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4.1 Introduction

The electrocatalytic oxidation of some alcohols is of great interest due to a wide
range of application. The reaction is used not only in electrosynthesis of organic
compounds but in direct alcohol fuel cells (DAFCs) too. Fuel cells require highly
reactive fuels with high-energy density and low toxicity [1–4]. One of the key points
to develop a cost-effective electrolysis is to decrease the cost of electrocatalysts for
the oxidation. The commercial use of highly effective catalysts containing Pt and
Pd is limited due to having high cost and global scarcity [5]. Alkaline electrolytes
allow the use of inexpensive transitional metals and metal oxides. Such electrolytes
have higher efficiency of both anodic and cathodic processes. There is almost
no sensitivity to the surface structure and negligible poisoning effects in alkaline
solutions [4].

Among the most promising alternative catalytic materials are cheap Ni-based
catalysts having excellent electrochemical activity, stability, and high catalytic
abilities toward the alcohol oxidation reaction [6–12]. The electrochemical behavior
of electrode made of pure copper and other different copper-based composite
electrodes has been studied toward alcohol oxidation in alkaline medium [2, 13, 14].
The copper-nickel alloy is proposed as potential substrate for production of anode
component of fuel cells [15]. The methanol electrooxidation at the Ni-Cu alloy (40%
Cu)-modified electrode was significantly larger than that at pure Ni [16–18].

To increase the surface area of electrode, the highly porous metallic nickel
matrices as Raney electrodes, carbon-supporting materials such as graphene,
carbon nanofibers (CNFs), mesoporous carbon, carbon nanotubes (CNTs), and
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noncarbonaceous-based materials such as hybrid supports materials and conducting
polymers are proposed [5, 19, 20].

In this chapter the results of the study of catalytic activity of the multilayer
nickel-copper metal hydroxide electrode with an electrochemically accessible devel-
oped surface is presented. Electrode coating was electrodeposited in polyligand
pyrophosphate-ammonia electrolyte that allows to obtain multilayer nickel-copper
coating with high adhesion to various substrates [21, 22], good mechanical proper-
ties [23, 24], and catalytic activity in the oxidation of methanol [25].

4.2 Experimental

Multilayer coatings were deposited in pyrophosphate-ammonia polyligand
electrolyte containing 0.1 mol L−1 CuSO4 ·5H2O, 0.5 mol L−1 NiSO4 ·7H2O,
1.0 mol L−1 K4P2O7, 4.0 mol L−1 ammonia as a mixture of 0.4 mol L−1 NH4Cl,
and 3.6 mol L−1 NH4OH, pH 8.5. The counter electrode was combined of copper
and nickel. The obtained multilayer coatings were tested in electrolyte containing
1 mol L−1 KOH and electrolyte additionally containing 0.5 mol L−1 ethanol.
Electrochemical studies were carried out using potentiostat P-45X. The working
electrodes were made of copper wire with an open surface area of 0.152 cm2. The
real surface area of the electrodes with and without coating in the stabilized oxidized
state was determined by electrochemical double layer capacitance measurements
using cyclic voltammetry (CVA) in 0.5 KOH by the method used in [26] taking in
account for comparison the capacity of the oxidized metal surface as 60 mkF cm−2.
The counter electrode was made of platinum. A saturated silver/silver chloride
electrode was used as the reference electrode.

4.3 Experimenal Results and Discussion

On the CVA curve (Fig. 4.1) on a platinum electrode (staring potentials scan in
the cathode direction), there is a wave of limiting current of copper deposition
(in the potential range of −0.45. . . −0.85 V). Then (in the potential range of
−1.19. . . −1.25 V) a wave of limiting current of a nickel-copper alloy deposition
appears. After it (under conditions of intensive hydrogen evolution), the copper and
nickel hydroxy compounds as well as hydrides deposit with alloy. When scanning
potentials in the anodic direction, the alloy deposition is facilitated due to both
surface development and its enrichment with nickel. At the first peak of the anode
branch of the CVA, the copper-rich phase dissolves from the deposit. Then nickel-
rich phase dissolves in the second peak. The copper content in the coating (33%)
was determined similarly to [27, 28] by the method of anodic voltammetry in an
ammonia-glycinate electrolyte, which allows selective dissolution of copper and
nickel.
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Fig. 4.1 CVA on Pt in pyrophosphate-ammonia electrolyte. Potential scan rate is 10 mV s−1.
Insert: E−t curves of Ni-Cu alloy coating deposition (1) at a potential of −1.175 V and NiCu(ML)
coating deposition (2)

