
Developing a DEVS-JAVA Model to Simulate
and Pre-test Changes to Emergency Care
Delivery in a Safe and Efficient Manner

Shrikant Pawar1,2(&) and Aditya Stanam3

1 Department of Computer Science, Georgia State University,
34 Peachtree Street, Atlanta, GA 30303, USA

spawar2@gsu.edu
2 Department of Biology, Georgia State University,

34 Peachtree Street, Atlanta, GA 30303, USA
3 College of Public Health, The University of Iowa, UI Research Park,

#219 IREH, Iowa City, IA 52242-5000, USA

Abstract. Patients’ overcrowding in Emergency Department (ED) is a major
problem in medical care worldwide, predominantly due to time and resource
constraints. Simulation modeling is an economical approach to solve complex
healthcare problems. We employed Discrete Event System Specification-JAVA
(DEVS-JAVA) based model to simulate and test changes in emergency service
conditions with an overall goal to improve ED patient flow. Initially, we
developed a system based on ED data from South Carolina hospitals. Later, we
ran simulations on four different case scenarios. 1. Optimum number (no.) of
doctors and patients needed to reduce average (avg) time of assignment (avg
discharge time = 33 min). 2. Optimum no. of patients to reduce avg discharge
time (avg wait time = 150 min). 3. Optimum no. of patients to reduce avg
directing time to critical care (avg wait time = 58 min). 4. Optimum no. of
patients to reduce avg directing time to another hospital (avg wait time = 93
min). Upon execution of above 4 simulations, 4 patients got discharged utilizing
3 doctors; 5 patients could be discharged from ED to home; 2 patients could be
transferred from ED to critical care; 3 patients could be transferred from ED to
another hospital. Our results suggest that the generated DEVS-JAVA simulation
method seems extremely effective to solve time-dependent healthcare problems.

Keywords: DEVS-JAVA � Simulation � Emergency department (ED)

1 Introduction

1.1 Problem Statement

An emergency department (ED), also known as accident & emergency department
(A&E), provides acute care for patients who attend hospital without prior appointment.
The EDs of most hospitals customarily operate 24 h a day, 7 days a week and over-
crowding of patients in EDs is an increasing problem in countries around the world. ED
overcrowding has been shown to have many adverse consequences such as increased
medical errors, decreased quality of care and subsequently poor patient outcomes,

© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11466, pp. 3–14, 2019.
https://doi.org/10.1007/978-3-030-17935-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17935-9_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17935-9_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17935-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-17935-9_1

increased workload, ambulance diversions, increased patient dissatisfaction, prolonged
patient waiting times and increased cost of care [1, 2]. There are different types of
computer simulations techniques utilized to address these types of issues in the field of
medicine and health. Some of such tools include discrete event simulation (DES),
system dynamics (SD) and agent-based simulations (ABS). DES is identified to be one
of the best method to address this problem due to its capability of replicate the behavior
of complex healthcare systems over time. DEVS stands for Discrete Event System
Specification which is a time extended finite state machine [3]. Even more suitable
method of modeling for this problem is needed due to the fact that ED system is more
sensitive for constraints and limitations imposed by time. We believe that the closest
technique to replicate this process could be achieved through DEVS-JAVA [4], in the
current article we have modelled the system in ED using DEVS-JAVA to explore the
possibility of using the developed model to simulate changes of services conditions and
understand the outputs so that a better service to its patients can be provide with the ED.

1.2 Modeling and Simulation Goals

To address these concerns, our specific objectives are to conduct patient flow simu-
lation through ED in terms of key assumptions, systems requirements, and input and
output data, and to identify the usefulness of this simulation method for service
redesign and evaluating the likely impact of changes related to the delivery of emer-
gency care. We compared our simulation model with current ED flow data from known
existing database, which will report on differences in conclusions about ED perfor-
mance with our simulation model and existing ER practice to solve the problem of ED
overcrowding. The simulation model was implemented in DEVS-JAVA. There can be
different targets of executing simulations based on this system. But for the purpose of
simplification, we considered the following objectives as our goals of this project.

