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Abstract. With the increasing complexity of upcoming HPC systems,
so-called “co-design” efforts to develop the hardware and applications in
concert for these systems also become more challenging. It is currently
difficult to gather information about the usage of programming model
features, libraries, and data structure considerations in a quantitative
way across a variety of applications, and this information is needed to
prioritize development efforts in systems software and hardware opti-
mizations. In this paper we propose CAASCADE, a system that can
harvest this information in an automatic way in production HPC envi-
ronments, and we show some early results from a prototype of the system
based on GNU compilers and a MySQL database.

1 Introduction

Heterogeneous architectures and complex system design have been consistent
challenges for the high-performance computing (HPC) applications community.
For example, in the ongoing CORAL project [4] and Exascale Computing Project
(ECP) [10], HPC researchers, U.S. Department of Energy computing facilities,
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and system builders are engaged in designing the system software layers to tightly
couple with both low-level hardware and high-level applications. In order to
better inform such efforts, often referred to as “co-design,” we have to answer
specific questions about how applications are using current HPC architectures
with detailed, quantitative data as evidence.

Currently in the HPC community, we have insufficient ways to know in quan-
titative detail which system software features are required by user applications;
we most often rely on single-use, labor-intensive efforts [33], “institutional knowl-
edge”, or written survey responses and anecdotal input from developers [15].
This knowledge is tethered to the developers who have intimate knowledge of
the codes, and current tools are used on a subset of applications providing either
very narrow, application-specific views of the source code and performance traits
that are not well-suited for inter-application reasoning or broad summaries that
lose the detail needed for research and system design. This absence of quantita-
tive application information at HPC centers leads to intuition-based engineering
and is increasingly identified as an HPC community challenge with calls for
structured responses emerging within community forums [31].

There are simple questions about the distribution of HPC applications
that we cannot answer quickly and accurately in production application envi-
ronments, like which programming language features, parallelization methods,
libraries, and communication APIs are used commonly across HPC applications.
These questions become even more urgent for the documentation of application
requirements for next generation HPC systems, the planning of long-term com-
puter science research programs to fill capability gaps, and in the execution
of scientific applications readiness programs that prepare codes to accomplish
large-scale science on upcoming systems. Program characteristics such as data
structures layouts, data access patterns, type of parallelism used, profitable com-
piler optimizations and runtime information, need to be captured in a systematic
and transparent way to the user, so that conclusions can be made at an HPC
center-wide level.

To provide this currently unavailable information, we propose a method to
automate the collection of application program characteristics from compiler-
based tools and enable knowledge discovery and feature detection from this data.
Since compilers know everything that is necessary about a source code to lower
it to a resulting executable on a given architecture, we are working to create a
curated database to provide convenient access to information harvested directly
from compiler intermediate representations to enable data analytics techniques
on application source code to inform ongoing HPC research and co-design activ-
ities. These cross-application analyses will lead to a quantitative understanding
of the overall HPC application landscape and where high-value opportunities lie
for development of system software and tools.

Having the ability to answer the questions similar to those above will enable
evidence-based support for the HPC research community, standards committees,
and system vendors. Exploring these issues in depth will allow researchers to gain
continued and deeper insights into these issues as we co-design applications with
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upcoming exascale software and hardware architectures as part of ECP. Our
community will be better equipped to develop tools, inform hardware develop-
ment and standards committees, and understand HPC science application needs.
Designing HPC systems and vendor engagement will be facilitated by a complete
and detailed understanding of real application practices and requirements across
the breadth of HPC applications.

In order for this knowledge to be useful in the near and longer-term future,
it needs to be both accurately harvested with reliable tools, curated for data
quality, and made easily accessible to a variety of users. Rather than relying on
one-off research and limited-use implementations, our approach uses as a ref-
erence implementation industry-standard tools that are already widely used on
HPC platforms and can handle the complexities of all full HPC applications
rather than miniapps or only specific applications, while being totally trans-
parent from the user. The GNU Compiler Collection (GCC) is today able to
compile the in-production version of most current HPC codes, and it supports
both the OpenMP and OpenACC programming models. As the Clang and Flang
LLVM front-ends continue to mature on upcoming systems and become adopted
by production HPC application users, we envision porting our analysis tools to
that toolchain as well. Finally, we have worked with PGI to implement this data
extraction in their compiler suite, with the -Msummary flag made available in the
PGI 17.7 release [7]. We hope to engage with other HPC compiler vendors in the
near future and come up with defacto specifications for parallel program static
analysis information.

