
Projecting Performance Data
over Simulation Geometry Using SOSflow

and ALPINE

Chad Wood1(B), Matthew Larsen2, Alfredo Gimenez2, Kevin Huck1,
Cyrus Harrison2, Todd Gamblin2, and Allen Malony1

1 University of Oregon, Eugene, OR 97403-1212, USA
{cdw,khuck,malony}@cs.uoregon.edu

2 Lawrence Livermore National Laboratory, Livermore, CA, USA
{larsen30,gimenez1,harrison37,gamblin2}@llnl.gov

Abstract. The performance of HPC simulation codes is often tied to
their simulated domains; e.g., properties of the input decks, boundaries
of the underlying meshes, and parallel decomposition of the simulation
space. A variety of research efforts have demonstrated the utility of pro-
jecting performance data onto the simulation geometry to enable analysis
of these kinds of performance problems. However, current methods to do
so are largely ad-hoc and limited in terms of extensibility and scala-
bility. Furthermore, few methods enable this projection online, result-
ing in large storage and processing requirements for offline analysis. We
present a general, extensible, and scalable solution for in-situ (online)
visualization of performance data projected onto the underlying geom-
etry of simulation codes. Our solution employs the scalable observation
system SOSflow with the in-situ visualization framework ALPINE to
automatically extract simulation geometry and stream aggregated per-
formance metrics to respective locations within the geometry at runtime.
Our system decouples the resources and mechanisms to collect, aggre-
gate, project, and visualize the resulting data, thus mitigating overhead
and enabling online analysis at large scales. Furthermore, our method
requires minimal user input and modification of existing code, enabling
general and widespread adoption.

Keywords: SOS · SOSflow · Alpine · HPC · Performance ·
Visualization · In situ

1 Introduction

Projecting application and performance data onto the scientific domain allows for
the behavior of a code to be perceived in terms of the organization of the work it
is doing, rather than the organization of its source code. This perspective can be
especially helpful [19] for domain scientists developing aspects of a simulation

c© Springer Nature Switzerland AG 2019
A. Bhatele et al. (Eds.): ESPT/VPA 2017/2018, LNCS 11027, pp. 201–218, 2019.
https://doi.org/10.1007/978-3-030-17872-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17872-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-17872-7_12


202 C. Wood et al.

primarily for its scientific utility, though it can also be useful for any HPC
developer engaged with the general maintenance requirements of a large and
complicated codebase [18].

There have been practical challenges to providing these opportunities for
insight. Extracting the spatial descriptions from an application traditionally has
relied on hand-instrumenting codes to couple a simulation’s geometry with some
explicitly defined performance metrics. Performance tool wrappers and direct
source-instrumentation need to be configurable so that users can disable their
invasive presence during large production runs. Because it involves changes to
the source code of an application, enabling or disabling the manual instrumen-
tation of a code often involves full recompilation of a software stack. Insights
gained by the domain projection are limited to what was selected a priori for
contextualization with geometry.

Without an efficient runtime service providing an integrated context for mul-
tiple sources of performance information, it is difficult to combine performance
observations across several components during a run. Further limiting the value
of the entire exercise, performance data collected outside of a runtime service
must wait to be correlated and projected over a simulation’s geometry during
post-mortem analysis. Projections that are produced offline cannot be used for
application steering, online parameter tuning, or other runtime interactions that
include a human in the feedback loop. Scalability for offline projections also
becomes a concern, as the potentially large amount of performance data and
simulation geometry produced and operated over in a massively parallel cluster
now must be integrated and rendered either from a single point or within an
entirely different allocation.

The overhead of manually instrumenting large complex codes to extract
meaningful geometries for use in performance analysis, combined with the lim-
ited value of offline correlation of a fixed number of metrics, naturally limited
the usage of scientific domain projections for gaining HPC workflow performance
insights.

