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Abstract. The PAPI performance library is a widely used tool for
gathering performance data from running applications. Modern proces-
sors support advanced sampling interfaces, such as Intel’s Precise Event
Based Sampling (PEBS) and AMD’s Instruction Based Sampling (IBS).
The current PAPI sampling interface predates the existence of these
interfaces and only provides simple instruction-pointer based samples.

We propose a new, improved, sampling interface that provides support
for the extended sampling information available on modern hardware. We
extend the PAPI interface to add a new PAPI sample init call that uses
the Linux perf event interface to access the extra sample information.
A pointer to these samples is returned to the user, who can either decode
them on the fly, or write them to disk for later analysis.

By providing extended sampling information, this new PAPI inter-
face allows advanced performance analysis and optimization that was
previously not possible. This will greatly enhance the ability to optimize
software in modern extreme-scale programming environments.

1 Introduction

When conducting performance analysis, the easiest type of data to collect is
total, aggregate results. This includes information such as the total number of
cycles a program ran, the total number of cache misses that occurred, and the
total wall clock time. While all of this information is of interest, often more detail
is wanted: what function takes the most cycles, which data structure causes the
cache misses, why is the code taking so long to run.

The most straightforward way to get this detailed information is via sampling;
to periodically interrupt the program’s execution and gather machine state about
what it is happening at the time of the interruption. Overall program behavior
can be extrapolated based on these representative samples. There is a tradeoff
between overhead and accuracy: a higher sample rate leads to more accurate
results, but if you sample too frequently you will add overhead that can interfere
with the results being measured. Some of this overhead can be mitigated if the
sampling is done in hardware rather than in software.
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1.1 Hardware Performance Counters

Most modern processors support hardware performance counters; these counters
are internal to the system and increment when certain architectural events occur.
Total aggregate counts can be gathered by starting the counters at the beginning
of the code of interest, and stopping them afterward. Traditionally these counters
are found in CPUs, but their use has expanded to other pieces of hardware such
as the disk, network, and memory systems.

Typically there are only a handful of counters available, often in the range
from two to eight (though this varies by vendor, architecture, and processor
generation). The counters are typically between 32 and 64 bits in size. Each
counter can measure an event, chosen from a large list (potentially hundreds on
some architectures [4,13]).

Usually the counters can be configured to trigger a hardware interrupt if the
register overflows. This can be used to notice and account for large counts gener-
ated by frequent events; if the counter overflows multiple times between readings
it would not be possible to determine the exact count. The overflow mechanism
is also useful for sampling. An event can be set to overflow periodically, for
example, every 100,000 cycles. Once the interrupt triggers, the operating system
interrupt handler takes over and can construct a sample that includes additional
useful information, such as where the instruction pointer is currently located. If
your CPU lacks performance counter overflow interrupt support, sampling can
still be done by using some other regular interrupt source (such as a periodic
timer). However usually the performance counters are used for this purpose if
they are available.

1.2 Advanced Sampling

While you can learn a lot about a program by gathering instruction pointer
samples, there is a lot more to program behavior than just instruction traces.
Recent processors from Intel and AMD support more advanced sampling modes.
These allow gathering extra information on an overflow, such as detailed cache
miss and cache latency values.

The sampling features are grouped together under a large number of proces-
sor features with sometimes confusing acronyms. The more well known are Intel’s
Precise Event Based Sampling (PEBS) and AMD’s Instruction Based Sampling
(IBS). There are a few common sampling related interfaces:

– Sampled Profiling – traditional sampling, as defined previously. A periodic
interrupt is used to sample the instruction pointer and any other info that
can be easily obtained, such as register values. Most CPUs can do this purely
in hardware or can emulate it in software (by using some sort of timer).

– Low-latency Sampling – instead of having periodic interrupts and man-
ually gather program state, some hardware allows automatically sampling
multiple times to a dedicated memory buffer without any operating system
(interrupt) involvement. This has lower latency than traditional interrupt-
based sampling. Intel PEBS does this.
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– Hardware Profiling – at regular intervals the CPU is interrupted and
detailed information about the current instruction is logged. Often the actual
instruction logged is randomly chosen after a certain trigger point. AMD IBS
and Intel PEBS do this.

– Extra CPU State – PEBS and IBS log additional CPU state that cannot
be obtained in software from the operating system. This includes register
state, kernel register state (if the interrupt happened in the kernel), branch
predictor outcome, instruction latencies, sources of cache misses, etc.

