
Roger Chamberlain
Walid Taha
Martin Törngren (Eds.)

 123

LN
CS

 1
12

67

7th International Workshop, CyPhy 2017
Seoul, South Korea, October 15–20, 2017
Revised Selected Papers

Cyber Physical Systems
Design, Modeling, and Evaluation

Lecture Notes in Computer Science 11267

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Roger Chamberlain • Walid Taha •

Martin Törngren (Eds.)

Cyber Physical Systems
Design, Modeling, and Evaluation

7th International Workshop, CyPhy 2017
Seoul, South Korea, October 15–20, 2017
Revised Selected Papers

123

Editors
Roger Chamberlain
Washington University
St. Louis, MO, USA

Walid Taha
Halmstad University
Halmstad, Sweden

Martin Törngren
KTH Royal Institute of Technology
Stockholm, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-17909-0 ISBN 978-3-030-17910-6 (eBook)
https://doi.org/10.1007/978-3-030-17910-6

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3160-9188
https://doi.org/10.1007/978-3-030-17910-6

Preface

This volume contains the joint proceedings of the Workshop on Design, Modeling and
Evaluation of Cyber Physical Systems (CyPhy 2017) and the Workshop on Embedded
and Cyber-Physical Systems Education (WESE 2017). The two events were co-located
and coordinated with the goal of exploring opportunities for closer collaboration.

After the event, there was an open call for papers on the theme of the CyPhy
workshop. Participants of the workshop were encouraged to submit, and in total there
were 16 submissions. Of these, the Program Committee decided to accept ten. Each
paper received at least two reviews, and most received three or more. The Program
Committee was sizable and diverse, consisting of 30 members representing 11 different
countries.

The WESE workshop had a vibrant program, and after the event selected one paper
for publication.

The joint workshop featured a keynote address by Ichiro Hasuo entitled
“Nonstandard Static Analysis: Literal Transfer of Deductive Verification Frameworks
from Discrete to Hybrid.”

We would like to acknowledge several efforts that were key to the success of the
event, including the program co-chairs: William L. Harrison, Pavithra Prabhakar,
Martin Edin Grimheden, and Falk Salewski, the Technical Program Committees, the
external reviewers, the publicity chair, Abdelhamid Taha, and the organizers of
ESWEEK 2017.

March 2019 Roger Chamberlain
Walid Taha

Martin Törngren

Organization

General Chair (CyPhy)

Walid Taha Halmstad University, Sweden,
and University of Houston, USA

Program Committee Chairs (CyPhy)

William L. Harrison University of Missouri, USA
Pavithra Prabhakar Kansas State University, USA

Program Committee Chairs (WESE)

Martin Törngren KTH Royal Institute of Technology, Sweden
Martin Edin Grimheden KTH Royal Institute of Technology, Sweden
Falk Salewski Münster University of Applied Sciences, Germany

Program Committee (CyPhy + WESE)

Julien Alexandre dit
Sandretto

ENSTA ParisTech, France

Jakob Axelsson Mälardalen University, Sweden
Christian Berger Chalmers and University of Gothenburg, Sweden
Manuela Bujorianu Leicester University, UK
Thao Dang Verimag, France
Georgios Fainekos Arizona State University, USA
Martin Fränzle University of Oldenburg, Germany
Laurent Fribourg CNRS, France
Antoine Girard CNRS, France
Scott Hissam Carnegie Mellon University, USA
Daisuke Ishii Tokyo Institute of Technology, Japan
Mehdi Kargahi University of Tehran, Iran
Zhiyun Lin Zhejiang University, China
Nacim Meslem Grenoble INP, France
Wojciech Mostowski Halmstad University, Sweden
Mohammad Reza Mousavi Halmstad University, Sweden
Tarek Raïssi CNAM, France
Nacim Ramdani University of Orleans, USA
Andreas Rauh University of Rostock, Germany
Michel Reniers Eindhoven University of Technology, The Netherlands
Bernhard Rumpe RWTH University Aachen, Germany
Christoph Seidl TU Braunschweig, Germany

Christoffer Sloth Aalborg University, Denmark
Jack Stankovic University of Virginia, USA
Martin Steffen Oslo University, Norway
Rafael Wisniewski Aalborg University, Denmark
Hugo Andrade National Instruments, USA
Lucia Lo Bello University of Catania, Italy
Saddek Bensalem University of Grenoble, France
David Broman UC Berkeley, USA, and KTH Royal Institute

of Technology, Sweden
Daniela Cancila Commissariat à l’Énergie Atomique (CEA), France
Janette Cardoso Institut Supérieur de l’Aéronautique et de l’Espace

(ISAE), France
Alex Dean North Carolina State University, USA
Tei-Wei Kuo National Taiwan University, Taiwan
Peter Marwedel TU Dortmund, Germany
Jogesh Muppala Hong Kong University of Science and Technology,

Hong Kong
Bernhard Schätz TU Munich and Fortiss, Germany
Erwin Schoitsch Austrian Institute of Technology, Austria
Walid Taha Halmstad University, Sweden,

and University of Houston, USA
Shiao-Li Tsao National Chiao Tung University, Taiwan
Jon Wade Stevens Institute of Technology, USA

Additional Reviewers

Igor Shumeiko
Julia Kersten
Yue Kang

Advisory Committee (CyPhy)

Manfred Broy Technische Universität München, Germany
Karl Henrik Johansson KTH Royal Institute of Technology, Sweden
Karl Iagnemma MIT, USA
Insup Lee University of Pennsylvania, USA
Pieter Mosterman McGill University, Canada
Janos Sztipanovits Vanderbilt University, USA

viii Organization

Contents

Keynote

Nonstandard Static Analysis: Literal Transfer of Deductive Verification
Frameworks from Discrete to Hybrid. 3

Ichiro Hasuo

Design

Local Descent for Temporal Logic Falsification
of Cyber-Physical Systems . 11

Shakiba Yaghoubi and Georgios Fainekos

Memory Access Pattern-Aware DRAM Controller Design
for Mixed-Criticality Systems . 27

Jeongyoon Eo, Kang-Wook Kim, and Chang-Gun Lee

Increasing Safety by Combining Multiple Declarative Rules in Robotic
Perception Systems . 43

Johann Thor Mogensen Ingibergsson, Dirk Kraft,
and Ulrik Pagh Schultz

Simulation

Template-Based Monte-Carlo Test Generation for Simulink Models 63
Takashi Tomita, Daisuke Ishii, Toru Murakami, Shigeki Takeuchi,
and Toshiaki Aoki

Reliable Simulation and Monitoring of Hybrid Systems Based on Interval
Analysis (Extended Abstract) . 79

Daisuke Ishii, Alexandre Goldsztejn, and Naoki Yonezaki

An Integrated Simulation Tool for Computer Architecture
and Cyber-Physical Systems . 83

Hokeun Kim, Armin Wasicek, and Edward A. Lee

Safe At Any Speed: A Simulation-Based Test Harness
for Autonomous Vehicles. 94

Houssam Abbas, Matthew O’Kelly, Alena Rodionova,
and Rahul Mangharam

Formal Methods

Switching Delays and the Skorokhod Distance in Incrementally Stable
Switched Systems . 109

Kengo Kido, Sean Sedwards, and Ichiro Hasuo

Formal Analysis of Robotic Cell Injection Systems
Using Theorem Proving . 127

Adnan Rashid and Osman Hasan

Workshop on Embedded and Cyber-Physical Systems Education

FPGA Based Big Data Accelerator Design in Teaching Computer
Architecture and Organization. 145

Chao Wang, Yuming Cheng, Lei Gong, Bo Wan, Aili Wang, Xi Li,
and Xuehai Zhou

Author Index . 159

x Contents

Keynote

Nonstandard Static Analysis: Literal
Transfer of Deductive Verification

Frameworks from Discrete to Hybrid

Ichiro Hasuo1,2(B)

1 National Institute of Informatics, Tokyo, Japan
i.hasuo@acm.org

2 The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan

The talk summarizes our series of work [4,7,10,11]. Special thanks are due to
my collaborators: Kohei Suenaga (Kyoto University), Swarat Chaudhuri (Rice
University), and my (former) students Kengo Kido and Hiroyoshi Sekine (The
University of Tokyo).

Towards the analysis, verification and control of hybrid systems, there are
naturally two approaches: the control theory one that originates in the continuous
world; and the formal verification one from the discrete world. For the formal
verification approach, obvious challenges are: (1) to accommodate continuous
flow dynamics in an existing verification framework that is originally developed
for discrete jump dynamics; and (2) to do so at the lowest possible (theoretical)
cost, so that the existing theory smoothly and correctly transfers to hybrid
situations. A large body of existing work includes explicit differential equations
for this purpose—as in hybrid automata [1,5] and in differential dynamic logic [8].

In our series of work [4,7,10,11] we adopt a different approach. Instead of
explicitly using differential equations, we express continuous flow dynamics as
infinitely many iterations of jump dynamics—each of which is infinitely small—
by means of a while loop, a programming language construct that is well under-
stood for us computer scientists. The idea is as simple as in the following example.

Let elapse be the program in Fig. 1. Here dt is a constant that stands for
an infinitesimal—i.e. infinitely small—positive value. Our intention is that the
program models continuous and smooth increase of the value of the variable t
from 0 to 1: although a while loop carries a distinctively discrete flavor, each
iteration changes the value of t only infinitesimally, and it is not impossible that
the program models continuous dynamics.

This example, however, should raise a lot of questions to be answered. For
one, the while loop in Fig. 1 does not terminate within finitely many iterations:
for it to terminate within n ∈ N steps we need to have dt ≥ 1/n; however the
constant dt, being “infinitely small,” must be such that dt < ε for any positive
real number ε. Therefore it would also make sense to regard the program elapse

The work summarized here is supported by JSPS Grants-in-Aid No. 24680001,
24800035, 25730040 & 15KT0012; Aihara Innovative Mathematical Modelling Project,
FIRST Program, JSPS/CSTP; and JST ERATO HASUO Metamathematics for Sys-
tems Design Project (No. JPMJER1603).

c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 3–7, 2019.
https://doi.org/10.1007/978-3-030-17910-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-17910-6_1

4 I. Hasuo

t := 0 ;
while t ≤ 1 do

t := t+ dt

Fig. 1. A Whiledt program elapse

t := 0 ;
while t ≤ 1 do

t := t+ 1
i+1

Fig. 2. The i-th section of elapse

in Fig. 1 nonterminating—in which case the value of t would be undefined, rather
than 1 (that is our intention).

Another fundamental question is whether it is legitimate to use a constant dt
that stands for an infinitesimal positive real. Existence of such a number imme-
diately leads to contradiction in the theory of reals: for dt to be smaller than any
positive real, we must also have dt < dt. In fact, when we take a mathematical
view on the program elapse in Fig. 1, it looks like a naive definition of Riemann
integrals, in the early age of calculus, before integrals (and derivatives, limits,
etc.) were given rigorous (ε, δ)-style definitions by Bolzano and Weierstrass. It is
therefore far from straightforward whether we can argue rigorously about such
programs with an infinitesimal constant.

It is at this point that we appeal to nonstandard analysis (NSA), a theory
introduced by Robinson [9] in 1960s as a rigorous reincarnation of Leibniz’s
calculus that is described (naively) in terms of infinitesimals. There we work in
the set ∗

R of hyperreals; the set ∗
R extends the set R of standard real numbers

with infinitesimals, infinites (such as 1/dt), and others. We can then define: a
positive hyperreal r is infinitesimal if it is smaller than any standard real number.

NSA is a fruit of model theory in modern mathematical logic—the construc-
tion of the set ∗

R relies on an ultrafilter, a highly nonconstructive mathematical
entity whose existence is guaranteed by the axiom of choice. NSA comes with
the powerful transfer principle: a logical formula is valid in R if and only if it
is valid in ∗

R. One contribution of our series of work [4,7,10,11] is NSA-based
denotational semantics of programs like elapse in Fig. 1. That is: we introduce
a language Whiledt that extends a usual imperative language with a constant
dt; and we define its semantics as transformations of memory states that store
hyperreals. The semantics uses the idea of sectionwise execution, which we shall
describe now.

For the program elapse in Fig. 1, we define its i-th section—denoted by
elapse|i—as the one obtained by replacing dt with the constant 1

i+1 . See Fig. 2.
Informally elapse|i is the “i-th approximation” of the original elapse.

Note that the section elapse|i is a usual while program without peculiarities
like an infinitesimal constant. Therefore its semantics is defined as usual; in the
current specific case the section elapse|i terminates after i + 2 iterations and it
yields 1 + 1

i+1 as the value of the variable t.
What we do now is to collect the outcomes of such sectionwise executions,

for each i ∈ N, and organize them in a sequence

(1 + 1, 1 + 1
2 , 1 + 1

3 , . . . , 1 + 1
i+1 , . . .) . (1)

Nonstandard Static Analysis 5

Intuitively we can think of the sequence as a progressive approximation of the
actual outcome of the original program elapse in Fig. 1. In fact this intuition is
almost precise: in NSA a hyperreal is defined as (a suitable equivalence class of)
an infinite sequence of reals (like (1)); and the sequence (1), in NSA, represents
a hyperreal that is infinitely close to 1. This is what is stored in the post memory
state of the program elapse, for the variable t.

Let us now go back to the first “termination” question. Following the idea of
sectionwise execution, we can argue as follows: each section elapse|i terminates
after i + 2 iterations; and collecting these numbers, we can say that the original
program terminates after

(0 + 2, 1 + 2, 2 + 2, . . . , i + 2, . . .) (2)

iterations. In NSA the sequence (2), much like (1), stands for a hypernatural
number that is greater than any standard natural number. Summarizing, we
regard elapse to be terminating, but after an infinite hypernatural number of
iterations.

This “sectionwise” semantics of Whiledt—an imperative language with
while loops and an infinitesimal constant dt—might look useless: most
“programs” in Whiledt are not executable on any physical device (their loops
iterate infinitely many times). Our view on Whiledt is rather that it is a modeling
language on which we can run deductive verification. Specifically we introduce
a Floyd-Hoare style program logic Hoaredt for inferring about Whiledt pro-
grams. This verification framework, being a static (as opposed to dynamic) one,
does not require programs to be executable.

Floyd-Hoare style program logics—derivation systems for Hoare triples
{A}c{B} of a precondition A, a program c and a postcondition B—are com-
monly used for reasoning about imperative programs [3,6]; see also [12]. They
feature compositional reasoning that is inductive on program constructs; in par-
ticular the rules for while loops rely on invariants.

In [10] we introduce a program logic Hoaredt for the programming language
Whiledt, and prove that it is sound and (relatively) complete. A remarkable
fact is that the derivation rules of Hoaredt are literally the same as those of
a standard Floyd-Hoare style logic. One way to look at this fact is: our results
extend the transfer principle of NSA with dynamics specified as programs.

With the language Whiledt and the logic Hoaredt, our workflow is as
follows.

– We first model the hybrid dynamics in question as a Whiledt program c. One
example of such programs is elapse in Fig. 1. With the language Whiledt—
although it is a simple extension of usual imperative languages merely with
a new constant dt—we can express continuous as well as discrete dynamics.

– Our goal is to establish a certain property (a specification) of the hybrid
dynamics; a specification is expressed in the form of a precondition A and a
postcondition B, both given in a usual first-order language (we will introduce
one that is called Assndt). That is, we aim to establish validity of the Hoare
triple {A}c{B}, where c is the Whiledt modeling of the hybrid dynamics.

6 I. Hasuo

– Towards our aim we try to derive {A}c{B} in the Floyd-Hoare type logic
Hoaredt. This process of proof search is almost the same as with the usual
combination of an imperative programming language and a Floyd-Hoare logic:
recall that the derivation rules of Hoaredt are precisely the same as the usual
ones; and the only difference here is presence of the constant dt.

The above workflow of “hybrid system verification” is justified by the soundness
theorem for Hoaredt, and the underlying (sectionwise) semantics of Whiledt

programs as models of hybrid systems.
This has been the summary of the papers [4,10]. The idea of nonstandard

static analysis—i.e. combining deductive verification (static analysis) and non-
standard analysis—has been pushed further to verification frameworks other
than Floyd-Hoare logics. Specifically, in [11] we extend a stream-processing lan-
guage into one that processes continuous-time signals; for verification a refine-
ment type system is introduced. In [7] we extend abstract interpretation [2] with
infinitesimals, towards automatic reachability analysis of hybrid dynamics.

References

1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comp. Sci.
138(1), 3–34 (1995)

2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Gra-
ham, R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages, Los Angeles, Califor-
nia, USA, January 1977, pp. 238–252. ACM (1977). http://doi.acm.org/10.1145/
512950.512973

3. Floyd, R.W.: Assigning meanings to programs. In: Colburn, T.R., Fetzer, J.H.,
Rankin, T.L. (eds.) Program Verification: Fundamental Issues in Computer Sci-
ence. Studies in Cognitive Systems, vol. 14, pp. 65–81. Springer, Dordrecht (1993).
https://doi.org/10.1007/978-94-011-1793-7 4

4. Hasuo, I., Suenaga, K.: Exercises in Nonstandard Static Analysis of hybrid systems.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 34

5. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE
Computer Society (1996)

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12, 576–580, 583 (1969)

7. Kido, K., Chaudhuri, S., Hasuo, I.: Abstract interpretation with infinitesimals. In:
Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 229–249.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 11

8. Platzer, A.: Logical Analysis of Hybrid Systems-Proving Theorems for
Complex Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14509-4

9. Robinson, A.: Non-standard Analysis. Princeton University Press, Princeton (1996)

http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-3-642-31424-7_34
https://doi.org/10.1007/978-3-662-49122-5_11
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4

Nonstandard Static Analysis 7

10. Suenaga, K., Hasuo, I.: Programming with infinitesimals: a While-language for
hybrid system modeling. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011.
LNCS, vol. 6756, pp. 392–403. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22012-8 31

11. Suenaga, K., Sekine, H., Hasuo, I.: Hyperstream processing systems: nonstandard
modeling of continuous-time signals. In: Giacobazzi, R., Cousot, R. (eds.) POPL,
pp. 417–430. ACM (2013)

12. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press,
Cambridge (1993)

https://doi.org/10.1007/978-3-642-22012-8_31
https://doi.org/10.1007/978-3-642-22012-8_31

Design

Local Descent for Temporal Logic
Falsification of Cyber-Physical Systems

Shakiba Yaghoubi(B) and Georgios Fainekos

School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, Tempe, AZ, USA

{syaghoub,fainekos}@asu.edu

Abstract. One way to analyze Cyber-Physical Systems is by modeling
them as hybrid automata. Since reachability analysis for hybrid nonlinear
automata is a very challenging and computationally expensive problem,
in practice, engineers try to solve the requirements falsification prob-
lem. In one method, the falsification problem is solved by minimizing a
robustness metric induced by the requirements. This optimization prob-
lem is usually a non-convex non-smooth problem that requires heuristic
and analytical guidance to be solved. In this paper, functional gradient
descent for hybrid systems is utilized for locally decreasing the robustness
metric. The local descent method is combined with Simulated Annealing
as a global optimization method to search for unsafe behaviors.

Keywords: Falsification · Hybrid systems · Optimization

1 Introduction

In order to address the need for providing safety and real-time analysis for Cyber-
Physical Systems (CPS), a variety of search-based falsification methods has been
developed (for a survey see [1]). In search based falsification methods, the work-
ing assumption is that there is a design error in the system, and the goal of the
falsifier is to search and detect system behaviors that invalidate (falsify) the sys-
tem requirements. Typically, such requirements are formally expressed in Metric
(MTL) [2] or Signal (STL) [3] Temporal Logic (TL).

In this paper, we continue the progress on improving single shooting falsi-
fication methods for TL specifications [4]. This class of methods is guided by
evaluating how robustly a system trajectory satisfies a TL specification [5]. Pos-
itive values mean that the system trajectory satisfies the specification, while
non positive values mean that the specification has been falsified by the system
trajectory. Single shooting falsification methods sample one or multiple system
trajectories for the whole duration of the test time, they evaluate the TL robust-
ness of each trajectory, and, then, they decide where to sample next in the search
space. Ideally, at each iteration, the proposed new samples will produce trajecto-
ries with TL robustness less than the previously sampled trajectories. However,
in general, this cannot be guaranteed unless some information is available about
c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 11–26, 2019.
https://doi.org/10.1007/978-3-030-17910-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-17910-6_2

12 S. Yaghoubi and G. Fainekos

the structure of the system. In [6], it was shown that given a trajectory of a
non-autonomous smooth non-linear dynamical system and a TL specification, it
is possible to compute a direction in the search space along which the system
will produce trajectories with reduced TL robustness. This direction is referred
to as descent direction for TL robustness.

Our main contribution in this paper is that we extend the results of [6] to
computing local descent directions for falsification of TL specifications for hybrid
systems. The extension is nontrivial since as discussed later in the paper, the
sensitivity analysis is challenging in the case of hybrid systems. In particular,
we focus on hybrid automata [7] with non-linear dynamics in each mode and
external inputs (non-autonomous systems). Hybrid automata is a mathematical
model which can capture a wide range of CPS. We remark that the descent
directions computed can only point toward local reduction of TL robustness.
Hence, we propose combining descent direction computations with a stochastic
optimization engine in order to improve the overall system falsification rate.

We highlight that the contributions of this paper have some important impli-
cations. First and foremost, it should be possible to derive results for approxi-
mating the descent direction for hybrid systems without requiring explicit knowl-
edge of the system dynamics. For example, in [8], we showed that this is pos-
sible for smooth non-linear dynamical systems by using a number of successive
linearizations along the system trajectory. The method was applied directly to
Simulink models. Second, the local descent computation method could be further
improved by utilizing recent results on a smooth approximation of TL robustness
[9]. Therefore, the results in this paper could eventually lead to testing methods
which do not require explicit knowledge of the system dynamics, and could be
applied directly to a very large class of models, e.g., Simulink models, without
the need for model translations or symbolic model extraction.

2 Problem Statement

In order to formalize the problem that we deal with in this paper, we will describe
the system under test and also the system requirements in this section.

2.1 System Description

Hybrid automaton (HA) is a model that facilitates specification and verifi-
cation of hybrid systems [7]. A hybrid automaton is specified using a tuple
H = (H,H0, U, Inv, E , Σ), where H = L × X denotes the ‘hybrid’ discrete and
continuous state spaces of H: L ⊂ N is the set of discrete states or locations
that the system switches through (each location attributes different continuous
dynamics to the system), and X ⊆ R

n is the continuous state space of the sys-
tem, H0 = L0 × X0 ⊆ H is the set of initial conditions, U is a bounded subset
of R

m that indicates the input signals ranges, Inv : L → 2X×R
+

assigns an
invariant set -a subset of continuous state and time space- to each location, E is
a set of tuples (E,Gu,Re) that determine transitions between locations. Here,

Local Descent for Temporal Logic Falsification of Cyber-Physical Systems 13

E ⊆ L × L is the set of control switches, Gu : E → 2X×R
+

is the guard condi-
tion that enables a control switch (i.e., the system switches from li to lj when
(x(t), t) ∈ X × R

+ satisfies Gu((li, lj))) and, Re : E × X → X is a reset map
that given a transition e ∈ E and a point x for which Gu(e) is satisfied, maps x
to a point in the state space X. Finally, Σ defines the continuous dynamics in
each location l ∈ L:

Σ(l) : ẋ = Fl(x, u(t), t), (1)

where ẋ = dx
dt , x ∈ X is the system continuous state, and u : [0, T] → U is the

input signal map which is chosen from the set of all possible input signals U [0,T]

whose value at time t is denoted as u(t). Also, ∀l ∈ L, Fl : X × U × R+ → R is
a C1 flow that represents the system dynamics at location l.

A hybrid trajectory η(h0, u(t), t) starting from a point h0 = (l0, x0) ∈ H0

and under the input u ∈ U [0,T] is a function η : H0 × U × R+ → H
which points to a pair (control location, state vector) for each point in time:
η(h0, u(t), t) = (l(h0, u(t), t), s(h0, u(t), t)), where l(h0, u(t), t) is the location at
time t, and s(h0, u(t), t) is the continuous state at time t.

We write the dynamical equations for the continuous system trajectory as:

s(x0, u(0), 0) = x0

ds(x0, u(t), t)
dt

= Fl(s(x0, u(t), t), u(t), t) while (s(x0, u(t), t), t) ∈ Inv(l) (2)

s(x0, u(t), t+) = Re((li, lj), s(x, u(t), t−)) if
{

(s(x0, u(t), t−), t) ∈ Gu((li, lj))
(s(x0, u(t), t+), t) ∈ Inv(lj)

(3)

If the point (s(x0, u(t), t+), t) lies outside Inv(lj), there is an error in the
design. We assume that such errors do not exist in the system. The times in
which the location l and consequently the right-hand side of the Eq. (2) changes,
are called transition times. In order to avoid unnecessary technicalities, in the
above equations we use the notation of [10] and denote transition times as t−

and t+, where t− is the time right before the transition and t+ is the time right
after that. However in more technical analysis of hybrid systems, one needs to
consider the notion of hybrid time explained in [11] where a hybrid trajectory is
parametrized not only by the physical time but also by the number of discrete
jumps. When we consider the trajectory in a compact time interval [0, T] and η
is not Zeno1, the sequence of transition times is finite.

Assumption 1. We assume our system is deterministic, it does not exhibit
Zeno behaviors and given (h0, u) there is a unique solution η(h0, u(t), t) to the
system.

Remark 1. The input signal map u, should be represented using a combination
of finitely many basis functions. In this paper we use piecewise constant signals.

1 η is Zeno if it does an infinite number of jumps in a finite amount of time. A hybrid
system is Zeno if at least one of its trajectories is Zeno.

14 S. Yaghoubi and G. Fainekos

2.2 System Requirements

Temporal logic formulas formally capture requirements concerning the system
behavior. Requirements can be expressed by Boolean abstractions of the behavior
using atomic propositions as in MTL [2], or directly through predicate expres-
sions over the signals as in STL [3]. Since the differences are only syntactic in
nature (see [12]), in the following, we will just be using the term Temporal Logics
(TL) to refer to either logic.

TL formulas are formal logical statements that indicate how a system should
behave and are built by combining atomic propositions (AP) or predicates using
logical and temporal operators. The logical operators typically consist of con-
junction (∧), disjunction (∨), negation (¬), and implication (→), while temporal
operators include eventually (♦I), always (�I) and until (UI) where the index
I indicates a time interval. For example, the specification “The value of the tra-
jectory s should reach the bound (sref ± 5%) within δ seconds and stay there
afterwards” can be formulated as ♦[0,δ](�(|(s − sref)/sref | < 5%)).

The robustness of a trajectory η(x0, u, t) with respect to a TL formula is
a function of that trajectory which shows how well it satisfies the specification
(see [5] for details on how the robustness is defined and calculated). The function
creates a positive value when the requirement is satisfied and a negative value
otherwise. Its magnitude quantifies how far the specification is from being sat-
isfied for non-positive values, or falsified for non-negative values. Software tools
such as S-TaLiRo [13] compute the robustness value of a TL formula given a
trajectory η(x0, u, t). In order to detect unsafe system behaviors, we should fal-
sify the specification, which means we need to find trajectories with non-positive
robustness values. As a result, in a search based falsification, the effort is put on
reducing the robustness value by searching in the parameter space.

It can be easily shown that given a TL formula φ and a trajectory η(h0, u, t)
of a hybrid automaton H that satisfies the specification, if Assumption 1 holds,
then there exists a critical time t∗ ∈ [0, T] and a critical atomic proposition
(or critical predicate) p∗ with respect to which the robustness is evaluated [14].
For example, in practice, the tool S-TaLiRo [13] computes the critical time t∗

and atomic proposition p∗ along with the robustness value of the specification.
Reducing the distance of the trajectory η(h0, u, t) from the set defined by p∗ at
the critical time instance t∗ will not increase the robustness value; and in most
practical cases it will actually decrease it. As a consequence, the TL falsification
problem can be locally converted into a safety problem, i.e., always avoid the
unsafe set U defined by p∗. Hence, we need to compute a descent vector (h′

0, u
′)

that will decrease the distance between η(h′
0, u

′, t∗) and the unsafe set U .

2.3 Problem Formulation

Let HU ⊆ H denote the system unsafe set, if η(h0, u(t), t) enters HU then system
specification is falsified. To avoid a digression into unnecessary technicalities, we
will assume that, both the set of initial conditions and the unsafe set are each
included in a single control location, i.e., H0 = {l0} × X0, and HU = {lU} × U ,
where l0, lU ∈ L, and X0,U ⊆ X.

Local Descent for Temporal Logic Falsification of Cyber-Physical Systems 15

Fig. 1. 2-stage falsification: The stochastic search will search for the global optimizer
while the local search improve the search speed.

Definition 1. Let DHU : H 	→ R+ be the distance function to HU , defined by

DHU ((l, x)) =
{

dU (x) if l = lU
+∞ otherwise (4)

where dU (x) = infu∈U ||x − u||.
Given a compact time interval [0, T], h0 ∈ H0, and the system input u ∈

U [0,T], we define the robustness of the system trajectory η(h0, u(t), t) as

f(h0, u) � min
0≤t≤T

DHU (η(h0, u(t), t)) (5)

and the respective critical time as t∗ = argmint∈[0,T]DHU (η(h0, u(t), t)). Since
all trajectories start at l = l0, we will write f(h0, u) as f(w) where w = (x0, u).
Trajectories of minimal robustness indicate potentially unsafe behaviors, and if
we can reduce the robustness value to zero, we have a falsifying trajectory. As
a result robustness value should be minimized with respect to w. Our problem
can be formulated generally as follows:

minimize f(w) such that w ∈ X0 × U [0,T] (6)

Finding falsifying trajectories can be done in 2 stages. In the first stage, a
higher level stochastic sampler determines a hybrid trajectory -a sequence of
locations and state vectors- that exhibits system’s potential bad behavior, and
in the second stage, out of all the neighboring trajectories that follow the same
sequence of locations, we find the trajectory of minimal robustness (see Fig. 1).
This can be done using local minimization. In this paper, we focus on solving
the problem in this stage: we will find the trajectory of minimum robustness in
the neighboring of a previously created trajectory in the first stage.

Before we address our special problem of interest we should impose further
assumptions on our system stated below:

1. The system is observable, i.e. we have access to all the system states, or we
have a state estimator which is able to estimate them.

2. In the local search stage, we are always able to find a neighboring tube around
each trajectory such that none of the trajectories inside that tube hit the
guard tangentially. This ensures that trajectories of the system H starting

16 S. Yaghoubi and G. Fainekos

close enough to x0 and under neighboring inputs of u undergo similar transi-
tions/switches. In hybrid systems analysis, this property is called trajectory
robustness (not to be confused with trajectory robustness in this paper) and
is guaranteed if we can find an auto-bisimulation function of a trajectory and
the trajectories starting from its neighboring initial conditions and under
neighboring inputs [15].

3. The system is deterministic and the transitions are taken as soon as possible.
In order to have a deterministic system, if two transitions happen from the
same location, their Guards should be mutually exclusive.

4. Guards are of the form g(x, t) = 0 and Reset maps are functions of the form
x′ = h(x), where g and h are C1 functions. For all the states that satisfy a
Guard condition the corresponding Reset map should satisfy ∂h

∂x

∣∣
x

�= 0.
5. The trajectory η(h0, u(t), t) returned by the first stage, from which we

descend, enters the location of the unsafe set.

The last assumption is made so that our problem be well-defined (note that
the objective function (5) will have finite value only if trajectory enters unsafe
location). The task of finding such an initial condition h0 is delegated to the
higher-level stochastic search algorithm within which our method is integrated
(Fig. 1). If finding such a trajectory for the higher-level stochastic algorithm
is hard, we can still improve our trajectories locally by descending toward the
guards. This will be discussed more in the next section.

The problem is addressed in the following:

Problem 1. Given a hybrid automaton H, a compact time interval [0, T], a set of
initial conditions H0 ⊆ H, a set of inputs U [0,T], a point h0 = (l0, x0) ∈ H0 and
an input u ∈ U [0,T] such that the system trajectory satisfies 0 < f(w) < +∞,
find a vector dw = (dx0, du) ∈ X × U [0,T] that satisfies the following property:

∃Δ1,Δ2 ∈ R
+ such that ∀δ1 ∈ (0,Δ1), δ2 ∈ (0,Δ2), h′

0 = (l0, x0 + δ1dx0) ∈
H0 and u′ = u + δ2du ∈ U [0,T], η(h′

0, u
′(t), t) undergoes the same transitions as

η(h0, u(t), t), and also f(w + δdw) ≤ f(w) where δ = min{δ1, δ2}.

Finding such a descent direction can help improve the performance of stochas-
tic algorithms [4] that intend to solve the general problem in Eq. (6).

Note that for the piecewise constant inputs u that we are working with in this
paper, du is also a piecewise constant signal whose variables should be computed.
Variables of du show the desired changes in that of the input signal u.

3 Finding a Descent Direction for the Robustness

In this section, given a trajectory η(h0, u(t), t), we find dx0 and du such that
the trajectory η(h′

0, u
′(t), t), where h′

0 = (l0, x0 + δdx0), u′(t) = u(t) + δdu(t),
attains a smaller robustness value; i.e. f(w′) = f(x′

0, u
′) < f(x0, u) = f(w). The

robustness function in Eq. (5) is hard to deal with as it is non differentiable
and non convex [14]. To solve this issue we calculate the descent direction with
respect to a convex, almost everywhere differentiable function, and show that
decreasing the value of this function yields a decrease in the robustness function:

Local Descent for Temporal Logic Falsification of Cyber-Physical Systems 17

Theorem 1. Let x0, x
′
0 ∈ X0, u, u′ ∈ U [0,T], and assume that the critical time

for the continuous part of the hybrid trajectory s � s(x0, u(t), t), is t∗. Define

J(x′
0, u

′) =
{‖s(x′

0, u
′(t∗), t∗) − z(x0, u(t∗), t∗)‖ if l = lU

+∞ otherwise (7)

where l is the first argument of η(h′
0, u

′(t∗), t∗), and

z(x0, u(t), t) = argminz∈U‖z − s(x0, u(t), t)‖. (8)

If we find a trajectory s′ � s(x′
0, u

′(t), t) such that J(x′
0, u

′) < J(x0, u), then the
robustness of the trajectory s′ is smaller than that of s, i.e.: f(x′

0, u
′) < f(x0, u).

Proof. By Eq. (5) we have f(x′
0, u

′) = min
0≤t≤T

DHU (η(h′
0, u

′(t), t)) ≤ J(x′
0, u

′) <

J(x0, u) = f(x0, u). ��
Let x′

0 = x0 + dx and u′ = u + du. Consider J at the unsafe location and
define:

J(x′
0, u

′) = G(s(x′
0, u

′(t∗), t∗)), (9)

where G(x) = ‖x − z(x0, u(t∗), t∗)‖. Notice that the definition of G is based
on a primary trajectory from which we want to descend. The total difference
of a multi variable function shows the change in its value with respect to the
changes in its independent variables while its partial differential is its derivative
with respect to one variable, while others are kept constant. In the following,
dx and du are calculated using the chain rule, such that J(x′

0, u
′) − J(x0, u) =

J(x0 + dx, u + du) − J(x0, u) = dJ(x0, u) < 0:

dJ(x0, u; dx, du) =
∂G

∂x

T

ds(x0, u, t∗) (10)

where ∂G
∂x � ∂G

∂x

∣∣
s(x0,u(t∗),t∗) ∈ R

n×1 is the steepest direction that increases

distance from the unsafe set, i.e., −∂G
∂x is along the approach vector mentioned

in [14] that shows the direction of the shortest distance between s(x0, u(t∗), t∗)
and the unsafe set. Now observe that:

ds(x0, u, t∗) = D1s(x0, u, t∗)dx0 + D2s(x0, u, t∗)du (11)

where Di denotes the partial differentiation with respect to the ith argument (for
instance D1s = ∂s

∂x0
). Here, D1s(x0, u, t∗) and D2s(x0, u, t∗) are the sensitivity

of the trajectory to the initial condition and input at time t∗, respectively. In the
next section we show how to calculate sensitivity for a hybrid trajectory. Using
Eqs. (10) and (11), we choose:

dx0 = −c1(
∂G

∂x

T

D1s(x0, u, t∗))T , du = −c2(
∂G

∂x

T

D2s(x0, u, t∗))T (12)

18 S. Yaghoubi and G. Fainekos

for some c1, c2 > 0. As a result, we have dJ(x0, u) = −c1|| ∂s
∂x0

T ∂G
∂x ||2 −

c2|| ∂s
∂u

T ∂G
∂x ||2 ≤ 0 and the equality holds if and only if ∂s

∂x0

∣∣
(x0,u,t∗)

T ∂G
∂x =

∂s
∂u

∣∣
(x0,u,t∗)

T ∂G
∂x = 0.

All the above calculations are based on the assumption that the trajectory
enters the unsafe location, but even if finding a trajectory that enters the unsafe
location using stochastic higher level search is hard, we can still improve trajec-
tories locally by descending toward the guard Gu∗ that takes the trajectory to
the location with the shortest possible path to the unsafe set. This is shown in
Fig. 2. For instance if the guard Gu∗ is activated when g(x) = 0, we can easily
use zero finding methods to find a set M = {x | g(x) = 0} and replace U in all
the previous calculations with the set M .

4 Sensitivity Calculation for a Hybrid Trajectory

Extending sensitivity analysis to the hybrid case is not straightforward and even
in the case that there is no reset in transitions and the state stays continuous, a
discontinuity often appears in the sensitivity function that needs to be evaluated
[10]. In order to make the results comprehensive, in this section we analyze the
sensitivity for trajectories of a Hybrid automaton. Without loss of generality, in
order to focus on the complexity that happens under transitions, we consider
a hybrid automaton with only two discrete locations (|L| = 2) and one control
switch, also we assume l0 �= lU . There are 2 scenarios:

1. (s(x, u(t), t), t) is either inside Inv(l0) or Inv(lU)
2. (s(x, u(t), t), t) ∈ Gu((l0, lU))

Let us use px0 and pu to denote the sensitivity of the trajectory to changes in
x0 and u respectively, i.e., px0(t, t0) = D1s(x0, u, t) and pu(t, t0) = D2s(x0, u, t).
It can be shown easily that in the first scenario, while (s(x0, u, t), t) ∈ Inv(li)
and i ∈ {0,U}:

ṗx0(t, t0) = D1Fli(s(x0, u, t), u(t), t).px0(t, t0), (13a)
ṗu(t, t0) = D1Fli(s(x0, u(t), t),u(t), t).pu(t, t0) + D2Fli(s(x0, u(t), t), u(t), t),

(13b)

with the following initial and boundary conditions:

px0(t0, t0) = In×n, pu(t0, t0) = 0, (14a)

px0(τ
+, t0) = rx0 , pu(τ+, t0) = ru. (14b)

where τ+ is the right hand side limit of the transition time τ that satisfies
(s(x0, u(τ), τ), τ) ∈ Gu((l0, lU)). We will calculate rx0 and ru in the following
subsection. Consider that even if there is no reset, this jump happens in the state
triggered transitions since neighboring trajectories have different transition times
and as a result they are under different dynamics during the time between their
transition times (see Fig. 3).

Local Descent for Temporal Logic Falsification of Cyber-Physical Systems 19

4.1 Sensitivity Jump Calculation

Assume that if g(s(x0, u(t), t), t) = 0 then (s(x0, u(t), t), t) ∈ Gu((l0, lU)). Let
us denote the transition time by τ(x0, u), which reminds us that this transition
time differs for different trajectories; if the dependence was clear from context,
we will write down τ , for brevity. Assume that Re(x, (l1, l2)) = h(x), we have:

s(x0, u(τ+), τ+) = h(s(x0, u(τ−), τ−)) (15)

To calculate the value of px0 at τ+ we take derivatives with respect to x0 from
the above equation. We have:

ds(x0, u, τ+)
dx0

=
∂h

∂x

ds(x0, u, τ−)
dx0

⇒

D1s(x0, u, τ+)+ D3s(x0, u, τ+)
∂τ

∂x0
=

∂h

∂x
(D1(s(x0, u, τ−))+ D3s(x0, u, τ−)

∂τ

∂x0
)

⇒ px0(τ
+, t0) = D1s(x0, u, τ+) =

∂h

∂x
px0(τ

−, t0) + (
∂h

∂x
f− − f+)D1τ) (16)

where ∂h
∂x = ∂h

∂x

∣∣
s(x0,u(τ−),τ−)

, and f− and f+ are equal to Fl0(s(x0, u(τ−), τ−),
u(τ−), τ−) and FlU (s(x0, u(τ+), τ+), u(τ+)), τ+) respectively. To calculate D1τ ,
consider that τ satisfies g(s(x0, u, τ), τ(x0, u)) = 0, taking the derivatives with
respect to x0, we have:

D1g
T (D1s(x0, u, τ) + D3s(x0, u, τ).D1τ) + D2g.D1τ = 0

⇒ D1τ =
∂τ

∂x0
= −D1g

T .px0(τ
−, t0)

D1gT .f− + D2g
(17)

Fig. 2. Trajectories B, A and C improve
locally by descending toward the unsafe
set, guard g43 and guard g23 respectively.

Fig. 3. Assuming τx0 < τx′
0
, trajec-

tories are under different dynamics
for all the times t ∈ [τx0 , τx′

0
], where

τx0 and τx′
0

are transition times for

s(x0, .) and s(x′
0, .) respectively.

