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EGFR Targeted Therapy

Zorawar S. Noor and Jonathan W. Goldman

Abstract  The identification of sensitizing mutations in the epidermal growth factor 
receptor (EGFR) gene in patients with non-small cell lung cancer (NSCLC) and the 
development of EGFR-tyrosine kinase inhibitors (EGFR TKIs) to target these muta-
tions have dramatically improved outcomes for this subset of patients. For patients 
with EGFR-mutated NSCLC, the use of EGFR TKIs is associated with improved 
efficacy and quality of life compared to chemotherapy. The latest generation EGFR 
TKI, osimertinib, is highly effective in treating acquired resistance due to the 
T790M mutation as well as treating central nervous system metastases. As first-line 
treatment, its use has led to the longest median progression-free survival to date for 
patients with EGFR-mutated NSCLC. Acquired resistance to osimertinib is caused 
by multiple mechanisms, and numerous trials are currently underway to address 
this. Future studies should also aim to address the historically refractory EGFR 
exon 20 insertions, and current agents under study are promising.

Keywords  Epidermal growth factor receptor (EGFR) mutation · Tyrosine kinase 
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�Background

Somatic activating mutations in the epidermal growth factor receptor (EGFR) gene 
are the most common targetable molecular alteration in non-small cell lung cancer 
(NSCLC) [1]. EGFR mutations are predominantly found in adenocarcinoma, never 
smokers, and those of East Asian descent [2, 3]. In the United States and Europe, 
10–17% of patients with NSCLC harbor an EGFR mutation, and in East Asia the 
frequency is 35–38% [4–8]. Identifying these mutations is of critical clinical impor-
tance given the highly active treatment options available for this subset of patients.

Since the discovery of epidermal growth factor (EGF) in 1962 by Stephen Cohen, 
and the characterization of its cell surface receptor (now known as EGFR) in 1975, 

Z. S. Noor · J. W. Goldman (*) 
David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
e-mail: JWGoldman@mednet.ucla.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17832-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-17832-1_1
mailto:JWGoldman@mednet.ucla.edu


2

extensive studies of the receptor and its family have led to revolutionary insights into 
the fields of growth factor and cancer biology [9–11]. EGFR was one of the first 
receptor tyrosine kinases (RTK) for which ligand-dependent dimerization was pro-
posed as the mechanism of RTK activity [12]. It was also the first cell surface recep-
tor to be proposed as a target for cancer therapy [13] and the first receptor to have a 
monoclonal antibody directed against it to inhibit cancer growth [14, 15].

EGFR (HER1, ErbB1) is an RTK expressed on the surface of cells of mesoder-
mal and ectodermal origin, and it mediates cell growth, proliferation, and differen-
tiation in numerous organs [16, 17]. EGFR belongs to the ErbB family of RTKs, 
which also includes HER2 (ErbB2), HER3 (ErbB3), and HER4 (ErbB4). EGFR 
binds at least seven highly variable growth factor ligands [18]. Upon stimulation, 
EGFR undergoes combinatorial homo- or hetero-dimerization with one of the pro-
teins of the HER family, thereby activating an expansive signaling network [16, 19, 
20]. The EGFR transmembrane protein has a large extracellular component (with 4 
domains, ~620 amino acids) that primarily serves as ligand-binding sites and which 
is anchored by a short helical transmembrane domain to the intracellular tyrosine 
kinase domain (TKD) (Fig. 1) [18].

EGFR is believed to play a role in the pathogenesis of lung cancer and is overex-
pressed in a majority of NSCLCs [21, 22]. However, the clinical importance of 
EGFR expression in the general NSCLC population is unclear. There was some 
suggestion that EGFR expression may serve as a predictive biomarker [21], but this 
has been superseded by mutational analysis after the identification of actionable 
driver mutations in the EGFR gene.

The EGFR gene is located on chromosomal region 7p11.2 [23]. EGFR-mutated 
NSCLC is driven by “activating” gain-of-function mutations which cluster around 

Fig. 1  Schematic representation of the epidermal growth factor receptor (EGFR) and its position 
on the cellular membrane. The extracellular component consists of four large domains which con-
tain ligand-binding sites for growth factors including epidermal growth factor (EGF). The intracel-
lular component consists of the tyrosine kinase domain followed by the regulatory domain. EGFR 
tyrosine kinase inhibitors (TKIs) and ATP compete for binding to the phosphate-binding (P) loop. 
Exon 20 contains two critical features, the alpha-C helix followed by a distal A loop. “ATP” = 
adenosine triphosphate. “PD” = Progression of disease
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the ATP-binding pocket of the TKD and lead to constituent, ligand-independent 
activation of the EGFR receptor. This in turn promotes prosurvival and antiapoptotic 
signals such as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and 
extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase 
(MAPK) [24]. Approximately 85–90% of activating mutations are either exon 19 
in-frame deletions affecting amino acids 747–750 (40–45%) or the point mutation 
L858R in exon 21 [7, 8, 24, 25]. These mutations are associated with hypersensitiv-
ity to small molecule tyrosine kinase inhibitors (TKIs) and are thus termed “sensi-
tizing” EGFR mutations, with the exon 19 deletion consistently associated with 
better survival outcomes with therapy [26–30]. The remaining 10–15% involve 
exons 18, 20, and 21. Many, but not all, of these mutations have been found to be 
sensitive to targeted therapy.

�First-Generation TKIs and Early Trials in Lung Cancer

EGFR TKIs entered clinical development in late 1990s. First-generation inhibitors, 
erlotinib, gefitinib, and icotinib [31] bind competitively and reversibly to the ATP-
binding site (Fig.  1), preventing autophosphorylation and downstream signaling, 
thereby preventing EGFR-dependent cell proliferation [32–34]. In 2003, two single-
arm phase II trials (IDEAL1 and IDEAL2) demonstrated clinical efficacy of gefi-
tinib in patients with previously treated NSCLC, with response rates of approximately 
15% [35, 36]. Of note, more responses were observed in women, patients with 
adenocarcinoma, never smokers, and those of Asian descent. This compared favor-
ably to chemotherapy, which had an approximately 5% response rate in this popula-
tion [36]. In 2003, gefitinib became the first US Food and Drug Administration 
(FDA) approved EGFR TKI for NSCLC.