2 Background and Related Work

Various tools have been developed to capture program information, but they
are not commonly used for application data collection on production systems
because they are either not fully automated (e.g. transparent to the user), have
high barriers to entry for users, not able to handle full production application
codebases, require significant user intervention (e.g. code restructuring, working
with tools experts), and/or they are not available on all platforms.

OpenAnalysis [43] was an attempt to create a database of program analy-
sis that can be reused across compilers or tools. It relied on Open64 [24] and
ROSE [36] compiler components, but neither of these are widely used by produc-
tion applications across HPC centers. The TAU Program Database Toolkit [37]
captures program structure and stores it in the PDB format which is used for
instrumenting the source code. However, this requires adding extra steps in the
build system and parsing the application with PBT front-ends that may require
program refactoring. The HPCToolkit [12] hpcstruct component gathers some
program traits from the binaries of applications by trying to reconstruct specific
constructs like loop nests, however it cannot detect the higher level features of
languages due to information loss during lowering.

There have been compiler-based tools with advanced analysis capabilities.
Tools such as ROSE [46], Hercules [35], TSF [21] and RTalk [25] store program
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analysis information with the goal of applying transformation-based recipes that
contain static or run-time information of the code. CHiLL, together with Active
Harmony [45] focus on parameter selection and compiler heuristics for auto-
tuning. The Klonos [26] tool extracts sequences of operators from the interme-
diate representation of compilers to find similarity between the codes, but the
resulting information is difficult to relate back to the source code beyond the
procedure functionality. These tools either do not cover the full spectrum of
HPC languages or are maintained as research tools not intended to be used in
production, and their goal is not to be totally transparent from the user, as they
are meant to interact with the user.

The Collective Tuning project [30] aims to create a database of program
structure features and find compiler optimizations for performance, power, and
code size. The main goal of the now deprecated [8] GCC plugin-based MILE-
POST project from cTuning was to collect program features for the purpose of
feeding these back to the compiler optimizer, instead of being made understand-
able for human researcher consumption. However, it was the efforts of cTuning’s
Interactive Compilation Interface [6] project that contributed to GCC’s plugin
infrastructure that we now use for CAASCADE.

Dehydra [1] and Treehydra [2] are analysis plugins that expose different GCC
intermediate representations intended for simple analyses and “semantic grep”
applications. Unfortunately, they have only limited Fortran90 support, and the
output hides important application information. Pliny [27] is a project that
focuses on detecting and fixing errors in programs, as well as synthesizing reliable
code from high-level specifications. It relies on mining information and statistical
information and is still in the early research stage and currently doesn’t support
Fortran. Finally, tools such as XALT/ALTD [13,22], PerfTrack [34], Oxbow/-
PADS [41], IPM [29], and HPC system scheduling information provide system
environment, linkage information (e.g. for library detection) runtime and perfor-
mance information that is complementary to application source code features.
As discussed below, we intend for CAASCADE to interface closely with these
related sources of application information.

3 Design and Methods

The core of CAASCADE consists of: the compiler-based static analysis and the
data storage and analytics backend. Information about various aspects of the
application source code is harvested directly from the compiler’s intermediate
representations (IR) and converted into a format that can be ingested into a SQL
database or analytic engines such as Apache Spark [47]. CAASCADE produces
program information for each compilation unit and inserts the information in
the object file. At link time, it then retrieves the program information from
every object file and stores this information in the database. A symbol identifier
is inserted in the application executable binary to identify it with the program
information stored in the database.
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3.1 GNU Compiler Plugin Implementation

To prototype the static application analysis, we used the built-in plugin infras-
tructure [5] from the GNU Compiler Collection (GCC) to extract information
directly from the compiler’s IR and data structures. There are about thirty plu-
gin callback hooks to trigger plugin execution, that span locations from just
before a new translation unit pass is started to the majority of these locations
being among the various lowering and optimization passes.

For gfortran, GNU doesn’t currently provide any plugin callback in the For-
tran front-end. We found it easiest to add our own call-back to the gfortran
front-end that triggers right after the processing of a translation unit is com-
pleted (after parsing but before any lowering). For the C/C++ front-end as well,
we added our own hook into the g++ front-end right after a translation unit has
been finalized, and piggy-back onto the translation-unit tree dumper (enabled
with the -fdump-translation-unit flag to g++), where we reuse the internal
tree traversal engine, but insert our own data extraction and processing routines.