– Low-skid Interrupts – One issue with measurements involving interrupts is
“skid”: once an overflow interrupt happens, it takes a CPU (especially modern
complex out-of-order designs) some amount of time to stop the processor and
pinpoint exactly which instruction was active at time of the overflow. Often
there is an offset between the instruction indicated versus the one causing the
interrupt (this offset is called the skid). PEBS and IBS provide support for
low-skid sampling, at the expense of some additional time overhead.

– Last Branch Sampling – The hardware keeps track of the last branches
taken, and allows generating call stacks. Intel Last Branch Record (LBR)
allows this.

– Processor Trace – The CPU logs to a buffer details on all instructions being
executed (although usually this is filtered, as the raw data stream can be huge
otherwise). Intel Processor Trace and ARM CoreSight are examples of this.

Ideally all of these types of sample data could be easily returned to the user
through a straightforward interface.

1.3 Software Interfaces

Hardware counter accesses are privileged by the hardware, so usually the oper-
ating system is responsible for enforcing access. On Linux this is done by the
perf event [10] subsystem. Over the years Linux has gradually added support
for the more advanced sampling modes. Directly accessing these results from
userspace involves using the perf event interface which is complicated to set
up and use [33]. Most users instead opt to use the perf command-line tool which
abstracts away some of the low-level interface.

PAPI [26] is a portable, cross-platform library for accessing hardware perfor-
mance counters. Many higher-level tools, such as VAMPIR [19] and HPCToolkit
[1] build on PAPI. PAPI has supported simple event sampling for a long time,
but has lacked the ability to gather advanced samples from modern processors. In
this paper we describe the existing PAPI support for sampling, and how we plan
to add support for the more advanced hardware sampling interfaces supported
by perf event.

2 Hardware Sampling Interfaces

As with general performance counter support, sampling interfaces are not part of
any x86 standard and thus have completely different implementations between
vendors. What follows is a quick overview of support found on recent processors.
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2.1 Intel x86 64

Intel processors introduced performance counter support with the original Pen-
tium processor. Since the beginning they have supported hardware interrupt on
counter overflow, allowing sampled profiling. More advanced sampling interfaces
began appearing starting with the Pentium 4 processor.

Intel Precise Event-Based Sampling (PEBS). Recent Intel chips support
Precise Event Based Sampling (PEBS), as described in Chapter 18 of the Intel 64
and IA-32 Architectures Software Developer’s Manual (Volume 3) [13]. PEBS
support originated in Pentium 4 and Core architectures. It is available on all
subsequent Core-derived processors as well as some Atom models.

Only a subset of events can be used as PEBS events, and sometimes only a
certain counter slot can be used. A suitable Data Store (DS) area must be set up
in memory; samples will be directly written to this area without any operating
system involvement. When PEBS is enabled for an event, the PEBS circuitry is
armed when the counter overflows. The next instruction that triggers this event
had a record with sample information written out to the DS area. The DS area
can be configured to generate an interrupt when full (or nearing being full) so
that multiple samples worth of data can be queued up and processed at once by
the operating system, reducing overall overhead.

The information that can be recorded on a PEBS sample varies by architec-
ture but can include:

– trap vs fault (whether the event recorded is the next or the current one),
– a full set of processor registers (in addition to the instruction pointer),
– store latency data,
– transactional memory data
– TSC value, and
– the counter value.

Nehalem processors add more features. Now you can record load latency
information: the latency in cycles from first dispatch to final retirement of the
instruction. When enabled, load instructions are randomly chosen to accumulate
the load latency info. The value recorded is the latency for the last randomly
tagged event, not necessarily the one that triggered the PEBS operation. The
information gathered includes the Data Linear Address (usually the same as the
virtual address of value being loaded), latency value, and data source (which
indicates what part of the cache memory hierarchy was involved with returning
the loaded value).

Sandybridge processors add more PEBS features, and enable PEBS for more
events. In addition to loads, now store instructions can also be measured (but
this is limited in some ways, including not being able to get latency values).
Additional info is returned on whether loads hit in the TLB. Precise store support
is added, where information is returned on the very next store rather than a
randomly selected one. Sandybridge also adds support for low-skid measurement
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via the Precise Distribution of Instructions Retired (PDIR) interface. It notices
when an overflow interrupt is about to happen and prepares for it and enters a
slower high-accuracy mode that allows it to exactly determine which instruction
caused the overflow.

With Haswell precise store was replaced by Data Linear Address Profiling
(DataLA); the full linear (virtual) destination address of the load or store is
stored in the sample. Additionally information on whether the access hit in the
closest level of cache is stored. The eventing instruction pointer (the address of
the instruction that caused PEBS to trigger) is also recorded. Finally, various
transactional memory related sample types were added.

