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Preface

This volume contains the proceedings of two instances each of two workshops, held in
conjuction with the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC). The workshops are – Workshop on
Extreme-Scale Programming Tools (ESPT) and International Workshop on Visual
Performance Analysis (VPA).

ESPT 2017

The 6th Workshop on Extreme-Scale Programming Tools (ESPT) was held in con-
junction with the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC) in Denver, Colorado, USA, on Sunday, November
12, 2017. The workshop focused on how the path to exascale computing challenges
HPC application developers in their quest to achieve the maximum potential that the
machines have to offer. Factors such as limited power budgets, clock frequency vari-
ability, heterogeneous load imbalance, hierarchical memories, and shrinking I/O
bandwidths make it increasingly difficult to create high performance applications.
Tools for debugging, performance measurement and analysis, and tuning are needed to
overcome the architectural, system, and programming complexities envisioned in
exascale environments. At the same time, research and development progress for HPC
tools faces equally difficult challenges from exascale factors. Increased emphasis on
autotuning, dynamic monitoring and adaptation, heterogeneous analysis, and so on
require new methodologies, techniques, and engagement with application teams.

The ESPT 2017 workshop served as a forum for HPC application developers,
system designers, and tools researchers to discuss the requirements for
exascale-enabled tools and the roadblocks that need to be addressed. It was the sixth
instantiation of successful SC conference workshops organized by the Virtual Institute
– High Productivity Supercomputing (VI-HPS), an international initiative of HPC
researchers and developers focused on parallel programming and performance tools for
large-scale systems. The workshop topics of interest included:

• Programming tools (e.g., performance analysis, tuning, debuggers, IDEs)
• Methodologies for performance engineering
• Tool technologies for extreme-scale challenges (e.g., scalability, resilience, power)
• Tool infrastructures and environments
• Evolving/future application requirements for programming tools and technologies
• Application developer experiences with programming and performance tools

More information can be found at: http://www.vi-hps.org/symposia/espt/espt-sc17.
html.

http://www.vi-hps.org/symposia/espt/espt-sc17.html
http://www.vi-hps.org/symposia/espt/espt-sc17.html


ESPT 2017 was a full-day workshop consisting of a keynote address in the morning
followed by research paper presentations and an open debate in the afternoon. All
submitted research papers underwent a rigorous review process. A total of 13 papers
were submitted, with three to four reviews provided for each paper. The ESPT
organizers made final decisions on paper selection. A total of eight papers were
accepted and each paper was allotted 30 minutes for presentation. This volume contains
seven of the eight accepted papers from the ESPT 2017 proceedings.

Organizing Committee

William Jalby (Chair) Université de Versailles St-Quentin-en-Yvelines, France
Allen D. Malony

(Vice-chair)
University of Oregon, Eugene, USA

Martin Schulz Technische Universität München, Germany
Judit Gimenez Barcelona Supercomputing Center, Spain

Program Committee

Jean-Baptiste Besnard ParaTools, SAS, France
Michael Gerndt Universität München, Germany
Kevin Huck University of Oregon, Eugene, USA
Andreas Knüpfer Technische Universität Dresden, Germany
Heike McCraw University of Tennessee, Knoxville, USA
Barton P. Miller University of Wisconsin, Madison, USA
Pablo Oliveira Université de Versailles St-Quentin-en-Yvelines, France
Sameer Shende University of Oregon, Eugene, USA
Jan Treibig Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Felix Wolf Technische Universität Darmstadt, Germany
Brian Wylie Jülich Supercomputing Centre, Germany

Special thanks: Marc-Andre Hermanns, Jülich Supercomputing Centre, Germany

ESPT 2018

The 2018 Workshop on Extreme-Scale Programming Tools (ESPT) was held in
conjunction with the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC) in Dallas, Texas, USA, on Friday, November
16, 2018. It was the seventh instantiation of successful SC conference workshops
organized by the Virtual Institute – High Productivity Supercomputing (VI-HPS), an
international initiative of HPC researchers and developers focused on parallel
programming and performance tools for large-scale systems.
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The path to extreme computing keeps broadening: Large-scale systems toward
exascale and beyond, growing many-core systems with deep memory hierarchies and
massively parallel accelerators are just a few of the platforms we can expect. This trend
will challenge HPC application developers in their quest to achieve the maximum
potential that their systems have to offer, both on and across nodes. Factors such as
limited power budgets, heterogeneity, hierarchical memories, shrinking I/O
bandwidths, and performance variability will make it increasingly difficult to create
productive applications on future platforms. To address these challenges, we need tools
for debugging, performance measurement and analysis, and tuning to overcome the
architectural, system, and programming complexities expected in these environments.
At the same time, research and development progress for HPC tools faces equally
difficult challenges from exascale factors. Increased emphasis on autotuning, dynamic
monitoring and adaptation, heterogeneous analysis, and so on require new method-
ologies, techniques, and engagement with application teams.

Like its predecessors, the ESPT 2018 workshop served as a forum for HPC
application developers, system designers, and tools researchers to discuss the
requirements for exascale-enabled tools and the roadblocks that need to be addressed.
The workshop topics of interest included:

• Programming tools (e.g., performance analysis, tuning, debuggers, IDEs)
• Methodologies for performance engineering
• Tool technologies for extreme-scale challenges (e.g., scalability, resilience, power)
• Tool support for accelerated architectures and large-scale multi-cores
• Tool infrastructures and environments
• Evolving/future application requirements for programming tools and technologies
• Application developer experiences with programming and performance tools

More information can be found at: http://www.vi-hps.org/symposia/espt/espt-sc18.
html.

ESPT 2018 was a half-day workshop consisting of two keynote addresses and a
session of research paper presentations. All submitted research papers underwent a
rigorous review process. A total of five papers were submitted, with three to five
reviews provided for each paper. The ESPT organizers made final decisions on paper
selection. A total of four papers were accepted and each paper was allotted 30 minutes
for presentation. This volume contains the ESPT 2018 proceedings.

Organizing Committee

Martin Schulz Technische Universität München, Germany
David Boehme Lawrence Livermore National Laboratory, USA
Marc-André Hermanns Jülich Supercomputing Centre, Germany
Felix Wolf Technische Universität Darmstadt, Germany
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Program Committee

Dorian C. Arnold Emory University, USA
Jean-Baptiste Besnard ParaTools, France
Karl Fürlinger Ludwig Maximilian University of Munich, Germany
Michael Gerndt Technical University of Munich, Germany
Judit Gimenez Barcelona Supercomputing Center, Spain
Marc-André Hermanns Forschungszentrum Jülich, Germany
Kevin Huck University of Oregon, USA
William Jalby Université de Versailles St-Quentin-en-Yvelines, France
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Felix Wolf Technical University of Darmstadt, Germany
Brian J. N. Wylie Forschungszentrum Jülich, Germany

VPA 2017

The Fourth International Workshop on Visual Performance Analysis (VPA 17) was
held in conjunction with the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis (SC 17) in Denver, Colorado, USA, on Friday,
November 17, 2017 and in cooperation with TCHPC: The IEEE Computer Society
Technical Consortium on High Performance Computing.

Over the past decades an incredible amount of resources has been devoted to
building ever more powerful supercomputers. However, exploiting the full capabilities
of these machines is becoming exponentially more difficult with each new generation
of hardware. To help understand and optimize the behavior of massively parallel
simulations, the performance analysis community has created a wide range of tools and
APIs to collect performance data, such as flop counts, network traffic, or cache
behavior at the largest scale. However, this success has created a new challenge, as the
resulting data are far too large and too complex to be analyzed in a straightforward
manner. Therefore, new automatic analysis and visualization approaches must be
developed to allow application developers to intuitively understand the multiple,
interdependent effects that their algorithmic choices have on the final performance.

This workshop brought together researchers from the fields of performance analysis
and visualization to discuss new approaches of applying visualization and visual
analytics techniques to large-scale applications. The workshop topics of interest
included:
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• Scalable displays of performance data
• Data models to enable scalable visualization
• Graph representation of unstructured performance data
• Presentation of high-dimensional data
• Visual correlations between multiple data source
• Human–computer interfaces for exploring performance data
• Multiscale representations of performance data for visual exploration

More information can be found here: https://vpa17.github.io.

VPA 17 was a half-day workshop consisting of a keynote address by Dr. Lucy
Nowell of the U.S. Department of Energy titled “Visual Performance Analysis for
Extremely Heterogeneous Systems” as well as a panel discussion on “Challenges and
the Future of HPC Performance Visualization.” Research paper presentations were
mixed into these two sessions. All submitted research papers underwent a rigorous
review process. A total of six papers were submitted, with five reviews provided for
each paper. The VPA workshop chairs made final decisions on paper selection. A total
of three papers were accepted and each paper was allotted 25 minutes for presentation.
This volume contains two of three accepted papers from the VPA 2017 proceedings.

Workshop Chairs

Fabian Beck University of Duisburg-Essen, Germany
Abhinav Bhatele Lawrence Livermore National Laboratory, USA
Judit Gimenez Barcelona Supercomputing Center, Spain
Joshua A. Levine University of Arizona, USA

Steering Committee

Peer-Timo Bremer Lawrence Livermore National Laboratory, USA
Bernd Mohr Jülich Supercomputing Center, Germany
Valerio Pascucci University of Utah, USA
Martin Schulz Lawrence Livermore National Laboratory, USA

Program Committee

Harsh Bhatia Lawrence Livermore National Laboratory, USA
Holger Brunst TU Dresden, Germany
Alexandru Calotoiu Technical University Darmstadt, Germany
Todd Gamblin Lawrence Livermore National Laboratory, USA
Marc-Andre Hermanns Jülich Supercomputing Center, Germany
Kevin Huck University of Oregon, USA
Katherine Isaacs University of Arizona, USA
Yarden Livnat University of Utah, USA
Naoya Maruyama Lawrence Livermore National Laboratory, USA
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Bernd Mohr Jülich Supercomputing Center, Germany
Ananya Muddukrishna KTH Royal Institute of Technology, Sweden
Matthias Mueller RWTH Aachen University, Germany
Valerio Pascucci University of Utah, USA
Paul Rosen University of South Florida, USA
Carlos Scheidegger University of Arizona, USA
Chad Steed Oak Ridge National Laboratory, USA

VPA 2018

The Fifth International Workshop on Visual Performance Analysis (VPA 2018) was
held in conjunction with the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis (SC 2018) in Dallas, Texas, USA, on Sunday,
November 11, 2018.

Over the past decades an incredible amount of resources has been devoted to
building ever more powerful supercomputers. However, exploiting the full capabilities
of these machines is becoming exponentially more difficult with each new generation
of hardware. To help understand and optimize the behavior of massively parallel
simulations, the performance analysis community has created a wide range of tools and
APIs to collect performance data, such as flop counts, network traffic, or cache
behavior at the largest scale. However, this success has created a new challenge, as the
resulting data are far too large and too complex to be analyzed in a straightforward
manner. Therefore, new automatic analysis and visualization approaches must be
developed to allow application developers to intuitively understand the multiple,
interdependent effects that their algorithmic choices have on the final performance.

This workshop brought together researchers from the fields of performance analysis
and visualization to discuss new approaches of applying visualization and visual
analytics techniques to large-scale applications. The workshop topics of interest
included:

• Scalable displays of performance data
• Case studies demonstrating the use of performance visualization in practice
• Data models to enable scalable visualization
• Graph representation of unstructured performance data
• Presentation of high-dimensional data
• Visual correlations between multiple data source
• Human–computer interfaces for exploring performance data
• Multi-scale representations of performance data for visual exploration

More information can be found here: https://vpa18.github.io.

VPA 18 was a half-day workshop consisting of a keynote address by Dr. Allen
Malony of the University of Oregon, USA titled “Not Your Mama’s Angry Fruit Salad:
Ruminations on 30 Years of Performance Visualization and Visual Performance
Analysis” and research paper presentations. All submitted research papers underwent a
rigorous review process. A total of five papers were submitted, with three to five
reviews provided for each paper. The VPA workshop chairs made final decisions on
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paper selection. A total of four papers were accepted and each paper was allotted 25
minutes for presentation. This volume contains the VPA 2018 proceedings.

Workshop Chairs

Abhinav Bhatele Lawrence Livermore National Laboratory, USA
Katherine Isaacs University of Arizona, USA
Kevin Huck University of Oregon, USA

Steering Committee

Peer-Timo Bremer Lawrence Livermore National Laboratory, USA
Bernd Mohr Jülich Supercomputing Center, Germany
Valerio Pascucci University of Utah, USA
Martin Schulz Lawrence Livermore National Laboratory, USA

Program Committee

Harsh Bhatia Lawrence Livermore National Laboratory, USA
Holger Brunst TU Dresden, Germany
Alexandru Calotoiu Technical University Darmstadt, Germany
Todd Gamblin Lawrence Livermore National Laboratory, USA
Judit Gimenez Barcelona Supercomputing Center, Spain
Marc-Andre Hermanns Jülich Supercomputing Center, Germany
Aaditya Landge Twitter, Inc., USA
Joshua A. Levine University of Arizona, USA
Yarden Livnat University of Utah, USA
Naoya Maruyama Lawrence Livermore National Laboratory, USA
Matthias Mueller RWTH Aachen University, Germany
Paul Rosen University of South Florida, USA
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Enhancing PAPI with Low-Overhead
rdpmc Reads

Yan Liu and Vincent M. Weaver(B)

University of Maine, Orono, ME 04469, USA
{yan.liu,vincent.weaver}@maine.edu

Abstract. The PAPI performance library is a widely used tool for gath-
ering self-monitored performance data from running applications. A key
aspect of self-monitoring is the ability to read hardware performance
counters with minimum possible overhead. If read overhead becomes too
large then the act of measurement will start to interfere with the gath-
ered results, adversely affecting the performance analysis.

On Linux systems PAPI uses the perf event subsystem to access the
counter values via the read() system call. On x86 systems the special
rdpmc instruction allows userspace measurement of counters without the
overhead of entering the operating system kernel. We modify PAPI to
use rdpmc rather than read() and find it typically improves the latency
by at least a factor of three (and often a factor of six or more) on most
modern systems. The improvement is even better on machines using a
KPTI enabled kernel to avoid the Meltdown vulnerability. We analyze
the effectiveness and limitations of the rdpmc interface and have gotten
the rdpmc interface enabled by default in PAPI.

1 Introduction

PAPI [16] is a portable, cross-platform library for accessing hardware perfor-
mance counters. These counters are found on most modern CPUs and are widely
used when evaluating system and program performance. Various tools are avail-
able that can read the values of these performance counters (such as perf [7],
LIKWID [23] and VTUNE [27]). While all of these tools can measure overall
aggregate counts and perform statistical sampling, PAPI is one of the few that
allows easy self-monitoring.

Self-monitoring is the ability to read the values of the counters from within
the running program, allowing fine-grain “caliper” measurements solely around
the code of interest. Other tools can provide overall counts for an entire program
run, or gather samples periodically that can be used to extrapolate statistically
where a program spends most of its time. However a self-monitoring tool like
PAPI is required to get exact fine-grained measurements for a single function,
or to measure the impact of just a few lines of program code.

Self-monitoring is a powerful methodology, but care must be taken to keep
overhead low. To use PAPI the code of interest must be instrumented, which

c© Springer Nature Switzerland AG 2019
A. Bhatele et al. (Eds.): ESPT/VPA 2017/2018, LNCS 11027, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-17872-7_1
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4 Y. Liu and V. M. Weaver

involves adding extra code to the program. If the extra code needed to read the
counter values becomes too long or intrusive then the resulting measurements
will start to be affected. Mytkowicz et al. [17] found that instrumentation which
increased instruction count by just 2.5% interfered with properly correlating
performance results. Mytkowicz et al. [18] also showed that simply adding an
additional PAPI counter could be enough to cause noticeable perturbations. Low
overhead is critical for accurate performance measurements.

Instrumenting a program with PAPI is a multi-step process. First, setup code
is added to the beginning of the program that initializes PAPI and sets up an
“event set” with the chosen performance events of interest. These setup routines
can end up calling a large amount of library code, but since this is run only once
during program initialization it has minimal impact on a long-running process.
Next, caliper code is added around the region of interest. It is critical that that
code has minimal overhead. The routines involved are PAPI start() which starts
the measurements, PAPI read() which reads the counters, and PAPI stop()
which stops the measurements. The PAPI start() and PAPI stop() calls can
be put away from the critical code section to avoid overhead by using two reads
(before and after) and calculating the difference. This leaves PAPI read() as the
most important routine requiring low-overhead.

In an ideal system a hardware counter read would simply be an assembly
language instruction loading from the special CPU counter register, followed by
a store of the value to memory for later analysis. On actual systems there is
additional overhead caused by the operating system, as well as indirection and
housekeeping overhead inside the measurement library. The PAPI library is a
cross-platform abstraction layer and so the read call involves additional instruc-
tions, memory accesses, and branches. In addition, reading counters on Linux
traditionally involves using the read() system call which involves a relatively
slow entry to the Linux kernel. This is essentially a software interrupt which
brings the CPU to a halt, changes to privileged mode, branches to internal ker-
nel code that does some housekeeping, reads the value from the CPU, ensures
all buffers are valid, writes the results out to userspace, and then finally switches
back to the original running program. All of this overhead can take hundreds
to thousands of cycles, much higher than the tens of cycles needed for a raw
counter read [24].

Much of this overhead can be avoided if we bypass the read() system call
and read the counters directly from userspace, without involving the operating
system at all. On x86 systems there is a special rdpmc instruction which allows
exactly this. Setting up and using this instruction can be complex and it was not
available in the initial perf event release. Once the Linux kernel added support,
PAPI’s perf event still lacked rdpmc support and used the read() interface. We
extend PAPI to use the lower-overhead rdpmc interface and run a number of
tests to evaluate the change in performance. We run on a wide variety of x86
machines and find a typical speedup of around six times when using the new
interface. The work revealed four bugs in the low-level Linux interface, but we
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have gotten these fixed upstream. Due to our work, PAPI uses rdpmc by default
as of the 5.6 release of the library.

2 Background

The concept of performance counters is straightforward: they are hardware coun-
ters that increment when certain architectural events happen on a processor.
Gathering these results in a fast, efficient fashion involves complex interactions
between the hardware, operating system, libraries, and applications.

2.1 Performance Counter Hardware

Hardware performance counters are configured by setting values in a series of
special low-level CPU registers. On x86 machines these are called Model Specific
Registers (MSRs) which are described in the vendor documentation [2,9].

Recent x86 processors tend to have between four to seven counters per CPU,
as can be seen in Table 1. This number can be affected by the existence of hard-
ware multithreading. These counters are used to measure per-core architectural
events such as cache behavior, branch predictor behavior, cycle and instruc-
tion counts, etc. Recent CPUs often have additional events, such as “uncore”
and RAPL power measurement; these are measured by a different interface and
cannot be accessed via the rdpmc interface we describe here.

To start measurement the desired events (from a list of potentially hundreds)
are programmed into the event configuration registers. A bit is set in another
configuration register to start the counting. The current values can be read out
of the counter registers, typically from 40 to 48 bits in size. An interrupt can be
configured for when the counter overflows; this allows both statistical sampling
as well as keeping track of total event counts when they overflow.

2.2 Linux perf event Interface

Access to performance counter registers requires supervisor level permissions;
because of this the operating system is usually responsible for the interface. The
operating system might further restrict access for security reasons, as a clever
user can monitor in detail what a system is doing based on the fine grained perfor-
mance information (one prime worry is being able to reverse engineer encryption
happening on other cores by monitoring cycle or cache miss counts). The stan-
dard counter interface on Linux is known as perf event and the primary way of
accessing it is the perf event open() system call [25]. This system call is used
to configure and open a performance counter event; it is a complex call with over
forty interacting parameters. The system call returns a file descriptor which can
be used to control and access the event. Values can be read with the read()
system call, and memory can be set up with mmap() that allows both sampling
to a circular buffer as well as gathering additional information about the event.
Various ioctl() calls are used to start and stop the events. Advanced features,
such as event scheduling, event multiplexing, and save/restore on context switch,
are all provided by the interface.
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2.3 PAPI Library

The PAPI performance library [16] is a cross-platform library designed to allow
access to performance counters on a wide variety of machines. On current Linux
machines PAPI uses the perf event interface. Before perf event became stan-
dard (in 2009 with the Linux 2.6.31 release) PAPI used the perfmon2 [6] and
perfctr [21] interfaces (which required custom patching of your Linux kernel).
perfctr in particular has extremely fast counter reads due to using the rdpmc
call, something perf event initially lacked.

2.4 Linux rdpmc Support

The merging of perf event into Linux was not without controversy. Due to the
complaints from the PAPI developers about the high overhead of the read()
system call, a userspace interface to allow fast rdpmc reads was eventually added
with the Linux 3.4 release in 2012. An interface-breaking bug was found and fixed
in the 3.11 release in 2013 [4] involving overlapping fields in a union which had
unintentionally disabled some of the functionality. This was fixed, but this makes
fully supporting both old and new kernels in a backwards compatible way tricky.

2.5 PAPI rdpmc Code

The rdpmc instruction itself only takes a short amount of time to run, on the
order of a few tens of cycles [24]. Enabling userspace rdpmc support on x86 is
simply a matter of the kernel setting a bit in the special CR4 system register. After
that, one might think access would be as simple as inserting rdpmc instructions
into your code. However the complications of modern multi-tasking operating
systems lead to a more complicated interface. Because there might be multiple
users of perf event, we cannot simply set counters to be free-running and use an
assembly-language call to rdpmc to access them (this was a typical way to use
rdpmc before perf event was merged into Linux).

The recommended code for using rdpmc with perf event is complicated, as
seen in the example code found in Fig. 1. This boilerplate code more than dou-
bles the overhead of a read, on the order of a few hundred cycles. Despite this
overhead, this code all runs in userspace, so it is still much faster than using the
default read() interface which must go through the kernel.

The reason for the extra code is that PAPI needs to be sure that the event
configuration has not been changed by the kernel since the last time the event
was read. The kernel is free to rearrange event counter mappings at any time.
This might happen on a context switch, or due to multiplexing.

Multiplexing is when the kernel allows adding more events than the physical
number available, providing estimated total event counts as if the hardware had
that many counters. This is done by periodically stopping the counters and
swapping in ones currently not running, so all events have a turn to run. The
time an event has actually spent running is tracked, so by scaling this based
on the total time you can estimate how many counts would have happened if
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do {
/* The kernel increments pc->lock any time */
/* perf_event_update_userpage () is called */
/* So by checking now , and the end , we */
/* can see if an update happened while we */
/* were trying to read things , and re -try */

/*degnahcgnihtemosfi*/
/* The barrier ensures we get the most */
/* up -to date version of pc ->lock */

seq=pc ->lock;
barrier ();

/* For multiplexing */
/* time_enabled: time the event was enabled */
enabled = pc->time_enabled;
/* time_running: time the event was */
/* actually running */
running = pc->time_running;

/* if cap_user_time is set we can use rdtsc */
/* to calculate more exact enabled/running */
/* for more accurate multiplex calculations */
if ( (pc ->cap_user_time) &&

(enabled != running )) {
cyc = rdtsc ();
time_offset = pc->time_offset;
time_mult = pc->time_mult;
time_shift = pc->time_shift;

quot = (cyc >>time_shift );
rem = cyc & ((( uint64_t)1<<time_shift )-1);
delta = time_offset + (quot * time_mult) +

((rem * time_mult) >> time_shift );
}
enabled +=delta;

/* Index of register to read */
/* 0 means stopped/not -active */
/* Need to subtract 1 to get rdpmc () index */
index = pc->index;

/* count is the value of the counter the */
/* last time the kernel read it. */
/* If we don’t sign extend , we get negative */
/* numbers which break if IOC_RESET is done */
width = pc->pmc_width;
count = pc->offset;
count <<=(64- width );
count >>=(64- width );

/* Only read if rdpmc enabled and index */
/* valid , otherwise return the older count */
if (pc->cap_usr_rdpmc && index) {

/* Read counter value */
pmc = rdpmc(index -1);

/* sign extend result */
pmc <<=(64- width);
pmc >>=(64- width);

/* add value into existing kernel count */
count+=pmc;
running += delta;

}

barrier ();

} while (pc->lock != seq);

if (en) *en=enabled;
if (ru) *ru=running;

return count;

Fig. 1. Sample code for a perf event rdpmc read.
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the event had been running the full time. Multiplex handling is a big part of
the extra rdpmc measurement code, as due to multiplexing the events currently
scheduled might be changed by the operating system at any time. Also, before
reporting the final event counts, you need to scale any events that did not run
for the full time during measurement.

The perf event interface provides helper information that can be mapped
into the program’s address space with a call to mmap(). Each event you want
to read via rdpmc must have an associated mmap() page. This potentially adds
overhead issues: the read() interface allows grouping multiple events so they
can be read with one single call. However with rdpmc each event needs to be
read individually and with large numbers of events this could potentially hurt
performance. In addition each mmap() page takes up a valuable TLB slot and
could hurt performance if a large number of events are mapped. On architectures
with large page sizes events can take up large amounts of RAM, which can be
troublesome since by default the amount of mmap area that perf event can pin
into memory is limited to 516kB.

A rdpmc read involves the following series of events. First, the seq sequence
field is read, followed by a memory barrier to make sure it is synchronized with
the kernel. Next, check time running and time enabled. If they are equal then
multiplexing is not happening, otherwise the result needs to be scaled appropri-
ately. The count value (which needs to be sign extended) holds the value from
the last time the kernel has read the counter. This needs to be accounted for, as
the value in the actual counter might have been reset on context switch, CPU
migration, or if an overflow happened. Finally use rdpmc to obtain the current
counter value which is added to count. While all of this is happening various
things could happen that would make the values inconsistent (such as a context
switch). To verify this has not happened, the seq value should be read again to
verify it matches the earlier value. If this has changed then the whole process
needs to be repeated until we complete the process without a change. From
our experiments we find it is rare for seq to change unless the system is under
heavy load. A livelock could potentially happen where the sequence checking
could never make progress if the kernel is busy updating the page. Code could
be added to break out and fall back to a read() in this situation.

This code path may seem like it has a lot of overhead, but it still much faster
than performing a read() system call (which is slow, disruptive to the CPU,
and involves running an unpredictable amount of kernel code).

This code has been added to PAPI and is enabled by default in the 5.6 release
of the library. Use the --enable-perfevent-rdpmc=yes/no configure option to
explicitly enable or disable the feature when building and installing.

2.6 Linux rdpmc Bugs Found

Once we started testing the rdpmc code in PAPI, the PAPI regression tests
turned up a number of bugs. After some analysis, most of these bugs were found
to be in the Linux kernel implementation.
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The first bug found was that various pthread tests would randomly cause
general protection faults (GPF) and crash. This is due to a change made in
the Linux 4.0 kernel that disabled rdpmc support when a process had no events
running. Prior to this, when perf event was started the CR4 bit that enables
rdpmc support was globally enabled, so even processes without active events
could still read the counter values. This is a possible information leakage security
issue, so the kernel was modified to only allow using rdpmc if a process was
actively using an event. There was a bug in the implementation of this fix: a
wrong field was checked and sometimes when multiple threads were active the
reference count would get out of sync and rdpmc support would be disabled while
events were still running, leading to a GPF. This bug was reported by us and
fixed in the Linux 4.12 release.

Another related bug happened when a process created a perf event mmap
mapping, but then called the exec() system call without closing the mapping
first. This would cause the mmap reference count to go negative and again GPFs
would happen on rdpmc access. This bug was reported by us and fixed in the
Linux 4.13 release.

Another test that failed was one that created a large number of events in a
large number of threads. This was a kernel limitation: the number of mmap()
pages is limited by the value in sysctl kernel.perf event mlock kb to a
default of 516kB. We were hitting this limit and PAPI was crashing. We modi-
fied PAPI to only use 1 mmap page per process when using rdpmc (except when
sampling), and if mmap space runs out it will now fall back to using read()
which is slower but should always work.

The final bug involves time accounting when attaching to another process.
With perf event it is possible for one process to monitor another by specifying
a process id at event creation time (this is how tools like perf can monitor a
separate process). The enabled time accounting code did not handle the case
where an event was disabled while the attached processor was asleep, leading to
the value being reported as negative. PAPI saw the non-matching enabled and
running times and assumed this was a multiplexed event and scaled the results
accordingly leading to impossibly large values. This bug was reported by us and
fixed in the Linux 4.13 release.

3 Related Work

Low-overhead counter access is an important area with a lot of previous research.
PAPI is widely used and is often the comparison point for such studies.

3.1 Lower-Level Interface Overhead

Prior to the introduction of perf event with the 2.6.31 Linux kernel, there were
external patches to provide performance counter support to Linux. PAPI used
two of these: perfctr [21] (which had rdpmc support) and perfmon2 [6] (which
did not). Most previous PAPI comparisons predate the introduction of perf event
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and use one of these interfaces. These results are out of date now, as work on
the alternate interfaces stopped once perf event was merged into the mainline
Linux kernel.

We [26] previously investigated the overhead of perf event in terms of
start/stop/read overhead on various x86 64 machines. The measurements are
at the raw system call level, one level lower than the PAPI interface we inves-
tigate. We found that perf event read() has relatively high overhead, but that
the perf event rdpmc interface could be competitive with the previous perfctr
and perfmon2 interfaces.

3.2 PAPI Overhead

Our work, as well as much of the previous work, primarily looks at the effect
in cycle time when adding instrumentation. Instrumentation can affect other
metrics, and the reduced overhead from rdpmc should help in these cases too.

Maxwell et al. [12] and Moore et al. [15] compare the overhead of PAPI,
including read calls, on various architectures available in 2002. This predates
perf event so making direct comparisons to our work is difficult.

Lehr [10] finds that even though PAPI instrumentation causes less than a
10% slowdown in SPEC CPU 2006, the actual counter measurements (including
stores and cache events) can be perturbed enough to give misleading results.

Huang et al. [8] investigate the power overhead of using PAPI. This is not
directly related to our work, but any/time instruction overhead is also going to
lead to a certain amount of power and energy overhead.

Babka and Tůma [3] investigate the overhead of PAPI in both cycle count and
other metrics on AMD and Intel machines. Their primary concern is overhead
of memory metrics. Their measured overhead is high, as it appears they were
using perfmon2. Using a rdpmc capable interface would reduce the overhead.

Zaparanuks, Jovic and Hauswirth [28] investigate measurement overhead of
both user and user+kernel counters using PAPI on top of perfmon2 and perfctr,
as well as using perfmon2 and perfctr directly. It is a detailed investigation into
obtaining minimum overhead on these interfaces, but predates the introduction
of perf event.

3.3 Other Performance Counter Tools

Röhl et al. [22] investigate the performance of likwid-perfctr and the LIKWID
Marker API under the Linux OS on Intel IvyBridge-EP, Intel Haswell and AMD
Interlagos. At the time LIKWID did not support the perf event interface, and
instead directly accesses the relevant MSRs using the Linux /dev/msr interface.
Using /dev/msr still requires entry/exit from the kernel so can still have high
overhead. The Marker API allows calipered measurement of code, although it
is not full self-monitoring as the values measured are written straight to disk
without the running application having access. They find that moving to rdpmc
would greatly reduce overhead, but since the kernel disables rdpmc by default
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if not using perf event, they cannot use it without patching the kernel. They
compare their results to PAPI, but do not break out the read overhead separately.
LIKWID does show an advantage over PAPI in their results, but this was before
our addition of rdpmc support.

Table 1. Machines used in this study. Note that on Intel machines more counters may
be available if hyperthreading is disabled.

Processor Counters available

Intel Pentium II 2 general

Intel Pentium 4 18 general

Intel Core 2 P8700 2 general 3 fixed

Intel Atom Cedarview D2550 2 general 3 fixed

Intel IvyBridge i5-3210M 4 general 3 fixed

Intel Haswell i7-4770 4 general 3 fixed

Intel Haswell-EP E5-2640 4 general 3 fixed

Intel Broadwell i7-5557U 4 general 3 fixed

Intel Broadwell-EP E5-2620 4 general 3 fixed

Intel Skylake i7-6700 4 general 3 fixed

AMD fam10h Phenom II 4 general

AMD fam15h A10-6800B 6 general

AMD fam15h Opteron 6376 6 general

AMD fam16h A8-6410 4 general

Demme and Sethumadhaven propose LiMiT [5], a Linux interface to provide
fast, userspace access to performance counters reminiscent of the much older
perfctr project. It requires patching the Linux kernel, and a note on the project’s
website notes that the patch is unstable and can cause system crashes. They
claim LiMiT is 90× faster than PAPI and 23× faster than perf event, although
the test is not described in detail nor what kernel versions used for the test so it
is a bit unclear what is being compared. The addition of rdpmc support to PAPI
should make it compare more favorably since pure userspace accesses are being
used.

AMD proposed an advanced Lightweight Profiling [1] interface providing
userspace-only access to all aspects of controlling performance counters, not
just reads. This could potentially speed up much more than reads, however the
Linux kernel developers have refused to add support for the interface unless it
was moderated by the kernel, which would defeat the entire purpose [14].

4 Experimental Setup

We test on fourteen different machines as shown in Table 1. This covers multiple
generations of Intel and AMD processors from a 20 year old Pentium II machine
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up to and including more modern machines. Most machines are running the
Linux 4.9 kernel provided with the Sid release of Debian Linux. A few of the
machines are running the 3.16 kernel provided with Jessie Debian Linux. A full
list of operating system, compiler, and cpu information is available for download
along with our raw measurement information.

Most of our experiments are against a PAPI development git snapshot from
March 2017, as at that time no full PAPI release contained rdpmc support. For
comparison we also look at the 5.4.0, 5.4.1, 5.4.3, 5.5.0, and 5.5.1 official PAPI
releases.

We measure the overhead of the core PAPI calls using the papi cost utility
that comes with PAPI. This runs each PAPI library call of interest one million
times, measuring the latency using PAPI get real cyc(). On x86 systems this
maps to a rdtsc read timestamp instruction. We extend papi cost to also return
the median and 25th and 75th percentile values so that we could use those to
make boxplots. For the more complicated results, such as the outlier analysis,
we modify papi cost further to log performance counter data for each iteration.
In addition, we instrument the STREAM [13] and Linpack [20] benchmarks to
investigate how the PAPI read() overhead changes when a system is under load.

5 Results

We compare the overhead for traditional PAPI using read() to our modified
PAPI using the rdpmc instruction.

Table 2 summarizes the read() vs rdpmc speedup found on the fourteen x86
machines. The results are given based on the median out of 1 million consecutive
calls to read. We use the median, and not the average, as the measurement code
occasionally has extremely large outliers which skew the average and standard
deviation. See Sect. 5.1 for more discussion of these outliers. The speedup found
is at least 2.6× in all cases, and is typically around 6× on recent Intel machines.
This speedup is still large, but not quite as high on AMD machines and low end
machines such as the Atom processors.

Figure 2 shows the PAPI read() overhead gathered for the past few PAPI
releases, as well as the current git snapshot we use for testing. This was mostly
a sanity check to make sure the values have not changed greatly over time. The
plots are boxplots: the black box shows the range between the 25th and 75th
percentiles, the white line is the median, and the lines are showing the maximum
outliers. Since the outliers are large, we zoom in on the plot and label at the
top of the graph their numerical value. It can be seen that the overhead has not
changed much in the recent past on the Haswell machine that we measure on.

By default the papi cost benchmark measures two events. That is a typical
number to measure, especially if you are interested in metrics such as Instruction
per Cycle (IPC). To get a wider range of results we modify papi cost to measure
from one to four events. Figure 3 shows how the overhead increases on a Haswell
machine. Both the read() and rdpmc results increase, but the increase is linear
as expected.
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Table 2. Median rdpmc speedup in papi cost running the read test 1 million times.

Vendor Machine read() cycles rdpmc cycles Speedup

Intel Pentium II 2533 384 6.6×
Intel Pentium 4 3728 704 5.3×
Intel Core 2 1634 199 8.2×
Intel Atom 3906 392 10.0×
Intel Ivybridge 885 149 5.9×
Intel Haswell 913 142 6.4×
Intel Haswell-EP 820 125 6.6×
Intel Broadwell 1030 145 7.1×
Intel Broadwell-EP 750 118 6.4×
Intel Skylake 942 144 6.5×
AMD fam10h Phenom II 1252 205 6.1×
AMD fam15h A10 2457 951 2.6×
AMD fam15h Opteron 2186 644 3.4×
AMD fam16h A8 1632 205 8.0×
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Fig. 2. Boxplot comparison of read overheads for the past few releases of PAPI.

The read() code uses the perf event format group feature to read multiple
events with a single system call. Despite grouping multiple events into on system
call, the time still grows linearly as the internal kernel code still has to read the
counters out one by one. The rdpmc code must read out the results one by one,
with the additional overhead from the fixup code for each read. There has been
an interface suggested [29] that would allow grouping multiple events into one
mmap() page but this interface has not been implemented yet.
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Table 3. Results under load. Note: the cycle counter cycles aren’t necessarily the same
as rdtsc cycles.

Routine Type Cycles L1 DMiss DTLB Miss

User Kernel User Kernel User Kernel

HPL pdpanel init

(low memory pressure)

rdpmc 512 0 5 0 0 0

read() 461 1,755 7 20 0 0

HPL pdfact

(high memory pressure)

rdpmc 4,019 0 39 0 11 0

read() 4,551 13,545 43 123 16 16

Table 4. TLB misses for various number of simultaneous events. When using rdpmc

more mmap pages are used, which could potentially increase the TLB pressure on a
memory-intense workload.

Routine Type 2 Events 3 Events 4 Events

User Kernel User Kernel User Kernel

HPL pdpanel init

(low memory pressure)

rdpmc 0 0 0 0 0 0

read() 0 0 0 0 0 0

HPL pdfact

(high memory pressure)

rdpmc 11 0 14 0 16 0

read() 16 16 15 17 16 18
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In addition to the papi cost results, which only look at overhead when doing
PAPI read() calls and nothing else, we also investigate overhead found in more
real-world situations. We look at the architectural overhead of the PAPI read()
call. This is difficult, as the traditional way of gathering such measurements
would be to use PAPI, but using PAPI to measure PAPI does not work well.
Instead we put raw calls to rdpmc around the PAPI read() calls under the
assumption that for such short time intervals it is unlikely that the kernel will
move events around.

Table 3 shows results for the overhead of PAPI read() while instrumenting
two different Linpack functions: HPL pdpanel init() and HPL pdfact(). The
former does not access memory much, and so the cycle count, L1 misses, and
TLB misses are low. (Note that the cycle counts reported here are CPU cycles,
which are not the same as the rdtsc bus cycles reported for other results in this
paper). The rdpmc results show that the kernel is not entered at all, and that
some of the read() overhead is caused by cache misses when running kernel code.
The HPL pdfact() routine is memory intensive, so the addition of PAPI read()
to the code causes cache and TLB misses which generate a lot more overhead
than when the same routine is added to HPL pdpanel init(). In both cases the
rdpmc version of PAPI read() has much lower overhead overall.

Table 4 investigates the same routines as more events are being measured by
PAPI read(). This is to see if the additional mmap pages required by the rdpmc
interface cause enough TLB pressure to adversely affect the measured overhead.
While the TLB misses do grow, overall they are still less than for the read()
version of the code.

5.1 Outliers

Our overhead results mostly cluster around the median, but there are occasional
outliers of over an order of magnitude. We initially suspected the rdtsc cycle
measurements, but on newer x86 processors the cycle counter has had many
improvements to make it invariant in the face of frequency scaling. PAPI follows
most of the suggestions by Intel for how to obtain accurate cycle readings [19].

An example of the magnitude of the outliers can be seen in Fig. 4 which
shows the overhead of the first 3000 rdpmc reads in a papi cost run. We use the
performance counter results to determine the source of the outliers. For these
results we are using an AMD A10 machine as it has a richer set of events to
choose from (including a hardware interrupt event and a SMI system monitoring
interrupt event). We find that many of the extreme outliers (but not all of them)
are caused by a hardware interrupt happening in the middle of a read.

There are also some interesting recurring patterns every 500 reads or so.
Figure 5 plots a different run, this time showing L2 cache misses. We observe L2
cache misses are happening approximately every 500 iterations. The benchmark,
outside of the critical measurement loop, stores the gathered values (which are
64-bit integers) to a large array for later analysis. If you write 512 8-byte values
to memory, that works out to be 4096 bytes, which is the size of a page. So our
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measurement code is potentially causing a TLB or cache miss when crossing a
page boundary which is likely the cause of that regular pattern.

The outlier immediately at the beginning on both plots is caused by a page-
fault and TLB miss the first time the mmap page is accessed. We noted this
previously [26], and suggested using MAP POPULATE or touching the mmap page
to avoid this issue. However, in Fig. 5 we tried enabling MAP POPULATE and it did
not help. The initialization of the event happens so far in advance of the first
read that by the time it gets to our read code the page is no longer in the TLB
so preloading does not help. This behavior is probably typical of what would be
found in most PAPI instrumented code. This page-fault issue means that if you
are using PAPI to do a single read, the first rdpmc overhead is large. However
when using read() the first-access overhead is high for other reasons (including
shared-library setup if you are the first user of the system call) so rdpmc is still
better. In both cases, if more than one read is done, the initial first read overhead
is mitigated.
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5.2 Historical Comparison

Table 5 and Fig. 6 show a comparison of the performance interfaces historically
supported by PAPI on Linux. The results are on a Core 2 machine, as the older
interfaces do not support more modern CPUs as they are no longer maintained
now that perf event became standard with Linux 2.6.31. The perfctr interface
has a custom rdpmc interface that is similar to the one used by perf event,

Table 5. Comparison of various historical perf counter interfaces on a Core 2 machine.
Core 2 is used as the older interfaces do not support more modern CPUs.

Interface Kernel Read results slowdown vs perf event rdpmc

perf event rdpmc 3.16 199 —

perfctr rdpmc 2.6.32 200 1.0×
perfmon2 read() 2.6.30 1216 6.1×
perf event read() 3.16 1587 8.0×
perf event KPTI read() 4.15-rc7 3173 15.9×
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Table 6. Overhead caused by the KPTI work around for the Meltdown security vul-
nerability found on Intel processors.

Processor rdpmc KPTI = off read KPTI= on read

Core2 199 1634 (8.2×) 3173 (15.9×)

Haswell 139 958 (6.9×) 1411 (10.2×)

Skylake 142 978 (6.9×) 1522 (10.7×)
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whereas perfmon2 does not have a rdpmc interface. We find that the perf event
rdpmc interface is more or less the same speed as perfctr and much faster than
perfmon2 and perf event read(). It appears that after a many year absence,
PAPI read overhead can finally return to the levels that were seen back when
perfctr was the primary method of accessing performance counters.

One additional change to recent Linux has affected these results. The release
of the Meltdown security vulnerability [11] on Intel processors has led to the
Kernel Page Table Isolation (KPTI) patchset being enabled by default. This
moves the kernel and user address spaces to be completely different, causing a
costly TLB flush on every system call. We measure the overhead caused by this
and indeed the read() overhead is much larger, as seen in Table 6.

6 Conclusion and Future Work

We have added userspace (rdpmc) performance counter read support to the PAPI
library and found that we can reduce overhead by at least three times (and more
typically around six times) on a wide variety of x86 hardware. We have validated
the results, which resulted in finding and getting fixed a number of bugs in the
Linux kernel. We also investigated and found the source of the large outliers in
the results (found on all interfaces and machines) that make analysis of timing
results difficult.

Our results provide sufficient evidence that the perf event rdpmc interface
consistently has less overhead than the read() interface, and we have enabled the
new interface in PAPI by default as of the 5.6 release. This allows PAPI to once
again obtain low-overhead performance counter data via rdpmc, a feature that
had been lost when the perfctr interface was abandoned with the introduction
of the Linux perf event component. We plan to investigate adding userspace
read support on other architectures that support it, most notably the ARM and
ARM64 architectures. ARM64 has a rdpmc alike interface, but currently the
Linux kernel does not support it. If support is added in a perf event compatible
way then PAPI should be able to use the interface with minimal changes.

Full data for the work presented in our paper can be downloaded from our
website: http://web.eece.maine.edu/∼vweaver/projects/papi-rdpmc/.

The reduced overhead provided by rdpmc should greatly help users of PAPI,
especially those in the high performance computing community. Performance
analysis will be greatly aided by the detailed performance results obtained with
less overhead than was recently possible.
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Abstract. As applications grow in capability, they also grow in com-
plexity. This complexity in turn gets pushed into modules and libraries.
In addition, hardware configurations become increasingly elaborate, too.
These two trends make understanding, debugging and analyzing the per-
formance of applications more and more difficult.

To enable detailed insight into library usage of applications, we present
an approach and implementation in Score-P that supports intuitive and
robust creation of wrappers for arbitrary C/C++ libraries. Runtime
analysis then uses these wrappers to keep track of how applications inter-
act with libraries, how they interact with each other, and record the exact
timing of their functions.
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1 Introduction

To push science and businesses further, today’s software becomes increasingly
powerful but also complex. Software libraries allow offloading this complexity
into subunits, so that developers can focus on adding functionality by using
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Fig. 1. Typical software stack with an application relying on four libraries.

them, rather than implementing every detail themselves. But the complexity
does not disappear—It gets pushed down to lower levels. The gained development
convenience is traded for an increased effort of debugging and overall reasoning
about the application including its performance characteristics. Figure 1 depicts
a typical application and its software dependencies.

A similar development takes place in computer architecture. The adoption
of multiple cores per CPU, heterogeneous architectures, complex cache/memory
hierarchies, elaborate interconnect networks, as well as deep I/O hierarchies
gives rise to a multitude of potential performance problems. This increasing
complexity in software and hardware makes performance analysis an integral
part of the software life cycle.

Tool chains providing modern performance analysis capabilities include Linux
Perf [23], NVIDIA profiling tools [26], Intel VTune Amplifier [30], Score-P [20],
Arm MAP [2] and HPCToolkit [1]. These tools combine multiple data collection
techniques, like sampling, call stack unwinding, tools interfaces, library wrap-
ping, compiler instrumentation, and manual instrumentation in various ways.
The goal is to gather data as detailed as needed while alleviating the disad-
vantages of individual techniques. For example, it is common to combine sam-
pling and call stack unwinding with library wrapping for important libraries.
Sampling gives coarse-grained stochastic timing information of the application’s
function call sequence, while library wrappers count and measure exact tim-
ings of library calls. Aside from counting calls and measuring time, libraries
like POSIX Threads [6], and I/O libraries like HDF5 [16] and ADIOS [22] are
commonly wrapped to extract semantic information (e.g. written bytes) from
arguments passed to library functions.

Which wrappers are available is limited to what each performance tool sup-
ports. Even if an application developer is interested in exact function call track-
ing of certain libraries, there is no well supported way to achieve this in any
performance analysis tool today.

To address this, we introduce user library wrapping, which is included in the
upcoming release of the open-source performance monitor Score-P. The feature
empowers application developers to easily generate library wrappers for any
C/C++ library. This is significant, because:



Generic Library Interception 23

– With just link time changes, developers can now get exact performance infor-
mation on any C/C++ library they want.

– They can analyze closed-source libraries, like the Intel MKL [24].
– They can track function calls from a library to itself and between libraries.

Score-P benefits from user library wrapping for the following reasons. First,
regular compiler instrumentation provides no call-backs upon library entry/exit.
Second, compiler instrumentation often yields high event rates, which leads to
diminished performance and large event recordings. This necessitates a filtering
workflow that in turn complicates the whole measurement process. With user
library wrapping, developers can forego compiler instrumentation and still cap-
ture critical performance data, and have a small low-overhead recording at the
same time—no filtering needed. Third, wrappers give exact function call counts
and timings as opposed to the statistical information from sampling and call
stack unwinding. Additionally, it simplifies creating fixed wrappers that cap-
ture library semantics not only in Score-P, but for all tools that rely on library
wrappers.

We took great care to make wrapper creation and usage as intuitive and
simple as possible. Numerous checks with polished error messages ensure the
wrapper works correctly or let the developer know why it might not.

This paper is divided as follows: Sect. 2 enumerates related work. Section 3
first presents basics on library wrapping. It then details the workflow for creat-
ing and using wrappers while highlighting some implementation choices, by the
example of wrapping the QtWidget and QtGui modules. Section 4 demonstrates
how our approach aids investigating the performance characteristics of two real-
world scientific applications. The last two sections offer conclusions and indicate
points of interest for future development.

2 Related Work

Wrapping C/C++ libraries is not new. SWIG [4], first released in 1996, generates
wrappers for C/C++ libraries so they can be called from other languages like
Python, Go and Lua. SWIG does not provide library interception for extracting,
e.g., performance data. Furthermore, it is not possible to create C++ or C
wrappers for C/C++ libraries. SWIG uses its own C/C++ preprocessor and
parser.

Recently, Google released the C++ Language Interface Foundation (CLIF)
[8] which provides similar functionality to SWIG. It uses Clang [7] to analyze
the library headers, and for now only generates wrappers for Python.

Some libraries, like OpenMP 5 [13] and CUDA [10], offer a so-called tools
interface for analysis tools to hook into. In that case, library wrapping is not
needed. But for most libraries, wrappers are required to gain insight into their
usage. MPI [25] provides a special profiling interface, which helps create wrappers
by providing all functions as weak symbols so that they can be overridden.
Wrapper functions call the actual MPI functions through a P-prefixed symbol,
e.g. PMPI_Send.
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One possible application for tools interfaces and library wrappers is to check
for correct API usage. For example MUST [19] uses MPI’s profiling interface
to ensure correct use and to detect possible deadlocks. The wrapping code is
generated manually with a simple proprietary wrapper generator.

Software performance analysis tools commonly use fixed wrappers to gain
insight into the use of specific libraries. For example Arm MAP [2] is a com-
mercial profiler specialized in analyzing multi-paradigm applications. It wraps
MPI and OpenMP functions and uses the tools interface of CUDA. Various
open-source performance analysis tools exist. Some of them are Extrae [14],
HPCToolkit [1] and Score-P [20]. All three support a variety of parallelization
schemes and hardware platforms. They differ in techniques, focus and user inter-
face, but are similar in terms of utilizing library wrapping.

VampirTrace includes a simple implementation of user library wrapping [11].
It is based on CTool [9] (abandoned in 2004), supports only C, has several
technical limitations and needs manual intervention in most cases. Score-P is
VampirTrace’s successor.

TAU offers user library wrapping via the tau wrap and tau gen wrapper
commands [28]. It uses the Edison Group’s commercial C/C++ parser [12].
TAU’s implementation has multiple limitations. For example, it does not support
C++, cannot wrap functions with function pointers or ellipsis arguments, and
compile and link flags are not customizable.

3 Methodology

Our goal is to provide a simple and robust way to record performance data on
library function calls. For this, we need an opportunity to intercept them. That
means whenever a library function is called, the measurement system has to be
invoked.

3.1 Library Call Interception

We distinguish two wrapping methods based on when interception is set up: link
time and runtime. These two methods also differ in the kind of functions that
can be intercepted.

Link Time: The first approach is based on the --wrap option of the GNU
linker1. For example, to wrap the function foo, we have to implement the corre-
sponding wrapper function __wrap_foo. The original function is available via the
__real_foo symbol. Then specifying --wrap foo in the link command enables
wrapping foo, and the GNU linker resolves these symbols appropriately. This
approach is limited to instances where the link step of the application can be
modified, as the symbols of interest need to be specified at link time. Wrapping
symbols called from shared libraries does not work, because the linker resolves
these symbols at runtime.

1 https://sourceware.org/binutils/docs-2.28/ld/Options.html.

https://sourceware.org/binutils/docs-2.28/ld/Options.html
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Runtime: At the start of executing an application, the dynamic linker loads and
links all dependent shared libraries. The second approach modifies the order in
which the dynamic linker loads them. To wrap a function, we provide a replace-
ment function with the same symbol name as the wrapped function. The linker,
then, needs to link the wrapper before the target library. One way to achieve
this is modifying the link step to put the wrapper library before the original one.
Alternatively, let the environment variable LD_PRELOAD2 point to the wrapper
library before executing the application. The latter method has the advantage
that it does not need to modify the link step. Once called, the wrapper func-
tion loads the target library via dlopen, searches for the address of the original
symbol using dlsym, and then forwards the original call. With link step modi-
fication, this approach can intercept all calls that link time wrapping can, plus
those that originate from shared libraries. The LD_PRELOAD-based version can
only intercept calls to shared libraries, not to statically linked ones.

Both mechanisms require wrappers that pose as the original functions. For
each call, a wrapper function notifies the performance monitor before and after
forwarding the call to the original function. In the next section we present the
workflow with which users create their own library wrapper.

3.2 Workflow

In this work we extend Score-P—a state-of-the-art software performance moni-
tor. Figure 2 shows its high-level architecture.

The goal is to make calls to library functions available for performance anal-
ysis. For this, we add functionality to record timestamped enter - and exit-events
for these calls.

The process of generating a library wrapper is intricate and error-prone.
Thus, the highest priority in the design of user library wrapping is to make
it reliable. To guide the user through these potential problems we introduce
a workflow, which the following paragraphs explain. We motivate some of the
implementation choices by highlighting the intricacies that necessitate them.
Figure 3 depicts the steps involved.

Initialize the Working Directory. The tool scorep-libwrap-init initiates
the bootstrapping process. For this it creates a working directory where all sub-
sequent steps take place in. The command takes a number of arguments that
concern compilation setup, linking setup, and the name of the user library wrap-
per. Essentially, the user specifies how to compile and link an application using
the target library.

In this step, Score-P tries to locate potential shared versions of the target
libraries. It lets the user know if it cannot find any to avoid confusion due to
failing dlopen-calls later on.

2 http://man7.org/linux/man-pages/man8/ld.so.8.html.

http://man7.org/linux/man-pages/man8/ld.so.8.html
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Fig. 2. Overview of the Score-P measurement system architecture. User library wrap-
ping provides an additional interception mechanism.

scorep-libwrap-init creates a number of files in the new working directory:

– A detailed documentation with explanations of possible warnings and errors
– A Makefile that guides the user through the next steps
– Stub source-, header-, and filter-files, which subsequent paragraphs explain

At the end, the command prints out what the next steps are.
For example, the following command initializes the working directory for a

library wrapper of the QtGui and QtWidget modules [27]3:

3 Full example: https://github.com/score-p/scorep libwrap examples/tree/1564c2723
11d04575f9886cd982fc611e07eb295/qt5/qtgui-and-qtwidgets.

https://github.com/score-p/scorep_libwrap_examples/tree/1564c272311d04575f9886cd982fc611e07eb295/qt5/qtgui-and-qtwidgets
https://github.com/score-p/scorep_libwrap_examples/tree/1564c272311d04575f9886cd982fc611e07eb295/qt5/qtgui-and-qtwidgets
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Fig. 3. High-level workflow for creating a user library wrapper.