20 S. Yaghoubi and G. Fainekos

Using similar analysis we have:

pu(τ+, t0) =
∂h

∂x
pu(τ−, t0) + (

∂h

∂x
f− − f+)D2τ

T (18)

D2τ = − D1g
T .pu(τ−, t0)

D1gT .f− + D2g
(19)

Using a hybrid automaton, sensitivity and system states can be calculated
simultaneously (see Fig. 4). This will easily let us calculate the sensitivities by
reseting their values at transition times. Note that using Eqs. (16) to (19), for a
system with time triggered transitions (g(x, t) = g′(t)) whose reset map is iden-
tity (h(x) = x), there are no jumps in sensitivities, i.e., px0(τ

+, t0) = px0(τ
−, t0)

and pu(τ+, t0) = pu(τ−, t0). These types of hybrid systems can be handled using
our previous work in [8] where we showed how to use system linearized matrices
to approximately calculate the decent direction. However to have these kinds of
gray box analysis for hybrid systems with state dependent transitions, we also
need to have some information about the guards or be able to approximate them
in order to model the jumps in the sensitivity. In the future we will work on the
descent calculation using gray box models of the general hybrid systems.

An algorithm to find the gradient descent (GD) directions for hybrid systems
is mentioned in the technical version of the paper [16].

Fig. 4. HA of the system and trajectory sensitivity

5 Experimental Results

In order to show the utility of our method, in [16] we used three examples in
which we deal with nonlinear hybrid systems. In all the experiments we used
MATLAB 2015b on an Intel(R) Core(TM) i7-4790 CPU @3.6 GHZ with 16 GB
memory processor with Windows Server 2012 R2 Standard OS. In the following
we present one of the examples:

Example 1. Consider the motion of a rigid object on a plane that uses a pair of
off-centered thrusters as the control input. Since these thrusters are not aligned
with the center of the mass, they will create both translational and rotational
motions on the vehicle [15]. The system is supposed to satisfy the requirement
in Eq. (20) which implies that the vehicle should avoid the unsafe sets U1 and U2

Local Descent for Temporal Logic Falsification of Cyber-Physical Systems 21

(shown in Fig. 5 with red boxes) and reaches the goal set G (shown with a blue
box) within the simulation time T = 10. Here (x1, x2) is the vehicle position.

ϕ2 = �[0,10]¬((x1, x2) ∈ U1 ∨ (x1, x2) ∈ U2) ∧ ♦[0,10](x1, x2) ∈ G (20)

The location-based dynamics of the vehicle are mentioned in Eq. (21), where
j ∈ {1, 2, 3}, x1, x2 are the positions along the x and y axis, x3 is the angle with
the x-axis and x4, x5 and x6 are their derivatives. The hybrid model consists of
3 locations, where inv(l = 1) = {x|x1 < 4}, inv(l = 2) = {x|4 ≤ x1 ≤ 8}, and
inv(l = 3) = {x|x1 > 8}. The guards are shown using dashed lines in Fig. 5. The
unsafe sets have attractive non-centered forces in their corresponding locations.
In particular, U1 is located in location 2 and U2 is located in location 3. At
location 1, s1(l = 1) = s2(l = 1) = 0, at location 2, s1(l = 2) = −1 and
s2(l = 2) = 0, and at location 3, s1(l = 3) = 0 and s2(l = 3) = −2. (α1, β1) and
(α2, β2) are the centers of U1 and U2, respectively.

⎡
⎢⎢⎣

ẋj

ẋ4

ẋ5

ẋ6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xj+3

0.1x4+Σi=1,2si(l)(x1−αi)+F1cos(x5)−F2sin(x5)

0.1x5+Σi=1,2si(l)(x2−βi)+F1sin(x5)−F2cos(x5)

− b
I F1 + a

I F2

⎤
⎥⎥⎦ (21)

Our search is over the initial values in [0, 1] × [0.5, 1], and the input signals
F1(t), F2(t) ∈ [−1, 1]; other states are zero initially. Since the search over all the
continuous input signals is a search in infinite dimension, here, we used piecewise
constant inputs with 11 variables for each F1(t) and F2(t). So the overall search
is over 24 dimensions. Starting from a trajectory that satisfies Eq. (20) with
the robustness value equal to 0.2950, our method improves the robustness value
to 0.8599 (Note that while in a falsification problem we try to decrease the
robustness value, in a related problem called satisfaction problem increasing
that value is desired). The projection of the trajectories into the x1 − x2 plane
is shown in Fig. 5, where dark gray trajectories are refined to light gray ones.

0 2 4 6 8 10 12 14
x1

0

1

2

3

4

5

x 2

Fig. 5. Improving the robustness of the
trajectories of the system of Eq. (21) with
respect to the specification ϕ2 from 0.2950
to 0.8599. Red arrows show the steepest
ascent direction. (Color figure online)

0 2 4 6 8 10 12
x1

-1

0

1

2

3

4

5

6

x 2

Fig. 6. Trajectories that do not enter
the goal set location (dashed trajecto-
ries here) can still improve by descend-
ing toward the guard set (dashed line at
x1 = 8).

22 S. Yaghoubi and G. Fainekos

In Fig. 6, one can see that even if the trajectory from which we want to descend
does not enter the goal set location, we are still able to improve the trajectory
by descending toward the adjacent guard with the least distance from that set.

In order to determine the effect of applying GD local search method to global
search methods like Simulated Annealing (SA), we performed a statistical study
in which we compare the combination of SA and GD (SA+GD) with SA only.
To combine SA and GD, we apply GD algorithm whenever the samples taken
by SA return a robustness value less than some threshold value rT .

In our experiment we ran SA and SA+GD for 150 times with equal total
number of samples N = 100 and rT = 2.5 to automatically search for initial con-
ditions and inputs that satisfy the specification ϕ2 with U1 = [5.5, 6.5]×[2.5, 3.5],
U2 = [9.5, 10.5] × [1.5, 4.5], G = [12.5, 13] × [4.5, 5] for the system in Example 1.
In order to satisfy ϕ2, we try to falsify its negation ¬ϕ2. The results are shown
in Table 1. The improvement in finding falsifying trajectories is clear from the
total number of falsifications in the first row. Also, since GD gets a chance to
improve the performance only if SA finds a robustness value less than rT , we
added the second row which shows in how many percents of the cases falsifi-
cation is achieved if SA finds a robustness value less than rT . While average
of the best robustness value for all the tests is better for SA+GD algorithm,
it is slightly better for SA if we only consider non-falsified cases. We can con-
clude that even if SA finds small robustness values, it is hardly able to further
decrease it. As the constant budget in the comparison is “equal total number of
simulations”, we can claim that SA+GD can help improve the results if simu-
lations/experiments are costly. Choosing different design parameters might lead
to even better experimental results.

Table 1. Comparing SA and SA+GD results for the system of Example 1

Optim. method SA SA+GD

num. of total falsification 4/150 16/150

% of falsification if SA finds r ≤ rT 13.33% 39.02%

Avg. min-Rob. (all the cases) 9.1828 8.4818

Avg. min-Rob. (not falsified cases) 9.4278 9.4968

min. min-Rob. (not falsified cases) 0.0080 0.0059

max. min-Rob. (not falsified cases) 13.1424 13.0880

6 Related Work

One possible categorization for falsification approaches divides them into Single
Shooting (SS) vs. Multiple Shooting (MS) methods. The technique of numeri-
cally solving boundary value problems is called shooting. SS approaches search
over the space of system trajectories initiated from the set of initial conditions

Local Descent for Temporal Logic Falsification of Cyber-Physical Systems 23

and under possible inputs. S-TaLiRo [13] and Breach [17] lie in this category.
In contrast, MS approaches create approximate trajectories from trajectory seg-
ments starting from multiple initial conditions (not necessarily inside the initial
set). Hence, the trajectories contain gaps between segments. The works [18,19]
fall in this category. MS techniques cannot handle general TL requirements.

Motion planning approaches such as Rapidly-exploring Random Trees (RRT)
lie in a category between SS and MS approaches. Starting from an initial con-
dition, the tree grows toward the unsafe set (or vice versa) to find an unsafe
behavior of a non-autonomous system [20,21]. The applicability of these meth-
ods, however, is limited since it depends on many factors such as the dimension-
ality of the system, the modeling language, and the local planner.

The performance of SS falsification methods can be improved using different
complementary directions. One direction is to provide alternative TL robustness
metrics [22]. Another direction is to compute guaranteed or approximate descent
directions [8,14] in order to utilize descent optimization methods. Our method
in this paper is a SS approach that uses optimization and robustness metric to
solve the falsification problem. In [6,14] robustness-based falsification is guided
using descent direction; however, that line of work is only applicable to purely
continuous systems. In [23], descent direction is calculated in the case of linear
hybrid systems using optimization methods.

In [19] authors use a MS approach to find falsifying trajectories of a hybrid
system. Providing the gradient information to an NLP solver, they try to reduce
the gaps between segments. Like our approach, they require knowledge of the
system dynamics and solve a local search problem. Unlike our method, in their
approach, falsifying trajectories are segmented trajectories which are not real
system trajectories unless the gaps between segments become zero in the opti-
mization procedure (for systems with identity reset maps), which may not be
the case, in general. As a result, falsification cannot be concluded unless they
can randomly find a neighboring real system trajectory that violates the speci-
fication. We think that our approach can help their method to effectively search
over real trajectories neighboring the segmented trajectory. Furthermore, the
specifications they have focused on in [19] are safety properties and because of
the nature of the search, their method cannot easily be extended to search for
system trajectories that falsify general MTL formulas.

The general idea of using sensitivity to explore the parameter space of a
problem that deals with robustness of a TL formula was first introduced in
[24]. To solve a verification problem, they propose using the sensitivity of a
robustness function to a parameter assuming that the function is differentiable
to that parameter. There are however multiple factors which result in non-
differentiability of the robustness function with respect to a parameter: First
of all, the predicates themselves might be non smooth and non-differentiable.
Secondly, hybrid systems may have non smooth and non-differentiable trajecto-
ries. Finally, logical operators in the TL formula impose min and max operators
to robustness function. The paper suggests using left and right hand derivatives
for dealing with min and max operators, but it does not propose solutions for

24 S. Yaghoubi and G. Fainekos

the first two cases. In our framework, by introducing Eq. (7), we solve the non
differentiability issue in the first case and the analysis in Sect. 4 deals with this
issue in the second case. Also, the problem we try to solve is a different problem
(a falsification problem).

In [25], a smooth infinitely differentiable robustness function is introduced
which solves – to some extent – the non-differentiability problem of the robust-
ness function to parameters. In the case of hybrid systems however, we still deal
with this problem as the non-differentiability is caused by the system model
rather than the robustness function itself. In the future, we will investigate if
the results in [25] could further improve the performance of gradient descent
falsification methods as formulated in our work.

In [26], an algorithm to approximate reachable sets using sensitivity analysis
is introduced. Sensitivity of hybrid systems without reset maps is used to verify
safety properties. Like all approaches that try to solve a coverage problem, the
method suffers from the state explosion issue which happens when one tries to
cover the high dimensional spaces induced by the variables in the input signal
parameterization. Our framework solves a different problem and it is applicable
to hybrid systems with reset maps under general TL formulas. Furthermore, as
we are not solving a coverage problem, we do not face the state explosion issue.

7 Conclusion

TL robustness guided falsification [4] has shown great potential in terms of black
or gray box automatic test case generation for CPS [27–29]. In this paper, we
presented a method that locally improves the search for falsifying behaviors by
computing descent directions for the TL robustness in the search space of the
falsification problem. Our proposed method computes such descent directions for
non-linear hybrid systems with external inputs, which was not possible before
in the literature. Using examples, we demonstrated that our framework locally
decreases the TL robustness at each iteration. Furthermore, our preliminary
statistical results indicate that it is possible to improve a global test-based falsi-
fication framework when the proposed local gradient descent method is utilized.

Currently, the proposed framework requires a symbolic representation of the
non-linear dynamics and the switching conditions of the hybrid automaton in
order to compute the descent direction. As future research, we expect that we can
relax this requirement by numerically computing approximations to the descent
directions similarly to our work for smooth non-linear dynamical systems [8].
This will enable the application of the local descent method to a wide range of
Simulink models without explicit extraction of the system dynamics.

Acknowledgments. This work was partially supported by the NSF awards CNS-
1319560, CNS 1350420, IIP-1361926, and the NSF I/UCRC Center for Embedded
Systems.

Local Descent for Temporal Logic Falsification of Cyber-Physical Systems 25

References

1. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based
approaches for verification of embedded control systems: an overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Syst.
Mag. 36(6), 45–64 (2016)

2. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

3. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT - 2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

4. Abbas, H., Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Proba-
bilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed.
Comput. Syst. 12(s2), 95 (2013)

5. Fainekos, G., Pappas, G.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009)

6. Abbas, H., Winn, A., Fainekos, G., Julius, A.A.: Functional gradient descent
method for metric temporal logic specifications. In: 2014 American Control Con-
ference, pp. 2312–2317. IEEE (2014)

7. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
8. Yaghoubi, S., Fainekos, G.: Hybrid approximate gradient and stochastic descent

for falsification of nonlinear systems. In: American Control Conference (2017)
9. Pant, Y.V., Abbas, H., Mangharam, R.: Control using the smooth robustness of

temporal logic. Technical report MLAB paper 98, University of Pennsylvania Schol-
arly Commons (2017)

10. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bempo-
rad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71493-4 16

11. Goebel, R., Teel, A.R.: Solutions to hybrid inclusions via set and graphical con-
vergence with stability theory applications. Automatica 42(4), 573–587 (2006)

12. Dokhanchi, A., Hoxha, B., Fainekos, G.: Metric interval temporal logic specification
elicitation and debugging. In: 13th ACM-IEEE International Conference on Formal
Methods and Models for System Design, September 2015

13. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

14. Abbas, H., Fainekos, G.: Computing descent direction of MTL robustness for non-
linear systems. In: 2013 American Control Conference, pp. 4405–4410. IEEE (2013)

15. Winn, A., Julius, A.A.: Safety controller synthesis using human generated trajec-
tories. IEEE Trans. Autom. Control 60(6), 1597–1610 (2015)

16. https://sites.google.com/a/asu.edu/s-taliro/local-descent-temporal.pdf
17. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid

systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

18. Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shoot-
ing, CEGAR-based falsification for hybrid systems. In: Proceedings of the 14th
International Conference on Embedded Software, p. 5. ACM (2014)

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-71493-4_16
https://doi.org/10.1007/978-3-642-19835-9_21
https://sites.google.com/a/asu.edu/s-taliro/local-descent-temporal.pdf
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17

26 S. Yaghoubi and G. Fainekos

19. Zutshi, A., Sankaranarayanan, S., Deshmukh, J.V., Kapinski, J.: A trajectory splic-
ing approach to concretizing counterexamples for hybrid systems. In: 2013 IEEE
52nd Annual Conference on Decision and Control (CDC). IEEE (2013)

20. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 10

21. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL safety properties in
hybrid systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 368–382. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00768-2 31

22. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3 21

23. Abbas, H., Fainekos, G.: Linear hybrid system falsification with descent. arXiv
preprint arXiv:1105.1733 (2011)

24. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

25. Pant, Y.V., Abbas, H., Mangharam, R.: Smooth operator: control using the smooth
robustness of temporal logic (2017)

26. Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with
an application to simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC
2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00602-9 12

27. Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automo-
tive control applications using S-TaLiRo. In: Proceedings of the American Control
Conference (2012)

28. Strathmann, T., Oehlerking, J.: Verifying properties of an electro-mechanical brak-
ing system. In: Frehse, G., Althoff, M. (eds.) ARCH14-15. 1st and 2nd Inter-
national Workshop on Applied veRification for Continuous and Hybrid Systems.
EPiC Series in Computing, vol. 34, pp. 49–56. EasyChair (2015)

29. Sankaranarayanan, S., Kumar, S.A., Cameron, F., Bequette, B.W., Fainekos, G.,
Maahs, D.: Model-based falsification of an artificial pancreas control system. In:
Medical Cyber Physical Systems Workshop (2016)

https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/978-3-642-00768-2_31
https://doi.org/10.1007/978-3-642-00768-2_31
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
http://arxiv.org/abs/1105.1733
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-00602-9_12
https://doi.org/10.1007/978-3-642-00602-9_12

Memory Access Pattern-Aware DRAM
Controller Design for Mixed-Criticality

Systems

Jeongyoon Eo, Kang-Wook Kim, and Chang-Gun Lee(B)

Seoul National University, Gwanak-ro 1 Gwanak-gu, Seoul 151-744, Korea
{jyeo,kwkim}@rubis.snu.ac.kr, cglee@snu.ac.kr

https://rubis.snu.ac.kr/

Abstract. Mixed-criticality systems integrate tasks with various levels
of criticality onto the same hardware platform. Critical tasks require tight
bounding of worst case latency at any cost, yet for non-critical tasks it is
important to provide high performance as much as possible. In this paper,
we take workload-driven approach and propose a novel workload-aware
DRAM controller design for mixed-criticality system that can success-
fully achieve both of the conflicting demands in the presence of memory-
intensive workloads. By using bank partitioning and request batching
with prioritization, we provide tighter worst case latency bound for crit-
ical tasks and high performance and fairness for non-critical tasks. Our
evaluation shows that the design achieves maximum 18% of performance
improvement.

Keywords: Memory access pattern · Mixed-criticality system ·
DRAM controller

1 Introduction

Mixed-criticality systems are real-time systems where tasks of different critical-
ities are integrated onto the same hardware platform [2]. The mixed-criticality
systems should guarantee strict safety assurance to critical tasks while provid-
ing high performance to non-critical tasks at the same time. These conflicting
demands impose a difficult challenge to mixed-criticality system design. For strict
safety assurance, it should guarantee performance isolation of critical tasks from
others. But for high performance, allowing efficient sharing of underlying hard-
ware resources is necessary.

In this paper, we take a novel workload-driven approach in designing DRAM
controller for mixed-criticality systems with two criticality modes, i.e., critical
and non-critical. It guarantees deterministic memory access latency for the crit-
ical tasks (tasks in critical mode) and provides high performance for the non-
critical tasks (tasks in non-critical mode) at the same time. In order to achieve
this goal, the proposed DRAM controller adopts request batching [13]. On top
c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 27–42, 2019.
https://doi.org/10.1007/978-3-030-17910-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-17910-6_3

28 J. Eo et al.

of this, we classify tasks into three classes according to tasks’ criticality modes
and their memory access patterns as follows:

– Latency-sensitive tasks: critical tasks whose memory access latency should
be guaranteed. For latency-sensitive tasks, the proposed DRAM controller
design guarantees their memory access latency by immediately preempting
memory access requests of non-critical tasks and processing the requests of
the critical tasks as in [7].

– Locality-sensitive tasks: non-critical tasks that exhibit high DRAM bank
locality. In order to preserve DRAM bank locality of tasks, dedicated DRAM
banks are allocated to each task in this class.

– Capacity-sensitive tasks: non-critical tasks whose performance is sensitive
to the amount of DRAM banks they can access. For capacity-sensitive tasks,
multiple shared DRAM banks are assigned to entire tasks in this class for
them to enjoy large memory capacity. Since capacity-sensitive tasks have low
locality, the gain from increased memory capacity outweighs the loss from
memory conflict at the shared banks.

We present the worst case latency analysis of tasks in each class. Our simula-
tion study shows that this design improves the performance of tasks by maximum
18%.

The rest of the paper is organized as follows: Sect. 2 presents brief back-
ground of DRAM memory. In Sect. 3, we introduce our observation according to
the DRAM memory access pattern. Section 4 defines the system model and pro-
poses our DRAM controller design. Section 5 reports the simulation study of the
proposed design. Section 6 presents the related work. Finally, Sect. 7 concludes
the paper and brings up future work.

2 Background

In this section, we provide basic background knowledge of modern DRAM archi-
tecture. For more details, we refer readers to [6,8].

2.1 DRAM Architecture and Characteristics

Modern DRAM consists of multiple units called banks. A DRAM bank is a two-
dimensional array. Data are stored in its cells, the interconnection point of a row
and a column of the array, as in Fig. 1 To read or write data, first the whole row
that contains the desired cell should be loaded into a row buffer inside the bank.
To access data located in another row, the row buffer should be emptied before
that row is loaded, which takes additional time. Due to this fact, row buffer acts
as an internal cache of a DRAM bank. A DRAM bank enjoys cache hit benefit
when it is a Row Hit case and suffers from cache miss penalty when it is a

Memory Access Pattern-Aware Memory Controller Design 29

Row Miss or a Row Conflict case. In terms of latency, the benefit and penalty
can be analyzed as follows (See Table 1 for the DRAM timing parameters):

– Row Hit : The request accesses data contained in the row buffer. In this case,
only RD/WR command is needed to access the data. Thus, the bank access
latency becomes tCL.

– Row Miss: Either the row buffer is empty or contains another row. If it is
empty, the desired row is first loaded with ACT command and accessed with
RD/WR command. The resulting bank access latency is tRCD + tCL. If it
contains another row, it is emptied, loaded, and accessed with PRE, ACT,
RD/WR commands. The bank access latency becomes tRP + tRCD + tCL.

Fig. 1. DDR3-SDRAM organization

Banks operate independent of each other, thus access to different banks can
be served in parallel. This allows a level of parallelism at the DRAM. Bank-level
parallelism denotes for the average number of banks to which there are out-
standing requests, when the thread has at least one outstanding request [9]. For
memory-intensive workloads, exploiting bank-level parallelism to hide DRAM
access latency is critical for high average performance. This becomes ever more
important as the gap between CPU clocks and DRAM access latency keeps
increasing.

30 J. Eo et al.

Table 1. DRAM timing parameters

Parameters Symbols DDR3-1333

DRAM clock cycle time tCK 1.5 nsec

Precharge latency tRP 9 cycles

Activate latency tRCD 9 cycles

CAS read latency tCL 9 cycles

CAS write latency tWL 7 cycles

Burst length tBL 8 columns

Write to read delay tWTR 5 cycles

Write recovery time tWR 10 cycles

2.2 DRAM Controller

Modern DRAM controllers largely consist of two parts - per-bank request queues
and schedulers and a channel scheduler as shown in Fig. 2. Incoming DRAM
requests are stored in per-bank request queues, and request schedulers determine
the next request of the bank that should gain access to DRAM. The channel
scheduler first determines candidates for the next request by checking the status
of DRAM banks and buses for possible violation in DRAM timing constraints.
These candidates are called ready requests. Among these ready requests, DRAM
controller’s scheduling policy determines the next request.

Fig. 2. DRAM controller architecture

Modern Commercial Off-The-Shelf (COTS) DRAM controllers adopt a
request scheduling policy called First Ready-First Come First Served (FR-
FCFS)[16]. Among the ready requests, they prioritize row-hit requests; if

Memory Access Pattern-Aware Memory Controller Design 31

multiple such requests exist, then they apply FCFS policy among them. FR-
FCFS scheduling policy well exploits row buffer locality, and proven to achieve
highest average throughput in single-core systems [15,16]. However, in multi-core
systems, multiple threads access the DRAM in parallel as a shared resource. In
this environment, it is shown that FR-FCFS policy incurs unfairness problems
between threads which harm overall performance as well.

3 Observation

In this section, we explain our observations that lead to key features of workload-
aware DRAM controller design.

Observation 1. Request batching enables both preserving bank-level
parallelism and tight bounding of worst case latency.

Parallelism-Aware Batch Scheduling (PAR-BS) [13] introduces buffers of
requests called batches to exploit bank-level parallelism. By reordering requests
inside a batch such that bank-level parallelism is maximized and preventing
interference from requests in other batches, it maximizes bank-level parallelism
of tasks and prevents unbounded interference from co-running tasks. In this
paper we call this request batching.

In order to fully exploit bank-level parallelism, merely providing multiple
banks is not enough. Even if there exist a stream of requests that can be pro-
cessed by multiple banks in parallel, requests from tasks in other cores can arbi-
trarily interfere with them at the channel scheduler which destroys the potential
parallelism.

By forming a batch of memory requests, we can construct a flexible granular-
ity that allows us to preserve bank-level parallelism within it [13]. This batch of
requests can be thought of as a ‘pseudo request’ due to its atomicity; requests
inside a batch are treated as a single request, so that they’re not preempted
by requests outside the batch. By adopting batch granularity instead of plain
single request granularity, we can preserve potential parallelism per this ’pseudo
request’ unit. Our DRAM controller attempts to maximize the parallelism inher-
ent in the capacity-sensitive tasks by request batching, and maximize the locality
inherent in the locality-sensitive tasks at the same time by isolating them from
other tasks with bank partitioning.

In addition to preserving parallelism, request batching allows us to devise
a scheduling policy with greatly reduced pessimism compared with FR-FCFS
scheduling, widely adopted in most commodity DRAM controllers for perfor-
mance. Under our DRAM controller design, worst case interference delay of tasks
in locality-sensitive class is statically determined regardless of memory intensity
of the co-runner tasks in capacity-sensitive class. However, FR-FCFS scheduling
aggressively reorders requests such that row buffer hit requests are served earlier
than any other requests [16]. Under FR-FCFS scheduling, bounding worst case
interference delay is complicated and conservative because maximum possible
requests that can be generated by any job of a task should be counted as a worst
case interference. For example, as shown in Fig. 3(a), under FR-FCFS worst

32 J. Eo et al.

case interference that a single request suffers is the sum of maximum number of
requests that can be generated by any job of each co-running task. In this case,
each co-runner’s interfering requests can be row hit and can be served earlier
even if they arrived late. However, if we bound maximum number of requests
that a co-running task can generate as a static batch size R as in Fig. 3(b), the
worst case interference is statically bound, regardless of how memory intensive
each co-running task is.

(a) Worst case interference delay
under request granularity

(b) Worst case interference delay un-
der batch granularity

Fig. 3. Request batching eliminates pessimism of request-based worst case interference
analysis

Thus, by restricting the maximum number of possible interfering requests
as a constant which is multiple of batch size, we can achieve much simpler and
tighter worst case interference delay analysis for tasks in locality-sensitive class.

Observation 2. Memory access pattern-aware bank partitioning max-
imizes performance and fairness by providing the right amount of
DRAM banks.

Bank partitioning is an OS-level mechanism that physically isolates a set of
DRAM banks from the rest of the DRAM, thus eliminating interference between
threads which access different dedicated parts of the DRAM. Modern OS uses
virtual memory that maps thread’s virtual address to physical address. Physical
address contains bank bits, which designate the DRAM bank that the data with
this address is stored. We can allocate pages that have specific bank bits to
each thread by controlling the virtual-physical address mapping. This results
in dedicated bank partitions for each thread. By wisely creating and allocating
dedicated bank partitions of various size to threads in the workload, we can
not only achieve performance isolation but also efficient utilization of DRAM
bandwidth as a shared resource by providing the right amount of bank-level
parallelism.

Memory Access Pattern-Aware Memory Controller Design 33

Recent works in real-time systems field that adopt bank partitioning as a
way of performance isolation generally overlooked the fact that the number of
allocated banks can significantly affect a task’s performance. In these works,
banks are equally allocated regardless of tasks’ memory access patterns, focus-
ing only on eliminating inter-core interference to achieve performance isolation
[8,12,19,20]. However, we observed that the number of banks clearly affects
tasks’ performance depending on its memory access pattern as shown in Fig. 4.
Especially for a capacity-sensitive application, where the number of banks that
can serve requests in parallel is critical to its performance, performance dropped
linearly as the number of banks decreased (Fig. 4(b)). For a locality-sensitive
task, even though reducing the number of banks doesn’t affect performance as
much as capacity-sensitive one, a small number of private banks are definitely
needed to maintain certain level of performance (Fig. 4(a)).

This preliminary result well supports the intuition that by allocating capacity
(number of banks) and bandwidth (number of memory requests allowed per unit
time) according to each task’s memory access pattern, efficient resource usage
would be possible, instead of blindly allocating equal amount of them. Also,
some previous works [11,18] have demonstrated that 8 to 16 banks are enough
for an arbitrary application to gain around 90% of its maximum performance.

(a) Locality-sensitive task (b) Capacity-sensitive task

Fig. 4. DRAM capacity affects performance of locality-sensitive and capacity-sensitive
tasks

4 Memory Access Pattern-Aware DRAM Controller
Design

4.1 DRAM Controller Architecture

In our proposed method, according to tasks’ criticality modes and memory
access patterns, tasks are classified into three classes, i.e., latency-sensitive class,

34 J. Eo et al.

locality-sensitive class, and capacity-sensitive class1. The tasks in each class have
following properties:

– Latency-sensitive tasks: Latency-sensitive tasks are tasks in critical mode.
The memory requests from these tasks should be processed without interfer-
ence of non-critical tasks (tasks in other classes). Therefore, each task in this
class has its own dedicated private bank as shown in left-most of Fig. 5. Also,
when the memory requests from this class are issued, the proposed DRAM
controller immediately evacuates backlogged requests of other banks to pre-
vent interference from accessing channel scheduler which is shared by all bank
schedulers (see Fig. 2) as in [7].

– Locality-sensitive tasks: Locality-sensitive tasks are tasks in non-critical
mode, which enjoy high row buffer locality. An intuitive example application
of this type is a program that sequentially accesses a large array. This type of
tasks require relatively fewer banks compared to capacity-sensitive tasks, but
guaranteeing performance isolation is much more critical than them. If co-
runner tasks share and freely access locality-sensitive tasks’ banks which will
arbitrarily flush and reload the row buffer, high locality that ensures short
access latency are destroyed. Thus, as shown in middle of Fig. 5, each task in
this class access its own dedicated private bank.

– Capacity-sensitive tasks: Capacity-sensitive tasks are also tasks in non-
critical mode. The tasks in this class exhibit high bank-level parallelism
using multiple banks. Example application would be a program that ran-
domly accesses a large array. Performance of this type is very sensitive to the
number of banks that it can use, which are not necessarily dedicated, pri-
vate banks. Thus, from the performance point of view, guaranteeing enough
number of banks is more important than providing performance isolation.
Even if co-runners that share the capacity-sensitive tasks’ banks, loss in row
buffer locality is negligible compared to the gain from the increased number
of banks—increased amount of parallelism. Therefore tasks in this class share
larger number of banks than other classes as shown in right-most of Fig. 5.

Memory Access Pattern-Aware Bank Partitioning. For capacity, latency-
sensitive and locality-sensitive classes provide small number of private banks, as
tasks of these memory access patterns don’t need large amount of banks but
require isolation from co-runner tasks on other cores. Capacity-sensitive class
provides large number of shared banks because for tasks of this type number of
banks that can serve requests in parallel is critical to performance. At the same
time, due to low row buffer locality strict isolation is often not needed.

1 There are various ways of categorizing memory access patterns [9,21]. Among these,
we follow the one introduced in [9], hence it is based on DRAM as a shared resource
in multi-core machines and well captures memory behavior of memory-intensive
workloads.

Memory Access Pattern-Aware Memory Controller Design 35

Fig. 5. Memory access pattern-aware DRAM controller design

Class-Based Prioritization and Request Batching. For bandwidth, pro-
viding right prioritization is important. Requests from latency-sensitive class gets
the highest priority, since tasks of this type seldom generate memory requests
but keeping their latency short is critical. Requests from capacity-sensitive class
has the next highest priority, since prioritizing capacity-sensitive requests over
locality-sensitive requests is proven to be more fair than vice versa [9]. Requests
from locality-sensitive class has the lowest priority, since they suffer the least
fairness degradation from inter-core interference.

For requests from capacity-sensitive class that use large number of shared
banks, we use request batching. As in observation 1, it is important to effectively
guarantee bank-level parallelism inherent in capacity-sensitive tasks, and merely
providing sufficient number of banks is not enough. Request batching unit forms
maximum MarkingCap number of requests per each core, generating maximum
Numberofcoresincapacity−sensitiveclass∗MarkingCap size batch each time.
Next batch is formed only after current batch is completely served, as in [13].

4.2 Worst Case Interference Delay Analysis

We assume the following task model:

τi = (Ci, Ti,Di,Hi)

– Ci: WCET of any job of τi under single-core environment
– Ti: the minimum inter-arrival time of τi

– Di: relative deadline of τi

– Hi: the maximum number of requests generated by any job of τi

36 J. Eo et al.

Latency-Sensitive Class. For requests in latency-sensitive class, due to its
highest priority it is neither preempted by requests from locality-sensitive class
nor from capacity-sensitive class. The only potential delay comes from the pre-
vious requests sent to the same private bank. Thus, the worst possible delay
occurs when the previous request serviced from the same bank is a row miss.

– Worst case latency for row hit : Read’s data transfer takes tCL + tBL/2
and additional 2 cycles for data bus turn-around time and write’s data transfer
takes tWL + tBL/2 and additional possible max(tWTR, tWR) for the data bus
turn-around/write recovery time [8].

Lhit = max{tCL + tBL/2 + 2, tWL + tBL/2 + max(tWTR, tWR)} · tCK

– Worst case latency for row miss: Row miss requires all three of PRE,
ACT and data read or write commands.

Lmiss = (tRP + tRCD) · tCK + Lhit

Iterative response time test for the requests from latency-sensitive class can be
rewritten as below, where hp(τi) denotes tasks of higher priorities than τi:

Rk+1
i = Ci +

∑

τj∈hp(τi)

⌈
Rk

i

Tj

⌉
· Cj + Hi · Lmiss +

∑

τj∈hp(τi)

⌈
Rk

i

Tj

⌉
· Hj · Lmiss

Capacity-Sensitive Class. For requests in capacity-sensitive class, it can be
preempted by latency-sensitive class’s requests. And in the worst case, a request
can arrive right after the formation of a batch ended, thus scheduled to the next
batch. Hence, the worst delay it can suffer occurs when it is preempted by the
maximum possible number of memory requests that any job of latency-sensitive
class’s task can generate, and then their exist an already-formed batch from
capacity-sensitive class. Since it’s the worst case, we assume all of these requests
are row miss.

Rk+1
i = Ci +

∑

τj∈hp(τj)

⌈
Rk

i

Tj

⌉
· Cj

+Hlatency−sensitive · Lmiss +
∑

τj∈hp(τi)

⌈
Rk

i

Tj

⌉
· Hj · Lmiss

Locality-Sensitive Class. For requests in locality-sensitive class, it can be
preempted by requests from both latency-sensitive class and batches of requests
from capacity-sensitive class. In the extreme scenario where capacity-sensitive
class continuously generates requests, requests from locality-sensitive class suffer
from starvation due to the continuous preemption by the batches. To prevent
this, we put a limit on the maximum number of batches that can be consecutively
served, which we call MaxConsecutiveBatches.

Memory Access Pattern-Aware Memory Controller Design 37

The worst delay locality-sensitive class can suffer occurs when it is preempted
by the maximum possible number of memory requests that any job of latency-
sensitive class’s task can generate, and then there exist MaxConsecutiveBatches
number of already-formed batches from capacity-sensitive class. Here too, we
assume all of these are row miss.

BatchSize = MarkingCap · CapacitySensitiveClassCores

Rk+1
i = Ci +

∑

τj∈hp(τj)

⌈
Rk

i

Tj

⌉
· Cj

+ (Hlatency−sensitive + MaxConsecutiveBatches ·BatchSize) · Lmiss

+
∑

τj∈hp(τi)

⌈
Rk

i

Tj

⌉
·Hj · Lmiss

5 Evaluation

5.1 Experiment Setup

We used Ramulator#, a cycle-accurate DRAM simulator with representa-
tive latency-sensitive (444.namd), locality-sensitive (462.libquantum), capacity-
sensitive (471.omnetpp) workloads from SPEC 2006 [5]. Table 2 shows the char-
acteristics of workloads. MPKI determines memory intensity, which denotes the
number of DRAM requests per kilo instructions. RB Hit Rate denotes row
buffer hit rate, which is the number of row buffer hit divided by total DRAM
requests. BLP denotes bank-level parallelism and is the number of total banks
that received at least one DRAM request when any one of the banks received
memory requests.

Table 2. Characteristics of SPEC 2006 benchmarks used

Benchmark MPKI RB Hit Rate BLP Classification

444.namd 0.33 86.6% 1.27 latency-sensitive

462.libquantum 50.00 98.4% 1.10 locality-sensitive

471.omnetpp 22.15 26.7% 3.78 capacity-sensitive

For Ramulator# system setting, we used 3-core where each benchmark run
and 4G DDR3-DRAM with one channel, one rank, 8 banks, and 1333 MHz mem-
ory clock. MarkingCap is set to 5, MaxConsecutiveBatches is set to 2.

38 J. Eo et al.

5.2 Performance Result of Non-critical Tasks

We experimented FR-FCFS, FR-FCFS with bank partitioning, and our proposed
solution. As the metric for system throughput we used weighted speedup [17] and
for fairness we used maximum slowdown defined as follows:

WeightedSpeedup =
∑

i

IPCshared
i

IPCalone
i

MaximumSlowdown = max
i

IPCalone
i

IPCshared
i

We compared different combination of bank allocation and tested the per-
formance and fairness under the condition. For performance, we can see that
even if banks are allocated against tasks’ memory access patterns, our proposed
method wins FR-FCFS and FR-FCFS with bank partitioning as shown in Fig. 6.
The main gain came from the fact that the performance gain of tasks in locality-
sensitive class outgrows the performance loss of tasks in capacity-sensitive class.
This result shows the importance of performance isolation to locality-sensitive
tasks—namely, guaranteeing enough number of private banks is very important
for locality-sensitive tasks’ performance.

Fig. 6. Weighted speedup under various bank allocations

On the other hand, when we look at the maximum slowdown as in Fig. 7,
we can see that fairness is paying the price. Even though the net performance
gain increased due to locality-sensitive tasks, capacity-sensitive tasks suffer from
severe slowdown as the number of allocated shared banks drops. This is due to
the bank allocation ignorant of memory access pattern.

By testing various bank allocation and finding the best trade-off point
between performance and fairness, our memory access pattern-aware DRAM
controller can provide both performance isolation and efficient sharing to tasks
with various memory access patterns’ needs.

Memory Access Pattern-Aware Memory Controller Design 39

Fig. 7. Maximum slowdown under various bank allocations

6 Related Work

Bank Partitioning. Bank partitioning has been widely researched as a
software-level solution for inter-core interference at main memory level. [10,11]
proposed a way to profile bank address of commodity hardware, and imple-
mented bank partitioning as a linux kernel page allocator. [12,19] adopted bank
partitioning as a way of main performance isolation mechanism for real-time
tasks running on COTS (commercial off-the-shelf) hardware.

Bounding Memory Interference Delays. Tightly bounding worst case inter-
ference delays at main memory have gained importance along with migration
to multicore architecture. [8] developed worst case response time analysis that
captures interference delay due to reordering effect of row buffer hit requests,
which is adopted in most commodity DRAM controller hardware today [16]. [20]
extended [8] and took various factors that define memory-level parallelism such
as number of MSHRs into consideration.

DRAM Controller Design for Mixed-Criticality Systems. [14] first
suggested bank privatization method, which achieves predictable bank access
latency by scheduling accesses to each banks in a TDM way and generating
DRAM commands in a predetermined way. [4] took a step forward and pro-
posed a run-time reconfigurable DRAM controller that takes suitable trade-offs
between bandwidth, response time and power. [1] provided a shared-resource
abstraction for predictable and composable memory. [7] adopted bank privatiza-
tion to have bounded worst case latency for critical tasks, and FR-FCFS aimed
at maximized performance for low critical tasks. [3] viewed DRAM as a set of
virtual devices and provided a partitioning mechanism to run mixed critical
workloads to each virtual device.

While research on DRAM controllers for mixed-criticality system mainly
focused on performance isolation for critical tasks [1,3,4,14], [7] first suggested
a way of providing maximized performance to low critical tasks, but overlooked

40 J. Eo et al.

known issues with FR-FCFS scheduling algorithm in terms of fairness; i.e. it
blindly prioritizes locality-sensitive workloads, hence capacity-sensitive work-
loads suffer unfair performance degradation.

Memory Access Pattern-Aware DRAM Controller Scheduling. [9] first
proposed several criteria for categorizing memory access patterns of a program
such as memory intensity, row buffer locality and bank-level parallelism. [13]
showed that request batching is effective in exploiting bank-level parallelism of
programs and proposed a way of achieving trade-off between row buffer locality
and bank-level parallelism.

7 Conclusion

In this paper, we introduced a DRAM controller architecture that can achieve
both performance isolation and efficient sharing of resources, which are two
compelling goals of mixed-criticality systems. Our design guarantees strictly
bounded worst case latency for critical tasks and maximizes performance by
exploiting locality-sensitive and bandwidth-sensitivity for non-critical tasks. For
future work, we’re planning to develop a run-time program that analyzes each
non-critical task and parses a task into locality-sensitive and capacity-sensitive
blocks. Programs from real world workloads usually consist of locality-sensitive
parts and capacity-sensitive parts, while program itself as a whole is often diffi-
cult to be clearly classified as locality-sensitive or capacity-sensitive. By parsing
each programs into blocks that well fit the underlying partitions, much more
efficient sharing of resources would be possible.

Acknowledgement. This research was partly supported by the MSIT (Ministry
of Science and ICT), Korea, under the SW Starlab (IITP-2015-0-00209) supervised
by the IITP (Institute for Information & Communications Technology Promotion)
and partly supported by Next-Generation Information Computing Development Pro-
gram through the National Research Foundation of Korea (NRF) funded by the
MSIT (2017M3C4A7065925, On-the-fly Machine Learning and Its Specialized Real-
time/Security System SW for Evolving Intelligent CPS).