1. Identifying how many doctors and ambulance are optimal for decreasing average
time of assignment.

2. Understand how many patients are optimal for decreasing average time of
discharge.

3. Identifying how many patients are optimal for decreasing average time of directing
to critical care treatment.

4. Studying how many patients are optimal for decreasing average time of directing
patient to another hospital.

These types of simulations are extremely useful for hospitals to make decisions on its
resource allocations. The simulations importance and contribution is even more signifi-
cant as the results can be observedwithout practically implementing a case. This approach
can be utilized to reduce risks in any real world system with trustworthy estimations.

2 Materials and Methods

The main focus of this simulation process is to identify the possible modifications of the
existing system in order to improve the overall efficiency of the system. One of the best
approach to solve this problem is to first develop a system with current statistics and then

4 S. Pawar and A. Stanam

incorporate modifications (changing the parameters) to the system, to derive the con-
clusions. Furthermore, the experimental conclusions are needed to be compared to
existing ED data, for which we went to ED timings in the South Carolina hospitals
(Table 1). The South Carolina hospital data was collected between April 2016 and April
2017 from Centers for Medicare and Medicaid Services (CMS) [5]. The data was
collected throughout the day for all the hospitals without any distinct day timings. CMS
established standard definitions and a common metric to accurately compare different
hospitals. In most cases someone must manually write down the time a patient was seen,
so the times are not always precise. To combat this, emergency rooms outfit doctors and
nurses with electronic badges now wirelessly record exact times. According to CMS,
hospitals have 30 days to review their data before submitting it to the government. The
agency places most of the responsibility on hospitals for making sure their data is correct
before making it public. Average values of timings are strong enough to represent the
whole population and comparing to our simulation results. Given the data in Table 1, we
built DEVS-JAVA models for each of these four cases/columns for simulating
respective timings. We ran different simulations on each of these cases to improve
through put within the above stipulated time ranges. For example, the question for case 1
was, what will be the optimal number of doctors to be utilized in a situation so as to
maximize the patients discharged within the average waiting time of 33 min.

Table 1. Waiting times of different stages of South Carolina hospitals (Waiting times (minutes)
for a patient attended by a doctor). The first column refers to the waiting time taken by each
hospital for the process of admitting a patient from the accident cite until the patient is attended
by a physician. Second column represents the time taken to the process of going through
emergency front desk to a doctor for prescription and then the time taken send the prescribed
patient to his home. The third column is the time associated with a patient getting a critical care
treatment. The fourth column is a transfer time, which is the total time required by a hospital to
redirect a patient to a different hospital in a condition that it cannot be treated due to lack of
human or physical resources.

Hospital Waiting
time

Time until sent
home

Critical case
time

Transfer
time

Abbeville Area Medical Center 27 96 64 38
Aiken Regional Medical Center 47 189 60 149

Anmed Health 75 204 87 95
Baptist Easley Hospital 54 142 55 53

Beaufort County Memorial Hospital 19 152 34 120
Bon Secours-St Francis Xavier
Hospital

35 170 50 68

Cannon Memorial Hospital 34 94 82 68

Carolina Pines Regional Medical
Center

25 118 61 80

Carolinas Hospital System 22 163 60 89
Carolinas Hospital System Marion 19 134 26 65
Chester Regional Medical Center 24 109 52 51

Coastal Carolina Hospital 34 207 64 146

(continued)

Developing a DEVS-JAVA Model to Simulate and Pre-test Changes 5

Table 1. (continued)

Hospital Waiting
time

Time until sent
home

Critical case
time

Transfer
time

Colleton Medical Center 6 103 28 70
Conway Medical Center 24 131 47 118

East Cooper Medical Center 26 116 36 56
Ghs Greenville Memorial Hospital 51 221 34 135

Ghs Greer Memorial Hospital 31 173 62 110
Ghs Hillcrest Memorial Hospital 30 149 45 101
Ghs Laurens County Memorial
Hospital

36 141 60 104

Ghs Oconee Memorial Hospital 46 176 80 61

Grand Strand Regional Medical Center 8 122 21 90
Hampton Regional Medical Center 37 125 53 64

Hilton Head Regional Medical Center 12 167 66 125
Kershawhealth 33 116 48 70
Lake City Community Hospital 45 108 88 65