1.1 Research Contributions

This paper describes the use of SOSflow [20] and ALPINE to overcome many
prior limitations to projecting performance into the scientific domain. The meth-
ods used to produce our results can be implemented in other frameworks, though
SOSflow and ALPINE, discussed in detail in later sections, are generalized and
intentionally engineered to deliver solutions of the type presented here. This
research effort achieved the following:

– Eliminate the need to manually capture geometry for performance data pro-
jections of ALPINE-enabled workflows

– Provide online observation of performance data projected over evolving
geometries and metrics

– Facilitate interactive selection of one or many performance metrics and ren-
dering parameters, adding dynamism to projections



Projecting Performance Data over Simulation Geometry 203

– Enable simultaneous online projections from a common data source
– In situ performance visualization architecture supporting both current and

future-scale systems

2 Related Work

Husain and Gimenez’s work on Mitos [7] and MemAxes [6] is motivated simi-
larly to ours. Mitos provides an integration API for combining information from
multiple sources into a coherent memoized set for analysis and visualization, and
MemAxes projects correlated information across domains to explore the origins
of observed performance. SOSflow is being used in our research as an integration
API, but takes a different optimization path by providing a general-purpose in
situ (online) runtime.

Caliper by Boehme et al. [3] extracts performance data during execution
in ways that serve a variety of uses, in much the same way our efforts here
are oriented. Caliper’s flexible data aggregation [4] model can be used to filter
metrics in situ, allowing for tractable volumes of performance data to be made
available for projections. Both ALPINE and Caliper provide direct services to
users, also serving as integration points for user-configurable services at run
time. Caliper is capable of deep introspection on the behavior of a program in
execution, yet is able to be easily disabled for production runs that require no
introspection and want to minimize instrumentation overhead. ALPINE allows
for visualization filters to be compiled separately from a user’s application and
then introduced into, or removed from, an HPC code’s visualization pipeline
with a simple edit to that workflow’s ALPINE configuration file. More tools like
Caliper and ALPINE, featuring well-defined integration points, are essential for
the wider availability of cross-domain performance understanding. SOSflow does
not collect source-level performance metrics directly, but rather brings that data
from tools like Caliper into a holistic online context with information from other
libraries, performance tools, and perspectives.

BoxFish [8] also demonstrated the value of visualizing projections when inter-
preting performance data, adding a useful hierarchical data model for combining
visualizations and interacting with data.

SOSflow’s flexible model for multi-source online data collection and analysis
provides performance exploration opportunities using both new and existing
HPC tools.

3 SOSflow

SOSflow provides a lightweight, scalable, and programmable framework for
observation, introspection, feedback, and control of HPC applications. The Scal-
able Observation System (SOS) performance model used by SOSflow allows a
broad set of in situ (online) capabilities including remote method invocation,
data analysis, and visualization. SOSflow can couple together multiple sources
of data, such as application components and operating environment measures,



204 C. Wood et al.

with multiple software libraries and performance tools. These features combined
to efficiently create holistic views of workflow performance at runtime, uniting
node-local and distributed resources and perspectives. SOSflow can be used for
a variety of purposes:

– Aggregation of application and performance data at runtime
– Providing holistic view of multi-component distributed scientific workflows
– Coordinating in situ operations with global analytics
– Synthesizing application and system metrics with scientific data for deeper

performance understanding
– Extending the functionality of existing HPC codes using in situ resources
– Resource management, load balancing, online performance tuning, etc.

To better understand the role played by SOSflow, it is useful to examine its
architecture. SOSflow is composed of four major components:

– sosd : Daemons
– libsos : Client Library
– pub/sql : Data
– sosa : Analytics & Feedback

These components work together to provide extensive runtime capabilities to
developers, administrators, and application end-users. SOSflow runs within a
user’s allocation, and does not require elevated privileges for any of its features.

3.1 SOSflow Daemons

Online functionality of SOSflow is enabled by the presence of a user-space dae-
mon. This daemon operates completely independently from any applications,
and does not connect into or utilize any application data channels for SOSflow
communications. The SOSflow daemons are launched from within a job script,
before the user’s applications are initialized. These daemons discover and com-
municate amongst each other across node boundaries within a user’s allocation.
When crossing node boundaries, SOSflow uses the machine’s high-speed commu-
nication fabric. Inter-node communication may use either MPI or EVPath as
needed, allowing for flexibility when configuring its deployment to various HPC
environments.

