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Abstract. As applications grow in capability, they also grow in com-
plexity. This complexity in turn gets pushed into modules and libraries.
In addition, hardware configurations become increasingly elaborate, too.
These two trends make understanding, debugging and analyzing the per-
formance of applications more and more difficult.

To enable detailed insight into library usage of applications, we present
an approach and implementation in Score-P that supports intuitive and
robust creation of wrappers for arbitrary C/C++ libraries. Runtime
analysis then uses these wrappers to keep track of how applications inter-
act with libraries, how they interact with each other, and record the exact
timing of their functions.

Keywords: Clang · Instrumentation · Library · LLVM ·
Performance analysis · Performance optimization · Software module ·
Tracing · Wrapper

1 Introduction

To push science and businesses further, today’s software becomes increasingly
powerful but also complex. Software libraries allow offloading this complexity
into subunits, so that developers can focus on adding functionality by using
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Fig. 1. Typical software stack with an application relying on four libraries.

them, rather than implementing every detail themselves. But the complexity
does not disappear—It gets pushed down to lower levels. The gained development
convenience is traded for an increased effort of debugging and overall reasoning
about the application including its performance characteristics. Figure 1 depicts
a typical application and its software dependencies.

A similar development takes place in computer architecture. The adoption
of multiple cores per CPU, heterogeneous architectures, complex cache/memory
hierarchies, elaborate interconnect networks, as well as deep I/O hierarchies
gives rise to a multitude of potential performance problems. This increasing
complexity in software and hardware makes performance analysis an integral
part of the software life cycle.

Tool chains providing modern performance analysis capabilities include Linux
Perf [23], NVIDIA profiling tools [26], Intel VTune Amplifier [30], Score-P [20],
Arm MAP [2] and HPCToolkit [1]. These tools combine multiple data collection
techniques, like sampling, call stack unwinding, tools interfaces, library wrap-
ping, compiler instrumentation, and manual instrumentation in various ways.
The goal is to gather data as detailed as needed while alleviating the disad-
vantages of individual techniques. For example, it is common to combine sam-
pling and call stack unwinding with library wrapping for important libraries.
Sampling gives coarse-grained stochastic timing information of the application’s
function call sequence, while library wrappers count and measure exact tim-
ings of library calls. Aside from counting calls and measuring time, libraries
like POSIX Threads [6], and I/O libraries like HDF5 [16] and ADIOS [22] are
commonly wrapped to extract semantic information (e.g. written bytes) from
arguments passed to library functions.

Which wrappers are available is limited to what each performance tool sup-
ports. Even if an application developer is interested in exact function call track-
ing of certain libraries, there is no well supported way to achieve this in any
performance analysis tool today.

To address this, we introduce user library wrapping, which is included in the
upcoming release of the open-source performance monitor Score-P. The feature
empowers application developers to easily generate library wrappers for any
C/C++ library. This is significant, because:
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– With just link time changes, developers can now get exact performance infor-
mation on any C/C++ library they want.

– They can analyze closed-source libraries, like the Intel MKL [24].
– They can track function calls from a library to itself and between libraries.

Score-P benefits from user library wrapping for the following reasons. First,
regular compiler instrumentation provides no call-backs upon library entry/exit.
Second, compiler instrumentation often yields high event rates, which leads to
diminished performance and large event recordings. This necessitates a filtering
workflow that in turn complicates the whole measurement process. With user
library wrapping, developers can forego compiler instrumentation and still cap-
ture critical performance data, and have a small low-overhead recording at the
same time—no filtering needed. Third, wrappers give exact function call counts
and timings as opposed to the statistical information from sampling and call
stack unwinding. Additionally, it simplifies creating fixed wrappers that cap-
ture library semantics not only in Score-P, but for all tools that rely on library
wrappers.

We took great care to make wrapper creation and usage as intuitive and
simple as possible. Numerous checks with polished error messages ensure the
wrapper works correctly or let the developer know why it might not.