By placing our plugin execution carefully within the GCC front-ends, we
know that all of the parsing and abstract syntax tree (AST) building has been
completed, but lowering has not yet taken place. This approach will also help
us store the compiler’s internal data structures to communicate across multiple
levels of intermediate representation and relate the analysis back to the source
code. Currently, we primarily target the AST level IR as it is most directly
relatable to the original user-written source code. However, our goal is to enable
the extraction of program information and analysis from multiple levels of the
intermediate representation while mapping them to the source code.

High-Level Languages. Each translation unit is characterized by the invocation
of a GCC language front-end, so to keep track of the proportion of each high-
level language being used in an application, we can accumulate statistics about
executable statements and data declarations within each translation unit. By
working at the AST level, it is possible to eliminate inconsistencies such as com-
ments, whitespace, bracket placement, or line-continuations. Additionally, based
on the features that we see in executable statements or declarations and classify-
ing them according to the language standard needed to support those features,
we can determine the proportion of each language standard being used and the
coverage across those standards. Table 1 shows the information the compiler is
collecting about the source code for Fortran applications.

In addition to the metrics above, the plugins collect information regarding
variable and data structure information from the application; a list of these
metrics is shown in Table 2.

Parallelization Methods. Our plugins understand directives from both
OpenMP [39] and OpenACC [42], as well as Message Passing Interface (MPI) [38]
library calls. This allows us to easily detect when we are within a parallel direc-
tive’s lexical extent, and which variables and types are being used in inter-node
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communication via MPI or directive data clauses for transfers between host
and discrete accelerator memories. As with the high-level languages, we can also
detect the proportion and coverage of each standard being used, based here on
matching the directives or calls that are present in the code with those in the
specification versions. For understanding directives, we depend on the compiler’s
native support and so are constrained to versions of OpenMP and OpenACC
that have been implemented in GCC. To handle MPI, we treat it as any other
library (as discussed below). Table 2 shows the program information we collect
about the directives parallelization method.

Table 1. Translation unit and procedure information

Translation unit Procedures

compiler version subroutine name

programming language/model # of exec statements

module/class/typedef # of loops

main program name max loop nest depth

line numbers # call statements

list of call chains

# use modules

total module variables

list of module variables

list of module subroutines

# of symbols

# symbols in other namespaces

# of namelists

# of statements

classification by statement types

modules used by subroutine

classification of statements per standard

Libraries. While there is a practically unlimited number of libraries that could be
used in a code, we are interested in common HPC libraries that have high reuse
across applications, are critical for an application’s performance and portability
across HPC architectures, and typically require a large effort (both by the com-
munity and hardware vendors) to optimize for various platforms. As a starting
point, we chose a sample of numerical (BLAS [14], LAPACK [16], FFTW [28],
PETSc [18–20]), communication (MPI [38], SHMEM [23]), and data manage-
ment (HDF5 [44], ADIOS [11], NetCDF [40]) libraries.

For C/C++, this task is made easier by the necessity of include files which
become part of the analyzed translation unit. By descending into recognized
include files, symbol names can be gathered that are known to be part of the
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library, and their usage examined along with the application’s declared data rep-
resentations, for example as type information passed as part of function parame-
ters. However, in the case of Fortran, it is necessary to separately gather, compile,
and store information about the libraries of interest, and then compare the infor-
mation from application compilation to that previously seen during the separate
library compilation. For this reason, the source code metadata pertaining to the
libraries listed above must be stored along with the data from applications of
interest.

