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Abstract. Adaptive MPI (AMPI) is an advanced MPI runtime environ-
ment that offers several features over traditional MPI runtimes, which
can lead to a better utilization of the underlying hardware platform
and therefore higher performance. These features are overdecomposition
through virtualization, and load balancing via rank migration. Choos-
ing which of these features to use, and finding the optimal parameters
for them is a challenging task however, since different applications and
systems may require different options. Furthermore, there is a lack of
information about the impact of each option. In this paper, we present
a new visualization of AMPI in its companion Projections tool, which
depicts the operation of an MPI application and details the impact of the
different AMPI features on its resource usage. We show how these visual-
izations can help to improve the efficiency and execution time of an MPI
application. Applying optimizations indicated by the performance anal-
ysis to two MPI-based applications results in performance improvements
of up 18% from overdecomposition and load balancing.
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1 Introduction

Improving the performance of parallel applications that are based on the MPI
programming model is an important aspect of High-Performance Computing.
Compared to traditional MPI runtimes, Adaptive MPI (AMPI) [6] offers several
advanced, unique features, the most important of which are: overdecomposition
through virtualization and load balancing through rank migration. These fea-
tures can be used to improve performance portability of MPI-based applications.
AMPI itself is implemented on top of the Charm++ runtime system [1,10] and
makes use of several of its features, including support for migration of threads,
comprehensive scheduling and load balancing frameworks, and optimized com-
munication within and between cluster nodes.

The key difference between AMPI and most other MPI implementations
is that AMPI virtualizes ranks as lightweight, migratable user-level threads
(instead of operating system processes). The Charm++ runtime system can
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schedule multiple virtual ranks per core based on message delivery, to overlap
communication and computation and to enable a more fine-grained decompo-
sition of work. This overdecomposition can also help with cache and NUMA
locality, since smaller subdomains of a problem might fit more easily into caches.

The AMPI runtime also provides support for migrating ranks between
address spaces at runtime, both within a cluster node and between separate
nodes. This feature can be used for the purposes of load balancing or fault toler-
ance, among others. Charm++ contains many different load balancing strategies
that can be selected by the user or automatically [18], resulting in substantial
performance gains for many parallel applications [4,9].

These load balancing strategies are based on actual measurement of load
information at runtime, and on migrating computations from heavily loaded
to lightly loaded Processing Elements (PEs, Charm++’s terminology for OS
processes). Figures 1 and 2 illustrate overdecomposition and rank migration in
AMPI. The only changes necessary to existing MPI applications to run them
on AMPI with virtualization and migration are related to privatizing global and
static variables to AMPI’s user-level threads [6]. All AMPI programs are valid
MPI programs, besides any calls they might contain to AMPI’s several extension
APIs.

Using AMPI’s high-level features efficiently is not straightforward, however.
Users of MPI applications running on AMPI need to determine whether an appli-
cation can benefit from each feature, as well as the optimal configuration (such
as degree of overdecomposition and load balancing frequency) of each feature.
Previously, the impact of these features could only be observed indirectly, by run-
ning an application with various parameters and observing its execution time.
It was therefore difficult to determine the best configuration without extensive
experiments, to understand application performance, as well as to explain the
reasons for possible performance gains.

In this paper, we present the additions to AMPI and Projections that enable
detailed performance analysis of applications running on AMPI, covering both
normal MPI operations as well as AMPI’s additions to the standard. With these
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Fig. 1. Overdecomposition in AMPI. Colors indicate different PEs. The working set
of a virtual rank in the no overdecomposition case might not fit into the cache, but it
might fit in the 4x overdecomposition case. (Color figure online)
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Fig. 2. Rank migration in AMPI. Colors indicate different PEs. Rank 13 is migrating
from one PE to another. (Color figure online)

additions, it is possible to better understand the operation of an MPI-based
application and its performance characteristics. Our tool can point out possible
inefficiencies, their solutions, and can be used to evaluate and compare perfor-
mance improvements.

In the second part of the paper (Sect. 3), we show how the information pro-
vided by AMPI and Projections can be used to optimize the performance of
two MPI-based applications, LULESH [11,12] and PIC from the Intel Parallel
Research Kernel suite [24]. Our results show that the performance analysis with
the help of our additions to AMPI/Projections enabled us to achieve perfor-
mance improvements of up to 18% from overdecomposition and load balanc-
ing. Furthermore, we show that performance gains are highly dependent on the
characteristics of the application, such that different applications require using
different AMPI features with different parameters.