Soon after, the double-blind placebo-controlled randomized phase III trial (ISEL) 
failed to find overall survival benefit for gefitinib with best supportive care (BSC) 
compared to placebo with BSC in unselected NSCLC patients [37]. Considering 
these results as well as those form IBREESE (gefitinib with BSC vs placebo with 
BSC), which terminated early and INTEREST (non-inferiority trial of gefitinib vs 
docetaxel), the FDA withdrew its original approval for gefitinib in 2005 [38, 39]. 
However, there were already clues to a yet unidentified subset of responders in the 
trial because the Kaplan-Meier survival curves crossed. There was an early drop off 
in non-responders, and a clear separation of survival curves at approximately 
four months. Several follow-up trials evaluated the benefit of adding an EGFR TKI 
to standard first-line chemotherapy. At least four large randomized controlled trials 
in unselected, advanced NSCLC patients showed no benefit of the addition of EGFR 
TKI to standard chemotherapy [40–43]. Once again, these trials were conducted in 
an unselected group of patients.

The publication of two landmark analyses in 2004 by Lynch et al. and Paez et al. 
demonstrated that the subset of patients who responded to gefitinib harbored activat-
ing EGFR mutations (namely, L858R and exon 19 deletions) [7, 8]. This led to a 
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paradigm shift for future trial development, and the history of EGFR TKI clinical 
trials should be interpreted by differentiating the era of unselected patient enrollment 
versus the era incorporating EGFR mutation testing. The trial that ushered in this 
modern era and transformed targeted therapy for NSCLC is the IPASS trial.

�EGFR TKIs for Patients with Mutations in EGFR

For the first time, the 2009 IPASS trial prospectively demonstrated in a randomized 
controlled trial that EGFR TKIs were superior to chemotherapy as first-line therapy 
for patients with EGFR mutations [44]. The biomarker analysis was a preplanned 
subset analysis of 40% of the 683 randomly assigned patients for whom EGFR 
mutation status could be evaluated, and found an objective response rate (ORR) of 
71% and a PFS of 9.5 months for the gefitinib arm compared to 6.3 months for the 
chemotherapy arm (Table 1) [45]. Over the next half decade, several large trials 
would be undertaken to look at the efficacy of EGFR TKI vs chemotherapy (Table 1). 
IFUM fulfilled the European Medicines Agency (EMA) requirement for a single-
arm validation trial in Caucasians, confirming the efficacy of gefitinib in Caucasian 
patients with sensitizing EGFR mutations [46]. On July 13, 2015, gefitinib was 
approved for first-line treatment of patients with metastatic NSCLC with exon 19 
deletions or L858R mutations. Erlotinib and gefitinib have both been approved and 
marketed in numerous countries, whereas icotinib has been approved and widely 
prescribed only in China [47].

Table 1  Selected trials prospectively comparing first or second generation EGFR TKIs to 
chemotherapy in EGFR-mutated non-small cell lung cancer

Study

Patients 
(EGFR 
mutated)

EGFR 
TKI Chemotherapy

Response 
rate

Median 
PFS 
(mo.)

Hazard 
ratio (P)

IPASS (2009) 261 Gefitinib Carboplatin + 
paclitaxel

71% vs 
47%

9.5 vs 6.3 0.48 
(<0.0001)

WJTOG3405 
(2009)

172 Gefitinib Cisplatin + 
docetaxel

62% vs 
32%

9.2 vs 6.3 0.48 
(<0.001)

NEJGSG002 
(2010)

224 Gefitinib Carboplatin + 
paclitaxel

73% vs 
31%

10.8 vs 
5.4

0.36 
(<0.001)

ENSURE 
(2013)

217 Erlotinib Cisplatin + 
gemcitabine

63% vs 
34%

11.0 vs 
5.5

0.34 
(<0.0001)

EURTAC 
(2012)

173 Erlotinib Cisplatin + 
docetaxel

58% vs 
15%

9.7 vs 5.2 0.42 
(<0.0001)

OPTIMAL 
(2011)

154 Erlotinib Carboplatin + 
gemcitabine

83% vs 
36%

13.7 vs 
4.6

0.16 
(<0.0001)

LUX-Lung 3 
(2013)

345 Afatinib Cisplatin + 
pemetrexed

56% vs 
23%

11.1 vs 
6.9

0.47 
(<0.0001)

LUX-Lung 6 
(2014)

364 Afatinib Cisplatin + 
gemcitabine

67% vs 
23%

11.0 vs 
5.6

0.28 
(<0.0001)
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Individual trials and meta-analyses have consistently found that EGFR TKIs  
prolong PFS compared to chemotherapy in patients with EGFR-mutated NSCLC; 
however, until recently, trials have not shown an improvement in OS [48–50]. With 
good consistency across trials of erlotinib or gefitinib versus chemotherapy, the 
median PFS is estimated as 11.0 months vs 5.6 months for chemotherapy (HR 0.37, 
P < 0.001) [51]. Randomized phase III trials comparing erlotinib to gefitinib for 
EGFR-mutated NSCLC patients have demonstrated similar efficacy of both [52, 
53]. As front-line therapy in patients with EGFR-mutated disease, the TKI response 
rate is 67%, as compared to 30% for chemotherapy (RR 5.68, P < 0.001) [50]. The 
lack of OS benefit has been ascribed to crossover from the chemotherapy arm to an 
appropriate TKI, within or outside of the clinical trial [51, 54, 55]. Even without the 
OS benefit, first-line TKI has been the preferred treatment option for EGFR-mutated 
NSCLC due to the ease of an oral therapy, the higher response rate, and an improved 
quality of life (QOL) [51, 56, 57].

Despite an average of nearly a year of PFS with an EGFR TKI, it was seen that 
nearly all patients would eventually progress. At the time of progression, continuing 
gefitinib into subsequent lines of therapy was shown to be detrimental. In the phase 
III IMPRESS trial, chemotherapy-naïve EGFR-mutated patients who progressed on 
first-line gefitinib were randomized to receive either cisplatin and pemetrexed ver-
sus the same chemotherapy plus gefitinib [58]. The study found that continuing 
gefitinib had a detrimental effect on survival with an OS of 13.4 months compared 
to 19.5 months for the chemotherapy arm (HR = 1.44, P = 0.016) [59]. Data from 
IMPRESS warns that continuing an EGFR TKI at progression may cause harm, and 
interestingly, this detriment was associated with a specific secondary mutation, 
T790M (HR 1.49, P = 0.043 for T790M+ patients vs HR 1.15, P = 0.609 in T790M- 
patients) [58, 59].