Table 2. Data structure and parallelization method information

Variable/Data structure information Parallelization method information

# variables # OpenMP directives

# array variables # statements inside OpenMP

# co-array variables # OpenMP threadprivate variables

# pointer variables # OpenMP UDR variables

# contiguous variables # OpenMP declare target variables

# target variables # OpenACC directives

# allocatable variables # statements inside OpenACC

# artificial variables # OpenACC subroutine

# asynchronous variables # OpenACC declare create variables

# optional variables # OpenACC declare copyin variables

# dummy variables # OpenACC declare deviceptr variables

# protected variables # OpenACC declare device resident variables

# volatile variables # OpenACC declare link variables

# abstract variables

# implicit type variables

# in namelist variables

# external variables

# parameters

# common block variables

# derived types

# derived types with components

# derived types with direct components

# derived types with indirect components

# derived types with array components

# derived types with allocatable components

# derived types with pointer components

# derived types recursive

3.2 Database Infrastructure

As compilation proceeds and the plugin gathers data from the IR, this data is
stored in an application-independent way so that it is available for queries about
the application and its design. The goal is to make the data more accessible
than the source code or the raw compiler IR, but flexible enough that it mini-
mizes presuppositions about particular questions that might be asked about an
application’s implementation.
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Application Data. In order to provide the most general representation of the
data while making it structured enough that non-compiler experts can explore
and use it, we use an SQL database with a normalized schema. The schema
holds administrative data about the build platforms and application versions, as
well as the source code metadata itself. This enables comparison and differenti-
ation for the data collected depending on the target platforms of the application
compilation, e.g. if specialized features are guarded with #ifdef’s. Our current
version stores a linkage and compile table to store program information. The
compiler output from both GNU and PGI is stored in JSON format. The next
version of the tool will refine the database schema to the compilation information
from both compilers into a single schema.

To ensure support in different HPC environments, we allow several trans-
mission methods to store to the database the results gathered by our plugins.
We leverage the XALT [13,22] transmission machinery to easily accomplish this.
The most direct way is by making an SQL connection from the compiler plugin
itself and inserting the streaming results into the database. The plugins can also
create an intermediate JSON file which can be parsed at some later time for
consumption by the database. Finally, the plugin can elect to send results via
syslog to a logging server which can then be parsed for database storage. The
latter two methods are useful if direct database connection is not possible or is
undesirable, for example due to security considerations that require the database
server to be in a different network enclave, or due to performance considerations
by avoiding the higher latency often associated with direct database queries on
high-load machines.

Front-End Access. Storing this data in the database also enables advanced
queries and post-processing analysis to be performed at a later time in order
to gain more insight about the applications. For example, one can get his-
torical perspectives about how data structures and directives in the source
code have evolved by looking at the plugin compilation data over time. One
can also do queries across different databases about the application (e.g.
from a user accounts/project database, a job submission database, an XALT
database [13,22], etc.). An inter-source-code analysis across all files for an appli-
cation can be done to gain an overall understanding of all the data structures
and directives used by an application.

Some users may not want to interact directly with SQL queries, so we are
building a front-end website that allows the user to get basic insights about the
application data. We provide graphical representations for some of the major
statistics that are gathered and stored by the system. An example showing lan-
guage usage, parallelization strategies, and data structure compositions is shown
in Fig. 1 for the ACME [17] application.
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Fig. 1. High-level information such as Fortran language standard (top left), the type
of variables (top right), OpenMP and MPI parallelization methods by the number of
statements (bottom left), and subroutines with OpenMP pragmas (bottom right) in
ACME as collected by our tools.

4 Results

As a prototype of these ideas, we have implemented the compiler-based static
analysis in the GCC gfortran and g++ frontends, and through collaboration with
PGI in the pgfortran and pgcc frontends as of release 17.7. We have designed
an SQL schema as described in Sect. 3.2, which we use in a database alongside
the XALT system installed at the Oak Ridge Leadership Computing Facility
(OLCF). In the following sections, we demonstrate a sample of some of the
basic statistics that can be gathered using these tools on full in-production HPC
applications.

We take the Accelerated Climate Modeling for Energy (ACME) [17] as one
of the first applications on which we exercised our tools. To make our tools
work transparently on the system, we created a simple wrapper for the GCC
compiler executables to automatically enable our custom plugin. This avoids
having to modify the application build system with specific flags. Our tools also
automatically insert the collected compile-time information back into the object
files. During linking, a linker wrapper goes through these object files to gather
these data using the selected transmission method (see Sect. 3.2).
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As a sample of the information that is automatically pre-generated by our
front-end website, Fig. 1 shows high-level information from the ACME applica-
tion such as the Fortran language standard usage in the code, the distribution
of the type of variables and parallelization methods (OpenMP and/or MPI).

