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Abstract. Biomedical data are a rich source of information and knowledge, not
only for direct patient care, but also for secondary use in population health,
clinical research, and translational research. Biomedical data are typically
scattered across multiple systems and syntactic and semantic data integration is
necessary to fully utilize the data’s potential. This paper introduces new algo-
rithms that were devised to support automatic and semi-automatic integration of
semantically heterogeneous biomedical data. The new algorithms incorporate
both data mining and biomedical informatics methods to create “concept bags”
in the same way that “word bags” are used in data mining and text retrieval. The
methods are highly configurable and were tested in five different ways on dif-
ferent types of biomedical data. The new methods performed well in computing
similarity between medical terms and data elements - both critical for
semi/automatic data integration operations.

Keywords: Concept bag � Semantic integration � Biomedical data �
Data federation

1 Introduction

Biomedical data are a potentially rich source for information and knowledge discovery.
Biomedical data collected for patient care or specific research protocols are valuable for
reuse to address broader clinical, translational, comparative effectiveness (CER),
population health, or public health research questions. However, reusing biomedical
data for these purposes is not trivial. Data from multiple biomedical data systems are
typically required to answer research questions and integrating these data is complex.
Biomedical data are modeled and stored using various formats, syntaxes, and value sets
to represent clinical or biomedical observations or facts about patients, research sub-
jects or other artifacts. For instance, to answer a translational research study question,
one would likely need demographic data from one system, diagnostic data from another
system, and data from bioinformatics pipelines [1, 2].

Biomedical data integration generally requires homogenization of semantically and
syntactically heterogeneous data. Semantic heterogeneity occurs when the same domain
is modeled differently and data elements and values have different meanings [3],
whereas syntactic heterogeneity occurs when the structural formats between data sets are
different. OpenFurther [4], and i2b2/SHRINE (Informatics for Integrating Biology and
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the Bed-side/Shared Health Research Information Network) [5] are example state-of-
the-art biomedical data integration tools. Each employ different integration strategies,
but both require experts to perform the semantic and syntactic integration. Between the
two forms of heterogeneity, semantic integration is the more challenging and costly
aspect of biomedical data integration [6]. Expensive terminologists and/or highly trained
knowledge engineers are needed to perform the work [7, 8]. At the rate and scale that
biomedical data are created, there are simply not enough humans with these skills to
massively scale integration efforts. Moreover much of biomedical data are available as
free text and in semi-structured formats that are often not leveraged in semantic inte-
gration efforts that may affect results from translation research studies [9]. Semiauto-
matic, and ultimately automatic semantic integration tools, are required to achieve
massive biomedical data integration.

Automatic data integration techniques are based on computing semantic “align-
ments” between data sets, but none of the existing methods achieve the level of
performance needed for biomedical investigations [10]. Here we present new algo-
rithms that incorporate both data mining and biomedical informatics methods to
improve on and add to existing biomedical data integration methods. The new methods
are based on “concept bags” that are similar to “word bags” used for data mining and
text retrieval.

2 Methods

The concept bag (CB) method is based on the n-gram method [11]; however, instead of
comparing textual elements, the CB method operates by comparing concept codes.
The CB method is defined by two essential steps: (1) Construction of the CB - convert
textual or named entities to a representative set of concept codes, and (2) Similarity
Measurement – systematically compare CBs using a set or vector-based analysis
method. This is a very general definition that leaves a great deal of flexibility in its
implementation. Any reasonable selection of a text-to-concept code method or
set/vector n-gram-like analysis method could be considered for implementation. This
stepwise process describes how the CBs were constructed for the studies that follow:

1. Assign each textual element a unique identifier.
2. Process textual elements and extract representative concept codes. We used the

Name-Entity Recognition (NER) software [12] named MetaMap [13] that identifies
Unified Medical Language System (UMLS, https://www.nlm.nih.gov/research/
umls/) Concept Unique Identifiers (CUI) in the text. MetaMap is a fully integrated
NER software which includes, all necessary natural language processes including
spell checking for misprints.

3. Associate the distinct set of concept codes from each textual element from step 2
with its unique identifier from step 1.

4. A CB for each textual element is constructed using associations created in step 3.
All concept codes associated with each textual identifier comprise the CB for that
textual element.
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The CB method was originally designed to resolve semantic similarity of strings
such as “SBP” and “systolic BP” to the same concept recognizing synonymy between
the two strings. However, the method does not consider similarity between words such
as “abortion” and “miscarriage” that are not exactly synonyms, but are semantically
related [3]. Observing the flexibility of the CB and the potential for ontological
relatedness of textual elements, we enhanced CBs by adding UMLS CUIs from the
underlying ontological relationships. CUIs from SNOMED’s “is-a” hierarchy were
extracted and added for each original CB CUI. We named this strategy the Hierarchical
Concept Bag (HCB) method. Further details of the method are given in Bradshaw’s
Dissertation [14].

