheme is VAST, Vector Alignment Search Tool [15], which
incorporates statistical significance thresholds and estimation of interactions chosen by
chance. The widespread use of PSI-BLAST [16] and similar string algorithms in
structure classifications like CATH and SCOP are further examples. Matches based on
sequence homology represent a conservative subset of similar proteins due to the fact
that the inverse folding problem, determining how many sequences can assume a given
3D shape (fold), is unsolved in general. Many cases exist where sequences with little to
no homology assume nearly identical folds; i.e. Ubiquitin (1UBI) and SUMO (1WM2)
have 15% sequence identity, but fold to practically similar structures differing only by
1.5 Å Ca RMSD. Many structure alignment procedures exist that are widely used in
structural biology. In this work, we will primarily use TM-align [8], which has been
shown to give excellent alignments and used for template detection in I-TASSER [17],
currently ranked among the best performing 3D structure prediction servers.

Another fundamental question that needs to be addressed is exactly what should be
compared? Proteins with different numbers of amino acids are, mathematically, objects
with different conformational dimensions; therefore, we commonly simplify the
problem to finding the best superimposition of two structures. Interestingly, there may
be patterns in other mathematical spaces that simplify the analysis of structures, such as
the relation between spectral dimension (related to energy transfer efficiency) and
fractal dimension (related to packing density) in protein structures [18, 19]. However,
the details of the structure can influence the energy transfer (allostery) pathways within
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the structure [20] or their interactions [21]. A much coarser view could consider
proteins as approximate globules – amorphous 3D blobs whose surfaces are semi-
molten [22] and have mostly polar character but with some internal nonpolar groups
exposed to water. We have just described two very different views on protein structures
where the details can highly bias an analysis toward a specific conclusion. In the first
case, it is intuitive that relatively few structures will be similar whereas in the second
case, many proteins could resemble each other’s shape. Thus, the resolution with which
we consider structures will affect our conclusion about the discreteness of fold space. In
this work, we investigate the structure superimposition using TM-align and domain
similarity. Our application of TM-align procedure is similar to Skolnick et al. [7],
except that we consider various thresholds instead of a single, fixed TM score cutoff.
We also collect a representative from each known fold type and apply the same graph
analysis to this smaller dataset. These representatives have been deemed by expert
manual curation to symbolize distinct fold types and thus represent a best case scenario
for concluding that fold space is discrete. The results of this analysis are utilized to
interpret data obtained by using the complete protein dataset. For domain similarity, we
analyze fold space independent of any structure-based comparison by connecting nodes
if the proteins they represent share a common CATH or SCOP annotation. Annotations
were taken from CATH at the Topology level and from SCOP at the Fold level. Such
an analysis provides an impartial baseline for how any structure similarity metric that
seeks to approximate CATH or SCOP-level fold similarity will perform on the dataset.

Defining the entities that are compared: complete PDB files, PDB chains (indi-
vidual polypeptides), or single domains is an important problem. Much effort has been
applied to developing methods for computational domain prediction. Early contribu-
tions such as FSSP using Dali [23, 24] have been very influential, while newer algo-
rithms such as DomNet [25] show increased refinement and agreement with manual
curation. However, in this study we will focus on the manual curation levels of CATH
and SCOP. If whole PDB files or chains are used, there will be cases where the peptide
chain folds to two or more domains. These structures can act as cluster-linkers in the
fold space graph since one domain may have a significant score with structures in one
cluster, while the other domain will have high structural relation to a different cluster.
Alternatively, a single domain could require the interaction of more than one
polypeptide. Such proteins complicate the relationship between sequence-homology
reduced datasets and fold usage. Considering the size of a protein may also be
important since a small protein is more likely to possess a topology that is some subset
of a larger protein.

2 Results

For any approach that relies on graph theory, understanding the structure of the graphs
used is necessary. Figure 1 shows us that, for any TM-score threshold, there exist a
relatively small number of nodes possessing a high degree of connectivity. We have
investigated these hub nodes and draw two conclusions. Some of them are hubs
because they are among the smallest proteins in the dataset with approximately 50
residues. It is more likely for a small protein to be a topologically similar subset of a
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larger protein than for two proteins of equal size to match. Others have high connec-
tivity because they have multiple domains. Each domain can individually have a sig-
nificant alignment with other structures, which inflates the connectivity relative to
single domain chains.

In our previous work [10], the relationship between average shortest path computed
using the WattsStrogatz approximation [11] and the TM-score threshold for retaining
edges in the graph was investigated. We found that the average shortest path is less
than seven for cutoffs below 0.75. Stricter cutoffs result in large areas of the graph
becoming disconnected. With increasing TM-score, the edge set gets sparser,
approaching a cardinality of zero. This is shown in Fig. 2 where the number of nodes
with no edges increases as the TM-score threshold increases.

Since TM-scores are numerical, defined on the interval from zero to one, and are
not symmetric, pairwise scores can easily be interpreted as a directed graph where we
use TM-scores as edge weights. In the MCL algorithm edge weight is the probability of
a random walk traversing along a given edge. We construct unweighted graphs by
assigning all edges a weight of one and undirected graphs by linking nodes (with or
without edge weights) based on the larger of their two TM-scores. From Supplemental
Tables 1 and 2, it is evident that the edge treatment makes a minimal impact upon
MCL clustering.

Since the sequence-structure relationship is not fully understood, sequence-
homology reduced datasets are not necessarily the same as topology reduced datasets.
The effect on graph behavior of a topologically reduced dataset is of interest for
comparison to the homology reduced dataset. Parameter choices that yield expected
results in the topologically reduced dataset will help us to better interpret the meaning
of clusters for the homology reduced set. For this reason, we also compare distinct

Fig. 1. Metrics evaluating MCL clustering on TM-score graphs. UW stands for uniformly
weighted meaning that if an edge exists in the graph, we assign it a weight of one. Area Fraction
is defined by Eq. 2 and relates to cluster size. Mass Fraction is the fraction of total edge weight
that is captured within clusters and is formally defined in Eq. 3. Including the edge weights does
not impact these metrics (see Tables 1 and 2).
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topologies to each other by gathering 1233 CATH version 3.3 topology representa-
tives; a collection of manually curated topology representatives that span all of PDB,
performing the same procedure. Interestingly, this dataset of distinct topology repre-
sentatives exhibits a high modularity, indicative of community structure (Supplemental
Table 2). We calculate a modularity score defined in [12] by comparing the number of
edges within clusters to the number of edges that are linking clusters to each other. At
low TM thresholds (0.4), the graph exhibits high connectivity (57550 edges) and the
majority of the nodes included in the largest cluster.

The extent of community structure is less than for the PDB300 dataset (as judged
by FMass and FArea – see Methods), but remains high. The MCL inflation parameter
determines granularity of the clustering with a low inflation yielding few large clusters
and high inflation producing many small clusters. Even for the high inflation value of 5,

Fig. 2. (A) Heat map of TM-scores between 283 reverse transcriptase (RT) structures and 1233
topology representatives from CATH v3.3. Rows are arranged in the same order as the columns
of Sects. 1 and 2. Sections 1 and 2 correspond to two orientations of the RT “fingers,” while
Sect. 3 is the TM score between the topology representatives and the RT structures.
(B) Histogram of the TM-scores within the set of 283 reverse transcriptase structures. The set
can easily be split into structures that are related to each other at a TM-score of greater or less
than 0.7. No pairwise scores are below 0.4. Low scores correspond to the two finger domains
being in different positions, while the higher scores correspond to the two fingers in roughly the
same orientation. The high scoring population can be somewhat thought of as two groups; one
where the fingers are in a more closed conformation, and one where they are both extended.
(C) We show a representative of the lower TM-score population; 1RW3 aligned to 1JLA with a
TM-score of 0.56. The view shown highlights the different finger positions that are characteristic
of the lower scoring group. (D) Histogram of maximum TM-score between each reverse
transcriptase domain and the topology representatives from CATH (max for each row of Sect. 3).
Each reverse transcriptase domain has a TM-score between itself and a topology representative of
at least 0.53, but none are higher than 0.76. There are 277 topologies matched to the 283 reverse
transcriptase structures. Thus, large TM-scores, while relatively sparse, are not because of any
single (or even a small set) of reverse transcriptase like topologic representatives.
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the largest cluster still contains 855 structures, whereas a low value of 1.2 retains 1217.
At a TM score cutoff of 0.6 we find that MCL consistently distinguishes many of the
topologies from each other (only 334 edges between the 1233 nodes). Thus, these
graphs may either be modular because they are significantly related (pointing to
structure space being continuous) or because they are mutually distantly related
(pointing to a discrete fold space).

Conformational variability is also an important consideration for comparing
topologies. Are our structure comparison metrics able to distinguish between confor-
mational variation and topological? To address this question, we will compare 283
reverse transcriptase (RT) structures gathered from Pfam [3] family PF00078 to each
other and to the CATH topology representatives to investigate the ability for structure
comparison metrics to distinguish between conformational (within the RT family) and
topological (between RT and fold representatives) differences. RT structure is often
described by analogy to a human hand where the active site is in the center of the palm
and the fingers and thumb “grip” the substrate. The Pfam family set used corresponds
to two fingers and the palm, thus containing sequence (average sequence identity of
67%) and conformational variants. A TM-score above 0.4 is regarded as a significant
topological relationship. We find that all members of the reverse transcriptase family
have TM-scores above this threshold, but there is significant diversity of scores within
the family (Fig. 2). Roughly half of the pairwise comparisons are between 0.4 and 0.7
corresponding to different finger conformations (generalized from visualizing 100
randomly chosen pairs from this group). Higher scoring pairs are characterized by the
structures having the same general finger conformation. The subgroup at about 0.82 has
a higher representation of a more extended finger conformation (again from visual-
ization of 100 randomly chosen pairs; data not shown). A representative pair is shown
in Fig. 2. Further, each reverse transcriptase domain has a TM-score between itself and
a topology representative of at least 0.53, but none are higher than 0.76. Therefore, all
RT structures have a significant structure alignment to a topology representative. One
might expect that because all RT structures share a common fold, one topology would
be the best match to most of the RT structures. However, matching each of the 283 RTs
to its highest scoring topology yields 277 different topologies. Thus, large TM-scores,
while relatively sparse, are not because of any single (or even a small set) of RT- like
topologic representatives. Further, TM (and likely any rigid superimposition algorithm)
is, in general, unable to distinguish between conformational and topological variation.
Methods like Fr-TM-align [26] or FATCAT [27] that are capable of accounting for
flexibility of the biomolecule may perform better in this specific test, but fast and
accurate methods for incorporating flexibility in structure matching are still being
improved. Current structure comparison algorithms have difficulty in distinguishing
between conformational and topological differences.

Metrics similar to Silhouettes [28] have also been generated (not shown). These are
basically average path length from a node to any other node within a given cluster
compared to the average path length from a node to every node that is not in that cluster.
Evidence of the high number of connections within each cluster exists in that the average
out-of-cluster path is only slightly longer than the average within-cluster path.
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A critical point of the above analysis hinges on the efficacy of the TM score
algorithm in quantifying the fold space of proteins. Thus, it is reasonable to ask: are
these investigations into protein fold space dependent upon the metric used? We have
already shown that the state-of-the-art structure comparison method has difficulty in
distinguishing topological and conformational differences, but can we explore fold
space independent from structure superimposition? One way is to make a graph where
each protein chain is represented by a node and nodes are connected by edges if the two
proteins share a common fold. Common folds are determined by a shared CATH
topology or SCOP fold using CATH version 3.4 and SCOP version 1.75. In the
PDB300 dataset 90% of the protein chains are annotated by at least one of these
ontologies, while all of the PISCES proteins are annotated (see Methods for dataset
details). Unannotated nodes are neglected in the following analysis. Using the same
graph analysis procedure, we find that this domain based graph also has a very high
degree of connectivity and modularity. See Table 1 for details. We again find that there
exists one dominant cluster. It has been shown that MCL usually generates a dominant
cluster and for some applications modifications that generate a more even granularity
are preferred [29]. However, using these approaches would be equivalent to assuming
fold space is discrete. Another explanation for the dominant cluster is the imbalance in
topology usage. Table 2 summarizes the usage of the ten most used topologies across
all of CATH, PDB300, and the PISCES dataset. Seven of the ten most used annotations
across all of CATH are also in the top ten most used topologies in the datasets used
here. Further, if we sort the topology classes by their use across all of CATH, and
compare with the topology use in each of our datasets, PDB300 and PISCES have a
correlation coefficient with CATH of 0.94 and 0.93, respectively. Thus, the relative
distribution of domain types is similar in these datasets compared to the whole PDB.
We conclude that the reason for the observed shortest paths in TM-score based graphs
is the modularity of proteins and the bias in topology usage. Protein structures exhibit
variation upon themes – stable domains develop and are embellished upon for further
modification of function.

Viksna and Gilbert [30] proposed a new method of assessment of domain evolution
by measuring the rate of certain kinds of structural changes that can lead to novel fold
development. Birzele et al. [31] find fascinating evidence that alternative splicing plays
a role in protein structure evolution by developing transitional structures between fold
types. Fong and colleagues [32] emphasize the modularity and importance of domain
fusion events in the evolution of protein domains. Meier et al. [33] suggest a link
between conformational flexibility and domain evolution where the native state
ensemble can partially occupy at least two intermediate fold types and the relative
population of each may be influenced by single amino acid mutations. The results
presented here combined with these studies point to the importance of considering
protein folds more rigorously in structure matching. It is not only important for our
understanding of the discreteness of protein fold space, but informs the more critical
question of what precisely should be spatially aligned in structure superimposition.
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3 Discussion

We have shown that graphs generated either from TM scores or domain annotation
show a high degree of community structure (modularity). TM-scores alone are not able
to fully distinguish manually curated topology representatives from each other at the
same threshold levels that have been used to analyze fold space across the PDB. This is
partly due to the effect of conformation on TM-score. It is shown here that confor-
mational variability within a set of reverse transcriptase structures can lead to very
different conclusions about which CATH topology is a closest representative. It is
important to realize that since we do not fully understand the relationship between
protein sequence and structure, homology reduced datasets may not be topology
reduced. This has been shown by analyzing graphs generated by connecting nodes if
they share any common CATH topology or SCOP fold and showing that they have
similar modularity and graph structure compared to graphs based on structure super-
imposition (see Fig. 3). It is possible that improving coarse-grained representations like
TOPS strings [34, 35] will be useful in the future for handling the multi-resolution
complexities of structure comparison.

Classifying protein tertiary structures into a discrete set of domains is useful in that
it helps our conceptual understanding of protein structures, aids in reducing the pos-
sible outcomes for sequence based folding procedures, adds to our understanding of the
structure-function relationship, as well as many other applications. Whether protein
fold space is continuous or discrete depends upon the resolution with which it is
viewed. We believe the more fundamental observation is the usage of topology types.

Fig. 3. Frequency of CATH topology usage in three datasets. Using CATH version 3.4, we
consider the 1282 topology IDs, counting the number of times a structure in each dataset is
annotated with each topology ID. For both of the datasets used in this study, we find that many
topologies are not used at all (abscissa value of 0), and that relatively few topologies have a high
rate of use. In the CATH database, most topologies have a high rate of use. Interestingly, the
PISCES dataset is more topologically diverse than the PDB300 dataset.
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4 Methods

Datasets
We use the PDB300 dataset from [7], which consists of 5906 protein chains of lengths
between 40 and 300 residues sharing less than 35% sequence identity. Here, the word
“chain” refers to a single polypeptide. It is worth noting that numerous individual
protein chains in this dataset contain more than one domain (topology or fold) as
defined by CATH or SCOP. Also, the PDB has been updated since this dataset was
gathered; 3 structures have become obsolete and were not superseded by a new ID,
while 41 have been updated to new IDs. For the purpose of comparison, we continue to
use the original version of each PDB ID when employing TM-align.

Domain centric datasets are constructed in two ways. The first is to cut the CATH
hierarchy at the topology level resulting in 1233 or 1282 representative domains for
version 3.3 and 3.4 respectively. The second begins by using the PISCES server [36] to
gather a representative set of chains that are of better than 2.5Å resolution, less than
20% mutual sequence identity, and a crystallographic R-factor of less than 0.25. This
dataset contains 4750 PDB chains. We then use CATH to identify individual domains
at the Topology level within this set.

The final dataset used is Pfam family PF00078, corresponding to reverse tran-
scriptase (RT). At the time of data download, 283 members with full 3D coordinates
were available in the PDB. These structures were downloaded and the subset of points
agreeing with the Pfam family definition was retained.

Protein Structure Evaluation Metrics
In this paper, the TM-score defined in [8], is used to analyze the structural similarity of
protein structures. This metric is interesting in that it is not symmetric; TM (A,B) does
not necessarily equal TM (B,A) particularly when proteins A and B are of different
lengths. The TM-score is defined as:

TM � score ¼ Max
1

LTarget

XLali
i

1

1þ di
d0 LT arg etð Þ

� �2

2
6664

3
7775 ð1Þ

Where Lali is the length of the alignment, LTarget is the sequence length of the target
structure, di is the Euclidean distance between aligned points, and d0 is a normalization
factor based on LTarget.

Analysis of Structural Classification
A number of structural classification schemes exist including the CATH database (1),
SCOP (2), and PFAM (3). Both CATH and SCOP are hierarchical in nature and utilize
a combination of homology, topology, and biochemical function to organize protein
structures. The first level of CATH and SCOP classification consists of 4 classes,
binning structures into predominantly a-helix or b-sheet content, presence of both, or
lack of secondary structure elements. The second level of SCOP, as well as the second
and third levels of CATH, is based on overall secondary structure orientation. These
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levels are manually curated and place proteins into general categories like beta-barrel
and two-layer sandwich. The third level of SCOP takes into account the topology and
function of a given protein to decide how related they are evolutionarily. All subse-
quent levels in both classifications are decided by sequence identity or, in some cases,
other sequence based scoring schemes. Pfam families are generated by manual func-
tional curation, multiple sequence alignments, and Hidden Markov Models and come
in two varieties: Pfam-A for only manually curated entries and Pfam-B where auto-
mated methods are also used to extend the sequence space covered by classification.
All three of these databases rely on sequence homology and biochemical functions to
group proteins into fold types rather than directly comparing quantitatively the
topology of the biomolecules.

Graph Construction
We define a graph based on TM-score as Gt ¼ E; Vf g where ei 2 E is an edge in Gt if
it connects two vertices a 2 V and b 2 V and TM(a,b) > t. Each PDB chain in the
dataset is represented by a single node. The TM-score threshold t is initially set at 0.4
as in [7], but values up to 0.9 are also considered to further analyze the graph structure.
Graphs are either undirected or directed. To make the directed graphs we consider
t = max(t1,t2) where TM(a,b) = t1 and TM(b,a) = t2.

Cluster Generation and Comparison
To investigate the community structure of graphs we first employ the Markov Cluster
Algorithm (MCL) [13, 14]. In this procedure, graphs are clustered based on random
walks that simulate flow along the graph’s edges. Nodes that are well connected will
exhibit more flow between them than nodes with few connections; the probability of
selecting an edge to walk along within the cluster is higher than choosing an edge that
leads you out of the cluster (provided the probability of selecting any edge at random is
uniform). As the algorithm progresses, nodes that share high amounts of flow (many
common walks) are grouped together into clusters.

MCL has evaluation protocols to explore the relatedness of clustering with different
parameters. In MCL each edge has a weight. Here we use uniformly weighted
(UW) graphs or we use the TM-score as the edge weight. Defining cluster size as the
number of nodes within a cluster, MCL computes the Area Fraction (FArea) defined by
Eq. 2. This metric gives an indication for the size of clusters as many small clusters or
isolated nodes will result in a low FArea. The Mass Fraction (FMass) is the sum of all
edge weights within clusters and is shown in Eq. 3 where wi is the edge weight of edge
i such that edge i is in Cluster c.

FArea ¼
P

clusterSize2

N N � 1ð Þ ð2Þ

FMass ¼
Xcj j

c¼1

XEj j

i¼1

wi s:t:wi 2 Cc ð3Þ

Having FArea close to zero implies that the graph has been clustered into many
small clusters, while a value of one implies that all nodes occupy one cluster.
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Possessing FMass close to one indicates that clusters are tightly connected with rela-
tively few edges connecting them. How the algorithm treats the length of a walk
(number of edges traversed) is very important to the process and is controlled by a
parameter called Inflation, I. Penalizing longer walks produces a large number of small
clusters. Allowing longer walks generates fewer, but larger, clusters. It is informative to
compare results across multiple inflation values to better understand the organization of
the graph.

Table 1. Clustering metrics for graphs of common CATH or SCOP annotations

Dataset Inflation Mod5 Mod10 Modall Eff FMass FArea #C Max Avg

PDB300 1.2 .98 .98 .99 .21 .98 .58 137 3617 34.8
2.0 .89 .90 .92 .33 .91 .25 183 2155 26.1
4.0 .75 .78 .82 .49 .81 .10 325 1429 14.7
6.0 .51 .54 .59 .49 .71 .07 450 1179 10.6
8.0 .37 .40 .45 .49 .66 .05 519 1006 9.2
12.0 .26 .28 .33 .47 .62 .04 580 931 8.2

PISCES 1.2 .96 .97 .97 .34 .97 .27 138 864 15.7
2.0 .89 .91 .94 .59 .93 .09 174 465 12.4
4.0 .78 .82 .86 .66 .88 .06 236 357 9.2
6.0 .61 .64 .68 .65 .82 .04 289 303 7.5
8.0 .59 .62 .65 .64 .81 .04 302 296 7.2
12.0 .55 .57 .61 .64 .80 .04 316 281 6.9

Table 2. Top 10 CATH topology usage

CATH PDB300 PISCES

ID Usage Architecture Topology ID Usage Cr ID Usage Cr

3.40.50 19229 3-Layer(aba)
sandwich

Rossmann fold 3.40.50 1339 1 3.40.50 379 1

2.60.40 13806 Sandwich Immunoglobulin-
like

2.60.40 678 2 2.60.40 132 2

3.20.20 6106 Alpha-beta barrel TIM Barrel 1.10.10 384 11 3.20.20 118 3

3.30.70 4236 2-layer Sandwich Alpha-Beta Plaits 3.30.70 334 4 3.30.70 101 4
2.40.10 3954 Beta barrel Thrombin 2.60.120 312 6 2.60.120 96 6

2.60.120 3433 Sandwich Jelly Rolls 2.40.50 268 7 1.10.10 81 11
2.40.50 2244 Beta barrel OB fold 1.20.5 263 15 1.20.5 65 15
3.30.200 2012 2-layer sandwich Phosphorylase

Kinase
3.20.20 250 3 1.10.287 57 19

1.10.510 1992 Orthogonal bundle Phosphotransferase 2.40.10 206 5 2.40.50 49 7

1.10.490 1983 Orthogonal bundle Globin-like 2.30.30 205 16 1.20.120 44 29
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Column titles are: Inflation for the MCL parameter that determines granularity of
the clustering, Mod5 - modularity using the 5 largest clusters, Eff - efficiency of the
clustering, FMass and FArea are given in Eqs. 2 and 3, #C - number of clusters, Max -
number of nodes in the largest cluster, Avg - average number of nodes across all
clusters.

Usage is the number of protein chains that are annotated with the given CATH
topology ID. Cr is the rank of this topology ID in CATH.
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Abstract. We studied the structuredness in total transcriptome of Si-
berian larch. To do that, the contigs from total transcriptome has been
labeled with the reads comprising the tissue specific transcriptomes, and
the distribution of the contigs from the total transcriptome has been
developed with respect to the mutual entropy of the frequencies of occur-
rence of reads from tissue specific transcriptomes. It was found that a
number of contigs contain comparable amounts of reads from different
tissues, so the chimeric transcripts to be extremely abundant. On the
contrary, the transcripts with high tissue specificity do not yield a reli-
able clustering revealing the tissue specificity. This fact makes usage of
total transcriptome for the purposes of differential expression arguable.

Keywords: Order · Probability · Triplet · Symmetry · Projection ·
Clustering

1 Introduction

Transcriptome is a set of all the symbol sequences from ℵ = {A,C,G,T} alphabet
corresponding to the entire ensemble of RNA moleculae (of mRNA moleculae)
found in a cell (or in a sample). In a genome deciphering, transcriptome sequenc-
ing, assembling and annotation goes ahead. The point is that one may not be
sure a transcriptome is stable, in terms of the composition of the sequences men-
tioned above. Indeed, the set definitely depends on a tissue, on a development
stage, on a life cycle stage, and many other factors.

Stipulating a stability of a genome in an organism, one may expect that
various tissues exhibit different expression of genes; this is a common place for
multicellular organisms, and may take place in unicellular ones, if different stages
of a life cycle are considered. Such difference is claimed differential expression.
This latter is essential in a study of various physiological processes run in an
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organism, and may tell a researcher a lot concerning some peculiarities in func-
tioning of biochemical and genetic networks.

Total transcriptome is the ensemble of all RNA (or mRNA) sequences gath-
ered regardless their origin, through a bulky source sampled from an organism,
or a tissue, etc. Since some genes in specific tissues, or cells may be suppressed
or yield lowered expression due to some other reasons, one may expect that total
transcriptome make a useful tool for assembling of all the genes observed in a
sample, if assembled totally. Here we checked this idea on the total transcriptome
of Larix sibirica Ledeb.

So, the goal of the study was to compare the efficiency of a “help and sup-
port” in specific transcriptome assembling, through the implementation of the
total one. To do that, we have sequenced, filtered and cleaned the reads, for
four specific tissues: needles, cambium, shoot, and seedling. These four specific
transcriptome have been assembled; simultaneously, a total set of reads has been
obtained through merging of all four specific ensembles into a single one. Then
the assembling of the (total) transcriptome has been carried out. Finally, we tried
to compare the total transcriptome with four specific ones to see whether some
improvement in assembling “bottle neck” transcripts in specific transcriptomes
takes place, or not; speaking in advance, we found greater losses than profits, in
such approach.

2 Materials and Methods

Sequencing of L. sibirica Ledeb. total transcriptome was carried out in Laboura-
tory of forest genomics of Siberian federal university. Four groups of tissue spe-
cific read ensembles have been obtained separately: needles, cambium, shoot and
seedling. Also, later we merged all the reads ensembles into a single one, and
assembled the total transcriptome.

Real transcriptomes (both tissue specific, and for the total one) comprise
the contigs of various lengths. Some figures characterizing the specific (as well,
as the total one) transcriptomes are shown in Table 1; the table presents the
figures for the longest contig (Lmax), average length of transcripts (〈L〉), and
total abundance of contigs in a transcriptome (M). All transcripts were longer
200 b. p.

For the proposes of the clustering and analysis of transcriptomes, we selected
the subsets of contigs, in each specific transcriptome (including the total one).
We took into the subsets sufficiently long contigs, only. The idea standing behind
such selection is following: shorter contigs would yield rather abundant subsets
of points (in 64-dimensional space) that are in local quasi-equilibrium: in other
words, too many short contigs would have zero frequency of some triplets. More-
over, a greater number of triplets would be presented in a single copy, in a
number of such shorter contigs, thus yielding a kind of quasi-equilibrium over
the subspace determined by these triplets.

To avoid the above mentioned effect, we have eliminated shorter contigs.
We comprise sufficiently long contigs, to carry out clustering and visualization
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of the data. Table 1 shows the figures used to select the contigs involved into
analysis: Ld is the cut-off length of the contigs, in each specific transcriptome.
That former means that we selected the contigs longer than Ld; Md figures show
the abundances of the sets of selected longer contigs.

To gain the total transcriptome, the reads ensembles obtained for each spe-
cific tissue have been merged into a single ensemble, and assembling has been car-
ried out [1,2]. Common idea in total transcriptome implementation is to enforce
the coverage level of the genes expressed in various tissues, thus improving assem-
bling of de novo sequence. Not discussing here an efficiency (quite arguable,
frankly speaking), we just stress that a total transcriptome still is a good first
step, in any genome deciphering being a kind of mean filed approximation.

2.1 Frequency Dictionaries

To analyze statistical properties of transcriptomes, we used a conversion of them
into frequency dictionaries; in particular, we focused on triplet frequency dictio-
naries, only. Formally, a triplet frequency dictionary is the list of all triplets
ω = ν1ν2ν3 observed in a sequence T. This is the triplet frequency dictio-
nary W(3,1). More generally, let t be the step of a move of the reading frame
(of the length 3) identifying a triplet ω. Then the frequency dictionary W(3,t) is
the list of triplets identified in T, if the reading frame moves along T with the
step t. Definitely, one gets t different triplet frequency dictionaries here: there
are t different starting positions of the first location of the reading frame.

Further, we shall focus on the dictionaries W(3,1) and W(3,3). In such capacity,
there could be 3 triplet frequency dictionaries of W(3,3) type. The analysis of
statistical properties of transcriptome provided here is based on the fact that
three different frequency dictionaries W(3,3) determined over coding part of a
genome differ seriously from similar dictionaries determined over non-coding
ones [3–6]. This difference stands behind the analysis.

We did not derive all three versions of triplet frequency dictionaries of W(3,3)

type for the transcripts; instead, we developed the clustering of triplet frequency
dictionaries expecting them to gather into the clusters corresponding to the phase
(i.e. reading frame shift figure t = {0; 1; 2}) and strand embedment (leading vs.
ladder).

2.2 Clustering and Visualization

We used freely distributed software ViDaExpert by Andrew Zinovyev
(bioinfo.curie.fr) for visualization data. Also, K-means clustering technique
[7] has been applied, to prove a structuredness in transcriptome data. To retrieve
a structure pattern in transcriptome (any of them, enlisted above), each contig
was converted into frequency dictionary W(3,1). Everywhere further we shall
denote it as W3; to distinguish different dictionaries, we shall use an upper
index in square brackets: W

[j]
3 , so that f

[j]
ω ∈ W

[j]
3 . Here f

[j]
ω is the frequency of

a triplet ω. Well known Euclidean metrics
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ρ
(
W

[1]
3 ,W

[2]
3

)
=

√√√√ TTT∑
ω=AAA

(
f
[1]
ω − f

[2]
ω

)2

(1)

has been used to determine a distance between two triplet frequency dictionar-
ies W

[1]
3 and W

[2]
3 , for clustering and visualization purposes.

Using ViDaExpert software, we considered the distribution of points corre-
sponding to frequency dictionaries in three-dimensional projection; the choice
of axes for the projection was carried out automatically, since we observed the
distribution in three principal components (the first one, the second one, and
the third one), mainly, not in triplets.

To prove (or disprove) visually observed clustering, we used K-means, pro-
vided by the same software. The choice of K was determined by the stability of
clustering: we always started from K = 2 and stopped at K� where clustering
became unstable. Besides, we also used elastic map technique, for the purposes of
visualization, mainly. Detailed description of that methodology could be found
in [8–12].

2.3 Chargaff’s Parity Discrepancy

Chargaff’s parity rules stipulate several fundamental properties of nucleotide
sequences describing a kind of symmetry in them. We used these rules to ana-
lyze the observed cluster patterns, in transcriptomes. Tot begin with, Chargaff’s
substitution rule stipulates that in double stranded DNA molecule nucleotide A
always opposes to nucleotide T, and vice versa. Same is true for the couple of
nucleotides C ⇔ G.

The first Chargaff’s parity rule stipulates that the number of A’s matches
the number of T’s with a good accuracy, when counted over a single strand;
obviously, similar proximal equity is observed for C’s and G’s. Finally, the second
Chargaff’s parity rule stipulates a proximal equity of frequencies of the strings
comprising complementary palindrome: fω ≈ fω. Here ω and ω are two strings
counted over the same strand, so that they are read equally in opposite directions,
with respect to the substitution rule, e.g., CTGA ⇔ TCAG; see [13–18] for details.

Genomes differ in the figures of discrepancy of the second Chargaff’s parity
rule [19]; same is true for various parts of a genome. Thus, one can compare the
transcriptomes in terms of this discrepancy. To do it, let’s introduce that former:

μ
(
W

[1]
3 ,W

[2]
3

)
=

1
64

√√√√ TTT∑
ω=AAA

(
f
[1]
ω − f

[2]
ω

)2

, (2)

where ω and ω are two triplets comprising complementary palindrome. Here we
must take into account both couples: f

[1]
ω −f

[2]
ω and f

[2]
ω −f

[1]
ω , since they exhibit

different figures, in general.
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Formula (2) measures a deviation between two frequency dictionaries; thus,
one may expect that two dictionaries W

[1]
3 and W

[2]
3 may comprise the triplets

from the opposite strands, if μ → 0. An inner discrepancy measure determined
within a dictionary is another important characteristics of a dictionary. To mea-
sure it, one should change the formula (2) for

ξ (W3) =
1
32

√ ∑
ω∈Ω∗

(
fω − fω

)2

, (3)

where Ω∗ is the set of 32 couples of triplets comprising complementary palin-
dromes. Obviously, here |fω−fω| ≡ |fω−fω|. We shall use the figures determined
by (2) and (3) for transcriptome analysis.

2.4 Mutual Entropy to Measure the Quality of Total Transcriptome

The key aim of this paper is to compare tissue specific transcriptomes vs. the
total one. To do it, we implemented a measure based on the mutual entropy
calculation of the reads distribution over contigs of the total transcriptome.
Describe this point in more detail. We used four tissues to get the tissue specific
transcriptomes: needles, cambium, shoot and seedling. Surely, the abundance of
the reads sets is different, for various tissues. So great difference in the abun-
dances of the reads ensembles gathered for different tissues must be taken into
account, and we have done it in the following way.

Table 1. Some figures characterizing transcriptomes. Lmin is the minimal contig length,
Lmax the maximal contig length, 〈L〉 is average contig length, Ld is the selection length,
and Md is the abundance of contig set taken into consideration and NR is the reads
set abundance.

Transcriptome Lmax 〈L〉 Ld M Md NR

Needles 9880 354 1000 59317 1851 2 504 853

Shoot 17893 532 5000 590240 1754 23 986 314

Seedlings 11008 455 2500 174805 1943 8 698 074

Cambium 20596 497 5000 628197 1455 9 563 901

Let Nneedles, Nshoot, Nseeding and Ncambium be the numbers of the reads, in
each read ensemble, respectively. Let then change the numbers for frequencies
of the tissue specificity, as it occurs in the joint set of the reads:

fneedles =
Nneedles

Ntotal
, fshoot =

Nshoot

Ntotal
, fseedings =

Nseedings

Ntotal
, fcambium =

Ncambium

Ntotal
,

where Ntotal is the sum of all N ’s shown above. The figures of fneedles, fshoot,
fseedings and fcambium provide the background to study the difference between
total transcriptome and the specific ones.
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(a) (b)

(c) (d)

Fig. 1. Distribution of transcripts with greater mutual entropy (4) from total transcrip-
tome; (a) is the case of W(3,1), (b) case of W(3,3). K-means is shown in (c) (K = 2)
and in (d) K = 3; both cases are of W(3,1) type.

At the next stage, the numbers Mtissue (frequencies ϕtissue, respectively) of
each tissue specific reads set observed over each transcript from the total tran-
scriptome were obtained; to do it, we used back reads mapping over the total
transcriptome transcripts. Thus, each transcript from total transcriptome was
converted into a point in four-dimensional Euclidean space with the frequencies
of tissue specific reads being the coordinates.