Lexington Medical Center 43 202 49 176
Mary Black Health System Gaffney 27 146 56 105

Mary Black Health System Spartanburg 18 150 71 110
Mcleod Health Cheraw 20 117 48 42
Mcleod Health Clarendon 36 150 108 63

Mcleod Loris Hospital 34 137 50 43
Mcleod Medical Center - Dillon 35 168 52 36

Mcleod Regional Medical Center-Pee
Dee

70 224 101 104

Mount Pleasant Hospital 5 96 26 41
Musc Medical Center 24 162 47 99
Newberry County Memorial Hospital 32 138 54 68

Palmetto Health Baptist 36 193 59 174
Palmetto Health Baptist Parkridge 35 164 58 144

Palmetto Health Richland 28 205 78 207
Palmetto Health Tuomey Hospital 70 190 70 124
Pelham Medical Center 39 150 70 81

Piedmont Medical Center 38 176 72 143
Providence Health 32 152 65 152

Roper Hospital 10 103 31 61
Self-Regional Healthcare 49 154 79 50
Spartanburg Medical Center 68 218 80 145

Springs Memorial Hospital 22 126 58 75
St Francis-Downtown 44 172 75 100

Tidelands Health 20 122 40 93
Tidelands Waccamaw Community
Hospital

28 138 44 89

Trident Medical Center 8 115 24 100

Trmc Of Orangeburg & Calhoun 47 172 64 93
Union Medical Center 31 130 86 66
Associated average time (Minutes) 33 150 58 93

6 S. Pawar and A. Stanam

2.1 Models Developed

1. Simulation case 1 (Simulation for admitting a patient to ED with doctor
allocation and performing initial treatments referred as “door to doctor
time”): Compilation of all the java codes was conducted on a computer with a
3.07 GHz quad-core CPU and 24 G memory supported by a NVIDIA GTX 580
GPU card with 3G memory on NetBeans integrated development environment
(IDE). All the java classes and compilation codes are submitted on GitHub
repository which can be found on the corresponding authors account (https://github.
com/spawar2/Devs_Java_Patient_Flow_SimulationinEMS). The DEVS-JAVA
provides a collection of two methods of execution. One is using the SimView,
which is a graphical representation and the other being running a program directly
through a java class to run a simulation for given time using genDevs.simula-
tion.coordinator. SimView approach is more suitable to graphically understand the
flow of each activity, while the second approach is useful for getting associated
observations for a specified time of simulation. The main setup for the project is
shown in Fig. 1(a). This case simulation is shown in Fig. 1(b). The simulation is
based on the assumptions that ambulances will be available every 10 min and a
doctor becomes available every 5 min to the queue. Also, we assume that each
patient is taking an average time for 10 min to undergo a treatment process. We
have utilized the ambulance and doctor generator models which are namely Acci-
dent Site and Doctor Assigned. Also, we are using a simulator for ED that we name
as Emergency Dept. Operator here is basically a transducer that observes number of
patients and doctors flowing through EMS. Running this simulation provides an
output for one iteration of this case (Fig. 1(f)). The logging of the data is important
to make sure that simulation is working properly and also to identify how many
resources utilized for the given time range and what is the corresponding throughput
(essentially the number of patients discharged). With the significant number of
iterations with for-loops, identifying patters in simulations is possible. The final
goal of this case simulation is to identify the fact “How many doctors and ambu-
lances are optimal for decreasing average time of assignment (average wait time =
33 min)?”.

2. Simulation case 2 (Simulation of the patient being sent home after treatment
referred as “door to discharge time”): This case simulation is shown in Fig. 1(c).
This simulation will identify the time required to do the process of a patient dis-
charged to home. It will have a Front Desk generator that generates the patients to
the process of medication prescribed which is further redirected to the generator
Sent Home. An Operator is seen sitting beside and working as a transducer that
works on the count of patients flowing in this flow. We have utilized a range of
simulation cycles to answer this case question “How many patients are optimal for
decreasing average time of discharge (Average wait time = 150 min)?”.

