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Abstract Pavel Andreevich Zhilin proposed a theory for deformable directed sur-
faces which builds a generalized framework in context of linear engineering theories
of plates. We introduce this theory axiomatically, delineate the basic ideas and for-
malize the governing equations. In doing so we present a self-contained set of equa-
tions for time-invariant problems. Thereof, subclasses ofmechanical problems can be
deduced, whereby in present context themain existing theories are derived. These are
in-plane and out-of-plane loaded plate problems. Next to the in-plane loaded plate
problem, we also distinguish between transverse shear-deformable and transverse
shear-rigid out-of-plane loaded plates. Typical representatives are the plate theories
by Kirchhoff, Reissner, and Mindlin.

Keywords Generalized plate theory · In-plane · Out-of-plane · Transverse shear

1 Introduction

1.1 Motivation

Our intention is to present a framework to treat mechanical problems on slender
structures with uniform thickness. Hereby we reduce our concern to initially flat
structures, i.e. uncurved in the reference placement. The treatment of such theories
has a long tradition, since their original beginnings date back more than 150 years.
All attempts associated can be considered as theories for dimensionally-reduced
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continua. However, engineers usually have a pragmatic perception, so that we have
to divide our introduction.

Let us start with more abstract considerations in context of generalized continua.
A modern notion to the direct approach for plates is based on the treatise of Erick-
sen and Truesdell [11] which was revitalizing a topic associated with continua which
exhibit independent rotational degrees of freedom.Hereby, theCosserat brothers [10]
were the godfathers since their ideas were used as parent model. For further attempts,
Green [15] introduced the so called Cosserat surface. Such surface is kinematically
equivalent to the 6-parameter plate theory. Zhilin [44] proposed a physically moti-
vated theory with only five parameters as sufficient. Therein, drilling rotations are
neglected. This rotation about the normal to the surface is not considered as inde-
pendent variable since the structural rigidity is much higher than resistance against
the out-of-plane rotations.

Turning to the historical developments of engineering applications, we have to
leave the pathway of such non-classical approaches connected with Cosserat-type
theories of plates, or more general, Cosserat-type shells, cf. [4]. First efforts to pre-
dict the structural mechanics of plates were done by Germain [14]. Lagrange [21]
delivered corrections to this attempts. Also Navier [30] and Poisson [34] participated
in this early endeavors. A completed plate theory was delivered by Kirchhoff [19] for
the first time, who also revealed flaws of the latter ones. This theory retains valid for
shear rigid plates. It is also known asKirchhoff-Love plate theory (or Kirchhoff-Love
shell theory) in english-speaking regions, while the achievement of Love [23] was
an extension to initially curved surfaces what was already shown by Aron [5], what
however, was unnoticed during that time. Improvements to Kirchhoff’s theory were
proposed only about 100 years later. Reissner [36, 37] andMindlin [24] contemplated
extensions to shear-deformable plates which was broaden the scope of application
of plate theories drastically. However, these improvements were originally ignited
approximately 30 years earlier by Timoshenko [39, 40], who incorporated first-order
transverse shear effects at beams. It is worth to mention that Mindlin [24] and Reiss-
ner [37] used different approaches to derive a plate theory incorporating transverse
shear effects.

The research area of plate theories has gained an overwhelming variety of
approaches and directions, so that it is almost impossible to get an overview of
all branches. This includes developments with six- or seven-parameter theories to
incorporate thickness distortion (extensible director) [8], approaches to consider
moderate deflections [12, 17], higher order approaches to transverse shear defor-
mations [35], whereby all developments are derived mathematically consistent or
not [3]. Nowadays, these theoretical advances are often correlated to developments of
finite elements since numerical solutions gained therewith are liberated from severely
restricted boundary conditions of closed-form solutions.

However, since a dimensional reduction cannot be fully reconciled with classical
3D Cauchy continuum theory [20], we take the quest by introducing a planar elas-
tic surface ab initio. This is called direct approach. A deformable plane surface is
introduced, and two-dimensional field equations are formulated in analogy to three-
dimensional continuum theory. Thereby, it is our intention to represent the governing
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equations in a modern spirit where we adopt tensor notation for a rational represen-
tation. In the sequel we will operate on the two-dimensional body mid surface while
restrictions are made for the thin-walled spatial systems considered. To be exact,
these are as follows:

• the mid surface, that is the surface which halves the thickness of the plate at each
point, is a plane

• the plate thickness is small compared to the dimensions of the mid surface
• the outer surfaces surfaces of the plate enclose a homogeneous and continuous,
i.e. continuously connected, material

Naturally the direct approach claims for a delicate interplay between physics and
mathematics. Based on this concept, engineering theories for plates can be introduced
in a natural way, as we will present here. Our journey will thus take us from a five-
parameter theory to a two-parameter, a three-parameter and a one-parameter theory.