References

1. Akesson, B., Goossens, K.: Architectures and modeling of predictable memory
controllers for improved system integration. In: 2011 Design, Automation Test in
Europe. pp. 1–6, March 2011. https://doi.org/10.1109/DATE.2011.5763145

2. Burns, A., Davis, R.: Mixed criticality systems-a review. Department of Computer
Science, University of York, Technical Reports (2013)

3. Ecco, L., Tobuschat, S., Saidi, S., Ernst, R.: A mixed critical memory controller
using bank privatization and fixed priority scheduling. In: 2014 IEEE 20th Inter-
national Conference on Embedded and Real-Time Computing Systems and Appli-
cations, pp. 1–10, August 2014. https://doi.org/10.1109/RTCSA.2014.6910550

https://doi.org/10.1109/DATE.2011.5763145
https://doi.org/10.1109/RTCSA.2014.6910550

Memory Access Pattern-Aware Memory Controller Design 41

4. Goossens, S., Kuijsten, J., Akesson, B., Goossens, K.: A reconfigurable real-time
sdram controller for mixed time-criticality systems. In: 2013 International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp.
1–10, September 2013. https://doi.org/10.1109/CODES-ISSS.2013.6658989

5. Henning, J.L.: SPEC CPU2006 benchmark descriptions. SIGARCH Comput.
Archit. News 34(4), 1–17 (2006). https://doi.org/10.1145/1186736.1186737

6. Jacob, B., Ng, S., Wang, D.: Memory Systems: Cache, DRAM, Disk. Morgan Kauf-
mann Publishers Inc., San Francisco (2007)

7. Kim, H., Broman, D., Lee, E.A., Zimmer, M., Shrivastava, A., Oh, J.: A predictable
and command-level priority-based dram controller for mixed-criticality systems. In:
21st IEEE Real-Time and Embedded Technology and Applications Symposium,
pp. 317–326, April 2015. https://doi.org/10.1109/RTAS.2015.7108455

8. Kim, H., de Niz, D., Andersson, B., Klein, M., Mutlu, O., Rajkumar, R.: Bounding
memory interference delay in cots-based multi-core systems. In: 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pp.
145–154, April 2014. https://doi.org/10.1109/RTAS.2014.6925998

9. Kim, Y., Papamichael, M., Mutlu, O., Harchol-Balter, M.: Thread cluster memory
scheduling: exploiting differences in memory access behavior. In: 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 65–76, December
2010. https://doi.org/10.1109/MICRO.2010.51

10. Liu, L., Cui, Z., Li, Y., Bao, Y., Chen, M., Wu, C.: BPM/BPM+: software-based
dynamic memory partitioning mechanisms for mitigating dram bank-/channel-level
interferences in multicore systems. ACM Trans. Archit. Code Optim. (TACO)
11(1), 5 (2014)

11. Liu, L., Cui, Z., Xing, M., Bao, Y., Chen, M., Wu, C.: A software memory par-
tition approach for eliminating bank-level interference in multicore systems. In:
Proceedings of the 21st International Conference on Parallel Architectures and
Compilation Techniques, pp. 367–376. ACM (2012)

12. Mancuso, R., Pellizzoni, R., Caccamo, M., Sha, L., Yun, H.: WCET(m) estimation
in multi-core systems using single core equivalence. In: 2015 27th Euromicro Con-
ference on Real-Time Systems, pp. 174–183, July 2015. https://doi.org/10.1109/
ECRTS.2015.23

13. Mutlu, O., Moscibroda, T.: Parallelism-aware batch scheduling: enhancing both
performance and fairness of shared dram systems. In: Proceedings of the 35th
Annual International Symposium on Computer Architecture, ISCA 2008, pp. 63–
74. IEEE Computer Society, Washington (2008). https://doi.org/10.1109/ISCA.
2008.7

14. Reineke, J., Liu, I., Patel, H.D., Kim, S., Lee, E.A.: Pret dram controller: bank
privatization for predictability and temporal isolation. In: 2011 Proceedings of the
Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), pp. 99–108, October 2011. https://doi.org/
10.1145/2039370.2039388

15. Rixner, S.: Memory controller optimizations for web servers. In: Proceedings of the
37th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
37, pp. 355–366. IEEE Computer Society, Washington (2004). https://doi.org/10.
1109/MICRO.2004.22

16. Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., Owens, J.D.: Memory access
scheduling. In: Proceedings of the 27th Annual International Symposium on Com-
puter Architecture, ISCA 2000, pp. 128–138. ACM, New York (2000). https://doi.
org/10.1145/339647.339668

https://doi.org/10.1109/CODES-ISSS.2013.6658989
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1109/RTAS.2015.7108455
https://doi.org/10.1109/RTAS.2014.6925998
https://doi.org/10.1109/MICRO.2010.51
https://doi.org/10.1109/ECRTS.2015.23
https://doi.org/10.1109/ECRTS.2015.23
https://doi.org/10.1109/ISCA.2008.7
https://doi.org/10.1109/ISCA.2008.7
https://doi.org/10.1145/2039370.2039388
https://doi.org/10.1145/2039370.2039388
https://doi.org/10.1109/MICRO.2004.22
https://doi.org/10.1109/MICRO.2004.22
https://doi.org/10.1145/339647.339668
https://doi.org/10.1145/339647.339668

42 J. Eo et al.

17. Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for a simultaneous multi-
threaded processor. In: Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS IX, pp. 234–244. ACM, New York (2000). https://doi.org/10.1145/378993.
379244

18. Xie, M., Tong, D., Huang, K., Cheng, X.: Improving system throughput and fair-
ness simultaneously in shared memory cmp systems via dynamic bank partition-
ing. In: 2014 IEEE 20th International Symposium on High Performance Com-
puter Architecture (HPCA), pp. 344–355, February 2014. https://doi.org/10.1109/
HPCA.2014.6835945

19. Yun, H., Mancuso, R., Wu, Z.P., Pellizzoni, R.: PALLOC: DRAM bank-aware
memory allocator for performance isolation on multicore platforms. In: 2014 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS),
pp. 155–166, April 2014. https://doi.org/10.1109/RTAS.2014.6925999

20. Yun, H., Pellizzon, R., Valsan, P.K.: Parallelism-aware memory interference delay
analysis for cots multicore systems. In: 2015 27th Euromicro Conference on Real-
Time Systems, pp. 184–195, July 2015. https://doi.org/10.1109/ECRTS.2015.24

21. Zhou, Y., Wentzlaff, D.: MITTS: memory inter-arrival time traffic shaping. In:
Proceedings of the 43rd International Symposium on Computer Architecture, ISCA
2016, pp. 532–544. IEEE Press, Piscataway (2016). https://doi.org/10.1109/ISCA.
2016.53

https://doi.org/10.1145/378993.379244
https://doi.org/10.1145/378993.379244
https://doi.org/10.1109/HPCA.2014.6835945
https://doi.org/10.1109/HPCA.2014.6835945
https://doi.org/10.1109/RTAS.2014.6925999
https://doi.org/10.1109/ECRTS.2015.24
https://doi.org/10.1109/ISCA.2016.53
https://doi.org/10.1109/ISCA.2016.53

Increasing Safety by Combining Multiple
Declarative Rules in Robotic

Perception Systems

Johann Thor Mogensen Ingibergsson, Dirk Kraft, and Ulrik Pagh Schultz(B)

Mærsk Mc-Kinney Møller Institute, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark

{jomo,kraft,ups}@mmmi.sdu.dk

Abstract. Advanced cyber-physical systems such as mobile, networked
robots are increasingly finding use in everyday society. A critical aspect
of mobile robotics is the ability to react to a dynamically changing envi-
ronment, which imposes significant requirements on the robot perception
system. The perception system is key to maintaining safe navigation and
operation for the robot and is often considered a safety-critical aspect of
the system as a whole. To allow the system to operate in a public area the
perception system thus has to be certified. The key issue that we address
is how to have safety-compliant systems while keeping implementation
transparency high and complexity low. In this paper we present an evalu-
ation of different methods for modelling combinations of simple explicit
computer vision rules designed to increase the trustworthiness of the
perception system. We utilise the best-performing method, focusing on
keeping the models of the perception pipeline transparent and under-
standable. We find that it is possible to improve the safety of the system
with some performance cost, depending on the acceptable risk level.

Keywords: Safety · Computer vision · Robotics · Functional safety

1 Introduction

The significant growth of highly interconnected Cyber-Physical Systems (CPS)
is currently imposing complex conglomerates of software and hardware on per-
sonal life and many sectors of industry. While the high degree of integration
between software, mechanical, and electrical engineering is well-known and vis-
ible in sectors such as automotive or aviation, more “traditional” sectors such
as agriculture and consumer electronics also benefit from the opportunities pro-
vided by the latest information and communications technology concepts and
solutions. Driven by this trend, the domain of robotics is continuously expand-
ing from large industrial machines in cages to free-moving consumer products.
This expansion is reflected by the current market and projected increase in the
future [11,22].

c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 43–60, 2019.
https://doi.org/10.1007/978-3-030-17910-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-17910-6_4

44 J. T. M. Ingibergsson et al.

Computer vision is a key point for robotics—and thus CPS in general—to
be able to act in a dynamic world [7]. The task for a computer vision system
is to understand what exists, where a mobile robotic system is located, and if
obstacles require an immediate action. These goals are functional requirements
of the system and should be addressed with an explicit focus on safety when
dealing with mobile robots. Indeed, a requirement for introducing autonomy in
established domains is safety, which is done through compliance with functional
safety standards that rely on code and documentation reviews. To support the
use of vision in safety-critical systems, we propose to use simple and explicit
computer vision rules as a means to determine specific problems in input images
and the perception system as a whole [15]. Increasing the readability of the
code and the perception rules can increase the overall trustworthiness of the
system [13], facilitating the certification process [15]. Such simple and explicit
computer vision rules can be implemented in a domain specific programming
languages (DSL), supporting safe implementation of computer vision for safety-
critical systems [14].

In this paper, we investigate how to combine such simple and explicit rules
in an understandable way in order to judge the current operational safety of the
robots perception system during autonomous operation. The safety system con-
sists of code generated using the Vision Safety Language (ViSaL; [14]), where
the developer specifies rules to safeguard the system from malfunctions. Our
investigations build on the combination of explicitly written rules and address
the issue of how this combination should be modelled, in particular, whether it
can be done manually or automatically. The tested methods have a clear focus
on being explicit and thereby easy to understand to facilitate clear communi-
cation to functional safety certifiers, such that the intent of the code and the
system can be deducted. Concretely, we compare three manual programmatic
methods with an automatic method based on decision trees. The decision tree
method is deemed most appropriate in this comparison and is then assessed on
a robot as an added safety layer for the You Only Look Once (YOLO) neu-
ral network (NN) [26] to investigate the performance and cost for the system.
Compared to our earlier work where rules were evaluated independently [13–15],
we here design, implement, and test combinations of rules and evaluate these
combinations as a safety layer for a state-of-the-art NN.

The rest of this paper is structured as follows. In Sect. 2 we discuss safety
in the context of robotics and related industries, followed by an overview of our
initial work on safety and computer vision in connection to learning methods. In
Sect. 3 we present different methods that can be used for modelling a safety layer
for a computer vision system based on declarative rules, along with two datasets
used for experimentally investigating the methods. The performance evaluation
and comparison of the different methods will be conducted in Sect. 4, where
they are tested on the datasets. The best-performing method is experimentally
evaluated in Sect. 5, by introducing the safety method in a robotic system as a
means to improve the safety of a NN. We end with an overall conclusion and an
outline of future work in Sect. 6.

Increasing Safety by Combining Multiple Declarative Rules 45

2 Fundamentals and Related Work

2.1 Safety in Robotics

While robotics is a thriving research area within academia, the penetration into
industry has mostly been limited to replacing manual labour in factories. The
intent of commercialising robots and selling them on a mass market puts certi-
fication as a central requirement as increasingly complex autonomous systems
are introduced [27]. Certification allows products to comply with international
standards, and thus lowers liability concerns [30]. A critical requirement for cer-
tification is that the software controlling the robot has been reviewed and paired
with textual requirements, meaning that a clear interpretation of the intent is
needed. Safety can be defined as, e.g., “freedom from unacceptable risk” [37].
Certification can consume more than 50% of the resources required to develop
new safety-critical systems in related domains [1]; development of safety-critical
software is expensive.

Safety is discussed in many settings and is often mentioned in papers, e.g.,
for computer vision, however without explicitly dealing with the challenges that
arise [12]. As a result, safety is an obstacle for robots to operate autonomously
in the public domain, while various ad-hoc safety measures have been designed,
often focused on a specific risk such as collision, certification is not undertaken.
It follows that there is a need for generalised methods for facilitating compliance
and certification [20]. In the industrial domain developers rely on functional
safety, which is defined as: “part of the overall safety relating to the [equipment
under control] EUC and the EUC control system that depends on the correct
functioning of the [electrical and/or electronic and/or programmable electronic]
E/E/PE safety-related systems and other risk reduction measures” [37].

2.2 Perception Systems

The safety issue is partially at odds with how robotic autonomy is normally
developed today. Researchers often rely on machine learning and Artificial Intel-
ligence (AI) to achieve required performance and safety, however, the safety
aspect is difficult for humans to interpret. This tension is described in Defence
Science Board 2016 Summer Study on Autonomy which argues that it is hard
for humans to understand and predict AI systems [6]. In computer vision, the
focus is on performance [12], and the improved safety is often claimed despite
introducing ever more complex algorithms. That “in spite of their complexity,
they fail frequently. ” moreover, “in part due to their complexity, they fail in
seemingly inexplicable ways.” [2].

Robots rely on perception systems to navigate the world, as such the systems
require both safety certification and a minimal performance. Safety certification
could be done by adapting IEC 61496 [36] for outdoors use. Despite the scope
of the standard being for machines in an industrial setting, it is noted that
additional requirements can be applied to the system if it is intended for outdoor
applications, which means that the developer has to argue for the safety in

46 J. T. M. Ingibergsson et al.

the system and thus can disregard the cages. Regarding performance, drafts
exist of standards for outdoor robotics, e.g., ISO/DIS 18497 [35] and ISO/DIS
17757 [34]. The standards quantify detection performance, the tests have however
been criticised [33]. The criticism is that the test object can be robustly detected
in varying conditions using a NN, while not being able to detect humans.

The concept of safe states, i.e., fall-back behaviour, are important for per-
ception systems since sensors, in general, have a risk of failing [3]. These failures
require that the sensors are robust, without robustness the robot may “halluci-
nate” and respond inappropriately [23]. The failures are not limited to hardware,
but also software and NNs “need serious design effort, pre-planning and proved
to be fragile in face of sensor errors in practice” [38]. It is therefore important
for functional safety to look at software safety verification of the input sensor
data, and thereby to give assurance about the hardware by verifying inputs and
outputs.

There are many requirements to a computer vision system [5]. Precision for
vision algorithms is an issue in general, as a result it can be beneficial to create
multiple classification regions. Multiple regions allow the system to deal with
images that can be difficult to classify. Mekki-Mokhtar et al. proposed a concept
called multiclass classification, as seen in other safety-critical systems [21]. The
multiclass classification allows a system to have more than a boolean decision,
e.g., “bad”, “warning” and “good”. This will enable a decision system to decide
the trustworthiness of different sensors, and thereby decide if the robot needs to
stop or just slow down. A benefit of using multiclass classification is tolerance
towards the issue that sensors are in some way disturbed by noise, and thus the
data may be unreliable. A common approach is to employ redundancy [10]. The
multiclass classification can allow different sensors to use voting similar to sensor
fusion [10].

A standard measure for evaluating algorithm performance within computer
vision is Precision-Recall (PR). PR curves are used to identify the performance
of classifiers. Other methods exists such as the well-known Receiver Operating
Characteristics (ROC), however we choose PR curves over ROC because if a
curve dominates in the PR-space, it will also dominate in the ROC space [4].
Furthermore, ROC does not take the baseline into account, and since categories
for annotated data can be unbalanced, the PR-curves are a better statistical
measure. An issue with the use of statistical measures is the notion of an accept-
able risk, this is however not specified in functional safety standards. Therefore
it is up to the developer to decide when the systems performance is good enough,
with respect to acceptable risk. To evaluate the PR-curves we utilise Area Under
the Curve (AUC). An approximation is however needed, such as trapezoidal
approximation, to evaluate the AUC of the resulting PR curves and find an
“optimum”. This is because linear approximation is insufficient for PR [4]. The
use of AUC in combination with PR instead of ROC is further supported by
Saito et al. “The PRC [Precision-ReCall] plot is more informative than ROC,
CROC [Concentrated ROC], and CC [Cost Curve] plots when evaluating binary
classifiers on imbalanced datasets” [29]. With the hope of using these methods

Increasing Safety by Combining Multiple Declarative Rules 47

in connection with argumentation for functional safety, a perfect score would be
desirable, however not a plausible result to aim for. This leaves the developer to
rely on upcoming performance standards [34,35] and to assume an acceptable
risk level for the system.

An issue with PR is however that one has two values that are being improved
(precision and recall). To remedy this an optimum point is chosen based on the
Fβ score. The Fβ score is a statistical measure that can be used to evaluate the
classification performance. The β is a number reflecting a weight on either recall
or precision. We have chosen 1 which results in the harmonic mean of precision
and recall. The F1 score is a weighted average where the best value is at 1 and
the worst is 0.

2.3 Learning and Computer Vision

“Software developers have a history of adding security to their products after the
fact rather than integrating it into the development phase [...] Now, he warned,
the machine learning community is poised to make the same mistake.” [17]. We
note that NNs have received significant attention in the computer vision commu-
nity, beating other methods in performance on many tasks. Nevertheless, safety
certification of neural networks remains an open issue [18]. NNs should ideally
be understandable and readable by humans, while still allowing for individual,
meaningful rules [18]. Many industries have looked into the use of NNs [31],
investigating the use of NNs since the 1980s [31].

Gupta et al. propose verification and validation of adaptive NNs [8], although
with a focus on control systems. Specifically the absence of analytical certification
methods restricts NNs to advisory roles in safety-related systems [19]. Moreover,
we note that deep NN and similar recently popular methods share the same
issue of being hard to assess in terms of safety. There do exist probabilistic mea-
sures for failure detection [40]. The issue with these methods is however that
it is difficult to prove that the underlying distributions cover the entire normal
behaviour. The difficulty is illustrated by the spurious behaviour learning meth-
ods can exhibit, where the neural network wrongly makes different classifications
of images indistinguishable for humans [25]. The key problem is that classifiers
and learning are complex tasks that are hard to prove reliable for humans, in
particular through reviews. This shows that safety certification of NNs remains
an open issue [9,19]. Because of functional safety and the requirement for code
reviews, we do not believe that online trained or adaptive NNs are certifiable,
despite recent advances [8].

To comply with functional safety the NN would have to be transparent. In
the case of pre-trained NN the learning method and learned models would be
available for the reviewer. The resulting NNs are however still “black boxes”,
moreover the computations can be time consuming [9]. This makes NN infea-
sible for safety-critical systems; however other learning methods exists that are
more intuitive to understand, such as decision trees [24]. A decision tree is “a
hierarchical model composed of discriminant functions, or decision rules, that are

48 J. T. M. Ingibergsson et al.

applied recursively to partition the feature space of a dataset into pure, single-
class subspaces” [39]. A decision tree T consists of branches Tt where t is the
number of branches. Decision trees can be explicitly depicted to give reviewers
an intuitive understanding of the data flow. When using decision trees there
is an inherent issue of over-fitting, which is addressed using pruning. Pruning
refers to replacing branch nodes with leaves, thereby decreasing complexity and
simplifying the tree. Trees can be trained with a stopping criterion, but it is
generally accepted that it is better to overgrow a decision tree and then prune
back [24]. “Pruning a branch T t from a tree T consists of deleting all descen-
dants of t. Denote the pruned tree as T −Tt.” [28]. There are multiple algorithms
for pruning decision trees [28].

The NN for which we will introduce a safety layer in this paper is YOLO.
From a software point of view, the safety check consists of executing code from
ViSaL for assessing the input images for the YOLO algorithm, specifically we use
YOLOv2 [26]. In this paper, we refer to YOLOv2 as YOLO. The algorithm finds
anchor boxes of proposed predictions for the image, which are then thresholded
based on a probability criteria. The predictions are then found using non-max
suppression. Our reason for using YOLO is not the algorithm components, but
its performance and speed, i.e., high precision and 45 frames per second [26].

Introducing a safety system could have a potential negative impact on the
overall performance of the system, because some images categorised as good
could be distrusted by the system. In a nutshell, a safety system that distrusts
all images ensures that a NN will never make any miscategorisations, but is not
useful. We use the term uptime cost to refer to the overhead of using a safety
system, in terms of how many useful images are incorrectly discarded. Concretely,
we measure the uptime cost by assessing how many images are removed from the
highest category, i.e., the most usable images, to estimate the cost of introducing
a safety layer to a perception system.

2.4 Programming Safe Perception Systems

Initial steps towards establishing a safe implementation of perception systems
have been demonstrated using explicit declarative rules to address specific issues
in a perception pipeline [14,15]. The rules are focused on different particulari-
ties of an image such as pixel distributions, pixel changes, and frequency. The
simple rules use multiclass classification, because of the uncertainties in specify-
ing precise thresholds for classifying images using the rules, thereby establishing
a margin of reliability in the classifications. The many categories however also
make the classification problem harder and thereby the performance of the algo-
rithm deteriorates. As a result the concept of soft-boundaries was introduced to
evaluate multiclass classification systems without penalizing the system perfor-
mance excessively [15]. The computer vision rules have been implemented in the
Vision Safety Language (ViSaL) DSL for automatic generation of their imple-
mentation [14] and an initial assessment has been performed with respect to
readability with the goal of facilitating certification [13]. An excerpt of a ViSaL

Increasing Safety by Combining Multiple Declarative Rules 49

program is shown in Fig. 1, the rule FB detects images with abnormal distribu-
tion of pixels in a colour histogram, which for example detects underexposed or
overexposed images unsuitable for further processing in a perception pipeline.

The declarative rules in ViSaL function independently, which means that
ViSaL outputs individual scores for each rule, i.e., ok, warn or bad. The set of
problems and symptoms that can result in problematic issues in a perception
pipeline, are covered by a subset of the defined rules in ViSaL, therefore the
entire rule set overlaps the problem space. This paper is focused on combining
the rules, as this allows for a clear decision on the system integrity and can
increase safety.

The focus of the combination of the rules is a means to give a clear statement
on the integrity of the system, and as such the sum of rules does not in itself
increase safety. Nevertheless, certain standards allow for combinations of safety-
functions to increase safety. An example is ISO 26262 [16], where there exists
a concept called decomposition, which allows for lower-rated safety function to
safeguard high levels by combining safety-functions. In this paper the method
of combining the rules is addressed, serving as an experimental continuation of
the initial steps made in previously published papers [13–15].

Fig. 1. Excerpt of ViSaL implementation of image analysis rules for verifying the data
integrity of images [14].

3 Methods

3.1 Datasets

In our experiments, we use datasets consisting of images labelled using a usability
category, where five is a usable image and one is unusable, i.e., unusable to make
reliable safety decisions. Datasets consist of RGB and depth information and

50 J. T. M. Ingibergsson et al.

are processed by the rules (“raw data”), based on which thresholds are found
in the data using precision-recall curves (“threshold data”) [15]. We use two
datasets: “agriculture”, from an outdoor setting [15]; and “turtlebot” from an
indoor setting. Both datasets consist of 406 images labelled using the usability
category.

3.2 Decision Trees

We employ decision trees because we view them as a valid method in the context
of functional safety, since the trees are an intuitively understandable visualiza-
tion of a decision process. This means that the learned model can be verified
and understood by tracing the propagation of images through the tree, and
thereby iterate over an understandable model. Two decision trees are created
using Matlab, where the trees are based on the raw data and on the threshold
data respectively. We employ pruning on the automatically generated decision
trees. For pruning we use cross-validation, meaning that the training data is split
into train, test, and validation, to evaluate the model, i.e., the level of pruning
for the decision tree.

3.3 Manual Programming

The manual programming approach utilises pre-defined thresholds for simple
declarative rules, as to explicitly combine the rule evaluations, i.e., “bad”,
“warning” and “good” [15]. The use of a manual programming approach should
allow the derived rules to be intuitively understood. Ultimately an extension
of the ViSaL DSL would be used for this, but in this paper, we investigate
the feasibility of such an approach, rather than the design of the language. For
this reason, we use a mathematical notation to express the programmed rule
combinations, leaving a concrete DSL syntax for rule combinations for future
work. In this paper we consider three different manual programming approaches:
“top-down”,“bottom-up”, and “inferred learning”.

The “top-down” approach refers to the idea that the combination of the rules
are based on intuitive ideas by the developer, e.g., if all rules dealing with expo-
sure or bin distributions are “good”, then the image is assumed “good”. The
second approach,“bottom-up”, relies on fitting a rule to the underlying data of
the training set, e.g., the existing rule combinations. Last the “inferred learn-
ing” approach is based on creating rules using a combination of the two above
approaches and by utilising insights manually inferred from an automatically
generated decision tree.

The mathematical notation used to support the combination of rules can
be seen in Fig. 2. It describes an overall evaluation of an image based on all
rules R. The notation is based on a sequence S of compound rules P defined as
propositions that combine rule evaluations αr(x) using a weighting.

Increasing Safety by Combining Multiple Declarative Rules 51

R set of all rules, r ∈ R, I set of all images, x ∈ I

αr(x) :

⎧
⎪⎨

⎪⎩

b, r(x) < terrorr

g, r(x) > twarnr

w, Otherwise

α∗
0(x) :

⎧
⎪⎨

⎪⎩

b, ∃r ∈ R : αr(x) = b

g, ∀r ∈ R : αr(x) = g

w, Otherwise

S ≡ {(o1, P1),, (on, Pn)}, where oi ∈ {g,w, b}

βS(x) :

⎧
⎨

⎩

om, m = min
j∈N

: Pj(x)

α∗
0(x), ∀m ∈ N : ¬Pm(x)

(1)

(2)

Fig. 2. Mathematical representation of the combination of rules, where the thresholds
tr are assumed to always be an upper limit. The function αr(x) corresponds to the
evaluation of individual rules, where b corresponds to an image being categorised as
“bad”, w as “warning”, and finally g as “good”. The α∗

0(x) function is defined such
that if one rule for a given image evaluates to “bad” then the combined result would
be “bad”, whereas if one image is“warn” and none are “bad”, then the combined result
is“warn”. In all other cases, the result is “good”, meaning that the rules have an equal
weighting. The rule in Eq. 1 can be adapted for different scenarios. The use of the
compound rules is done using a sequence S, consisting of an output and a compound
rule, as described by Eq. 2. The sequence S of propositions is evaluated using βS(x),
meaning that the first-occurring satisfied compound rule of an image will result in the
images evaluating to the corresponding output value. If no compound rule is true then
the result defaults to α∗

0(x).

Top-Down. The top-down approach relies on first combining the rules by using
the dominant state of the rule results as in Eq. 1. Equation 1 implies an equal
weighting of the rules. The combination of rules is created as compound rules,
meaning that they are designed as propositions P combined in a sequence S,
and evaluated using βS(x).

Bottom-Up. The bottom-up approach uses the same initial combination app-
roach (Eq. 1). The compound rules for this task are found by investigating the
data, e.g., using a loop for testing all possible rule combinations and their perfor-
mance. The best-performing combinations are then introduced, and the process
can be iterated. An alternative approach used is to investigate the existing rule
combinations in the data. The new rules are therefore found based on the chosen
training data.

52 J. T. M. Ingibergsson et al.

Inferred Learning. Because of the risk of over-fitting the inferred learning app-
roach utilizes pruned decision trees. Using decision trees as heuristics for creat-
ing manual rules could possibly benefit the creation. The key benefit of using
the heuristics is however that the decision tree and in particular the predictor
importance allows for improving the weights in α∗

0(x) (Eq. 1) because there is
an understanding of the rule’s impact based on the available data.

4 Combining Declarative Rules

4.1 Combination of Rules

We benchmark the three manual approaches (top-down, bottom-up, and inferred
learning) and the two decision trees (non-pruned and pruned). A key issue is
that manual rules are only created once per split, meaning that the statistical
properties such as the mean and the standard deviation are impacted since some
training data will be present in the test data. We however believe that it is still
interesting to see the statistical results as a means to evaluate the prediction
methods with respect to the decision trees.

For functional safety the optimal process for conveying information would
be to create manual rules based on expert knowledge, as to argue for the logic
behind the choices, which allows for explicitly pairing the safety goals to the
implementation, thereby making a clear reference for the reviewer. As an example
we show an extract of the rules defined as a result of the top-down (TD) analysis,
where the three ViSaL rules CAbot, CAtop, and BF are used. These rules deal
with connected components in the image (CAbot and CAtop) whereas BF finds
the largest bin and its corresponding fill level.

PTD
g1

(x) ≡ ∃r′ ∈ R \ {CAbot, CAtop,BF} :

αCAbot(x) = αCAtop(x) = αBF (x) = αr′
(x) = g (3)

PTD
b1 (x) ≡ αCAbot(x) = αCAtop(x) = w (4)

PTD
b2 (x) ≡ αFR(x) = w ∧ (

αCAbot(x) = w ∨ αCAtop(x) = w
)

(5)

PTD
b3 (x) ≡ ∃r′ �= r′′ �= r′′′ �= r′′′′ ∈ R :

αr′
(x) = αr′′

(x) = αr′′′
(x) = αr′′′′

(x) = w (6)

The propositions P shown in Eqs. 3 to 6 are examples of the rules found
using the top-down analysis. The top-down manual rules were found by first
combining the rules individual results with α∗

0(x). This results in the combination
represented as a sequence S shown in Eq. 7.

STD ≡ {(b, PTD
b3), (b, PTD

b2), (b, PTD
b1), (g, PTD

g1
)} (7)

The performance of the manual approaches top-down and bottom-up can be
seen in Table 1, where it is evident that they are not feasible. The inferred learn-
ing approach which uses the decision tree as heuristics for creating the manual

Increasing Safety by Combining Multiple Declarative Rules 53

Table 1. The mean, μ, and the standard deviation, σ, of the individual results of the
pruned decision tree training for the two datasets, on the raw and threshold results on
the 200 random splits (see also Sect. 3.1).

rules has better performance and the combination of rules was also done faster
by the human programmer. Nevertheless, the results of the decision trees still
outperformed the manually programmed rules. It should not be concluded that
manually programmed rules can be disregarded, but rather that the overall per-
formance can be improved using decision trees. Intuitive rules can still be cre-
ated to express specific safety goals, assuming the performance is good enough.
The methods should, therefore, be viewed as complementary with respect to
complying with safety standards. Nevertheless the decision trees significantly
outperformed the manually programmed rules, as can be seen in Table 1, where
it is evident that the “raw” results outperform the“threshold” results.

5 Experimental Evaluation

5.1 Robot Platform

For our experimental evaluation, we utilise a robot from Conpleks Innovation
ApS, shown in Fig. 3. The robot runs ROS Kinetic on Ubuntu 16.04, and the
system navigates autonomously using an RTK-GPS and perception sensors. The
software for the robot runs on two embedded platforms. First, the controller for
the motors is a Conpleks robotech controller 501 based on an Aaeon GENE-
QM77, which is an embedded single-board computer consisting of a 3rd genera-
tion Intel i5 processor. Second, the sensor fusion platform is based on a GeForce
GTX 1080 interfaced to an Intel i7-6700K, which enables real-time processing
of the sensor data. This robot is equipped with a sensor kit consisting of a ther-
mal camera, a stereo camera, and a 360 degrees lidar. The current sensor fusion
platform is built using consumer-grade electronics and is as such not usable for
an industrial setting. For data collection, the robot was controlled manually and
only the stereo camera was used.

54 J. T. M. Ingibergsson et al.

Fig. 3. Conpleks’ robot created for collecting golf balls autonomously [32].

5.2 Test Setup

The recordings are used to evaluate the combination of the YOLO algorithm and
the safety layer. The evaluation is thus not performed on-line during operation
of the robot, but at a later time using recorded images. We implemented YOLO
on industrial-grade embedded boards, namely NVidia Jetson TX2 boards. The
Jetson TX2 board was used as the test setup and is running ROS Kinetic on
Ubuntu 16.04, making it suitable future for deployment on our robotic platform.

5.3 Data Acquisition

The recordings of the dataset were done in Odense Airport 21st-22nd of August
2017. The recording session consisted of an operator remote controlling the robot
while between zero and two persons moved around in front of the robot. In addi-
tion, a second part of the recordings consisted of stressing the camera by exposing
it to potential hazards for the image: over- and under-exposure was simulated
by emitting light into the lens and covering it up; frozen image was simulated by
covering the lens; dirty lens was simulated using grass, dirt, and water. Frozen
image normally means that the same image is emitted several times, i.e., it would
not be limited to black images. This means that the experiment is a special case.
Nevertheless, the general example would be caught by rules using optical flow
and/or lack of pixel changes, both of which are examples of rules which we
use [15]. In addition, the focus was changed by adding different levels of water
and plastic in front of the lens to distort the scene.

5.4 Dataset

The recordings consisted of 4471 images which are manually labelled based on the
usability category. One researcher (the first author) did the labelling manually.
Randomised images for the five usability categories were then extracted with
an equal weighting for all categories for the data analysis. The equal weighting
allows us to create three datasets: training; test; and validation, where each set
consists of 545 images, which were split evenly into the five categories, i.e., 109
images per category.

The dataset is further annotated based on the YOLO algorithms perfor-
mance, this is done after the usability categorisation, as to not have an impact

Increasing Safety by Combining Multiple Declarative Rules 55

(a) YOLO detection. (b) No detection. (c) YOLO detection.

(d) No detection. (e) YOLO detection. (f) No detection.

Fig. 4. Image examples from the dataset evaluated by the YOLO algorithm, where
the bounding boxes indicate if the YOLO algorithm made a detection. Images a–d had
their brightness increased similarly to help the reader see the structures in the images,
whereas images e and f retain their original brightness.

on the results. The YOLO labels are 1 if there is at least one human present,
and 0 if no persons are present in the image. The detection precision of YOLO
is also labelled by 1 and 0.

5.5 Initial Data Exploration

To investigate if the labelling was acceptable we examine it using the YOLO
detections as a baseline. From the entire dataset of 4471 images, there are 1942
good images with people in the scene. Out of these, the YOLO detected at least
one human in 1922. Resulting in a failure percentage of 1.04%. Second, we look
at the bad images consisting of 607 images with people in the scene. YOLO
was able to detect a human in 405 images. Resulting in a failure percentage of
33.28%. We use these results as an indication that the usability labelling of the
images seems to be correct. Despite YOLO detecting correctly in 66.7% of the
bad images, they can still be interpreted as bad, referring to Fig. 4. This means
that a correct detection is not the same as stating the image is usable.

5.6 Usability

The results are extracted based on 192 random splits used for both the pruned
and non-pruned decision trees. The results for the precision, recall, and F1-scores
for the decision trees can be seen in Table 2.

We test the impact of the pruning using the F1-score via a paired t-test. We
do this for both the test and validation splits where we test the null hypoth-
esis that the pairwise difference between data vectors of the pruned decision
tree (x) and non-pruned decision tree (y) has a mean equal to zero at the 1%

56 J. T. M. Ingibergsson et al.

Table 2. The precision, recall and F1 scores for the non-pruned and pruned decision
trees evaluated on the 192 random splits in the dataset.

significance level. We evaluate this against the alternative hypothesis that the
pruned decision tree (x) has a greater mean than the non-pruned decision tree
(y) with a 1% significance level. The null hypothesis is rejected, meaning that the
pruned decision trees have a higher performance on unknown data, compared
to the non-pruned. Comparing the results with the manual results on the older
datasets in Table 1, it is evident that the new decision trees perform better. We
use these comparisons to conclude that the decision trees are applicable.

5.7 Assessment

The decision trees based on the ViSaL rules are now used to analyse the images
before the YOLO algorithm is applied. The goal of the system is to signal to
a decision system whether or not the data is trustworthy. This means that if
the image is not usable or if there is a human in the image, the robot should
be stopped. We, therefore, conduct three analyses for comparison. The three
different analyses are: using only the YOLO algorithm without any impact from
the ViSaL rules; using YOLO and ViSaL based decision trees, not trusting bad
images; and finally YOLO and ViSaL based decision trees only trusting good
images. These assessments are done for both the pruned decision tree and can
be seen in Table 3.

In Table 3 the rows represent the results based on 192 iterations. The first
row “Total Images” corresponds to the number of images that is checked in every
iteration. The second row “Trusted Images” refers to the images that YOLO is
exposed to, the range is a result of the random sampling for the 192 iterations.
The “Humans Missed” row refers to the humans that are visible in the image
and that were not detected by YOLO. “Mean Percentage Detection” refers to
the detection performance of the YOLO algorithm on “Trusted Images”, where
if at least one human was detected it was a correct detection. The “Uptime Cost”
row is based on the usable images in the fifth category and how many of those
have been removed by the ViSaL decision trees. The cost is only based on the
fifth category because we are using the soft boundary method [15], which means
that the fourth category can be moved into the warning region. Finally, the last
two rows give the F1 scores of the YOLO detections and the safety layer. For the
YOLO detections it is calculated based on: a true positive is a correct detection
of all humans in the image; a false positive is a wrong detection in the image;
false negative is if YOLO misses a detection in the image; and true negative is if

Increasing Safety by Combining Multiple Declarative Rules 57

Table 3. The table illustrates the performance impact of using ViSaL-based pruned
decision trees in connection with YOLO, see text for details.

YOLO no safety YOLO, distrust
“warn” and “bad”

YOLO, distrust
only “bad”

mean std mean std mean std

Total images 545 0 545 0 545 0

Trusted images 545 0 112.56 9.34 328.63 9.10

Humans missed 62.25 7 2.63 1.62 11.38 3.11

Percentage detection 88.58% 0.0128 97.67% 0.0139 96.54% 0.0096

Uptime cost 0% 0 28.78% 0.0521 4.99% 0.0225

F1 for detections 0.82 0.0136 0.87 0.0337 0.88 0.0154

F1 of safety layer N/A N/A 0.88 0.0380 0.92 0.0159

no humans are present and there are no detections. Furthermore, it is important
to note that although the number of images removed seems excessive, the two
worst categories consist of 218 images. This means that when the system only
distrusts bad images, the trusted images column will decrease with around 218
images, as can be seen on the right side of the table. For the middle column, the
number of removed images increases because there potentially are 327 warning
images due to the soft boundaries, where the warning region is incorporated.

From Table 3 it can be seen that the removed images correspond to the
intuition from earlier. In addition, it is evident that the introduction of the
safety layer drastically reduces the number of missed persons. This means that
the choice of the aggressiveness of the safety layer, i.e., the reduction of accepted
images, has to be evaluated as to what is an acceptable and an unacceptable risk.

6 Conclusion and Future Work

In this paper, we investigated how to model the combination of declarative rules
as a means to improve a vision pipeline with respect to performance and safety.
The modelling choices focused on a standard approach to learning within com-
puter vision. The data is recorded using a robot platform and analysed on an
industrial-grade embedded board to have a feeling for real-time performance. We
found that introducing the safety layer into a vision system can improve the per-
formance, with some uptime cost. The definition of acceptable risk is, therefore,
a critical issue for fielding autonomous systems that rely on approaches where
human operators are not in the decision loop.

To use decision trees in functional safety it is critical to understand the intent
and to generate code for embedded platforms, we believe that such an approach
can improve the communication with certification authorities [39]. This means

58 J. T. M. Ingibergsson et al.

that understandability and readability are equally critical for the software. While
readability for ViSaL has been investigated [13], further studies are needed.
Finally, a more detailed analysis of specific faults is needed to understand which
specific hazards are currently detected robustly and which need more rules.