$ scorep-libwrap-init -x c++ \
--name qtgui_and_qtwidgets \
--display-name "Qt Gui & Widgets" \
--cppflags "-fPIC -I${QT_INCLUDE}" \
--ldflags "-fPIC" \
--libs "-lQt5Widgets -lQt5Gui -lQt5Core"

Add Library Headers. Next, the user adds an include-statement for each
header an application usually includes from the target library to libwrap.h.
This approach allows the user to specify a sequence of includes and preprocessor
macros, which the wrapper generator can then process. Continuing the example,
we add:

#include <QtGui/QtGui>
#include <QtWidgets/QtWidgets>

Create an Example Application. To be able to verify the results, the process
needs a test case. For this, the user adds a small usage example to main.c/cc.
It will be compiled, linked and executed later to test whether the target library
and wrapper work. Continuing the example, we write a simple Qt application
that opens a window and creates an unused image:
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int main(int argc, char** args) {
QApplication app(argc, args);
QWidget w;
QImage i;
w.show();
return app.exec();

}

Create the Wrapper. Before building the wrapper, the user can always adjust
the compile- and link-setup by either directly changing the top lines in the make-
file, or by invoking scorep-libwrap-init again with the --update argument.

The user can now attempt to build the wrapper via the make-command.
First, this links the example application to the target library. If that fails, the
provided example is wrong.

Next, it preprocesses libwrap.h to create libwrap.i with the same com-
piler and flags that are used to create the provided example. Our libclang-based
analyzer then processes this file to generate the complete list of library functions
(plus name spaces, classes and types). During this step, the analyzer consults a
filter file for functions to ignore.

The generated list of functions is then used to create an example application,
which contains a call to each of these functions. If linking this application to the
target library fails, there are wrapper functions that do not have an original func-
tion in the target library. For example this happens for some class constructors
and inline functions.

If make fails, the next step is make check, which the next paragraph explains.
If make passes, it creates the wrapper. The wrapper consists of up to four dif-
ferent wrapper libraries. One dimension is whether the wrapper is a shared or
static library. The other dimension is whether the wrapper contains the code
for link time or runtime wrapping. All four versions are useful depending on
the application/library/system setup. If this succeeds, the user can move on and
install the wrapper.

While processing the header files, there are a number of warnings and errors
that can occur. For example, the wrapper warns about functions that contain
ellipsis arguments, because they cannot be forwarded in C. In case a v-version
(like vprintf is to printf) exists, the LIBWRAP_ELLIPSIS_MAPPING_SYMBOLS-
variable in the makefile lets the user create a mapping so the wrapper can forward
the call to the v-version via the va_arg argument.

In C, having an empty argument list in a function declaration means the
argument list is unknown, i.e. variadic. In C++, on the other hand, the same
syntax means it is really empty. In C, you need to use (void) as argument list
for this. Calling a variadic function without parameters is valid C. This means
valid C can trip up library wrapping, if the library developer did not use (void)
for an empty argument list. To work around this, the makefile provides the
LIBWRAP_VARIADIC_IS_VOID_SYMBOLS-variable, which names functions that are
to be treated as having an empty argument list.
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In our example, the make-step warns about a number of ellipsis functions,
for example in the QMessageLogger and QString classes. It exits with an error
message, because there is a mismatch between functions found in the headers
and the symbols in the library. To find out which functions these are, we need
to run make check and then adjust the filter.

Verify the Wrapper. Because the function list generated by the library header
analysis rarely matches the symbol table in the library, for each wrapper function,
make check generates a source file, and tries to compile and link it with and
without the target library. The result is a complete list of symbols that are
missing from the target library, and a list of symbols where linking works even
without the target library. The latter tries to weed out functions that are not
intended to be wrapped, because they are in system libraries.4

Using the two generated lists, the user has to adjust the filter to remove
unwrappable, and perhaps some unwanted functions. This not only ensures the
soundness of the wrapper, but also makes sure the user chooses the functions
deliberately. Accidentally wrapping more than intended should be avoided.

After this, the user has to repeat make and make check until make succeeds.
Executing this step in our example first informs us that it is doing this check

for over 13, 000 functions, and this may take some time. Looking at the list of
these functions (in the .wrap-file), we notice that it wraps more than just QtGui
and QtWidget’s components. This is because the header analysis cannot read the
users intention perfectly. It initially only includes functions that it finds in files in
directories specified via the -I-compilation-flag.5 Thus we refine the filter from

INCLUDE /usr/include/x86_64-linux-gnu/qt5/*

to

INCLUDE /usr/include/x86_64-linux-gnu/qt5/QtGui/*
INCLUDE /usr/include/x86_64-linux-gnu/qt5/QtWidgets/*

and repeat make check. This yields a list of 818 missing functions, which we
add to the filter. No symbols were found that exist when not linking to Qt.

Repeating make still fails due to a restriction in libclang with C++. If a
function uses a type that is created via typedef or using in a class, our header
analysis cannot always determine the fully qualified type. This case requires
user intervention. In our example we can fix this by looking up the types in Qt’s
documentation and adding the class scopes via text replacement to the wrapper
code.6

4 Creating a source file for each function and try compiling and linking it is a common
technique among configure tools. Doing this in one compile-link-step would require
parsing the output of each supported compiler and version, which is not portable
across compilers and linkers.

5 Not doing this would initially always wrap everything including functions from system
headers.

6 https://github.com/score-p/scorep libwrap examples/blob/1564c272311d04575f988
6cd982fc611e07eb295/qt5/qtgui-and-qtwidgets/fix-type-scopes.sh.

https://github.com/score-p/scorep_libwrap_examples/blob/1564c272311d04575f9886cd982fc611e07eb295/qt5/qtgui-and-qtwidgets/fix-type-scopes.sh
https://github.com/score-p/scorep_libwrap_examples/blob/1564c272311d04575f9886cd982fc611e07eb295/qt5/qtgui-and-qtwidgets/fix-type-scopes.sh
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Install the Wrapper. Once the wrapper builds, make install installs it.
If not specified otherwise, this installs the wrapper into Score-P’s installation
directory.

Verify the Installed Wrapper. Invoking make installcheck links the exam-
ple application to the link time and runtime wrapper library in the same way
the user would. This step creates two executables, and prints out how to run
and check the resulting Score-P measurement.

Running the example yields a profile with over 5000 calls to 251 unique Qt
functions. Figure 4 shows an excerpt. Without the wrapper, compiler instrumen-
tation would only recognize and record the main-function. Sampling with stack
unwinding yields a more detailed call graph (e.g., it includes system and desktop
system functions), but misses many function calls due to the nature of sampling,
and it also cannot capture exact timing and call counts.

Fig. 4. Partially collapsed Cube profile of the Qt example application. It accurately
resembles the source code. Numbers are seconds, inclusive execution time for collapsed
entries and exclusive for expanded ones.

Use the Wrapper. If the wrapper has not been installed into Score-P’s instal-
lation directory (the default), the environment variable SCOREP_LIBWRAP_PATH
(PATH-like) needs to point to the wrapper’s path before using it.

Score-P’s new --libwrap=<wrappername>-flag then modifies the link step to
activate one or more wrappers.

To use our example Qt wrapper, we link the to-be-analyzed application
according to the instructions we initially gave scorep-libwrap-init and simply
prefix it with scorep --libwrap=qtgui_and_qtwidgets. I.e.:
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$ scorep --libwrap=qtgui_and_qtwidgets g++ \
-fPIC -I${QT_INCLUDE} \
application.cc \
-fPIC -lQt5Widgets -lQt5Gui -lQt5Core \
-o application

Optionally, the user can specify the wrap method by prefixing the wrapper
name with either linktime: or runtime:.

Auxiliary Commands. In HPC centers, we expect support staff, not only
users themselves, to install wrappers of analysis-worthy libraries alongside a
Score-P installation. Users can still install wrappers into their own directories.
One advantage is that the staff can update the wrappers at the same time as
they update Score-P or the target libraries.

The command scorep --help, among other information, gives a list of
installed wrappers. Users can invoke scorep-info libwrap-summary, with an
optional wrapper name, to view wrapper configurations in greater detail.

3.3 Implementation Details

Because compile-time commands, e.g., #ifdef, can influence the list of declared
functions, we decided to employ the user’s compiler to preprocess the library’s
headers. To generate this list of functions, we read the header using libclang.
This mismatch between preprocessor and reader can sometimes lead to problems
because they might not agree on the language standard to use. Specifying the
standard explicitly solves this.

During development we realized that Score-P’s configured compiler cannot
always link libclang to the wrapper generator. The configure step would need
to know the compiler with which libclang has been created. To circumvent this,
contrary to other parts of Score-P, it builds the wrapper generator using Clang,
if available.

The presented approach relies on wrapping facilities offered by the linker
and dynamic linker. Many C++ libraries heavily rely on inlining and templates.
Wrapping libraries based on symbols being present in the target library means
that this technique is unable to intercept inlined function calls.

4 Case Study

The previous section proves that our approach is robust by wrapping two Qt
modules. This section demonstrates how user library wrapping benefits perfor-
mance analysis for two real-world scientific applications. We repeat all measure-
ments five times, and pick the median.
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4.1 GROMACS

GROMACS [29] is a popular molecular dynamics package specialized in simu-
lating proteins, lipids and nucleic acids. To leverage the compute power of HPC
systems, GROMACS relies on MPI, OpenMP, CUDA and either FFTW 3 [17]
or the Intel Math Kernel Library for discrete Fourier transforms.

For our demonstration we use GROMACS’ current version 2016.3, and sim-
ulate a lysozyme in water [21] using one tenth of the default number of time
steps. We run the simulation on Oak Ridge National Laboratory’s Titan, a Cray
XK7 supercomputer. Each node has one AMD Opteron 6274 CPU with eight
Bulldozer modules and one NVIDIA Tesla K20X graphics card. We choose to
run on two nodes, with four processes each. Every process spawns one addi-
tional thread—a total of 16 threads. On the software side, we load the default
GNU-based environment, which uses GCC 4.9.3 and FFTW 3.3.4.11.

Executing GROMACS normally takes 330 s, of which it spends 193 in the
main part, the actual simulation of the protein (Production MD).

To instrument GROMACS with Score-P, we replace the compilers cc and
CC in the CMake-command with Score-P’s compiler wrappers scorep-cc and
scorep-CC and prefix the command with SCOREP_WRAPPER=off. Building works
the same as before. Score-P then, by default, enables automatic compiler instru-
mentation and injects the performance monitor by modifying compile and link
commands. We only use this instrumented GROMACS build on the expensive
Production MD part, and execute all other parts with the normal build. Execut-
ing this increases Production MD’s execution time to 375 s (+94.3%). Score-P
registers 3.04 billion function calls, 2.96 billion of which are user functions. The
other 80 million are OpenMP loops/calls and MPI calls. scorep-score estimates
that a trace of this execution is 76 gigabytes (GB) large.

For technical reasons Score-P requires instrumenting MPI and OpenMP
events. Therefore, a reduced recording without any user functions takes 214 s
(+10.9%), contains 79 million calls, and a trace of this configuration is 3.0 GB
large.

Score-P’s default (automatic compiler instrumentation) adds significant over-
head, and should not be used in tracing mode as is. By following Score-P’s filter-
ing workflow we can reduce the overhead and trace recording size. Alternatively
we can switch off compiler instrumentation to record a very small amount of
information. But none of these three options record anything about FFTW.

To track calls into FFTW, we need to create a wrapper library for it following
the workflow described in Sect. 3.2. One thing that confuses our process is that
Cray’s compiler wrapper cc pulls in modules, like FFTW, automatically, if the
module is loaded. Thus, to compile a program using FFTW we don’t need to
add compile and link flags. This is not a problem, but disarms one of our checks
and makes wrapper creation slightly confusing. To circumvent this we change
the environment variable PE_PKGCONFIG_PRODUCTS to not include PE_FFTW. The
full instructions for building the wrapper are available online7.
7 https://github.com/score-p/scorep libwrap examples/tree/1564c272311d04575f988

6cd982fc611e07eb295/fftw3.

https://github.com/score-p/scorep_libwrap_examples/tree/1564c272311d04575f9886cd982fc611e07eb295/fftw3
https://github.com/score-p/scorep_libwrap_examples/tree/1564c272311d04575f9886cd982fc611e07eb295/fftw3
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To configure GROMACS with the FFTW wrapper, run CMake with Score-
P’s compiler wrappers as in the previous case. Then build it using

SCOREP_WRAPPER_INSTRUMENTER_FLAGS="--libwrap=fftw3" make

instead of just make to enable the wrapper. With this, Production MD takes 214 s
(the same as the minimum instrumentation) and counts additional 5.9 million
function calls. The corresponding trace is 3.1 GB large.

By analyzing this recording, we discover that GROMACS spends the major-
ity of time in OpenMP loops (Fig. 5(a)). FFTW occupies only about 2.4% of the
execution time. Nevertheless, for the low amount of time spent in it, there are

Fig. 5. Visual analysis of the trace run of GROMACS with Vampir [5] (Color figure
online)



34 R. Brendel et al.

a lot of calls to FFTW. This suggests that, if possible, putting more work into
one iteration should be considered. Because the vast majority of calls to FFTW
take below three milliseconds, a sampling-based analysis would show a distorted
picture.

With this exact instrumentation of FFTW, we can now, for example, inves-
tigate how efficiently it exploits the underlying hardware by recording perfor-
mance counters. Figure 5(b) shows how FFTW’s use of the floating-point unit
varies between calls, and is generally subpar.

4.2 PERMON

The software package PERMON [18] solves quadratic programming problems
with the help of FETI methods [15] for domain decomposition. PERMON
extends PETSc [3] and is used mainly for simulating mechanical structure, for
example linear elasticity, elasto-plasticity and shape optimization.

Score-P offers multiple ways to analyze the interplay of PERMON and
PETSc. One is to instrument both. A second way is to analyze only PERMON
and use sampling and call stack unwinding to peek into PETSc. A third app-
roach is to intercept all function calls to PETSc by creating a wrapper for it.
Score-P also supports combinations of instrumentation, sampling with call stack
unwinding and library wrapping.

Fig. 6. Vampir Master Timeline and profile excerpt of a PERMON run using eight
MPI processes. White background: instrumenting both PERMON and PETSc, blue
background: user library wrapping (Color figure online)

Additionally instrumenting PETSc is cumbersome and means creating a cus-
tom installation just for measurement with Score-P. The second way is good from
an ease-of-use perspective, but has drawbacks. It does not record all PETSc calls,
cannot count the number of calls, and cannot record the exact timing of calls.
Employing user library wrapping yields a good level of detail while alleviating
the drawbacks of the other two methods.
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Figure 6 shows the resulting traces from the first and third approach side-
by-side. The full instrumentation creates a 112 megabyte trace, whereas the run
without automatic compiler instrumentation and with library wrapping results
in a 84 megabyte recording. Both recordings are similar in detail and character-
istics.

5 Conclusions

In this work we present user library wrapping, an extension to Score-P that
allows exact tracking of function calls to any C/C++ library. It enables in-
depth performance analysis of applications in conjunction with their underlying
libraries. Furthermore it tracks calls between libraries and offers insight into
closed-source libraries like the Intel Math Kernel Library.

We offer a simple, well-crafted workflow to create and use library wrappers.
This workflow guides the user through an otherwise difficult procedure, and
minimizes mistakes.

Our approach differs from previous incarnations in that it supports C++, is
mature, robust and well documented. It requires minimal manual work and uses
modern Clang/LLVM facilities to analyze library headers.

We demonstrate its robustness for non-trivial use-cases by wrapping the
QtWidgets and QtGui modules. Furthermore we show how user library wrapping
enables better performance analysis for two real-world scientific applications.

6 Future Work

There are multiple interesting areas to pursue. By using compilation databases
provided by CMake and GNU Autotools, we might be able to drop the require-
ment to specify how to build an example application in the first workflow step.

Because HPC systems install multiple versions of the same library, it would
be beneficial to explicitly support versioning.

The presented approach forwards parameters from the wrapper to the target
function, but does nothing with it. Extending our approach to record parameter
values, for example like a performance counter, can be useful.

In order to ensure the soundness of each wrapper, the presented workflow
involves a number manual checks. Technically, each wrapper needs to updated
if its target library or Score-P is updated. Repeating this procedure for every
update is unnecessarily burdensome. Therefore, the workflow should be extended
to include automatic updating of generated wrappers.

Due to close consideration of the circumstances of header preprocessing and
the symbol tables of library files, each wrapper is tied to the machine it has been
created on. It should be investigated how to enable reusing the wrappers across
different machines. Ultimately, a public archive of wrappers is desirable.

Score-P hinges on modifying compile and link commands to instrument an
application. Some features, user library wrapping included, can be used with just
link time changes. But that is not strictly necessary. By loading all of Score-P
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at runtime using LD_PRELOAD, we could skip link command line changes, and
attach the performance monitor to an unmodified binary.

Because there are many runtime analysis tools relying on library wrappers,
we would like to offer our wrapper creation facility to these projects. Up until
now, there was no well-supported, generic way to wrap C/C++ libraries for
analysis. Developers need to create wrappers, regularly update them, and keep
track of new versions of the target library.
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Abstract. An understanding of a parallel application’s communication
behavior is useful for a range of activities including debugging and opti-
mization, job scheduling, target system selection, and system design.
Because it can be challenging to understand communication behavior,
especially for those who lack expertise or who are not familiar with
the application, I and two colleagues recently developed an automated,
search-based approach for recognizing and parameterizing application
communication behavior using a library of common communication pat-
terns. This initial approach was effective for characterizing the behav-
ior of many workloads, but I identified some combinations of commu-
nication patterns for which the method was inefficient or would fail.
In this paper, I discuss one such troublesome pattern combination and
propose modifications to the recognition method to handle it. Specifi-
cally, I propose an alternative approach that uses communication graphs
instead of traditional communication matrices to improve recognition
accuracy for collective communication operations, and that uses a non-
greedy recognition technique to avoid search space dead-ends that trap
the original greedy recognition approach. My modified approach uses
aggressive search space pruning and heuristics to control the potential
for state explosion caused by its non-greedy pattern recognition method.
I demonstrate the improved recognition accuracy and pruning efficacy of
the modified approach using several synthetic and real-world communi-
cation pattern combinations.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to pub-
lish or reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan). This research is sponsored by the Office of
Advanced Scientific Computing Research in the U.S. Department of Energy.

c© Springer Nature Switzerland AG 2019
A. Bhatele et al. (Eds.): ESPT/VPA 2017/2018, LNCS 11027, pp. 38–55, 2019.
https://doi.org/10.1007/978-3-030-17872-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17872-7_3&domain=pdf
http://orcid.org/0000-0001-9583-1103
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-17872-7_3


Improved Accuracy for Automated Communication Pattern Characterization 39

1 Introduction

An accurate and concise description of a parallel application’s communication
behavior can be highly useful. For the application’s developers, this description
supports debugging and performance optimization, and the selection of a target
system whose architecture and configuration are a good fit for the application’s
communication demands. Job scheduling software might use such descriptions
to avoid network contention among running jobs. And system designers can use
such descriptions to tailor their system designs for a desired workload. With two
of my colleagues, I recently proposed an automated approach for recognizing and
parameterizing communication patterns in MPI-based parallel applications [12].
Starting with a communication matrix generated by a modified version of the
mpiP [14] lightweight MPI profiler (such as the example shown in Fig. 1a), the
approach identifies a collection of common communication patterns that best
account for the data in the communication matrix. The technique uses an auto-
mated search through a “pattern space” defined by the contents of a pattern
library. At each step of its search, it attempts to recognize the patterns from
its library in the matrix containing the communications data that has not yet
been explained (called the residual). If it recognizes a pattern, it removes the
contribution of that pattern from the residual, and recursively applies the pat-
tern search to the new residual. Because it may recognize more than one pattern
at any step in the search, its search may branch and so it explores a search
tree within the search space. I call each path through this tree a search path.
When it has refined search path as far as it can, it determines which search path
accounts for the most communication data in the original matrix, and outputs
the collection of parameterized patterns along this path as the ones that best
explain the original matrix. It outputs this collection of patterns as a concise,
parameterized expression.

The original approach has several attractive characteristics. It is capable
of characterizing complicated pattern combinations in many workloads. Also,
its output expressions convey more information than summary statistics but
require much less storage than detailed event traces. Despite its positive char-
acteristics, the approach has several shortcomings. First, by representing the
application’s communication behavior as a traditional communication matrix, it
fails to capture enough information to allow a pattern recognition approach to
discern details about collective communication operations. Second, because the
approach uses a greedy pattern recognition approach that attributes as much
data as possible to a pattern that it recognizes, it can fall into “traps” in the
search space that keep it from accurately recognizing the actual combination of
patterns used by the application. Third, the approach is inefficient, in that it
does not recognize when it is attempting to recognize a combination of patterns
that is equivalent to another combination that it has already considered.

To address these problems, I modified the original approach in several ways.
Instead of a traditional communication matrix, I use an augmented communi-
cation graph (ACG) that allows the approach to retain the information about
collective operations that is missing from the matrix representation. I use a



40 P. C. Roth

non-greedy technique for accounting for observed communication data that
allows my new approach to recognize combinations of patterns that the original
approach cannot recognize. And my new approach determines when it is con-
sidering a permutation of a collection of patterns that it has already considered,
and prunes its search to avoid doing redundant work. Because my non-greedy
recognition technique is susceptible to considering many more potential pattern
parameters than the original, I added heuristics for identifying parameters that
have a higher likelihood of matching the application’s actual behavior.

2 Characterizing Application Communication

2.1 Augmented Communication Graphs

A traditional communication matrix represents the behavior of an N -process
application run as an N ×N matrix in which the (i, j)th entry expresses some
characteristic of the communication from process i to process j (e.g., volume of
data transferred or number of transfers). Although this representation has sev-
eral good qualities (familiar to those in the HPC community, well-defined mathe-
matical operations with memory-efficient and high performance implementations
widely available), the traditional communication matrix representation is unable
to capture some aspects of an application’s use of collective communication oper-
ations. For example, given the communication matrix shown in Fig. 1b we cannot
tell whether the program’s rank 0 process used a broadcast to transfer data to all
other processes, or a sequence of point-to-point operations that transferred data
to each process individually. Because the amount of data transferred to each
receiving process is the same in this example, we might guess that the appli-
cation used a broadcast, but taking this perspective only shifts the problem: if
the amount of data transferred were different for each process, we would not be
able to tell if the program used a variable-length scatter operation or multiple
point-to-point operations. The communication matrix visualized in Fig. 1c rep-
resents an extreme: it is impossible to determine from this matrix alone whether
the program performed one all-to-all operation, multiple broadcast operations,
multiple reduce operations, or many point-to-point operations. I might argue
that for some uses of the resulting communication characterization, it doesn’t
matter which was actually used as long as the representation correctly identifies
the amount of data transferred and between which processes. But in other cases,
such as my case study with a plasma surface interactions model (Sect. 5), being
able to discern the two is quite useful.

In my new automated communication characterization approach, I repre-
sent communications behavior using an augmented communication graph (ACG)
instead of a traditional communication matrix. Per graph theory, a communi-
cation matrix can be interpreted as the adjacency matrix for a directed graph
whose vertices represent the processes of a program run, with an edge from ver-
tex i to vertex j indicating that process i communicated with process j during
the run. However, the ACG is not simply the graph form of a traditional commu-
nication matrix. Because it is the information about collective communication
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(a) Example communications graph. (b) Broadcast or multiple point-to-point?

(c) Worst case.

Fig. 1. Visualizations of communication matrices with the cell at row r and column c
colored according to the amount of data transferred from process r to process c. (a)
Total point-to-point communication volume for 128-process run of the LAMMPS [11]
molecular dynamics simulation application, EAM benchmark problem, with volume
indicated by shades of blue and white indicating no data transferred; (b) and (c)
“Difficult” communication matrices using rainbow color palette with black indicating
no data transferred. Using these “difficult” visualizations alone, it is impossible to
discern the actual communication operation(s) used by the application. (Color figure
online)
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(a) Broadcast obvious from structure. (b) Indeterminate collectives.

(c) Definitely multiple broadcasts.

Fig. 2. Augmented communication graphs collected from the same applications that
produced the “difficult” communication matrices of Fig. 1.
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operations that is lacking with the matrix representation, in an ACG I include
vertices representing the MPI communicators involved in the application’s col-
lective operations. Each process vertex is labeled with its associated process’
rank number within MPI COMM WORLD, and each communicator vertex is
labeled with the set of ranks associated with the communicator’s group of pro-
cesses. An ACG models a collective communication operation as a data transfer
from one or more process vertices into and/or out of a communicator vertex. For
example, unlike the matrix shown in Fig. 1b, the ACG shown in Fig. 2a allows
us to say with certainty that the application used a broadcast operation.

ACGs also differ from the graph form of a traditional communication matrix in
terms of their edge labels. In an ACG, an edge between a source vertex and a sink
vertex is labeled c : v where c indicates a number of transfers and v indicates the
amount of data transferred between the processes or communicators represented
by the source and sink vertices. Although my original data capture library col-
lected operation counts, my original characterization approach does not use that
information. As described in Sect. 2.2, the operation count information is invalu-
able for accurate recognition of some combinations of communication patterns.

Although I seek techniques for automatically characterizing application com-
munication behavior in this work, it is often still useful to visualize a represen-
tation of that behavior (e.g., when debugging the automated characterization
tools). For clarity, instead of visualizing the ACG itself I usually visualize its
corresponding expanded ACG. An expanded ACG splits each application pro-
cess vertex into two vertices, one representing the process as a data source and
the other as a data sink. By convention, I arrange the source process vertices at
the left of ACG visualizations and the sink process vertices at the right. Note
that I split process vertices for visualization purposes only—the implementation
of my characterization approach operates on graphs that contain a single vertex
for each application process.

As presented thus far, my approach allows us to discern whether the appli-
cation used point-to-point or collective operations, but does not let us easily
determine whether the application used one all-to-all collective operation or
multiple one-to-all (or all-to-one) operations. A simple extension allows us to
tell the difference: instead of a single vertex to represent an MPI communica-
tor, I could add multiple vertices for a given communicator, each labeled with a
specific collective operation. Figure 2c illustrates how such an extension makes
it clear that the application used a sequence of broadcast operations to accom-
plish this pattern, as opposed to an all-to-all or sequence of reduce operations.
This functionality comes at a price: it increases the storage requirements for
the graph, and increases the cost of analyzing the graph and applying arith-
metic operations during automated pattern recognition. The amount of increase
depends on the number and type of collective operations used by the application.
Still, I hypothesize that in all but the most pathological cases, the increase in
storage required will be relatively small, and labeling the communicator vertices
with an operation category (e.g., one-to-many) instead of specific operation (e.g.,
broadcast, scatter) might be sufficient to mitigate the cost without sacrificing
too much information.
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2.2 Non-greedy Volume Attribution

When the original approach recognizes a pattern, it attributes as much data
volume as possible to the pattern. For example, if the original recognized a
broadcast from rank 0 to all other program ranks, it finds the minimum of the
entries in the 0th row of the communication matrix and uses this as the scale of
the broadcast. When it subtracts this parameterized pattern from the residual
matrix, any entries in that row that formerly held this scale value now hold 0,
indicating all communication between process 0 and the corresponding rank has
been accounted for.

There are pattern combinations for which this greedy technique prevents
the original approach from identifying all the patterns that comprise the com-
bination. For example, the following simple combination of patterns are not
recognized correctly by the original approach:

– broadcast: {‘scale’: 4096, ‘root’: 0}
– broadcast: {‘scale’: 512, ‘root’: 3}
– reduce: {‘scale’: 16, ‘root’: 2}
– many-to-many: {‘scale’: 1024}
The original greedy technique first recognizes a many-to-many pattern, and
attributes 1040 bytes as the scale of the pattern because that is the minimum
amount associated with any of the edges involved in the pattern. But, removing
a many-to-many pattern with this scale from the graph results in an invalid
graph: some of the resulting edges have zero volume but non-zero counts. For
this pattern combination, the broadcasts and reduce result in “extra” volume
that is indistinguishable from a many-to-many pattern. Considering the broad-
cast or reduce pattern before the many-to-many is no better: removing one of
these patterns first results either in an invalid graph or consumes too much data
volume, precluding the recognition of some other pattern.

To address the problem of attributing too much data to a recognized pat-
tern, my new approach determines when removal of a recognized pattern would
result in an invalid ACG, and if so it attempts to recognize the pattern with a
smaller scale. More precisely, upon recognizing a pattern P with scale SMAX in a
residual graph R and determining that removing P (SMAX) from R would result
in an invalid ACG, my new approach identifies one or more scales Si < SMAX

to consider. For each Si, it refines its search by removing P (Si) from R, and
recursively applies its search strategy to the resulting residual graph. If there
are more than one such Si, the search branches just as it would if more more
than one pattern were recognized in R.

As presented so far, my approach suffers from an unfortunate problem: if
P (SMAX) can be recognized in the residual graph R, then P can be also recog-
nized within R for every integer 0 < S < SMAX . Branching the search for every
such S would often result in an explosion in the number of pattern space states
my approach needs to consider, making the characterization problem intractable.
To control the potential for state space explosion, I use a heuristic technique for
identifying “interesting” scales to consider. My strategy considers differences
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between the counts and volumes associated with the ACG edges involved in a
recognized pattern. In particular, I look for pairs of edges coming into or out of
communicator vertices whose transfer counts differ by one. If I find such a pair,
I compute the difference SDiff between their counts, and add SMAX − SDiff

to the set of candidate scales. I have found this heuristic to be effective in pro-
ducing useful pattern scales to consider. Indeed, with this heuristic my approach
correctly identifies the troublesome four-pattern combination listed at the begin-
ning of the section. The strategy is not a panacea, however. For some pattern
combinations, it causes my recognition approach to recursively consider every
scale between SMAX and 0 in increments of SDiff . If SMAX is large and SDiff is
small, I might still consider a very large number of potential scales. More investi-
gation is needed into heuristics that further limit the number of interesting scale
values. Labeling ACG communicator vertices with specific collective operations
might also help overcome this problem by making it easier to identify how much
volume was associated with each collective operation, but I leave investigation
of this alternative also to future work.

2.3 Search Space Pruning

In addition to its inability to recognize some pattern combinations, the original
characterization approach is susceptible to performing a significant amount of
redundant work. Consider the following collection of patterns, used in the original
AChax paper to demonstrate its functionality:

– broadcast: {‘scale’: 4096, ‘root’: 0}
– broadcast: {‘scale’: 512, ‘root’: 6}
– reduce: {‘scale’: 16, ‘root’: 3}
– 2D 5pt nearest neighbor: {‘dims’: (8, 8), ‘scale’: 8192, ‘periodic’: [True, True]}
– 2D 5pt nearest neighbor: {‘dims’: (16, 4), ‘scale’: 1024, ‘periodic’: [False,

False]}
– many-to-many: {‘scale’: 1024}
– optional “noise” (to make recognition more difficult).

Figure 2 of the original paper [12] showed the search results tree produced from
applying AChax to the communication matrix representing this combination of
patterns. I refer readers to the original paper for a more complete description of
concepts related to search results trees, but provide a brief overview here. In a
search results tree, the edges along a path from any tree node to the root node
comprise a search path through the search space. A recognized, parameterized
pattern is associated with every edge in the search path. Each node is labeled
with a residual containing the data from the original communications data that
has yet to be explained by the patterns on the search path from the node to
the root node. The amount of data represented by a node’s residual is a mea-
sure of the quality of the search path, with smaller amounts indicating higher
quality (because the patterns along such paths account for more of the original
communications data than the patterns along a path with a larger residual data
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volume). In the original paper’s Fig. 2, many sub-trees are elided because they
represent results that are redundant to those shown in detail. In fact, the original
AChax approach produces a search results tree with 506 nodes, 180 of which are
leaves (i.e., nodes representing the termination of a search path). Surprisingly,
there are only three distinct residual values associated with these leaves. The
vast majority of the search paths AChax examined are permutations of other
paths it also examined.

To avoid doing redundant work, in my new approach I extended the search
results tree so that each tree node maintains the set of parameterized patterns
that were considered for search refinement from the node. When the search
engine recognizes a parameterized pattern in the residual associated with a search
results tree node n, it also checks the search paths from root to other tree nodes
at the same depth as n to see if n’s search path is a permutation of any of those
other paths. If it finds a permutation, it prunes its current search path at node n
because the collection of patterns along both search paths account for the same
portions of the original communications data.

As a performance optimization, I also added the capability to “short-circuit”
the search if it identifies a combination of patterns that completely explains the
original communications data.

3 Implementation

I implemented my augmented communication characterization approach by aug-
menting the original Python-based AChax tool. The original tool uses the
NumPy [10] and SciPy [13] Python modules for matrix arithmetic and I/O
operations, and uses the widely-supported MatrixMarket exchange format [2]
for persistent storage of communication matrices. My modified version, which
I call AChaxG, uses the Graph-tool Python module [6] for I/O, analysis, and
visualization of ACGs. In addition to its own binary file format, the Graph-tool
module supports the widely-used GraphML, GML, and dot file formats, plus
flexible, powerful graph visualization support for common graphics software like
Cairo, GTK+, and graphviz. I used this support to develop the simple ACG
viewer tool that was used to produce the ACG visualizations in this paper.

The original communications data capture library was a modified version of
the mpiP lightweight profiling library [14]. This library collects data about all of
an application’s communication operations, in contrast to the stock mpiP ver-
sion that uses statistical sampling to control overhead and data volume. Because
the only functionality that I actually need from an MPI communications data
capture library is the ability to interpose instrumentation at the MPI profiling
interface, and because I sought to improve productivity in developing and main-
taining the MPI data capture library, I developed a new communications data
capture library called Grabber that is implemented in C++ using the C++ Stan-
dard Library, a small number of Boost C++ libraries [3], and Todd Gamblin’s
powerful and flexible MPI wrapper generator tool [4].
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When a user runs an application linked with the Grabber library, the instru-
mentation in each application process builds a local communication graph that
reflects only the operations in which the process participates. When the pro-
gram terminates, Grabber aggregates these local graphs into a global commu-
nication graph that describes the entire application’s communication behavior,
and writes this global graph to a file in the Graph-tool module’s native file for-
mat. For applications with multiple behavioral phases, Grabber can output a
global communications graph for each phase, but the user must instrument the
application code to indicate the end of each phase.

4 Evaluation

4.1 Augmented Communication Graphs

To evaluate my decision to use ACGs instead of traditional communication
matrices, I consider not only that the ACGs contain more information about
the program’s run than a traditional communication matrix (Sect. 2.1), but also
must compare how much storage they require and how costly they are to manip-
ulate. For this comparison, I used synthetic workloads generated on the Eos
Cray XC30 system deployed in the Oak Ridge Leadership Computing Facility
(OLCF). As a synthetic workload, I used the same collection of patterns that I
used to demonstrate the original AChax implementation as described in Sect. 2.3.
Because I wanted to evaluate my approach’s functionality for a range of process
counts, I varied the values used for the dimension parameters of the 2D 5-point
nearest neighbor patterns. In all cases, different pairs of values were used as
dimensions for the two nearest neighbor patterns.

Figure 3a shows the ACG file sizes for a range of process counts from 8 to
4096, and compares those file sizes to that of traditional communication matrix
files produced by the original AChax implementation for the same collection of
patterns. Note that the original implementation’s data capture library produces
communication matrices in Matrix Market sparse format, a text-based format,
and that the original communication characterization approach uses only com-
munication volume matrices (i.e., without information about operation counts)
and so that is what I report here as the communication matrix file size data.
The figure includes data points for ACGs and matrices with and without “noise”
(point-to-point communication between randomly-selected pairs, with number of
pairs and communication volume determined by pattern parameters). Because
my example workload includes a many-to-many pattern, I was not surprised that
the original AChax implementation’s sparse matrix representation produced the
largest files, and that the file size was the same for matrices with and without
noise. Figure 3b shows the file sizes for the example pattern combination exclud-
ing the many-to-many pattern. As expected, the matrix representations require
much less storage for this pattern combination than the one that includes the
many-to-many pattern, because there are many more zeros in the matrices that
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(a)

(b)

Fig. 3. Size of augmented communication graph and traditional communication matrix
files for a synthetic workload that includes a many-to-many pattern (a) and excludes
that pattern (b).
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exclude the many-to-many pattern.1 Interestingly, the file size for the graph rep-
resentation is almost the same whether the many-to-many pattern is included or
not. This is because the pattern combination includes both broadcast and reduce
operations that require the same set of edges as the many-to-many pattern, and
because the inclusion or exclusion of this single pattern does not change the
number of characters required to represent the edge operation count labels for
this example workload. Although I do not present detailed measurements due to
lack of space, the time required to create the ACG files was substantially larger
than that required to create matrix files.

My file size and file creation time comparisons suggest that the ACG-based
approach’s improved ability to discern details about collective communication
operations comes at a price: the ACG is more expensive to generate, and depend-
ing on workload, may also be more expensive to store than the traditional com-
munication matrix. I discuss a possible approach for addressing these problems
in Sect. 7.

4.2 Aggressive Pruning

As noted in Sect. 2.2, my non-greedy data volume attribution method has the
potential to consider substantially more scale parameter values than the original
AChax approach when it recognizes a pattern. I added heuristic scale selection
and aggressive pruning techniques (Sects. 2.2–2.3) to limit the negative impact
of having to consider these additional search space states. To determine the
impact of such pruning, I used AChaxG to characterize the synthetic workload
ACGs described in Sect. 4.1 with pruning enabled and with it disabled. I also
implemented a search short-circuiting feature (Sect. 2.3) as a user-configurable
option, so that I could examine its impact on characterization time and results
quality. As a measure of the quality of the search pruning/short-circuiting fea-
tures, I compared the time required to do the characterization and the number
of vertices in the resulting search results trees.

Figure 4a compares the number of vertices in the search results trees for
a range of process counts under a variety of search configurations. The num-
ber of vertices in the results tree is an indicator of how much work the search
engine had to do to characterize the input workload, with a lower number being
better. For all configurations, the search recognized all of the patterns in the
input workload, so the quality of the characterization results is the same for
each configuration—only the amount of work needed to achieve those results
varied between configurations. As shown in the figure, the configurations fall
into four categories with respect to the number of nodes in their search results
trees. AChaxG had to do the least work to characterize the input workload when
the input workload had no noise, and it could use pruning and short-circuiting

1 Although they contain the same number of values, the dense matrix files that exclude
the many-to-many pattern are smaller than those that include it because the Matrix
Market format is a text format, and it takes fewer characters to represent a zero
than a non-zero value.
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(a)

(b)

Fig. 4. Number of results tree vertices (a) and characterization time (b) for charac-
terizing the synthetic workload combination of patterns. Lines are labeled indicating
whether the workload included noise (+/−N), whether pruning was used during char-
acterization (+/−P), and whether short-circuiting was used (+/−S).
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(the line labeled -N+P+S). In this case, after producing a search results tree with
approximately 66 vertices,2 it identified a search path that completely explained
the input communication data and stopped its search. Without pruning (line
-N-P+S), AChaxG produced a search results tree with approximately 120 ver-
tices, showing the positive impact of search pruning. When characterizing input
with noise, pruning exhibited an even greater benefit (lines +N+P*S with approxi-
mately 612 vertices vs. lines +N-P*S with 3892 vertices).3 Based on these results,
I conclude that search pruning is an effective and desirable way for AChaxG to
avoid doing redundant, unnecessary work when characterizing application com-
munication patterns. Short-circuiting may also be beneficial, but only if AChaxG
has a pattern library sufficient to recognize all of the input communication data.
To address this limitation, it may be useful to relax this test by allowing the
user to stop the search when it has accounted for a high percentage of the input
data as opposed to the entire input data.

Figure 4b shows the time required for AChaxG to characterize the synthetic
workload for a range of process counts and a variety of search configurations.
These measurements reinforce the results from Fig. 4a in that it takes longer for
AChaxG to produce a search results graph with many nodes than one with fewer
nodes. These timings also support my conclusion from Sect. 4.1 that manip-
ulations of ACGs implemented using the Python Graph-tool module become
prohibitively expensive as the number of processes represented in the ACGs
increase. Even with the most aggressive search pruning configuration on the
most favorable input workload (i.e., noise-free), AChaxG still required nearly
1.5 h to characterize the 2048-process workload. It took over 9 h to characterize
the 4096-process workload. In Sect. 7 I suggest two strategies I plan to pursue for
reducing these excessive characterization times in future versions of AChaxG.

5 Case Study: Xolotl

Xolotl [8] is a plasma surface interactions model used to study the impact of
a burning plasma on the surface of its container, such as within a tokamak
fusion reactor. Xolotl is written in C++, uses the Portable, Extensible Toolkit
for Scientific Computation (PETSc) [1] as a solver, and MPI for communication
and synchronization. I ran Xolotl, instrumented with my Grabber library, on
the OLCF Eos Cray XC30 system as a 32-process job for 5 time steps on a 1D
input problem witih 2048 grid points. I chose this small Xolotl problem to allow
for interactive visualization of the resulting ACG.

Characterizing and visualizing the ACG produced from this Xolotl run pro-
vided unexpected insights into the application’s communication behavior. My
tool correctly recognized and parameterized the application’s Broadcast, Reduce,

2 As currently implemented, the AChaxG search should be deterministic, so I am
investigating why we observed a variation in the number of results tree vertices for
some combinations of search control features.

3 For inputs with noise, the short-circuiting optimization is never triggered because
AChaxG does not ever completely account for the input communication data.



52 P. C. Roth

Fig. 5. Augmented Communication Graph for the Xolotl plasma surface interactions
model, with the vertex corresponding to rank 9 highlighted.
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and 1D nearest neighbor patterns. However, these patterns accounted for only
a small fraction of the observed communication data volume. Figure 5, showing
the ACG with process 9’s “consumer” vertex highlighted, revealed the reason
by clearly showing Xolotl having done point-to-point communication from every
process to process 9. By selecting several process vertices in their sending and
receiving roles, I determined that each Xolotl process sends point-to-point mes-
sages to every other process, and receives point-to-point messages from every
other process. This interactive visualization demonstrated the value of the ACG
for debugging and optimization: a traditional communication matrix would not
have exposed that the program did both MPI collective operations and “do-
it-yourself” point-to-point-based collective operations. Because the pattern of
point-to-point operations was unexpected, I ran the program under a parallel
debugger and determined that it was the PETSc library issuing these point-
to-point operations to implement a scatter operation. Despite the benefit that
visualizing the ACG helped us identify and understand an unexpected behavior,
it also exposes a gap in my current pattern library in that it does not attempt to
recognize common collective patterns implemented “do-it-yourself” using point-
to-point operations outside the MPI library.

6 Related Work

This work is an evolution of the initial automated communication pattern recog-
nition approach and its implementation in the AChax tool [12]. My current app-
roach differs from the initial approach by using communication graphs instead
of matrices, by using a non-greedy pattern recognition technique, and by using
heuristics and aggressive pruning to avoid doing redundant work.

Like the original AChax work, my approach uses automated search through
a space defined by a library of known communication patterns. My inspiration
to use automated search comes directly from the Performance Consultant of the
Paradyn performance tool [9], with additional inspiration from the Periscope
performance tool [5]. My tool uses search for a different purpose than to find
application performance problems in a performance problem search space, but
the general concepts of searching through a space by refining one’s idea of the
best explanation for observed behavior, and of representing search results using
an annotated tree, are firmly founded on my experience with Paradyn and knowl-
edge of Periscope.

My communication pattern recognition approach is similar to that of Ker-
byson and Barker [7] in that both use a library of known communication pat-
terns, and both dynamically generate a representation of a communication pat-
tern and compare it to the observed communication behavior. Their approach
requires manual instrumentation of application source code, and supports only
point-to-point communication operations. In contrast, my approach is designed
for discerning details regarding collective communication via use of augmented
communication graphs, and relies upon MPI’s standardized profiling interface
instead of application source code instrumentation.
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7 Summary and Future Work

Determining how an application behaves can be a tedious, error-prone task, even
for the most experienced performance analyst. Tools that simplify the task, such
as my AChax automated communication pattern recognition tool, are beneficial
to novices and experts alike. The original AChax approach can be effective at
characterizing the communication patterns of some applications, but has sev-
eral flaws including its ability to discern details about collective communication
operations, failure to recognize some pattern collections, and susceptibility to
performing redundant work. In this paper, I proposed modifications to the orig-
inal approach to address these problems. This new approach uses augmented
communication graphs that capture more detail about collective operations than
traditional communication matrices, and a non-greedy method for attributing
communication data volume to recognized patterns. Using AChaxG, I demon-
strated that my approach is more accurate at recognizing communication pat-
tern combinations than the original approach. The increased accuracy comes at a
price, however: AChaxG usually considers many more potential pattern param-
eters than the original. To address this problem, I added heuristic and pruning
methods, and demonstrated that they are effective.

Despite the impact of my pruning and short-circuiting strategies on reducing
the number of possibilities that AChaxG considers, there is clearly work to do
to address the problem of excessive characterization times. I plan to pursue two
strategies to improve characterization times. First, because I recognize that it
is the information in an ACG that is important for characterization accuracy,
I plan to modify my AChaxG implementation to use a matrix representation
of the ACG. This will require extending a traditional communication matrix
with additional rows and columns that represent MPI communicators, adding
metadata that indicates the mappings of MPI communicators to these “extra”
rows and columns, and changing each matrix entry to include an operation
count in addition to communication volume. Second, because automated search
through distinct parts of the pattern space is largely independent, I plan to
parallelize the search. Avoiding considering of permutations of the same pattern
collection, and for short-circuiting the search when the termination criteria is
met, will require some coordination among parallel threads of execution.
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Abstract. We describe Moya, an annotation-driven JIT compiler for
compiled languages such as Fortran, C and C++. We show that a com-
bination of a small number of easy-to-use annotations coupled with
aggressive static analysis that enables dynamic optimization can be used
to improve the performance of computationally intensive, long-running
numerical applications. We obtain speedups of upto 1.5 on JIT’ed func-
tions and overcome the overheads of the JIT compilation within 25
timesteps in a combustion-simulation application.

1 Introduction

HPC applications rely on the compiler to produce high-quality code. This can
be challenging because correctly estimating the profitability of any given trans-
formation at compile-time can be difficult. Consider the code in lines 11–19 of
Fig. 1. This loop nest is a simplified approximation of the heart of the computa-
tion in a combustion simulation application, PlasComCM [7]. All the compilers
that we tested, GCC, Clang and ICC, vectorized the innermost loop on line 4, yet
the performance was not significantly better than the unvectorized code. This is
because the innermost loop corresponds to a stencil operation and typically has
a trip count of either 5 or 9. A more profitable optimization decision would be to
unroll the innermost loop and vectorize the loop on line 3. There is no way that
the compiler can know this without explicit directives from the programmer.

While there are several ways around this problem, none are ideal. Directives
instructing the compiler to unroll the innermost loop are not portable and using
them would either restrict the programmer to a single compiler or would force
her to clutter the code with a different directive for every compiler that she
might ever use. The other option is to manually interchange the loops on lines
12 and 13. While this transformation is easily done in this particular case, it
comes at the expense of readability.

A JIT compiler, if invoked at the right time, would see all the loop bounds and
would appropriately unroll and vectorize the loops. In addition, other entities
in the code such as N1 and N2 are problem-specific parameters whose values can
also be folded in, decreasing the number of loads and the size of the working
set in the data cache since their values can be encoded within the instruction
stream.

In this paper, we present Moya, a JIT compiler for compiled languages and
discuss dynamic constant propagation, the main JIT-specific optimization that
c© Springer Nature Switzerland AG 2019
A. Bhatele et al. (Eds.): ESPT/VPA 2017/2018, LNCS 11027, pp. 56–73, 2019.
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Moya performs. We show that a combination of a small number of easy-to-use
programmer annotations, aggressive JIT-aware static analysis and dynamic opti-
mizations can be used to improve the performance of code that has not been
extensively hand-optimized. Moreover, we also demonstrate that a runtime sys-
tem could be designed such that the overhead of JIT compilation does not notice-
ably degrade performance even when the JIT compiler is unable to uncover addi-
tional optimizations—such as when aggressively hand-optimized code is JIT’ed.
We have evaluated Moya on the NAS Parallel Benchmarks [3] and PlasComCM.
We show that the JIT’ed code produced by Moya often outperforms the code
produced by a regular compiler.

2 Motivation

Fig. 1. PlasComCM skeleton

Most HPC applications oper-
ate in distinct input, compute
and output phases. Typically, no
input is performed during the
compute phase which is charac-
terized by high arithmetic opera-
tion density. Even in the case of
applications which have multiple
input-compute-output cycles, the
boundary between the cycles and
the phases within them is usually
clear.

Consider Fig. 1 which is a
highly simplified skeleton of Plas-
ComCM. We can clearly see
the input, compute and output
phases on lines 21–22, 25–29 and
31 respectively.

Many entities in these appli-
cations are “dynamic constants”.
Dynamic constants are those pro-
gram entities whose values are
constant w.r.t. some region of
code. In particular, the configura-
tion parameters are constant dur-
ing the compute phase after having been initialized during the input phase. Since
their values are not known to a regular compiler, they are treated as variables
throughout the code. If a JIT compiler were to run after the input phase, the
values of these dynamic constants could be safely folded into the JIT’ed code
where, as we have already described, they can affect the compiler’s choice of
optimizations.

In Fig. 1, the fields N1, N2, is, ie, js, je, ks ke and steps of state are dynamic
constants w.r.t. the compute phase of lines 25–29.
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Since HPC applications are typically written in compiled languages like For-
tran and C++, a JIT compiler is unlikely to improve performance by JIT’ing
code indiscriminately. Ideally, only that code where there is runtime informa-
tion to profitably exploit should be JIT’ed. This JIT’ed code would need to be
reused to amortize the cost of the dynamic compilation. Finally, to reduce both
the compilation and reuse overheads, runtime ought to be minimized.

The challenges which need to be overcome to make JIT profitable are:

1. Identify “what” parts of the program should be JIT’ed.
2. Determine “when” to JIT. This involves identifying the compute phase of the

program since that is when we are likely to see the most benefit of JIT’ing.
3. Identify dynamic constants and other entities in the program which can be

exploited at JIT-time.

We address these challenges using a combination of programmer annotations
and compile-time static analysis which inform the dynamic optimizations. We
now briefly describe each of these.

2.1 Programmer Annotations

We assume that the programmer has some idea of which parts of the program
are “hot” and would benefit from JIT’ing and therefore require him to explic-
itly annotate “what” should be JIT’ed. Since we only support JIT’ing entire
functions, the programmer must identify the functions to be JIT’ed.

We also require the programmer to annotate the code to demarcate “JIT
regions”. A region typically ought to encompass most or all of the compute
phase of the program. This indicates “when” something should be JIT’ed since
the JIT compiler is only active within a “JIT region”.

2.2 Compile-Time JIT-Aware Static Analysis

At compile time, we perform one or more JIT-aware static analyses that inform
the dynamic optimizations. Currently, the major JIT-time optimization we per-
form is dynamic constant propagation. To identify dynamic constants in each
“JIT region”, we perform a whole-program mutability analysis at compile-time.

2.3 Dynamic JIT-Time Optimizations

These optimizations use the results of the JIT-aware static analyses described in
Sect. 2.2 and augment them with runtime information. This enables more aggres-
sive optimizations. For instance, a JIT-time loop vectorizer can determine the
disjointness (or otherwise) of arrays accesses by simply looking at the incoming
pointers and loop bounds.
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3 Moya

At a high-level, Moya can be thought of as consisting of three distinct parts,
a preprocessor which handles the Moya annotations (Pilot), and instruments
the code, a compiler that performs the JIT-aware static analyses (Aeryn) and
a runtime system which carries out the actual JIT compilation (Talyn). Pilot
relies on several Clang and GCC plugins to parse the annotations for C/C++
and Fortran respectively. Aeryn and Talyn are both built on top of LLVM [23].

First, Pilot processes the annotations which involves adding calls to Talyn
and collecting information that is needed by the JIT-aware static analyses. At
compile-time, Moya produces LLVM bitcode for each file, performs some cleanup
and static analysis on this and stashes it into the object files. At link-time, the
bitcode in the object files being linked are retrieved and linked together and
the main JIT-aware static analyses are performed as a whole-program analysis.
The results of the analysis and the bitcode for the code that will be JIT’ed are
all stashed inside the executable where they are used at JIT-time by Moya’s
runtime system.

When a function to be JIT’ed is called, the hooks inserted during annotation
processing result in control being transferred to Moya. Moya produces different
variants of the function being JIT’ed and picks one if it has already been com-
piled. If not, the function is JIT’ed and cached for future reuse. JIT’ing only
takes place within a JIT region explicitly demarcated by the programmer.

4 Programmer Annotations

We now describe the programmer annotations that enable Moya. As discussed
in Sect. 2, these annotations are needed to specify “what” is to be JIT’ed and
“when”. Each annotation consists of a sentinel, a directive and zero or more
parameterized clauses. We first present the general syntax of the annotations
followed by a description of the more commonly used directives.

C/C++ : #pragma moya <directive> <clause>*

Fortran : !$moya <directive> <clause>*

Fig. 2. Callgraph of Fig. 1. Functions reach-

able from the JIT region are shaded. o main

contains the demarcated code

JIT: The jit directive is used to
demarcate JIT regions. The block
comprising of a region must sat-
isfy the SESE (Single Entry Single
Exit) property. This ensures that the
entire code within the region can
be outlined into a separate function
which is necessary for the static anal-
ysis. The region can then be treated
as a subgraph of the callgraph of the
program consisting of all the func-
tions than can be called (directly or
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indirectly) from the demarcated code region. Figure 2 shows the callgraph of the
program with the region (lines 25–29 from Fig. 1) outlined into o main.

Specialize: The specialize directive marks functions that are to be JIT’ed
and is added immediately before a function definition. The ignore clause lists
those function arguments which are to be ignored during function argument
specialization while the max clauses limits the number of variants of the function
that are JIT’ed. In Fig. 1, the derivative function has been tagged with this
directive.

5 Compile-Time Analysis

In this section, we formalize the notions of JIT regions and dynamic constants
and discuss the JIT-aware object mutability analysis that enables the JIT-time
dynamic constant folding optimization.

Region: We define a region R to be a sequence of instructions I bounded by
instructions ib and ie such that:

∀i ∈ I, ib dominates i

ie post-dominates i

The instructions ib and ie must be part of the same function. However, the scope
of R itself includes all the functions transitively called from within R.

Dynamic Constant: A program entity e is said to be a dynamic constant w.r.t.
a region R iff e is immutable within R. In other words, if e is not modified by any
function which can be called transitively within R, then e is a dynamic constant
w.r.t. R.

These definitions guarantee that if code is JIT’ed within some region R,
then all entities ec, which are dynamic constants w.r.t. R, can be replaced with
their runtime values in the JIT’ed code. As long as this code is only called
from within R, it will remain valid, since the runtime values of ec will not have
changed. However, once control exits R, this JIT’ed code becomes invalid.

5.1 Identification of Dynamic Constants

To identify dynamic constants, we perform a whole-program object mutability
analysis. For each program entity, we obtain a set of functions f , that access
(read) and modify (write) it.

Kr(e) = {f | accesses(f, e)}
Kw(e) = {f | modifies(f, e)}
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In addition, the analysis conservatively determines the functions that are
called at each callsite. Therefore, for every region R in the program, we can
obtain the transitive closure of all functions which may be called from within R.

F (R) = {f | f is called from R}
A program entity e is a dynamic constant w.r.t. R iff

F (R) ∩ Kw(e) = ∅ (1)

In other words, a program entity e is a dynamic constant w.r.t. some region
R, iff no function that modifies e can ever be called from within R.