In Fig. 1, the top left panel shows the relative usage of various Fortran stan-
dards, which (combined with specifics on the features used) gives an indication
of the support required by compilers for HPC architectures. The lower left panel
gives a high-level description of the overall “MPI+X” parallelization scheme
being used in this application. While MPI and OpenMP express their respective
forms of parallelism differently, this comparison might give an overview of the
relative effort being expended on each type of parallelism – in this case, it is
essentially equally distributed. The top right and bottom right panels indicate

Fig. 2. Summary information about OpenMP usage in the ACME application. The
usage of specific OpenMP statements is shown in the top panel, and the proportion
of code covered within OpenMP lexical extents is shown per subroutine in the bottom
panel. On the bottom panel, only the top fifteen subroutines are shown for clarity.
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Fig. 3. MPI routines used in the ACME application. The frequency of calls for each
MPI routine is shown. Only the fifteen most called routines are shown for clarity.

porting efforts that might be required for new parallelization schemes or archi-
tectures by showing the usage of various types of data structures being used,
and the percentage of subroutines that most probably need to be considered.

Figure 2 goes one step deeper into the usage of OpenMP in ACME, with
the top panel showing the coverage of OpenMP features being used, and their
frequency in the source code. The bottom panel indicates the concentration of
intranode parallelism by showing the percentage of code covered by OpenMP
lexical extent per subroutine.

Similar information regarding MPI calls can also be easily obtained. Figure 3
shows the frequency of MPI routines used in the application. It is relatively
trivial to expand this information gathering across not only applications, but
also different libraries. Although in this case we only show example for one
application (ACME) and one library (MPI), it is easy to imagine that having
this information in aggregate across multiple applications and libraries will give
insights into co-design efforts.

5 Conclusions and Future Work

In this paper, we have outlined a strategy to fill a current gap in the HPC
application development and co-design ecosystems. Compilers know everything
necessary about a source code to determine the behavior of the executable on a
given architecture. We have shown that it is possible to extract this information
from compilers and make it accessible and useful for inter-application analyses.
In the near term, we have received requests for this data for use in designing
and extending parallel APIs in both programming models and well-known HPC
libraries. We also hope that this information will be useful in the upcoming
exascale platform designs by shedding light on how application developers have
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been using the current leadership architectures, as well as prototyping their
algorithms on new hardware.

In order to increase the deployment flexibility of the system and decouple
the data analysis and storage phases, we envision using the DWARF [3] binary
data format, which is an extensible open-standard format for storing informa-
tion in binaries generated by most modern compilers both proprietary and open-
source. DWARF can be used to store the static analysis information together
with the generated application binary, which could then be extracted by exist-
ing, standard-conforming binary manipulation utilities. This would allow for a
portable and standardized way for other compiler implementers (including pro-
prietary and closed-source) to participate in the system.

For maximum coverage, the prototype system as described in this paper
is being installed on the Oak Ridge Leadership Computing Facility (OLCF)
Titan [32] and early-access Summit [9] systems to automatically gather and store
application data at compile time from participating users on an opt-in/out basis.
It is necessary to work with early adopters to determine the appropriate level
of data anonymization and sanitation before making the data publicly available
outside of OLCF. Systems usage and user job information is already being stored
in systems like XALT, and we have coupled our SQL schema to be easily queried
together with the dynamic linkage and job submission information already being
captured by XALT.

Furthermore, coupling detailed yet generalizable information from static
analysis and runtime performance analysis will greatly increase the efficacy of
both, especially for inter-application statistics. For example, combining hotspot
analysis with data structure layout information should lead to optimization
opportunities in compilers, runtimes, and programming model design.

Structuring the data in an application- and compiler-agnostic way and stor-
ing it in an SQL database that can accommodate flexible queries is essential
to servicing previously intractable questions about application source code and
programming model usage. However, even more complex data analytics is made
possible by using purpose-built frameworks like Apache Spark. Through ongoing
collaborations, we are investigating these techniques to answer “fuzzier” ques-
tions about topics such as automatic parallel computational motif usage and
application evolution over time and hardware architectures.

It is hoped that tools such as the one presented here, when coupled with
advanced data analytics techniques, will lay the foundation for future research
in sophisticated methods for adapting high-performance applications to vari-
ous types of architectures, such as using machine learning techniques for port-
ing applications. Additionally, this work will provide better insight into how
HPC applications are evolving over time and across disparate architectures, e.g.
through quantitative metrics that can be captured as applications transition to
exascale platforms.
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