376 M. Sadovsky et al.

Finally, the mutual entropy

Sk =
4∑

j=1

ϕj · ln
(

ϕj

fj

)
(4)

was determined for each transcript taken into consideration from the total tran-
scriptome; here the index j enlists the tissues. The transcripts list was descending
ordered, and the top part of the list has been analyzed. Index k in (4) enumerates
the transcripts in the total transcriptome. Obviously, ϕj figures were determined
for each transcript from the total transcriptome individually, while f figures were
the same. Mutual entropy (4) measures a deviation of the distribution of the tis-
sue specificity of reads observed within a transcript: if Sk = 0, then the k-th
transcript does not differ from the ensemble of the reads of the total transcrip-
tome, and, in such capacity, is stipulated to be the most chimeric one. On the
contrary, if a transcript yields the maximal deviation of (4) from zero, then it
means the highest level of tissue specificity. It should be born in mind that the
maximum of (4) depends on the specific tissue: in particular,

max
{
Sk

}
= − ln fk . (5)

(a) (b)

Fig. 2. Distribution of contigs with higher preference of the tissue specific reads occur-
rence; the case of W(3,1) is left and the case of W(3,3) is right. (Color figure online)

3 Results and Discussion

The visualization of the total transcriptome (via transformation of sufficiently
long contigs into triplet frequency dictionaries W(3,1) and W(3,3)) reveals a struc-
turedness in that latter. Figure 1 shows the distribution of the contigs. Appar-
ently, there are two clusters in the Fig. 1(a) and six clusters in Fig. 1(b). The
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clusters shown in Fig. 1 are provided by elastic map technique. Clustering with
K-means for K = 2 and K = 3 is shown in Fig. 1(c) (two classes pattern)
and Fig. 1(d) (three classes pattern). It should be said that these two patterns
are very stable: more than 85 % of the runs of K-means converted to the same
points distribution. The distributions provided by K-means with K ≥ 4 were
quite unstable.

Figure 2 answers the key question of the paper, whether the total transcrip-
tome supports better assembling of tissue-specific ones, or not. Here we traced
the distribution of the contigs with increased content of tissue-specific reads. To
do that, we firstly identified the contigs with high level of mutual entropy (4),
then checked what tissue reads prevail in a contig, and labeled it according to
the tissue prevalence. Figure 2 shows the obtained distribution; here rosy circles
represent cambium, green triangles represent needles and brown pentagons rep-
resent seedlings. Evidently, there is no preference in the tissue-specific enriched
contigs over the clusters.

Also, Chargaff’s discrepancies behaviour looks quite remarkable: for K-means
classification with K = 2 the intraclasses discrepancies are ξ1 = 5.45× 10−4 and
ξ1 = 5.90 × 10−4, respectively, with the interclass discrepancy μ(1,2) = 8.20 ×
10−4. Here the discrepancy between two classes seems to exceed those figures
observed within a class. The situation is different, for K = 3. Here the intraclass
discrepancies differ rather apparently, for three classes: ξ1 = 6.29 × 10−4, ξ2 =
2.64 × 10−4 and ξ3 = 5.91 × 10−4, respectively. Obviously, the second class
falls out of the general pattern of Chargaff’s discrepancies. This fact may tell
that the second class comprises the contigs from the opposite strands, unlike
the first one and the third one. Same idea is supported by the figures of the
interclass discrepancies; these are μ(1,2) = 3.32 × 10−4, μ(2,3) = 4.27 × 10−4, but
μ(1,3) = 3.71 × 10−5.

That is a common place that a researcher is not guaranteed against the
necessity to study total transcriptome, instead of a (tissue) specific one. Such
situations may take place when a new (or rare) specimen is under analysis.
Hence, one has to have a tool to evaluate the limits of knowledge that could be
retrieved from the total transcriptome. Indeed, one may prefer to add sugar to
a salty solution; others may want to add salt to a sweety sirup; nobody is able
to distinguish the results. Meanwhile, significant number of chimeric transcripts
may make a problem in analysis of a total transcriptome, say, in differential
expression evaluation. If the tissue specificity of various reads is known á priori
then one may eliminate the chimeric contigs from the ensemble due to specific
entropy evaluation. The results presented above show some patterns revealed
through clustering; this structuredness may be used for elimination of chimeric
contigs. Nonetheless, the reliable approach to do it still awaits for further
implementations.
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Abstract. Protein function prediction is a relevant but challenging task
as protein structural data is a large and complex information. With the
increase of biological data available there is a demand for computational
methods to annotate and help us make sense of this data deluge. Here we
propose a model and a data mining based strategy to perform protein
structural classification. We are particularly interested in hierarchical
classification schemes. To evaluate the proposed strategy, we conduct
three experiments using as input protein structural data from biological
databases (CATH, SCOPe and BRENDA). Each dataset is associated
with a well known hierarchical classification scheme (CATH, SCOP, EC
number). We show that our model accuracy ranges from 86% to 95%
when predicting CATH, SCOP and EC Number levels respectively. To
the best of our knowledge, ours is the first work to reach such high
accuracy when dealing with very large data sets.

Keywords: Protein hierarchical classification · CATH · EC number ·
SCOP

1 Introduction

With the unprecedented increase in biological data generated over the last two
decades, it is not possible to manually record the data that is being made avail-
able. We need robust and reliable computational techniques that can note the
large volume of data available.

Proteins are the basic functional unit of the cells. Therefore, the academic
community and the industry have spent a considerable amount of time studying
techniques to understand the proteins composition, structure, and functionality.
Applications range in several domains, for instance, developing a pest-resistant
crop or a new treatment for a specific disease.

In this context, it may be valuable to a researcher, when studying a new
(or less known) protein, to find other similar proteins, which have well-known
characteristics. The reason is that based on such similarity, a lot can be learned
about the protein under analysis. Therefore, developing new tools to predict the
function of protein chains is a task worth pursuing.
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 379–390, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17938-0_34&domain=pdf
https://doi.org/10.1007/978-3-030-17938-0_34


380 V. F. Mendes et al.

Although important, predicting the function of protein chains is a challenging
task by itself, once it may depend on their sequence of amino acids and 3D
structures [12,23], which are, in general, large and complex sets of information,
possibly with the presence of noise [5]. Furthermore, there are several approaches
to classify proteins according to their function, and for each one, there may be
several thousand distinct classes. Hence, there is a computational challenge as
well.

In this work, we are interested in the problem of performing structural clas-
sification of proteins. More specifically we are interested in protein hierarchi-
cal classification, which makes databases that implement hierarchical classifi-
cation schemes particularly interesting to evaluate our strategy. Thus, we use
CATH [13], SCOPe [2] and BRENDA [18] datasets and the classification schemes
CATH, SCOP and EC number. We propose a hierarchical data mining strategy
and, in order to overcome the issues related to working with structural data
(e.g., complexity, a large amount of information and noise), we transform the
raw data using Cuttof Scanning Matrix (CSM) [14], and reduce its size and noise
via SVD (Singular Value Decomposition).

Our model has the advantage of being able to work with a large corpus of data
(with more than 300,000 structures) and many distinct classes (approximately
2,000), which, in general, is a hard setup in data mining. Moreover, the model can
be applied in other scenarios, as long as the classes are organized in a hierarchical
fashion.

We conducted experiments in order to evaluate and validate our model. We
show that the accuracy of the model ranges from 86% to 95% when predicting
the first and all CATH, SCOP and EC number levels respectively. To the best of
our knowledge, ours is the first work to reach such high accuracy when dealing
with very large data sets.

The remainder of this article is organized as follows. In Sect. 2, we present
our sources of data and data preprocessing steps we conducted and we describe
our methodology, which is composed of data modeling and data reduction via
SVD, and a hierarchical approach combined with machine learning techniques.
In Sect. 3, we evaluate the model and show its usefulness when predicting the
classes of the databases. We position our work in the literature in Sect. 1.1, and
finally in the Sect. 4, we present final observations, limitations, and perspectives.

1.1 Related Work

In [3], the authors propose a strategy for class classification based on SCOP clas-
sification scheme. The experiments were performed on protein sequences using
combined PSI-BLAST at the frequency of collocation of AA pairs. The work
used classifiers implemented in Weka for class prediction, where they provided
the final results with accuracy varying from 61 to 96%.

In [11], the authors developed a classification-based prediction model where
data from protein backbone interpolations were used. In the training phase of
the model, the descriptor was extracted based on proteins rays processed by the
PDB files, and in the classification stage, the Fuzzy decision tree was used. The
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results obtained by classification vary from 96 to 99% accuracy, from the 6145
protein chains used.

In the work of [14], the technique called Cuttof Scanning Matrix (CSM) is
proposed to predict families and superfamilies of proteins in large structural
bases. The approach uses patterns of distances between residues as a way of
capturing protein similarity. The results achieved by the research reached (on
superfamilies) an average accuracy of 98.2%. We also use the CSM technique
described in [14], but we propose here a hierarchical and scalar approach, capable
of working at all levels of classification, with very large datasets.

In [15] developed a method to find proteins with similar structures and clas-
sify them from topological invariants [16]. In this method, the invariants of each
chain are applied to a classification strategy, responsible for predicting its struc-
tural levels of CATH. In their results, a total of 96% of success was obtained
when inferring CATH levels.

Another example is the work presented in [21], where the authors use SVM
(Support Vector Machines) to predict CATH classes. The author processed the
sequences of the protein chains in order to obtain protein sequences in a more
regularly defined feature space. The results obtained show a range of 70 to 80%.
However, in this work, the characteristics are related to sequences, not to protein
structures.

In recent years, the number of protein structures has increased significantly.
In [7], this increase is presented, with the various computational methods that
were created in order to predict the structural class of proteins. These meth-
ods were often tested on small data sets, characterized by different sequence
homologies, and were not reliably compared with other methods.

In the study [4], the automatic prediction of enzymatic functions is an impor-
tant item of study due to the costs and lengthy nature of laboratory identifi-
cation procedures. According to the authors, the hierarchical structure of the
EC nomenclature is adequate for automatic function prediction, where several
methods and tools have been proposed to classify enzymes. According to them,
most classification studies are limited to specific classes or to specific levels of
the hierarchy, providing a limitation on the data to be used.

“Evolution is a random generator of possible improvements in the face of the
environmental challenges an organism experiences, where survival of the fittest
ensures the retention of successful solutions into future generations” [22]. The
authors state that minor changes in structure or context can have dramatic
effects on functionality.

With the study carried out in [9] and [10], the search for protein function can
be performed through dissimilarity between proteins and/or residues. The paper
presents a way of calculating dissimilarity through contact maps from conserved
amino acid residues.
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Fig. 1. Representation of the model M as a tree structure. The root (level 1) of the tree
is responsible for classifying first level. The level i (i > 1) is responsible for classifying
i-th CATH subclass. ki (1 ≤ i ≤ 3) represents the number of distinct values of the i-th
CATH subclass, which are not necessarily the same over all nodes of the same level.
Dotted areas represent subtrees removed from the figure due to space constraints.

2 Methods

In this section, we describe our strategy to predict hierarchical levels for protein
structures.

2.1 Data

Hierarchical Schemes. We used 3 different hierarchical classification schemes
to validate the quality, generality and real-world applicability of our method. We
performed hierarchical protein structural classification for CATH, SCOP, and EC
number1. Protein structural data were obtained from Protein Data Bank (PDB)
[17] and organized according to each scheme.

CATH [19] is organized in the levels Class, Architecture, Topology, and
Homology. The first CATH level (Class) is the most general, which is responsible
for describing the content of α-helices and β-sheets. The second level (Architec-
ture) is responsible for describing the organization of secondary structures. The
third level (Topology) differentiates proteins of same Class and Architecture
based on their folds and their function. The fourth level (Homology) is related
to structural and functional similarity.

SCOP (Structural Classification of Proteins) organizes protein domains into
a hierarchy according to their structural and evolutionary relationships. SCOP
levels are Family, Superfamily, Common Fold and Class [2].

Enzyme Commission number (EC number) is a classification scheme specific
for enzymes and has 4 levels. From left to right, each level adds information about
protein catalytic function. The database used for this methodology is BRENDA
1 http://www.cathdb.info, http://scop.berkeley.edu/, https://www.brenda-enzymes.

org.

http://www.cathdb.info
http://scop.berkeley.edu/
https://www.brenda-enzymes.org
https://www.brenda-enzymes.org
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(BRaunschweig ENzyme DAtabase), as a database containing comprehensive
enzymatic and metabolic data [18].

Modeling. For simplicity, throughout this work, we will refer to different levels
of the hierarchical classification schemes as levels. For instance, when we refer
to level 1, it means the highest level of a hierarchy, level 2 means the second
highest level of a hierarchy, and so on.

Levels with less than 10 examples were not considered, as we perform a 10
fold cross-validation. The resulting dataset has 97.11% of the records originally
obtained, distributed in 3283 combinations of distinct CATH examples. For the
SCOPe database, the results follow with 95.62% of the data and 4154 distinct
examples; and in BRENDA it resulted in 97.96% of records and 1771 distinct
examples.

Our data reduction approach is twofold. First, we transform the set of protein
structures in the XYZ coordinate format into a much more compact representa-
tion, the Cutoff Scanning Matrix (CSM) [14]. We then further reduced the size
of the dataset by applying SVD (Singular Value Decomposition) to the CSM.

In [14], the authors proposed the CSM, a matrix generated by the cumulative
counts distributions based on the Euclidean distances of cumulative contact
between the alpha carbons, making possible to represent a set of proteins. Each
row in this matrix represents a chain of proteins through the distribution of
contact pairs within a given distance.

In order to build the matrix, we vary the distance from 0 to 30 Å with a
0.2 Å step size, totaling 151 columns. It is important to mention that when
computing the distance between residues, we considered the α-carbon atom as
the residual’s representative. We denote the resulting matrix by X, with n rows
and 151 columns.

Dimensionality Reduction. Dimensionality and noise of our data encoded as
a distance matrix, X, were reduced using Singular Value Decomposition (SVD)
in a similar manner to [20]. We generated 100 approximations of our data repre-
sentation with singular values ranging from 1 to 100, with step 5, and the matrix
that resulted in the best classification model was selected. The reduced matrix
is called or Y.

2.2 A Hierarchical Model

An immediate way to classify proteins according to their classes would be the
training model on the rows of X (or Y) and their respective classes. Unfortu-
nately, such an approach is not feasible because of nearly five thousand distinct
classes in our largest dataset, which represents a major challenge for standard
data mining.

To overcome this problem, we use hierarchically supervised learning methods,
motivated by the fact that classes are actually hierarchical, four-level structures.
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The main idea is that the i-th level of the model will be responsible for classifying
the i-th level of the CATH, SCOP, or EC number.

For this purpose, we first created a M1 template to classify the first level.
Similarly, we created a model Ma

2 to classify the second level, since the first level
is a. More generically, we created a model Ma1,...,ai−1

i , 1 < i ≤ 4, to classify the
i-th level, given that the previous levels are a1, . . . , ai−1.

Overall, our model, denoted by M, can be seen as a tree, which is depicted
in Fig. 1.

Training the Model. A natural question that may arise at this point is: given
X (or Y) and the classes of each of its rows, how can the model M be trained?

We start by introducing some necessary notation. Let Z be a matrix (Z
can be the CSM or the SVD-reduced CSM). Denote the rows of Z by a list
Z = (z1, . . . , zn), where zi is associated to a protein with class ci. Let C =
(c1, . . . , cn), Za1,...,aj being the list of all elements of Z which have the first j
subclasses equal to a1, . . . , aj , and Ca1,...aj their respective classes. Finally, for
any S ⊆ C, we define S(i) as a new list, which maps each element of S to its
j-th subclass.

Then the procedure to train M is threefold: It starts by choosing a standard
supervised learning technique, A, to be used in each node of the tree; after the
choice, train the model M1, using A, on Z and C(1); and at the end train the
model Ma1,...,ai−1

i , using A, on Za1,...,ai−1 and Ca1,...,ai−1(i).
The problem of training a model in a large corpus with many different classes

is reduced to the problem of training several models, in smaller datasets, with
considerably less distinct classes. In addition, another advantage of our app-
roach is that the tree nodes are independent, that is, since the data is properly
partitioned on all nodes, the models can be trained in parallel.

Classifying a New Instance. Once the model M is trained, given an unla-
beled row of the data matrix, z, the CATH, SCOP or EC number levels can
be predicted by traversing the tree associated with the model, predicting one
level of z per level of M. More specifically, the prediction can be recursively
performed as follows:

1. Predict the first level CATH, SCOP or EC number of z, denoted by a1, using
M1;

2. Given that the first level i−1 CATH, SCOP or EC number of z were predicted
as a1, . . . , ai−1, we predict the i-th level of z, denoted by ai, using Ma1,...,ai−1

i .

3 Results

This section has two main objectives, both related to the model described in
Sect. 2: first, to show that the model performs well when classifying the CATH,
SCOP and EC number levels of protein structures; second, to show that the
methodology is able to scale to large datasets. More specifically, we want to
answer the following questions:
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1. Which is an appropriate learning algorithm, A, for each node of our hierar-
chical model, M?

2. Is there a significant performance difference when training M with X (non
reduced) or Y (SVD-reduced)?

3. How does M perform in different levels of the tree?
4. How does M perform in different nodes of the tree?

To answer those questions, Sect. 3.1 describes the setup of our experiments, while
Sect. 3.2 presents the model evaluation.

3.1 Experimental Setup

We selected three candidates for the learning algorithm A: NB (Gaussian Naive
Bayes) [8], NN (Nearest Neighbors) [24] with k = 3, and RF (Random Forest)
[1] with 500 decision trees. Those classifiers were chosen because they have bet-
ter training efficiency on large datasets when compared to optimization-based
approaches (e.g., Support Vector Machine [6]). The hyper-parameters of each
model were selected by conducting initial experiments on a small random sam-
ple of the data using an exhaustive grid search and cross-validation.2

In Fig. 2, bars represent the metric average over the 10 testing folds, and error
bars are 95% confidence intervals. All models were trained and tested with the
SVD-reduced data matrix, Y. The model based on Random Forests outperforms
the others with respect to all metrics.

We evaluated our methodology using a stratified 10-fold cross-validation
strategy. In other words, we randomly partitioned the rows of the data matrix (or
SVD-reduced version) in 10 folds of equal size, keeping, for each fold, the corre-
sponding CATH, SCOP or EC number classes of each line. Then, we conducted
a 10-round experiment. In each round, we retained one fold for testing and the
other nine for training the model. When testing the model, we compared the pre-
dicted and true classes using four different metrics: precision, recall, F1-Score,
and accuracy. Finally, we computed the average and 95% confidence interval for
each metric, over the results obtained in each one of the 10 folds. Since our work
deals with a multi-class classification task, the metrics precision, recall, and F1-
Score were computed for each class and then we took the weighted average of
the results. Note that taking the weighted average over all classes may result in
F1-Scores that are not between precision and recall (which does not happen on
standard binary cases).

All the experiments were performed in a small-sized and shared computa-
tional infrastructure. Our jobs were allowed to use at most 45 GB of RAM and
5 CPU cores of an AMD Opteron 6376 processor. Although the models, which
compose tree, can be trained in parallel, due to the hardware limitations we had
to train each one individually. The whole training process, for the Random Forest
classifier3, took approximately 8 h. We would like to emphasize that by exploring
2 We intend to make the code and details related to the models publicly available

upon publication of this manuscript.
3 Using the Python’s Sklearn implementation (http://scikit-learn.org).

http://scikit-learn.org
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Fig. 2. Model performance for the three different classifiers in the databases used. On
the first line, performance for CATH; on the second line, performance for SCOP; and
on the last line, performance for BRENDA.

parallelism and more efficient implementation of the learning algorithms, such
time can be significantly reduced.

3.2 Model Evaluation

Now we move to answer the four questions stated at the beginning of this section.
First, we study the impact of different machine learning algorithms for training
the model M. Second, we analyze the impact of working with the original or
SVD-reduced data matrix. Third, we compare the performance of the model in
relation to the partial subclasses of CATH, SCOP, and EC number. Finally, we
look at the results given by each node of the tree.

The Learning Algorithm. We begin by comparing the hierarchical models
constructed with different algorithms of machine learning. The results obtained
when training and testing the model in the SVD-reduced matrix are presented in
Fig. 2, where it is possible to observe that the model based on Random Forests
significantly outperforms models based on Gaussian Naive Bayes and Nearest
Neighbors. In more detail, the results obtained by the CATH database reached
in RF an F1 score of approximately 90%, NN and NB reached 70% and 19%,
respectively. For this reason, from now on, we will report only the results related
to the model based on the RF classifier. In the SCOPe and BRENDA databases,
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Fig. 3. Comparing the performance of the model at different levels at the databases
utilized. On the first line, performance for CATH; on the second line, performance for
SCOP; and on the last line, performance for BRENDA. Experiments performed with
SVD-reduced data matrix and Random Forest Classifier. Overall, model performance
degrades gracefully as more subclasses of CATH, SCOP, and EC number are predicted.

the results of F1 in RF reach approximately 86% and 94%, respectively. Although
the results for RF are significantly better, it is important to notice that RF is a
more complex model than the other two. For instance, while training RF took
8 h, the process of training NB and NN took no more than one hour each.

The Level of the Tree. Next, we evaluate the problem of understanding how
the performance of the models, of each level of the tree, behaves in predicting
partial levels. To this end, for each instance of the test set, we compare the
expected and actual levels to the i(1 ≤ i ≤ 4) level. For example, for the first
level, we confront the evaluation metrics by comparing the predicted and actual
level and for the second level, we proceed in the same way but considering the
first two levels together.

The results for the above experiment are shown in Fig. 3. It can be observed
that the performance of models at different levels degrades as levels move away
from the root of the tree. Taking the precision score, for example, in the CATH
database we have M1 scores 95% (significantly higher than previous results),
while models in the second, third and fourth levels score 93%, 91.7%, and 91.3%
respectively. For the SCOPe database, the precision reaches 91%, 89.5%, 89.3%,
and 87% for the levels and in the BRENDA database with a 95%, 93%, 91.8%
and 91% levels 1, 2, 3 and 4, respectively. This degrading performance can be
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Fig. 4. Comparison of performance for CATH (first row), SCOP (second row) and EC
numbers (last row), via F1 score, of different tree nodes. Left Column: distribution of
the F1 scores of all nodes. Central column: F1-score versus the number of test instances
sorted by each node. Right Column: F1-score versus the number of subclasses ordered
by each node, i.e., their number of children.

explained due to the recursive nature of our model. Once an error is made at
the i level, the test instance will be passed to the wrong model at the next level,
increasing the chance of another error.

The Nodes of the Tree. In the last section, we showed that the level of the
tree is an important factor when analyzing the accuracy of our model. In this
section, we look at a different, but related issue, the performance of individual
nodes of the tree. Our goal is to try to understand if the mistakes of our model
happen in any particular type of situation. To achieve this goal, we analyze
the performance of each node by predicting its corresponding subclass CATH,
SCOP, and EC number. For simplicity, the results reported here are related to
the weighted average of the 10 folds of our experiments, that is, they are the
means along the 10 folds.

Figure 4 presents the results. First, it is possible to notice that 80% of the
tree nodes have an F1-score of 100%, showing that most nodes actually perform
considerably well. Approximately 20% of the nodes have and F1-score between
70% and 100%, and only a small fraction of nodes is related to lower F1-score
levels.
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Second, we try to shed light on the reason why some nodes are performing
poorly. To that end, we try to correlate the F1-score of each node to two other
variables: the number of testing instance in such node, and its number of sub-
classes. Since the test set is a stratified random sample of the population, we
conjecture that the larger the values of these two variables, the harder it is for
the classifier. From Fig. 4, it is not possible to validate our conjecture. In other
words, the poor performance of each node does not seem to be correlated with
the number of testing instances or subclasses.

Investigating reasons for the poor performance of some nodes, and improving
our model’s predictions are directions for future research.

4 Conclusions

In this work, we propose a hierarchical strategy to perform protein structural
classification. To validate our strategy, we used datasets of protein structures
annotated with hierarchical schemes CATH, SCOP, and EC number to show
that we are is able to predict their hierarchical levels.

Overall, the methodology presents a precision of 91% when predicting
the four levels of CATH, 87% for SCOP and 91% for EC number, despite
the challenges of working with more than 300,000 structures distributed in
approximately two thousand different classes. In addition, the results are sig-
nificantly better when looking at partial levels. For example, our model had
a precision of 95% when predicting the first level of CATH (Class), 93%
for the first two levels (Class + Architecture) and 91% for the first three
(Class + Architecture + Topology).

Regarding the performance of the model, we observed that the Random For-
est classifier presented better results when compared to Naive Bayes and Near-
est Neighbor. In addition, we showed that the data matrix reduced by SVD
improved the accuracy of the classification, thus that SVD helps to reduce the
dimensionality and the noise in the data.

As future work, we are interested in improving the accuracy of the model
exploring other machine learning techniques such as SVMs and Neural Networks.
We intend to compensate for the slower training times, exploring parallelism,
which can be easily achieved with our hierarchical model. In addition, we would
like to investigate other representations for protein structural data.
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Abstract. Structural signature is a set of characteristics that unequiv-
ocally identifies protein folding and the nature of interactions with other
proteins or binding compounds. We investigate the use of the geometric
linearity of the main chain as a key feature for structural classification.
Using polypeptide main chain atoms as structural signature, we showed
that this signature is better to preciselly classify than using Cα only. Our
results are equivalent in precision to a structural signature built includ-
ing artificial points between Cαs and hence we believe this improvement
in classification precision occurs due to the strengthening of geometric
linearity.

Keywords: Structural signature · Protein main chain ·
Geometric linearity · Structure classification

1 Introduction

A high proportion of the PDB structures (PDB: Protein Data Bank - [3]) remains
as hypothetical proteins or proteins of unknown functions because sequence
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alignment-based methods have failed to match them to functionally character-
ized proteins [13]. Nevertheless, proteins whose 3D structures are known open up
several possibilities of annotating their function based on structural comparisons.

Due to the breakthroughs in genome sequencing and structure resolution,
the amount of sequenced proteins that have their structures determined grows
rapidly [18]. Furthermore, the experimental elucidation of function of such struc-
tures is labour intensive and is a practical barrier to the use of this informa-
tion [5]. In this context, the use of automated methods for function annotation
becomes mandatory. It is now known that protein structures are more con-
served than their sequences [9], and consequently, structure-based techniques
have gained momentum [18].

Even though the function cannot be directly inferred from protein folding,
structural data can be used to detect proteins with similar functions whose
sequences have diverged throughout their evolution [14]. Nature uses only a few
thousand types of foldings to create all known protein structures [6]. Chotia
claims that all proteins of all kinds can be represented by about 1,000 different
foldings [7].

Structural Classification of Proteins - SCOP - [1], which is used in this study,
is the largest manually curated database on structural classification, based on
the similarity of those structures and their amino acid sequences. SCOP classifies
PDB proteins based on the following system: protein structures are divided into
discrete domains that are hierarchically classified into levels of (1) class, (2) folds,
(3) super-families and (4) families. In this classification scheme, proteins of the
same family are the most structurally similar amongst themselves.

In a given set of structurally similar proteins, a possible approach to predict
function is to define structural signatures, which are a set of characteristics
that unequivocally identifies a protein folding and possibly interactions that can
occur with other proteins or binding compounds. Such characteristics are concise
representations of protein structures. We believe that their use in predicting
protein function is a step further in comparison to the sequence-based methods.
For example, Pires [15] investigates inter-residue distance patterns in a cutoff
distance matrix for structural classification and function prediction, a technique
called CSM.

CSM is the state-of-the-art in large-scale structure classification and is inde-
pendent of structural alignment algorithms. It creates characteristics vectors that
represent distance patterns between protein residues and uses those vectors as
evidence for classification. CSM matrices were built from the geometric position
of Cα only. The authors report that they conducted experiments with other cen-
troids rather than the Cα, such as the Cβ or the last heavy atom (LHA) of the
side chain. The alpha carbon (Cα) in organic molecules refers to the first carbon
atom that attaches to a functional group, such as a carbonyl. The second carbon
atom is called the beta carbon (Cβ). Cα presented the best results in all experi-
ments, a fact that they claimed “demanded deeper investigation”. In this study,
we investigate the use of the backbone atoms as a more discriminating structural
signature. Our hypothesis was that the addition of intermediate points, by using
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other backbone atoms, strengthened the geometric linearity of the main chain
and improved family differentiation using the CSM technique. In this context,
we are calling geometric linearity the arrangement of points representing atomic
positions along a polygonal in three-dimensional geometric space.

The contribution of this study is an investigation of the backbone linear geo-
metric disposition (or of the Cα themselves, should fictional intermediate points
be added between them) as a better structural signature. The discriminating
capacity for classification and function prediction was compared in relation to
the original CSM signature obtained using exclusively the Cα, and improvements
were observed. Using main chain atoms as a structural signature, we were able
to increase the accuracy of the Full-SCOP base family classification by up to
10.3% in relation to the accuracy of the original technique, which uses only Cα
position.

2 Methods

To show that linearity of the polypeptide chain is preserved and more discrim-
inating amongst families, we built classifiers following the CSM strategy. We
chose this technique because it is the state-of-the-art in structural classification
and independent on structural alignment algorithms (see Sect. 2.1). CSM results
were used as a control group to compare with our results.

The organization of this section is as follows: Sect. 2.1 explains conceptual
and operational details necessary to understand our method; Sect. 2.2 presents
data sets used and Sect. 2.3 introduce the experiments performed.

2.1 Concepts

Cutoff Scanning Matrix - CSM. In this study, we adapted the CSM technique
to find atomic distance patterns, and not just residue distance patterns. First,
we calculated the Euclidian distance between all pairs of atoms of the set and
defined a cutoff (distance threshold) to be considered and a distance step. We
calculate the frequency of atomic pairs that are close to each other considering
a distance threshold. Singular Value Decomposition - SVD - [4] is used as a
pre-processing step to reduce dimensionality and noise.

Similarly to CSM paper, we varied the distance threshold from 0.0 Å to 30.0 Å
in 0.2 Å increments, which generates a vector with 151 entries for each atomic
set. Together, those vectors form the CSM. To summarize it, each line of the
matrix represents a protein (or an atomic set derived from a protein), and each
column represents the frequency of atomic pairs within a certain distance.

The intuition behind this method is that proteins with different foldings and
functions present significantly different distances distribution for their residues-
atoms or different packing patterns. On the other hand, it is expected that
proteins with similar structures would have similar distance distributions for
their residues-atoms, information which is captured by CSMs.
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The cut variation (range) adds important information related to protein
packing and captures, implicitly, the shape of proteins. This means that CSM
manipulates two levels of crucial structural information: relevant non-local and
local contacts. We can also observe that protein shapes directly interfere in the
subjacent contact network, which reflects on protein folding, as reported by
Soundararajan [17].

Linearity of the Main Chain and Intermediate Points. In this study,
we investigate of the use of geometric linearity of the main chain (or of the Cα
themselves) and the addition of intermediate points between Cαs as a better
discriminating structural signature. Our hypothesis was that the addition of
this artificial intermediate points would strengthened linear characteristic of the
main chain and improve classification precision.

Therefore, the relatively larger inter-point distance in the model that uses
only Cαs (in general, the separation distance between Cαs in adjacent amino
acids in a protein is about 3.8 Ås [12]), in comparison to the model that also uses
C and N atoms (Cα − C = 1.52 Å, C − N = 1.32 Å e N− Cα = 1.46 Å [12])
brings uncertainty to the correct sequence of atoms in the set and, consequently,
difficulty to the classification task. This very geometric linearity can be achieved
(or simulated/strengthened) by adding artificial intermediate points between
Cαs with no harm to the classification accuracy. Figure 1 illustrates this idea.

(a) (b) (c)

Fig. 1. Main chain atoms (PDB id 1TEC:I ). (a) Cα atoms only. Geometrically, it is
similar to a disordered set of points. (b) Cα, C and N atoms. The geometric linearity
of the main chain is turned clearer. (c) A similar geometric linearity can be “achieved”
by adding intermediate artificial points between the Cα atoms.

In order to show the relevance of main chain geometric linearity information
as a structural signature, we conducted experiments where artificial points were
inserted between the Cα points used in the model. We respect the order in which
the atoms appear in the main chain (be it the Cα or the complete Cα − C − N
sequence) because we believe that, in some way, this sequence information is
indirectly captured by CSM. We conducted several tests varying the distance
between intermediate points by 0.2 Å, 0.4 Å, 0.6 Å and 0.8 Å. We chose this
interval (0.2 Å–0.8 Å) because the increment of CSM is 0.2 Å and, at the limit
distance of 0.8 Å, it is still possible to include an intermediate point between
backbone atoms relatively close to the middle point of those distances.
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2.2 Data

Our datasets were built using the same protocol as the original CSM study.
They used Gold-standard dataset, SCOP version 1.75 and 6SSE, 5SSE, 4SSE
and 3SSE [10].

Initially, we included all the chains in those databases. We used only the first
model for PDB files with several models. In files with more than one chain, the
chains were separated according to SCOP classification and treated individually.

Some of those structures were discarded because they became deprecated
or the chain was too short (less than 10 residues or atoms). We present in
Supplementary Material a complete list of included chains, as well as the files
that became exceptions (removed from the study) and the reasons therefor.
Table 1 summarizes some statistics of the datasets.

Table 1. Statistics of the database chains used.

Dataset Total Used % Discarded

Gold-Standard 899 895 0.44%

6SSE 2,315 2,303 0.52%

5SSE 2,930 2,853 2.63%

4SSE 1,756 1,720 2.05%

3SSE 880 866 1.59%

Full-SCOP 1.75 207,890 201,771 2.94%

2.3 Experimental Design

To show that our model that characterizes the linearity conformation of the main
chain of protein structures is precise to discriminate families, we built classifiers
and assessed their precision.

The methodology of this work was divided into two sets of experiments: the
first aims to show that a model that uses atoms of the main chain is more discrim-
inating amongst families than the model that uses Cα atoms only. The second
shows that the main factor that improves differentiation amongst families is not
necessarily the main chain atoms, but rather the geometric linearity character-
istic of the main chain. Another purpose of the second set of experiments is to
show that the position of the atoms of the main chain and the angles that they
form with each other (angles φ and ψ) only interfere with the discriminating
capacity of the classifiers when intermediate points are added and their linear
disposition is strengthened.

A different CSM was built for each experiment conducted. In CSM matrices,
each line represents characteristics vector of the distance patterns between the
atoms of the set of one of the protein chains. Those vectors (lines of the matrix)
have 151 positions where the position i of the vector contains the frequency of
atoms at a distance of 0.2 Å× i from each other. After CSM matrix was built,
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its dimensionality and noise were reduced by singular value decomposition (see
Sect. 2.1). As in the original CSM work, we used 9 singular values. That vector
set could then be used as input for a classification algorithm.

Evaluation. As in the original CSM study, all classifiers were tested using Weka
library (http://www.cs.waikato.ac.nz/ml/weka/). We used the k-nearest neigh-
bors algorithm (k-NN) [19] classifier - with best value of k = 5 (data not shown) -
because it was reported as the highest performance in [15]. We used 10-fold cross-
validation and, therefore, only monomer groups with ten or more representatives
were used. Classification performance was assessed with the following metrics:
precision (precision = TP/(TP +FP )), recall (recall = TP/(TP +FN)), score
F1 (harmonic mean of precision and recall: 2(Precision×Recall

Precision+Recall )) and area under
a ROC curve (AUC).

In order to compare the mean values of the metrics more precisely, we ran
each classifier 30 times (Supplementary Material). For each run with the same
index (for example: tenth run), we used the same random seed for all classifiers.
For runs with different indexes, we used different random seeds.

Since we made sure that the same seed was used for the same indexes and dif-
ferent seeds were used for different indexes, we were able to assertively compare
the values of the results of each classifier with the same run index.

Statistically, we can interpret the results of same index classification for each
classifier as the performance (metrics) of the same individual (same set of chains
to be classified and same population division run by the 10-fold cross-validation,
since the random seed is the same), measured after receiving different treatments
(each classification).

Consequently we were able to use a hypothesis test on paired samples and, by
definition, the null hypothesis was that the mean value of the metrics of the 30
runs of each classifier would be identical. We used a t-Student test on the paired
samples, with 30◦ of freedom, to find the respective p-values. We accepted the
null hypothesis of identical means when p > 0.05. We rejected it otherwise.

The p-value tables are in the Supplementary Material (Supplementary Tables
7–30).

3 Results

The first set of experiments show that a model that uses atoms of the main chain
is more preserved and discriminatory amongst families than the model that uses
Cα atoms only. In this set, four experiments were conducted and compared:

1. Using only alpha carbons of the monomer chains, an experiment we called
Cα in this study, to be used as a control group and enable comparison to the
original CSM.