�Second-Generation TKIs

The second-generation inhibitors, afatinib and dacomitinib, were introduced as a 
treatment for those who progressed on a prior generation TKI.  Unlike the first-
generation inhibitors, the second-generation EGFR TKIs bind covalently and irre-
versibly [60]. These drugs also tend to have less selective activity, inhibiting other 
HER family proteins including HER2. Preclinical data of second-generation TKIs 
was promising, demonstrating potent activity in lung cancer models resistant to 
first-generation inhibitors [60–63]. The phase IIb/III trial, LUX-Lung 1, random-
ized patients who had progressive disease after at least three months of treatment on 
erlotinib or gefitinib to either afatinib or placebo [64]. There was no overall survival 
benefit (HR 1.08, P  =  0.74), the ORR on afatinib was 7%, and the PFS was 
3.3 months vs 1.1 months (HR 0.38, P < 0.0001). The phase II trial of dacomitinib 
in patients who progressed on chemotherapy and an EGFR TKI was similarly sober-
ing, with an ORR of only 5.2% [65].
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Both afatinib and dacomitinib were associated with significant on-target toxicity, 
primarily rash and diarrhea [64, 65]. Pooled analysis from 21 trials of 1468 patients 
found statistically higher grade 3 or greater rash with afatinib than with erlotinib or 
gefitinib (15% vs 8.8% vs 3.5%, respectively) [66]. Grade 3 or higher diarrhea was 
also more frequent in patients on afatinib than in those on erlotinib or gefitinib 
(9.6% vs 2.7% vs 1.1%, respectively; odds ratio 3.80 for afatinib vs erlotinib, 
P  <  0.0001). More patients discontinued treatment because of an adverse event 
(AE) on afatinib than erlotinib (7.2% vs 4.1%, P = 0.040), but discontinuation rates 
were similar for afatinib and gefitinib (7.2% vs 7.6%). The treatment interruption 
rate in trials due to an AE did not vary significantly between afatinib and gefitinib 
or erlotinib and ranged from 11% to 28% [67]. However, more patients on afatinib 
required dose reductions. Across trials, discontinuation rates on gefitinib or erlo-
tinib ranged from 6% to 21% (IPASS, OPTIMAL, and EURTAC) [68] as compared 
to 28.0–53.5% on afatinib (LUX-Lung 3 and LUX-Lung 6) [69]. In the head-to-
head phase II trial LUX-Lung 7 randomizing patients to afatinib or gefitinib, 42% 
of patients required a dose reduction on afatinib, as compared to only 2% with 
gefitinib [70].

Other trials investigated the possible benefit from a second-generation TKI for 
front-line therapy. The PFS benefit of afatinib over platinum doublet chemotherapy 
in the LUX-Lung 3 and LUX-Lung 6 randomized phase III trials (Table 1) is similar 
to that seen with erlotinib or gefitinib (approximately 11 vs 6 months) [71, 72]. 
Although there was no OS advantage in the overall population of either trial, pre-
planned subgroup analyses in both trials found an OS advantage of the TKI over 
chemotherapy in patients with an exon 19 deletion [27]. The OS benefit is notewor-
thy given the lack of OS benefit with TKIs in prior studies.

Two large head-to-head trials have compared second-generation to first-
generation TKIs. In LUX-Lung 7, patients with EGFR-mutated NSCLC were ran-
domized to afatinib or gefitinib. The trial failed to find an OS improvement, and 
reported a statistically significant PFS benefit with a difference in the medians of a 
meager three days (HR 0.74, P = 0.0178) [73]. On the other hand, ARCHER 1050, 
the phase III randomized controlled trial of dacomitinib versus gefitinib as first-line 
treatment for patients with activating EGFR mutations, showed a PFS improvement 
of 14.7 vs 9.2 months (HR 0.59, P < 0.0001) [74]. More strikingly, there was a sig-
nificant OS advantage for the dacomitinib arm (34.1 vs 26.8  months, HR 0.76, 
P = 0.044) [75]. This is the first head-to-head randomized trial of two TKIs to show 
an OS advantage. Of note, patients with central nervous system (CNS) metastases 
and rare EGFR mutations were excluded from the trial. In addition, there was sig-
nificantly higher toxicity, with 51% of subjects experiencing a grade 3 adverse event 
in the dacomitinib arm (most commonly rash or diarrhea) compared to 30% in the 
gefitinib arm [74]. Given these factors, the clinical utility of dacomitinib has been 
questioned, but remains an option. In 2018, dacomitinib was approved by the FDA 
for the first-line treatment of patients with NSCLC harboring an EGFR exon 19 
deletion or L858R mutation [76]. With the recent arrival of the third-generation 
TKIs, some have said that the second generation has been altogether bypassed, 
referring to it as the “lost generation” [77, 78].
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�T790M Mutation

Despite the dramatic responses seen in patients with activating EGFR mutations on 
first- and second-generation EGFR TKIs, unfortunately nearly all patients will 
eventually develop resistant and progressive cancer. Initial insights into the mecha-
nism of resistance came from analysis of tumor biopsies from a patient who relapsed 
after two years of complete remission on an EGFR TKI [79]. Tumor DNA sequenc-
ing before treatment and at the time of relapse revealed the acquisition of a second 
mutation, T790M in exon 20, which replaces threonine with methionine at position 
790. Here, threonine is a “gatekeeper” amino acid because it lies at the entrance to 
a hydrophobic pocket in the ATP-binding cleft of the EGFR protein, critically deter-
mining the specificity of inhibitors.

