
Increasing Safety by Combining Multiple
Declarative Rules in Robotic

Perception Systems

Johann Thor Mogensen Ingibergsson, Dirk Kraft, and Ulrik Pagh Schultz(B)

Mærsk Mc-Kinney Møller Institute, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark

{jomo,kraft,ups}@mmmi.sdu.dk

Abstract. Advanced cyber-physical systems such as mobile, networked
robots are increasingly finding use in everyday society. A critical aspect
of mobile robotics is the ability to react to a dynamically changing envi-
ronment, which imposes significant requirements on the robot perception
system. The perception system is key to maintaining safe navigation and
operation for the robot and is often considered a safety-critical aspect of
the system as a whole. To allow the system to operate in a public area the
perception system thus has to be certified. The key issue that we address
is how to have safety-compliant systems while keeping implementation
transparency high and complexity low. In this paper we present an evalu-
ation of different methods for modelling combinations of simple explicit
computer vision rules designed to increase the trustworthiness of the
perception system. We utilise the best-performing method, focusing on
keeping the models of the perception pipeline transparent and under-
standable. We find that it is possible to improve the safety of the system
with some performance cost, depending on the acceptable risk level.

Keywords: Safety · Computer vision · Robotics · Functional safety

1 Introduction

The significant growth of highly interconnected Cyber-Physical Systems (CPS)
is currently imposing complex conglomerates of software and hardware on per-
sonal life and many sectors of industry. While the high degree of integration
between software, mechanical, and electrical engineering is well-known and vis-
ible in sectors such as automotive or aviation, more “traditional” sectors such
as agriculture and consumer electronics also benefit from the opportunities pro-
vided by the latest information and communications technology concepts and
solutions. Driven by this trend, the domain of robotics is continuously expand-
ing from large industrial machines in cages to free-moving consumer products.
This expansion is reflected by the current market and projected increase in the
future [11,22].

c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 43–60, 2019.
https://doi.org/10.1007/978-3-030-17910-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-17910-6_4

44 J. T. M. Ingibergsson et al.

Computer vision is a key point for robotics—and thus CPS in general—to
be able to act in a dynamic world [7]. The task for a computer vision system
is to understand what exists, where a mobile robotic system is located, and if
obstacles require an immediate action. These goals are functional requirements
of the system and should be addressed with an explicit focus on safety when
dealing with mobile robots. Indeed, a requirement for introducing autonomy in
established domains is safety, which is done through compliance with functional
safety standards that rely on code and documentation reviews. To support the
use of vision in safety-critical systems, we propose to use simple and explicit
computer vision rules as a means to determine specific problems in input images
and the perception system as a whole [15]. Increasing the readability of the
code and the perception rules can increase the overall trustworthiness of the
system [13], facilitating the certification process [15]. Such simple and explicit
computer vision rules can be implemented in a domain specific programming
languages (DSL), supporting safe implementation of computer vision for safety-
critical systems [14].

In this paper, we investigate how to combine such simple and explicit rules
in an understandable way in order to judge the current operational safety of the
robots perception system during autonomous operation. The safety system con-
sists of code generated using the Vision Safety Language (ViSaL; [14]), where
the developer specifies rules to safeguard the system from malfunctions. Our
investigations build on the combination of explicitly written rules and address
the issue of how this combination should be modelled, in particular, whether it
can be done manually or automatically. The tested methods have a clear focus
on being explicit and thereby easy to understand to facilitate clear communi-
cation to functional safety certifiers, such that the intent of the code and the
system can be deducted. Concretely, we compare three manual programmatic
methods with an automatic method based on decision trees. The decision tree
method is deemed most appropriate in this comparison and is then assessed on
a robot as an added safety layer for the You Only Look Once (YOLO) neu-
ral network (NN) [26] to investigate the performance and cost for the system.
Compared to our earlier work where rules were evaluated independently [13–15],
we here design, implement, and test combinations of rules and evaluate these
combinations as a safety layer for a state-of-the-art NN.

The rest of this paper is structured as follows. In Sect. 2 we discuss safety
in the context of robotics and related industries, followed by an overview of our
initial work on safety and computer vision in connection to learning methods. In
Sect. 3 we present different methods that can be used for modelling a safety layer
for a computer vision system based on declarative rules, along with two datasets
used for experimentally investigating the methods. The performance evaluation
and comparison of the different methods will be conducted in Sect. 4, where
they are tested on the datasets. The best-performing method is experimentally
evaluated in Sect. 5, by introducing the safety method in a robotic system as a
means to improve the safety of a NN. We end with an overall conclusion and an
outline of future work in Sect. 6.

Increasing Safety by Combining Multiple Declarative Rules 45

2 Fundamentals and Related Work

2.1 Safety in Robotics

While robotics is a thriving research area within academia, the penetration into
industry has mostly been limited to replacing manual labour in factories. The
intent of commercialising robots and selling them on a mass market puts certi-
fication as a central requirement as increasingly complex autonomous systems
are introduced [27]. Certification allows products to comply with international
standards, and thus lowers liability concerns [30]. A critical requirement for cer-
tification is that the software controlling the robot has been reviewed and paired
with textual requirements, meaning that a clear interpretation of the intent is
needed. Safety can be defined as, e.g., “freedom from unacceptable risk” [37].
Certification can consume more than 50% of the resources required to develop
new safety-critical systems in related domains [1]; development of safety-critical
software is expensive.