Skylake processors add a field for recording the TSC timestamp value from
when that event occurred, and adds additional front-end events (iTLB and
iCache misses).

PEBS support was originally designed for desktop and server chips, but some
of the Atom class chips also have support for PEBS. On Goldmont Atom chips,
PEBS records can be recorded for all events. However for non-precise events
there is no guarantee about what instruction actually generates the sample.
Other information recorded includes the time stamp counter (TSC) and info
on which event caused the overflow (if multiple are enabled). Reduced skid and
linear address support is also available.

Intel Last Branch Record (LBR). Starting with the Pentium 4 most Intel
hardware supports logging a trace of the last branches that were executed via the
Last Branch Record (LBR) interface. Full details can be found in Chapter 17 of
the Vol3b documentation. The number of branches recorded varies from 4 up to
32. The LBR record contains detailed information about the branch, such as
the last location branched from, the last location branched to, and whether the
branch was predicted correctly or not. This is not strictly a sampling feature,
but the data is recorded to MSR registers and under Linux is reported via the
perf event interface.

Intel Branch Trace Store (BTS). Intel processors can also support the
Branch Trace Store (BTS), where the last N branch records can be written out
to a circular buffer called the Debug Store (DS) which should not be confused
with the PEBS Data Store. This feature lets you track the branch behavior of
your program, but is known to slow down program execution when enabled.

Nehalem chips added the ability to filter based on branch type. Haswell
supports call-stack recording, where you can configure it to record the branches
in a LIFO setup (i.e. when you return from a function call, the branches that
have happened since the initial call to the function are backed off). This allows
generating a call stack more easily especially with programming languages that
have deep call trees. Skylake changes the format a bit, and includes transactional
memory info as well as cycle counts. It has 32 entries now and can capture length
of time spent in a basic block with the TSC time. Atom Goldmont allows you
to obtain the number of cycles since last branch.
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Intel Resource Director Technology (RDT). The Intel Resource Direc-
tor Technology (RDT) is available on server machines, Haswell Xeon E5 v3
and newer. It supports a number of technologies. Cache Monitoring Technology
(CMT) can measure cache occupancy of program in last level cache. Memory
bandwidth monitoring (MBM) [14] can monitor memory bandwidth between
cache levels. You can assign a resource monitoring ID (RMID) to a task, pro-
cessor, or group of processors and monitor them.

On Xeon E5 v4 processors (Broadwell) RDT also supports cache allocation
technology (CAT) and code data prioritization (CDP). This allows one to give
hints on how much cache a program should be allowed to use.

Some machines have Cache Quality-of-service Monitoring (CQM) but it is
not documented, and while Linux has some initial support for it, it was later
removed.

Intel Processor Trace (PT). Intel Processor Trace (PT) [18] lets you record
program execution traces. The first implementation is control flow tracing and
can log enough information to give an exact program flow trace. It can also
generate basic block vectors and trace power events. It aims for less than 5%
overhead, and records latency info. It can reconstruct program flow by recording
the taken/not-taken path of conditional branches. There is a possibly related
technology called Intel Architectural Event Trace (AET) but information on
how to use this is not publicly released.

2.2 AMD x86 64

AMD processors support simple sampling using hardware interrupts on counter
overflow. Recent processors also support some more advanced sampling inter-
faces, but not quite as many nor as varied as supported by Intel.

AMD Instruction Based Sampling (IBS). AMD chips support Instruc-
tion Based Sampling (IBS), which is described in the various BIOS and Kernel
Development Guides [2,3] as well as in some research papers [6,7].

IBS was introduced with Barcelona (fam10h) to aid in creating low-skid
profiles. It selects a random instruction or micro operation (uop) and records
information, generating an interrupt when completed. There are two types of
sample: one that happens on instruction fetch (involving TLB and instruction
cache behavior) and one that happens on instruction execution.

For instruction fetch the following information is logged:

– if the fetch was completed or aborted,
– number of cycles spent on the fetch,
– if the fetch hit in the caches and TLB, and
– the linear/physical address corresponding to the fetch.

For instruction execution the following is logged:
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– if only one micro-op of the instruction can be tagged,
– branch status of the instruction,
– linear/physical address of instruction,
– linear/physical address of load/store destination,
– data cache statistics (hit or not, latency),
– clocks from tag until retire,
– clocks from execution until retire, and
– DRAM and MMIO source info.

Unlike PEBS these values aren’t stored in a memory buffer, but in a set of MSRs.
Only one record can be pending at a time. Only three events are supported:
cycles, cycles:p, and uops.