This paper is divided as follows: Sect. 2 enumerates related work. Section 3
first presents basics on library wrapping. It then details the workflow for creat-
ing and using wrappers while highlighting some implementation choices, by the
example of wrapping the QtWidget and QtGui modules. Section 4 demonstrates
how our approach aids investigating the performance characteristics of two real-
world scientific applications. The last two sections offer conclusions and indicate
points of interest for future development.

2 Related Work

Wrapping C/C++ libraries is not new. SWIG [4], first released in 1996, generates
wrappers for C/C++ libraries so they can be called from other languages like
Python, Go and Lua. SWIG does not provide library interception for extracting,
e.g., performance data. Furthermore, it is not possible to create C++ or C
wrappers for C/C++ libraries. SWIG uses its own C/C++ preprocessor and
parser.

Recently, Google released the C++ Language Interface Foundation (CLIF)
[8] which provides similar functionality to SWIG. It uses Clang [7] to analyze
the library headers, and for now only generates wrappers for Python.

Some libraries, like OpenMP 5 [13] and CUDA [10], offer a so-called tools
interface for analysis tools to hook into. In that case, library wrapping is not
needed. But for most libraries, wrappers are required to gain insight into their
usage. MPI [25] provides a special profiling interface, which helps create wrappers
by providing all functions as weak symbols so that they can be overridden.
Wrapper functions call the actual MPI functions through a P-prefixed symbol,
e.g. PMPI_Send.
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One possible application for tools interfaces and library wrappers is to check
for correct API usage. For example MUST [19] uses MPI’s profiling interface
to ensure correct use and to detect possible deadlocks. The wrapping code is
generated manually with a simple proprietary wrapper generator.

Software performance analysis tools commonly use fixed wrappers to gain
insight into the use of specific libraries. For example Arm MAP [2] is a com-
mercial profiler specialized in analyzing multi-paradigm applications. It wraps
MPI and OpenMP functions and uses the tools interface of CUDA. Various
open-source performance analysis tools exist. Some of them are Extrae [14],
HPCToolkit [1] and Score-P [20]. All three support a variety of parallelization
schemes and hardware platforms. They differ in techniques, focus and user inter-
face, but are similar in terms of utilizing library wrapping.

VampirTrace includes a simple implementation of user library wrapping [11].
It is based on CTool [9] (abandoned in 2004), supports only C, has several
technical limitations and needs manual intervention in most cases. Score-P is
VampirTrace’s successor.

TAU offers user library wrapping via the tau wrap and tau gen wrapper
commands [28]. It uses the Edison Group’s commercial C/C++ parser [12].
TAU’s implementation has multiple limitations. For example, it does not support
C++, cannot wrap functions with function pointers or ellipsis arguments, and
compile and link flags are not customizable.

3 Methodology

Our goal is to provide a simple and robust way to record performance data on
library function calls. For this, we need an opportunity to intercept them. That
means whenever a library function is called, the measurement system has to be
invoked.

3.1 Library Call Interception

We distinguish two wrapping methods based on when interception is set up: link
time and runtime. These two methods also differ in the kind of functions that
can be intercepted.

Link Time: The first approach is based on the --wrap option of the GNU
linker1. For example, to wrap the function foo, we have to implement the corre-
sponding wrapper function __wrap_foo. The original function is available via the
__real_foo symbol. Then specifying --wrap foo in the link command enables
wrapping foo, and the GNU linker resolves these symbols appropriately. This
approach is limited to instances where the link step of the application can be
modified, as the symbols of interest need to be specified at link time. Wrapping
symbols called from shared libraries does not work, because the linker resolves
these symbols at runtime.

1 https://sourceware.org/binutils/docs-2.28/ld/Options.html.

https://sourceware.org/binutils/docs-2.28/ld/Options.html
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Runtime: At the start of executing an application, the dynamic linker loads and
links all dependent shared libraries. The second approach modifies the order in
which the dynamic linker loads them. To wrap a function, we provide a replace-
ment function with the same symbol name as the wrapped function. The linker,
then, needs to link the wrapper before the target library. One way to achieve
this is modifying the link step to put the wrapper library before the original one.
Alternatively, let the environment variable LD_PRELOAD2 point to the wrapper
library before executing the application. The latter method has the advantage
that it does not need to modify the link step. Once called, the wrapper func-
tion loads the target library via dlopen, searches for the address of the original
symbol using dlsym, and then forwards the original call. With link step modi-
fication, this approach can intercept all calls that link time wrapping can, plus
those that originate from shared libraries. The LD_PRELOAD-based version can
only intercept calls to shared libraries, not to statically linked ones.