5.2 Mutability Analysis

The mutability analysis that we have implemented proceeds in a manner similar
to an abstract interpretation [10] in that it conservatively “simulates” the execu-
tion of the program. In the course of this simulation, it tracks all functions that
read and/or write each program entity. Since this is implemented as a whole-
program analysis, we obtain, for each program entity the set of all functions
that access it at any point during the execution of the program. For each region
R demarcated in the program, we then filter out those functions which do not
belong to the transitive closure of functions reachable from R. This allows us to
determine the entities that are dynamic constants using Eq. 1. Unlike prior work
on mutability analysis [2], this is done entirely statically and is implemented as
a link-time analysis in LLVM.

Data Structures

Store(σ): The store is used to simulate the structure and behavior of physical
memory and consists of cells, each of which has a unique address. Each cell
contains a set of zero or more abstract objects {C}, each of which has a unique
scalar or pointer type. The store also maintains mappings of functions to callsites
and tracks the accessors (readers and writers) of each cell. In order to facilitate
compile-time pointer arithmetic, the cell addresses are implemented as unique
integers. We provide more details when discussing the handling of allocation
instructions.

Abstract Objects(C): Abstract objects are used during the analysis to repre-
sent concrete objects which may exist at runtime. These include scalars whose
value n is known at compile-time Cs, scalars whose values are not known at
compile-time Cr, functions Cf and structs Cc. In addition, we also have abstract
objects representing valid store addresses (Ca) that are analogous to pointers in
that they “point” to a single cell in the store. An invalid store address (Cp) is
used to represent a cell address that cannot be uniquely determined at analysis-
time. For instance, if we attempt to compute a compile-time unknown offset,
Cs from a pointer Ca, we get an invalid store address. Arrays are handled as a
special case which we shall discuss when describing how indexing is performed
during the analysis.
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Environment(ρ): The environment is a mapping from program entities to sets
of abstract objects. Since we perform our analysis on LLVM-IR, each program
entity in this case is an LLVM Value. An LLVM Value could be an instruction,
global variable, function or constant.

Instruction Processing
We now describe how certain instructions are handled during the analysis.

Load: Load instructions correspond to reads and writes to cells in the store.
The pointer operand is first looked up in the environment. This should return a
set of valid store addresses {Ca}. If an invalid store address is returned by the
lookup, it triggers an error state and the analysis terminates. Otherwise, the
cells that the store addresses point to are read, the sets of abstract objects in
each of them merged and returned. A mapping is added in the environment from
the load instruction to this merged set.

Store: The store instruction is the inverse of the load. The value operand of the
store instruction is looked up in the environment and the set of abstract objects
are merged into the cells pointed to by the valid store addresses returned by
looking up the pointer operand. Once again, if an invalid store address is returned
on looking up the pointer operand, it triggers an error state.

Allocation: When allocating a scalar in the store, a cell of the correspond-
ing type is created with some integer address m. The pointer to this memory is
returned as a store address object Ca(m). When allocating a composite type such
as a struct, we recursively allocate each subtype of the struct. The cell addresses
are chosen such that they correspond to the layout of successive objects in physi-
cal memory on the target system. For instance, when allocating successive 4-byte
integers on X86, if the first were allocated at address m0, the second would be
allocated at address m0+4. This allows us to easily translate the concrete pointer
arithmetic that is performed in the LLVM IR to the abstract pointer arithmetic
that needs to be performed on our addresses. All arrays, even those who lengths
are known at compile-time are assumed to be of length 1.

Array Indexing: We track all store addresses which correspond to the start of
an array. Any indexing operation performed using the starting address of this
array as a base is assumed to be in bounds and will return the starting address
of the array (essentially, the store address of the first element of the array). This
analysis will not result in incorrect dynamic optimizations because accessing an
array out of bounds is undefined behavior in C/C++ and incorrect behavior in
Fortran. The one exception to this rule is for vtable lookups in which case we
do not assume that the array is of length 1.

Struct/Class Indexing: We also track all store addresses which correspond to
the first element of an instance of a struct or class. When accessing a member
of such an object, the offset is usually compile-time constant, say c from the
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starting address Ca of the struct. In this case, we return the cell address at Ca +
c. We have never encountered a case where LLVM accesses a member of a struct
using a non-constant offset.

Pointer Arithmetic: Apart from the special cases for arrays and structs
described above, any other form of pointer arithmetic will trigger an error state.
We provide limited support for inttoptr and ptrtoint instructions. A pattern
that is sometimes seen in C++ when dealing with virtual inheritance is for a
pointer to an object to be converted to an integer, some amount added to this
integer and the result converted back to a pointer. In such cases, we allow the
pointer arithmetic to be performed.

Call: A call results in a mapping being added to the environment for every
function parameter. This gets updated with the arguments passed to the function
at each call-site. Since our analysis is context-insensitive, this results in some
imprecision in the analysis. For the kinds of JIT-time optimizations that we
perform, this has not proven to be detrimental in practice. Every function is
allocated a private call stack in the store. This allows us to simulate pass-by-
value semantics during the analysis without introducing spurious aliasing effects.

Fig. 3. Partial summary of analysis results

Analysis Loop
The analysis first allocates
space in the store σ for every
global variable, compile-time
constant, and both statically
and dynamically allocated
objects. The analysis iter-
ates over all the functions
and performs an abstract
execution of the instructions
until either an error state
is triggered or the analysis
converges. Once the analysis
converges, a summary is gen-
erated for each region in the
program. Figure 3 is a par-
tial summary for the region
in Fig. 1. The status of each
program entity is computed
using Eq. 1.
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Error State: There are several conditions that can cause the analysis to reach
an error state.

– Loading/storing using an invalid store address Cp.
– Accessing a field of a struct using a non-constant offset from the base.
– Failing to determine the function called at a callsite.
– Failing to find a model for a library function.

Convergence: The analysis converges when no new mappings are added to the
environment and no new contents are added to any cell in the store.

Termination: Both ρ and σ grow monotonically; once an abstract object C is
inserted into a cell in the store, it is never removed. The same is true for the
environment. In addition, we never perform any arithmetic even on compile-
time constants. The result of arithmetic or logical operators is always a scalar of
indeterminate value Cr. Since there are only a finite number of object allocation
sites in the program (we ignore back-edges in loops), only a finite number of
objects are ever allocated in the store. These conditions ensure that the analysis
terminates. Since we know that the analysis always terminates, it is guaranteed
to always either converge or reach an error state.

5.3 Library Models

Since we need to determine exactly which functions modify a program entity,
we need to know about the behavior of those library functions which take a
pointer as an argument or return a pointer. In this case, we need to know how
the pointer is used by the function and since the code is not available to the
program, a model describing the behavior of the function must be supplied. We
have currently implemented models for some widely used libraries such as MPI,
Cantera, ScaLAPACK, HDF and libc. If the library is compiled using Moya, it
will contain a payload composed of the LLVM bitcode for the whole library. This
can then be retrieved and the analysis performed on the functions called from
the user code.

6 JIT - Time Optimizations

6.1 Function Argument Specialization

For each different set of parameters with which a JIT’ed function is called, Moya
will generate a different version of the JIT’ed code with all the dynamic constants
reachable from the arguments folded into the code. If the function is called in
the future with the same arguments, then the JIT’ed version is reused. If one of
the arguments to the function is a pointer and the function is called a second
time with the same pointer as an argument, it is safe to reuse the code. This
reduces the function calling overhead since we don’t have to chase pointers to
determine if any state has changed between calls to the function.
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6.2 Dynamic Constant Propagation (DCP)

Fig. 4. Pseudo-code for DCP

The dynamic constant propa-
gation optimization relies on
the regular compiler’s constant
propagation framework to do
most of the work of propagating
and folding constants. Figure 4
is a summary of the optimiza-
tion. It is carried out on an
LLVM-IR representation of the
function being JIT’ed. Here, Θ
is the summary of the muta-
bility analysis that is available
to the perform the dynamic
optimizations. For each func-
tion parameter param, we query
the analysis results and obtain
an abstract object correspond-
ing to it. param is an LLVM
Value. If the object is a scalar
dynamic constant, we replace
all uses of param in the function
with its concrete runtime value, arg. If the parameter is a pointer, we call
propagate for each use of param. propagate needs an LLVM value (val), a runtime
value (rt) and an abstract object (C). Essentially, propagate does pointer chasing
to identify all the dynamic constants that are reachable given a starting pointer
value. It does not attempt to perform constant propagation, but merely plugs
in the runtime values in the appropriate places in the LLVM-IR and invokes
LLVM’s constant folding pass. In addition, Moya invokes the default -O2 opti-
mization passes in LLVM, in particular the loop unrolling pass each time any
dynamic constants are propagated. This ensures that the maximum number of
dynamic constants are uncovered.

6.3 Invariant Load Detection

In cases where a pointer is being loaded inside a loop, the compiler may some-
times be unable to hoist the load outside the loop thereby inhibiting vectoriza-
tion. This may happen when the compiler is unable to disambiguate between
the locations of writes through two pointers present in the loop. The mutability
analysis can then be combined with scalar evolution and looking up the actual
value of the pointer variable to determine whether or not it is safe to hoist the
load instruction out of the loop. This pass, too, relies on the regular’s LICM
(Loop Invariant Code Motion) pass for the mechanics of hoisting the value.
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7 Results

We evaluated Moya on the NAS parallel benchmark suite as well as PlasComCM.
All the experiments were run on a desktop computer equipped with dual Intel
Xeon E5-2609 processors with 32 GB RAM. All executions were serial (a single
MPI process) and each test ran for at least 2 min. In cases where the default
inputs to the benchmarks did not result in the program completing before that
time, we modified the benchmarks to increase the execution time. In most cases,
we increased the number of iterations rather than modify the problem size. For
PlasComCM, the input was a scaled-down model of the physical system used in
predictive simulation runs.

Program execution statistics were compiled using PAPI [26]. The functions
annotated with Moya’s specialize directive were instrumented at compile-time
to call Moya’s statistics collection routines on function entry and exit. The same
was done for the JIT’ed functions. Note that all the instrumentation is done
automatically and without the need for programmer intervention.

To determine the functions to be JIT’ed, we ran each benchmark with a
profiler to determine the “hot” functions. We sorted these in descending order of
the fraction of the total execution time that was spent in each function. Starting
from the top, we proceeded to pick the first n functions until the cumulative
execution time of these functions was at least 50% of the total execution time
of the application. We added Moya’s specialize directive to each of these. For
PlasComCM, we also consulted the developers who suggested functions whose
performance they were unable to improve by hand and suggested that we try
JIT’ing them.

To annotate the JIT region, we inspected the code to find the time marching
loop that is characteristic of most numerical applications and marked the entire
time marching loop as comprising the JIT region. Despite not being familiar
with most of the code, this never took us more than a few minutes to find. In
most of the code that we inspected, the programmer’s comments made this task
trivial. Even when comments were unavailable, the code followed a somewhat
predictable structure with descriptive function names which simplified this task.

We never modified any executable lines of code in any of the benchmarks or
applications. All modifications to the code consisted exclusively of the addition
of Moya annotations. Moya is designed to be a drop-in replacement for the GNU
compilers. For the most part, we only had to edit the path to the compiler. On
occasion, we had to remove compiler flags that Moya does not currently support.
In most cases, these were flags to perform static linking which Moya currently
does not support. Moya requires all applications to be dynamically linked. We
have identified ways to enable static linking but currently, this has not been
implemented.
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7.1 Compile-Time Static Analysis

Fig. 5. Mutability analysis statistics

Figure 5 shows the execution time
of the mutability analysis and
the dynamic memory used in the
course of this analysis. The mem-
ory value is the high water mark
as reported by PAPI. We believe
that this is an underestimate since
it does not seem to include the
memory allocated by LLVM for the
bitcode on which we are carrying
out the analysis. Nevertheless, this
suggests that the environment and
store do not grow drastically even
when dealing with sizeable applica-
tion code such as PlasComCM. The
lines of code reported for each application by counting the total number of lines
in all the source files in the application. The last column in the table is the
number of iterations that the analysis loop carried out before convergence.

7.2 PlasComCM

PlasComCM is a combustion simulation application that solves the compressible
Navier-Stokes equation written primarily in Fortran90 with some C and C++.

Fig. 6. Execution statistics for PlasComCM

Figure 6 presents some exe-
cution statistics collected dur-
ing execution of PlasComCM.
We JIT’ed 5 different func-
tions and obtained a range of
speedups up to 1.5. These are
purely the speedups in the exe-
cution time and do not take into
account the dynamic compila-
tion time and launch overheads.
The remaining columns in the
table are the improvements in the number of load instructions, L2 and L3 cache
misses and L1 and L2 instruction cache misses respectively. Each value is the
ratio va

vj
where va is the value without Moya and vj is the value with Moya

performing JIT compilation. As we can see, we generally decrease the number
of load instructions in almost all cases. However, the effect on the caches is
inconsistent and merits further investigation.

The apply operator function in Fig. 6 is the full version of the simplified
derivative function of Fig. 1. The speedups obtained here are mostly the result
of more effective vectorization. In the function, the loop corresponding to the
one on line 14 of Fig. 1 is vectorized. However, this loop corresponds to a 5-point
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stencil and the vectorization is unprofitable. The other loops in the nest are the
dimensions of the grid which in this case are all 100. Since the loop bounds are
determined to be dynamic constants, their runtime values are folded into the
code at JIT-time. The compiler then sees that the innermost loop is short and
unrolls it fully. This enables the much longer outer loop to be vectorized.

In the case of model1dv, we do not obtain any measurable speedups because
the static compiler was able to optimize all of the code effectively. The effect of
the JIT-time optimizations was merely to reduce the number of load instructions
by folding in the values of the dynamic constants.

Fig. 7. Overheads for PlasComCM

Figure 7 lists some of the
overheads associated with JIT
compilation. The columns are
the total JIT compilation time
in seconds, the number of dif-
ferent versions of the function
that were JIT’ed, the number
of calls to the function dur-
ing execution and the over-
head of launching the JIT’ed
code. The apply operator func-
tion incurred significant compilation overhead and resulted in the largest number
of specialized variants being generated. The function is called once in the x, y
and z directions for each of 3 grids with an additional order parameter which
could be 1 or 2. This results in 3× 3 × 2 = 18 different versions of the function
being generated. This function had the best reuse of all the functions that were
JIT’ed. The compilation overheads were overcome after about 10 reuses of the
function. All variants of the JIT’ed functions were generated before the end of
the first time step. In terms of overall application runtime, the overheads of
JIT’ing these functions was overcome after 25 time steps. This does result in a
net improvement since a typical production run of PlasComCM would typically
involve hundreds or thousands of time steps.

7.3 NAS Parallel Benchmarks

Fig. 8. Overall speedup for NPB

The NAS Parallel Benchmarks (NPB) consist
of several computational kernels that repre-
sent some of the most commonly performed
numerical operations and have been hand-
optimized. Moreover, the benchmark suite is
set up such that the input parameters to the
benchmarks are known at compile-time. We
did not expect to see any significant improve-
ment as a result of JIT’ing. We sought instead
to see if the overheads of JIT’ing could be
kept tolerably low in such cases. Figure 8
shows that this is generally the case for the class A benchmarks although we
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do manage to improve the performance of BT. We omitted the DC benchmark
since it performs only I/O.

8 Related Work

JIT compilation is a well-known technique that has been widely used in many
different programming languages. It is perhaps best known for its use in the Java
Virtual Machine [11,21,25,27,33]. There has also been extensive work discussing
the optimizations used in the JVM, some of which are specific to Java and
the JVM, [6,14,17–19] and others which are effectively used by the Java’s JIT
compiler to improve performance [8,9,12]. Recently, the same technique has been
used in many different languages such as Haskell [4], Racket [30], Python [1,22,
31], Javascript [15,20] and C# [5]. A common feature of all of these languages is
that they start out being interpreted. They tend to have relatively heavy-weight
runtime systems which use JIT compilation to improve the performance of “hot”
code. The JIT compiler in the JVM is also tightly coupled with the runtime
system itself and there is constant communication between the compiler and the
runtime system. None of these languages are in widespread use within the HPC
community where compiled languages like Fortran, C and C++ are preferred for
their superior performance.

DyC [16] was a dialect of C with annotations to support dynamic compilation.
These annotations required the programmer to explicitly identify variables and
arrays which were to be treated as runtime-constants within a given region of
code. Unlike DyC which requires the programmer to explicitly demarcate regions
for each variable to be treated as a runtime constant, Moya only requires the
programmer to create regions where the JIT compiler should be active. DyC is
more flexible since the regions are multiple-entry-multiple-exit and may overlap,
whereas Moya’s regions are single-entry-single-exit and may not overlap.

`C [28] was another approach to adding dynamic compilation support to
C by adding syntactic features to the language. In `C, a ` operator was used
to identify arbitrary blocks of code which were to be dynamically compiled.
Within these blocks, the $ operator was used to identify variables which were
to be treated as runtime constants within the block being JIT’ed. Since `C
adds syntactic features to the language, once a program has been “translated”
to `C, it cannot be compiled with any other compiler. However, since Moya
uses pragma’s, those annotations will simply be ignored by other compilers. We
believe that this makes it easier for programmers to retrofit large, legacy code
bases with JIT capabilities using Moya and without sacrificing the ability to
use other compilers. Since the annotations required are also relatively limited in
number, this should not have a significant impact on maintainability.

Some libraries have used JIT internally to accelerate carefully chosen parts
of their code, for instance OpenGL [24] and the MPI runtime [29,32].

Profile-guided optimization (PGO) is a technique that is often used in manner
similar to this. The disadvantage of PGO is that the profile information is only
valid as long as the input data’s characteristics do not change. The program
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also needs to be recompiled to take advantage of the profiled data. While JIT
compilation adds a runtime overhead, it is suitable for programs which also
dynamically alter their behavior.

Approaches such as Kokkos [13] have been proposed to improve compiler per-
formance by providing abstractions that would allow the programmer to provide
guidance which would then perform similar code specializations at compile-time.
However, these can drastically increase compilation time since all the specialized
code has to be generated regardless of whether or not it will be used in any given
execution.

9 Future Work

There are several directions in which this work can be extended. Currently, we
do not attempt to identify functions that would benefit from JIT compilation.
One approach might be to use the results of the mutability analysis to determine
whether the dynamic constants are on a “critical path” that has a strong impact
on the compiler’s optimization decisions. The speed of the mutability analysis
could be improved by computing “summaries” of functions. This could be done
for each function independently and the summaries then “composed” to get the
final result. This would improve scalability of the analysis. Instead of the current
“one-shot” JIT’s, we could perform autotuning at runtime by exploring different
compilation strategies and options on a function call even if an appropriate
version of the function has already been JIT’ed. Instead of auto-tuning being
performed ahead of time when moving to a new platform, it could be performed
while simultaneously doing “useful” work. Another direction would be to save
either the JIT’ed code itself or the sequence of optimizations that were applied
to it so that the same JIT’ed code could be used in a subsequent invocation of
the program - thereby reducing the JIT overhead even further.

10 Conclusion

With Moya, we have demonstrated how a small number of easy-to-use annota-
tions can be combined with aggressive static analysis to implement efficient JIT
compilation for compiled languages. We describe a compile-time object muta-
bility analysis that enables dynamic constant propagation at JIT-time. We have
shown that JIT compilation can improve the performance of functions in real-
world code and obtained a speedup of as much as 1.5 by enabling the compiler
to make optimization decisions that it would not have made in the absence of
runtime information. We have also shown that Moya does not adversely affect
the performance of codes even when the JIT compiler does not uncover opti-
mizations that the static compiler was unwilling or unable to perform.
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Benôıt Pradelle, Benôıt Meister, Muthu Baskaran(B), Jonathan Springer,
and Richard Lethin

Reservoir Labs, New York, USA
{pradelle,meister,baskaran,springer,lethin}@reservoir.com

Abstract. We present R-Stream·TF, a polyhedral optimization tool
for neural network computations. R-Stream·TF transforms computations
performed in a neural network graph into C programs suited to the
polyhedral representation and uses R-Stream, a polyhedral compiler,
to parallelize and optimize the computations performed in the graph.
R-Stream·TF can exploit the optimizations available with R-Stream to
generate a highly optimized version of the computation graph, specifi-
cally mapped to the targeted architecture. During our experiments, R-
Stream·TF was able to automatically reach performance levels close to
the hand-optimized implementations, demonstrating its utility in porting
neural network computations to parallel architectures.

1 Introduction

Deep Convolutional Neural Networks (DCNN) [16], and more generally deep
learning, recently reached maturity. Impressive results achieved in recent years
demonstrated the technology was ripe for general, practical use. New applica-
tions are developed every day, and deep learning is already ubiquitous in our
lives. This considerable activity around machine learning is becoming increas-
ingly structured around a few common tools. For instance, Caffe [15], Torch [10],
CNTK [27], and TensorFlow [2] are popular frameworks commonly used to
develop and exploit neural networks. These frameworks are based on a similar
concept: high-level operations such as convolutions and pooling are exposed to
the user, who can design networks simply by composing them as operators. The
frameworks also empower users by facilitating data preprocessing and stream-
lining back-propagation for training.

Applications based on neural networks often require strict performance con-
straints to be enforced, such as when performing interactive tasks. They also
require high throughput (bandwidth) such as when performing many queries
simultaneously. To minimize the latency and bandwidth required to process an
input sample, neural networks frameworks rely on highly optimized implemen-
tations. A common approach for speeding up neural network processing consists
in building a hand-optimized library of DCNN operators.

While this method significantly improves the performance of the computa-
tions, the hand optimization effort is tedious and error-prone. It is also inherently
c© Springer Nature Switzerland AG 2019
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unable to exploit optimization opportunities available by combining successive
operations. For instance, an element-wise operation and a convolution can be
computed more efficiently if both operations are fused. In order to benefit from
these optimization opportunities, several graph-based optimizers have been pro-
posed and are currently being developed. The most representative approach
is XLA, a just-in-time compiler for TensorFlow computation graphs. XLA has
shown its ability to significantly speed up the computations performed in Ten-
sorFlow, but it seems limited to basic pattern-matching optimizations. Only
simple cases of fusion and array contraction can be realistically achieved with
this method.

Our contribution is to extend and generalize the approach of graph optimizers
through polyhedral optimization techniques. Compilers and optimizers based on
the polyhedral model can apply powerful code transformations on programs,
using a precise mathematical representation of the code.

Polyhedral optimizations encompass fusion and array contraction, but they
also subsume any combination of loop fusion/fission, interchange, skewing, and
reversals. Data dependencies are exact in the polyhedral model, enabling auto-
matic parallelization and other common memory-oriented optimizations such as
loop tiling [14] and data layout transformations [9]. The polyhedral model is
most precise on regions with affine constructs [12], which include most of the
classical neural network operators.

In this paper, we present R-Stream·TF, a new optimizer for TensorFlow com-
putation graphs. R-Stream·TF emits high-level sequential C code implementing
the exact computations performed in the input TensorFlow graph. The gener-
ated C code is specific to the graph: it is specialized to the exact tensor shapes
and types used as the input and output of every operation. The generated C
code is then automatically parallelized and optimized by R-Stream [19], a poly-
hedral compiler developed by Reservoir Labs. R-Stream optimizes the computa-
tion specifically for the target architecture. R-Stream supports numerous targets
including common x86 CPUs and GPUs and can generate the code to parallel
programming models including OpenMP, CUDA, OpenCL, POSIX threads and
task-based runtimes APIs [18,23].

R-Stream·TF extracts and merges TensorFlow operator subgraphs, and lets
R-Stream apply a full range of polyhedral optimizations to the underlying com-
putations. Such transformations are specific to the target platform, which can
have several levels of parallelism and any combination of caches and scratch-
pads [22]. The result is a set of highly optimized parallel TensorFlow operators,
which are reintegrated into the original TensorFlow computation graph.

The main benefit of our approach is the ability to use the full set of poly-
hedral optimizations within computation subgraphs. This ability is superior to
current approaches based on domain-specific optimizations, since it enables sev-
eral additional optimizations to be performed automatically on computation
graphs. Because the optimizations applied to the graph are both specialized to
the graph itself and to the target architecture, R-Stream·TF generates highly opti-
mized code, specifically tailored for the target platform. This makes R-Stream·TF
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an adequate automatic porting tool, providing an optimized support for Tensor-
Flow computations on new architectures.

The rest of the paper is organized as follows. The design of R-Stream·TF is
presented in details in Sect. 2. The tool has been implemented and evaluated on
popular DCNNs. The evaluation results are presented in Sect. 3. We compare
R-Stream·TF to existing systems in Sect. 5, before concluding in Sect. 6.

2 Design

2.1 Overview

The overall flow of R-Stream·TF, described in Fig. 1, starts with a TensorFlow
computation graph and results in an optimized graph with the same seman-
tics. The optimization process is performed in several successive steps. First,
optimizable subgraphs of the overall operator graph are identified. Restricting
the process to well-structured subgraphs ensures that optimization is possible
and tractable. Simple sequential C code is then generated for every identified
operator. The sequential source code is sent as-is to R-Stream to be parallelized
and optimized. The resulting parallel code is wrapped in a custom C++ Ten-
sorFlow operator automatically generated by R-Stream·TF. The operator itself
implements the operation API defined by the framework, allowing the opti-
mized code to be seamlessly reintegrated to the TensorFlow computation graph.
As a result, R-Stream·TF produces an optimized computation graph based on
automatically-generated custom operators. The optimized graph can then be
used in lieu of the original graph.

2.2 Subgraph Selection

Polyhedral optimization scales super-linearly in the number of statements, hence
practical optimization time constraints somewhat limit the number of nodes in

Fig. 1. TensorFlow graphs are converted into simple sequential C code, optimized using
the R-Stream compiler, wrapped in a custom TensorFlow operators, and finally stitched
back in the computation graph.
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Fig. 2. Connected subgraphs of supported operations are computed first, before parti-
tioning the large subgraphs into smaller ones to improve the optimization scalability.

subgraphs. While this number can be quite large, the number of nodes in current
DCNNs is typically larger. In order to ensure that the optimization remains
tractable, R-Stream·TF pre-processes the input graph, extracting subgraphs that
are optimized independently from each other.

Partitioning operator graphs in order to expose better optimization oppor-
tunities and maintain scalability (i.e., tractable optimization times) has been
studied many times over, from instruction set synthesis [3] to streaming graphs
(with e.g., [1,11]). Optimality of subgraphs is typically defined by the amount of
computation and data reuse within the subgraph, and the amount (and weight)
of resulting in- and out-edges. In parallel computing frameworks, grain of par-
allelism and load balancing are also important optimality criteria.

The most impactful constraints are similar in our case. Additionally, code
generators may not be available for some operators, which should then not be
included in a subgraph to optimize. While we plan to implement more sophisti-
cated subgraph selection algorithms in the future, we meet the proof-of-concept
objective of this paper using a simple two-step approach. First, we identify con-
nected subgraphs in the overall computation graph that are exclusively made of
operations for which a code generator is available. Second, the connected sub-
graphs are partitioned when they are estimated to be too large for the optimizer.
These steps are illustrated in Fig. 2. The second step is expressed as a balanced
k-way partitioning problem, where the objective is to minimize the number of
graph edges between two partitions. Edges in the computation graph represent
tensors on which the operations are performed. While R-Stream is free to change
the data layout in the tensors within partitions, transforming the layout of ten-
sors used across several partitions is illegal. Thus, by minimizing the number
of edges between the partitions, R-Stream·TF increases data layout optimization
opportunities for R-Stream, including array contraction, expansion, and spatial
locality optimizations.

R-Stream works from C code, which is generated as the next phase of the
R-Stream·TF() optimization process.
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2.3 Operator Code Generators

To optimize the selected subgraphs, R-Stream·TF first generates sequential C code
implementing the operations performed in the subgraph. For every operator in
a selected subgraph, the code generator corresponding to the operator kind is
identified. It first generates a function header where all the tensors are passed
as pointers to C arrays arguments. The tensor arguments are monomorphic,
meaning that if several types are allowed in the TensorFlow graph, they will
result in different functions being generated. The body of the generated function
implements the operator semantics, generally as a set of loop nests.

2.4 Subgraph Code Generator

Once a function is generated for every operator of a selected subgraph, a sub-
graph function is also generated. The subgraph function calls the individual
subgraph operator functions, materializing the actual subgraph computation.
R-Stream·TF currently restricts the subgraphs to be acyclic, simplifying the gen-
eration of subgraph functions. Exploiting the acyclic property, the operators in
the subgraph are topologically sorted and a sequence of calls to the correspond-
ing operator C function is generated as the subgraph function body. The process
is illustrated in Fig. 4. Similarly to the operator functions, the subgraph func-
tion accepts as its inputs a pointer to a C array for every tensor used in the
computation.

The subgraph function is marked as being a region of interest for R-Stream
using a pragma directive. R-Stream is also instructed to inline all the operator
functions, which is easily done since their definitions are generated in the same
compilation unit. The operator functions along with the subgraph functions of
every selected subgraph are generated using the same process and finally sent to
R-Stream to be optimized.

2.5 R-Stream Optimization

Using the polyhedral model, R-Stream infers the data dependencies of the
input program from its C form. Based on the exact dependence information,
R-Stream computes a new schedule for the program statements. The sched-
ule can be seen as a combination of loop fusion, fission, skewing, interchange,
and reversal. The scheduler used in R-Stream tries to maximize parallelism
while optimizing locality, contiguity, vectorization, and data layout [17,19]. After
scheduling, R-Stream performs other important non-affine transformations such
as tiling, along with the generation of explicit memory (e.g. scratchpad, vir-
tual scratchpad) management and communication (e.g. DMA) instructions. The
optimizations that R-Stream performs are all parameterized by a model of
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static inline void add1(

const float (*t_in0)[256],

const float (*t_in1)[256],

float (*t_out0)[256])

{

for (int i = 0; i < 256; ++i) {

for (int j = 0; j < 256; ++j) {

t_out0[i][j] = t_in0[i][j] +

t_in1[i][j];

}

}

}

static inline void add2(

const int (*t_in0),

const int (*t_in1)[1024],

int (*t_out0)[1024])

{

for (int i = 0; i < 1024; ++i) {

for (int j = 0; j < 1024; ++j) {

t_out0[i][j] = t_in0[j] +

t_in1[i][j];

}

}

}

static inline void add3(

const double (*t_in0),

const double (*t_in1),

double (*t_out0)[512])

{

for (int i = 0; i < 512; ++i) {

for (int j = 0; j < 512; ++j) {

t_out0[i][j] = t_in0[j] + *t_in1;

}

}

}

Fig. 3. Three specializations of the element-wise addition. The generated functions
have specific data types, data sizes, and broadcasting even though the TensorFlow
operator is the same.

the target platform encoded in an XML hierarchical/heterogeneous architec-
ture machine modeling description language. R-Stream then generates output
C using “unparsing” techniques that conform to idioms appreciated by down-
stream or “backend” compilers (e.g., gcc, icc); this enables further backend opti-
mizations such as typical scalar optimizations and the use of vector opcodes.
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Fig. 4. Subgraph C code generation.

Tensor computing is an excellent match to the polyhedral model.1 The loop
extents and access functions are affine. Working on tensors rather than matrices
results in deeper loop nests presents optimization challenges beyond the classical
techniques used by library writers and beyond the reach of non-polyhedral clas-
sical loop optimizers, but which are very much in scope of a modern polyhedral
compiler such as R-Stream.

While it would be straightforward to engineer a translator to go directly from
TensorFlow IR to a polyhedral IR (in the case of R-Stream, the Generalized
Dependence Graph (GDG)), we chose for this initial prototype the simple path
of going through C. The code generators implemented in R-Stream·TF generate
C code specifically targeted at the polyhedral model. The generators may pro-
duce visually non-intuitive code for some operators, but the code is specifically
structured to be easily and immediately raised to the polyhedral representation.
In some sense, R-Stream·TF uses a subset of C as an intermediate representation
to communicate TensorFlow computations to polyhedral compilers. The code
generator also benefit from extensions of the polyhedral model implemented in
R-Stream to support more operators. For instance, R-Stream supports data-
dependent conditions, which allows operators such as the rectifier activation
function to be supported.

1 Raising generic C codes into a polyhedral representation can be a complex problem,
when programmers or library writers have made manual optimizations (e.g., par-
allelization, tiling, ...) based on domain knowledge which cannot be easily inferred
from their program source. Such manual optimizations are often not performance
portable (or portable at all) to new platforms, thus their action of performing man-
ual optimization “bakes the code” to that one original target. To re-optimize to
a new architecture through the polyhedral model, such manual optimizations often
have to be reverted to produce an efficient polyhedral representation of the program.
Unknown aliasing and overflowing arithmetic are among the challenges of such “un-
baking.” With modern compiler tools like R-Stream now available, it would a much
more sustainable practice for programmers to express their code originally in a high-
level, domain-specific manner.
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2.6 TensorFlow Operator

TensorFlow exposes a public C++ API to specify custom operations. R-
Stream·TF generates the code implementing the API for every subgraph, in effect
generating a custom optimized TensorFlow operator for every selected subgraph.

The generated TensorFlow operator declares itself to the framework, detailing
the expected inputs and outputs for the custom operator. The operator also
checks and validates its inputs. Although this is not required, generating such
guards helps in debugging R-Stream·TF itself and ensures that the user does
not change the input specification by transforming the graph after it has been
optimized. Finally, the operator performs the required memory allocations for
the tensors identified as being temporary or output tensors. Temporary tensors
are tensors that do not exist before the operation is run but do not need to be
maintained in memory after the tensor execution. Output tensors are created
by the operation but are consumed later by other operations in the graph. Both
temporary and output tensors are allocated before starting the computation
and a pointer to the raw tensor data content is acquired and transmitted to the
code optimized by R-Stream. R-Stream·TF reuses tensors as much as possible to
limit the number of tensors required at any time during the optimized subgraph
execution.

All the custom operators generated by R-Stream·TF are compiled into a shared
library. Because the tool implements the TensorFlow API, the generated library
can be easily loaded by calling a standard TensorFlow function.

As a final step, R-Stream·TF edits the graph structure by removing the original
subgraphs and replacing them by the optimized custom operators. The result is
generated as a standard protobuf file which can also be loaded in TensorFlow
using the standard API.

2.7 Leveraging Broadcast

TensorFlow automatically expands the input tensors to match the largest one
in several operations. This expansion is called broadcasting in the TensorFlow
terminology and consists of inflating a tensor by duplicating it. Broadcasting is
a convenient flexibility allowed by the framework to help the user express oper-
ations such as an element-wise addition with a scalar using the general tensor-
based element-wise addition operator. R-Stream·TF generates operator functions
that account for broadcasting without explicitly copying the data. For instance,
an element-wise tensor addition can be generated as an addition with a scalar
to match the broadcasting semantics. Broadcasting is one of the several special-
izations performed when generating the operator code. As illustrated in Fig. 3,
the different data types, data sizes, and broadcasting can result in many differ-
ent variants of the operator functions, which would not be tractable if the code
were written by hand but can be easily managed when the code is generated
automatically.
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3 Experiments

We implemented a prototype of R-Stream·TF and used it to evaluate the potential
outcome of our approach. For the sake of simplicity and because of time con-
straints, our prototype is focused on common x86 processors. The system could
benefit from further improvements to support accelerators and other architec-
tures but we left these extensions for future work. In our experiments, we evaluate
R-Stream·TF by running it on popular deep neural networks. The time required
to perform an inference of the optimized graph has been measured and compared
when using different optimizers as well as the default TensorFlow setup.

We first evaluate R-Stream·TF when calling no optimizer to parallelize and
optimize the code generated. The goal of this measurement is to determine what
performance level can be reached if the graph operators are naively implemented,
using their textbook definitions. This is typically the performance that would be
reached by an inexperienced developer when porting TensorFlow to a new plat-
form. Next, we evaluate R-Stream·TF with several polyhedral compilers, allowing
us to better estimate the range of performance that can be reached by this class
of tools and how performance is impacted by the capabilities of each optimizer.
Finally, we compare R-Stream·TF to the standard TensorFlow performance. Ten-
sorFlow defers the operation optimization to the Eigen library, a collection of
highly-optimized kernels. Because a library cannot implement optimized ver-
sions of any combination of kernels, the Eigen library is limited to some indi-
vidual kernels and a few common combinations. On the other hand, the library
provides extremely well-optimized implementations for the supported kernels.
Hence, the performance reached by TensorFlow can be considered as that of a
well-optimized implementation, even though not all the optimizations opportu-
nities are exploited. In order to optimize the graph computations further, Ten-
sorFlow also provides XLA, a compiler exploiting operation fusion to improve
the performance of the computations. Despite all our efforts, we were not able to
have XLA to produce correct results with our experimental setup in a reasonable
time, which ruled it out of evaluation.

We ran the experiments on a standard Ubuntu 16.04 system with an Intel
Core i7-4600U processor, using the standard binary package of TensorFlow in
version 1.2.1. We evaluated R-Stream·TF in different configurations using 3 pop-
ular deep learning graphs: Inception versions 3 and 4, and SqueezeDet. We froze
the Inception graphs using the learned weights provided by Google, emulating
a production-ready setup. The graphs were evaluated when inferring the sam-
ple image of Admiral G. Hopper provided with TensorFlow. This image choice
allowed us to guarantee the correctness of our setup, since the expected out-
put of the graphs has been published for this input image. Similarly, we used
weights provided with SqueezeDet as well as an example image from the KITTI
dataset for which the expected result is published. For comparison, we also
used PPCG version 0.07 plus all the commits performed in the master branch
until June 19, 2017. PPCG was run using the following options: “--target=c
--openmp --tile”. We also evaluated Polly, as provided in LLVM 5.0, as a
polyhedral optimizer for the code generated by R-Stream·TF. Polly was run
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using the following Clang options: “-mllvm -polly -mllvm -polly-parallel
-mllvm -polly-vectorizer=stripmine”.

In the evaluated implementation of R-Stream·TF, the element-wise addition,
subtraction, and multiplication, convolutions, and rectifying linear units were
optimized. R-Stream·TF can optimize only operations for which a code generator
is available and we limited our implementation effort to these common opera-
tions. The system can easily be extended with more operations as needed. The
effort required to add a new operation is a matter of hours for a single developer,
and this can then be used for any input network on any target.

The measured execution times of one inference on the experimental plat-
form are presented in Figs. 5, 6 and 7 for different optimization backends. The
execution time of the naive code generated by R-Stream·TF before applying any
optimizer corresponds to the “Unoptimized” entry in the figures. The open-
source PPCG polyhedral compiler was used to optimize the code generated by
R-Stream·TF and is shown as the “PPCG” entry in the figures. Similarly, the
code optimized by Polly is shown as “LLVM/Polly” and “R-Stream” is used to
represent the entries where R-Stream is used to optimize the code generated by
R-Stream·TF. Finally, the “TensorFlow” entry represents the reference execution
time using the hand-optimized Eigen library provided with TensorFlow.

The results presented in Figs. 5, 6 and 7 show that a polyhedral compiler can
reach a performance level close to that achieved using highly optimized libraries.
The execution time reached by the R-Stream optimized code, “R-Stream” in the
figures, is significantly lower than that of the unoptimized version, emphasizing
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Fig. 5. Execution time of an inference of Inception 3 using different optimization
backends.



84 B. Pradelle et al.

 0

 2

 4

 6

 8

 10

 12

 14

Unoptim
ized

PPCG

LLVM
/Polly

TensorFlow

R-Stream

E
xe

cu
tio

n 
tim

e 
(s

)

Fig. 6. Execution time of an inference of Inception 4 using different optimization
backends.
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the optimization power of the polyhedral compiler. Specifically, R-Stream gen-
erates code running about 5× faster in Inception v3, 7× faster in Inception v4,
and 12× faster in SqueezeDet, a substantial achievement considering that the
experimental platform is a modest dual-core processor. Despite this achievement,
the optimized subgraphs still suffer from a 2× slowdown in Inception v3 to a
50% slowdown in SqueezeDet compared to the hand-optimized “TensorFlow”
implementation, exposing optimization opportunities currently not exploited by
R-Stream. The measured slowdown should be contrasted with the amount of
human effort required to produce both codes. In the case of the TensorFlow ref-
erence, a significant amount of effort had to be invested to produce the highly
optimized libraries used by TensorFlow. Such optimizations are not only com-
plicated to produce and debug, even for expert developers, but they are also
not portable, even across different processors of the same family. When a new
platform needs to be supported, a new effort has to be initiated by experts, often
using different techniques than those used for the other supported platforms. On
the other hand, the optimization performed by R-Stream was achieved with no
human intervention in a few minutes. Such extreme productivity improvement
and the resulting performance level indicate that R-Stream·TF is a useful tool for
quickly generating highly optimized implementations of TensorFlow. The opti-
mized code generated by R-Stream·TF can be used as-is on platforms for which no
optimized implementations of the kernel libraries used by TensorFlow are avail-
able. It can also provide an optimized baseline implementation of TensorFlow
which can be progressively replaced by hand-optimized kernels when needed and
as the resources become available to perform those optimizations.

All the code optimizations available in R-Stream are enabled when it is used
as the optimizer of R-Stream·TF. Even though the individual contribution of
each compiler transformation is hard to assess from the optimized code gen-
erated, we observed that automatic parallelization and vectorization were the
primary contributors to performance. Other optimizations such as loop fusion
and code generation optimizations also contribute to the resulting performance
improvements.

From the measured execution times, it is also clear that not all the polyhe-
dral optimizers reach the same level of performance. We evaluated three different
polyhedral optimizers considered as robust optimizers but the achieved perfor-
mance varied considerably across optimizers during our experiments. The differ-
ent levels of performance are due to the different heuristics and designs employed
in the tools. For instance, PPCG and Polly both use the scheduling algorithm
implemented in the ISL library [25]. On the other hand, R-Stream uses the
JPLCVD scheduler [5,17], which exploits a different set of heuristics and tech-
niques to determine the best schedule for a program. Similarly, R-Stream is able
to automatically determine relevant tile sizes for the loop nests, while PPCG
cannot and falls back to default tile sizes in the absence of further instructions.
Such different designs result in different optimization decisions and explain the
variation in the performance reached by the various optimizers.
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4 Enabled Experiments/Work

With R-Stream·TF many new experiments and future developments are enabled,
including:

– Expansion of the set of TensorFlow operators supported.
– Greater exploration of subgraph formation heuristics. R-Stream includes spe-

cial features for greatly improving the scalability of polyhedral optimization,
which may enable subgraphs of large size to be handled, and for more complex
architecture targets to be addressed.

– A comparison with XLA and a deeper investigation of the gap with hand
code.

– Expansion to additional deep-learning frameworks (Caffe, etc.)
– Addressing the opportunities of sparsity. R-Stream has some ability to opti-

mize code working on sparse matrices and tensors.
– Generating optimized code for training.
– Exploitation of R-Stream’s ability to generate code for distributed architec-

tures, GPUs and event-driven task (EDT) dataflow runtimes.
– Application of R-Stream to model and generate code for specialized deep-

learning architectures.
– Just-in-time compilation improvements and direct-to-GDG translation.

5 Related Work

Polyhedral optimizations are integrated in most of the mainstream compilers
to perform advanced code transformations and improve execution time. For
instance, Graphite [21] is a polyhedral optimizer in GCC and Polly [13] is the
counterpart for LLVM. Independent polyhedral compilers also exist, though most
of them are research projects and tend to become unsupported quickly. Notable
polyhedral compilers still maintained are Pluto [7] and PPCG [26]. Most of the
polyhedral tools are currently backed by the ISL library [24]. R-Stream [19] is
a commercially supported polyhedral compiler with additional capabilities and
supported platforms. R-Stream·TF is naturally based on R-Stream but can exploit
any optimizer, polyhedral or not, that accepts C files as its input. This flexibility
is demonstrated in the experimental section.

R-Stream·TF is essentially a polyhedral compiler for a domain specific lan-
guage: TensorFlow graphs. Polyhedral optimizers based on DSLs have already
been proposed for domains where regular data structures and computations are
common [4,20]. R-Stream·TF is however, to the best of our knowledge, the first
attempt at performing automatic polyhedral optimizations on neural network
computations.

There is currently intense activity around software frameworks oriented
towards neural network computations. The high interest in this domain is
reflected in the numerous frameworks available, most of them backed by signifi-
cant companies or organizations. Caffe [15], the Cognitive Toolkit (CNTK) [27],
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Torch [10], Theano [6], and TensorFlow [2] are among the most popular frame-
works. Interestingly, while all these frameworks compete against each other by
providing roughly the same set of capabilities, they are all based on the same
design, with an operation graph as their core concept. Such uniformity across
all the platforms is doubly beneficial to our approach. First, the ecosystem of
frameworks is still unsettled and it is unlikely that all the competing approaches
will be maintained in the future. However, since all the popular frameworks
are based on the same design, it is likely that the approach implemented in R-
Stream·TF will remain relevant. Second, because the frameworks share similar
designs, R-Stream·TF could be easily ported to another framework, extending its
applicability beyond the sole TensorFlow framework.

Neural network software frameworks are sometimes able to optimize the com-
putation graphs in a holistic way, similarly to what is done in R-Stream·TF. Rele-
vant examples include NNVM in MXNET [8], Intel Nervana Graph, and, closer
to our work, the XLA compiler of TensorFlow. The most advanced optimiza-
tions available in these tools propagate the constants in the graph, reduce mem-
ory usage, and fuse operators. TensorFlow provides a dedicated optimizer, XLA,
performing ahead-of-time and JIT optimizations on the graph. XLA relates to
R-Stream·TF since both tools have the same goals: specializing the graph code to
the specific operation parameters and hardware platform in order to improve the
computation performance. However, R-Stream·TF exploits the polyhedral model
and all the associated optimization techniques to optimize the computation
instead of ad-hoc optimizations specifically designed for the graphs. Using the
polyhedral model generalizes the representation of the graph operations present
in TensorFlow and significantly extends the set of optimizations that can be
performed to the graphs.

6 Conclusion

R-Stream·TF exploits the polyhedral model to optimize TensorFlow computa-
tions. The optimizations are performed by an existing polyhedral compiler specif-
ically for a graph and a target architecture and without human intervention. Dur-
ing its evaluation, R-Stream·TF reached performance levels close to that of the
hand-optimized code provided with TensorFlow for modern x86 64 processors.
Such ability to automatically produce highly-optimized code makes R-Stream·TF
an adequate tool for generating an optimized baseline implementation for Ten-
sorFlow computations on a new architecture.
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Abstract. With the increasing complexity of upcoming HPC systems,
so-called “co-design” efforts to develop the hardware and applications in
concert for these systems also become more challenging. It is currently
difficult to gather information about the usage of programming model
features, libraries, and data structure considerations in a quantitative
way across a variety of applications, and this information is needed to
prioritize development efforts in systems software and hardware opti-
mizations. In this paper we propose CAASCADE, a system that can
harvest this information in an automatic way in production HPC envi-
ronments, and we show some early results from a prototype of the system
based on GNU compilers and a MySQL database.

1 Introduction

Heterogeneous architectures and complex system design have been consistent
challenges for the high-performance computing (HPC) applications community.
For example, in the ongoing CORAL project [4] and Exascale Computing Project
(ECP) [10], HPC researchers, U.S. Department of Energy computing facilities,
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and system builders are engaged in designing the system software layers to tightly
couple with both low-level hardware and high-level applications. In order to
better inform such efforts, often referred to as “co-design,” we have to answer
specific questions about how applications are using current HPC architectures
with detailed, quantitative data as evidence.

Currently in the HPC community, we have insufficient ways to know in quan-
titative detail which system software features are required by user applications;
we most often rely on single-use, labor-intensive efforts [33], “institutional knowl-
edge”, or written survey responses and anecdotal input from developers [15].
This knowledge is tethered to the developers who have intimate knowledge of
the codes, and current tools are used on a subset of applications providing either
very narrow, application-specific views of the source code and performance traits
that are not well-suited for inter-application reasoning or broad summaries that
lose the detail needed for research and system design. This absence of quantita-
tive application information at HPC centers leads to intuition-based engineering
and is increasingly identified as an HPC community challenge with calls for
structured responses emerging within community forums [31].

There are simple questions about the distribution of HPC applications
that we cannot answer quickly and accurately in production application envi-
ronments, like which programming language features, parallelization methods,
libraries, and communication APIs are used commonly across HPC applications.
These questions become even more urgent for the documentation of application
requirements for next generation HPC systems, the planning of long-term com-
puter science research programs to fill capability gaps, and in the execution
of scientific applications readiness programs that prepare codes to accomplish
large-scale science on upcoming systems. Program characteristics such as data
structures layouts, data access patterns, type of parallelism used, profitable com-
piler optimizations and runtime information, need to be captured in a systematic
and transparent way to the user, so that conclusions can be made at an HPC
center-wide level.

To provide this currently unavailable information, we propose a method to
automate the collection of application program characteristics from compiler-
based tools and enable knowledge discovery and feature detection from this data.
Since compilers know everything that is necessary about a source code to lower
it to a resulting executable on a given architecture, we are working to create a
curated database to provide convenient access to information harvested directly
from compiler intermediate representations to enable data analytics techniques
on application source code to inform ongoing HPC research and co-design activ-
ities. These cross-application analyses will lead to a quantitative understanding
of the overall HPC application landscape and where high-value opportunities lie
for development of system software and tools.

Having the ability to answer the questions similar to those above will enable
evidence-based support for the HPC research community, standards committees,
and system vendors. Exploring these issues in depth will allow researchers to gain
continued and deeper insights into these issues as we co-design applications with
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upcoming exascale software and hardware architectures as part of ECP. Our
community will be better equipped to develop tools, inform hardware develop-
ment and standards committees, and understand HPC science application needs.
Designing HPC systems and vendor engagement will be facilitated by a complete
and detailed understanding of real application practices and requirements across
the breadth of HPC applications.

In order for this knowledge to be useful in the near and longer-term future,
it needs to be both accurately harvested with reliable tools, curated for data
quality, and made easily accessible to a variety of users. Rather than relying on
one-off research and limited-use implementations, our approach uses as a ref-
erence implementation industry-standard tools that are already widely used on
HPC platforms and can handle the complexities of all full HPC applications
rather than miniapps or only specific applications, while being totally trans-
parent from the user. The GNU Compiler Collection (GCC) is today able to
compile the in-production version of most current HPC codes, and it supports
both the OpenMP and OpenACC programming models. As the Clang and Flang
LLVM front-ends continue to mature on upcoming systems and become adopted
by production HPC application users, we envision porting our analysis tools to
that toolchain as well. Finally, we have worked with PGI to implement this data
extraction in their compiler suite, with the -Msummary flag made available in the
PGI 17.7 release [7]. We hope to engage with other HPC compiler vendors in the
near future and come up with defacto specifications for parallel program static
analysis information.

2 Background and Related Work

Various tools have been developed to capture program information, but they
are not commonly used for application data collection on production systems
because they are either not fully automated (e.g. transparent to the user), have
high barriers to entry for users, not able to handle full production application
codebases, require significant user intervention (e.g. code restructuring, working
with tools experts), and/or they are not available on all platforms.

OpenAnalysis [43] was an attempt to create a database of program analy-
sis that can be reused across compilers or tools. It relied on Open64 [24] and
ROSE [36] compiler components, but neither of these are widely used by produc-
tion applications across HPC centers. The TAU Program Database Toolkit [37]
captures program structure and stores it in the PDB format which is used for
instrumenting the source code. However, this requires adding extra steps in the
build system and parsing the application with PBT front-ends that may require
program refactoring. The HPCToolkit [12] hpcstruct component gathers some
program traits from the binaries of applications by trying to reconstruct specific
constructs like loop nests, however it cannot detect the higher level features of
languages due to information loss during lowering.

There have been compiler-based tools with advanced analysis capabilities.
Tools such as ROSE [46], Hercules [35], TSF [21] and RTalk [25] store program
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analysis information with the goal of applying transformation-based recipes that
contain static or run-time information of the code. CHiLL, together with Active
Harmony [45] focus on parameter selection and compiler heuristics for auto-
tuning. The Klonos [26] tool extracts sequences of operators from the interme-
diate representation of compilers to find similarity between the codes, but the
resulting information is difficult to relate back to the source code beyond the
procedure functionality. These tools either do not cover the full spectrum of
HPC languages or are maintained as research tools not intended to be used in
production, and their goal is not to be totally transparent from the user, as they
are meant to interact with the user.

The Collective Tuning project [30] aims to create a database of program
structure features and find compiler optimizations for performance, power, and
code size. The main goal of the now deprecated [8] GCC plugin-based MILE-
POST project from cTuning was to collect program features for the purpose of
feeding these back to the compiler optimizer, instead of being made understand-
able for human researcher consumption. However, it was the efforts of cTuning’s
Interactive Compilation Interface [6] project that contributed to GCC’s plugin
infrastructure that we now use for CAASCADE.

Dehydra [1] and Treehydra [2] are analysis plugins that expose different GCC
intermediate representations intended for simple analyses and “semantic grep”
applications. Unfortunately, they have only limited Fortran90 support, and the
output hides important application information. Pliny [27] is a project that
focuses on detecting and fixing errors in programs, as well as synthesizing reliable
code from high-level specifications. It relies on mining information and statistical
information and is still in the early research stage and currently doesn’t support
Fortran. Finally, tools such as XALT/ALTD [13,22], PerfTrack [34], Oxbow/-
PADS [41], IPM [29], and HPC system scheduling information provide system
environment, linkage information (e.g. for library detection) runtime and perfor-
mance information that is complementary to application source code features.
As discussed below, we intend for CAASCADE to interface closely with these
related sources of application information.

3 Design and Methods

The core of CAASCADE consists of: the compiler-based static analysis and the
data storage and analytics backend. Information about various aspects of the
application source code is harvested directly from the compiler’s intermediate
representations (IR) and converted into a format that can be ingested into a SQL
database or analytic engines such as Apache Spark [47]. CAASCADE produces
program information for each compilation unit and inserts the information in
the object file. At link time, it then retrieves the program information from
every object file and stores this information in the database. A symbol identifier
is inserted in the application executable binary to identify it with the program
information stored in the database.
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3.1 GNU Compiler Plugin Implementation

To prototype the static application analysis, we used the built-in plugin infras-
tructure [5] from the GNU Compiler Collection (GCC) to extract information
directly from the compiler’s IR and data structures. There are about thirty plu-
gin callback hooks to trigger plugin execution, that span locations from just
before a new translation unit pass is started to the majority of these locations
being among the various lowering and optimization passes.

For gfortran, GNU doesn’t currently provide any plugin callback in the For-
tran front-end. We found it easiest to add our own call-back to the gfortran
front-end that triggers right after the processing of a translation unit is com-
pleted (after parsing but before any lowering). For the C/C++ front-end as well,
we added our own hook into the g++ front-end right after a translation unit has
been finalized, and piggy-back onto the translation-unit tree dumper (enabled
with the -fdump-translation-unit flag to g++), where we reuse the internal
tree traversal engine, but insert our own data extraction and processing routines.

By placing our plugin execution carefully within the GCC front-ends, we
know that all of the parsing and abstract syntax tree (AST) building has been
completed, but lowering has not yet taken place. This approach will also help
us store the compiler’s internal data structures to communicate across multiple
levels of intermediate representation and relate the analysis back to the source
code. Currently, we primarily target the AST level IR as it is most directly
relatable to the original user-written source code. However, our goal is to enable
the extraction of program information and analysis from multiple levels of the
intermediate representation while mapping them to the source code.