2.3 Other Processors

Most other modern processors support performance counters, and again most of
these support simple sampling via counter-overflow interrupt (although notably
various ARM based platforms might not, such as the original ARM1176 Rasp-
berry Pi systems).

Support for more advanced sampling is not as widespread as it is on x86.
ARM has no PEBS or IBS equivalent, but it does have something similar to
Processor Trace called CoreSight. Newer 64-bit ARM models optionally support
the Statistical Profiling Extension (SPE) [5]; perf event added support for this
with Linux 4.15.

The IBM s390 class of machines has a sampling facility as part of the CPU
Measurement Facility [12] that will write samples into a buffer that will trigger
an interrupt when full.

3 Software Interface for Sampling

Advanced hardware sampling interfaces are complex and vendor specific. Some
of this complexity can be abstracted away by the operating system (in our case
we will assume the OS is Linux). On Linux the perf event interface used for
accessing regular hardware performance counters is also used for accessing sam-
ple data. This interface itself is complex and hard to use, so we develop the
PAPI library which is yet another layer of abstraction on top of perf event.
This allows existing users of PAPI to gain access to the sampling interface using
familiar PAPI interfaces, without needing to majorly restructure their code.

3.1 Linux perf event Interface

Access to performance counter registers requires supervisor or privileged access
to the hardware, in order to initialize the model-specific registers (MSRs) and set
up the sampling memory buffers. Because of this the operating system is usually
responsible for the interface. In addition access to the underlying hardware might
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be further restricted for security reasons. A clever user can monitor in detail what
a system is doing based on fine grained performance information, and this can
leak information. This was once considered a mostly theoretical attack, such as
being able to reverse engineer encryption happening on other cores by monitoring
cycle or cache miss counts; this has recently become a much more critical worry
with the advent of the Meltdown and Spectre vulnerabilities [22].

The standard performance counter interface provided by Linux is known
as perf event and the primary way of accessing it is the perf event open()
system call [33]. This system call is used to configure and open a performance
counter event; it is a complex call with over forty interacting parameters. The
system call returns a file descriptor which can be used to control and access
the event. Values can be read with the read() system call, and memory can
be set up with mmap() that allows both sampling to a circular buffer as well
as gathering additional information about the event. Various ioctl() calls are
used to start and stop the events. Advanced features, such as event scheduling,
event multiplexing, and save/restore on context switch are all provided by the
interface.

Linux perf event supports most of the advanced hardware sampling interfaces
described in Sect. 2.

perf event Sampled Profiling. As long as your system supports overflow
interrupts you can do statistical sampling with perf event. You can specify the
event, the frequency, and a whole host of other options. On overflow, a user-
specified signal handler can be called that your code can use to find the register
state, including instruction pointer location.

perf event Low-Latency Sampling. The perf event interface can provide
access to low-latency sampling, which is gathering multiple samples into a buffer
without program intervention. The samples are gathered until a watermark
threshold is crossed, and only then will your program be interrupted to let it
know that the buffer is full and ready to be processed. There is still some oper-
ating system overhead involved, as some events need to be handled in the kernel
even if userspace code is not bothered. When using an interface such as Intel
PEBS even this can be avoided, as the hardware can store PEBS records to a
memory buffer directly without any operating system involvement at all.

By default perf event does not support low-latency sampling, and instead
runs in “single-entry” mode. This is because the perf records require some values
that only the OS can provide, such as pid/tid. It is possible to enable the N-
entry PEBS mode if you are willing to sacrifice some features: you must use a
fixed period, no timestamp if pre-Skylake, the PEBS buffer flushed on context-
switches, and no LBR [8].

perf event Extra Processor State. Linux perf event supports returning a
large amount of data with each sample. Some of the sample types are extended
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with PEBS data when available. Currently any of the following can be dumped
into a sample by perf:

– PERF SAMPLE IP – instruction pointer
– PERF SAMPLE TID – thread ID
– PERF SAMPLE TIME – a timestamp
– PERF SAMPLE ADDR – effective address
– PERF SAMPLE READ – counts for all events in group
– PERF SAMPLE CALLCHAIN – callchain info
– PERF SAMPLE ID – a unique id for the group leader
– PERF SAMPLE CPU – current CPU
– PERF SAMPLE PERIOD – current sampling period
– PERF SAMPLE STREAM ID – another unique ID
– PERF SAMPLE RAW – raw data (PMU specific).