The traditional deployment of SOSflow will have a single daemon instance
running in situ for each node that a user’s applications will be executing on
(Fig. 1). This daemon is called the listener. Additional resources can be allo-
cated in support of the SOSflow runtime as-needed to support scaling and to
minimize perturbation of application performance. One or more nodes are usu-
ally added to the user’s allocation to host SOSflow aggregator daemons that
combine the information that is being collected from the in situ daemons. These
aggregator daemons are useful for providing holistic unified views at runtime,
especially in service to online analytics modules. Because they have more work
to do than the in situ listener daemons, and also are a useful place to host analyt-
ics modules, it is advisable to place aggregation targets on their own dedicated
node[s], co-located with online analytics codes.



Projecting Performance Data over Simulation Geometry 205

Fig. 1. SOSflow’s lightweight daemon runs on each node.

In Situ. Data coming from SOSflow clients moves into the in situ daemon
across a light-weight local socket connection. Any software that connects in to
the SOSflow runtime can be thought of as a client. Clients connect only to the
daemon that is running on their same node. No client connections are made
across node boundaries, and no special permissions are required to use SOSflow,
as the system considers the SOSflow runtime to be merely another part of a
user’s workflow.

The in situ listener daemon offers the complete functionality of the SOSflow
runtime, including online query and delivery of results, feedback, or application
steering messages. At startup, the daemon creates an in-memory data store with
a file-based mirror in a user-defined location. Listeners asynchronously store all
data that they receive into this store. The file-based mirror is ideal for offline
analysis and archival. The local data store can be queried and updated via the
SOSflow API, with all information moving over the daemon’s socket, avoiding
dependence on filesystem synchronization or centralized metadata services.



206 C. Wood et al.

Providing the full spectrum of data collected on node to clients and analytics
modules on node allows for distributed online analytics processing. Analytics
modules running in situ can observe a manageable data set, and then exchange
small intermediate results amongst themselves in order to compute a final global
view. SOSflow also supports running analytics at the aggregation points for
direct query and analysis of global or enclave data, though it is potentially less
scalable to perform centrally than in a distributed fashion, depending on the
amount of data being processed by the system.

SOSflow’s internal data processing utilizes unbounded asynchronous queues
for all messaging, aggregation, and data storage. Pervasive design around asyn-
chronous data movement allows for the SOSflow runtime to efficiently handle
requests from clients and messaging between off-node daemons without incurring
synchronization delays. Asynchronous in situ design allows the SOSflow runtime
to scale out beyond the practical limits imposed by globally synchronous data
movement patterns.

Aggregation Targets. A global perspective on application and system per-
formance is often useful. SOSflow automatically migrates information it is given
into one or more aggregation targets. This movement of information is trans-
parent to users of SOS, requiring no additional work on their part. Aggregation
targets are fully-functional instances of the SOSflow daemon, except that their
principle data sources are distributed listener daemons rather than node-local
clients. The aggregated data contains identical information as the in situ data
stores, it just has more of it, and it is assembled into one location. The aggregate
daemons are useful for performing online analysis or information visualization
that needs to include information from multiple nodes (Fig. 2).

SOSflow is not a publish-subscribe system in the traditional sense, but uses
a more scalable push-and-pull model. Everything sent into the system will auto-
matically migrate to aggregation points unless it is explicitly tagged as being
node-only. Requests for information from SOSflow are ad hoc and the scope of
the request is constrained by the location where the request is targeted: in situ
queries are resolved against the in situ database, aggregate queries are resolved
against the aggregate database. If tagged node-only information is potentially
useful for offline analysis or archival, the in situ data stores can be collected at the
end of a job script, and their contents can be filtered for that node-only informa-
tion, which can be simply concatenated together with the aggregate database[s]
into a complete image of all data. Each value published to SOSflow is tagged
with a globally unique identifier (GUID). This allows SOSflow data from multi-
ple sources to be mixed together while preserving its provenance and preventing
data duplication or namespace collision.



Projecting Performance Data over Simulation Geometry 207

Fig. 2. Co-located aggregation, analysis, and visualization.

3.2 SOSflow Client Library

Clients can directly interface with the SOSflow runtime system by calling a
library of functions (libsos) through a standardized API. Applications can also
transparently become clients of SOS by utilizing libraries and performance tools
which interact with SOSflow on their behalf. All communication between the
SOSflow library and daemon are transparent to users. Users do not need to
write any socket code or introduce any state or additional complexity to their
own code.