The multilayer nickel-copper metal hydroxide coating NiCu(ML) was formed by
a two-pulse potentiostatic method with periodic potential change from −1.175 V
(between two limiting currents on CVA Fig. 4.1) to −1.35 V (above the second
wave). In this case the nickel-copper alloy layer is deposited at potential of
−1.175 V, and the layer containing mixture of metals and its hydroxides is deposited
at potential of −1.35 VV. Insert at Fig. 4.1 shows the chronoamperograms of
multilayer coating deposition (curve 1) and nickel-copper alloy coating deposition
at potential of −1.175 V (curve 1). The deposition current increases in both cases,
indicating the increase in surface area of the samples during the deposition process
both at potential of −1.35 V and at a potential of −1.175 V. Both coatings were
deposited until the deposition current at potential of −1.175 V reached 24 mA.
Therefore the samples with coating had approximately the same surface area
available for deposition. The approximate calculated thickness of alloy layers varies
from 430 to 110 nm. The thickness of metal hydroxide layers decreases from 260
to 40 nm during electrodeposition. For comparison, a sample with porous nickel
coating electrodeposited in Watts bath was obtained.

After coating deposition all the samples were cycled in 1 M KOH solution
(Fig. 4.2) in the range potentials corresponding to the reaction [6]:

Ni(OH)2 → NiOOH + H+ + e−. (4.1)

The oxidation current in the first cycle at the initial section of anodic branch of
CVA is much higher on the samples with alloy coating (curve 2) and multilayer
coating (curve 1) than on nickel surface (curve 3) due to more active oxidation of
copper in this region of potentials. The anodic peak of the first cycle is located at
more positive potentials than the peaks of subsequent cycles on all samples. The
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Fig. 4.2 CVA in 1 mol L−1 KOH on electrodes with NiCu(ML) (1), Ni-Cu alloy (2), and Ni (3)
coatings. Potential scanning rate of 50 mV s−1. Every 10th cycle is shown

Fig. 4.3 CVA in 1 mol L−1 KOH on electrodes with NiCu(ML) (1) and Ni-Cu alloy (2) coatings

height of the anodic and cathodic peaks corresponding to the flow of reaction (1)
in the cathodic and anodic directions increases. As the surface of the samples is
saturated with active sites, the height of these peaks stabilizes. Further studies were
performed on the stabilized surface of the electrodes. The real area of the stabilized
surface of the electrodes, determined out of capacity value, was 5.0 and 5.26 cm2

for samples with Ni-Cu alloy and NiCu (ML) coatings, respectively.
As the potential scan rate increases from 0.5 to 2000 mV s−1 (Figs. 4.3 and 4.4),

the height of both the cathode and anode peaks increases. The potential difference
between them also increases, indicating increase in the degree of irreversibility of
redox processes on all investigated electrodes. The height of the peaks linearly
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Fig. 4.4 CVA in 1 mol L−1 KOH on electrode with Ni coating at potential scan rate of
0.5. . . 2000 mV s−1

depends on the square root of the potential sweep rate, reflecting the contribution
of proton diffusion (reaction Eq. (4.1)) to electrode reactions of nickel hydroxide
oxidation and nickel oxyhydroxide reduction. Figure 4.5 shows CVA in the range
of small values of potential scan rates (0.5–40 mV s−1). The surface of nickel is
oxidized less actively than the surface of the alloy and multilayer coatings as
the oxidation of surface starts at more positive potentials and the slope of the
rising ascending branch is smaller. The peak currents ip at low potential scan
rates are proportional to the potential scan rate v. The surface coverage �∗ of
Ni(OH)2/NiOOH redox species of electrode surface can be calculated using the
slope of the ip − v dependencies by Eq. [29]:

ip = (n2F 2/4RT )vS�∗, (4.2)

where n is number of transferred electron, F is Faraday constant, and S is apparent
area of the electrode.

