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Chapter 10
Fate of Veterinary Pharmaceuticals 
in Agroecosystems

Shannon L. Bartelt-Hunt

Abstract  Veterinary pharmaceuticals, which are increasingly used in animal pro-
duction practices, can enter surface and groundwater after land application of ani-
mal manures or animal wastewater. The presence of veterinary pharmaceuticals can 
result in negative environmental impacts including the proliferation of environmen-
tal antibiotic resistance and endocrine-disrupting effects in aquatic organisms. The 
efficacy of manure application strategies to limit the occurrence of veterinary phar-
maceuticals in runoff and best management practices to remove these compounds 
from runoff prior to entering surface water should be investigated to mitigate the 
impact of these compounds on the environment.

10.1  �Introduction

Veterinary pharmaceuticals are used regularly in the livestock industry as growth 
promoters, to improve feed efficiency, for disease prevention, or as part of therapeu-
tic treatment. Biologically active pharmaceuticals used in animal production include 
antimicrobials, steroid hormones, and beta agonists, such as ractopamine which is 
used in swine and cattle production. The amount of antimicrobials used in the agri-
culture industry in the United States has been estimated between 8.5 million kg [31] 
and 12.6 million kg. Although reliable data regarding the usage of antibiotics in 
animal production are difficult to find, over half of the antibiotics consumed in the 
United States are used in animal agriculture [27]. Similarly, steroid hormones are 
given to nearly all of the approximately 32 million beef cattle produced in the 
United States annually, with dosage amounts up to hundreds of milligrams, depend-
ing on the implant or feed additive administered [24].
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Veterinary pharmaceuticals administered to animals are excreted in manures, 
and up to 90% of certain pharmaceuticals may be excreted unmetabolized [18]. 
Pharmaceutical concentrations in manure have been reported to range from trace 
levels to hundreds of milligrams per kilogram [35, 37]. For centuries, minimally 
treated animal manures have been applied to agricultural fields as a soil conditioner 
and fertilizer. In 2015, the United States produced a record high 94 billion pounds 
of red meat and poultry, despite an 80% decline in the number of animal production 
facilities since the 1950s [14]. This trend of increasing geographic density of animal 
production in the United States unavoidably results in increased water quality deg-
radation by conventional contaminants such as nutrients and pathogens as well as 
veterinary pharmaceuticals due to runoff from fields where animal manures are land 
applied [40]. The presence and activity of antimicrobials in manure can increase 
antimicrobial resistant bacteria, even at low antimicrobial concentrations [15], 
while the occurrence of other veterinary pharmaceuticals, such as steroid hormones, 
can lead to endocrine-disrupting effects in aquatic organisms [1, 34, 42].

The fate pathways for veterinary pharmaceuticals in agroecosystems are shown 
in Fig. 10.1. Veterinary pharmaceuticals are released into animal manure or waste-
water, which is typically stored on site in manure pits (swine), in stockpiles or com-
post piles (beef cattle, dairy, and poultry), or in wastewater lagoons. Both animal 
manures and wastewaters are routinely land applied as an organic fertilizer and soil 
conditioner. Once applied to land, the veterinary pharmaceuticals can be transported 
to surface water via runoff or infiltrate into soil and be transported to groundwater. 
This chapter reviews the occurrence of veterinary pharmaceuticals in surface water 
and describes practices that may limit their transport after land application of 
manure to crop fields.
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Fig. 10.1  Fate pathways for veterinary pharmaceuticals in the agro-ecosystem
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10.2  �Occurrence of Veterinary Pharmaceuticals 
in Agroecosystems

The occurrence of veterinary pharmaceuticals in animal manures has been well-
documented. Comprehensive reviews regarding the concentrations and types of vet-
erinary pharmaceuticals in animal manures are provided by Sarmah et al. [35] and 
Song and Guo [37]. Numerous classes of antimicrobials have been detected in 
manures from swine, cattle, and poultry production at concentrations ranging from 
trace levels to hundreds of mg/kg [37]. Although there is significant evidence show-
ing that pharmaceuticals can be transported to surface water in runoff from land-
applied manure, to date, a limited number of studies have evaluated the fate and 
persistence of antibiotics in surface waters in intensively agricultural watersheds 
with minimal municipal wastewater inputs.