Information sent through the libsos API is copied into internal data struc-
tures, and can be freed or destroyed by the user after the SOSflow API function
returns. Data provided to the API is published up to the in situ daemon with
an explicit API call, allowing developers to control the frequency of interac-
tions with the runtime environment. It also allows the user to register callback
functions that can be triggered and provided data by user-defined analytics func-
tion, creating an end-to-end system for both monitoring as well as feedback and
control.



208 C. Wood et al.

To maximize compatibility with extant HPC applications, the SOSflow client
library is currently implemented in C99. The use of C99 allows the library to be
linked in with a wide variety of HPC application codes, performance tools, and
operating environments. There are various custom object types employed by the
SOSflow API, and these custom types can add a layer of complexity when binding
the full API to a language other than C or C++. SOSflow provides a solution to
this challenge by offering a “Simple SOS” (ssos) wrapper around the full client
library, exposing an API that uses no custom types. The ssos wrapper was used
to build a native Python module for SOSflow. Users can directly interact with
the SOSflow runtime environment from within Python scripts, acting both as
a source for data, and also a consumer of online query results. HPC developers
can capitalize on the ease of development provided by Python, using SOSflow to
observe and react online to information from complex legacy applications and
data models without requiring that those applications be redesigned to internally
support online interactivity.

3.3 SOSflow Data

The primary concept around which SOSflow organizes information is the “publi-
cation handle” (pub). Pubs provide a private namespace where many types and
quantities of information can be stored as a key/value pair. SOSflow automati-
cally annotates values with a variety of metadata, including a GUID, timestamps,
origin application, node id, etc. This metadata is available in the persistent data
store for online query and analysis. SOSflow’s metadata is useful for a variety of
purposes:

– Performance analysis
– Provenance of captured values for detection of source-specific patterns of

behavior, failing hardware, etc.
– Interpolating values contributed from multiple source applications or nodes
– Re-examining data after it has been gathered, but organizing the data by

metrics other than those originally used when it was gathered

A complete history of changes to every value is retained within the daemon’s
persistent data store (Fig. 3). This allows for the changing state of an application
or its environment to be explored at arbitrary points in its evolution. When a
key is re-used to store some new information that has not yet been transmitted
to the in situ daemon, the client library enqueues it up as a snapshot of that
value, preserving all associated metadata alongside the historical value. The next
time the client publishes to the daemon, current new values and all enqueued
historical values are transmitted.

SOSflow is built on a model of a global information space. Aggregate data
stores are guaranteed to provide eventual consistency with the data stores of
the in situ daemons that are targeting them. SOSflow’s use of continuous but
asynchronous movement of information through the runtime system does not
allow for strict quality-of-service guarantees about the timeliness of information



Projecting Performance Data over Simulation Geometry 209

Fig. 3. Each update is stored with its unique metadata, such as timestamps.

being available for analysis. This design constraint reflects the reality of future-
scale HPC architectures and the need to eliminate dependence on synchronous
behavior to correlate context. SOSflow conserves contextual metadata when val-
ues are added inside the client library. This metadata is used during aggregation
and query resolution to compose the asynchronously-transported data accord-
ing to its original synchronous creation. The vicissitudes of asynchronous data
migration strategies at scale become entirely transparent to the user.

SOSflow does not require the use of a domain-specific language when pushing
values into its API. Pubs are self-defining through use: When a new key is
used to pack a value into a pub, the schema is automatically updated to reflect
the name and the type of that value. When the schema of a pub changes, the
changes are automatically announced to the in situ daemon the next time the
client publishes data to it. Once processed and injected into SOSflow’s data store,
values and their metadata are accessible via standardized SQL queries. SOSflow’s
online resolution of SQL queries provides a high-degree of programmability and
online adaptivity to users. SQL views are built into the data store that mask off
the internal schemas and provide results organized intuitively for grouping by
application rank, node, time series, etc.

SOSflow uses the ALPINE in situ visualization infrastructure described below
to collect simulation geometry that it correlates with performance data.

4 ALPINE Ascent

ALPINE is a project that aims to build an in situ visualization infrastructure
and analysis targeting leading edge supercomputers. ALPINE is part of the



210 C. Wood et al.

U.S. Department of Energy’s Exascale Computing Project (ECP) [15], and the
ALPINE effort is supported by multiple institutions. The goal of ALPINE is
two fold. First, create a hybrid-parallel library (i.e., both distributed-memory
and shared-memory parallel) that can be included in other visualization tools
such as ParaView [2] and VisIt [5] thus creating an ecosystem where new hybrid-
parallel algorithms are easily deployed into downstream tools. Second, create a
flyweight in situ infrastructure that directly leverages the hybrid-parallel library.
In this work, we directly interface with the ALPINE in situ infrastructure called
Ascent [12].