3. Simulation case 3 (Simulation of a patient being transferred to the critical
care): This case simulation is shown in Fig. 1(d). This simulation identifies the time
constraints associated with a patient who is assigned to critical care. The transferred
to critical care criteria according to CMS only applies to the “initiation of a critical

Developing a DEVS-JAVA Model to Simulate and Pre-test Changes 7

https://github.com/spawar2/Devs_Java_Patient_Flow_SimulationinEMS
https://github.com/spawar2/Devs_Java_Patient_Flow_SimulationinEMS

care level of intervention” for the current data. This simulation is having the gen-
erators for Emergency Front Desk and Critical Care. Also, it is having a transducer
called Operator which keeps the track of all the ongoing information. The question
of interest in this simulation is “How many patients are optimal for decreasing
average time of directing them to critical care treatment (Average wait
time = 58 min)?”.

4. Simulation case 4 (Simulation of a patient being transferred to another hos-
pital): This case simulation is shown in Fig. 1(e). The task of this simulation is to
clearly identify the timings associated with a patient being transferred to another
hospital. The setup will have an Emergency Front Desk generator, Another Hospital
generator and the Operator as an observer. The question of interest here is “How
many patients are optimal for decreasing average time of directing a patient to
another hospital (Average wait time = 93 min)?”.

Fig. 1. (a) The main setup for the project. (b)–(e): Different simulation cases. (f): The command
line execution output for one of the test simulation. Different generators that we developed for
these simulations are ambulanceGenr: This model is a ViewableAtomic that is used to generate
and simulate patients taken form accident site to the hospital though ambulances. We have set 10
min as the default time for the frequency of ambulance availability. doctorGenr: This is also one
of the main important generators that will represent one of the main resources of the simulated
hospital system which is the doctor. We will be assuming that on average the doctors will be
available in each 5 min, while we develop this model. FrontDeskGenr: This is also a generator
model that will simulate the patient flow thought the Emergency Front Desk. HomeGenr: This
referees to the generator model that refers to the patients being set to home. MedGenr: This is a
DEVS model that will represent the process of medications being prescribed by a doctor.
patientEntity: This is the most important entity that we utilized during these simulations to
represent the patient. It represents the behavior of a patient and hence it is utilized in different
stages of medical treatments to measure the time for each step. This is one of the most important
measurements we used in the discussion of our observations. Operators: We are utilizing
transducers that we name as operator for each of these simulations. So, we have 4 different
transducers that we name as operator0 to operator4.

8 S. Pawar and A. Stanam

3 Results

1. “How many doctors and patients are optimal for decreasing average door to
doctor time (average wait time of 1 patient discharge = 33 min)?”

Results are obtained using execution of simulation using genDevs.simulation.co-
ordinator for a range of iterations and observing and summarizing the results against
the simulation goal questions. Table 2 states the simulation results of case 1. Using
these results and selecting optimized value highlighted in bold, we can calculate the
optimal patients discharged by a simple linear Eq. 1 as follows (average wait
time = 33 min):

Patients Discharged ¼ No of patients discharged=Observed: timeð Þ
� Current average comparison time: ð1Þ

When applied ((8/60) * 33 = 4.4 * 4), it gives 4 patients discharged (current time
is 1 patient discharge) utilizing 3 doctors as an optimal solution for this situation. We
followed the same approach for the rest of cases with a range of simulations with
following results.

2. “How many patients are optimal for decreasing average door to discharge time
(Average wait time = 150 min)?”.

Our optimal experimental results states that at most 5 patients can be discharged
(current time is 1 patient discharge) from ED to home, for the average time range of
150 min.

3. “How many patients are optimal for decreasing average time of directing them to
critical care treatment (Average wait time = 58 min)?”

Our experimental results states that at most 2 patients can be transferred (current
time is 1 patient transferred) from ED to critical care, for the average time range of
58 min.

4. “How many patients are optimal for decreasing average time of directing a patient
to another hospital (Average wait time = 93 min)?”.

Our experimental results states that at most 3 patients can be transferred from
transferred (current time is 1 patient transferred) from ED to another hospital, for the
average time range of 93 min.