References

1. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12, 161–166
(2011)

2. Bansal, A., Farhadi, A., Parikh, D.: Towards transparent systems: semantic char-
acterization of failure modes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8694, pp. 366–381. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10599-4 24

3. Daigle, M.J., Koutsoukos, X.D., Biswas, G.: Distributed diagnosis in formations of
mobile robots. IEEE Trans. Robo. 23(2), 353–369 (2007)

4. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
233–240 (2006)

5. De Cabrol, A., Garcia, T., Bonnin, P., Chetto, M.: A concept of dynamically recon-
figurable real-time vision system for autonomous mobile robotics. Int. J. Autom.
Comput. 5(2), 174–184 (2008)

6. Fields, C., David, R., Nielsen, P.: Defense science board 2016 summer study on
autonomy. Defense Science Board (2016)

7. Frese, U., Hirschmüller, H.: Special issue on robot vision: what is robot vision? J.
Real-Time Image Process. 10(4), 597–598 (2015)

8. Gupta, P., Loparo, K., Mackall, D., Schumann, J., Soares, F.: Verification and
validation methodology of real-time adaptive neural networks for aerospace appli-
cations. In: International Conference on Computational Intelligence for Modeling,
Control, and Automation (2004)

9. Hauge, A., Tonnesen, A.: Use of artificial neural networks in safety critical systems.
Faculty of Computer Sciences (2004)

10. Heckemann, K., Gesell, M., Pfister, T., Berns, K., Schneider, K., Trapp, M.: Safe
automotive software. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett,
R.J., Jain, L.C. (eds.) KES 2011. LNCS (LNAI), vol. 6884, pp. 167–176. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23866-6 18

11. IFR: World Robotics 2014 Industrial Robots (2014)
12. Ingibergsson, J.T.M., Schultz, U.P., Kuhrmann, M.: On the use of safety certi-

fication practices in autonomous field robot software development: a systematic
mapping study. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PRO-
FES 2015. LNCS, vol. 9459, pp. 335–352. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-26844-6 25

13. Ingibergsson, J.T.M., Hanenberg, S., Sunshine, J., Schultz, U.P.: Readability study
of a domain specific language: process and outcome. In: Accepted for the 33rd
ACM/SIGAPP Symposium on Applied Computing (SAC-18) (2018)

14. Ingibergsson, J.T.M., Kraft, D., Schultz, U.P.: Declarative rule-based safety for
robotic perception systems. J. Software Eng. Rob. (JOSER) 8(1), 17–31 (2017)

15. Ingibergsson, J.T.M., Kraft, D., Schultz, U.P.: Explicit image quality detection
rules for functional safety in computer vision. In: 12th International Conference on
Computer Vision Theory and Applications (VISAPP), p. 12, Marts 2017

https://doi.org/10.1007/978-3-319-10599-4_24
https://doi.org/10.1007/978-3-319-10599-4_24
https://doi.org/10.1007/978-3-642-23866-6_18
https://doi.org/10.1007/978-3-319-26844-6_25
https://doi.org/10.1007/978-3-319-26844-6_25

Increasing Safety by Combining Multiple Declarative Rules 59

16. ISO TC22/SC3/WG16. ISO/IEC 26262:2011: Road vehicles - Functional safety.
Technical report, International Organization for Standardization (2011)

17. Klarreich, E.: Learning securely. Commun. ACM 59(11), 12–14 (2016)
18. Kurd, Z., Kelly, T.: Establishing safety criteria for artificial neural networks. In:

Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2773, pp.
163–169. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45224-
9 24

19. Kurd, Z., Kelly, T., Austin, J.: Safety criteria and safety lifecycle for artificial
neural networks. In: Proceedings of Eunite, vol. 2003 (2003)

20. Machin, M., Dufossé, F., Blanquart, J.-P., Guiochet, J., Powell, D., Waeselynck, H.:
Specifying safety monitors for autonomous systems using model-checking. In: Bon-
davalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp.
262–277. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2 18

21. Mekki-Mokhtar, A., Blanquart, J.-P., Guiochet, J., Powell, D., Roy, M.: Safety trig-
ger conditions for critical autonomous systems. In: 18th Pacific Rim International
Symposium on Dependable Computing, pp. 61–69. IEEE (2012)

22. METI: Trends in the Market for the Robot Industry in 2012, July 2013
23. Murphy, R.R., Hershberger, D.: Handling sensing failures in autonomous mobile

robots. Int. J. Robot. Res. 18(4), 382–400 (1999)
24. Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction

to decision tree modeling. J. Chemom. 18(6), 275–285 (2004)
25. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High

confidence predictions for unrecognizable images. In: Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 427–436. IEEE (2015)

26. Redmon, J., Farhadi, A.: YOLO9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242 (2016)

27. Reichardt, M., Föhst, T., Berns, K.: On software quality-motivated design of a real-
time framework for complex robot control systems. In: International Workshop on
Software Quality and Maintainability (2013)

28. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

29. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the
ROC plot when evaluating binary classifiers on imbalanced datasets. In: PLoS
ONE, pp. 1–21 (2015)

30. Santosuosso, A., Boscarato, C., Caroleo, F., Labruto, R., Leroux, C.: Robots, mar-
ket and civil liability: a european perspective. In: RO-MAN, pp. 1051–1058. IEEE
(2012)

31. Schumann, J., Gupta, P., Liu, Y.: Application of neural networks in high assurance
systems: a survey. In: Schumann, J., Liu, Y. (eds.) Applications of Neural Networks
in High Assurance Systems, pp. 1–19. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-10690-3 1

32. SDU: Marken er mejet af en robot (2017)
33. Steen, K.A., Christiansen, P., Karstoft, H., Jørgensen, R.N.: Using deep learning

to challenge safety standard for highly autonomous machines in agriculture. J.
Imaging 2(1), 6 (2016)

34. TC 127: Earth-moving machinery - autonomous machine system safety. In: Inter-
national Standard ISO 17757–2015, International Organization for Standardization
(2015)

35. TC 23: Agricultural machinery and tractors - Safety of highly automated machin-
ery. International Standard ISO/DIS 18497, International Organization for Stan-
dardization (2014)

https://doi.org/10.1007/978-3-540-45224-9_24
https://doi.org/10.1007/978-3-540-45224-9_24
https://doi.org/10.1007/978-3-319-10506-2_18
http://arxiv.org/abs/1612.08242
https://doi.org/10.1007/978-3-642-10690-3_1
https://doi.org/10.1007/978-3-642-10690-3_1

60 J. T. M. Ingibergsson et al.

36. TC 44: Safety of machinery - electro-sensitive protective equipment. International
Standard IEC 61496–2012, International Electronical Commission (2012)

37. TC 65: Safety of machinery - electro-sensitive protective equipment. International
Standard IEC 61508–2011, International Electronical Commission (2011)

38. Veres, S.M., Lincoln, N.K., Molnar, L.: Control engineering of autonomous cogni-
tive vehicles-a practical tutorial. Technical report, Faculty of Engineering and the
Environment, University of Southampton, Technical report (2011)

39. Yang, Y., Keller, P., Livnat, Y., Liggesmeyer, P.: Improving safety-critical systems
by visual analysis. In: OASIcs-OpenAccess Series in Informatics, vol. 27. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

40. Zhang, P., Wang, J., Farhadi, A., Hebert, M., Parikh, D.: Predicting failures of
vision systems. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3566–3573 (2014)

Simulation

Template-Based Monte-Carlo Test
Generation for Simulink Models

Takashi Tomita1(B), Daisuke Ishii2, Toru Murakami3, Shigeki Takeuchi3,
and Toshiaki Aoki1

1 Japan Advanced Institute of Science and Technology, Nomi, Japan
{tomita,toshiaki}@jaist.ac.jp

2 University of Fukui, Fukui, Japan
dsksh@u-fukui.ac.jp

3 Gaio Technology Co., Ltd., Tokyo, Japan
{murakami.t,takeuchi.s}@gaio.co.jp

Abstract. In this paper, we propose a Monte-Carlo test generation
method that is able to conduct decision, condition and MC/DC cov-
erage testing for practical Simulink models. To generate a test suite effi-
ciently for models with dozens of thousands blocks, we introduce several
techniques. Firstly, we propose using templates of input signals, which
characterize shapes of entire waveforms of the signals with a few param-
eters. By using templates, we can easily generate candidate test cases
and reduce a search space to plausible one. Secondly, we propose biased
sampling framework to get efficiently test cases meeting uncovered objec-
tives. In the framework, a biased distribution generating new candidate
test cases is iteratively refined based on fitness values of the previous
candidates. We performed two experiments for each of the techniques
and confirmed that they are effective enough for Simulink models which
cannot be dealt with a de-facto standard tool SLDV.

1 Introduction

1.1 Background

A modern automobile involves hundreds of electric control units (ECUs), which
manage engine, brake, steering, etc., mainly by feedback control. It is strongly
required that these physical/mechanical modules are controlled safely and reli-
ably. Model-based development (MBD) is widely employed for developing highly
safe and reliable software on ECUs. For this purpose, MATLAB1/Simulink2 pro-
vide numeric computation, modeling, and simulation environment and is used
as the de-facto standard MBD tool in many fields.

In most cases, testing is a feasible and reasonable method to guarantee the
quality of practical models. This is because industrial models are very large and

1 https://www.mathworks.com/products/matlab.html.
2 https://www.mathworks.com/products/simulink.html.

c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 63–78, 2019.
https://doi.org/10.1007/978-3-030-17910-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_5&domain=pdf
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://doi.org/10.1007/978-3-030-17910-6_5

64 T. Tomita et al.

complex, and therefore formal verification takes very high costs, or is undecid-
able at the worst case. When testing Simulink models, we first build a test suite
that consists of test cases, which are groups of input signals, and then simulate
and check behaviors of the model for the test suite. Several test criteria are
introduced to guarantee an acceptable quality, e.g., decision coverage, condition
coverage, and modified condition/decision coverage (MC/DC coverage). It is typ-
ically required to test a model by using a high-coverage test suite. Actually, ISO
26262 (“Road vehicles – Functional safety”) requires to conduct an MC/DC cov-
erage test. MATLAB/Simulink has toolboxes for this purpose: Simulink Design
Verifier3 (SLDV) and Simulink Verification and Validation4 (V&V).

1.2 Issues

Scalability and Complexity: A practical model often consists of hundreds
of inputs and dozens of thousands blocks, and represents a complex function
combined with logical/linear/non-linear operations, adaptive digital filters, etc.
Unfortunately, formal analysis does not scale against such models, and becomes
undecidable because of the non-linearity. Test case generation of SLDV is mainly
based on formal analysis and thus it cannot deal with most of practical models.
To overcome the issue on scalability and complexity, Monte-Carlo approach is
often employed, which generates test cases sequentially and randomly. A test
suite is constructed by a contributable subset of them.

Difficulty on Monte-Carlo Approach: It is not rare that a model has objec-
tives which are difficult to cover with Monte-Carlo methods due to the large
search space of time-series data with numerical domain. Objectives in some type
of circuit (e.g., a narrow-band digital filter) is covered only by a signal with a
specific waveform (e.g. a sine wave with a certain frequency); then it becomes
difficult to generate such signal without a useful guide.

1.3 Objectives and Approach

In this paper, our objectives is to propose a feasible Monte-Carlo method to
generate high decision, condition and MC/DC coverage test suites for practical
Simulink models.

Firstly, we introduce template-based approach. In our experience, it is fre-
quently sufficient to consider several simple types of input signals, e.g., constant,
linear, step and sine-wave, in a test case/suite generation. By using templates
of such input signals characterized with a few parameters, we can simplify a
process of generating test cases, and the search space is reduced to plausible
one effectively. Secondly, we propose biased sampling framework to get more

3 https://www.mathworks.com/products/sldesignverifier.html.
4 https://www.mathworks.com/products/simverification.html.

https://www.mathworks.com/products/sldesignverifier.html
https://www.mathworks.com/products/simverification.html

Template-Based Monte-Carlo Test Generation for Simulink Models 65

efficiently test cases meeting uncovered objectives. For each objective, we pro-
vide a fitness function, which gives a higher value as a test case inducing a
behavior of the model closer to a target objective. A new candidate test case is
generated based on a biased probability distribution considering the fitness val-
ues of previous candidate test cases. We show that these techniques are effective
enough for Simulink models which cannot be dealt with by SLDV.

1.4 Related Work

Random testing is a well-known technique to find software bugs. On testing
for codes, various methods were introduced, e.g., directed random testing [1,2],
adaptive random testing [3], to obtain a higher coverage test suite. In this paper,
we focus on testing for models.

SLDV is a MATLAB/Simulink toolbox for design error detection, test case
generation, model slicing, etc. The design error detector tries to find dead logic
(i.e., unexercisable) objects of the model. The test case generator tries to con-
struct test cases which cover as much objectives as possible for given coverage
criteria, e.g., decision, condition, MC/DC and relational boundary. Since SLDV
is mainly based on static analysis, it cannot treat most practical models.

As we have seen so far, randomized techniques are promising for test
suite/case generation for practical models. Reactis5 [4] is another MBD tool
consisting of simulator, tester and validator, which supports Simulink models
and several coverage criteria, e.g., state, branch, and MC/DC. The tester gener-
ates test cases based on a Monte Carlo method and guided simulation technique.
Guided simulation tries to choose a contributable test case, based on a backward
data-flow analysis for simulations of previous test cases. As another technique,
Satpathy et al. introduced a randomized directed testing (REDIRECT) approach
[5], which combines randomization, directed, backtracking and feedback-based
testing. These techniques try to make new contributable test cases by refining
suffixes of previous test cases. In contrast, our method randomly make entirely
new candidates from templates (based on those of previous test cases with high
fitness values).

We focus on decision, condition and MC/DC coverage criteria, while Matin-
nejad et al. proposed a randomized test suite generation method that focuses
on the output diversity criterion [6], in which a more desirable test suite derives
a greater variety of behaviors of the models. Their method attempts to refine
a test suite based on an evolutionary algorithm (EA) with a fitness function
focusing on various behavioral features of a target model.

5 http://www.reactive-systems.com/.

http://www.reactive-systems.com/

66 T. Tomita et al.

2 Preliminaries

2.1 Simulink Models

A Simulink model is constructed with various types of blocks, e.g., input/output,
mathematical operator, logical/relational operator, (multiport) switch, and delay ;
blocks are connected with lines which transfer Boolean, integer or floating/fixed
point data among them. Simulink supports hierarchical structure by subsystems.
A subsystem consists of some blocks and lines; input/output ports of the sub-
system are associated with their low-level input/output blocks. Additional ports,
e.g., enable and trigger ports, may be equipped with a subsystem for selective
activation/inactivation by external signals. Temporal behavior of a block is either
based on continuous-time or discrete-time.

The type of a block b1 is denoted by BlockType(b1), and the line connected to
the i-th input port of b1 by InputLine(b1, i). PredBlock(l) denotes a pair 〈b2, j〉 of
a block b2 and the index j of output port connected to the line l. In a simulation,
the time-series signal flowing on a line l is denoted by Signal(l), i.e., Signal(l)(t)
represents the value of the signal at time t. The data type of the signal is denoted
by DataType(l). For a (multi-port) switch block b3, DataPorts(b3) denotes a set of
port indices of input signals possible to pass. For a discrete-time delay block b4,
Delay(b4) and InitialValue(b4) denotes a number k of delay steps and the initial
value within the first k steps, respectively. For an input block b5, InputPort(b5)
denotes a pair 〈b6,m〉 of an subsystem block b6 and the index m of its input port
associated with b5. OutputBlock(b6, n) denotes an output block associated with
the n-th output port of b6.

2.2 Testing for Simulink Models

Typically, we use a harness model for testing a given target model. A harness
model consists of a subsystem copied from the target model and a signal builder
block providing a group of input signals for the subsystem (Fig. 1). SLDV has
a function to construct such harness model. Then, we simulate behavior of the
model for the group, and compare back-to-back it with that of another model
(e.g., more abstracted or concretized one) for the same group. That is, the group
is a test case in this back-to-back testing.

Fig. 1. Exapmle of a harness model. A signal builder block, named “Inputs,” provides
test cases for “Test Unit” subsystem copied from a target model

Template-Based Monte-Carlo Test Generation for Simulink Models 67

Definition 1 (Test Case/Suite). A test case is a group of input signals. A
test suite is a set of test cases. ��

Given a test case, the model coverage is a measure of how exhaustively the
model objects are exercised. The model coverage for a test suite is an accu-
mulation of that of every test case in the test suite. In decision, condition and
MC/DC model coverage criteria, a measured object is a block whose activity
changes logical characteristics (i.e., data flow pattern) of the model. In the
case of Simulink, they are, e.g., logical/relational operator blocks, (multi-port)
switch blocks and subsystems with active-control ports. For a measured block b,
Formula(b, o) denotes the logical formula mechanically derived from settings of
b, which holds only if an outcome of its decision is o. A outcome of a decision is
true or false for a logical/relational operator block and for a subsystem6 with
active-control ports, and the index of a passing input for a (multi-port) switch7.
Formula(b, o) has the following form8:

Formula: ϕ ::= c | ϕ ∨ ϕ | ϕ ∧ ϕ, (1)
Condition: c ::= prop(i) | ¬prop(i) | rel(i,∼, j) | rel const(i,∼, a), (2)

where i is the index of an input port of b, ∼ is a relational operator, and a is a
constant. Intuitively, prop(i) (resp., ¬prop(i)) means the propositional condition
“the i-th Boolean input signal of b is true (resp., false).” rel(i,∼, j) means
the relational condition “a relation ∼ holds between the i-th and j-th input
signals of b.” rel const(i,∼, a) means the relational condition “a relation ∼ holds
between the i-th input signal of b and the constant a.” That is, outcomes o′ of
the conditions are trivially Boolean values. Without loss of generality, we can
assume that Formula(b, o) has the disjunctive or conjunctive normal form (DNF
or CNF).

Definition 2 (Objectives). A decision objective is a pair 〈b, o〉 of a measured
block b and its outcome o. A condition objective is a pair 〈b, 〈c, o′〉〉 of b and a
pair 〈c, o′〉 of a condition c affecting the decision of b (defined by Equation (2))
and its outcome o′. An MC/DC objective is a pair 〈b, {〈c1, o1〉, . . . , 〈cn, on〉}〉
of b and a set of pairs 〈cm, om〉 of its conditions cm and their corresponding
outcomes om.

Note that a condition objective 〈b, 〈prop(i), true〉〉 (resp., 〈b, 〈rel(i,∼, j),
true〉〉, 〈b, 〈rel(i, <, j), true〉〉, etc.) is equivalent to 〈b, 〈¬prop(i), false〉〉 (resp.,
〈b, 〈rel(i, 	∼, j), false〉〉, 〈b, 〈rel(j,>, i), true〉〉, etc.).

Definition 3 (Coverage). A test suite is full decision coverage if, for each
measured block b, each possible outcome o of b is observed at some time step by
a test case in the test suite. A test suite is full condition coverage if, for each
condition c of every b, each possible outcome o′ of c is observed at some time
6 true ane false mean activated and inactivated, respectively.
7 That is, the outcome is in DataPorts(b) for a (multi-port) switch block b.
8 For simplicity, we omit trigger conditions in this paper.

68 T. Tomita et al.

step by a test case in the test suite. A test suite is full MC/DC coverage if, for
each b whose decision depends on multiple conditions c1, . . . , cn, the test suite
includes test cases which show each cm independently affects its decision. ��

For these criteria, we can measure and report coverage for a given model by
using built-in functions of V&V.

3 Template-Based Monte-Carlo Test Suite Generation

3.1 Signal Templates

As previous mentioned, a test cases is characterized as a group of input signals.
Each signal may have an arbitrary shape of a waveform. However, input signals
are provided by other electric modules which are likely well-controlled, or by
physical objects which are dominated by physical laws. So it may be unneces-
sary to consider arbitrary signals. Additionally, in our experience, it is frequently
sufficient to consider several simple types of input signals, which can be charac-
terized with a few parameters, for achieving high decision, condition and MC/DC
coverage. The types are, e.g., constant, linear, step, sine-wave, etc. Actually, a
signal builder block provides a group of signals with such types. Behavior of a
model for the group is relatively easy to understand for a design engineer. Thus
it is helpful for refining the given model.

Therefore, we provide templates for input signals, and search test cases within
the subset of instances of the templates.

Definition 4 (Signal Templates). A template is a subset of signals, which is
characterized a fixed number of parameters. ��
Example 1. A template Step(·, ·, ·) of step signals is represented by 3 parameters,
step time, initial value and final value. That is, an instantiated signal Step(x, y, z)
is given as Eq. (3) for time t. ��

Step(x, y, z)(t) =

{
y if t < x,

z otherwise.
(3)

Example 2. A template Sine(·, ·, ·, ·) of sine-wave signals is represented by 4
parameters, frequency, amplitude, phase and bias. That is, an instantiated signal
Sine(w, x, y, z) is given as Eq. (4) for time t. ��

Sine(w, x, y, z)(t) = x · sin(w · t + y) + z. (4)

3.2 Overview

A naive algorithm for test suite generation is shown in Algorithm 1. (i) We
generate randomly an entire candidate test case (i.e., a group of input signals)
based on templates (at Line 4). The details of how to randomly generate the
candidate will be presented in Sect. 3.3. (ii) Then we simulate the model for the

Template-Based Monte-Carlo Test Generation for Simulink Models 69

candidate and measure its coverage (at Lines 5–6). Note that the simulation and
measurement can be performed by cvsim function in V&V. (iii) If the candidate
is contributable to the coverage, we add it to the test suite (at Lines 7–10). Also
note that the contributability can be easily checked by referring coverage data
returned from cvsim function. The steps (i)–(iii) are repeated until the test suite
achieves full coverage.

An advantage of this approach is easy to be parallelized because iterations
(at Line 3–11) are almost independent from each other. That is, it is very hopeful
to handle a very large model.

Algorithm 1. Template-based test suite generation
Inputs: Simulink model mdl
Outputs: Test suite ts
1: ts := ∅;
2: tsc := null coverage;
3: repeat
4: cand := generateTestCaseFromTemplates(mdl);
5: sd := simulate(mdl, cand);
6: candc := measureCoverage(mdl, sd);
7: if a covering area of candc is not subset of that of tsc then
8: ts := ts ∪ {cand};
9: tsc := accumulateCoverage(tsc, candc);
10: end if
11: until tsc achieves full coverage
12: return ts;

3.3 Template-Based Test Case Generation

By using templates, we can easily generate randomly an entire candidate test
case (at Line 4 in Algorithm 1). The generation can be divided into 2 parts.
One is for choosing a combination of templates for input signals. The other is
for instantiating signals from chosen templates, i.e., determining arguments of
parameters of the templates.

We indicate naive methods for them, based on uniform distributions.

Choosing Templates: For simplicity, we assume a number of available tem-
plates is bounded. For each input block, we uniformly-randomly and indepen-
dently sample a template considering the data type of the block.

Example 3. If the data type of the input block is Boolean, constant and step are
available, however, neither linear or sine-wave is selected. ��
Remark 1. We can use any probabilistic distribution for choosing templates.
Additionally, some templates can be manually unselectable for each input block
in advance because implausible templates are often known. ��

70 T. Tomita et al.

Determining Arguments: For each parameter of every templates, we
uniformly-randomly and independently sample an argument value from the sam-
ple space corresponding to the discretized argument range for the parameter.

Example 4. The range for step time parameter of step signal is (0, tmax), where
tmax is the simulation stop time. ��
Example 5. The range for amplitude parameter of sine-wave signal with uint8
(unsigned 8-bit integer) data type is (0, 127], and that of bias parameter
is [w − 128, 127 + w] where w is an sampled argument value for amplitude
parameter. ��
Remark 2. We can also use any probabilistic distribution for determining argu-
ments. Additionally, it is possible to narrow manually the ranges of arguments
in advance because an actual range is often limited and known. ��

4 Template-Based Biased Sampling Framework

In this section, we illustrate biased sampling framework for template-based test
case generation to get more efficiently test cases meeting uncovered objectives.

In general, Monte-Carlo methods may fail to achieve a complete solution
(i.e., full coverage test suite in this study) due to its randomness. Algorithm 1
presents a method to collect contributable test cases haphazardly, without focus-
ing uncovered objectives. However, for obtaining a test case meeting one of them,
it is efficient to adapt specifically a sampling method (at Line in 4 in Algorithm 1)
to the one. Thus we propose biased sampling for uncovered objectives. To adapt
a sampling method for a target objective, we provide a fitness function assigning
a fitness value in (0, 1] for a test case. The fitness function gives 1 for a desired
test case (i.e., one meeting the objective), and a higher value for a more desirable
test case, i.e., a test case makes a state of the model closer to the target objec-
tive at some time step. Then, a new candidate test case is generated based on a
biased probability distribution considering fitness values of previous candidate
test cases. By biased sampling, we try to find efficiently a test case for each of
uncovered objectives one by one.

4.1 Overview

An algorithm of template-based test case generation with biased sampling is
shown in Algorithm 2. (i) Firstly, a probabilistic distribution for sampling is
initialized, e.g., as the uniform distribution (at Line 2). Of cause we can employ
another distribution. (ii) An entire candidate test case is generated based on the
current distribution (at Line 4). (iii) Then we simulate and log a behavior of
the model for the candidate by sim function in standard MATLAB/Simulink,
and evaluate the fitness of the candidate for the target objective, based on the
logged signals (at Lines 5–6). (iv-a) If the fitness value is 1, the candidate is
returned as a desired test case (at Line 8). (iv-b) If the fitness value is less than

Template-Based Monte-Carlo Test Generation for Simulink Models 71

1, a pair of the candidate and the fitness value is added to a history, and the
probabilistic distribution is refined based on the history (at Lines 10–11). The
steps (ii)–(iv) are repeated until the candidate meets the target objective. The
probability distribution is iteratively refined, and thus it is expected to generate
candidates gradually closer to a desired test case.

The problems are how to determine a fitness function for a target objective,
and how to refine a probabilistic distribution from a history of candidates and
its fitness values.

Algorithm 2. Monte-Carlo Targeted Test Case Generation
Inputs: Simulink model mdl,

fitness function fitnessFunction for a given target objective, and
distribution refinement method refineDistribution for biased sampling

Outputs: Test case tc
1: hist := empty history;
2: dist := uniform distribution;
3: loop
4: tc := generateTestCaseFromTemplates Biased(mdl, dist);
5: sd := simulate(mdl, tc);
6: fv := fitnessFunction(sd);
7: if fv == 1 then
8: return tc;
9: else
10: hist := addHistory(hist, tc, fv);
11: dist := refineDistribution(hist);
12: end if
13: end loop

4.2 Fitness Functions

In decision, condition and MC/DC coverage criteria, each objective to be cov-
ered by a test suite consists of a measured block and outcome(s) of its deci-
sion/condition(s). The outcomes of the decision/conditions change over time, so
the fitness function (fitnessFunction in Algorithm 2) can be defined as one
that gives the maximum value of fitness value F t

obj(sd) at time t for a target
objective obj .

fitnessFunction(sd) = max
0≤t≤tmax

{F sd
obj (t)}, (5)

where tmax is the simulation stop time. Note that (1) the outcome of the deci-
sion is derived from those of the conditions, (2) the conditions are derived
from input signals of the measured block, (3) the input signals are pro-
vided from predecessor blocks of the measured block and depends on deci-
sions of the predecessor blocks, and (4) All signal data sd (i.e., {Signal(l) |
l is a line in the target model}) can be obtained by logging the behavior of the
model for the test case. In this paper, we give a naive inductive definition

72 T. Tomita et al.

for F sd
obj (t). However, for simplicity, we omit description on how to deal with

subsystems with active-control ports9.
For a decision objective 〈b, o〉, a fitness value at time t is given as follows:

F sd
〈b,o〉(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε + (1 − ε) · maxi

{∏
j F sd

〈cij ,true〉(t)
}

if Formula(b, o) is a DNF formula
∨

i

∧
j cij ,

ε + (1 − ε) · ∏
i maxj

{
F sd

〈cij ,true〉(t)
}

if Formula(b, o) is a CNF formula
∧

i

∨
j cij ,

(6)

where ε is a certain small positive value less than 1.

Remark 3. Equation (6) (and also Eqs. (8) and (14) described later) is based
on numerical max/product evaluations for logical disjunction/conjunction oper-
ations. We can employ another one, e.g., max/min. ��

For a propositional condition objective 〈b, 〈c, o〉〉 such that c is prop(i) or
¬prop(i), a fitness value at time t is given as follows:

F sd
〈b,〈c,o〉〉(t) =

{
fsd

〈InputLine(b,i),o〉(t) if c is prop(i)
fsd

〈InputLine(b,i),¬o〉(t) if c is ¬prop(i), (7)

where fsd
〈l,o〉(t) is a function that gives a fitness of a Boolean signal flowing on

line l at time t for desirable outcome o. For 〈b′, j〉 = PredBlock(l), it is given as
follows:

f sd
〈l,o〉(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F sd
〈b′,o〉(t) if BlockType(b′) is logical/relational operator ,

ε + (1 − ε) · maxm∈DataPorts(b′){F sd
〈b′,m〉(t) · f sd

〈InputLine(b′,m),o〉(t)}
if BlockType(b′) is (multi-port) switch,

f sd
〈InputLine(b′,1),o〉(t − Delay(b′))

if BlockType(b′) is delay and t ≥ Delay(b′),

max{1InitialValue(b′)↔o, ε} if BlockType(b′) is delay and t < Delay(b′),

f sd
〈InputLine(OutputBlock(b′,j),1),o〉(t) if BlockType(b′) is subsystem,

f sd
〈InputLine(InputPort(b′)),o〉(t) if BlockType(b′) is low-level input ,

max{1Signal(l)(t)↔o, ε} if BlockType(b′) is top-level input ,

(8)

where 1v is a characteristic function, i.e, it gives 1 if v holds, otherwise 0.

Remark 4. The above definition for a (multi-port) switch block b′ is based on
the fact that an output signal of b′ corresponds with a disjunction of conjunctive
clauses of Formula(b′,m) and signals flowing on InputLine(b′,m). ��
9 Additionally, blocks in a subsystem with active-control ports are exercised only if the

subsystem is activated. Therefore, we also need to correct a fitness for an objective
related to the blocks.

Template-Based Monte-Carlo Test Generation for Simulink Models 73

For a relational condition objective 〈b, 〈c, o〉〉 such that c is rel(i,∼, j) or
rel const(i,∼, a), a fitness value at time t is given as follows:

F sd
〈b,〈c,o〉〉(t) =

{
1 if Signal(l1)(t) ∼ s(t) ⇔ o,

e−α·|Signal(l1)(t)−s(t)|+β otherwise,
(9)

l1 = InputLine(b, i), (10)

s(t) =

{
Signal(InputLine(b, j))(t) if c is rel(i,∼, j),
a if c is rel const(i,∼, a),

(11)

α =
log(1 − ε) − log(ε)

maxRange(DataType(l1)) − minRange(DataType(l1))
, (12)

β = log(1 − ε), (13)

where Range(T) is the range of values of the data type T .

Remark 5. Equation (9) is given based on a negative exponential function for
the difference between the signals. By scaling with α and β, the function gives
a value in [1 − ε, ε] when missing the objective. However, we can employ any
function decreasing monotonically for the difference. Additionally, it is possible
to narrow manually the data range for a line InputLine(b, i) in advance because
an actually-used region of the data range is often limited and known. ��

An MC/DC objective 〈b, {〈c1, o1, 〉, . . . , 〈cn, on〉}〉 is just a conjunction of its
condition sub objectives. So a fitness value at time t for the MC/DC objective
is given as follows:

F sd
〈b,{〈c1,o1,〉,...,〈cn,on〉}〉(t) = ε + (1 − ε) ·

∏
1≤m≤n

F sd
〈b,〈cm,om〉〉(t) (14)

4.3 Distribution Refinement

As previously mentioned in Sect. 3.3, a refined distribution for sampling tem-
plated test cases can be divided into 2 parts. Note that we can employ any
construction method for the refined distribution.

Choosing Templates: One of the simplest approach for refining probabilistic
distribution of a combination of templates is based on (i) the occurrence numbers
and (ii) fitness values of test cases with each combination of templates in the
history. That is, a combination of templates providing more test cases with higher
fitness values in the history is chosen with a higher probability.

In this paper, we give a refined distribution for choosing templates as one
regularized by averages (of top 5%) of fitness values of test cases belonging to

74 T. Tomita et al.

combinations of templates. That is, for a set of possible template assignments
a1, . . . , an for a group of input signals, each probability pi of choosing ai is given
as follows.

pi =
wi + ε∑

1≤j≤n

(wj + ε)
, (15)

where wj is the average (of top 5%) of fitness values of test cases belonging to
aj and ε is a certain small positive value (e.g., 1/n) less than 1.

Determining Arguments: One of the simplest approach for refining distribu-
tion of arguments10 of the chosen templates is based on a (multi-dimensional)
truncated normal distribution centering arguments of a test case which is a
pivot selected with a certain policy within the same combination of templates.
To intensively search hopeful test cases, it may be effective to use annealing, i.e.,
to decrease gradually a variance of a normal distribution.

In this paper, we employ a Markov chain Monte-Carlo (MCMC) policy, i.e.,
to change probabilistically a pivot test case tccrnt, when a new candidate test case
tccand is added to the history, to the candidate as the new pivot. The probability
pchng of changing the pivot is given as follows:

pchng =

{
1 if vcand > vcrnt,

vcand/vcrnt otherwise,
(16)

where vcrnt and vcand are fitness values of tccrnt and tccand, respectively.

Remark 6. We can employ any methods for choosing templates and determining
arguments. For example, the simplest policy for selecting a pivot test case on
determining arguments is the greedy one, i.e., to select a test case with the
highest fitness value as a pivot. ��

5 Experiments

We implemented prototype tools for Algorithms 1 and 2 by MATLAB script,
and conducted experiments. The prototype receives a harness model constructed
from a given target model by SLDV, and generates a test suite/case by editing
its signal builder block. V&V is used for measuring coverage. In this section,
we report results of the experiments to show the effectiveness of proposed
techniques.

The experiments performed on a PC with Windows 10 Enterprise 64-bit OS,
Intel Core i5-4300U 1.9 GHz CPU and 4 GB LPDDR4 1,600 MHz RAM. The
version of MATLAB/Simulink (including SLDV and V&V) is 2017a.

10 For a Boolean argument, its range is treated as [0, 1], and a value greater (resp.,
less) than a half is interpreted as true (resp., false).

Template-Based Monte-Carlo Test Generation for Simulink Models 75

5.1 Descriptions

Experiment 1: To confirm the effectiveness of our template-based method in
Sect. 3, we prepared a middle-sized controller model actually-used in industry
(Fig. 2). The target model has: 4 top-level inputs, 23 subsystems (7 of them
have enable/trigger ports), 453 blocks which includes 34 switches, 16 relational
operator blocks, 7 logical operator blocks, etc. The number of decision, condition
and MC/DC objectives are total 200, and 2 of them are dead (i.e., unexercisable),
which are detected by SLDV design error detection.

We observed and compared 10 runs of our prototype tool for Algorithm 1,
and 1 run of SLDV test case generator. Time out for the runs is 3,600 seconds.
Timer optimization option of SLDV is enabled. The following assumptions are
given: The ranges for “target” signal and “HU/HV/HW” triplex signals are given
because they are limited and known. A template of an input signal “target” is
Step. A template of triplex input signals “HU/HV/HW” is Sine because an
predecessor subsystem provides triplex signals with sine-like waves. The range
for frequency parameter of the template is given. An argument for bias parameter
of the template is fixed to 0 because it is known the sine-line waves are unbiased.

Fig. 2. Overview of a practical controller-plant system. A target model for Experiment
1 is the light-green controller module.

Experiment 2: To confirm the effectiveness of our template-based method in
Sect. 4, we prepared a toy model combined with a 4th-order elliptic band-pass
filter and forgetful integrator (Fig. 3) and assumed that a target objective is “the
decision of the downmost logical operator bdm is true.” SLDV cannot generate
a test case for the objective by reproducible internal errors.

For the objective, we used a fitness function following Eqs. (6), (7), (9)
and (14), given in Sect. 4.2. We implement two modules for distribution refine-
ment (Sect. 4.3). One module employs the normal distribution method with
the MCMC policy for determining arguments of templates. The other module
employs that with the greedy policy. Variances of normal distributions are fixed
to an eighth of the size of the range of the input signals.

We observed 100 runs for each module, and compared with 100 runs for
uniform random searching. The runs were aborted when numbers of candidates
reached 3,000. The following assumption is given: The range for both “In1” and

76 T. Tomita et al.

Fig. 3. A target model (in Experiment 2) combined with a 4th-order elliptic band-pass
filter and forgetful integrator.

“In2” signals is [−1, 1]. A template of an input signal “In1” is Sine. The range for
frequency parameter of template is given. An argument for amplitude, phase and
bias parameters of Sine template are fixed to 1, 0 and 0, respectively. A template
of an input signal “In2” is Step. The ranges of output signals of “Ellip 4th order”
subsystem and “ADD” operator block are [−1, 1] and [−10, 10], respectively.

5.2 Results and Discussions

Experiment 1: The results is shown in Table 1. Our method generated almost
full coverage test suites in much shorter time than the SLDV test generator.

SLDV generated only one test case which covers about 80% of objectives.
The test case is obtained within few seconds, however, no other contributable
test case can be obtained within one hour. On the other hand, our template-
based method generated ten test suites with 6–8 test cases. 9 out of 10 trials
provided full coverage test suites, while the other one was timed-out and gave
a test suite which does not cover only one decision objective. Table 2 shows
accumulations of coverages for first 10 candidates in Experiment 1. The results
suggest that our template-based method is hopeful for sorting out difficult-to-
be-covered objectives.

Table 1. Experimental results for Experiment 1

Template-based method (10 trials) SLDV

Best Average Worst

Processing time (sec) 386.7 1056.0 >3600 >3600

Size of test suite 6 6.6 8 1

Number of candidates 6 15.5 55 -

Decision coverage 121/121 120.9/121 120/121 87/121

Condition coverage 64/64 64/64 64/64 61/64

MC/DC coverage 13/13 13/13 13/13 9/13

Template-Based Monte-Carlo Test Generation for Simulink Models 77

Table 2. Accumulations of coverages for first 10 candidates in Experiment 1

Template-based method (10 trials)

Best Average Worst

Decision coverage 121/121 119.8/121 116/121

Condition coverage 64/64 64/64 64/64

MC/DC coverage 13/13 12.2/13 9/13

Experiment 2: The results and its summary are shown in Fig. 4 and Table 3.
For the target model in Experiment 2, our method with MCMC policy was about
triple as efficient as the uniform random searching.

This is not guaranteed for a general case, so we may need to construct a
fitness function adaptively for a target model and objective. The greedy policy
was as efficient as the MCMC policy in many cases. Although, the greedy policy
required a large number of candidates in some cases, and 7 runs were aborted by
exceeding the limit number of candidates. This suggests that the greedy policy
has still a common risk to be trapped by local optima.

Fig. 4. Distribution of required number of candidates for Experiment 2. The left and
right ones are normal and logarithm scales, respectively.

Table 3. Summary of the results for Experiment 2

Average number of candidates Total processing
time (sec)

Top 20% Middle 60% Bottom 20%

MCMC policy 20.5 84.2 240.3 3473.6

Greedy policy 17.0 84.4 1365.0 11346.8

Uniform random 28.5 240.4 833.0 10404.6

78 T. Tomita et al.

6 Conclusions and Future Work

We proposed a template-based Monte-Carlo test generation method to deal with
practical (i.e, large and complex) Simulink models. By using templates of input
signals, we can simplify a process of generating test cases and reduce a search
space to plausible one. Additionally, we introduced a biased sampling framework
to get more efficiently test cases meeting uncovered objectives. The experimental
results suggests our template-based method works well to produce efficiently a
desired test case/suite for models which cannot be dealt with by SLDV.

A future direction is to combine the techniques with other ones. Static anal-
ysis is effective for narrowing the search space. Our techniques are based on
randomized search, and thus it is possible to apply non-conservative approxima-
tion on static analysis. Genetic algorithms are also effective on targeted test case
generation with biased sampling. Our fitness function can be adapted directly
to them. Another direction is to implement a practical tool, based on feedback
of trial use of the prototype in industries.

References

1. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2005, pp. 213–223. ACM, New York (2005)

2. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: Proceedings of the 29th International Conference on Software Engi-
neering, ICSE 2007, pp. 75–84. IEEE Computer Society, Washington, DC (2007)

3. Chen, T.Y., Leung, H., Mak, I.K.: Adaptive random testing. In: Maher, M.J. (ed.)
ASIAN 2004. LNCS, vol. 3321, pp. 320–329. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30502-6 23

4. Sims, S., DuVarney, D.C.: Experience report: the reactis validation tool. In: Pro-
ceedings of the 12th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2007, pp. 137–140. ACM, New York (2007)

5. Satpathy, M., Yeolekar, A., Ramesh, S.: Randomized directed testing (REDIRECT)
for Simulink/Stateflow models. In: Proceedings of the 8th ACM International Con-
ference on Embedded Software, EMSOFT 2008, pp. 217–226. ACM, New York
(2008)

6. Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Automated test suite
generation for time-continuous Simulink models. In: Proceedings of the 38th Inter-
national Conference on Software Engineering, ICSE 2016, pp. 595–606. ACM,
New York (2016)

https://doi.org/10.1007/978-3-540-30502-6_23
https://doi.org/10.1007/978-3-540-30502-6_23

Reliable Simulation and Monitoring
of Hybrid Systems Based

on Interval Analysis
(Extended Abstract)

Daisuke Ishii1(B), Alexandre Goldsztejn2, and Naoki Yonezaki3

1 University of Fukui, Fukui, Japan
dsksh@acm.org

2 CNRS/LS2N, Nantes, France
alexandre.goldsztejn@gmail.com

3 Tokyo Denki University, Tokyo, Japan
yonezaki@mail.dendai.ac.jp

Hybrid systems serve as a high-level model of cyber-physical systems. For-
mal methods for hybrid systems have been studied energetically for around three
decades and various methods for reachability analysis and approximation of con-
tinuous states/behaviors have been proposed (e.g., [1,8]). Another line of tech-
nology, e.g., MATLAB/Simulink1 and Modelica2, has been developed in the
simulation of hybrid systems and has driven the rise of model-based develop-
ment in the industry. While reachability analysis methods aim to analyze whole
behaviors of a given system with carefully taking care of numerical computation
errors, the latter technology focuses on efficient simulation of an approximated
trajectory of a practical model.

We present two methods for the simulation and analysis of hybrid systems
using interval analysis. First, we have developed a rigorous numerical simulation
method that, given a (closed) hybrid system with a specific initial value, com-
putes an interval enclosure of the state for each simulation step [9]. Second, we
have proposed a monitoring method that checks whether a system satisfies or
not a given temporal property, within a bounded time horizon, by cooperating
with the interval-based simulator [12,13]. Both methods intensively utilize tech-
niques of interval analysis: a numerical computation framework that replaces
floating-point numbers with (machine representable) intervals. We consider our
work can be positioned in between the reachability methods and the numerical
simulation methods.

Simulation Method. Our interval-based method computes an overapproxima-
tion of a bounded trajectory (or a set of trajectories) that is composed of boxes
(i.e., closed interval vectors) and parallelotopes (i.e., linear transformed inter-
vals) [9]. The computation can be regarded as reachability analysis; it allows a

1 https://www.mathworks.com/products/matlab.html.
2 https://www.modelica.org/.

c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 79–82, 2019.
https://doi.org/10.1007/978-3-030-17910-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_6&domain=pdf
https://www.mathworks.com/products/matlab.html
https://www.modelica.org/
https://doi.org/10.1007/978-3-030-17910-6_6

80 D. Ishii et al.

model to involve an interval as an initial value in the specification. Several inter-
val methods, e.g., [2–4,6,7,10,14,17–20], have been proposed recently in parallel
to our work. Our method is characterized by the following two aspects when
compared with other reachability analysis tools.