Both mechanisms require wrappers that pose as the original functions. For
each call, a wrapper function notifies the performance monitor before and after
forwarding the call to the original function. In the next section we present the
workflow with which users create their own library wrapper.

3.2 Workflow

In this work we extend Score-P—a state-of-the-art software performance moni-
tor. Figure 2 shows its high-level architecture.

The goal is to make calls to library functions available for performance anal-
ysis. For this, we add functionality to record timestamped enter - and exit-events
for these calls.

The process of generating a library wrapper is intricate and error-prone.
Thus, the highest priority in the design of user library wrapping is to make
it reliable. To guide the user through these potential problems we introduce
a workflow, which the following paragraphs explain. We motivate some of the
implementation choices by highlighting the intricacies that necessitate them.
Figure 3 depicts the steps involved.

Initialize the Working Directory. The tool scorep-libwrap-init initiates
the bootstrapping process. For this it creates a working directory where all sub-
sequent steps take place in. The command takes a number of arguments that
concern compilation setup, linking setup, and the name of the user library wrap-
per. Essentially, the user specifies how to compile and link an application using
the target library.

In this step, Score-P tries to locate potential shared versions of the target
libraries. It lets the user know if it cannot find any to avoid confusion due to
failing dlopen-calls later on.

2 http://man7.org/linux/man-pages/man8/ld.so.8.html.

http://man7.org/linux/man-pages/man8/ld.so.8.html
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Fig. 2. Overview of the Score-P measurement system architecture. User library wrap-
ping provides an additional interception mechanism.

scorep-libwrap-init creates a number of files in the new working directory:

– A detailed documentation with explanations of possible warnings and errors
– A Makefile that guides the user through the next steps
– Stub source-, header-, and filter-files, which subsequent paragraphs explain

At the end, the command prints out what the next steps are.
For example, the following command initializes the working directory for a

library wrapper of the QtGui and QtWidget modules [27]3:

3 Full example: https://github.com/score-p/scorep libwrap examples/tree/1564c2723
11d04575f9886cd982fc611e07eb295/qt5/qtgui-and-qtwidgets.

https://github.com/score-p/scorep_libwrap_examples/tree/1564c272311d04575f9886cd982fc611e07eb295/qt5/qtgui-and-qtwidgets
https://github.com/score-p/scorep_libwrap_examples/tree/1564c272311d04575f9886cd982fc611e07eb295/qt5/qtgui-and-qtwidgets
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Fig. 3. High-level workflow for creating a user library wrapper.

$ scorep-libwrap-init -x c++ \
--name qtgui_and_qtwidgets \
--display-name "Qt Gui & Widgets" \
--cppflags "-fPIC -I${QT_INCLUDE}" \
--ldflags "-fPIC" \
--libs "-lQt5Widgets -lQt5Gui -lQt5Core"

Add Library Headers. Next, the user adds an include-statement for each
header an application usually includes from the target library to libwrap.h.
This approach allows the user to specify a sequence of includes and preprocessor
macros, which the wrapper generator can then process. Continuing the example,
we add:

#include <QtGui/QtGui>
#include <QtWidgets/QtWidgets>

Create an Example Application. To be able to verify the results, the process
needs a test case. For this, the user adds a small usage example to main.c/cc.
It will be compiled, linked and executed later to test whether the target library
and wrapper work. Continuing the example, we write a simple Qt application
that opens a window and creates an unused image:
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int main(int argc, char** args) {
QApplication app(argc, args);
QWidget w;
QImage i;
w.show();
return app.exec();

}

Create the Wrapper. Before building the wrapper, the user can always adjust
the compile- and link-setup by either directly changing the top lines in the make-
file, or by invoking scorep-libwrap-init again with the --update argument.