1.2 Frame of Reference

We reduce ourselves to the mid surface of slender bodies with uniform thickness
h(Xα) = h ∀α ∈ {1, 2}. For what follows, we refer to this two-dimensional body
manifold S, which is henceforth introduced as primitive concept. In context of the
original volume V of the three-dimensional body manifold B, following relation
hold.

V = {
(X1, X2, X3) ∈ B ⊂ E3 : (X1, X2) ∈ S ⊂ E2, X3 ∈ [−h/2,+h/2]

}
(1)

Herein, En is the n-dimensional Euclidean space. A visualization of the choice ofS
is given in Fig. 1. For the sake of clarity we designate the outer surface of the three-
dimensional body B with S±. To be exact, these are defined as follows.

S+ : −h

2

∣∣∣∣

Xα=Lα

Xα=0

S− : +h

2

∣∣∣∣

Xα=Lα

Xα=0

(2)

We introduce an orthonormal basis {eα, n} ∀α ∈ {1, 2} of a right-handed coordinate
system with the Euclidean norm |eα| = |n| = 1, while following relation holds.

n = e1 × e2
|e1 × e2| = e1 × e2 (3)

Forwhat follows, it is also beneficial to introduce the firstmetric tensor P = eα ⊗ eα .
The surface considered features a boundary ∂S. At this boundary we introduce
outward normals ν, whereby we do not distinguish between different directions. The
normals introduced are related as follows.
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Fig. 1 Reference surface in context of a slender body and the degrees of freedom endowed

ν· n = 0 (4)

The position vector r of a material point on S can be written as follows.

r = r0 + v + wn (5)

Herein, r0 = Xαeα is the position in the reference placement, v = vαeα is the in-plane
displacement vector and w is the deflection. Furthermore, we introduce rotations of
a material point, characterized by the vector ψ = −ϕ2e1 + ϕ1e2. To sum up, the
degrees of freedom possessed by the surface continuum can be written in a rational
spirit.

a = v1e1 + v2e2 + wn (6)

ϕ = ϕ1e1 + ϕ2e2 (7)

Herein, a is the vector of translational degrees of freedom and ϕ = ϕαeα is the
vector of rotational degrees of freedom. Furthermore, the relations ϕ = ψ × n and
ψ = −ϕ × n hold.

We limit ourselves to the static case and restrict our concern to the derivation of
classical engineering theories in this field. This is highlighted by Eqs. (6) and (7),
resulting in a so called five-parameter theory. Such a theory is a special case of the
Cosserat surface, cf. [31]. However, following restrictions are introduced.
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• kinematics

– displacements, deflections, and rotations remain small
– strains (in-plane and transverse shear strains) and curvature changes are small
– i.e. a linear differential correlation of displacements/deflections/rotations and
strains/curvature changes can be assumed

• material properties

– homogeneous and isotropic
– purely elastic and scleronomous

Preceding restrictions result in geometrical and physical linear theories, i.e. so called
1st order structural theories.

1.3 Preliminaries

In this paper we apply a direct notation for tensors, whenever possible. Tensors
of zeroth order (or scalars) are symbolised by italic letters (e.g. a), italic lower-
case bold letters denote first-order tensors (or monads) (e.g. a=ai ei or b=b j e j ),
second-order tensors (or dyads) are designated by italic uppercase bold letters (e.g.
A= Alm el ⊗ em or B= Bno en ⊗ eo), third-order tensors (or triads) by italic low-
ercase bold calligraphic letters (e.g. a=apqr ep ⊗ eq ⊗ er ), and fourth-order ten-
sors (or tetrads) are symbolised by italic uppercase bold calligraphic letters (e.g.
AAA= Astuv es ⊗ et ⊗ eu ⊗ ev), whereas Einstein sum convention is applied. Latin
indices run through the values 1, 2, and 3, while Greek indices run through the
values 1 and 2.