First, the simulation process carefully reduces the wrapping effect that occurs
in a computation of hybrid trajectories. In general, results of the wrapping effect
accumulate as several overapproximation processes are concatenated during a
simulation. To reduce the number of overapproximation processes and to improve
the accuracy, we formalize a trajectory ω(x, t) of a hybrid system, which evolves
from an initial value x and exhibits a discrete jump at τ(x), as a composite
function as follows:

ω(x, t) := ψ(δ(ϕ(x, τ(x))), t − τ(x)),

where δ represents the discrete jump and ϕ and ψ represent the continuous tra-
jectories before and after the jump. Then, we consider a parallelotope extension
〈ω〉 of the trajectory function ω. Let 〈x〉 be a parallelotope representing a set of
initial values:

〈x〉 := 〈A,u, x̃〉 = {x̃ + Au | u ∈ u},

where A ∈ R
n×n, u ∈ IR

n, x̃ ∈ R
n. Our method computes a parallelotope

enclosure
〈ω〉(〈x〉, t) := 〈B,v, ỹ〉,

such that ∀x∈〈x〉, ω(x, t) ∈ 〈ω〉(〈x〉, t), with the following steps:

1. Compute ỹ as an approximated value of ω(x̃, t) obtained by a numerical
computation.

2. Compute B that should well capture a linear characteristic of the map ω. An
efficient choice of B is (mid J)A, where J is an interval enclosure of ∂ω

∂x .
3. Compute v such that v ⊇ B−1(ω(〈x〉, t)− ỹ) by computing an interval enclo-

sure of the right-hand side (with a mean-value form).

The derivative ∂ω
∂x is obtained by the chain rule and functions involved, e.g., ϕ

and τ , are implemented as numerical solving processes. In the experiments, our
method is able to simulate a system for a greater number of steps than other
overapproximation-based tools; e.g., it can simulate a periodic bouncing ball for
more than a thousand steps.

Second, our method relies on the soundness of interval computation so that
the resulting overapproximation is verified to contain a theoretical trajectory.
Interval-based integration processes for ODEs can verify a unique existence of a
solution trajectory ϕ within an enclosure, i.e., ∀x∈x, ∃!y ∈ ϕ(x, t), y = ϕ(x, t)
is verified. Likewise, when solving a guard equation h(ϕ(x, τ(x))) = 0, we can
compute an interval enclosure of τ(x) that is verified to contain a unique solution
of the equation using an interval Newton method. Accordingly, our method is
able to verify:

∀x∈x, ∃!y ∈ 〈ω〉(x, t), y = ω(x, t).

Reliable Simulation and Monitoring of Hybrid Systems 81

This verification may fail, e.g., when an ODE is stiff or when a trajectory and
a guard are close to tangent, resulting in an enclosure too large to enable any
inference. Due to this quasi-complete manner, the simulation process performs
efficiently whenever a numerically manageable model is given.

Monitoring Method. Verification of temporal logic properties plays a crucial
role in proving the desired behaviors of hybrid systems. Thus, we proposed an
interval method that verifies the properties described by a signal temporal logic
(STL) [15]. We relax the problem so that if the verification process cannot suc-
ceed at the prescribed precision, it outputs an inconclusive result. The problem
is solved by an efficient and rigorous interval analysis [13]. Given an STL for-
mula f , our method first performs a simulation with the parallelotope method
and detects a set of time intervals in which the evaluation of an atomic proposi-
tion within f switches. For a time interval [s, t] in a simulation timeline, within
which an atomic proposition holds, our method computes the interval enclosures
s and t that are verified to contain a unique boundary; therefore, both inner-
and overapproximations of [s, t] will be obtained. Next, the method validates
the property by propagating the time intervals. Our method is also able to com-
pute a robustness signal [5] for the property with an algorithm that manipulates
the interval enclosures of a trajectory, which are handled segment-wise over the
timeline.

Conclusion. Our methods are implemented in a tool HySIA [11]. As a future
work, more detailed analysis and explanation of the inconclusive results will
be needed. Further development of the proposed methods can be planned to
incorporate into e.g. statistical model checking [21,22] and testing [16] of hybrid
systems.

Acknowledgments. This work was partially funded by JSPS (KAKENHI 25880008,
15K15968, and 26280024).

References

1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995)

2. Bouissou, O., Mimram, S., Chapoutot, A.: HySon: set-based simulation of hybrid
systems. In: 23rd IEEE International Symposium on Rapid System Prototyping
(RSP), pp. 79–85 (2012)

3. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: IEEE Real-Time Systems Symposium, pp. 183–
192 (2012)

4. Collins, P., Goldsztejn, A.: The reach-and-evolve algorithm for reachability analysis
of nonlinear dynamical systems. Electron. Notes Theor. Comput. Sci. 223(639),
87–102 (2008)

82 D. Ishii et al.

5. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

6. Duracz, A., Bartha, F.A., Taha, W.: Accurate rigorous simulation should be pos-
sible for good designs. In: Workshop on Symbolic and Numerical Methods for
Reachability Analysis (SNR), pp. 1–10 (2016)

7. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct SAT approach to
hybrid systems. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.)
ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88387-6 14

8. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

9. Goldsztejn, A., Ishii, D.: A parallelotope method for hybrid system simulation.
Reliable Comput. 23, 163–185 (2016)

10. Goubault, E., Mullier, O., Kieffer, M.: Inner approximated reachability analysis.
In: HSCC, pp. 163–172 (2014)

11. Ishii, D., Goldsztejn, A.: HySIA: tool for simulating and monitoring hybrid
automata based on interval analysis. In: Lahiri, S., Reger, G. (eds.) RV 2017.
LNCS, vol. 10548, pp. 370–379. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67531-2 23

12. Ishii, D., Yonezaki, N., Goldsztejn, A.: Monitoring bounded LTL properties using
interval analysis. In: 8th International Workshop on Numerical Software Verifica-
tion (NSV). ENTCS 317, pp. 85–100 (2015)

13. Ishii, D., Yonezaki, N., Goldsztejn, A.: Monitoring temporal properties using inter-
val analysis. In: IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences E99-A (2016)

14. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT - 2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

16. Mohaqeqi, M., Mousavi, M.R., Taha, W.: Conformance testing of cyber-physical
systems: a comparative study. In: 14th International Workshop on Automated
Verification of Critical Systems (AVOCS) (2014)

17. Ramdani, N., Meslem, N., Candau, Y.: A hybrid bounding method for computing
an over-approximation for the reachable set of uncertain nonlinear systems. IEEE
Trans. Autom. Control 54(10), 2352–2364 (2009)

18. Ramdani, N., Nedialkov, N.S.: Computing reachable sets for uncertain nonlinear
hybrid systems using interval constraint-propagation techniques. Nonlinear Anal.
Hybrid Syst. 5(2), 149–162 (2011)

19. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-decidable.
Formal Methods Syst. Des. 44(1), 71–90 (2014)

20. Sandretto, J.A.D., Chapoutot, A.: Validated explicit and implicit runge-kutta
methods. Reliable Comput. 22, 78–103 (2016)

21. Shmarov, F., Zuliani, P.: ProbReach: Verified probabilistic delta-reachability for
stochastic hybrid systems. In: HSCC, pp. 134–139 (2015)

22. Wang, Q., Zuliani, P., Kong, S., Gao, S., Clarke, E.M.: SReach: A Bounded Model
Checker for Stochastic Hybrid Systems. CoRR abs/1404.7206 (2015)

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-319-67531-2_23
https://doi.org/10.1007/978-3-319-67531-2_23
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

An Integrated Simulation Tool
for Computer Architecture
and Cyber-Physical Systems

Hokeun Kim1(B), Armin Wasicek2, and Edward A. Lee1

1 University of California, Berkeley, USA
{hokeunkim,eal}@eecs.berkeley.edu

2 Technical University Vienna, Vienna, Austria
armin@vmars.tuwien.ac.at

Abstract. Simulating computer architecture as a cyber-physical system
has many potential use cases including simulation of side channels and
software-in-the-loop modeling and simulation. This paper presents an
integrated simulation tool using a computer architecture simulator, gem5
and Ptolemy II. As a case study of this tool, we build a power and
thermal model for a DRAM using the proposed tool integration approach
where architectural aspects are modeled in gem5 and physical aspects are
modeled in Ptolemy II. We also demonstrate simulation results of power
and temperature of a DRAM with software benchmarks.

Keywords: Tool integration · Architectural simulation ·
Cyber-physical systems · DRAM thermal modeling

1 Introduction

Ptolemy II [17] is a powerful framework, where multiple models of computation
can be explored for actor-based design of cyber-physical systems [8]. For many
applications, it is important to model details of the computer architecture for
a candidate design. Consequently, the Ptolemy II framework can significantly
benefit from the integration of architecture models. In this paper, we propose
a tool integration of the gem5 computer architecture simulator [2] and Ptolemy
II. For a specific computer architecture, gem5 generates execution information
that is used to build a more fine-grained system model in Ptolemy II.

This integration supports many usage scenarios including:

– Simulation of side channels: Side-channel attacks target primarily the physical
implementation of a computer system. Unlike traditional computer systems,
embedded systems are particularly vulnerable to this class of attacks, because
they are often accessible in untrusted environments [11]. An example of a
side channel attack is a cold boot attack on DRAM memories [10], where an
attacker obtains a memory dump after a cold restart to read out sensitive
information like cryptographic keys.

c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 83–93, 2019.
https://doi.org/10.1007/978-3-030-17910-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-17910-6_7

84 H. Kim et al.

– Software-in-the-Loop modeling and simulation: In this scenario the embed-
ded processor, sensors, and actuators are modeled with gem5 and the physical
environment is modeled in Ptolemy II. This could support, for example, auto-
mated grading of embedded systems lab exercises in massively online open
courses (MOOCs) [18]. For example, this would be useful for the EECS149.1x
cyber-physical systems [13] course at UC Berkeley. In the labs of this class,
students develop programs for an iRobot.

We demonstrate the integration of both tools by modeling power and tem-
perature of a DRAM in a computer architecture. To simulate behavior of the
processor including memory accesses, we use the gem5 simulator. A Ptolemy II
model performs power and thermal modeling, using discrete-event and contin-
uous time models. Experimental results show how a computer architecture and
workloads affect power and the temperature of a DRAM.

2 Related Work

Currently, Ptolemy II offers the inclusion of an execution environment’s
characteristics through a modeling method called Aspect-Oriented Modeling
(AOM) [1]. For instance, an execution aspect can model execution times of a
processor [5]. Metro II [7] provides an environment for platform-based design,
where functional aspects and architectural aspects are modeled separately. Kim
et al. [12] propose a tool integration approach where execution times on given
architectures are modeled in SystemC, and integrated into Ptolemy II using
Metro II. This approach has more flexibility in architectures, whereas our app-
roach provides higher accuracy in architectural models.

The gem5 architecture simulator [2] is one of the most popular and widely
used architecture simulators in academia and industry. It started as a merger of
the General Execution-driven Multiprocessor Simulator (GEMS) [16] and the M5
simulator [3]. The gem5 simulator takes advantage of memory systems simulation
features from GEMS, while it benefits from multiple ISAs and diverse CPU
models supported by M5.

The gem5 simulator is object-oriented and based on the discrete-event model
of computation. It also provides modular and interchangeable computer architec-
ture components such as CPUs, memories, buses and interconnects. This archi-
tectural simulator is also flexible in terms of accuracy and simulation time pro-
viding multiple levels of accuracy, such as more accurate but slower simulation
models and faster but less accurate simulation models [4].

A variety of approaches have been studied for power and thermal modeling of
DRAMs. Lin et al. [14] suggest a model to compute power and the temperature
of a DRAM based on throughput information, while Liu et al. [15] propose a
power and thermal model based on RC circuit models. In this paper, we choose
the model used by Lin et al. [14] Heat dissipation from DRAM devices is based
on a device’s power which is almost proportional to memory throughput. Thus,
knowing a memory’s read and write throughput (in GB/s), the temperature can

An Integrated Simulation Tool for Computer Architecture 85

Fig. 1. Heat dissipation of DIMM. (Redrawn from the figure given by Lin et al. [14]
and included here by permission of the publisher.)

be derived. In addition to the current flowing through the DRAM, its temper-
ature is also affected by cooling air flow and the physical structure of DIMM
(Dual In-line Memory Module). Figure 1 depicts their model of DIMM struc-
ture and the temperature. The Advanced Memory Buffer (AMB) stores and
transfers data between the different DRAM channels. The AMB is also a major
source of heat in their model, therefore, they also consider the data throughput
across DRAM channels. An ambient temperature refers to the temperature of
the device’s environment and is in the most cases the room temperature.

There have been some approaches including DRAMPower [6] for simulating
power and energy of a DRAM on a specific computer architecture. However, to
the best of our knowledge, our case study is the first attempt to simulate heat
and temperature of a DRAM by integrating a thermal model with a real-time
computer architecture simulator, gem5.

3 Approach

In this section, we illustrate the integrated simulator design and the power
and thermal model of a DRAM. For accessibility of our tool, we made all the
working source code and experimental models available on-line. Configurations
for the gem5 simulator and benchmark programs can be found at our GitHub
repository (https://github.com/gem5-ptolemy/gem5-ptolemy/) and Ptolemy II
can be downloaded from its homepage (http://ptolemy.org). An experimental
model is included under “ptolemy/actor/lib/gem5/demo/DramThermalModel”,
in Ptolemy II Version 11.0 (developer’s version).

3.1 Configuring the gem5 Simulator

To integrate gem5 into Ptolemy II, we modify some configurations and source
code of the latest stable version of the gem5 simulator. We modify some com-
ponents so that they can generate information we need. We also configure the
execution flow of the simulator so that it can run interactively by stopping and

https://github.com/gem5-ptolemy/gem5-ptolemy/
http://ptolemy.org

86 H. Kim et al.

Fig. 2. An overview of gem5 and Ptolemy II integration

resuming the simulation when we want. In gem5, the main components such as
CPUs and memory models are implemented in C++ for high performance, while
connection between components and execution of components are implemented
in Python so that the configurations are easily changed.

For power and thermal modeling, we modify C++ source codes associated
with the DRAM memory controller model in gem5 to generate memory access
traces. We obtain extra information for power and thermal modeling by adding
debug print functions defined in the gem5 simulator (DPRINTF) for recording
memory access commands. For interactive simulation, we modify python scripts
to call Simulate function iteratively with specified execution cycles.

3.2 Communication Between gem5 and Ptolemy II

Figure 2 illustrates an overview of gem5 and Ptolemy II integration. The gem5
simulator and a Gem5Wrapper actor in a Ptolemy II model interact with each
other. The Gem5Wrapper actor is a Java actor in Ptolemy II model. It communi-
cates with gem5 through named pipes and a shared file. When the Gem5Wrapper
is initialized in the Ptolemy II, it fires the gem5 simulator by writing on the
named pipe where the gem5 simulator is blocked on read. The Gem5Wrapper
actor also gets blocked on read on another named pipe in its fire() method. The
gem5 simulator runs for the specified number of cycles. While running, the gem5
simulator records execution information such as a memory trace on the shared
file. When the simulation is finished, gem5 notifies Gem5Wrapper by writing
on another named pipe where Gem5Wrapper is blocked. Then, Gem5Wrapper
resumes in its fire() and reads execution information from the shared file.
Gem5Wrapper fires gem5 again in its postfire() and this pattern is repeated.

Simulation results are transferred to Gem5Wrapper through the shared file
and used for DRAM power and thermal modeling. The results include DRAM

An Integrated Simulation Tool for Computer Architecture 87

memory access events. Each access events is composed of the time when the
event occurred, an access type (e.g. read/write) and a memory address (e.g.
bank and channel numbers).

3.3 DRAM Behavioral Model in Ptolemy II

The Ptolemy II model for the overall system consists of two main parts. DRAM’s
behavior is modeled in the first part, and power and the temperature of the
DRAM is modeled in the second part. In the Ptolemy II model, Gem5Wrapper
is triggered periodically by a DiscreteClock actor. When Gem5Wrapper receives
simulation results from gem5, it stores result data as an array type defined in
Ptolemy II. Then, Gem5Wrapper sends the data array to a composite actor
called DRAMModel shown in the middle of Fig. 3.

Fig. 3. Ptolemy II DRAM model overview (DRAMModel). (a) command server actor
(CmdServer) (b) throughput calculator (ThroughputCalculator)

The data array is decomposed into a sequence of memory access events inside
the DRAMModel, and a sequence of memory access events are sent to the Cmd-
Server actor in Fig. 3(a). Each memory access event becomes a discrete event
in CmdServer and is sent to the ThroughputCalculator actor in Fig. 3(b), where

88 H. Kim et al.

the throughput results are computed. The types of throughput results include
read, write, local (to a local DRAM channel) and bypass (to non-local DRAM
channels). The throughput results are used for AMB/DRAM power estimation
in the section below.

3.4 Memory Power and Thermal Modeling in Ptolemy II

Power and the temperature of a DRAM is modeled in the second part of
the Ptolemy II model within a composite actor called PowerTemperatureModel
described in Fig. 4. This actor runs in the continuous-time domain, sampling
throughput information from input ports. Power models for CMOS devices usu-
ally combine the static power of the device with its dynamic power. Static power
is the power when transistors are not in the process of switching. Dynamic power
occurs during switching operations:

Pdevice = PDRAM static + PDRAM dynamic (1)

To compute power in the DRAM and AMB, we use the following equa-
tions introduced by Lin et al. [14] PDRAM and PAMB are total power in the
DRAM and AMB, respectively. PDRAM static and PAMB idle denote static power
of DRAM and AMB. α1, α2, β, and γ are coefficients measured in [14], and their
units are Watt/(GB/s).

Fig. 4. Ptolemy II DRAM power and thermal model overview (PowerTemperature-
Model actor). (a) AMB/DRAMPowerToTemp actor that estimates the temperature of
an AMB/DRAM based on its power

An Integrated Simulation Tool for Computer Architecture 89

PDRAM = PDRAM static + α1 × Throughputread + α2 × Throughputwrite (2)

PAMB = PAMB idle + β × ThroughputBypass + γ × ThroughputLocal (3)

The power computed above is used to estimate temperatures in the AMB
and DRAM. The composite actor shown in Fig. 4(a) implements this thermal
estimation. We use following equations introduced by Lin et al. [14] to calculate
temperatures of the AMB and DRAM. TAMB and TDRAM are stable tempera-
tures of the AMB and DRAM, respectively. TA stands for the ambient temper-
ature explained in Sect. 2. Parameters ΨAMB and ΨDRAM denote the thermal
resistances of the AMB and DRAM. The thermal resistances are measured as
the ratio of the change of the stable temperature over the change of power. The
thermal resistances from AMB to DRAM and from DRAM to AMB are denoted
as ΨAMB DRAM and ΨDRAM AMB , respectively.

TAMB = TA + PAMB × ΨAMB + PDRAM × ΨDRAM AMB (4)

TDRAM = TA + PAMB × ΨAMB DRAM + PDRAM × ΨDRAM (5)

The equation expressing the relation between the stable temperature and
the actual temperature is as follows. T (t) is the actual temperature at t and �t
denotes each time step. We use the τ value, which is the time for the temperature
difference to be reduced to 1/e, as measured in [14]. This equation is realized
with the Integrator actor in Ptolemy II as illustrated in Fig. 4(a).

T (t + �t) − T (t) = (Tstable − T (t))(1 − e− �t
τ) (6)

4 Experiments and Results

4.1 Experimental Setup

The architectural configurations used for experiments are as follows. The CPU
was based on ARM ISA, and the type of the CPU was TimingSimpleCPU defined
in the gem5 simulator, which stalls on every load memory access. The clock rate
of both the CPU and the overall system was 1 GHz. The type of off-chip DRAM
memory was DDR3 SDRAM with a data rate of 1600 MHz and a bus width of
16 bits. We assumed the program and data exist in the DRAM before starting
the execution. The size of cache blocks was 64 bytes.

We chose MiBench [9] as the benchmark for our experiments. Among
MiBench programs executable in the gem5, top 5 programs with the highest
memory intensity were chosen for our experiments. We defined the memory
intensity as the number of memory accesses per instruction, and the memory
intensity was computed by running each program for one million cycles in gem5.
The benchmark programs used for our experiments are listed in Table 1.

90 H. Kim et al.

4.2 Power and Temperature Results

Table 2 shows average power and the peak temperature of the DRAM and AMB
for different cache configurations. The results were obtained by running the
gem5 simulator and Ptolemy II DRAM power and thermal model together for
0.1 s in simulated time (100 million cycles). For this experiment, cjpeg large in
MiBench was used as a software workload. The temperature is expressed in
the difference between the highest temperature and the ambient temperature.
We assumed the processor has two level-1 (L1) caches, each for instructions
and data. Bigger caches led to less cache misses, and thus less DRAM accesses.

Table 1. List of benchmark programs used for example workloads

MiBench programs Writes Reads Total instructions
executed

Memory
intensity (%)

consumer/cjpeg large 6,183 74,966 1,000,000 8.11

security/rijndael large 2,558 68,458 1,000,000 7.10

consumer/typeset small 12,843 55,963 1,000,000 6.88

network/dijkstra large 4,942 59,198 1,000,000 6.41

network/patricia large 4,255 49,198 1,000,000 5.35

Table 2. Power and temperature results for different cache configurations for the
workload cjpeg large

Cache size
options (KB)

Average power (mW) Maximum temperature
increase (10−6 ◦C)

L1 L2 DRAM AMB DRAM AMB

16 N/A 1,057 4,027 2.67 6.05

32 N/A 1,023 4,011 2.63 5.93

64 N/A 1,000 4,008 2.46 5.51

32 128 996 4,006 2.17 4.86

32 256 995 4,006 1.99 4.47

4.000

4.005

4.010

4.015

4.020

4.025

0.00 0.02 0.04 0.06 0.08 0.10

AMB Power

seconds

w
at
t

1.00

1.02

1.04

1.06

1.08

0.00 0.02 0.04 0.06 0.08 0.10

DRAM Power

seconds

w
at
t

Fig. 5. DRAM and AMB power results in graphs for cjpeg large with 16 KB L1 caches

An Integrated Simulation Tool for Computer Architecture 91

Since the level-2 (L2) cache absorbed off-chip traffic from L1 caches, they reduced
DRAM memory accesses. Therefore, we could see decrease in DRAM power and
the peak temperature in the results shown in Table 2.

Figure 5 illustrates DRAM and AMB power graphs for the workload
cjpeg large with 16 KB L1 caches. cjpeg large loads a 786 KB Portable Pixel
Map (PPM) file for a raw image and compresses it to a JPEG format. We
could see DRAM power was affected by total read/write throughput while AMB
power was related to cross-channel accesses. The power consumption for both
DRAM and AMB steadily increases as the benchmark program initializes until
around 0.02 s. The program shows heavy power consumption between 0.02 and
0.063 s while actively loading and compressing the raw image, followed by a slight
decrease in power consumption after 0.063 s as the program wraps up. The total
simulation time for 100 million cycles (0.1 s in simulated time) was ranging from
89 s (cjpeg large) to 320 s (patricia large) on a MacBook Pro laptop with 2.2 GHz
Intel Core i7 and 16 GB DRAM.

Fig. 6. Temperature results for different software workloads

Different workloads also led to change in the peak DRAM temperatures as
illustrated in Fig. 6. For this experiment, we used 16 KB L1 caches without an L2
cache. The results suggest that other aspects of workloads as well as the memory
intensity can affect thermal behaviors of DRAMs. Specifically, rijndael large and
typeset small had higher peak temperatures although they had lower memory
intensity than cjpeg large. This was because they had higher bypass throughput,
which caused higher power in the AMB, thus resulting in higher peak tempera-
tures both in the AMB and DRAM. Moreover, typeset small showed the highest
write throughput, also leading to the highest peak temperatures.

5 Conclusions

In this paper, we integrate the widely used gem5 architecture simulator into
Ptolemy II to have a more accurate architectural model in Ptolemy II. Effective-
ness and usefulness of this integration is demonstrated by constructing a power
and thermal model of a DRAM in computer architecture. Execution information
such as memory accesses on given architectures are modeled in gem5 whereas the
power and temperature of a DRAM are modeled in the continuous time domain
in Ptolemy II. The constructed model is used for experiments of simulating dif-
ferent architectural configurations and software workloads.

92 H. Kim et al.

As future work, we can apply the proposed approach to more applications,
for example, the two use cases suggested in Sect. 1. Another possible extension is
to use gem5 for aspect-oriented modeling in Ptolemy II. Specifically, execution
aspect parameters such as execution time can be obtained dynamically through
gem5 simulation for higher accuracy.

Acknowledgments. This work was supported in part by the TerraSwarm Research
Center, one of six centers supported by the STARnet phase of the Focus Center
Research Program (FCRP) a Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

References

1. Akkaya, I., Derler, P., Emoto, S., Lee, E.A.: Systems engineering for industrial
cyber-physical systems using aspects. Proc. IEEE 104(5), 997–1012 (2016)

2. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2),
1–7 (2011)

3. Binkert, N., Dreslinski, R., Hsu, L., Lim, K., Saidi, A., Reinhardt, S.: The M5
simulator: modeling networked systems. IEEE Micro 26(4), 52–60 (2006)

4. Butko, A., Garibotti, R., Ost, L., Sassatelli, G.: Accuracy evaluation of GEM5
simulator system. In: 2012 7th International Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–7, July 2012

5. Cardoso, J., et al.: Modeling timed systems. In: Ptolemaeus, C. (ed.) System
Design, Modeling, and Simulation Using Ptolemy II. Ptolemy.org (2014)

6. Chandrasekar, K., et al.: DRAMPower: open-source DRAM power & energy esti-
mation tool (2012). http://www.drampower.info

7. Davare, A., et al.: Metro II: a design environment for cyber-physical systems. ACM
Trans. Embed. Comput. Syst. 12(1s), 49:1–49:31 (2013)

8. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Proc.
IEEE 100(1), 13–28 (2012)

9. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.:
MiBench: a free, commercially representative embedded benchmark suite. In:
IEEE International Workshop on Workload Characterization, WWC-4, pp. 3–14,
December 2001

10. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM 52(5), 91–98 (2009)

11. Hwang, D.D., Schaumont, P., Tiri, K., Verbauwhede, I.: Securing embedded sys-
tems. IEEE Computer Society (2006)

12. Kim, H., Guo, L., Lee, E.A., Sangiovanni-Vincentelli, A.: A tool integration app-
roach for architectural exploration of aircraft electric power systems. In: 2013 IEEE
1st International Conference on Cyber-Physical Systems, Networks, and Applica-
tions (CPSNA), pp. 38–43, August 2013

13. Lee, E.A., Seshia, S., Jensen, J.: EECS149.1x, Cyber-Physical Systems. EECS,
University of California, Berkeley, May 2014. https://www.edx.org/course/cyber-
physical-systems-uc-berkeleyx-eecs149-1x

14. Lin, J., Zheng, H., Zhu, Z., David, H., Zhang, Z.: Thermal modeling and manage-
ment of DRAM memory systems. In: Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA 2007, pp. 312–322. ACM, New York
(2007)

http://www.drampower.info
https://www.edx.org/course/cyber-physical-systems-uc-berkeleyx-eecs149-1x
https://www.edx.org/course/cyber-physical-systems-uc-berkeleyx-eecs149-1x

An Integrated Simulation Tool for Computer Architecture 93

15. Liu, S., Leung, B., Neckar, A., Memik, S., Memik, G., Hardavellas, N.: Hard-
ware/software techniques for DRAM thermal management. In: IEEE 17th Inter-
national Symposium on High Performance Computer Architecture (HPCA), pp.
515–525, February 2011

16. Martin, M.M.K., et al.: Multifacet’s general execution-driven multiprocessor sim-
ulator (GEMS) toolset. SIGARCH Comput. Archit. News 33(4), 92–99 (2005)

17. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org (2014). http://ptolemy.org/books/Systems

18. Skiba, D.J.: Disruption in higher education: Massively Open Online Courses
(MOOCs). Nurs. Educ. Perspect. 33(6), 416–417 (2012)

http://ptolemy.org/books/Systems

Safe At Any Speed: A Simulation-Based
Test Harness for Autonomous Vehicles

Houssam Abbas, Matthew O’Kelly, Alena Rodionova(B),
and Rahul Mangharam

University of Pennsylvania, Philadelphia, PA 19104, USA
{habbas,mokelly,alena.rodionova,rahulm}@seas.upenn.edu

Abstract. The testing of Autonomous Vehicles (AVs) requires driving
the AV billions of miles under varied scenarios in order to find bugs, acci-
dents and otherwise inappropriate behavior. Because driving a real AV
that many miles is too slow and costly, this motivates the use of sophis-
ticated ‘world simulators’, which present the AV’s perception pipeline
with realistic input scenes, and present the AV’s control stack with real-
istic traffic and physics to which to react. Thus the simulator is a crucial
piece of any CAD toolchain for AV testing. In this work, we build a
test harness for driving an arbitrary AV’s code in a simulated world. We
demonstrate this harness by using the game Grand Theft Auto V (GTA)
as world simulator for AV testing. Namely, our AV code, for both per-
ception and control, interacts in real-time with the game engine to drive
our AV in the GTA world, and we search for weather conditions and
AV operating conditions that lead to dangerous situations. This goes
beyond the current state-of-the-art where AVs are tested under ideal
weather conditions, and lays the ground work for a more comprehensive
testing effort. We also propose and demonstrate necessary analyses to
validate the simulation results relative to the real world. The results of
such analyses allow the designers and verification engineers to weigh the
results of simulation-based testing.

1 Introduction: Testing AVs in Simulated Worlds

The development of Autonomous Vehicles (AVs) has seen a remarkable accelera-
tion in the last decade, as technological advances like Deep Learning have allowed
breakthroughs in processing visual information, and regulators have come to
appreciate the potential of AVs to reduce accidents. While the first wave of AV
development focused on improving the performance of individual components,
like the Computer Vision (CV) pipeline or the behavioral controller, there is
a growing need for whole-AV testing. This is testing of the integrated AV as a
whole, where perception, control and environment conditions interact in unfore-
seen and complicated ways. This is an essential step towards building technical,
regulatory, and public confidence in AVs as the solution to some of our trans-
portation problems.

c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 94–106, 2019.
https://doi.org/10.1007/978-3-030-17910-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-17910-6_8

Safe At Any Speed: A Simulation-Based Test Harness 95

THIRD PARTY
AUTONOMOUS VEHICLE CODE

BLACK BOX

ZMQ-
BASED
INTERF

ACE

ACTUATION

FRAMES and
VEHICLE STATE

NEXT INITIALIZATION xk

Fig. 1. The test harness.

0 50 100 150 200
Spatial Information

-20

0

20

40

60

80

100

120

C
ol

or
fu

ln
es

s

DARMSTADT 19960 images
UDACITY 12000 images

Fig. 2. Analyzes of test results on synthetic data.

Testing the real AV on real roads is a necessary part of this effort, but is
woefully insufficient: a recent statistical study by the RAND Corporation (a
U.S.-based policy think tank) found that AVs would have to drive “hundreds of
millions of miles and, under some scenarios, hundreds of billions of miles to create
enough data to clearly demonstrate their safety”. According to the same report,
“it would take existing fleets of autonomous vehicles tens and even hundreds
of years to log sufficient miles” to demonstrate their safety when compared to
human-driven vehicles. This constitutes a definitive argument for building world
simulators, that the AV can be driven in. A world simulator provides the AV with
perceptual inputs (like video and range data), traffic conditions (like other cars
and pedestrians), varied weather conditions, and moves the AV in the simulated
world in response to the AV’s computed actuation commands. Simulation is
many orders of magnitude cheaper and faster than real-world testing (Fig. 1).

96 H. Abbas et al.

This paper fills a gap in this regard: it demonstrates a simulation-based test
harness for AVs, illustrates it use to automatically find dangerous situations,
and clarifies the questions that must be answered when using simulation-based
results for debugging real AV code. A number of companies and startups have
released open-source AV code and platforms, such as Baidu’s Apollo [3] and
Autoware [8], to cite a few. However, the open-source community still lacks a
simulator in which to test the whole AV in a wide range of driving scenarios, and
a corresponding automatic testing tool that can search for dangerous scenarios.
To illustrate our test harness, we use the GTA V game engine as world simulator.
Recent work in the deep learning community uses synthetic scenes from GTA to
train a neural network to perform a CV task like object detection [7] or image
segmentation [12] or depth estimation [4]. By contrast, in this paper, we explore
the use of synthetic scenes to test a given pre-trained algorithm (like an object
detector), as part of an overall AV testing effort. Research that tries to find
the most dangerous instances of human driving by analyzing millions of human-
driven miles [15] is complementary to what can be accomplished using our test
harness. That research highlights what miles must be driven by the AV to make
sure it doesn’t repeat human errors; our harness allows the driving of any kinds
of miles at little cost, and we search specifically autonomous miles for dangerous
behavior.

Figure 2 gives an overview of the test harness and the questions we answer in
this paper, and which are detailed in the following sections. Briefly, the test har-
ness consists of a real-time communication architecture that allows connecting
an arbitary AV code to a world simulator, like GTA. The simulator feeds the AV
information about the state of the simulation. The AV processes this information
and computes the next control inputs, which are sent back to the simulator to
advance the simulation by one clock tick. The harness also includes a testbench:
the latter computes a measure of how dangerous was the last simulation. E.g.,
the simplest measure of danger, which we implement, is the minimum distance
between the AV and other traffic participants. Based on this value, the test-
bench decides on how to initialize the next simulation, including at what time
of day it should take place. The ability to control the time of day, and thus the
lighting conditions, in a simulator is a very powerful feature, since it allows us to
stress the perception algorithms and the speed of reaction of the AV. Section 2
describes sample testing results that we obtain.

Using a simulator to test the AV raises questions on the applicability of
the results to the real world. This can be broken down into two questions: the
relation between the perception algorithms’ performance in the simulated vs.
the real world, and the validity of the simulated AV dynamical model vs. the
real dynamics of the vehicle. In Sect. 3 of this paper, we explain the types of
analyzes that are needed to answer the first of these two questions, and which are
implemented by the test harness, as shown in Fig. 2. Briefly, they are statistical
analysis of the performance of specific algorithms (Sect. 3.1) and a more general
study of the visual complexity of scenes in the simulator vs. in the real world
(Sect. 3.2). Section 4 concludes the paper.

Safe At Any Speed: A Simulation-Based Test Harness 97

2 Searching the World for Non-robust Behavior

A world simulator for testing AVs must have at least the following features:

– it must provide sufficiently realistic graphics so the perception pipeline is
adequately tested.

– it must provide sufficiently realistic dynamics for the AV and other cars so
that the AV controller’s commands are implemented appropriately, and the
other cars’ reactions are realistic.

– it must create a variety of short-term traffic conditions for the AV to navigate
(e.g., traffic at a T-junction).

– it must vary the weather conditions, since it is known that the environmental
conditions can affect perception algorithms like objet detectors and image
segmentors.

The test harness, which connects the AV to this simulated world, must have the
following features:

– it must allow us to plug-in third-party AV code (both the perception and
control components), so the AV can drive in this simulated world, and to
collect all relevant data from an execution, like distance to obstacles and
time-to-collision.

– it must support the plugging of general-purpose optimization algorithms, that
can then be used to search for dangerous driving situations.

– it must support real-time simulation or faster.
– it must support replay of particular driving scenarios so the designers can

debug the dangerous scenarios and improve the design.

We have developed a test harness that allows us to drive an AV in a simulated
world, and which possesses the features described above. The harness, and the
analyses it provides, are illustrated in Fig. 2, and described in the following
sections. As a particular example of using this harness, we use GTA as a world
simulator. We should stress that the harness can be used with any specialized
simulator that supports the required, generic interface described in the next
section.

2.1 Game-in-the-loop Test Harness

Figure 2 shows the architecture of the software used to test our AV code inside
GTA. Most AVs use machine learning algorithms in their perception pipeline,
typically some form of deep neural network which performs inference on images
obtained by the vehicle’s cameras. In the AV domain timing is critical: for many
perception tasks, an algorithm that takes more than 100 ms to execute is prac-
tically useless because both the AV’s and the environment’s state may change
significantly in that time. As a result, most machine learning frameworks uti-
lize GPUs in order to perform perception tasks quickly enough; the majority of
such frameworks are compiled for UNIX machines. Thus, it is important that

98 H. Abbas et al.

the AV code must run on a Linux machine even if the game engine does not.
Moreover, separating the computational hosts enables modularity: an updated
AV software stack or improved simulation engine can be swapped during the
design cycle. This enables continuous comparison of software releases without
changing the internal workings of the simulation engine.

A typical simulation runs as follows: The test harness selects an initial state
of the AV (e.g., initial position, velocity, jitter, etc). It also selects initial environ-
ment conditions: number of cars, their initial positions and velocities, and time of
day. The time of day is a way to control the lighting conditions: from bright and
clear skies in the morning, to dark and cloudy skies later in the day. As explained
in the Introduction, this is particularly important for stressing the perception
pipeline. This initialization is then sent to the simulator. The testbench samples
the simulation once every second: every second, the simulator sends back to the
testbench the current states of all traffic participants, including the AV, and the
current “video” frame. The testbench stores the state for later computation of
performance objectives. The AV’s perception pipeline processes the frame (e.g.,
to detect objects’ positions and velocities), and the controller then computes
the next actuation (steering angle and acceleration). The control commands are
passed back to the simulator, and this loop continues until the end of simula-
tion. In the experiments the perception pipeline consists of the YOLO object
detector, but there is no inherent restriction on using other sensors’ models.

Our test harness allows this to run in real-time (so 10 s of simulated time
require about 10 s of wallclock time). Given that we visualize the simulation as
it runs, faster than real-time is not possible. Another simulator, that can run
without the graphics, could run faster than real-time. The bottleneck of the
current setup is the GTA simulator, not the testbench.

2.2 Search Algorithm

The test harness can be used to test the AV code as follows. First, pick a location
in GTA’s map. Next, define the AV state vector x ∈ R5, consisting of AV 2D
position, 2D velocity and longitudinal jitter (second derivative of longitudinal
velocity). The AV state can be initialized, in a given simulation, to any value in
a pre-determined set X, e.g. X = [−1, 1]2 × [5, 15]2 × [−5, 5]. We also define a
time-of-day variable tod, measured in minutes, and which can be initialized to
D = {0, 1, . . . , 60 × 24}. E.g. tod = 0 is midnight and tod = 60 × 8 is 8 a.m.
Finally, we define an environment vector y ∈ R4N , consisting of the positions
and velocities of N other traffic participants. This can also be initialized to a
set Y . Collectively, we refer to z = (x, tod, y) as the world state, and it can be
initialized to Z = X × D ×Y . If the testbench initializes the test harness with a
given z ∈ Z, the harness will simulate the resulting driving situation as explained
in Sect. 2.1. The objective of the search is to find a value of z in Z such that the
resulting simulation exposes dangerous driving situations, be they due to the
AV’s errors of control or perception, or because of unfortunate circumstances
that might not have occurred to the AV designers. Indeed, even accidents that

Safe At Any Speed: A Simulation-Based Test Harness 99

are not due to the AV’s fault are informative, as they might cause the designers
to equip the AV with better sensors or make it more conservative.

For illustration purposes in this paper, we define a ‘dangerous driving situa-
tion’ to be a state where the minimum distance between the AV and other cars
or pedestrians is smaller than a nominal value. Therefore, we can now run an
optimization: the objective function is f : Z → [0,∞) where f(z) is the mini-
mum distance between the AV and other cars or pedestrians, in the simulation
initialized at z. Our goal is to minimize f over Z: find the most dangerous situa-
tion, where the AV gets closest to moving obstacles. Of course, if f(z∗) = 0, then
z∗ actually witnesses an accident. All dangerous situations are then returned to
designers to examine: did the object detector miss the obstacle? Did it detect
it but too late? Did the obstacle come from behind a blind corner, if so, do we
need to annotate the AV map with blind intersections? Or was the controller
tuned too aggressively and an accident followed?

The AV code and simulator are treated as black boxes both due to their
complexity and in order to provide a methodology which works to examine
proprietary software without jeopardizing trade secrets or IP. Therefore we need
to use a gradient-free optimization heuristic. While a simple uniform random
sampling is always possible, in the experiments we use Simulated Annealing [5],
a popular optimization algorithm that offers asymptotic guarantees (namely, as
the number of simulations goes to infinity, the probability of being more than
ε away from the global minimum goes to 0.1). Simulated Annealing and its
variations have been successfully used in a very wide array of applications in the
last 60 years. Other heuristics can be used, of course. The next section presents
some illustrative results obtained by this test harness.

2.3 Optimization Results

We selected a T-junction in Los Santos, the fictional city that is the setting
for GTA. The objective of the AV is to make a safe right turn, and obey the
Stop Sign. The simulation continues until either the objective is achieved, or a
timeout (set to 20 s) occurs.

The search automatically found an accident between the AV and another
car in under 100 simulations. (The search space X was described in the previ-
ous section.) We can examine the exact conditions that led to the accident to
understand what happened. First, let’s describe the accident: the AV approaches
the T-junction, and starts the right turn. Another car approaches from the left.
Neither car is able to stop on time, even though they both eventually ‘saw’ each
other. In this case, two factors contributed to the accident: first, the scenario
takes place at twilight. While the YOLO object detector correctly classified the
stop sign there is some delay. This delay was nevertheless enough to allow the
AV to edge further into the intersection before stopping. Secondly, the other car

1 Since a countable infinite set always has measure 0 in a continuous search space,
uniform random sampling cannot offer such a guarantee. That said, currently known
bounds on the convergence rate of Simulated Annealing are too loose in our context.

100 H. Abbas et al.

was traveling at a speed similar to the AV’s. Any faster, and it would’ve passed
the AV before it started the right turn. Any slower, and the ego-vehicle would’ve
been able to stop on time. In addition, the other vehicle is initially occluded and
subsequently missed in several frames just as the ego vehicle makes a decision
to turn.

This is an example of a non-trivial accident, where just the right conditions
of timing and vehicle behavior must be present to cause the accident.

The automatic search enabled by our harness thus found environment con-
ditions (lighting) and traffic conditions (speed of one other car) that produced
an accident. Another accident, captured from 3 different camera angles, can be
found at this anonymous Dropbox link: http://bit.ly/2fe2tZq.