On IBS this contains the raw MSR dumps which include the below (and
other) info:
• Fetch: Randomize event enabled, TLB miss, TLB size, icache miss, fetch

addresses
• Execute: address, microcode, branch fused, branch predicted, cache hit,

offcore (northbridge) source, tlb latency, memory width, l2 cache miss,
load or store, TLB stats, alignment, branch target access, physical address

– PERF SAMPLE BRANCH STACK – branch stack from LBR
– PERF SAMPLE REGS USER – current user level register state.
– PERF SAMPLE STACK USER – user stack, to allow stack unwinding (use-

ful for call traces)
– PERF SAMPLE WEIGHT – for PEBS this is the cycle time
– PERF SAMPLE DATA SRC – this is the PEBS cache miss hierarchy info
– PERF SAMPLE IDENTIFIER – another unique ID, but in a fixed location
– PERF SAMPLE TRANSACTION – has to do with Intel TSX transactional

memory
– PERF SAMPLE REGS INTR – current register state at interrupt, can be in

userspace. If PEBS enabled and a precise event is being measured then the
registers here are the ones gathered by PEBS.

Note that the PEBS weight and data source data can be hard to interpret
and often gives non-intuitive results, such as it reporting a cache miss taking
more cycles to complete than an L3 cache miss. This is (at least in part) because
the cycles count can take into account other things going on in the chip unrelated
to the memory hierarchy.

perf event Low-Skid Interrupts. The perf event interface supports various
levels of low-skid measurements on an event. This is enabled via the precise ip
field, which is indicated in both perf and PAPI by putting :p values on the end
of events (:p, :pp, :ppp). Only a subset of events support precise reporting, and
it varies by processor model.

The following precise settings are supported:
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– Level 0 – an event can have arbitrary skid
– Level 1 – request constant skid
– Level 2 – request zero skid (but the processor might not always be able to

deliver)
– Level 3 – require zero skid (or equivalent, such as “randomization to avoid

shadowing effects”).

On Intel chips, PEBS support gives you level 1 of precise events, LBR and
PEBS format v2 gives you level 2 (IP Fixup), and PEBS precise distribution
support gives you level 3. Note Level 2 support uses the LBR for accuracy, so it
might not be able if you are also attempting to use LBR for branch sampling.

On AMD machines precise IP is supported through the IBS interface. Both
Level 1 and Level 2 are supported. Only three events are supported, cpu-cycles,
cycles, and uops. Previously you needed to specify you want to run system
wide -a not just per-task to do this (which often requires root) but on a recent
machines this is no longer necessary.

perf evet Branch Sampling. This info can be gathered with the raw
perf event PERF SAMPLE BRANCH STACK option. It can report the last N
branches (16 on recent machines), the address and target, and whether it was
properly predicted. On some machines you can filter by branch type.

The related Branch Trace Store functionality has its own PMU driver and
uses a special AUX area of the mmap buffer which is mostly independent from
the normal sample buffer. It can return branches, their ip, their target, and
whether they were a branch hit or miss.

Other, Non-sampling Interfaces. Intel Processor Trace is a whole tracing
subsystem, and does much more than sampling [16]. It uses the AUX mmap
buffer just like BTS does.

3.2 PAPI Library Interface

The PAPI performance library [26] is a cross-platform library designed to allow
access to performance counters on a wide variety of machines. On current Linux
machines PAPI uses the perf event interface. We will briefly describe the old
sampling methods available in PAPI prior to the forthcoming 6.0 release expected
in 2019.

PAPI Statistical Sampling. The current PAPI interface used when sampling
is PAPI overflow(). There are two key parameters: an overflow threshold and
a signal handler. Once the event in question hits the threshold, the hardware
triggers an overflow interrupt which is then passed by the operating system to
the Linux system handler. It is up to the user to do something useful in the
signal handler (such as read out the instruction pointer value) before returning.
PAPI does not support returning info besides the instruction pointer, although
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in theory the register state can also be manually gathered from the signal context
on Linux. Currently it is not possible to get the advanced sample info (kernel
register state, latencies, branch predictor outcome, cache hierarchy extra info,
etc.)
i n t PAPI overflow ( i n t EventSet , i n t EventCode ,

i n t thresho ld , i n t f l a g s ,
PAPI over f low handler t handler ) ;

The signal handler looks like:
typede f void (∗ PAPI over f low handler t )

( i n t EventSet , void ∗ address ,
long long ove r f l ow vec to r , void ∗ context ) ;

PAPI profil(). There are two legacy PAPI sampling interfaces, PAPI profil()
and PAPI sprofil(), which are meant to provide interfaces compatible with the
UNIX “profil” system call.
i n t PAPI pro f i l ( void ∗buf , unsigned bu f s i z ,

caddr t o f f s e t , unsigned sca l e ,
i n t EventSet , i n t EventCode ,
i n t thresho ld , i n t f l a g s ) ;

i n t PAPI spro f i l ( PAPI sp ro f i l t ∗prof ,
i n t profcnt , i n t EventSet ,
i n t EventCode , i n t thresho ld , i n t f l a g s ) ;

A range of addresses to watch is given, and then there is a regular overflow
which stops, notes the instruction pointer, and then increments the value in
a set of “bins”. This can be used to generate a profile of where the code has
been executing. This interface is not as widely used as the much more popular
PAPI overflow().