Initial crystallographic evidence suggested that incorporation of the bulkier 
methionine side chain sterically hindered the interaction of the first- and second-
generation EGFR TKIs [79]. Subsequent analysis showed that the effect was medi-
ated by two factors; not only did methionine block drug binding, it also caused 
increased ATP affinity at the binding pocket, thereby outcompeting the therapeutic 
drug [80]. Although second-generation TKIs bind more avidly and irreversibly, and 
can inhibit T790M-positive clones in vitro, the necessary drug concentrations were 
not clinically achievable due to skin and gastrointestinal toxicity [81]. In patients 
treated with first- and second-generation inhibitors, the T790M resistance mutation 
is detected in approximately 50–60% of patients at the time of progression [82–84]. 
T790M has generally been associated with a slower rate of growth and an improved 
prognosis. In a retrospective analysis of 97 patients treated with EGFR TKIs, the 
PFS was 12.0 months on initial TKI in those who acquired the T790M mutation, as 
compared to 9.0 months for those who were T790M-negative (P = 0.021) [85].

�Third-Generation TKIs

Understanding this mechanism of acquired resistance led to the development of 
third-generation EGFR TKIs. These include rociletinib [86, 87], olmutinib [88], 
nazartinib [89], avitinib [90], ASP8273 [91], PF-06747775 [92], and osimertinib 
(AZD9291), the only third-generation EGFR TKI approved for clinical use. 
Osimertinib is active against exon 19 deletions, exon 21 mutations, and also the 
exon 20 T790M mutations. It is preferentially selective for mutated EGFR, and 
therefore toxicity at therapeutic doses is lower than for first- and second-generation 
agents. Notably, osimertinib is able to cross the blood-brain barrier, making it active 
against disease in the CNS [93].

The safety and tolerability of osimertinib was studied in the phase I trial, 
AURA. Among 253 patients there were no dose-limiting toxicities observed across 
all dose levels (20–240 mg) [94]. The most common adverse event was diarrhea 
(47%), followed by rash, nausea, and decreased appetite. Only 6% of patients 
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discontinued treatment because of a treatment-related adverse event. The phase II 
AURA extension and AURA2 trial both demonstrated similar tolerability [94]. In 
the phase III trial (AURA3), grade 3 or higher adverse events occurred in 23% of 
patients, half of what was experienced in the chemotherapy arm (47%) [95]. 
Osimertinib toxicity is dose-dependent and is associated with fewer gastrointestinal 
and dermatologic adverse events than with other approved EGFR TKIs.

The phase III trial of osimertinib (AURA3) randomly assigned 419 patients with 
advanced T790M-positive NSCLC who had progressed on prior EGFR TKIs to 
receive either osimertinib or chemotherapy with a platinum agent and pemetrexed 
[95]. Osimertinib more than doubled PFS when compared to chemotherapy (10.1 vs 
4.4 months, HR of 0.30 P < 0.001) with an unprecedented response rate of 71% in 
this resistant population [95]. This led to the FDA granting approval of osimertinib 
for NSCLC after progression on a prior EGFR TKI with the demonstration of the 
T790M mutation [96]. Additional data from the United Kingdom confirmed the 
cost-effectiveness of osimertinib over chemotherapy for this patient population [97].

Even during the initial phase I AURA trial, osimertinib was studied as a potential 
first-line treatment [98]. In a double-blind randomized controlled trial of untreated 
EGFR-mutated NSCLC patients (FLAURA), the use of osimertinib led to a median 
PFS of 18.9 months compared to 10.3 months for those treated with first-generation 
EGFR TKIs, erlotinib or gefitinib. The HR for PD or death was 0.46 (P < 0.001), 
and the benefit of osimertinib over the first-generation EGFR TKI persisted in all 
subgroup analyses [99]. Patients on osimertinib reported fewer grade 3 or higher 
adverse events than those on erlotinib or gefitinib (34% vs 45%), and fewer patients 
experienced rashes (58% vs 78% on erlotinib or gefitinib). On April 18, 2018, the 
FDA approved osimertinib as first-line therapy for patients with metastatic NSCLC 
harboring a driver EGFR mutation [100]. At the time of publication of the FLAURA 
dataset, only 18-month OS was available, reported as 83% for the osimertinib arm 
compared to 71% for first-generation TKIs (HR = 0.63, P = 0.007). It remains to be 
seen if this will result in a significant long-term OS advantage.

�Liquid Biopsy to Detect Mutations in EGFR

Detection of EGFR mutations such as T790M is critical to precision treatment for 
patients with NSCLC in the era of targeted therapy. “Liquid biopsy” is the method 
of detecting molecular alterations in circulating tumor DNA (ctDNA) or other 
nucleic acids from blood or other body fluids. Lack of available tissue for molecular 
profiling [38, 44, 101–103], risk of biopsy complications [104], significant delay 
with tissue biopsy [105], and increased cost of biopsy [106], all lead to potential 
advantages of liquid biopsy. More so, single-site tissue biopsies may not represent 
the predominant resistance mechanisms in a patient and may miss the emergence of 
a clinically significant clone [107, 108]. This is due to the marked tumor heteroge-
neity that has been seen in NSCLC [28, 109–112].
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Next-generation sequencing has led to methods which allow ultra-deep sequencing 
for detection of actionable mutations in EGFR [113], de novo resistance mutations 
[114], and the emergence of acquired resistance during treatment [108, 115, 116]. In 
January 2015, the EMA approved the use of the therascreen liquid biopsy assay for 
detection of EGFR mutations in patients for whom tissue biopsy is not possible. In 
June 2016, the Cobas EGFR mutation test v2 was approved by the FDA to detect exon 
19 deletions and the L858R mutation in plasma, and was extended in September 2016 
to cover the T790M resistance mutation as well.

Prospective studies have demonstrated that plasma T790M can predict respond-
ers to osimertinib or rociletinib as well as tissue biopsy [113, 117, 118], and even 
detection of very low allele fractions of T790M in ctDNA may be clinically relevant 
[113]. Given the advantages over tissue biopsy, liquid biopsy can be considered one 
of the standard options for detecting acquired resistance mutations [108].

�Patients with Brain Metastases

Patients with EGFR-mutated NSCLC have a higher risk for developing brain metas-
tasis [119–121]. Historically, whole brain radiation therapy (WBRT) and stereotac-
tic radiosurgery (SRS) have been the standard of care treatment for NSCLC patients 
with brain metastases. In the era prior to osimertinib use, the median OS after radio-
therapy for patients with brain metastases was approximately 14 months [122]. Data 
regarding the efficacy of EGFR TKI for NSCLC with previously untreated brain 
metastases is limited since most trials have required prior radiation treatment of 
brain lesions [123].