2. Using main chain atoms (Cα, C, N), an experiment we called Backbone in
this study, to evaluate the conservation degree and inter-family discriminating
ability. We suppressed the oxygen (O) of the carbonyl group because its
geometric position is only one step removed from the geometric position of N .

http://www.cs.waikato.ac.nz/ml/weka/
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3. Using only atoms of the side chains, an experiment we called Side, to enable
comparison to the classification results using main chain atoms.

4. Using all atoms of the structure, an experiment we called All, to contrast the
Side classification results to the Backbone classification results and illustrate
the influence of the main chain on the discriminatory capacity of those two
other classifiers.

Considering all datasets used, we had an accuracy improvement using atoms
of the main chain compared to using Cα only (Tables 2, 3 and 4). Classification
with Cα only was used as a control group because it was reported as the best
result in [15].

It is noteworthy that:

1. Classification accuracy using backbone atoms is strictly dominant in relation
to results using Cα. We believe this is due to their linear geometric disposition
(Tables 2, 3, 4 and Sect. 2.1).

2. Classification accuracy using all atoms of the structure (All classifier) per-
formed better than using only atoms of the side chain (Side classifier)
(Tables 2, 3 and 4). Probably this is due to All set of points include atoms of
the main chain. The worst classification performance of Side classifier com-
pared to even the classification using Cα only corroborates our hypothesis
since side chain atoms are not related to linear geometric disposition protein
chain.

Table 2. Prediction of function for the gold-standard dataset. Control group Cα.

Superfamily Cα Backbone All Side

Prec Recall F1 ROC Prec Recall F1 AUC Prec Recall F1 AUC Prec Recall F1 AUC
Amidohydrolase 0.991 0.986 0.980 0.976 +0.9% +1.2% +1.8% +2.1% +0.1% +0.6% +0.8% +1.1% -1.0% -2.1% -3.2% -3.8%
Crotonase 0.982 0.984 0.982 0.969 +1.8% +1.7% +1.8% +3.2% +0.1% -1.0% -1.1% -1.9% +1.3% +1.4% +1.5% +2.5%
Enolase 0.989 0.990 0.985 0.984 +0.7% +0.8% +1.2% +1.4% -0.2% +0.1% +0.2% +0.5% -3.7% -2.8% -4.3% -3.7%
Haloacid
dehalogenase 0.955 0.967 0.964 0.939 +4.8% +3.4% +3.7% +6.3% +4.8% +2.5% +2.7% +4.5% +4.5% +2.4% +2.6% +4.4%
Isoprenoid
synthase typeI 1.000 1.000 1.000 1.000 +0.0% +0.0% +0.0% +0.0% -3.2% -4.7% -4.9% -9.0% -8.9% -4.9% -5.0% -9.0%
Vicinal
oxygen chelate 0.996 0.998 0.998 0.997 +0.4% +0.2% +0.2% +0.3% -1.8% -0.9% -1.1% -1.6% -5.8% -5.1% -5.7% -9.2%
All 0.988 0.988 0.988 0.991 +1.1% +1.1% +1.1% +0.9% +0.1% +0.1% +0.1% +0.2% -2.0% -2.1% -2.1% -1.5%

Table 3. Structural classification for the Full-SCOP dataset. Control group Cα.

SCOP Level Cα Backbone All Side

Prec Recall F1 ROC Prec Recall F1 AUC Prec Recall F1 AUC Prec Recall F1 AUC
Class 0.940 0.940 0.940 0.961 +3.8% +3.8% +3.8% +2.4% -1.4% -1.4% -1.4% -0.9% -5.4% -5.4% -5.4% -3.5%
Fold 0.885 0.886 0.884 0.942 +7.7% +7.6% +7.7% +3.6% -0.7% -0.7% -0.7% -0.3% -8.8% -8.8% -8.8% -4.2%
Superfamily 0.876 0.877 0.875 0.938 +8.4% +8.2% +8.4% +3.9% -0.4% -0.4% -0.4% -0.2% -8.8% -8.7% -8.8% -4.1%
Family 0.829 0.831 0.828 0.915 +10.2% +10.0% +10.2% +4.5% +0.6% +0.6% +0.6% +0.3% -8.5% -8.2% -8.4% -3.7%
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Table 4. Structural classification for the SSEs datasets. Control group Cα.

DataSet SCOP Level Cα Backbone All Side

Prec Recall F1 ROC Prec Recall F1 AUC Prec Recall F1 AUC Prec Recall F1 AUC
3SSE Class 0.970 0.970 0.969 0.980 +1.2% +1.1% +1.1% +0.8% -0.3% -0.4% -0.4% -0.4% -1.6% -1.7% -1.7% -1.3%

Fold 0.909 0.910 0.907 0.950 +3.9% +3.6% +3.9% +2.0% +2.4% +2.1% +2.4% +1.1% +1.8% +1.5% +1.8% +0.8%
Superfamily 0.913 0.913 0.910 0.952 +3.6% +3.4% +3.6% +1.8% +2.0% +1.7% +2.0% +0.9% +1.5% +1.2% +1.5% +0.5%
Family 0.887 0.888 0.884 0.940 +4.9% +4.6% +4.8% +2.3% +2.2% +1.6% +2.0% +0.8% +0.7% +0.1% +0.5% -0.0%

4SSE Class 0.974 0.973 0.973 0.983 +1.7% +1.7% +1.7% +1.1% -1.0% -1.0% -1.0% -0.9% -1.9% -1.8% -1.8% -1.7%
Fold 0.922 0.918 0.917 0.956 +5.2% +5.5% +5.5% +2.8% +1.3% +1.4% +1.4% +0.8% -0.1% +0.1% -0.0% +0.1%
Superfamily 0.919 0.915 0.913 0.955 +5.3% +5.6% +5.8% +2.8% +1.6% +1.8% +1.9% +0.9% +0.0% +0.2% +0.2% +0.2%
Family 0.902 0.898 0.896 0.947 +6.9% +7.3% +7.4% +3.6% +3.1% +3.4% +3.5% +1.7% +1.7% +1.9% +2.0% +1.0%

5SSE Class 0.957 0.957 0.957 0.970 +2.6% +2.6% +2.6% +1.8% +0.2% +0.2% +0.2% +0.0% -3.2% -3.3% -3.2% -2.4%
Fold 0.919 0.917 0.916 0.957 +5.2% +5.4% +5.4% +2.7% +1.8% +1.9% +1.9% +1.0% -6.0% -6.0% -6.1% -3.0%
Superfamily 0.912 0.910 0.908 0.954 +5.1% +5.3% +5.5% +2.6% +2.2% +2.3% +2.4% +1.1% -6.1% -6.1% -6.2% -3.0%
Family 0.911 0.908 0.905 0.953 +5.1% +5.5% +5.6% +2.7% +2.2% +2.3% +2.5% +1.2% -6.2% -6.1% -6.2% -2.9%

6SSE Class 0.975 0.975 0.975 0.984 +1.3% +1.3% +1.3% +0.8% +0.2% +0.3% +0.2% -0.1% -0.9% -0.9% -0.9% -1.1%
Fold 0.943 0.942 0.941 0.969 +3.0% +3.1% +3.1% +1.5% +1.4% +1.4% +1.5% +0.7% -0.1% -0.0% -0.1% -0.0%
Superfamily 0.940 0.938 0.937 0.968 +3.2% +3.4% +3.5% +1.7% +1.4% +1.5% +1.5% +0.8% +0.0% +0.1% +0.2% +0.1%
Family 0.930 0.928 0.927 0.963 +4.1% +4.1% +4.3% +2.1% +2.1% +2.1% +2.1% +1.1% +0.7% +0.7% +0.8% +0.3%

With the results of the first set of experiments, in which the classification
using main chain atoms (Backbone) performed better in almost all the metrics,
we ran a second round of classification experiments to evaluate whether:

1. The main effect on the discriminating capacity of the classifiers is the geo-
metric linearity of the main chain (due to the simple addition of intermediate
points between the Cα) or;

2. The geometric position of C and N atoms are essential to explain the improve-
ment in the discriminating capacity of the classifiers, since their positions
could even capture, indirectly, angles φ and ψ.

The purpose of second set of experiments was to verify if the position of the
atoms of the main chain is a crucial factor to improve the discriminating ability
of the signature or if the linear geometric disposition characteristic of the chain
would suffice. The following experiments were performed:

1. Adding fictional intermediate points between the Cα, at distances of 0.2 Å,
0.4 Å, 0.6 Å and 0.8 Å, which were herein called Cα0.2, Cα0.4, Cα0.6 and Cα0.8,
respectively. The purpose was to get an “artificial” geometric linearity, similar
to the geometric linearity obtained by adding C and N atoms in the Backbone
experiment (see Sect. 2.1). That way, we get the geometric linearity effect of
the main chain without the influence of the positions of C and N atoms
and, indirectly, without the influence of angles φ and ψ. Improvement in
classification accuracy was evaluated in comparison to the Cα control group.

2. Adding fictional intermediate points between the atoms of the main chain,
at distances of 0.2 Å, 0.4 Å, 0.6 Å and 0.8 Å, which were herein called
Backbone0.2, Backbone0.4, Backbone0.6 and Backbone0.8, respectively. The
purpose was to evaluate the improvement in classification accuracy in relation
to the Backbone control group.
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Should the classifiers of the Cα family (Cα0.2, Cα0.4, Cα0.6 and Cα0.8)
have similar performance to the classifiers of the Backbone family (Backbone0.2,
Backbone0.4, Backbone0.6 and Backbone0.8), that would suggest that is not the
positioning of the atoms C and N the key factor to improve the accuracy of the
classifiers.

With this second set of experiments, we showed that:

1. In general, the inter-point distance with better performance for adding inter-
mediate points was 0.8 Å (Supplementary Material Tables 1–6). In most cases,
classification results with the addition of intermediate points at distances of
0.8 Å (Cα0.8 and Backbone0.8) were shown to be dominant in relation to
the classification results without the addition of intermediate points (Ca and
Backbone, respectively). This pattern can be observed both for Cα0.8 and
for Backbone0.8, being more evident for Cα0.8 because the geometric linear-
ity of the Cα atomic group is lower than that of the Backbone group. With
these experiments, we can see that adding intermediate points at inter-point
distances of 0.8 Å was, in general, the best structural signature used in the
present study.

2. There were no significant differences between the performances of Cα0.8 and
Backbone classifiers, nor between the Cα0.8 and Backbone0.8 classifiers (The
best classifiers. See Tables 5, 6 and 7). Hence we could show that the positions
of C and N atoms (which indirectly capture angles φ and ψ) are less deter-
mining factors to improve the classifying quality than the linear geometric
character of the main chain (see Sect. 2.1).

The results of the second set of experiments show that the positions of C and
N atoms are determining factors to improve the discriminating degree in the
model that uses Backbone atoms, but main chain linear geometry (see Sect. 2.1)
is a predominant factor.

Analysis of the classification results suggests that linear geometry signature
of the main chain of proteins of a particular family is a better classification
differential than the signature that uses Cα only. That means that the sequential
character of the polypeptide chain and its geometric linearity are more relevant
than just the residue packing as used in the original CSM.

Therefore, we conclude that the improvement in the classification accuracy of
the CSM, when using a model with atoms of the main chain (Cα, C, N), in com-
parison to the exclusive use of Cα, is due primarily to the exposure of the linear
geometric character of the chain, which is obtained by adding C and N atoms.
Therefore, the relatively larger inter-point distance in the model that uses only
Cα, in comparison to the model that also uses C and N atoms, brings uncer-
tainty to the correct sequence of atoms in the set and, consequently, difficulty
to the classification task (Sect. 2.1 and Fig. 1).

This very linearity can be achieved (or simulated) by adding artificial inter-
mediate points between Cαs, with no harm and with improvement in the clas-
sification accuracy (in relation to the Backbone). We showed that it is not the
position of C and N atoms (which indirectly captures angles φ and ψ) that is a
key factor to improve the classification quality, but rather the strengthening of
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Table 5. Prediction of function for the gold-standard dataset. Best results. Control
group Backbone.

Superfamily Backbone Backbone0.8 Cα C0.8
α

Prec Recall F1 ROC Prec Recall F1 AUC Prec Recall F1 AUC Prec Recall F1 AUC
Amidohydrolase 1.000 0.998 0.997 0.997 +0.0% -0.2% -0.4% -0.5% -0.9% -1.2% -1.8% -2.1% +0.0% +0.1% +0.1% +0.2%
Crotonase 1.000 1.000 1.000 1.000 +0.0% +0.0% +0.0% +0.0% -1.8% -1.6% -1.8% -3.1% +0.0% +0.0% +0.0% +0.0%
Enolase 0.997 0.998 0.998 0.998 -0.5% -0.2% -0.4% -0.3% -0.7% -0.8% -1.2% -1.4% -0.1% -0.2% -0.3% -0.3%
Haloacid
dehalogenase 1.000 1.000 1.000 0.999 -0.1% +0.0% +0.0% -0.1% -4.5% -3.2% -3.5% -6.0% +0.0% +0.0% +0.0% +0.0%
Isoprenoid
synthase typeI 1.000 1.000 1.000 1.000 +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% -2.9% -2.7% -2.8% -5.1%
Vicinal
oxygen chelate 1.000 1.000 1.000 1.000 +0.0% +0.0% +0.0% +0.0% -0.4% -0.2% -0.2% -0.3% +0.0% +0.0% +0.0% +0.0%
all 0.999 0.999 0.999 0.999 -0.2% -0.2% -0.2% -0.2% -1.1% -1.1% -1.1% -0.8% -0.1% -0.1% -0.1% -0.1%

Table 6. Structural classification for the Full-SCOP dataset. Best results. Control
group Backbone.

Level Backbone Backbone0.8 Cα C0.8
α

Prec Recall F1 ROC Prec Recall F1 AUC Prec Recall F1 AUC Prec Recall F1 AUC
Class 0.976 0.976 0.976 0.985 +0.1% +0.1% +0.1% +0.0% -3.7% -3.7% -3.7% -2.4% +0.0% +0.1% +0.0% +0.0%
Fold 0.953 0.953 0.953 0.976 +0.2% +0.2% +0.2% +0.1% -7.2% -7.1% -7.2% -3.5% +0.2% +0.2% +0.2% +0.1%
Superfamily 0.949 0.949 0.949 0.975 +0.2% +0.3% +0.2% +0.1% -7.7% -7.6% -7.8% -3.8% +0.2% +0.2% +0.2% +0.1%
Family 0.914 0.914 0.913 0.957 +0.2% +0.2% +0.2% +0.1% -9.3% -9.1% -9.3% -4.3% +0.1% +0.1% +0.1% +0.1%

Table 7. Structural classification for the SSEs datasets. Best results. Control group
Backbone.

SSE Level Backbone Backbone0.8 Cα C0.8
α

Prec Recall F1 ROC Prec Recall F1 AUC Prec Recall F1 AUC Prec Recall F1 AUC
3SSE Class 0.981 0.980 0.980 0.988 +0.1% +0.1% +0.1% +0.1% -1.1% -1.1% -1.1% -0.8% -0.1% -0.1% -0.1% -0.1%

Fold 0.945 0.943 0.942 0.969 +0.3% +0.5% +0.5% +0.3% -3.7% -3.5% -3.7% -1.9% -0.6% -0.4% -0.5% -0.3%
Superfamily 0.946 0.943 0.943 0.970 +0.3% +0.5% +0.5% +0.3% -3.5% -3.3% -3.5% -1.8% -0.6% -0.4% -0.5% -0.3%
Family 0.930 0.928 0.927 0.961 -0.2% -0.1% -0.1% +0.0% -4.6% -4.4% -4.6% -2.2% +0.0% +0.0% +0.0% +0.0%

4SSE Class 0.990 0.990 0.990 0.994 +0.1% +0.1% +0.1% +0.1% -1.6% -1.7% -1.7% -1.1% -0.1% -0.1% -0.1% -0.1%
Fold 0.969 0.968 0.968 0.983 +0.9% +0.9% +0.9% +0.5% -4.9% -5.2% -5.2% -2.7% -0.1% -0.1% -0.1% +0.0%
Superfamily 0.967 0.966 0.966 0.982 +0.9% +0.9% +0.8% +0.4% -5.0% -5.3% -5.4% -2.8% +0.0% +0.1% +0.1% +0.0%
Family 0.964 0.963 0.962 0.980 +0.7% +0.6% +0.7% +0.3% -6.4% -6.8% -6.9% -3.4% +0.3% +0.3% +0.3% +0.2%

5SSE Class 0.982 0.982 0.982 0.987 +0.4% +0.4% +0.4% +0.3% -2.6% -2.6% -2.6% -1.8% +0.1% +0.1% +0.1% +0.1%
Fold 0.966 0.966 0.965 0.982 -0.2% -0.2% -0.2% -0.1% -4.9% -5.1% -5.1% -2.6% -0.2% -0.3% -0.2% -0.1%
Superfamily 0.958 0.958 0.957 0.979 +0.1% +0.0% +0.0% +0.0% -4.9% -5.1% -5.2% -2.5% +0.1% +0.0% +0.0% +0.0%
Family 0.958 0.958 0.956 0.978 -0.1% -0.1% -0.1% +0.0% -4.9% -5.2% -5.3% -2.6% +0.0% +0.0% -0.1% +0.0%

6SSE Class 0.988 0.988 0.988 0.992 +0.4% +0.4% +0.4% +0.3% -1.3% -1.3% -1.3% -0.8% +0.5% +0.5% +0.5% +0.4%
Fold 0.971 0.971 0.971 0.984 +0.5% +0.5% +0.5% +0.3% -2.9% -3.0% -3.0% -1.5% +0.7% +0.7% +0.7% +0.4%
Superfamily 0.970 0.969 0.969 0.984 +0.5% +0.5% +0.5% +0.3% -3.1% -3.3% -3.3% -1.7% +0.6% +0.6% +0.6% +0.3%
Family 0.968 0.967 0.967 0.983 +0.4% +0.4% +0.4% +0.2% -4.0% -4.0% -4.1% -2.0% +0.7% +0.7% +0.6% +0.3%

the linear spatial character of the main chain. It was also shown that the degree
of influence of angles φ and ψ on the discriminating capacity of the classifiers is
not only less significant than the linear geometric disposition of the main chain,
but also depends on the addition of artificial intermediate points to be precisely
significant (see results of the Backbone0.8 classifiers).
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We have confidence to claim that we were able to improve the accuracy of
the original CSM with the proposed new model because we performed statistical
tests and obtained quite low p-values proving that our classification metrics are
significantly better (see Sect. 2.3). As shown in p-value tables (Supplementary
Tables 7–30), the null hypothesis was only accepted when the mean values of
the metrics compared were very close. For all null hypotheses accepted, the
percentage difference among mean values were less than or equal to 0.3%. In
general, the p-values found were extremely low, and the null hypotheses that
the means would be the same could be rejected.

Pires [15] reports that experiments were conducted with other centroids
rather than the Cα, such as the Cβ or the last heavy atom (LHA) of the
side chain. The Cα had the best performance in all experiments, a fact that
he claimed “demanded deeper investigation”. With this study, we believe that
those centroids had the lowest performance exactly because they are even more
distant from the linear geometric disposition of the main chain.

4 Conclusions

In this study, we revisited the problem of protein structure and function clas-
sification based on structural signatures. We compared the traditional state-of-
the-art CSM method based on Cα to a novel model which is more focused on
strengthening geometric linearity character of proteins main chain.

The purpose of our works was to identify conserved patterns in the main
chains of protein families and use them to more precisely classify proteins. By
analyzing several results of classification experiments, we concluded that main
chain linear geometry patterns from the same protein family is a better classifi-
cation differential than the original CSM signature based solely on Cα.

We concluded that the improvement in the classification performance when
using a model with main chains atoms, in comparison to the exclusive use of
Cαs is due, primarily, to the overemphasizing linear geometric character of the
chain. This very linearity can also be achieved (or simulated) by adding artificial
intermediate points between the Cα, with no harm and with improvement to
classification accuracy. Therefore, this study suggests that it is not the position
of C and N atoms (which indirectly captures angles φ and ψ) that is the key
factor to improve classification performance, but rather the strengthening of the
linear geometric character of the main chain.

As perspectives, we believe it would be interesting to verify weather this
inclusion of intermediate points to strengthen the geometric characteristics could
be used to improve the performance of CSM in other contexts it has been used
so far as ligand prediction, mutation impact prediction, among others.
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Abstract. Measuring blood pressure in real time using wearable sensors
mounted directly on the patient’s body is promising tool for assessing
the state of the cardiovascular system and signalling symptoms of car-
diovascular diseases. To solve this problem, we developed a new type of
wearable arterial blood pressure monitoring sensor. Constructively, this
sensor can be embedded in a flexible bracelet for measuring the pressure
in the underlying radial artery. Due to the very small measuring pads
(less than 1mm2) and, consequently, the ability to accurately position
the contact pad directly over the artery, it is possible to ensure high
quality of blood pressure measurement. However, since the artery itself
is generally not visible, the correct positioning of the sensor is a non-
trivial problem. In the paper we propose the solution of the problem –
the positioning based on monitoring the pulse wave signals using three
channels from closely spaced pads of a three-chamber pneumatic sensor.

Keywords: Non-invasive arterial blood pressure (ABP) monitoring ·
Pneumatic sensor · Sensor positioning problem ·
Multichannel measurements and control ·
Wearable medical sensors and devices ·
Embedded data processing (EDP)

1 Introduction

Non-invasive measurement of arterial blood pressure (ABP) using cuff instru-
ments until recently has been most common. Since blood pressure indicators
provide adequate data for many applications both in medicine and in medical
research, their use has been stretched for almost a hundred years – during the
XX century, despite the obvious inconvenience of cuff methods.

The inconvenience of cuff methods is associated with several circumstances.
First, continuous measurement of blood pressure is impossible, since a pause
of at least 1–2 min between two blood pressure measurements is necessary to

The work is supported by the Russian Foundation for Basic Research (RFBR), grant
N 17-07-00294 A.

c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 405–414, 2019.
https://doi.org/10.1007/978-3-030-17938-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17938-0_36&domain=pdf
https://doi.org/10.1007/978-3-030-17938-0_36


406 V. Antsiperov and G. Mansurov

avoid the errors [1]. Therefore, short-term changes in blood pressure cannot be
detected. Second, inflating the cuff is often a poorly controlled discontinuous
process due to the need to create high pressure in a relatively large cuff volume
over a relatively short period of time. So, pumping the cuff may disturb the
patient and also cause the changes in blood pressure.

To solve the problem of discontinuity Peňáz in 1973 proposed, exploiting the
idea of dynamic “unloading of vessel walls”, a method of volume compensation
for continuous ABP measurements [2]. The measurement unit of the Peňáz device
is represented by a small finger cuff that contains a light source on one side and an
IR receiver on the opposite side for controlling by a light absorption blood volume
in the finger. The IR signal obtained in a such plethysmograph is then used in a
feedback loop to regulate the pressure in the finger cuff. Proposed by Pressman
and Newgard, the tonometric method for continuous ABP measurement is also
based on the idea of compensation, but not of the blood volume, but of the blood
pressure on artery wall [3]. Like the Peňáz method the arterial tonometry is based
on pulse oscillation estimates, but the principle of arterial unloading is different.
In this case the cuff is placed on the wrist, so the sensor is over the radial artery.
The sensor presses the artery to the radial bone until it is flattened enough but
not occluded. At this intermediate position arterial wall tension becomes parallel
to the tonometer pad surface and does not affect the pressure measured by the
sensor. Unfortunately, though Peňáz and Pressman–Newgard methods can, in
principle, provide long-term continuous ABP monitoring, they are unsatisfactory
candidates for wearable ABP devices because in order to avoid blood stasis in
the limbs the cuff must be periodically relaxed.

However, such devices are of great importance for monitoring vital human
data in a wireless LAN or GSM environment. The growing scope of application
of smart phone technologies, their reduction in cost and increased ease of use in
combination with parallel progress in sensing technology leads to a real transition
from traditional medical care to mobile personal health monitors (PHM), among
which the wearable ABP devices should play the central role [4].

To overcome the above-mentioned limitations some new approaches to a con-
tinuous, non-invasive measurement of ABP were recently proposed. Among them
the approach proposed by Kaisti et al. should be mentioned. It is based on the
use of MEMS pressure sensors and ABP waveform analysis for the non-invasive
and continuous-time measurements [5]. The authors report that the use of mod-
ern MEMS sensor technologies has high performance in a compact package with
low power consumption. They note that because the measurement procedure is
sensitive to the exact placement of the sensor on an artery, it is preferable to
have several sensors arranged into a grid and use an automated selection of the
best MEMS sensor from the multiple of sensing elements. In the same article [5]
one can find several references to other modern approaches to the development
of wearable ABP monitoring sensors.

In order to avoid the problems associated with the cuff methods and with
an eye to creating a mobile, wearable ABP sensors, several years ago we also
attempted to develop a new approach to the non-invasive cuff-less continuous
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arterial blood pressure monitoring. But in contrast to well-known approaches
[5] our method is based on another principle – the principle of local pressure
compensation [6] (Fig. 1(A)).

Fig. 1. The measurement principle of blood pressure due to local pressure compensa-
tion in the artery Part by pressure in the measuring unit Psen of the pneumatic sensor
(A), pneumatic sensor design (B) and the appearance of the measuring unit applied to
the patient’s wrist (C).

The principle of local compensation implies that pressure compensation
under the measuring contact pad is carried out not over the entire transverse
perimeter of the artery (integrally), but on a small, local area of its wall. When
the position of the pad is successfully chosen, right above the central axis of
the artery (Fig. 1(A)) and its pressing leads to local flattening of the underlying
artery wall, the pressure in the sensor chamber Psen will be exactly equal to
the pressure in artery Part since the local elastic tension of the flat wall does
not produce additional pressure in above/below rooms (the applanation princi-
ple [6]). Known methods of pressure compensation, including the method based
on MEMS sensors, due to the comparable sizes of the measuring elements and
arteries, should compensate besides ABP the additional (unknown) mean elastic
pressure along the curved artery wall. For this reason, in contrast to the case
of integral compensation, the case of local compensation gives us the possibility
to carry out a direct, non-calibrated, without any corrections ABP measuring,
which ensures its main advantage.

The practical implementation of local compensation method became possi-
ble thanks to previously developed unique technique of pressure compensating
measurements on a very small working area (1 mm2 or less) [7]. Recalling, that
an average diameter of a radial artery (in a flattened state) is ∼4 mm, we see
that this is quite enough to realize the applanation conditions of measurement.
Let us note, by the way, that each of the MEMS sensors has a size of ∼5 mm
(see [5]), so its data are integral over artery surface.
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Due to the very small sensing contacts and, consequently, the ability to accu-
rately position the measuring pad directly over the center of the artery, it become
possible to ensure high quality blood pressure measurement. However, since the
artery itself is generally not visible, the correct positioning of the sensor is a
non-trivial problem. For this reason, the paper focuses in general on a discussion
of the positioning problem and the development of approaches to its solution.
This discussion is the subject of the next section.

2 Sensor Positioning Method

The high-performance characteristics of continuous measurement of the ABP
pulse wave by proposed pneumatic sensor were discussed in detail in our previ-
ous work [6]. However, it turned out that the advantages of pneumatic locally-
compensating ABP measurement are not gratis. One should pay for it by prob-
lems arising with the positioning of the sensor measuring unit. Since the contact
pad of the measuring unit is smaller than the size of the artery, the pressure in
the sensor Psen coincides with Part only if the pad is located exactly above the
artery axis (see the discussion of local compensation principle above). Obviously,
in the case of a patient’s arm movement, which in the case of a wearable sen-
sor will be a constant measurement artefact, the measuring unit can change its
position, which will lead to the distortions. Changes in the shape and amplitude
of the pulse wave of arterial pressure associated with a small displacements of
the measuring pad are shown in Fig. 2(B).

Fig. 2. Changes in the shape and amplitude of pulse wave signal (B) depending on
changes of measuring pad position: • – pad is directly over the artery, �, � – pad is
shifted to the left and to the right from the radial artery axis (A).

A detailed experimental study of the positioning problem revealed the follow-
ing. In the position of the measuring pad just above the artery the Psen signal
has the greatest magnitude between the major maxima and minima and wherein
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both extrema are themselves more acute (see Fig. 2(B), plot •). The movement
of the measuring pad to the left and right in the transverse direction of the artery
axis is accompanied by a distortion of the shape and a decrease in the spread of
the signal, and these changes are almost symmetrical with respect to left/right
directions of displacement (in Fig. 2(B), plots �, � correspond to slightly asym-
metric left/right positions). For the exactly symmetrical with respect to the
artery axis left/right positions the pulse wave plots will substantially coincide.

This observation led us to the new design of pneumatic sensor for monitor-
ing the arterial pressure. It should contain a measuring unit with three cham-
bers (channels with its own independent pressure gauges) for three independent
measuring pads. These pads should be arranged in a row so, that during the
ABP measurement they are disposed in the direction transverse to the artery
axis. The sizes of measuring pads (≤ 1 mm) and the distances between them
(∼1.5 mm) are so small, that in certain position of the measuring unit the pads
are simultaneously over the artery. Figure 3(A) gives a schematic view of the
three-chambered pneumatic sensor and (B) gives results of simultaneously mea-
sured three-channel pulse wave signals at the proper upon the artery position.
The details of the technical implementation of the sensor are reflected in the
patent [7].

Fig. 3. Sensor with three-chamber measuring unit located exactly above the artery
(A), coincidence of the side channel signals indicates the correct unit position (B) (in
contrast to Fig. 2 all three channels are measured simultaneously).

In the claimed design of a three-chamber pneumatic sensor for measuring
blood pressure, the main task of the additional (side) channels is to control the
positioning of the measuring unit. That is, the correct location of the central pad
corresponds to the maximum coincidence of signals from the side channels (see
Fig. 3(B)). It is not significant that in these side channels complete “unloading”
of the artery walls does not take place and, therefore, the signal of the arterial
pressure in them is significantly distorted. It is important that when both side
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signals coincide, the central chamber is located exactly above the artery and in
this position its signal will be an undistorted replica of the pressure in the artery.

3 Computer Procedure for Semi-automatic Rough
Positioning

The methodology of ABP monitoring by a three-chamber pneumatic sensor,
described above, assumes that all measuring unit pads “see” the artery, i.e.
the signals in the corresponding channels represent a pulse wave (possibly of a
distorted form) such as, for example, in Fig. 3. Let’s refer this methodology as a
precise positioning process. Obviously, this process must be preceded by a rough
positioning process of searching such a position of the measuring unit in which a
pulse wave would be presented in at least one channel (further in two, and then
in all three channels). Until recently, the rough positioning process was carried
out manually – by moving the measuring unit on the wrist near the position
of the artery detected by palpation. It is clear that such manual positioning is
not suitable for wearable sensors. For this reason, we made efforts to investigate
approaches and to find possible solutions in the field of automatic (computer
aided) positioning and keeping the three-chamber pneumatic sensor measuring
unit in a proper (upon the artery) position—in the well position. Now we have
found a satisfactory algorithmic solution for rough positioning, this section is
devoted to its discussion.

Obviously, the automatic detection of the pulse wave presence in any channel
can be formalized as the detection of some waveform repeatability in the signal
recorded by the channel. Moreover, the confidence interval for the period of such
a repeatability is known – it ranges from 0.5 to 1.5 s (excluding tachycardias,
bradycardias, and other pathologies). Thus, the problem of rough positioning can
be reformulated as a problem of such displacement of the measuring unit, that
repeatability will appear firstly in one of the side channels, then in the central,
and then in all channels of the sensor (with the initial absence of repeatability
in the channels). The same applies to the loss of repeatability in the registered
signals due to arm movement and other artefacts.

Without going into peculiarities of the technical mechanisms of the rough
positioning implementation, or in specificity of the mechanical control of a such
positioning, let us consider in more detail the actual identification of the presence
or absence of repeatability in a particular channel at a certain time moment.

In order to solve some problems in the field of the nonstationary signal
processing we, starting from the work [8], attempted to combine the main
ideas of the wavelet-like (multiscale) and quadratic time-frequency analysis. The
implementation of such a combination was achieved by the methodology of the
non-stationary analysis for signals containing the quasi-periodic fragments. We
named this methodology the multiscale correlative analysis (MCA) [8].

For biomedical signals demonstrating a generally nonstationary behavior,
the presence of isolated fragments with clearly defined repeatability of some
waveforms is the very usual situation. In speech signals, these are vocalized
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fragments (vowels), in EEG, for example, seizures. In ABP signals these are the
fragments corresponding to a well positioned measuring unit, the duration of
which we need to maintain as long as possible, see Fig. 4.

Fig. 4. Central channel registered signal during rough positioning process of measuring
unit and marked fragments of its well positioned measurement states.

It is important to emphasize that when quasi-periodicity is mentioned, we
are not talking about some kind of approximate periodicity, but about the prop-
erties of repeatability, more precisely, about approximate repeatability of any
waveforms. For this reason, in the case of biomedical signals, that are essentially
wideband signals, such fragments correspond more to models of regular consec-
utive pulses rather than to those consisting of a set of harmonic components.
Because the analysis of such signals is more efficient within the time domain
(some variants of the correlative processing or matched filtering), we proposed
the synthesis of appropriate tools in the time-time scale domain, rather than
in the time-frequency domain, as it is usual in traditional approaches, based on
spectral analysis.

In the MCA the starting point is the definite signal time-scale representation
as in the case of spectral analysis is some representation of the time-frequency
type. In fact, the MCA time-scale representation is some special autocorrelation
function estimate. Among numerous existing autocorrelation function estimates,
the MCA representation RMCA(t, τ) is chosen in the following form:

RMCA(t, τ) =
1
|τ |

∫ t+|τ |/2

t−|τ |/2
z(t′ + τ/2)z(t′ − τ/2)dt′, (1)

where z(t′) is an ABP signal, τ – the time scale, also representing (variable)
duration of adjacent to t correlated intervals of a signal, and t is a certain time
moment at which the decision about the presence or absence of repeatability in
z(t′) should be made. It is not difficult to demonstrate that averaging of (1) over
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the ensemble of implementations in the stationary case gives the exact theoret-
ical autocorrelation function 〈RMCA(t, τ)〉 = Rz(τ) = 〈z(t + τ/2)z(t − τ/2)〉,
i.e. (1) is unbiased estimate. It is symmetrical with respect to the parameter τ :
RMCA(t,−τ) = RMCA(t, τ). The distinctive feature of (1), which is of impor-
tance in segmentation problems, is the property of the preservation of a signal
carrier, the property of vanishing of RMCA(t, τ) outside the time intervals of
non-zero values of z(t).

For a more transparent interpretation of (1) it is useful to relate with z(t′)
the signals of its local past zPt(t′) and local future zFt(t′) (with respect to the
time moment t):

{
zFt(t′) = θ(t′)z(t + t′)
zPt(t′) = θ(t′)z(t − t′)

, θ(t′) =

{
1, if t′ ≥ 0
0, if t′ < 0

. (2)

By using designations (2), it is possible to eliminate in (1) the dependence on
the scale τ of the integration limits. The corresponding expression for RMCA(t, τ)
in the case τ > 0 is the following (for τ < 0 one should make the replacement
τ → −τ):

RMCA(t, τ) =
1
τ

∫ ∞

−∞
zFt(t′)zPt(τ − t′)dt′ =

1
τ

∫ ∞

−∞
zFt(τ − t′)zPt(t′)dt′, (3)

whence it follows that to within a multiplier 1
τ representation RMCA(t, τ) is the

classical convolution of the signals zPt(t′) and zFt(t′) with effectively infinite lim-
its of integration. To detect with the help of RMCA(t, τ) (3) the quasi-periodic
signal fragments, the following property of the theoretical autocorrelation Rz(τ)
is usually used. It is well-known that the global maximum of any autocorre-
lation is reached at the beginning of scale coordinates, i.e. at τ = 0. If the
signal z(t′) has the quasi-period T , then Rz(τ) will, by definition, have the same
quasi-period: Rz(τ + kT ) = Rz(τ), k = ±1,±2, .... Thus, in the points that
are multiples of T , the quasi-periodic signal autocorrelation will have expressed
(side) maxima. If the estimate RMCA(t, τ) (1–3) at least approximately repeats
the behaviour of the theoretical autocorrelation Rz(τ), then its side maxima will
also indicate the quasi-period T and its multiples. This property serves as the
basis for most estimates of the time scales of pulse repetitions in signals. Exactly
as in the case of time-frequency analysis, where it is possible to estimate the fre-
quencies of harmonic components using the maxima of the spectrum power, in
the case of the time-scale signal representations RMCA(t, τ) (3) it is possible
using its maxima to estimate the quasi-period of signal pulses, i.e., the presence
of local signal repeatability.