PAPI Low-Skid Interrupts. PAPI currently support perf event low skid
interrupts. To do this you use the PAPI add named event() interface and when
specifying the event name include one of the :p suffixes to indicate you want a
more precise event.

4 Related Work

Other interfaces besides PAPI offer ways to read hardware performance counters.
Many of these interfaces also support sampling.

4.1 Existing Profiling Tools

Profil. On some UNIX implementations there is a profil() system call that
will periodically interrupt program execution and generate a profile histogram.
Linux does not support this system call, although the C library implements it
in software via a timer that triggers every 10 ms. PAPI has existing code to
emulate this interface. While profiles can be generated, no advanced sampling
information is available.
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gprof. gprof lets you instrument your program at compile time (with the -pg
compiler option) and then at run time it will report how long each function was
called and how much time was spent in it. This allows sampling at the function-
call level. This is a bit intrusive overhead-wise, and requires you have access to
the source code.

Valgrind. Valgrind [27] does dynamic-binary instrumentation. One of its tools
is “callgrind” which will instrument basic blocks on the fly and allow creat-
ing profiles which can be viewed with the “callgrind annotate” tool. It also has
“cachegrind” which runs the code through a cache simulator. The primary down-
side to Valgrind and similar tools is the slowdown which ranges from 10–100x
slower than natively running.

4.2 NUMA Profiling

numap [31] presents an API for gathering sampled data for use when analyzing
NUMA systems. First init samp session() is called to specify threads to be
profiled. Then samp read start() called to setup the mmap buffer. The code of
interest happens. Then samp read stop() called to stop sampling. Finally the
results printed with print rd() which decodes the binary blob returned by the
kernel. It is also possible to get the data results directly. The data of interest
is mostly the PEBS data: instruction pointer of the instruction, address of the
load/store, “weight” which is the number of cycles, and data src which is the
part of the hierarchy causing the result. The primary downside of this, at least
to PAPI users, is that it is a separate tool and not integrated into the PAPI
interface.

Memphis [25] is a tool that talks to the AMD IBS registers directly via a
kernel module in order to gather the extended sample information. MemProf [20]
is another AMD IBS-based NUMA memory profiler. Again, neither of these is
integrated into the PAPI infrastructure.

4.3 GPU Profiling

Some GPU hardware supports profiling interfaces too, specifically recent
NVIDIA devices [30]. For MAXWELL GPUs and CUDA 7.5 you can use CUPTI
to create a sampling data structure PC SAMPLING ACTIVITY, SOURCE LOCATOR,
and KERNEL ACTIVITY. To use the Activity API you initialize, register callbacks,
enable the activities, and set the sample rate. While useful for analyzing GPU
code, in our work we are more concerned with the advanced sampling interfaces
provided on modern CPUs.

4.4 Other Tools with Sampling Interfaces

LIKWID [32] is a hardware performance measurement interface that is capable
of reading performance counters on supported x86 processors. Using the likwid-
perfctr command with the -t option, the user can measure performance results
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from LIKWID at a specified time interval. The interface recommends using an
interval no smaller than 100 ms, otherwise the results are considered invalid.
Achieving fine-grained sampling results from the LIKWID interface is not possi-
ble due to this constraint. LIKWID does not support PEBS as it is a userspace
tool and cannot setup the kernel buffers needed to hold the PEBS records.

HPCToolkit [1] is a large suite of tools for analyzing the performance of
multithreaded applications. It can be used for anything from a home computer
to a super computer. HPCToolkit interfaces directly with PAPI to read hardware
performance counters and gather samples. The samples do not contain the extra
data that is available from PEBS events; they are merely counter readings using
the PAPI overflow() code.

4.5 Other Proposed PAPI Sampling Interfaces

Lopez, Moore, and Weaver [24] were the first to propose an enhanced sampling
interface for PAPI that gathered the PEBS cache latency values. Their sampling
interface is similar to the one that we propose in this paper. Their proposed inter-
face was never implemented and remained a proof of concept. They used raw
perf event calls to show it was possible to measure both single thread and mul-
tithreaded applications. They were successfully able to gather STREAM sample
results using OpenMP with eight threads.