Safety is discussed in many settings and is often mentioned in papers, e.g.,
for computer vision, however without explicitly dealing with the challenges that
arise [12]. As a result, safety is an obstacle for robots to operate autonomously
in the public domain, while various ad-hoc safety measures have been designed,
often focused on a specific risk such as collision, certification is not undertaken.
It follows that there is a need for generalised methods for facilitating compliance
and certification [20]. In the industrial domain developers rely on functional
safety, which is defined as: “part of the overall safety relating to the [equipment
under control] EUC and the EUC control system that depends on the correct
functioning of the [electrical and/or electronic and/or programmable electronic]
E/E/PE safety-related systems and other risk reduction measures” [37].

2.2 Perception Systems

The safety issue is partially at odds with how robotic autonomy is normally
developed today. Researchers often rely on machine learning and Artificial Intel-
ligence (AI) to achieve required performance and safety, however, the safety
aspect is difficult for humans to interpret. This tension is described in Defence
Science Board 2016 Summer Study on Autonomy which argues that it is hard
for humans to understand and predict AI systems [6]. In computer vision, the
focus is on performance [12], and the improved safety is often claimed despite
introducing ever more complex algorithms. That “in spite of their complexity,
they fail frequently. ” moreover, “in part due to their complexity, they fail in
seemingly inexplicable ways.” [2].

Robots rely on perception systems to navigate the world, as such the systems
require both safety certification and a minimal performance. Safety certification
could be done by adapting IEC 61496 [36] for outdoors use. Despite the scope
of the standard being for machines in an industrial setting, it is noted that
additional requirements can be applied to the system if it is intended for outdoor
applications, which means that the developer has to argue for the safety in

46 J. T. M. Ingibergsson et al.

the system and thus can disregard the cages. Regarding performance, drafts
exist of standards for outdoor robotics, e.g., ISO/DIS 18497 [35] and ISO/DIS
17757 [34]. The standards quantify detection performance, the tests have however
been criticised [33]. The criticism is that the test object can be robustly detected
in varying conditions using a NN, while not being able to detect humans.

The concept of safe states, i.e., fall-back behaviour, are important for per-
ception systems since sensors, in general, have a risk of failing [3]. These failures
require that the sensors are robust, without robustness the robot may “halluci-
nate” and respond inappropriately [23]. The failures are not limited to hardware,
but also software and NNs “need serious design effort, pre-planning and proved
to be fragile in face of sensor errors in practice” [38]. It is therefore important
for functional safety to look at software safety verification of the input sensor
data, and thereby to give assurance about the hardware by verifying inputs and
outputs.

There are many requirements to a computer vision system [5]. Precision for
vision algorithms is an issue in general, as a result it can be beneficial to create
multiple classification regions. Multiple regions allow the system to deal with
images that can be difficult to classify. Mekki-Mokhtar et al. proposed a concept
called multiclass classification, as seen in other safety-critical systems [21]. The
multiclass classification allows a system to have more than a boolean decision,
e.g., “bad”, “warning” and “good”. This will enable a decision system to decide
the trustworthiness of different sensors, and thereby decide if the robot needs to
stop or just slow down. A benefit of using multiclass classification is tolerance
towards the issue that sensors are in some way disturbed by noise, and thus the
data may be unreliable. A common approach is to employ redundancy [10]. The
multiclass classification can allow different sensors to use voting similar to sensor
fusion [10].

A standard measure for evaluating algorithm performance within computer
vision is Precision-Recall (PR). PR curves are used to identify the performance
of classifiers. Other methods exists such as the well-known Receiver Operating
Characteristics (ROC), however we choose PR curves over ROC because if a
curve dominates in the PR-space, it will also dominate in the ROC space [4].
Furthermore, ROC does not take the baseline into account, and since categories
for annotated data can be unbalanced, the PR-curves are a better statistical
measure. An issue with the use of statistical measures is the notion of an accept-
able risk, this is however not specified in functional safety standards. Therefore
it is up to the developer to decide when the systems performance is good enough,
with respect to acceptable risk. To evaluate the PR-curves we utilise Area Under
the Curve (AUC). An approximation is however needed, such as trapezoidal
approximation, to evaluate the AUC of the resulting PR curves and find an
“optimum”. This is because linear approximation is insufficient for PR [4]. The
use of AUC in combination with PR instead of ROC is further supported by
Saito et al. “The PRC [Precision-ReCall] plot is more informative than ROC,
CROC [Concentrated ROC], and CC [Cost Curve] plots when evaluating binary
classifiers on imbalanced datasets” [29]. With the hope of using these methods

Increasing Safety by Combining Multiple Declarative Rules 47

in connection with argumentation for functional safety, a perfect score would be
desirable, however not a plausible result to aim for. This leaves the developer to
rely on upcoming performance standards [34,35] and to assume an acceptable
risk level for the system.

An issue with PR is however that one has two values that are being improved
(precision and recall). To remedy this an optimum point is chosen based on the
Fβ score. The Fβ score is a statistical measure that can be used to evaluate the
classification performance. The β is a number reflecting a weight on either recall
or precision. We have chosen 1 which results in the harmonic mean of precision
and recall. The F1 score is a weighted average where the best value is at 1 and
the worst is 0.