2 Visualizing AMPI with Projections

This section briefly discusses how the operation of an MPI application running
on top of AMPI is traced for visualization, and presents the main visualizations
available to the application user in the Projections tool.

2.1 Implementation

Tracing and trace visualization in Charm++ and Projections is built around
storing trace events in log files. Prior to version 6.8.0 of Charm++/AMPI, no
special support for AMPI events was available, such that only events related to
Charm++ were traced.

AMPI. In order to implement tracing of events in AMPI, we extended the
support for bracketed events in the tracing framework in Charm++. Bracketed
events are events that have a duration, that is, a starting time and end time. For
every AMPI API function (standard MPI functions as well as AMPI extensions),
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an object is created on the stack as the first operation of that function. As part
of the object’s constructor, a time stamp of the function entry is stored. On
function exit, this object is destroyed automatically, calculating the total time
spent in the function and storing information about this event in the trace file.
Information stored includes the event ID, function name, PE, virtual rank, and
duration of the event. Previously, traces of AMPI programs only showed what
task the AMPI implementation was executing at a given time on each core,
providing no insight into what each virtual rank on a core was executing. Now,
users can see what each virtual rank was doing at any given time.

Such an implementation via a stack-allocated object simplifies the support
in AMPI, as well as seamlessly supporting nested events. The tracing framework
itself is not limited to MPI, a user application can register and trace their own
events in addition to the MPI functions. Furthermore, an application can also
request more fine-grained traces by dynamically enabling and disabling tracing
at runtime, via the AMPI Trace begin() and AMPI Trace end() functions.

Enabling tracing in Charm++ and AMPI applications has generally a negli-
gible execution time overhead. For the applications discussed in this paper, the
measured overhead was typically less than 3% of the total execution time. Trace
files are kept in memory and are flushed to disk periodically and at the end of
execution in a compressed format.

Projections. The Projections tool reads and evaluates the trace files after the
execution of a Charm++ or AMPI application. We extended it with support for
displaying virtual ranks for bracketed events, such that a user can see which rank
has executed which MPI function. Furthermore, support was added to determine
when and where virtual ranks are migrated, by showing the virtual rank numbers
for traced events. As in Charm++ traces, MPI functions are grouped by color,
such that it is easy to follow the operation of collective functions.

2.2 Visualizations

In the example in this section, we use an MPI application running on four Pro-
cessing Elements (PEs) and eight virtual ranks (VPs) to illustrate the visualiza-
tions. Figure 3 depicts the visualization before the extensions described in this
paper were applied, as presented in the original AMPI paper [6]. In the figure, a
user can see that the application is running on four PEs and the percentage of
time this PE was busy (that is, not blocked while waiting for communication, for
example). This percentage is shown below each PE (left number in the paren-
theses). Furthermore, the figure illustrates at which times each PE was idle (in
white) and busy (in red). Not presented in this figure are the virtual ranks of
the application, and which operations they are performing.

Figures 4 and 5 depict the visualizations with the changes described in this
paper. In addition to the information presented before, now the virtual ranks
and the PE they are executing on are shown (two virtual ranks per PE in this
example), as well as the operations the ranks perform, giving a detailed view of
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Fig. 3. Previous visualization of AMPI in Projections, as presented in the original
AMPI paper [6]. The x-axis depicts time, while the y-axis shows the various processing
elements (PE). Visible are the four processing elements, busy percentages (left value
below each PE label), idle times (in white), and busy times (in red). Not visible are vir-
tual ranks (two per PE), rank migrations, and which operation each rank is performing.
(Color figure online)

Fig. 4. New visualization of AMPI. In addition to the information shown in Fig. 3,
virtual ranks (VPs) are depicted (including on which PE they are executing), as well
as the operation performed by each rank.

Fig. 5. Visualizing migrations in AMPI. The MPI extension AMPI Migrate() shows
where each rank is migrated. For example, VP 1 is migrated from PE 0 to PE 1.
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an application’s behavior. For example, in Fig. 4, it is possible to see that at the
time between 142 ms and 162 ms, PE 0 was idle since both virtual ranks running
on that PE (VP 0 and VP 1) were waiting in an MPI Barrier. Starting at about
167 ms, PE 0 is busy with the execution of VP 0, while VP 1 is performing an
MPI Waitall operation. This shows how the overdecomposition can help reduce
idle time.