5 Proposed Advanced PAPI Sampling API

It is not possible to retrofit the existing PAPI overflow() method of gathering
samples to handle extended sample information in a backwards compatible way.

We propose two new enhanced interfaces. One stays true to the historical
cross-platform layer-of-abstraction nature of PAPI, but only provides limited
information. The other acts as a thin layer on top of the perf event interface
that provides all sampling info, but is very Linux specific.

5.1 Abstracted Interface

This interface attempts to provide access specifically to the cache latency values
that can be found in PAPI. This is the most requested feature, and in theory
can be made cross-platform although currently only Intel PEBS provides this
information.

This interface involves a PAPI sample init() call shown in Fig. 1 which
internally inside of PAPI will take the event selected and set up a sampling
buffer. Once the buffer is full, PAPI will gather the data and create an array of
sample data that will be passed back to the user.
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s t r u c t samp le s t ruc t {
u in t64 t type ;
u i n t 64 t i n s t r u c t i o n add r e s s ;
u i n t 64 t memory access address ;
u i n t 64 t c a che a c c e s s t ype ;
u i n t 64 t l a t ency ;

} ;

i n t PAPI sample in it ( i n t EventSet , i n t EventCode ,
long long sample per iod , long long b u f f e r s i z e ,
PAPI over f low handler t handler ) ;

typede f void (∗ PAPI over f low handler t )
( i n t EventSet , void ∗ sample s t ruct ,
long long num samples ) ;

Fig. 1. Proposed abstract interface

5.2 Direct perf event Interface

This option for the interface does not try to abstract away the samples. It oper-
ates on the assumption that most HPC work happens on Linux kernels via the
perf event interface and as much information as possible provided by this inter-
face should be passed back to PAPI if requested. While this is the most powerful
interface, it requires a lot of internal perf event knowledge. The example inter-
face is shown in Fig. 2.

i n t PAPI sample in it ( i n t EventSet , i n t EventCode ,
long long sample per iod , long long b u f f e r s i z e ,
s t r u c t p e r f e v e n t a t t r ∗ attr ,
PAPI over f low handler t handler ) ;

typede f void (∗ PAPI sample handler t )
( i n t EventSet , void ∗ bu f f e r add r e s s ) ;

Fig. 2. Proposed perf event interface

This interface provides a pointer to the raw perf event mmap() sample buffer,
and it is up to the user code to interpret this and get the samples out. For
performance reasons, the Linux kernel enforces a rule that to gather PEBS-type
sample data, each individual core needs to have its own mmap() buffer. Currently
it is up to the user to open one event per core as needed, but we are planning
an interface to simplify this.

Existing PAPI code using PAPI overflow() can be used with few changes.
You still need to create an eventset, add an event (note: only some events are
capable of providing extra sampling information). Then initialize sampling using
the proposed interface. Finally, start/stop events as per normal.

When a threshold is crossed and a sample is gathered, PAPI will activate the
signal handler that was set up by the user. It is then up to the user to access
the mmap() buffer and do something useful with the contents before returning.
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In PAPI we provide two sample programs: one writes out the raw sample data
to disk for later analysis, and one that prints out the sample results on the fly.

The low level changes required to PAPI are mostly about making sure the
mmap() buffers get set up properly. A lot of the hard work involving internal
PAPI management of mmap() buffers was already done when fast rdpmc read
support was added [23]. The PAPI code manages setting up the mmap()s and
making sure that the events are opened properly.

The types of sample information available can be found in the perf event open
manpage [33]. For PEBS latency information use one specifies PERF SAMPLE IP
| PERF SAMPLE WEIGHT | PERF SAMPLE DATA SRC which asks for the instruction
pointer, the weight (latency) and the source of data. For IBS events one would
ask for �PERF SAMPLE RAW and you have to parse the IBS values yourself.

Limitations of this Interface. The primary limitation of this proposed inter-
face is how Linux-centric it is. PAPI is in theory supposed to be platform agnos-
tic. In addition the samples are in the raw perf event sample record format which
requires the users to have some non-trivial code to decode the results.

Another concern is how to remain forward compatible. As Intel adds more
features to PEBS how can we return those too without requiring tools to be
recompiled.

Unsupported Sample Types. The perf event interface returns most sample
data through the mmap() interface, so anything supported by perf event can be
gathered that way. This means results such as LBR records can also be obtained
through this interface.

Some values, such as Intel BTS and Intel Processor Trace, use an additional,
auxiliary, mmap() buffer to store the results. PAPI currently does not support
gathering data via that mechanism.