Figure 5 gives an example a two-dimensional representation (3) of a real
ABP recording that contains a long well positioned measurement fragment. The
trajectories of the first and second side maxima (bright strips along the t axis)
correspond to the quasi-period T ∼ 0.76 s and to the doubled quasi-period 2T ∼
1.52 s. Note, that T fall in the mentioned above confidence interval for the quasi-
period of pulse wave repeatability (0.5, 1.5) s.
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Fig. 5. Representation RMCA(t, τ) (3) (bottom, in pseudo-color: white – max, black –
min) of a real ABP signal that contains a fragment of a long well positioned measuring
unit state. The trajectories of the first two side maxima (at ∼0.76 and ∼1.52 s) are
well pronounced.

It follows from above discussion and it is illustrated by the Fig. 5, that the
main difference between RMCA(t, τ) for the fragments of well positioned mea-
surements and the fragments of lost repeatability is the existence of the sequence
of approximately equidistant, but may be slightly different in form maxima
(peaks) of noticeable amplitudes. It is possible to exploit this property in many
different ways to perform the actual identification of the presence or absence of
repeatability. We selected the simplest criterion CMCA(t), consisting in checking
the equidistance (multiplicity) of the locations of the first two side peaks:

CMCA(t) = |T2(t) − 2T1(t)T2(t)| < Δ, (4)

where T1(t) and T2(t) are the locations of two biggest in interval (0, τmax)
side maxima of current (for time moment t) time-scale signal representation
RMCA(t, τ) (3), Δ – some small enough threshold ∼0.1.

4 Conclusions

The article proposes a new method of positioning a three-chamber pneumatic
sensor for continuous measurement of blood pressure – a method based on local
pressure compensation. It is shown that the basic idea of the method is quite
simple and partly resembles the principle of pointing the radar antenna at a
target by aligning the side lobes of the radiation power diagram. The method
is intended to achieve stability in measuring the arterial blood pressure. In the
absence of positioning unstable character of measurements could be caused by
very small sizes (tens of microns) of the measuring unit contact pads. The tech-
nological solutions we found allow us to manufacture several working chambers
in one measuring unit with a linear pitch from 1.5 mm to 2 mm in one unit.
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According to the obtained results, the variant with three working chambers is
optimal. We believe that this solution makes possible the implementation of the
sensor with automatic measuring unit positioning on the artery, along with the
already achieved manual positioning.

In the special section of the paper are discussed the theoretical and exper-
imental results of our efforts to develop the possible solutions in the field of
automatic (computer aided) positioning and keeping the measuring unit of three-
chamber pneumatic sensor in found optimal position. We described a satisfac-
tory algorithmic solution for rough positioning based on Multiscale Correlation
Analysis (MCA) [8] time-scale representation.

In short, the results of testing the positioning of a three-chamber pneumatic
sensor and the developed calibration methodology allow us to draw the following
conclusions. The proposed method of rough positioning provides the ability to
continuously measure blood pressure for a long time in a mobile environment.
It also allows to perform synchronous transfer of measured data in a wireless
LAN environment, for example, in Smart Homes, rehabilitation centers, in sports
Halls, etc.

The most important task for the future is to replace the manual precise
positioning of the measuring unit by automatic control and develop on this
basis a mobile device for continuous monitoring of blood pressure parameters.
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Abstract. Falls are becoming a major public health problem, which is inten-
sified by the aging of the population. Falls are one of the main causes of death
among the elderly and in population groups that develop risk activities. In this
sense, technologies can provide solutions to improve this situation. In this work
we have analyzed different repositories of movements and falls designed to test
decision algorithms in automatic fall detection systems. The objectives of the
study are: firstly, to clarify what are the characteristics of the most significant
accelerometry signals to identify a fall and secondly, to analyze the possibility of
extrapolating the learning achieved with a certain database when tested with
another one. As a novelty with respect to other works in the literature, the
statistical significance of the results has been systematically evaluated by the
analysis of variance (ANOVA).

Keywords: Fall detection system � Inertial sensors � Smartphone �
Accelerometer � Machine learning � Supervised learning � ANOVA �
Datasets of movements

1 Introduction

It is estimated that between 2015 and 2050 the world population aged over 60 will
grow from 900 to 2000 million [1]. This remarkable demographic transformation will
unquestionably cause a series of challenges in the health systems that must be faced in
order to increase the quality of life of the population. The current study focuses on falls,
one of the most relevant public health problems confronted by the world society. Falls
are a major source of loss of autonomy, deaths and injuries among the elderly and have
a noteworthy impact on the costs of national health systems. According to World
Health Organization [2], 28–35% of the population older than 64 experience at least
one fall every year, while fall-related injuries and hospitalization rates are expected to
increase on average by 2% per year until 2030 [3]. Furthermore, there are other risk
groups that are exposed to suffer severe falls during their work or leisure time
(mountaineers, firemen, construction workers, antenna installers, window cleaners,
cyclists, etc.).
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The World Health Organization has stated that falls are the second worldwide
reason of mortality provoked by accidental or unintentional injuries: 37.3 million falls
requiring medical attention occurs annually, while it has been estimated that around
646,000 people die every year due to falls [4]. Moreover, morbidity and mortality
provoked by falls are closely associated to the speed of the medical response and first
aid treatment after the incident [5]. Consequently, the analysis of cost-effective and
automatic Fall Detection Systems (FDSs) has become a relevant research topic during
the last decade.

2 Related Works on Wearable Fall Detection Systems

A Fall Detection System can be considered as a binary classification system designed to
discriminate fall events from any other movement of the user (the so-called Activities
of Daily Living or ADLs). The aim of a FDS is to maximize the possibility of detecting
real falls, while simultaneously keeping to a minimum the number of false alarms.
Thus, FDSs monitor the mobility of the users in order to automatically make their
relatives or the medical staff aware whenever time a fall incidence is recognized.

FDSs can be classified into two generic groups depending on the nature of the
employed sensors: context-aware systems and wearable systems.

Firstly, context-aware systems are based on sensors located in the environment
around the user to be supervised like cameras, microphones, vibration sensors, etc. The
detection decision is based on the signals captured by these sensors, which are placed
in a definite area where the user is monitored. This kind of FDSs has some disad-
vantages related to the physical restrictions of the locations where the user can be
monitored, as well as to their expensive installation and maintenance costs. Another
serious inconvenience is their vulnerability to external events and interferences, such as
noises, presence of another individual, falling objects, changes of the illumination
level, etc. Besides, the user can feel their privacy is being compromised because of the
non-stop use of audiovisual equipment.

On the other hand, wearable systems employ sensors that are integrated into the
patient’s clothing or are transported by the user within personal accessories. These
sensors only monitor magnitudes associated to the patient mobility, such as the
acceleration or angular velocity of the body. This type of FDSs offers some advantages
over the context-aware solutions since they are more affordable, less intrusive and also
less prone to the effects of external factors. Moreover, due to fact that the sensors
always accompany the user, the limitations about the monitoring area are removed.

Currently, all the inertial sensors that are normally required by a wearable FDS
(generally, an accelerometer and in some cases a gyroscope and a magnetometer) are
integrated in most smartphones. FDS architectures based on smartphones present some
benefits when compared to other specific commercial fall detection sensors, as these
personal devices natively support multi-interface wireless communications (Wi-Fi,
3G/4G, Bluetooth, GPS). Therefore, users can be monitored almost ubiquitously at a
low cost. In addition, at present, smartphones are omnipresent in the daily life of
citizens, so they are not considered as an intrusive technology.
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The penetration of smartphones among older people is obviously lower than in
other age groups. Nevertheless, at least in western countries, this situation is swiftly
changing. In [6], Deloitte predicts that the technological gap between generations will
narrow over the following years to become almost negligible by 2023. Smartphone
ownership among 55 to 75 years old is expected to reach 85% in western countries, a
10% increase over 2018. Moreover, owners will interact with their phones on average
65 times per day in 2023, a 20% increase over 2018.

On account of the easiness of developing a FDS on a smartphone, there are many
works in the recent literature that have focused on the study of ‘standalone’
smartphone-based FDS, i.e., architectures that make use of the smartphone as the only
element in the system, so that it acts as a sensing unit, data processor node and
communication gateway [7–10]. Nevertheless, the position of the sensor that monitors
the movements of the user is critical for the effectiveness of the FDS as it has been
demonstrated by [11–13]. In this respect, the chest or the waist are the recommended
locations to place the sensor. However, these are not comfortable and useful positions
to put a smartphone, which is usually transported in a pocket or a hand-bag, where the
phone may have a certain freedom of movements that can affect the representativeness
of the mobility measurements. Another drawback related to the use of a smartphone is
that sensors integrated in the smartphone were not originally conceived to quantify the
intensity of the movements that a fall can produce, so their ranges are not always
sufficient. Consequently, the solution is to employ specific sensors with a more ergo-
nomic design that can be easily incorporated into the subjects’ clothing or garments.
Nowadays there is a great variety of low-cost sensing motes that can be used for this
purpose. Many of these wearable motes embed low power wireless communications
standards, such as Bluetooth, which is also supported by commercial smartphones, so
that they can collaborate to produce the classification decision required by the FDS.

The use of Multisensor Body Area Networks (BANs) to characterize the human
mobility has been extensively studied by the literature. In this regard, several works
[14–17] have evaluated the proficiency of a set of 3 to 6 accelerometers distributed
through strategic points of the human body to deploy automatic recognition systems of
daily living activities. Nonetheless, in these works the network was never employed to
identify falls. The system presented in [18] detects falls as abnormal human activities.
The work by Özdemir and Barshan in [19] presented an architecture with multiple
sensors for fall detection. The authors examined the performance of a FDS built on a
BAN consisting of six wireless motes placed at six positions (head, chest, waist, wrist,
thigh and ankle). From the developed testbed, a dataset of falls and movements of daily
life executed by a group of experimental subjects was created. In [20] a repository of
movements, known as SisFall, obtained from the activities produced by a group of
volunteers was also published and analyzed. In this case, the measurements are exe-
cuted by two sensors at the waist.

The present work is an extension of [11, 12, 21, 22]. A Bluetooth network is used
in these investigations. The network is formed by four sensor nodes, each of them
placed in a particular position on the body of the experimental subjects (chest, waist,
wrist and ankle), as well as by a smartphone in the trouser pocket. Hence, a repository
(called UMAFall) of falls and movements of daily life was generated. A series of falls
detection algorithms based on thresholds and supervised learning strategies were
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evaluated. The combinations of sensor placements that produce the best detection
performance were also identified and the selection of the acceleration statistics that
characterize the body mobility was optimized. The final resulting dataset (UMAFall)
containing all the log files has been made publicly available in Internet [23] as a
benchmarking tool for the research on fall detection systems.

It should be noted that, in almost all the bibliography, the studies and analyses are
simply based on the examination of the different means of the obtained magnitudes,
without verifying their statistical significance, that is, without verifying that the vari-
ations in the obtained means are really significant when they are compared. In contrast,
in [12, 22] we systematically evaluated the hybrid multisensor system developed for
the UMAFall repository by using supervised learning algorithms and taking into
account the statistical significance of the data by analysis of variance (ANOVA).

In this work, the process that was utilized in [12, 22] will be employed again to
study UMAFall [11, 12, 21, 22], but now using a single sensor placed in the position
for which the best performance was achieved: the waist, and making use of the SVM
(Support Vector Machine) supervised learning. In addition, the evaluation will be
extended to other two long public repository of movements: the database by Özdemir
and Barshan [19] and the SisFall repository [20].

The goal of this study is twofold: firstly, to clarify what are the most significant
characteristics of accelerometry signals for identifying a fall and then, to analyze the
possibility of extrapolating the learning achieved with a certain database when the FDS
is tested with another dataset.

3 Description of the Experimental Testbed

The methodology carried out in this study is the same considered by most authors
devoted to the study of FDSs: monitoring a group of experimental subjects who carry
an accelerometer and systematically perform a series of predefined movements, both
Activities of Daily Living (ADL), as well as simulated falls on a protective surface. The
basic information of the people participating in the analyzed databases and the
movements is described in [11, 12, 19–21]. Subsequently, these sets of captured
accelerometry samples are used offline to feed and test the SVM algorithm in a
computer to assess the system performance.

It is important to emphasize that it is beyond the scope of this study to discuss the
validity of using, as a framework for evaluation, the monitoring of activities and
emulated falls carried out by volunteers (mostly young and healthy people), to test and
track systems that are actually targeted to the real movements and real falls of elderly
subjects (see [15, 24] for a further study on this controversial issue).

SVM algorithm is selected as the decision core of the FDS a it is one of the most
used supervised learning methods in the field of fall detection systems and previously
studies have demonstrated that the performance of this algorithm is accurate [12] when
compared to other machine learning or threshold-based techniques.

In the next, the input features that are considered to feed the SVM will be detailed.
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4 Machine Learning Algorithms and Selection of the Input
Features

In the present work, the procedure to discern between fall and ADL is based on the use
of a machine learning method, specifically a supervised learning algorithm. This type
of architecture is able to perform predictions and classify input data based on a model
created by the algorithm from a set of training data. In this way, the datasets of falls and
movements of daily life are processed and successively employed to study the behavior
of a supervised learning classification algorithm.

This kind of algorithms need to be trained before being applied to the test data. For
this purpose, the algorithm will be provided with a series of training samples together
with the respective real output decision (fall or ADL) that the system should generate.
From the training phase, the algorithm builds a mathematical model that is then
employed with the test data to categorize the movements, that is to say, to discriminate
falls from ADLs [25]. This process is accomplished by feeding the algorithm with a
series of input features (statistics that characterize the movements and which are
computed from the mobility traces), which are extracted from the datasets.

The specific supervised learning algorithm that is used in this investigation is the
SVM (Support Vector Machine) algorithm. This algorithm creates a hyperplane, based
on the training data, which acts as a decision boundary to categorize and discriminate
the samples. The hyperplane is built to be at the maximum possible distance from the
points (of both types: falls and ADLs) closest to it. After this training phase, in order to
study data for which the output decision is unknown, the model created by the algo-
rithm is employed. So the decisions are directly based on the region (defined by the
hyperplane) where the test sample is included [25]. In Fig. 1 an example of the
operation of this algorithm for a two-dimensional space is illustrated graphically.

4.1 Feature Extraction: Selection of the Input Statistics of the Machine
Learning Algorithms

A proper selection of the input characteristics in the development of any machine
learning algorithm is a fundamental aspect. By processing the different samples of the
studied datasets, a series of statistics are obtained. These statistics characterize each
movement, both for the training samples and the study (or test) samples.

The statistical characterization of the movements is based on the measurements
(AXi ;AYi ;AZi ) of the acceleration monitored by the tri-axial accelerometer, as in most
works in the literature. Falls begin with an initial free-fall period, which provokes a
brusque decay of the acceleration components, which tend to 0 g, followed by one or
several acceleration peaks caused by the impact against the floor [26]. Therefore, as in
our previous studies [12, 22], we focus our analysis on the interval of the signal where
the difference between the acceleration components suffer the highest variation.
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Particularly, to analyze the acceleration measurements in every axis (x, y or z), we
utilize a sliding window of duration tW ¼ 0:5 s or NW samples.

NW ¼ tW � fsb c ð1Þ

being fs the sampling rate of the sensors.
This value of 0.5 s is consistent with other studies on FDS which also employ a

sliding window to detect the accidents: 0.6 s [27], 0.75 s [28]. In [29] authors state that
an analysis interval of 0.5 s is the best trade-off between efficacy, complexity and low
power consumption to analyze the acceleration measurements in a FDS.

In order to localize the interval where the acceleration components suffer the
highest variation, we calculate for each window the module of the maximum variation
of the acceleration components in the three axes. For the j-th window, this parameter
(Awdiff jð Þ) is calculated as:

Awdiff jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AXmaxj

� AXminj

� �2
þ AYmaxj

� AYminj

� �2
þ AZmaxj

� AZminj

� �2
r

ð2Þ

where AXmaxj
;AYmaxj

;AZmaxj
indicate the maximum values of the acceleration components

in the x, y and z-axes during the j-th sliding window. Thus, the analysis interval will be
defined as the subset of consecutive samples k0; k0 þNW � 1½ � where the maximum
value of Awdiff jð Þ is found to be:

Awdiff k0ð Þ ¼ max Aw diffð Þ jð Þ
� �

8j 2 1;N � Nw � 1½ � ð3Þ

where k0 is the first sample of the analysis interval while N indicates the total number
of samples of the trace (for each axis).

The rest of the input features for the detection algorithms are computed just taking
into account the values of the acceleration components during this analysis interval. We

Fig. 1. Example of the performance of the SVM algorithm for a two-dimensional space (two
input features: x and y): (a) distribution of the training data on the two-dimensional space
(b) creation of the hyperplane and classification decision for a certain test sample (in yellow).
(Color figure online)
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consider as possible features to the machine learning algorithms the next statistics
(together with Awdiff ).

The Mean Signal Magnitude Vector (lSMV ) describes the mean motion or agitation
level of the body, this variable is calculable as the mean module of the acceleration
vector during the analysis interval:

lSVM ¼ 1
NW

�
Xk0 þNW�1

i¼k0
SMVið Þ ð4Þ

where SMVi defines the Signal Magnitude Vector or acceleration module for the i-th
measurement of the accelerometer:

SMVi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
Xi
þA2

yi þA2
zi

q
ð5Þ

The standard deviation of the Signal Magnitude Vector (rSVM) informs about the
variability of the acceleration, this statistical defines the variability of movements, that
is, the existence of ‘valleys’ and ‘peaks’ in the evolution of the acceleration [30]:

rSMV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NW

�
Xk0 þNW�1

i¼k0
SMVi � lSVMð Þ2

r
ð6Þ

The mean absolute difference (lSMVdiff
) between consecutive samples of the

acceleration module describes the abrupt fluctuation of the motion during a fall [30]:

lSMVdiff
¼ 1

NW
�
Xk0 þNW�1

i¼k0
SMViþ 1 � SMVij j ð7Þ

As a fall occurrence almost always implies a change in the orientation of the body,
we also consider the mean rotation angle (lh), computable as [40]:

lh ¼
1
NW

Xk0 þNW�1

i¼k0
cos�1 AXi � AXiþ 1 þAYi � AYiþ 1 þAZi � AZiþ 1

SMVi � SMViþ 1

� �� �
ð8Þ

The inclination of the body caused by the falls normally provokes a remarkable
modification of the acceleration components that define the plane parallel to the floor
when the subject is standing. When the subject remains in an upright position, the effect
of the gravity strongly determines the value of the acceleration component in the
direction that is perpendicular to the floor plane. Therefore, to characterize this phe-
nomenon, we utilize as a new feature the mean module (lAp) of these acceleration
components, as it can be appreciated from the resting upright position illustrated in
Fig. 2.

lAp ¼
1
Nw

Xk0 þNW�1

i¼k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

Yi
þA2

Zi

q� �
ð9Þ
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5 Results and Discussion

In this section, we firstly evaluate which of the previous input characteristics allow the
SVM algorithm to achieve the best performance when discerning falls from ADLs.
Secondly, we assess the detection efficacy of a system trained with a particular database
when it is tested with the samples of another repository.

As performance metrics, we utilize the following parameters: sensitivity (Se) and
the specificity (Sp), which are commonly computed to evaluate the effectiveness of
binary classification systems. These metrics are not affected by the unbalance between
the number of existing samples of each type (in this case, falls and ADLs) which are
employed to test the detection algorithms.

The sensitivity describes the capacity of the classificatory system to correctly
identify an event of the ‘positive’ class (here falls) when this event occurs. Sensibility
can be calculated as the ratio between the number of true positives or TP (falls that
were correctly identified) and the number of falls that actually occurred, that is to say,
the sum of true positives and false negatives (FN) (or falls wrongly classified as
ADLs).

Se ¼ TP
TPþFN

ð10Þ

The Specificity (Sp) can in turn be computed as the ratio between the measured
amounts of TN or true negatives (properly identified ADLs) and the total number of
executed ADLs, TN plus FP (False Positives or ADLs misidentified as falls).

Sp ¼ TN
TNþFP

ð11Þ

We consider the geometric mean of these two parameters (
ffiffiffiffiffiffiffiffiffiffiffiffi
Sp � Se

p
) as the global

metric to characterize the quality of the detection process. As in any system proposed
for binary classification, a trade-off between these two parameters (Sp and Se) must be
achieved as long as they are normally negatively correlated.

Fig. 2. Representation of the spatial reference system of the employed sensing devices, which
are firmly attached to the subjects’ body to guarantee that the reference system does not change
during the experiments.
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In addition, we utilize a 2k factorial design, where k designs the number of possible
factors (selected input statistic) that can influence the detection process.

ANOVA test is used to investigate the statistical representativeness of the different
results. This test allows deciding if the means of two or more different populations do
differ. The ANOVA test determines if different treatments in an experiment cause
significant differences in the final results, and consequently, it permits evaluating the
importance of the different factors that may alter the operation of the fall detector [31].

To proceed with the supervised learning of the algorithms, the testbeds were ran-
domly divided in a training dataset (around 200 samples) and a test dataset (with the
remainder samples). To apply the ANOVA test, we also divided at random the test
dataset into six different ‘blocks’ or ‘subsets’. We decided to divide the samples into
six subsets. This number allows representing the Gaussian nature of the residuals with
six points while keeping a high population in each subset for an adequate estimation of
the performance metric. The number of samples of the same movement type is almost
homogeneous for the six sub-sets.

We firstly investigate which characteristics should be selected as input features of
the machine learning algorithms to maximize the accuracy of the detection decision.

For that purpose, we compare the algorithm SVM by analyzing the performance
metrics that are obtained when different sets of the six input features (described in the
Sect. 4.1) are considered (number of possible combinations ¼ 26 � 1 ¼ 63).

We can validate the ANOVA analysis of the results based on the assumptions of
normality and homogeneity of variance of the residuals. Moreover, the lack of
homoscedasticity is not critical for the ANOVA test, as the experiments are balanced
(all series have the same size) and that the ratio of the maximum to the minimum
variances of the series does not exceed a proportion of 4 to 1 [31].

According to the ANOVA analysis, Figs. 4, 5 y 6 show the relative variation
(expressed as a percentage) that each single input feature produces in the results, with
respect to the global mean of the metric for every combination of training and test
dataset. The figures also include the same values for some combinations that also
produce a high variation.

In the Fig. 3 the confidence intervals of the geometric mean of sensitivity and
specificity (

ffiffiffiffiffiffiffiffiffiffiffiffi
Sp � Se

p
) with respect to the training and test datasets have been calculated.

The utilized input features are Awdiff y lAp, the input features with which the highest
performance is achieved. This is utilized to analyze the possibility of extrapolating the
learning achieved with a certain database when tested with another.

The final results enable quantifying the contribution of the different factors
involved in the detection of a fall and discerning if they cause significant changes in the
final performance of the system.

By analyzing the relative influence of the features, we observe that the most fre-
quent statistics in the combinations that produce the highest effect on the algorithms
when an accelerometer is located at the waist are Awdiff (values between 14.29% and
71.18% in 9 out of 9 tests), which is associated to the maximum variation of the
acceleration components in the three axes, and lAp (values over 11% in 7 out of 9
tests), which is linked to the changes in the perpendicularity of the body with respect to
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the floor plane. In addition, in some cases the combination of these features provokes a
positive effect in the results too (Fig. 4).

On the other hand, as it can be seen in Fig. 3, the used training dataset is a factor
that can significantly alter the performance of the fall detection algorithm. Thus, as
expected, the best performance is reached when the training and test datasets come
from the same repository. Although we can observe that Özdemir’s training dataset
yields a metric of 0.9 when UMAFall samples are used as the test samples, this value is
not significantly different from the case where UMAFall samples are used for both
training and testing the system. Nevertheless, it is noteworthy to remark how critical is
to use as training datasets those repositories whose movements do not characterize the
environment where the system will be used. The problem of this cross-validation can
be observed in Fig. 3 where the SisFall dataset is employed as the training dataset to
study the capability of the system to detect falls and ADLs with the samples of the
others repositories.

Fig. 3. Confidence intervals of the geometric mean of sensitivity and specificity with respect to
the used training and test datasets used. The utilized input features are lSVM , SMVdiff y lAp.
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Fig. 4. Relative influence of the election of the input features on the global result when the SVM
algorithm is applied and UMAFall is the training dataset.
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Fig. 5. Relative influence of the election of the input features on the global result when the SVM
algorithm is applied and SisFall is the training dataset
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Fig. 6. Relative influence of the election of the input features on the global result when the SVM
algorithm is applied and Özdemir’s repository is the training dataset.

Study of the Detection of Falls Using the SVM Algorithm 425



6 Conclusions

This study has two main contributions. On the one hand, we have described a wearable
architecture for a Fall Detection System capable of detecting and reporting falls
automatically. The system, based on a machine learning strategy (Support Vector
Machine), obtains high geometrical means of specificity and sensitivity, using a single
acceleration sensor placed at the waist. On the other hand, the ANOVA tool for the
statistical analysis of the performance of the fall detector systems is utilized in this field
of study. ANOVA test introduces a more rigorous analysis tool to decide which
statistics allow a better characterization of the movements when discriminating a fall
from a daily activity. Obtained results also show the limitations of FDSs when they are
tested with movement samples captured in a different scenario from the datasets with
which the system was trained.

Future research should contemplate other scenarios with different types of ADL
movements and falls (for example, the cases in which subjects collapse very slowly and
they do not fall over). In addition, the use of unsupervised machine learning algorithms
will be examined.
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Abstract. The exposure to the light has a great influence on human beings in
their everyday life. Various lighting sources produce light that reaches the
human eye and influences a rhythmic release of melatonin hormone, that is a
sleep promoting factor.
Since the development of new technologies provides more control over

illuminance, this work uses an IoT based lighting system to set up dim and
bright scenarios. A small study has been performed on the influence of illu-
minance on sleep latency. The system consists of different light bulbs, sensors
and a central bridge which are interconnected like a mesh network. Also, a
mobile app has been developed, that allows to adjust the lighting in various
rooms. With the help of a ferro-electret sensor, like applied in sleep monitoring
systems, a subject’s sleep was monitored. The sensor is placed below the
mattress and it collects data, which is stored and processed in a cloud or in other
alternative locations.
The research was conducted on healthy young subjects after being previously

exposed to the preconfigured illuminance for at least three hours before bedtime.
The results indicate correlation between sleep onset latency and exposure to
different illuminance before bedtime. In a dimmed environment, the subject fell
asleep in average 28% faster compared to the brighter environment.

Keywords: Sleep latency � Ambient assisted living � Illuminance �
Sleep quality

1 Introduction

Nowadays life of human beings in modern society is hardly imaginable without being
daily exposed to various artificial lighting sources. It would be hard to perform routine
activities if there were no additional lighting sources indoor or on the street. The
research goal of this work is to determine the influence of different light scenarios
before bedtime and the effect on sleep onset latency.

The development of IoT based technologies has enabled wide specter of their
application. The Internet of Things term was firstly mentioned in 1985 and later coined
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by Kevin Ashton in 1999 [1]. Although the term and idea of interconnected minia-
turized devices existed in the past, and to certain extent the technology for develop-
ment, the IoT has had the greatest impact relatively recently. Several key IoT enablers,
that occurred in the last decade, were crucial for the impact, such as smartphone
revolution and IoT components cost reduction [2]. The selected IoT lighting system has
the ability to set up different lighting environments. In one scenario, the illuminance is
set up to normal indoor lighting, up to 150 lx, whereas in the dim scenario it is reduced
to 10 lx. In both cases, a subject is performing similar routine activities while being
exposed to one of described lighting environments for at least three hours before
bedtime.

From the medical point of view, the secretion of melatonin hormone, a sleep
promoting factor, is stimulated because of the darkness and inhibited by the light that
reaches human eye. Photoreceptor cells located in the retina stimulate suprachiasmatic
nucleus (SCN), a part of hypothalamus, and location of the circadian biological clock.
As a response to a light or lack of it, the SCN starts several mechanisms to send
impulses to the pineal gland, which regulates the sleep-wake cycle [3]. The pineal
gland, often referred to as the ‘third eye’, is located near the center of the human brain
[4] and produces melatonin [5, 6]. When the eye is exposed to dim illumination, the
SCN sends more impulses to the pineal gland, producing a greater amount of
melatonin.

Usually, it happens as the night falls and the light level drops, as shown in Fig. 1.
The produced melatonin modulates sleep and circadian phase by attaching to the SCN
melatonin receptors. Normally, during the daytime, a small amount of melatonin is

Fig. 1. Rhythmic release of melatonin [7]
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produced. With the fade of daylight, the secretion increases and reaches the peak in the
middle of the night. As the night ends and by the time a person naturally wakes up, the
secretion of the melatonin returns to its daytime level.

2 State of the Art

The technology used for the indoor lighting in this research [8] represents the state-of-
the-art of currently available systems. The lighting system belongs to Philip Hue line
[9]. Continuous improvement and development led to several innovations and
upgrades, such as introduction of different sensors, brighter light and richer color of
lightbulbs [10], becoming a global leader in lightning [11]. The mobile app integrates a
Hue SDK and uses it for the communication with the lighting system. The lightbulbs
allow fine adjustment of brightness while the light level sensors enable a user to
monitor the brightness. With this help, a proper set up of the environment is possible.

In order to capture sleep data relevant for our investigation, the Emfit QS+Active
system was used; it is monitoring a subject’s sleep and determining sleep onset. It uses
ferro-electret super sensitive sensor technology and relies on ballistocardiography, a
technique that senses sudden ejections of blood into the great vessels with every
heartbeat [12]. Therefore, it is able to detect the heartbeat even under a thick mattress.
The sensor is contact-free, and the measuring process is done autonomously.

Several studies were performed to analyze the effect of light on the sleep and
human health. The following paragraphs present just a few but relevant approaches for
this project.

The conclusion of similar research [13] has reported longer sleep onset latency
when a person is exposed to bright light before bedtime compared to dim light.

Another study [14] has demonstrated that negative influence of dim light at night is
similar for male and female subjects: decreasing of total sleep time and sleep efficiency
with simultaneous increasing of wake time after sleep onset.

Another investigation [15] has focused on the impact of light exposure during sleep
on cardiometabolic function. Finally, the conclusion was done, that a light exposure
during sleep increases insulin resistance due to higher insulin level in the groups
sleeping with the light.

The effect of sleep with light on brain oscillations was a topic of research of [16].
The results have indicated the negative impact of light during the sleep on brain waves
and on human health in general.

The results of presented articles demonstrate the importance of the further research
on light influence on human’s body.

3 System Architecture

IoT based systems are often explained trough reference models. Cisco has proposed a
comprehensive seven-layer model to simplify complex systems. Dividing it into layers
that are easier to understand and develop, the system can be optimized and standardized
better for combining other products from a vendor [17].
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The first layer, Physical Devices and Controllers, consists of a wide range of
applicable edge devices, which represent ‘things’ in the IoT system. The second layer,
Connectivity, is responsible for the information and commands transmission between
edge nodes and the layer above. It relies on existing network technologies and ensures
a reliable and timely communication. The third layer, Edge Computing, prepares the
data for the accumulation in the upper, Data Accumulation layer, converting it from
data in motion to data at rest. The fifth layer, Data Abstraction, simplifies further
processing of data, while the sixth, Application layer, interprets information from lower
layers. It also provides functionalities to operate the system. The last layer, Collabo-
ration and Processes, includes human enrolment and collaboration, when the IoT
system is supporting business processes [18].

3.1 System Architecture

In this work, the IoT based lighting system is applied in a home environment. This
belongs to a specific type of smart home automation systems, or often called Domotics
[19]. Physical devices and controllers of the lighting system consist of lightbulbs,
various sensors, switches and a bridge. Mentioned devices have integrated microcon-
trollers and wireless communication controllers. The bridge is the main part of the
system, abbreviating several layers from discussed reference model. It is responsible
for the interaction between itself and other endpoint devices in a wireless sensor
network (WSN), which is built on the Zigbee network [20]. The nodes communicate
with the bridge in a mesh network, in which the bridge has the role of central gateway.
The bridge operates the lights by sending certain parameter to a local URL, specific for
the light whose parameter is being updated. Furthermore, the bridge handles data
accumulation and abstraction of the devices’ latest states, e.g., switches and lightbulbs.
In that process, the data in motion is converted to data at rest.

The developed mobile app is written in Java programing language and it imple-
ments the Hue SDK. The bridge has a RESTful interface and must be connected to a
router to be accessible as a web service. In order to run the system, the mobile app must
be authorized in the bridge discovery process. The application was developed so that
the lighting system could be managed and operated from a smartphone or tablet,
establishing Human-Machine interaction (HMI) and enabling setup of Machine-to-
Machine (M2M) communication. The great advantage of this system is the usage of
already existing infrastructure.

The app provides functionalities to configure the home layout and positions of the
lights within the rooms, as shown in Fig. 2. Each parameter of the lights can be
automatically adjusted or manually configured, and sensors’ latest readings are
observed for further automatization. The lighting system was installed in a shared
apartment with private room. The lightbulbs were placed in every room in which the
subject spent the time until going to bed. Before conducting the research, the illumi-
nance was checked using light level sensor. The sensor was pointed in various
directions in the rooms, at the approximate height of the eyes in standing and sitting
positions. The measurement discovered, that in certain areas, the bright illuminance
benefits the most from ceiling light, due to its position. For that reason, in bright
environment scenario, the ceiling light was used along with the lighting system. In
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average, the illuminance was 70 lx. On the other hand, in dim illuminance, the system
had the possibility to reduce the light level in average to 5 lx. It was sufficient to
perform usual routines before bedtime. Measured illuminance in both scenarios cor-
responded to the desired values of the research.

3.2 Data Collection and Storage

In the morning, the subject observed sleep data was monitored by Emfit QS system,
after previously noting the exact time of entering the bed in the evening. The Emfit QS
system determined the time when subject fell asleep. The sleep onset latency was
calculated as a difference between the time of going to bed and the exact time of falling
asleep and stored on cloud using SleepStats web app. The web application, shown in
Fig. 3, was developed in PHP programming language for the purpose of storing users’
sleep data and statistical analysis. It was deployed within a cloud along with databases
in order to support complete scalability.

Fig. 2. Mobile app [8]
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4 Results

During the measuring period, bright and dim environments were randomly chosen,
resulting in various selection of dim and bright illuminance. In certain cases, dim
environment preceded bright, in other it was opposite. Some days were monitored in
same lighting setup for several days, and on the other hand there were isolated days,
where previous days were not monitored due to subject’s private obligations. The
research had the goal to determine the overall difference between subject’s sleep onset
latencies, after being exposed to bright and dim illuminance for at least three hours
before bedtime, regardless any other patterns. In total, the conducted research moni-
tored 31 days, having 15 bright and 16 dim environments.

In the measuring period, including non-monitored days, the subject did not con-
sume medical drugs or alcohol. The subject was a healthy young person, a nonsmoker,
did not travel across time zones in several preceding months and during the measuring
period and reported consuming moderate amount of coffee in the morning on non-
measured days.

The average bedtime was 3:14 h am with standard deviation (SD) of 1:17 h.
Although it was relatively late, the subject was consistent in both environment sce-
narios, displayed in Table 1. In bright illuminance, the average time of going to bed
was 3:13 am, whereas in dim illuminance it was 3:16 am. The sleep onset latency
results measured in minutes are shown in Table 2. Clearly, exposure to the dim
environment before bedtime resulted in shorter sleep onset latency, as it was expected.
In addition, the conclusion of shorter onset latency in dim illuminance compared to
bright illuminance has already been reported [13].