High-Level Languages. Each translation unit is characterized by the invocation
of a GCC language front-end, so to keep track of the proportion of each high-
level language being used in an application, we can accumulate statistics about
executable statements and data declarations within each translation unit. By
working at the AST level, it is possible to eliminate inconsistencies such as com-
ments, whitespace, bracket placement, or line-continuations. Additionally, based
on the features that we see in executable statements or declarations and classify-
ing them according to the language standard needed to support those features,
we can determine the proportion of each language standard being used and the
coverage across those standards. Table 1 shows the information the compiler is
collecting about the source code for Fortran applications.

In addition to the metrics above, the plugins collect information regarding
variable and data structure information from the application; a list of these
metrics is shown in Table 2.

Parallelization Methods. Our plugins understand directives from both
OpenMP [39] and OpenACC [42], as well as Message Passing Interface (MPI) [38]
library calls. This allows us to easily detect when we are within a parallel direc-
tive’s lexical extent, and which variables and types are being used in inter-node
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communication via MPI or directive data clauses for transfers between host
and discrete accelerator memories. As with the high-level languages, we can also
detect the proportion and coverage of each standard being used, based here on
matching the directives or calls that are present in the code with those in the
specification versions. For understanding directives, we depend on the compiler’s
native support and so are constrained to versions of OpenMP and OpenACC
that have been implemented in GCC. To handle MPI, we treat it as any other
library (as discussed below). Table 2 shows the program information we collect
about the directives parallelization method.

Table 1. Translation unit and procedure information

Translation unit Procedures

compiler version subroutine name

programming language/model # of exec statements

module/class/typedef # of loops

main program name max loop nest depth

line numbers # call statements

list of call chains

# use modules

total module variables

list of module variables

list of module subroutines

# of symbols

# symbols in other namespaces

# of namelists

# of statements

classification by statement types

modules used by subroutine

classification of statements per standard

Libraries. While there is a practically unlimited number of libraries that could be
used in a code, we are interested in common HPC libraries that have high reuse
across applications, are critical for an application’s performance and portability
across HPC architectures, and typically require a large effort (both by the com-
munity and hardware vendors) to optimize for various platforms. As a starting
point, we chose a sample of numerical (BLAS [14], LAPACK [16], FFTW [28],
PETSc [18–20]), communication (MPI [38], SHMEM [23]), and data manage-
ment (HDF5 [44], ADIOS [11], NetCDF [40]) libraries.

For C/C++, this task is made easier by the necessity of include files which
become part of the analyzed translation unit. By descending into recognized
include files, symbol names can be gathered that are known to be part of the
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library, and their usage examined along with the application’s declared data rep-
resentations, for example as type information passed as part of function parame-
ters. However, in the case of Fortran, it is necessary to separately gather, compile,
and store information about the libraries of interest, and then compare the infor-
mation from application compilation to that previously seen during the separate
library compilation. For this reason, the source code metadata pertaining to the
libraries listed above must be stored along with the data from applications of
interest.

Table 2. Data structure and parallelization method information

Variable/Data structure information Parallelization method information

# variables # OpenMP directives

# array variables # statements inside OpenMP

# co-array variables # OpenMP threadprivate variables

# pointer variables # OpenMP UDR variables

# contiguous variables # OpenMP declare target variables

# target variables # OpenACC directives

# allocatable variables # statements inside OpenACC

# artificial variables # OpenACC subroutine

# asynchronous variables # OpenACC declare create variables

# optional variables # OpenACC declare copyin variables

# dummy variables # OpenACC declare deviceptr variables

# protected variables # OpenACC declare device resident variables

# volatile variables # OpenACC declare link variables

# abstract variables

# implicit type variables

# in namelist variables

# external variables

# parameters

# common block variables

# derived types

# derived types with components

# derived types with direct components

# derived types with indirect components

# derived types with array components

# derived types with allocatable components

# derived types with pointer components

# derived types recursive

3.2 Database Infrastructure

As compilation proceeds and the plugin gathers data from the IR, this data is
stored in an application-independent way so that it is available for queries about
the application and its design. The goal is to make the data more accessible
than the source code or the raw compiler IR, but flexible enough that it mini-
mizes presuppositions about particular questions that might be asked about an
application’s implementation.
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Application Data. In order to provide the most general representation of the
data while making it structured enough that non-compiler experts can explore
and use it, we use an SQL database with a normalized schema. The schema
holds administrative data about the build platforms and application versions, as
well as the source code metadata itself. This enables comparison and differenti-
ation for the data collected depending on the target platforms of the application
compilation, e.g. if specialized features are guarded with #ifdef’s. Our current
version stores a linkage and compile table to store program information. The
compiler output from both GNU and PGI is stored in JSON format. The next
version of the tool will refine the database schema to the compilation information
from both compilers into a single schema.

To ensure support in different HPC environments, we allow several trans-
mission methods to store to the database the results gathered by our plugins.
We leverage the XALT [13,22] transmission machinery to easily accomplish this.
The most direct way is by making an SQL connection from the compiler plugin
itself and inserting the streaming results into the database. The plugins can also
create an intermediate JSON file which can be parsed at some later time for
consumption by the database. Finally, the plugin can elect to send results via
syslog to a logging server which can then be parsed for database storage. The
latter two methods are useful if direct database connection is not possible or is
undesirable, for example due to security considerations that require the database
server to be in a different network enclave, or due to performance considerations
by avoiding the higher latency often associated with direct database queries on
high-load machines.

Front-End Access. Storing this data in the database also enables advanced
queries and post-processing analysis to be performed at a later time in order
to gain more insight about the applications. For example, one can get his-
torical perspectives about how data structures and directives in the source
code have evolved by looking at the plugin compilation data over time. One
can also do queries across different databases about the application (e.g.
from a user accounts/project database, a job submission database, an XALT
database [13,22], etc.). An inter-source-code analysis across all files for an appli-
cation can be done to gain an overall understanding of all the data structures
and directives used by an application.

Some users may not want to interact directly with SQL queries, so we are
building a front-end website that allows the user to get basic insights about the
application data. We provide graphical representations for some of the major
statistics that are gathered and stored by the system. An example showing lan-
guage usage, parallelization strategies, and data structure compositions is shown
in Fig. 1 for the ACME [17] application.
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Fig. 1. High-level information such as Fortran language standard (top left), the type
of variables (top right), OpenMP and MPI parallelization methods by the number of
statements (bottom left), and subroutines with OpenMP pragmas (bottom right) in
ACME as collected by our tools.

4 Results

As a prototype of these ideas, we have implemented the compiler-based static
analysis in the GCC gfortran and g++ frontends, and through collaboration with
PGI in the pgfortran and pgcc frontends as of release 17.7. We have designed
an SQL schema as described in Sect. 3.2, which we use in a database alongside
the XALT system installed at the Oak Ridge Leadership Computing Facility
(OLCF). In the following sections, we demonstrate a sample of some of the
basic statistics that can be gathered using these tools on full in-production HPC
applications.

We take the Accelerated Climate Modeling for Energy (ACME) [17] as one
of the first applications on which we exercised our tools. To make our tools
work transparently on the system, we created a simple wrapper for the GCC
compiler executables to automatically enable our custom plugin. This avoids
having to modify the application build system with specific flags. Our tools also
automatically insert the collected compile-time information back into the object
files. During linking, a linker wrapper goes through these object files to gather
these data using the selected transmission method (see Sect. 3.2).
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As a sample of the information that is automatically pre-generated by our
front-end website, Fig. 1 shows high-level information from the ACME applica-
tion such as the Fortran language standard usage in the code, the distribution
of the type of variables and parallelization methods (OpenMP and/or MPI).

In Fig. 1, the top left panel shows the relative usage of various Fortran stan-
dards, which (combined with specifics on the features used) gives an indication
of the support required by compilers for HPC architectures. The lower left panel
gives a high-level description of the overall “MPI+X” parallelization scheme
being used in this application. While MPI and OpenMP express their respective
forms of parallelism differently, this comparison might give an overview of the
relative effort being expended on each type of parallelism – in this case, it is
essentially equally distributed. The top right and bottom right panels indicate

Fig. 2. Summary information about OpenMP usage in the ACME application. The
usage of specific OpenMP statements is shown in the top panel, and the proportion
of code covered within OpenMP lexical extents is shown per subroutine in the bottom
panel. On the bottom panel, only the top fifteen subroutines are shown for clarity.
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Fig. 3. MPI routines used in the ACME application. The frequency of calls for each
MPI routine is shown. Only the fifteen most called routines are shown for clarity.

porting efforts that might be required for new parallelization schemes or archi-
tectures by showing the usage of various types of data structures being used,
and the percentage of subroutines that most probably need to be considered.

Figure 2 goes one step deeper into the usage of OpenMP in ACME, with
the top panel showing the coverage of OpenMP features being used, and their
frequency in the source code. The bottom panel indicates the concentration of
intranode parallelism by showing the percentage of code covered by OpenMP
lexical extent per subroutine.

Similar information regarding MPI calls can also be easily obtained. Figure 3
shows the frequency of MPI routines used in the application. It is relatively
trivial to expand this information gathering across not only applications, but
also different libraries. Although in this case we only show example for one
application (ACME) and one library (MPI), it is easy to imagine that having
this information in aggregate across multiple applications and libraries will give
insights into co-design efforts.

5 Conclusions and Future Work

In this paper, we have outlined a strategy to fill a current gap in the HPC
application development and co-design ecosystems. Compilers know everything
necessary about a source code to determine the behavior of the executable on a
given architecture. We have shown that it is possible to extract this information
from compilers and make it accessible and useful for inter-application analyses.
In the near term, we have received requests for this data for use in designing
and extending parallel APIs in both programming models and well-known HPC
libraries. We also hope that this information will be useful in the upcoming
exascale platform designs by shedding light on how application developers have
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been using the current leadership architectures, as well as prototyping their
algorithms on new hardware.

In order to increase the deployment flexibility of the system and decouple
the data analysis and storage phases, we envision using the DWARF [3] binary
data format, which is an extensible open-standard format for storing informa-
tion in binaries generated by most modern compilers both proprietary and open-
source. DWARF can be used to store the static analysis information together
with the generated application binary, which could then be extracted by exist-
ing, standard-conforming binary manipulation utilities. This would allow for a
portable and standardized way for other compiler implementers (including pro-
prietary and closed-source) to participate in the system.

For maximum coverage, the prototype system as described in this paper
is being installed on the Oak Ridge Leadership Computing Facility (OLCF)
Titan [32] and early-access Summit [9] systems to automatically gather and store
application data at compile time from participating users on an opt-in/out basis.
It is necessary to work with early adopters to determine the appropriate level
of data anonymization and sanitation before making the data publicly available
outside of OLCF. Systems usage and user job information is already being stored
in systems like XALT, and we have coupled our SQL schema to be easily queried
together with the dynamic linkage and job submission information already being
captured by XALT.

Furthermore, coupling detailed yet generalizable information from static
analysis and runtime performance analysis will greatly increase the efficacy of
both, especially for inter-application statistics. For example, combining hotspot
analysis with data structure layout information should lead to optimization
opportunities in compilers, runtimes, and programming model design.

Structuring the data in an application- and compiler-agnostic way and stor-
ing it in an SQL database that can accommodate flexible queries is essential
to servicing previously intractable questions about application source code and
programming model usage. However, even more complex data analytics is made
possible by using purpose-built frameworks like Apache Spark. Through ongoing
collaborations, we are investigating these techniques to answer “fuzzier” ques-
tions about topics such as automatic parallel computational motif usage and
application evolution over time and hardware architectures.

It is hoped that tools such as the one presented here, when coupled with
advanced data analytics techniques, will lay the foundation for future research
in sophisticated methods for adapting high-performance applications to vari-
ous types of architectures, such as using machine learning techniques for port-
ing applications. Additionally, this work will provide better insight into how
HPC applications are evolving over time and across disparate architectures, e.g.
through quantitative metrics that can be captured as applications transition to
exascale platforms.
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Abstract. Comparing data is a key activity of performance analysis. It
is required to relate performance results before and after optimizations,
while porting to new hardware, and when using new programming mod-
els and libraries. While comparing profiles is straightforward, relating
detailed trace data remains challenging.

This work introduces the Comparison View. This new view extends
the trace visualizer Vampir to enable comparative visual performance
analysis. It displays multiple traces in one synchronized view and adds a
range of alignment techniques to aid visual inspection. We demonstrate
the Comparison View’s value in three real-world performance analysis
scenarios.

Keywords: Alignment · Comparison · Performance analysis ·
Tracing · Visualization

1 Introduction

HPC application developers need to leverage the potential performance of mod-
ern HPC computing systems. Increasingly complex hardware configurations as
well as software systems make achieving this goal ever more challenging. Per-
formance analysis tools aid developers in obtaining better scalability, tracking
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down bottlenecks, and in general enable detailed understanding of the perfor-
mance characteristics of applications.

Performance tools observe metrics about and behavior of a running appli-
cation and its underlying system. After an execution they present the obtained
performance data in text or through visualizations. Investigating application per-
formance typically involves comparing data between multiple application runs,
for example with varying number of processing elements, varying inputs, and
varying hardware configurations.

Performance data comes in two principal flavors: profiles and traces. Pro-
files consist of aggregated performance data. For instance a flat profile summa-
rizes the number invocations and time spent for each function of an application.
Another common form is the call path profile. It works similarly, but aggregates
information for a function call stack configuration, rather than a function and
disregarding its calling context. Comparing two profiles can be achieved by sub-
tracting the values of one profile from the other for each equal function (or call
path).

However, the ability of profiles to reveal performance problems is limited.
Many performance issues are dynamic in nature, and hard to detect in an aggre-
gated statistic. For example to see if load balance worsens over time, or a perfor-
mance flaw occurs only occasionally (and is thus averaged out), more detailed
performance data is needed.

Traces retain the chronological order of events, where profiles do not. This
more fine-grained performance data enables investigating dynamic behavior of
applications. However, displaying more data, makes investigating traces more
difficult. Comparing two traces is even more challenging, because two runs of the
same application can be very different. Possible reasons for this include timing
differences, reordered functions, partially removed stacks (due to e.g. function
inlining) and changes in dynamic application behavior.

In this work we introduce techniques to improve visual trace comparison.
Our contributions are:

– Vampir’s [2] Comparison View, which displays traces and statistics side by
side. It allows manual alignment of multiple traces on one common timescale
to simplify visual comparison.

– A heuristic to automatically align traces.
– A case study demonstrating the effectiveness of the Comparison View for

performance analysis of real-world applications.

All introduced techniques are available starting with the current Vampir and
VampirServer releases.

This work is organized as follows: Sect. 2 enumerates related work. Section 3
presents our techniques and implementation. Section 4 shows how the Compari-
son View aids performance understanding and improvement for three real-world
scientific applications. The last section summarizes our contribution and high-
lights future development directions.



Visual Comparison of Trace Files in Vampir 107

2 Related Work

Comparing performance data is a central activity in performance analysis. Con-
sequently, a wide range of research has been performed on this topic. Solutions
range from profile comparison techniques to advanced trace compression and
analysis schemes. The developed techniques can serve different purposes. For
example clustering algorithms can be used to compress data, automatically cat-
egorize it, or aid visualization.

Schulz and de Supinski’s [14] present a tool, based on GNU gprof, for com-
paring profiles between application runs. Song et al. [15] introduce an algebraic
framework for comparing profile-based performance data.

PerfExplorer [7] provides a framework for performance data mining. It allows
comparing runtime, relative speedup, and efficiency across different sets of pro-
files.

Weber et al. developed techniques for structural comparison of performance
data. They introduced a hierarchical alignment algorithm [17] that compares the
structure of two traces. Building on that, they introduced alignment-based com-
parison metrics [20] to highlight structural and temporal differences between
application runs. In subsequent work they developed a structural clustering
algorithm [18] that scalably classifies processing elements into groups of simi-
lar behavior.

In the context of the performance analysis tool Paraver [13], Llort et al. [11]
use object tracking techniques to automatically detect changing performance
characteristics between application runs. Knüpfer et al. [9] propose the Com-
pressed Complete Call Graph structure for trace data. The technique identifies
similarities inside of and between processes to store trace data more efficiently.
This compressed storage is able to speed up various analysis operations, as well
as reveal repeating patterns in program execution.

Mohror and Karavanic [12] divide applications into segments. Based on the
similarity of these segments they compress the traces while retaining as much
crucial performance information as possible. Gamblin et al. [4] use an adapted
k-means clustering algorithm to scalably compress trace data.

Trace viewers like Vampir [2] and Intel Trace Analyzer [8] provide visual
analysis of trace data. Intel Trace Analyzer offers visual comparison of two traces,
but lacks the ability to align them. To compare trace it stretches both into the
same time frame. This leads to a rather unnatural representation of the trace,
making visual comparison challenging. Vampir supports folding timelines [19] to
save space and get an aggregate view of multi-processing element activity (e.g.
CUDA streams, or OpenMP threads) where appropriate. Edge bundling [1] is
a promising technique for aiding visual analysis and comparison of large-scale
communication traces.
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3 Methodology

This section introduces a new Comparison View and its features for visual trace
file comparison. The Comparison View integrates all common performance charts
of Vampir and adds additional comparison functionality. To enable effective com-
parison of multiple trace files we couple and synchronize the zoom of the traces.
In Vampir the user can zoom into regions of a trace to investigate areas in more
detail. To compare areas of interest between traces, displayed trace regions need
to be freely shiftable in time. This allows for arbitrary alignments of the trace
files, and thus, enables visual comparison of user selected areas side by side.

The number of compared trace files is not limited by Vampir. However, Vam-
pir needs to load the complete data of all trace files into main memory. Thus,
the amount of available main memory becomes the limiting factor. In order to
compare large trace files exceeding the size of typically available memory on
workstations, users can employ VampirServer for the comparison. VampirServer
runs in parallel on an HPC machine. This component allows to harness the
distributed memory of a cluster for the comparison.

Fig. 1. The Comparison View showing three traces

Figure 1 shows the new Comparison View. We use three example trace files
to introduce its comparison functionality. The example traces show one test
application performing ten iterations of calculations. Each trace, respectively,
represents an execution of this application on a different machine.

3.1 Comparing Application Characteristics Using Charts

As indicated by the Navigation Toolbar, at the top in Fig. 2, all three trace files
are included in the single Comparison View instance. The Navigation Toolbar
gives an overview of all open traces and provides an easy access for manipulating
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Fig. 2. Open Comparison View

the selected zoom area. The Comparison View provides timeline and statistic
charts (common charts of Vampir) for the comparison of performance metrics.
Colors in the charts represent different function calls, e.g., MPI calls are shown
in red, computations are shown in cyan (in this example). The Comparison View
opens one chart instance for each loaded trace file, i.e., one click on the Master
Timeline icon opens three Master Timeline charts. In order to distinguish charts
between traces, we assign a dedicated background color to all charts belonging
to one trace.

As shown in Fig. 2, trace A exhibits the largest duration time. The duration of
trace C is so short that it is barely visible. Zooming into the compute iterations
of trace C (left side in Fig. 2 at 0 s) would make them visible and allow an
detailed inspection. However, due to the coupled zoom, zooming into the area
around 0 s would also zoom into the MPI Init phase in trace A and B. To visually
compare the compute iterations between all three traces, they need to be aligned
side by side. This necessitates an alignment method for the traces to facilitate a
meaningful visual comparison of related areas. We present the available options
for trace alignment in the following.

3.2 Aligning Traces Manually

The Comparison View allows to shift individual trace files in time. This enables
comparison of areas that did not occur at the same time. In our example the
compute iterations need to be aligned prior to visual comparison because the
initialization of the application took different times on the three machines.

We provide several ways to shift trace files in time. One option is to directly
set the time offset of an individual trace using a context menu. The easiest way
to achieve a coarse alignment is to directly drag and drop (using the mouse) the
trace in the Navigation Toolbar. Figure 3 shows the compute iterations of all
example trace files coarsely aligned.
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Fig. 3. Coarse alignment of traces using the Navigation Toolbar

Fig. 4. Fine-grain alignment of traces directly in the Master Timeline

After the coarse shifting the Master Timeline allows a finer alignment directly
inside the chart. Therefore, the user can zoom into an area of interest and directly
align the traces by dragging with the mouse. Figure 4 depicts the process of
dragging trace C to the compute iterations of trace A and B.

As shown in Fig. 4, although the initialization of trace A took the longest,
this machine was the fastest in computing the calculations.

3.3 Aligning Traces Automatically Using Predefined Markers

Markers in traces point to particular places of interest in the trace data. These
markers are useful for navigation in trace files. For trace file comparison markers
are interesting due to their potential to quickly locate places in large trace data
sets. They allow to quickly find the same location in multiple trace files.

The Marker View in Vampir provides a combined access to all markers con-
tained in the open trace files. Clicking a marker in the Marker View highlights the
respective marker in the Master Timeline. Another way to navigate to a marker
in the timeline charts is to use the zooming functionality. Therefore, a user first
zooms into the desired zooming level. Clicking a marker in the Marker View will
then set the timeline chart to the marker position. Thus, the selected marker
appears in the center of the timeline chart. Moreover, the Marker View provides
two additional ways of navigating with markers. If two markers of one trace
are selected, the Comparison View sets the zoom to the according timestamps
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of the markers. If two markers of different traces are selected, the Comparison
View adjusts the time offset between the respective traces and shows the selected
markers next to each other, and consequently, aligns both traces at the respective
markers.

t

Trace B
Process 0:

Trace C
Process 0:

Trace A
Process 0: a b

main

b cb
a

a
d

a b
main

b cb
a

a
d

a
main

c
a

a
c

main: 1
b: 3
c: 1

main: 1
b: 3
c: 1

main: 1
b: 0
c: 1

Fig. 5. Example showing the automatic alignment of three processes. Function c

(shown in red) in trace A is selected. Our heuristic finds the respective function invo-
cations in trace B and C and aligns all traces at that function. The function invocation
profiles for the selected functions (red line) are shown at the right side. (Color figure
online)

3.4 Aligning Traces Automatically Using Call Invocation Profiles

In addition to manual alignment we also provide a heuristic that automatically
aligns traces. Using this heuristic users can select an interesting function in
one trace and have all other traces aligned automatically to that function. This
facilitates direct visual comparison by saving the user from manual aligning.

In this section we describe the alignment heuristic using the example shown
in Fig. 5. In this example the user selected function c of Process 0 in Trace A
(marked red in the figure). To align Trace B and Trace C to that function, we
first select the corresponding process in the other traces. Therefore, we search
for a process with the name Process 0 in all open traces1. If no exact match
is found, we compute the Levenshtein distance [10] between names to find the
closest match.

In order to detect the corresponding invocations of function c in Trace B and
Trace C we employ an invocation profile based approach. For reference we first
generate the function invocation profile for Trace A. Therefore, we identify all
functions contained in the call stack of the selected function (red line in Trace
A in the figure). In our example these functions are main, b, and c. Then we
traverse Trace A and count all occurrences of these functions until we reach the
selected function. For Trace A this results in the following invocation profile
(also shown right of Trace A in Fig. 5): main: 1 invocation, b: 3 invocations, and
c: 1 invocation.
1 This simple example contains only one process per trace. However, in parallel appli-

cations searching for the selected process is necessary.
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For the alignment we then traverse Process 0 of Trace B and Trace C and try
to match their invocation profiles as good as possible with the profile of Trace A.
In case of a structurally identical traces (e.g., Trace A and Trace B), we find the
related function with a perfect match between both profiles, i.e., the difference
between the invocations of both profiles is zero: |mainTraceA − mainTraceB | +
|bTraceA − bTraceB|+ |cTraceA − cTraceB | = |1− 1|+ |3− 3|+ |1− 1| = 0. If both
profiles match, we stop searching and align both traces at the related functions.
In case of structural differences (e.g., Trace A and Trace C ) we try to find
the position with the lowest possible error between both profiles. For instance,
when we reach the first function c in Trace C the corresponding profile is: main:
1 invocation, b: 0 invocations, and c: 1 invocation. This results in a profile
difference of 3: |mainTraceA − mainTraceC | + |bTraceA − bTraceC | + |cTraceA −
cTraceC | = |1− 1|+ |3− 0|+ |1− 1| = 3. When reaching the second invocation of
function c the profile changes to: main: 1, b: 0, and c: 2. This results in a profile
difference of 4: |mainTraceA − mainTraceC | + |bTraceA − bTraceC | + |cTraceA −
cTraceC | = |1 − 1| + |3 − 0| + |1 − 2| = 4. The second profile exhibits a higher
difference to the reference profile than the first profile. Thus, we stop searching
and select the first invocation of c as related function in Trace C.

The comparison of m trace files requires the traversal of m processes. The
complexity for the traversal of one process is O(n) with respect to the number
of recorded events (each function invocation consists of one enter and one leave
event) in the related process. Thus, in total the complexity for an alignment of
m processes is O(m ·n), assuming maximal n events in each process. In practice,
the computation of the heuristic does not introduce any noticeable lag in the
visualization of Vampir. Interestingly, the computation of a Function Summary
(profile view in the figures) in Vampir poses even higher requirements, involving
a full traversal of all processes of a trace2.

This approach improves the usability of the visual comparison. The heuristic
exactly aligns structurally equal processes. While not perfect, it is also suffi-
ciently robust to correctly align trace files in many cases of structural differences
between processes.

4 Case Study

This section showcases how the comparison view benefits visual performance
analysis. Three real-world optimization scenarios demonstrate its wide appli-
cability. LSMS analyzes the performance impacts of different hardware on an
application. CloverLeaf compares several versions of an application executed
using different programming models. Trinity RNA-Seq Assembler performs a
comparative scalability study of an application and detects scalability bottle-
necks.

2 This example is not directly related to the alignment heuristic. It is only mentioned
here to contrast the computational requirements of the alignment heuristic with
common processing steps in Vampir.
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4.1 LSMS – Comparing Performance Between Different Hardware

The Oak Ridge Leadership Computing Facility uses Vampir and its comparison
view for visual performance analysis to support porting applications from Titan
to Summit. The system employed for early development work is Summitdev.

These new systems bring a number of major changes. Some of them are:
Summitdev consists of 20 Power8+ cores and four NVIDIA P100 GPUs per
node. One P100 has four times the theoretical DPFLOPS peak performance
compared to the Tesla K20X used in Titan. One node has four GPUs instead
of one for Titan. The system supports CUDA MPS, which allows sharing GPUs
between multiple processes.

To explore how these differences affect the CORAL benchmark code LSMS [3]
visual performance analysis is vital. Figure 6 shows an LSMS run on 80 Titan
vs 20 Summitdev nodes. The total number of graphics cards for both is 80.

The vastly faster GPUs and the fact that each GPU has at most five CPU
threads paired (20 divided by 4), in comparison to 16 on Titan, cause the GPU-
accelerated function zblock_lu to speed up, while the non-GPU-enabled func-
tion buildKKRMatrix gains in relative execution time. Thus to further improve
LSMS’s performance, buildKKRMatrix is the new prime function to investigate.

To compare iterations in detail developers use the alignment functionality,
shown in Fig. 7.

To gauge whether CUDA MPS can speed up LSMS, we run it with varying
numbers of threads and processes per node (Fig. 8). The first run has four MPI
processes with four threads each. The second one has five threads each. The
third and fourth runs are 8× 2, and 16× 1, i.e. two and four processes share one
GPU. Strictly, LSMS is most resource-efficient if the total number of threads and
processes divides the number of simulated atoms evenly. But, it turns out using
all 20 cores in a four by five setup is faster than the other variants, although it
adds occasional waiting time on the “left-over” threads. Note that 8 or 16 pro-
cesses cannot evenly use 20 cores with the same number of threads per process.
Another interesting observation is that the increase in MPI waiting time (more
red in the green and cyan timelines) is negated by better GPU utilization.

Fig. 6. Overview of a 80-GPU LSMS run on Titan (white background) and Summitdev
(blue). The timeline display is on the left. Profiles are on the right. (Color figure online)
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Fig. 7. Detailed comparison of one iteration on Titan vs roughly 2.5 on Summitdev

Summarizing our findings, GPU MPS uses the GPU more efficiently. But not
using four cores per node negates this advantage.

The comparison view highly improves visual comparative analysis. With its
help, we are able to gain a deeper understanding of LSMS’s changing perfor-
mance characteristics while transitioning to Summit.

4.2 CloverLeaf – Comparing Performance Between Programming
Models

CloverLeaf is a hydrodynamics mini-app, which solves the compressible Euler
equations on a Cartesian grid with an explicit, second-order accurate method [6].
It is composed of small execution kernels, which simplifies the implementation
with different programming models. To accelerate the computation, the grid can
be split into parts and processed on multiple MPI processes, threads, and target
devices, which however requires a halo exchange and thus, data transfers.

This paper compares the CUDA and the OpenACC implementation3 on an
NVIDIA K80 GPU as target device. We ran all experiments with two MPI
processes, a fixed grid size of 1920 × 960 cells, and a fixed number of 87 time
steps. The test system was equipped with two Xeon E5-2680v3 CPUs at 2.5 GHz
and four K80 GPUs at fixed clock rates of 823 MHz. We used the PGI 17.7
compilers for the OpenACC implementation and the Intel 16.0.2 compilers for
the CUDA implementation. The CUDA toolkit was installed in version 8.0.44.

Figure 9 compares runs of three different versions of CloverLeaf: the initial
OpenACC version (white background), the CUDA version (purple background),
and an improved OpenACC version with exclusive GPU usage (green back-
ground). The Navigation Toolbar at the top shows that the initial OpenACC
version takes almost twice as much time as the other runs, with regard to the
computation phase. A closer look into the execution exposes that it uses the

3 Available at http://uk-mac.github.io/CloverLeaf/, last accessed 26 September 2017.

http://uk-mac.github.io/CloverLeaf/
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Fig. 8. Exploratory comparison of different process vs thread setups. White: 4 processes
times 4 threads per node. Blue: 4 processes times 5 threads. Green: 8 times 2. Cyan:
16 times 1. (Color figure online)

default offloading device on both MPI processes, which results in resource con-
tention with an MPI imbalance as further symptom. CUDA kernels, launched
by one MPI process, delay the kernel execution from the other process. Some
CUDA kernels, such as pdv kernel 80 gpu, run concurrently on the GPU as
they do not fully utilize all compute resources. In the CUDA version and the
fixed OpenACC version, both MPI processes use one GPU exclusively, which
prevents resource contention and keeps the MPI imbalance negligible. Although
the CUDA version is comparatively fast, considering the total runtime, it reveals
optimization potential in the selected program phase. Costly cudaMalloc and
cudaFree calls, invoked by thrust library routines, could be avoided, especially
as they are nonexistent in the OpenACC implementations.

The automatic alignment of traces facilitates the review of small code
changes. Figure 10 shows the effect of an optimization in the halo exchange of
the OpenACC version. The traces have been aligned at function update halo.
The first optimization avoids two unnecessary host-to-device transfers per pack
kernel, indicated by the two missing black lines in the optimized version (purple
background). The second optimization replaces synchronous offloading of mul-
tiple successive CUDA kernels or data transfers with asynchronous equivalents
and a collective synchronization. The effect is obvious for a set of successive ker-
nels, which update the halo on the GPU. They are executed one after another,
without the kernel trigger overhead in between. The same optimization has been
applied for the pack kernel and its following device-to-host transfer.
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Fig. 9. Comparison of different CloverLeaf implementations: initial OpenACC (top),
CUDA (middle), and improved OpenACC (bottom). (Color figure online)

The comparison view helps porting applications to new programming APIs.
It allows users to spot runtime and structural differences, which finally helps
in detecting individual weak spots of implementations. Eventually, comparing
traces is useful to validate code optimizations.

4.3 Trinity RNA-Seq Assembler – Comparing Performance
Between Different Process Numbers

In this section we highlight our efforts to analyze and optimize the RNA-Seq
assembler Trinity with the help of the Comparison View [16]. Trinity [5] is a
software framework for accurate de novo reconstruction of transcriptomes from
RNA-Seq data. Trinity is a pipeline of up to 27 individual components in different
programming and script languages, including C++, Java, Perl, and system bina-
ries, which are invoked by the main Trinity perl script. The pipeline consists of
three stages: first, Inchworm assembles RNA-seq data into sequence contigs, sec-
ond, Chrysalis bundles the Inchworm contigs and constructs complete de Bruijn
graphs for each cluster, and, third, Butterfly processes the individual graphs in
parallel and computes the final assembly.

Our analysis results refer to the release version 2.0.6, while many of our opti-
mizations were included in the release version 2.1.1. One of the main performance
issues that was identified is the poor intra-node scaling of the GraphFromFasta
module. GraphFromFasta is a key part of the Chrysalis stage that clusters the
Inchworm contigs and constructs complete de Bruijn graphs for each cluster.
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Fig. 10. Validation of code optimizations for the CloverLeaf OpenACC port (Color
figure online)

The intra-node parallelism using OpenMP showed very poor scalability by
achieving a speed up of only 2.27 with a full 16-core node in comparison to the
version with only one core [16]. To further investigate this issue we analyzed
the parallel intra-node behavior. We recorded application traces with 1, 2, 4,
8, and 16 OpenMP threads using manual instrumentation of code regions in
the main loop. Figure 11 shows the recorded behavior in comparison for 1, 2,
4, 8, and 16 threads from top to bottom with white, red, yellow, green, and
blue background, respectively. The left side depicts the active code regions over
time on the horizontal axis and the executing threads on the vertical axis. The
summarized overview on the right side presents the accumulated runtime over
all threads for each code region.

The comparison view in Fig. 11 reveals that the work load in the first part of
GraphFromFasta increases nearly linearly with the number of OpenMP threads.
Consequently, there is practically no parallel speed up with more than two
threads. We identified the root cause for this behavior being the frequent creation
and destruction of string stream objects within an inner loop of the massively
called function is simple. The string stream creation is internally locked by
a mutex, which produces excessive wait time since all threads simultaneously
created the string stream objects with a very high frequency. This is visible by
the increasing amount of time spent in the code region marked stringstreams,
from about 25 s with one thread to 260 s with 16 threads.

Further investigation showed that the string stream creation can be moved
out of the inner loop by creating the string stream object before the loop and
only clearing the string streams in the inner loop. Consequently, we were able
to avoid the serialization in this critical section.

This optimization leads to a substantial increase in parallel performance and,
therefore, a remarkable reduced runtime for the first part of GraphFromFasta.
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Fig. 11. Resource utilization of original Trinity 2.0.6 version (Color figure online)

Fig. 12. Resource utilization of optimized Trinity version
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In addition to the better scaling, the serial runtime is reduced, as well; for the
analyzed test data set, the serial runtime decreases from 72 s to 5 s. Figure 12
shows the improved scaling of the optimized version. The parallel speed up is
increased to 8.9 instead of 2.3 with the unoptimized version.

During the analysis of Trinity the comparison functionality was pivotal in
understanding the parallel, intra-node behavior of the GraphFromFasta mod-
ule and in identifying and omitting the root causes of poor parallel scalability.
Equipped with this knowledge, we were able to introduce modifications resulting
in a speedup of 3.9 in the intra-node performance of the GraphFromFasta mod-
ule and in combination with other optimizations a 22 % improvement in overall
run time.

5 Conclusions

This work introduces features for visual trace comparison in Vampir. Our con-
tributions enable simultaneous inspection of multiple traces in a synchronized
Comparison View. This view is already available in current Vampir and Vam-
pirServer releases. It greatly simplifies analyzing application performance for,
i.a., different input data sets, software versions, processing element setups and
hardware architectures.

We present three methods for synchronizing the zoom of multiple traces.
Users can align traces manually, automatically using predefined markers, and
via a heuristic that aligns according to the call profile. The latter method works
well even if the traces have diverging structure.

Three use cases demonstrate the wide applicability of the Comparison View
for performance analysis of real-world applications and highlight its benefits for
detailed visual comparison of performance data.

In this work we focus on visual comparison and structural alignment of multi-
ple traces. We intend to use this work as a basis for enhanced analysis approaches
which automatically analyze structural and temporal differences.
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Abstract. Molecular dynamics (MD) simulation allows for the study
of static and dynamic properties of molecular ensembles at various
molecular scales, from monatomics to macromolecules such as pro-
teins and nucleic acids. It has applications in biology, materials science,
biochemistry, and biophysics. Recent developments in simulation tech-
niques spurred the emergence of the computational molecular engineering
(CME) field, which focuses specifically on the needs of industrial users
in engineering. Within CME, the simulation code ms2 allows users to
calculate thermodynamic properties of bulk fluids. It is a parallel code
that aims to scale the temporal range of the simulation while keeping
the execution time minimal. In this paper, we use empirical performance
modeling to study the impact of simulation parameters on the execution
time. Our approach is a systematic workflow that can be used as a blue-
print in other fields that aim to scale their simulation codes. We show
that the generated models can help users better understand how to scale
the simulation with minimal increase in execution time.

Keywords: Molecular dynamics · Performance modeling ·
Parallel programming

1 Introduction

Molecular dynamics simulation is a fundamental approach for understanding
the behavior of matter at the molecular level. In physics, molecular dynamics is
used to study the behavior and interactions between single atoms. In biomedical
research, scientists simulate macromolecules such as proteins and viruses to bet-
ter understand cell structures in organisms, as well as to design better medical
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drugs. In chemistry and chemical engineering, molecular simulations are used to
understand and predict thermodynamic properties of fluid mixtures.

Some of the well-known molecular simulation packages are LAMMPS [7,22],
NAMD [8,11], and GROMACS [6,9]. Although all these codes are based on
the same principle, they have different aims and target different scientific fields.
LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simula-
tor and is a versatile code designed to be easily modified or extended with new
functionality. It supports both solid-state materials (e.g., metals) as well as soft
matter (e.g., biomolecules and polymers). The primary objective of LAMMPS is
providing a platform for further research in molecular simulation. NAMD stands
for Nanoscale Molecular Dynamics and is implemented in Charm++ [19]. It is
specifically designed to simulate large biomolecular systems such as viruses. Sim-
ilar to NAMD, GROMACS (GROningen MAchine for Chemical Simulations) is
designed to simulate biomolecular structures such as proteins, lipids, and nucleic
acids. This code is most often used for simulation of protein folding. One notable
example is the Folding@home [5] project, which is a massively distributed com-
puting effort that exploits the idle time of processing elements of personal com-
puters owned by a large group of volunteers worldwide.

To support chemical engineering needs, recent advances in simulation tech-
niques of fluids ushered in a new field of Computational Molecular Engineering
(CME). It falls under the category of simulation-based engineering and aims to
adapt existing simulation techniques, optimized for soft matter physics, to the
requirements of the chemical and process engineering industry [17]. Rather than
providing scientific insight, the goal of CME is to provide a systematic approach
to replace experiments that are otherwise too complex, hazardous, or expensive.

LAMMPS, NAMD, and GROMACS, albeit powerful and flexible, focus in
most cases on scaling the size of the molecular system rather then the simulation
time. On the other hand, chemical engineering in general and thermodynamics
in particular have more benefit from longer running simulations. Furthermore,
industrial applications require a proportional increase both in size of the system
and simulation time.

One of the simulation packages in CME is ms2 (molecular simulation: 2nd
generation) [15,16,23]. It is aimed at industrial users and samples the full set of
thermodynamic properties of bulk fluids. Since these properties can reliably be
calculated from a relatively smaller number of molecules (i.e., the order of 104),
ms2 is not designed for larger molecular systems. The challenge, therefore, is
to keep the execution time (i.e., time-to-solution) of ms2 low as various other
parameters of the simulation increase.

In this paper, we use empirical performance modeling to understand the
impact of simulation parameters on the execution time of ms2. Empirical perfor-
mance modeling produces human-readable performance models from real mea-
surements. It has been extensively studied before [12,13,24,25], but in this work,
we focus on specific challenges related to modeling the performance of a CME
code. The produced models can help users select appropriate input values for the
simulation such that the execution time stays within potential constraints. The
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workflow we provide can also help developers optimize individual computational
procedures during simulation. We make the following specific contributions:

– Systematic and reliable workflow that can be used as a blue-print in perfor-
mance engineering efforts of simulation codes in other fields

– Identification of pitfalls in the process of producing measurements for empir-
ical modeling

– Exhaustive set of two-parameter and three-parameter models of execution
time for the ms2 application

The remainder of the paper is organized as follows. Section 2 provides a brief
overview of the design of ms2. Next, Sect. 3 discusses the modeling method-
ology in detail. In Sect. 4, we describe the experimental setup for evaluating
the methodology, and then provide a detailed analysis of the results in Sect. 5.
Finally, we review related work in Sect. 6, before drawing conclusions in Sect. 7.

2 ms2 Application

The ms2 simulation application offers a choice between two fundamental molec-
ular simulation techniques, namely, Monte-Carlo (MC) and Molecular Dynam-
ics (MD) [15,16,23]. The MC technique investigates the behavior of molecular
ensembles stochastically. In other words, during each iteration the MC technique
displaces molecules in the volume randomly, such that the probability of accept-
ing a displacement is chosen in a way that allows obtaining a representative
set of configurations. By repeating this step a large number of times, the MC
technique generates a Markov chain of configurations. From this chain, static
(i.e., time-independent) thermodynamic properties of the simulated molecular
ensembles can be obtained. The MD technique, on the other hand, relies on
the numerical solution of Newton’s equations of motion. In each time step, the
technique evaluates intermolecular interactions (i.e., forces and torques) that are
then used to determine the spatial displacement of all molecules during the time
step. Each time step results in a new configuration. Ordered chronologically, the
sequence of configurations represents an approximation of the molecular prop-
agation process such that both static and dynamic thermodynamic properties
can be calculated.

Although MC is more limited in terms of accessible thermodynamic proper-
ties, it is a technique that can be parallelized easily (i.e., embarrassingly-parallel
problem) since each process can generate an independent Markov chain and all
chains have to be gathered only once at the end of the simulation run. To paral-
lelize the MD technique, on the other hand, one has to parallelize the interaction
calculation. For this purpose, ms2 relies on force decomposition as proposed
by Plimpton [22]. Instead of traditional domain decomposition, the interaction
matrix is rearranged such that the interacting molecules are almost equally dis-
tributed in the matrix. Assuming n is the number of molecules and p is the
number of processes, each process is responsible for n

p columns of the interaction
matrix. Figure 1 presents a schematic of this interaction matrix. Each gray cell
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Processes

P0 P1
... Pp−1

Molecule 1
Molecule 2

:
:
:

Molecule n

Molecule 1 . . . . . . Molecule n

Fig. 1. Parallelization in ms2 using force decomposition. The shaded area shows the
pair interactions that have to be calculated for the simulation to proceed. Vertical
black lines delimit the range of molecules for which a single process calculates the
interactions.

represents an interaction between a pair of molecules that has to calculated for
the simulation to proceed to the next time step. The assumption is that each
process stores all molecule data (coordinates, momenta, etc.) locally. However,
each process calculates only the interaction for a subgroup of molecules—exactly
the group of molecules delimited by the black vertical lines in the figure. In this
way, the work load is distributed almost equally between the processes. The
root process then reduces all the resulting interaction components to sum up
the molecular forces exerted on each individual molecule. For both MC and MD
parallelization, the ms2 application uses MPI [15]. Specifically, the MPI collec-
tive operations Barrier, Bcast, Reduce, and Allreduce are employed.

3 Methodology

In this section, we describe the methodology to produce performance models
for the execution time of ms2. In general, the methodology follows the prac-
tice established by earlier studies. Specifically, we draw upon past experience in
modeling the isoefficiency functions of task-based applications [25].

Figure 2 provides an overview of our methodology. In general, we can iden-
tify three separate phases: selecting parameters, benchmarking, and empirical
modeling. Code instrumentation is an optional step that should be included if
the aim is to produce models and derive predictions for specific parts of the code
rather than the simulation as a whole. The subsections below cover the phases
in the workflow in more detail.

3.1 Simulation Parameters

The ms2 application has a group of parameters that characterize the simulation
scenario. The most important parameters identify the type of the simulated
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Select
parameters:
r1, r2, ..., rq

subroutine TSimulation
...
integer :: StepStart
...
call RunSteps
...

Instrument
code

Benchmark
simulation Measurement

results

Extract common
calltree

Empirical
modeling

f(r1, r2, ..., rq)

Fig. 2. Modeling workflow.

molecule (i.e., a molecular model), the number of molecules, density (or the
simulated volume), temperature, and the number of time steps.

To accurately describe the interaction between molecules, ms2 uses potential
functions that describe different interaction types. Each molecular model speci-
fies the placement of an interaction site on the molecule and the type of this site.
A Lennard-Jones (LJ) site represents dispersive and repulsive interactions, while
point charge (PC), point dipole (PD), and point quadrupole (PQ) sites represent
electrostatic interactions. The complexity of molecular models depends on the
molecules they represent. A simple Ar (argon) atom has only a single LJ site. A
more complex CO2 (carbon dioxide) molecule consists of three LJ sites and one
PQ site. A (CH3)2CO (acetone) molecule, however, has four LJ sites, one PD
site, and one PQ site. ms2 calculates the interaction forces between pairs of the
same type of sites. For example, the interaction between two CO2 molecules will
be a combination of nine interactions between the LJ sites (three sites in each
molecule equals nine different pairs) and one interaction between the PQ sites.

Using appropriate interaction sites in a molecular model is crucial for obtain-
ing correct thermodynamic properties. However, from a computational point of
view, the difference between calculating the interaction between any of the dif-
ferent sites is small. Furthermore, the calculation does not depend on any other
simulation parameter. A far more important factor is the total number of sites in
a molecule, since the computation time of molecule interaction grows quadrati-
cally with the number of sites of each type.

Following an analysis of the ms2 design, we identified the group of param-
eters that should be considered for modeling the execution time of ms2 (i.e.,
independent variables in our modeling):

– n: number of molecules in the simulation; range: 103–104

– m: number of interaction sites; range: 1–8
– d: density of the fluid; range: 0.001–0.9 (in reduced units σ−3)
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– c: cut-off radius; range: 1–10 (in reduced units σ)
– p: number of MPI processes

The values for different parameters can be provided in SI units, but internally,
the ms2 application uses reduced quantities for the calculations. For example,
the reducing unit for length σ is on the order of 3 Å (i.e., 3 · 10−10 m).

The first three parameters, namely, n, m, and d, are part of the parame-
ters that determine the simulation scenario. The last two, namely, c and p, are
optimization and execution parameters. The cut-off radius c defines the radius
around a molecule within which the interactions with other molecules are cal-
culated explicitly. Decreasing c results in less computational effort to evaluate
the interactions for each molecule, since less neighbors have to be considered.
Basically, the cut-off radius provides a trade-off between the accuracy of ther-
modynamic properties and the runtime of the simulation.

To simplify benchmarking and modeling, we used synthetic molecular mod-
els with m LJ sites. Each such model is comparable to a model of a real
molecule with the same number of interaction sites m, independent of the site
type.Therefore, performance models based only LJ sites (synthetic molecules)
are a viable proxy for performance models based on ensembles of real molecules.
The advantage of the former is the ease of generating synthetic molecular mod-
els. The LJ sites in the synthetic molecule were placed at the vertices of a regular
polygon with m edges and an edge s = 0.1 Å. This allowed us to conveniently
generate molecular models for arbitrary values of m. If the center of the polygon
was at (0, 0), then the coordinates (xi, yi) of vertex i are given by (k is the
circumradius from the center of the polygon to one of the vertices):

r =
s

2 sin( π
m )

xi = r · cos(2π
i

m
)

yi = r · sin(2π
i

m
)

The list of parameters above is not exhaustive. Additional parameters of ms2
are the specified boundary conditions (i.e., simulated ensemble type), the length
and the number of time steps, frequency of writing results and errors to a disk,
temperature, and so on. Some of these parameters, such as temperature, have
little influence on the computational cost. The number of time steps influences
the execution time, but the relation is simply linear such that this parameter
does not have to be considered in the modeling process. The same rationale also
applies to other parameters omitted from the list above.

3.2 Benchmarking

Once the group of independent parameters has been identified, we can move
to the benchmarking phase. However, one optional step before benchmarking is
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instrumentation. By instrumenting the relevant regions of the code (i.e., func-
tions, kernels, or code blocks), one can produce a model for each region. In this
way, for example, we can obtain a model for the execution time of a single time
step in ms2. Whether such high-resolution modeling is needed depends on the
application and the analysis goals. In the ms2 case, a model for a single time
step makes little sense, since a simulation with a single time step is useless. The
aim of the simulation is to simulate an evolving environment of molecules. Nev-
ertheless, we ran benchmarks with both an instrumented and an uninstrumented
version of ms2 to evaluate our workflow. We used Score-P [20] for the instrumen-
tation since it integrates easily with the Extra-P [4] modeling tool (discussed in
the next subsection) and provides flexible instrumentation approaches. In other
words, one can either automatically instrument all of the regions in the code or
manually instrument just the most relevant ones.

main [3.8]

func1 [9.3]

func2 [2.6]

func3 [6.2]

sub1 [1.5]

sub2 [1.3]

func4 [7.4]

main [8.4]

func1 [1.9]

func2 [6.5]

func3 [3.9]

sub1 [9.7]

func4 [2.3]

fsub1 [5.5]

main [3.8]

func1 [9.3]

func2 [2.6]

func3 [7.5]

sub1 [1.5]

func4 [7.4]

main [8.4]

func1 [1.9]

func2 [6.5]

func3 [3.9]

sub1 [9.7]

func4 [7.8]

Fig. 3. Common calltree extraction from two different trees (top). The two trees at
the bottom have a common structure.

During the execution of an instrumented application Score-P creates a call-
tree, where the root node is the first (main) function called and each new node
(i.e., cnode) represents a called subfunction. An edge between nodes represents
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a caller-callee relation. Once the application terminates, Score-P writes a perfor-
mance profile to disk. Each profile is a CUBE [2] file that contains performance
data arranged in three dimensions—metrics, calltree (cnodes), and system (pro-
cesses/threads). Basically, there is a measurement value for each combination of
(metric, cnode, process/thread). When Extra-P is used to generate a model of
the execution time from these data, it collapses the system dimension by taking
the maximum value and generates a separate model for each cnode. Therefore,
it is important to ensure that the calltree structure is similar across all of the
data used for modeling. Since the application is executed with different values for
independent parameters, differences in calltrees are inevitable. To extract a com-
mon calltree, we used the cube commoncalltree utility provided with CUBE.
This utility looks for cnodes that do not appear in every calltree and then merges
them into the parent cnode by adding the inclusive value of performance data
of the child cnode to the parent’s exclusive value. An inclusive value is a sum
of values for the cnode itself and all of its descendants, whereas an exclusive
value includes only the cnode itself, without its descendants. This computation
is repeated as long as non-common cnodes are present.

Figure 3 shows an example of extracting a common calltree from two differ-
ent trees. The numbers in brackets are example values for some metric (e.g.,
execution time). If a node has child nodes, then the number in the bracket is
the exclusive value, otherwise it is an inclusive value. Note that if a node has
no children, then the exclusive value is the same as the inclusive one. The figure
shows that the value for the sub2 node was merged into its parent func3, and
the exclusive value of func3 was updated accordingly. In a similar way, fsub1
was merged into func4.

It is important to note that common calltree extraction is necessary only if
all code regions are instrumented. If we do not use instrumentation at all or
manually instrument just some regions of the code that are always executed, we
can skip the common calltree extraction.

3.3 Empirical Modeling

The benchmarking phase is followed by the empirical modeling phase. Specifi-
cally, we use the performance-model generator in Extra-P [4], a tool for auto-
mated performance modeling of HPC applications. The model generator has
already shown to confirm known performance models of real applications as well
as discover previously unknown scalability bottlenecks [13,27], and has also been
validated using a wide range of synthetic functions [12]. Furthermore, specific
usage examples include modeling the performance of OpenMP constructs [18]
and the isoefficiency functions of task-based programs [25].

A multi-parameter model aims to capture how a number of independent
parameters, such as process count, problem size, and algorithmic parameters,
influence a target metric, such as runtime, floating-point operations, and so on.
The key concept of the modeling approach in Extra-P is the performance model
normal form (PMNF) for multiple parameters [12]:
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f(r1, r2, ..., rq) =
n∑

k=1

ck ·
q∏

l=1

r
ikl

l · logjkl (rl) (1)

In this form, parameters rl are represented by q combinations of monomials
and logarithms, which are summed up in n different terms to form the model. The
exponents ikl

and jkl
are chosen from sets I, J ⊂ Q, respectively. Essentially,

these sets define the scope of all possible terms. Consider, for example, n =
3, q = 2, and I = {0, 0.25, 0.5}, J = {0, 1}. In this case, the search space
for possible terms would be {1, log(r), r0.25, r0.25 log(r), r0.5, r0.5 log(r)}, and an
example model could be: f(r1, r2) = c1 + c2 · r0.5

1 + c3 · r0.25
1 r0.25

2 log(r2).
The generator requires a set of measurements as input whose precise nature

depends on the scaling objective (e.g., number of processes vs. input size, weak
vs. strong). As a rule of thumb, it needs at least five different settings for each
independent parameter. For example, if there is only a single parameter, such
as the number of processes, we need to benchmark the application with five
different values of this parameter. If there are two or more parameters, we need to
benchmark the application for each combination of parameter values. This means
at least 5q measurements are required for q parameters. Each such measurement
has to be repeated a number of times to obtain a statistically significant result.
If k repetitions are required, the application has to be executed k · 5q times.
Figure 4 shows typical benchmarking results for two parameters. In this case,
the number of MPI processes p and the number of molecules n were varied.
The points represent parameter combinations for which execution times were
measured. There are six different values for each parameter, which means that
there are 36 combinations. Each of the 36 points represents a median value of
k = 10 repetitions.

12 24 36 48 60 72
2

3

4

5

6

7

MPI processes p

N
um

be
r
of

m
ol
ec
ul
es

n
(·1

03
)

10

20

30

Fig. 4. Typical benchmark results for two parameters; in this case, the number of
MPI processes p and the number of molecules n were varied. The color of each point
represents the execution time in seconds. (Color figure online)

The modeling technique in Extra-P is based on an iterative modeling refine-
ment process that stops when R̄2—the adjusted coefficient of determination—
cannot be improved any further. The adjusted coefficient of determination is a
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standard statistical fit factor ∈ [0, 1] such that a value of 1 indicates a perfect fit.
Since even small increases in n and q can lead to a prohibitively large search space
of possible terms, the technique employs a heuristic that reduces the number of
candidate models. Specifically, the search space of possible terms is generated
from the best single parameter models for each individual parameter. This leads
to a smaller number of candidate models, which greatly reduces the time for
finding the best fitting model, but still retains a high degree of accuracy [12].

4 Experimental Setup

We performed our evaluation on Hazel Hen, a Cray XC40 system at the High
Performance Computing Center Stuttgart (HLRS). The system has 7712 com-
pute nodes with the Aries interconnect fabric and Dragonfly topology. Each node
comprises two Intel Xeon E5-2680 v3 processors with 12 cores each and 128 GB
of memory. In other words, there are 24 cores per node and more than 5 GB of
memory per core on Hazel Hen.