2.3 Learning and Computer Vision

“Software developers have a history of adding security to their products after the
fact rather than integrating it into the development phase [...] Now, he warned,
the machine learning community is poised to make the same mistake.” [17]. We
note that NNs have received significant attention in the computer vision commu-
nity, beating other methods in performance on many tasks. Nevertheless, safety
certification of neural networks remains an open issue [18]. NNs should ideally
be understandable and readable by humans, while still allowing for individual,
meaningful rules [18]. Many industries have looked into the use of NNs [31],
investigating the use of NNs since the 1980s [31].

Gupta et al. propose verification and validation of adaptive NNs [8], although
with a focus on control systems. Specifically the absence of analytical certification
methods restricts NNs to advisory roles in safety-related systems [19]. Moreover,
we note that deep NN and similar recently popular methods share the same
issue of being hard to assess in terms of safety. There do exist probabilistic mea-
sures for failure detection [40]. The issue with these methods is however that
it is difficult to prove that the underlying distributions cover the entire normal
behaviour. The difficulty is illustrated by the spurious behaviour learning meth-
ods can exhibit, where the neural network wrongly makes different classifications
of images indistinguishable for humans [25]. The key problem is that classifiers
and learning are complex tasks that are hard to prove reliable for humans, in
particular through reviews. This shows that safety certification of NNs remains
an open issue [9,19]. Because of functional safety and the requirement for code
reviews, we do not believe that online trained or adaptive NNs are certifiable,
despite recent advances [8].

To comply with functional safety the NN would have to be transparent. In
the case of pre-trained NN the learning method and learned models would be
available for the reviewer. The resulting NNs are however still “black boxes”,
moreover the computations can be time consuming [9]. This makes NN infea-
sible for safety-critical systems; however other learning methods exists that are
more intuitive to understand, such as decision trees [24]. A decision tree is “a
hierarchical model composed of discriminant functions, or decision rules, that are

48 J. T. M. Ingibergsson et al.

applied recursively to partition the feature space of a dataset into pure, single-
class subspaces” [39]. A decision tree T consists of branches Tt where t is the
number of branches. Decision trees can be explicitly depicted to give reviewers
an intuitive understanding of the data flow. When using decision trees there
is an inherent issue of over-fitting, which is addressed using pruning. Pruning
refers to replacing branch nodes with leaves, thereby decreasing complexity and
simplifying the tree. Trees can be trained with a stopping criterion, but it is
generally accepted that it is better to overgrow a decision tree and then prune
back [24]. “Pruning a branch T t from a tree T consists of deleting all descen-
dants of t. Denote the pruned tree as T −Tt.” [28]. There are multiple algorithms
for pruning decision trees [28].

The NN for which we will introduce a safety layer in this paper is YOLO.
From a software point of view, the safety check consists of executing code from
ViSaL for assessing the input images for the YOLO algorithm, specifically we use
YOLOv2 [26]. In this paper, we refer to YOLOv2 as YOLO. The algorithm finds
anchor boxes of proposed predictions for the image, which are then thresholded
based on a probability criteria. The predictions are then found using non-max
suppression. Our reason for using YOLO is not the algorithm components, but
its performance and speed, i.e., high precision and 45 frames per second [26].

Introducing a safety system could have a potential negative impact on the
overall performance of the system, because some images categorised as good
could be distrusted by the system. In a nutshell, a safety system that distrusts
all images ensures that a NN will never make any miscategorisations, but is not
useful. We use the term uptime cost to refer to the overhead of using a safety
system, in terms of how many useful images are incorrectly discarded. Concretely,
we measure the uptime cost by assessing how many images are removed from the
highest category, i.e., the most usable images, to estimate the cost of introducing
a safety layer to a perception system.

2.4 Programming Safe Perception Systems

Initial steps towards establishing a safe implementation of perception systems
have been demonstrated using explicit declarative rules to address specific issues
in a perception pipeline [14,15]. The rules are focused on different particulari-
ties of an image such as pixel distributions, pixel changes, and frequency. The
simple rules use multiclass classification, because of the uncertainties in specify-
ing precise thresholds for classifying images using the rules, thereby establishing
a margin of reliability in the classifications. The many categories however also
make the classification problem harder and thereby the performance of the algo-
rithm deteriorates. As a result the concept of soft-boundaries was introduced to
evaluate multiclass classification systems without penalizing the system perfor-
mance excessively [15]. The computer vision rules have been implemented in the
Vision Safety Language (ViSaL) DSL for automatic generation of their imple-
mentation [14] and an initial assessment has been performed with respect to
readability with the goal of facilitating certification [13]. An excerpt of a ViSaL

Increasing Safety by Combining Multiple Declarative Rules 49

program is shown in Fig. 1, the rule FB detects images with abnormal distribu-
tion of pixels in a colour histogram, which for example detects underexposed or
overexposed images unsuitable for further processing in a perception pipeline.

The declarative rules in ViSaL function independently, which means that
ViSaL outputs individual scores for each rule, i.e., ok, warn or bad. The set of
problems and symptoms that can result in problematic issues in a perception
pipeline, are covered by a subset of the defined rules in ViSaL, therefore the
entire rule set overlaps the problem space. This paper is focused on combining
the rules, as this allows for a clear decision on the system integrity and can
increase safety.