3 Fake World, Real News: On the Validity of Using
Synthetic Environments for Testing AVs

The described test harness allows us to test orders of magnitude more scenarios
than we could in the real world, and dangerous situations (so-called ‘counter-
examples’) that are exposed in simulation can help improve the design and flush
out bugs. The natural question we need to answer is: do accidents discovered
in simulation tell us something about real-world accidents? Without actually
running the AV in the real world and correlating real-world results to the simu-
lated results, it is impossible to obtain a direct empirical answer to this question.
However, there are two ‘big’ questions that one can answer instead, and which
go a long way toward establishing confidence in the simulated results. They are:

1. What is the relation between the perception algorithms’ performance on syn-
thetic driving scenes rendered by the graphics engine and their performance
on natural (‘real’) driving scenes?

2. What is the relation between the effect of AV controller’s actions in the
simulator and their effect in the real world?

If we have confidence in our answers to these two questions, then we have more
confidence that the whole-AV test enabled by our test harness is useful.

In this paper, we study the first question above. For the second question, it
suffices to note that any dynamical model used in the automotive industry will
be thoroughly validated by the automotive engineers, and the test harness we
propose can accommodate any world simulator as explained earlier.

We answer the first question on two levels: first, in Sect. 3.1, we do a direct
comparison between the performance of a perception algorithm (e.g., object
detection) on synthetic and natural scenes. This gives an application-specific
evaluation of the suitability of synthetic scenes for our purposes. The same study
can be done on any CV algorithm. Secondly, in Sect. 3.2, we study the visual com-
plexity of synthetic and natural scenes. Such a study is application-independent,
and gives us a broader understanding of the differences and similarities between
synthetic and natural scenes. While such a broader understanding is, at first,
harder to apply than an application-specific comparison, it has a benefit: by

http://bit.ly/2fe2tZq

Safe At Any Speed: A Simulation-Based Test Harness 101

understanding the ways in which synthetic scenes (as an ensemble) differ from
natural scenes, we can better weigh the results of simulation-based testing and
their relevance to real-world testing, accross a range of peception algorithms. E.g.,
visual complexity plays an important role in many computer vision algorithms,
like edge detection and motion from structure. If the complexity of synthetic
scenes is, say, poorer than that of natural scenes, we know that these algorithms
will perform better on them, which allows us to weigh the evidence obtained
from simulations.

Note that these questions are not only relevant for the case where the world
simulator uses synthetic scenes, such as GTA. They apply equally to the case
where natural scenes are used (e.g., when driving through Google Street View):
as we show, the dataset of images encountered by the AV does have an effect
on its performance, and any simulation-based testing must first evaluate the
validity of test environment using multiple measures.

(a) KITTI (b) Udacity

(c) Darmstadt (d) Michigan

Fig. 3. Examples of images from the datasets.

The Datasets. We use the KITTI [6] and Udacity datasets [13] as sources of
natural scenes. KITTI is extensively used in the Computer Vision and Image
Processing communities to test their algorithms. We use its test set of 7481
images of urban and rural driving in and around a mid-size German city (Karl-
sruhe). Udacity is made of 15,000 images obtained by driving over Highway 92
in California during daylight conditions. For synthetic scenes, we use two sets of
frames obtained from GTA: the Darmstadt [12] set of 25,000 frames and the
Michigan set of 15,000 frames [7]. They were collected from the game using two

102 H. Abbas et al.

plugins, Script Hook V and Script Hook V.NET [2]. The images in the datasets
are highly variable in their content and layout. A range of different times of day
and weather typees are captured: day, night, morning and dusk, and sun, fog,
rain and haze. The Michigan dataset is annotated with the true bounding boxes
for the objects in it and so can be used for profiling object detection algorithms.
See Fig. 3 for example frames from these 4 datasets.

3.1 Object Detection on Synthetic and Natural Scenes

An object detection algorithm takes in an image and returns a set of bounding
boxes, one box around each object it has detected in the image. See Fig. 4. It also
returns the type of each detected object, e.g., ‘car’, ‘person’, or ‘stop sign’. In
order to evaluate the performance of a given object detection algorithm, we use
the three following standard metrics [1]: precision, recall and false alarm rate
(FAR). These three measures belong to the interval [0, 1] and are calculated
using the number #TP of true positives, number #FN of false negatives FN ,
and the number #FP of false positives over the given data set. A true positive
(TP) is a detected object that is indeed in the image. A false positive (FP) is a
detected object that isn’t in the image, i.e. a mis-detection. A false negative (FN)
is an object in the image that was not detected by the algorithm. A threshold
α ∈ (0, 1) is used to compute #TP,#FP and #FN . Roughly, if a detected
object’s bounding box overlaps with the bounding box of a true object (of the
same object type) by more than α, then this is considered to be a TP, otherwise,
it’s a FP. α is chosen during the network’s validation phase and is fixed when
running the network, therefore it is fixed in the following experiments.

We can now define the detection performance metrics: precision measures the
fraction of detected objects that are correct: Precision := #TP/(#TP +#FP).
A higher precision is better. Recall measures the fraction of true objects that

200 400 600 800 1000 1200 1400 1600 1800

100

200

300

400

500

600

700

800

900

1000

Fig. 4. GTA frame with red bounding boxes around cars detected by YOLO, and
green boxes around true cars. Note the red box around the bush on the left, indicating
a YOLO false positive, and the lack of red box around the farawary car on the right,
indicating a YOLO false negative. The red box in the middle is a true positive. (Color
figure online)

Safe At Any Speed: A Simulation-Based Test Harness 103

were correctly detected: Recall := #TP/(#TP +#FN). Higher recall is better.
The False Alarm Rate (FAR) measures the fraction of all detected objects that
are not correct: FAR := #FP/(#FP + #TP). Lower FAR is better. Note that
Precision, Recall and FAR are all in the range [0, 1].

Results. We measured the performance of YOLO9000 [10,11], a popular real-
time object detection algorithm, on the KITTI, Udacity and Michigan datasets,
for which we have ground truth data, i.e., the bounding boxes of true objects.
(We don’t have ground truth for Darmstadt). Because the values of Precision,
Recall and FAR depend on the threshold α, the appropriate way to compare
YOLO’s performance on different datasets is to vary the threshold and plot
Receiver Operating Curves (ROCs). To avoid bias due to the content of the
images (‘content bias’), we performed this analysis on 50 randomly selected
subsets of the data, each subset containing 80% of the images in the dataset.
The ROCs and conclusions presented below hold accross the random selections.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ec

al
l

0.1

0.15
0.2

0.25
0.3

0.350.40.450.50.55
0.6

0.65
0.7

0.1

0.15

0.2

0.25

0.3

0.350.4
0.45

0.5

0.55

0.6

0.65

0.7

0.1

0.15

0.2

0.25

0.3

0.350.4
0.45

0.5

0.55

0.6

0.65

0.7

GTA
KITTI
UDACITY

(a) Precision-Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FAR

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ec

al
l

0.1

0.15
0.2

0.25
0.3

0.350.40.450.50.55
0.6

0.65
0.7

0.1

0.15

0.2

0.25

0.3

0.350.4
0.45

0.5

0.55

0.6

0.65

0.7

0.1

0.15

0.2

0.25

0.3

0.350.4
0.45

0.5

0.55

0.6

0.65

0.7

GTA
KITTI
UDACITY

(b) FAR-Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FAR

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

0.1

0.15

0.2

0.25

0.3

0.350.40.45
0.5

0.55
0.6

0.65

0.7

0.1

0.15

0.2

0.25

0.3

0.350.4
0.45

0.5

0.55

0.6

0.65

0.7

0.1

0.15

0.2

0.25

0.3

0.350.4
0.45

0.5

0.55

0.6

0.65

0.7

GTA
KITTI
UDACITY

(c) FAR-Precision

Fig. 5. YOLO ROCs for three performance measures, plotted pair-wise, for 3 datasets.
Every ROC contains 13 points, one per value of the overlap threshold α. The α value
is indicated next to the point.

104 H. Abbas et al.

Figure 5 shows the results. The three performance measures are plotted
against each other, two at a time. It can be seen that there is a measurable dif-
ference between YOLO on synthetic scenes (Michigan dataset) and real scenes.
Indeed, there is a measurable difference between natural datasets. Both of these
are confirmed by 2-sample Kolmogorov-Smirnov tests, which confirm that the
performance numbers of different datasets come from different distributions.
Thus, even if the world simulator used only natural scenes (e.g. if Google Street
View is used to provide the visual input), the question of how applicable testing
results are must still be answered.

The way to interpret and make use of these ROCs is as follows: suppose
we will enforce a Precision of 0.7 during real AV operation (by selecting the
right α). The Precision-Recall curve (Fig. 5a) tells us that at Precision = 0.7,
GTA YOLO performance is a lower bound on YOLO performance in the real
world (i.e., on natural images). That is, the KITTI and Udacity Recall values,
for a Precision of 0.7, are both higher than the Michigan Recall value. Thus,
simulation results cannot mislead us, since they are conservative. Similarly, if we
enforce a FAR of 0.3 in the real world, then again GTA YOLO Recall results
are a conservative lower bound on real-scenes Recall values (Fig. 5b). We will
have more to say on this in the next section. Finally, the FAR-Precision ROC
(Fig. 5c) reveals the noteworthy fact that the performance of YOLO on synthetic
and natural scenes are nearly identical. Thus if Precision and FAR are the more
important aspects of YOLO performance, simulations give a very good idea
of real-world performance. Thus a complex picture emerges, where the relation
between performance in the simulator and in the real world depends on multiple
factors, including on the trade-offs that the AV designers are willing to make
between different performance measures. The test harness we are presenting in
this paper serves to analyze these trade-offs.

3.2 The Complexity of Synthetic and Natural Scenes

The results of the previous section might be surprising at first: after all, synthetic
scenes are generally thought to be somewhat simpler, informally speaking, than
natural scenes, because the latter have a greater variety of detail, texture, lighting
changes, distortion and compression effects, etc. This is indirectly confirmed by
studies such as [7] where, for the purposes of training an objet detection neural
network, many more synthetic images are needed than natural images. (We are
not aware of studies on using synthetic scenes in testing perception algorithms.)
Thus it might be expected that an object detector would perform better on
synthetic scenes than on natural scenes. However, let us first note that we used
YOLO that was trained on natural scenes - which is what the real AV would use
in the real world. This should temper the surprise, since YOLO is performing
better on those scenes that are more ‘similar’ to the ones it was trained on.
Secondly, in this section, we make a more rigorous study of the difference in
complexity between natural and synthetic scenes.

An important property of a scene is its visual complexity, in terms of the
density and distribution of edges, textures, colorfullness and contrast variations

Safe At Any Speed: A Simulation-Based Test Harness 105

accross the image. A more complex scene, a priori, presents a greater challenge
to any Computer Vision (CV) algorithm, because it makes it harder to extract
features. E.g., a texture-rich image presents serious difficulties to an edge detec-
tor since textures can be confused for edges. In this section, we characterize the
complexity of the datasets using the two complexity measures proposed in [14]:
Spatial information (SI) and Colorfullness (CF). These are established measures
of complexity in the Image Processing community (e.g., see their use in [9]) and
they are simple to compute. Due to lack of space, we refer the reader to [14] for
their mathematical definitions. Here, we mention that SI measures the strength
and amount of edges in an image; edges are a crucial element of information for
many image processing algorithms. CF measures the variation and intensity of
colors in the image.

Results. To avoid content bias, we measured SI and CF on 50 randomly selected
subsets of the four datasets, each selection containing 80% of the images. The
results and conclusions presented below hold accross the random selections.
Figure 6 shows the scatterplots of complexities from one such selection. There are
clear differences between synthetic and real, but also between synthetic datasets,
and between real datasets. The first, striking feature is that the Darmstadt
(GTA) dataset complexity lies between the complexities of Kitti and Udacity
(both real). Thus saying that ‘synthetic is less complex’ is too simplistic. The
second feature we note is that there is a large degree of overlap between Udacity
and Michigan datasets. Both have a wide range of SI, and comparatively small
range of CF, which is the opposite of KITTI and Darmstadt. The complexity
results suggest that using a simulated world is a reasonable means to test an AV,
given the intermediate complexity of synthetic scenes, and the overlap between
synthetic and some real scenes. Computer vision algorithms that are affected
by the complexity of the images, like object tracking, can thus be tested in this
simulated world with relevance to the real world.

0 20 40 60 80 100 120 140 160 180 200

Spatial Information

-20

0

20

40

60

80

100

120

C
ol

or
fu

ln
es

s

GTA 19960 images
KITTI 5985 images
UDACITY 12000 images
MICHIGAN 8000 images

KITTI

DARMSTADT

UDACITY MICHIGAN

Fig. 6. Complexity of datasets. Diamonds show the centroids of the clusters. Red:
KITTI, Black: Udacity (both natural) Blue: Darmstadt, Green: Michigan (both syn-
thetic from GTA). Colors in digital version of paper. (Color figure online)

106 H. Abbas et al.

4 Conclusion

The test harness we have presented allows automatic testing of AV code in sim-
ulated worlds, and implements necessary analyses for understanding the similar-
ities and differences between the simulated data and representative real-world
data. The next step is to implement a more advanced notion of AV safety, which
takes into account the driving context, and to automate the debugging process
for the accidents we find.

References

1. Godil, A.A., et al.: Performance metrics for evaluating object and human detection
and tracking systems, nIST Interagency/Internal Report (NISTIR) - 7972, July
2014

2. Alexander Blade, A.S.D.: Script hook v.net, September 2017. https://github.com/
crosire/scripthookvdotnet

3. Baidu: Apollo platform, September 2017. apollo.auto
4. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for

direct perception in autonomous driving. In: International Conference on Computer
Vision (2015)

5. Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. Am.
Stat. 49(4), 327–335 (1995)

6. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti
dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

7. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan,
R.: Driving in the matrix: can virtual worlds replace human-generated annotations
for real world tasks? In: ICRA, May 2017

8. Kato, S.: Autoware, September 2017. https://github.com/CPFL/Autoware
9. Kundu, D.: Subjective and objective quality evaluation of synthetic and high

dynamic range images, Ph.D. Dissertation, May 2016
10. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-

time object detection. In: Conference on Computer Vision and Pattern Recognition
(2016)

11. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. https://arxiv.org/abs/
1612.08242

12. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth
from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 7

13. Udacity, A.R.: Udacity self-driving car dataset, p. 2 (2017). http://bit.ly/udacity-
annotations-autti

14. Winkler, S.: Analysis of public image and video databases for quality assessment.
IEEE J. Sel. Top. Signal Process. 6(6), 616–625 (2012)

15. Zhao, D., Peng, H.: From the lab to the street, m-City White Paper, May 2017

https://github.com/crosire/scripthookvdotnet
https://github.com/crosire/scripthookvdotnet
http://apollo.auto
https://github.com/CPFL/Autoware
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1007/978-3-319-46475-6_7
http://bit.ly/udacity-annotations-autti
http://bit.ly/udacity-annotations-autti

Formal Methods

Switching Delays and the Skorokhod
Distance in Incrementally Stable

Switched Systems

Kengo Kido1,2, Sean Sedwards3, and Ichiro Hasuo4,5(B)

1 University of Tokyo, Tokyo, Japan
2 JSPS Research Fellow, Tokyo, Japan

3 University of Waterloo, Waterloo, Canada
4 National Institute of Informatics, Tokyo, Japan

i.hasuo@acm.org
5 The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan

Abstract. We introduce an approximate bisimulation-based framework
that gives an upper bound of the Skorokhod metric between a switched
system with delays and its delay-free model. To establish the approxi-
mate bisimulation relation, we rely on an incremental stability assump-
tion. We showcase our framework using an example of a boost DC-DC
converter. The obtained upper bound of the Skorokhod metric can be
used to reduce the reachability analysis (or the safety controller synthe-
sis) of the switched system with delays to that of the delay-free model.

1 Introduction

In cyber-physical systems (CPS), physical systems are controlled by digital con-
trollers. A recent trend in CPS is networked control systems (NCS), which means
the physical plant and the controller are separated and connected via a network.
One of the most important challenges in NCS is the time delays. Delays are
inevitable due to data transfer via a network and also due to the computation
of the controller. It is not easy to reduce the delay or estimate the exact length
of the delay.

In this paper, we introduce an approximate bisimulation-based framework to
find an overapproximation of the effect of the delays. Approximate bisimulation
is a relaxation of the classical notion of bisimulation suitable for continuous state
space. It was first introduced in [10]. One of the main applications of approx-
imate bisimulation in the literature is the symbolic abstraction of continuous
or hybrid systems. For switched systems with nonlinear continuous behavior,
[12] constructed an approximate bisimulation between the actual system and its

The authors are supported by JST ERATO HASUO Metamathematics for Systems
Design Project (No. JPMJER1603), and JSPS Grant-in-Aid No. 15KT0012. K.K. is
supported by JSPS under JSPS Grants-in-Aid for JSPS Research Fellows No. 15J05580.
The results of this paper are part of K.K.’s Ph.D. thesis [15].

c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 109–126, 2019.
https://doi.org/10.1007/978-3-030-17910-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-17910-6_9

110 K. Kido et al.

symbolic model, under the assumption of incremental stability. Our target sys-
tems are the same as [12]—incrementally stable switched systems with possibly
nonlinear continuous behavior—but we take time delays into account.

To construct an approximate bisimulation, we first define two transition sys-
tems from the delayed system and its delay-free model, and a cost function on
the output set of them. The cost is designed to bound the Skorokhod metric. It
is a metric defined between trajectories that allows certain timing mismatches.
It has been studied in the area of conformance testing, and showed in [7] that
it accommodates a transference result: it can be used for sound analysis of a
variant of temporal logic specifications. Then, the cost is bounded by construct-
ing an approximate bisimulation relation between the transition systems built
from the delayed system and its delay-free model. This construction is based on
an incremental stability assumption, namely δ-GUAS. Using this approximate
bisimulation, we can find an upper bound of the Skorokhod metric between a
trajectory of the delayed system and the corresponding trajectory of its delay-
free model. The framework has combined with existing approximate bisimulation
for symbolic abstraction [12] and applied to controller synthesis, as presented in
Fig. 1.

Fig. 1. A two-step control synthesis workflow for switched systems with delays. We
separate two concerns: time delays and state-space discretization. The same stability
assumption on Στ can be used once for all, for establishing both ∼ε1 and ∼ε2 .

Related Work. In our previous work [14], we constructed an approximate bisim-
ulation between the delayed system and its delay-free model. The result was an
upper bound of the pointwise metric that compares the states of the delayed and
delay-free systems at the same time instant. A problem of the pointwise metric
is that it sometimes returns large distances even if two systems are close in terms
of, for example, reachability. See the example in Fig. 2. The pointwise distance
gives the length of the black arrows at switchings. Once we obtain this distance

Switching Delays and the Skorokhod Distance 111

(say ε), the reachability of the blue behavior is overapproximated by an expan-
sion of the reachability of the red one by ε. However, the actual reachability of
the two systems in red and blue is the same. The source of this unnecessarily
large distance is that the pointwise metric does not allow any mismatches of the
timing. The framework we propose in this paper compares the states at the cor-
responding switching times even if the switching times do not match exactly. As
a result, we find an upper bound of the Skorokhod metric between the delayed
and delay-free systems that allows certain timing mismatches. As one can see
from the example in Sect. 7, a smaller bound is found that can still be used
to reduce the safety controller synthesis of the delayed system to that of the
delay-free model. As a result, more permissive safety controller is synthesized
than [14].

Fig. 2. The behavior of two systems are presented in red and blue. Solid and broken
lines indicate two different modes. (Color figure online)

In [1,2], a metric called (τ, ε)-closeness is introduced. It also allows timing
mismatches. In this paper we chose the Skorokhod metric because it is easier to
bound in our setting.

In [5,19,21], approximate bisimulation-based frameworks for symbolic
abstraction of systems with delays were studied. The goal of these works is
to construct a comprehensive symbolic (discretized) model that encompasses all
possible delays. One can make the proximity as small as desired, in a trade-off
with the size of the symbolic model. One can apply various discrete techniques for
analysis or controller synthesis to the obtained symbolic model. The biggest dif-
ference is that our framework aims at abstracting away the effect of delays. The
generated delay-free model still includes continuous dynamics. Figure 1 shows its
combination with controller synthesis by [12], but it is also possible to combine
with existing hybrid system analysis tools such as SpaceEx [8]. It seems that
ours has an advantage in complexity: collecting all the possible delays tends to
result in a big number of transitions. One major drawback is that, in our results
the proximity is fixed from the Lyapunov function.

[6,7,16,17] introduce algorithms to calculate the Skorokhod distance between
trajectories. These methodologies can be applied to conformance testing. Our
framework takes switched systems as inputs and analyzes them in a static man-
ner, without making concrete trajectories. This is suitable for the purpose of
static verification or controller synthesis.

112 K. Kido et al.

Notations. The set of nonnegative real numbers is denoted by R
+. We let ‖ ‖

denote the usual Euclidean norm on R
n.

2 Switched Systems

We assume that models are given as switched systems.

Definition 2.1 (switched system). A switched system is a quadruple Σ =
(Rn, P,P, F) that consists of:

– a state space R
n;

– a finite set P = {1, 2, . . . ,m} of modes;
– a set of switching signals P ⊆ S(R+, P), where S(R+, P) is the set of functions

from R
+ to P that satisfy the following conditions: (1) piecewise constant,

(2) continuous from the right, and (3) non-Zeno;
– F = {f1, f2, . . . , fm} is the set of vector fields indexed by p ∈ P , where each

fp is a locally Lipschitz continuous function from R
n to R

n.

Definition 2.2 (trajectory). A continuous and piecewise C1 function x : R+ →
R

n is called a trajectory of the switched system Σ if there exists a switching
signal p ∈ P such that

ẋ(t) = fp(t)(x(t))

holds at each time t ∈ R
+ when the switching signal p is continuous. Note that

the trajectory x is continuous, which means that we do not allow jumps of the
continuous state even at switchings.

We let x(t, x,p) denote the point reached at time t ∈ R
+, starting from

the state x ∈ R
n (at t = 0), under the switching signal p ∈ P. In the special

case where the switching signal is constant (i.e. p(s) = p for all s ∈ R
+), the

point reached at time t ∈ R
+ starting from x ∈ R

n is denoted by x(t, x, p). The
continuous subsystem of Σ with the constant switching signal p(s) = p for all
s ∈ R

+ is denoted by Σp. If P is a singleton P = {p}, the system Σ = Σp is a
continuous system without switching.

We focus on control systems with periodic1 sensing. An ideal model without
delays and the actual system with delays are modeled as switched systems using
the following periodicity.

Definition 2.3 (periodicity, switching delay). Given a switching signal p, those
time instants t ∈ R

+ where the switching signal p is discontinuous are called
switching times. If a switching signal is continuous except at kτ (where τ > 0
is a constant and k ∈ N), it is called τ -periodic. A switched system is called
τ -periodic if all the switching signals in P are τ -periodic. Given a τ -periodic

1 The word “periodic” is usually used for a stronger condition that the same sig-
nal shape is repeated in every period. Our use of the word, which is weaker
(Definition 2.3), follows some literature in the field such as [13].

Switching Delays and the Skorokhod Distance 113

switching signal, even though switching does not always occur at every t = kτ ,
we denote the switching that occurs at t = kτ by k-th switching.

Let δ0 ∈ R
+. A switching signal p is said to be τ -periodic with switching

delays within δ0 if there exists a sequence [tk]k∈N, such that t0 ∈ [0, δ0], tk+1 ∈
[max(tk, (k + 1)τ), (k + 1)τ + δ0] and all the discontinuities of p can only occur
at some tk. For such a sequence, we call the switching that occurs at tk k-
th switching. A switched system Σ = (Rn, P,P, F) is called τ -periodic with
switching delays within δ0 if all the switching signals in P are τ -periodic with
switching delays within δ0. Note that the maximum delay δ0, which was assumed
to be smaller than the period τ in our previous work [14], can be larger than τ .

See Fig. 3 for illustration of periodic switching signals and those with delays.

Fig. 3. Periodic switching signals, with and without delays

We focus on periodic switched systems with switching delays and their dif-
ference from those without switching delays. More specifically, we consider two
switched systems

Στ,δ0 = (Rn, P,Pτ,δ0 , F) τ -periodic with delays ≤ δ0

Στ = (Rn, P,Pτ , F) τ -periodic
(1)

that have a common state space R
n, a common set P of modes and a common

set F of vector fields. For the former system Στ,δ0 , the set Pτ,δ0 consists of all
τ -periodic signals with delays within δ0; for the latter system Στ the set Pτ

consists of all τ -periodic switching signals.

3 Transition Systems and Approximate Bisimulation

We formalize proximity between Στ,δ0 and Στ using the notion of approximate
bisimulation [10,11]. Approximate bisimulations are defined between transitions
systems.

114 K. Kido et al.

Definition 3.1 (transition system). A transition system is a triple T =
(Q,L, GGGA , O,H, I), where

– Q is a set of states;
– L is a set of labels;
– GGGA ⊆ Q × L × Q is a transition relation;

– O is a set of outputs;
– H : Q → O is an output function; and
– I ⊆ Q is a set of initial states.

We let q
l

GGGGA q′ denote the fact that (q, l, q′) ∈ GGGA .

In this paper, we assume that the set of outputs O is equipped with a function
d : O × O → R

+ ∪ {∞} and the function d is called a cost function.

Remark 3.2. In the context of approximate bisimulation, this mapping d is
usually a metric or some weaker notion of it. However, in our framework, the
mapping d in Definition 3.4 does not satisfy even the triangular inequality. There-
fore we call it “cost” in this paper.

For the two switched systems Στ,δ0 = (Rn, P,Pτ,δ0 , F) and Στ =
(Rn, P,Pτ , F) in (1), we shall construct associated transition systems T (Στ,δ0)
and T (Στ), respectively.

Definition 3.3 (T (Στ,δ0), T (Στ)). The transition system

T (Στ,δ0) = (Qτ,δ0 , L, GGGA
τ, δ0

, O,Hτ,δ0 , I) ,

associated with the switched system Στ,δ0 with delays in (1), is defined as follows:

– the set of states is Qτ,δ0 := R
n × ⋃

k∈N
[kτ, kτ + δ0] × P ;

– the set of labels L is the set of modes, i.e. L := P ;
– the transition relation GGGA

τ, δ0
⊆ Qτ,δ0 × L × Qτ,δ0 is defined by (x, t, p)

p′′
GGGGGGA

τ, δ0
(x′, t′, p′) if p = p′′, x′ = x(t′ − t, x, p) and there exists k ∈ N such

that t ∈ [kτ, kτ + δ0] and t′ ∈ [(k + 1)τ, (k + 1)τ + δ0];
– the set of outputs is O := R

n × R
+ × P ;

– the output function H : Qτ,δ0 → O is the canonical embedding function R
n ×⋃

k∈N
[kτ, kτ + δ0] × P → R

n × R
+ × P ; and

– the set of initial states is I := R
n × {0} × P .

Intuitively, each state (x, t, p) of T (Στ,δ0) marks switching in the system Στ,δ0 :
x ∈ R

n is the (continuous) state at switching; t is time of switching; and p is the
next mode. Note that, by the assumption on Στ,δ0 , t necessarily belongs to the
interval [kτ, kτ + δ0] for some k ∈ N.

Switching Delays and the Skorokhod Distance 115

Similarly, the transition system

T (Στ) = (Qτ , L, GGGA
τ

, O,Hτ , I) ,

associated with the switched system Στ without delays in (1), is defined as
follows:

– the set of states is Qτ := R
n × {0, τ, 2τ, . . . } × P ;

– the set of labels L is the set of modes, i.e. L := P ;
– the transition relation GGGA

τ
⊆ Qτ × L × Qτ is defined by (x, t, p)

p′′
GGGGGGA

τ
(x′, t′, p′) if p = p′′, t′ = t + τ and x′ = x(τ, x, p);

– the set of outputs is O := R
n × R

+ × P ;
– the output function H : Qτ,δ0 → O is the canonical embedding function; and
– the set of initial states is I := R

n × {0} × P .

Note that, in both of T (Στ,δ0) and T (Στ), the label p′′ for a transition is
uniquely determined by the mode component p of the transition’s source (x, t, p).
Therefore, mathematically speaking, we do not need transition labels.

In [12], the state space Q of the transition system is defined to be R
n and is

the same as the state space of the original switched system. In comparison, our
definition has two additional components, namely time t and the current mode
p. It is notable that moving a mode p from transition labels to state labels allows
us to analyze what happens during switching delays, that is, when the system
keeps operating under the mode p while it is not supposed to do so.

Now we define a cost function on the output set of these transition systems.
It compares the states at the corresponding switching times even if the switching
times do not match exactly.

Definition 3.4 (cost function). On the set of outputs O = R
n × R

+ × P that
is common to the two transition systems T (Στ,δ0) and T (Στ), we define the
following cost function d:

d((x, t, p), (x′, t′, p′)) :=
⎧
⎨

⎩

‖x − x′‖ if p = p′, t′ = kτ and
t ∈ [t′, t′ + δ0] for some k ∈ N

∞ otherwise.

We review the notion of approximate bisimulation [10,11], a (co)inductive
construct that guarantees henceforth proximity of behaviors of two states. The
main results of this paper will be proved by constructing approximate bisimula-
tion between the transition systems T (Στ,δ0) and T (Στ).

Definition 3.5. Let Ti = (Qi, L, GGGA
i

, O,Hi, Ii) (i = 1, 2) be two transition

systems with a cost function d; note that T1 and T2 share the same sets of actions
L and outputs O. Let ε ∈ R

+ be a positive number; we call it a precision. A
relation R ⊆ Q1 × Q2 is called an ε-approximate bisimulation relation between
T1 and T2 if the following three conditions hold for all (q1, q2) ∈ R.

116 K. Kido et al.

1. d(H1(q1),H2(q2)) ≤ ε;
2. ∀q1

l
GGGGA

1
q′
1,∃q2

l
GGGGA

2
q′
2 such that (q′

1, q
′
2) ∈ R; and

3. ∀q2
l

GGGGA

2
q′
2,∃q1

l
GGGGA

1
q′
1 such that (q′

1, q
′
2) ∈ R.

The transition systems T1 and T2 are approximately bisimilar with precision ε if
there exists an ε-approximate bisimulation relation R that satisfies the following
conditions:

– ∀q1 ∈ I1,∃q2 ∈ I2 such that (q1, q2) ∈ R;
– ∀q2 ∈ I2,∃q1 ∈ I1 such that (q1, q2) ∈ R.

We let T1 ∼ε T2 denote the fact that T1 and T2 are approximately bisimilar with
precision ε.

4 Incremental Stability

After the pioneering work [18], a number of frameworks rely on the assumption
of incremental stability for the construction of approximate bisimulations. Intu-
itively, a dynamical system is incrementally stable if, under any choice of an
initial state, the resulting trajectory asymptotically converges to one reference
trajectory.

In the subsequent definitions, we will be using the following classes of func-
tions. A continuous function γ : R+ → R

+ is a class K function if it is strictly
increasing and γ(0) = 0. A K function is a K∞ function if γ(x) → ∞ when
x → ∞. A continuous function β : R+ × R

+ → R
+ is a class KL function if (1)

the function defined by x �→ β(x, t) is a K∞ function for any fixed t; and (2)
for any fixed x, the function defined by t �→ β(x, t) is strictly decreasing, and
β(x, t) → 0 when t → ∞.

Definition 4.1 (δ-GAS system [3]). Let Σ = (Rn, P,P, F) be a single-mode
switched system where P = {p} is a singleton (therefore there is actually no
switching). The system Σ is incrementally globally asymptotically stable (δ-GAS)
if there exists a KL function β such that

‖x(t, x, p) − x(t, y, p)‖ ≤ β(‖x − y‖, t)

for all x, y ∈ R
n and t ∈ R

+.

The notion of δ-GAS is a well-known one among various notions of incremen-
tal stability. Directly establishing that a given system is δ-GAS is often hard. A
usual technique in the field is to let a Lyapunov-type function play the role of
witness for δ-GAS [3].

Definition 4.2. Let Σ = (Rn, P,P, F) be a single-mode switched system with
P = {p}. A smooth function V : Rn × R

n → R
+ is a δ-GAS Lyapunov function

Switching Delays and the Skorokhod Distance 117

for Σ if there exist K∞ functions α, α and κ > 0 such that the following hold
for all x, y ∈ R

n.

α(‖x − y‖) ≤ V (x, y) ≤ α(‖x − y‖) (2)
∂V

∂x
(x, y)fp(x) +

∂V

∂y
(x, y)fp(y) ≤ −κV (x, y) (3)

Note that the left-hand side of (3) is much like the Lie derivative of V along the
vector field fp.

Theorem 4.3 ([3]). Let Σ = (Rn, P,P, F) be a single-mode switched system
with P = {p}. The system Σ is δ-GAS if and only if it has a δ-GAS Lyapunov
function. �

The notions so far are for systems without switching. Their extension to
switched systems are introduced in [12].

Definition 4.4. Let Σ = (Rn, P,P, F) be a switched system. Σ is said to be
incrementally globally uniformly asymptotically stable (δ-GUAS) if there exists
a KL function β such that the following holds for all x, y ∈ R

n, t ∈ R
+ and

p ∈ P.
‖x(t, x,p) − x(t, y,p)‖ ≤ β(‖x − y‖, t)

A sufficient condition for a switched system to be δ-GUAS is the existence
of a common δ-GAS Lyapunov function.

Definition 4.5. Let Σ = (Rn, P,P, F) be a switched system. A smooth func-
tion V : Rn × R

n → R
+ is called a common δ-GAS Lyapunov function for Σ if

there exist K∞ functions α, α and κ > 0 that make the following hold for all
x, y ∈ R

n.

α(‖x − y‖) ≤ V (x, y) ≤ α(‖x − y‖) (4)
∂V

∂x
(x, y)fp(x) +

∂V

∂y
(x, y)fp(y) ≤ −κV (x, y) for all p ∈ P (5)

Theorem 4.6 ([12]). Let Σ be a switched system. If there exists a common
δ-GAS Lyapunov function V of Σ, then Σ is δ-GUAS. �

5 Constructing Approximate Bisimulation Between
Delayed and Delay-Free Systems

In this section, we construct an approximate bisimulation relation between the
transition systems T (Στ,δ0) and T (Στ) that are constructed from the delayed
system Στ,δ0 and the delay-free model Στ , respectively.

As preparation, we define the following function V ′ from δ-GAS Lyapunov
function V .

118 K. Kido et al.

Definition 5.1 (the function V ′). Let Σ = (Rn, P,P, F) be a switched system,
and let V : Rn × R

n → R
+ be a common δ-GAS Lyapunov function for Σ.

We define a function V ′ : (Rn × R
+ × P) × (Rn × R

+ × P) → R
+ in the

following manner:

V ′((x, t, p), (x′, t′, p′)
)

:=
{

V (x, x′) if p = p′ and t ∈ [t′, t′ + δ0]
∞ otherwise.

Our results rely on the following assumption.

Assumption 5.2 (bounded partial derivative). Let Σ = (Rn, P,P, F) be a
switched system, with P = {1, 2, . . . ,m} and F = {f1, f2, . . . , fm} being the set
of vector fields associated with each mode. We say a function V : Rn ×R

n → R
+

has bounded partial derivatives if there exists a real number ν ≥ 0 such that, for
any p ∈ P , the inequality

∣
∣
∣
∣
∂V

∂x
(x, y)fp(x)

∣
∣
∣
∣ ≤ ν

holds for each x, y ∈ R
n.

Remark 5.3. Assumption 5.2 is not assumed in the previous works on approx-
imate bisimulation for switched systems, such as [12]. The objective of [12] is to
discretize the state space and their framework is designed so that it can accom-
modate the error caused by the discretization (using [12, Equation 9]). Their
framework does not consider time-delays and they rely on the fact that the
switchings of the two systems occur at the same time instants. Therefore if one
just fixes the dwell time τ − δ0 in the results described in [12], it does not take
into account the error caused while the two systems are operated in different
modes.

In our results, to deal with this kind of error in an appropriate manner, we
make the switchings occur at the same time instants by using retimings and
use Assumption 5.2 to bound the effect of retimings. (Note that in our previous
work [14], we used [14, Assumption 5.1] to bound the error caused while the two
systems are operated in different modes.)

Imposing the assumption on δ-GAS Lyapunov functions, however, is not
a severe restriction. In [12], they assume that there exists γ ∈ R

+ such that,
for all x, y, z ∈ R

n,
|V (x, y) − V (x, z)| ≤ γ(‖y − z‖) (6)

(we do not need this assumption in the current work). It is claimed in [12]
that (6) is readily guaranteed if the dynamics of the switched system is confined
to a compact set C ⊆ R

n, and if V is class C1 in the domain C. We can use the
same compactness argument to ensure Assumption 5.2.

Our main technical lemma is as follows.

Switching Delays and the Skorokhod Distance 119

Lemma 5.4. Let Στ = (Rn, P,Pτ , F) be a τ -periodic switched system, and
Στ,δ0 = (Rn, P,Pτ,δ0 , F) be a τ -periodic switched system with delays within δ0.
Assume that there exists a common δ-GAS Lyapunov function V for Στ , and
that V satisfies the additional assumption in Assumption 5.2.

We consider a relation Rε ⊆ (Rn × R
+ × P) × (Rn × R

+ × P) defined by

(q, q′) ∈ Rε
def.⇐⇒ V ′(q, q′) ≤ α(ε) . (7)

Here V ′ is from Definition 5.1. If we fix ε = α−1
(

νδ0
1−e−κτ

)
where ν is from

Assumption 5.2, then, the relation Rε is an approximate bisimulation between
the transition systems T (Στ,δ0) and T (Στ). Moreover, T (Στ,δ0) ∼ε T (Στ). �
Proof. To prove that Rε is an approximate bisimulation relation, we need to
prove the conditions in Definition 3.5.

For qτ,δ0 = (xτ,δ0 , tτ,δ0 , pτ,δ0) and qτ = (xτ , tτ , pτ), we assume that
(qτ,δ0 , qτ) ∈ Rε holds. From the construction of the transition system T (Στ),
we have

tτ = kτ for some k ∈ N. (8)

By the definition (7) of the relation Rε and Definition 5.1, we have

pτ,δ0 = pτ , (9)
tτ,δ0 ∈ [tτ , tτ + δ0], and (10)
V (xτ,δ0 , xτ) ≤ α(ε). (11)

By (4), we have

α(‖xτ,δ0 − xτ‖) ≤ V (xτ,δ0 , xτ). (12)

Then, by (11) and (12), we can say that α(‖xτ,δ0 − xτ‖) ≤ α(ε). Thus, using
the monotonicity of α, we have ‖xτ,δ0 − xτ‖ ≤ ε. By this equation with side
conditions (8)–(10), we have d(qτ,δ0 , qτ) ≤ ε. This proves Condition 1.

Then, we will prove Condition 2. For qτ,δ0 and qτ , we additionally assume
that qτ,δ0

pτ
GGGGGGA

τ, δ0
q′
τ,δ0

= (x(t′τ,δ0
− tτ,δ0 , xτ,δ0 , pτ), t′τ,δ0

, p′
τ,δ0

). Then, we define q′
τ

by q′
τ = (x(τ, xτ , pτ), t′τ , p′

τ) where

t′τ = (k + 1)τ, and
p′

τ = p′
τ,δ0 .

120 K. Kido et al.

This definition of q′
τ guarantees qτ

pτ
GGGGGGA

τ
q′
τ . Now we show (q′

τ,δ0
, q′

τ) ∈ Rg(ε) for

this q′
τ in the following manner.

V ′(q′
τ,δ0 , q

′
τ)

= V (x(t′τ,δ0 − tτ,δ0 , xτ,δ0 , pτ),x(τ, xτ , pτ))

≤ e−κτV (xτ,δ0 , xτ) + ν|t′τ,δ0 − tτ,δ0 − τ |
≤ e−κτV (xτ,δ0 , xτ) + νδ0

≤ e−κτα(ε) + νδ0

= α(g(ε)).

Thus we have (q′
τ,δ0

, q′
τ) ∈ Rg(ε) and this proves Condition 2.

Condition 3 can be proved in a similar way. It is easy to check that
T (Στ,δ0) ∼ε T (Στ). �

6 Upper Bound of Skorokhod Metric

In Lemma 5.4, we constructed an approximate bisimulation that bound the cost
d between the states by ε. Note that there is timing discrepancy between states
we compare, and therefore this bound ε does not bound the pointwise error (the
error in the continuous state space at the same time instant). Instead, what
we obtain is actually an upper bound of the Skorokhod metric. The following
definitions are taken from [7] and adapted to our setting.

First we define retiming functions.

Definition 6.1 (retiming). A function r : R+ → R
+ is a retiming if it is order-

preserving, bijective and continuous. The set of all retiming functions is denoted
by Ret. The identity retiming is denoted by I ∈ Ret.

Then, we define the Skorokhod metric using the sup norm ‖ ‖∞ on the set
of retimings Ret.

Definition 6.2 (Skorokhod metric). Let r be a retiming, and π, π′ : R+ → R
n

be two trajectories. Note that ‖r − I‖∞ = supt∈R+ |r(t) − t|, and that ‖π ◦ r −
π′‖∞ = supt∈R+ ‖π(r(t)) − π′(t)‖. Here, ‖ ‖ on R

n is the usual Euclidean norm.
The Skorokhod distance between the trajectories π and π′ is defined by

DS(π, π′) = inf
r∈Ret

max (‖r − I‖∞, ‖π ◦ r − π′‖∞) .

The transference of temporal specifications enables one of the most important
applications of the Skorokhod metric—the application to conformance testing. In
this paper, we do not refer the full transference theorem for temporal specifica-
tions in [7], since we only use the Skorokhod metric for reachability analysis, not
complicated temporal properties. For reachability, the following obvious propo-
sition is enough.