Ascent is the descendant of Strawman [13], and Ascent is tightly-coupled
with simulations, i.e. it shares the same node resources as the simulation. While
Strawman’s goal was to bootstrap in situ visualization research, the ALPINE
Ascent in situ infrastructure is intended for production. Ascent includes include
three physics proxy-applications out of the box to immediately provide the infras-
tructure and algorithms a representative set of mesh data to consume. Ascent is
already integrated into several physics simulations to perform traditional visu-
alization and analysis, and we chose to embed an SOSflow client into Ascent to
eliminate the need for additional manual integration of SOSflow with Ascent-
equipped simulations. Ascent uses the Conduit [10] data exchange library to
marshal mesh data from simulations into Ascent. Conduit provides a flexible
hierarchical model for describing mesh data, using a simple set of conventions
for describing meshes including structured, unstructured, and higher order ele-
ment meshes [11]. Once the simulation describes the mesh data, it publishes
the data into Ascent for visualization purposes. Ascent relays the mesh data to
SOSflow in the manner described below. In addition to the mesh data, we can
easily add performance data that is associated with each MPI rank. Coupling the
performance data with the mesh geometry provides a natural way to generate
an aggregate data set to visualize the performance data mapped to the spatial
region each MPI rank is responsible for.

Ascent includes Flow, a simple dataflow library based on the Python dataflow
library within VisIt, to control the execution of visualization filters. The input
to Flow is the simulation mesh data, and Ascent adds visualization filters (e.g.,
contours and thresholding) to create visualizations. Everything within Flow is
a filter that can have multiple inputs and a single output of generic types. The
flexibility of Flow allows for user defined filters, compiled outside of Ascent, to
be easily inserted into the dataflow, and when the dataflow network executes,
custom filters have access to all of the simulation mesh data published to Ascent.
We leverage the flexibility of Flow to create an SOSflow filter that is inserted
at runtime. The SOSflow filter uses the data published by the simulation to
extract the spatial extents being operated over by each MPI rank along, with
any performance data provided. Next, we publish that data to SOSflow, and
then Ascent’s visualization filters execute as usual.



Projecting Performance Data over Simulation Geometry 211

5 Experiments

5.1 Evaluation Platform

All results were obtained by running online queries against the SOSflow runtime’s
aggregation targets (Fig. 2) using SOSflow’s built-in Python API. The results of
these queries were used to create Vtk [17] geometry files. These files were used as
input for the VisIt visualization tool, which we invoked from within the allocation
to interactively explore the performance projections.

5.2 Experiment Setup

The experiments performed had the following purposes:

– Validation : Demonstrate the coupling of SOSflow with ALPINE and its
ability to extract geometry from simulations transparently.

– Introspection : Examine the overhead incurred by including the SOSflow
geometry extraction filter in an ALPINE Ascent visualization pipeline.

Fig. 4. SOSflow collects runtime information to project over the simulation geometry.



212 C. Wood et al.

ALPINE’s Ascent library was used to build a filter module outfitted with SOS-
flow, and this filter was used for online geometry extraction (Fig. 4). ALPINE’s
JSON configuration file describing the connectivity of the in situ visualization
pipeline was modified to insert the SOSflow-equipped geometry extraction fil-
ter. The SOSflow implementation used to conduct these experiments is general-
purpose and was not tailored to the specific deployment environment or the
simulations observed. The study was conducted on two machines, the details of
which are included here—

1. Quartz : A 2,634-node Penguin supercomputer at Lawrence Livermore
National Laboratory (LLNL). Intel Xeon E5-2695 processors provide 36
cores/node. Each node offers 128 GB of memory and nodes are connected
via Intel OmniPath.

2. Catalyst : A Cray CS300 supercomputer at LLNL. Each of the 324 nodes
is outfitted with 128 GB of memory and 2x Intel Xeon E5-2695v2 2.40 GHz
12-core CPUs. Catalyst nodes transport data to each other using a QLogic
InfiniBand QDR interconnect.