In the following, essential operations for tensors used in this paper are introduced
based on a Cartesian coordinate system and orthonormal bases, e.g. {ei }:
• the scalar product

a· b=ai b j ei · e j =ai bi =α α ∈ R , (8)

• the cross product

a × b=ai b j ei × e j =ai b j εi jk ek = c , (9)

• the dyadic product

a ⊗ b=ai b j ei ⊗ e j =C , (10)

• the composition of a second and a first-order tensor

A· a= Alm ai el ⊗ em· ei = Ali ai el =d , (11)
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• the composition of two second-order tensors

A· B= Alm Bno el ⊗ em· en ⊗ eo= Alm Bmo el ⊗ eo= D , (12)

• the cross product between a second and a first-order tensor

A × b= Alm b j el ⊗ em × e j = Alm b j εmjk el ⊗ ek =G , (13)

• the double scalar product between two second-order tensors

A : B= Alm Bno el ⊗ em: en ⊗ eo
= Alm Bmo (14)

• the double scalar product between a fourth and a second-order tensor

AAA : B= Apqrs Bno ep ⊗ eq ⊗ er ⊗ es: en ⊗ eo
= Apqrs Bsr ep ⊗ eq = F . (15)

As previously applied, εi jk is the permutation symbol

εi jk =

⎧
⎪⎨

⎪⎩

+1 if (i, j, k) is an even permutation of (1, 2, 3)

−1 if (i, j, k) is an odd permutation of (1, 2, 3)

0 if (i, j, k) is not a permutation of (1, 2, 3)

. (16)

Each tensor A canbedecomposed in its symmetric Asym (A = AT or b· A = A· b)
and antimetric part Askw (A = −A� or b· A = −A· b).

A = Asym + Askw
Asym = 1

2

[
A + A�]

Askw = 1
2

[
A − A�] (17)

The norm of a vector a is defined as |a| = [a· a]1/2. The Nabla operator ∇ is
defined as ∇2= eα

∂/∂Xα for two-dimensional considerations and ∇3= ei ∂/∂Xi in three
dimensions. ∇·� is the divergence, and ∇� is the gradient of a tensor. ∇sym�=
1/2[∇� + ∇��] is the symmetric part of the associated gradient, where� holds true
for every differentiable tensor field. The transposed gradient is defined as ∇�� =
[∇�]� where � holds for all first-order tensors.

2 The Original Problem

In the present treatise we follow the perspective of Zhilin [44]. As alreadymentioned,
this is driven by a more pragmatic viewpoint since we neglect drilling rotations at
deformable directed surfaces. In context of engineering applications this is justifiable
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since the rigidity against wrinkling is considerably bigger than against bending and
torsion of the surface. In the sequel we delineate the tenets of this theory. Thereby
we use a more appropriate notation for representation. The theory is expected to find
applications in the treatment of mechanics of thin walled structural elements with
arbitrary loadings and stiffnesses.

2.1 Kinematics

We introduce deformations measures associated with three distinct deformation
states. Thereby we neglect terms of higher order for the in-plane displacement gra-
dient and the rotational gradient.

G = ∇sym
2 v (18)

K = ∇sym
2 ϕ (19)

g = ∇2w + ϕ (20)

Herein, G = Gαβeα ⊗ eβ is the second-order in-plane strain tensor, K = Kαβeα ⊗
eβ is the second-order curvature change tensor, and g = gαeα is the first-order trans-
verse shear strain tensor. The tensors G and K are symmetric. In the sequel we will
introduce dual measures to these deformation tensors.

2.2 Kinetics

Analogous to Cauchys theorem, boundary quantities are defined by forces and
moments acting at the surface which is the starting point of Zhilin’s approach.
Thereby we make use of tangential forces sS, orthogonal forces pS, and out-of-
plane moments mS acting at the surface.

nν = lim
�L→0

�sS
�L

mν = lim
�L→0

�(mS × n)

�L
qν = lim

�L→0

�pS
�L

(21)

Herein L is a lengthmeasure. The vectors and the scalar of the left hand sides indicate
the boundary resultants of the in-plane state nν , the out-of-plane state mν and the
transverse shear state qν . The orientation of the cut is defined by the corresponding
normal. Thereby we make use of the boundary normals n and ν, introduced in
Sect. 1.2. Following Cauchy [9], a tensor field exists to the boundary resultants
introduced in Eq. (21). The following applies to boundaries with normals n.

n· N = o n· L = o n· q = 0 (22)
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Fig. 2 Forces and moments at the surface as well as exemplary loading at the outer faces

However, with the boundary normal ν, which points along the plane directions, the
following boundary loads result.