Jaimes Correa et al. [17] previously documented the occurrence and persistence 
of pharmaceuticals in an intensively agricultural watershed in. In this study, the 
occurrence of pharmaceuticals was monitored in the Shell Creek watershed in east-
central Nebraska. This watershed is approximately 1200 km2, and the five communi-
ties within the watershed have a combined population of 1675 people. By contrast, 
the counties comprising the watershed include 1550 farms with over one million 
head of swine, cattle, and poultry. Cultivated land cover within the watershed is 
78.2%, while urban developed areas are only 4.4%. During this monitoring study, 
occurring from September 2008 through October 2009, the presence of 12 veteri-
nary pharmaceuticals was detected using a LC-MS/MS analysis method in at least 
one sampling event with concentrations ranging from 0.0003 to 68 ng/L (Fig. 10.2). 
As shown in Fig. 10.2, ANOVA reveals significant differences in mean concentra-
tions between antibiotics (p < 0.01). Results from Tukey’s multiple comparison test 
are represented by letters. Antibiotics with similar letters (e.g., “a” and “ab”) have no 
significant differences in mean concentrations (p > 0.05) while antibiotics with dif-
ferent letters (“a” and “b”) have significant differences in mean concentrations 
(p < 0.05). The compounds detected at the highest time-weighted average (TWA) 
concentrations in Shell Creek were lincomycin (68 ng/L) and monensin (49 ng/L). 
Tiamulin, sulfadimethoxine, and sulfamethazine had maximum concentrations of 
2.6, 3.9, and 13  ng/L, respectively. Dissolved concentrations of the beta agonist, 
ractopamine, three sulfonamide-group antibiotics sulfachloropyridazine, sulfameth-
azole, sulfamethoxazole, and the macrolide tylosin were all detected at average con-
centrations less than 1 ng/L [17]. In this study, increased antibiotic concentrations 
were identified in the summer months and were likely driven by rainfall-runoff 
events [17]. This finding is consistent with other studies that have identified increases 
in antibiotic concentrations in agricultural watersheds in the summer months [30]. 
Although some temporal trends were observed, it should be noted that antibiotics 
were detected in each monthly sampling event, indicating that pharmaceuticals can 
persist in surface water, even if they are introduced via episodic runoff events. In 
urban or suburban watersheds, the predominant source of veterinary pharmaceuti-
cals is from municipal wastewater effluents, which are more continuous sources. The 
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results indicate that although agricultural ecosystems are less likely to contain sig-
nificant veterinary pharmaceutical loadings from municipal wastewater, the occur-
rence of pharmaceuticals in surface waters within these watersheds is persistent.

10.3  �Influence of Manure Handling Practices

Cattle and swine manure accumulates within the production facility during the ani-
mal production period. In cattle feedlots, manure accumulates within the animal pen 
and then is typically scraped out at the end of the animal production period, prior to 
the introduction of new animals. This manure is typically stockpiled for a period of 
months prior to land application onto crop fields. In swine production systems, typi-
cally one of three waste handling systems is used: flush systems, pit recharge, or 
deep pits [35]. In deep pit systems, manure falls from a slatted floor into a pit below 
the animal housing facility and typically uses less water than either flush or pit 
recharge systems [35]. Manure may be stored in these pits for up to a year. Deep pit 
systems are commonly used in colder climates such as the upper Midwest in the 
United States, and manure accumulating in deep pits provides an environment for 
anaerobic microbial activities.

Fig. 10.2  Distribution of time-weighted average (TWA) pharmaceutical concentrations in Shell 
Creek from Jaimes Correa et al. [17]. The split box shows the 25th, 50th, and 75th, whereas whis-
kers shows the 5th and 95th percentiles

S. L. Bartelt-Hunt



177

The fate of antimicrobials during anaerobic swine manure storage was evaluated 
in a previous study [20]. In this study, manure was obtained from an operating swine 
production facility that contained chlortetracycline, tylosin, and bacitracin A. After 
collection, manure and water were mixed in a 2:1 (w/w) ratio in 100 mL amber glass 
reactors, sparged with nitrogen, and incubated at 37 °C for up to 40 days to monitor 
the persistence of the antimicrobials. The parent antimicrobials tylosin and chlortet-
racycline were detected in swine manure reactors at initial concentrations of 10 mg/
kg (dry weight basis) and 300 mg/kg (dry weight basis), respectively [20]. Bacitracin 
A was not detected in the manure at any time, but bacitracin F, a metabolite of baci-
tracin A, was detected at an initial concentration of 50 mg/kg (dry weight basis) in 
the manure.

Observed antimicrobial concentrations were fit with a first-order reaction equa-
tion to determine rate constants and first-order half-lives (Table 10.1). The first-
order reaction rate constant for tylosin, chlortetracycline, and bacitracin F were 
−0.07 d−1 (R2 = 0.34), −0.6 d−1 (R2 = 0.79), and −0.36 d−1 (R2 = 0.94), respectively. 
The half-life for chlortetracycline measured in Joy et al. [20] is shorter than that 
reported previously in studies of chlortetracycline degradation in swine manure or 
soil [6, 28, 39]. In contrast, the tylosin half-life reported in Joy et al. [20] is consis-
tent with previous studies that measured tylosin half-lives on the order of 4.4 days 
[6, 25].