A retrospective multi-institutional analysis studied 351 patients with EGFR TKI-
naive EGFR-mutant NSCLC who developed brain metastases. Patients either 
received SRS followed by EGFR TKI, WBRT followed by EGFR TKI, or upfront 
EGFR TKI followed by SRS or WBRT as needed. The OS for the upfront SRS, 
WBRT, and EGFR TKI cohorts was 46, 30, and 25 months, respectively (P < 0.001) 
[124]. SRS does appear to be a valid option for front-line therapy; however, this 
approach may vary in the era of osimertinib, which has high efficacy against CNS 
disease.

In light of cognitive decline and radiation necrosis associated with brain radia-
tion, the use of upfront radiotherapy has been questioned with the availability of 
osimertinib. In the BLOOM trial, 32 patients who had progressed on prior EGFR 
TKI therapy and had positive cerebrospinal fluid demonstrating leptomeningeal 
metastases were treated with 160 mg osimertinib daily [125]. Of 8 patients with 
neurologic symptoms, 7 had improvement, and one had stable disease. Out of 15 
asymptomatic patients, 87% remained asymptomatic. In patients with parenchymal 
brain metastases, the intracranial ORR was 63% [126].

Although the BLOOM study used a 160 mg dose of osimertinib, both preclinical 
and clinical data suggest that low-dose osimertinib may have meaningful CNS 
activity as well [81, 94]. Of 144 patients in AURA3 with CNS metastases, the 
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median PFS was twice as long in the osimertinib cohort vs the chemotherapy cohort 
(8.5 vs 4.2 months, HR 0.32, CI 0.21–0.49) with an overall response rate of 70% vs 
31% (P = 0.015) [93, 95]. In the 116 patients with brain metastases in FLAURA, the 
median PFS was 15.2 with osimertinib compared to 9.6 months with erlotinib or 
gefitinib (HR 0.47, P  =  0.0009). Osimertinib’s efficacy for brain metastasis and 
leptomeningeal disease, one of the poorest prognostic groups of NSCLC, further 
solidifies its role in the treatment of EGFR-mutated disease. At this point, there is 
no clear consensus on whether osimertinib alone should be used upfront for brain 
metastases or whether WBRT or SRS should be incorporated into the treatment 
regimen, although many defer WBRT if possible. Further prospective studies are 
required for these clinically important questions.

�Special Populations: Elderly or Poor Performance Status

Since no trials have exclusively enrolled elderly patients, most data is retrospective. 
One study from 20 centers (OCTOMUT) looked at patients aged 80 or older treated 
with front-line EGFR TKIs and found that the clinical outcomes and toxicity profile 
were comparable to those published in the literature [127]. A large retrospective 
analysis of Japanese patients in the phase IV POLARSTAR study of erlotinib in 
previously treated NSCLC patients included 7848 patients less than 75 years old, 
1911 patients aged 75–84, and 148 patients 85 years or older. It found non-inferior 
tolerability and efficacy of erlotinib in elderly patients [128]. A meta-analysis actu-
ally suggests that EGFR TKIs may have more PFS benefit in elderly patients (HR 
0.39, P = 0.008) than in younger patients (HR 0.48, P = 0.04) [129]. A pooled analy-
sis of NEJ001, NEJ002, and NEJ003 studying first-line gefitinib found that in 
patients >70 with a good performance status (PS) the median PFS was 14.3 com-
pared to 5.7 months with chemotherapy (P < 0.001) [130].

Studies have consistently demonstrated that EGFR TKIs are better tolerated than 
chemotherapy, although the vast majority of these trials only enrolled patients with 
an Eastern Cooperative Oncology Group (ECOG) PS of 0 to 2. A single-arm phase 
II trial of 72 patients with untreated advanced NSCLC and poor PS (2 or 3) found 
that with gefitinib, 82% reported improvement or no worsening in QOL [131]. The 
double-blind, placebo-controlled, phase III TOPICAL trial randomized patients 
with advanced NSCLC deemed unsuitable for chemotherapy because of an ECOG 
PS >2 or several comorbidities with an estimated life expectancy of at least 8 weeks 
to erlotinib or placebo. Other than the incidence of rash and diarrhea, adverse events 
were similar in the two groups, and they concluded that erlotinib could be an option 
for those for whom chemotherapy is deemed unsuitable [132]. Patients on erlotinib 
had significantly improved QOL for a cognitive scale (P = 0.0072) and physical 
functioning (P = 0.0024) as well as statistically significant improvements in pain, 
dyspnea, chest pain, hoarseness, and constipation. If only patients with an EGFR 
mutation were enrolled, it would be expected that the benefit would be even more 
apparent. EGFR TKIs remain a good option for patients with an EGFR mutation 
and poor performance status.
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�Exon 20 Insertions and Other Rare EGFR Mutations

In contrast to sensitizing mutations such as exon 19 deletion and the L858R substi-
tution, in-frame insertions within exon 20 of EGFR have been associated with resis-
tance to EGFR TKIs, with response rates <5% to available EGFR TKIs, including 
the third-generation EGFR TKIs [25, 133–136]. Exon 20 insertions are the third 
most common type of EGFR mutation and account for 4–9% of EGFR mutations in 
NSCLC patients [25, 135, 137]. This is a heterogeneous group of about 44 muta-
tions which vary in position and size [137], and three-dimensional structural model-
ing predicts variable effects on EGFR TKI binding [135]. EGFR exon 20 contains 
an alpha-C helix followed by a loop (Fig. 1). The conformation of the alpha-C helix 
and the P-loop is altered by exon 20 insertions, leading to steric hindrance and a 
confined binding pocket [138]. The most deleterious “hot spot” mutations tend to 
occur distal to the C helix, and represent 80–90% of exon 20 insertions [25, 135].

Few therapies have shown efficacy for patients with EGFR exon 20 insertions. 
The second-generation heat shock protein 90 (HSP90) inhibitors (e.g., ganetespib 
and luminespib) have had limited success in patients with NSCLC [139–143]. 
However, luminespib may have clinical activity in patients with exon 20 insertions 
[144, 145], with a median PFS of 6.1 months in one single arm phase II trial [146], 
but is associated with ocular toxicity.