The focus of the combination of the rules is a means to give a clear statement
on the integrity of the system, and as such the sum of rules does not in itself
increase safety. Nevertheless, certain standards allow for combinations of safety-
functions to increase safety. An example is ISO 26262 [16], where there exists
a concept called decomposition, which allows for lower-rated safety function to
safeguard high levels by combining safety-functions. In this paper the method
of combining the rules is addressed, serving as an experimental continuation of
the initial steps made in previously published papers [13–15].

Fig. 1. Excerpt of ViSaL implementation of image analysis rules for verifying the data
integrity of images [14].

3 Methods

3.1 Datasets

In our experiments, we use datasets consisting of images labelled using a usability
category, where five is a usable image and one is unusable, i.e., unusable to make
reliable safety decisions. Datasets consist of RGB and depth information and

50 J. T. M. Ingibergsson et al.

are processed by the rules (“raw data”), based on which thresholds are found
in the data using precision-recall curves (“threshold data”) [15]. We use two
datasets: “agriculture”, from an outdoor setting [15]; and “turtlebot” from an
indoor setting. Both datasets consist of 406 images labelled using the usability
category.

3.2 Decision Trees

We employ decision trees because we view them as a valid method in the context
of functional safety, since the trees are an intuitively understandable visualiza-
tion of a decision process. This means that the learned model can be verified
and understood by tracing the propagation of images through the tree, and
thereby iterate over an understandable model. Two decision trees are created
using Matlab, where the trees are based on the raw data and on the threshold
data respectively. We employ pruning on the automatically generated decision
trees. For pruning we use cross-validation, meaning that the training data is split
into train, test, and validation, to evaluate the model, i.e., the level of pruning
for the decision tree.

3.3 Manual Programming

The manual programming approach utilises pre-defined thresholds for simple
declarative rules, as to explicitly combine the rule evaluations, i.e., “bad”,
“warning” and “good” [15]. The use of a manual programming approach should
allow the derived rules to be intuitively understood. Ultimately an extension
of the ViSaL DSL would be used for this, but in this paper, we investigate
the feasibility of such an approach, rather than the design of the language. For
this reason, we use a mathematical notation to express the programmed rule
combinations, leaving a concrete DSL syntax for rule combinations for future
work. In this paper we consider three different manual programming approaches:
“top-down”,“bottom-up”, and “inferred learning”.

The “top-down” approach refers to the idea that the combination of the rules
are based on intuitive ideas by the developer, e.g., if all rules dealing with expo-
sure or bin distributions are “good”, then the image is assumed “good”. The
second approach,“bottom-up”, relies on fitting a rule to the underlying data of
the training set, e.g., the existing rule combinations. Last the “inferred learn-
ing” approach is based on creating rules using a combination of the two above
approaches and by utilising insights manually inferred from an automatically
generated decision tree.

The mathematical notation used to support the combination of rules can
be seen in Fig. 2. It describes an overall evaluation of an image based on all
rules R. The notation is based on a sequence S of compound rules P defined as
propositions that combine rule evaluations αr(x) using a weighting.

Increasing Safety by Combining Multiple Declarative Rules 51

R set of all rules, r ∈ R, I set of all images, x ∈ I

αr(x) :

⎧
⎪⎨

⎪⎩

b, r(x) < terrorr

g, r(x) > twarnr

w, Otherwise

α∗
0(x) :

⎧
⎪⎨

⎪⎩

b, ∃r ∈ R : αr(x) = b

g, ∀r ∈ R : αr(x) = g

w, Otherwise

S ≡ {(o1, P1),, (on, Pn)}, where oi ∈ {g,w, b}

βS(x) :

⎧
⎨

⎩

om, m = min
j∈N

: Pj(x)

α∗
0(x), ∀m ∈ N : ¬Pm(x)

(1)

(2)

Fig. 2. Mathematical representation of the combination of rules, where the thresholds
tr are assumed to always be an upper limit. The function αr(x) corresponds to the
evaluation of individual rules, where b corresponds to an image being categorised as
“bad”, w as “warning”, and finally g as “good”. The α∗

0(x) function is defined such
that if one rule for a given image evaluates to “bad” then the combined result would
be “bad”, whereas if one image is“warn” and none are “bad”, then the combined result
is“warn”. In all other cases, the result is “good”, meaning that the rules have an equal
weighting. The rule in Eq. 1 can be adapted for different scenarios. The use of the
compound rules is done using a sequence S, consisting of an output and a compound
rule, as described by Eq. 2. The sequence S of propositions is evaluated using βS(x),
meaning that the first-occurring satisfied compound rule of an image will result in the
images evaluating to the corresponding output value. If no compound rule is true then
the result defaults to α∗

0(x).

Top-Down. The top-down approach relies on first combining the rules by using
the dominant state of the rule results as in Eq. 1. Equation 1 implies an equal
weighting of the rules. The combination of rules is created as compound rules,
meaning that they are designed as propositions P combined in a sequence S,
and evaluated using βS(x).

Bottom-Up. The bottom-up approach uses the same initial combination app-
roach (Eq. 1). The compound rules for this task are found by investigating the
data, e.g., using a loop for testing all possible rule combinations and their perfor-
mance. The best-performing combinations are then introduced, and the process
can be iterated. An alternative approach used is to investigate the existing rule
combinations in the data. The new rules are therefore found based on the chosen
training data.