The ms2 application uses OpenMP to parallelize the calculation of interac-
tions in each process. A performance audit of ms2, performed as part of the
Performance Optimisation and Productivity project [3], suggested that the opti-
mal number of OpenMP threads is four (i.e., four cores are used by one process).
Following this observation, we used four OpenMP threads in all of our bench-
marks. Consequently, there were six MPI processes per node.

4.1 Parameter Values

For each independent parameter discussed in Sect. 3.1, at least five different
values have to be chosen. The following list specifies our choices:

– n: 2000, 3000, 4000, 5000, 6000, 7000
– m: 1, 2, 3, 4, 5, 6
– d: 0.05, 0.20, 0.35, 0.50, 0.65, 0.80
– c: 1, 2, 3, 4, 5, 6
– p: 12, 24, 36, 48, 60, 72

As discussed in Sect. 3.3, producing a model with all independent variables
(e.g., T (n,m, d, c, p)) is not feasible since it would require at least 55 mea-
surements. The alternative is to generate a series of two-parameter and three-
parameter models that describe the application behavior and allow us to produce
useful time predictions. For example, we can generate models T (n, p), T (n,m),
T (n,m, p), and so on. In each case, however, we vary only a subset of two or
three parameters. The values for the other parameters have to remain constant
throughout the benchmarking phase of each particular model. For example, if
one runs benchmarks to generate the model T (n, p), the values for m, d, and c
have to remain constant.
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4.2 Measurements Variability

Earlier studies showed that applications that run on Cray XC40 might experience
a high degree of variability in execution time and performance [10,14,28]. The
reason is that Cray XC40 uses the Dragonfly topology. It is a high-radix, low-
diameter network that utilizes shared links and is designed to improve bandwidth
and reduce packet latency. Furthermore, it uses adaptive routing and random
node placement, both of which can alleviate congestion and achieve better load-
balancing. However, the combination of these characteristics makes each appli-
cation highly susceptible to the behavior of other applications that are being
executed at the same time. In other words, a communication-intensive applica-
tion can cause performance degradation in less-intensive applications executed
concurrently.

Table 1. Variability (i.e., coefficient of variation (CV)) of measurements for generating
the model T (n, p). The columns specify values for the time step number and cut-off
radius, as well as whether the code was instrumented and a compact placement (CP)
of nodes was used.

Time steps Cut-off Instr. CP CV

3,000 2.0 3.3%

3,000 2.0 � 13.5%

30,000 2.0 10.5%

3,000 4.0 6.2%

3,000 4.0 � 58.7%

40,000 4.0 � 26.6%

40,000 4.0 � � 8.3%

For empirical modeling, the execution of the application for any combination
of parameter values has to be repeated k times (see Sect. 3.3). In our evalua-
tion, we set k = 10, and sometimes k = 5 to reduce the total time to obtain
the measurements. The purpose of these repetitions was to increase the sta-
tistical significance of the measurements. However, a high degree of variability
between repetitions indicates a high level of noise, which makes modeling far less
accurate [13].

Table 1 shows how various factors influence the variability of the measure-
ments. In this case, the measurements were performed to generate the model
T (n, p), which means repeated executions for different combinations of param-
eter values for n and p. Variability was measured as the coefficient of variance
(CV) between the repetitions for each combination of values. The CV is defined
as the ratio of the standard deviation to the mean and shows the extent of
samples variability in relation to the mean.

The two leftmost columns in Table 1 specify the values for the number of time
steps and the cut-off radius, respectively. The column Instr specifies whether the
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Fig. 5. Graphical user interface of Extra-P.

code was fully instrumented and column CP specifies whether the nodes were
placed compactly in the machine, that is on the same blade and in the same
chassis. The table indicates that increasing the number of time steps increases
the variability. It also shows that fully instrumenting the code increases the
variability as well. However, one factor which helps reduce the CV is placing the
nodes physically together. These observations can be explained by the Dragonfly
topology studies [10,14,28] and the low intensity of communication in ms2 [15].
The longer the ms2 code runs, the more time it is under the influence of other
communication-heavy applications on the machine, which causes the variabil-
ity to increase. This is also the reason why placing the nodes together reduces
the variability—only local communication links are used in such cases. Unfortu-
nately, this placement mode is not generally available on Hazel Hen as it has a
negative effect on the utilization of the system.

Full instrumentation has a minimal perturbation in terms of performance,
but has a significant effect on the variability. One likely explanation is that code
instrumentation uses more communication to collate some of the measured data
while the program runs. As discussed earlier, full instrumentation is not needed
to model the total simulation time. Consequently, to reduce the variability we
ran uninstrumented code with 3,000 time steps and cut-off radius of 2.0 (when
it is not a parameter in the model).

5 Result Analysis

In this section, we discuss the results of our evaluation. As described above, we
chose to focus on the execution time of full simulations rather than the execution
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Table 2. 2-parameter models for the execution time of the ms2 application.

Model Fixed parameters Model R̄2

T (n,m) d = 0.84, c = 2.0, p = 72 4.41 + 8.03 · 10−5 ·m · n · logn 0.99

T (p,m) n = 4,000, d = 0.84, c = 2.0 6.6 + 3.21 ·m2 − 0.42 ·m2 · log p 0.92

T (p, d) n = 4,000, m = 1, c = 2.0 20.67 − 2.2 · log p 0.88

T (p, c) n = 4,000, m = 1, d = 0.84 33.83 + 0.05 · c3 − 4.89 · log p 0.79

T (n, c) m = 1, d = 0.84, p = 36 −0.99 + 0.06 · c3 + 1.81 · 10−5 · log2 n 0.95

T (m, c) n = 4,000, d = 0.84, p = 36 −23.49 + 10.09 ·m + 0.22 · c3 ·m 0.95

Table 3. 3-parameter models for the execution time of the ms2 application.

Model Fixed parameters Model R̄2

T (p, n,m) d = 0.84, c = 2.0 62.28 + 2.03 · 10−8 ·m2 · n1.5 · log2 n− 9.63 · log p 0.83

T (n,m, c) d = 0.84, p = 72 9.24 + 5.71 · 10−6 · n · logn · c2 · log c ·m 0.88

time of individual steps, so that there was no need for full instrumentation of the
code. Nevertheless, Sect. 3 provides a detailed description of how the workflow
can support full instrumentation for later analysis of ms2 or other codes. To
complete the discussion on full instrumentation, we briefly present the Extra-P
graphical user interface (GUI) that allows users to analyze the model at each
cnode. Figure 5 shows a screenshot of the Extra-P window. The left part is
divided into two areas. The upper area has a dropdown box that shows the
selected metric (e.g., time, visits, etc.) and allows users to choose a different
metric. The lower area contains the calltree with a model for each cnode and fit
factors such as R̄2 (adjusted coefficient of determination) besides each model.
By clicking on any one of the cnodes, the plot of the corresponding model is
displayed in the right part of the Extra-P window. The figure shows an example
plot for a two-parameter model T (p,m). It is a three-dimensional surface where
the vertical axis is the time dimension.

The Extra-P GUI provides a convenient way to explore and compare multiple
models from the same calltree. However, when no instrumentation is involved,
Extra-P provides a programmatic interface to produce models directly from the
measurement results. We used this interface in our evaluation and produced a
set of models summarized in Tables 2 and 3. The leftmost column specifies the
independent parameters in each model and the following column specifies the
values of the parameters that were fixed in each case. The second column from the
right shows the two-parameter and three-parameter models produced by Extra-P
and the rightmost column specifies the adjusted coefficient of determination.

Unsurprisingly, the model T (p,m) shows that the execution time increases
in quadratic proportion to the number of interaction sites m. Furthermore, all
models with the cut-off radius c as an independent parameter show that the time
increases in cubic proportion to c. This is because every increase in the cut-off
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Fig. 6. Contour lines of the plots for 2-parameter models of the ms2 execution time.
All times are in seconds.

radius leads to a cubic increase in the cut-off volume around each particle, which
also means a cubic increase in the number of particles in the cut-off sphere. These
results confirm our expectations about the factors that influence the simulation.
Although m depends on the simulated fluid and cannot be reduced without
breaking the simulation, the cut-off radius c is an important optimization factor
and should be as minimal as the simulation goals permit.
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Fig. 7. Stacked plots of 3-parameter models of the ms2 execution time. All times are
in seconds.

The model T (p, d) has no terms with density d, which suggests that increasing
d has a minimal or no effect on the execution time at all. This is surprising since
increasing the density leads to a linear increase in the number of particles in the
cut-off sphere. One reasonable explanation is that not all the molecules in the
cut-off sphere are taken into the account during the interaction calculation. The
interaction matrix, discussed in Sect. 2, is arranged in a way that makes each
process calculate only part of the interactions. Therefore, additional interaction
calculations that are caused by a higher number of molecules in the cut-off sphere
are distributed evenly between the processes leading only to a slight increase in
the wallclock time of the simulation.

Furthermore, all models containing the number of processes p clearly show
that increasing p leads to just a logarithmic improvement in the execution time.
Although an increase in the number of processes means less interactions have to
calculated by each single process, the cost of communication (i.e., MPI collective
operations) still increases. This suggests that to achieve shorter execution time,
we might look at changing other parameters rather than p.

Figure 6 depicts the plots of two-parameter models from Table 2 as contour
lines. The label on each line specifies the time value along that line. The shape
of the lines and their density provide a visual cue as to how fast the execution
time increases and which parameter has more impact on this increase. Further-
more, each contour line shows how both parameters have to be increased so
that the execution time remains constant. Figures 6b and d, for example, show
that increasing p reduces the execution time. However, the shape of the con-
tour lines in these figures is different. For higher p values, increasing c leads to
faster increase in the runtime in Fig. 6b compared to equivalent increase of m in
Fig. 6d. As another example, Figs. 6e and f show that the impact of increasing
both m and c is much more severe than increasing n and c at the same time.

Figure 7 depicts three-parameter models from Table 3, namely, T (p, n,m) and
T (n,m, c). As these functions are four-dimensional entities it is not straightfor-
ward to visualize them. The figure shows 3 axes—one for each parameter—and
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horizontal slices of data for different values of the z axis. The colors represent
execution times. For example, the topmost slice in Fig. 7a represents the function
T (p, n, 7). The differences between the slices show the impact of increasing the
parameter represented by the vertical axis, that is m in Fig. 7a and c in Fig. 7b.
The figures suggest that one should find a balance between different parameters
to keep the execution time under a certain threshold.

6 Related Work

The empirical modeling approach that forms the basis for Extra-P was first pro-
posed by Calotoiu et al. [13] in the context of identifying scalability bugs. A
scalability bug is a part of the program in which scaling behavior is uninten-
tionally poor. In this study, the authors produced scaling models of execution
time as a function of the MPI process count, but no other independent param-
eters were considered. In another study, Vogel et al. [27] used both Score-P and
Extra-P to analyze the scalability of the whole UG4 framework, which simulates
drug diffusion through the human skin. The authors showed that Extra-P was
able to produce over 10,000 models—spanning the whole calltree—in less than
a minute. Each model was a scaling model of execution time as a function of
the number of MPI processes. These studies had only one independent parame-
ter and did not have to overcome pitfalls that arise when dealing with multiple
parameters.

The capability to produce empirical models with multiple parameters was
introduced by Calotoiu et al. [12]. This functionality is based on a number of
important heuristics that make the approach feasible in practice. The authors
performed their evaluation using a number of scientific codes that were executed
on a Blue Gene/Q system. They produced multi-parameter models of execution
time and floating point operations. In the present study, we go one step further
and provide a systematic workflow that can be readily applied in performance
engineering of simulation codes.

Shudler et al. [24] proposed a framework, based on empirical modeling, for
validating performance expectations of HPC libraries. The framework targets
both developers and users, and provides a systematic method that allows, with
as little effort as possible, to evaluate whether the observed behavior corresponds
to the expected behavior. The authors focused on scaling models with one inde-
pendent parameter, namely, the number of MPI processes. The benefits of this
framework for performance engineering inspired the methodology developed in
this work. Furthermore, past experience of Shudler et al. [25] in modeling the
isoefficiency functions of task-based applications [25] provided important guiding
points for designing the present workflow.

Singh et al. [26] and Marathe et al. [21] used machine learning techniques to
model the effects of various input parameters on the performance of scientific
codes. The authors showed that some of these techniques can handle a large
parameter space without the costs associated with our methodology. However,
machine learning techniques are inherently black-box, meaning that users can
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use the models to obtain predictions, but the models themselves provide little
insight. We use a transparent technique that produces human-readable models,
which indeed can provide additional insights.

7 Conclusion

In this paper, we propose a versatile methodology for understanding the per-
formance of simulation codes in particular and scientific codes in general. It is
based on a systematic workflow for producing empirical performance models.
Empirical performance modeling is a proven technique for automated genera-
tion of performance models from the results of code benchmarking. Using our
methodology, we generated two-parameter and three-parameter models for the
execution time of ms2, a molecular dynamics code for studying thermodynamic
properties of bulk fluids. The models provide insight on the impact of various
parameters on the execution time. They also show in which situations the impact
is compounded, for example, increasing both the number of interaction sites and
the cut-off radius leads to a much higher increase in execution time.

Besides providing insight, the generated performance models are analytical
expressions that can be used to calculate the execution time for given param-
eter values. In other words, the models allow us to predict the performance of
the application. This capability was employed in the TaLPas project [1], which
aims to provide a solution for fast and robust simulation of many, potentially
dependent particle systems in a distributed environment. Specifically, perfor-
mance prediction is used to support a purpose-built scheduler in the process of
finding optimal execution configurations for individual simulation runs.

The study also identifies potential pitfalls in the workflow and provides sug-
gestions for overcoming them. Specifically, we discuss the necessity of extracting
a common calltree from performance profiles, and also provide guidelines for per-
forming the benchmarking. Furthermore, we highlight the influence of various
factors on the variability of the measurements and the importance of reducing
it to obtain accurate models.
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Abstract. The PAPI performance library is a widely used tool for
gathering performance data from running applications. Modern proces-
sors support advanced sampling interfaces, such as Intel’s Precise Event
Based Sampling (PEBS) and AMD’s Instruction Based Sampling (IBS).
The current PAPI sampling interface predates the existence of these
interfaces and only provides simple instruction-pointer based samples.

We propose a new, improved, sampling interface that provides support
for the extended sampling information available on modern hardware. We
extend the PAPI interface to add a new PAPI sample init call that uses
the Linux perf event interface to access the extra sample information.
A pointer to these samples is returned to the user, who can either decode
them on the fly, or write them to disk for later analysis.

By providing extended sampling information, this new PAPI inter-
face allows advanced performance analysis and optimization that was
previously not possible. This will greatly enhance the ability to optimize
software in modern extreme-scale programming environments.

1 Introduction

When conducting performance analysis, the easiest type of data to collect is
total, aggregate results. This includes information such as the total number of
cycles a program ran, the total number of cache misses that occurred, and the
total wall clock time. While all of this information is of interest, often more detail
is wanted: what function takes the most cycles, which data structure causes the
cache misses, why is the code taking so long to run.

The most straightforward way to get this detailed information is via sampling;
to periodically interrupt the program’s execution and gather machine state about
what it is happening at the time of the interruption. Overall program behavior
can be extrapolated based on these representative samples. There is a tradeoff
between overhead and accuracy: a higher sample rate leads to more accurate
results, but if you sample too frequently you will add overhead that can interfere
with the results being measured. Some of this overhead can be mitigated if the
sampling is done in hardware rather than in software.
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1.1 Hardware Performance Counters

Most modern processors support hardware performance counters; these counters
are internal to the system and increment when certain architectural events occur.
Total aggregate counts can be gathered by starting the counters at the beginning
of the code of interest, and stopping them afterward. Traditionally these counters
are found in CPUs, but their use has expanded to other pieces of hardware such
as the disk, network, and memory systems.

Typically there are only a handful of counters available, often in the range
from two to eight (though this varies by vendor, architecture, and processor
generation). The counters are typically between 32 and 64 bits in size. Each
counter can measure an event, chosen from a large list (potentially hundreds on
some architectures [4,13]).

Usually the counters can be configured to trigger a hardware interrupt if the
register overflows. This can be used to notice and account for large counts gener-
ated by frequent events; if the counter overflows multiple times between readings
it would not be possible to determine the exact count. The overflow mechanism
is also useful for sampling. An event can be set to overflow periodically, for
example, every 100,000 cycles. Once the interrupt triggers, the operating system
interrupt handler takes over and can construct a sample that includes additional
useful information, such as where the instruction pointer is currently located. If
your CPU lacks performance counter overflow interrupt support, sampling can
still be done by using some other regular interrupt source (such as a periodic
timer). However usually the performance counters are used for this purpose if
they are available.

1.2 Advanced Sampling

While you can learn a lot about a program by gathering instruction pointer
samples, there is a lot more to program behavior than just instruction traces.
Recent processors from Intel and AMD support more advanced sampling modes.
These allow gathering extra information on an overflow, such as detailed cache
miss and cache latency values.

The sampling features are grouped together under a large number of proces-
sor features with sometimes confusing acronyms. The more well known are Intel’s
Precise Event Based Sampling (PEBS) and AMD’s Instruction Based Sampling
(IBS). There are a few common sampling related interfaces:

– Sampled Profiling – traditional sampling, as defined previously. A periodic
interrupt is used to sample the instruction pointer and any other info that
can be easily obtained, such as register values. Most CPUs can do this purely
in hardware or can emulate it in software (by using some sort of timer).

– Low-latency Sampling – instead of having periodic interrupts and man-
ually gather program state, some hardware allows automatically sampling
multiple times to a dedicated memory buffer without any operating system
(interrupt) involvement. This has lower latency than traditional interrupt-
based sampling. Intel PEBS does this.
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– Hardware Profiling – at regular intervals the CPU is interrupted and
detailed information about the current instruction is logged. Often the actual
instruction logged is randomly chosen after a certain trigger point. AMD IBS
and Intel PEBS do this.

– Extra CPU State – PEBS and IBS log additional CPU state that cannot
be obtained in software from the operating system. This includes register
state, kernel register state (if the interrupt happened in the kernel), branch
predictor outcome, instruction latencies, sources of cache misses, etc.

– Low-skid Interrupts – One issue with measurements involving interrupts is
“skid”: once an overflow interrupt happens, it takes a CPU (especially modern
complex out-of-order designs) some amount of time to stop the processor and
pinpoint exactly which instruction was active at time of the overflow. Often
there is an offset between the instruction indicated versus the one causing the
interrupt (this offset is called the skid). PEBS and IBS provide support for
low-skid sampling, at the expense of some additional time overhead.

– Last Branch Sampling – The hardware keeps track of the last branches
taken, and allows generating call stacks. Intel Last Branch Record (LBR)
allows this.

– Processor Trace – The CPU logs to a buffer details on all instructions being
executed (although usually this is filtered, as the raw data stream can be huge
otherwise). Intel Processor Trace and ARM CoreSight are examples of this.

Ideally all of these types of sample data could be easily returned to the user
through a straightforward interface.

1.3 Software Interfaces

Hardware counter accesses are privileged by the hardware, so usually the oper-
ating system is responsible for enforcing access. On Linux this is done by the
perf event [10] subsystem. Over the years Linux has gradually added support
for the more advanced sampling modes. Directly accessing these results from
userspace involves using the perf event interface which is complicated to set
up and use [33]. Most users instead opt to use the perf command-line tool which
abstracts away some of the low-level interface.

PAPI [26] is a portable, cross-platform library for accessing hardware perfor-
mance counters. Many higher-level tools, such as VAMPIR [19] and HPCToolkit
[1] build on PAPI. PAPI has supported simple event sampling for a long time,
but has lacked the ability to gather advanced samples from modern processors. In
this paper we describe the existing PAPI support for sampling, and how we plan
to add support for the more advanced hardware sampling interfaces supported
by perf event.

2 Hardware Sampling Interfaces

As with general performance counter support, sampling interfaces are not part of
any x86 standard and thus have completely different implementations between
vendors. What follows is a quick overview of support found on recent processors.
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2.1 Intel x86 64

Intel processors introduced performance counter support with the original Pen-
tium processor. Since the beginning they have supported hardware interrupt on
counter overflow, allowing sampled profiling. More advanced sampling interfaces
began appearing starting with the Pentium 4 processor.

Intel Precise Event-Based Sampling (PEBS). Recent Intel chips support
Precise Event Based Sampling (PEBS), as described in Chapter 18 of the Intel 64
and IA-32 Architectures Software Developer’s Manual (Volume 3) [13]. PEBS
support originated in Pentium 4 and Core architectures. It is available on all
subsequent Core-derived processors as well as some Atom models.

Only a subset of events can be used as PEBS events, and sometimes only a
certain counter slot can be used. A suitable Data Store (DS) area must be set up
in memory; samples will be directly written to this area without any operating
system involvement. When PEBS is enabled for an event, the PEBS circuitry is
armed when the counter overflows. The next instruction that triggers this event
had a record with sample information written out to the DS area. The DS area
can be configured to generate an interrupt when full (or nearing being full) so
that multiple samples worth of data can be queued up and processed at once by
the operating system, reducing overall overhead.

The information that can be recorded on a PEBS sample varies by architec-
ture but can include:

– trap vs fault (whether the event recorded is the next or the current one),
– a full set of processor registers (in addition to the instruction pointer),
– store latency data,
– transactional memory data
– TSC value, and
– the counter value.

Nehalem processors add more features. Now you can record load latency
information: the latency in cycles from first dispatch to final retirement of the
instruction. When enabled, load instructions are randomly chosen to accumulate
the load latency info. The value recorded is the latency for the last randomly
tagged event, not necessarily the one that triggered the PEBS operation. The
information gathered includes the Data Linear Address (usually the same as the
virtual address of value being loaded), latency value, and data source (which
indicates what part of the cache memory hierarchy was involved with returning
the loaded value).

Sandybridge processors add more PEBS features, and enable PEBS for more
events. In addition to loads, now store instructions can also be measured (but
this is limited in some ways, including not being able to get latency values).
Additional info is returned on whether loads hit in the TLB. Precise store support
is added, where information is returned on the very next store rather than a
randomly selected one. Sandybridge also adds support for low-skid measurement
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via the Precise Distribution of Instructions Retired (PDIR) interface. It notices
when an overflow interrupt is about to happen and prepares for it and enters a
slower high-accuracy mode that allows it to exactly determine which instruction
caused the overflow.

With Haswell precise store was replaced by Data Linear Address Profiling
(DataLA); the full linear (virtual) destination address of the load or store is
stored in the sample. Additionally information on whether the access hit in the
closest level of cache is stored. The eventing instruction pointer (the address of
the instruction that caused PEBS to trigger) is also recorded. Finally, various
transactional memory related sample types were added.

Skylake processors add a field for recording the TSC timestamp value from
when that event occurred, and adds additional front-end events (iTLB and
iCache misses).

PEBS support was originally designed for desktop and server chips, but some
of the Atom class chips also have support for PEBS. On Goldmont Atom chips,
PEBS records can be recorded for all events. However for non-precise events
there is no guarantee about what instruction actually generates the sample.
Other information recorded includes the time stamp counter (TSC) and info
on which event caused the overflow (if multiple are enabled). Reduced skid and
linear address support is also available.

Intel Last Branch Record (LBR). Starting with the Pentium 4 most Intel
hardware supports logging a trace of the last branches that were executed via the
Last Branch Record (LBR) interface. Full details can be found in Chapter 17 of
the Vol3b documentation. The number of branches recorded varies from 4 up to
32. The LBR record contains detailed information about the branch, such as
the last location branched from, the last location branched to, and whether the
branch was predicted correctly or not. This is not strictly a sampling feature,
but the data is recorded to MSR registers and under Linux is reported via the
perf event interface.

Intel Branch Trace Store (BTS). Intel processors can also support the
Branch Trace Store (BTS), where the last N branch records can be written out
to a circular buffer called the Debug Store (DS) which should not be confused
with the PEBS Data Store. This feature lets you track the branch behavior of
your program, but is known to slow down program execution when enabled.

Nehalem chips added the ability to filter based on branch type. Haswell
supports call-stack recording, where you can configure it to record the branches
in a LIFO setup (i.e. when you return from a function call, the branches that
have happened since the initial call to the function are backed off). This allows
generating a call stack more easily especially with programming languages that
have deep call trees. Skylake changes the format a bit, and includes transactional
memory info as well as cycle counts. It has 32 entries now and can capture length
of time spent in a basic block with the TSC time. Atom Goldmont allows you
to obtain the number of cycles since last branch.
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Intel Resource Director Technology (RDT). The Intel Resource Direc-
tor Technology (RDT) is available on server machines, Haswell Xeon E5 v3
and newer. It supports a number of technologies. Cache Monitoring Technology
(CMT) can measure cache occupancy of program in last level cache. Memory
bandwidth monitoring (MBM) [14] can monitor memory bandwidth between
cache levels. You can assign a resource monitoring ID (RMID) to a task, pro-
cessor, or group of processors and monitor them.

On Xeon E5 v4 processors (Broadwell) RDT also supports cache allocation
technology (CAT) and code data prioritization (CDP). This allows one to give
hints on how much cache a program should be allowed to use.

Some machines have Cache Quality-of-service Monitoring (CQM) but it is
not documented, and while Linux has some initial support for it, it was later
removed.

Intel Processor Trace (PT). Intel Processor Trace (PT) [18] lets you record
program execution traces. The first implementation is control flow tracing and
can log enough information to give an exact program flow trace. It can also
generate basic block vectors and trace power events. It aims for less than 5%
overhead, and records latency info. It can reconstruct program flow by recording
the taken/not-taken path of conditional branches. There is a possibly related
technology called Intel Architectural Event Trace (AET) but information on
how to use this is not publicly released.

2.2 AMD x86 64

AMD processors support simple sampling using hardware interrupts on counter
overflow. Recent processors also support some more advanced sampling inter-
faces, but not quite as many nor as varied as supported by Intel.

AMD Instruction Based Sampling (IBS). AMD chips support Instruc-
tion Based Sampling (IBS), which is described in the various BIOS and Kernel
Development Guides [2,3] as well as in some research papers [6,7].

IBS was introduced with Barcelona (fam10h) to aid in creating low-skid
profiles. It selects a random instruction or micro operation (uop) and records
information, generating an interrupt when completed. There are two types of
sample: one that happens on instruction fetch (involving TLB and instruction
cache behavior) and one that happens on instruction execution.

For instruction fetch the following information is logged:

– if the fetch was completed or aborted,
– number of cycles spent on the fetch,
– if the fetch hit in the caches and TLB, and
– the linear/physical address corresponding to the fetch.

For instruction execution the following is logged:
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– if only one micro-op of the instruction can be tagged,
– branch status of the instruction,
– linear/physical address of instruction,
– linear/physical address of load/store destination,
– data cache statistics (hit or not, latency),
– clocks from tag until retire,
– clocks from execution until retire, and
– DRAM and MMIO source info.

Unlike PEBS these values aren’t stored in a memory buffer, but in a set of MSRs.
Only one record can be pending at a time. Only three events are supported:
cycles, cycles:p, and uops.

2.3 Other Processors

Most other modern processors support performance counters, and again most of
these support simple sampling via counter-overflow interrupt (although notably
various ARM based platforms might not, such as the original ARM1176 Rasp-
berry Pi systems).

Support for more advanced sampling is not as widespread as it is on x86.
ARM has no PEBS or IBS equivalent, but it does have something similar to
Processor Trace called CoreSight. Newer 64-bit ARM models optionally support
the Statistical Profiling Extension (SPE) [5]; perf event added support for this
with Linux 4.15.

The IBM s390 class of machines has a sampling facility as part of the CPU
Measurement Facility [12] that will write samples into a buffer that will trigger
an interrupt when full.

3 Software Interface for Sampling

Advanced hardware sampling interfaces are complex and vendor specific. Some
of this complexity can be abstracted away by the operating system (in our case
we will assume the OS is Linux). On Linux the perf event interface used for
accessing regular hardware performance counters is also used for accessing sam-
ple data. This interface itself is complex and hard to use, so we develop the
PAPI library which is yet another layer of abstraction on top of perf event.
This allows existing users of PAPI to gain access to the sampling interface using
familiar PAPI interfaces, without needing to majorly restructure their code.

3.1 Linux perf event Interface

Access to performance counter registers requires supervisor or privileged access
to the hardware, in order to initialize the model-specific registers (MSRs) and set
up the sampling memory buffers. Because of this the operating system is usually
responsible for the interface. In addition access to the underlying hardware might
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be further restricted for security reasons. A clever user can monitor in detail what
a system is doing based on fine grained performance information, and this can
leak information. This was once considered a mostly theoretical attack, such as
being able to reverse engineer encryption happening on other cores by monitoring
cycle or cache miss counts; this has recently become a much more critical worry
with the advent of the Meltdown and Spectre vulnerabilities [22].

The standard performance counter interface provided by Linux is known
as perf event and the primary way of accessing it is the perf event open()
system call [33]. This system call is used to configure and open a performance
counter event; it is a complex call with over forty interacting parameters. The
system call returns a file descriptor which can be used to control and access
the event. Values can be read with the read() system call, and memory can
be set up with mmap() that allows both sampling to a circular buffer as well
as gathering additional information about the event. Various ioctl() calls are
used to start and stop the events. Advanced features, such as event scheduling,
event multiplexing, and save/restore on context switch are all provided by the
interface.

Linux perf event supports most of the advanced hardware sampling interfaces
described in Sect. 2.

perf event Sampled Profiling. As long as your system supports overflow
interrupts you can do statistical sampling with perf event. You can specify the
event, the frequency, and a whole host of other options. On overflow, a user-
specified signal handler can be called that your code can use to find the register
state, including instruction pointer location.

perf event Low-Latency Sampling. The perf event interface can provide
access to low-latency sampling, which is gathering multiple samples into a buffer
without program intervention. The samples are gathered until a watermark
threshold is crossed, and only then will your program be interrupted to let it
know that the buffer is full and ready to be processed. There is still some oper-
ating system overhead involved, as some events need to be handled in the kernel
even if userspace code is not bothered. When using an interface such as Intel
PEBS even this can be avoided, as the hardware can store PEBS records to a
memory buffer directly without any operating system involvement at all.

By default perf event does not support low-latency sampling, and instead
runs in “single-entry” mode. This is because the perf records require some values
that only the OS can provide, such as pid/tid. It is possible to enable the N-
entry PEBS mode if you are willing to sacrifice some features: you must use a
fixed period, no timestamp if pre-Skylake, the PEBS buffer flushed on context-
switches, and no LBR [8].

perf event Extra Processor State. Linux perf event supports returning a
large amount of data with each sample. Some of the sample types are extended
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with PEBS data when available. Currently any of the following can be dumped
into a sample by perf:

– PERF SAMPLE IP – instruction pointer
– PERF SAMPLE TID – thread ID
– PERF SAMPLE TIME – a timestamp
– PERF SAMPLE ADDR – effective address
– PERF SAMPLE READ – counts for all events in group
– PERF SAMPLE CALLCHAIN – callchain info
– PERF SAMPLE ID – a unique id for the group leader
– PERF SAMPLE CPU – current CPU
– PERF SAMPLE PERIOD – current sampling period
– PERF SAMPLE STREAM ID – another unique ID
– PERF SAMPLE RAW – raw data (PMU specific).

On IBS this contains the raw MSR dumps which include the below (and
other) info:
• Fetch: Randomize event enabled, TLB miss, TLB size, icache miss, fetch

addresses
• Execute: address, microcode, branch fused, branch predicted, cache hit,

offcore (northbridge) source, tlb latency, memory width, l2 cache miss,
load or store, TLB stats, alignment, branch target access, physical address

– PERF SAMPLE BRANCH STACK – branch stack from LBR
– PERF SAMPLE REGS USER – current user level register state.
– PERF SAMPLE STACK USER – user stack, to allow stack unwinding (use-

ful for call traces)
– PERF SAMPLE WEIGHT – for PEBS this is the cycle time
– PERF SAMPLE DATA SRC – this is the PEBS cache miss hierarchy info
– PERF SAMPLE IDENTIFIER – another unique ID, but in a fixed location
– PERF SAMPLE TRANSACTION – has to do with Intel TSX transactional

memory
– PERF SAMPLE REGS INTR – current register state at interrupt, can be in

userspace. If PEBS enabled and a precise event is being measured then the
registers here are the ones gathered by PEBS.

Note that the PEBS weight and data source data can be hard to interpret
and often gives non-intuitive results, such as it reporting a cache miss taking
more cycles to complete than an L3 cache miss. This is (at least in part) because
the cycles count can take into account other things going on in the chip unrelated
to the memory hierarchy.

perf event Low-Skid Interrupts. The perf event interface supports various
levels of low-skid measurements on an event. This is enabled via the precise ip
field, which is indicated in both perf and PAPI by putting :p values on the end
of events (:p, :pp, :ppp). Only a subset of events support precise reporting, and
it varies by processor model.

The following precise settings are supported:
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– Level 0 – an event can have arbitrary skid
– Level 1 – request constant skid
– Level 2 – request zero skid (but the processor might not always be able to

deliver)
– Level 3 – require zero skid (or equivalent, such as “randomization to avoid

shadowing effects”).

On Intel chips, PEBS support gives you level 1 of precise events, LBR and
PEBS format v2 gives you level 2 (IP Fixup), and PEBS precise distribution
support gives you level 3. Note Level 2 support uses the LBR for accuracy, so it
might not be able if you are also attempting to use LBR for branch sampling.

On AMD machines precise IP is supported through the IBS interface. Both
Level 1 and Level 2 are supported. Only three events are supported, cpu-cycles,
cycles, and uops. Previously you needed to specify you want to run system
wide -a not just per-task to do this (which often requires root) but on a recent
machines this is no longer necessary.

perf evet Branch Sampling. This info can be gathered with the raw
perf event PERF SAMPLE BRANCH STACK option. It can report the last N
branches (16 on recent machines), the address and target, and whether it was
properly predicted. On some machines you can filter by branch type.

The related Branch Trace Store functionality has its own PMU driver and
uses a special AUX area of the mmap buffer which is mostly independent from
the normal sample buffer. It can return branches, their ip, their target, and
whether they were a branch hit or miss.

Other, Non-sampling Interfaces. Intel Processor Trace is a whole tracing
subsystem, and does much more than sampling [16]. It uses the AUX mmap
buffer just like BTS does.

3.2 PAPI Library Interface

The PAPI performance library [26] is a cross-platform library designed to allow
access to performance counters on a wide variety of machines. On current Linux
machines PAPI uses the perf event interface. We will briefly describe the old
sampling methods available in PAPI prior to the forthcoming 6.0 release expected
in 2019.

PAPI Statistical Sampling. The current PAPI interface used when sampling
is PAPI overflow(). There are two key parameters: an overflow threshold and
a signal handler. Once the event in question hits the threshold, the hardware
triggers an overflow interrupt which is then passed by the operating system to
the Linux system handler. It is up to the user to do something useful in the
signal handler (such as read out the instruction pointer value) before returning.
PAPI does not support returning info besides the instruction pointer, although
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in theory the register state can also be manually gathered from the signal context
on Linux. Currently it is not possible to get the advanced sample info (kernel
register state, latencies, branch predictor outcome, cache hierarchy extra info,
etc.)
i n t PAPI overflow ( i n t EventSet , i n t EventCode ,

i n t thresho ld , i n t f l a g s ,
PAPI over f low handler t handler ) ;

The signal handler looks like:
typede f void (∗ PAPI over f low handler t )

( i n t EventSet , void ∗ address ,
long long ove r f l ow vec to r , void ∗ context ) ;

PAPI profil(). There are two legacy PAPI sampling interfaces, PAPI profil()
and PAPI sprofil(), which are meant to provide interfaces compatible with the
UNIX “profil” system call.
i n t PAPI pro f i l ( void ∗buf , unsigned bu f s i z ,

caddr t o f f s e t , unsigned sca l e ,
i n t EventSet , i n t EventCode ,
i n t thresho ld , i n t f l a g s ) ;

i n t PAPI spro f i l ( PAPI sp ro f i l t ∗prof ,
i n t profcnt , i n t EventSet ,
i n t EventCode , i n t thresho ld , i n t f l a g s ) ;

A range of addresses to watch is given, and then there is a regular overflow
which stops, notes the instruction pointer, and then increments the value in
a set of “bins”. This can be used to generate a profile of where the code has
been executing. This interface is not as widely used as the much more popular
PAPI overflow().

PAPI Low-Skid Interrupts. PAPI currently support perf event low skid
interrupts. To do this you use the PAPI add named event() interface and when
specifying the event name include one of the :p suffixes to indicate you want a
more precise event.

4 Related Work

Other interfaces besides PAPI offer ways to read hardware performance counters.
Many of these interfaces also support sampling.

4.1 Existing Profiling Tools

Profil. On some UNIX implementations there is a profil() system call that
will periodically interrupt program execution and generate a profile histogram.
Linux does not support this system call, although the C library implements it
in software via a timer that triggers every 10 ms. PAPI has existing code to
emulate this interface. While profiles can be generated, no advanced sampling
information is available.
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gprof. gprof lets you instrument your program at compile time (with the -pg
compiler option) and then at run time it will report how long each function was
called and how much time was spent in it. This allows sampling at the function-
call level. This is a bit intrusive overhead-wise, and requires you have access to
the source code.

Valgrind. Valgrind [27] does dynamic-binary instrumentation. One of its tools
is “callgrind” which will instrument basic blocks on the fly and allow creat-
ing profiles which can be viewed with the “callgrind annotate” tool. It also has
“cachegrind” which runs the code through a cache simulator. The primary down-
side to Valgrind and similar tools is the slowdown which ranges from 10–100x
slower than natively running.

4.2 NUMA Profiling

numap [31] presents an API for gathering sampled data for use when analyzing
NUMA systems. First init samp session() is called to specify threads to be
profiled. Then samp read start() called to setup the mmap buffer. The code of
interest happens. Then samp read stop() called to stop sampling. Finally the
results printed with print rd() which decodes the binary blob returned by the
kernel. It is also possible to get the data results directly. The data of interest
is mostly the PEBS data: instruction pointer of the instruction, address of the
load/store, “weight” which is the number of cycles, and data src which is the
part of the hierarchy causing the result. The primary downside of this, at least
to PAPI users, is that it is a separate tool and not integrated into the PAPI
interface.

Memphis [25] is a tool that talks to the AMD IBS registers directly via a
kernel module in order to gather the extended sample information. MemProf [20]
is another AMD IBS-based NUMA memory profiler. Again, neither of these is
integrated into the PAPI infrastructure.

4.3 GPU Profiling

Some GPU hardware supports profiling interfaces too, specifically recent
NVIDIA devices [30]. For MAXWELL GPUs and CUDA 7.5 you can use CUPTI
to create a sampling data structure PC SAMPLING ACTIVITY, SOURCE LOCATOR,
and KERNEL ACTIVITY. To use the Activity API you initialize, register callbacks,
enable the activities, and set the sample rate. While useful for analyzing GPU
code, in our work we are more concerned with the advanced sampling interfaces
provided on modern CPUs.

4.4 Other Tools with Sampling Interfaces

LIKWID [32] is a hardware performance measurement interface that is capable
of reading performance counters on supported x86 processors. Using the likwid-
perfctr command with the -t option, the user can measure performance results



156 F. Smith and V. M. Weaver

from LIKWID at a specified time interval. The interface recommends using an
interval no smaller than 100 ms, otherwise the results are considered invalid.
Achieving fine-grained sampling results from the LIKWID interface is not possi-
ble due to this constraint. LIKWID does not support PEBS as it is a userspace
tool and cannot setup the kernel buffers needed to hold the PEBS records.

HPCToolkit [1] is a large suite of tools for analyzing the performance of
multithreaded applications. It can be used for anything from a home computer
to a super computer. HPCToolkit interfaces directly with PAPI to read hardware
performance counters and gather samples. The samples do not contain the extra
data that is available from PEBS events; they are merely counter readings using
the PAPI overflow() code.

4.5 Other Proposed PAPI Sampling Interfaces

Lopez, Moore, and Weaver [24] were the first to propose an enhanced sampling
interface for PAPI that gathered the PEBS cache latency values. Their sampling
interface is similar to the one that we propose in this paper. Their proposed inter-
face was never implemented and remained a proof of concept. They used raw
perf event calls to show it was possible to measure both single thread and mul-
tithreaded applications. They were successfully able to gather STREAM sample
results using OpenMP with eight threads.

5 Proposed Advanced PAPI Sampling API

It is not possible to retrofit the existing PAPI overflow() method of gathering
samples to handle extended sample information in a backwards compatible way.

We propose two new enhanced interfaces. One stays true to the historical
cross-platform layer-of-abstraction nature of PAPI, but only provides limited
information. The other acts as a thin layer on top of the perf event interface
that provides all sampling info, but is very Linux specific.

5.1 Abstracted Interface

This interface attempts to provide access specifically to the cache latency values
that can be found in PAPI. This is the most requested feature, and in theory
can be made cross-platform although currently only Intel PEBS provides this
information.

This interface involves a PAPI sample init() call shown in Fig. 1 which
internally inside of PAPI will take the event selected and set up a sampling
buffer. Once the buffer is full, PAPI will gather the data and create an array of
sample data that will be passed back to the user.
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s t r u c t samp le s t ruc t {
u in t64 t type ;
u i n t 64 t i n s t r u c t i o n add r e s s ;
u i n t 64 t memory access address ;
u i n t 64 t c a che a c c e s s t ype ;
u i n t 64 t l a t ency ;

} ;

i n t PAPI sample in it ( i n t EventSet , i n t EventCode ,
long long sample per iod , long long b u f f e r s i z e ,
PAPI over f low handler t handler ) ;

typede f void (∗ PAPI over f low handler t )
( i n t EventSet , void ∗ sample s t ruct ,
long long num samples ) ;

Fig. 1. Proposed abstract interface

5.2 Direct perf event Interface

This option for the interface does not try to abstract away the samples. It oper-
ates on the assumption that most HPC work happens on Linux kernels via the
perf event interface and as much information as possible provided by this inter-
face should be passed back to PAPI if requested. While this is the most powerful
interface, it requires a lot of internal perf event knowledge. The example inter-
face is shown in Fig. 2.

i n t PAPI sample in it ( i n t EventSet , i n t EventCode ,
long long sample per iod , long long b u f f e r s i z e ,
s t r u c t p e r f e v e n t a t t r ∗ attr ,
PAPI over f low handler t handler ) ;

typede f void (∗ PAPI sample handler t )
( i n t EventSet , void ∗ bu f f e r add r e s s ) ;

Fig. 2. Proposed perf event interface

This interface provides a pointer to the raw perf event mmap() sample buffer,
and it is up to the user code to interpret this and get the samples out. For
performance reasons, the Linux kernel enforces a rule that to gather PEBS-type
sample data, each individual core needs to have its own mmap() buffer. Currently
it is up to the user to open one event per core as needed, but we are planning
an interface to simplify this.

Existing PAPI code using PAPI overflow() can be used with few changes.
You still need to create an eventset, add an event (note: only some events are
capable of providing extra sampling information). Then initialize sampling using
the proposed interface. Finally, start/stop events as per normal.

When a threshold is crossed and a sample is gathered, PAPI will activate the
signal handler that was set up by the user. It is then up to the user to access
the mmap() buffer and do something useful with the contents before returning.
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In PAPI we provide two sample programs: one writes out the raw sample data
to disk for later analysis, and one that prints out the sample results on the fly.

The low level changes required to PAPI are mostly about making sure the
mmap() buffers get set up properly. A lot of the hard work involving internal
PAPI management of mmap() buffers was already done when fast rdpmc read
support was added [23]. The PAPI code manages setting up the mmap()s and
making sure that the events are opened properly.

The types of sample information available can be found in the perf event open
manpage [33]. For PEBS latency information use one specifies PERF SAMPLE IP
| PERF SAMPLE WEIGHT | PERF SAMPLE DATA SRC which asks for the instruction
pointer, the weight (latency) and the source of data. For IBS events one would
ask for �PERF SAMPLE RAW and you have to parse the IBS values yourself.

Limitations of this Interface. The primary limitation of this proposed inter-
face is how Linux-centric it is. PAPI is in theory supposed to be platform agnos-
tic. In addition the samples are in the raw perf event sample record format which
requires the users to have some non-trivial code to decode the results.

Another concern is how to remain forward compatible. As Intel adds more
features to PEBS how can we return those too without requiring tools to be
recompiled.

Unsupported Sample Types. The perf event interface returns most sample
data through the mmap() interface, so anything supported by perf event can be
gathered that way. This means results such as LBR records can also be obtained
through this interface.

Some values, such as Intel BTS and Intel Processor Trace, use an additional,
auxiliary, mmap() buffer to store the results. PAPI currently does not support
gathering data via that mechanism.

Data Format. Once the user signal handler is called, the program can read out
the samples in the mmap() buffer and interpret them. There are two straight-
forward ways to deal with the data. One is to immediately write it to disk,
interpreting it offline. The other is to decode and act on the results immediately.
Both methods of gathering data will require some sort of library to interpret the
fields in the samples. We provide examples that do both types of analysis, but
this code is currently not part of PAPI, but separate code to be included in the
analysis routines.

For the save to disk case, there is a standard on-disk format for perf records,
the a perf.data file [9,17,28]. Programs that write out data in this format can
then be analyzed by other compatible perf tools. There are various existing tools
that can parse raw perf.data files:

– pmu-tools parser [15],
– quipper C++ parser (part of chromiumos-wide-profiling),
– gooda [21], and
– flame graphs [11].
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6 Preliminary Results

We have been developing the advanced PAPI sampling interface on a number of
machines, with the primary testing happening on an Intel Skylake machine with
four cores. The test machine is running Linux 4.4.0-127-generic and our primary
benchmark is a PAPI instrumented version 2.2 of the High-Performance Linpack
(HPL) benchmark [29]. Samples have been recorded and verified for all PEBS
events in the Skylake, Haswell, and Broadwell architectures.

Figure 3 shows results gathered on a Skylake machine when using sample
types PERF SAMPLE IP, PERF SAMPLE READ, and PERF SAMPLE CPU. The native
FRONTEND RETIRED.L1I MISS event was used, which counts instruction cache
misses. Each sample contains the value of the performance counter, which can
be seen next to “Value:”. The samples also record the CPU on which the event is
occur ING and the instruction pointer at the time of the event. The samples were
collected with a sample period of 10000. Two captured samples are shown; it is
a multithreaded benchmark and it can be seen that the samples were gathered
from two different cores. In this example, the raw data is gathered in a signal
handler and this is parsed and printed each time a signal occurs.

Figure 4 shows results gathered on a Haswell machine that include cache
latency and source results. These were gathered using the event:

MEM TRANS RETIRED:LATENCY ABOVE THRESHOLD
and the sample type:
PERF SAMPLE IP | PERF SAMPLE WEIGHT | PERF SAMPLE DATA SRC.

PERF_RECORD_SAMPLE [91], MISC=2

(PERF_RECORD_MISC_USER), Size=64

PERF_SAMPLE_IP, IP: 7f9b5f1bc439

PERF_SAMPLE_CPU, cpu: 2 res 0

PERF_SAMPLE_READ, read_format

Number: 1

enabled: 4827080

running: 4827080

Value: 10000 id: 2084

PERF_RECORD_SAMPLE [91], MISC=2

(PERF_RECORD_MISC_USER), Size=64

PERF_SAMPLE_IP, IP: 7f9b6f03b7fc

PERF_SAMPLE_CPU, cpu: 7 res 0

PERF_SAMPLE_READ, read_format

Number: 1

enabled: 12203500

running: 4517409

Value: 10001 id: 2089

Fig. 3. Example advanced sampling,
with IP, CPU, and READ samples
shown.

PERF_RECORD_SAMPLE [c001],

MISC=16386

PERF_SAMPLE_IP, IP: 55fb7799a730

PERF_SAMPLE_WEIGHT, Weight: 48

PERF_SAMPLE_DATA_SRC,

Raw: 668100842

Load Hit L3 cache No snoop

Hit Level 1

TLB Level 2 TLB Hardware walker

PERF_RECORD_SAMPLE [c001],

MISC=16386

PERF_SAMPLE_IP, IP: 55fb7799a730

PERF_SAMPLE_WEIGHT, Weight: 67

PERF_SAMPLE_DATA_SRC,

Raw: 668100842

Load Hit L3 cache No snoop

Hit Level 1

TLB Level 2 TLB Hardware walker

Fig. 4. Example of advanced sampling,
with IP, WEIGHT, and DATA SRC
samples. The weight indicates the
latency of the sampled instruction.
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7 Conclusion and Future Work

We have designed an improved sampling interface for PAPI. It integrates
advanced sampling support into the PAPI interface while abstracting away some
of the difficulty of using the perf event open sampling interface. We provide code
that can be used to parse samples found in the mmap() buffer which is not a
trivial task.

The interface is currently under test for architectures other than Broadwell,
Haswell and Skylake. Once testing is completed, the interface will be included
and released with the upcoming 6.0 PAPI release.

By adding extended sampling support to PAPI we have opened new avenues
for code analysis that will greatly aid users trying to optimize for performance
in current and future extreme-scale systems.

Acknowledgment. This work was supported by the National Science Foundation
under Grant No. SSI-1450122.
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Abstract. The complexity of HPC software and hardware is quickly
increasing. As a consequence, the need for efficient execution tracing to
gain insight into HPC application behavior is steadily growing. Unfor-
tunately, available tools either do not produce traces with enough detail
or incur large overheads. An efficient tracing method that overcomes
the tradeoff between maximum information and minimum overhead is
therefore urgently needed. This paper presents such a method and tool,
called ParLoT, with the following key features. (1) It describes a tech-
nique that makes low-overhead on-the-fly compression of whole-program
call traces feasible. (2) It presents a new, efficient, incremental trace-
compression approach that reduces the trace volume dynamically, which
lowers not only the needed bandwidth but also the tracing overhead.
(3) It collects all caller/callee relations, call frequencies, call stacks, as
well as the full trace of all calls and returns executed by each thread,
including in library code. (4) It works on top of existing dynamic binary
instrumentation tools, thus requiring neither source-code modifications
nor recompilation. (5) It supports program analysis and debugging at
the thread, thread-group, and program level. This paper establishes that
comparable capabilities are currently unavailable. Our experiments with
the NAS parallel benchmarks running on the Comet supercomputer with
up to 1,024 cores show that ParLoT can collect whole-program function-
call traces at an average tracing bandwidth of just 56 kB/s per core.

Keywords: Tracing · HPC · Data compression ·
Incremental compression

1 Introduction

Understanding and debugging HPC programs is time-consuming for the user
and computationally inefficient. This is especially true when one has to track
control flow in terms of function calls and returns that may span library and sys-
tem codes. Traditional software engineering quality assurance methods are often
c© Springer Nature Switzerland AG 2019
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inapplicable to HPC where concurrency combined with large problem scales and
sophisticated domain-specific math can make programming very challenging. For
example, it took months for scientists to debug an MPI laser-plasma interaction
code [12].

HPC bugs may be a combination of both flawed program logic and unspeci-
fied or illegal interactions between various concurrency models (e.g., PThreads,
MPI, OpenMP, etc.) that coexist in most large applications [12]. Moreover, HPC
software tends to consume vast amounts of CPU time and hardware resources.
Reproducing bugs by rerunning the application is therefore expensive and unde-
sirable. A natural and field-proven approach for debugging is to capture detailed
execution traces and compare the traces against corresponding traces from pre-
vious (stable) runs [2,26]. A key requirement is to do this collection as efficiently
as possible and in as general and comprehensive a manner as possible.

Existing tools in this space do not meet our criteria for efficiency and gen-
erality. The highly acclaimed STAT [2] tool has helped isolate bugs based on
building equivalence classes of MPI processes and spotting outliers. We would
like to go beyond the capabilities offered by STAT and support the collection
of whole-program traces that can then be employed by a gamut of back-end
tools. Also, STAT is usually brought into the picture when a failure (e.g., a
deadlock or hang) is encountered. We would like to move toward an “always
on” collection regime, as we cannot anticipate when a failure will occur – or,
more importantly, whether the failure will be reproducible. There are no reported
debugging studies on using STAT in continuous collection (“always on”) mode.
In CSTG [26], the collection is orchestrated by the user around chosen collection
points and employs heavy-weight unix backtrace calls. These again are different
from ParLoT, where collection points would not be a priori chosen.

The thrust of the work in this paper is to avoid many of the drawbacks
of existing tracing-based tools. We are interested in avoiding source-code mod-
ifications and recompilation—thus making binary instrumentation-based tools
the only practical and widely deployable option. We also believe in the value of
creating tools that are portable across a wide variety of platforms.

Our goal is to use compression for trace aggregation and to offer a generic and
low-overhead tracing method that (1) collects dynamic call information during
execution (all function calls and returns) for debugging, performance evaluation,
phase detection [27], etc., (2) has low overhead, (3) and requires little tracing
bandwidth. Providing all these features in a single tool that operates based on
binary instrumentation is an unsolved problem. In this paper, we describe a new
tracing approach that fulfills these requirements, which we implemented in our
proof-of-concept ParLoT tool.

With ParLoT, users can easily build a host of post-processors to exam-
ine executions from many vantage points. For instance, they can write post-
processors to detect unexpected (or “outlier”) executions. If needed, they can
drill down and detect abnormal behaviors even in the runtime and support library
stack such as MPI-level activities. In HPC, it is well-known (especially on newer
machines) that bugs are often due to broken libraries (MPI, OpenMP), a broken
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runtime, or OS-level activities. Having a single low-overhead tool that can “X-
ray” an application to this depth is a goal met by ParLoT—a unique feature
in today’s tool eco-system.

To further motivate the need for whole-program function call traces, consider
the expression f()+g(). In C, there is no sequence point associated with the +
operator [24]. If these function calls have inadvertent side-effects causing failure,
it is important to know in which order f() and g() were invoked—something
that is easy to discern using ParLoT’s traces. One may be concerned that
such a tool introduces excessive execution slowdown. ParLoT goes to great
lengths to minimize these overheads to a level that we believe most users will
find acceptable. The mindset is to “pay a little upfront to dramatically reduce the
number of overall debug iterations”.

As proof of concept, we gathered preliminary results from using the ParLoT

tracing mechanism to compare different runs. We injected various bugs into the
MPI-related functions of ILCS [4], a parallelization framework for iterative local
searches. We ran ParLoT on top of executions of buggy and bug-free versions
of ILCS and collected traces. Since ParLoT’s traces maintain the order of the
function calls, we were able to split the traces at multiple points of interest and
to feed different chunks of traces to a Concept Lattice data structure [10,11].
Having the totally ordered sequence of function calls of the whole program for
each active process/thread enabled us to quickly narrow down the search space
to locate the cause of the abnormal behavior in the buggy version of ILCS.

This paper does not pursue debugging per se but rather a thorough bench-
marking of ParLoT. It makes the following main contributions:

– It introduces a new tracing approach that makes it possible to capture the
whole-program call-return, call-stack, call-graph, and call-frequency informa-
tion, including all library calls, for every thread and process of HPC applica-
tions at low overhead in both space and time.

– It describes a new incremental data compression algorithm to drastically
reduce the required tracing bandwidth, thus enabling the collection of whole-
program traces, which would be infeasible without on-the-fly compression.

– It presents ParLoT, a proof-of-concept tool that implements our
compression-based low-overhead tracing approach. ParLoT is capable of
instrumenting x86 applications at the binary level (regardless of the source
language used) to collect whole-program call traces.