The following simulated workflows were used—

1. KRIPKE [9] : A 3D deterministic neutron transport proxy application that
implements a distributed-memory parallel sweep solver over a rectilinear
mesh. At any given simulation cycle, there are simultaneous sweeps along
a set of discrete directions to calculate angular fluxes. This results in a MPI
communication pattern where ranks receive asynchronous requests from other
ranks for each discrete direction.

2. LULESH [1] : A 3D Lagrangian shock hydrodynamics proxy application
that models Sedov blast test problem over a curvilinear mesh. As the simula-
tion progresses, hexahedral elements deform to more accurately capture the
problem state.

5.3 Overview of Processing Steps

The SOSflow runtime provided a modular filter for the ALPINE in situ visualiza-
tion framework. This filter was enabled for the simulation workflow at runtime
to allow for the capture of evolving geometric details as the simulation pro-
gressed. The SOSflow runtime daemon automatically contextualized the geom-
etry it received alongside the changing application performance metrics. SOS-
flow’s API for Python was used to extract both geometry information and cor-
related performance metrics from the SOSflow runtime. This data set was used
to generate sequences of input files to the VisIt scientific data visualization tool
corresponding to the cycle of a the distributed simulation.

Each input file contained the geometric extents of every simulation rank,
the portion of the simulated space that each part of the application was working
within. Alongside that volumetric descriptions for that cycle, SOSflow integrated
attribute dictionaries of all plottable numeric values it was provided during that



Projecting Performance Data over Simulation Geometry 213

cycle, grouped by simulation rank. Performance metrics could then be inter-
actively selected and combined in VisIt with customizable plots, presenting an
application rank’s state and activity incident to its simulation effort, projected
over the relevant spatial extent.

5.4 Evaluation of Geometry Extraction

Our experiments were validated by comparing aggregated data to data manu-
ally captured at the source during test runs. Furthermore, geometry aggregated
by ALPINE’s Ascent SOSflow filter was rendered and visually compared with
other visualizations of the simulation. Projections were inspected to observe the
simulation’s expected deforming of geometry (LULESH) or algorithm-dependent
workload imbalances (KRIPKE). Performance metrics can be correlated in SQL
queries to the correct geometric regions by various redundant means such as
pub handle GUID, origin PID or MPI rank, simulation cycle, host node name,
SOSflow publish frame, and value creation timestamps. Aggregated performance
metrics projected over the simulation regions were compared to metrics reported
locally, and required to be identical for each region and simulation cycle.

5.5 Evaluation of Overhead

Millisecond-resolution timers were added to the per-cycle execute method of the
SOSflow Alpine geometry extraction filter. Each rank tracked the amount of
time it spent extracting its geometry, packing the geometry into an SOSflow
pub handle, and transmitting it to the runtime daemon. Every cycle’s individual
time cost was computed and transmitted to SOSflow, as well as a running total
of the time that Alpine had spent in the SOSflow filter. From a region outside the
timers, the timer values were packed into the same SOSflow publication handle
used for the geometric data. Timer values were transmitted at the end of the
following cycle, alongside that cycle’s geometry. The additional transmission cost
of these two timer values once per simulation cycle had no perceivable impact
on the performance they were measuring.

6 Results

Geometry was successfully extracted (Figs. 5, 6, 7, and 8) with minimal overhead
from simulations run at a variety of scales from 2 to 33 nodes. The side-by-side
introspection of the behavior of KRIPKE (Fig. 5) are a good example of the value
this system provides to developers. The amount of work loops and the backlog
of requests for computation are correlated negatively, with ranks operating in
the center of the simulation space getting through less loops of work per cycle,
since they are required to service data requests in more directions than the
ranks simulating the corners regions. The directionality of energy waves moving
through he simulated space can also be observed, with more work piling up where
multiple waves are converging. A developer can quickly assess the behavior of
their distributed algorithm by checking for hot-spots and workload imbalances
in the space being simulated.



214 C. Wood et al.

Fig. 5. Loops (left) and maximum backlog (right) from one cycle of 512 KRIPKE ranks
distributed to 32 nodes.