52 J. T. M. Ingibergsson et al.

Inferred Learning. Because of the risk of over-fitting the inferred learning app-
roach utilizes pruned decision trees. Using decision trees as heuristics for creat-
ing manual rules could possibly benefit the creation. The key benefit of using
the heuristics is however that the decision tree and in particular the predictor
importance allows for improving the weights in α∗

0(x) (Eq. 1) because there is
an understanding of the rule’s impact based on the available data.

4 Combining Declarative Rules

4.1 Combination of Rules

We benchmark the three manual approaches (top-down, bottom-up, and inferred
learning) and the two decision trees (non-pruned and pruned). A key issue is
that manual rules are only created once per split, meaning that the statistical
properties such as the mean and the standard deviation are impacted since some
training data will be present in the test data. We however believe that it is still
interesting to see the statistical results as a means to evaluate the prediction
methods with respect to the decision trees.

For functional safety the optimal process for conveying information would
be to create manual rules based on expert knowledge, as to argue for the logic
behind the choices, which allows for explicitly pairing the safety goals to the
implementation, thereby making a clear reference for the reviewer. As an example
we show an extract of the rules defined as a result of the top-down (TD) analysis,
where the three ViSaL rules CAbot, CAtop, and BF are used. These rules deal
with connected components in the image (CAbot and CAtop) whereas BF finds
the largest bin and its corresponding fill level.

PTD
g1

(x) ≡ ∃r′ ∈ R \ {CAbot, CAtop,BF} :

αCAbot(x) = αCAtop(x) = αBF (x) = αr′
(x) = g (3)

PTD
b1 (x) ≡ αCAbot(x) = αCAtop(x) = w (4)

PTD
b2 (x) ≡ αFR(x) = w ∧ (

αCAbot(x) = w ∨ αCAtop(x) = w
)

(5)

PTD
b3 (x) ≡ ∃r′ �= r′′ �= r′′′ �= r′′′′ ∈ R :

αr′
(x) = αr′′

(x) = αr′′′
(x) = αr′′′′

(x) = w (6)

The propositions P shown in Eqs. 3 to 6 are examples of the rules found
using the top-down analysis. The top-down manual rules were found by first
combining the rules individual results with α∗

0(x). This results in the combination
represented as a sequence S shown in Eq. 7.

STD ≡ {(b, PTD
b3), (b, PTD

b2), (b, PTD
b1), (g, PTD

g1
)} (7)

The performance of the manual approaches top-down and bottom-up can be
seen in Table 1, where it is evident that they are not feasible. The inferred learn-
ing approach which uses the decision tree as heuristics for creating the manual

Increasing Safety by Combining Multiple Declarative Rules 53

Table 1. The mean, μ, and the standard deviation, σ, of the individual results of the
pruned decision tree training for the two datasets, on the raw and threshold results on
the 200 random splits (see also Sect. 3.1).

rules has better performance and the combination of rules was also done faster
by the human programmer. Nevertheless, the results of the decision trees still
outperformed the manually programmed rules. It should not be concluded that
manually programmed rules can be disregarded, but rather that the overall per-
formance can be improved using decision trees. Intuitive rules can still be cre-
ated to express specific safety goals, assuming the performance is good enough.
The methods should, therefore, be viewed as complementary with respect to
complying with safety standards. Nevertheless the decision trees significantly
outperformed the manually programmed rules, as can be seen in Table 1, where
it is evident that the “raw” results outperform the“threshold” results.

5 Experimental Evaluation

5.1 Robot Platform

For our experimental evaluation, we utilise a robot from Conpleks Innovation
ApS, shown in Fig. 3. The robot runs ROS Kinetic on Ubuntu 16.04, and the
system navigates autonomously using an RTK-GPS and perception sensors. The
software for the robot runs on two embedded platforms. First, the controller for
the motors is a Conpleks robotech controller 501 based on an Aaeon GENE-
QM77, which is an embedded single-board computer consisting of a 3rd genera-
tion Intel i5 processor. Second, the sensor fusion platform is based on a GeForce
GTX 1080 interfaced to an Intel i7-6700K, which enables real-time processing
of the sensor data. This robot is equipped with a sensor kit consisting of a ther-
mal camera, a stereo camera, and a 360 degrees lidar. The current sensor fusion
platform is built using consumer-grade electronics and is as such not usable for
an industrial setting. For data collection, the robot was controlled manually and
only the stereo camera was used.

54 J. T. M. Ingibergsson et al.

Fig. 3. Conpleks’ robot created for collecting golf balls autonomously [32].

5.2 Test Setup

The recordings are used to evaluate the combination of the YOLO algorithm and
the safety layer. The evaluation is thus not performed on-line during operation
of the robot, but at a later time using recorded images. We implemented YOLO
on industrial-grade embedded boards, namely NVidia Jetson TX2 boards. The
Jetson TX2 board was used as the test setup and is running ROS Kinetic on
Ubuntu 16.04, making it suitable future for deployment on our robotic platform.

