
Chapter 22
Single-Molecule Conductance Theory
Using Different Orbitals for Different
Spins: Applications to π-Electrons
in Graphene Molecules

Anatoliy V. Luzanov

Abbreviations

AO Atomic orbital
DODS Different orbitals for different spins
EHF Extended Hartree-Fock
FCI Full configuration interaction
GF Green’s function
GQD Graphene quantum dot
HPHF Half-projected Hartree-Fock
MO Molecular orbital
MSE Molecular-scale electronics
QCLRI Quasi-correlated long-range interaction
QCTB Quasi-correlated tight-binding (model)
RHF Restricted Hartree-Fock
TB Tight-binding (model)
UHF Unrestricted Hartree-Fock
WBL Wide-band limit

22.1 Introduction

The emergence of molecular-scale electronics (MSE) opened a remarkable vista
for quantum science and nanoscale devices. Over the past two decades the various
mechanisms of molecular conductance have been proposed and studied from many
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angles at the experimental and theoretical levels [1–6]. However, some vital issues
remain to be fully clarified, and the influence of many-body effects is one of them.
Indeed, much theoretical work was done, seemingly successfully, on simple range
models, like one-electron tight-binding (TB) approximation (see, e.g., Refs. [6–
12].). At the same time, many studies have been reported on the use of more reliable
approaches which include electron correlation effects (Refs. [13–19]. and many
others). However, high-level many-electron models are too demanding, especially
for the MSE applications, so that even simple TB theories retain their certain
usefulness.

In this paper we give the new results of using the modified approach of TB
type which quite recently was applied in the MSE context [20]. This is the
quasi-correlated tight-binding (QCTB) approximation developed in Refs. [21–23].
Actually QCTB is closely related to one old model first discussed in Ref. [24] for
spin-doublet alternant π-radicals. Really, QCTB is but a simplest implementation of
the different orbitals for different spins (DODS) approach. Nevertheless, in case of
alternant π-conjugated hydrocarbons, or bipartites (in graph theoretic terms), QCTB
can mimic, more or less crudely, π-electron correlation effects, particularly electron
unpairing in molecular closed shells [22, 23]. Interestingly, QCTB was also adopted
in Ref. [25] for analyzing fine effects of “spin repulsion” in bipartite networks.

One of the aims of the present paper is to check the predictions of TB and
QCTB against the “exact” π-electron results of the full configuration interaction
(FCI) method for small π-systems. For moderate-size conjugated structures, such
as graphene nanoflakes (for which FCI cannot be undertaken), we additionally
propose to use the more advanced DODS model due to Smeyers [26], that is,
the half-projected Hartree-Fock (HPHF) method. The latter is the well-known and
well-elaborated electron-correlation model (see, e.g., Refs. [26–30].), but it has
not been employed previously for MSE problems. On this account, a number of
formal points, e.g., the GF method for HPHF, required clarification. In the paper the
abovementioned issues are discussed in detail.

The layout of the present work is as follows. The next section contains the
main definitions and prerequisite facts about one-electron theory of molecular
conductance. Section 22.3 addresses the QCTB machinery and derivation of the
working equations for the corresponding one-electron Green’s function (GF).
Section 22.4, along with Appendix A, develops the basic expressions of HPHF
approach as they are related to the problem. In Sect. 22.5, we study electron
conductance in various graphene structures, and in the last section we summarize
the results, outlining perspectives for future work. Several supporting topics and
details are addressed in Appendices.

22.2 Simple One-Electron Schemes

Let us begin with the main definitions and notations which are typical for the
single-molecule electron transport theory. As in most current computations of
molecular conductance, we will assume a ballistic (without scattering) electron
transport. We consider, in a conventionally simplified manner, the coherent transport
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through a conjugated molecule sandwiched between two leads (contacts). The leads
which are attached to atoms a and b of the given molecule are characterized by
phenomenological broadening parameters �a and �b. Such a contact pair will be
named the (a,b) connection. Then within the wide-band limit (WBL) approximation
(see [31] and references therein) a working formula for the corresponding molecular
conductance, gab, is

gab/g0 = �a �b|Gab|2. (22.1)

Here g0 is the quantum conductance unit (in atomic units, g0 = π−1); Gab symbolize
a relevant matrix elements of the effective retarded one-electron GF, G, for the
molecule under study. In general, G depends on real-energy argument E (an
incoming electron energy). Moreover, G must take into account effects of coupling
between molecular wire and leads.