Developing a DEVS-JAVA Model to Simulate and Pre-test Changes 9

4 Discussion and Conclusions

Based on our simulation results, the patient flow from ED can be significantly
improved with suggested numbers of doctors and patient arrival timings. There is no
mechanism in place to control the number of patients who arrive in the ED for eval-
uation, and an ideal ED input number cannot be derived. However, the current model
can be adopted to the input of patients known to occur at certain day and time.
A preliminary survey with average number of input patients arriving in specific ED is
needed for the model to operate. This can be easily done in any hospital and a custom
parameters can be applied to models evaluation. There are also some other types of
computer simulation techniques utilized to address similar issues in the field of med-
icine and health. Some of such tools include Discrete Event Simulation (DES), System
Dynamics (SD) and Agent-based Simulations (ABS). DES is identified to be one of the
best method to address this problem due to its capability of replicating the behavior of
complex healthcare systems over time. Future validation of our simulated data can be
performed using this technique.

Acknowledgments. 1. Support from the Georgia State University Information Technology
Department (GSU IT) for server space is gratefully acknowledged.

2. Support from the Artificial Intelligence and Simulation Research Group, Department of
Electrical and Computer Engineering, The University of Arizona for providing DEVS-JAVA
architecture is gratefully acknowledged.

Supporting Information. No external funding has been utilized for this analysis.

Appendix - Selected Pseudo Code Segments

This section contains selected pseudo code segments that are related to the simulation
of case 1 discussed in this article. This could help the readers to reproduce and improve
our simulation results.

Table 2. Simulation results of case 1.

Observed time
(minutes)

No. of
doctors

Finish time of last
doctor (minutes)

Patients
discharged

60 1 9.7 3
60 2 10.4 5
60 3 8.7 8
60 4 10.6 6

10 S. Pawar and A. Stanam

1. Generator: ambulanceGenr
package DEVSJAVALab;
import simView.*;
import java.lang.*;
import genDevs.modeling.*;
import genDevs.simulation.*;
import GenCol.*;
import util.*;
import statistics.*;
public class ambulanceGenr extends ViewableAtomic{
protected double int_gen_time;
protected int count;
protected rand r;
public ambulanceGenr() {this("ambulanceGenr", 7);}

public ambulanceGenr(String name,double period){
super(name);
addInport("in");
addOutport("out");
int_gen_time = period ;

}
public void initialize(){

holdIn("active", int_gen_time);
r = new rand(123987979);
count = 0;

}
public void deltext(double e,message x)
{
Continue(e);

for (int i=0; i< x.getLength();i++){
if (messageOnPort(x, "in", i)) { //the stop message from tranducer

passivate();
}

}
}
public void deltint()
{
if(phaseIs("active")){

count = count +1;
// holdIn("active",int_gen_time);

holdIn("active",6+r.uniform(int_gen_time));
}
else passivate();
}
public message out()
{
//System.out.println(name+" out count "+count);

message m = new message();
// content con = makeContent("out", new entity("car" + count));

content con = makeContent("out", new patientEntity("Ambulance" + count, 5+r.uniform(20), 50+r.uniform(100), 1));
m.add(con);
return m;

}}

Developing a DEVS-JAVA Model to Simulate and Pre-test Changes 11

2. Generator: doctorGenr
package DEVSJAVALab;
import simView.*;
import java.lang.*;
import genDevs.modeling.*;
import genDevs.simulation.*;
import GenCol.*;
import util.*;
import statistics.*;
public class doctorGenr extends ViewableAtomic{
protected double int_gen_time;
protected int count;
protected rand r;
public doctorGenr() {this("doctorGenr", 30);}

public doctorGenr(String name,double period){
super(name);
addInport("in");
addOutport("out");
int_gen_time = period ;

}
public void initialize(){

holdIn("active", 2);
r = new rand(2);
count = 0;

}
public void deltext(double e,message x)
{
Continue(e);
}
public void deltint()
{
if(phaseIs("active")){

count = count +1;
holdIn("active",20+r.uniform(int_gen_time));

}
else passivate();
}
public message out()
{
//System.out.println(name+" out count "+count);

message m = new message();
// content con = makeContent("out", new entity("truck" + count));

content con = makeContent("out", new patientEntity("Doctor" + count, 10+r.uniform(30), 100+r.uniform(100), 1));
m.add(con); return m;