In Joy et al. [20], the occurrence of the antimicrobials and their corresponding 
antibiotic resistance genes (ARGs) were monitored. Although the antibiotic concen-
trations at the end of the 40 day experiments were ~10% of the initial concentration, 
the relative abundance of certain ARGs were more persistent, with approximately 
50% of the initial abundance at the end of the storage period. The differences in 
observed behavior between the antimicrobials and corresponding ARGs indicates 
the importance of identifying not only the occurrence of the parent antimicrobial but 
also any biologically active degradation products, which could continue to exert a 
selective pressure allowing for the observed proliferation of resistance genes in 
manure storage systems.

Cattle manure and poultry litter handling have also been evaluated to determine 
the influence of practices such as composting or stockpiling on veterinary pharma-
ceutical concentrations. A number of studies have demonstrated the efficacy of 
composting for reducing the concentrations of nutrients and veterinary pharmaceu-
ticals such as antibiotics and steroid hormones [2–4, 8, 22, 33].

Table 10.1  Antimicrobial degradation rates in simulated swine manure storage from Joy et al. [20]

Antimicrobial
Measured degradation  
rate (d−1)

Measured  
half-life (d)

Reported  
half-life (d)

Chlortetracycline −0.6 1 20–70 d [6, 39]
Tylosin −0.07 9.7 0.02–4.4 [25, 6]
Bacitracin F −0.36 1.9 Not available
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10.4  �Practices to Control Veterinary Pharmaceutical 
Transport After Land Application of Manures

Contaminants present in the manure including nutrients, pathogens, and trace com-
pounds such as veterinary pharmaceuticals can be transported to surface water fol-
lowing land application. Although the concentrations of conventional pollutants in 
runoff from crops fertilized with animal manures have been routinely documented, 
there are few studies investigating the fate and transport of antimicrobials in soil and 
in runoff following land application of manure. Once animal manure is land applied, 
the fate of manure-borne compounds in soil and subsequent transport in runoff will 
be affected by the compounds’ sorption properties [7, 23, 36] and susceptibility to 
biotic and abiotic degradation process such as photolysis [11, 16, 41].

Several studies have investigated the influence of manure application strategy on 
antimicrobial concentrations in runoff. One study found no statistically significant 
differences in concentrations of chlortetracycline, monensin, and tylosin in infiltra-
tion water and surface runoff when manure was applied using two different land 
application methods [9]. In contrast, other studies suggest that soil tillage leads to 
reduced vertical transport of antimicrobials after broadcast application of liquid 
manure [21], and manure incorporation (i.e., mixing manure into the top soil) could 
lead to reduced antimicrobial concentrations in runoff [26]. Joy et al. [19] published 
a study evaluating the influence of manure application methods on the concentration 
of antimicrobials in soil and runoff after land application of swine manure. In this 
study, a rainfall simulation study was conducted using test plots (0.75 m × 2.0 m) 
where swine manure was land applied using one of three land application methods: 
broadcast, incorporation, or injection. The plots were established using a random-
ized block design, and on each plot, three sequential rainfall simulation experiments 
were performed. Control plots with no manure amendment were also subjected to 
rainfall simulation experiments.

Broadcast manure generally resulted in higher antimicrobial concentrations in 
runoff than did incorporated and injected manures (Fig. 10.3). Because swine slurry 
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Fig. 10.3  Aqueous concentrations of chlortetracycline (CTC) and tylosin (TYL) in runoff from 
manure-amended plots receiving broadcast, incorporation, and injection treatments over three 
rainfall events. Error bars show the standard errors over triplicate field experiments. (Figure 
reprinted with permission from Joy et al. [19])
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was spread on the soil surface in the broadcast application, the antimicrobials were 
readily available for transport to runoff during rainfall events. In contrast, mixing 
manure slurry with surface soil to various extents (i.e., injection and incorporation) 
resulted in reduced transport of antimicrobials to runoff. Although the main treat-
ment factor, application method, was not considered statistically significant accord-
ing to the rANOVA tests (p = 0.26 for chlortetracycline and p = 0.31 for tylosin), 
this is likely due to large variation in observed concentrations among the triplicate 
plots, which are not uncommon in field-scale experiments. The differences in sorp-
tion partition coefficients between chlortetracycline and tylosin to soil might 
account for the differences in runoff concentrations. It was not surprising to observe 
that the aqueous chlortetracycline concentrations in the runoff were low (Fig. 10.3) 
because of its sorptive nature (log Kow for chlortetracycline is −0.62). By contrast, 
the range of tylosin concentrations in runoff measured in this study was 0.087–
18 μg/L (log Kow for tylosin is 1.63).