Poziotinib is a TKI that covalently and irreversibly inhibits EGFR and HER2, 
and is unique because of its small terminal group and flexible quinazoline core. Its 
small size and flexibility allow it to evade the steric hindrance which affects other 
EGFR TKIs [138]. In a phase II trial of poziotinib, in patients with NSCLC harbor-
ing an EGFR exon 20 insertion, the ORR at 8 weeks was 58%, and the confirmed 
ORR at the time of the most recent interim analysis was 38% [147]. The median 
PFS was 5.6 months. Notably, this was a heavily pretreated group of patients, and 
the ORR was 62% among those who were previously treated with an EGFR TKI. A 
multicenter phase II trial of poziotinib is ongoing. Another TKI, AP32788 (TAK-
788), was tested in a phase I/II trial of patients with an EGFR mutation. Out of 14 
evaluable patients, the 9 patients (64%) who achieved a PR or had SD also had an 
exon 20 insertion [148], demonstrating promising clinical activity for this subset of 
patients. Poziotinib and AP32788 may represent important future drug options for 
EGFR exon 20 mutation-positive patients.

The incorporation of next-generation sequencing technologies has aided in the 
characterization of rare mutations in EGFR. G719X, deletion 18, and E709X are 
found in 3.1%, 0.3%, and 0.3% of patients with lung cancer (X connotes one of sev-
eral possible amino acids). The G719X mutations can be found in combination with 
S768I and L861Q mutations which account for 1.1% and 0.9% of cases, respectively 
[137]. In an analysis of 32 patients with metastatic NSCLC with the uncommon 
EGFR mutations S68I, L861Q, and/or G719X (originally enrolled in LUX-Lung 2, 
LUX-Lung 3, and LUX-Lung 6), the ORR by independent radiology review was 
66%. Among the 21 responders, 52% responded for a year or longer [149, 150]. This 
led to the FDA expanding its approval of afatinib to cover these uncommon non-
resistant EGFR mutations in January 2018. There is some preclinical data suggesting 
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osimertinib activity for some of these mutations, as well [137]. There are a range of 
EGFR mutations with varying sensitivity to EGFR TKIs, and the precise detection of 
these mutations will help to further refine EGFR targeted therapy.

�Anti-EGFR Monoclonal Antibodies

In comparison to EGFR TKIs, anti-EGFR monoclonal antibodies have had little 
role in the treatment of NSCLC. The humanized IgG1 anti-EGFR monoclonal anti-
body, cetuximab, has been tested in several combinations and has generally demon-
strated meager clinical success for an unselected NSCLC population. In patients 
with stage III NSCLC, the addition of cetuximab to concurrent chemoradiation and 
consolidation carboplatin plus paclitaxel provided no OS benefit and was associated 
with more grade 3 or greater toxic effects (86% vs 70%, P < 0.0001) [151]. The 
addition of cetuximab to platinum-based chemotherapy for advanced NSCLC was 
examined in two large randomized phase III trials: FLEX in patients with “EGFR-
expressing” tumors by histology or cytology and BMS099 in unselected patients. 
There was no change in PFS, and the OS advantage was 1.3 months (P = 0.04 for 
FLEX, and P = 0.169 for BMS099) [152, 153]. More recently, in the randomized 
phase III SWOG S0819 trial of 1313 treatment-naive patients with advanced 
NSCLC, the addition of cetuximab to carboplatin plus paclitaxel (and if appropri-
ate, bevacizumab) failed to add an improvement in OS [154]. Subset analysis of 
patients with tumors with EGFR high copy number or amplification by fluorescence 
in situ hybridization (FISH) also failed to find any OS benefit. Weekly administra-
tion, additional cost, minimal or no survival advantage, and side effects (primarily 
grade 3 rash) led to cetuximab not being approved by either the EMA or FDA [155].

Despite their lack of success in unselected NSCLC patients, anti-EGFR mono-
clonal antibodies have shown some efficacy in squamous NSCLC. Although squa-
mous NSCLC harbor a low frequency of EGFR mutations, they tend to have higher 
rates of EGFR overexpression compared to lung adenocarcinoma [156]. In fact, the 
EGFR TKIs, erlotinib and afatinib, have also demonstrated efficacy in squamous 
NSCLC, and afatinib has an FDA approval for pretreated squamous cell carcinoma 
of the lung [157, 158]. In a prespecified subset analysis of 111 patients in SWOG 
S0819 with squamous histology, the median overall survival was 11.8 months in the 
cetuximab arm vs 6.1  months for carboplatin and paclitaxel arm (HR  =  0.58, 
P = 0.007) [154].

The second-generation fully humanized IgG1 anti-EGFR monoclonal antibody, 
necitumumab, was added to gemcitabine/cisplatin for patients with advanced 
squamous NSCLC in the randomized phase III trial, SQUIRE. There was a slight 
OS advantage (11.5 vs 9.9  months for the gemcitabine/cisplatin, HR 0.84, 
P = 0.01), at the expense of more grade 3 adverse events reported in patients receiv-
ing necitumumab (72% vs 62%) [159]. In 2015, the FDA approved necitumumab 
in combination with gemcitabine and cisplatin for squamous NSCLC [160]. In 
light of other therapies such as combination chemoimmunotherapy or docetaxel 
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plus ramucirumab [161, 162], the role of anti-EGFR therapy for squamous NSCLC 
has been debated [163, 164]. Recently, the National Comprehensive Cancer 
Network Panel unanimously voted to delete necitumumab plus gemcitabine and 
cisplatin from its list of recommended therapies, citing “toxicity, cost, and limited 
improvement in efficacy when compared to cisplatin/gemcitabine” [165].

The most significant area of clinical success of EGFR monoclonal antibodies for 
NSCLC is in combination with EGFR TKIs. In a phase Ib study of 126 heavily pre-
treated patients who had acquired resistance to erlotinib or gefitinib, the combination 
of afatinib with cetuximab led to an ORR of 29% and median PFS 4.7 months (regard-
less of T790M mutation status) [166, 167]. This suggests that at the time of acquired 
resistance a certain proportion of patients retain dependence on EGFR-mediated sig-
naling that may be overcome with dual EGFR blockade. Given the improved efficacy 
and toxicity profile of osimertinib compared to afatinib across trials, there are at least 
three ongoing phase I trials of osimertinib in combination with necitumumab [168].