The remainder of this paper is organized as follows. Section 2 introduces the
basic ideas and infrastructure behind ParLoT and other tracing tools. Section 3
describes the design of ParLoT in detail. Sections 4 and 5 present our evaluation
of different aspects of ParLoT and compare it with a similar tool. Section 6
concludes the paper with a summary and future work.

2 Background and Related Work

Recording a log of events during the execution of an application is essential for
better understanding the program behavior and, in case of a failure, to locate
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the problem. Recording this type of information requires instrumentation of the
program either at the source-code or the binary-code level. Instrumenting the
source code by adding extra libraries and statements to collect the desired infor-
mation is easy for developers. However, doing so modifies the code and requires
recompilation, often involving multiple different tools and complex hierarchies
of makefiles and libraries, which can make this approach cumbersome and frus-
trating for users. Instrumenting an executable at the binary level using a tool
is typically easier, faster, and less error prone for most users. Moreover, binary
instrumentation is language independent, portable to any system that has the
appropriate instrumentation tool installed, and provides machine-level insight
into the behavior of the application.

2.1 Binary Instrumentation

Executables can be instrumented statically, where the additional code is inserted
into the binary before execution, which results in a persistent modified exe-
cutable, or dynamically, where the modification of the executable is not perma-
nent. In dynamic binary instrumentation, code behavior can be monitored at
runtime, making it possible to handle dynamically-generated and self-modifying
code. Furthermore, it may be feasible to attach the instrumentation to a running
process, which is particularly useful for long-running applications and infinite
loops.

Many different tools for investigating application behavior have been designed
on top of such Dynamic Binary Instrumentation (DBI) frameworks. For instance,
Dyninst [19] provides a dynamic instrumentation API that gives developers the
ability to measure various performance aspects. It is used in tools like Open-
SpeedShop [29] and TAU [30] as well as correctness debuggers like STAT [2].
Moreover, VampirTrace [16] uses it to provide a library for collecting program
execution logs.

Valgrind [23] is a shadow-value DBI framework that keeps a copy of every
register and memory location. It provides developers with the ability to instru-
ment system calls and instructions. Error detectors such as Memcheck [22] and
call-graph generators like Callgrind [33] are built upon Valgrind.1

We implemented ParLoT on top of PIN [18], a DBI framework for the IA-
32, x86-64, and MIC instruction-set architectures for creating dynamic program
analysis tools. There is also version of PIN available for the ARM architecture
[13]. ParLoT mutates PIN to trace the entry (call) and exit (return) of every
executed function. Note that our tracing and compression approaches can equally
be implemented on top of other instrumentation tools. For example, PMaC [32]
is a DBI tool for the PowerPC/AIX architecture upon which ParLoT could
also be based.
1 Given the absence of tools similar to ParLoT, we employ Callgrind as a “close-

enough” tool in our comparisons elaborated in Sect. 4.3. In this capacity, Callgrind

is similar to ParLoT(m), a variant of ParLoT that only collects traces from the
main image. We perform such comparison to have an idea of how we fare with respect
to one other tool. In Sect. 5, we also present a self-assessment of ParLoT separately.
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2.2 Efficient Tracing

When dealing with large-scale parallel programs, any attempt to capture reason-
ably frequent events will result in a vast amount of data. Moreover, transferring
and storing the data will incur significant overhead. For example, collecting just
one byte of information per executed instruction yields on the order of a gigabyte
of data per second on a single high-end core. Storing the resulting multi-gigabyte
traces from many cores can be a challenge, even on today’s large hard disks.

Hence, to be able to capture whole-program call traces, we need a way to
decrease the space and runtime overhead. Compression can encode the generated
data using a smaller number of bits, help reduce the amount of data movement
across the memory hierarchy, and lower storage and network demands. Although
the encoded data will later have to be decoded for analysis, compressing them
during tracing enables the collection of whole-program traces.

The use of compression by itself is not new. Various performance evaluation
tools [1,17,30] already employ compression during the collection of performance
analysis data. Tools such as ScalaTrace [25] also exploit the repetitive nature of
time-step simulations [8]. Aguilar et al. [1] proposed a lossy compression mech-
anism using the Nami library [9] for online MPI tracing. Mohror and Karavanic
[20] investigated similarity-based trace reduction techniques to store and analyze
traces at scale.

Many performance and debugging tools for HPC applications [2,21] rely on
mechanisms such as MRNet [28] to accelerate the collection and aggregation of
traces based on an overlay network to overcome the challenge of massive data
movement and analysis. However, our experiments show that, due to the high
compression ratio of ParLoT traces, such mechanisms for data movement and
aggregation may be unnecessary.

The novelty offered by ParLoT lies in the combination of compression speed,
efficacy, and low timing jitter made possible by its incremental lossless compres-
sion algorithm, which is described in Sect. 3. It immediately compresses all traced
information while the application is running, that is, ParLoT does not record
the uncompressed trace in memory. As a result, just a few kilobytes of data
need to be written out per thread and per second, thus requiring only a small
fraction of the disk or network bandwidth. The traces are decompressed later
when they are read for offline analysis. From the decompressed full function-
call trace, the complete call-graph, call-frequency, and caller-callee information
can be extracted. This can be done at the granularity of a thread, a group of
threads, or the whole application. We now elaborate on the design of ParLoT

that makes these innovations possible.

3 Design of ParLoT

Our experimental results in Sect. 5 highlight why compression is essential to
make our approach work. We used ParLoT to record a unique 16-bit identifier
for every function call and return. Tracing just this small amount of information
without compression when running the Mantevo miniapps [14] on Stampede 1
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Fig. 1. Overview of ParLoT

resulted in about 2MB/s of data per core on average. Extrapolating this value to
all 102,400 cores of Stampede 1 (not counting the accelerators) yields 205GB/s
of trace data, which exceeds the Lustre filesystem’s parallel write performance
of 150GB/s. Enabling ParLoT’s compression algorithm reduced the emitted
trace data by a factor of 100 on average, a ratio that is quite stable w.r.t scaling,
making it possible to trace full-scale programs while leaving over 98% of the I/O
bandwidth to the application. Therefore, ParLoT should also work for codes
with higher bandwidth requirements than the ones we tested.

Figure 1 provides a general overview of ParLoT’s workflow. Basic blocks
within program executables are dynamically instrumented before being executed.
The collected data are compressed on-the-fly at runtime.

3.1 Tracing Operation

ParLoT uses the PIN API as its instrumentation mechanism to gather traces. In
particular, it instructs PIN to instrument every thread launch and termination
in the application as well as every function entry and exit. The thread-launch
instrumentation code initializes the per-thread tracing variables and opens a
file into which the trace data from that thread will be written. The thread-
termination code finalizes any ongoing compression, flushes out any remaining
entries, and closes the trace file. ParLoT assigns every static function in each
image (main program and all libraries) a unique unsigned 16-bit ID, which it
records in a separate file together with the image and function name. This file
allows the trace reader to map IDs back to function-name/image pairs.
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For every function entry, ParLoT executes extra code that has access to
the thread ID, function ID, and current stack-pointer (SP) value. Based on the
SP value, it performs call-stack correction if necessary (see Sect. 3.4), adds the
new function to a data structure it maintains that holds the call stack (which is
separate from the application’s runtime stack), and emits the function ID into
the trace file via an incremental compression algorithm (see Sect. 3.2). All of
this is done independently for each thread. Similarly, for every function exit,
ParLoT also executes extra code that has access to the thread ID, function ID,
and current SP value. Based on the SP value, it performs call-stack correction
if necessary, removes the function from its call-stack data structure, and emits
the reserved function ID of zero into the trace file to indicate an exit. As before,
this is done via an incremental compression algorithm. We use zero for all exits
rather than emitting the function ID and a bit to specify whether it is an entry
or exit because using zeros results in more compressible output. This way, half
of the values in the trace will be zero.

3.2 Incremental Compression

ParLoT immediately compresses the traced information even before it is writ-
ten to memory. It does, however, keep a sliding window (circular buffer) of the
most recent uncompressed trace events, which is needed by the compressor. It
compresses each function ID before the next function ID is known. The con-
ventional approach would be to first record uncompressed function IDs in a
buffer and later compress the whole buffer once it fills up. However, this makes
the processing time very non-uniform. Whereas almost all function IDs can be
recorded very quickly since they just have to be written to the buffer, processing
a function ID that happens to fill the buffer takes a long time as it triggers the
compression of the entire buffer. This results in sporadic blocking of threads
during which time they make no progress towards executing the application
code. Initial experiments revealed that such behavior can be detrimental when
one thread is polling data from another thread that is currently blocked due to
compression. For example, we observed a several order of magnitude increase in
entry/exit events of an internal MPI library function when using block-based
compression.

To remedy this situation, the compressor must operate incrementally, i.e.,
each piece of trace data must be compressed when it is generated, without
buffering it first, to ensure that there is never a long-latency compression delay.
Few existing compression algorithms have been implemented in such a manner
because it is more difficult to code up and probably a little slower. Nevertheless,
we were able to implement our algorithm (discussed next) in this way so that
each trace event is compressed with similar latency.

3.3 Compression Algorithm

We used the CRUSHER framework [5–7,34] to automatically synthesize an effec-
tive and fast lossless compression algorithm for our traces. CRUSHER is based
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on a library of data transformations extracted from various compression algo-
rithms. It combines these transformations in all possible ways to generate algo-
rithm candidates, which it then evaluates on a set of training data. We gathered
uncompressed traces from some of the Mantevo miniapps [14] for this purpose.
This evaluation revealed that a particular word-level Lempel-Ziv (LZ) trans-
formation followed by a byte-level Zero-Elimination (ZE) transformation works
well. In other words, ParLoT’s trace entries, which are two-byte words, are first
transformed using LZ. The output is interpreted as a sequence of bytes, which
is transformed using ZE for further compression. The output of ZE is written to
secondary storage.

LZ implements a variant of the LZ77 algorithm [35]. It uses a 4096-entry
hash table to identify the most recent prior occurrence of the current value
in the trace. Then it checks whether the three values immediately before that
location match the three trace entries just before the current location. If they
do not, the current trace entry is emitted and LZ advances to the next entry. If
the three values match, LZ counts how many values following the current value
match the values following that location. The length of the matching substring
is emitted and LZ advances by that many values. Note that all of this is done
incrementally. The history of previous trace entries available to LZ for finding
matches is maintained in a 64k-entry circular buffer.

ZE emits a bitmap in which each bit represents one input byte. The bits
indicate whether the corresponding bytes are zero or not. Following each eight-
bit bitmap, ZE emits the non-zero bytes.

As mentioned above, we had to implement the two transformations incre-
mentally to minimize the maximum latency. This required breaking them up
into multiple pieces. Depending on the state the compressor is in when the next
trace entry needs to be processed, the appropriate piece of code is executed and
the state updated. If the LZ code produces an output, which it only does some
of the time, then the appropriate piece of the ZE code is executed in a similar
manner.

3.4 PIN and Call-Stack Correction

To be able to decode the trace, i.e., to correctly associate each exit with the
function entry it belongs to, our trace reader maintains an identical call-stack
data structure. Unfortunately, and as pointed out in the PIN documentation [15],
it is not always possible to identify all function exits. For example, in optimized
code, a function’s instructions may be inlined and interleaved with the caller’s
instructions, making it sometimes infeasible for PIN to identify the exit. As a
consequence, we have to ensure that ParLoT works correctly even when PIN

misses an exit. This is why the SP values are needed.
During tracing, ParLoT not only records the function IDs in its call stack

but also the associated SP values. This enables it to detect missing exits and
to correct the call stack accordingly. Whenever a function is entered, it checks
if there is at least one entry in the call stack and, if so, whether its SP value is
higher than that of the current SP. If it is lower, we must have missed at least
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one exit since the runtime stack grows downwards (the SP value decreases with
every function entry and increases with every exit). If a missing exit is detected
in this manner, ParLoT pops the top element from its call stack and emits a
zero to indicate a function exit. It repeats this procedure until the stack is empty
or its top entry has a sufficiently high SP value. The same call-stack correction
technique is applied for every function exit whose SP value is inconsistent. Note
that the SP values are only used for this purpose and are not included in the
compressed trace.

The result is an internally consistent trace of function entry and exit events,
meaning that parsing the trace will yield a correct call stack. This is essential
so that the trace can be decoded properly. Moreover, it means that the trace
includes exits that truly happened in the application but that were missed by
PIN. Note, however, that our call-stack correction is a best-effort approach and
may, in rare cases, temporarily not reflect what the application actually did. For
example, this can happen for functions that do not create a frame on the runtime
stack. When implementing ParLoT on top of another DBI framework, call-stack
correction may not be needed, resulting in even lower ParLoT overhead.

4 Evaluation Methodology

4.1 Benchmarks and System

We performed our evaluations on the MPI-based NAS Parallel Benchmarks
(NPB) [3]. NPB includes four inputs sizes. To keep the runtimes reasonable,
we show results for the class B (small-medium) and class C (medium-large)
inputs.

We compiled the NPB codes with the mpicc and mpif77 wrappers of MVA-
PICH 2.2.1, which are based on icc/ifort 14.0.2 using the prescribed -g and -O1
optimization flags. Quick tests showed that higher optimization levels do not
significantly improve the performance.

We ran all experiments on Comet at the San Diego Supercomputer Cen-
ter [31], whose filesystem is NFS and Lustre. Comet has 1944 compute nodes,
each of which has dual-socket Intel Xeon E5-2680 v3 processors with a total of
28 cores (14 per socket) and 128GB of main memory. Note that we only used
16 cores per node as many of the NPB programs require a core count that is a
power of two. To study the scaling behavior, we ran experiments on 1, 4, 16 and
64 compute nodes, i.e., on up to 1024 cores.

4.2 Metrics

We use the following metrics to quantify and compare the performance of the
tracing tools. Unless otherwise noted, all results are based on the median of three
identical experiments.
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– The tracing overhead is the runtime of the target application when it is
being traced divided by the runtime of the same application without trac-
ing. This lower-is-better ratio measures by how much the tracing (and the
compression when enabled) slows down the target application.

– The tracing bandwidth is the size of the trace information divided by the
application runtime. To make the results easier to compare, we generally list
the tracing bandwidth per core, i.e., the tracing bandwidth divided by the
number of cores used. This lower-is-better metric is expressed in kilobytes per
second (kB/s) per core. It specifies the average needed bandwidth to record
the trace data.

– The compression ratio is the size of the uncompressed trace divided by the
size of the generated (compressed) trace. This higher-is-better ratio measures
the factor by which the compression reduces the trace size. In other words,
without compression, the tracing bandwidth would be higher by this factor.

4.3 Tracing Tools

We compare our ParLoT tool, implemented on top of PIN 3.5, with Call-

grind 3.13. ParLoT was compiled with gcc 4.9.2 using PIN’s make system and
Callgrind with Valgrind’s make system. We created the following versions of
ParLoT to evaluate different aspects of its design.

– ParLoT(m) is the normal ParLoT tool configured to only collect function-
call traces from the main image of the application.

– ParLoT(a) is the normal ParLoT tool configured to collect function-call
traces from all images of the application, including library function calls.

– Pin-Init is a crippled version of ParLoT from which the tracing code has
been removed. The purpose of Pin-Init is to see how much of the overhead
is due to PIN.

– ParLoT-NC is the normal ParLoT tool but with compression disabled. It
writes out the captured data in uncompressed form. The purpose of ParLoT-

NC is to show the performance impact of the compression.

It proved surprisingly difficult to find a tool that is similar to ParLoT

because there appear to be no other tools that generate whole program call
traces. In the end, we settled on Callgrind as the most similar tool we could
find and used it for our comparisons. Callgrind is based on the Valgrind DBI
tool. It collects function-call graphs combined with performance data to show
the user what portion of the execution time has been spent in each function.

Each Callgrind trace file contains a sequence of function names (or their
code) plus numerical data for each function on its caller-callee relationship with
other functions. Moreover, it contains cost information for each function in terms
of how many machine instructions it read. This information is collected using
hardware performance counters. The format of the file is plain ASCII text. Inter-
estingly, all numerical values are expressed relative to previous values, i.e., they
are delta (or difference) encoded. This simple form of compression is enabled by
default in Callgrind.
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We believe the information traced by Callgrind is reasonably similar to
the information traced by ParLoT(m). Whereas Callgrind’s traces include
performance data that ParLoT does not capture, ParLoT records the whole-
program call trace, which Callgrind does not capture. The full function-call
trace is a strict superset of the call-graph information that Callgrind records
because the call graph can be extracted from the function-call trace but not vice
versa. In particular, Callgrind cannot recreate the order of the function calls
a thread made whereas ParLoT can.

Table 1. Overhead added by each tool

Input Tool # Nodes bt cg ep ft is lu mg sp GM

B ParLoT(m) 1 1.6 1.8 2.6 2.1 2.5 1.3 2.5 1.3 1.9
4 1.8 1.9 1.9 1.7 1.8 1.8 1.5 1.7 1.8

16 2.2 2.6 2.0 1.9 1.8 2.7 2.4 2.2 2.2
64 2.1 2.2 2.4 2.0 4.3 4.4 2.0 2.1 2.5
AVG 1.9 2.1 2.2 1.9 2.6 2.6 2.1 1.8 2.1

ParLoT(a) 1 1.8 2.7 4.2 2.8 4.2 1.7 4.8 1.7 2.8
4 2.6 3.1 3.4 2.8 3.0 2.8 2.8 2.7 2.9

16 3.5 4.2 3.4 2.9 2.8 4.3 4.5 3.7 3.6
64 3.1 3.3 3.8 3.0 5.4 4.7 3.2 3.3 3.7
AVG 2.8 3.3 3.7 2.9 3.9 3.4 3.8 2.8 3.2

Callgrind 1 8.6 6.0 8.9 10.1 2.5 7.5 3.3 6.6 6.1
4 6.0 3.6 2.9 3.5 1.5 5.2 1.2 5.8 3.2

16 4.3 3.3 2.2 2.2 1.7 4.6 1.8 4.3 2.8
64 2.3 2.0 1.7 2.1 4.1 4.0 1.5 2.5 2.3
AVG 5.3 3.7 3.9 4.5 2.4 5.3 2.0 4.8 3.6

C ParLoT(m) 1 1.4 1.3 2.5 1.9 2.3 1.1 1.7 1.1 1.6
4 1.6 1.7 1.8 1.6 1.7 1.3 1.8 1.4 1.6
16 1.8 2.4 2.5 1.5 1.8 2.2 2.4 1.8 2.0
64 2.2 2.7 2.4 1.6 4.5 3.4 2.4 2.2 2.6
AVG 1.8 2.0 2.3 1.7 2.6 2.0 2.1 1.6 1.9

ParLoT(a) 1 1.5 1.6 3.2 2.0 2.8 1.2 2.5 1. 2 1.9
4 1.9 2.4 2.6 2.1 2.6 1.7 3.1 1.7 2.2

16 2.7 3.5 4.1 2.1 2.8 3.2 4.0 2.5 3.0
64 3.6 4.1 4.2 2.2 5.5 4.4 4.2 3.0 3.8
AVG 2.4 2.9 3.5 2.1 3.4 2.6 3.5 2.1 2.7

Callgrind 1 8.5 4.4 13.2 13.1 3.3 7.9 5.9 5.1 6.9
4 8.7 4.5 4.8 6.4 1.7 6.4 2.8 6.3 4.6

16 6.9 3.9 3.1 2.8 1.8 6.4 2.1 6.1 3.7
64 4.4 3.5 2.1 2.5 4.2 5.2 2.1 3.8 3.3
AVG 7.1 4.1 5.8 6.2 2.8 6.5 3.2 5.3 4.6
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Fig. 2. Average tracing overhead on the NPB applications - Input B

Fig. 3. Average tracing overhead on the NPB applications - Input C

5 Results

5.1 Tracing Overhead

Table 1 shows the tracing overhead of ParLoT(m), ParLoT(a), and Call-

grind on each application of the NPB benchmark suite for different node counts.
The last column of the table lists the geometric mean over all eight programs.
The AVG rows show the average over the four node counts.

On average, both ParLoT(m) and ParLoT(a) outperform Callgrind.
The bolded numbers in Table 1 for input C show that the average overhead is
1.94 for ParLoT(m), 2.73 for ParLoT(a), and 4.63 for Callgrind. Figures 2
and 3 show these results in visual form.

The key takeaway point is that the overhead of ParLoT is roughly a factor
of two to three, which we believe users may be willing to accept, for example,
if it helps them debug their applications. This is promising especially when
considering how detailed the collected trace information is and that most of the
overhead is due to PIN (see Sect. 5.4). Note that ParLoT’s overhead is typically
lower than that of Callgrind, which collects less information.

The overhead of ParLoT increases as we scale the applications to more
compute nodes. However, the increase is quite small. Going from 16 to 1024
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Table 2. Required bandwidth per core (kB/s)

Input Tool # Nodes bt cg ep ft is lu mg sp GM

B ParLoT(m) 1 4.7 21.9 3.8 1.5 0.8 2.4 5.6 5.4 3.7
4 14.3 41.1 1.9 3.5 2.2 21.5 6.5 15.9 8.1

16 14.3 46.6 1.5 4.9 3.4 31.8 6.5 18.6 9.4
64 18.6 43.6 1.3 4.6 4.5 27.1 5.6 29.6 9.9
AVG 13.0 38.3 2.1 3.6 2.7 20.7 6.1 17.4 7.8

ParLoT(a) 1 48.7 89.4 47.2 45.6 60.0 53.6 60.8 54.3 56.2
4 61.8 101.2 45.2 55.1 53.2 71.1 54.9 73.6 62.7

16 74.0 116.9 47.4 48.9 47.8 100.9 55.8 84.6 68.0
64 81.8 110.2 44.2 48.0 37.8 100.3 52.7 99.9 66.5
AVG 66.6 104.4 46.0 49.4 49.7 81.5 56.0 78.1 63.3

Callgrind 1 1.6 7.7 7.4 4.6 39.5 2.6 34.4 2.7 6.7
4 6.5 16.0 22.1 15.7 45.5 8.6 45.5 7.8 16.3

16 17.2 24.6 37.4 23.8 29.9 16.2 51.5 15.8 24.9
64 26.8 27.7 45.9 25.1 11.0 17.8 45.3 20.2 25.0
AVG 13.0 19.0 28.2 17.3 31.5 11.3 44.2 11.6 18.2

C ParLoT(m) 1 1.8 17.0 5.2 1.2 0.7 0.8 3.6 1.4 2.2
4 7.5 44.9 3.0 2.5 2.1 20.1 7.1 13.7 7.6

16 16.3 55.0 1.8 6.1 3.4 34.1 7.2 20.7 10.7
64 17.5 61.4 1.3 5.9 4.4 38.3 5.6 26.1 10.9
AVG 10.8 44.6 2.8 3.9 2.7 23.3 5.9 15.5 7.8

ParLoT(a) 1 17.8 53.4 26.3 20.9 48.3 25.3 52.6 19.5 30.0
4 51.8 95.8 36.8 43.8 51.4 58.4 54.2 65.8 55.2

16 75.4 121.0 44.3 61.4 46.9 101.1 56.5 101.3 71.4
64 80.6 135.2 43.5 46.3 37.1 117.9 54.1 99.0 69.0
AVG 56.4 101.4 37.7 43.1 45.9 75.7 54.3 71.4 56.4

Callgrind 1 0.4 3.1 2.0 1.1 14.6 0.7 7.0 0.8 1.9
4 1.8 8.9 7.7 4.5 31.7 2.8 21.0 2.8 6.4

16 6.0 15.8 22.9 10.8 26.5 7.5 39.1 7.0 13.7
64 14.3 19.6 35.8 12.2 11.1 11.9 40.7 12.8 17.4
AVG 5.6 11.8 17.1 7.1 21.0 5.7 26.9 5.8 9.8

cores, a 64-fold increase in parallelism, only increases the average overhead by
between 1.3- and 2.1-fold. In contrast, Callgrind’s overhead decreases with
increasing node count, making it more scalable. Having said that, Callgrind’s
overhead is larger for the C inputs whereas ParLoT’s overhead is larger for the
smaller B inputs. In other words, ParLoT scales better to larger inputs than
Callgrind.

ParLoT’s scaling behavior can be explained by correlating it with the
expected function-call frequency. When distributing a fixed problem size over
more cores, each core receives less work. As a consequence, less time is spent in
the functions that process the work, resulting in more function calls per time
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Fig. 4. Average required bandwidth per core (kB/s) on the NPB applications - Input B

Fig. 5. Average required bandwidth per core (kB/s) on the NPB applications - Input C

unit, which causes more work for ParLoT. In contrast, when distributing a
larger problem size over the same number of cores, each core receives more
work. Hence, more time is spent in the functions that process the work, result-
ing in fewer function calls per time unit, which causes less work for ParLoT

and therefore less tracing overhead. Hence, we believe ParLoT’s overhead to
be even lower on long-running inputs, which is where our tracing technique is
needed the most.

In summary, ParLoT’s overhead is in the single digits for all evaluated
applications and configurations, including for 1024-core runs. It appears to scale
reasonably to larger node counts and well to larger problem sizes.

5.2 Required Bandwidth

Table 2, Figs. 4 and 5 show how much trace bandwidth each tool requires during
the application execution. On average, ParLoT(m) requires less bandwidth than
Callgrind, especially for smaller inputs. ParLoT(a)’s bandwidth is much
higher as it collects call information from all images and not just the main
image like ParLoT(m) does.
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Fig. 6. Average compression ratio of ParLoT on the NPB applications - Input B

Fig. 7. Average compression ratio of ParLoT on the NPB applications - Input C

We see that the required bandwidth for different input sizes of the NPB
applications are almost equal in ParLoT. According to the NPB documentation,
the number of iterations for inputs B and C are the same for all applications.
They only differ in the number of elements or the grid size. It is clear that
the required bandwidth of ParLoT is independent of the problem size, unlike
Callgrind, where the input size has a linear impact on the results.

5.3 Compression Ratio

Table 3 shows the compression ratios for all configurations and inputs. On aver-
age, ParLoT stores between half a kilobyte and a kilobyte of trace information
in a single byte. We observe that the average compression ratio for ParLoT(a)

on input C is 644.3, and its corresponding required bandwidth from Table 2
is 56.4 kB/s. This means ParLoT can collect more than 36 MB worth of
data per core per second while only needing 56 kB/s of the system bandwidth,
leaving the rest of the available bandwidth to the application. In comparison,
Callgrind collects less than 100 kB of data but still adds more overhead
compared to either ParLoT(a) or ParLoT(m). The average amount of trace
data that can be collected by ParLoT(a) is 360x (85x for ParLoT(m)) larger
than that for Callgrind. In the best observed case, the compression ratio of
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ParLoT exceeds 21000. This is particularly impressive because it was achieved
with relatively low overhead and incremental on-the-fly compression. Generally,
the compression ratios of ParLoT(m) are higher than those of ParLoT(a)

because the variety of distinct function calls on the main image is smaller than
when tracing all images, thus compression performs better on ParLoT(m). Also
by looking at Figs. 4, 5, 6 and 7, we find EP to have the highest compression
ratio of the NPB applications. At the same time, it has the minimum required
bandwidth. The opposite is true for CG, which exhibits the lowest compression
ratio and the highest required bandwidth. CG is a conjugate gradient method
with irregular memory accesses and communications whereas EP is an embar-
rassingly parallel random number generator. CG’s whole-program trace contains
a larger number of distinct calls and more complex patterns than that of EP,
thus resulting in a higher bandwidth and lower compression ratio.

ParLoT’s compression mechanism works better on larger input sizes because
larger inputs tend to result in longer streams of similar function calls (e.g., a call
that is made for every processed element).

Table 3. Compression ratio

Input Tool # Nodes bt cg ep ft is lu mg sp GM

B ParLoT(m) 1 3 035.9 94.4 12 456.2 12 173.5 9 718.4 167.7 99.1 878.3 1 255.2

4 586.6 82.5 10 368.4 1 737.1 909.2 140.3 255.0 338.2 559.4

16 346.7 113.3 8 563.9 1 077.4 1 200.6 179.0 387.6 123.0 496.8

64 252.2 147.8 7 611.0 1 122.6 1 908.0 366.8 437.3 152.9 591.1

AVG 1 055.4 109.5 9 749.9 4 027.6 3 434.0 213.5 294.7 373.1 725.6

ParLoT(a) 1 514.5 137.4 3 335.8 1 226.7 543.2 314.6 260.9 303.9 500.2

4 315.7 137.2 1 266.9 436.2 316.2 287.3 329.6 199.7 330.7

16 226.9 181.6 1 246.7 1 026.5 927.1 299.3 469.3 171.5 430.4

64 329.2 247.3 1 394.1 1 043.9 1 984.6 410.3 548.5 307.2 597.6

AVG 346.6 175.9 1 810.9 933.3 942.8 327.9 402.1 245.6 464.7

C ParLoT(m) 1 8 619.0 111.2 13 068.0 21 335.6 21 856.5 350.0 247.4 1 977.4 2 371.4

4 1 910.6 110.5 12 418.7 6 520.3 2 256.6 112.8 268.0 472.7 928.2

16 580.8 133.2 11 017.4 1 239.3 1 347.9 164.5 396.9 143.1 582.8

64 322.8 131.9 9 155.0 1 065.1 1 896.3 223.7 465.7 168.9 585.7

AVG 2 858.3 121.7 11 414.7 7 540.1 6 839.3 212.7 344.5 690.5 1117.0

ParLoT(a) 1 2 579.4 181.8 7 377.0 5 143.1 1 520.4 408.2 314.8 650.7 1 107.4

4 448.6 161.3 3 194.6 1 062.9 527.3 274.7 319.4 237.4 477.4

16 285.1 185.7 1 765.5 588.9 1 106.3 273.6 467.4 141.7 426.9

64 290.0 214.7 1 512.9 1 237.3 2 038.7 329.0 496.2 270.8 565.8

AVG 900.8 185.9 3 462.5 2 008.1 1 298.2 321.4 399.4 325.2 644.4

5.4 Overheads

Table 4 presents the average overhead added to each application for different
versions of ParLoT. Last rows of each section of this table present the geometric
mean. This information captures how much each phase of ParLoT slows down
the native execution.
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Fig. 8. Variability of ParLoT(m) overhead on 16 nodes - Input B

In general, one expects the following inequality to hold: the overhead of
Pin-Init should be less than that of ParLoT, which should be less than that
of ParLoT-NC. This is not always the case because of the non-deterministic
runtimes of the applications. In fact, the variability across three runs of each
experiment is shown in Fig. 8 where we present the minimum, maximum and
median overheads. These overheads are for input size B and 16 nodes. This
variability explains the seeming inconsistencies in Table 4.

On average, Pin-Init adds an overhead of 3.28 and ParLoT(a) adds an
overhead of 3.42. This means that almost 96% of ParLoT(a)’s overhead
is due to PIN. The results of ParLoT(m) and other inputs follow the same
pattern as shown in Figs. 11 and 12. The overhead that ParLoT (excluding
the overhead of Pin-Init) adds to the applications is very small. If we were to
switch to a different instrumentation tool that is not as general as PIN but more
lightweight, the overhead would potentially reduce drastically.

5.5 Compression Impact

Figures 9 and 10 show the overhead breakdown of ParLoT-NC, which illus-
trate the impact of compression. They also highlight the importance of incorpo-
rating compression directly in the tracing tool. On average, ParLoT-NC slows
down the application execution almost 2x more than ParLoT(a). The aver-
age overhead across Table 4 for ParLoT(a) is 3.4. The corresponding factor
for ParLoT-NC is 6.6. The numbers of ParLoT(m) and input C follow the
same pattern. For example, ParLoT-NC slows down the application execution
almost 1.66x more than ParLoT(m).

Clearly, compression not only lowers the storage requirement but also the
overhead. This is important as it shows that the extra computation to perform
the compression is more than amortized by the reduction in the amount of data
that need to be written out.

This result validates our approach and highlights that incremental, on-the-
fly compression is likely essential to make whole-program tracing possible at low
overhead.
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Fig. 9. ParLoT-NC tracing overhead breakdown - Input B

Fig. 10. ParLoT-NC tracing overhead breakdown - Input C

Fig. 11. Tracing overhead breakdown - Input B
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Fig. 12. Tracing overhead breakdown - Input C

6 Discussion and Conclusion

In this paper, we present ParLoT, a portable low overhead dynamic binary
instrumentation-based whole-program tracing approach that can support a vari-
ety of dynamic program analyses, including debugging. Key properties of Par-

LoT include its on-the-fly trace collection and compression that reduces timing
jitter, I/O bandwidth, and storage requirements to such a degree that whole-
program call/return traces can be collected efficiently even at scale.

We evaluate various versions of ParLoT created by disabling/enabling com-
pression, not collecting any traces, etc. In order to provide an intuitive compar-
ison against a well known tool, we also compare ParLoT to Callgrind. Our
metrics include the tracing overhead, required bandwidth, achieved compression
ratio, initialization overhead, and the overall impact of compression. Detailed
evaluations on the NAS parallel benchmarks running on up to 1024 cores estab-
lish the merit of our tool and our design decisions. ParLoT can collect more
than 36MB worth of data per core per second while only needing 56 kB/s of
bandwidth and slowing down the application by 2.7x on average. These results
are highly promising in terms of supporting whole program tracing and debug-
ging, in particular when considering that most of the overhead is due to the DBI
tool and not ParLoT.

The traces collected by ParLoT cut through the entire stack of heteroge-
neous (MPI, OpenMP, PThreads) calls. This permits a designer to project these
traces onto specific APIs of interest during program analysis, visualization, and
debugging.

A number of improvements to ParLoT remain to be made. These include
allowing users to selectively trace at specific interfaces: doing so can further
increase compression efficiency by reducing the variety of function calls to be
handled by the compressor. We also discuss the need to bring down initialization
overheads, i.e., by switching to a less general-purpose DBI tool.
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Abstract. This paper introduces Gotcha, a function wrapping interface
and library for HPC tools. Many HPC tools, and performance analysis
tools in particular, rely on function wrapping to integrate with applica-
tions. But existing mechanisms, such as LD PRELOAD on Linux, have
limitations that lead to tool instability and complexity. Gotcha addresses
the limitations in existing mechanisms, provides a programmable inter-
face for HPC tools to manage function wrapping, and supports function
wrapping across multiple tools. In addition, this paper introduces the
idea of interface-independent function wrapping, which makes it possi-
ble for tools to wrap arbitrary application functions.

Keywords: HPC · Tools · Dynamic linking

1 Introduction

Function wrapping is an important enabling technology behind many HPC tools,
including performance analysis tools [1,2,4,7,9,15], correctness tools [5,12], and
debuggers [3]. Tools use function wrapping as a mechanism to hook into a target
application that they’re operating on. Function wrapping allows them to replace
some set of functions in the target application with a set of tool-provided versions
of those functions. For example, a performance analysis tool might use function
wrapping around an application’s IO functions and replace them with tool ver-
sions that trigger a stopwatch timer around every call. Debuggers like TotalView
use function wrapping to wrap the malloc and free family of functions and build
a model of an application’s heap usage, which lets them automatically identify
certain classes of bugs. Typically tools add function wrappers that maintain the
original function’s semantics. But some tools use function wrapping to change
semantics, such as the cram [11] tool that intercepts MPI functions and changes
communicator usage to “cram” multiple MPI jobs into a single run.

Tools typically implement function wrapping on Linux with LD PRELOAD,
which is a library injection capability implemented by the GNU dynamic
linker. When LD PRELOAD injects a library into a target process, the injected
library’s functions will intercept calls that would have gone to the applica-
tion’s equivalently-named functions. This provides the underlying mechanism
that tools can build function wrapping on top of. However, there are many
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-17872-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17872-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-17872-7_11


186 D. Poliakoff and M. LeGendre

drawbacks to building function wrapping on top of LD PRELOAD, including
ABI compatibility, multi-tool compatibility, lack of flexibility, and an enforced
workflow on tool. We discuss these issues in detail in Sect. 2. While tools have
managed to accommodate many of LD PRELOAD’s limitations, the infrastruc-
ture to do so is fragile and, in the author’s experience supporting tools at a large
HPC center, some the most common source of tool failures in production.

This paper describes a new approach for function wrapping, which we imple-
mented in new tool infrastructure called Gotcha. Rather than provide low-level
mechanisms like LD PRELOAD that function wrapping can be built on, Gotcha
raises the level of abstraction and provides a high-level API focused on function
wrapping. Concepts like multi-tool compatibility and managing sets of wrappers
are first-class concepts in the API and are easy for tools to get right. Gotcha
implements function wrapping using a distinct mechanism from LD PRELOAD
(rewriting of the dynamic linker’s GOT tables at runtime, which is discussed in
Sect. 3), so it does not inherit the fundamental drawbacks of LD PRELOAD.

Additionally, Gotcha broadens the types of function wrapping available to
tools. Classical function wrapping involves a tool developer writing a specific
wrapper function that is injected around a matching target function (e.g., a
tool function MPI Send wrapper is designed to only wrap MPI Send and noth-
ing else). Gotcha introduces the option of using interface-independent wrappers,
which can be wrapped around arbitrary exported functions in the application.
These wrappers are less powerful than traditional wrappers–they don’t see func-
tion arguments and can’t easily change semantics, but they can be used in more
situations. A performance tool could, for example, use interface-independent
wrappers to intercept every function call into an arbitrary dynamic library to
provide per-library timings.

Section 2 of this paper provides technical background on dynamic linking and
libraries, which is important for understanding the mechanisms behind Gotcha.
It also discusses related work in other function wrapping technologies, includ-
ing binary instrumentation mechanisms and other tool components. Section 3
discusses both the high-level abstractions and ideas in Gotcha, and the imple-
mentation behind them. Section 4 describes some of the use cases that motivated
Gotcha. Finally, Sect. 5 describes the performance overheads observed in Gotcha.

2 Background and Related Work

To understand how Gotcha and related tools implement function wrapping it is
necessary to understand a bit about dynamic linking. This section provides a
brief explanation of how dynamic libraries reference symbols, and it describes
how related tools use and implement dynamic linking.

2.1 Background

This background on dynamic linking is intentionally simplified. Drepper [8] pro-
vides a more complete explanation of dynamic linking on System V operating
systems (which includes Linux).
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Shared libraries and executables in a dynamically-linked process are known as
DSOs (Dynamic Shared Objects). DSOs usually depend on other DSOs, and may
themselves be dependents. For example, an executable may depend on libmpi.so.
DSOs also have exported and imported symbols, which are technically referred
as defined and undefined symbols. Imported symbols are mapped to exported
symbols that have the same name. For example, and an executable may import
the MPI Init symbol, and libmpi.so may export that same symbol. There is no
direct relationship between a formal DSO dependency and imported/exported
symbols. The executable could import the MPI Init symbol from libtool.so, even
when the executable does not depend on libtool.so.

Dynamically-linked processes on Linux all have a special DSO known as
the dynamic linker, or ld.so. The dynamic linker is responsible for mapping
imported symbols to exported symbols. This could, in theory, be a many-to-many
mapping, since multiple DSOs may export a symbol that is imported by multiple
DSOs. But the GNU dynamic linker uses a deterministic mapping algorithm that
typically matches all imported symbols to a single matching exported symbol
(excepting for certain corner cases). It does this by ordering all DSOs into a
consistent list, and searching that list from front-to-back for the first instance
of an exported symbol. All imported symbols will thus be matched to the first-
found exported symbol (there is a common misconception that weak symbols
impact this algorithm, but the GNU dynamic linker ignores weak symbols in its
default configuration).

The dynamic linker implements this mapping using the GOT (Global Offset
Table). The GOT is a table of pointers present in each DSO where each table
entry corresponds to an imported symbol. GOT entries for function symbols
are function pointers, while GOT entries for data symbols are data pointers.
When the dynamic linker matches an imported symbol to an exported symbol, it
updates the GOT entry corresponding to the imported symbol with the address
of the exported symbol. For example, when an executable wants to call MPI Init
it can look in its MPI Init GOT entry to get a pointer to an exported MPI Init
function. There are many other tables and data structures used in dynamic
linking, such as the PLT, which are not described here for simplicity.

This first-found algorithm is the basis for implementing function wrapping
with LD PRELOAD. LD PRELOAD is an environment variable that injects a
new library into the front of the library search list. When the dynamic linker
searches for an exported MPI Init, for example, it could find one in the front
of the library list in the LD PRELOADed libtool.so, and all calls to MPI Init
will be redirected to libtool.so. The tool could still call the original MPI Init by
invoking an aliased name for the function or looking it up with a dlsym call into
the dynamic linker.

2.2 Related Work

Most tools implement function wrapping using the previously described
LD PRELOAD mechanism. But LD PRELOAD has numerous disadvantages
that cause problems in tools. Specifically, LD PRELOAD:
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– requires tools to provide all wrappings up front in a pre-built library. There
is no way to change wrappings in response to tool or application actions.

– frequently causes ABI-related bugs. Since LD PRELOAD injects libraries
independent of the normal linking system it does not come with the normal
protections. A tool builder could build libtool.so against libmpi.so version 1.2,
and application could be built against the incompatible libmpi.so version 1.3.
If libtool.so is LD PRELOADed into this application it would at best produce
undefined symbol errors, and at worse cause crashes or undefined application
behavior.

– does not provide a way for multiple tools to work together to wrap the same
functions. Only one tool can win the dynamic linker’s first-found algorithm.

Despite these disadvantages LD PRELOAD remains a popular mechanism
for function wrapping in HPC tools. The HPCToolkit [4] project maintains lib-
monitor.so, which is also used by OpenSpeedShop [9]. Libmonitor contains func-
tion wrappers for routines typically monitored by performance analysis tools.
Other tools can add their own custom implementations in these wrappers, then
inject libmonitor.so with LD PRELOAD.

The MPI wrapper generator tool [10] provides a language for generating tool
wrappers around MPI routines. The output of the MPI wrapper generator is
source code that can be compiled into a shared library and LD PRELOADed
into an application. Both libmonitor and the MPI wrapper generator make it
easier to write function wrappers, but they still depend on LD PRELOAD and
inherit its limitations.

A way to implement function wrapping without LD PRELOAD is with
binary instrumentation tools. Tools like DyninstAPI [6] can directly rewrite the
machine code in a running process or on-disk DSO to insert function wrappers.
The DyninstAPI interface for function wrapping takes a reference to a function
that should be wrapped, a reference to a wrapper function, and a symbol that
should be rewritten to refer to the original wrappee. The tool could, for exam-
ple, wrap a tool MPI Init function around libmpi.so’s MPI Init, and make the
new symbol orig MPI Init point at libmpi.so’s MPI Init. DyninstAPI’s imple-
mentation is strictly more powerful at function wrapping than Gotcha’s imple-
mentation. It can wrap internal functions that are not exported from a library.
However, that power comes at the expense of relying on a significantly more
heavy-weight software stack that adds both software complexity and high run-
time overheads to safely analyze and modify binaries. The DyninstAPI function
wrapping model also does not include support for stacking multiple tools or
address the ABI issues that are also in LD PRELOAD.

It is also possible for software components to export wrapping interfaces
that tools can leverage. The under-discussion QMPI [14] interface for the MPI
standard adds function-pointer-based callbacks to every MPI routine. Tools can
register functions to receive those callbacks and modify or monitor the param-
eters to MPI routines. This essentially provides the same functionality as tra-
ditionally function wrapping. As of mid-2018 the proposed QMPI standard has
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many aspects in common with Gotcha’s interface, including stacking tools and
abstractions for handling sets of wrappers.

3 Gotcha Abstractions and Implementation

Gotcha provides a high-level interface for specifying function wrapping. Unlike
LD PRELOAD, Gotcha provides a programmable API for enabling function
wrapping. Tools can change how or what they wrap based on external parame-
ters, such as application or tool state. Tools can use the Gotcha API to change
wrappings part-way through a process’s execution. Also unlike LD PRELOAD,
wrapper functions need not be loaded via environment variable. They can be
added to an application with the traditional linker, which can perform its nor-
mal safety checks and not introduce additional ABI problems.

Gotcha is designed to make it easy to wrap any exported function, with simple
abstractions for both inserting wrappers and calling the original function. Tools
can manage wrapping as sets, either inserting or removing groups of wrappers
at once.

3.1 Gotcha Wrapping Abstraction

Wrapping a function with Gotcha requires three things: the name of the function
being wrapped (the wrappee), a wrapper function, and a handle for referencing
the wrappee from the wrapper. Gotcha’s interface centers around a user-provided
table with this triple. That table can be filled in by the user and passed to Gotcha,
which activates the wrappings.

Figure 1 shows a simple program that uses Gotcha to wrap MPI Init. Error
handling has been excluded for brevity. The bindings table could hold multiple
function wrappings, through this example only shows one. After passing this
table to gotcha wrap (along with the table size and a tool name) then every call
to MPI Init will be redirected to the MPI Init wrapper. That wrapper can get a
pointer to the original MPI Init through the gotcha get wrappee function and
the handle that was associated with this wrapping.

Gotcha implements these wrappings by translating these wrapping table into
manipulations of the running process’s GOT tables. As described in Sect. 2,
the GOT is a table of function pointers used to link imported symbols and
exported symbols. Gotcha looks up the GOT tables in each DSO and rewrites
select entries to point at wrapper functions. In this example every GOT
table entry that imports MPI Init will be rewritten to contain the address of
MPI Init wrapper. The address of the exported MPI Init symbol is returned
from gotcha get wrappee so that the wrapper can still call the original func-
tion. Thus any calls which would have gone to the original function instead go
to the wrapper, and the wrapper can ask Gotcha for the original function.

Figure 1 shows the gotcha wrap function being called from main, but this
is only for brevity. Tools may find it useful to call gotcha wrap from a library
constructor or tool initialization routine.
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#include ” gotcha / gotcha . h”
#include <mpi . h>
#include <s t d i o . h>

gotcha hand l e t handle ;
go t cha b ind ing t b ind ings [ ] = {

{ ”MPI Init ” , MPI Init wrapper , &handle }
}

int MPI Init wrapper ( int argc , char argv ) {
int r e s u l t ;
int ( o r i g mp i i n i t ) ( int , char ) ;

p r i n t f ( ” In MPI Init wrapper \n” ) ;
o r i g mp i i n i t = gotcha get wrappee ( handle ) ;
r e s u l t = o r i g mp i i n i t ( argc , argv ) ;
p r i n t f ( ”MPI init r e tu rn ing %d\n” , r e s u l t ) ;
return r e s u l t ;

}

int main ( int argc , char argv [ ] ) {
gotcha wrap ( bindings , 1 , ”mytoolname” ) ;
MPI Init(&argc , &argv ) ;
return 0 ;

}

Fig. 1. Gotcha wrapping example

3.2 Multi-tool Support

Sometimes multiple tools want to wrap the same function. For example, the
Cram [11] tool may want to wrap MPI calls to rewrite communication operations,
and TAU [15] may want to wrap them for performance analysis. LD PRELOAD
cannot handle this situation since its first-found algorithm allows only one tool
to create wrappings (though software intermediate layers, such as PnMPI [13],
handle this with a layer that dispatches wrappings between tools).

Gotcha manages multiple tools by stacking wrappers from different tools on
top of each other. It orders these stacked wrappers via a priority system. Tools
register an integer priority with Gotcha, which is used to determine which tool
is called first. Tools with a lower integer priority are placed innermost in a stack
of wrappers. If, for example, Cram registers as a priority 10 tool with Gotcha,
and TAU as a priority 50, then when MPI Send is called Gotcha will first route
control to the TAU wrapper. When the TAU wrapper calls the next layer, via
gotcha get wrappee, it will transfer control to the Cram wrappers. The Cram
wrappers will eventually call the real MPI Send function.

Under this interface tools can stack multiple wrappings without being aware
of each other. Negotiating the correct priorities for different tools is outside the
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technical scope of Gotcha, and is perhaps best left to the HPC tools community
members that adopt Gotcha. For some tools the ordering of wrappings may not
make a difference, though in the above example the order between TAU and
Cram determines whether TAU is measuring performance of one Cram job, or
all of the Cram jobs.

3.3 Interface-Independent Wrapping

LD PRELOAD-based function wrapping requires a tool developer to write wrap-
pers that exactly match the signature of the function they are wrapping, since
the wrapper must receive and copy arguments to the wrappee. This allows tools
to inspect or modify function arguments in wrappers, but prevents them wrap-
ping arbitrary functions. A tool could not wrap MPI Send with an arbitrary
wrapper with a different signature, as this would lead to lost information about
MPI Sends arguments.

This restricts which functions a tool can wrap. A tool developer can only write
wrappers for functions where they understand the signature (such as standard-
ized MPI or IO functions). A tool developer cannot wrap arbitrary application
functions, even though they may not care about the signature in its wrapper.
However, the fundamental operations in many wrappers might not care about
the interface of the function being wrapped. A performance tool may, for exam-
ple, just want trigger a stopwatch-style timer around all calls into a math library
to build per-library profiles. It does not need to understand the arguments passed
to sqrt to do this.

Gotcha solves this problem by providing an option for interface-independent
wrappers. Instead of traditional wrappers that are responsible for generating
a call to a wrappee, interface-independent wrappers provide a pair of pre-
wrapper and post-wrapper functions that are bracketed around the wrappee.
The pre-wrapper function gets control before the wrappee executes. After the
pre-wrapper function returns, control is transferred to the wrappee with its orig-
inal function arguments intact. When the wrappee returns the post-wrapper is
called, which returns to the original calling site.

Figure 2 shows an example of interface-independent wrapping (which is
known as sigfree wrapping in the Gotcha API). The example puts interface-
independent wrappings around MPI Init. Note that the wrappers do not match
the signature of MPI Init. The same wrappers can be placed around any arbi-
trary function. The opaque parameter is a mechanism for passing per-call infor-
mation from the pre-wrapper to the post-wrapper. One use for this mechanism
is to wrap all functions exported from an arbitrary library by iterating over the
library’s exported symbols and building a gotcha sigfree binding t table cus-
tomized to that library.

Gotcha implements interface-independent wrapping by rewriting the applica-
tion’s GOT tables to point at an assembly-language trampoline. The trampoline
receives control immediately after a call to a wrapped function, and its major
operations could be summarized as:
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#include ” gotcha / gotcha . h”
#include <mpi . h>
#include <s t d i o . h>

gotcha hand l e t MPI Send handle ;
g o t c h a s i g f r e e b i n d i n g t b ind ings [ ] = {

{ ”MPI Init ” , pre wrap , post wrap , &handle }
}

void pre wrap ( gotcha wrappee handle t handle ,
void opaque )

{
p r i n t f ( ”pre−c a l l f o r func t i on %s \n” ,

gotcha get wrappee name ( handle ) ) ;
}

void post wrap ( gotcha wrappee handle t handle ,
void opaque )

{
p r i n t f ( ”post−c a l l f o r func t i on %s \n” ,

gotcha get wrappee name ( handle ) ) ;
}

int main ( int argc , char argv [ ] ) {
go t cha s i g f r e e wrap ( bindings , 1 , ”mytoolname” ) ;
MPI Init(&argc , &argv ) ;
return 0 ;

}

Fig. 2. Interface-independent wrapping example

1. Save the values of all registers used for parameter passing onto the stack.
2. Save the original return address of to a per-thread side stack.
3. Call the pre-wrapper.
4. Restore the value of the registers used for parameter passing, and re-align the

stack to its original height.
5. Call the wrappee.
6. Save the values of all registers used to pass return values.
7. Call the post-wrapper
8. Restore the values of the registers used to pass return values.
9. Restore and return to the original return address.

Gotcha implements interface-independent wrapping on both x86 64 and
ppc64.
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4 Use Cases

Gotcha was primarily motivated by limitations in the existing function wrapping
technology, LD PRELOAD. This section describes two use cases that Gotcha
enables, Caliper and our Generic MPI Wrappers. For Caliper, Gotcha provides
flexible function wrapping needed to support tighter application/tool integra-
tion. For the Generic MPI Wrappers, Gotcha provides a mechanism to make
existing performance analysis tools more robust.

4.1 Caliper

Caliper is a program annotation interface, which developers can use to label
parts of their application such as functions, loops, broad code regions, or data.
Performance analysis tools can be plugged into Caliper and subscribe to a trace
or aggregated view of those annotations. By measuring certain performance met-
rics associated with an annotation, Caliper can relate performance information
to user-labeled parts of an application. Unlike traditional performance analysis
tools, Caliper is meant to be tightly integrated with an application. Applications
make calls into Caliper API and link with the caliper library. Similar to how
a math library might provide an application with matrix multiplication capa-
bilities, the Caliper library provides an application with performance analysis
capabilities.

Traditional LD PRELOAD-based function wrapping was not appropriate for
Caliper. Users decide what metrics Caliper should measure via command line
switches or input decks, which are interpreted after an LD PRELOAD environ-
ment variable could be set. If a user asks Caliper to measure MPI performance,
it is already too late to insert MPI wrappers. As an initial work-around, Caliper
always exported its own MPI wrappers. If the Caliper library was found before
the MPI library in the dynamic-linker’s first-found algorithm, then Caliper would
intercept all MPI calls and implement wrapping, but this was not reliable.

Gotcha reliably solves this problem by letting Caliper manage function wrap-
pings via an API. When an application asks Caliper to measure MPI or threading
operations, Caliper can generate an appropriate gotcha wrap call that enables
the operation. Caliper no longer needs to concern itself with link orders and can
now turn on wrappings only when requested.

Gotcha’s multi-tool support is also beneficial to Caliper. Since Caliper is part
of an application, it can be configured to be always-on with every application
invocation. Since Caliper uses Gotcha and thus supports multi-tool, it’s now
possible to run Caliper alongside other function-wrapping based tools (which
are likely non-performance analysis tools, such as Cram).

4.2 Generic MPI Wrapper

A common user-workflow error in HPC tools is to mix a tool and application
that are each built with incompatible MPI libraries. This happens because tools
are frequently built and deployed by HPC-center staff, while applications are
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typically built by end-users. For example, someone supporting tools for an HPC
center may install OpenSpeedShop built against mvapich 2.2, while an end-user
may build their application against mvapich 2.0. Constant values and function
ABIs may change between MPI releases, and trying to mix them can result in
unstable applications.

Most performance analysis tools have tried to take some approach to resolv-
ing this problem. OpenSpeedShop builds its MPI components against every MPI
implementation found at build time, then lets the user set an environment vari-
able that picks one at runtime. The MAP performance analysis tool from Allinea
rebuilds its MPI components every time MAP is run, using the MPICC envi-
ronment variable. The HPCToolkit tool from Rice University limits its MPI
wrapping to a few critical functions that it knows how to safely wrap in every
MPI implementation. These approaches all rely on the end-user getting an envi-
ronment variable set correctly or limit tool capability.

Gotcha allowed us to build a demonstration of Generic MPI Wrappers. At
tool build time the tool finds every MPI implementation installed on the system.
The MPI wrapper generator [10] creates a MPI wrapper C file that is re-compiled
against each MPI installation. These are linked into a single library. None of
the wrapper routines are exported, so it is safe to put them all into the same
library without naming conflicts. The tool can insert this omni-MPI library into
the application using its normal mechanisms. Gotcha then inspects which MPI
library is actually loaded by the application at runtime, and it enables just the
set of wrappers that correspond with that library.