In one-electron (mean-field) approximation, G can be taken as a resolvent of the
appropriate effective Hamiltonian h. If we ignore broadening of molecular energy
levels due to their interaction with the leads, then we can set G(E) = R(E) where the
standard resolvent matrix R is of the form

R(E) = (
E + i0+ − h

)−1
. (22.2)

Here and throughout the paper, any number in matrix expression is understood as a
scalar diagonal matrix; e.g., E ≡ E I, with I being the identity matrix of respective
size. We will also often omit E in R(E) and G(E); e.g., G ≡ G(E). Generally, G
as an effective molecular GF differs from R owing to the abovementioned coupling
effects with the leads.

We start with the conventional π-electron TB approximation, i.e., we will work
now with the Hückel method and its extensions. The Hückel Hamiltonian matrix
is well known, and in the next section we will discuss it for bipartites in greater
detail. The essential part of the currently used molecular conductance theories
is an explicit inclusion of the broadening effect in the effective G. If the WBL
prescription is applied, then instead of Eq. (22.2), we can express GF in one-electron
approximation as follows:

G(E) =
(
E + i �[a,b] − h

)−1
, (22.3)

with �[a, b] being a broadening matrix. The latter is predominately localized on
atoms a and b coupled with the leads, so within π-electron schemes we have
explicitly

�[a,b] = ( �a |a〉 〈a| + �b |b〉 〈b| ) /2, (22.4)

where Dirac kets |a〉 and |b〉 are the 2pπ atomic orbitals (AOs) of the carbon atoms
involved into the studied (a,b) connection (e.g., see, Ref. [32]).
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22.3 QCTB Model for Effective Green’s Functions

Before applying QCTB scheme to MSE problems, we recall first the customary
TB π-electron model. The TB Hamiltonian will be denoted by h0. From now
on we consider only plane bipartite carbon-containing networks—they must not
possess odd-membered cycles (König’s theorem). In reality, such systems make
up a vast majority of the conjugated hydrocarbons of the MSE interest. Let us
recall a common structural property of these bipartites. All sites in them can be
always divided into two nonintersecting sets of starred (∗ ) and unstarred (◦) sites (in
Coulson’s terms), and the starred sites are chemically interbonded with the unstarred
ones only. Then in the standard π-AO basis set the h0 matrix allows the known block
skew-diagonal representation:

h0 = −
(

0 B

BT 0

)
, (22.5)

where block B ≡ (h0)∗◦ describes interactions between starred and unstarred sites;
superscript T denotes matrix transposition. Apart from a scaling factor �β0� (β0
is a resonance integral), this B is but the adjacency matrix composed of ones for
connected sites; rest elements of B are zero by definition (TB approximation).
Evidently, using h = h0 for GF in Eq. (22.2) is straightforward. For the given (a,b)
connection, the corresponding GF will be signified by GTB. Then, as in Eq. (22.3)
we have.

GTB =
(
E + i �[a,b] − h0

)−1
. (22.6)

Now we turn to QCTB [21, 22], which is the main object of the study here.
As to precursors of QCTB, see, besides the first paper [24], also Refs. [33–35].
where the simplified schemes were formulated by invoking DODS and the Hubbard
Hamiltonian. In QCTB [21–23] we also make using a spin-splitting description,
starting with two effective TB-like Hamiltonians hα and hβ . Thus, we define

hα = −
(

δ B

BT − δ

)
, hβ = −

(−δ B

BT δ

)
, (22.7)

and associate these Hamiltonians with subsystems of α-electrons (with spin up) and
β-electrons (with spin down), respectively. In Eq. (22.7) by parameter δ we bring in
a spin polarization, thus mimicking electron correlation effects. Below δ is a fixed
number.

Having now at our disposal Hamiltonians hα and hβ we shall generate two
auxiliary resolvents:

Rα = (
E + i0+ − hα

)−1
, Rβ = (

E + i0+ − hβ
)−1

. (22.8)
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For spin-singlet states, a symmetrized combination should be used instead, thus
giving the QCTB “resolvent” matrix, RQCTB, of the form:

RQCTB = (
Rα + Rβ

)
/2. (22.9)

Clearly, this type of GFs pays no attention to the abovementioned energy-level
broadening. The more consistent should be the effective Green’s function GQCTB

of the form

GQCTB =
(
I/RQCTB + i �[a,b]

)−1
, (22.10)

which is based on a rather general expression, Eq. (27), in Ref. [14]. Evidently,
GQCTB = RQCTB if �[a, b] = 0. For the given (a,b) connection, the thus constructed
GQCTB will serve as a basic approximation which provides us with a simplistic but
reasonable way to describe π-electron correlation effects relevant to MSE problems.
Note that in Ref. [20] we have made preliminary applications to demonstrate the
possibilities of QCTB for computing molecular conductance in oligomer structures.
In the cited paper, the energy-level broadening was handled using a too simplistic
(scalar) approach.