In order to measure similarities between CBs, we selected the Jaccard similarity
algorithm [15]. The Jaccard formula computes a decimal value between 0 and 1, where
0 represents no conceptual similarity, and 1 represents a perfect match, by calculating
the ratio between the cardinal numbers of the intersection and union of the CBs of the
two entities under comparison. Using the CB to compute the similarity between
“abortion” and “miscarriage” literally returned 0.0 similarity. With HCBs, the onto-
logical CUI sets representing “abortion” and “miscarriage” share several CUIs in
common. After adding the HCB codes, the similarity between “abortion” and “mis-
carriage” was upgraded from the CB’s 0.0 to 0.89, see Fig. 1 for details.

Fig. 1. Examples of the CB and HCB with hierarchical concept codes (CUIs) from the
SNOMED CT is-a hierarchy comparing “miscarriage” and “abortion.” The “Parents” figure
shows the hierarchies (SNOMED CT is-a hierarchy is poly-hierarchical) and all of the UMLS
clinical concepts for both “miscarriage” and “abortion.” The Jaccard similarity scores illustrate
the differences between the two methods.
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To test the performance of the new methods, we considered three test cases that
measured the alignment between, (1) heterogeneous data elements (DE) from a con-
trolled vocabulary, (2) DE from an uncontrolled vocabulary, and (3) medical terms. In
the following, we present a brief description of the data sets and how they have been
used in these test-cases.

• DEs from a controlled vocabulary: 17 DEs from three domains of the UMLS were
selected for this study, seven from demographics, five from vital signs, and five
echocardiogram measures.

• DEs from an uncontrolled vocabulary: 899,649 DEs extracted from REDCap [16]
from 5 sites engaged in clinical and translational research.

• Medical terms: A benchmark containing a set of 30 medical term pairs that have
been curated and judged by physicians and terminologists [17].

The textual features of the data sets were evaluated [14] and each had different
textual characteristics are depicted in Table 1. The text size averages varied from 13.1
to 74.9 characters per element, while the mean number of concepts per word varied
from 1.5 to 3.2. A more detailed description can be found in [14].

2.1 DE Alignment Measurement

We measured the alignments between the DEs using similarity measurement algo-
rithms. These algorithms returned real values between 0.0 and 1.0 where 1.0 is perfect
similarity and 0.0 is no similarity. Alignment decisions were determined by alignment
measurement cutoff values. Similarity values do not represent the percentage of
semantic alignment or statistical p-values where one chooses a standard cutoff point.
Cutoff values that ultimately define alignment decisions are algorithm-specific and
needed to be determined for each of the tested algorithms; therefore, cutoff values for
each algorithm were calculated using the Youden method [18], which select cutoff
values that maximized the specificity and sensitivity of the decision for each
algorithm [14].

Table 1. Descriptive statistics for the studied data sets, UMLS-selected DEs, REDCap DEs, and
the medical terms reference.

Datasets
UMLS DEs REDCap DEs Medical terms

Element counts 315 899649 60
Mean characters/Element 24 ± 13.1 43.1 ± 74.9 13.4 ± 6.0
Mean words/Element 3.1 ± 1.5 7.1 ± 11.8 1.6 ± 0.7
Concepts/Data set 380 4187 133
Hierarchical concepts/Data set 753 6929 740
Mean Concepts/Element 9.8 ± 6.7 10.4 ± 10.0 2.6 ± 1.9
Mean concepts/Word 3.2 ± 1.8 2 ± 1.4 1.5 ± 0.6
Mean hierarchical concepts/Word 15.6 ± 11.0 12.8 ± 14.5 20.0 ± 14.3

18 R. L. Bradshaw et al.



All DEs were compared to each other to examine all possible alignments. This
process required n(n – 1)/2 comparisons for each set, or approximately 50,000 com-
parisons for the UMLS controlled vocabulary concepts for test case 1, and half a trillion
comparisons of REDCap DE alignments for test case 2. For the REDCap data set
preliminary exploration of the computed CB similarity scores indicated that match
candidates were very infrequent, *3 per 1,000 pairs, indicating that an unreasonably
large random sample would have been required for human review while maintaining
both an accurate sample distribution and conclusive confidence interval. Therefore, a
stratified random sample was assembled with 12 buckets based on the computed CB
similarity scores, from which a set of 1,200 DE pairs were then randomly sorted and
manually reviewed for semantic matches by two professional clinical data architects.
Disagreements were reviewed by the two architects to reach consensus. Details of the
construction of the data sets used in these comparisons are given in Ref. [14].

Four configurations of the CB and HCB were tested for measuring the alignment
between Medical Terms benchmark.

1. CBs created using concepts produced by MetaMap (with default settings) and
Jaccard similarity algorithm. This configuration was completely unsupervised.

2. Same as step 1 except the CBs were augmented to HCBs using the SNOMED CT
“is-a” hierarchy. This configuration was also completely unsupervised.