Data Format. Once the user signal handler is called, the program can read out
the samples in the mmap() buffer and interpret them. There are two straight-
forward ways to deal with the data. One is to immediately write it to disk,
interpreting it offline. The other is to decode and act on the results immediately.
Both methods of gathering data will require some sort of library to interpret the
fields in the samples. We provide examples that do both types of analysis, but
this code is currently not part of PAPI, but separate code to be included in the
analysis routines.

For the save to disk case, there is a standard on-disk format for perf records,
the a perf.data file [9,17,28]. Programs that write out data in this format can
then be analyzed by other compatible perf tools. There are various existing tools
that can parse raw perf.data files:

– pmu-tools parser [15],
– quipper C++ parser (part of chromiumos-wide-profiling),
– gooda [21], and
– flame graphs [11].
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6 Preliminary Results

We have been developing the advanced PAPI sampling interface on a number of
machines, with the primary testing happening on an Intel Skylake machine with
four cores. The test machine is running Linux 4.4.0-127-generic and our primary
benchmark is a PAPI instrumented version 2.2 of the High-Performance Linpack
(HPL) benchmark [29]. Samples have been recorded and verified for all PEBS
events in the Skylake, Haswell, and Broadwell architectures.

Figure 3 shows results gathered on a Skylake machine when using sample
types PERF SAMPLE IP, PERF SAMPLE READ, and PERF SAMPLE CPU. The native
FRONTEND RETIRED.L1I MISS event was used, which counts instruction cache
misses. Each sample contains the value of the performance counter, which can
be seen next to “Value:”. The samples also record the CPU on which the event is
occur ING and the instruction pointer at the time of the event. The samples were
collected with a sample period of 10000. Two captured samples are shown; it is
a multithreaded benchmark and it can be seen that the samples were gathered
from two different cores. In this example, the raw data is gathered in a signal
handler and this is parsed and printed each time a signal occurs.

Figure 4 shows results gathered on a Haswell machine that include cache
latency and source results. These were gathered using the event:

MEM TRANS RETIRED:LATENCY ABOVE THRESHOLD
and the sample type:
PERF SAMPLE IP | PERF SAMPLE WEIGHT | PERF SAMPLE DATA SRC.

PERF_RECORD_SAMPLE [91], MISC=2

(PERF_RECORD_MISC_USER), Size=64

PERF_SAMPLE_IP, IP: 7f9b5f1bc439

PERF_SAMPLE_CPU, cpu: 2 res 0

PERF_SAMPLE_READ, read_format

Number: 1

enabled: 4827080

running: 4827080

Value: 10000 id: 2084

PERF_RECORD_SAMPLE [91], MISC=2

(PERF_RECORD_MISC_USER), Size=64

PERF_SAMPLE_IP, IP: 7f9b6f03b7fc

PERF_SAMPLE_CPU, cpu: 7 res 0

PERF_SAMPLE_READ, read_format

Number: 1

enabled: 12203500

running: 4517409

Value: 10001 id: 2089

Fig. 3. Example advanced sampling,
with IP, CPU, and READ samples
shown.

PERF_RECORD_SAMPLE [c001],

MISC=16386

PERF_SAMPLE_IP, IP: 55fb7799a730

PERF_SAMPLE_WEIGHT, Weight: 48

PERF_SAMPLE_DATA_SRC,

Raw: 668100842

Load Hit L3 cache No snoop

Hit Level 1

TLB Level 2 TLB Hardware walker

PERF_RECORD_SAMPLE [c001],

MISC=16386

PERF_SAMPLE_IP, IP: 55fb7799a730

PERF_SAMPLE_WEIGHT, Weight: 67

PERF_SAMPLE_DATA_SRC,

Raw: 668100842

Load Hit L3 cache No snoop

Hit Level 1

TLB Level 2 TLB Hardware walker

Fig. 4. Example of advanced sampling,
with IP, WEIGHT, and DATA SRC
samples. The weight indicates the
latency of the sampled instruction.
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7 Conclusion and Future Work

We have designed an improved sampling interface for PAPI. It integrates
advanced sampling support into the PAPI interface while abstracting away some
of the difficulty of using the perf event open sampling interface. We provide code
that can be used to parse samples found in the mmap() buffer which is not a
trivial task.

The interface is currently under test for architectures other than Broadwell,
Haswell and Skylake. Once testing is completed, the interface will be included
and released with the upcoming 6.0 PAPI release.

By adding extended sampling support to PAPI we have opened new avenues
for code analysis that will greatly aid users trying to optimize for performance
in current and future extreme-scale systems.

Acknowledgment. This work was supported by the National Science Foundation
under Grant No. SSI-1450122.
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