22.4 Use of the Half-Projected Hartree-Fock π-Model

As we saw previously in Ref. [20], QCTB provides rather semiquantitative and
frequently only qualitative results due to neglecting long-range interactions effects.
In other words, in QCTB the systematic errors are incurred by using topological in
their essence Hamiltonians, Eq. (22.7). On this account we must adopt more general
DODS models for π-electrons. The best variational DODS model is Löwdin’s
extended Hartree-Fock (EHF) method [36]. However, GF is too tricky to be
calculated consistently at the EHF level; at least, no results in this direction are
known at present. In this situation, the well-known HPHF model of Smeyers [26],
as a simplified version of EHF, seems to be a reasonable alternative choice. Below,
we elaborate the GF computational technique at the HPHF level.

Firstly, we briefly recall the basic points, following closely the presentation of
HPHF from Refs. [26, 28]. Only singlet molecular ground states will be considered
in the present paper, so we will deal with even-numbered N-electron systems where
N = 2n and n is an integer. Recall that for all DODS approaches, the starting point
is the wave function | �α, β〉 of unrestricted Hartree-Fock (UHF) type. We take this
in the spin-free form:

∣∣ �α,β
〉 = ∣∣�α

〉 ⊗ ∣∣ �β
〉
, (22.11)
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where vectors |�α〉 and |�β〉 are spin-free determinants. The latter are built up from
the given spin-free MOs,

{∣∣∣φα
i

〉}

1≤i≤n
,

{∣∣∣φβ
i

〉}

1≤i≤n
(22.12)

for spin-up and spin-down electrons, respectively. Of course, Eq. (22.11) is equiva-
lent to the usual unrestricted Slater determinant; the above spin-free representation is
merely more convenient for manipulations and corresponds to the classical Waller-
Hartree double-determinant method [37].

As is well known, generally the UHF wavefunction | �α, β〉 is a non-spin-pure-
state. In order to recover a spin-pure or nearly spin-pure state, an appropriate spin
projection should be performed. The simplest symmetrization of spin-up and spin-
down electrons is such an approximate projection procedure for spin-singlet states.
This is precisely used in HPHF, thus giving the improved wave function

∣∣
∣ 	HPHF

〉
= ∣∣ �α,β

〉 + ∣∣ �β,α
〉
. (22.13)

The variational HPHF equations for MO sets, Eq. (22.12), related to state vector
(22.13) are not so difficult to derive [26–28], and hence we omit them for brevity.

Now turn to ionized states which are needed for constructing GF. Following
Ref. [28], we consider (2n–1)-electron state vector

∣∣ 	HPHF+
〉
. It is obtained from

| 	HPHF〉 by removing one electron described by own MO |φ〉 which we must
determine variationally. Namely, let us introduce two (n–1)-electron states,

∣∣�α+
〉

and
∣∣
∣�β

+
〉
, where explicitly

∣
∣�α+

〉 = √
n〈φ(n)|�α 〉(n) and likewise for

∣∣
∣�β

+
〉
. These

states correspond to electron annihilation in |�α〉 and |�β〉, respectively. Then, the
approximate spin-doublet state vector is

∣∣∣ 	HPHF+
〉
= ∣∣�α+

〉 ⊗ ∣∣ �β
〉 + ∣∣�α

〉 ⊗
∣∣∣ �

β
+
〉
. (22.14)

The variational equation for |φ〉 that optimizes the energy of this ionized state is
presented in Ref. [28]. Based on it, we have derived in Appendix A the relations
required for RHPHF (GF without broadening effects). Once having computed RHPHF

from Eqs. (22.A2), (22.A8), and (22.A9), we evaluate the full GF matrix, GHPHF,
by adding broadening effects in the same manner as in Eq. (22.10):

GHPHF =
(
I/RHPHF + i �[a,b]

)−1
. (22.15)

The quality of this HPHF model for GF is estimated for aromatic structures in
Appendix B. In the latter we show that for the small cyclic molecules treated by
the standard π-electron theory, the HPHF results for GF (at E = EF where EF is
the Fermi energy) are close to FCI quality (Table 22.3). In the same table, QCTB
demonstrates a reasonable behavior, but not as good as HPHF. Nevertheless, QCTB
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is systematically better than TB, and it is in agreement with our previous study of
polyenic systems [20].