5.3 Data Acquisition

The recordings of the dataset were done in Odense Airport 21st-22nd of August
2017. The recording session consisted of an operator remote controlling the robot
while between zero and two persons moved around in front of the robot. In addi-
tion, a second part of the recordings consisted of stressing the camera by exposing
it to potential hazards for the image: over- and under-exposure was simulated
by emitting light into the lens and covering it up; frozen image was simulated by
covering the lens; dirty lens was simulated using grass, dirt, and water. Frozen
image normally means that the same image is emitted several times, i.e., it would
not be limited to black images. This means that the experiment is a special case.
Nevertheless, the general example would be caught by rules using optical flow
and/or lack of pixel changes, both of which are examples of rules which we
use [15]. In addition, the focus was changed by adding different levels of water
and plastic in front of the lens to distort the scene.

5.4 Dataset

The recordings consisted of 4471 images which are manually labelled based on the
usability category. One researcher (the first author) did the labelling manually.
Randomised images for the five usability categories were then extracted with
an equal weighting for all categories for the data analysis. The equal weighting
allows us to create three datasets: training; test; and validation, where each set
consists of 545 images, which were split evenly into the five categories, i.e., 109
images per category.

The dataset is further annotated based on the YOLO algorithms perfor-
mance, this is done after the usability categorisation, as to not have an impact

Increasing Safety by Combining Multiple Declarative Rules 55

(a) YOLO detection. (b) No detection. (c) YOLO detection.

(d) No detection. (e) YOLO detection. (f) No detection.

Fig. 4. Image examples from the dataset evaluated by the YOLO algorithm, where
the bounding boxes indicate if the YOLO algorithm made a detection. Images a–d had
their brightness increased similarly to help the reader see the structures in the images,
whereas images e and f retain their original brightness.

on the results. The YOLO labels are 1 if there is at least one human present,
and 0 if no persons are present in the image. The detection precision of YOLO
is also labelled by 1 and 0.

5.5 Initial Data Exploration

To investigate if the labelling was acceptable we examine it using the YOLO
detections as a baseline. From the entire dataset of 4471 images, there are 1942
good images with people in the scene. Out of these, the YOLO detected at least
one human in 1922. Resulting in a failure percentage of 1.04%. Second, we look
at the bad images consisting of 607 images with people in the scene. YOLO
was able to detect a human in 405 images. Resulting in a failure percentage of
33.28%. We use these results as an indication that the usability labelling of the
images seems to be correct. Despite YOLO detecting correctly in 66.7% of the
bad images, they can still be interpreted as bad, referring to Fig. 4. This means
that a correct detection is not the same as stating the image is usable.

5.6 Usability

The results are extracted based on 192 random splits used for both the pruned
and non-pruned decision trees. The results for the precision, recall, and F1-scores
for the decision trees can be seen in Table 2.

We test the impact of the pruning using the F1-score via a paired t-test. We
do this for both the test and validation splits where we test the null hypoth-
esis that the pairwise difference between data vectors of the pruned decision
tree (x) and non-pruned decision tree (y) has a mean equal to zero at the 1%

56 J. T. M. Ingibergsson et al.

Table 2. The precision, recall and F1 scores for the non-pruned and pruned decision
trees evaluated on the 192 random splits in the dataset.

significance level. We evaluate this against the alternative hypothesis that the
pruned decision tree (x) has a greater mean than the non-pruned decision tree
(y) with a 1% significance level. The null hypothesis is rejected, meaning that the
pruned decision trees have a higher performance on unknown data, compared
to the non-pruned. Comparing the results with the manual results on the older
datasets in Table 1, it is evident that the new decision trees perform better. We
use these comparisons to conclude that the decision trees are applicable.

5.7 Assessment

The decision trees based on the ViSaL rules are now used to analyse the images
before the YOLO algorithm is applied. The goal of the system is to signal to
a decision system whether or not the data is trustworthy. This means that if
the image is not usable or if there is a human in the image, the robot should
be stopped. We, therefore, conduct three analyses for comparison. The three
different analyses are: using only the YOLO algorithm without any impact from
the ViSaL rules; using YOLO and ViSaL based decision trees, not trusting bad
images; and finally YOLO and ViSaL based decision trees only trusting good
images. These assessments are done for both the pruned decision tree and can
be seen in Table 3.

In Table 3 the rows represent the results based on 192 iterations. The first
row “Total Images” corresponds to the number of images that is checked in every
iteration. The second row “Trusted Images” refers to the images that YOLO is
exposed to, the range is a result of the random sampling for the 192 iterations.
The “Humans Missed” row refers to the humans that are visible in the image
and that were not detected by YOLO. “Mean Percentage Detection” refers to
the detection performance of the YOLO algorithm on “Trusted Images”, where
if at least one human was detected it was a correct detection. The “Uptime Cost”
row is based on the usable images in the fifth category and how many of those
have been removed by the ViSaL decision trees. The cost is only based on the
fifth category because we are using the soft boundary method [15], which means
that the fourth category can be moved into the warning region. Finally, the last
two rows give the F1 scores of the YOLO detections and the safety layer. For the
YOLO detections it is calculated based on: a true positive is a correct detection
of all humans in the image; a false positive is a wrong detection in the image;
false negative is if YOLO misses a detection in the image; and true negative is if

Increasing Safety by Combining Multiple Declarative Rules 57

Table 3. The table illustrates the performance impact of using ViSaL-based pruned
decision trees in connection with YOLO, see text for details.