This approach still requires the tool deployer to point the tool at every MPI
on a system, but since the people deploying tools and the people deploying MPI
installations are typically HPC-center staff, this is manageable. The end-users
do not need to set specific environment variables to run the tool, which should
significantly improve tool stability. Further, if something goes wrong and Gotcha
does not have compiled wrappers that correspond to the loaded MPI library, the
tool can explicitly see this at runtime and print a reasonable error message rather
than binding incompatible functions and seeing what happens.

5 Performance/Results

In practice Gotcha performs comparably to LD PRELOAD. We ran two perfor-
mance experiments to show this. First, we measured how Gotcha scales when
the gotcha wrap call modifies processes with large numbers of libraries. Second,
we measured how much runtime overhead Gotcha introduces with each wrapper.

Our large binary scaling tests are shown in Fig. 3. We created an artificial
test that could be configured to load a massive numbers of libraries (signifi-
cantly more than any application we have encountered). Each library contains
symbol references to every other library (so the number of symbol references
increases quadratically with library count). Gotcha was asked to wrap every
function in the test. Since the Gotcha implementation iterates over each library
and each reference, so we expect (and observed) that gotcha wrap time would
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increase linearly with the total number of symbol references in test. Since we
were concerned with per-library overheads, Fig. 3 normalizes the total runtime
to time-per-reference.

Ideally, Fig. 3 would be flat. However, it shows a significantly higher time-
per-reference for tests with small library counts. We believe this is because those
tests ran fairly quickly, and the constant overheads of Gotcha initialization are
increasing the time-per-reference.

For the largest test the total gotcha wrap time took about 22 s. This rep-
resents a one-time cost on process start-up and is on an unrealistically-sized
binary, though we would still like to optimize this. In practice, we have not seen
notable gotcha wrap time on traditionally-sized binaries.

Fig. 3. Impact of application size on gotcha wrap time

Our second test measured the overhead Gotcha imposes per-wrapper. Gener-
ally, the operations done inside the wrapper (e.g., walking a call stack) dominate
tool overheads. The Gotcha-imposed overheads involve function-call overheads
and a memory reference to lookup the wrappee. These are typically only observ-
able in artificial test cases. To verify this we measured an empty wrapper around
the getpid call. We measured time to call getpid normally, getpid wrapped by
LD PRELOAD, and getpid wrapped by Gotcha. To reach enough time to make
the measurements relevant, we made 2.5 billion calls to getpid.

The unwrapped version took 7.64 s, the LD PRELOAD version took 11.44 s,
and the Gotcha version 16.78 s. The Gotcha to LD PRELOAD comparison is
unsurprising, LD PRELOAD wrappers tends to have direct calls to the wrappee
function, where Gotcha does an indirect lookup of the wrappee for multi-tool
support. The time difference between LD PRELOAD and the normal getpid call
is the time to execute an empty function wrapper.

To verify that Gotcha did not have unexpected performance problems com-
pared to LD PRELOAD, we modified the Gotcha tool to cache its lookup of
the wrappee (which would break multi-tool support in normal usage). Overhead
dropped to 11.45 s, in line with LD PRELOAD.
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This test shows Gotcha as introducing a wrapper overhead of 6.7 ns per
call. In practice tools wrap heavyweight functions like MPI Send or malloc and
perform complicated tool operations that dwarf this wrapper cost.

6 Future Work

Gotcha currently supports x86 64 and PPC64 binaries. We would like to extend
Gotcha to also support ARM systems.

Additionally, Gotcha only supports dynamically-linked binaries. The mech-
anism behind gotcha will not work in statically-linked binaries or on functions
internal to a library. Wrapping these functions requires either binary rewriting
or compiler-assisted wrapping. It may be possible to implement the gotcha inter-
face, along with features like multi-tool support, on top of a binary rewriter or
as a driver behind compiler plug-ins. This would allow Gotcha to support more
binaries and function wrapping, though at the cost of tool-workflow complexity.

7 Conclusions

This paper described Gotcha, a library that allows tools to wrap functions.
Unlike existing mechanisms like Linux’s LD PRELOAD, Gotcha provides an
API for specifying function wrapping, support for multiple tools, and interface-
independent wrappers. We discussed how Gotcha is being used in higher-level
tools, such as Caliper and we presented resulting show that Gotcha introduces
only minimal overheads to function wrapping.
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Abstract. The performance of HPC simulation codes is often tied to
their simulated domains; e.g., properties of the input decks, boundaries
of the underlying meshes, and parallel decomposition of the simulation
space. A variety of research efforts have demonstrated the utility of pro-
jecting performance data onto the simulation geometry to enable analysis
of these kinds of performance problems. However, current methods to do
so are largely ad-hoc and limited in terms of extensibility and scala-
bility. Furthermore, few methods enable this projection online, result-
ing in large storage and processing requirements for offline analysis. We
present a general, extensible, and scalable solution for in-situ (online)
visualization of performance data projected onto the underlying geom-
etry of simulation codes. Our solution employs the scalable observation
system SOSflow with the in-situ visualization framework ALPINE to
automatically extract simulation geometry and stream aggregated per-
formance metrics to respective locations within the geometry at runtime.
Our system decouples the resources and mechanisms to collect, aggre-
gate, project, and visualize the resulting data, thus mitigating overhead
and enabling online analysis at large scales. Furthermore, our method
requires minimal user input and modification of existing code, enabling
general and widespread adoption.

Keywords: SOS · SOSflow · Alpine · HPC · Performance ·
Visualization · In situ

1 Introduction

Projecting application and performance data onto the scientific domain allows for
the behavior of a code to be perceived in terms of the organization of the work it
is doing, rather than the organization of its source code. This perspective can be
especially helpful [19] for domain scientists developing aspects of a simulation
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primarily for its scientific utility, though it can also be useful for any HPC
developer engaged with the general maintenance requirements of a large and
complicated codebase [18].

There have been practical challenges to providing these opportunities for
insight. Extracting the spatial descriptions from an application traditionally has
relied on hand-instrumenting codes to couple a simulation’s geometry with some
explicitly defined performance metrics. Performance tool wrappers and direct
source-instrumentation need to be configurable so that users can disable their
invasive presence during large production runs. Because it involves changes to
the source code of an application, enabling or disabling the manual instrumen-
tation of a code often involves full recompilation of a software stack. Insights
gained by the domain projection are limited to what was selected a priori for
contextualization with geometry.

Without an efficient runtime service providing an integrated context for mul-
tiple sources of performance information, it is difficult to combine performance
observations across several components during a run. Further limiting the value
of the entire exercise, performance data collected outside of a runtime service
must wait to be correlated and projected over a simulation’s geometry during
post-mortem analysis. Projections that are produced offline cannot be used for
application steering, online parameter tuning, or other runtime interactions that
include a human in the feedback loop. Scalability for offline projections also
becomes a concern, as the potentially large amount of performance data and
simulation geometry produced and operated over in a massively parallel cluster
now must be integrated and rendered either from a single point or within an
entirely different allocation.

The overhead of manually instrumenting large complex codes to extract
meaningful geometries for use in performance analysis, combined with the lim-
ited value of offline correlation of a fixed number of metrics, naturally limited
the usage of scientific domain projections for gaining HPC workflow performance
insights.

1.1 Research Contributions

This paper describes the use of SOSflow [20] and ALPINE to overcome many
prior limitations to projecting performance into the scientific domain. The meth-
ods used to produce our results can be implemented in other frameworks, though
SOSflow and ALPINE, discussed in detail in later sections, are generalized and
intentionally engineered to deliver solutions of the type presented here. This
research effort achieved the following:

– Eliminate the need to manually capture geometry for performance data pro-
jections of ALPINE-enabled workflows

– Provide online observation of performance data projected over evolving
geometries and metrics

– Facilitate interactive selection of one or many performance metrics and ren-
dering parameters, adding dynamism to projections
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– Enable simultaneous online projections from a common data source
– In situ performance visualization architecture supporting both current and

future-scale systems

2 Related Work

Husain and Gimenez’s work on Mitos [7] and MemAxes [6] is motivated simi-
larly to ours. Mitos provides an integration API for combining information from
multiple sources into a coherent memoized set for analysis and visualization, and
MemAxes projects correlated information across domains to explore the origins
of observed performance. SOSflow is being used in our research as an integration
API, but takes a different optimization path by providing a general-purpose in
situ (online) runtime.

Caliper by Boehme et al. [3] extracts performance data during execution
in ways that serve a variety of uses, in much the same way our efforts here
are oriented. Caliper’s flexible data aggregation [4] model can be used to filter
metrics in situ, allowing for tractable volumes of performance data to be made
available for projections. Both ALPINE and Caliper provide direct services to
users, also serving as integration points for user-configurable services at run
time. Caliper is capable of deep introspection on the behavior of a program in
execution, yet is able to be easily disabled for production runs that require no
introspection and want to minimize instrumentation overhead. ALPINE allows
for visualization filters to be compiled separately from a user’s application and
then introduced into, or removed from, an HPC code’s visualization pipeline
with a simple edit to that workflow’s ALPINE configuration file. More tools like
Caliper and ALPINE, featuring well-defined integration points, are essential for
the wider availability of cross-domain performance understanding. SOSflow does
not collect source-level performance metrics directly, but rather brings that data
from tools like Caliper into a holistic online context with information from other
libraries, performance tools, and perspectives.

BoxFish [8] also demonstrated the value of visualizing projections when inter-
preting performance data, adding a useful hierarchical data model for combining
visualizations and interacting with data.

SOSflow’s flexible model for multi-source online data collection and analysis
provides performance exploration opportunities using both new and existing
HPC tools.

3 SOSflow

SOSflow provides a lightweight, scalable, and programmable framework for
observation, introspection, feedback, and control of HPC applications. The Scal-
able Observation System (SOS) performance model used by SOSflow allows a
broad set of in situ (online) capabilities including remote method invocation,
data analysis, and visualization. SOSflow can couple together multiple sources
of data, such as application components and operating environment measures,
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with multiple software libraries and performance tools. These features combined
to efficiently create holistic views of workflow performance at runtime, uniting
node-local and distributed resources and perspectives. SOSflow can be used for
a variety of purposes:

– Aggregation of application and performance data at runtime
– Providing holistic view of multi-component distributed scientific workflows
– Coordinating in situ operations with global analytics
– Synthesizing application and system metrics with scientific data for deeper

performance understanding
– Extending the functionality of existing HPC codes using in situ resources
– Resource management, load balancing, online performance tuning, etc.

To better understand the role played by SOSflow, it is useful to examine its
architecture. SOSflow is composed of four major components:

– sosd : Daemons
– libsos : Client Library
– pub/sql : Data
– sosa : Analytics & Feedback

These components work together to provide extensive runtime capabilities to
developers, administrators, and application end-users. SOSflow runs within a
user’s allocation, and does not require elevated privileges for any of its features.

3.1 SOSflow Daemons

Online functionality of SOSflow is enabled by the presence of a user-space dae-
mon. This daemon operates completely independently from any applications,
and does not connect into or utilize any application data channels for SOSflow
communications. The SOSflow daemons are launched from within a job script,
before the user’s applications are initialized. These daemons discover and com-
municate amongst each other across node boundaries within a user’s allocation.
When crossing node boundaries, SOSflow uses the machine’s high-speed commu-
nication fabric. Inter-node communication may use either MPI or EVPath as
needed, allowing for flexibility when configuring its deployment to various HPC
environments.

The traditional deployment of SOSflow will have a single daemon instance
running in situ for each node that a user’s applications will be executing on
(Fig. 1). This daemon is called the listener. Additional resources can be allo-
cated in support of the SOSflow runtime as-needed to support scaling and to
minimize perturbation of application performance. One or more nodes are usu-
ally added to the user’s allocation to host SOSflow aggregator daemons that
combine the information that is being collected from the in situ daemons. These
aggregator daemons are useful for providing holistic unified views at runtime,
especially in service to online analytics modules. Because they have more work
to do than the in situ listener daemons, and also are a useful place to host analyt-
ics modules, it is advisable to place aggregation targets on their own dedicated
node[s], co-located with online analytics codes.
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Fig. 1. SOSflow’s lightweight daemon runs on each node.

In Situ. Data coming from SOSflow clients moves into the in situ daemon
across a light-weight local socket connection. Any software that connects in to
the SOSflow runtime can be thought of as a client. Clients connect only to the
daemon that is running on their same node. No client connections are made
across node boundaries, and no special permissions are required to use SOSflow,
as the system considers the SOSflow runtime to be merely another part of a
user’s workflow.

The in situ listener daemon offers the complete functionality of the SOSflow
runtime, including online query and delivery of results, feedback, or application
steering messages. At startup, the daemon creates an in-memory data store with
a file-based mirror in a user-defined location. Listeners asynchronously store all
data that they receive into this store. The file-based mirror is ideal for offline
analysis and archival. The local data store can be queried and updated via the
SOSflow API, with all information moving over the daemon’s socket, avoiding
dependence on filesystem synchronization or centralized metadata services.
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Providing the full spectrum of data collected on node to clients and analytics
modules on node allows for distributed online analytics processing. Analytics
modules running in situ can observe a manageable data set, and then exchange
small intermediate results amongst themselves in order to compute a final global
view. SOSflow also supports running analytics at the aggregation points for
direct query and analysis of global or enclave data, though it is potentially less
scalable to perform centrally than in a distributed fashion, depending on the
amount of data being processed by the system.

SOSflow’s internal data processing utilizes unbounded asynchronous queues
for all messaging, aggregation, and data storage. Pervasive design around asyn-
chronous data movement allows for the SOSflow runtime to efficiently handle
requests from clients and messaging between off-node daemons without incurring
synchronization delays. Asynchronous in situ design allows the SOSflow runtime
to scale out beyond the practical limits imposed by globally synchronous data
movement patterns.

Aggregation Targets. A global perspective on application and system per-
formance is often useful. SOSflow automatically migrates information it is given
into one or more aggregation targets. This movement of information is trans-
parent to users of SOS, requiring no additional work on their part. Aggregation
targets are fully-functional instances of the SOSflow daemon, except that their
principle data sources are distributed listener daemons rather than node-local
clients. The aggregated data contains identical information as the in situ data
stores, it just has more of it, and it is assembled into one location. The aggregate
daemons are useful for performing online analysis or information visualization
that needs to include information from multiple nodes (Fig. 2).

SOSflow is not a publish-subscribe system in the traditional sense, but uses
a more scalable push-and-pull model. Everything sent into the system will auto-
matically migrate to aggregation points unless it is explicitly tagged as being
node-only. Requests for information from SOSflow are ad hoc and the scope of
the request is constrained by the location where the request is targeted: in situ
queries are resolved against the in situ database, aggregate queries are resolved
against the aggregate database. If tagged node-only information is potentially
useful for offline analysis or archival, the in situ data stores can be collected at the
end of a job script, and their contents can be filtered for that node-only informa-
tion, which can be simply concatenated together with the aggregate database[s]
into a complete image of all data. Each value published to SOSflow is tagged
with a globally unique identifier (GUID). This allows SOSflow data from multi-
ple sources to be mixed together while preserving its provenance and preventing
data duplication or namespace collision.
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Fig. 2. Co-located aggregation, analysis, and visualization.

3.2 SOSflow Client Library

Clients can directly interface with the SOSflow runtime system by calling a
library of functions (libsos) through a standardized API. Applications can also
transparently become clients of SOS by utilizing libraries and performance tools
which interact with SOSflow on their behalf. All communication between the
SOSflow library and daemon are transparent to users. Users do not need to
write any socket code or introduce any state or additional complexity to their
own code.

Information sent through the libsos API is copied into internal data struc-
tures, and can be freed or destroyed by the user after the SOSflow API function
returns. Data provided to the API is published up to the in situ daemon with
an explicit API call, allowing developers to control the frequency of interac-
tions with the runtime environment. It also allows the user to register callback
functions that can be triggered and provided data by user-defined analytics func-
tion, creating an end-to-end system for both monitoring as well as feedback and
control.
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To maximize compatibility with extant HPC applications, the SOSflow client
library is currently implemented in C99. The use of C99 allows the library to be
linked in with a wide variety of HPC application codes, performance tools, and
operating environments. There are various custom object types employed by the
SOSflow API, and these custom types can add a layer of complexity when binding
the full API to a language other than C or C++. SOSflow provides a solution to
this challenge by offering a “Simple SOS” (ssos) wrapper around the full client
library, exposing an API that uses no custom types. The ssos wrapper was used
to build a native Python module for SOSflow. Users can directly interact with
the SOSflow runtime environment from within Python scripts, acting both as
a source for data, and also a consumer of online query results. HPC developers
can capitalize on the ease of development provided by Python, using SOSflow to
observe and react online to information from complex legacy applications and
data models without requiring that those applications be redesigned to internally
support online interactivity.

3.3 SOSflow Data

The primary concept around which SOSflow organizes information is the “publi-
cation handle” (pub). Pubs provide a private namespace where many types and
quantities of information can be stored as a key/value pair. SOSflow automati-
cally annotates values with a variety of metadata, including a GUID, timestamps,
origin application, node id, etc. This metadata is available in the persistent data
store for online query and analysis. SOSflow’s metadata is useful for a variety of
purposes:

– Performance analysis
– Provenance of captured values for detection of source-specific patterns of

behavior, failing hardware, etc.
– Interpolating values contributed from multiple source applications or nodes
– Re-examining data after it has been gathered, but organizing the data by

metrics other than those originally used when it was gathered

A complete history of changes to every value is retained within the daemon’s
persistent data store (Fig. 3). This allows for the changing state of an application
or its environment to be explored at arbitrary points in its evolution. When a
key is re-used to store some new information that has not yet been transmitted
to the in situ daemon, the client library enqueues it up as a snapshot of that
value, preserving all associated metadata alongside the historical value. The next
time the client publishes to the daemon, current new values and all enqueued
historical values are transmitted.

SOSflow is built on a model of a global information space. Aggregate data
stores are guaranteed to provide eventual consistency with the data stores of
the in situ daemons that are targeting them. SOSflow’s use of continuous but
asynchronous movement of information through the runtime system does not
allow for strict quality-of-service guarantees about the timeliness of information
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Fig. 3. Each update is stored with its unique metadata, such as timestamps.

being available for analysis. This design constraint reflects the reality of future-
scale HPC architectures and the need to eliminate dependence on synchronous
behavior to correlate context. SOSflow conserves contextual metadata when val-
ues are added inside the client library. This metadata is used during aggregation
and query resolution to compose the asynchronously-transported data accord-
ing to its original synchronous creation. The vicissitudes of asynchronous data
migration strategies at scale become entirely transparent to the user.

SOSflow does not require the use of a domain-specific language when pushing
values into its API. Pubs are self-defining through use: When a new key is
used to pack a value into a pub, the schema is automatically updated to reflect
the name and the type of that value. When the schema of a pub changes, the
changes are automatically announced to the in situ daemon the next time the
client publishes data to it. Once processed and injected into SOSflow’s data store,
values and their metadata are accessible via standardized SQL queries. SOSflow’s
online resolution of SQL queries provides a high-degree of programmability and
online adaptivity to users. SQL views are built into the data store that mask off
the internal schemas and provide results organized intuitively for grouping by
application rank, node, time series, etc.

SOSflow uses the ALPINE in situ visualization infrastructure described below
to collect simulation geometry that it correlates with performance data.

4 ALPINE Ascent

ALPINE is a project that aims to build an in situ visualization infrastructure
and analysis targeting leading edge supercomputers. ALPINE is part of the
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U.S. Department of Energy’s Exascale Computing Project (ECP) [15], and the
ALPINE effort is supported by multiple institutions. The goal of ALPINE is
two fold. First, create a hybrid-parallel library (i.e., both distributed-memory
and shared-memory parallel) that can be included in other visualization tools
such as ParaView [2] and VisIt [5] thus creating an ecosystem where new hybrid-
parallel algorithms are easily deployed into downstream tools. Second, create a
flyweight in situ infrastructure that directly leverages the hybrid-parallel library.
In this work, we directly interface with the ALPINE in situ infrastructure called
Ascent [12].

Ascent is the descendant of Strawman [13], and Ascent is tightly-coupled
with simulations, i.e. it shares the same node resources as the simulation. While
Strawman’s goal was to bootstrap in situ visualization research, the ALPINE
Ascent in situ infrastructure is intended for production. Ascent includes include
three physics proxy-applications out of the box to immediately provide the infras-
tructure and algorithms a representative set of mesh data to consume. Ascent is
already integrated into several physics simulations to perform traditional visu-
alization and analysis, and we chose to embed an SOSflow client into Ascent to
eliminate the need for additional manual integration of SOSflow with Ascent-
equipped simulations. Ascent uses the Conduit [10] data exchange library to
marshal mesh data from simulations into Ascent. Conduit provides a flexible
hierarchical model for describing mesh data, using a simple set of conventions
for describing meshes including structured, unstructured, and higher order ele-
ment meshes [11]. Once the simulation describes the mesh data, it publishes
the data into Ascent for visualization purposes. Ascent relays the mesh data to
SOSflow in the manner described below. In addition to the mesh data, we can
easily add performance data that is associated with each MPI rank. Coupling the
performance data with the mesh geometry provides a natural way to generate
an aggregate data set to visualize the performance data mapped to the spatial
region each MPI rank is responsible for.

Ascent includes Flow, a simple dataflow library based on the Python dataflow
library within VisIt, to control the execution of visualization filters. The input
to Flow is the simulation mesh data, and Ascent adds visualization filters (e.g.,
contours and thresholding) to create visualizations. Everything within Flow is
a filter that can have multiple inputs and a single output of generic types. The
flexibility of Flow allows for user defined filters, compiled outside of Ascent, to
be easily inserted into the dataflow, and when the dataflow network executes,
custom filters have access to all of the simulation mesh data published to Ascent.
We leverage the flexibility of Flow to create an SOSflow filter that is inserted
at runtime. The SOSflow filter uses the data published by the simulation to
extract the spatial extents being operated over by each MPI rank along, with
any performance data provided. Next, we publish that data to SOSflow, and
then Ascent’s visualization filters execute as usual.
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5 Experiments

5.1 Evaluation Platform

All results were obtained by running online queries against the SOSflow runtime’s
aggregation targets (Fig. 2) using SOSflow’s built-in Python API. The results of
these queries were used to create Vtk [17] geometry files. These files were used as
input for the VisIt visualization tool, which we invoked from within the allocation
to interactively explore the performance projections.

5.2 Experiment Setup

The experiments performed had the following purposes:

– Validation : Demonstrate the coupling of SOSflow with ALPINE and its
ability to extract geometry from simulations transparently.

– Introspection : Examine the overhead incurred by including the SOSflow
geometry extraction filter in an ALPINE Ascent visualization pipeline.

Fig. 4. SOSflow collects runtime information to project over the simulation geometry.
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ALPINE’s Ascent library was used to build a filter module outfitted with SOS-
flow, and this filter was used for online geometry extraction (Fig. 4). ALPINE’s
JSON configuration file describing the connectivity of the in situ visualization
pipeline was modified to insert the SOSflow-equipped geometry extraction fil-
ter. The SOSflow implementation used to conduct these experiments is general-
purpose and was not tailored to the specific deployment environment or the
simulations observed. The study was conducted on two machines, the details of
which are included here—

1. Quartz : A 2,634-node Penguin supercomputer at Lawrence Livermore
National Laboratory (LLNL). Intel Xeon E5-2695 processors provide 36
cores/node. Each node offers 128 GB of memory and nodes are connected
via Intel OmniPath.

2. Catalyst : A Cray CS300 supercomputer at LLNL. Each of the 324 nodes
is outfitted with 128 GB of memory and 2x Intel Xeon E5-2695v2 2.40 GHz
12-core CPUs. Catalyst nodes transport data to each other using a QLogic
InfiniBand QDR interconnect.

The following simulated workflows were used—

1. KRIPKE [9] : A 3D deterministic neutron transport proxy application that
implements a distributed-memory parallel sweep solver over a rectilinear
mesh. At any given simulation cycle, there are simultaneous sweeps along
a set of discrete directions to calculate angular fluxes. This results in a MPI
communication pattern where ranks receive asynchronous requests from other
ranks for each discrete direction.

2. LULESH [1] : A 3D Lagrangian shock hydrodynamics proxy application
that models Sedov blast test problem over a curvilinear mesh. As the simula-
tion progresses, hexahedral elements deform to more accurately capture the
problem state.

5.3 Overview of Processing Steps

The SOSflow runtime provided a modular filter for the ALPINE in situ visualiza-
tion framework. This filter was enabled for the simulation workflow at runtime
to allow for the capture of evolving geometric details as the simulation pro-
gressed. The SOSflow runtime daemon automatically contextualized the geom-
etry it received alongside the changing application performance metrics. SOS-
flow’s API for Python was used to extract both geometry information and cor-
related performance metrics from the SOSflow runtime. This data set was used
to generate sequences of input files to the VisIt scientific data visualization tool
corresponding to the cycle of a the distributed simulation.

Each input file contained the geometric extents of every simulation rank,
the portion of the simulated space that each part of the application was working
within. Alongside that volumetric descriptions for that cycle, SOSflow integrated
attribute dictionaries of all plottable numeric values it was provided during that
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cycle, grouped by simulation rank. Performance metrics could then be inter-
actively selected and combined in VisIt with customizable plots, presenting an
application rank’s state and activity incident to its simulation effort, projected
over the relevant spatial extent.

5.4 Evaluation of Geometry Extraction

Our experiments were validated by comparing aggregated data to data manu-
ally captured at the source during test runs. Furthermore, geometry aggregated
by ALPINE’s Ascent SOSflow filter was rendered and visually compared with
other visualizations of the simulation. Projections were inspected to observe the
simulation’s expected deforming of geometry (LULESH) or algorithm-dependent
workload imbalances (KRIPKE). Performance metrics can be correlated in SQL
queries to the correct geometric regions by various redundant means such as
pub handle GUID, origin PID or MPI rank, simulation cycle, host node name,
SOSflow publish frame, and value creation timestamps. Aggregated performance
metrics projected over the simulation regions were compared to metrics reported
locally, and required to be identical for each region and simulation cycle.

5.5 Evaluation of Overhead

Millisecond-resolution timers were added to the per-cycle execute method of the
SOSflow Alpine geometry extraction filter. Each rank tracked the amount of
time it spent extracting its geometry, packing the geometry into an SOSflow
pub handle, and transmitting it to the runtime daemon. Every cycle’s individual
time cost was computed and transmitted to SOSflow, as well as a running total
of the time that Alpine had spent in the SOSflow filter. From a region outside the
timers, the timer values were packed into the same SOSflow publication handle
used for the geometric data. Timer values were transmitted at the end of the
following cycle, alongside that cycle’s geometry. The additional transmission cost
of these two timer values once per simulation cycle had no perceivable impact
on the performance they were measuring.

6 Results

Geometry was successfully extracted (Figs. 5, 6, 7, and 8) with minimal overhead
from simulations run at a variety of scales from 2 to 33 nodes. The side-by-side
introspection of the behavior of KRIPKE (Fig. 5) are a good example of the value
this system provides to developers. The amount of work loops and the backlog
of requests for computation are correlated negatively, with ranks operating in
the center of the simulation space getting through less loops of work per cycle,
since they are required to service data requests in more directions than the
ranks simulating the corners regions. The directionality of energy waves moving
through he simulated space can also be observed, with more work piling up where
multiple waves are converging. A developer can quickly assess the behavior of
their distributed algorithm by checking for hot-spots and workload imbalances
in the space being simulated.
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Fig. 5. Loops (left) and maximum backlog (right) from one cycle of 512 KRIPKE ranks
distributed to 32 nodes.

6.1 Geometry Extraction and Performance Data Projection

Aggregated simulation geometry was a precise match with the geometry manu-
ally recorded within applications, across all runs. After aggregation and perfor-
mance data projection, geometry from all simulation ranks combined to create
a contiguous space without gaps or overlapping regions, representative of the
simulated space subdivided by MPI rank.

Fig. 6. Cumulative user CPU ticks during 440 cycles of 512 KRIPKE ranks on 32
nodes.

6.2 Overhead

The inclusion of the ALPINE Ascent filter module for SOSflow had no observ-
able impact on overall application execution time, being significantly less than
variance observed between experimental runs both with and without the fil-
ter. The filter module is executed at the end of each simulation cycle, from the
first iteration through to the simulation conclusion. Manual instrumentation was
added to the SOSflow filter to measure the time spent inside the filter’s execute
method, where all simulation geometry and performance metrics were gathered
for our study.
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When gathering only the simulation geometry, filter execution never exceeded
2ms per simulation cycle. We collected performance information for our projec-
tions by reading from the /proc/[pid] files of each rank. These readings were
made from within the SOSflow filter, and published to SOSflow alongside the
collected geometry. Collecting 31 system metrics and application counters added
additional overhead, but the filter time but did not exceed 4ms for any of the
projections shown in this paper. The filter’s execution time was logged as a per-
formance metric alongside the other in situ performance data, and is visualized
for LULESH in Fig. 7.

Fig. 7. Filter execution (1–4 ms) over 710 LULESH cycles.

Fig. 8. Many metrics can be projected from one run. Here we see (top to bottom) user
CPU ticks, system CPU ticks, and bytes read during 710 cycles of 512 LULESH ranks
distributed across 32 nodes.
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7 Conclusion

Services from both SOSflow and ALPINE were successfully integrated to provide
a scalable in situ (online) geometry extraction and performance data projection
capability.

7.1 Future Work

Workflows that use the ALPINE framework but have complex irregular meshes,
feature overlapping “halo regions”, or that operate over non-continuous regions
of space within a single process, may require additional effort to extract geom-
etry from, depending on the organization of spatial descriptions they employ.
ALPINE uses the Vtk-m [16] library for its operations over simulation mesh
data. The addition of a general convex hull algorithm to Vtk-m will simplify the
task of uniformly describing any spatial extent[s] being operated on by a process
using ALPINE for its visualization pipeline.

The VisIt UI can be extended to support additional interactivity with the
SOSflow runtime. UI elements to submit custom SQL queries to SOSflow would
enhance the online data exploration utility of VisIt. SOSflow’s interactive code
steering mechanisms allow for feedback messages and payloads to be delivered
to subscribing applications at runtime. With some basic additions to the VisIt
UI, these mechanisms could be triggered by a VisIt user based on what they
observe in the performance projections, sending feedback to targeted workflow
components from within the VisIt UI.

While the geometry capture and performance data projection in this initial
work has a scalable in situ design, the final rendering of the performance data
into an image takes place on a single node. Future iterations of this perfor-
mance visualization work will explore the use of in situ visualization techniques
currently employed to render scientific data from simulations [14]. These emerg-
ing in situ rendering technologies will allow for live views of performance data
projected over simulation geometry at the furthest extreme scales to which our
simulations are being pressed.
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4. Böhme, D., Beckingsdale, D., Schulz, M.: Flexible data aggregation for performance
profiling. In: IEEE Cluster (2017)

5. Childs, H., et al.: VisIt: an end-user tool for visualizing and analyzing very
large data. In: High Performance Visualization-Enabling Extreme-Scale Scientific
Insight, pp. 357–372. CRC Press/Francis-Taylor Group (2012)

6. Gimenez, A.A., et al.: MemAxes: visualization and analytics for characterizing
complex memory performance behaviors. IEEE Trans. Vis. Comput. Graph. 24,
2180–2193 (2017)
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(eds.) Tools for High Performance Computing 2014, pp. 211–229. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16012-2 10

19. Schulz, M., Levine, J.A., Bremer, P.T., Gamblin, T., Pascucci, V.: Interpreting
performance data across intuitive domains. In: 2011 International Conference on
Parallel Processing (ICPP), pp. 206–215. IEEE (2011)

20. Wood, C., et al.: A scalable observation system for introspection and in situ ana-
lytics. In: Proceedings of the 5th Workshop on Extreme-Scale Programming Tools,
pp. 42–49. IEEE Press (2016)

https://doi.org/10.1007/978-3-319-16012-2_10


Visualizing, Measuring, and Tuning
Adaptive MPI Parameters

Matthias Diener(B) , Sam White , and Laxmikant V. Kale

University of Illinois at Urbana-Champaign, Urbana, USA
{mdiener,white67,kale}@illinois.edu

Abstract. Adaptive MPI (AMPI) is an advanced MPI runtime environ-
ment that offers several features over traditional MPI runtimes, which
can lead to a better utilization of the underlying hardware platform
and therefore higher performance. These features are overdecomposition
through virtualization, and load balancing via rank migration. Choos-
ing which of these features to use, and finding the optimal parameters
for them is a challenging task however, since different applications and
systems may require different options. Furthermore, there is a lack of
information about the impact of each option. In this paper, we present
a new visualization of AMPI in its companion Projections tool, which
depicts the operation of an MPI application and details the impact of the
different AMPI features on its resource usage. We show how these visual-
izations can help to improve the efficiency and execution time of an MPI
application. Applying optimizations indicated by the performance anal-
ysis to two MPI-based applications results in performance improvements
of up 18% from overdecomposition and load balancing.

Keywords: MPI · Load balancing · AMPI · Migration ·
Overdecomposition

1 Introduction

Improving the performance of parallel applications that are based on the MPI
programming model is an important aspect of High-Performance Computing.
Compared to traditional MPI runtimes, Adaptive MPI (AMPI) [6] offers several
advanced, unique features, the most important of which are: overdecomposition
through virtualization and load balancing through rank migration. These fea-
tures can be used to improve performance portability of MPI-based applications.
AMPI itself is implemented on top of the Charm++ runtime system [1,10] and
makes use of several of its features, including support for migration of threads,
comprehensive scheduling and load balancing frameworks, and optimized com-
munication within and between cluster nodes.

The key difference between AMPI and most other MPI implementations
is that AMPI virtualizes ranks as lightweight, migratable user-level threads
(instead of operating system processes). The Charm++ runtime system can
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A. Bhatele et al. (Eds.): ESPT/VPA 2017/2018, LNCS 11027, pp. 219–230, 2019.
https://doi.org/10.1007/978-3-030-17872-7_13
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schedule multiple virtual ranks per core based on message delivery, to overlap
communication and computation and to enable a more fine-grained decompo-
sition of work. This overdecomposition can also help with cache and NUMA
locality, since smaller subdomains of a problem might fit more easily into caches.

The AMPI runtime also provides support for migrating ranks between
address spaces at runtime, both within a cluster node and between separate
nodes. This feature can be used for the purposes of load balancing or fault toler-
ance, among others. Charm++ contains many different load balancing strategies
that can be selected by the user or automatically [18], resulting in substantial
performance gains for many parallel applications [4,9].

These load balancing strategies are based on actual measurement of load
information at runtime, and on migrating computations from heavily loaded
to lightly loaded Processing Elements (PEs, Charm++’s terminology for OS
processes). Figures 1 and 2 illustrate overdecomposition and rank migration in
AMPI. The only changes necessary to existing MPI applications to run them
on AMPI with virtualization and migration are related to privatizing global and
static variables to AMPI’s user-level threads [6]. All AMPI programs are valid
MPI programs, besides any calls they might contain to AMPI’s several extension
APIs.

Using AMPI’s high-level features efficiently is not straightforward, however.
Users of MPI applications running on AMPI need to determine whether an appli-
cation can benefit from each feature, as well as the optimal configuration (such
as degree of overdecomposition and load balancing frequency) of each feature.
Previously, the impact of these features could only be observed indirectly, by run-
ning an application with various parameters and observing its execution time.
It was therefore difficult to determine the best configuration without extensive
experiments, to understand application performance, as well as to explain the
reasons for possible performance gains.

In this paper, we present the additions to AMPI and Projections that enable
detailed performance analysis of applications running on AMPI, covering both
normal MPI operations as well as AMPI’s additions to the standard. With these

2 3

0 1

Virtual rankPE

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

PE

No overdecomposition 4x overdecomposition

Fig. 1. Overdecomposition in AMPI. Colors indicate different PEs. The working set
of a virtual rank in the no overdecomposition case might not fit into the cache, but it
might fit in the 4x overdecomposition case. (Color figure online)
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Fig. 2. Rank migration in AMPI. Colors indicate different PEs. Rank 13 is migrating
from one PE to another. (Color figure online)

additions, it is possible to better understand the operation of an MPI-based
application and its performance characteristics. Our tool can point out possible
inefficiencies, their solutions, and can be used to evaluate and compare perfor-
mance improvements.

In the second part of the paper (Sect. 3), we show how the information pro-
vided by AMPI and Projections can be used to optimize the performance of
two MPI-based applications, LULESH [11,12] and PIC from the Intel Parallel
Research Kernel suite [24]. Our results show that the performance analysis with
the help of our additions to AMPI/Projections enabled us to achieve perfor-
mance improvements of up to 18% from overdecomposition and load balanc-
ing. Furthermore, we show that performance gains are highly dependent on the
characteristics of the application, such that different applications require using
different AMPI features with different parameters.

2 Visualizing AMPI with Projections

This section briefly discusses how the operation of an MPI application running
on top of AMPI is traced for visualization, and presents the main visualizations
available to the application user in the Projections tool.

2.1 Implementation

Tracing and trace visualization in Charm++ and Projections is built around
storing trace events in log files. Prior to version 6.8.0 of Charm++/AMPI, no
special support for AMPI events was available, such that only events related to
Charm++ were traced.

AMPI. In order to implement tracing of events in AMPI, we extended the
support for bracketed events in the tracing framework in Charm++. Bracketed
events are events that have a duration, that is, a starting time and end time. For
every AMPI API function (standard MPI functions as well as AMPI extensions),
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an object is created on the stack as the first operation of that function. As part
of the object’s constructor, a time stamp of the function entry is stored. On
function exit, this object is destroyed automatically, calculating the total time
spent in the function and storing information about this event in the trace file.
Information stored includes the event ID, function name, PE, virtual rank, and
duration of the event. Previously, traces of AMPI programs only showed what
task the AMPI implementation was executing at a given time on each core,
providing no insight into what each virtual rank on a core was executing. Now,
users can see what each virtual rank was doing at any given time.

Such an implementation via a stack-allocated object simplifies the support
in AMPI, as well as seamlessly supporting nested events. The tracing framework
itself is not limited to MPI, a user application can register and trace their own
events in addition to the MPI functions. Furthermore, an application can also
request more fine-grained traces by dynamically enabling and disabling tracing
at runtime, via the AMPI Trace begin() and AMPI Trace end() functions.

Enabling tracing in Charm++ and AMPI applications has generally a negli-
gible execution time overhead. For the applications discussed in this paper, the
measured overhead was typically less than 3% of the total execution time. Trace
files are kept in memory and are flushed to disk periodically and at the end of
execution in a compressed format.

Projections. The Projections tool reads and evaluates the trace files after the
execution of a Charm++ or AMPI application. We extended it with support for
displaying virtual ranks for bracketed events, such that a user can see which rank
has executed which MPI function. Furthermore, support was added to determine
when and where virtual ranks are migrated, by showing the virtual rank numbers
for traced events. As in Charm++ traces, MPI functions are grouped by color,
such that it is easy to follow the operation of collective functions.

2.2 Visualizations

In the example in this section, we use an MPI application running on four Pro-
cessing Elements (PEs) and eight virtual ranks (VPs) to illustrate the visualiza-
tions. Figure 3 depicts the visualization before the extensions described in this
paper were applied, as presented in the original AMPI paper [6]. In the figure, a
user can see that the application is running on four PEs and the percentage of
time this PE was busy (that is, not blocked while waiting for communication, for
example). This percentage is shown below each PE (left number in the paren-
theses). Furthermore, the figure illustrates at which times each PE was idle (in
white) and busy (in red). Not presented in this figure are the virtual ranks of
the application, and which operations they are performing.

Figures 4 and 5 depict the visualizations with the changes described in this
paper. In addition to the information presented before, now the virtual ranks
and the PE they are executing on are shown (two virtual ranks per PE in this
example), as well as the operations the ranks perform, giving a detailed view of
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Fig. 3. Previous visualization of AMPI in Projections, as presented in the original
AMPI paper [6]. The x-axis depicts time, while the y-axis shows the various processing
elements (PE). Visible are the four processing elements, busy percentages (left value
below each PE label), idle times (in white), and busy times (in red). Not visible are vir-
tual ranks (two per PE), rank migrations, and which operation each rank is performing.
(Color figure online)

Fig. 4. New visualization of AMPI. In addition to the information shown in Fig. 3,
virtual ranks (VPs) are depicted (including on which PE they are executing), as well
as the operation performed by each rank.

Fig. 5. Visualizing migrations in AMPI. The MPI extension AMPI Migrate() shows
where each rank is migrated. For example, VP 1 is migrated from PE 0 to PE 1.
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an application’s behavior. For example, in Fig. 4, it is possible to see that at the
time between 142 ms and 162 ms, PE 0 was idle since both virtual ranks running
on that PE (VP 0 and VP 1) were waiting in an MPI Barrier. Starting at about
167 ms, PE 0 is busy with the execution of VP 0, while VP 1 is performing an
MPI Waitall operation. This shows how the overdecomposition can help reduce
idle time.

In Fig. 5, the operation of a migration operation in AMPI is depicted.
By looking the AMPI Migrate event, a user can see which virtual ranks were
migrated, and to which PE they were migrated to. In the example shown, VP 1
is migrated from PE 0 to PE 1.

Additional information that is provided by Projections, but not shown in
the figures, are statistics related to the number of different events and the time
spent for each event, among others.

3 Application Case Studies

This section presents two case studies using two different MPI-based applica-
tions in order to demonstrate how the visualizations presented in the previous
section can help users and developers of MPI applications to optimize application
performance and performance portability.

In this section, we discuss the overall load imbalance of an application using
the average busy time and the percent imbalance metric λ [21], calculated over
the busy time of all PEs using the following equation:

λ =
(

max(L)
avg(L)

− 1
)

× 100% (1)

In the equation, L is a vector of the busy times of all PEs. If λ = 0, the application
is perfectly balanced, while higher values of λ indicate increasing amounts of
imbalance. The maximum value of λ with 8 PEs and possible values of 0–100 is
700%.

To keep the presentation of the visualizations at a reasonable size, we restrict
them in this section to 8 PEs. Results are qualitatively similar to much higher
numbers of PEs for both applications presented here.

For the performance experiments, we execute the applications on a system
with an Intel Xeon E5-2680 v2 CPU (10-core, 2.8 GHz, SMT disabled) and
64 GByte of DDR3 main memory. The software environment consists of Cen-
tOS 7 with Linux kernel 2.6.32, gcc 4.8.2, and Charm++/AMPI 6.8.0.

3.1 LULESH

LULESH 1 is an LLNL proxy application for unstructured Lagrangian-Eulerian
shock hydrodynamics [11,12]. We use the MPI implementation of LULESH 2.0
in the experiments.
1 https://codesign.llnl.gov/lulesh.php.

https://codesign.llnl.gov/lulesh.php


Visualizing, Measuring, and Tuning Adaptive MPI Parameters 225

Fig. 6. Baseline execution of LULESH with neither overdecomposition nor load
balancing.

Fig. 7. Execution of LULESH with 3.4x overdecomposition (8 PEs, 27 virtual ranks)
and no load balancing.

Figure 6 depicts the operation of LULESH with 8 PEs/ranks, no overdecom-
position and no load balancing. As can be seen from the figure, the application
is not imbalanced, with similar busy times and load distribution among all PEs.
The average busy percentage is 78.6%, with an imbalance of λ = 11.9%. Due to
the low busy percentage, this application may benefit from overdecomposition.
On the other hand, load balancing appears not to be profitable due to the low
imbalance.
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Figure 7 shows the performance graph of LULESH with a 3.4x overdecom-
position (27 virtual ranks running on 8 PEs). As we expected, the busy time of
all PEs is increased substantially in this scenario, reaching an average of 89.1%,
while also improving the load balance of the application slightly (λ = 4.3%).

The impact of these improvements can be seen on the execution time, which
was reduced from 4.61 s in the baseline experiment to 3.85 s with overdecompo-
sition (∼16% improvement).

3.2 Particle-in-cell

The Particle-in-cell (PIC)2 application is part of Intel’s Parallel Research Ker-
nels [24]. We used version 2.17 of the AMPI implementation of PIC.

Figure 8 shows the performance behavior of the PIC application baseline,
with 8 PEs/ranks and no load balancing. Several things need to be noted here.
First of all, the application is substantially imbalanced. About half of the PEs
have a significantly lower busy time than the other half, leading to an overall
imbalance of λ = 22.5%. Furthermore, since some of the PEs are idle for large
amounts of time, the overall busy time is only 75.6%.

The first natural step to fix this behavior is to balance the load between the
PEs. For this, we use AMPI’s load balancing feature, specifically the RefineLB
load balancer mechanism, which has shown good load balancing results with
a reasonable overhead [2]. The result of this experiment is presented in Fig. 9.
Since overdecomposition is required for load balancing, we selected the smallest
reasonable degree of overdecomposition (2x, 16 virtual ranks on 8 PEs) for this
experiment. Note that in order to reduce the size of the figures, we are not
showing the individual virtual ranks in Figs. 9 and 10.

As can be seen in Fig. 9, the RefineLB load balancer is able to balance the load
among the PEs successfully, resulting in an overall imbalance of only λ = 7.3%.
However, although the work is better distributed, the average busy time (77.4%)
increases only slightly compared to the baseline execution, despite the slightly
higher overdecomposition. Therefore, we can not expect significant performance
improvements compared to the baseline. This is confirmed by the measurement
of the execution time, which is reduced only from 3.96 s in the baseline to 3.94 s
with load balancing.

The relatively high idle time of the load balanced version indicates that this
application can benefit from overdecomposition in addition to load balancing.
This intuition is verified with an experiment that uses a 6x overdecomposition (48
virtual ranks on 8 PEs) in addition to RefineLB. The results of this experiment
is shown in Fig. 10. Here, we can see that busy time has increased drastically,
with an average of 92.4%. Furthermore, the application is also more balanced
(λ = 1.7%). These improvements lead to a total execution time of 3.26 s, about
18% less than in the baseline version of PIC.

2 https://github.com/ParRes/Kernels.

https://github.com/ParRes/Kernels
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Fig. 8. Baseline execution of PIC with neither overdecomposition nor load balancing.

Fig. 9. Execution of PIC with load balancing (RefineLB) and 2x overdecomposition (8
PEs, 16 virtual ranks).

Fig. 10. Execution of PIC with load balancing (RefineLB) and 6x overdecomposition
(8 PEs, 48 virtual ranks).
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4 Related Work

Several prior tools exist to help with visualizing and understanding MPI applica-
tion performance. These tools include Totalview [5], Allinea Map and DDT [17],
Vampir [14]/Vampirtrace [20], Score-P [15], the HPCToolkit [3], Jumpshot [26],
and Marmot [16]. Some of these tools provide visualizations of an application’s
MPI behavior that are very similar to the visualizations discussed in this paper.

Many proposed techniques exist for monitoring communication in MPI appli-
cations [23,25,27]. Tracing itself, as well as storing and analyzing large trace
files, is a significant challenge [27]. Since a tracing API is directly integrated
in Charm++/AMPI, the tracing overhead can be substantially lower than in
external tools that rely on overriding particular MPI functions.

Other tools perform automatic detection of inefficiencies in certain MPI func-
tions (such as send and receive) [22]. However, as these tools are not aware of
AMPI’s features that go beyond the MPI standard, their applicability in the
context of the AMPI runtime is limited. Particularly, they can generally not be
used for overdecomposition or migration, as they have no knowledge of virtual
ranks.

Many performance analysis tools for MPI use the Profiling MPI (PMPI) stan-
dard [13,19], which provides a coarse-grained way to override standard MPI func-
tions with custom versions that can be used for tracing, analysis, and visualization.
More recently, the MPI T interface [7,8] was added to the MPI standard [19]. It
allows more fine-grained access to performance counters provided by the environ-
ment. Currently, AMPI does not support PMPI or MPI T, but an implementation
is planned for the near future. With such support, AMPI could expose information
about overdecomposition and migrations to other external tools.

5 Conclusions

Adapting MPI applications to the underlying hardware platform and guaran-
teeing performance portability on different systems is a challenging task. In this
context, the Adaptive MPI (AMPI) runtime provides several features that can
help with this task, the two most important of which are overdecomposition
through virtualization and load balancing through rank migration. Correct usage
of these features requires a deep understanding of the application performance,
as well as information about inefficient behavior displayed by the application.

In this paper, we presented extensions to the Projections tool to help with
the performance analysis of applications running on AMPI. We added tracing
capabilities to AMPI, covering standard MPI functions and AMPI’s extensions,
and added their visualization to Projections. Furthermore, we extended AMPI
and Projections to support visualization of virtual ranks as well as rank migra-
tions at runtime. With our extensions, Projections can be used to understand
application behavior, point out possible inefficiencies and their solutions, and
evaluate improvements in load balance, overdecomposition, and performance.
We applied this analysis to two MPI-based applications, and achieved improve-
ments of 16%–18% with overdecomposition and/or load balancing.
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The changes discussed in this paper have been integrated into version 6.8.0 of
Charm++/AMPI, and are available online3. Projections is available at the same
location. For the future, we intend to integrate support for PMPI and MPI T
into AMPI in order to better support traditional performance analysis tools.
Furthermore, we want to improve how rank migrations are displayed in Projec-
tions, and implement automatic suggestions for performance improvements in
AMPI and Projections.

Acknowledgments. This paper is based in part upon work supported by the Depart-
ment of Energy, National Nuclear Security Administration, under Award Number DE-
NA0002374.
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5 JARA-HPC, Jülich, Germany
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Abstract. Performance analysis is an integral part of developing and
optimizing parallel applications for high performance computing (HPC)
platforms. Hierarchical data from different sources is typically available
to identify performance issues or anomalies. Some hierarchical data such
as the calling context can be very large in terms of breadth and depth
of the hierarchy. Classic tree visualizations quickly reach their limits in
analyzing such hierarchies with the abundance of information to display.
In this position paper, we identify the challenges commonly faced by
the HPC community in visualizing hierarchical performance data, with
a focus on calling context trees. Furthermore, we motivate and lay out
the bases of a visualization that addresses some of these challenges.

1 Introduction

The process of optimizing performance of parallel applications is an integral
part of a successful software strategy in high performance computing (HPC).
However, the process of identifying performance bottlenecks and understanding
behavioral phenomena in parallel applications is complex and tends to involve a
problem-specific set of tools and visualizations. It is usually possible to identify
some of the performance bottlenecks by solely examining metrics from a single
application execution. However, properly identifying and finding complex bottle-
necks depends on the ability to compare measurements from different executions,
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comparing different software versions or runtime configurations. Because the
investigative process requires advanced, domain-specific knowledge, determining
the right visualization to reveal relevant behavior to the experts is challenging.

Performance profile data can take various forms, as discussed in more detail
in Sect. 2. Often, the context for such data follows a hierarchical structure in
potentially multiple dimensions (e.g., the Cube data model [1]). The calling con-
text is often of particular interest to the performance expert, as it describes the
structure of the application, and identifying a performance phenomenon in the
context of the software helps in understanding it. A calling context tree (CCT) [2]
is a compact summarization of the relationships between caller-callee entities in
an application. Manipulating and reasoning upon the CCT is central to numer-
ous performance engineering activities. As such, most code execution profilers
produce performance reports anchored on a CCT or similar construct [3–8].

High performance computing applications can produce a large number of
CCTs in multiple dimensions: (1) parallelism, (2) time, and (3) commit history.
Evolution in terms of parallelism is seen when performance measurements across
processing elements (processes, threads, etc.) or across different execution scales
(number of nodes, cores, etc.) are compared. In this case, the CCT may contain
an additional dimension with values for each processing unit, or each processing
unit is associated with its own CCT. Evolution in terms of the time dimension is
often reflected by tracking time steps or iterations in the application [9]. Evolu-
tion in terms of commit history involves comparing the performance of different
versions of the code.

Visualizing CCTs is crucial for understanding the performance of HPC sim-
ulation codes, but due to the large scales in each of the dimensions mentioned
above as well as the potentially large size of the CCT itself, visualization of the
relevant data is challenging.

This paper describes a flexible framework to visualize execution profiles of
parallel programs. The key feature of our framework is to express the transition
between various complementary interactive visualizations. The combination of
these visualizations describes a flow that covers the CCTs, the function graph,
processes/computational units, and the metric list. Transitions between views
are enabled by simply selecting some relevant visual elements using the mouse.

In this paper, we outline the types of data that are stored using CCTs
(Sect. 2), the related work (Sect. 3), and typical user operations on the data
(Sect. 4). Subsequently, we propose a prototype for a CCT visualization frame-
work that allows HPC experts to quickly key in on the underlying cause of per-
formance issues at scale (Sect. 5). We conclude with some future work (Sect. 6).

2 HPC Domain Data

Several kinds of performance data are collected in HPC with different purposes.
Measurements of a single execution of one application can be recorded for ana-
lyzing the performance of this single execution. The measurement of two or more
executions (on different process counts, on different architectures, etc.) can be
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recorded for doing performance comparisons of these executions. For regression
analyses, we may compare historical performance data of a single application or
an entire system (all applications executed during a period of time) over time.

The HPC community is interested in several sub-components of the hardware
and software stack that contribute to execution time and/or energy consumption.
Execution time of an HPC application may depend on:

– Time spent in serial computation
– Data movement in the memory hierarchy
– Communication on the network
– Input/output to the filesystem
– Overlap between different application phases/components
– Sharing of the network and I/O resources by multiple jobs/applications

Since there are many potential sources of performance degradation, and it
is difficult to attribute performance characteristics to the components listed
above, there is not a definitive guide on performance engineering in HPC.
Instead, whether comparing datasets from different executions or searching for
bottlenecks in a single execution, the performance analysis process depends on
advanced, domain-specific knowledge of the performance engineering experts,
and is usually tool-specific, hardware-specific, and/or problem-specific.

3 State of the Art

Current production performance tools typically use straightforward means to
represent CCTs. Cube and hpcviewer, the performance data browsers for Score-
P [3] and HPCToolkit [10], respectively, use text-based tree views or tree tables
similar to those often found in file browsers. Figure 1 shows an example of the
Cube callpath display. Data spanning multiple CCTs (e.g., multiple processes in
a parallel application) is shown on a unified tree using aggregate values. These
tree views are easy to implement for tool developers and easy to interpret for
users. VIPACT shows a hybrid tree and flat profile view with “halo nodes”
showing the distribution of runtimes across processes [11].

Despite its simplicity, there are drawbacks to the traditional tree view pre-
sentation:

– All tree nodes have the same size, making it difficult to visually distinguish
interesting nodes in the CCT from uninteresting ones. Coloring helps to some
extent, but a large number of uninteresting nodes can clutter the display.

– Related functions or function groups (i.e., common subtrees) are visually
separated over possibly large distances.

– Typical tree views show only scalar values for tree nodes, limiting the kind
of information that can be displayed.

– Laborious interaction: Typically, users must expand each tree branch indi-
vidually, often requiring lots of clicks to reach nodes of interest. However,
both cube and hpcviewer implement a “hotpath” option which automatically
expands the most expensive sub-branch.
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Fig. 1. Traditional callpath display in the Cube profile viewer.

An important insight here is that a tree view is not necessarily the ideal form
to present CCTs. We therefore explore more compact visualizations that better
highlight portions of interest.