One deficient feature of HPHF is a lack of size-consistency (for a general
consideration of this and related issues see review [38]). We discuss the issue for
GF in detail in Appendix B, and show that in practice this deficiency is not too
severe for small and middle-size systems. It allows us, for the similar systems, to
consider the obtained HPHF results as giving realistic estimations of GF matrix
elements. At least, the HPHF data are much more favorable than other ones which
are produced for graphene molecules by TB and even the restricted Hartree-Fock
(RHF) method. In fact, we will employ HPHF as a tool for the quality assessment
of low-level models (QCTB and TB) in middle-size graphene molecules.

22.5 Applications to Graphene Molecules

22.5.1 Small Graphene Molecules

The graphene networks are often regarded as promising candidates for designing
MSE materials. In this context a variety of approximations was made to estimate
electronic and conductance properties of nanographene molecules (Refs. [8, 39–45].
and others). The π-electronic structure of several relatively small graphene quantum
dots (GQDs) is also investigated in Refs. [46, 47].

In the present calculations of the effective GF and conductance spectra, we
employ broadening parameter � = �a = �b = 0.1 eV taken from Ref. [18]. In
all the plots we show conductance (in the g0 units) as a function of electron energy
E. In the abscissa, E is in eV, and EF, is shifted to 0 for convenience. Moreover,
we make use of the logarithmic ordinate. The conductance spectra are plotted for
the various π-models in this way: HPHF in red, QCTB in green, and TB in black
dashed. We will also signify by R0 the GF matrix elements at E = EF.

We start our investigation with studying two small graphene molecules shown on
Fig. 22.1. The first one is GQD-56 (in our notations here) which is the 56 carbon-
atom circumpentacene molecule. It has been examined in a number of works [8,
39, 40] as an interesting example of the graph-theoretic (within TB) conductance
theory. The second is GQD-62, that is a 62 carbon-atom structure as a particular
example of an armchair graphene nanoflake studied in Ref. [44]. In Table 22.1 we

Fig. 22.1 Structure of
GQD-56 and GQD-62 and
the studied connections. The
sites (colored disks) which
are attached to electrodes are
connected each other by
conditional dashed lines

GQD-56 GQD-62
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Table 22.1 GF matrix elements R0 (E = EF) for contact pairs z1, z2, and z3 in GQD-56, and for
pairs aa and zz in GQD-62, accordingly to Fig. 22.1

Contact pair RHPHF
0 R

QCTB
0 RRHF

0 RTB
0

z1 −0.246 −0.281 −0.719 −67/42 ∼= − 1.595
z2 0.131 0.132 0.579 50/21 ∼= 2.381
z3 −0.036 −0.013 −0.337 −55/21 ∼= − 2.619
aa 0.020 0.042 0.012 16/2037 ∼= 0.008
zz −0.155 −0.108 −0.175 −625/679 ∼= − 0.921

give a small piece of information related to the selected connections in GQD-56 and
GQD-62 (for GQD-56, the same contact pairs are studied in Refs. [8, 39, 40].).

As seen from Table 22.1, TB predicts, too large GF elements in GQD-56,
particularly for relatively distant connections in zigzag-type contact pairs (denoted
by zj and shown by red dashed lines in the table). More than that, within TB, the
matrix elements Gab becÑme spuriously larger with increasing distance between
atoms a and b of the contact pair. At the same time, in the GQD-56 example as well
as in many other ones, such long-distance atomic pairs have small values of usual π-
bond orders (nondiagonal density matrix elements in AO basis). These bond orders,
as a rule, qualitatively correlate with the corresponding G values. Such a natural fact
argues additionally in favor of HPHF and QCTB but not in favor of TB. Overall, we
can conclude that even small graphene molecules with zigzag edge topology require
more refined tools than that based on Eq. (22.5) for the simple TB scheme.

The case of GQD-62 seems somewhat different. Here we consider the GF π-
electron elements for two types of long-distance connections: the zigzag connection,
zz, involving both sites on zigzag-type edges (red dashed line on the picture in
Fig. 22.1), and the armchair connection, aa, involving both sites on armchair-type
edges (blue dashed line in Table 22.2). We see from Table 22.1 that in GQD-62
zz connection is of the same behavior as in GQD-56, but aa connection is much
weaker, and this connection is less influenced by electron correlation effects, so
that even TB provides a reasonable value of the corresponding GF element at EF.
These peculiarities of armchair-type connections are rather typical (see the next
subsection).

On the basis of Table 22.1, we can state that the QCTB results are in a
semiquantitative agreement with the more reliable HPHF data. For larger graphene
molecules QCTB works less well, as will be seen from the subsequent discussion.
As for the RHF model, it works only slightly better than TB. Moreover, in large
conjugated π-systems, RHF suffers from the so-called Hartree-Fock instabilities (it
was demonstrated in Ref. [47] for moderate-size graphene molecules). Hence, RHF
can come to inappropriate broken-symmetry solutions, and for this reason we will
refrain from further use of RHF for graphenes.