In addition to manure application practices, other best management practices 
that have been used historically to control the movement of conventional contami-
nants such as nutrients or pathogens can also be used to mitigate veterinary pharma-
ceutical transport, although this remains an underinvestigated research area. Soni 
et al. [38] investigated the use of narrow grass hedges, a type of vegetative barrier, 
in controlling antimicrobial runoff from plots amended with swine manure.

Vegetative barriers (VBs) are strips of densely growing plants used primarily on 
croplands adjacent to surface water. Vegetative barriers can reduce both dissolved 
and sediment-bound compounds in runoff by reducing runoff volume and capturing 
sediment [29]. VBs reduce the kinetic energy of the runoff, which can lead to 
enhanced settling of particulate contaminants. Dissolved contaminants can be 
reduced by enhanced infiltration and improved water-holding capacity of the sur-
face soil within VBs [29].

Narrow grass hedges (NGH) are one type of vegetative barrier and are con-
structed using stiff stemmed grass strips that are ~1.5 m wide. Narrow grass hedges 
have been demonstrated to be effective in removing both dissolved [10, 13, 32] and 
sediment-bound [12] nutrients from runoff. The potential efficacy of narrow grass 
hedges for removal of antimicrobials from runoff was evaluated [38]. Similar to as 
in Joy et  al. [19], test plots were established which were amended with swine 
manure and were established in a randomized block design. Three treatment factors 
were tested for their effects on runoff water quality: manure amendment (manure 
application to meet zero vs. three times annual N demand by corn or control vs. 
amended plots), NGH (plots with and without a NGH), and rainfall events (day 1, 
2, and 3). In this set of field experiments, the only antimicrobial measured in the 
manure that was land applied was tylosin.

ANOVA analysis indicates that both manure amendment and the presence of a 
NGH had significant effects on the presence of tylosin in runoff (p  <  0.0001). 
Although tylosin concentrations in runoff decreased with successive rainfall events 
(Fig. 10.4), the impacts of this treatment factor were not statistically significant. 
Prior to this study, little was known about the effectiveness of NGHs on reducing 
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dissolved antimicrobial loadings and concentrations in runoff. In this study, NGHs 
lowered tylosin loadings in runoff by more than an order of magnitude (Table 10.2).

Another study also demonstrated that vegetative buffer strips made of tall fescue 
could reduce tylosin in runoff [29]. Enhanced infiltration or adsorption of tylosin 
within the NGH system likely accounted for increased removal of dissolved tylosin 
loadings in runoff. The dissolved tylosin concentrations in runoff decreased with 
successive rainfall events for plots without a NGH, whereas no such trend was 
observed for plots with a NGH (Fig. 10.4 and Table 10.2). As a cost-effective best 
management practice, NGHs have been demonstrated to be effective in reducing 
contaminant loads in agricultural runoff, and the results from Soni et al. [38] also 
demonstrate that NGH can reduce dissolved antimicrobials in agricultural runoff 
following land application of swine manure.
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Table 10.2  Mass loadings of 
tylosin in runoff from the 
amended plots with and 
without NGH during three 
rainfall events 
(average ± standard error). 
Averages and standard errors 
were calculated based on 
triplicate field experiments. 
Reprinted with permission 
from Soni et al. [38]

Rainfall event
Tylosin
w/o NGH (μg m−2) w/ NGH (μg m−2)

1 48.5 ± 23.3 2.74 ± 1.77
2 33.7 ± 13.4 3.61 ± 3.29
3 20.5 ± 12.6 2.48 ± 0.59
Sum 103 8.87
Fraction from #1 0.47 0.31
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10.5  �Conclusions

Antibiotics and steroid hormones are regularly used in animal production and are 
excreted in animal manures. Although land application of manure provides benefits 
in agricultural production, including the reduction in use of commercial fertilizers, 
trace organics contained in manure can run off from cropland and contaminate sur-
face and groundwater. The results presented here quantify antibiotic loading in run-
off from cropland amended with manure and in surface water within watersheds 
with significant animal and crop production facilities. It is important to understand 
the impact of manure management practices on limiting antimicrobial impacts to 
surface and groundwater. Management practices such as manure storage and com-
posting, manure incorporation into soil during land application, and the use of veg-
etated buffer strips can all reduce the loading of antibiotics and steroid hormones to 
the environment; however, more research is needed to evaluate the transformation 
of trace organics in agricultural production systems, as well as the relationship 
between the occurrence of antibiotics and antibiotic resistance genes, which can 
lead to the proliferation of environmental antibiotic resistance.
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