}}

12 S. Pawar and A. Stanam

3. Generator: patientEntity
package DEVSJAVALab;
import GenCol.*;
public class patientEntity extends entity{
protected double processingTime;
protected double price;
protected int priority;
public patientEntity(){

this("patient", 10, 10, 1);
 }
public patientEntity(String name, double _procTime, double _price, int _priority){

super(name);
processingTime = _procTime;
price = _price;
priority = _priority;

}
public double getProcessingTime(){

return processingTime;
}
public double getPrice(){

return price;
}
public int getPriority(){

return priority;
}
public String toString(){

return name+"_"+(double)((int)(processingTime*100))/100;
//return name+"_"+((double)((int)(processingTime*100)))/100;

}}

4. Generator: EMS_Sim
package DEVSJAVALab;
import simView.*;
import java.awt.*;
import java.io.*;
import genDevs.modeling.*;
import genDevs.simulation.*;
import GenCol.*;
public class EMS_Sim extends ViewableDigraph{
public EMS_Sim(){

this("EMS Simulation System");
}
public EMS_Sim(String nm){

super(nm);
emsConstruct();

}
public void emsConstruct(){

this.addOutport("out");
ViewableAtomic amb_genr = new ambulanceGenr("Accident Site",10);
ViewableAtomic doc_genr = new doctorGenr("Doctor assigned",1);
ViewableAtomic ems_dpt = new EMSDept("Emergency Dept/Critical care");
ViewableAtomic operator = new operator ();
add(amb_genr);
add(ems_dpt);
add(doc_genr);
add(operator);
addCoupling(amb_genr,"out",ems_dpt,"AmbulanceReached");
addCoupling(amb_genr,"out",operator,"ariv");
addCoupling(doc_genr,"out",operator,"ariv");
addCoupling(ems_dpt,"out",operator,"Assigned");
addCoupling(doc_genr,"out",ems_dpt,"DoctorAssigned");
addCoupling(ems_dpt,"out",this,"out");}

Developing a DEVS-JAVA Model to Simulate and Pre-test Changes 13

References

1. Mohiuddin, S., Busby, J., Savović, J.: Patient flow within UK emergency departments: a
systematic review of the use of computer simulation modelling methods. BMJ Open (2017)

2. Institute of Medicine (US) Committee on Assuring the Health of the Public in the 21st
Century: The Future of the Public’s Health in the 21st Century, vol. 5. National Academies
Press, Washington (DC) (2002). The Health Care Delivery System. https://www.ncbi.nlm.nih.
gov/books/NBK221227/

3. Zeigler, B., Hessam, S.: Introduction to DEVS Modeling and Simulation with JAVA:
Developing Component-Based Simulation Models. http://www.cs.gsu.edu/xhu/CSC8350/
DEVSJAVA_Manuscript.pdf

4. Artificial Intelligence and Simulation Research Group: DEVS-Java Reference Guide (1997).
https://grid.cs.gsu.edu/*fbai1/paper/4560.pdf

5. Hospital Compare datasets: Data.medicare.gov (2018). https://data.medicare.gov/data/
hospital-compare/

14 S. Pawar and A. Stanam

https://www.ncbi.nlm.nih.gov/books/NBK221227/
https://www.ncbi.nlm.nih.gov/books/NBK221227/
http://www.cs.gsu.edu/xhu/CSC8350/DEVSJAVA_Manuscript.pdf
http://www.cs.gsu.edu/xhu/CSC8350/DEVSJAVA_Manuscript.pdf
https://grid.cs.gsu.edu/%7efbai1/paper/4560.pdf
https://data.medicare.gov/data/hospital-compare/
https://data.medicare.gov/data/hospital-compare/

	Developing a DEVS-JAVA Model to Simulate and Pre-test Changes to Emergency Care Delivery in a Safe and Efficient Manner
	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Modeling and Simulation Goals

	2 Materials and Methods
	2.1 Models Developed

	3 Results
	4 Discussion and Conclusions
	Acknowledgments
	Appendix - Selected Pseudo Code Segments
	References