Consider now conductance spectra for our GQDs. In Fig. 22.2 we present them
for the most efficient zigzag contact z1 in GQD-56 and for the armchair contact aa
in GQD-62. It is seen that even far from the Fermi level, QCTB gives satisfactory
results, at least at a qualitative level, but TB does not. It means that a possible
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Table 22.2 GQD-130: Comparison of GF matrix elements R0 (E = EF) for contact pairs, aj, and
zj at the HPHF, QCTB, and TB levels

GQD-130 with contact pairs Pair RHPHF
0 R

QCTB
0 RTB

0

z1 −0.015 −0.030 −1.784

z2 −0.016 −0.032 −3.945
z3 −0.011 −0.025 −3.193
z4 −0.014 −0.025 −1.147
z5 −0.007 −0.010 −0.129
a1 0.003 0.003 0.001
a2 0.005 0.010 0.001
a3 0.030 0.072 0.030

Fig. 22.2 Conductance spectra for connection z1 in GQD-56 and connection aa in GQD-62 (see
Fig. 22.1) within the HPHF (in red), QCTB (in green), and TB (in black dashed)

agreement between selected GF values of TB and more advanced models (as in
the case of GF at E = EF for contacts in GQD-62) may be misleading as to a real
accuracy of the low-level approach in whole.

22.5.2 Graphene Quantum Dot C130

We turn to a more extended graphene structure C130, further named as GQD-
130, which is displayed in Table 22.2. This GQD was synthesized in Ref. [48].
The intrinsic π-electron properties of GQD-130 were considered recently in Refs.
[47]. Again, we examine the GF π-electron elements of GQD-130 for two types
of long-distance connections: zigzag connections, zj, and armchair connections,
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aj (respectively, red and blue dashed lines on the molecule image in Table 22.2).
We see from the table that there is the same, as in GQD-62, significant difference
between these two types of the connections: the zigzag connections give a much
greater conductance at E = EF than the armchair connections for all the models
used. At the quantitative level, the calculations on zigzag channels also display a
sharp difference between the non-correlated model (TB) and the correlated models
(HPHF and QCTB). In GQD-130, the long-distant zigzag GF elements, being small
in HPHF and QCTB, behave quite correctly—in a striking contrast to TB.

It is interesting to Ôompare these results with those for short-distance contact
pairs in the same system. For instance, a maximum absolute value, Gmax, of the GF
matrix elements at the Fermi energy is attained on the borders—for the strongest
C-C π-bonds formed by the two nearest neighbor atoms in z5 and a2. By using
HPHF, QCTB, and TB we find the corresponding Gmax to be equal to 0.75, 0.70,
and 0.98, respectively. Thus, in all the models we obtain a reasonable value of
order 1 for the GF elements of strong π-bonds, as in the ethylene molecule where(
RTB

0

)
1,2 = 1. We find that in this case, and in many other sufficiently large systems

with strong electron correlation, TB gives sensible results only for too closely
situated leads, whereas QCTB widely agrees with HPHF, but mainly in qualitative
terms, if including all long-distance connections.

For completeness, in Fig. 22.3 we plotted the conductance spectra for the most
interesting long-distance connections in GQD-130. Restricting to a small energy
domain (say, to the interval [−2 eV, 2 eV] in the abscissa), we observe that indeed
QCTB is fairly good for the more efficient zigzag-type channel, but QCTB is only
semiquantitatively acceptable for the weak armchair-type channel. As expected,
for the same nanographene problem, the TB plots turn out to be entirely wrong
quantitatively as well as qualitatively. At last, our experience with HPHF and QCTB
tells that the conductance spectra of other graphene-like molecules with large zigzag
edges are fairly similar to that of GQD-130.

Fig. 22.3 Conductance spectra of GQD-130 for connections z2 (left panel) and a3 (right panel)
within HPHF (red), QCTB (green), and TB (black dashed)
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22.6 Conclusion

A large part of current theoretical studies of single-molecule conductance suggests
a soundness of simple tight-binding (TB) π-schemes (at least in qualitative terms).
However, as could be expected, the TB approach is too crude for MSE. Hence, it
was practically important to scrutinize TB more rigorously and determine its actual
validity for computing π-electron Green’s functions. In this context, particularly
important is the appropriate analysis of nanostructural classes, such as graphene-
like molecules. Here we examined some representative graphenic molecules, thus
continuing preliminary investigations in Ref. [20]. In the cited work, TB for GF
was improved in an unsophisticated manner by invoking QCTB model [21, 22]. In
turn, this has caused the need to examine QCTB per se, especially for sufficiently
large systems. For this aim we have now brought into play a helpful HPHF model
allowing study of extended systems at an affordable cost.