3. Same as step 2 but restricting MetaMap to SNOMED CT, and retaining only the
single highest-ranking concept for each term. The authors resolved rank ties, which
should be considered a minor supervision.

4. Same as step 3 except HCBs were converted to vectors and compared using cosine
similarity.

Each of the four CB configurations produced similarity values for each of the 30
pairs from the benchmark data, which were scaled to the same range used by the
experts judging the original data set. Correlation between the four CB algorithm
configurations given above, seven other published algorithms, and benchmark experts
were calculated using Pearson’s correlation.

3 Results and Discussion

Receiver operator characteristic (ROC) curves were used to examine the alignment
compliance of the DEs from the controlled (UMLS) vocabulary and uncontrolled
(REDCap) environment for each data set and each algorithm, see Figs. 2 and 3.
The CB and HCB performed very well at the task of aligning UMLS DE as indicated
by the AUC = 0.92/0.89, F-measure = 0.79/67 and ROC curves. The performance
numbers are slightly lower for the REDCap DE alignment performance AUC =
0.92/0.91, F-measure = 0.55/0.53. This was not surprising due to the nature of
REDCap uncontrolled environment where arbitrary abbreviations and local jargon are
allowed and supported. None-the-less, even with the added complexities of
REDCap DE, the CB and HCB still had much lower combined false positive and false
negative rates than the other algorithms considered here.
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Fig. 2. ROC curve of the UMLS DE alignment algorithm performance. Curves closest to the top
left corner are the best performers.

Fig. 3. ROC curve of the REDCap DE alignment algorithm performance. Curves closest to the
top left corner are the best performers.
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When the goal is automatic DE alignment for semantic integration, alignment
decisions are binary, the algorithm either aligns or does not align. In this binary case,
degrees of similarity are not tested; therefore, to test the algorithms’ ability to assess
degree of similarity, we used a medical term similarity benchmark. The CB and HCB
algorithms were tested using the medical term similarity benchmark. Table 2 contains
the results of the medical term similarity evaluation.

Overall, the HCB correlation scores matched or exceeded 31 other published
algorithms [17], for which the top seven are included in Table 2. Of the four CB
algorithms tested, the HCB using SNOMED CT with the “is-a” hierarchy measured
using Jaccard similarity, tied with the highest correlation with medical terminologists,
0.76, and was the second highest correlation with physicians, 0.72. The tie for the
highest correlation with terminologists was with Personalized PageRank algorithm
[19]. The highest correlation with physicians, 0.84, was attributed to Pedersen’s
Context Vector [3] that was successfully augmented with physician-based information
content (IC) from a large physician-created corpus. The methods that used
terminologist-created SNOMED is-a hierarchy correlated highest with terminologists’
similarity judgements, and the method that used physician-created IC correlated highest
with physicians.

The CB and HCB methods using UMLS (USABase library) and Jaccard similarity
both had correlation values of 0.46 with physicians, while the correlation with termi-
nologists was higher for both, 0.59 and 0.57, respectively. The lower correlations are
likely due to the broader concept coverage contained in UMLS for which
SNOMED CT is a subset, i.e. UMLS produces larger concept bags than it does when
there is a reduced set of source vocabularies resulting in more sensitive and less specific
similarity measurements. Adding additional hierarchical concept codes magnifies this
effect.

Table 2. Correlation of the similarity scores obtained with Concept Bag (CB), Hierarchical
Concept Bag (HCB), Leacock and Chadorow (LC) [20], Wu and Palmer (WP) [21], Personalized
PageRank (PPR) [19], and Context Vector [3].

Method Physicians Terminologists

SNOMED HCB 0.72 0.76
SNOMED HCB-Vector 0.65 0.67
UMLS CB 0.46 0.59
UMLS HCB 0.46 0.57
SNOMED LC 0.50 0.66
UMLS LC 0.60 0.65
SNOMED WP 0.54 0.66
UMLS WP 0.66 0.74
SNOMED PPR 0.49 0.61
UMLS PPR 0.67 0.76
Context vector 0.84 0.75
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4 Conclusions

Automatic alignment of heterogeneous biomedical data is a challenging problem due to
the sophisticated semantics of biomedical data. In this paper, we introduced a new class
of methods that introduces the idea of using “concept bags” to represent the semantics
of textual data elements, described how they can be used to evaluate semantic simi-
larity, and then demonstrated how the similarity measures were tested to automatically
align biomedical data elements and compute medical term similarity. Several config-
urations of the new similarity algorithms were tested for each application and the new
methods performed as well or better than well-established methods. Unlike bag of
words and n-gram methods, CB and HCB are capable of measuring semantic simi-
larities between synonymous and non-similarly spelled words. We believe we have
established the face validity of the CB and HCB methods and recommend them as
viable options for computing semantic similarity as demonstrated.
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