YOLO no safety YOLO, distrust
“warn” and “bad”

YOLO, distrust
only “bad”

mean std mean std mean std

Total images 545 0 545 0 545 0

Trusted images 545 0 112.56 9.34 328.63 9.10

Humans missed 62.25 7 2.63 1.62 11.38 3.11

Percentage detection 88.58% 0.0128 97.67% 0.0139 96.54% 0.0096

Uptime cost 0% 0 28.78% 0.0521 4.99% 0.0225

F1 for detections 0.82 0.0136 0.87 0.0337 0.88 0.0154

F1 of safety layer N/A N/A 0.88 0.0380 0.92 0.0159

no humans are present and there are no detections. Furthermore, it is important
to note that although the number of images removed seems excessive, the two
worst categories consist of 218 images. This means that when the system only
distrusts bad images, the trusted images column will decrease with around 218
images, as can be seen on the right side of the table. For the middle column, the
number of removed images increases because there potentially are 327 warning
images due to the soft boundaries, where the warning region is incorporated.

From Table 3 it can be seen that the removed images correspond to the
intuition from earlier. In addition, it is evident that the introduction of the
safety layer drastically reduces the number of missed persons. This means that
the choice of the aggressiveness of the safety layer, i.e., the reduction of accepted
images, has to be evaluated as to what is an acceptable and an unacceptable risk.

6 Conclusion and Future Work

In this paper, we investigated how to model the combination of declarative rules
as a means to improve a vision pipeline with respect to performance and safety.
The modelling choices focused on a standard approach to learning within com-
puter vision. The data is recorded using a robot platform and analysed on an
industrial-grade embedded board to have a feeling for real-time performance. We
found that introducing the safety layer into a vision system can improve the per-
formance, with some uptime cost. The definition of acceptable risk is, therefore,
a critical issue for fielding autonomous systems that rely on approaches where
human operators are not in the decision loop.

To use decision trees in functional safety it is critical to understand the intent
and to generate code for embedded platforms, we believe that such an approach
can improve the communication with certification authorities [39]. This means

58 J. T. M. Ingibergsson et al.

that understandability and readability are equally critical for the software. While
readability for ViSaL has been investigated [13], further studies are needed.
Finally, a more detailed analysis of specific faults is needed to understand which
specific hazards are currently detected robustly and which need more rules.

References

1. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12, 161–166
(2011)

2. Bansal, A., Farhadi, A., Parikh, D.: Towards transparent systems: semantic char-
acterization of failure modes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8694, pp. 366–381. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10599-4 24

3. Daigle, M.J., Koutsoukos, X.D., Biswas, G.: Distributed diagnosis in formations of
mobile robots. IEEE Trans. Robo. 23(2), 353–369 (2007)

4. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
233–240 (2006)

5. De Cabrol, A., Garcia, T., Bonnin, P., Chetto, M.: A concept of dynamically recon-
figurable real-time vision system for autonomous mobile robotics. Int. J. Autom.
Comput. 5(2), 174–184 (2008)

6. Fields, C., David, R., Nielsen, P.: Defense science board 2016 summer study on
autonomy. Defense Science Board (2016)

7. Frese, U., Hirschmüller, H.: Special issue on robot vision: what is robot vision? J.
Real-Time Image Process. 10(4), 597–598 (2015)

8. Gupta, P., Loparo, K., Mackall, D., Schumann, J., Soares, F.: Verification and
validation methodology of real-time adaptive neural networks for aerospace appli-
cations. In: International Conference on Computational Intelligence for Modeling,
Control, and Automation (2004)

9. Hauge, A., Tonnesen, A.: Use of artificial neural networks in safety critical systems.
Faculty of Computer Sciences (2004)

10. Heckemann, K., Gesell, M., Pfister, T., Berns, K., Schneider, K., Trapp, M.: Safe
automotive software. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett,
R.J., Jain, L.C. (eds.) KES 2011. LNCS (LNAI), vol. 6884, pp. 167–176. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23866-6 18

11. IFR: World Robotics 2014 Industrial Robots (2014)
12. Ingibergsson, J.T.M., Schultz, U.P., Kuhrmann, M.: On the use of safety certi-

fication practices in autonomous field robot software development: a systematic
mapping study. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PRO-
FES 2015. LNCS, vol. 9459, pp. 335–352. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-26844-6 25

13. Ingibergsson, J.T.M., Hanenberg, S., Sunshine, J., Schultz, U.P.: Readability study
of a domain specific language: process and outcome. In: Accepted for the 33rd
ACM/SIGAPP Symposium on Applied Computing (SAC-18) (2018)

14. Ingibergsson, J.T.M., Kraft, D., Schultz, U.P.: Declarative rule-based safety for
robotic perception systems. J. Software Eng. Rob. (JOSER) 8(1), 17–31 (2017)

15. Ingibergsson, J.T.M., Kraft, D., Schultz, U.P.: Explicit image quality detection
rules for functional safety in computer vision. In: 12th International Conference on
Computer Vision Theory and Applications (VISAPP), p. 12, Marts 2017

https://doi.org/10.1007/978-3-319-10599-4_24
https://doi.org/10.1007/978-3-319-10599-4_24
https://doi.org/10.1007/978-3-642-23866-6_18
https://doi.org/10.1007/978-3-319-26844-6_25
https://doi.org/10.1007/978-3-319-26844-6_25