Specific computations on nanographenes corroborate the qualitative (but rarely
quantitative) usefulness of QCTB and its ability to provide us with a more adequate
physical picture than TB does. More than that, dealing with conductance spectra at
the TB level turns out to be meaningless, particularly, for long-distant contact pairs
in nanographenes, and it seems to apply to any extended conjugated π-system. Yet,
the fact that simple TB schemes are not adequate to treat MSE for large π-structures
even qualitatively, was not generally recognized, and we believe that the results
reported here will help to draw a serious attention to a more realistic assessment of
the TB model.

As usual, many unresolved issues remain. Specifically, there is a nontrivial
problem how to improve HPHF by constructing a not too complicated scheme
with a better account for electron correlation in large-scale systems. In this issue,
McWeeny’s generalized product functions [49] can be used for a modeled molecular
composite derived from the system in question by dividing it into weakly interacting
(localized) fragments. We believe that the McWeeny approach may be able to
alleviate the size-inconsistency problem in HPHF. At the same time it seems
sensible to explore in detail another our DODS-like approach proposed here in
Appendix B as a quasi-correlated long-range interaction (QCLRI) model. There are
encouraging features of this π-model: first, for small systems it is good almost as
HPHF, and, independently of the molecular size, it is simple as QCTB; second,
QCLRI possesses size-consistency. Evidently, these features are indispensable for
large-scale systems. Moreover, π-electron radicals and polyradicals, and related
spintronics problems are attractive as well for studying by DODS, but they cannot
well be handled in a too simple way. However, the ground triplet states may be
easily treated approximately by the proposed HPHF methodology, and we hope to
address this and other mentioned problems in a near future.
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Appendices

Appendix A: Construction of HPHF Green’s Function

Before treating in detail GF for HPHF, it is sensible to consider a standard general
expression of GF. Let us first rewrite Eq. (22.2) in an appropriate spectral form:

R =
∑

i

|φi〉 〈φi |
E + i0+ − εi

+
∑

a

|φa〉 〈φa|
E + i0+ − εa

, (22.A1)

where εi and εa are Koopmans orbital energies, that is eigenvalues of h; |φi〉 and
|φa〉 are corresponding occupied and virtual MOs (eigenkets of h), respectively. In
fact, the structure of Eq. (22.A1) remains valid in a more general setting (as in Eq.
(5.76) from Ref. [1]). In doing so, |φi〉 and |φa〉 should be replaced by the so-called
Dyson orbital

∣∣d+
i

〉
for electron detachment, and by Dyson orbital

∣∣d−
a

〉
for electron

attachment; they may be nonorthogonal to each other and even be linear dependent
[50]. In addition, εi and εa are replaced with transition energies �E+

i and �E−
a ,

respectively. Explicitly, �E+
i = EN − EN−1

i (negative ionization potential), and
�E−

a = EN+1
a − EN (electron affinity). It gives the most general (Lehmann type)

spectral representation of GF for N-electron system:

R =
∑

i

∣∣d+
i

〉 〈
d+
i

∣∣

E + i0+ − �E+
i

+
∑

a

∣∣d−
a

〉 〈
d−
a

∣∣

E + i0+ − �E−
a

. (22.A2)

Now we turn to the HPHF model for which the variational Koopmans-like
orbitals were constructed in Ref. [28]. We will need the standard (Hermitian) matrix
projectors onto the occupied spin-up and spin-down MOs, that is

ρα =
n∑

i=1

∣∣φα
i

〉 〈
φα

i

∣∣ , ρβ =
n∑

i=1

∣∣∣φβ
i

〉 〈
φ

β
i

∣∣∣ , (22.A3)

along with a non-Hermitian matrix projector U which is generated by overlapping
of ρα and ρβ :

U = ρα
(
ρβρα

)−1
ρβ. (22.A4)

Matrix inversion here should be understood as the Moore-Penrose pseudoinverse
(see, e.g., Ref. [51]). The next are the Fockian matrices, fα and fβ , associated with
the above projectors:

fα = h + J
(
ρα + ρβ

) − K
(
ρα

)
, fβ = h + J

(
ρα + ρβ

) − K
(
ρβ

)
(22.A5)

fU = h + J
(
U + U+) − K(U), (22.A6)
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with J and K being, respectively, standard Coulomb and exchange (super)operators
due to Roothaan. In above, h is a core Hamiltonian which includes not only h0 but
electron-nuclear attraction terms.