The user can now attempt to build the wrapper via the make-command.
First, this links the example application to the target library. If that fails, the
provided example is wrong.

Next, it preprocesses libwrap.h to create libwrap.i with the same com-
piler and flags that are used to create the provided example. Our libclang-based
analyzer then processes this file to generate the complete list of library functions
(plus name spaces, classes and types). During this step, the analyzer consults a
filter file for functions to ignore.

The generated list of functions is then used to create an example application,
which contains a call to each of these functions. If linking this application to the
target library fails, there are wrapper functions that do not have an original func-
tion in the target library. For example this happens for some class constructors
and inline functions.

If make fails, the next step is make check, which the next paragraph explains.
If make passes, it creates the wrapper. The wrapper consists of up to four dif-
ferent wrapper libraries. One dimension is whether the wrapper is a shared or
static library. The other dimension is whether the wrapper contains the code
for link time or runtime wrapping. All four versions are useful depending on
the application/library/system setup. If this succeeds, the user can move on and
install the wrapper.

While processing the header files, there are a number of warnings and errors
that can occur. For example, the wrapper warns about functions that contain
ellipsis arguments, because they cannot be forwarded in C. In case a v-version
(like vprintf is to printf) exists, the LIBWRAP_ELLIPSIS_MAPPING_SYMBOLS-
variable in the makefile lets the user create a mapping so the wrapper can forward
the call to the v-version via the va_arg argument.

In C, having an empty argument list in a function declaration means the
argument list is unknown, i.e. variadic. In C++, on the other hand, the same
syntax means it is really empty. In C, you need to use (void) as argument list
for this. Calling a variadic function without parameters is valid C. This means
valid C can trip up library wrapping, if the library developer did not use (void)
for an empty argument list. To work around this, the makefile provides the
LIBWRAP_VARIADIC_IS_VOID_SYMBOLS-variable, which names functions that are
to be treated as having an empty argument list.
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In our example, the make-step warns about a number of ellipsis functions,
for example in the QMessageLogger and QString classes. It exits with an error
message, because there is a mismatch between functions found in the headers
and the symbols in the library. To find out which functions these are, we need
to run make check and then adjust the filter.

Verify the Wrapper. Because the function list generated by the library header
analysis rarely matches the symbol table in the library, for each wrapper function,
make check generates a source file, and tries to compile and link it with and
without the target library. The result is a complete list of symbols that are
missing from the target library, and a list of symbols where linking works even
without the target library. The latter tries to weed out functions that are not
intended to be wrapped, because they are in system libraries.4

Using the two generated lists, the user has to adjust the filter to remove
unwrappable, and perhaps some unwanted functions. This not only ensures the
soundness of the wrapper, but also makes sure the user chooses the functions
deliberately. Accidentally wrapping more than intended should be avoided.

After this, the user has to repeat make and make check until make succeeds.
Executing this step in our example first informs us that it is doing this check

for over 13, 000 functions, and this may take some time. Looking at the list of
these functions (in the .wrap-file), we notice that it wraps more than just QtGui
and QtWidget’s components. This is because the header analysis cannot read the
users intention perfectly. It initially only includes functions that it finds in files in
directories specified via the -I-compilation-flag.5 Thus we refine the filter from

INCLUDE /usr/include/x86_64-linux-gnu/qt5/*

to

INCLUDE /usr/include/x86_64-linux-gnu/qt5/QtGui/*
INCLUDE /usr/include/x86_64-linux-gnu/qt5/QtWidgets/*

and repeat make check. This yields a list of 818 missing functions, which we
add to the filter. No symbols were found that exist when not linking to Qt.

Repeating make still fails due to a restriction in libclang with C++. If a
function uses a type that is created via typedef or using in a class, our header
analysis cannot always determine the fully qualified type. This case requires
user intervention. In our example we can fix this by looking up the types in Qt’s
documentation and adding the class scopes via text replacement to the wrapper
code.6

4 Creating a source file for each function and try compiling and linking it is a common
technique among configure tools. Doing this in one compile-link-step would require
parsing the output of each supported compiler and version, which is not portable
across compilers and linkers.