Switching Delays and the Skorokhod Distance 121

Proposition 6.3. Let Σ and Σ′ be switched systems. Assume that for every
trajectory π of Σ, there exists a trajectory π′ of Σ′ such that DS(π, π′) ≤ ε.
Then, the reachable set of Σ is included in the ε-expansion Eε(S) of the reach-
able set S of Σ′, where the ε-expansion Eε(S) is {x ∈ R

n | there exists y ∈
S such that ‖x − y‖ ≤ ε}. �

The following is our main theorem. It ensures that we can compute an over-
approximation of the Skorokhod distance using the approximate bisimulation
relation given in Lemma 5.4.

Theorem 6.4. Assume the same assumptions as in Lemma 5.4. Let pτ be a
τ -periodic switching signal, and pτ,δ0 be the same signal but with delays within
δ0. That is, for each s ∈ R

+,

pτ,δ0(s) =

{
pτ (s) or pτ (s − δ0) if s ∈ ⋃

k∈N,k≥1[kτ, kτ + δ0)
pτ (s) otherwise.

Given a state x0 ∈ R
n, we define two trajectories πτ,δ0,x0 , πτ,x0 : R+ → R

n by

πτ,δ0,x0(t) = x(t, x0,pτ,δ0), and
πτ,x0(t) = x(t, x0,pτ).

Then, we obtain an upper bound of the Skorokhod distance DS(πτ,δ0,x0 , πτ,x0)
by, for any t ∈ R

+,

DS(πτ,δ0,x0 , πτ,x0) ≤ max
(

δ0, α
−1

(
νδ0
κτ

)

, α−1

(
νδ0

1 − e−κτ

))

.

Proof. Note that pτ is a τ -periodic switching signal, and pτ,δ0 is the same signal
but with delays within δ0. For k ∈ N, the k-th switching of pτ occurs at t = kτ .
The k-th switching time of pτ,δ0 is denoted by stpτ,δ0

(k). We define a retiming
r as follows: for every k ∈ N and t ∈ [0, τ),

r(kτ + t) =
(τ − t)stpτ,δ0

(k) + tstpτ,δ0
(k + 1)

τ
. (13)

Intuitively, this retiming r adjust each switching time of the periodic signal
to that with delays, and the interval between switchings are rescaled uniformly.
It is easy to check that this r is order-preserving, bijective and continuous.

For this r, we have

‖r − I‖∞ ≤ δ0. (14)

Then, our next goal is to show that

sup
t∈R+

‖πτ,δ0,x0(r(t)) − πτ,x0(t)‖

≤ max
(

α−1

(
νδ0
κτ

)

, α−1

(
νδ0

1 − e−κτ

))

. (15)

122 K. Kido et al.

Using the result of Lemma 5.4, we have, for all k ∈ N,

‖πτ,δ0,x0(r(kτ)) − πτ,x0(kτ)‖ ≤ α−1

(
νδ0

1 − e−κτ

)

. (16)

Note that r(kτ) = stpτ,δ0
(k).

We can see from (13) that in t ∈ [kτ, (k + 1)τ], the application of r quickens

or slows down time progress uniformly by multiplying
stpτ,δ0

(k+1)−stpτ,δ0
(k)

τ . In

other words, in t ∈ [kτ, (k + 1)τ], dr(t)
dt =

stpτ,δ0
(k+1)−stpτ,δ0

(k)

τ .
This means that after the application of r, the trajectory x = πτ,δ0,x0 ◦ r is

according to

ẋ = ˙(πτ,δ0,x0 ◦ r) =
dπτ,δ0,x0(r(t))

dr(t)
dr(t)
dt

=
stpτ,δ0

(k + 1) − stpτ,δ0
(k)

τ
fp(x), (17)

where p is the mode after k-th switching. By (5) and (17), we have

∂V

∂x
(x, y) ˙(πτ,δ0,x0 ◦ r) +

∂V

∂y
(x, y)fp(y)

≤ − κV (x, y) +
stpτ,δ0

(k + 1) − stpτ,δ0
(k) − τ

τ

∂V

∂x
(x, y)fp(x).

Using stpτ,δ0
(k) ∈ [kτ, kτ + δ0] and stpτ,δ0

(k + 1) ∈ [(k + 1)τ, (k + 1)τ + δ0],
we have

∂V

∂x
(x, y) ˙(πτ,δ0,x0 ◦ r) +

∂V

∂y
(x, y)fp(y)

≤ − κV (x, y) +
δ0
τ

∣
∣
∣
∣
∂V

∂x
(x, y)fp(x)

∣
∣
∣
∣ .

Using Assumption 5.2, we can say that

∂V

∂x
(x, y) ˙(πτ,δ0,x0 ◦ r) +

∂V

∂y
(x, y)fp(y) ≤ −κV (x, y) +

δ0
τ

ν.

We can see that the right hand side of this inequality is negative when
V (x, y) ≥ νδ0

κτ .
By combining this result with (16), we obtain (15) as desired. �

7 Example

We demonstrate our framework using the example of the boost DC-DC converter
from [4]. It is a common example of switched systems. For this example we have
a common δ-GAS Lyapunov function V .

Switching Delays and the Skorokhod Distance 123

Fig. 4. The boost DC-DC converter circuit.

System Description. The system we consider is the boost DC-DC converter in
Fig. 4, taken from [4]. Here we extend the analysis in [12]. The circuit includes a
capacitor with capacitance xc and an inductor with inductance xl. The capac-
itor has the equivalent series resistance rc, and the inductor has the internal
resistance rl. The input voltage is vs, and the resistance ro is the output load

resistance. The state x(t) =
[
il(t)
vc(t)

]

of this system consists of the inductor cur-

rent il and the capacitor voltage vc.
The dynamics of this system has two modes {ON,OFF}2, depending on

whether the switch in the circuit is on or off. By elementary circuit theory, the
dynamics in each mode is modeled by

ẋ(t) = Apx(t) + b for p ∈ {ON,OFF} , where

AON =
[− rl

xl
0

0 − 1
xc(ro+rc)

]

, b =
[vs

xl

0

]

and

AOFF =

[
− rlro+rlrc+rorc

xl(ro+rc)
− rlro+rlrc+rorc

xl(ro+rc)
ro

xc(ro+rc)
− 1

xc(ro+rc)

]

.

We use the parameter values from [4], that is, xc = 70 p.u., xl = 3 p.u., rc = 0.005
p.u., rl = 0.05 p.u., ro = 1 p.u. and vs = 1 p.u.

Analysis. Following [12], we rescale the second variable of the system and rede-

fine the state x(t) =
[

il(t)
5vc(t)

]

for better numerical conditioning. The ODEs are

updated accordingly.
[12] shows that the dynamics in each mode is δ-GAS, finding by SDP opti-

mization a common δ-GAS Lyapunov function V (x, y) =
√

(x − y)T M(x − y)

with M =
[
1.0224 0.0084
0.0084 1.0031

]

, such that α(s) = s, α(s) = 1.0127s and κ = 0.014.

We use the same function V as an ingredient for our approximate bisimulation.

2 In the formalization of Sect. 2, the set P of modes is declared as {1, · · · , m}. Here
we instead use P = {ON,OFF} for readability.

124 K. Kido et al.

Our ultimate goal is to synthesize a switching signal that keeps the dynamics
in a safe region S := [1.3, 1.7] × [5.7, 5.8]. We shall follow the two-step workflow
in Fig. 1.

Let us first use Theorem 6.4 and derive a bound ε1 for the Skorokhod dis-
tance caused by switching delays. We set the switching period τ = 0.5 and the
maximum delay δ0 = τ

1000 . On top of the analysis in [12], we have to verify the
condition we additionally impose (namely Assumption 5.2). Let us now assume
that the dynamics stays in the safe region S = [1.3, 1.7]× [5.7, 5.8]—this assump-
tion will be eventually discharged when we synthesize a safety controller. Then
it is not hard to see that ν = 0.33 satisfies Assumption 5.2. By Theorem 6.4, we
obtain that the Skorokhod distance between Στ,δ0 (the boost DC-DC converter
with delays) and Στ (the one without delays) is bounded by ε = 0.023655, which
is smaller than the pointwise error bound ε = 0.0294176 found in [14]. As sug-
gested in Proposition 6.3, this bound can be used to reduce the reachability of
the delayed system to that of its delay-free model.

We sketch how we can combine the above analysis with the controller syn-
thesis in [9], in the way prescribed in Fig. 1. Our goal is to synthesize a safety
controller for the system Στ,δ0 with delays, for the safe set [1.3, 1.7] × [5.7, 5.8].

In [12] they use the same Lyapunov function as above to derive a discrete
symbolic model T symb

τ and establish an approximate bisimulation between T (Στ)
and the symbolic model. Their symbolic model T symb

τ can be constructed so that
any desired error bound ε2 is guaranteed (a smaller ε2 calls for a finer grid for
discretization and hence a bigger symbolic model).

Now following the workflow in [9], we consider a shrunk safe region [1.3 +
(ε1 + ε2), 1.7 − (ε1 + ε2)] × [5.7 + (ε1 + ε2), 5.8 − (ε1 + ε2)] for the symbolic
model T symb

τ . Then, we can employ an algorithm from supervisory control [20]
and synthesize a set of safe switching signals that confine the dynamics of T symb

τ

to the shrunk safe region. This is the horizontal arrow at the bottom of Fig. 1.
From the resulting controller, using [9, Theorem 1], we can construct a safety
controller for the original system with delays, for the safe set [1.3, 1.7]× [5.7, 5.8].
For a more detailed description of the resulting controllers, see [12, Figure 3].

8 Conclusion and Future Work

We have introduced an approximate bisimulation-based framework to analyze
the effect of the time delays. Our framework constructs an approximate bisimu-
lation relation between a delayed system and its delay-free model, which results
in an upper bound of the Skorokhod distance. The construction of the approx-
imate bisimulation relation uses Lyapunov functions for δ-GUAS. An example
of a boost DC-DC converter has been analyzed successfully.

A possible direction of future work is to use the upper bound of the Sko-
rokhod metric found by this framework to verification or controller synthesis for
temporal logic specifications.

Switching Delays and the Skorokhod Distance 125

References

1. Abbas, H., Fainekos, G.E.: Towards composition of conformant systems. CoRR
abs/1511.05273 (2015)

2. Abbas, H., Mittelmann, H.D., Fainekos, G.E.: Formal property verification in a con-
formance testing framework. In: Twelfth ACM/IEEE International Conference on
Formal Methods and Models for Codesign, MEMOCODE 2014, Lausanne, Switzer-
land, 19–21 October 2014, pp. 155–164 (2014)

3. Angeli, D.: A Lyapunov approach to incremental stability properties. IEEE Trans.
Autom. Control 47(3), 410–421 (2002)

4. Beccuti, A.G., Papafotiou, G., Morari, M.: Optimal control of the boost dc-dc
converter. In: Proceedings of the 44th IEEE Conference on Decision and Control,
pp. 4457–4462, December 2005

5. Borri, A., Pola, G., Di Benedetto, M.D.: A symbolic approach to the design of
nonlinear networked control systems. In: Proceedings of the 15th ACM Interna-
tional Conference on Hybrid Systems: Computation and Control, HSCC 2012, pp.
255–264. ACM, New York (2012)

6. Davoren, J.M.: Epsilon-tubes and generalized Skorokhod metrics for hybrid paths
spaces. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp.
135–149. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00602-
9 10

7. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using
the Skorokhod metric. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9207, pp. 234–250. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21668-3 14

8. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

9. Girard, A.: Controller synthesis for safety and reachability via approximate bisim-
ulation. Automatica 48(5), 947–953 (2012)

10. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Trans. Autom. Control 52(5), 782–798 (2007)

11. Girard, A., Pappas, G.J.: Approximate bisimulation: a bridge between computer
science and control theory. Eur. J. Control 17(5–6), 568–578 (2011)

12. Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for
incrementally stable switched systems. IEEE Trans. Autom. Control 55(1), 116–
126 (2010)

13. Khatib, M.A., Girard, A., Dang, T.: Verification and synthesis of timing contracts
for embedded controllers. In: Proceedings of the 19th International Conference on
Hybrid Systems: Computation and Control, HSCC 2016, Vienna, Austria, 12–14
April 2016, pp. 115–124 (2016)

14. Kido, K., Sedwards, S., Hasuo, I.: Bounding Errors Due to Switching Delays
in Incrementally Stable Switched Systems (Extended Version). ArXiv e-prints,
December 2017

15. Kido, K.: Reachability analysis of hybrid systems via predicate and relational
abstraction. Ph.D. thesis, The University of Tokyo (2018)

16. Majumdar, R., Prabhu, V.S.: Computing the Skorokhod distance between polygo-
nal traces. In: Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, HSCC 2015, pp. 199–208. ACM, New York (2015)

https://doi.org/10.1007/978-3-642-00602-9_10
https://doi.org/10.1007/978-3-642-00602-9_10
https://doi.org/10.1007/978-3-319-21668-3_14
https://doi.org/10.1007/978-3-319-21668-3_14
https://doi.org/10.1007/978-3-642-22110-1_30

126 K. Kido et al.

17. Majumdar, R., Prabhu, V.S.: Computing distances between reach flowpipes. In:
Proceedings of the 19th International Conference on Hybrid Systems: Computation
and Control, HSCC 2016, pp. 267–276. ACM, New York (2016)

18. Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for
nonlinear control systems. Automatica 44(10), 2508–2516 (2008)

19. Pola, G., Pepe, P., Benedetto, M.D.D.: Alternating approximately bisimilar sym-
bolic models for nonlinear control systems with unknown time-varying delays. In:
Proceedings of the 49th IEEE Conference on Decision and Control, CDC 2010,
Atlanta, Georgia, USA, 15–17 December 2010, pp. 7649–7654 (2010)

20. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

21. Zamani, M., Mazo Jr., M., Khaled, M., Abate, A.: Symbolic abstractions of net-
worked control systems. IEEE Trans. Control Netw. Syst. PP(99), 1 (2017)

Formal Analysis of Robotic Cell Injection
Systems Using Theorem Proving

Adnan Rashid(B) and Osman Hasan

School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{adnan.rashid,osman.hasan}@seecs.nust.edu.pk

Abstract. Cell injection is an approach used for the delivery of small
sample substances into a biological cell and is widely used in drug devel-
opment, gene injection, intracytoplasmic sperm injection (ICSI) and
in-virto fertilization (IVF). Robotic cell injection systems provide the
automation of the process as opposed to the manual and semi-automated
cell injection systems, which require expert operators and involve time
consuming processes and also have lower success rates. The automation
of the cell injection process is achieved by controlling the injection force
and planning the motion of the injection pipette. Traditionally, these
systems are analyzed using paper-and-pencil proof and computer simu-
lation methods. However, the former is human-error prone and the later
is based on the numerical algorithms, where the approximation of the
mathematical expressions introduces inaccuracies in the analysis. Formal
methods can overcome these limitations and thus provide an accurate
analysis of the cell injection systems. Model checking, i.e., a state-based
formal method, has been recently proposed for the analysis of these sys-
tems. However, it involves the discretization of the differential equations
that are used for modeling the dynamics of the system and thus compro-
mises on the completeness of the analysis of these safety-critical systems.
In this paper, we propose to use higher-order-logic theorem proving, a
deductive-reasoning based formal method, for the modeling and analysis
of the dynamical behaviour of the robotic cell injection systems. The pro-
posed analysis, based on the HOL Light theorem prover, enabled us to
identify some discrepancies in the simulation and model checking based
analysis of the same robotic cell injection system.

Keywords: Robotic cell injection system · Higher-order logic ·
Theorem proving

1 Introduction

Biological cell injection is a method used for the insertion of small amount of
substances, i.e., bio-molecules, sperms, genes and proteins, into the suspended
or adherent cells. It is widely used in gene injection [19], drug development [21],
intracytoplasmic sperm injection (ISCI) [27] and in-vitro fertilization (IVF) [26].
c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 127–141, 2019.
https://doi.org/10.1007/978-3-030-17910-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-17910-6_10

128 A. Rashid and O. Hasan

For example, in IVF, the sperm is injected into matured eggs for the treatment
of infertility. Similarly, drug development involves the injection of drugs into a
cell and the observation of its implication at the cellular level.

Robotic cell injection systems can automatically perform the task of cell
injection as opposed to the traditionally adopted manual and semi-automated
injection procedures, which require trained operators and time-consuming pro-
cesses and also have lower success rates. The most important factor in a robotic
cell injection system is the injection force [18] as a slight excessive force may
damage the membrane of the cell [17] or an insufficient force may not be able
to pierce the cell [10]. Moreover, these robotic systems consist of an injection
manipulator, digital cameras, sensors and microscope optics [18] and thus the
accuracy of the orientation and movement of these fundamental components is
vital for the reliability of the overall system. Thus, the robotic cell injection sys-
tem designs need to be analyzed and verified quite carefully to ensure that these
requirements are exhibited by the final systems.

The first step in the analysis of a robotic cell injection system is to model
the coordinate frames corresponding to the orientations of its various compo-
nents, i.e, the injection manipulator, cameras and images. This model allows us
to capture the movement and thus the positions of these components during the
process of cell injection. Moreover, the relationship between these coordinates
provides the relative positions of these components, which is quite vital for a suc-
cessful cell injection procedure. Next, in order to perform the process of injection,
the motion planning of the injection pipette is modeled using some force control
algorithms, such as the contact-space-impedance force control [18,25] and the
image-based torque controller [17]. These controllers capture the overall dynam-
ics of the system and are mainly responsible for the smooth functionality of the
system during the process of cell injection.

Traditionally, the robotic cell injection systems have been analyzed using
paper-and-pencil techniques. However, these manual analysis methods are prone
to human error and also are not scalable for analyzing complex models like the
robotic cell injection systems. Moreover, in some cases, all the required assump-
tions are not documented in the mathematical analysis, which may lead to erro-
neous design and analysis. Similarly, the computer simulations and the numerical
methods have been used for the analysis of these systems. However, due to the
continuous nature of the analysis and the limited amount of computer memory
and the computational resources, the system is analyzed for a certain number
of test cases only and thus the absolute accuracy cannot be achieved. Computer
algebra systems, such as Mathematica [20], have also been used for analyzing
these systems [22]. However, the symbolic algorithms residing in the core of these
systems are unverified [9], which puts a question mark on the accuracy of these
analyses. Due to the safety-critical nature of robotic cell injection systems, the
above-mentioned traditional techniques cannot be relied upon as they are either
error prone or incomplete, which may lead to an undetected error in the analysis
that may in turn lead to disastrous consequences.

Formal Analysis of Robotic Cell Injection Systems 129

Formal methods [16] are computer-based mathematical analysis tech-
niques that can overcome the above-mentioned inaccuracies. Primarily, these
techniques involve the development of a mathematical model of a system and
verification of its properties using computer-based mathematical reasoning.
Sardar et al. [24] recently used probabilistic modeling checking [7], i.e., a state-
based formal method, to formally analyze the robotic cell injection systems.
However, their methodology involves the discretization of the differential equa-
tions that model the dynamics of these systems, which compromises the accuracy
of the corresponding analysis. Moreover, the analysis also suffers from the inher-
ent state-space explosion problem [8]. Higher-order-logic theorem proving [13] is
an interactive verification technique that can overcome these limitations. It pri-
marily involves the mathematical modeling of the system based on higher-order
logic and verification of its properties based on deductive reasoning. Given the
high expressiveness of higher-order logic, it can truly capture the behavior of the
differential equations, which is not possible in model checking based analysis.

In this paper, we propose to use the higher-order-logic theorem proving to
formally analyze the robotic cell injection systems [17] using the HOL Light
theorem prover [12]. The main motivation for the selection of HOL Light is the
availability of reasoning support for real calculus [5], multivariate calculus [3],
vectors [6] and matrices [6], which are some of the foremost requirements for
formally analyzing robotic cell injection systems. The major contributions of
the paper are:

• Formalization of the cell injection system, which includes the formal model-
ing of camera, stage and image coordinates and formal verification of their
interrelationships in higher-order logic. It also includes the formal modeling
of their dynamical behaviour (dynamics of two degrees of freedom (DOF)
motion stage) using a system of differential equations and the formal verifi-
cation of their solutions.

• Formalization of the motion planning of the injection pipette, which includes
the formal modeling of the contact-space-impedance force control and the
image-based torque controller and formal verification of their interrelation-
ship.

• Identification of the discrepancies in the simulation and model checking based
analysis of these systems, i.e., the mathematical expression representing the
image-based torque controller used in both simulation and model checking
based analysis of the same system was found to be wrong based on the
reported formalization in this paper.

The rest of the paper is organized as follows: Sect. 2 provides an introduction
about the HOL Light theorem prover, multivariate calculus theories of HOL
Light and the robotic cell injection system. Section 3 presents the formalization
of robotic cell injection system. We present the formalization of motion planning
of the injection pipette in Sect. 4. This also includes the identification of the
discrepancies in the simulation and model checking based analysis of the same
system. Finally, Sect. 5 concludes the paper.

130 A. Rashid and O. Hasan

2 Preliminaries

This section presents an introduction to the HOL Light theorem prover, multi-
variate calculus theories of HOL Light and the robotic cell injection system.

2.1 HOL Light Theorem Prover

HOL Light [12] is a theorem proving environment that belongs to the family of
HOL theorem provers. It is implemented in the meta language (ML) [23], which
is a functional programming language and is widely used for the construction of
the mathematical proofs in the form of theories. A theory in HOL Light consists
of types, constants, definitions, axioms and theorems. The HOL Light theories
are ordered in a hierarchical fashion and the child theories can inherit the types,
definitions and theorems of the parent theories. Every new theorem has to be
verified based on the primitive inference rules and basic axioms or already verified
theorems present in HOL Light, which ensures the soundness of this technique.
HOL Light provides an extensive support for the analysis based on Boolean
algebra [2], real arithmetics [4], multivariable calculus [14] and vectors [6]. There
are many automatic proof procedures [15], available in HOL Light, which are
very useful in verifying the mathematical results automatically.

2.2 Multivariable Calculus Theories in HOL Light

A N-dimensional vector is represented as a RN column matrix with each of its
element as a real number in HOL Light [14]. All of the vector operations are
thus performed using matrix manipulations. Similarly, all of the multivariable
calculus theorems are verified in HOL Light for functions with an arbitrary
data-type RN → RM.

Some of the frequently used HOL Light functions in the reported formaliza-
tion are explained below:

Definition 1. Vector
� ∀ l. vector l = (lambda i. EL (i - 1) l)

The function vector accepts a list l : α list and returns a vector having each
component of data-type α. It utilizes the function EL m L, which returns the mth

element of a list L. Here, the lambda operator in HOL is used to construct a
vector based on its components [14].

Definition 2. Real Cosine and Real Sine Functions
� ∀ x. cos x = Re (ccos (Cx x))
� ∀ x. sin x = Re (csin (Cx x))

The real cosine and real sine are represented as cos : R → R and sin : R →
R in HOL Light [11], respectively. These functions are formally defined using
the complex cosine ccos: R2 → R2 and complex sine csin: R2 → R2 functions,
respectively.

Formal Analysis of Robotic Cell Injection Systems 131

Definition 3. Real Derivative
� ∀ f x. real derivative f x =

(@f′. (f has real derivative f′) (atreal x))

The function real derivative accepts a function f : R → R and a real
number x, which is the point at which f has to be differentiated, and returns a
variable of data-type R, which represents the differential of f at x. The function
has real derivative defines the same relationship in the relational form.

We build upon the above-mentioned fundamental functions of multivariable
calculus to formally analyze the robotic cell injection system in Sects. 3 and 4 of
the paper.

2.3 Robotic Cell Injection Systems

A robotic cell injection system mainly comprises of three modules, namely exec-
utive, sensory and control modules as depicted in Fig. 1. The executive module
consists of positioning table, working plate and the injection manipulator. The
cells that need to be injected are placed on a working plate, which is mounted
on a positioning table (XY θ-axis) and the injection manipulator is mounted on
Z-axis as shown in Fig. 1.

Fig. 1. Robotic cell injection systems

132 A. Rashid and O. Hasan

The sensory module comprises of a vision system that has four parts, namely
optical microscope, charged coupled device (CCD) camera, peripheral compo-
nent interconnect (PCI) image capture and a processing card. The CCD camera
is used to capture the cell injection process using a PCI image capture. The con-
trol module contains a host computer and a DCT0040 motion control system.
Figure 2 depicts the configuration of a robotic cell injection system. The axis
o − xyz represents the stage (table and working plate) coordinate frame, where
o is the origin of these coordinates representing the center of the working plate
and z is along the optical axis of the microscope. Similarly, oc − xcyczc is the
camera coordinate frame with oc representing the center of the microscope. The
coordinate frame in image plane is represented as oi − uv, where oi is the origin
and the axis uv is perpendicular to the optical axis.

Fig. 2. Configuration of the robotic cell injection systems

3 Formalization of Robotic Cell Injection System

We present the higher-order-logic formalization of the robotic cell injection sys-
tem using standard mathematical notations rather than the HOL Light nota-
tions, to facilitate the understanding of the paper for a non-HOL user. The
source code for our formalization can be obtained from [1] for the readers who
are interested to view the exact HOL Light formalization, presented in this paper.
We consider 2-DOF to represent the dynamics of the robotic cell injection sys-
tem. The camera, stage and image coordinates are two-dimensional coordinates,
which are modeled as follows in HOL Light:

Formal Analysis of Robotic Cell Injection Systems 133

Definition 4. Two-dimensional Coordinates

� ∀ x y t. twod coord x y t =

[
x(t)
y(t)

]

where x and y with data-type R → R representing the respective axes and t is
a variable representing the time.

Next, we model the rotation matrix from the stage coordinate frame (o −
xyz) to the camera coordinate frame (oc − xxyczc), and the two-dimensional
displacement vector between the origins of both these frames:

Definition 5. Rotation Matrix and Displacement Vector

� ∀ alpha. rot mat alpha =

[
cos (alpha) sin (alpha)
-sin (alpha) cos (alpha)

]

� ∀ dx dy. disp vec dx dy =

[
dx
dy

]

The verification of the relationship between stage, camera and image coor-
dinates provides key information for the reliable operation of the cell injection
system by ensuring the accuracy of the orientation and movement of its various
components, i.e., stage frame, microscope, camera and injection manipulator.
Firstly, we verify the relationship between camera and stage coordinates as:

Theorem 1. Relationship Between Camera and Stage Coordinates
� ∀ xc yc x y alpha dx dy t.

[A1]: 0 < dx ∧
[A2]: 0 < dy

⇒
(
rel cam sta coord xc yc x y alpha dx dy t ⇔

[
xc(t)
yc(t)

]
=

[
x(t) ∗ cos (alpha) + y(t) ∗ sin (alpha) + dx

- x(t) ∗ sin (alpha) + y(t) ∗ cos (alpha) + dy

])

where the HOL Light function rel cam sta coord models the relationship
between camera and stage coordinates. The two assumptions of the above the-
orem provide the design constraints for the relationship. The above theorem is
verified using the properties of vectors and matrices alongside some real arith-
metic reasoning. Next, to verify the relationship between image and camera
coordinates, we first model the display resolution matrix as the following HOL
Light function:

Definition 6. Display Resolution Matrix

� ∀ fx fy. disp res mat fx fy =

[
fx 0
0 fy

]

134 A. Rashid and O. Hasan

Now the image-camera coordinate frame interrelationship is verified as:

Theorem 2. Relationship Between Image and Camera Coordinates
� ∀ xc yc u v t fx fy.

[A1]: 0 < fx ∧
[A2]: 0 < fy

⇒
(
rel ima cam coord xc yc u v t fx fy ⇔

[
u(t)
v(t)

]
=

[
fx ∗ xc(t)
fy ∗ yc(t)

])

where the HOL Light function rel ima cam coord models the relationship
between the image and the camera coordinates. The two assumptions of
Theorem 2 provide the design constraints for the relationship. Next, we model
the transformation matrix between image and stage coordinate frames, which is
used in the verification of their interrelationship and is given as follows:

Definition 7. Transformation Matrix
� ∀ fx fy alpha. transf mat fx fy alpha =[

fx ∗ cos (alpha) fx ∗ sin (alpha)
-fy ∗ sin (alpha) fy ∗ cos (alpha)

]

Now, we verify an important relationship between the image and stage coor-
dinates as the following HOL Light theorem:

Theorem 3. Relationship Between Image and Stage Coordinates
� ∀ x y u v t fx fy dx dy alpha xc yc.

[A1]: 0 < dx ∧
[A2]: 0 < dy ∧
[A3]: 0 < fx ∧
[A4]: 0 < fy ∧
[A5]: twod coord u v t = disp res mat fx fy ∗∗

twod coord xc yc t ∧
[A6]: twod coord xc yc t = rot mat alpha ∗∗

twod coord x y t + disp vec dx dy
⇒ twod coord u v t = transf mat fx fy alpha ∗∗

twod coord x y t +

[
fx ∗ dx
fy ∗ dy

]

where ∗∗ represents the matrix-vector multiplication. The first four assumptions
(A1–A4) model the design constraints for the relationship between image and
stage coordinates. The next assumption (A5) presents the relationship between
image and camera coordinates. The last assumption (A6) presents the relation-
ship between camera and stage coordinates. The verification of Theorem 3 is
mainly based on Theorems 1 and 2, and some classical properties of the vectors

Formal Analysis of Robotic Cell Injection Systems 135

and matrices. The verification of these relationships raise our confidence about
the orientation of the vital components of a cell injection system, i.e., injection
manipulator, working plate, camera and microscope.

Next, we model and verify the dynamics of the cell injection system. The
dynamics of the 2-DOF motion stage, based on Lagrange’s equation, is mathe-
matically expressed as:

[
mx + my + mp 0

0 my + mp

]
⎡
⎢⎢⎣

d2x

dt

d2y

dt

⎤
⎥⎥⎦ +

[
1 0
0 1

]
⎡
⎢⎢⎣

dx

dt

dy

dt

⎤
⎥⎥⎦ =

[
τx

τy

]
−

[
fexd

feyd

]
(1)

where mx, my and mp are the masses of the xy positioning tables and working
plate, respectively. Similarly, τx and τy represent the components of the input
torque to the driving motor. Similarly, fexd and feyd represent the compo-
nents of the desired force applied to the actuators during the process of the cell
injection. We formalize Eq. (1) as the following HOL Light function:

Definition 8. Dynamics of the 2-DOF Motion Stage
� ∀ mx my mp x y t taux tauy fexd feyd.

dyn 2 dof mot sta mx my mp x y t taux tauy fexd feyd ⇔
mass mat mx my mp ∗∗ sec ord der sta coord x y t +

pos tab mat ∗∗ fir ord der sta coord x y t =
tor vec taux tauy - des force vec fexd feyd

where mass mat is the matrix containing the respective masses and pos tab mat
is the diagonal matrix. Similarly, tor vec and des force vec are the vec-
tors with their elements representing the components of the applied torque
and desired force. The HOL Light functions fir ord der sta coord and
sec ord der sta coord model the vectors having first-order and second-order
derivatives of the stage coordinates:

Definition 9. First and Second-order Derivative Vectors
� ∀ x y t. fir ord der sta coord x y t = deriv vec fir [x; y] t
� ∀ x y t. sec ord der sta coord x y t = deriv vec sec [x; y] t

where deriv vec fir and deriv vec sec accept a list containing the functions
of data-type R → R and return the corresponding first and second-order deriva-
tive vectors [1].

If the applied torque and force vectors are zero, then the injection pipette
does not touch the cells. Thus, Eq. (1) can be transformed for this particular
scenario as follows:

[
mx + my + mp 0

0 my + mp

]
⎡
⎢⎢⎣

d2x

dt

d2y

dt

⎤
⎥⎥⎦ +

[
1 0
0 1

]
⎡
⎢⎢⎣

dx

dt

dy

dt

⎤
⎥⎥⎦ =

[
0
0

]
(2)

136 A. Rashid and O. Hasan

We verify the solution of the above equation as the following HOL Light
theorem:

Theorem 4. Verification of Solution of Dynamical Behaviour of Motion
Stage
� ∀ x y mx my mp taux tauy fexd feyd alpha x0 y0 xd0 yd0.

[A1]: 0 < mx ∧ [A2]: 0 < my ∧ [A3]: 0 < mp ∧
[A4]: x(0) = x0 ∧ [A5]: y(0) = y0 ∧
[A6]:

dx

dt
(0)= xd0 ∧ [A7]:

dy

dt
(0)= yd0 ∧

[A8]:

[
taux
tauy

]
=

[
0
0

]
∧

[A9]:

[
fexd
feyd

]
=

[
0
0

]
∧

[A10]: (∀ t. x(t) = (x0 + xd0 ∗ (mx + my + mp))

- xd0 ∗ (mx + my + mp) ∗ e
−1

mx+my+mp
t ∧

[A11]: (∀ t. y(t) = (y0 + yd0 ∗ (my + mp))

- yd0 ∗ (my + mp) ∗ e
−1

my+mp
t

⇒ dyn 2 dof mot sta mx my mp x y t taux tauy fexd feyd

The first three assumptions (A1–A3) model the condition that all the masses,
i.e., mx, my and mp are positive. The next four assumptions (A4–A7) present
the values of coordinates x and y and their first-order derivatives dx

dt
and dy

dt

at t = 0. The next two assumptions (A8–A9) model the condition that the
torque and force vectors are zero. The next two assumptions (A10–A11) provide
the values of xy coordinates at any time t. Finally, the conclusion presents the
dynamics of the 2-DOF motion stage. The proof-process of Theorem 4 involves
the properties of real derivatives, transcendental functions, matrices and vectors
alongwith some real arithmetic reasoning. Next, we verify an alternate form of
the relationship between the image and stage coordinates, which depends on
the dynamics of the motion stage (Definition 8) and is a vital property for the
analysis of cell injection systems. For this purpose, we first model the positioning
table matrix and inertia matrix:

Definition 10. Positioning Table and Inertia Matrices
� ∀ fx fy alpha.

pos tab mat fin fx fy alpha =
pos tab mat ∗∗ matrix inv (transf mat fx fy alpha)

� ∀ mx my mp fx fy alpha.
iner mat mx my mp fx fy alpha =
mass mat mx my mp ∗∗ matrix inv (transf mat fx fy alpha)

Formal Analysis of Robotic Cell Injection Systems 137

where the HOL Light function matrix inv accepts a matrix A:RMN and returns
its inverse. Now, the alternate representation of the image-stage coordinate frame
interrelationship is verified as the following HOL Light theorem:

Theorem 5. Alternate Form of Relationship Between Image and Stage
Coordinates
� ∀ xc yc u v x y fx fy dx dy mx my mp taux tauy fexd feyd
alpha.

[A1]: 0 < dx ∧ [A2]: 0 < dy ∧
[A3]: 0 < fx ∧ [A4]: 0 < fy ∧
[A5]: invertible (transf mat fx fy alpha) ∧
[A6]: (∀ t. u real differentiable atreal t) ∧
[A7]: (∀ t. v real differentiable atreal t) ∧
[A8]: (∀ t.

du

dt
real differentiable atreal t) ∧

[A9]: (∀ t.
dv

dt
real differentiable atreal t) ∧

[A10]: (∀ t. rel ima cam coord xc yc u v t fx fy) ∧
[A11]: (∀ t. rel cam sta coord xc yc x y alpha dx dy t) ∧
[A12]: dyn 2 dof mot sta mx my mp x y t taux tauy fexd feyd

⇒ iner mat mx my mp fx fy alpha ∗∗
sec ord der ima coord u v t +

pos tab mat fin fx fy alpha ∗∗
fir ord der ima coord u v t =

tor vec taux tauy - des force vec fexd feyd

The first four assumptions (A1–A4) describe the design constraints for the
image-stage interrelationship. The next assumption (A5) ensures that the trans-
formation matrix (transf mat, Definition 7) is invertible, i.e., its inverse exists.
The next four assumptions (A6–A9) model the differentiability condition for the
image coordinates and their first-order derivatives. The next two assumptions
(A10–A11) provide the image-camera and camera-stage coordinate frames inter-
relationships. The last assumption (A12) represents the dynamics of the 2-DOF
motion stage. Finally, the conclusion of Theorem 5 is the alternate representa-
tion of the image-stage coordinate frame interrelationship. The verification of
Theorem 5 is based on the properties of the real derivative, matrices and vectors
alongwith some real arithmetic reasoning.

4 Formalization of the Motion Planning of the Injection
Pipette

The injection motion controller is another vital part of the cell injection systems
and its verification is necessary for a reliable system. It mainly includes the
control of the applied injection force and the torque applied to the deriving
motor. So, we formalize the force and torque controls and formally verify the

138 A. Rashid and O. Hasan

implication relationship between both of these controllers. The impendence force
control for a cell injection system is represented as follows:

më + bė + ke = fe (3)

where m, b and k represent the desired impendence parameters. Similarly, fe is
the two-dimensional vector having fex and fey as its elements, which represent
the x and y components of the applied force. Moreover, e, ė and ë are the vectors
representing the position errors of the xy stage coordinates, their first-order and
second-order derivatives, respectively, and are mathematically expressed as:

e =
[
xd

yd

]
−

[
x
y

]
, ė =

⎡
⎢⎢⎣

dxd

dt

dyd
dt

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

dx

dt

dy

dt

⎤
⎥⎥⎦ , ë =

⎡
⎢⎢⎣

d2xd

dt

d2yd
dt

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

d2x

dt

d2y

dt

⎤
⎥⎥⎦ (4)

where x and y are the actual axes and xd and yd are the desired axes of the
stage coordinate frame. Now, the image-based torque controller for the xy stage
coordinates is mathematically expressed as:

[
τx

τy

]
=

[
mx + my + mp 0

0 my + mp

] [
fx cos α fx sin α

−fy sinα fy cos α

] ⎡
⎢⎢⎣

d2xd

dt

d2yd
dt

⎤
⎥⎥⎦ +

[
mx + my + mp 0

0 my + mp

] [
fx cos α fx sin α

−fy sin α fy cos α

]

m−1(bė + ke − fe) +

([
1 0
0 1

] [
fx cos α fx sinα

−fy sin α fy cos α

]−1)

[
fx cos α fx sinα

−fy sin α fy cos α

] ⎡
⎢⎢⎣

dx

dt

dy

dt

⎤
⎥⎥⎦ +

[
fexd

feyd

]

(5)

Equation (5) can be alternatively written as:

−→τ = MT

⎡
⎢⎢⎣

d2xd

dt

d2yd
dt

⎤
⎥⎥⎦ + MTm−1(bė + ke − fe) + NT

⎡
⎢⎢⎣

dx

dt

dy

dt

⎤
⎥⎥⎦ +

−→
fed (6)

Formal Analysis of Robotic Cell Injection Systems 139

where M , N and T in the above equation denote the inertia, positioning table
and transformation matrices. The above equation was wrongly presented in sim-
ulations [17] and model checking [24] based analysis as follows:

−→τ = M

⎡
⎢⎢⎣

d2xd

dt

d2yd
dt

⎤
⎥⎥⎦ + Mm−1(bė + ke − fe) + N

⎡
⎢⎢⎣

dx

dt

dy

dt

⎤
⎥⎥⎦ +

−→
fed (7)

−→τ = MT

⎡
⎢⎢⎣

d2xd

dt

d2yd
dt

⎤
⎥⎥⎦ + MTm−1(bė + ke − fe) + NT

⎡
⎢⎢⎣

dx

dt

dy

dt

⎤
⎥⎥⎦ +

−→
fe (8)

In Eq. (7) (used in the simulations based analysis [17]), the transformation
matrix (T) is missing, which includes the amount of applied force and the angles
at which the injection pipette is pierced into the cell and its absence can lead
to disastrous consequences, i.e., excess substance injection, damaging cell tis-
sues etc. Similarly, in Eq. (8) (used in the model checking based analysis [24]),
fed is wrongly interpreted as fe, i.e., the desired force, is taken equal to the
applied force, which can never happen in a real-world system. We caught these
wrong interpretations of Eq. (6) in the simulations and model checking based
analyses during the verification of the implication relationship between force
control and torque controller. We first started the verification of this relation-
ship using Eq. (7) and ended up with the identification of this issue. Next, we
took Eq. (8) and again, during its verification, identified its wrong interpreta-
tion, which enabled us to obtain its right interpretation as given in Eq. (6). We
verified the image-based torque controller (Eq. (6)) as the following HOL Light
theorem:

Theorem 6. Verification of the Implication Relationship Between Force
Control and Torque Controller
� ∀ xd yd x y t mx my mp fx fy

alpha taux tauy fex fey fexd feyd m b k.
[A1]: 0 < m ∧
[A2]: 0 < k ∧
[A3]: 0 < b ∧
[A4]: invertible (transf mat fx fy alpha) ∧
[A5]: force cont xd yd x y t m b k fex fey ∧
[A6]: dyn 2 dof mot sta mx my mp x y t taux tauy fexd feyd

⇒ torque cont xd yd x y t mx my mp fx fy
alpha taux tauy fex fey fexd feyd m b k

The first three assumptions (A1–A3) ensure that the desired impendence
parameters are positive. The next assumption (A4) provides the condition that
the transformation matrix (transf mat) is invertible. The next assumption (A5)
models the impendence force control (Eq. (3)). The last assumption (A6) presents
the dynamics of the 2-DOF motion stage. Finally, the conclusion represents the

140 A. Rashid and O. Hasan

image-based torque controller (Eq. (5)). The verification of Theorem 6 is mainly
based on the properties of real derivative, vector and matrices.