�Addition of Chemotherapy to First-Line EGFR TKI

It has been hypothesized that the addition of chemotherapy to EGFR TKI could 
postpone the emergence of acquired resistance. The first trial to assess an EGFR 
TKI plus chemotherapy compared to an EGFR TKI alone in an exclusively EGFR 
mutation-positive population was a randomized phase II trial conducted in Asia of 
191 patients with advanced NSCLC with activating EGFR mutations who received 
pemetrexed with gefitinib or gefitinib alone [169]. The combination prolonged PFS 
to 15.8 months vs 10.9 months, which was intriguing but did not reach statistical 
significance (HR  =  0.68, P  =  0.18). There is an ongoing confirmatory phase III 
study, AGAIN (JCOG1404/WJOG8214L), in which patients are randomized to 
gefitinib or gefitinib with cisplatin and pemetrexed as first-line treatment. Currently, 
it is unclear whether the addition of chemotherapy to an EGFR TKI offers benefit, 
and single-agent EGFR TKI remains the standard of care first-line treatment [165].

�Bevacizumab Added to EGFR TKI

Bevacizumab is a humanized monoclonal antibody against the vascular endothelial 
growth factor receptor (VEGFR). The addition of bevacizumab to chemotherapy has 
been shown to improve OS and PFS in patients with NSCLC [170, 171]. In unselected 
patients with advanced, pretreated NSCLC, the double-blind phase III trial (BeTa) 
randomized patients to bevacizumab and erlotinib or erlotinib alone. Addition of 
bevacizumab to erlotinib resulted in a minimal PFS advantage of 3.4 months as com-
pared to 1.7 months with erlotinib alone (HR 0.62, 95% CI 0.52–0.75), without any 
OS advantage [172]. Post hoc subset analysis failed to demonstrate any PFS or OS 
benefit among patients harboring EGFR mutations in this population [172].
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More recent trials prospectively examining the use of bevacizumab with an 
EGFR TKI in patients selected for EGFR mutations have shown more promising 
results. In the randomized phase II study (JO25567) of upfront bevacizumab with 
erlotinib in patients with activating EGFR mutations, the PFS was 16.0 months in 
the erlotinib plus bevacizumab group compared to 9.7 months in the erlotinib group 
(HR 0.54, P = 0.0015) [30]. The most common grade 3 adverse reactions included 
hypertension (60% vs 10%), rash (25% vs 19%), and proteinuria (8% vs 0). In 
another randomized phase III trial (NEJ026) of patients with treatment-naive 
EGFR-mutated NSCLC, the study met its primary endpoint for PFS at the interim 
analysis with a PFS of 16.9 months in the bevacizumab and erlotinib arm compared 
to 13.3 months in the erlotinib arm (HR = 0.605, P = 0.0157) [173]. Both random-
ized trials provide evidence for combining an EGFR TKI with bevacizumab as first-
line therapy, and in 2016 the European Medicines Agency (EMA) approved the 
combination, although no OS benefit has been found at this time.

Current combination studies are evaluating similar strategies, including some with 
osimertinib as the TKI and others with ramucirumab as a VEGFR monoclonal anti-
body. Randomized phase II trials of osimertinib and bevacizumab versus osimertinib 
are ongoing (BOOSTER; NCT03133546) as is the phase III CAURAL trial with an 
arm of osimertinib with bevacizumab (NCT02454933). The RELAY study 
(NCT02411448) is a randomized phase Ib/III study to investigate the safety and effi-
cacy of ramucirumab and erlotinib, and it has a substudy arm looking at combination 
treatment with osimertinib. These trials may help define a potential role for VEGF 
pathway inhibitors in the first-line treatment for EGFR-mutated patients.

�Immune Checkpoint Inhibition

Immune checkpoint inhibitors (ICIs) have dramatically changed the treatment land-
scape and prognosis of advanced NSCLC [174, 175], yet response rates to mono-
therapy in unselected patients are generally less than 20%. Therefore, there is a 
critical need to define those patients who are most likely to benefit. Blocking the 
programmed-death ligand 1 (PD-L1) or its receptor (PD-1) has demonstrated less 
success in patients with EGFR mutations compared to those with wild-type EGFR. 
A recent analysis of 1588 patients with NSCLC who had progressed on at least one 
prior therapy and were treated with nivolumab showed a lower ORR in the those 
with EGFR-mutated disease of 8.8%, compared to 19.6% for those with wild-type 
EGFR (P = 0.007) [176]. A meta-analysis of ICIs in metastatic NSCLC disease 
showed no benefit of an ICI compared to docetaxel for EGFR-mutated patients 
[177], further dampening the excitement for using ICIs in this population.

The combination of PD-L1 blockade and EGFR TKI has also been explored. 
However, this appears to be associated with significant toxicity. In the phase Ib 
TATTON trial, the combination of osimertinib and durvalumab was associated with 
interstitial lung disease in 38% of patients [178]. The study arm was closed prema-
turely as was the phase III CAURAL trial (NCT02454933) of osimertinib plus dur-
valumab [179].

Z. S. Noor and J. W. Goldman



15

In general, immune checkpoint inhibition for EGFR-mutated NSCLC has been 
disappointing, reflecting the different pathogenesis of this oncogene-driven subset 
of NSCLC. In part, this may be due to low tobacco exposure and the low resultant 
mutation burden and neo-antigen expression seen in EGFR-positive disease. One 
exception is the IMpower 150 trial of carboplatin, paclitaxel, and bevacizumab 
(BCP) compared to the same regimen with the PDL1 inhibitor, atezolizumab 
(ABCP) for patients with non-squamous NSCLC [180]. In patients without an 
EGFR or ALK mutation, there was a 4.5 month OS benefit (median OS 19.2 months 
vs 14.7 months, HR = 0.78, P = 0.016) in the ABCP arm. The combination is FDA 
approved for patients with non-squamous NSCLC without EGFR or ALK mutations 
[181]. This trial included 80 patients with an EGFR mutation and 34 with EML4-
ALK fusion, another actionable NSCLC mutation; among these patients taken as a 
group, PFS was longer with ABCP than with BCP (median, 9.7  months vs 
6.1 months; unstratified hazard ratio, 0.59; 95% CI, 0.37–0.94). Although this data-
set contains relatively few patients, ABCP does offer a treatment option for EGFR-
mutated NSCLC, particularly at the point that EGFR-targeted therapy options have 
been exhausted.