In Fig. 5, the operation of a migration operation in AMPI is depicted.
By looking the AMPI Migrate event, a user can see which virtual ranks were
migrated, and to which PE they were migrated to. In the example shown, VP 1
is migrated from PE 0 to PE 1.

Additional information that is provided by Projections, but not shown in
the figures, are statistics related to the number of different events and the time
spent for each event, among others.

3 Application Case Studies

This section presents two case studies using two different MPI-based applica-
tions in order to demonstrate how the visualizations presented in the previous
section can help users and developers of MPI applications to optimize application
performance and performance portability.

In this section, we discuss the overall load imbalance of an application using
the average busy time and the percent imbalance metric λ [21], calculated over
the busy time of all PEs using the following equation:

λ =
(

max(L)
avg(L)

− 1
)

× 100% (1)

In the equation, L is a vector of the busy times of all PEs. If λ = 0, the application
is perfectly balanced, while higher values of λ indicate increasing amounts of
imbalance. The maximum value of λ with 8 PEs and possible values of 0–100 is
700%.

To keep the presentation of the visualizations at a reasonable size, we restrict
them in this section to 8 PEs. Results are qualitatively similar to much higher
numbers of PEs for both applications presented here.

For the performance experiments, we execute the applications on a system
with an Intel Xeon E5-2680 v2 CPU (10-core, 2.8 GHz, SMT disabled) and
64 GByte of DDR3 main memory. The software environment consists of Cen-
tOS 7 with Linux kernel 2.6.32, gcc 4.8.2, and Charm++/AMPI 6.8.0.

3.1 LULESH

LULESH 1 is an LLNL proxy application for unstructured Lagrangian-Eulerian
shock hydrodynamics [11,12]. We use the MPI implementation of LULESH 2.0
in the experiments.
1 https://codesign.llnl.gov/lulesh.php.

https://codesign.llnl.gov/lulesh.php


Visualizing, Measuring, and Tuning Adaptive MPI Parameters 225

Fig. 6. Baseline execution of LULESH with neither overdecomposition nor load
balancing.

Fig. 7. Execution of LULESH with 3.4x overdecomposition (8 PEs, 27 virtual ranks)
and no load balancing.

Figure 6 depicts the operation of LULESH with 8 PEs/ranks, no overdecom-
position and no load balancing. As can be seen from the figure, the application
is not imbalanced, with similar busy times and load distribution among all PEs.
The average busy percentage is 78.6%, with an imbalance of λ = 11.9%. Due to
the low busy percentage, this application may benefit from overdecomposition.
On the other hand, load balancing appears not to be profitable due to the low
imbalance.
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Figure 7 shows the performance graph of LULESH with a 3.4x overdecom-
position (27 virtual ranks running on 8 PEs). As we expected, the busy time of
all PEs is increased substantially in this scenario, reaching an average of 89.1%,
while also improving the load balance of the application slightly (λ = 4.3%).

The impact of these improvements can be seen on the execution time, which
was reduced from 4.61 s in the baseline experiment to 3.85 s with overdecompo-
sition (∼16% improvement).

3.2 Particle-in-cell

The Particle-in-cell (PIC)2 application is part of Intel’s Parallel Research Ker-
nels [24]. We used version 2.17 of the AMPI implementation of PIC.

Figure 8 shows the performance behavior of the PIC application baseline,
with 8 PEs/ranks and no load balancing. Several things need to be noted here.
First of all, the application is substantially imbalanced. About half of the PEs
have a significantly lower busy time than the other half, leading to an overall
imbalance of λ = 22.5%. Furthermore, since some of the PEs are idle for large
amounts of time, the overall busy time is only 75.6%.

The first natural step to fix this behavior is to balance the load between the
PEs. For this, we use AMPI’s load balancing feature, specifically the RefineLB
load balancer mechanism, which has shown good load balancing results with
a reasonable overhead [2]. The result of this experiment is presented in Fig. 9.
Since overdecomposition is required for load balancing, we selected the smallest
reasonable degree of overdecomposition (2x, 16 virtual ranks on 8 PEs) for this
experiment. Note that in order to reduce the size of the figures, we are not
showing the individual virtual ranks in Figs. 9 and 10.