Then we can derive the HPHF variational equation for
∣
∣d+

i

〉
, based on Eqs. (35)

and (36) from Ref. [28]. We first define the (nonnormalized) charge density matrix,
D, at the HPHF level:

D = ρα + ρβ + ξ
(

U + U+)
, (22.A7)

where ξ is a pseudodeterminant of ραρβ (i.e., the last nonnull (nth) coefficient of its
characteristic polynomial). This D serves as an auxiliary matrix in the generalized
eigenvalue problem of the form:

�D−1
∣∣d+

i

〉 = (
EHPHF − �E+

i

) ∣∣d+
i

〉
, (22.A8)

where

� = ρα
(
Eρ − fα

)
ρα + ρβ

(
Eρ − fβ

)
ρβ + ξ [U (EU − fU) U + h.c.] ,

(22.A9)

and Eρand EU are usual UHF-like energies for projectors ρα , ρβ and U, U+,
respectively. Moreover, EHPHF (i.e., EN needed for �E+

i ) is known beforehand:
EHPHF = (Eρ + ξ EU)/(1 + ξ ). The eigenvalue problem for

∣∣d−
a

〉
and �E−

a is
formulated likewise. Namely, the relevant eigenvalue problem for �E−

a can be
obtained from Eqs. (22.A5), (22.A6), (22.A7), (22.A8), and (22.A9) by replacing
all projectors by their “vacant” counterparts (ρα → I − ρα ,U → I − U etc.),
but leaving all the Fockians, Eqs. (22.A5) and (22.A6), unchanged. At last, in
order to get the resulting RHPHF from the eigensolutions of Eq. (22.A8) and their
counterparts for �E−

a , we directly apply Eq. (22.A2).
We now shortly discuss the selection rules for matrix R0, i.e., for GF matrix

elements at E = EF, neglecting energy broadening effects. The main rule is that for
any correct bipartite-symmetry description we have the same block skew-diagonal
structure of R0 as in the underlying TB Hamiltonian, Eq. (22.5). Thus,

R0 =
(

0 R∗◦
R◦∗ 0

)
. (22.A10)

This equation for TB is trivial because RTB
0 = −(

h0
)−1

. Eq. (22.A10) is indeed
the selection rule since it states that there are no nonzero elements of GF for (a,b)
connections with a and b belonging simultaneously to the same atomic set, either the
starred or unstarred set. Far less trivial is the fact that Eq. (22.A10) holds true for GF
at the π-FCI level, as was stated rigorously in the important theorem obtained in Ref.
[18]. Therefore, Eq. (22.A10) as originating from the bipartite symmetry, should be
valid for any consistent π-approximation not violating a topological symmetry. The
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same selection is exactly fulfilled for QCTB [20], and it is not so difficult to prove
the same rule at the HPHF level as well.

Appendix B: Approximate Versus “Exact” π-Electron Results
for Small Aromatics

In order to estimate reliability of the results obtained by various approximate π-
models, we consider briefly the formally exact π-electron theory based on the
well-known FCI method (e.g., see [52]). In our computations, we will follow the
previously proposed FCI matrix algorithm; for additional references see Ref. [53]
where a suitable FCI approach to calculating Dyson orbitals is given. As to the MSE
problems, the first important results at the π-FCI level were given only recently in
Ref. [18]. In what follows, the FCI results we present here will be taken as the
benchmark data against which all the others must be compared.

One special point concerns the actual Fermi energy EF that should be used to
ensure Eq. (22.A10) for bipartites. In Ref. [18] the EF value is not given explicitly.
At the same time, for bipartites the remarkable Hush and Pople theorem is valid
at the π-electron Hartree-Fock level [54], as well as at the FCI level [55]. From
this theorem it follows that EF = WC + γ C/2, where WC is the standard effective
ionization potential, and γ C is the π-electron one-center Coulomb repulsion integral
for the carbon atom. Just this choice of EF ensures the validity of Eq. (22.A10) and
other properties of GF for bipartites.

In our specific π-electron computations, we use standard π-electron parameters
(in eV): resonance integral of the aromatic π-bond β0 = − 2.4 ; WC = 0,
γ C = 11.13, and two-center repulsion integrals due to Ohno. For QCTB compu-
tations, we adopt δ = 7/24 and EF = 0. The idealized regular geometry was taken
for the carbon backbone in all studies of conjugated π-structures (1.4 Å for CC bond
lengths, etc.).