5 Not doing this would initially always wrap everything including functions from system
headers.

6 https://github.com/score-p/scorep libwrap examples/blob/1564c272311d04575f988
6cd982fc611e07eb295/qt5/qtgui-and-qtwidgets/fix-type-scopes.sh.

https://github.com/score-p/scorep_libwrap_examples/blob/1564c272311d04575f9886cd982fc611e07eb295/qt5/qtgui-and-qtwidgets/fix-type-scopes.sh
https://github.com/score-p/scorep_libwrap_examples/blob/1564c272311d04575f9886cd982fc611e07eb295/qt5/qtgui-and-qtwidgets/fix-type-scopes.sh
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Install the Wrapper. Once the wrapper builds, make install installs it.
If not specified otherwise, this installs the wrapper into Score-P’s installation
directory.

Verify the Installed Wrapper. Invoking make installcheck links the exam-
ple application to the link time and runtime wrapper library in the same way
the user would. This step creates two executables, and prints out how to run
and check the resulting Score-P measurement.

Running the example yields a profile with over 5000 calls to 251 unique Qt
functions. Figure 4 shows an excerpt. Without the wrapper, compiler instrumen-
tation would only recognize and record the main-function. Sampling with stack
unwinding yields a more detailed call graph (e.g., it includes system and desktop
system functions), but misses many function calls due to the nature of sampling,
and it also cannot capture exact timing and call counts.

Fig. 4. Partially collapsed Cube profile of the Qt example application. It accurately
resembles the source code. Numbers are seconds, inclusive execution time for collapsed
entries and exclusive for expanded ones.

Use the Wrapper. If the wrapper has not been installed into Score-P’s instal-
lation directory (the default), the environment variable SCOREP_LIBWRAP_PATH
(PATH-like) needs to point to the wrapper’s path before using it.

Score-P’s new --libwrap=<wrappername>-flag then modifies the link step to
activate one or more wrappers.

To use our example Qt wrapper, we link the to-be-analyzed application
according to the instructions we initially gave scorep-libwrap-init and simply
prefix it with scorep --libwrap=qtgui_and_qtwidgets. I.e.:
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$ scorep --libwrap=qtgui_and_qtwidgets g++ \
-fPIC -I${QT_INCLUDE} \
application.cc \
-fPIC -lQt5Widgets -lQt5Gui -lQt5Core \
-o application

Optionally, the user can specify the wrap method by prefixing the wrapper
name with either linktime: or runtime:.

Auxiliary Commands. In HPC centers, we expect support staff, not only
users themselves, to install wrappers of analysis-worthy libraries alongside a
Score-P installation. Users can still install wrappers into their own directories.
One advantage is that the staff can update the wrappers at the same time as
they update Score-P or the target libraries.

The command scorep --help, among other information, gives a list of
installed wrappers. Users can invoke scorep-info libwrap-summary, with an
optional wrapper name, to view wrapper configurations in greater detail.

3.3 Implementation Details

Because compile-time commands, e.g., #ifdef, can influence the list of declared
functions, we decided to employ the user’s compiler to preprocess the library’s
headers. To generate this list of functions, we read the header using libclang.
This mismatch between preprocessor and reader can sometimes lead to problems
because they might not agree on the language standard to use. Specifying the
standard explicitly solves this.

During development we realized that Score-P’s configured compiler cannot
always link libclang to the wrapper generator. The configure step would need
to know the compiler with which libclang has been created. To circumvent this,
contrary to other parts of Score-P, it builds the wrapper generator using Clang,
if available.

The presented approach relies on wrapping facilities offered by the linker
and dynamic linker. Many C++ libraries heavily rely on inlining and templates.
Wrapping libraries based on symbols being present in the target library means
that this technique is unable to intercept inlined function calls.

4 Case Study

The previous section proves that our approach is robust by wrapping two Qt
modules. This section demonstrates how user library wrapping benefits perfor-
mance analysis for two real-world scientific applications. We repeat all measure-
ments five times, and pick the median.
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4.1 GROMACS

GROMACS [29] is a popular molecular dynamics package specialized in simu-
lating proteins, lipids and nucleic acids. To leverage the compute power of HPC
systems, GROMACS relies on MPI, OpenMP, CUDA and either FFTW 3 [17]
or the Intel Math Kernel Library for discrete Fourier transforms.