Graphical comparison between sleep onset latencies in bright and dim scenarios,
processed in the web app, is shown in Fig. 4. In the first line chart, the latencies in
bright illuminance are compared to the average latency in dim illuminance and dis-
played throughout the measuring period. Reversely, the second chart displays the
latencies in dim illuminance compared to the average latency in bright environment. In

Fig. 3. SleepStats web app [8]
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the first chart, 27% latencies in bright environment are shorter than the average dim
latency. Averaged, these latencies are 57% shorter than the average sleep onset latency
in dim illuminance. On the other hand, in the second chart, 25% latencies in dim
environment are longer than the average latency in bright illuminance. In summary,
these 25% latencies are 20% longer than the average sleep onset latency in a bright
environment.

Therefore, it is noticeable from the graphs and table values that latency values are
less dispersed in dim environment and the subject fell asleep with less deviations. It is
also important to take into account that various other factors influence the sleep onset
latency. Therefore, the exposure to the light before bedtime should not be taken as the
only one. In Fig. 5, the overall sleep statistics are displayed in charts.

Table 1. Bedtime averages [8]

Mean SD

Dim 3:16 am 1:19 h
Bright 3:13 am 1:18 h
Overall 3:14 am 1:17 h

Table 2. Sleep onset latencies [8]

Mean SD

Dim 13.4 min 7.0 min
Bright 18.5 min 9.9 min

Fig. 4. Sleep onset latencies graphical results [8]
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5 Conclusion and Future Work

The lighting system used in this work was combined with a sleep monitoring system, in
order to conduct the research on sleep onset latency. The research in this paper analyzes
the importance of the exposure to different illuminance before bedtime.

This research had a goal to determine the influence of home lighting on human
sleep onset latency in dim and bright environments. Relying on the medical back-
ground and taking into consideration the lack of baseline, the research expected to have
shorter latency in dim environment. The results have confirmed the assumption and
implicate the close relation between sleep onset and exposure to the light before going
to sleep. The subject fell asleep in average 28% faster in a dimmed environment and
had more stable latencies, i.e., the latencies had less deviations from its average value.
In conclusion, the exposure to the light before bedtime should not be exclusively taken
as the only factor that influences the sleep onset, but it has firm indications and grounds
of strong contribution.

In a next step, the measurement should be executed in an, for the subject, unaware
measurement, and thus contributing to further results and providing a simpler con-
duction of the research. The developed web application entirely supports scalability and
allocates needed resources on demand. Therefore, the research can be conducted on
numerous subjects without additional changes to the current configuration.

Fig. 5. Sleep onset overall statistics [8]
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Abstract. Reconstructing the phylogeny of large groups of large diver-
gent genomes remains a difficult problem to solve, whatever the meth-
ods considered. Methods based on distance matrices are blocked due to
the calculation of these matrices that is impossible in practice, when
Bayesian inference or maximum likelihood methods presuppose multiple
alignment of the genomes, which is itself difficult to achieve if precision
is required. In this paper, we propose to calculate new distances for ran-
domly selected couples of species over iterations, and then to map the
biological sequences in a space of small dimension based on the partial
knowledge of this genome similarity matrix. This mapping is then used
to obtain a complete graph from which a minimum spanning tree rep-
resenting the phylogenetic links between species is extracted. This new
online Newton method for the computation of eigenvectors that solves
the problem of constructing the Laplacian eigenmap for molecular phy-
logeny is finally applied on a set of more than two thousand complete
chloroplasts.

Keywords: Nonlinear dimentionality reduction ·
Laplacian eigenmap · Online matrix completion ·
Biomolecular phylogeny

1 Introduction

Molecular phylogenetics is the science of analysing genetic molecular differences
in DNA sequences, in order to gain information on an organism’s evolution,
with the goal to better understand the process of biodiversity. It has been a
topic of extensive interest for the bio-informatics community for many decades.
Using statistical and computational tools, the result of the molecular phyloge-
netic analysis is the computation of a phylogenetic tree, hence giving access to
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possible inference of the old DNA sequence of their last common ancestor. The
analysis begins with a phase of multiple alignment of biological sequences con-
sisting, e.g., of nucleotides or amino acids. The alignment then shows the modi-
fications undergone by the sequences over time: a column showing, for example,
a polymorphism indicates a mutation, when a gap is a sign of an insertion or a
deletion of a sub pattern. From an evolution model (mutation matrix), the goal
is then to find the evolutionary tree that maximizes the likelihood of having the
evolution indicated by the multiple alignment, under hypothesis of the chosen
evolution model.

In order to produce the optimal multiple alignment of a set of sequences, one
considers a relevant collection of authorized editing operations (for example, for
biological sequences: changing a letter, creating a gap, and increasing a gap),
each having a cost, and one looks for the smallest succession of editing opera-
tions allowing to pass from one sequence to another in the set. The underlying
assumption is that nature is parsimonious, but the associated optimization prob-
lem is known to belong to the class of NP-hard optimisation problems. Multiple
alignment being fundamental in any molecular phylogeny study, various meth-
ods have therefore been proposed in order to produce a “good” alignment, if not
optimal, by increasing the alignment as and when, by e.g. adding a new sequence
to be aligned at each iterate. Quality of the alignment is systematically “inverse
proportional” to the computation time. Based on these alignments, the biolog-
ical data can be transformed into numbers, and further analysis can be put to
work. In particular, the work in [2] demonstrates that using PCA and clustering
[9] can be instrumental in the investigation of phylogenetic data by providing
a clear and rigorous picture of the underlying structure of the dataset. Other,
more sophisticated tools such as the recent nonlinear dimensionality reduction
techniques [19] can be employed, but have not yet gained sufficient appeal among
data analytics practitioners in the community.

One of these methods, the Laplacian eigenmaps [3], has a great potential for
improving the statistical analysis of phylogenetic data by accounting for their
non-linear (potentially) low dimensional structure. One main drawback of such
methods is that all pairwise distances between genomes are implicitly assumed
available, which, due to the computational burden of estimating the alignments,
is a very complicated issue that hinders the wider application of such refined
methods. On the other hand, Laplacian eigenmap computation being as simple to
perform as the PCA, online approaches [11] that only need a small proportion of
the pairwise distances have a great potential for overcoming these computational
issues. Such online algorithms progressively estimate the principal eigenvectors
without having to wait for the full matrix to be known. This problem is very
much related to the online matrix completion problems.

Our goal in the present paper is to provide an efficient online optimisation
technique for the computation of the Laplacian eigenmap [3] for the embedding
and analysis of phylogenetic data, and to demonstrate the applicability of the
approach to the analysis of real data. Application of Laplacian eigenmaps to gene
sequence analysis and clustering was first proposed in [5]. The main novelty of
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our work is to propose a principled approach to reducing the number of pairwise
affinities that need to be computed in the context of gene sequences. Moreover,
we devise a new stochastic gradient algorithm for computing the most significant
eigenvectors based on optimisation on manifolds [1,17].

2 Background on the Laplacian Eigenmap

The Laplacian eigenmap [3] is based on the construction of a similarity matrix W .
This matrix is intended to measure the similarity between each pair of sequences
by providing a number ranging between 0 and 1. The main assumption on W is
that the greater the similarity is, the closer are the sequences to each other.

In order to create this similarity matrix, a multiple global alignment of the
DNA sequences is performed using the MUSCLE (Multiple Sequence Compari-
son by Log-Expectation [8]) software. Then, an ad hoc Needleman Wunsch dis-
tance [14] is computed for each pair of aligned sequence, and with the EDNA-
FULL scoring matrix. This distance takes into account that DNA sequences
usually face mutations and insertion/deletion. Note that, by using MUSCLE as
first stage of this matrix computation, we operate only one (multiple) sequence
alignment, instead of n(n−1)

2 (pairwise) alignments in the classical Needleman
Wunsch algorithm (that usually contains two stages: finding the best pairwise
alignment, and then compute the edit distance).

Let us denote by M the distance matrix obtained by this way. M is then
divided by the largest distance value, so that all its coefficients are between 0
and 1. W can finally be obtained as follows:

∀i, j ∈ [[1, n]], Wi,j = 1 − Mi,j ,

in such a way that Wi,j represents the similarity score between sequences i and
j. Once the similarity matrix has been constructed, the next step is to create
the normalized Laplacian matrix, as follows:

L = D−1/2(D − W )D−1/2,

where W is the similarity matrix defined previously and D is the degree matrix
of W . That is to say, D is the diagonal matrix defined by:

∀i ∈ [[1, n]],Di,i =
n∑

j=1

Wi,j .

L being symmetric and real, it is diagonalisable in a basis of pairwise orthogonal
eigenvectors {φ1, ..., φn} associated with eigenvalues 0 = λ1 � λ2 � ... � λn. The
Laplacian Eigenmap consists in considering the following embedding function:

ck1(i) =

⎛

⎜⎜⎜⎝

φ2(i)
φ3(i)

...
φk1+1(i)

⎞

⎟⎟⎟⎠ ∈ R
k1 ,
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where ck1(i) is the coordinate vector of the point corresponding to the ith

sequence. In other words, the coordinate vector of the point corresponding to the
ith sequence is composed of the ith coordinate of each of the k1 first eigenvectors,
ordered according to the size of their eigenvalues. The next section addresses the
problems of getting around the computation of all pairwise affinities.

3 The Online Newton Method on the Sphere for
Computing the Laplacian Eigenmap

In this section, we introduce our online Newton algorithm for computing the
eigenvectors of the Laplacian matrix. The computation of the main eigenvector
is equivalent to a maximisation problem on the unit sphere:

max
‖x‖2=1

vtLv. (1)

Taking the spherical constraint into account is crucial in practice, although not
usually discussed in the literature; see [17].

3.1 Background on Eigenvector Computation with Partially
Observed Matrices

One particular problem which has recently attracted a lot of interest is the one
of matrix completion, which asks whether one can recover the eigenvectors of a
matrix based on a small fraction of the entries only. Our eigenvector computation
for Laplacian eigenmap embedding is directly related to that problem.

It is well known in particular that matrix completion can be solved under
low rank assumptions, even with very few queries of the matrix entrees [6].
This observation raised the question of understanding if practical progressive
estimation of the principal eigenvectors of an unknown low rank matrix can
be efficiently performed. This problem was recently studied in [7] for positive
semi-definite matrices.

The approach of [7] uses a deflation approach and a lacunary gradient
method. Their analysis is based on a non trivial extension of the arguments
for the convergence analysis of the plain stochastic gradient algorithm of [16] for
PCA, where it was shown that convergence of the method does not depend on
the spectral gap.

3.2 Our Online Newton Algorithm

Our method is an improvement of [7]. In the full observation setting, descent
methods on manifolds provide some of the fastest methods for eigendecomposi-
tion [1,4,17]. However, to the best of our knowledge, no stochastic variant has
been proposed in the literature. Our approach is thus the first to fill this gap,
and we will apply it to the relevant problem of molecular phylogenetics, where
computing pairwise affinities is prohibitively expensive.

The standard Newton method on the sphere reads:
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– Compute y(l) = (L − xtLx I)−1x(l)

– Set α(l) = 1/x(l)ty(l), w(l) = −x(l) + α(l) y(l), and θ(l) = ‖w(l)‖2.
– Update x(l+1) = x(l) cos(θ(l) + sin(θ(l))/θ(l) w(l).

The online version of this method is based on replacing the matrix L with
a matrix filled with zeros in the places where the pairwise affinity has not been
computed at the current iterate. The main trick is to replace this sparse matrix
with a low rank approximation obtained using a singular value decomposition.
Algorithm 1 provides the details of this method, in which normal matrix and
zeros means matrices with parameter size, and respectively normaly distributed
or equal to 0. qr() returns the QR decomposition of a provided matrix while svd()
stands for the singular value decomposition. randint returns integers uniformly
distributed between the two parameters, and M t is for the transposition of a
matrix M .

Data: Number of sequences N, targeted dimension r, Number of
iterations L

Result: the largest eigenvalue and its eigenvector
Initialization;
/*Compute a random orthonormal matrix */
Q = normal matrix(N ,5);
Q = QQt;
X = normal matrix(N ,r);
X, = qr(X);
SX=zeros(N, r)
Main loop;
for l = 1, ..., L+1 do

Qstoch = zeros(N,N);
for n = 0, ..., 5000 do

i = randint(N);
j = randint(N);
Qstochi,j = Qi,j ;

end
QQstoch = (IN -X.Xt)*Qstoch*X;
U, S, V = svd(QQstoch);
U = first column of U ;
S = diagonal matrix whose first component is the first component of
S;
V =first column of V ;
X = XV tcos( 10l S)V + Usin( 10l S)V ;
X,RR = qr(X);
SX = SX + l.X;
XX = SX/l2;
XX=normalization of XX;

end
Algorithm 1. The online Newton method on the sphere
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A typical convergence behavior of the associated eigenvalue with the present
method is presented in Fig. 1 below (here, the largest one, the other ones being
computed using a deflation approach).

Fig. 1. Typical convergence behavior for our online Newton method for the computa-
tion of the eigenvalue associated with the eigenvector of interest (here, the largest one,
the other ones being computed using a deflation approach.

4 Application in Molecular Phylogeny

4.1 General Presentation

Any molecular phylogeny study begins with a phase of multiple alignment of bio-
logical sequences consisting, e.g., of nucleotides or amino acids [12]. The align-
ment then shows the modifications undergone by the sequences over time: a
column having, for example, a polymorphism indicates a mutation, when a gap
is a sign of an insertion or a deletion of a sub pattern. From an evolution model
(mutation matrix), the goal is then to find the evolutionary tree that maximizes
the likelihood of having the evolution indicated by the multiple alignment, under
hypothesis of the chosen evolution model.

The running time to compute the alignment between two sequences of respec-
tive lengths m and n being equal to O(mn/ log n) by using Needleman Wunsch
algorithm, various approaches propose to use a quick approximation of the latter
to more efficiently fill the distance matrix equivalent to multiple alignment (and
which basically requires N(N−1)

2 distance calculations for a set of N sequences).
In view of this observation, we propose to reconstruct the phylogenetic link from
an incomplete estimate of the distance matrix. Following the online descent on
the sphere presented previously, we can estimate one by one all the eigenvectors
of the distance matrix.

The Laplacian eigenmaps applied by using the eigenvectors associated to the
three largest absolute eigenvalues leads to an embedding of the N sequences in
points belonging in a space of dimension 3. A complete undirected graph can be
deduced, in which each sequence occupies a vertex of the graph, and for which
the edge between nodes i and j is weighted by the Euclidean distance between
points i and j associated with the sequences thus labelled. The extraction of a
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covering tree of minimal weight, for example with the Kruskal algorithm, allows
to infer a phylogenic relationship between the original sequences without having
to calculate multiple alignment, and knowing only a small part of the distance
matrix. Such an approach is applied to a concrete dataset in the following section.

4.2 Data Collection and Analysis

Thousands of complete genomes of chloroplasts are available now, which can
be found for instance on the NCBI website. A Python script was written that
automatically downloads all complete sequences of chloroplasts currently avail-
able on this website, which amounts to 2,112 genomes of average size: 151,067
nucleotides (ranging from 51,673 to 289,394 nuc.). They represent the global
diversity of plants as a whole.

Even though they all derive from a common ancestor (probably a cyanobac-
terium), this ancestor dates back to such a time that the genomes are very
divergent from each other. Each gene in the core genome of chloroplasts there-
fore corresponds to potentially very different nucleotide sequences between two
very distant plants. Also, if calculating the distance of a couple of representa-
tives of a given gene is quite feasible, aligning the thousand DNA sequences
of any core gene is very difficult, and leads to an extremely noisy alignment.
Multiple alignment tools such as Muscle [8] take several hours to a day of cal-
culations even for small core genes, while requiring a large amount of memory.
And the alignment does not ultimately resemble much, so that the phylogenetic
tree built from this alignment has many badly supported branches, and leads to
obvious inconsistencies in view of taxonomy. The data set is much too large for
T-Coffee [15], when ClustalW [13] allows, by its various modes, either to obtain
in a reasonable time a very noisy alignment, or gets lost in endless calculations.

One way to obtain a phylogenetic tree well supported on a substantial part of
the core genome of these chloroplasts would consist in calculating separately, for
each order or family of plants, a multiple alignment followed by a phylogenetic
inference. Then, to group this forest of trees in a supertree, by means of an ad hoc
algorithm. Although feasible, such an approach has two important limitations.
On the one hand, branch support information is lost when the super tree is
built. On the other hand, the number of trees to calculate in the forest increases
exponentially with the taxonomic level chosen to separate species, and if the
calculation time for each tree is reduced, this reduction is compensated by the
number of trees to calculate. Conversely, the approach detailed in this article
allowed us to reconstruct a reliable phylogeny in a reasonable time, see below.

4.3 Experimental Results

The 2,112 complete sequences have been automatically annotated by Dogma [20]
and GeSeq [18], two web services specifically designed for gene prediction in
chloroplastic genomes. This latter has outperformed the former in terms of accu-
racy, when considering their ability to recover well the annotations of some ref-
erence genomes. Such a result is not surprising, taken into account the fact that
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Fig. 2. Obtained phylogeny with RPL2 gene (extraction from the big graph)

Dogma has been released almost 2 decades ago while GeSeq is a brand new
algorithm: to make its predictions, GeSeq relies on a basis of knowledge that is
much more recent and complete than the one of Dogma, which was therefore
abandoned in the remainder of the study.

According to GeSeq annotations, each genome as 81.86 genes in average, the
smallest genome exhibiting 32 genes while the largest one has 92 genes. The
pan genome has 92 genes, while the core genome is constituted by RPL2, RPS2,
RRN16, and RRN23. Being everywhere, these 4 genes can be used to compute
the phylogeny of the 2,112 genomes. Each core gene leads to a distance matrix
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of size 2,112 × 2,112 to estimate, thus to 2,112 eigenvectors on which to apply
the Laplacian eigenmap technique, and then to infer the tree.

Our approach allows to infer a phylogenetic tree of the set of all available
complete chloroplasts in a very reasonable time. The latter is a function of the
hyperparameter L setting the stop criterion in the loop determining a new eigen-
value, which measures the variation in the estimate of a given eigenvalue: when
it is below the threshold set by the user, the estimate is returned and the next
eigenvalue is considered by investigating the subspace orthogonal to the previ-
ously obtained eigenvectors.

Fig. 3. Phylogenetic tree using Muscle and RAxML

Our proposal has been fully designed using Python language, and the net-
workx library [10] has been used to compute the covering tree of minimal weight:
Euclidian distance between each resulting couple of 3D points has led to a com-
plete graph, whose covering tree of minimal weight has been computed with
Kruskal. To validate the obtained tree and for the sake of illustration, we focused
on a small subset of 30 divergent sequences of RPL2 gene, investigating whether
the phylogenetic relationships extracted from the big tree with 2,112 species are
in agreement with the taxonomy obtained with a more classical approach, still
applicable for this small collection of sequences.

Our obtained phylogenetic is represented in Fig. 2, while the tree inferred with
RAxML (multi-alignment using Muscle, GTR+Gamma evolutionary model) is
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provided in Fig. 3. As can be seen on this small randomly extracted sub-set,
the phylogenetic reconstruction is coherent and broadly sensible, despite the
fact that the tree was reconstructed over a small part of the Needleman-Wunch
distance matrix. The errors that can be detected in our tree can be reduced
by using the hyperparameter values: a compromise must be found to obtain an
efficient and accurate calculation.

5 Conclusion

In this paper, we proposed a new online Newton method for the computation
of eigenvectors that solves the problem of constructing the Laplacian eigenmap
for molecular phylogeny. As a follow up project, we plan to study the problem
of active learning in the same framework in a future publication, in order to
optimise the selection of the pairs on which the alignment is performed. Exten-
sible backend for hyperparameter auto-tuning will be provided, and the scalable
phylogenetic tool will be applied on genome sets of large scale.

A A Python Implementation

The following code gives the Python implementation of the method for the more
general case of the Stiefel manifold, a generalisation of the sphere. (The case of
the sphere corresponds to taking r = 1.)

from numpy.random import normal
from numpy.linalg import eig, qr, svd, norm
from numpy import matrix, zeros, eye, diag
from random import randint
from math import sin, cos
from pylab import plot, show

N, r = 10, 1

Q = matrix(normal(0,1,(N,5)))
Q = Q∗Q.T

umax,lambmax = eig(Q)
lambmax = lambmax[:,umax.argmax()]
umax = max(umax)

X = matrix(normal(0,1,(N,r)))
X,R = qr(X)

SX=matrix(zeros(X.shape))
L = 1000
lamb, scal = [], []
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for l in range(1,L+1):
Qstoch = matrix(zeros(Q.shape))
for ll in range(0,5000):

i=randint(0,N−1)
j=randint(0,N−1)
Qstoch[i,j]=Q[i,j]

QQstoch = (eye(N)−X∗X.T)∗Qstoch∗X
U,S,V = svd(QQstoch)
U=U[:,0:r]
S=diag(diag(S[0:r]))
V=V[0:r,0:r]
X = X∗V.T∗cos(10./(l∗∗1)∗S)∗V+U∗sin(10./(l∗∗1)∗S)∗V
X,RR = qr(X)
SX=SX+l∗X
XX=SX/l∗∗2
XX=XX/norm(XX);
lamb.append(max(diag(XX.T∗Q∗XX)))
scal.append(abs(X.T∗umax))

plot(range(len(lamb)),lamb)
show()
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Abstract. To carry out functional annotation of proteins, the most crucial step
is to identify the ligand binding site (LBS) information. Although several
algorithms have been reported to identify the LBS, most have limited accuracy
and efficiency while considering the number and type of geometrical and
physio-chemical features used for such predictions. In this proposed work, a fast
and accurate algorithm “PROcket” has been implemented and discussed. The
algorithm uses grid-based approach to cluster the local residue neighbors that are
present on the solvent accessible surface of proteins. Further with inclusion of
selected physio-chemical properties and phylogenetically conserved residues,
the algorithm enables accurate detection of the LBS. A comparative study with
well-known tools; LIGSITE, LIGSITECS, PASS and CASTptool was per-
formed to analyze the performance of our tool. A set of 48 ligand-bound protein
structures from different families were used to compare the performance of the
tools. The PROcket algorithm outperformed the existing methods in terms of
quality and processing speed with 91% accuracy while considering top 3 rank
pockets and 98% accuracy considering top 5 rank pockets.

Keywords: Protein � Ligand binding site � Functional annotation �
Phylogenetic � Grid

1 Introduction

High resolution protein structural data has been rapidly increasing due to progress in
computational and experimental methodologies [1]. Experimental advancements have
made it possible to obtain multiple protein structures with different resolution for the
same protein, and it is also more often the case where multiple conformation of par-
ticular protein is generated, to know the dynamic behavior of protein, using computa-
tional approaches. The protein structure guides researchers to design specific molecules
for the analysis of protein-molecular interaction. Moreover, the availability of large
conformational data helps to explore additional chemical spaces [2]. The interaction
between proteins and other molecules define how it performs biological function, such
as protein-ligand interaction, protein-DNA interaction, and protein-protein interaction.
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One of the major factors for interaction to happen is by identification of shape com-
plementary region or binding site region corresponding to the binding molecule [3–6].
The binding site region in protein corresponds to the pocket or cavity located on the
protein surface. Identification of such regions on the protein surface is therefore a crucial
step towards the protein-ligand docking and structure-based drug designing.

Several studies have been carried out for the characterization and identification of
cavities or pockets in protein surface. In order to identify pockets, one has to consider
several aspects associated with it:

1. Identification of the pocket itself [6–24]. In this, an approach is required which
limits itself on protein surface for pocket identification and has the ability to bind
small molecules.

2. Ranking of predicted pocket, for instance, based on their likeliness to bind to small
molecules. Since several pockets are detected on the protein surface, there must be
some scoring criteria to select the relevant pockets. Generally, it has been observed
that the largest pocket has high frequency corresponding to the ligand binding site
[21].

3. Last, but not the least, corresponds to the induced fit model which specifies the
three-dimension shape of the pocket corresponding to the ligand [25–28].

The last aspect of the pocket has several issues corresponding to the scoring criteria
and pocket shape. Since scoring criteria is strongly dependent on the quality of the
identified pocket, and in absence of ligand, the method may or may not predict the
relevant pocket. Here, we primarily focus on potential pocket identification from three-
dimension protein structure.

Generally, two types of approaches, grid-based approach and grid free approach,
are used to predict ligand binding pocket [6–19, 21, 23, 24]. In grid-based approach, a
protein structure is initially projected onto three dimensional grids. Grid points that are
on the protein surface are then identified based on certain conditions. For instance, in
POCKET [7] the grid points are divided into two classes; solvent-accessible grid points
and solvent-inaccessible grid points. This method searches for cavity along the x, y and
z-axis to locate solvent-accessible grid points that are enclosed by solvent-inaccessible
grid points. However, the result obtained via this method is not satisfactory as it is
unable to detect pockets with 45° orientation with orthogonal axes. To overcome this
problem, LIGSITE [13] was developed which extends its searching process to four
cubic diagonals for better prediction of pocket and is independent of protein orientation
onto the grid. The extension of LIGSITE is the LIGSITECS approach [14] which uses
Connolly surface of the protein to detect binding site pocket. On the other hand, grid
free methods either make use of probe-based approaches or Voronoi diagram-based
approaches. In probe-based approach, the probe position is first identified with respect
to the surface of the protein, and then based on some criteria, the probe cluster is
identified with respect to the candidate cavity. For instance, PASS [18] program iter-
atively places probes on the protein to detect the surface and then searches the cavity
probes based on “burial count”, which counts the protein atom within 8 Å radius.
A “probe weight” is assigned to each cavity probe based on the burial count and
neighboring probes. Finally, to detect binding pocket, “active site points” is calculated
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for cavity probes. Another probe-based approach was proposed by Kawabata and Go
[23], and Nayal et al. [21]. They made use of two different size probes to detect the
ligand binding pocket. The smaller probes were used to detect the surface of the
protein, whereas larger probes were used to detect collections of small probes on the
surface depression or cavity of the protein. The other approach related to Voronoi
diagram is CAST [17]. In this approach, a Voronoi diagram is constructed from the
protein atoms. The Voronoi diagram includes Voronoi cells which contain one protein
atom and controls other neighboring atoms in space. The Voronoi diagram computes
the Delaunay triangulation of protein surface atom to predict ligand binding sites.

In this study, we present a new grid-based approach to predict ligand binding sites.
The method starts with grid initialization and mapping of protein atoms onto the grid.
To detect ligand binding pockets on the protein surface, a sophisticated scanning
process is used to identify highly enclosed grid points belongs to pocket. These grid
points help in determining the shape of the pocket. Finally, a clustering algorithm
clusters all the enclosed grid points belonging to the pocket with appropriate shape. At
last, the candidate pockets are ranked based on their enclosed score and cluster size to
detect the ligand binding pocket.

2 Methodology

PROcket approach is a multistep process that can be described as follows:

2.1 Grid Initialization and Mapping

A cubic three-dimensional rectangular regular grid is constructed to map the three-
dimension protein structure. For this, the Eigen vector of the given protein structure
was used to transform the protein’s molecule around principle axis [2, 29]. The
transformed coordinate system was used for cubic grid construction. After grid con-
struction, the transformed coordinate and corresponding van der Waals radii (Table 1)
was used to map all protein atoms on to the grid.

The mapping process divides the grid region in two parts: occupied region and
unoccupied region. To distinguish between the occupied and unoccupied region, a

Table 1. Atom’s name and corresponding van der Waals radii in Angstroms

Atom name Radius

C (Carbon) 1.6 Å

H (Hydrogen) 1.2 Å

O (Oxygen) 1.52 Å

N (Nitrogen) 1.55 Å

P (Phosphorus) 1.8 Å

S (Sulphur) 1.8 Å

F (Fluorine) 1.47 Å

PROcket, an Efficient Algorithm to Predict Protein LBS 455



Boolean Flag variable is used with each grid point. The occupied region contains the
protein atoms and its Flag status is set to true. The unoccupied region represents solvent
exposed area and its Flag status is set to be false.

2.2 Grid Cubes Credibility Determination for Cavity

In grid-based approach, cavity in a protein can be defined as a series of unoccupied grid
points bound by protein atoms (occupied region). To discover such points, the unoc-
cupied region was divided into two parts: surface sub-region and non-surface sub-
region (Fig. 1). The surface sub-region contains those unoccupied grid points which are
within 4 Å distance from the surface atoms of protein. The non-surface sub-region
contains unoccupied points. The enclosed score of unoccupied grid points were cal-
culated in their respective sub region, which demonstrates whether the points are
considered to be a part of the cavity.

To calculate enclosed score of unoccupied grid point, a fourteen-dimension vector
was defined which scans unoccupied grid cubes in fourteen directions (six along the
positive and negative x, y and z axis and eight along grid directions). A maximum
scanning distance threshold was defined for all direction which is to be set by the user. In
our algorithm, the default value of scanning distance is set to be 10. During scanning
process of unoccupied grid points, if an occupied region is encountered, the enclosed
score for that unoccupied grid point was incremented by 1. The value of enclosed score
represents the degree of coverage of unoccupied point within cavity or in surface
depression. The enclosed score is calculated for all unoccupied points in their respective

Fig. 1. Semantic view of PROcket process to detect ligand binding pocket. (a) The dark region
in grid represents the occupied region of grid. The gray region represents the surface sub region
and white area represents the non-surface region of unoccupied region.
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sub regions. To filter out the grid points which are not enclosed enough, an enclosed
threshold for surface and non-surface sub regions was dynamically defined as follows:

lj ¼
PNj

i¼1 Enclose scoreij
Nj

ð1Þ

SDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNj

i¼1 Enclose scoreij � lj
�
�

�
�2

Nj

s

ð2Þ

enclosednessthresholdj ¼ lj þ SDj ð3Þ

where lj, SDj represents the mean and standard deviation of j-th sub region,
Enclose scoreij represents the i-th grid point enclose score in j-th sub region, Nj

represents the size of j-th sub region and j either represents surface sub region or non-
surface sub region.

The unoccupied points with enclosed score less than the enclosed threshold of
respective sub-region were removed from the corresponding sub-regions. The
remaining unoccupied grid cubes from two sub regions were combined together into
enclosed cubes list for further investigation of the neighborhood. The neighborhood
demonstrates how well an unoccupied-enclosed cube is surrounded by other well
unoccupied-enclosed points, and how it controls the shape of the respective cavity. To
investigate the neighborhood of unoccupied-enclosed grid points, a twenty-six-
dimension vector was defined, which scan the unoccupied-enclosed grid points in
twenty-six directions (using all possible combination of 1, 0, 1 along x, y and z axis
and avoiding the current cube position) to include other unoccupied-enclose grid point
neighbors. The neighborhood score was calculated for all unoccupied-enclosed points.
To filter out unoccupied-enclosed points which did not have sufficient neighbor, a
neighborhood threshold was dynamically defined as follows:

ln ¼
PM

i¼1 Neighbourhoodi
M

ð4Þ

SDn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

i¼1 Neighbourhoodi � lnj j2
M

s

ð5Þ

Neighbourhoodthresholdn ¼ ln þ SDn ð6Þ

where ln, SDn represents the mean and standard deviation of unoccupied-enclosed
point’s neighborhood, Neighbourhoodi represents the i-th unoccupied-enclosed point
neighborhood score, M represents the number of unoccupied-enclosed points.

The unoccupied-enclosed grid cubes having neighboring score less than the
neighborhood threshold were removed from the enclosed cubes list. The remaining
unoccupied-enclosed grid points were considered to be part of cavity and promoted for
clustering process.
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2.3 Clustering and Interface Residue Calculation

The process of combining the unoccupied-enclosed grid points of respective cavity into
a single group is known as clustering. The clustering process describes the size of
cavity in term of number of highly enclosed unoccupied points having sufficient
number of neighbors, which is analogous to the volume of the cavity. Figure 2
describes the pseudo code of clustering process.

After performing clustering, the size of each cavity was determined. Higher value of
cluster size represents larger cavities, while the smaller value represents smaller cavities
in the protein. Generally, a highly enclosed (buried/depth) cavity with high volume is
considered to be the ligand binding side [21]. The above stated criterion was used to
rank each obtained cavity of protein. To this, a cavity rank variable (CR) was used,
which is equal to the average of maximum enclosed grid point (ECC) and cluster size
(CS) of the respective cavity, and its mathematical description was defined in equation:

CRi ¼ avg max ECCið ÞþCSið Þ ð7Þ

Where CRi represents the rank of i-th cavity, ECCi represents unoccupied enclosed
grid point list of i-th cavity and CSi represents the cluster size of i-th cavity of protein.
After ranking the cavity, the residue forming the cavity has been identified and pro-
jected as output.

3 Result and Discussion

In order to evaluate the prediction quality of our proposed approach, PROcket, a test
data set of forty-eight ligand bound complex was extracted from the public domain
database RCSB protein database (PDB) [30]. The above test data set collection was

Fig. 2. Algorithm to cluster enclosed grid points belongs to candidate cavity.
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used in earlier studies [14] to compare the prediction quality of various approaches
such as LIGSITE, LIGSITECS, CAST and PASS. The dataset collection was used to
validate the prediction quality of our approach. The ligand information denoted by
HET (heteroatom) identifier was excluded from the forty-eight PDB-files prior to
computation. To determine whether a cavity is the ligand binding site, the geometric
center of each outputted cavity is computed. If any atom of the ligand is within 4 Å
from this geometric center, the cavity was considered as the ligand binding site. To
verify the predicted ligand binding site with actual ligand binding sites, we performed
the structural comparison between the predicted and actual ligand binding sites using
the open source software Chimera [31].

Table 2 describes the predicted ligand binding sites within top three results
obtained by each of the five considered approaches, matched with known ligand
binding site. At rank 1, the success rate of our approach is only 64% which is slightly
lower than the success rate of CAST, LIGSITE, and LIGSITECS, 69%, 69%, and 67%,
respectively, but slightly higher than that of PASS success rate at 63%. However, at
rank 3, the success rate of our approach is 91%, which is much better than the success
rate of other approaches.

The results obtained by our approach, PROcket, are classified into six classes: first,
second, third, fourth, fifth ligand binding site, and none of these. Table 3 shows the
percentage of these six classes. The results indicate the efficiency of PROcket in
detecting ligand binding pocket, and further filtering, such as scoring based on dru-
gability could improve the result.

Table 2. Comparison of success rates for 48 complexed protein structures in percentage.

S. No Software Rank 1 Rank 3

1 PROcket 66 91
2 LIGSITECS 69 87
3 LIGSITE 69 87
4 CAST 67 83
5 PASS 63 81

Table 3. Number of proteins in each class for 48 bound structures.