Now, let us say few words about the supplementary rescaling of the GF matrix
elements for RHF, HPHF, and FCI, following the procedure from Ref. [20]. This
was proposed in order to avoid an inevitably large gap between different approaches.
When multiplying RHF, HPHF, and FCI matrix elements of GF by the scaling factor
β0/(β0 − γ 12/2) we make them comparable with their TB and QCTB counterparts.
In particular, in the ethylene molecule the respective (1,2) elements,

(
RTB

0

)
1,2 and

(
RRHF

0

)
1,2 for the CC π bond, become identical and equal to 1.

Now we describe the results of comparison between π-FCI (the most rigorous π-
approach) and main approximations (HPHF, RHF, QCTB, and TB). In addition, we
tentatively and preliminary propose an improvement of QCTB in order to include
long-range interactions not incorporated in the topological schemes. We simply
do the first iteration of an usual self-consistent RHF procedure based on the TB
(Hückel) density matrix as a start. It gives us a modified one-electron Hamiltonian
of the correct block structure as in Eq. (22.5) for h0. Then, expressions of the same
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Table 23.3 GF matrix elements R0 (E = EF) for small aromatic molecules at the various levels of
the theory

Structure RFCI
0 RHPHF

0 R
QCLRI
0 RRHF

0 R
QCTB
0 RTB

0

* o

−0.447 −0.458 −0.439 −0.496 −0.451 −0.500

*

o −0.328 −0.374 −0.357 −0.497 −0.603 −1.000

*

*

o

0.236 0.245 0.232 0.270 0.275 0.333

* o

−0.138 −0.139 −0.133 −0.150 −0.215 −0.333

* o

−0.156 −0.157 −0.164 −0.170 −0.271 −0.5

The used (∗ , ◦) connections are shown on the structural formulas

type as in Eqs. (22.7), (22.8), (22.9), and (22.10) are applied in order to compute
an approximated GF. This approach will be termed the quasi-correlated long-range
interaction (QCLRI) model, and the respective GF will be denoted by GQCLRI. More
detail will be given elsewhere.

Let us examine the numerical results presented in Table 22.3. The specific
connections (∗ ,◦) are shown in Table 22.3 by stars and cycles. We see that HPHF
provides the best (in respect to FCI) results whereas there are marked quantitative
deviations of QCTB from FCI. Especially large deviations from FCI occur for TB.
It is worth paying attention to a good quality of the RHF results for the considered
small aromatic molecules. In fact, RHF provides here better results than TB and
even QCTB. However, RHF calls for much more computational efforts, but more
essential is that RHF is not appropriate for computing GF in extended π-systems
(see Sect. 22.5). It is important for future applications to observe that QCLRI, i.e.,
the above-proposed simple π-scheme, surprisingly works almost as well as HPHF,
at least for the considered molecules. It is noteworthy that, unlike QCTB, the QCLRI
method possesses the size-consistency discussed in the last paragraph of Sect. 22.4).

It is pertinent to understand now how significant in practice can be errors
caused by lacking size-consistency in HPHF. A direct way to estimate actual
inaccuracy due to the size inconsistency is to compute GF matrix elements in non-
covalent intermolecular dimers of the chosen systems. Indeed, GF should be an
additive-type size-consistent quantity (as closely related to the one-electron density
matrix), and the same follows also from definition (22.A2). It means that the GF
matrix of any noncovalent intermolecular dimer or complex, say, complex AB,
must take the form of a direct sum when an average intermolecular distance goes
to infinity. For example, in a dissociated dimer AB we have at the FCI level,
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RFCI[AB] = RFCI[A] ⊕ RFCI[B], and likewise for other size-consistent models, such
as RHF, QCLRI, QCTB, and TB. Unfortunately, this is not the case of HPHF and
related spin-projected Hartree-Fock models.

Let us examine the selected GF elements of the dimerized systems for the
molecules studied in Table 22.3. For each dissociated dimer, its constituent
monomeric parts A and B were situated at the intermolecular distance equal to
100 Å. Of course, FCI, QCLRI, RHF, QCTB, and TB obey the size-consistent
requirement, so that the corresponding GF matrix elements in the initial monomer
molecule and in the related parts of the dimer are exactly the same, and we do
not repeat these data. At the same time, in the case of HPHF we obtain slightly
different results for the monomer and the respective dimer subunits. We find
the following HPHF values for GF elements under dissociation of the benzene,
butalene, naphthalene, diphenylene, and naphtha[b]cyclobutadiene dimers:

−0.475,−0.407, 0.255,−0.142,−0.157

These values should be compared with the respective values in the third column
of Table 22.3. We see that in the dissociated dimers the deviation of GF elements
from the ones obtained for the monomer are around of order 5%.
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