�Resistance to Osimertinib and Future Directions

There are multiple causes of resistance to third-generation inhibitors, including 
EGFR or mesenchymal–epithelial transition factor (MET) amplification [182]; 
acquisition of resistance mutations such as C797S, L718X, and L792X [183]; and 
small cell transformation [168, 184, 185]. At the time of progression on osimertinib, 
approximately 22–40% of patients can be found to have the C797S point mutation 
in exon 20, a tertiary mutation that removes an important cysteine residue [114, 
186]. Unlike the reversible EGFR TKIs, a defining feature of second- and third-
generation inhibitors is covalent bonding to the cysteine at the 797 position, a resi-
due at the edge of the EGFR ATP-binding cleft [80]. Due to a mutation changing the 
cysteine to a serine, covalent inhibitors can no longer bind to the protein. The 
T790M and C797S can exist in a cis position, in which a single allele has both the 
T790M and the C797S mutations, or in a trans position, with T790M and C797S on 
different alleles. Preclinical data and some clinical data suggest that the cis relation-
ship is predominant and would be resistant to all known EGFR TKIs [187–189]. In 
contrast, if C797S and T790M are in the trans position, combined or alternating 
first-generation and third-generation inhibitors may be beneficial [190, 191].

The C797S mutation prevents binding of covalent inhibitors to EGFR at the 
ATP-binding pocket, but this may theoretically be circumvented by binding to a 
different site than the catalytic active site. EAI045 is one such selective allosteric 
inhibitor that was identified in high-throughput screens. It binds tightly to an allo-
steric site created by displacement of the C helix in the inactive confirmation of 
EGFR [192, 193]. EAI045 demonstrates selectivity and efficacy in mouse models 
harboring the EGFR C797S mutation (L858R/T790M/C797S) in combination with 
cetuximab [193]. The synergy with cetuximab seems critical to EAI045’s activity 
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against C797S-mutated NSCLC.  It remains to be seen whether other ongoing  
high-throughput screens will identify other potent allosteric inhibitors of EGFR and 
whether they will rely on the use of combination EGFR blockade as well [194].

Brigatinib is a small molecule inhibitor of both ALK and EGFR [195]. In pre-
clinical models, “triple-mutant EGFR”-positive cells (activating EGFR mutation/
T790M/C797S) responded to the combination of brigatinib with an anti-EGFR 
monoclonal antibody, cetuximab or panitumumab [196]. Single-agent activity of 
brigatinib in a phase I/II trial was only 5% [197], possibly compounded by low 
plasma concentrations [196], but the addition of an anti-EGFR monoclonal anti-
body remains to be clinically tested. The preclinical data with brigatinib and 
EAI045 in laboratory models with a C797S mutation demonstrate that combination 
therapies with an anti-EGFR monoclonal antibody may lead to overcoming resis-
tance to osimertinib.

HER2 and MET amplification have been recognized as EGFR-independent 
mechanisms of acquired resistance to osimertinib, and result in continued activation 
of ERK and AKT [168, 198]. In patients with MET activation, the MET inhibitor, 
crizotinib, shows activity in preclinical models and case reports [182, 199, 200]. In 
the phase Ib/II TATTON trial, the combination of osimertinib with the MET inhibi-
tor savolitinib was studied in patients with T790M EGFR-mutated NSCLC and 
MET amplification. In those who had not previously received a third-generation 
EGFR TKI, 43% of patients achieved a PR. In those previously treated with a third-
generation EGFR TKI the PR rate was 20% [201]. To target both MET and EGFR, 
the bispecific antibody, LY3164530, was tested in a phase I trial in patients with 
advanced and metastatic cancer [202]. The authors concluded that the significant 
toxicities along with a lack of potential predictive biomarkers limited future devel-
opment, but other dual-targeted agents are under development, including 
JNJ-61186372.

In HER2 amplified cells with acquired resistance to osimertinib, trastuzumab 
emtansine has shown preclinical activity [203]. In an animal tumor model that ini-
tially responds to osimertinib but eventually relapses, the addition of cetuximab and 
trastuzumab to osimertinib resulted in rapid and durable inhibition of tumor recur-
rence [204]. The authors also demonstrated benefit with the addition of an anti-
HER3 antibody. There is an ongoing phase I trial of the HER3-targeting antibody 
drug conjugate, U3-1402, in patients with NSCLC and an activating EGFR muta-
tion who either progressed on osimertinib or are T790M negative at the time of 
disease progression [205].

�Conclusion

The discovery of EGFR mutations in NSCLC and the development of EGFR TKIs 
to target them have helped define the modern era of precision medicine. Our under-
standing of the molecular mechanisms of disease and resistance has allowed us to 
deliver innovative ways of targeting this disease, and expanded our ability to treat 
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patients. The latest generation of EGFR TKI, osimertinib, has shown dramatic  
benefits, first in overcoming T790M-mediated resistance, and more recently as the 
first-line therapy with the longest PFS. Given its efficacy in treating CNS metasta-
ses, we are likely to redefine the optimal sequence of treatment for this special 
population of patients while optimizing quality of life. We have already embarked 
upon the next challenge of treating acquired resistance to third-generation inhibitors 
with several new compounds in clinical trials. Multiple mechanisms occur in 
acquired resistance, and future directions to overcome this might involve combina-
tion therapy targeted to the specific resistance genotype. Whereas no effective 
options have been available for patients with the exon 20 insertion, early clinical 
data show promising results for poziotinib and AP32788. We await further reports 
on these agents as well as others to target rare mutations in EGFR. The story of the 
discovery of targeted treatment for EGFR-mutated NSCLC has taught us that a deep 
understanding of the molecular mechanisms of disease can lead to powerful person-
alized treatment.
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