Class No of proteins (as %)

Class 1: Binding site in largest Pocket (32/48) = 66
Class 2: Binding site in second largest Pocket (10/48) = 20
Class 3: Binding site in third largest Pocket (2/48) = 4
Class 4: Binding site in fourth largest Pocket (2/48) = 4
Class 5: Binding site in fifth largest Pocket (1/48) = 2
Class 6: Binding site in none of the above (1/48) = 2
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4 Conclusions

Several methods have been developed to identify pockets or cavities on protein sur-
faces, and to describe the relationship between the predicted pocket and ligand binding
sites. In this paper, we propose an automated method, PROcket, to detect ligand
binding site on protein surface. We compared our approach with LIGSITE, LIGSI-
TECS, PASS, and CAST on 48 ligand bound protein dataset. The result shows that our
method is capable of predicting ligand binding site with high success rate (91%),
compared to other methods, within top three results and 98% within top five results.
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Abstract. Precision medicine, a highly disruptive paradigm shift in
healthcare targeting the personalizing treatment, heavily relies on
genomic data. However, the complexity of the biological interactions,
the important number of genes as well as the lack of substantial patient’s
clinical data consist a tremendous bottleneck on the clinical implemen-
tation of precision medicine. In this work, we introduce a generic, low
dimensional gene signature that represents adequately the tumor type.
Our gene signature is produced using LP-stability algorithm, a high
dimensional center-based unsupervised clustering algorithm working in
the dual domain, and is very versatile as it can consider any arbitrary dis-
tance metric between genes. The gene signature produced by LP-stability
reports at least 10 times better statistical significance and 35% better
biological significance than the ones produced by two referential unsuper-
vised clustering methods. Moreover, our experiments demonstrate that
our low dimensional biomarker (27 genes) surpass significantly existing
state of the art methods both in terms of qualitative and quantitative
assessment while providing better associations to tumor types than meth-
ods widely used in the literature that rely on several omics data.
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1 Introduction

Advances in omics data interpretation such as genomics, transcriptomics, pro-
teomics and metabolomics contributed to the development of personalized
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medicine at an extraordinarily detailed molecular level [7]. Major advances in
sequencing techniques [15] as well as increasing availability of patients which gave
access to a big amount of data are the backbones of precision medicine paradigm
shift. Among them, the first omics discipline, genomics, focuses on the study of
entire genomes as opposed to ’genetics’ that interrogated individual variants or
single genes [8]. Genomic studies investigate frameworks for studying specific
variants of genes, producing robust biomarkers that contribute to both complex
and mendelian diseases [5] as well as the response of patients to treatment [21].
However, these studies suffer from the curse of dimensionality and face several
statistical limits reporting instead of causality, random correlations leading to
false biomarker discoveries as stated in [4]. For these reasons the largest topics
of research on genomics is the development of robust clustering techniques that
are able to reduce the dimensionality of the genetic data, while maintaining the
important information that they contain [18,19].

Clustering algorithms are commonly used with big data sets to identify
groups of similar observations, discovering invisible to the human eye patterns
and correlations between them [6]. Cluster analysis, primitive exploration with
little or no prior knowledge, has been a prolific topic of research [23]. It aims
to group the variables in the best way that minimizes the variation within the
groups while maximizing the distance between the different groups. Among a
variety of methods, some of the most commonly used are the K-Means [17], the
agglomerative hierarchical clustering [20] and the spectral clustering [16].

Cluster analysis on RNA-seq transcriptomes is a wide spread technique [2]
aiming to identify clusters or modules of genes that have similar expression
profiles. The main goal of such techniques is to propose groups of genes which are
biologically informative such as containing genes coding for proteins interacting
together or participating to a same biological process [3]. Several studies have
investigated the use of machine learning algorithms towards powerful, compact
and predictive genes signatures [5] as biomarkers associated to e.g. tumor types.
However, most of them rely on a priori knowledge to choose the genes of the
signatures leading to redundancy and loss of information, where evidence based
methods as well as the ability to determine unknown to the humans higher
order correlations could have tremendous diagnostic, prognostic and treatment
selection impact. In [18], the authors propose a clustering algorithm, CorEx
algorithm [22], to design from scratch a predictive gene signature evaluated for
ovarian tumors. Even if this study showed that powerful gene biomarkers can
be generated, it has a lot of limitations such as the association with only one
specific tumor type and a signature with several hundred genes.

A very important step towards the generation of informative clusters is their
evaluation with independent and reliable measures for the comparison of the
parameters and methods. This task is very challenging in the case of genomic
clustering, as the clusters should also contain biological information. There are
variety of metrics that can assess the quality of the clusters in a statistical matter
as the Silhouette Value [10], the Dunn’s Index [14] or more recently the Diversity
Method [12]. As a complement, the Protein-Protein Interaction (PPI) and the
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Gene Ontology (GO) terms have been recently used to assess the biological
soundness of the clusters by using the enrichment score [18].

In this paper, we investigated a center-based clustering algorithm, in the
sense that it is based on finding the optimal set of center variables and then
assigning the variables to their nearest center. In particular, we investigate LP-
stability algorithm [13] which has already been successfully adapted on various
fields but not on genomics. More specifically, the contributions of this work are
three folds: (i) create and compare a generic, low dimensional signature using the
gene expressions of the entire annotated coding genes, (ii) use the LP-stability
algorithm, a robust clustering method and compare it with commonly used state
of the art algorithms for clustering of genomic data, (iii) assess our automatically
produced gene signature with different tumor types, reporting accuracy similar
to other methods in literature that use more omics data.

2 Methodology

Let us consider a set of n points S = {x1, ..., xn} in m dimensions where for
any point xp ∈ S: xp = (xp

1, ..., x
p
m). Depending on the algorithm, different

notions of distance/dissimilarity d are used. Now lets denote as k the number
of clusters in a clustering C = C1, ..., Ck defined such that ∀1 ≤ i, j ≤ k,
Ci ∩ Cj = ∅ and

⋃
1≤i≤k Ci = S. ∀1 ≤ i ≤ k we denote ni the number of points

in cluster Ci. The mean of the points in cluster Ci will be denoted as μi and
will be called centroid of the cluster. Finally, we get a discrete random variable
X = {X1, ...,Xb} from a point x ∈ S by binning of b bins. We denote P (X)
the probability mass function of X. We define the Shannon Entropy of X as
H(X) = −∑

1≤i≤b P (Xi) ln P (Xi).

2.1 Baselines Methods

K-Means Algorithm. K-Means [17] is one of the most popular clustering
algorithms because of its simplicity and its efficiency for convex clusters. The
algorithm starts from an initial random clustering and, iteratively, determines k
clusters centroids μi and defines new clusters by assigning points to the closest
centroid. It minimizes

k∑

i=1

∑

x∈Ci

d(x, μi). (1)

The algorithm depends only on the number of clusters k. Generally, K-Means is
used with Euclidean distance for convergence issues. The Euclidean distance is
defined as Euclidean(xp, xq) =

√∑m
i=1(x

q
i − xp

i )2 . Due to the random initial-
ization of the clusters, the optimal clusters can change.
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CorEx Algorithm. CorEx [22] was successfully applied on various fields and,
also, on genes [18]. The algorithm finds a set S′ of k latent factors that describe
the data set S in the best way. Formally, let us consider the Total Correlation
of discrete random variables X1, ...,Xp as

TC(X1, ...,Xp) =
∑

1≤i≤p

H(Xi) − H(X1, ...,Xp) (2)

and the Mutual Information of two discrete random variables Xi,Xj as

MI(Xi,Xj) =
∑

Xi
p∈Xi

∑

Xj
q∈Xj

P (Xi
p,X

q
i ) log

P (Xi
p,X

j
q )

P (Xi
p)P (Xj

q )
(3)

where P (Xi
p,X

j
q ) is the joint probability function and P (Xi

p), P (Xj
q ) are

marginal probability functions. The algorithm minimizes the Total Correlation
TC(S|S′). Then, the clusters are defined by assigning each data point xp to the
latent factor f maximizing the mutual information MI(Xp, f). The algorithm
requires as an input the number k of latent factors corresponding to the number
of clusters.

2.2 LP-stability Clustering Algorithm

We present here the evaluated LP-stability clustering [13] which is a linear pro-
gramming algorithm that has been successfully used on variety of problems. It
aims to optimize the following linear system

PRIMAL ≡ min
C

∑

p,q

d(xp, xq)C(p, q)

s.t.
∑

q

C(p, q) = 1

C(p, q) ≤ C(q, q)
C(p, q) ≥ 0.

(4)

where C(p, q) represents the fact that xp belongs to the cluster of center xq. To
decide which points will be used as centers, the notion of stability is defined as

S(q) = inf{s, d(q, q) + s PRIMAL has no optimal solution with C(q, q) > 0}.

Let us denote Q the set of stable clusters centers. The algorithm solves the
clustering using the DUAL problem

DUAL ≡ max
D

D(h) =
∑

p∈V
hp

s.t. hp = min
q∈V

h(p, q)
∑

p∈V
h(p, q) =

∑

p∈V
d(xp, xq)

h(p, q) ≥ d(xp, xq).

(5)
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h(p, q) corresponds here to the minimal pseudo-distance between xp and xq,
hp corresponds to the one from xp. In particular, the algorithm formulates the
computation of clusters as

DUALQ = maxDUAL s.t. hpq = dpq,∀{p, q} ∩ Q 	= ∅. (6)

The proposed clustering approach is metric free (it can integrate any distance
function), does not make any prior assumption on the number of clusters and
their distribution, and solves the problem in a global manner seeking for an auto-
matic selection of the cluster centers as well as the assignments of each obser-
vation to the most appropriate cluster. Only one parameter has to be defined,
the penalty vector v, that turns d(q, q) in d′(q, q) = d(q, q) + vq in PRIMAL,
influencing the number of clusters.

To cope with the dimensionality of the observations as well as the low ratio
between samples and dimensions of each sample, a robust statistical distance
was adopted for our experiments. It comes from Kendall’s rank correlation [11]:

Kendall(xp, xq) = 2
NC − ND

n(n − 1)
(7)

where NC is the number of concordant pairs and ND the number of discordant
pairs. A pair of observations (xp

u, xq
v) and (xp

u, xq
v) is considered as concordant if

their ranks agree i.e. xp
u > xp

v ⇔ xq
u > xq

v . They are considered as discordant if
xp
u > xp

v ⇔ xq
u < xq

v.
The distance is then defined as: d(xp, xq) =

√
2(1 − Kendall(xp, xq)).

3 Experimental Results

3.1 Evaluation Criteria

In order to assess the performance of the proposed solution, we have adopted
joint qualitative/quantitative assessment. Biological relevance of the proposed
solution was used to assess the quality of the results, while well known statistical
methods were adopted to determine the appropriateness of the proposed solution
from mathematical view point. In particular, the criteria used are the following:

– Enrichment Score: To assess the biological information of the clusters,
enrichment is one of the most popular metrics used in the literature [18].
Enrichment corresponds to the probability of obtaining a random cluster
presenting the same amount of occurrences of a given event as in the assessed
cluster. This event for our experiments was defined as the number of PPI.
In particular, for each cluster the p-value of the enrichment is calculated and
the cluster is defined as enriched if the p-value is below a given threshold.
The enrichment score corresponds to the proportion of enriched clusters.

– Dunn’s Index: The Dunn’s Index [14] assesses if the clusters have a small
inter-cluster variance compared to the intra-cluster variance. Formally,
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Dunn(C) =
min1≤i,j≤k δ(Ci, Cj)

max1≤i≤k Δ(Ci)
where δ(C1, C2) is the distance between the

two closest points of the clusters Ci and Cj , Δ(Ci) is the diameter of the
cluster i.e. the distance between the two farthest points of the cluster Ci.
Even if Dunn’s Index is one of the commonly used metrics for evaluating the
quality of the clustering it can varies dramatically even if only one cluster is
not well formed. However, we chose this metric over the various existing ones
to show the importance of having homogeneously well formed clusters.

To assess the relevance of the results obtained, we compared the clustering
with the methods presented in Sects. 2.1 and 2.2 but also with the performance
of random clusters. This comparison is very important to prove that the infor-
mation captured by the clusters is associated with the gene interactions and it
cannot be achieved by a random selection of genes.

3.2 Data Set

For our experiments we used a data set from the TCGA data portal [1]
with tumor types that can be treated by radiotherapy and/or immunotherapy
(Table 1). It contains 4615 samples well distributed among all the ten differ-
ent tumor types. In particular, we investigate the following types of tumors,
namely: Urothelial Bladder Carcinoma (BLCA), Breast Invasive Carcinoma
(BRCA), Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma
(CESC), Glioblastoma multiforme (GBM), Head and Neck Squamous Cell Car-
cinoma (HNSC), Liver Hepatocellular Carcinoma (LIHC), Rectum Adenocarci-
noma (READ), Lung adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma
(LUSC) and Ovarian Cancer (OV). For each sample, we had the RNA-seq values
of 20 365 genes normalized by reads per kilobase per million (RPKM).

Table 1. Number of the different samples used per tumor type.

Tumor type BLCA BRCA CESC GBM HNSC LIHC READ LUAD LUSC OV

# of Samples 427 1212 309 171 566 423 72 576 552 307

3.3 Implementation Details

The optimization and selection of parameters per algorithm has been performed
by grid search, for a wide range of values. In particular, for the random clustering
and K-Means algorithm, we studied the following numbers of clusters: 5, 10,
15, 20, 25 and between 30 and 100 with an increasing step of 10 and with an
increment of 25 for CorEx algorithm because of its computational complexity.
For the LP-stability algorithm, as the number of clusters is not directly specified,
we gave the same penalty value for all the genes. We used penalty values such
that we have numbers of clusters comparable to the ones of the other algorithms.
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For the enrichment score we performed evaluations with different thresholds
values i.e. 0.005, 0.025, 0.05 and 0.1. Moreover, for the Dunn’s Index, we used
the same distance as the one used to compute each of the clustering to have the
best related score to the clustering metric.

To evaluate the clusters that we have obtained from the proposed method,
together with the other baseline algorithms, we performed sample clustering
using an automatically determined reduced number of genes. In particular, for
each method, we produced a gene signature from its best clustering by selecting
as representatives of each cluster its center. For the LP-stability clustering, the
centers were defined as the actual stable center genes computed by the algorithm.
However, for the rest of the clustering methods, we selected the medoid gene i.e.
the gene the closest to the centroid of the cluster. The sample clustering was
performed using K-Medoids method, a variant of K-Means algorithm, coupled
with Kendall’s rank correlation to determine a distance between patients accord-
ing to the genes of the signature. The evaluation of those sample clustering was
performed by assessing the distribution of the tumor types across the clusters.

3.4 Results and Discussion

In Fig. 1 and Table 2, we summarize the performance of LP-stability and the
baseline algorithms using both the enrichment and the Dunn’s Index metrics.
The Table 2 reports for each method its best clustering according respectively
to the enrichment and the average enrichment with threshold 0.005, the Dunn’s
Index and the number of clusters. We chose this threshold value because it is
the most restrictive one. In general, the evaluated algorithms reports their best
scores with a relatively small amount of clusters (less than 30).

Starting with the enrichment score, one can observe that for a small number
of clusters the enrichment is very high, reaching 100%, even in the case of the
random clustering. This can be justified by the fact that a low number of clusters
contains a large number of interactions between genes, leading to a near perfect
enrichment without any statistical significance. However, when the number of
clusters increases, in the case of the random clustering, the enrichment is dra-
matically decreased, while for the rest of the algorithms remains more stable. At
this point, it should be noted that the LP-stability method outperforms the other
algorithms in terms of enrichment, reporting very high and stable enrichment,
which is more than 90% for all cases. On the other hand, the random clustering
reports the lowest enrichment scores for more than 30 clusters, while K-Means
reports the lowest enrichment compare to the other algorithms. This poor, worse
than random performance for low number of clusters can be explained by the
very unbalanced clusters produced by K-Means in this case, for instance for the
clustering of 5 clusters, one of the cluster contain 20217 genes over 20365 and 3
clusters contain less than 10 genes. Moreover, CorEx reports high enrichment,
however is not as stable as LP-stability as it is decreased for more than 20 clus-
ters. The stability of LP-stability is also indicated from the average enrichment
for a threshold 0.005 in Table 2, where one can observe that it reports 96% while
CorEx reaches only 71%.
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(a) Random clusterings (b) LP-stability algorithm clusterings

(c) K-Means algorithm clusterings (d) CorEx algorithm clusterings

Fig. 1. Graphs indicating the PPI enrichment with the different thresholds and the
Dunn’s Index according to the number of clusters for each clustering method.

Concerning the Dunn’s Index, LP-stability outperforms the other algorithms
reporting a score always above 30%, that corresponds to one order of magnitude
improvement. For the other methods, Dunn’s Index is very low, under 5%, indi-
cating either that at least one cluster is poorly defined with high variance, or that
at least a pair of clusters is very close to each other. Thus, LP-stability seems
to define a solution without extreme ill-defined clusters. One can notice that the
best Dunn’s Index is in agreement with the best enrichment score indicating that
the most biologically informative clusters are obtained for well-defined ones.

To assess even further the performance of each clustering method, we eval-
uate the expression power of each signature by associating it with tumor types
(Table 1). The evaluation is performed by assessing the distribution of the tumors
across the clusters. As our goal is to associate 10 tumor types, we used the best
gene signature for each of the algorithms to cluster our cohort into 10 groups,
in a fully unsupervised manner. In Fig. 2, we present the distribution of the
tumor types per algorithm into the 10 clusters. The signatures from the base-
lines methods fail to define clusters associated to tumor types. This is certainly
due to the very small number of clusters, only 5, that the signature depends on.
On the other hand, LP-stability, with only 27 genes, reports very high associ-
ations with tumor types. That proves the superiority of LP-stability to define
the right number of clusters allowing a low dimensional signature minimizing
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Table 2. Quantitative evaluation in terms of PPI and average PPI enrichment score
with threshold 0.005 (ES), Dunn’s Index (DI) and computational time.

Method Best ES Best DI Average
ES (%)

Time

ES (%) DI (%) Clusters ES (%) DI (%) Clusters

Random 100 1.1 10 100 1.1 10 54 -

K-Means 80 2.9 5 80 2.9 5 37 3h

CorEx 100 2.4 5 100 2.4 5 71 >5 days

LP-stability 100 40.6 27 100 40.6 27 96 1.5 h

the information loss. To better compare the proposed signatures to a baseline
signature we so performed the sample clustering using the baselines signatures
of 25 and 30 genes. The K-Means signature of 30 genes reported the highest
associations to tumor types and for this reason we used it for further analysis.

In Table 3 we present a more detailed comparison of the distribution of the
tumor types for LP-stability and K-Means. In general, LP-stability generates clus-
ters that associate better the tumor types than K-Means. In particular, LIHC type
was successfully separated in one cluster from both signatures. LUSC and LUAD
were also successfully associated in one cluster related to lung tumors (clusters 3
and 4 respectively). Moreover, both signatures associated two clusters related to
squamous tumors containing mainly BLCA CESC, LUSC and HNSC types (clus-
ters 0 & 8 and 1 & 8 respectively). Concerning the BRCA type, K-Means signature
clustered the most of the samples in one group, however the rest of the samples,
were grouped in unrelated types such as the GBM type. Whereas, LP-stability
signature clustered the BRCA samples in several small clusters that may relate
to the various molecular types of BRCA, and grouped the remaining BRCA with
the OV type which are related (cluster 3). Finally, both signatures have a clus-
ter including only tumors that can be smoking related containing mainly CESC,
HNSC, READ, LUSC and LUAD (clusters 8 & 7 respectively).

These two sample clusterings show promising results as we can relate them to
the ones obtained in [9], reporting the same kind of clusters by performing sample
clustering on a very large set of omics data. They indeed reported, as we do,
pan-squamous clusters (LUSC, HNSC, CESC, BLCA), but also pan-gynecology
clusters (BRCA, OV) and pan-lung clusters (LUAD, LUSC). They also noticed
the separation of BRCA in several clusters that they linked to basal, luminal,
Chr 8q amp or HER2-amp subtypes. However, they obtained only one third of
mostly homogeneous clusters, and even reported clusters mixing up to 75% of
the total number of tumors types they considered.

Computational Complexity and Running Times: The computation time
is an important parameter playing a significant role for the selection of an algo-
rithm. For each algorithm the approximate average time needed for the cluster-
ing is presented in Table 2. The different computation time have been computed
using Intel(R) Xeon(R) CPU E5-4650 v2 @ 2.40 GHz cores. In general, the com-
putational time augments with an increasing number of clusters. However, for
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(a) CorEx (5 genes) (b) Kmeans (30 genes) (c) LP-stability (27 genes)

Fig. 2. Evaluation of the produced signature in association with the tumor types

Table 3. Proportion of each tumor type per cluster which is higher than 10% is
reported from the LP-stability and Kmeans algorithms.

Tumor types LP-stability (27 genes) K-means (30 genes) Best

BLCA

57% BLCA ⇒ 33% cluster 8

26% BLCA ⇒ 10% cluster 0

<10% BLCA ⇒ clusters 1, 3, 7

54% BLCA ⇒ 59% cluster 7

18% BLCA ⇒ 22% cluster 1

14% BLCA ⇒ 7% cluster 8

<10% BLCA ⇒ cluster 2, 4, 9

∼

BRCA

26% BRCA ⇒ 75% cluster 1

20% BRCA ⇒ 100% cluster 2

19% BRCA ⇒ 100% cluster 6

18% BRCA ⇒ 100% cluster 9

10% BRCA ⇒ 20% cluster 3

Clusterswith related types

55% BRCA ⇒ 98% cluster 0

27% BRCA ⇒ 20% cluster 4

<10% BRCA ⇒ clusters 1, 2, 7

Clusters unrelated toGBMtype

LP

CESC

58% CESC ⇒ 15% cluster s0

38% CESC ⇒ 16% cluster 8

Squamous related clusters

54% CESC ⇒ 15% cluster 8

25% CESC ⇒ 16% cluster 1

16% CESC ⇒ 16% cluster 7

Squamousmixedwithnon squamous

LP

GBM 100% GBM ⇒ 79% cluster 7
98% GBM ⇒ 57% cluster 2

MixedwithunrelatedBRCAtypes
LP

HNSC

89% HNSC ⇒ 43% cluster 0

10% HNSC ⇒ 7% cluster 8

Squamous related clusters

86% HNSC ⇒ 62% cluster 8

11% HNSC ⇒ 18% cluster 1

Squamous related clusters

∼

LIHC 90% LIHC ⇒ 100% cluster 5 98% LIHC ⇒ 98% cluster 5 ∼

READ
82% READ ⇒ 9% cluster 8

Smoking related

55% READ ⇒ 10% cluster 7

32% READ ⇒ 5% cluster 4

Smoking related

∼

LUAD
80% LUAD ⇒ 85% cluster 4

Lung cluster

93% LUAD ⇒ 83% cluster 3

Lung cluster
∼

LUSC

54% LUSC ⇒ 25% cluster 0

23% LUSC ⇒ 18% cluster 8

15% LUSC ⇒ 15% cluster 4

Squamous and lung clusters

53% LUSC ⇒ 97% cluster 6

20% LUSC ⇒ 17% cluster 3

11% LUSC ⇒ 21% cluster 1

Squamous and lung clusters

K-Means

OV

92% OV ⇒ 60% cluster 3

<5% OV ⇒ clusters 1, 8

Clusterwith relatedBRCA

71% OV ⇒ 86% cluster 9

15% OV ⇒ 10% cluster 4

10% OV ⇒ 7% cluster 7

<10% OV ⇒ clusters 0, 2

Mixed clusters

LP
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the reported clusters of Table 2 the proposed method is by far the least compu-
tationally demanding as it converges to the optimal clustering in about 90 min.
K-Means needs approximately twice this time. In general, k-means is very fast,
however, for better stability, several iterations, in our case 100, with different
initial conditions has to be performed, making the algorithm computationally
expensive. Finally, CorEx is by far the most computationally expensive algo-
rithm as it needs more than 5 days for the clustering, making this algorithm not
efficient for data with high dimensionality.

In order to assess the significance of the results and provide a fair comparison
with the state of the art and the baseline methods a spider chart summary is
presented in Fig. 3 where six criteria were considered: (i) the clinical relevance
of the outcome with the number of tumor types where the method signature
performed best, (ii) the statistical relevance of the outcome with the average
enrichment score, (iii) the mathematical relevance of the outcome with the best
Dunn’s Index (iv) the biological relevance of the outcome with the best enrich-
ment score, (v) the running time and (vi) the compactness of the signature.
Towards eliminating the bias introduce from the compactness of the signature,
we have also compared our approach with signatures of similar compactness gen-
erated by the baseline and the state of the art method. It is clearly shown that
our approach outperforms by at least a margin of magnitude in all aspects.

Fig. 3. Spider graph comparing the different methods

4 Conclusion

In this paper we presented and compared, LP-stability algorithm, a powerful
center-based clustering algorithm towards a low-dimensional, robust, genetic
signature/biomarker shown to be highly biologically relevant. The algorithm
outperforms the baseline methods both in terms of computational time, quanti-
tative and qualitative metrics. Moreover, the obtained clusters formulate a gene
signature which has been evaluated for ten different tumor locations, proving
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causality and strong associations with them similar to the ones reported in the
literature by using a large set of omics data. In the future, we aim to extend
the proposed method towards discovering stronger gene dependencies through
higher-order correlations between gene expression data, as well as using this
biomarker for therapeutic treatment selection in the context of cancer.

Acknowledgements. We would like to acknowledge the partial support of Amazon
Web Services and Pr. Stefano Soatto for fruitful discussions. We also thank Y. Boursin,
M. Azoulay and Gustave Roussy Cancer Campus DTNSI team for providing the infras-
tructure resources used in this work. This work was supported by the Fondation pour
la Recherche Médicale (FRM; no. DIC20161236437).

References

1. Center BITGDA: Analysis-ready standardized TCGA data from broad GDAC fire-
hose 2016 01 28 run (2016)

2. Cowen, L., Ideker, T., Raphael, B.J., Sharan, R.: Network propagation: a universal
amplifier of genetic associations. Nat. Rev. Genet. 18(9), 551–562 (2017)
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Abstract. Mathematics has become essential in cancer biology. Recent
developments in high-throughput molecular profiling techniques enable
assessing molecular states of tumors in great detail. Cancer genome data are
collected at a large scale in numerous clinical studies and in international
consortia, such as The Cancer Genome Atlas and the International Cancer
Genome Consortium. Developing mathematical models that are consistent with
and predictive of the true underlying biological mechanisms is a central goal of
cancer biology. In this work, we used percolations and power-law models to
study protein-protein interactions in cancer fusions. We used site-directed
knockouts to understand the modular components of fusion protein-protein
interaction networks, thereby providing models for target-based drug
predictions.

Keywords: Fusion proteins � Protein-protein interaction networks �
Site-directed percolations

1 Some Old School of Thoughts

Cancer results due to the accumulation of multiple alterations in a single transformed
cell [1]. Even if the probability of transformation is extremely low for a single cell,
cancer could arise by chance within a lifetime if many cells are at risk. Moreover, the
number of cells at risk and transformed can be inferred from cancer epidemiology.
Several common cancers have been shown to exhibit increased incidence with age and
can be described by a simple equation [2].

p ¼ btk ð1Þ

Here, p is the probability of cancer, b is a constant, t is an individual’s age and k is
the number of rate-limiting stages. For instance, Eq. 1 fits the epidemiology of col-
orectal cancer when k is 5 or 6, where k corresponds to the number of rate-limiting
mutations. But, Eq. 1 does not include biological parameters and these are incorporated
into b. Arguably, cancer incidence should increase with greater numbers of cells at risk,
with greater numbers of cell divisions, and with higher mutation rates. Likewise,
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normal mutation rates have been observed to be low and around one mutation per
billion bases per division [3], which extrapolates to a probability of mutating a single
specific gene of � 1, 000 base pairs in a single division as 10−. Thus, the probability of
cancer, p, after a single division is extremely low if six rate-limiting, k, mutations are
required.

p ¼ uk
� � ð2Þ

Thus, in Eq. 2, the probability of cancer is 10−36 when the mutation rate is u = 10−6

mutations per gene per division and k = 6. Further, it is highly improbable that cancer
arises in a single cell after a single division.

A better calculation is the probability of cancer after multiple divisions wherein just
one of the many cells is at risk in the body. Thus, the probability of not accumulating a
critical mutation, 1 − u, in one cell lineage after a certain number of divisions, d, is
represented in Eq. 3:

p ¼ 1� uð Þd ð3Þ

Here, p defines ‘no mutation in one critical gene’. With more divisions, the
probability of no mutation decreases. It follows that the probability of mutation after
d divisions is represented in Eq. 4:

p ¼ 1� 1� uð Þd ð4Þ

Here, p defines ‘mutation in one critical gene’. For multiple k genes, Eq. 5:

p ¼ 1� 1� uð Þd
� �k

ð5Þ

Here, p defines ‘mutation in all k critical genes’. Equation 5 calculates the proba-
bility of a single cell accumulating all k driver mutations after d divisions. It follows
that the probability of not accumulating all k mutations in a single cell after d divisions
is represented in Eq. 6:

p ¼ 1� 1� 1� uð Þd
� �k

ð6Þ

Here, p defines ‘not all k critical genes mutated’.
The probability that a single cell accumulates six driver mutations is low. However,

cancer arises when the first cell out of many at risk within an individual transforms; this
occurs considerably earlier than for the average cell. For an organ, the probability of
cancer depends on the number of cells at risk, which is fewer than the total number of
cells, because mutations can only accumulate in long-lived stem cell lineages. For
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instance, in the colon, the number of cells at risk is the number of stem cells per crypt
(N) multiplied by the total number of clonal units or crypts (m), as in Eq. 7:

p ¼ 1� 1� 1� uð Þd
� �k

� �N

m ð7Þ

Here, p defines ‘no stem cell with all k critical mutations in the colon’. It follows
that the probability of cancer (p) for a single individual is represented in Eq. 8:

p ¼ 1� 1� 1� 1� uð Þd
� �k

� �N

m ð8Þ

Equation 8 is an algebraic representation or a probabilistic model of colorectal
cancer that starts from birth and ends when the first stem cell (out of many at risk)
accumulates a critical number of k rate-limiting driver mutations. The model assumes
all mutations (drivers and passengers) are initially selectively neutral and arise as
replication errors. Thus, Eq. 8 illustrates that age-related increases in cancer frequen-
cies may result from relatively normal division and mutation rates.

2 Origin of Cancers

A deterministic model for cancer origin can provide insights into how hierarchical
tissue structures affect cancer risk and treatment effects [4]. Stochastic modelling, in
contrast, has proved useful for determining whether a stem cell, a transit-amplifying
cell (also known as a progenitor cell) or a terminally differentiated cell is more likely to
serve as the cell of origin of a particular tumour type. Using such approaches for
hematopoietic malignancies [5], a progenitor cell was found to be more likely to initiate
tumorigenesis than a stem cell, as the large number of progenitor cells can compensate
for the need to accumulate a larger number of mutations. The probability of cancer
initiation was found to be highest when progenitor cells first acquire an oncogenic
mutation and then gain self-renewal capabilities.

2.1 The Onco-Tree Model

The onco-tree model is based on a probabilistic phylogenetic tree approach. It relaxes
the assumption of a strict sequential order of the linear genetic model and permits
multiple paths to full transformation [6]. The temporal order of events is computed as a
function of the distance of an event from the root node (that is, the time between
initiation and the event) [7]. The relative position of each node on the onco-tree is then
constructed using co-occurrence frequencies of mutations across tumors. The onco-tree
methodology still has restrictions, as it imposes one single onco-tree structure per data
set [8]. Therefore, mixtures of onco-tree models were later introduced to combine
multiple independent tree structures, and were applied to various cancer types, for
example, nasopharyngeal carcinoma and oral cancer [9]. To overcome the limitation of
tree-structured models, namely, the absence of ancestors for multiple leaves, directed
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acyclic graphical models were developed [10]. These models determine the order of
somatic alterations from cross-sectional data sets, at the cost of a larger computational
burden owing to increased model complexity. A possible solution to this problem is to
decrease modelling resolution, and focus on pathway-level events instead of investi-
gating individual mutations [11].

2.2 Evolutionary Dynamics Models

The onco-tree model is based on a probabilistic phylogenetic tree approach. It relaxes
the assumption of a strict sequential order of the linear genetic model and permits
multiple paths to full transformation [6]. The temporal order of events is computed as a
function of the distance of an event from the root node (that is, the time between
initiation and the event) [7]. The relative position of each node on the onco-tree is then
constructed using co-occurrence frequencies of mutations across tumors. The onco-tree
methodology still has restrictions, as it imposes one single onco-tree structure per data
set [8]. Therefore, mixtures of onco-tree models were later introduced to combine
multiple independent tree structures, and were applied to various cancer types, for
example, nasopharyngeal carcinoma and oral cancer [9]. To overcome the limitation of
tree-structured models, namely, the absence of ancestors for multiple leaves, directed
acyclic graphical models were developed [10]. These models determine the order of
somatic alterations from cross-sectional data sets, at the cost of a larger computational
burden owing to increased model complexity. A possible solution to this problem is to
decrease modelling resolution, and focus on pathway-level events instead of investi-
gating individual mutations [11].

3 Applying Power-Laws to Study Protein-Protein
Interactions of Cancer Fusions

3.1 Power-Laws

Gene fusions have been recognized as important diagnostic and prognostic biomarkers
in malignant hematological disorders and childhood sarcomas [12]. Recently, their
biological and clinical impact in solid tumors has also been appreciated [12]. Fusions in
cancer are usually produced by chromosomal translocation; and incorporate parts of
two different parental proteins [14]. Arguably, the best-known example is the BCR-
ABL fusion, which is an oncogenic fusion protein, considered to be the primary driver
of chronic myelogenous leukemia [15], BCAS3-BCAS4 in breast cancer [16] and
EWSR1-ETV4 in Ewing sarcoma [17]. Further, for understanding the complex
activities and dynamics of fusions in various cancer phenotypes, the knowledge of their
ongoing protein-protein interactions (PPIs) is essential. Likewise, these interconnec-
tivities imply that the impact of a specific genetic abnormality is not locally restricted to
a specific protein, but applicable along the links of the network, in that the abnormality
alters the activity of gene products that are otherwise found in healthy individuals [18].

To study the behavior of PPI networks of all cancer subtypes, specifically,
breakdown against targeted knockouts of proteins, we used the Power-Law model.
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A power-law is a relationship between two entities, e.g., frequency of proteins vs. their
total occurrence in each PPI network. Power law distributions are long-tailed distribu-
tions, in that if we plot the number of nodes with degree d against d, we find that the area
under the tail of the distribution is polynomial. In contrast, the area under the tail of the
Gaussian (normal) distribution is exponentially small. We introduce here the concept of
chimeric protein-protein interactions (ChiPPI [19]), which use domain-domain co-
occurrence scores to identify preserved interactors of chimeric proteins. Essentially, we
plot the power-law for each fusion PPI, with the degree distribution of proteins vs. the
ChiPPI-score for each protein, using a log-log scale on both axes. We considered the
Barab´asi–Albert model for studying the PPI networks of individual fusion proteins and
determined whether they behave as scale-free networks using a preferential attachment
mechanism. We observed that most fusion PPI networks can be categorized as either
scale-free networks, having power-law degree distributions, or hierarchical networks;
while some PPI networks exhibit random graph models like the Erdős–Rényi model and
the Watts–Strogatz model, which do not exhibit power laws [18].

For the training part of this study, we randomly selected 150 fusions and their
parental proteins from the ChiTaRS-3.1 database [13, 20, 21]. We predicted the cor-
responding interactors for each fusion using the previously developed ChiPPI method
[19]. For testing, we considered 672 unique aliquot IDs and their corresponding 3091
unique fusions from The Cancer Genome Atlas, for 25 cancer subtypes. For the
training phase, we generated the Power-Law models for 300 parental and 150 fusion
proteins in leukemia, lymphoma (LL), sarcoma (SC) and solid tumors (ST). We found
that more PPI-networks for parental and fusion proteins belong to the random category
in SC and ST, due to less connectivity among vertices in SC and ST compared to LL,
or perhaps due to the lesser presence of communities and hubs, which are the source of
major interactions. We observed that if the PPI-networks of parental proteins belong to
a network category, the fusions also belong to the same, with some exceptions. Thus, in
LL, the PPI-networks of BCR, ABL1 and BCR-ABL1 are scale-free; as well as
KMT2A, KMT2A and MLLT10 are scale-free, whereas the MLLT10 network follows
the hierarchical category. These findings indicate that the majority of parental and
fusion proteins belong to the scale-free category (118 cases), followed by the hierar-
chical (24 cases) and random categories (8 cases).