Increasing Safety by Combining Multiple Declarative Rules 59

16. ISO TC22/SC3/WG16. ISO/IEC 26262:2011: Road vehicles - Functional safety.
Technical report, International Organization for Standardization (2011)

17. Klarreich, E.: Learning securely. Commun. ACM 59(11), 12–14 (2016)
18. Kurd, Z., Kelly, T.: Establishing safety criteria for artificial neural networks. In:

Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2773, pp.
163–169. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45224-
9 24

19. Kurd, Z., Kelly, T., Austin, J.: Safety criteria and safety lifecycle for artificial
neural networks. In: Proceedings of Eunite, vol. 2003 (2003)

20. Machin, M., Dufossé, F., Blanquart, J.-P., Guiochet, J., Powell, D., Waeselynck, H.:
Specifying safety monitors for autonomous systems using model-checking. In: Bon-
davalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp.
262–277. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2 18

21. Mekki-Mokhtar, A., Blanquart, J.-P., Guiochet, J., Powell, D., Roy, M.: Safety trig-
ger conditions for critical autonomous systems. In: 18th Pacific Rim International
Symposium on Dependable Computing, pp. 61–69. IEEE (2012)

22. METI: Trends in the Market for the Robot Industry in 2012, July 2013
23. Murphy, R.R., Hershberger, D.: Handling sensing failures in autonomous mobile

robots. Int. J. Robot. Res. 18(4), 382–400 (1999)
24. Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction

to decision tree modeling. J. Chemom. 18(6), 275–285 (2004)
25. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High

confidence predictions for unrecognizable images. In: Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 427–436. IEEE (2015)

26. Redmon, J., Farhadi, A.: YOLO9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242 (2016)

27. Reichardt, M., Föhst, T., Berns, K.: On software quality-motivated design of a real-
time framework for complex robot control systems. In: International Workshop on
Software Quality and Maintainability (2013)

28. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

29. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the
ROC plot when evaluating binary classifiers on imbalanced datasets. In: PLoS
ONE, pp. 1–21 (2015)

30. Santosuosso, A., Boscarato, C., Caroleo, F., Labruto, R., Leroux, C.: Robots, mar-
ket and civil liability: a european perspective. In: RO-MAN, pp. 1051–1058. IEEE
(2012)

31. Schumann, J., Gupta, P., Liu, Y.: Application of neural networks in high assurance
systems: a survey. In: Schumann, J., Liu, Y. (eds.) Applications of Neural Networks
in High Assurance Systems, pp. 1–19. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-10690-3 1

32. SDU: Marken er mejet af en robot (2017)
33. Steen, K.A., Christiansen, P., Karstoft, H., Jørgensen, R.N.: Using deep learning

to challenge safety standard for highly autonomous machines in agriculture. J.
Imaging 2(1), 6 (2016)

34. TC 127: Earth-moving machinery - autonomous machine system safety. In: Inter-
national Standard ISO 17757–2015, International Organization for Standardization
(2015)

35. TC 23: Agricultural machinery and tractors - Safety of highly automated machin-
ery. International Standard ISO/DIS 18497, International Organization for Stan-
dardization (2014)

https://doi.org/10.1007/978-3-540-45224-9_24
https://doi.org/10.1007/978-3-540-45224-9_24
https://doi.org/10.1007/978-3-319-10506-2_18
http://arxiv.org/abs/1612.08242
https://doi.org/10.1007/978-3-642-10690-3_1
https://doi.org/10.1007/978-3-642-10690-3_1

60 J. T. M. Ingibergsson et al.

36. TC 44: Safety of machinery - electro-sensitive protective equipment. International
Standard IEC 61496–2012, International Electronical Commission (2012)

37. TC 65: Safety of machinery - electro-sensitive protective equipment. International
Standard IEC 61508–2011, International Electronical Commission (2011)

38. Veres, S.M., Lincoln, N.K., Molnar, L.: Control engineering of autonomous cogni-
tive vehicles-a practical tutorial. Technical report, Faculty of Engineering and the
Environment, University of Southampton, Technical report (2011)

39. Yang, Y., Keller, P., Livnat, Y., Liggesmeyer, P.: Improving safety-critical systems
by visual analysis. In: OASIcs-OpenAccess Series in Informatics, vol. 27. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

40. Zhang, P., Wang, J., Farhadi, A., Hebert, M., Parikh, D.: Predicting failures of
vision systems. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3566–3573 (2014)

	Increasing Safety by Combining Multiple Declarative Rules in Robotic Perception Systems
	1 Introduction
	2 Fundamentals and Related Work
	2.1 Safety in Robotics
	2.2 Perception Systems
	2.3 Learning and Computer Vision
	2.4 Programming Safe Perception Systems

	3 Methods
	3.1 Datasets
	3.2 Decision Trees
	3.3 Manual Programming

	4 Combining Declarative Rules
	4.1 Combination of Rules

	5 Experimental Evaluation
	5.1 Robot Platform
	5.2 Test Setup
	5.3 Data Acquisition
	5.4 Dataset
	5.5 Initial Data Exploration
	5.6 Usability
	5.7 Assessment

	6 Conclusion and Future Work
	References