The surface coverage �∗ of Ni(OH)2/NiOOH redox species of the alloy and
multilayer electrodes are 3.66 × 10−6 and 4.8 × 10−6 mol cm−2 deriving from
the average of the anodic and the cathodic results. The �∗ of electrode with
multilayer surface is 1.31 times higher than �∗ of electrode with coating of alloy,
though the real surface area is exceeded by only 1.05 times. The �∗ value of the
NiCu(ML) coating surface is about one order of magnitude higher as compared
to the oxidized surface of porous nickel. It is higher as compared to other nickel-
containing surfaces [4, 8], and it is at the level of the �∗ value of the surface of Ni-B
coating modified nanoporous Cu (3.44×10−6 mol cm−2, [6]).

When ethanol is added to the alkaline electrolyte a wave of ethanol oxidation
(Fig. 4.6, curve 1’) is observed in the region of nickel hydroxide oxidation potentials
(curve 1). In the same potential region, the surface of the copper electrode (curve
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Fig. 4.5 CVA in 1 mol L−1 KOH on electrode with NiCu(ML) (1), alloy (2), and Ni (3) coatings,
at potential scan rate of 0.0. . . 40 mV s−1

Fig. 4.6 CVA in 1 mol L−1 KOH (1, 2) and with the addition of 0.5 mol L−1 ethanol (1’, 2’) on
copper (2, 2’) and nickel-coated (1, 1’) electrodes. Potential scan rate is 10 mV s−1

2) practically does not show catalytic activity (curve 2’), though its geometric
area (3.1 cm2) exceeding the surface area of the studied electrodes by an order of
magnitude, and the real surface area (4.8 cm2) approximately equals the real surface
area of the electrodes with Ni-Cu and NiCu(ML) coatings.

A NiCu(ML) coating shows higher catalytic activity as compared to the porous
nickel coating (Fig. 4.7). As the potential scan rate increases, ethanol oxidation peak
height decreases (Fig. 4.7a–e). Figure 4.7f shows the change in the coefficient k

reflecting the relative increase in the ethanol oxidation peak height as compared
to the anodic peak height of nickel hydroxide oxidation. A decrease in value of k
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Fig. 4.7 CVA in 1 mol L−1 KOH (2) and with the addition of 0.5 mol L−1 ethanol (1) on electrode
with NiCu(ML) coating at a potential scan rate of 1 mV s−1 (a), 10 mV s−1 (b), 100 mV s−1 (c),
1000 mV s−1 (d), 2500 mV s−1 (e); semi-logarithmic dependence (f) of the coefficient k (the ratio
of the peak current of methanol oxidation to the peak current of nickel hydroxide oxidation) on the
potential scan rate

with the increase in potential scan rate indicates slower ethanol oxidation reaction
as compared to oxidation reaction of catalytically active surface.

The long-term studies of electrodes in alkali solution (Fig. 4.8, curves 1’ and
2’) show that the peak height of nickel hydroxide oxidation increases in the first
cycles, but in alkaline solution containing alcohol (curves 1 and 2), the peak height
of ethanol oxidation in the first cycles decreases. Further cycling in all cases leads to
slight increase in peak height. Degradation of the electrodes was not observed. The
coefficient k of the relative increase in ethanol oxidation peak height as compared
to the peak height of nickel hydroxide oxidation of NiCu(ML) coating (k = 3.3) is
higher than the value of k for a nickel-copper alloy coating (k = 2.7). This indicates
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Fig. 4.8 Change in the anode peak current in 1 mol L−1 KOH (1’, 2’) and in 1 mol L−1 KOH with
the addition of 0.5 mol L−1 ethanol (1, 2) when cycling in the potential range of 0.0. . . +0.7 V at
the potential scan rate of 50 mV s−1

a higher catalytic activity of the electrode with a multilayer coating as compared to
the electrode with alloy layer.

4.4 Conclusions

A multilayer nickel-copper metal hydroxide electrode coating obtained from a
polyligand pyrophosphate-ammonia electrolyte and consisted of alternating layers
of nickel-copper alloy and a mixture of metals with hydroxides has higher developed
surface, higher surface coverage of redox species, and higher catalytic activity as
compared to alloy coating deposited from the same electrolyte.
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