Similarly, in SC, the number of PPI-networks for parental and fusion proteins
belonging to the random category was high compared to LL (30 networks), i.e. almost
like the hierarchical category (31 cases), but much less than the scale-free category (89).
Lastly, in ST, the observations were dramatically different, for the scale-free (68),
hierarchical (34) and random categories (48). For the test study, we considered 672
aliquot IDs belonging to 25 cancer subtypes, having 3091 fusions and 6182 parental
proteins. Of these, 18 cancer subtypes belong to CA (previously ST), two to GL, one to
ME and LK (previously LL) and two to LY (previously LL), whereas one belongs to SC.
Finally, we found that the network categorization for LK, LY, SC, CA, ME and GL
fusions display a Poisson distribution. These findings indeed coincide with the obser-
vation that fusions are mostly drivers in LK, LY, ME and GL, but not in CA. The reason
for this might be that in CA, the number of proteins with lesser interactions (lower
connectivity) is greater than the number with higher interactions. Consequently, the
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function of fusion PPIs depends mostly on the ubiquitous hubs, rather than on the central
hubs. For example, in prostate cancer, most fusion proteins act as passenger mutations.

We considered the higher-degree hubs of all PPI networks in LK, LY, SC, CA,ME and
GL for analyzing whether they are drivers of lesser interacting protein functions. The
number of higher-degree hubs in communities were more in SC than in LK, LY, ME and
GL,where there was an overall even distribution. Further, due to the lower average degree
in CA, PPI-networks in the random category increased. In LK, LY, ME and GL, higher-
degree hubs ranged from 315 (FUS in FUS-ERG fusion) to 23 (CBFB in CBFB-
MYH11); in SC, from 315 (FUS in FUS-CREB3L1) to 4 (SYT4 in SSX1-SYT4); and in
CA, from 134 (PRMT1 in BCL2L12-PRMT1) to 1 (EPHA6 in EPHA6-CNTN6). These
results indicate that more networks are affected in LK, LY, ME andGL than in SC andCA.
Similarly, the number of ubiquitous hubs increased in CA, compared to LK, LY, ME, GL
and SA. The lowest number of ubiquitous hubs was observed in CLLE-ES (LK), and the
highest in RECA-EU (CA). This coincides with our hypothesis that the distribution of
ubiquitous hubs is more in CA than in other cancers (Fig. 1).

3.2 Percolations

The robustness of a PPI network can be measured by its percolation threshold, which
may be interpreted as the critical number of link or node removals that must occur for
the network to shift from a regime where it is only slightly perturbed to a regime in
which it is fragmented into small disconnected clusters. The study of robustness
encounters two variants: first, the robustness of the topologies (maintenance of topo-
logical connectivity) of networks, called “structural robustness”, against failures of
nodes or links; and second, the robustness of the dynamical processes (maintenance of
dynamical processes) running on networks, referred to as “dynamical robustness”. In
our study, we consider that each interaction (or protein) in the PPI network is occupied
with probability p. A cluster of interactions is defined as the set of neighboring
occupied interactions. If the size of the PPI network approaches infinity, the transition
from an unconnected to a connected network occurs sharply when p crosses a critical
threshold called the percolation threshold. Whatever property an interaction represents,
this property percolates through the network and the emergence of the percolating
cluster represents a phase transition. In this study, we performed both site-directed and
bootstrap percolation for targeted knockouts of proteins from the PPI network. Site-
directed percolation specifies targeted removal of proteins from the PPI network,
whereas bootstrap percolation indicates pruning out less significant links and identi-
fying communities [17, 18].

For site-directed percolation, we initially selected 1% of the proteins, removed them
and calculated the size of the largest connected component; if 50% of the proteins was
reached, we stopped. Proteins are selected according to their proportion in the network,
and are thus targeted. The functioning of complex networks such as the internet and
social networks has been shown to be crucially dependent on the interconnections
between network nodes. These interconnections are such that when some nodes in the
network fail, others that are connected through them to the network also become
disabled and the entire network may collapse. Thus, to understand robustness of these
complex PPI networks, we need to know whether such networks can continue to
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function after a fraction of their proteins is removed by site-directed knockouts.
Accordingly, the robustness of PPI networks under attack is dependent upon the
structure of the underlying network and the nature of the attack. Previous research on
complex networks has focused on two types of initial attack: random attack and hub-
targeted attack. In a random attack, each node in the network is attacked with the same
probability [18]. In a hub-targeted attack, the probability that high-degree nodes will be
attacked is higher than for low-degree nodes. Moreover, random and hub-targeted
attacks apparently do not adequately describe many real-world scenarios in which
complex networks are impaired by damage that is localized, i.e., a node is affected, then
its neighbor’s node, and then their neighbors’ nodes. However, in our study on fusion
PPI networks, we observed that hub-targeted attack necessarily destroys the structure of
the network, resulting in power-law breakdown. Thus, we found that high robustness
and resilience of the PPI networks of LK, LY, ME and GL are due to strong clusters,
compared to SC and CA. The upshot is that proteins belonging to larger clusters that
result in the strong robustness and resilience of these PPI networks should be critically
analyzed.

4 Discussion

The amount and breadth of tumor molecular profiling has increased tremendously in
recent years, mainly due to the advent of cost-effective high throughput sequencing
technologies. Genomic data on cancer stems from a variety of sources, including (i) cell
lines cultivated in laboratories, (ii) xenografts derived from patient tumors and
engrafted into model organisms like mice, and (iii) clinical patient samples from
biopsies. Recent advancements in high-throughput molecular profiling techniques
enable assessing molecular states of tumors in great detail. Cancer genome data are
collected at a large scale in numerous clinical studies and in international consortia,
such as The Cancer Genome Atlas and the International Cancer Genome Consortium.
However, cancer is not only a disease of the genome, but of abnormal cellular inter-
actions in the tumor tissue. For example, the fitness of a clone depends on its genotype
and the tissue environment of the cells. The tissue micro-environment is a complex
dynamical system with multiple cellular components that can influence cancer pro-
gression and evolution. Once the technological hurdles of single-cell genomic profiling,
such as inefficient and unbiased genome amplification, are overcome and individual
cancer genomes can be identified reliably at a larger scale, tumor evolution can be
studied more precisely and in greater detail. Novel and more powerful probabilistic
models for these data will be required and are already being developed. These will need
to account for the spatial dynamics of tumors to enable a systems view on cancer
progression. Additionally, they will need to account for cancer-specific properties, such
as generally nonhomogeneous rates of evolution. Developing mathematical models that
are consistent with and predictive of the true underlying biological mechanisms is a
central goal of cancer biology. Experimental design and perturbations have been shown
to have major influence on parameter estimation, and subsequently on the output and
accuracy of the computational model. Graphical model network inference is subject to
a large proportion of false positive edges. Environmental and experimental design
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factors that are not accounted for can further misguide models. Assessing and
improving the utility of mathematical models in the context of cancer biology will
continue to be an active area of cancer research.

Fig. 1. A comparative analysis of power-law breakdown in RUNXl-RUNXl Tl (LK, LY, ME
and GL), EWSRl-ERG (SC) and BCAS3-BCAS4 (CA)
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Abstract. In this paper I analyze the impact of the stochasticity on the
three different levels (genes, mRNA and protein) on the of drug phar-
macodynamics of a large class of drugs. I focus on the basic mechanisms
underlying the dose-response curves considering two elementary molecu-
lar circuits. Both consist in the gene activation/deactivation, then gene
transcription and following translation into the corresponding protein. In
the first circuit gene activation and deactivation are spontaneous whereas
gene deactivation rate in the second circuit depends on the protein level
introducing negative feedback. In both cases drug is assumed to enhance
the protein degradation level and the success of the therapy is considered
as lowering the protein level below given threshold for given time. My
numerical simulation shows that the level on which the stochasticity is
introduced to the model (none, genes, mRNA, protein) influences not
only the shape of dose-response curves but also the value of the critical
dose i.e. the dose which causes of the positive response to the therapy in
at least half of the cells.

Keywords: Biological model · Minimal dose therapy ·
Stochastic models

1 Introduction

In the recent years more and more effort is put for better understanding of
the molecular basis of the various diseases including two most popular: cancer
and HIV. With this knowledge new, promising drugs are developed and tested.
Two main drug-related mechanisms which must be investigated during the drug
development are the drug pharmacokinetics and pharmacodynamics. The drug
pharmacokinetics basically responds to the question “what the body do with the
drug”. It describes how the drug is distributed in the various body compartments
such as stomach, blood, liver, brain etc after the oral or injection administration
and how it is removed from body. The variable considered in pharmacokinetic is
easy to define and it is the drug concentration in the particular body compart-
ment. The drug pharmacodynamics responds to the question “what the drug do
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with the body”. It is much harder not only to investigate but even to define. For
many drugs we know the final effect but we are still unable to respond how they
work on the molecular level. Also the variable behind drug pharmacodynamics is
not easy to define because it requires the answer of question: “How is the effect of
a drug measured?” [1]. However for some important drugs we can clearly define
the drug effect and its measurement method, therefore the variable behind. For
example the function of some antibiotics and anti-tumor drugs is to kill target
cells and we can measure the percentage of cells killed in targeted population,
other example are the cytostatics anti-tumor drugs which role is to block prolif-
eration of the targeted cells and we can measure how many of the treated cells
will proliferate after the therapy. The cell death or proliferation block may be
received by lowering the level of some proteins or its functionality as for example
in the case of drug called Nutlin which block the Mdm2-p53 complexes creation
by attaching to the Mdm2 in the specific domain in which p53 suppose to join
[2]. This could be also considered as the lowering of the functional Mdm2 level
in the cell. In the present work I consider this type of drug influence on the
targeted cells.

For better understanding of the molecular background of the many diseases
such as cancer as well as molecular mechanisms behind the drug influence on the
living cells systems engineering, especially mathematical methods such as mod-
eling and simulation are incorporated [3]. Various approaches to the modeling
and model simulation analysis are considered: cellular automata [4], linear with
switchings [5], stochastic [6] or [7] but still the most common approach is to use
the Ordinary Differential Equations (ODE). ODE based modeling and simula-
tion has their undisputed advantages, it is easy to develop and analyze and ODE
numerical simulation are very fast. But as we showed in [2,8] the deterministic
approach through ODE may be not sufficient when the drug pharmacodynamics
is considered. As mentioned in [8] “if the dynamics of the intracellular biomolec-
ular network would be deterministic, the experimental in vitro dose-response
curves would necessarily be of the type all or nothing”. In reality the experimen-
tally observed curves are sigmoidal and in the mentioned work we postulate that
the mechanism behind it may be the stochastic gene switching thus stochastic
approach is required.

When the mathematical model of the intracellular processes is developed the
scientist has to decide between simple, minimal model which catch the main
dynamics of the system and neglect many other aspects [8] or complex model
which catch as many interactions influencing the studied network dynamics as
possible [9]. The first approach gives models which are easier to simulate and
analyze and much easier to understand by the other. The disadvantages of such
models is that they catch only some general dynamics which may never be
observed as long as single cell is considered. Thus the conclusions made based on
their analysis e.g. the optimal therapy protocol may be far from the reality. The
complex models are usually better to catch the real dynamics of the considered
pathways but are harder to develop, which results for example from the much
larger set of parameters whose value has to be determined, harder to simulate,
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because the simulation takes much more time and the outputs data are much
bigger, and analysis. But what seems to be one of the main disadvantages of
such models they are much harder to fully understand by the other scientist and
because of that, omitted in their research.

The third possible approach is to develop the in-the-middle models which do
not take into account all the possible interactions but omit or simplify some of
them. For example when full protein production is considered one has to build
the proper equations for gene activation/deactivation process then mRNA pro-
duction and degradation and finally protein production and degradation includ-
ing all other possible influences on these three levels. The simplification of such
model may be done for example by omitting the genes or genes and mRNA
levels. Usually it is done by replacing the variable describing the gene state or
number of mRNAs in the mRNA or protein production terms respectively by
their expected or mean values. To receive the dose - response curves one has to
introduce the stochasticity to the model. It can be done by assuming that all
reactions in the system are stochastic and performing the simulation according
to the Gillespie algorithm or one of its modifications. In the full gene-mRNA-
protein models we have three levels of stochasticity in the simplified only two
(mRNA-protein) or one (protein). The question arises how the different lev-
els of stochasticity influence the received drug-response curves during the drug
pharmacodynamics investigation.

This question is one of the most important when so-called minimal-dose
therapy is considered. In the recent years more and more attention is put to
the drug side effects problem and the drug dosage. The common approach “to
use the maximal allowed dose” becomes replaced by the “use minimal necessary
dose”. This not only lowers the sometimes serious side effect of the drugs but also
is more comfortable for patients and cheaper to apply. This approach resulted
for example in the metronomics therapies development [10]. Of course the deter-
mination of the minimal dose necessary to obtain therapeutically desired results
is more complicated than maximum dose which not cause lethal response from
patients. It is the field where mathematical modeling and simulation may help
which is one of the reason that this field of science continuously grows. In the
current paper I will show one of the possible problem related to such research.

1.1 Considered Models

To investigate the influence of the stochasticity in the model on the different
levels on the drug phamacodynamics I considered two simple models. The first
one is straight-forward model in which active gene produces mRNA which in turn
produces protein. The second one is negative-feedback loop model in which the
protein plays a role of its own transcription inhibitor. In both cases I consider a
simple therapy in which the drug is introduced to the system as a constant input
such as in the many in vitro experiments. The drug function is to enhance the
drug degradation rate and the successful therapy is considered as the lowering
of the protein level below the given threshold continuously for a given time.
Numerical simulations of 1000 cells in each case were performed and the number
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of responding, this is fulfilling the assumption of successful therapy, cells was
measured. The considered models and the results are described below.

Model 1. First model consist of three ODE (Eqs. 1–3). First one describes
spontaneous genes activation and deactivation, assuming that we have NA = 2
genes in total. The second describes mRNA production through transcription of
the active genes and its degradation. The last one stays for protein production
through mRNA translation, spontaneous degradation and finally drug caused
degradation.

dG

dt
= qa ∗ (NA − G(t)) − qd ∗ G(t). (1)

dmRNA

dt
= t1 ∗ G(t) − d1 ∗ mRNA(t). (2)

dA

dt
= t2 ∗ mRNA(t) − d2 ∗ A(t) − d3 ∗ DRUG ∗ A. (3)

When the stochasticity is introduced into the system the corresponding equa-
tion is replaced by the reaction propensities and the whole model is simulate by
the mixed stochastic-deterministic approach as in our previous works [2] or [11].
The introduced propensities are as follow:

For the gene activation and deactivation:

µ1 = qa ∗ (NA − G(t)). (4)

µ2 = qd ∗ G(t). (5)

For the mRNA production and degradation:

µ3 = t1 ∗ G(t). (6)

µ4 = d1 ∗ mRNA(t). (7)

For the protein production, spontaneous and drug caused degradation:

µ5 = t2 ∗ mRNA(t). (8)

µ6 = d2 ∗ A(t). (9)

µ7 = d3 ∗ DRUG ∗ A. (10)

Model parameters were so choosen that they are inside experimentally
observed range and in the case of no drug gives one active gene, around 333
mRNA molecules and around 160000 protein molecules. Parameters values of
model 1 are presented in Table 1.
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Model 2. The second model differs from first one in the gene deactivation rate
as now it depends on the protein concentration. The second and third equations
are the same as in model 1. The modified equation presents genes spontaneous
activation and drug driven deactivation:

dG

dt
= qa ∗ (NA − G(t)) − qd ∗ G(t) ∗ A(t). (11)

Following, the gene deactivation propensity is different in model 2:

µ2 = qd ∗ G(t) ∗ A(t). (12)

The rest of the propensities is the same as in case of model 1. Also in the
case of parameters most of them is the same as in model 1. The only different
parameter value is for the gene deactivation rate which in case of model 2 is
equal 1.7375 ∗ 10−9.

Table 1. The values of the models parameters

Parameter Description Value Unit

qa Gene activation rate 2.78 ∗ 10−4 1/sec

qd Gene deactivation rate 2.78 ∗ 10−4 1/sec

t1 mRNA transcription rate 0.05 Molecules/sec

t2 Protein translation rate 0.1 1/sec

d1 mRNA degradation rate 1.5 ∗ 10−4 1/sec

d2 Protein degradation rate 2.0822 ∗ 10−4 1/sec

d3 Drug caused protein degradation rate 2.084 ∗ 10−4 1/sec

NA Number of alleles 2 Molecules

In both cases I want the protein level to stay for 12 h below the threshold set
as the half of the initial protein amount that is the threshold value was set to
be Th = 80000 molecules.

2 Results

2.1 Simulation Protocol

The 1000 single cell simulations of the both model, for all considered cases were
performed. In each, cells starts from the same initial conditions which are close
to the steady state (the closest integer value was chosen). Then 24 h simulations
of each cell before the drug introduction was performed to ensure the initial
population heterogeneity. Next the drug was introduced to the system with the
given dose and the whole system was simulated for additional 72 h. Finally the
percentage of the cells in which the protein level was continuously below the
given threshold for the 12 h. This cells were considered as responding cells.
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2.2 Model 1

In this model the drug range from 0 to 2 a.u. was considered. The drug caused
protein degradation rate d3 was so chosen that the drug dose 1 a.u. is the dose
in which the pure deterministic model shows positive response to the therapy. It
means that if all the intracellular processes were deterministic then all the cells
in the population will respond to the therapy when dose is higher or equal 1 a.u.
and not a single cell will respond for the doses lower than 1 a.u. (Fig. 1).

Fig. 1. Dose-response curves of the model 1. Please notice the switch-like shape of
purely deterministic case (black line), almost switch-like for stochasticity-in-protein
case (blue) and sigmoidal for remaining cases. The dots represents the actual simulation
points while lines are drown to connect the dots. (Color figure online)

As one may expect the results differ for the stochastic cases. The percentage
of the responding cells is no longer 0% or 100% with the single threshold at 1
a.u. but becomes sigmoidal with the numbers of responding cells growing with
the growing dose. This effect is especially visible when the stochasticity is put at
the gene switching level. In this case responding cells appear at the dose of 0.2
a.u. (0.4%) reaching 99.8% for the dose 1.8 a.u and 100% for 2 a.u. When the
model stochasticity is introduced to the model at the level of mRNA production
and degradation the sigmoidal shape of the dose-response curve is less visible
(Fig. 1). It is because the responding cells appear only at the dose of 0.9 a.u.
and reach the 100% at 1.2 a.u. (Fig. 2). When the model stochasticity is put at
the protein production/degradation level, the range of the doses in which the
percentage of responding cells goes from 0% to 100% is very short, between 1
and 1.02 a.u. which makes the sigmoidal shape of the dose-response curve even
less visible (Figs. 1 and 2).

One can notice that not only the shape of the curve changes but also the dose
at which the percentage of the responding cells reaches 50%. This dose, called
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critical dose is very crucial for the proper therapy development indicating the
dose at which it becomes more probable that the cells respond to the therapy
than not respond. As mentioned before the critical dose is equal 1 a.u. for purely
deterministic case. In the case of stochastic genes switching it is placed close to
the 1.08 a.u. whereas for the case with stochastic mRNA production/degradation
close to 1.05 a.u. The last case, the closest to the deterministic is stochastic
protein production/degradation in which the critical dose takes value close to
the 1.02 a.u.

Fig. 2. Dose-response curves of the model 1. Amplification of the curves from Fig. 1 at
the range 0.9–1.1 a.u. The dots represents the actual simulation points while lines are
drown to connect the dots. (Color figure online)

2.3 Model 2

Model 2 is the one with the negative feedback loop so the lowering of the protein
level by drug will cause the lowering of the probability of gene deactivation/gene
deactivation rate depending of the stochasticity status at gene level. This will
enhance the expected value/mean value of the gene state and in turn mRNA
level and finally protein level. So one can expect that in this case higher doses
will be required to keep the protein level below the given threshold. Because of
that I investigated drug dose range from 0 to 3 a.u (Figs. 3 and 4).

Critical dose in the pure deterministic model is equal 1.68 a.u. and the dose-
response curve as in the model 1 has the switch-like shape. Similarly to the Model
1 case with the introduction of the stochasticity to the model, the dose-response
curve changes its shape to the sigmoidal one and also the value of critical doses
changes. In the case when gene state switching is stochastic the responding cells
starts to appear (0.4%) with the dose 0.8 a.u. which, as expected is much higher
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Fig. 3. Dose-response curves of the model 2. Please notice the switch-like shape of
purely deterministic case (black line), almost switch-like for stochasticity-in-protein
case (blue) and sigmoidal for remaining cases. The dots represents the actual simulation
points while lines are drown to connect the dots. (Color figure online)

than in the model without negative feedback (0.2 a.u.). Also the doses at which
the percentage of responding cells reaches 100% is higher: 2.8 a.u. compared to
1.8 a.u. The critical dose in this case is close to 1.94 a.u. which is much higher
than in deterministic case and also higher then in model 1 with stochasticity in
genes switching. With the stochasticity at mRNA level responding cells starts
to appear with the dose 1.6 a.u. and reach 100% with the 1.92 a.u. Critical dose
in this case is close to 1.73 a.u. The last case in which stochasticity is related
to protein production/degradation processes gives the almost switch-like shape
with critical dose 1.7 a.u. One can notice that also in this two last cases the
doses at which response of the cells appears, reach the 100% and the value of
critical dose is higher than in deterministic case and in the respective cases of
model 1.

2.4 Time Courses

When we look at the time courses of the median, 1st and 3rd quartile of the
protein level (Fig. 5), we can notice that the value spread between median and
quartiles is the highest in the case of stochastic gene switching (Fig. 5 first row),
lower in the case of stochasticity at mRNA level (Fig. 5 middle row) and the
lowest in the case of stochasticity at protein level (Fig. 5 third row). One can
also notice the difference between the response of model 1 (Fig. 5 first column)
and model 2 (Fig. 5 second and third column). In the model 1, after the drug
introduction to the system in t = 24h protein level drops asymptotically to the
new value. In case of model 2 we can notice that first the level rapidly drops
below the final value and then slowly raise to the final level. This over-reaction
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Fig. 4. Dose-response curves of the model 2. Amplification of the curves from Fig. 3 at
the range 1.6–2 a.u. The dots represents the actual simulation points while lines are
drown to connect the dots. (Color figure online)

on the plot is caused by the negative feedback loop. Drug introduction causes
protein level to drop rapidly but then, lower protein level enhances the gene state
level which in turn enhances mRNA level and finally after some time the protein
level slightly increases. It is important to notice, that the time interval between
the protein level drop and following time, in which the protein level reaches its
final value, is much smaller than the time interval in which the protein level has
to be below the assumed threshold thus it the observed over-reaction will not
cause the cells to be considered as responding to the therapy.

In the case of model 1 median protein level is slightly below the threshold
(green line) in all considered stochasticity cases (Fig. 5 first column). One can
notice that the 1st quartile is above the given threshold in the case when stochas-
ticity is in the gene switching or mRNA production/degradation but below in
case of protein production/degradation. This indicates that in the first two cases
it may often happens that protein level will jump above the threshold and thus
makes the drug ineffective. In the last case protein level also fluctuates but the
fluctuations do not cross the threshold and drug is effective. This is reflected by
the responding cells percentage which for dose 1.02 a.u. is equal: 46.9%, 47.1%
and 100% respectively (Fig. 2).

When the model 2 is considered similar dependencies may be observed (Fig. 5
second and third column). With the drug dose equal 1.73 a.u. the median and
quartile of the protein level are lower compared to the dose 1.68 a.u. for all
stochasticity cases. Depending on the spread between the median and quartiles
this will made less or more significant impact on the fraction of the respond-
ing cells. With the high spread the impact on cells response is small. For the
stochasticity-in-genes case the fraction of responding cells increase from 22.6%
to 27.8% (Fig. 4). The stochasticity-in-mRNA case has smaller spread and thus
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Fig. 5. Time courses of the median level of protein and its 1st and 3rd quartiles. The
first row presents the results in the case when the stochasticity is in the gene state
change. The second row is for the case when stochasticity is in the mRNA production
and degradation processes. The last row is for the case when stochasticity is put to the
protein production and degradation. First column shows the results of model 1 and dose
1.02 a.u. while remaining of model 2 and doses 1.68 a.u. and 1.73 a.u. respectively. The
solid line stays for median while dashed for 1st and 3rd quartile. (Color figure online)

more visible change in the cells response, from 22.9% to50.1%. The smallest
spread is in the stochasticity-in-protein case which in turn shows most signifi-
cant change in the responding cells fraction, from 0% to 100%.

3 Discussion

One can notice the general rule in the results. As long as we consider gene
− > mRNA − > Protein production chain then, the higher is the stochasticity
located (gene is the highest) the higher impact it has on the results received,
compared to the pure deterministic case. It includes the shape of the dose-
response curves which changes from the switch-like to sigmoidal and location
of the critical dose. It results from the high signal amplification which occurs
in the protein production chain. The single active gene which is transcribed
results in the production of hundreds of mRNA molecules. The single mRNA
molecule may be used to produce hundreds of proteins through translation. So
the single stochastic event at the gene level may change the protein level by tens
of thousands of protein molecules when single stochastic event at the mRNA
level only by few hundreds, finally at the protein level only by single protein.

The presented results are especially important when the minimal-dose thera-
pies are considered, especially those which depends on the lowering or enhancing
the level of targeted proteins. My results suggest that if they are developed based
only on the experimental results received at the population level, which corre-
sponds to the deterministic simulation and/or were tested by using numerical
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simulations but the simulations were deterministic or even the stochasticity was
introduced to the system but on low level (e.g. protein) then these therapies
may be not effective as high as expected. Simply as I show the deterministic or
stochastic at low level approaches will predict to low critical dose compared to
the real one. Also the shape of the dose-response curves will be far from the real
one. This aspects cannot be neglected and should be carefully investigated when
such therapies are developed.

The presented work considers simple models and very simple therapy. Many
aspects were neglected such as full ADME implementation, post-transcriptional
and post-translational modifications of the products, influence of the gene on/off
switching time or mRNA/protein production/degradation time. This aspects are
worth to explore in the future. Nevertheless I expect that they may change the
size of the observed differences but the differences itself will be still present and
noticeable, thus not should be neglected.
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Abstract. Drug discovery strategies based on natural products are re-
emerging as a promising approach. Due to its multi-target therapeutic
properties, natural compounds in herbs produce greater levels of effi-
cacy with fewer adverse effects and toxicity than monotherapies using
synthetic compounds. However, the study of these medicinal herbs fea-
turing multi-components and multi-targets requires an understanding
of complex relationships, which is one of the fundamental goals in the
discovery of drugs using natural products. Relational database systems
such as the MySQL and Oracle store data in multiple tables, which are
less efficient when data such as the one from natural compounds con-
tain many relationships requiring several joins of large tables. Recently,
there has been a noticeable shift in paradigm to NoSQL databases,
especially graph databases, which was developed to natively represent
complex high throughput dynamic relations. In this paper, we demon-
strate the feasibility of using a graph-based database to capture the
dynamic biological relationships of natural plant products by compar-
ing the performance of MySQL and one of the most widely used NoSQL
graph databases called Neo4j. Using this approach we have developed a
graph database HerbMicrobeDB (HbMDB), and integrated herbal drug
information, herb-targets, metabolic pathways, gut-microbial interac-
tions and bacterial-genome information, from several existing resources.
This NoSQL database contains 1,975,863 nodes, 3,548,314 properties and
2,511,747 edges. While probing the database and testing complex query
execution performance of MySQL versus Neo4j, the latter outperformed
MySQL and exhibited a very fast response for complex queries, whereas
MySQL displayed latent or unfinished responses for complex queries with
multiple-join statements. We discuss information convergence of phar-
macochemistry, bioactivities, drug targets, and interaction networks for
24 culinary herbs and human gut microbiome. It is seen that all the
herbs studied contain compounds capable of targeting a minimum of 55
enzymes and a maximum of 250 enzymes involved in biochemical path-
ways important in disease pathology.
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Relational databases · Herbal medicines · Multi-targets · Drug-targets
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1 Introduction

Multi-target drugs and combinatorial therapies have seen increased focus in the
past decade due to their advantages in therapeutic efficacy, particularly in com-
plex diseases including HIV, cancer and diabetes [1]. Naturally occurring com-
pounds found in herb have been shown to have potential interaction effects,
including mutual enhancement, mutual assistance, mutual restraint and mutual
antagonism [2]. Although information on single herbal-target has important
meaning, biological characteristics and knowledge regarding molecular mecha-
nisms of drug action are limiting and mainly include complex interactions among
various herbal components and targets [3]. A model for developing new syner-
gistic combinations against multiple protein targets based on a rational and
systematic drug design strategy is greatly in need.

One of the fundamental aims in multi-target combinatorial therapies is to
understand complex relationships among heterogeneous biological data, which
contribute to our understanding of the functions of a living cell in health and
diseased condition. However, understanding of such complex interactions among
heterogeneous biological data is very difficult due to composite relationships that
exist between them. Over the past few decades, a wealth of information regard-
ing biochemical properties of herbal compounds, its location and their biologi-
cal activities have been accumulated. They have been made available through a
number of different public and private repositories. However, such scattered data
from thousands of experiments, publications and other diverse sources make the
storage and retrieval process not only cumbersome but unusable and inaccessible
for data mining. Additionally, to discover the synergy associated with interact-
ing targets, pathways, and diseases using data dispersed across many resources
would be highly impractical. To overcome such limitations, various techniques
have been developed with biological networks to understand the fundamental
mechanisms that control dynamic cell organization and molecular mechanisms
[4].

Although widely used among many biological and metabolic pathway knowl-
edgebases for data storage, retrieval and management, the network of hyperlinks
connecting all the temporal data on a biological network was deemed complex
and very difficult to model competently in a relational database [5]. Alterna-
tively, using network pharmacology strategy and known prior knowledge relat-
ing to natural compound’s enzyme target and its association with biosynthetic
or metabolic pathways, through graph database model that captures nodes and
edge relationships, has been successful in revealing the underlying synergistic
details more efficiently [6]. Therefore, in the current study we assess the useful-
ness of the graph database, HbMDB [7,8] that we have developed. This graph
database contains a working list of natural compounds from 24 culinary herbs; a
pilot to help us explore the molecular mechanism of multi-target drug compounds
of therapeutic value. We employed Neo4j, one of the most commonly used graph
databases for building HbMDB and compared its performance with MySQL in
diverse situations by probing the database and using many use cases. Addi-
tionally, the effectiveness of HbMDB in exploring the interactions between the
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small molecules in herbal medicines and gut microbes has been presented. This
computational framework helps to capture multiple pieces of biological knowl-
edge relating to drugs including a detailed representation of cellular processes as
an ordered network of molecular reactions, interconnecting various entities like
compounds, target enzymes, associated disease pathways and interactions with
the gut microbiome.

In the rest of the article, we emphasize the motivation behind our adoption
of a graph database and show how HbMDB benefits from this change in data
integration, traversal and retrieval, and how it overcomes the limitations imposed
by relational databases. The HbMDB graph database use-cases elucidate the
power of NoSQL database engines like Neo4j in the investigation of complex
biological data types. The results suggest Neo4j is superior to MySQL in querying
complex relationships among heterogeneous data and is a useful platform in the
study of complex biological entities such as the multi-target drugs from a natural
source like plants.

2 Why Graph Databases for Biological Networks?

The information about cellular interactions, domain knowledge from researchers,
biologists and physicians, etc., are critical for the understanding of complex
mechanisms like the drug-target interactions, cellular functions of genes, and
gene-disease interactions. This will require one to analyze a wide variety of clin-
ical and experimental data. Such requirements demand a flexible and powerful
biological data management system that allows data model transformation and
integration, semantic mapping, data conversion and integration, and conflict res-
olution. The graph structure supports network data storage and application of
graph analysis algorithms to facilitate a biologist-friendly visual graph query sys-
tem. Since many graph database systems use the property graph model, nodes
and edges can hold properties associated with them. They can be used to hold
names, unique identifiers and other information about the entity. We chose to
implement in Neo4j graph platform for its superior performance relating to (a)
speed and performance, (b) data visualization, (c) flexibility and stability and
(d) easy programmability [5].

3 Paradigm Shift from Relational to Graph Model

Below, we have described the motivation behind our adoption of a graph
database, and we have shown how HbMDB benefits from this change in the
underlying hardware/software and storage technology for overcoming the previ-
ously mentioned limitations imposed by relational databases.

3.1 Hardware and Software Setup

MySQL Database: To begin with, the MySQL storage engine has to be set
up by trained programmers and parameters have to be tuned to improve the
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performance. MyISAM operates much faster than InnoDB, however, it does not
guarantee data integrity. Also, MyISAM is prone to table locking issues which
frequently occurs when more than 5 million data are processed in the indexed
state, thereby deteriorating the retrieval performance.

Neo4j Database: Neo4j Desktop is the new mission control centre launched
especially for developers. It is free with registration, and it includes a develop-
ment license for Enterprise Edition as well as an installer for getting access to
the APOC library. It can also be easily connected to the production servers, and
eventually, it also makes installing other components like the graph algorithms
or Java upgrades easy.

3.2 Memory Configuration

MySQL Database: MySQL allocates buffers and cache for improving the per-
formance of database operations. However, the memory engines used in MySQL
does not provide transaction support, and so we will have to manage trans-
actional integrity and referential integrity by writing additional lines of code
wherever it is needed being a lot less efficient than letting the DB do this for us.
Usage of many stored procedures will substantially increase the memory usage of
every connection that is using those stored procedures. Also, stored procedures
pose a lot of debugging difficulties. Very few database management systems allow
debugging of stored procedures and unfortunately, MySQL does not fall under
that category.

Neo4j Database: Neo4j offers the lightning-fast read and write performance
needed in big biological networks, while still protecting data integrity. It is the
only enterprise-strength graph database that combines the advantages of native
graph storage, scalable architecture optimized for speed, and ACID compliance,
thereby ensuring predictability of relationship-based queries. Neo4j allows stag-
gering loading speed of huge data sizes, with a very low memory footprint. The
memory configuration includes the following four steps: (1) OS memory sizing,
(2) page cache memory sizing, (3) heap memory sizing, and (4) transaction state
(Fig. 1).

3.3 Optimization of Disk I/O

MySQL Database: Disk searching is a huge performance bottleneck in MySQL
databases. This problem becomes more apparent when the amount of data keeps
evolving and becomes too large in order to effectively cache it. Usage of disks
with low seek time is required for overcoming this issue. It also requires opti-
mization of many size parameters like innodb buffer pool size parameter,
innodb log file size parameter, tmp table size and max heap table size
parameter, from their default values.
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Table 1. List of public databases used for building HbMDB

Name Description Reference

PubMed, MEDLINE Information on most commonly used culinary and
medicinal herbs

[9]

PhytoChemNAL In-depth plant, chemical compounds and
bioactivity information

[10]

ChEMBL Information of bioactive drug-like small molecules [11]

PubChem Information of the chemical molecules, their
activities against biological assays

[12]

DrugBank Information of drugs and drug-targets [13]

TOXNET Information of biochemical, pharmacological,
physiological, and toxicological effects of drugs
and other chemicals

[14]

BRENDA Comprehensive enzyme and enzymatic reactions
and functions information

[15]

KEGG Information of genomes, biological pathways,
drugs and chemical substances

[16]

MetaCyc Information of metabolic pathways [17]

UniProtKB Information of proteins like protein name or entry
number, genes and enzymes

[18]

GenBank Genome, gene and transcript sequence data of gut
microbes

[19]

Neo4j Database: In Neo4j by default, most Linux distributions schedule I/O
requests through the Completely Fair Queuing (CFQ) algorithm, to arrive at
a good balance between throughput and latency. However, in most cases, the
particular I/O workload of a given database is better served and managed by
the “Deadline scheduler”. The Deadline scheduler provides a higher preference to
read requests and processes them as soon as they are received, thereby decreasing
the latency of reads, and increasing the latency of writes.