In the context of memory performance analysis, Gralka et al. [12] presented
a tool to visually explore detrimental memory access patterns. Besides a scat-
terplot where each low-level memory access is depicted as an individual point,
they show the call tree as a flame graph [13]. Such a representation of a call tree
encodes hierarchy but also duration, and lends it use in trace-based visualiza-
tions, such as HPCTraceViewer [14] and Vampir [15]. In principle, a flame graph
is a variation of Kruskal’s icicle plot [16]. The techniques presented by Trümper
et al. [17] and De Pauw et al. [18] use tree visualizations of this type, as well.
A similar visualization is indented tree, for instance used by De Pauw et al.
[19,20]. The disadvantage is that these visualizations consume a significant
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portion of screen space. Another kind of tree visualization is radial representa-
tion, which has been used by Adamoli and Hauswirth [21], and Moret et al. [22]
to depict CCTs. In a radial representation, functions with a relative small self-
time can degenerate from radial boxes to small lines in the visualization, which
we expect to occur quite often in the context of simulation software with an
interactive design. However, we adopted the basic idea of a radial representation
to augment the nodes in our graph-based alternative Function View with an arc
of radial boxes showing the share of execution time with respect to a specific
calling function.

4 Data/Visual Analytics Operations on a CCT

We deem a specific set of user operations necessary that a visual analytics tool
should support in order to help users in the analysis of CCTs. An important
aspect of CCTs that needs to be managed by user operations is their size and
scale. Filtering helps to reduce the size of CCTs and helps the user to focus on
the interesting parts of the tree. This requires a tool to expose selectable metrics
and thresholds, or queries to have the user communicate interesting nodes for
subselection to the tool.

In the same context, grouping is a helpful operation, as well. Navigating
through a large CCT is difficult. If the user could group the nodes in the tree,
for instance with respect to their name or load module (library), the tree would
resemble something that the user is more familiar with, such as the general
architecture of the software. Especially in the context of computational science
and engineering codes, we expect to have repeating patterns, for instance from
iterative solvers, in a CCT. A visual analytics tool should provide the means
to group the nodes of a pattern into a single entity and to unfold them again
depending on whether the user wants to gain an overview of the tree or wants
to drill down into details. This operation is effective only if analyzed metrics can
be aggregated into the grouped entity.

Another set of operations should help the user to cope with multiple trees,
e.g., from different runs, or different inputs per run. The basis for most of these
operations is a matching between the nodes in two or more trees. Most of
this matching should be done automatically. However, in very complex trees we
expect automatic matching to fail. Unfortunately in such cases, a user-driven
matching on the raw data will be often too time-consuming. A user-operated
clustering can help a user during manual matching to focus on more dissimilar
parts in the trees. Adamoli and Hauswirth [21] provide a list of methods and
metrics for clustering and comparison of CCTs.

In general, an important hint towards interesting behavior that a user wants
to analyze are the differences in trees according to one metric or a set of metrics,
or topological changes. Thus, a visual analytics tool should support the union
or subtraction of two or more matched CCTs and highlighting according to
detected similarities or differences.

For different optimization strategies (performance, throughput, power con-
sumption, etc.) the user will need the capability to overlay different metrics on
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the nodes of a CCT. For example, after matching or subtracting CCTs, being
able to select and view different metrics on the highlighted node(s) is crucial for
understanding the performance of HPC simulations.

5 Prototype of a Flow-Based Visualization Framework

This section outlines a framework for visualizing the execution of HPC applica-
tions. The framework allows for several visualizations to be hooked together and
is able to support a navigation flow between them. In Sect. 4, we described a set
of user operations that a comprehensive framework should support. Note that,
given the outlined framework is a prototype, not every aspect of these opera-
tions is included in the following framework. However, we encourage the reader
to extend our framework to a tool ready for production use.

5.1 Flow-Based Navigation

Figure 2 gives a high level representation of the flow supported by our frame-
work. The flow is modeled as a directed acyclic graph of four nodes. Each node
represents a family of views on the data commonly considered when dealing with
performance assessment and performance correction activities. In particular, we
support the following views.

CCT
views

Function Graph
Views

Process
views

Metric
views

Fig. 2. Flow supported by our framework

CCT Views: A CCT is considered as a standard and intuitive representation of
a program execution. This node describes visualizations of a CCT. A CCT may
be large, which may turn a simple visualization ineffective. In particular, these
views may filter out irrelevant parts of the CCT (e.g., the use of a particular
library or architectural layer), and fine-tune the visualization (e.g., by using a
particular or customized tree layout, user-defined color mapping to highlight
some properties of each node). Therefore, the CCT view supports the filtering
and grouping operations mentioned in Sect. 4. An example of a CCT view is
given in Fig. 4.
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Function Graph Views: CCT may be verbose, particularly in presence of
loops. Considering the graph of function calls may be relevant for some activities
(e.g., debugging, code maintenance, code understanding). Being able to visualize
functions calls complements the CCT views. Such views have to consider the
fact that function calls may form graphs, possibly with cycles. The view should
therefore accommodate such characteristics. Three examples of function graph
views are given along the paper (Figs. 5, 6, and 9).

Fig. 3. Flow example for an execution of the ZeusMP/2 benchmark. Selected elements
are indicated with a thick black arrow.

Process Views: HPC applications typically run over a large number of exe-
cution units, typically CPU and GPU cores. Focusing on the execution units is
relevant to characterize the use of the available resources. A process view may
support a particular HPC-related activity. For example, measuring the load bal-
ancing across the execution units or identifying underused units. This can be
seen as a clustering to gain an overview as described in Sect. 4. An example of
a process view is given in Fig. 7.

Metric Views: An execution is accompanied with numerous metric reports to
characterize, e.g., memory consumption, CPU uses, and cache uses. Numerical
reports should be adequately presented using state-of-the-art visual representa-
tions. These views relate to the overlay operation. However, it requires links to
the other views, especially the tree and function views.

This position paper claims that manipulating these views in an explicit fash-
ion and expressing multiple flexible flows is key to incrementally build flexible
and open analyzing HPC tools.
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5.2 A First Flow Example

We illustrate the use of our framework on the basis of a Cube measurement
report of the execution of the ZeusMP/2 benchmark [23] of the SPEC MPI 2007
benchmark suite [24] on 512 processes of the IBM Blue Gene/P supercomputer
JUGENE [25], formerly operated by Forschungszentrum Jülich GmbH, Germany.

Figure 3 presents a flow made of the path CCT view A Function view A

Metric view. On the left hand side, the figure shows the calling context tree
represented as a radial visualization. The shape and the color of each node
correspond to some particular metrics. Clicking on the node indicated with the
black arrow, in the left most pane opens the second pane showing a function
view. In this new view, clicking on the context indicated with the black arrow
opens the third pane, a metric view.

As presented in Fig. 4, the CCT view uses a polymetric view [26] in which
each box represents a CCT node and an edge represents a calling-callee relation.
The height of a box represents the minimum value of the self-time across all the
processes. The width of a box, as well as its color, represents the maximum value
of the self-time, across all the processes. Size of a node therefore indicates its
significance regarding the overall consumption share.

The overall function call graph is given in Fig. 5. Each function is represented
as a circle. The size of a circle indicates the number of CCT nodes of that function
contained in the CCT. Edges are not visually directed, however, an interactive
tooltip indicates caller and callee functions.

Clicking on a CCT node opens a window pane that shows a function graph.
Figure 6 illustrates functions, represented as outer boxes. Each function contains
the CCT nodes of the encapsulating function. The figure is obtained by clicking
on a CCT of the nudt function. We see that nudt has created two CCT nodes
since the box representing nudt, at the center, has two small inner boxes. Each
of these inner boxes represents a CCT node. Callers of the nudt are located left
of it, and functions called by nudt are located on the right hand side. Edges
indicate the control flow between the functions. The width of the edges indicates
the number of calls.

Figure 7 illustrates a process view. In this visualization, each box represents
a process/computational unit. Three metrics are used to represent a process: the
width indicates the maximum self-time value across all CCT nodes, the height
indicates the minimum value, and the color fading represents the average. The
figure clearly shows that the usage of the computation units is not homogeneous.
A grid layout is used to order the boxes.

Clicking on a CCT node, either from the CCT view or from the second
Function view opens a Metric view. It indicates the execution time of the selected
entity across all the processing units. Figure 8 illustrates the execution time of
a particular CCT node across all the computational processes.

The example of the flow supports cyclic function call graphs. Although con-
venient and intuitive, the visualization can be improved in case that the call
graph has no cycles, as shown in our alternative function view, described below.
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Fig. 4. Example of a CCT view

Detail about each visual element is available at all times. First a mouse tooltip
indicates the relevant information, including the node name and the relevant
metrics. The tooltip appears by moving the mouse above the visual element one
wish to have information from. Clicking on a node triggers a new view. The new
spanned view may be optionally replaced with the complete list of associated
metrics (accessible from the Raw tab, in Fig. 3).



242 A. Bergel et al.

Fig. 5. Function view

5.3 Alternative Function View

In the case that the function call graph is simpler, we propose an alternative
Function view, which gives more detail on the causal-effect of self-time. The
visualization was generated on the basis of a Cube measurement report [27] of the
execution of the Sweep3D benchmark [28] on 294,912 processes of the IBM Blue
Gene/P supercomputer JUGENE [25], formerly operated by Forschungszentrum
Jülich GmbH, Germany.

Figure 9 represents a function as a circle. The size of the circle represents the
self/exclusive execution time. Edges represent calls between functions. In this
scenario, the control flow goes from the left to the right of the figure. Functions
with a significant amount of exclusive time (i.e., large circle) have their names



Visual Analytics Challenges in Analyzing Calling Context Trees 243

Fig. 6. Function view

on it. Less significant functions have no name in the visualization (however the
name remains visible via tooltips).

Each large function has an arc around it. Each portion of this arc represents
the share of that function’s execution for a given calling function. The share is
indicated with the size and the color of the arc. In Fig. 9, each individual call
to a function is drawn separately. However, the calls can be bundled in order to
reduce clutter. While, for instance, grouping only the calls that contribute an
average share of execution time – i.e., those that behave similarly – the outliers
will remain visible and call for attention.

This Function view is more detailed than the previous one (Fig. 5). However,
its applicability if the data contains cycles or large number of nodes still needs
to be evaluated on more data.

5.4 Data and Visualization Challenges

The typical visual analytics challenges, for instance described by Keim et al. [29,
30], apply as well to the analysis of CCTs. This section revises these challenges
with respect to our framework.

Scalability. The issue of scale has more than one aspect. First, CCTs them-
selves can become very large if we analyze complex applications such as par-
allel simulation software (e.g., SPH [31,32]). Such large trees, with potentially
hundreds of thousands of nodes, require a sensible pre-processing step prior to
visualization to prevent visual overload. Second, many issues we want to address
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Fig. 7. Process view

Fig. 8. Metric view
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Fig. 9. Second example of the function view: calls are depicted as a directed acyclic
graph with calling-direction from left to right. Currently, each call is depicted sepa-
rately. However, these can be bundled according to some user-defined statistics, with
only the outliers still being drawn individually.

require the comparison of CCTs across processes, timesteps, application runs,
or input decks, which may involve a large number of trees. Moreover, there is no
guarantee that CCTs of different processes, timesteps, or application runs are
identical, even for identical inputs. Thus, the trees have to be matched, requiring
heuristics or user interaction to deal with structural differences in the trees.

The first aspect remains open, as we assume the CCTs to be readily available
for the described prototype for the sake of conciseness of its presentation. To
address the second aspect, our framework promotes the uses of relatively simple
visualizations for which practitioners can easily jump from one to another.

The flow supported by our framework is based on the “Visual Information
Seeking Mantra” formalized by Shneiderman [33]. It consists of supporting a
sequential flow of actions: first getting an overview and then zooming and filter-
ing with details on demand. This mantra is a recognized way to design advanced
graphical user interfaces.

Indeed, the user can start exploring the visualization from the CCT view and
drill down into the overall execution information by moving into other views.

The visualization uses visual cues and some elementary interaction to cope
with the exploitation of large visualizations. In particular, nodes are translucent
to avoid occlusion in presence of overlapping, nodes can be drag-and-dropped,
outgoing nodes are highlighted when locating the mouse on a particular nodes,
and the view can be zoomed-in and out.

Interaction. The second challenge is to provide suitable interaction possi-
bilities to the user, as user feedback is an integral part of each step in the visual
analytics model. For the analysis of a CCT, a visualization has to support the
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user in typical analysis tasks, such as finding outliers, comparing trees, selection
and comparison of sub-trees, etc. A thorough user interaction model requires
the visualization and ideally the data analytics, as well, to be interactive. This
involves a careful trade-off between presenting as much useful information as
possible and maintaining interactivity.

Given that the presented visualizations are prototypes, the interaction design
is not yet complete. However, we already provide some means to interact with
the visualizations. In particular, mouse hovering reveals detail about a particular
node. This simple ability therefore removes the need to label each visual element
in our visualization. Clicking on an element opens a new pane on the right. Tabs
are useful to switch from multiple views within the same class (e.g., as the three
function views given in Figs. 5, 6, and 9).

User Experience. An adequate user experience is key to favor the acceptance
of a visualization into the typical workflow of performance engineers.

Currently, our prototype is not empirically validated. We did run pilots on a
number of benchmarks, both available from the public domain such as Zeus, and
proprietary ones. These pilots were crucial to improve the overall experience of
the visualizations. As a future work, we plan to carry out empirical evaluation
of the framework. In particular, controlled experiments and case studies are
two experimental designs that seems adequate to evaluate the experience and
performance of performance engineers.

Semantics. Finally, deriving semantics and augmenting a visualization with
that information to support the user is a challenge, as well. We have to rely
on knowledge from performance engineering to find suitable metrics to facili-
tate automated derivation of semantics from the performance data of simulation
runs. A visualization can provide several means to display semantic information.
We can utilize color, area, or size, but also additional visualizations that are
interactively linked to a CCT.

Our framework is able to integrate new visualizations and customization of
existing visualizations. The framework is implemented in Roassal [34], an agile
framework to build visualizations.

6 Conclusion

In this paper, we provide an overview of performance data available in HPC, as
well as the challenges encountered in their visualization. Particularly, we focus
on visualization of CCTs, which are used in performance analysis of parallel
codes. Since traditional tree representation is not suitable for large sets of data
common in HPC, we propose a flow-based framework for visualizing the exe-
cution of parallel applications. The advantage of such an approach is that it
connects several visualizations, and facilitates interaction by providing a navi-
gation flow between them. At the time of writing this paper, our visualization
framework is a prototype that requires an empirical evaluation. In particular, we
envision the framework to enable expressing constructions to handle scalability
and interaction.
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Future work will focus on extending the framework with different visualiza-
tion approaches and connecting them to source code, as well as allowing domain
scientists to evaluate the framework. Since CCTs are used not only in HPC per-
formance analysis, but also in software performance engineering [35], we plan to
evaluate this framework in both settings. In addition, we plan to carefully eval-
uate the expressiveness of our approach by conducting empirical evaluations.
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Abstract. Taking advantage of the growing number of cores in super-
computers to increase the scalability of parallel programs is an increasing
challenge. Many advanced profiling tools have been developed to assist
programmers in the process of analyzing data related to the execution
of their program. Programmers can act upon the information generated
by these data and make their programs reach higher performance levels.
However, the information provided by profiling tools is generally designed
to optimize the program for a specific execution environment, with a tar-
get number of cores and a target problem size. A code optimization driven
towards scalability rather than specific performance requires the analysis
of many distinct execution environments instead of details about a sin-
gle environment. With the goal of providing more useful information for
the analysis and optimization of code for parallel scalability, this work
introduces the PaScal Viewer tool. It presents an novel and productive
way to visualize scalability trends of parallel programs. It consists of four
diagrams that offers visual support to identify parallel efficiency trends
of the whole program, or parts of it, when running on scaling parallel
environments with scaling problem sizes.

Keywords: Parallel programming · Efficiency · Scalability ·
Performance optimization · Visualization tool

1 Introduction

The number of cores in supercomputers continues to grow. Taking advantage of
this to increase the performance of parallel programs is a continuous challenge.
Developers must understand how their program behaves when more cores are
used to process data, when more data need to be processed, or both—when data
need to be processed by more cores.
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Many techniques and profiling tools have been developed to assist program-
mers in the process of collecting and analyzing data related to the execution
of their program [10]. These tools provide a large amount of information, mea-
surements, details, and characteristics of the program. All of this information is
usually related to one single execution of the program in a particular environ-
ment. The configuration of this environment includes the number of cores, their
operating frequency, and the size of the input data or the problem size. Among
the various collected information, the elapsed time in each function of the code,
the number of function calls, and the memory consumption of the program can
be cited to name just a few [7]. It is possible to measure the parallel efficiency
of the program in the analyzed environment. However, this value would proba-
bly change if the same program is executed in different environments. For this
reason, from the information collected from a single run alone, it is not possible
to evaluate how the efficiency will evolve when the program is executed with a
different number of cores or with a different problem size. To discover the effi-
ciency trends, developers need to perform the same analysis in many different
environments. Then, they can compare the data manually and say if and when
the algorithm tends to be scalable.

The information provided by these profiling tools is very useful to optimize
the program execution for a single environment, with a target number of cores
and a target problem size. However, when the goal is to analyze and optimize
the code for parallel scalability, developers need to focus their attention on the
variation of efficiency values when the program runs in many distinct execution
configurations. In this case, it is more relevant to know fewer details about
many executions than many more details about a single execution. In addition,
current profiling tools use different techniques for collecting and analyzing data
and, in some cases, they are developed for specific architectures and/or different
parallelization models. These tools present the information collected in large
data tables or complex graphs, and because of that, demand a “good” knowledge
of their visualization interfaces [13]. Some approaches, such as [6], present the
efficiency values for different environments in a single line chart. From such
chart, developers could infer the program scalability trends, but this task is not
always simple for a large number of environment configurations are depicted.
Weak scalability trend are also difficult to infer from these line charts.

SPERF is a simple tool that can automatically instrument parallel code with
the insertion of time measurement [8]. From these measurements, developers can
assess the execution time of each parallel region or regions of interest. With these
specific time measurements, developers can verify the efficiency of the whole
program or part of it. They can check, for example, if the scalability of the
program as a whole deteriorates because of a specific region. In this way, they
can focus in code regions that breaks scalability, much in the same way they do
for optimizing single-run performance bottlenecks using traditional tools. This
work uses the output of SPERF to construct visualization diagrams that unveils
scalability trends. However, since the output of SPERF is a formatted text file,
it can also be generated by another tool or by a productivity script.
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This paper presents a visualization tool for the scalability analysis of parallel
programs. For this, the tool takes as input the execution time measurements
of a program in different configuration environments as provided by SPERF,
translates these values into the corresponding efficiency values, and presents,
through simple diagrams, the efficiency trends of this program. The objective
of the tool is to avoid a tedious manual comparison of efficiency values. The
tool is independent of architecture, parallelization model or profiling tool. It
displays four color diagrams related to each analyzed region. One diagram holds
the efficiency values and the other three show the variation of these values: when
the number of cores is fixed; when the problem size is fixed; and when the number
of cores and the problem size change proportionally at given rates. This tool can
assist developers during the scalability analysis of their parallel programs in a
simple and productive way. It helps on the identification of hot spots that when
refactored could optimize the program scalability.

The remainder of this work is organized as follows Sect. 2 describes the tool
and its color diagrams. The results of a simple case study are presented in Sect. 3.
Section 4 presents the related work. And finally the contribution is summarized
in Sect. 5 with an outlook of future works.

2 The PaScal Viewer

This work presents a tool that introduces a novel and productive way to view
the scalability trends of a parallel program, named Parallel Scalability Viewer or
simply PaScal Viewer. For this, the tool translates the efficiency values collected
from program executions into four color diagrams. These diagrams offer support
to identify efficiency variation when the program runs on parallel environments
and when it processes different amounts of data. In this sense, the tool aids
developers in the identification of parallel scalability, including the analysis of
whether this scalability is weak or strong, for the whole program or parts of it.

The tool is presented as a web-based application implemented in the Python
programming language and the Django framework [4]. The color diagrams are
drawn using Bokeh, an interactive visualization library [11].

2.1 The Color Diagrams

The proposed color diagrams simplify the understanding and the visualization
of the scalability trends from a parallel program. Figure 1 presents the four dia-
grams generated from execution data collected from a theoretical program with
the following characteristics:

– The serial execution time is given by TSerial = n2;
– The parallel execution time is given by TParallel = n2/p + log2(p);
– p corresponds to the number of cores and n corresponds to the problem size;

Each diagram is presented as a graphic of two axes. The horizontal axis
corresponds to the number of cores and the vertical axis corresponds to the
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Fig. 1. Scalability diagrams of a theoretical program. The number of cores varies
according to 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and 4096. The prob-
lem size, i1 to i13, varies according to 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120,
10240, 20480 and 40960. (Color figure online)

problem size. Both are organized in same order presented in the input file. The
numerical values of each diagram element can be visualized in a tooltip, as shown
in Fig. 1.

The diagram located on the upper left corner of Fig. 1 presents the parallel
efficiency values. Each element of the diagram, represented by a color, corre-
sponds to a particular execution scenario, with a specific number of cores and
problem size. The numerical values depicted in this first diagram are showed at
Table 1 and Fig. 2. These values serve as base for constructing the other three
diagrams and provide a general view of the program behavior.

The other three diagrams present the results of the difference between the
efficiency values represented in the first diagram for each two bordering execution
scenarios. The colors in these diagrams change according to two distinct ranges.
One range for the positive values and another for the negative ones. In the case
of Fig. 1, the color range for the positive values varies from white to green (from
#FFFFFF to #004337, in RGB) and for the negative values varies from white
to brown (from #FFFFFF to #5D3506, in RGB).

The diagram located on the bottom left corner allows the scalability anal-
ysis of the program when the number of cores is fixed and the problem size
increases. From it, developers can observe the general scalability trends of a pro-
gram with relation to the increase of problem size. In this diagram, each element
corresponds to the difference between efficiency values of two bordering config-
urations that use the same number of cores but with higher problem size. The
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Table 1. Efficiency values of a theoretical program.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

il 1,000 0,956 0,838 0,626 0,381 0,195 0,091 0,041 0,018 0,008 0,004 0,002 0,001

i2 1,000 0,988 0,952 0,866 0,703 0,483 0,278 0,141 0,066 0,031 0,014 0,006 0,003

i3 1,000 0,997 0,987 0,962 0,903 0,785 0,601 0,390 0,218 0,110 0,052 0,024 0,011

i4 1,000 0,999 0,997 0,990 0,973 0,935 0,856 0,717 0,524 0,327 0,179 0,090 0,043

i5 1,000 1,000 0,999 0,997 0,993 0,983 0,959 0,910 0,814 0,659 0,464 0,282 0,152

i6 1,000 1,000 1,000 0,999 0,998 0,996 0,990 0,976 0,946 0,885 0,776 0,610 0,417

i7 1,000 1,000 1,000 1,000 1,000 0,999 0,997 0,994 0,986 0,969 0,933 0,862 0,741

i8 1,000 1,000 1,000 1,000 1,000 1,000 0,999 0,998 0,996 0,992 0,982 0,962 0,920

i9 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,999 0,998 0,995 0,990 0,979

il0 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,999 0,999 0,998 0,995

ill 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,999 0,999

il2 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

il3 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

values of each cell is given by

f(x, y + 1) − f(x, y), (1)

where x represents the number of cores and y represents the problem size, both,
presented in the efficiency diagram.

The diagram located on the upper right corner allows the scalability analysis
of the program when the problem size is fixed and the number of cores increases.
From this diagram, developers can observe the strong scalability trends of a
program. The elements of this diagram show the difference between the efficiency
values of two bordering configurations that use the same problem size. In this
case, the values are given by

f(x + 1, y) − f(x, y). (2)

The diagram located on the bottom right corner allows the observation of
weak scalability trends. The weak scalability trends can be identified in this
diagram if the efficiency values increase or remain constant when the number of
cores and the problem size used in executions scenarios increases with the same
rate. In this case, the elements correspond the difference between the efficiency
values of two bordering configurations in relation to the configuration that uses
the higher number of cores and the higher problem size. These values are given
by

f(x + 1, y + 1) − f(x, y). (3)

These diagrams allow the visualization of the scalability trends of a program
in a more dynamic and productive way because it is simpler and easier to focus
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the attention on a color variation than in the analysis of data presented in tables
or line charts, as in Table 1 or Fig. 2. The PaScal Viewer presents the file name
and the number of code lines that originated each diagrams set.

Fig. 2. Line chart with efficiency values in % of a theoretical program.

From the diagrams of Fig. 1, one can infer that: (a) to any number of cores,
when the problem size increases the efficiency values increase too, therefore, the
program can be considered generally scalable; (b) there is a limit to each prob-
lem size at which the increase of number of cores means efficiency improvement;
increasing cores above this limit holds efficiency values constant; (c) increasing
the number of cores with any constant problem size decreases the efficiency val-
ues, therefore, the program is not strongly scalable; and (d) there is no efficiency
drop when the number of cores and the problem size increases at the same rate;
therefore the program is weakly scalable.

2.2 Input File Format

The four diagrams of PaScal Viewer are drawn from execution time measure-
ments of a program. The tool does not measure the execution times. It reads
them from an input file, translates them into efficiency values and then draw the
diagrams.

The input file can be generated directly by a profiling tool, such as SPERF.
SPERF is a simple profiling tool that allows the instrumentation of C/C++ pro-
grams and that exports the analysis data to .json, .xml and .csv file formats [8].
The input file can also be generated manually, or from another comfortable tool
or script. It is a simple text file that contains data from all parts of the program,



256 A. B. N. da Silva et al.

as shown in Fig. 3 for the .json format. The data consists of the identification
of each part analyzed, the number of cores, the problem size and the execution
times of all execution scenarios. The data structure allows the inclusion of time
measurements to various executions. The PaScal Viewer uses the median of these
values to compute the efficiency translated into the diagrams.

The data on the .json file are structured in arrays and objects according to
the following understanding: (a) the program can have various parallel regions;
(b) a parallel region can be executed one or many times with different input
sizes; and (c) for a specific input size, the program can be executed many times
with different number of cores.

3 Case Studies

In order to show the effectiveness of PaScal Viewer, three specific applications
from the PARSEC Benchmark Suite were used as a case studies. PARSEC is
a suite of application for chip-multiprocessors that incorporates a selection of
different combinations of parallel models and execution workloads. It is a package
with applications that represent real computational challenges [3].

The applications chosen for these case studies were Blackscholes, Bodytrack
and Freqmine. Two of these applications have inner parallel regions and therefore
allow the analysis of the effect of their scalability on the efficiency trends of whole
application. Freqmine is the one that has no inner regions. The applications were
executed in a 32-core shared memory machine with 1, 2, 4, 8, 16 and 32 cores
and with 10 distinct problem sizes: i1, i2, i3, i4, i5, i6, i7, i8, i9 and i10. The
i2 problem size is twice as large as the i1 problem size; the i3 problem size is
twice the as large as i2 problem size, and so on. The SPERF tool was used to
collect the execution time measurements and to generate the .json input file for
the PaScal Viewer.

3.1 The Blackscholes Application

Blascksholes is an application from the financial domain analysis that solves a
partial differential equation to calculate the prices of a given number of financial
options. This application has just one inner parallel region.

The diagrams of Fig. 4 refer to the whole program and the diagrams of Fig. 5
describe the behavior of the inner parallel part. From the diagrams of Fig. 4,
one can infer that: (a) for any number of cores, the program presents better
efficiency values for smaller problem sizes, and almost does not scale when the
problem size increases; (b) the program is not strong scalable in any scenario;
and (c) the program is not weakly scalable in any scenario.
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Fig. 3. The structure of the PaScal Viewer input file.

The diagrams of Fig. 5 allow the following interpretation: (a) the region
presents better efficiency values for higher number of cores; (b) the region is
scalable because it does not present efficiency drop for increasing problem sizes;
(c) the increase in the number of cores does not improve the efficiency of the
region, so it is not strongly scalable; and (d) the region does not present weak
scalability considering that increasing the number of cores and problem size
proportionally does not improve the efficiency of the region.
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Fig. 4. Scalability diagrams for the whole Blackscholes application.

Fig. 5. Scalability diagrams for the inner parallel region of the Blackscholes application.
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Fig. 6. Scalability diagrams for the whole Bodytrack application.

3.2 The Bodytrack Application

Bodytrack is an application of computer vision that tracks a human body from
the analysis of an image sequence [3]. This application has three inner parallel
regions.

The diagrams of Fig. 6 refers to the whole program. The diagrams of Figs. 7,
8 and 9 describe the behavior of three inner parallel regions of the program.
From the diagrams of Fig. 6, one can realize a similar behavior to Blackscholes
where: (a) the program presents better efficiency values for smaller problem
sizes; (b) the program is not strong scalable; and (c) the program is not weakly
scalable. Although the two programs present resembling scalability trends, one
can identify that the Bodytrack scale less than Blackscholes as the problem size
increases.

The diagrams of Figs. 7 and 8 demonstrate similar scalability trends for the
two analyzed regions. The analysis of these diagrams allow the following inter-
pretation: (a) for any number of cores, there is efficiency drop when the input
size increases, with exception of i10 input size; (b) the regions are scalable for
just the i10 input size; (c) the increases in the number of cores worsen the effi-
ciency of the regions, so they are not strongly scalable; and (d) the regions do not
present weak scalability. From the number of cores and input sizes presented in
this case study, one can not infer if for input sizes greater than i10 the scalability
indexes will continue to increase.

The diagrams of Fig. 9 allows the following interpretation: (a) for any number
of cores, there is no clear improvement on the scalability trends; (b) the region is
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Fig. 7. Scalability diagrams for the first inner parallel region of the Bodytrack appli-
cation.

not scalable because, in many cases, it presents efficiency drop when the problem
sizes increases; (c) it is not strongly scalable; and (d) the region does not present
weak scalability.

From the inner regions diagrams, one can infer that the efficiency drop of
Bodytrack application to larger input sizes is related to the scalability of their
inner parallel regions. In this case, the scalability of the whole program deterio-
rate influenced by its inner parts.

3.3 The Freqmine Application

Freqmine is an application that identifies patterns in a transaction database
through data mining techniques. It is an array-based version of the frequent
pattern-growth method for frequent itemset mining.

The diagrams of Fig. 10 refer to the analysis of whole program and allow
the following interpretation: (a) the Freqmine program presents a continuously
improving efficiency trend with better values for larger number of cores and
input sizes; (b) it is scalable because it does not present efficiency drop for any
increasing problem size; (c) the increase in the number of cores does not improve
the efficiency of the program, so it is not strongly scalable, however, for smaller
input sizes, as larger the number of cores the less is the loss of efficiency; and
(d) it tends to present weak scalability for larger problem numbers of cores and
problem sizes although weak scalability could only be seen for input size around
the i8.
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Fig. 8. Scalability diagrams for the second inner parallel region of the Bodytrack appli-
cation.

Fig. 9. Scalability diagrams for the third inner parallel region of the Bodytrack appli-
cation.
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Fig. 10. Scalability diagrams for the whole Freqmine application.

4 Related Works

Since Gprof [5], before the multi-core era, profilers work measuring the amount
of routines calls and execution time of sequential programs. With the pop-
ularization of parallel architectures, the performance measurements became
more sophisticated. Several tools emerged, initially with basic resources [9,12],
and then becoming more complex with advanced features and visualizations
modes [1,2], and, in general, focusing on performance metrics for large-scale
parallel computer systems and applications [14,15].

Instead of focusing on the profiling of a single run for the optimization of the
program in a specific configuration environment, the PaScal Viewer proposes a
simple approach that mainly focus on the parallel efficiency of the applications.
The objective is to present visual evidence of scalability trends. When targeting
to specific regions of the code, this trend could also reveal scalability bottlenecks.

5 Conclusion and Future Works

The PaScal Viewer offers an efficient and productive way to analyze the scalabil-
ity trends of a parallel program. From its four color diagrams, the tool simplifies
the visualization of the program’s parallel efficiency variation for multiple runs
with various distinct configuration scenarios. It allows the identification of low
scalability hot spots. That way, developers can focus their attention in these hot
spots to optimize the program scalability.
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As future work, the proposed tool will bring an interface that presents the
diagrams of inner parts of a program hierarchically. This hierarchical view can
help to identify more clearly how low scalability hot spots can impact the scal-
ability of the whole program. Additionally, support to analyzing the scalability
trends of finer parallel constructs like loops are also being investigated.
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Abstract. Characterization of a parallel application’s communication
patterns can be useful for performance analysis, debugging, and system
design. However, obtaining and interpreting a characterization can be
difficult. AChax implements an approach that uses search and a library
of known communication patterns to automatically characterize com-
munication patterns. Our approach has some limitations that reduce
its effectiveness for the patterns and pattern combinations used by some
real-world applications. By viewing AChax’s pattern recognition problem
as an image recognition problem, it may be possible to use deep learn-
ing to address these limitations. In this position paper, we present our
current ideas regarding the benefits and challenges of integrating deep
learning into AChax and our conclusion that a hybrid approach com-
bining deep learning classification, regression, and the existing AChax
approach may be the best long-term solution to the problem of parame-
terizing recognized communication patterns.
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(a) (b) (c)

Fig. 1. Removing a recognized, parameterized communication pattern (b) from an
example residual communication matrix (a), resulting in a new residual matrix (c).
Screen captures originally presented in [9].

1 Introduction

Over the past few years, one of us (Roth) has been developing an approach
for automatically recognizing and characterizing the communication patterns of
parallel applications [7,9]. The approach uses search and a library of known com-
munication patterns like Broadcast and 3D Nearest Neighbor. The input to the
approach is a representation of a parallel application’s communication behav-
ior. Logically, this information is represented as an Augmented Communication
Graph [7] (ACG), a graph that captures the volume and operation count of the
collective and point-to-point communication operations performed by each pro-
cess during an application run. At each step of its search, the approach examines
the communication data that has yet to be explained (called the residual) to see
if it can recognize any communication patterns from its pattern library. If it rec-
ognizes a pattern in a residual, it determines the parameters of the pattern (such
as its scale, the amount of data that was transferred in the operation) and then
refines its search by removing the contribution of the parameterized pattern to
form a new residual, from which it continues its search. Figure 1 demonstrates
this recognize-parameterize-remove operation. Because the approach might rec-
ognize multiple patterns within a residual, the search results form a tree where
each path from the tree’s root to its leaves represent a collection of parameter-
ized patterns that have been recognized in the original communications data.
The path whose leaf has the smallest residual represents the collection of pat-
terns that best explains the original communications data. By reporting the
name and parameters of each pattern along this path, the approach generates
a concise description of the application’s communication behavior that is eas-
ier to manage than a full communications event trace and more accurate than
summary statistics.

The approach has a few known limitations. One important limitation is that
it does a poor job of handling patterns where the amount of data transferred



Deep Learning for Automated Communication Pattern Characterization 267

between senders and receivers may vary, such as a nearest-neighbor pattern
used in a molecular dynamics simulation. Although we have explored heuristic
techniques for determining a pattern’s scale that avoid trapping the search in
local search space minima [7], our recognition implementation still assumes that
the amount of data transferred in a pattern does not depend on the particular
sender and receiver and thus may fail to explain all of the application’s observed
communication behavior if this assumption is not true.

AChax is a Python-based tool that implements this automated communi-
cation characterization approach for applications that use a Message Passing
Interface [4] (MPI) implementation for communication and synchronization. The
tool’s distribution includes a library that provides interposition functions for
many MPI communication calls made by an application as it runs, and outputs
an ACG that captures the application’s MPI communication behavior. After a
brief dalliance with using graphs built using the Graph-tool Python module [3]
as an internal ACG representation, the tool once again represents ACGs using an
adjacency matrix encoded in a NumPy [5] matrix because the tool’s analysis per-
formance is much better using matrices than when using the Graph-tool-based
ACG representation.

A presentation at a recent tools workshop describing AChax [8] spurred us to
form an informal working group techniques and challenges with automated pat-
tern recognition in performance, debugging, and characterization tools. Although
our discussion ranged widely, the AChax pattern recognition challenges turned
out to be the dominant topic. We have long known that we can view the AChax
pattern recognition problem as an image recognition problem. (Indeed, captur-
ing the human expertise required to recognize patterns within visualizations of
communications adjacency matrices is the primary motivation for the AChax
work.) Because of deep learning’s well-demonstrated capability for automatic
image classification, including images that are “fuzzy” or otherwise obfuscated,
deep learning seems tailor-made for the AChax communication pattern recogni-
tion problem and we spent a significant part of our working group discussion on
exploring the potential benefits and challenges of its use in the AChax context.

In this position paper, we capture the gist of our workshop discussion, and
add more detail and perspective based on subsequent consideration and hands-on
experimentation using deep learning for the AChax image recognition problem.
We describe how we might use our current AChax implementation to train a
model using a deep neural network (DNN) and how we might use that model
for communication pattern recognition. We discuss the challenges of using a
model for parameterizing a recognized pattern. And we present our very early
experience with training and using a model to recognize some of the patterns
from AChax’s current pattern library that lead us to propose that a hybrid
strategy combining deep learning with our traditional recognition approach may
be the best option for a future AChax implementation. It is also worth noting
that at least some of us are not deep learning experts and are approaching this
study to establish whether the proposed approach is feasible enough to warrant
further investigation that includes team members with stronger deep learning
expertise.
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2 Integrating Deep Learning into AChax

At first blush, the integration of deep learning into our existing communication
pattern characterization approach seems like an easy prospect. From a high-
enough conceptual level, it seems as simple as replacing our current pattern
recognition approach with one that feeds a residual matrix into a model trained
to recognize the patterns from our existing library. From a practical perspec-
tive, because AChax is implemented using Python and because several of the
common deep learning implementations such as TensorFlow [1], Theano [2], and
PyTORCH [6] provide well-documented Python interfaces, it should be rela-
tively easy to make use of one of these frameworks in our current AChax soft-
ware. Nevertheless, considering the details reveals several significant challenges
to be overcome.

2.1 Training

A model’s DNN must be trained to recognize the patterns from the AChax
pattern library. AChax’s current implementation eases this training activity,
because each pattern in AChax’s pattern library is implemented as a Python
class that implements both a generator and recognizer method.1 A pattern’s
generator method takes a collection of parameters meaningful to the pattern
(such as the dimensions of a 3D nearest neighbor pattern), and generates a
matrix representing the parameterized ACG of that pattern. This “pure” matrix
is used by some patterns as a mask during the pattern recognition step, and by
all patterns when removing the recognized pattern from a residual.

A version of AChax that uses deep learning could use these generated matri-
ces to produce training data. How best to label that data remains an open
question. At a minimum, the label could include only the pattern’s name, in
which case we expect the resulting model to be useful only for identifying the
type of pattern that is most strongly represented in the input residual matrix.
Some other method would be needed to determine the pattern’s parameters (e.g.,
the approach currently used within AChax). Although this approach might seem
to add little value over the existing AChax approach, we believe it could be a
necessary part of adding the ability to recognize patterns with varying amounts
of data transferred between source and destination processes. At the other end
of the spectrum, we could include the pattern’s name and all of the parame-
ters used to generate the training matrix in its training set label. This approach
would likely result in an unfeasible number of classification categories, and we
suspect that this level of specification would result in a model that is overfitted
to the training data.

1 The Garbage pattern is an exception: it only provides a generator method because
this pattern’s only purpose is to introduce “noise” into synthetic workloads used in
unit testing.
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The sweet spot is likely to be somewhere between these extremes, leading to a
model that can identify not only the pattern’s name but also some information
about its parameters that would accelerate the AChax recognizer’s ability to
determine the complete parameterization. For instance, it may be the case that
a trained model can recognize the dimensions of a 2D or 3D nearest neighbor
pattern, or from which side or corner a sweep pattern originates. It may also be
beneficial to use a two-phase approach whose first phase involves classification
of the basic pattern, and whose second phase attempts to discriminate between
the specific alternatives that might be present for that basic pattern. We discuss
a few more aspects of parameterization in Sect. 2.2.

In addition to these questions of how to train a model to support identifica-
tion of a pattern’s parameters, there is also a question of when to do this train-
ing. Because we would be training our model with ACG matrices representing
“pure” patterns, it might be an appealing idea to pre-generate an application-
independent library of trained models for process counts commonly used in appli-
cation runs (e.g., all powers of two between 16 and 16384). In practice, however,
we expect this general-purpose library of trained models to be of limited use: by
definition, it would not support applications for which non-power-of-two process
counts are the best choice, and it would not support applications that subdivide
their processes into smaller groups and communicate within these subgroups
(e.g., using MPI sub-communicators). Instead, it seems more likely that a deep
learning-based AChax would train its model on demand when invoked with a
specific ACG matrix, though it may be possible to save its trained model to an
application-specific model library.

2.2 Recognition and Parameterization

Applying the trained model to a residual matrix results in a vector of proba-
bilities P , one per training category, such that the probability of the residual
containing training specification category i is Pi. If one of these probabilities
is much larger than the others, the model has given clear indication that the
associated training category is highly likely to be present in the residual. But if
several probabilities are nearly equal, the meaning is less clear. If those probabil-
ities are large, we would interpret the model’s output as indicating the patterns
are present in the residual at nearly equivalent scales. In this case, AChax would
refine its search along each of the patterns and rely on its ability to eventually
distinguish between the quality of the resulting search paths once its search is
done. On the other hand, if the probabilities are small, we assume that patterns
from the associated training categories are not present and the search can be
pruned at that point.

As noted above, there are many open questions regarding use of deep learning
for parameterization of recognized patterns, and using classification can take us
only so far with respect to parameterization. We expect that some parameters
will require us to use a regression model instead. In particular, we expect to
need regression to predict the scale of a recognized pattern. The scale indicates
how much data was transferred between source and destination processes during
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the communication operation. It remains to be seen whether using regression to
estimate the pattern’s scale outweighs the accuracy of AChax’s current approach
of examining each of the values associated with the recognized pattern within
the residual and setting the scale based on those values (e.g., their maximum
or average), but the regression approach may prove to be more useful for pat-
terns with varying amounts of data transferred between source and destination
processes.

3 Early Experiments

As a first step in determining whether it is both feasible and useful to incor-
porate deep learning into AChax, we conducted a few simple experiments to
determine whether we could train a model to recognize several of the basic pat-
terns from the existing AChax pattern library. We conducted our experiments
using TensorFlow 1.10.1, Python 3.6, and a development version of AChax from
the “acg-matrix” branch of its repository. Because we were more concerned with
the trained model’s accuracy than its performance, we ran the experiments on
a Mac OS X laptop that already had the required software stack to run Ten-
sorFlow models. For all experiments, we constructed models for a hypothetical
application that was run with 256 MPI processes.

In our simplest experiment, we constructed 1000 images, each of which rep-
resented a “pure” Broadcast or Reduce pattern with randomly-selected root
process, or 2D 5-point Nearest Neighbor pattern, each with randomly selected
scale. We used 950 images to train our model, and 50 to test its accuracy. With
this simple training/testing set, the model reached close to 100% accuracy in five
training epochs, but still achieved 100% accuracy on its training images. Adding
noise to the training and testing images caused a slight decrease in the model’s
training accuracy, but it still achieved nearly 100% accuracy with its training
set.

Although the ability to recognize a single communication pattern from a (pos-
sibly noisy) image is a necessary capability for use within AChax, it is hardly
sufficient. Rather, AChax needs the ability to recognize communication pat-
terns in images with multiple patterns. To test this capability, we trained a
model as described above, and used it to predict the likelihood of presence of its
known patterns in a test set of 5 images, each containing all three communication
patterns, with noise. Figure 2 shows an example of one of these multi-pattern
images. For each of the five images, with or without noise, the trained model
predicted the image contained one of the three patterns with 100% confidence.
From an AChax perspective, this may be a desirable behavior because it allows
the tool to easily choose which pattern remove next, we mistakenly expected
the model to output priorities that reflected each pattern’s degree of “presence”
within the image as determined by each pattern’s scale. We assume that the
model chose exactly one pattern in each of our test matrices because each of
our training matrices contained only one pattern, and we assume that we would
have to train using matrices representing combinations of patterns to obtain the
prediction behavior we originally expected.
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Fig. 2. Example multi-pattern image used to test our trained deep learning model.

4 Summary

Deep learning seems tailor-made for the pattern recognition problem of the
AChax automated communication pattern recognition tool. It seems especially
attractive for addressing the current AChax limitation of being unable to com-
pletely account for the communication from patterns where the amount of data
transferred depends on the specific source and destination processes. In this
position paper, we discussed our current ideas about how deep learning might
be integrated into the AChax search-based communication pattern recognition
approach, the challenges of doing so, and some very early experiences in using a
trained model to recognize synthetic communication patterns generated by the
current AChax implementation. Our experience indicates that using a trained
deep learning model to recognize patterns is feasible, but may require both clas-
sification and regression, or a hybrid approach combining deep learning with
our existing parameterization techniques to identify the full parameter set to
associate with recognized patterns.
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Abstract. Monitoring data centers is challenging due to their size, com-
plexity, and dynamic nature. This project proposes a visual approach for
situational awareness and health monitoring of high-performance com-
puting systems. The visualization requirements are expanded on the
following dimensions: (1) High performance computing spatial layout,
(2) Temporal domain (historical vs. real-time tracking), and (3) Sys-
tem health services such as temperature, CPU load, memory usage, fan
speed, and power consumption. To show the effectiveness of our design,
we demonstrate the developed prototype on a medium-scale data center
of 10 racks and 467 hosts. The work was developed using feedback from
both industrial and acadamic domain experts.

Keywords: Scatterplots · Visual features · High-dimensional data ·
Data center visualization · High-performance computing systems ·
Redfish RESTful API · Nagios Core ·
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1 Introduction

Data centers are increasingly complex and hence monitoring such systems is a
daunting task for system administrators. In 2013, the Distributed Management
Task Force (DMTF) released Redfish [17], an open industry standard specifica-
tion for server configuration that aims to supersede IPMI over the network (IPMI
over LAN). The web servers are expected to provide end users with simple, secure
management of scalable platform hardware by enhancing security and reliability
to Baseboard Management Controller (BMC). Redfish uses industry standard
RESTful API architecture over Hyper Text Transfer Protocol Secure (HTTPS)
using JavaScript Object Notation (JSON) format based on Open Data Protocol
(OData) as depicted in Fig. 1. Redfish-enabled technologies enable IT systems to
operate in harmony. Most importantly, a Redfish-enabled system delivers, and
single API for everything [13]. One of the critical advantages of REST APIs is
that it introduces a great deal of flexibility, allowing any software clients with
RESTful capabilities to interact with Redfish firmware.

Building on top of Redfish RESTful interface, this paper introduces a visual
analytic prototype for monitoring high-performance computing (HPC) system
c© Springer Nature Switzerland AG 2019
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Fig. 1. Redfish reference architecture [13].

events. The goals of this prototype are: (1) to monitor the multidimensional
health status of multiple hosts and racks in real-time, (2) to support system
administrators in detecting unusual correlation of these services in a complex and
highly dynamic system, and (3) to help in performing system troubleshooting
and debugging. We demonstrate our prototype at a data center at a university.

The rest of this paper is organized as follows: We first summarize existing
techniques for visualizing HPC in the next Section. Then we provide an overview
of visualization tasks and describe the design and supported interactive features
of our prototype in detail. In Sect. 4, we present the results of an informal study
with HPC experts from a university and an industrial company. We argue that
using visual features of pairwise projection we can capture abnormal correlations
between various health dimensions in the data center. More importantly, these
visual features can be computed automatically and notify the system administra-
tor significant events. Finally, we conclude our paper with future plans for visual
monitoring and predicting through the integration with Nagios and Redfish API.

2 Existing Approaches

Although not fully explored, there are many existing tools that support monitor-
ing high-performance computing systems. For example, LLView [14] is a client-
server based application which allows monitoring the utilization of clusters con-
trolled by batch systems like IBM LoadLeveler, PBSpro, Torque, or IBM Blue
Gene system database. However, multidimensional analysis proposed in this work
is not in focus of LLview.

Ganglia [16] is an open source PHP-based web front-end interface that allows
users to gather information via real-time dynamic web pages. This information,
including CPU usage, memory usage, disk usage, network statistics, the number
of running processes, is plotted on similar graphs. It leverages the widely used
XML technologies for data representation. The advantage of real-time responsive
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Fig. 2. Main window of LLview [14]: graphical monitoring of batch system controlled
cluster.

on the web front-end, however, leads to high latency due to the size of the XML
tree. Thus, Ganglia is not practical on the less powerful machines when the
amount of data is large (Fig. 2).

Nagios Core [6] is another open-source monitoring system that is capable of
handling a variety of servers and operating systems with the industry standard.
It provides a primary web interface for the core monitoring engine as depicted in
Fig. 3(b). To trace a problem, however, an administrator cannot capture a holistic
monitoring view by using the Nagios web interface. Even though basic filtering
operations are provided, system status overview, which is useful to correlate the
isolated temporal/spatial issues, can be lost [5,11]. Figure 3(a) shows an example
of the JSON query on CPU temperatures (on the left) and the corresponding
results (on the right) returned from the server.

These existing tools inspect system status independently. This paper takes
into account the correlations between various dimensions such as CPU tem-
perature, memory usage, fan speed, power consumption, and I/O bandwidth.
Analyzing the relationships of multidimensional data is essential to understand
system behaviors as a whole [2].

3 Visualization Components

Through in-depth discussions with domain experts, we have identified the set of
design goals: (1) Provides spatial and temporal overview across hosts and racks,
(2) Allows system administrators to quickly narrow down to the event of interest
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Fig. 3. Nagios Core [6] interfaces: (a) System summary in a simple listing format and
(b) Json query on CPU temperatures and the corresponding results.

for system debugging, and (3) Inspects the correlation of system health services
in a single view. To meet these goals, this paper proposes several visualization
tasks:
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– Overview Display (T1). Display an overview of real-time system status on
the corresponding spatial layout [15].

– Details-On-Demand (T2). Users can inspect multidimensional historical
data of a host in the system via a simple click [18].

– Filtering (T3). Highlight critical events on a host [3] and the associated
time stamps [12].

– Multidimensional analysis (T4). Explore the correlations between dimen-
sions [4,10] such as fan speeds, memory usage, and power consumption.

Fig. 4. Visualizing power consumption on Wednesday, October 17, 2018, of the 467-
node Quanah cluster at Texas Tech University.

We leverage the Nagios Core engine for data retrieval through a RESTful
API web interface. In other words, we iteratively request health status of every
host int he system. For each host, we obtain a set of updated status as shown
on the right panel of Fig. 3(a). In the next section, we present our approach for
displaying status updates of hundreds of hosts within a single view. In the next
section, we first introduce the HPC system at Texas Tech University and then
visualization components and the supported interactions.

3.1 HPC System Spatial Layout

Figure 4 shows a snapshot power consumption of the 467-node Quanah cluster at
Texas Tech University at noon on Sunday, May 13, 2018 (the visualization task
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T1). Within a rack, hosts are listed top down. Rows are power consumption
time series (the temporal distance between two consecutive cells is 3 min, the
updating period set up on the cluster. Rectangles on each row are the computed
power consumption, which is colored: red is high power consumption nodes while
blue is low power consumption nodes.

3.2 Multidimensional Analysis of Health Status

Through our discussions with domain experts, it is essential to have a holistic
view of the entire data center on multiple dimensions for system monitoring and
especially diagnosis. Therefore, our system supports a multi-axis visualization of
hosts on demand (visualization task T2). In particular, when users mouse over
a host, a pop-up window is displayed to unveil the details of host information
as depicted in Fig. 5. Historical temperatures of each CPU in the selected host
are presented in line graphs: The vertical axis represents the CPU temperature
(from 0 to 100◦ of Fahrenheit) while the horizontal axis represents the time.

Fig. 5. Visualizing CPU temperature on Wednesday, October 17, 2018 of the 467-node
Quanah cluster. Hosts experiencing a sudden temperature increase of 25◦ in 3 min.

The spider or cobweb chart [7] in the lower panel of the pop-up window shows
health dimensions of the selected host (visualization task T4) which are grouped
by category: CPU temperature (degrees Fahrenheit), job load (number of jobs
assigned on the the given host), memory usage (from 0% to 100%), fan speeds,
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and power consumption (in watts). The purpose of this chart is to enable users
to detect similar multidimensional patterns and how they change over time.

We decide to use the spider chart to display multidimensional health status
of data center since the mental images of spider charts allow users to capture
and compare historical data between different hosts quickly. Figure 6 shows four
examples of spider charts from four random hosts in the Quanah cluster at Texas
Tech University. In particular, each closed curve on the spider charts represents
a multidimensional observation. The observed period is from 11 am to 7 pm on
Wednesday, October 17, 2018.

Fig. 6. Visualizing multidimensional heath status of four hosts in the data center.

Users can request to show multidimensional spider chart across hosts in the
system at a time stamp. Figure 7 shows our multidimensional visualization of
467 hosts at Texas Tech University at 2 pm on Wednesday, October 17, 2018.
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Brushing and linking between the summary view and HPC spatial layout can be
done via mouse over. Our prototype also supports a range of interactive features,
such as zooming and filtering (visualization task T3). In Fig. 5, we only display
hosts which experienced a sudden CPU heat up of over 25◦ Fahrenheit within
the two consecutive time stamps.
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Fig. 7. Visualizing multidimensional heath status at 2 pm on Wednesday, October 17,
2018, of the 467-node Quanah cluster at Texas Tech University.

4 Discussion and Future Work

Our multidimensional analysis approach received positive feedback from both
industrial and academic domain experts and encouraged to explore further. One
potential direction is inspecting pairwise correlations within a 2D projection [19].
Figure 8 show an example of the 467-node Quanah cluster projected on fan speed
(x axis) vs. CPU temperature (y axis). The plot reveals two clusters along the
x axis and an outlier (the compute 4–17 ) at the lower left corner which has low
fan speed and temperature.

Instead of having a human looking into every single scatterplot, visual fea-
tures [20] can help to simplify this process by highlighting only unusual correla-
tions. The following examples in Fig. 9 summarize possible 2D projections that
can be captured using these visual features [9].
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Fig. 8. Visualizing multidimensional heath status of all 467 hosts in the Quanah cluster
at Texas Tech University: Fan speed vs. CPU temperature.

Fig. 9. Some example scatterplots and their measures [8]. In each row, the scatterplots
with a low score on the associated measures are on the left while the scatterplots with
a high score on the associated visual features are on the right.
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5 Conclusion

This paper present a graphical tool for situational awareness and multidimen-
sional health status of data centers using real-time data gathered through the
industry-standard Redfish protocol and API (v.s. the aging IMPI protocol). The
system has two components: visual feature extraction for pairwise projection and
spider chart for visualizing high-dimensional health status. Our prototype sup-
ports a wide range of interactive features such as brushing and linking, zooming,
and filtering.

In future work, we want to incorporate machine learning framework, such as
TensorFlow [1] to predict the system health status. The model will be trained
on historical data, make real-time predictions, and raise the alarm to the system
administrator for timely actions. Google recently released tensorflow.js (https://
js.tensorflow.org) which can be naturally adapted in our project. Virtual Reality
and Augmented Reality (VR and AR) are also interesting future extensions.
VR and AR interfaces enable real-time monitoring beyond traditional displays
by experiencing interactive visualization techniques on mobile devices as well as
within immersive environments.
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