6.1 Geometry Extraction and Performance Data Projection

Aggregated simulation geometry was a precise match with the geometry manu-
ally recorded within applications, across all runs. After aggregation and perfor-
mance data projection, geometry from all simulation ranks combined to create
a contiguous space without gaps or overlapping regions, representative of the
simulated space subdivided by MPI rank.

Fig. 6. Cumulative user CPU ticks during 440 cycles of 512 KRIPKE ranks on 32
nodes.

6.2 Overhead

The inclusion of the ALPINE Ascent filter module for SOSflow had no observ-
able impact on overall application execution time, being significantly less than
variance observed between experimental runs both with and without the fil-
ter. The filter module is executed at the end of each simulation cycle, from the
first iteration through to the simulation conclusion. Manual instrumentation was
added to the SOSflow filter to measure the time spent inside the filter’s execute
method, where all simulation geometry and performance metrics were gathered
for our study.



Projecting Performance Data over Simulation Geometry 215

When gathering only the simulation geometry, filter execution never exceeded
2ms per simulation cycle. We collected performance information for our projec-
tions by reading from the /proc/[pid] files of each rank. These readings were
made from within the SOSflow filter, and published to SOSflow alongside the
collected geometry. Collecting 31 system metrics and application counters added
additional overhead, but the filter time but did not exceed 4ms for any of the
projections shown in this paper. The filter’s execution time was logged as a per-
formance metric alongside the other in situ performance data, and is visualized
for LULESH in Fig. 7.

Fig. 7. Filter execution (1–4 ms) over 710 LULESH cycles.

Fig. 8. Many metrics can be projected from one run. Here we see (top to bottom) user
CPU ticks, system CPU ticks, and bytes read during 710 cycles of 512 LULESH ranks
distributed across 32 nodes.



216 C. Wood et al.

7 Conclusion

Services from both SOSflow and ALPINE were successfully integrated to provide
a scalable in situ (online) geometry extraction and performance data projection
capability.

7.1 Future Work

Workflows that use the ALPINE framework but have complex irregular meshes,
feature overlapping “halo regions”, or that operate over non-continuous regions
of space within a single process, may require additional effort to extract geom-
etry from, depending on the organization of spatial descriptions they employ.
ALPINE uses the Vtk-m [16] library for its operations over simulation mesh
data. The addition of a general convex hull algorithm to Vtk-m will simplify the
task of uniformly describing any spatial extent[s] being operated on by a process
using ALPINE for its visualization pipeline.

The VisIt UI can be extended to support additional interactivity with the
SOSflow runtime. UI elements to submit custom SQL queries to SOSflow would
enhance the online data exploration utility of VisIt. SOSflow’s interactive code
steering mechanisms allow for feedback messages and payloads to be delivered
to subscribing applications at runtime. With some basic additions to the VisIt
UI, these mechanisms could be triggered by a VisIt user based on what they
observe in the performance projections, sending feedback to targeted workflow
components from within the VisIt UI.

While the geometry capture and performance data projection in this initial
work has a scalable in situ design, the final rendering of the performance data
into an image takes place on a single node. Future iterations of this perfor-
mance visualization work will explore the use of in situ visualization techniques
currently employed to render scientific data from simulations [14]. These emerg-
ing in situ rendering technologies will allow for live views of performance data
projected over simulation geometry at the furthest extreme scales to which our
simulations are being pressed.

Acknowledgements. The research report was supported by a grant (DE-SC0012381)
from the Department of Energy, Scientific Data Management, Analytics, and Visual-
ization (SDMAV), for “Performance Understanding and Analysis for Exascale Data
Management Workflows.”

Part of this work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344 (LLNL-CONF-737874).



Projecting Performance Data over Simulation Geometry 217

References

1. Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory.
Technical report LLNL-TR-490254

2. Ahrens, J., Geveci, B., Law, C.: ParaView: an end-user tool for large data visual-
ization. In: The Visualization Handbook, vol. 717 (2005)

3. Boehme, D., et al.: Caliper: performance introspection for HPC software stacks. In:
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2016, pp. 550–560. IEEE (2016)

4. Böhme, D., Beckingsdale, D., Schulz, M.: Flexible data aggregation for performance
profiling. In: IEEE Cluster (2017)

5. Childs, H., et al.: VisIt: an end-user tool for visualizing and analyzing very
large data. In: High Performance Visualization-Enabling Extreme-Scale Scientific
Insight, pp. 357–372. CRC Press/Francis-Taylor Group (2012)