4 Design

4.1 Collection of Diverse Information for HbMDB

The HbMDB data model naturally forms a large interconnected network that
can be seen as a directed graph, comprising of a set of nodes and directed edges
connecting ordered pairs of nodes. Storing HbMDB data in its natural form has
multiple benefits. Most considerably, it does not require any transformation of
data into a flat or deformalized table format. The resulting database is easier
to maintain as new data can be added by simply writing the respective Cypher
queries, without the need for changing the schema and also avoiding writing
complex algorithms. The information relating to culinary and medicinal herbs,
and gut microbes was obtained from multiple sources as shown in Table 1.
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Fig. 1. Memory configuration in Neo4j
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5 Results and Discussion

5.1 Comparison of Neo4j with Relational Model

1. Schema and Query Performance: HbMDB was probed with many use
cases (Fig. 3), where the use of a graph model together with a query language like
Cypher greatly improved the response times and simplified the code necessary for
querying the database. Some of the use cases that were probed by traversing the
HbMDB graph database included (a) retrieval of all target enzymes for a specific
or all compounds in a given herb (b) the metabolic or biosynthesis pathways in
which these enzymes participate and (c) identification of key players in a given
disease pathway by deconstruction of a complex or a set into its participating
molecules.

A comparison of relational and graph database schema with a simpli-
fied example for herb-disease pathway metabolic data is shown (Fig. 3). In
the relational use case, four junction tables, Compound, Activity, Com-
pound TARGET GENE and Compound TARGET ENZYME are required to
model these many-to-many relationships (Fig. 3a). Each junction table contains
primary keys and associated foreign keys to other tables. The SQL query to input
and output entities of a given herb-disease pathway combination requires five join
operations per junction table (Fig. 3b). In the first stage of its execution, each
join operation forms a Cartesian product between the tables and, during the fil-
tering process, all rows of the result set which are not of interest are discarded.
The same structure of herb-disease pathway metabolic data with inputs and
outputs is modelled in a simpler way with Neo4j as exemplified by the schema
presented in Fig. 3c. The Herb node, exhibits named “Contains” relationships
to the corresponding Compound node and which in turn contains two outgoing
relationships named “Exhibits” and “Targets” to the nodes Activity and Target
Gene node respectively. The Target Gene node exhibits named “Is A” relation-
ships to corresponding Target Enzyme node and Target Enzyme exhibits named
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Fig. 3. A simplified example where herbs are mapped to the respective metabolic
pathways of a target enzyme is shown. (a) In the relational use case, four junction
tables are required to model these many-to-many relationships. (b) SQL query for
retrieving pathway entries for a given herb using multiple “joins” is shown. (c) The
same schema modeled as graph. (d) The same query written using Cypher, in a shorter
but more intuitive manner.
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Fig. 4. Representation of the query in Neo4j. (a) Sample output for retrieving 6 herbs
which have enzymes taking part in the “Glycerolipid metabolism” pathway (b) Cypher
query for retrieving the result shown above.

“Belongs To” relationships to Pathway node. All the nodes have their associated
properties (Fig. 3c), which can be viewed by hovering over the respective node.
Taking advantage of Cypher, the same query executed using SQL, is written
in a shorter but more intuitive manner using Neo4j (Fig. 3d). Finally, all nodes
matching the specified pattern are returned. A sample query for retrieving infor-
mation regarding a particular pathway, Glycerolipid metabolism and the result
obtained using Neo4j is shown in Fig. 4. This exemplifies how query performance
can be improved by employing graph databases, such as Neo4j, that offer a more
appropriate alternative for cases with highly interconnected data.

2. Performance Analysis Based on Speed: The relational models, as dis-
cussed previously, make use of multiple “joins” to infer relationships among
different tables, requiring significant execution times. With “joins”, every table
included multiplies to the row size of the final table operating at a Big-O of
exponential growth [5]. Consequently, the size of the input must remain as small
as possible, else the time complexity becomes so large that it never ends. To
exemplify this time comparison between the two models with same kinds and
levels of data, we performed a query search and retrieval operation, in MySQL
and Neo4j databases, for traversing through three layers of data. We also used
Neo4j based HbMDB for retrieving all the compound-target gene information
for a given herb, which is a 3-layer search traversal of data. Neo4j retrieved
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the results in 0.58 s, while MySQL took 58.325 s for this 3-layer search. When a
4-layer search was conducted for retrieving more than 5000 rows of data using
both the databases, MySQL was unable to return a result while Neo4j outper-
formed MySQL in this case too by retrieving results in 5.028 s (Fig. 2).

5.2 Use of HbMDB in Drug Discovery and Precision Medicine

1. Multi-target Analysis: HbMDB is a resource instrumental in the iden-
tification of bioactive compounds in herbs with multi-target capabilities. It is
an integrated systems pharmacology platform useful in the development of new
drugs used in the treatment of chronic diseases (Fig. 5). To evaluate various
features of this resource, we carefully analyzed 24 culinary herbs, 371 bioactive
compounds and 847 compound target genes in the HbMDB. With a subset of
data, we constructed an herb-target network (HT), which is a bipartite graph
consisting of two disjoint sets of nodes, with one set for herbs and the other for
target enzymes (Fig. 6). Investigation of all the 24 culinary herbs shows that it
consists of compounds that target more than one enzyme (Fig. 7). In addition to
targeting many proteins (genes), the compounds from culinary herbs also target
proteins with enzymatic functions in bacteria (Fig. 8). The smallest number of
enzymes targeted by the herb Lovage is 55, while Cloves consisted of 157 molec-
ular targets and 33 bioactive compounds (Fig. 8). Many of these compounds are
known to be useful in the treatment of cancer [20]. For instance, eugenol which
is an active compound present in Cloves was selected as a potential molecule
capable of interfering with several cell-signaling pathways, specifically the nuclear
factor kappa B (NFKB) responsible for cancer [20]. This factor is activated by
free radicals which results in the expression of genes that can suppress apopto-
sis and induce cellular transformation, proliferation, invasion, metastasis among
cancer patients [20]. The result shows that the herbs can be broadly grouped into
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three types. The first type includes herbs that have compounds with few active
targets; the second type were those with few compounds but many targets; and
finally, the third type, which was of our primary interest, included herbs which
consisted of many compounds and all have many protein targets (Fig. 9).

Serine and Threonine are the two compounds with 250 molecular targets.
Anomalous serine/threonine phosphatase activity has been associated with sev-
eral pathological states including diabetes, cardiovascular disorders, cancer, and
Alzheimer’s disease [21]. Therefore, the pharmacological manipulation of ser-
ine and threonine along with their phosphatase enzyme activity is an attractive
strategy for the treatment of many pathological conditions. Both these com-
pounds are worthy of clinical testing for these disease conditions. Whether these
bioactive compounds identified here have a positive or negative role on the net
functional outcome is a crucial next step that needs further study, which we plan
to pursue.

2. Graph Network for Multi-agent Drug Discovery: Multiple agents in
one combination of drugs were usually endued with different roles, and so we
first tried to identify the major herbal compounds which play a dominant role in
treating diseases. The hub proteins in HT (Fig. 10) and CT (Fig. 11), show how
multiple enzymes can be targeted by compounds shared by different herbs and
may play central roles in multi-target therapeutics. These are potential high-
value targets in drug development and should be given more attention.
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For instance, the high degree enzyme node (“EC 1.1.1.21 - aldehyde reduc-
tase”), shows node degree of 24 in HT and 37 in CT network, suggesting a
central role in multiple pathways and multi-target therapeutics. Aldehyde reduc-
tase is known to be involved in many metabolic pathways including Pentose
and glucuronate interconversions, Fructose and mannose metabolism, Galactose
metabolism, and the biosynthesis of Folate. Indeed, aldehyde reductases play
well-ascribed roles in the lipid metabolism pathway, Glycerolipid metabolism,
and has been recognized as a therapeutic target for a variety of clinical condi-
tions including Acquired Immunodeficiency Syndrome, Adenocarcinoma, Breast
Neoplasms, Carcinogenesis and heart failure, etc. [22]. Henceforth, our results
from HbMDB suggest that herbs which usually target a group of proteins and
pathways for the specific function are likely to work synergistically on a given
disease condition.
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Table 2. List of herbs and herbal compounds exhibiting anti-inflammatory effect

Herbs Compounds Target enzymes Pathway

Cinnamon [(+)-Catechin, Caffeic-Acid, (-)-

EPICATECHIN, Cinnamaldehyde,

Eugenol, Cinnamic-Acid]

[EC 1.1.1.-, EC 1.1.1.21, EC 1.2.1.-,

EC 2.3.1.-, EC 3.1.-.-]

Glycerolipid

metabolism

Thyme [Apigenin, Ursolic-Acid,

Chlorogenic-Acid, Luteolin,

Oleanolic-Acid, Caffeic-Acid,

Linoleic-Acid, Gallic-Acid,
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-EC 4.1.3.27

-EC 1.1.1.1

-EC 4.1.2.25
-EC 2.1.1.-

-EC 3.6.3.28

-EC 2.4.-.-

-EC 3.5.4.5

Streptococcus sanguinis SK330

Streptococcus sanguinis SK1058
Streptococcus vestibularis ATCC 49124

Streptococcus sanguinis SK355

Streptococcus equinus ATCC 9812-EC 2.3.1.168
-EC 1.1.1.86

-EC 2.3.3.13-EC 2.1.2.9-EC 1.1.1.-

-EC 6.3.4.3

Veillonella parvula ACS-068-V-Sch12

-EC 3.6.3.17

Streptococcus constellatus subsp. 
pharyngis SK1060 = CCUG 46377 

-EC 1.1.1.61
-EC 3.5.99.4

Staphylococcus capitis SK14

-EC 1.3.1.20

-EC 2.4.2.-

Veillonella sp. oral taxon 158 str. F0412

-EC 2.7.1.76

-EC 3.2.1.85-EC 1.2.1.12

-EC 4.2.3.12

-EC 2.1.1.61
-EC 3.2.1.52

-EC 3.1.21.1

-EC 1.17.4.2

Lactobacillus rhamnosus LMS2-1

-EC 6.1.1.9-EC 3.4.11.5
Staphylococcus epidermidis NIHLM039

-EC 1.8.1.4-EC 6.3.4.2
Lactobacillus plantarum subsp. plantarum 

ATCC 14917 

-EC 4.1.3.3-EC 3.4.23.36

Streptococcus sanguinis SK353

Streptococcus peroris ATCC 700780

-EC 3.1.3.-

-EC 3.1.3.27

-EC 3.4.11.18

-EC 3.3.2.1

-EC 3.1.22.4
-EC 2.3.1.9

Staphylococcus epidermidis NIHLM040

Streptococcus vestibularis F0396

-EC 2.7.2.2

-EC 1.8.1.2

-EC 2.7.7.-

-EC 6.1.1.18
-EC 6.5.1.1

-EC 3.1.21.4

-EC 6.3.2.13-EC 2.7.1.33

-EC 1.9.3.1

-EC 2.3.1.18

Lactobacillus brevis subsp. gravesensis 
ATCC 27305 -EC 3.5.4.10

Lactobacillus vaginalis ATCC 49540
-EC 2.6.1.57

Lactobacillus reuteri MM4-1A

-EC 3.5.4.4
-EC 2.3.3.10

-EC 4.1.1.81

-EC 3.1.22.-

-EC 3.6.1.27

-EC 2.1.3.3-EC 6.3.4.15

-EC 3.4.24.-

Staphylococcus epidermidis NIHLM070

-EC 2.8.3.-

E.C. 1.1.1.2

E.C. 2.3.1.-

EC 2.3.1.275

EC 2.3.1.274

E.C. 1.2.1.-

E.C. 2.4.1.-
EC 2.4.1.46

EC 2.4.1.241
EC 3.1.3.81

EC 3.1.1.34

EC 2.3.1.15

EC 1.1.1.202

EC 2.7.1.165

EC 2.3.1.22

EC 3.1.1.3

EC 2.3.1.134

Staphylococcus epidermidis NIH05001
-EC 2.4.2.10-EC 6.3.5.10

-EC 2.7.7.63

-EC 1.8.4.11-EC 4.1.2.40-EC 1.3.3.4-EC 6.1.1.6

Veillonella atypica ACS-049-V-Sch6
Streptococcus oralis SK255

Capnocytophaga sp. oral taxon 338 str. 
F0234

-EC 1.1.1.103-EC 3.2.1.135
-EC 2.7.1.24

-EC 2.4.2.14
-EC 5.4.2.7

-EC 2.4.1.25
-EC 1.5.1.3

-EC 2.7.1.107
-EC 3.1.25.-

-EC 2.3.1.12-EC 2.3.1.39
-EC 5.2.1.8Staphylococcus lugdunensis M23590

-EC 2.5.1.16Staphylococcus aureus subsp. aureus MN8

Streptococcus sanguinis SK72-EC 3.4.24.29

Lactobacillus antri DSM 16041-EC 3.5.4.-
Streptococcus australis ATCC 700641

Listeria grayi DSM 20601

Streptococcus sanguinis SK1087
Lactobacillus paracasei subsp. paracasei 

ATCC 25302 -EC 3.2.2.20-EC 1.14.99.36

Kingella denitrificans ATCC 33394

Streptococcus sanguinis SK160

-EC 3.1.2.14
-EC 2.7.4.2

-EC 3.4.16.4 -EC 2.7.7.41-EC 5.3.1.6Staphylococcus epidermidis NIHLM095

-EC 1.6.99.5
-EC 1.8.1.9-EC 2.7.1.--EC 3.1.-.-

-EC 5.99.1.3

-EC 4.2.99.20

-EC 2.7.4.9-EC 2.7.8.8
-EC 3.2.2.8

-EC 1.1.1.4-EC 3.1.3.25-EC 3.4.17.13

-EC 6.1.1.--EC 6.1.1.17-EC 2.6.1.11

-EC 3.4.24.57-EC 1.1.1.26

-EC 3.2.1.78 Staphylococcus epidermidis NIHLM053-EC 3.1.3.18

-EC 4.1.1.5

Staphylococcus epidermidis 14.1.R1.SE

-EC 4.4.1.17

Staphylococcus epidermidis W23144
-EC 4.2.1.49Streptococcus sanguinis SK1059

Streptococcus infantis SK1076
Streptococcus pyogenes ATCC 10782Streptococcus sanguinis SK1056

Lactobacillus ruminis ATCC 25644

-EC 2.7.13.3-EC 4.1.1.-

-EC 5.3.1.1

-EC 1.5.1.20Staphylococcus aureus subsp. aureus 
USA300_TCH959

EC 3.1.1.23

EC 3.1.3.4

EC 2.3.1.20

EC 2.7.1.30

EC 1.2.1.3

EC 1.1.1.21

EC 3.1.1.26

EC 1.1.1.6

EC 1.1.1.156

-EC 2.6.1.1

-EC 4.3.1.7

-EC 1.4.4.2-EC 1.1.1.94-EC 3.2.2.-

-EC 3.4.21.116-EC 5.3.1.26

Streptococcus dysgalactiae subsp. 
equisimilis SK1250 

-EC 1.2.4.1-EC 4.2.1.11

-EC 3.6.3.25-EC 5.3.1.24

-EC 2.5.1.55

Lactobacillus ultunensis DSM 16047

-EC 1.14.13.3

-EC 3.2.1.23

Klebsiella pneumoniae subsp. 
rhinoscleromatis ATCC 13884 

-EC 4.2.1.24

Veillonella sp. oral taxon 780 str. F0422

Turicibacter sp. HGF1
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Herbs Compounds

Compound Target 
Enzymes

Pathway Enzyme

Bacterial Species

Bacterial
Enzymes

Fig. 12. Heterogeneous sub-network showing herbs which are capable of targeting bac-
terial enzymes which belong to the pathway “Glycerolipid metabolism”

3. Herbs for Alternative Therapy: The growing concern associated with
the excessive use of inappropriate antibiotics has greatly encouraged the use
of probiotics and plant natural products as an alternative therapy to maintain
colon health. Compared to a single chemical with a single target for most antibi-
otics, the benefit of using herbs is that the complex chemical composition of
a living plant is uniquely capable of interacting with the human body in an
equally complex way. Herbs and spices have traditionally been used in the diet,
not as a source of nutrition but to enhance flavor and increase organoleptic
properties. Additionally, they are regarded as a rich source of anti-oxidant, anti-
inflammatory or anti-microbial compounds. The examination of HbMDB shows
that culinary herbs are a good source of phytochemicals; many of which possess
anti-inflammatory activity and target enzymes in the Glycerolipid metabolism
pathway (Table 2 showing top 3 results), key in metabolic signal generation.
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These compounds and metabolites identified from an untargeted analysis,
and mapped to enzymes or genes provide links to biochemical pathways of inter-
est, such as the glycerol metabolism pathway noted earlier. With the help of
these links, routes were traced to the gut microbiota. Our result suggests that
1693 bacterial enzymes are potential targets for the compounds present in 24
culinary herbs. Herbal compounds are well known for their interactions with
gut microbes and their capabilities to alter the microbial metabolites includ-
ing short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides
(LPS). These interactions are correlated with metabolic diseases such as dys-
biosis, type 2 diabetes (T2D), inflammatory bowel disease (IBD), obesity and
non-alcoholic fatty liver disease (NAFLD). Dysbiosis, which is the imbalance in
the composition of biome is usually an indication of colon health and a cofac-
tor in causing inflammation and leaky gut. Several herbal drugs are known
to aid in promoting synergistic healing of the intestine affected by dysbiosis.
Investigation of HbMDB shows that enzymes encoded by four major microbial
enterotypes known to inhabit the gut, can be targeted by herbal compounds.
These enzymes are the potential drug targets to monitor the dysbiosis of the
gut microbiome. Through HbMDB it was found that gut bacterial species could
encode 43 enzymes from the lipid metabolism pathway. On tracing routes from
HT and CT to the bacterial-enzymes network we arrive at a heterogeneous net-
work, starting from the herb nodes to the compounds present in the herbs, to
the target enzymes targeted by those compounds, to the pathway to which those
enzymes belong to, and finally to the bacterial species which are capable of har-
boring the necessary genes which can encode those pathway enzymes (Fig. 12).
The therapeutic effects identified using HT and CT of the selected herbs and
compounds can now be extended to a pathway-focused approach, where the
compound-target enzymes participating in a pathway can be mapped to the
metabolic models of the gut-microbiome. This way, we can determine the organ-
ism(s) harboring necessary genes that are capable of producing the metabolites
of interest through pathways and thereby avoid the occurrence of dysbiosis.

6 Conclusion

In conclusion, through the adoption of the Neo4j graph database, and by har-
nessing the power of the Cypher query language, HbMDB proved to be an effec-
tive graph model over the relational model based on a number of performance
criteria including search speed. As a result of this shift in the underlying data
storage platform from relational to a graph, the average query time was reduced
by up to 93%. Using multiple use cases, we demonstrated the use of HbMDB
in identifying natural compounds present in culinary herbs capable of target-
ing multiple proteins/enzymes, which are of value in drug design as well as its
use for therapeutic intervention in precision medicine. Interestingly, herbs with
common protein targets that are responsible for different cellular function (anti-
inflammatory and antioxidant) may work synergistically. Network analysis also
shows that bioactive compounds in herbs have enzyme targets in bacteria, which
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inhabit a gut, which helps to develop alternative therapies that use dysbiosis of
gut microbiome as a potential therapeutic strategy. Most importantly, the devel-
oped resource now provides a means to study the mechanistic role of bioactive
compounds in the treatment of complex diseases. In the near future, we plan
to upgrade the features and services of HbMDB by providing web access to the
database and also making it publicly available to leverage its full potential.
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Abstract. The notion of repurposing of existing drugs to treat both
common and rare diseases has gained traction from both academia and
pharmaceutical companies. Given the high attrition rates, massive time,
money, and effort of brand-new drug development, the advantages of drug
repurposing in terms of lower costs and shorter development time have
become more appealing. Computational drug repurposing is promising
approach and has shown great potential in tailoring genomic findings
to the development of treatments for diseases. However, there are still
challenges involved in building a standard computational drug repur-
posing solution for high-throughput analysis and the implementation to
clinical practice. In this study, we applied the computational drug repur-
posing approaches for Ulcerative Colitis (UC) patients to provide better
treatment for this disabling disease. Repositioning drug candidates were
identified, and these findings provide a potentially effective therapeutics
for the treatment of UC patients. This preliminary computational drug
repurposing pipeline will be extended in the near future to help realize
the full potential of drug repurposing.

Keywords: Drug repurposing · Computational tools ·
Gene expression data · Systems biology · Next generation healthcare

1 Introduction

The application of approved drugs to identify novel disease indications, known as
drug repurposing/repositioning, provides several opportunities over traditional
drug discovery. Traditional drug development is a time-consuming and costly
process that takes an average of around 13–15 years and costs more than 2 billion.
In addition, safety concerns or lack of efficacy maximize the risk of failure. Drug
repurposing can provide solutions to these issues faced by pharmaceutical com-
panies. This repurposing holds the promise of clinical trials that are cost-effective
and faster and have lower failure rates than in the traditional drug development
c© Springer Nature Switzerland AG 2019
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pipeline. The advent of genomic technologies has enabled researchers to com-
pare the large-scale patient samples at different molecular levels with molecular
changes based upon drug treatment. In order to find the drugs for treatment
of different disease by integration of various molecular features, systems biol-
ogy approaches play a role in the discovery new therapeutics. Gene expression
signatures have been the most widely used in the systematic approach, among
other molecular features [1,12,17]. For example, one of the most used approaches
starts with a disease gene expression signature. This can be utilized to identify
candidate drugs that have a reversal relationship with the disease by compar-
ing disease and control groups. Although a number of previous studies have
demonstrated its potential in drug discovery, they suffer from limitations. This
preliminary computational drug repurposing pipeline is currently being extended
to address other diseases and help realize the full potential of drug repurposing.

Ulcerative Colitis (UC) is a chronic disorder disease that is concomitant with
an increased risk of colorectal cancer due to chronic inflammation [2,13]. UC is
a subgroup of Inflammatory Bowel Disease (IBD) which also includes Crohn’s
disease. There is no cure for UC and the currently available treatment can only
alleviate the symptoms and also has dangerous side effects [2,7]. Thus, the need
for new therapeutics options for UC, using a systematic computational approach
for drug repurposing, has been brought to attention.

The drug repositioning work has contributed in a variety of computational
methods for the identification of new therapeutics with the use of existing drugs.
For an example, signature-based drug repurposing methods have gained atten-
tion along with the development of high-throughput sequencing technologies.
Signature-based drug repurposing methods make use of gene expression signa-
tures to identify drugs having similar gene expression profiles in cell lines treated
with approved drugs or having opposite gene expression profiles to that of dis-
eased samples. Connectivity Map (CMap), Gene Expression Omnibus (GEO),
and the recent Library of Integrated Network-based Cellular Signatures (LINCS)
datasets [11] are explored to develop and apply novel computational approaches
that can enable informed drug repositioning.

In this study, we performed a computational pipeline for drug repositioning
employed by Sham et al. [18], integrating public gene expression signatures of
drugs and Ulcerative Colitis patients. The pipeline for drug repurposing has
previously been shown to be successful when applied to psychiatric disorders
[18]. Using this approach, we found a number of repositioning candidates, such
as Sirolimus, Trichostatin A, Vorinostat, Wortmannin, and LY-294002 as top
lists. Some of these candidate drugs were found to have a potency to be used as
Ulcerative Colitis treatment.

The established groundwork created by our preliminary research allows us
to expand our work in multiple directions. Our preliminary results have demon-
strated which candidate drugs can have a reversal role in changing the gene
expression of UC samples compared to control. It would be the natural next
steps to identify the minimal group of genes associated with the candidate drugs
that can reduce the side effects of the disease. From systems biology approach
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point of view, the attempt to leverage drug-drug interaction data would be ben-
eficial to understand possible physiological effects or targets of drugs.

2 Methods

In this section, we describe the methods applied in order to obtain new candidate
drugs for treating Ulcerative Colitis (UC ) using the drug re-purposing pipeline
employed by Sham et al. [18]. However, we applied slight modifications to the
original pipeline in order to best make use of the publicly available data for UC.
While Sham et al. used GWAS data to impute gene expression data for different
disease conditions, we start with gene expression data that is already published.
We believe that the use of expression data directly removes the imputation bias.

2.1 Datasets

We primarily used three different datasets (a) gene expression, (b) connectivity
map and (c) KEGG disease database.

Gene Expression Dataset. We obtained GSE92415 from the Gene Expression
Omnibus (GEO) and selected samples from three different groups. We obtained
microarray gene expression data for UC samples with no treatment (n = 87) and a
healthy control (n = 21). The probe ids from the expression data were converted
to gene symbols using the GPL13158 platform file. Average gene expression
values were computed for the genes mapped with multiple probe ids. The z-
scores were calculated for each gene using the expression values from two groups
(UC samples and healthy control).

Connectivity Map (CMap). From the Connectivity Map, or CMap resource,
we utilize gene expression signatures that arise from treatment of small molecules
(drugs) [12]. There are about 6000 drug induced expression signatures for more
than 1300 drugs. We have used the rank matrix file provided by CMap database
to compare it with the gene expression profile from GEO.

KEGG Disease Database. We use the KEGG disease database [9] to obtain
a list of drugs which have been approved for treatment of UC in Japan, US and
Europe. The H01466 entry in KEGG disease refers to the UC disease. The list
of drugs being used for UC are shown in Table 1.

2.2 Drug Re-purposing Pipeline

Here we briefly summarize the drug re-purposing pipeline described by Sham
et al. [18] to compare gene expression profiles of drugs obtained from CMap
(rank matrix) to the gene expression profiles obtained from (a) disease samples
and (b) healthy control. In contrast to the pipeline used by Sham et al., we used
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Table 1. Drugs shown in KEGG disease database for treatment of UC. The column
‘Drug Name’ lists the KEGG names of the drugs and ‘Entry ID’ represents the KEGG
Drug Bank ID

Drug name Entry ID

Triamcinolone acetonide DR:D00983

Dexamethasone DR:D00292

Dexamethasone sodium phosphate DR:D00975

Hydrocortisone DR:D00088

Hydrocortisone acetate DR:D00165

Hydrocortisone sodium succinate DR:D00978

Prednisolone DR:D00472

Prednisolone sodium phosphate DR:D00981

Prednisone DR:D00473

Budesonide DR:D00246

Sulfasalazine DR:D00448

Mesalamine DR:D00377

Olsalazine sodium DR:D00727

Balsalazide disodium DR:D02715

Methylprednisolone DR:D00407

Methylprednisolone sodium succinate DR:D00751

Methylprednisolone acetate DR:D00979

Cortisone acetate DR:D00973

Vedolizumab DR:D08083

Infliximab DR:D02598

Adalimumab DR:D02597

Golimumab DR:D04358

the gene expression data from GEO instead of imputing the expression profile
from GWAS data. In the next step, the Spearman and Pearson correlations were
measured to find reverse patterns of expression between the Cmap and UC sam-
ple gene expression datasets. The Kolomogorov-Smirnov (KS) test was applied
to evaluate if a set of disease related genes are ranked higher or lower than
expected in the list of genes obtained from drug induced expression levels. In
addition to whole dataset, the correlation tests and KS test were performed for
top 50, 100, 250 and 500 ranked genes based on average expression among sam-
ples from the same group. The results from all these tests were used to compute
average rank for each drug perturbation. We also performed 100 permutation
tests for simulated datasets generated by randomly assigning gene expression to
a gene in disease expression data. Then we applied KS and correlation tests on



On Identifying Candidates for Drug Repurposing 517

Fig. 1. Overview of the drug repurposing pipeline. The white boxes represent the
processes and grey ones represent various input and output data formats.

the permuted data and calculated p-value. Figure 1 shows the overview of the
steps performed in this study.

3 Results and Discussion

This study aimed to use drug repurposing pipeline to identify potential can-
didates for drug repurposing in leveraging gene expression data and Cmap
database. We applied this pipeline to UC patients who haven’t started medi-
cation for the treatment and identified a number of interesting candidates for
repurposing. Several repeated drugs and small molecules were observed in top
lists of our 20 drug candidates. These top 20 candidate drugs from 78 statistically
significant candidate drugs (p value < 0.05) were included in the Table 2.

Multiple occurrences of the same drugs and small molecules such as Sirolimus,
Trichostatin A, Vorinostat, Wortmannin, and LY-294002 are identified (noted
by *). In particular, these repeated drugs and small molecules indicated that
there are possibly true positive results. Table 2 shows the details of drug descrip-
tions obtained from public databases such as DrugBank and National Center for
Advancing Translational Sciences. Next, we summarize the drugs that appeared
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Table 2. Selected drug candidates for Ulcerative Colitis (ordered by p values)

Drug Cell line p value Brief description

Vorinostat** MCF7 0.0031 Currently under investigation of cutaneous T

cell lymphoma

Sirolimus** MCF7 0.0048 Isolated as an antifungal agent with potent

anticandida activity

Trichostatin A*** MCF7 0.0054 An antifungal antibiotic. TSA may also have

therapeutic potential for the treatment of a

variety of genetic and infectious

Trichostatin A*** MCF7 0.0065

Pioglitazone MCF7 0.0029 For used in the treatment of type 2 diabetes

mellitus

Wortmannin*** HL60 0.0098 Inhibit cancer cell growth and has shown

activity against mouse and human tumor

Wortmannin*** HL60 0.0101

Selegiline HL60 0.011 Used as a treatment for the major depressive

disorder

LY-294002*** MCF7 0.0128 A specific inhibitor of phosphatidylinositol

3-kinase

Etynodiol HL60 0.013 Used as a hormonal contraceptive drug

Vorinostat** MCF7 0.0131

Amantadine HL60 0.0134 An antiviral that is used in the prophylactic or

symptomatic treatment of influenza A. And

also used as anti-parkinsonian agent

Diflorasone HL60 0.0143 Used to treat itching and inflammation of the

skin

Aciclovir MCF7 0.0147 An antiviral agent only after it is

phosphorylated in infected cells by a

viral-induced thymidine kinase

Trichostatin A*** MCF7 0.0162

Ellipticine HL60 0.0189

Acepromazine HL60 0.0197 One of the phenothiazine derivative

psychotropic drugs

Sirolimus** MCF7 0.0205

Piperlongumine HL60 0.0215 This compound is easily available, inexpensive,

and has therapeutic effects against cancer,

heart disease, intestinal diseases, diabetes,

obesity, joint pain and other conditions in

Chinese Herbal and Indian Ayurvedic medicine

LY-294002*** MCF7 0.0221

Pinacidil HL60 0.0221 A clinically effective vasodilator used for the

treatment of hypertension

LY-294002*** MCF7 0.0247

Valproic acid MCF7 0.0249 Used in the treatment of epilepsy

Heliotrine HL60 0.025 No description

Wortmannin*** HL60 0.0251

Sulfachlorpyridazine HL60 0.0265 An antimicrobial used for urinary tract

infections. Highly effective against diseases

caused by Escherichia coli

Benzamil HL60 0.0268 Useful sodium channel blocker for the long-term

treatment of the biochemical defect in the lungs

of patients with cystic fibrosis

Note that * is number of times same drug is shown in the top 20 list.
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multiple times as shown in Table 2. Sirolimus (rapamycin) is an immunosuppres-
sive agent, originally isolated as anifungal agent, is used in post-transplanation
management. Several case reports have been published on the use of Sirolimus as
a new therapy in mostly Crohn’s disease and Ulcerative Colitis (UC) [14,15,19].
Trichostatin A (TSA) is an antifungal antibiotic, a potent and specific inhibitor
of histone deacetylase (HDAC) activity. It manifests very effective anticancer
activity and have been studied for potential anti-inflammatory properties [4].
In a similar manner, Vorinostat (or suberoylanilide hydroxamic acid (SAHA))
inhibits the HDAC1, HDAC2 and HDAC3 from the lysine residues of histone
proteins. Currently, Vorinostat is marketed under the name Zolinza from Merck
pharmaceutical company which is used for the treatment of cutaneous T-cell
lymphoma. Wortmannin is a fungal metabolite with anti-inflammatory proper-
ties, which was identified as an inhibitor of phosphoinositide 3-kinase (PI3Ks),
while LY294002 was known as the first synthetic PI3K inhibitor [16].

3.1 Sirolimus

Sirolimus is also known as rapamycin, obtained by a strain of Streptomyces hygro-
scopicus. Although it possesses both antifungal and antineoplastic properties,
Sirolimus has been successfully used in a number of gastrointestinal inflamma-
tory disorders. Massey et al., used Sirolimus to treat refractory Crohn’s disease
in adult patients [14]. Mutalib et al., provides evidence on the use of Sirolimus as
effective therapy in a subgroup of children with severe refractory IBD [15]. Yin
et al., studied the therapeutic effect of Sirolimus in mice after the induction of
TNBS colitis [19]. The results of experiment have shown that Sirolimus-treated
mice regained healthy conditions similar to control group of mice with 85% of
survival rate. It provides a strong evidence of the therapeutic effect of Sirolimus
on the experimental colitis. Therefore, these aforementioned studies suggest that
Sirolimus may provide a promising drug alternative to the current approaches
for managing IBD.

3.2 Trichostatin A and Vorinostat

Histone deacetylase (HDAC) are key enzymes regulating important cell pro-
cesses such as cell-cycle progression and apoptosis. Although HDACs, especially
Vorinostat, is already marketed for cancer treatment, several studies demon-
strated a connection between HDACs and intestinal inflammation to analyze
the effects of HDACi on animal models of colitis [5,6]. Glauben et al., indicated
that suberoylanilide hydroxamid acid (SAHA) or Vorinostat resulted in a sig-
nificant reduction in inflammation in both destran sulphate sodium (DSS)- and
trini-trobenzene sulfonic acid (TNMS)-induced colitis. De et al. also provided
an evidence that pan-HDACi such as Trichostatin-A and SAHA, which are clin-
ically approved drugs, showed that they could ameliorate development of DSS
colitis [3]. Both groups strongly suggest that HDAC inhibitors might be served
as a potential therapeutic target for the modulation of macrophage responses
in inflammatory bowel disease. Thus, the roles of HDACi in colitis models as
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described by these studies may suggest that they can be strong therapeutic
candidates for the treatment of IBD.

3.3 Wortmannin and LY-294002

Wortmannin and LY-294002 are chemical compounds that has shown to act as
potent inhibitors of phosphoinositide 3-kinase (PI3Ks). Both of them are initially
used to inhibit cell proliferation in cancer treatment by inhibiting the PI3K
signaling pathway. In Huang et al.’s study, they investigated the role of PI3k
signaling pathway in pathogenesis of Ulcerative Colitis (UC) [8]. In their result,
Wortmannin was shown to significantly alleviate the inflammation of colitis as
assessed by disease activity index and histological score in DSS-induced mice.
These results indicated that the PI3k signaling pathway plays a role in the
occurrence of UC. As LY-294002 is also a type of PI3K inhibitor, one study
demonstrated LY-294002 targets the PI3K pathway and hampers progressive
colitis [10]. These findings show the role of PI3K inhibitor on the impact of
colitis induced model. Hence, potent inhibitor of PI3Ks such as Wortmannin
and LY-294002 can be the future therapeutics of UC.

To summarize, we have identified several viable candidate drugs for the
potential treatment of UC using expression data. This proposed study high-
lights the importance of employing a computational drug repurposing pipeline
to extract information from gene expression datasets and reliably identify new
effective treatment option for various diseases using known drugs. This approach,
coupled with proper clinical trials, could lead to more effective treatments at
reduced cost.

4 Conclusion

The development of advanced computational bioinformatics tools continues to
significantly impact biomedical research. Using the growing biological data to
identify new ways to benefit from existing drugs has the potential to improve
the quality and affordability of future medicine. In this study, we develop a drug
repurposing pipeline to propose new usages for candidate drugs with the help
of the available gene expression data. We identify several candidate drugs to be
repurposed and used for the treatment of Ulcerative Colitis (UC) patients. The
drugs we propose as drug candidates are widely used in experimental study of
colitis induced mice model. Our results show the positive potency of using these
drugs for future therapeutics of UC. This preliminary study can be considered as
a first step that can be expanded multiple directions to advance computational
drug repurposing. Advanced modeling approaches are needed to integrate differ-
ent types of biomedical data to further improve the drug repurposing process.
This is particularly critical when more than one drug is needed to treat cer-
tain conditions and data associated with known drug-drug interactions need to
be incorporated in the repurposing pipeline. We anticipate that computational
tools for drug repurposing will play a major role in the important domain of
drug design in the near future.
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