For our demonstration we use GROMACS’ current version 2016.3, and sim-
ulate a lysozyme in water [21] using one tenth of the default number of time
steps. We run the simulation on Oak Ridge National Laboratory’s Titan, a Cray
XK7 supercomputer. Each node has one AMD Opteron 6274 CPU with eight
Bulldozer modules and one NVIDIA Tesla K20X graphics card. We choose to
run on two nodes, with four processes each. Every process spawns one addi-
tional thread—a total of 16 threads. On the software side, we load the default
GNU-based environment, which uses GCC 4.9.3 and FFTW 3.3.4.11.

Executing GROMACS normally takes 330 s, of which it spends 193 in the
main part, the actual simulation of the protein (Production MD).

To instrument GROMACS with Score-P, we replace the compilers cc and
CC in the CMake-command with Score-P’s compiler wrappers scorep-cc and
scorep-CC and prefix the command with SCOREP_WRAPPER=off. Building works
the same as before. Score-P then, by default, enables automatic compiler instru-
mentation and injects the performance monitor by modifying compile and link
commands. We only use this instrumented GROMACS build on the expensive
Production MD part, and execute all other parts with the normal build. Execut-
ing this increases Production MD’s execution time to 375 s (+94.3%). Score-P
registers 3.04 billion function calls, 2.96 billion of which are user functions. The
other 80 million are OpenMP loops/calls and MPI calls. scorep-score estimates
that a trace of this execution is 76 gigabytes (GB) large.

For technical reasons Score-P requires instrumenting MPI and OpenMP
events. Therefore, a reduced recording without any user functions takes 214 s
(+10.9%), contains 79 million calls, and a trace of this configuration is 3.0 GB
large.

Score-P’s default (automatic compiler instrumentation) adds significant over-
head, and should not be used in tracing mode as is. By following Score-P’s filter-
ing workflow we can reduce the overhead and trace recording size. Alternatively
we can switch off compiler instrumentation to record a very small amount of
information. But none of these three options record anything about FFTW.

To track calls into FFTW, we need to create a wrapper library for it following
the workflow described in Sect. 3.2. One thing that confuses our process is that
Cray’s compiler wrapper cc pulls in modules, like FFTW, automatically, if the
module is loaded. Thus, to compile a program using FFTW we don’t need to
add compile and link flags. This is not a problem, but disarms one of our checks
and makes wrapper creation slightly confusing. To circumvent this we change
the environment variable PE_PKGCONFIG_PRODUCTS to not include PE_FFTW. The
full instructions for building the wrapper are available online7.
7 https://github.com/score-p/scorep libwrap examples/tree/1564c272311d04575f988

6cd982fc611e07eb295/fftw3.

https://github.com/score-p/scorep_libwrap_examples/tree/1564c272311d04575f9886cd982fc611e07eb295/fftw3
https://github.com/score-p/scorep_libwrap_examples/tree/1564c272311d04575f9886cd982fc611e07eb295/fftw3
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To configure GROMACS with the FFTW wrapper, run CMake with Score-
P’s compiler wrappers as in the previous case. Then build it using

SCOREP_WRAPPER_INSTRUMENTER_FLAGS="--libwrap=fftw3" make

instead of just make to enable the wrapper. With this, Production MD takes 214 s
(the same as the minimum instrumentation) and counts additional 5.9 million
function calls. The corresponding trace is 3.1 GB large.

By analyzing this recording, we discover that GROMACS spends the major-
ity of time in OpenMP loops (Fig. 5(a)). FFTW occupies only about 2.4% of the
execution time. Nevertheless, for the low amount of time spent in it, there are

Fig. 5. Visual analysis of the trace run of GROMACS with Vampir [5] (Color figure
online)
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a lot of calls to FFTW. This suggests that, if possible, putting more work into
one iteration should be considered. Because the vast majority of calls to FFTW
take below three milliseconds, a sampling-based analysis would show a distorted
picture.