6. Gimenez, A.A., et al.: MemAxes: visualization and analytics for characterizing
complex memory performance behaviors. IEEE Trans. Vis. Comput. Graph. 24,
2180–2193 (2017)

7. Husain, B., Giménez, A., Levine, J.A., Gamblin, T., Bremer, P.T.: Relating mem-
ory performance data to application domain data using an integration API. In:
Proceedings of the 2nd Workshop on Visual Performance Analysis, p. 5. ACM
(2015)

8. Isaacs, K.E., Landge, A.G., Gamblin, T., Bremer, P.T., Pascucci, V., Hamann, B.:
Exploring performance data with boxfish. In: 2012 SC Companion: High Perfor-
mance Computing, Networking, Storage and Analysis (SCC), pp. 1380–1381. IEEE
(2012)

9. Kunen, A., Bailey, T., Brown, P.: KRIPKE-a massively parallel transport mini-app.
Technical report, Lawrence Livermore National Laboratory (LLNL), Livermore,
CA (2015)

10. Laboratory, L.L.N.: Conduit: simplified data exchange for HPC simulations (2017).
https://software.llnl.gov/conduit/

11. Laboratory, L.L.N.: Conduit: simplified data exchange for HPC simulations - con-
duit blueprint (2017). https://software.llnl.gov/conduit/blueprint.html

12. Larsen, M., et al.: The alpine in situ infrastructure: ascending from the ashes of
strawman. In: Proceedings of the In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization Workshop, ISAV2017. ACM, New York (2017)

13. Larsen, M., Brugger, E., Childs, H., Eliot, J., Griffin, K., Harrison, C.: Strawman: a
batch in situ visualization and analysis infrastructure for multi-physics simulation
codes. In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, ISAV2015, pp. 30–35. ACM, New York
(2015). https://doi.org/10.1145/2828612.2828625

14. Larsen, M., Harrison, C., Kress, J., Pugmire, D., Meredith, J.S., Childs, H.: Per-
formance modeling of in situ rendering. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, p.
24. IEEE Press (2016)

15. Messina, P.: The exascale computing project. Comput. Sci. Eng. 19(3), 63–67
(2017)

16. Moreland, K., et al.: Vtk-m: accelerating the visualization toolkit for massively
threaded architectures. IEEE Comput. Graph. Appl. 36(3), 48–58 (2016)

17. Schroeder, W.J., Lorensen, B., Martin, K.: The Visualization Toolkit: An Object-
oriented Approach to 3D Graphics. Kitware, New York (2004)

https://software.llnl.gov/conduit/
https://software.llnl.gov/conduit/blueprint.html
https://doi.org/10.1145/2828612.2828625


218 C. Wood et al.

18. Schulz, M., et al.: A flexible data model to support multi-domain performance
analysis. In: Niethammer, C., Gracia, J., Knüpfer, A., Resch, M.M., Nagel, W.E.
(eds.) Tools for High Performance Computing 2014, pp. 211–229. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16012-2 10

19. Schulz, M., Levine, J.A., Bremer, P.T., Gamblin, T., Pascucci, V.: Interpreting
performance data across intuitive domains. In: 2011 International Conference on
Parallel Processing (ICPP), pp. 206–215. IEEE (2011)

20. Wood, C., et al.: A scalable observation system for introspection and in situ ana-
lytics. In: Proceedings of the 5th Workshop on Extreme-Scale Programming Tools,
pp. 42–49. IEEE Press (2016)

https://doi.org/10.1007/978-3-319-16012-2_10

	Projecting Performance Data over Simulation Geometry Using SOSflow and ALPINE
	1 Introduction
	1.1 Research Contributions

	2 Related Work
	3 SOSflow
	3.1 SOSflow Daemons
	3.2 SOSflow Client Library
	3.3 SOSflow Data

	4 ALPINE Ascent
	5 Experiments
	5.1 Evaluation Platform
	5.2 Experiment Setup
	5.3 Overview of Processing Steps
	5.4 Evaluation of Geometry Extraction
	5.5 Evaluation of Overhead

	6 Results
	6.1 Geometry Extraction and Performance Data Projection
	6.2 Overhead

	7 Conclusion
	7.1 Future Work

	References