As can be seen in Fig. 9, the RefineLB load balancer is able to balance the load
among the PEs successfully, resulting in an overall imbalance of only λ = 7.3%.
However, although the work is better distributed, the average busy time (77.4%)
increases only slightly compared to the baseline execution, despite the slightly
higher overdecomposition. Therefore, we can not expect significant performance
improvements compared to the baseline. This is confirmed by the measurement
of the execution time, which is reduced only from 3.96 s in the baseline to 3.94 s
with load balancing.

The relatively high idle time of the load balanced version indicates that this
application can benefit from overdecomposition in addition to load balancing.
This intuition is verified with an experiment that uses a 6x overdecomposition (48
virtual ranks on 8 PEs) in addition to RefineLB. The results of this experiment
is shown in Fig. 10. Here, we can see that busy time has increased drastically,
with an average of 92.4%. Furthermore, the application is also more balanced
(λ = 1.7%). These improvements lead to a total execution time of 3.26 s, about
18% less than in the baseline version of PIC.

2 https://github.com/ParRes/Kernels.

https://github.com/ParRes/Kernels
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Fig. 8. Baseline execution of PIC with neither overdecomposition nor load balancing.

Fig. 9. Execution of PIC with load balancing (RefineLB) and 2x overdecomposition (8
PEs, 16 virtual ranks).

Fig. 10. Execution of PIC with load balancing (RefineLB) and 6x overdecomposition
(8 PEs, 48 virtual ranks).
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4 Related Work

Several prior tools exist to help with visualizing and understanding MPI applica-
tion performance. These tools include Totalview [5], Allinea Map and DDT [17],
Vampir [14]/Vampirtrace [20], Score-P [15], the HPCToolkit [3], Jumpshot [26],
and Marmot [16]. Some of these tools provide visualizations of an application’s
MPI behavior that are very similar to the visualizations discussed in this paper.

Many proposed techniques exist for monitoring communication in MPI appli-
cations [23,25,27]. Tracing itself, as well as storing and analyzing large trace
files, is a significant challenge [27]. Since a tracing API is directly integrated
in Charm++/AMPI, the tracing overhead can be substantially lower than in
external tools that rely on overriding particular MPI functions.

Other tools perform automatic detection of inefficiencies in certain MPI func-
tions (such as send and receive) [22]. However, as these tools are not aware of
AMPI’s features that go beyond the MPI standard, their applicability in the
context of the AMPI runtime is limited. Particularly, they can generally not be
used for overdecomposition or migration, as they have no knowledge of virtual
ranks.

Many performance analysis tools for MPI use the Profiling MPI (PMPI) stan-
dard [13,19], which provides a coarse-grained way to override standard MPI func-
tions with custom versions that can be used for tracing, analysis, and visualization.
More recently, the MPI T interface [7,8] was added to the MPI standard [19]. It
allows more fine-grained access to performance counters provided by the environ-
ment. Currently, AMPI does not support PMPI or MPI T, but an implementation
is planned for the near future. With such support, AMPI could expose information
about overdecomposition and migrations to other external tools.

5 Conclusions

Adapting MPI applications to the underlying hardware platform and guaran-
teeing performance portability on different systems is a challenging task. In this
context, the Adaptive MPI (AMPI) runtime provides several features that can
help with this task, the two most important of which are overdecomposition
through virtualization and load balancing through rank migration. Correct usage
of these features requires a deep understanding of the application performance,
as well as information about inefficient behavior displayed by the application.

In this paper, we presented extensions to the Projections tool to help with
the performance analysis of applications running on AMPI. We added tracing
capabilities to AMPI, covering standard MPI functions and AMPI’s extensions,
and added their visualization to Projections. Furthermore, we extended AMPI
and Projections to support visualization of virtual ranks as well as rank migra-
tions at runtime. With our extensions, Projections can be used to understand
application behavior, point out possible inefficiencies and their solutions, and
evaluate improvements in load balance, overdecomposition, and performance.
We applied this analysis to two MPI-based applications, and achieved improve-
ments of 16%–18% with overdecomposition and/or load balancing.
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The changes discussed in this paper have been integrated into version 6.8.0 of
Charm++/AMPI, and are available online3. Projections is available at the same
location. For the future, we intend to integrate support for PMPI and MPI T
into AMPI in order to better support traditional performance analysis tools.
Furthermore, we want to improve how rank migrations are displayed in Projec-
tions, and implement automatic suggestions for performance improvements in
AMPI and Projections.

Acknowledgments. This paper is based in part upon work supported by the Depart-
ment of Energy, National Nuclear Security Administration, under Award Number DE-
NA0002374.
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