With this exact instrumentation of FFTW, we can now, for example, inves-
tigate how efficiently it exploits the underlying hardware by recording perfor-
mance counters. Figure 5(b) shows how FFTW’s use of the floating-point unit
varies between calls, and is generally subpar.

4.2 PERMON

The software package PERMON [18] solves quadratic programming problems
with the help of FETI methods [15] for domain decomposition. PERMON
extends PETSc [3] and is used mainly for simulating mechanical structure, for
example linear elasticity, elasto-plasticity and shape optimization.

Score-P offers multiple ways to analyze the interplay of PERMON and
PETSc. One is to instrument both. A second way is to analyze only PERMON
and use sampling and call stack unwinding to peek into PETSc. A third app-
roach is to intercept all function calls to PETSc by creating a wrapper for it.
Score-P also supports combinations of instrumentation, sampling with call stack
unwinding and library wrapping.

Fig. 6. Vampir Master Timeline and profile excerpt of a PERMON run using eight
MPI processes. White background: instrumenting both PERMON and PETSc, blue
background: user library wrapping (Color figure online)

Additionally instrumenting PETSc is cumbersome and means creating a cus-
tom installation just for measurement with Score-P. The second way is good from
an ease-of-use perspective, but has drawbacks. It does not record all PETSc calls,
cannot count the number of calls, and cannot record the exact timing of calls.
Employing user library wrapping yields a good level of detail while alleviating
the drawbacks of the other two methods.
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Figure 6 shows the resulting traces from the first and third approach side-
by-side. The full instrumentation creates a 112 megabyte trace, whereas the run
without automatic compiler instrumentation and with library wrapping results
in a 84 megabyte recording. Both recordings are similar in detail and character-
istics.

5 Conclusions

In this work we present user library wrapping, an extension to Score-P that
allows exact tracking of function calls to any C/C++ library. It enables in-
depth performance analysis of applications in conjunction with their underlying
libraries. Furthermore it tracks calls between libraries and offers insight into
closed-source libraries like the Intel Math Kernel Library.

We offer a simple, well-crafted workflow to create and use library wrappers.
This workflow guides the user through an otherwise difficult procedure, and
minimizes mistakes.

Our approach differs from previous incarnations in that it supports C++, is
mature, robust and well documented. It requires minimal manual work and uses
modern Clang/LLVM facilities to analyze library headers.

We demonstrate its robustness for non-trivial use-cases by wrapping the
QtWidgets and QtGui modules. Furthermore we show how user library wrapping
enables better performance analysis for two real-world scientific applications.

6 Future Work

There are multiple interesting areas to pursue. By using compilation databases
provided by CMake and GNU Autotools, we might be able to drop the require-
ment to specify how to build an example application in the first workflow step.

Because HPC systems install multiple versions of the same library, it would
be beneficial to explicitly support versioning.

The presented approach forwards parameters from the wrapper to the target
function, but does nothing with it. Extending our approach to record parameter
values, for example like a performance counter, can be useful.

In order to ensure the soundness of each wrapper, the presented workflow
involves a number manual checks. Technically, each wrapper needs to updated
if its target library or Score-P is updated. Repeating this procedure for every
update is unnecessarily burdensome. Therefore, the workflow should be extended
to include automatic updating of generated wrappers.

Due to close consideration of the circumstances of header preprocessing and
the symbol tables of library files, each wrapper is tied to the machine it has been
created on. It should be investigated how to enable reusing the wrappers across
different machines. Ultimately, a public archive of wrappers is desirable.

Score-P hinges on modifying compile and link commands to instrument an
application. Some features, user library wrapping included, can be used with just
link time changes. But that is not strictly necessary. By loading all of Score-P
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at runtime using LD_PRELOAD, we could skip link command line changes, and
attach the performance monitor to an unmodified binary.

Because there are many runtime analysis tools relying on library wrappers,
we would like to offer our wrapper creation facility to these projects. Up until
now, there was no well-supported, generic way to wrap C/C++ libraries for
analysis. Developers need to create wrappers, regularly update them, and keep
track of new versions of the target library.
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