Due to the undecidable nature of the higher-order logic, the verification
results presented in Sects. 3 and 4, involved manual interventions and human
guidance. However, we developed some tactics to automate the verification pro-
cess. For example, we developed a tactic VEC MAT SIMP TAC, which simplifies the
matrix and vector arithmetics involved in the formal analysis of the robotic cell
injection system. Thus, the proof effort involved only 745 lines-of-code and 17
man-hours. The details about these tactics and rest of the formalization can be
found in our proof script [1]. The distinguishing feature of our formal analysis is
that all the verified theorems are universally quantified and can thus be special-
ized to the required values based on the requirement of the analysis of the cell
injection systems. Moreover, our approach allows us to model the dynamics of
the cell injection systems involving differential and derivative (Eqs. (1), (3), (5))
in their true form, whereas, in their model checking based analysis [24], they are
discretized and modeled using a state-transition system, which may compromise
the accuracy and completeness of the corresponding analysis.

5 Conclusion

In this paper, we presented a formal analysis of robotic cell injection systems.
We first formalize the stage, camera and image coordinate frames, which are the
main components of a robotic cell injection system, and formally verified their
interrelationship using the HOL Light theorem prover. We also formalized the
dynamics of the 2-DOF motion stage based on differential equations and verified
their solutions in HOL Light. Finally, we formalized the impedance force control
and image-based torque controller and verified their implication relationship.
Our formalization helped us to identify some key discrepancies in the simulation-
based and model checking based analysis of these systems, which shows the
usefulness of using higher-order-logic theorem proving in the formal analysis of
critical systems.

References

1. Formal Analysis of Robotic Cell Injection Systems using Theorem Proving (2018).
http://save.seecs.nust.edu.pk/projects/farcistp/

2. HOL Light Boolean Algebra (2018). https://github.com/jrh13/hol-light/blob/
master/bool.ml

3. HOL Light Multivariate Calculus (2018). https://github.com/jrh13/hol-light/
blob/master/Multivariate

4. HOL Light Real Arithmetic (2018). https://github.com/jrh13/hol-light/blob/
master/real.ml

5. HOL Light Real Calculus (2018). https://github.com/jrh13/hol-light/blob/
master/Multivariate/realanalysis.ml

6. HOL Light Vectors and Matrices (2018). https://github.com/jrh13/hol-light/blob/
master/Multivariate/vectors.ml

http://save.seecs.nust.edu.pk/projects/farcistp/
https://github.com/jrh13/hol-light/blob/master/bool.ml
https://github.com/jrh13/hol-light/blob/master/bool.ml
https://github.com/jrh13/hol-light/blob/master/Multivariate
https://github.com/jrh13/hol-light/blob/master/Multivariate
https://github.com/jrh13/hol-light/blob/master/real.ml
https://github.com/jrh13/hol-light/blob/master/real.ml
https://github.com/jrh13/hol-light/blob/master/Multivariate/realanalysis.ml
https://github.com/jrh13/hol-light/blob/master/Multivariate/realanalysis.ml
https://github.com/jrh13/hol-light/blob/master/Multivariate/vectors.ml
https://github.com/jrh13/hol-light/blob/master/Multivariate/vectors.ml

Formal Analysis of Robotic Cell Injection Systems 141

7. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

8. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6 1

9. Durán, A.J., Pérez, M., Varona, J.L.: The Misfortunes of a Mathematicians’ Trio
using Computer Algebra Systems: Can We Trust? CoRR abs/1312.3270 (2013)

10. Faroque, M., Nizam, S.: Virtual Reality Training for Micro-robotic Cell Injection.
Deakin University, Australia, Technical report (2016)

11. Harisson, J.: HOL Light Transcendental Theory (2018). https://github.com/jrh13/
hol-light/blob/master/Multivariate/transcendentals.ml

12. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

13. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, New York (2009)

14. Harrison, J.: The HOL light theory of euclidean space. J. Autom. Reasoning 50(2),
173–190 (2013)

15. Harrison, J., et al.: Formalized Mathematics. Turku Centre for Computer Science,
Turku (1996)

16. Hasan, O., Tahar, S.: Formal Verification Methods. Encyclopedia of Information
Science and Technology, pp. 7162–7170. IGI Global Pub. (2015)

17. Huang, H., Sun, D., Mills, J.K., Li, W.J.: A visual impedance force control of a
robotic cell injection system. In: Robotics and Biomimetics, pp. 233–238. IEEE
(2006)

18. Huang, H., Sun, D., Mills, J.K., Li, W.J., Cheng, S.H.: Visual-based impedance
control of out-of-plane cell injection systems. Trans. Autom. Sci. Eng. 6(3), 565–
571 (2009)

19. Kuncova, J., Kallio, P.: Challenges in capillary pressure microinjection. In: Engi-
neering in Medicine and Biology Society, vol. 2, pp. 4998–5001. IEEE (2004)

20. Mathematica (2017). https://www.wolfram.com/mathematica/
21. Nakayama, T., Fujiwara, H., Tastumi, K., Fujita, K., Higuchi, T., Mori, T.: A new

assisted hatching technique using a piezo-micromanipulator. Fertil. Steril. 69(4),
784–788 (1998)

22. Nethery, J.F., Spong, M.W.: Robotica: a mathematica package for robot analysis.
IEEE Robot. Autom. Mag. 1(1), 13–20 (1994)

23. Paulson, L.C.: ML for the Working Programmer. Cambridge University Press,
Cambridge (1996)

24. Sardar, M.U., Hasan, O.: Towards probabilistic formal modeling of robotic cell
injection systems. In: Models for Formal Analysis of Real Systems, pp. 271–282
(2017)

25. Sun, D., Liu, Y.: Modeling and impedance control of a two-manipulator system
handling a flexible beam. In: Proceedings of the 1997 IEEE International Confer-
ence on Robotics and Automation, vol. 2, pp. 1787–1792. IEEE (1997)

26. Sun, Y., Nelson, B.J.: Biological cell injection using an autonomous microrobotic
system. Robot. Res. 21(10–11), 861–868 (2002)

27. Yanagida, K., Katayose, H., Yazawa, H., Kimura, Y., Konnai, K., Sato, A.: The use-
fulness of a piezo-micromanipulator in intracytoplasmic sperm injection in humans.
Hum. Reprod. 14(2), 448–453 (1999)

https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://github.com/jrh13/hol-light/blob/master/Multivariate/transcendentals.ml
https://github.com/jrh13/hol-light/blob/master/Multivariate/transcendentals.ml
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://www.wolfram.com/mathematica/

Workshop on Embedded and Cyber-
Physical Systems Education

FPGA Based Big Data Accelerator
Design in Teaching Computer
Architecture and Organization

Chao Wang(B), Yuming Cheng, Lei Gong, Bo Wan, Aili Wang, Xi Li,
and Xuehai Zhou

School of Computer Science, University of Science and Technology of China,
Suzhou, China

{cswang,wangal,llxx,xhzhou}@ustc.edu.cn,
{yumingc,leigong0203,wanborj}@mail.ustc.edu.cn

Abstract. In the past few years big data applications are becoming
diverse and ubiquitous. There is a renewed interest in teaching senior
level students to be professional in accelerator based computer architec-
ture design and engineering. However, it poses a significant challenge to
tutor the students with sufficient knowledge and practical skills in this
area. In this paper, we propose a big data accelerator design project
implemented on field-programmable gate array (FPGA) in teaching a
computer architecture and organization course. The experimental sys-
tem is carried out on a heterogeneous architecture using Xilinx Virtex 5
development boards. To achieve a modular accelerator implementation,
several milestones are set to facilitate the on-time complete of the project.
With the assistance of the FPGA-based experiment, most students have
obtained a much more comprehensive understanding of the processor
architecture and the accelerator design paradigm. Student feedback and
survey illustrates the effectiveness and popularity of the FPGA-based
project with milestones over simulation based experiments.

Keywords: Applications in subject areas · Simulations · FPGA

1 Introduction

Big data is common sense. To tackle the challenge of the data-intensive applica-
tions, modern computer architectures are becoming more heterogeneous, diverse,
ubiquitous and complex, especially in the big data computing fields. To build fast
prototyping computer architecture, Field-programmable gate array (FPGA) dif-
ferent multicore platforms which contain both processors, and reconfigurable
logic resources are suitable for rapid prototyping of computer architecture
projects in the embedded computing domain. Using FPGAs to teaching com-
puter architecture and embedded systems is a challenging task since it involves
diverse knowledge and skills, ranging from processor architecture, platform based
hardware/software co-design, and reconfigurable computing technologies [1].
c© Springer Nature Switzerland AG 2019
R. Chamberlain et al. (Eds.): CyPhy 2017, LNCS 11267, pp. 145–158, 2019.
https://doi.org/10.1007/978-3-030-17910-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17910-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-17910-6_11

146 C. Wang et al.

Often, computer architecture courses are carried out without any practical
experiments or using only simulation-based projects. [2] presents an FPGA-
based platform for processor design, which provides an excellent opportunity for
senior grade students to put hands on a real hardware system. To provide more
practical knowledge in both big data applications and computer architecture, it
is desirable to integrate a custom accelerator design on FPGA.

Meanwhile, the design complexity of the big data accelerator increases the
use of register transfer level (RTL) design methodologies. Hardware description
language (HDL) like Verilog HDL and VHDL is now standard routine in elec-
tronic design automation (EDA). Furthermore, to facilitate component reuse, the
intellectual property (IP) and platform-based design paradigm is used to reduce
the design time and the time-to-market (TTM). Once the RTL based hardware
accelerators are packaged into IP core, they could be shifted and reused directly
to multiple different projects.

As a consequence, the merge of FPGA hardware and HDL language provides
an optimal design paradigm for students to experience a particular customized
dual processor in computer architecture classes. With the help of computer-
aided design (CAD) tools and educational boards from FPGA vendors, students
are capable of developing their custom processor from the very beginning. The
students are only responsible for implementing the RTL code of the custom
processor under specifications, verifying the correctness of the hardware module,
and integrating it into the FPGA development board. Toolchains and software
environment are no longer an issue for students so that the entire project could
be finished in two or three months.

This paper proposes an accelerator design project based on FPGA Xilinx
Virtex 5 development board in teaching computer architecture and organization
course. The dual processor system is composed of a customized accelerator for
big data, attached to a local Microblaze (MB) processor on FPGA. The MB pro-
cessor is integrated to provide straightforward application interfaces to students,
while the accelerator is deployed for customized functionality implementation,
including neural networks, machine learning, data mining, and genome sequenc-
ing. Taking the student’s background into account, the primary target of this
experiment is not to implement a processor with all the functions fully imple-
mented, but let them grasp the basic engineering skills for processor design and
system integration, based on the utilization of FPGA boards and CAD tools. To
facilitate the arrangement of the projects by the teacher and ensure the comple-
tion of the projects on time by the students, totally six milestones were arranged
every one or two weeks.

We have been teaching the Computer Architecture and Organization course
(No. G430113460) since 2009 fall semesters, at School of Software Engineering,
University of Science and Technology of China, Suzhou, China. The technical
detail of this course is to educate the students with the basic knowledge and
principles of designing a Microprocessor. In the earlier two years, no such project
was assigned, and a project was assigned from 2011 to 2015. In each year a course

FPGA Based Big Data Accelerator Design 147

survey was taken, and statistics indicate the effectiveness and success of the dual
processor system design experiment based on FPGA educational boards.

The organization of this paper is as below. Section 2 outlines the related
studies and points the highlight of this work. In Sect. 3 we present the experiment
details including the FPGA-based framework, the software toolchain, and the
design flow. After that, a customized accelerator design with the milestones is
illustrated in Sect. 4. After that Section, Sect. 5 reports the course statistics,
student survey, and feedback. Section 6 explains the cost and teaching effort in
the project. Finally, Sect. 7 is the conclusion.

2 Related Studies and Motivation

As FPGA is becoming more powerful, in the past decade there is a renewed
interest using FPGA as an experimental platform in computer architecture and
embedded systems courses. For example, ESE [3] introduces a FPGA-based
accelerator for sparse LSTM efficient speech recognition engine, not only makeing
the algorithm smaller, but also supporting compressed deep learning algorithm.
[2] proposes a generic FPGA-based design with multiple embedded processors
and predefined peripherals to explore both the hardware and software issues with
embedded computer designs. [4] presents an experiment platform for embedded
software programmers with a DCT co-processor for JPEG application on an
Altera Nios II development kit. DLAU [5] is a scalable deep learning accelerator
Unit on FPGA, which utilizes tile techniques to explore locality and employs
three pipelined processing units to improve the throughput. [6] introduces an
FPGA-based system based on a five-stage pipelined processor. Students can
observe pipelined registers by tracing and debugging the pipelined processor
registers.

On the hardware logic resources on an FPGA, a study [7] depicts that the
hardware logic on Virtex-4 is sufficient to accompany the Pentium processor.
[8] evaluate and survey the simulation based approaches appropriate for lectur-
ing computer organization and architecture courses. [9] integrates a computer
architecture course with software and hardware codesign. Moreover, [10] present
an experimental simulation literature for project-based multicore education in
computer architecture and organization courses.

Similarly, Teaching and Design Workbench framework [11] reports a gen-
eral infrastructure for teaching embedded systems and computer architecture. A
new architectural feature for embedded processors using a research simulator is
introduced. [12] presents a digital electronics course, in which the authors inte-
grate programmable logic into a development board. [13] shows an FPGA-based
pipelined CPU design project into a computer architecture course. The project
is constructed on the Altera DE2 board and involves a 32-bit accelerator design
with five pipelined stages. [14] proposes an FPGA-based framework with mul-
tiprocessors and network-on-chip platform. The projects stimulate more indus-
try applications with the real-time requirement. [15] utilizes FPGA hardware
platform on teaching embedded systems. The course includes several projects

148 C. Wang et al.

to allow students to define their project on the FPGA-based hardware. [16]
describes integrated system composed of microcontrollers and peripherals. Like-
wise, [17] presents an embedded system coursework including components such
as integrated control, system-on-chip, networking, computer peripherals. [18]
illustrates a design project using a soft processor and custom hardware logic on
a programmable system-on-chip. A similar system-on-chip project is described
in [19], where a servo controller for a robotic arm is implemented on an Excalibur
chip with an embedded ARM processor and programmable logic. Hansson et al.
[20] propose a design project where students partition and map JPEG decoder
onto a multiprocessor platform running on an FPGA.

Unlike the above projects, this paper provides unique highlights from previ-
ous work in following two aspects:

(1) First, the implemented accelerator in this project can improve the perfor-
mance of the novel big data applications significantly. The students could
design and implement their accelerators on Xilinx FPGA board, such as
machine learning and neural networks.

(2) Second, the accelerator is attached as a co-processor to the local Microb-
laze on FPGA board; therefore the students work on a heterogeneous sys-
tem. The system level design could facilitate them gaining a “big picture”
and hands-on experiences of the computer systems rather than processor
architecture.

Based on the above contributions, students can implement the essential func-
tionality of the big data accelerator to solve the real problems. With the hands-on
learning approach, students are capable of getting familiar with their practical
knowledge in new big data domain and skills learned from the computer archi-
tecture lecture.

3 Generic Hardware and Software Environment

With the increasing resources of the FPGA chip, it is now acceptable to bring
more than one CPU processor into a single chip. Therefore in this project, the
custom accelerator is implemented as an attached coprocessor of the central
processor (For Xilinx V5 board is Microblaze processor). Another reason to build
a dual core system is to alleviate the burden of writing running application codes
with cross-compilers. In this Section, we present the FPGA-based framework
along with both hardware configuration and software environment.

3.1 Hardware Configuration

The custom processor project is carried out on a Xilinx Virtex V5LX110T
FPGA board from Xilinx University Program. The V5LX110T board offers
some input/output peripherals and other modules, including serial terminal con-
trollers, timer, and Ethernet module. Other than the Microblaze processor, fol-
lowing IP cores are also integrated into the system:

FPGA Based Big Data Accelerator Design 149

(1) The custom accelerator processor: The use of custom processor demonstrates
the application-specific design and implementation of the big data oriented
accelerator, with significant knowledge in the application domain required.

(2) Fast Simplex Link (FSL): FSL provides a straightforward data path from
the register files in Xilinx Microblaze to the custom accelerator. The write
and read transactions of the FSL could be directly invoked through unique
PUT (including put, cput, nput and ncput) and GET (get, cget, nget and
ncget) instructions.

(3) Processor Local Bus (PLB): This bus allows various peripherals to be instan-
tiated and connected as slave modules. The Microblaze processor can com-
municate with these peripherals arbitrated by PLB.

(4) DDR SDRAM controller: The DDR memory is used for storing the program
code for the Microblaze processors and also serves as data memory.

(5) UART and Timer controller: The serial ports are useful for PC-FPGA com-
munication. Thus the debugging messages could be displayed on the screen
through serial ports. The timer controller modules allow Microblaze to keep
track of the execution on the accelerator and ensure the real-time behavior
by interrupts.

Figure 1 illustrates the block diagram of the dual processor system. The archi-
tecture constructed in this project is generic that it can support a variety of other
similar projects. The custom accelerator can incorporate with specific hardware
modules, such as neural networks and genome sequencing.

Fig. 1. Architecture of the FPGA chip, the communication interfaces between MB
processor and accelerator is based on FIFO interface

3.2 FPGA Based Heterogeneous Framework

In the FPGA chip, the custom accelerator is attached to a local Microblaze pro-
cessor via FSL channels. The FSL based communication interfaces are illustrated

150 C. Wang et al.

in the right part of Fig. 1. Using Microblaze processor allows the applications to
be defined using C language, which is part of the application since the custom
accelerator is hard to be programmed and compiled into the binary executable
files. Furthermore, different customized modules to the processor architecture
can be added or reconfigured through the Xilinx Vivado tool suite [21,22].

To support a fast data transfer of on-chip data communication, the Microb-
laze processor, and the accelerator are connected via a pair of FIFO based Xil-
inx FSL channels. The MB-to-Accelerator interface offloads the execution to the
accelerator via FSL bus channels, and the accelerator can run each forwarded
instruction and return the results to the MB. The message transferred by FSL
contains following signals: Data, Clock, Reset, Exists, Read, Full, and Write sig-
nals. The FIFO packet also includes the input buffer, output buffer, and control
logic. The input buffer receives the offload functions and stores them temporar-
ily, while the output buffer stores the execution results. The control logic is
responsible for manipulating the process of the custom big data services.

The custom accelerator can raise interrupt signals and communicate with
the MB through specific, explicit instructions. These instructions can access
read/write MB configuration registers and execute custom operations on the
accelerator side. Communication between MB and the accelerator is utilized in
a master-slave manner. For the particular task distribution stage, Microblaze
acts as a master which sends an explicit instruction to drive the FIFO based
interconnection. The custom accelerator serves as masters when a back FIFO
sends a return value to MB processor. As the accelerator could be customized,
the proposed FIFO interface can easily support reconfiguration. That is after the
accelerator implementation is reconfigured, the communication interfaces remain
the same. The unified interfaces allow substitution of applications between dif-
ferent accelerator versions.

3.3 Software Environment

As the custom accelerator is attached as a co-processor to the Microblaze pro-
cessor, the source applications are deployed at Microblaze side at the start and
then offloaded to the custom accelerator. The Xilinx Vivado software tool suit
is based on a Microblaze compatible PowerPC cross-compiler. It provides an
efficient software environment for programming.

The ready software applications, which are well-written using assembly and
C-language, will be compiled and linked by the PowerPC cross-compiler into a
binary file in the Executable and Linkable Format (ELF). The ELF file could be
offloaded on the SD card on the FPGA chip or downloaded by the cable from
the PC end.

3.4 Processing Flow

As the Microblaze is a PowerPC compatible instruction set processor, therefore
all the applications running on Microblaze is first processed to the ELF file,
by the cross compiler from Xilinx Vivado tool suite. This section illustrates the

FPGA Based Big Data Accelerator Design 151

detailed hardware/software co-processing flow using FPGA and Vivado toolset.
The entire flow mainly consists of five stages, which are marked with the related
labels in Fig. 2:

Fig. 2. Project design flow using Xilinx FPGA and tools

(1) Custom Accelerator Hardware Design
Hardware description and design is the first phase in which HDL sources
are implemented into the custom accelerator. The register-transfer-level (RTL)
description code will undergo a procedure including both compilation and syn-
thesis steps. Sample applications are designed to verify the behavior and timing
correctness of the custom accelerator. Taking Xilinx tools as a demonstration,
both front and back end simulations are operated within Xilinx ISim or Model-
Sim simulation environment.

(2) Heterogeneous System Integration
After the hardware implementations are verified, the primary design goal for the
accelerator has been met. Then we can integrate MB and the accelerator into
the heterogeneous system. In this project, students carry the module integration
with Xilinx Platform Studio (XPS) and IMPACT tools.

152 C. Wang et al.

(3) BSP and Netlists Generation
Now hardware platform design files are generated for verification and debugging,
including both netlists and board support packages (BSP). The netlists are used
for hardware bitstream generation, while the BSP files provide original hardware
description running essential environments for diverse applications. Therefore
the BSP files are also regarded as the necessary input factors as the C Compilers.

(4) Software Compilation
Applications are built into executable files with the cross-compilation toolchains,
including a C-compiler, assembler, and linker. Students need to configure the
cross toolchains, including the BSP file, optimization levels and running modes,
which in the case could have a potential effect on the performances. Besides,
hardware bitstreams in stage 3 should be programmed into FPGA chip at
first, and then executable elf files can be downloaded for hardware/software
co-debugging.

(5) Co-debugging and Analysis
The co-debugging operations are constructed with Xilinx ChipScope, PlanA-
head, and ISE tools. If the design goal is met, we can get the final design files
including platform hardware specification bitstreams, executable elf files, and
verified RTL implementations for the custom accelerator. Otherwise, the perfor-
mance optimization and tuning operations should be considered, which leads to
the hardware redesign to start over the design flow.

Table 1. Milestones for the custom accelerator implementation

Milestones Purpose Duration

1 Gaining familiarity with experimental environment 1 week

2 Simulation and algorithm analysis 2 weeks

3 RTL design of the accelerator 2 weeks

4 Pipelined implementation 1 week

5 System integration 1 week

6 Trade-offs analysis 2 weeks

Each week has 6 h.

4 Project Setup snd Milestones

This accelerator is a pipelined design with selected kernel instructions and cus-
tom functionalities. To educate the students in two months, Table 1 lists the six
milestones to help students with scheduling project by the end of the class.

First, Milestone 1 familiarizes students with the execution flow of the acceler-
ator and experimental environment. This stage includes a prototype on FPGA,
which is composed of a Microblaze processor, a custom accelerator, a mem-
ory block, and a UART controller. The initial accelerator, which has only one
add instruction implemented, was given to the students. In this milestone, each

FPGA Based Big Data Accelerator Design 153

student is required to display the results of a simple add instruction at the PC
end through the UART controller. Students must program the demonstrative
hardware module on the FPGA, understand communication scheme through
the PC and the FPGA board, and return the results through the serial ports.

In Milestone 2 students could get a simulation with the selected big data
application. The first step is to use Matlab to implementation the big data func-
tions. Students should choose the particular algorithm, and profile the applica-
tion to locate the hot spots for following algorithms:

(1) Convolutional Neural Networks
(2) Deep Neural Networks
(3) User-based Collaborative Filtering
(4) K-means clustering
(5) Genome Sequencing.

Milestone 3 is the RTL implementation of the accelerator. Based on the
profiled hot spots, students should implement the particular hardware functions
of the accelerator. Besides, the functions are also packaged in this milestone.

In Milestone 4 the accelerator is implemented in a pipelined manner. The
pipeline includes five stages: Instruction Fetch, Instruction Decode, Execution,
Memory Access and Write Back.

Milestones 5 and 6 are the two daunting tasks based on the pipelined accel-
erator. Both milestones pose challenges to the students, so the students will
be divided into groups to finish those two milestones. Each group has 2 or 3
members, and we totally have about 35 groups. In milestone five the acceler-
ator is integrated to the FPGA based system. This facilitates the students to
obtain a better understanding of the platform-based design. In milestone 6, the
students analyze the trade-offs among the speedup, power, and hardware cost.
Both milestones take two weeks.

5 Project Evaluation

The computer architecture course was given in Fall semesters from 2009 to 2015.
In the first two years 2009 and 2010, no project was assigned. Students only ran
some simulation experiments using WinDLX, DLXView, and Simplescalar tools.
Then in 2011–2015 a project was assigned. From 2012 to 2015 the FPGA board
and milestones are adopted in the project, while in 2011 the project is based on
the ModelSim simulation and no milestones are arranged in the project. Table 2
illustrates the primary survey results of the feedback from 2009 to 2015.

Table 2 shows that the overall numerical score of 2009 and 2010 is 4.33 and
4.51, both are without the project. Meanwhile, the evaluation score gets between
4.96 and 4.93 when the experiment is carried out and optimized on FPGA from
2012 and 2015. As in 2011, there is only ModelSim simulation on the processor,
and no milestones are set. Therefore the overall numerical score of 2011 is rela-
tively low at 4.62. Table 3 shows the project statistics from 2011 to 2015, with
the custom accelerator experiment. The dramatic difference between 2011 and

154 C. Wang et al.

Table 2. Course survey and basic feedback results

Module 2009 2010 2011 2012 2013 2014 2015

Number of students 80 39 79 78 87 100 100

Number of respondents 22 3 77 75 85 95 97

Percentage of respondents 28% 87% 98% 96% 98% 95% 97%

Overall score 4.33a 4.51a 4.62a 4.96a 4.93a 4.94a 4.93a

aThe maximum score is 5.

Table 3. Project statistics

Year 2011 2012 2013 2014 2015

Project goal Custom accelerator design

Class size 79 78 87 100 100

Milestones No Yes Yes Yes Yes

ModelSim Used Used Used Used Used

Xilinx FPGA Not Used Used Used Used

Student finished 4 30 75 81 90 89

Student finished 5 12 40 42 65 73

Student finished 6 3 20 27 53 68

2012–2015 comes from two reasons: First, the milestone management facilitates
the students to divide the final target into achievable steps. Second, the enforce-
ment of the FPGA development board also contributed to the success from 2012
to 2015. Instead of just using simulators like ModelSim for the processor design
specification and validation, the hands-on experiments using real FPGA boards
provide students a practical experience to accomplish the processor design Fur-
thermore, by integrating both an MB processor and an accelerator into one
system, student could accomplish a dual processor system rather than one raw
CPU processor, which could raise the motivation of finishing the project.

Table 4 shows the survey results taken from 2009 to 2015. For each item
in this inquiry, students should choose one from the total five options: Strong
Disagree (1.00), Weak Disagree (2.00), Borderline (3.00), Weak Agree (4.00),
and Strong Agree (5.00). The maximum score is 5.00. Most students report that
the workload of the experiment is adequate (rating 4.93/4.89 from 2012 to 2015).
Moreover, students indicate it is useful to design a real processor in the computer
architecture and organization course (score 4.99/4.91 from 2012 to 2015), even
it occupies much more attention and engineering effort during the class. Table 4
also reports that the experiment on the FPGA board is far more helpful than
simulators in studying architecture (from 4.32 to 4.99/4.96). After taking the
course in 2012 and 2013, most students indicate the appropriate technical depth
of the project (4.92/4.97), and a good number of students believe that they
have gained and acquired enough knowledge and skills in designing a processor
(4.95/4.87), and therefore the project is popular with students (4.97/4.88).

FPGA Based Big Data Accelerator Design 155

Table 4. Scoresheet of Feedbacks from the Students

ID Module 2009 2010 2011 2012 2013 2014 2015

1 Is the Workload of the experiment adequate? 3.23 3.38 3.13 4.93 4.89 4.95 4.90

2 Is it necessary to involve the CPU design project? —– —– 3.14 4.99 4.91 4.97 4.93

3 Teacher’s attitude 4.45 4.47 4.6 4.95 4.91 4.92 4.89

4 Is the project well organized? 4.45 4.53 4.65 4.93 4.96 4.97 4.92

5 The technical depth of the lecture and the project? 4.55 4.5 4.7 4.95 4.94 4.92 4.98

6 The technical width of the lecture and the project? 4.23 4.44 4.64 4.97 4.92 4.89 4.96

7 Is the experiment helping me sort the clues? 4.32 4.53 4.65 4.99 4.96 4.90 4.90

8 Popularity 4.18 4.29 4.53 4.97 4.88 4.92 4.95

9 Gain and acquisition 4.27 4.47 4.57 4.95 4.87 4.93 4.92

10 Is the milestone management helpful? —– —– —– 4.97 4.95 4.96 4.98

11 Are the milestones fair and adequate? —– —– —– 4.97 4.87 4.97 4.96

12 Is the teaching assistant helpful in the project? 4.05 4.41 4.47 4.96 4.89 4.91 4.89

13 Total evaluation 4.33 4.51 4.62 4.96 4.93 4.94 4.93

Regarding the milestone management, a majority of students believe that
the milestone management is quite helpful (4.97/4.95), and the division of six
milestones is adequate (4.97/4.87). The feedback indicates that this project with
FPGA and the scheduled milestones has a significant positive influence on the
comprehensive understanding of computer architecture. The utilization of the
FPGA is not only bringing extensive skills of computer architecture knowledge
to students but also raising their motivation designing their custom processors.

6 Discussion of the Costs and Efforts

For other institutions which would like to introduce such projects into the course,
it will be useful to depict more details about the cost and budget when estab-
lishing the project. To our best knowledge, the cost and teaching effort include
following aspects:

6.1 Hardware and Software Cost

As the experiments are deployed at the real FPGA development board, the total
cost includes the purchase of the FPGA board and the use of the software. We
totally have 40 Zynq boards and 20 Virtex five boards, all from Digilent China.
We highly recommend Zynq boards as it has following two benefits:

(1) To control the cost. Each Zynq only costs approximately $500, while is
much cheaper than Virtex 5 ($1650), while the hardware resources on Zynq
is sufficient to build the target dual processor system.

(2) Although the design flow for Virtex 5 and Zynq FPGA boards are quite sim-
ilar, the ARM-based Zynq board has a wider scope of readers and audiences
than using Microblaze based Virtex 5 board.

156 C. Wang et al.

6.2 Efforts in Organizing the Experiments

In order to help the students to get the basic knowledge and the “big picture”
in designing a dual processor system, we provide a framework using VHDL
with only one single instruction implemented. The three teaching assistants take
about 8 hours to implement, simulate and verify the structure on the Virtex
5/Zynq board. To make sure that all the on-site questions and problems from
students are quickly answered and solved, three teaching assistants are employed
for this course. As there are totally 80 90 students enrolled in this course, we
divided them into two classes during the project, ensuring each student has
his/her board in the experiment. Finally, please note the budget may be slightly
different in the various countries/regions, in particular for the FPGA develop-
ment boards. Anyway, we sincerely hope this information could be potentially
useful to other institutions.

7 Conclusion

Teaching computer architecture can be quite challenging since it involves differ-
ent aspects such as processor architecture, system-on-chip, and reconfigurable
computing technologies. In this paper, we have presented an FPGA-based accel-
erator for big data applications in teaching computer architecture and organi-
zation class. The students obtain hands-on experiences of designing a custom
accelerator with the help of FPGA educational boards and software tools. The
accelerator is attached to a Microblaze processor on the Xilinx Virtex 5 educa-
tional boards. A course survey is distributed after class and the feedback from the
students reveal that a majority of students have gained more practical under-
standing and skills than simulators. The real FPGA board is bringing much
more attention and benefits, while it needs more effort and involvement. Most
students report high ratings for the milestone management during the project
setup, which helps them to achieve the target project step by step.

Finally, we can conclude that this project can be useful by other universities
those have relevant courses such as computer architecture, computer organiza-
tion, and embedded systems. Since the experiences on this project could educate
students with more practical engineering skills, therefore it could help them pur-
sue a career in hardware design and computer architect more quickly.

Acknowledgements. This work is partially supported by the National Key Research
and Development Program of China (under Grant 2017YFA0700900), Anhui Provin-
cial Natural Science Foundation (No. 1608085QF12), Jiangsu Provincial Natural
Science Foundation (No. BK20181193), Youth Innovation Promotion Association
CAS (No. 2017497), and Fundamental Research Funds for the Central Universities
(WK2150110003).

FPGA Based Big Data Accelerator Design 157

References

1. Jackson, D.J., Caspi, P.: Embedded systems education: future directions, initia-
tives, and cooperation. ACM SIGBED Rev. 2(4), 1–4 (2005)

2. Kumar, A., Fernando, S., Panicker, R.C.: Project-based learning in embedded sys-
tems education using an FPGA platform. IEEE Trans. Educ. 56(4), 407–415 (2013)

3. Han, S., et al.: ESE: efficient speech recognition engine with sparse LSTM on
FPGA. In: FPGA, pp. 75–84 (2017)

4. Mitsui, H., Kambe, H., Koizumi, H.: Use of student experiments for teaching
embedded software development including HW/SW co-design. IEEE Trans. Educ.
52(3), 436–443 (2009)

5. Wang, C., Gong, L., Yu, Q., Li, X., Xie, Y., Zhou, X.: DLAU: a scalable deep learn-
ing accelerator unit on FPGA. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 36(3), 513–517 (2017)

6. Bulić, P., Guštin, V., Šonc, D., Štrancar, A.: An FPGA-based integrated environ-
ment for computer architecture. Comput. Appl. Eng. Educ. 21(1), 26–35 (2013)

7. Lu, S.L.L., Yiannacouras, P., Suh, T., Kassa, R., Konow, M.: A desktop com-
puter with a reconfigurable pentium R©. ACM Trans. Reconfigurable Technol. Syst.
(TRETS) 1(1), 5 (2008)

8. Nikolic, B., Radivojevic, Z., Djordjevic, J., Milutinovic, V.: A survey and eval-
uation of simulators suitable for teaching courses in computer architecture and
organization. IEEE Trans. Educ. 52(4), 449–458 (2009)

9. Schaumont, P.: A senior-level course in hardware–software codesign. IEEE Trans.
Educ. 51(3), 306–311 (2008)

10. Ozturk, O.: Multicore education through simulation. IEEE Trans. Educ. 54(2),
203–209 (2011)

11. Soares, S.N., Wagner, F.R.: T&D-bench—innovative combined support for educa-
tion and research in computer architecture and embedded systems. IEEE Trans.
Educ. 54(4), 675–682 (2011)

12. Todorovich, E., Marone, J.A., Vazquez, M.: Introducing programmable logic to
undergraduate engineering students in a digital electronics course. IEEE Trans.
Educ. 55(2), 255–262 (2012)

13. Lee, J.H., Lee, S.E., Yu, H.C., Suh, T.: Pipelined CPU design with FPGA in
teaching computer architecture. IEEE Trans. Educ. 55(3), 341–348 (2012)

14. Ttofis, C., Theocharides, T., Michael, M.K.: FPGA-based laboratory assignments
for NoC-based manycore systems. IEEE Trans. Educ. 55(2), 180–189 (2012)

15. Edwards, S.A.: Experiences teaching an FPGA-based embedded systems class.
ACM SIGBED Rev. 2(4), 56–62 (2005)

16. Bruce, J.W., Harden, J.C., Reese, R.B.: Cooperative and progressive design expe-
rience for embedded systems. IEEE Trans. Educ. 47(1), 83–92 (2004)

17. Koopman, P., et al.: Undergraduate embedded system education at carnegie mel-
lon. ACM Trans. Embed. Comput. Syst. (TECS) 4(3), 500–528 (2005)

18. Hall, T.S., Hamblen, J.O.: System-on-a-programmable-chip development platforms
in the classroom. IEEE Trans. Educ. 47(4), 502–507 (2004)

19. Bindal, A., Mann, S., Ahmed, B.N., Raimundo, L.A.: An undergraduate system-
on-chip (SoC) course for computer engineering students. IEEE Trans. Educ. 48(2),
279–289 (2005)

158 C. Wang et al.

20. Hansson, A., Akesson, B., Van Meerbergen, J.: Multi-processor programming in
the embedded system curriculum. ACM SIGBED Rev. 6(1), 9 (2009)

21. Feist, T.: Vivado design suite. White Paper 5 (2012)
22. O’Loughlin, D., Coffey, A., Callaly, F., Lyons, D., Morgan, F.: Xilinx Vivado high

level synthesis: case studies (2014)

Author Index

Abbas, Houssam 94
Aoki, Toshiaki 63

Cheng, Yuming 145

Eo, Jeongyoon 27

Fainekos, Georgios 11

Goldsztejn, Alexandre 79
Gong, Lei 145

Hasan, Osman 127
Hasuo, Ichiro 3, 109

Ingibergsson, Johann Thor Mogensen 43
Ishii, Daisuke 63, 79

Kido, Kengo 109
Kim, Hokeun 83
Kim, Kang-Wook 27
Kraft, Dirk 43

Lee, Chang-Gun 27
Lee, Edward A. 83
Li, Xi 145

Mangharam, Rahul 94
Murakami, Toru 63

O’Kelly, Matthew 94

Rashid, Adnan 127
Rodionova, Alena 94

Schultz, Ulrik Pagh 43
Sedwards, Sean 109

Takeuchi, Shigeki 63
Tomita, Takashi 63

Wan, Bo 145
Wang, Aili 145
Wang, Chao 145
Wasicek, Armin 83

Yaghoubi, Shakiba 11
Yonezaki, Naoki 79

Zhou, Xuehai 145

	Preface
	Organization
	Contents
	Keynote
	Nonstandard Static Analysis: Literal Transfer of Deductive Verification Frameworks from Discrete to Hybrid
	References

	Design
	Local Descent for Temporal Logic Falsification of Cyber-Physical Systems
	1 Introduction
	2 Problem Statement
	2.1 System Description
	2.2 System Requirements
	2.3 Problem Formulation

	3 Finding a Descent Direction for the Robustness
	4 Sensitivity Calculation for a Hybrid Trajectory
	4.1 Sensitivity Jump Calculation

	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Memory Access Pattern-Aware DRAM Controller Design for Mixed-Criticality Systems
	1 Introduction
	2 Background
	2.1 DRAM Architecture and Characteristics
	2.2 DRAM Controller

	3 Observation
	4 Memory Access Pattern-Aware DRAM Controller Design
	4.1 DRAM Controller Architecture
	4.2 Worst Case Interference Delay Analysis

	5 Evaluation
	5.1 Experiment Setup
	5.2 Performance Result of Non-critical Tasks

	6 Related Work
	7 Conclusion
	References

	Increasing Safety by Combining Multiple Declarative Rules in Robotic Perception Systems
	1 Introduction
	2 Fundamentals and Related Work
	2.1 Safety in Robotics
	2.2 Perception Systems
	2.3 Learning and Computer Vision
	2.4 Programming Safe Perception Systems

	3 Methods
	3.1 Datasets
	3.2 Decision Trees
	3.3 Manual Programming

	4 Combining Declarative Rules
	4.1 Combination of Rules

	5 Experimental Evaluation
	5.1 Robot Platform
	5.2 Test Setup
	5.3 Data Acquisition
	5.4 Dataset
	5.5 Initial Data Exploration
	5.6 Usability
	5.7 Assessment

	6 Conclusion and Future Work
	References

	Simulation
	Template-Based Monte-Carlo Test Generation for Simulink Models
	1 Introduction
	1.1 Background
	1.2 Issues
	1.3 Objectives and Approach
	1.4 Related Work

	2 Preliminaries
	2.1 Simulink Models
	2.2 Testing for Simulink Models

	3 Template-Based Monte-Carlo Test Suite Generation
	3.1 Signal Templates
	3.2 Overview
	3.3 Template-Based Test Case Generation

	4 Template-Based Biased Sampling Framework
	4.1 Overview
	4.2 Fitness Functions
	4.3 Distribution Refinement

	5 Experiments
	5.1 Descriptions
	5.2 Results and Discussions

	6 Conclusions and Future Work
	References

	Reliable Simulation and Monitoring of Hybrid Systems Based on Interval Analysis
	References

	An Integrated Simulation Tool for Computer Architecture and Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Configuring the gem5 Simulator
	3.2 Communication Between gem5 and Ptolemy II
	3.3 DRAM Behavioral Model in Ptolemy II
	3.4 Memory Power and Thermal Modeling in Ptolemy II

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Power and Temperature Results

	5 Conclusions
	References

	Safe At Any Speed: A Simulation-Based Test Harness for Autonomous Vehicles
	1 Introduction: Testing AVs in Simulated Worlds
	2 Searching the World for Non-robust Behavior
	2.1 Game-in-the-loop Test Harness
	2.2 Search Algorithm
	2.3 Optimization Results

	3 Fake World, Real News: On the Validity of Using Synthetic Environments for Testing AVs
	3.1 Object Detection on Synthetic and Natural Scenes
	3.2 The Complexity of Synthetic and Natural Scenes

	4 Conclusion
	References

	Formal Methods
	Switching Delays and the Skorokhod Distance in Incrementally Stable Switched Systems
	1 Introduction
	2 Switched Systems
	3 Transition Systems and Approximate Bisimulation
	4 Incremental Stability
	5 Constructing Approximate Bisimulation Between Delayed and Delay-Free Systems
	6 Upper Bound of Skorokhod Metric
	7 Example
	8 Conclusion and Future Work
	References

	Formal Analysis of Robotic Cell Injection Systems Using Theorem Proving
	1 Introduction
	2 Preliminaries
	2.1 HOL Light Theorem Prover
	2.2 Multivariable Calculus Theories in HOL Light
	2.3 Robotic Cell Injection Systems

	3 Formalization of Robotic Cell Injection System
	4 Formalization of the Motion Planning of the Injection Pipette
	5 Conclusion
	References

	Workshop on Embedded and Cyber-Physical Systems Education
	FPGA Based Big Data Accelerator Design in Teaching Computer Architecture and Organization
	1 Introduction
	2 Related Studies and Motivation
	3 Generic Hardware and Software Environment
	3.1 Hardware Configuration
	3.2 FPGA Based Heterogeneous Framework
	3.3 Software Environment
	3.4 Processing Flow

	4 Project Setup snd Milestones
	5 Project Evaluation
	6 Discussion of the Costs and Efforts
	6.1 Hardware and Software Cost
	6.2 Efforts in Organizing the Experiments

	7 Conclusion
	References

	Author Index