ν· N = nν ν· L = mν ν· q = qν (23)

As with Cauchy’s Lemma, the resultants at opposite edges are equal in magnitude,
but opposite.

nν(−ν) = −nν(ν) mν(−ν) = −mν(ν) qν(−ν) = −qν(ν) (24)

Tensors for the stress resultants arise fromEqs. (22) and (23). Here N = Nαβeα ⊗ eβ

is the in-plane force tensor, L = Mαβeα ⊗ eβ is the polar tensor of moments, and
q = Qαeα [32] is the transverse shear force vector. Components of these measures
are visualized in Fig. 2. It is worth tomention that the tensors N and L are symmetric.

2.3 Equilibria

In present context we here built the local forms of the equilibrium of forces and the
equilibrium of moments. This results in the so called Euler’s laws of motion whereby
we neglect acceleration terms for the sake of brevity. Thereby forces acting at the
outer faces S± are summarized by means of the overall surface force vector f .

f = G(s, p) f = s + pn (25)

Herein s = sαeα is tangential and pn the orthogonal portion. We furthermore intro-
duce moments m = −m2e1 + m1e2. The local forms of force and moment equilib-
rium are given as follows.

∇3· (N + q ⊗ n) + f = o (26)

∇2· (−L × n) + q × n + m = o (27)

Obviously the overall force tensor F = Fαi eα ⊗ ei = N + q ⊗ n = Nαβ eα ⊗ eβ +
Qαeα ⊗ n and the axial tensor of moments M = −L × n = Mαβeα ⊗ n × eβ are
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both not symmetric. Alternatively one can introduce a representationwhere all shares
are clearly distinguished.

∇2· N + s = o (28)

∇2· q + p = 0 (29)

∇2· L − q + m × n = o (30)

Therein we have splitted the force equilibrium into an in-plane [Eq. (26)· P] and
an out-of-plane part [Eq. (26)· n]. We have furthermore rewritten the moment equi-
librium for the sake of clarity. Apparently this presentation offers the advantage to
operate with the symmetric measures N and L, while the transverse shear measure
q ⊗ n is reduced to the tensor of first order q.

In context of engineering applications we assume that moments are resulting
from forces acting at the outer faces solely, i.e. independent moments do not exist.
Therefore, we can write the moments as functions of the tangential forces.

m = K(s) m × n = h

2
s (31)

However, by no means our theoretical framework is restricted to the constrain intro-
duced in Eq. (31).

2.4 Boundary Conditions

The following boundary conditions are required to solve the field equations intro-
duced above. Thereby we distinguish between so called Dirichlet ∂SD and Neu-
mann boundaries ∂SN, which are defined as follows at the boundary ∂S of the
two-dimensional body manifold.

∂S = ∂SD ∪ ∂SN ∂SD ∩ ∂SN = ∅ (32)

In the sequel, prescribed quantities are designated with a superscript star.

2.4.1 Dirichlet Boundary Conditions

The Dirichlet boundary conditions are constraints in the form of given translations
and rotations.

v(r0) = v�(r0)

ϕ(r0) = ϕ�(r0) ∀ r0 ∈ ∂SD (33)

w(r0) = w�(r0)

Homogeneous Dirichlet boundary conditions can also be specified.
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2.4.2 Neumann Boundary Conditions

The Neumann boundary conditions link forces and moments that can act as loads on
the boundary of the surface continuum with the stress resultants.

ν· N = n�
ν ν· L = m�

ν ν· q = q�
ν ∀ r0 ∈ ∂SN (34)

2.4.3 Initial Conditions

On the other hand it is possible to introduce translations and rotations and veloc-
ity fields thereof at time t = t0, representing the initial state. Since we restrict
our concern to the scleronomous case, we drop the description of �(r0, t0) ∀� ∈
{v, v̇,ϕ, ϕ̇,w, ẇ}.

2.5 Constitutive Relations

In present treatise we assume linear elastic material behavior. In context of engineer-
ing applications we can presuppose this. In this case, the kinetic measures depend on
the first gradient of the degrees of freedom inmaximum. So, the measures introduced
in Eqs. (22) and (23) depend on themeasures given in Eqs. (18), (19), and (20) solely.
In generalized form, the constitutive equations can be given as follows.

N = AAA : G +BBB: K +c· g (35)

L = BBB: G +DDD: K +d· g (36)

q = c: G +d: g + Z· g (37)

Herein AAA and DDD are fourth-order stiffness tensors, BBB is a fourth-order coupling
stiffness tensor,c andd are third-order coupling stiffness tensors, and Z is a second-
order stiffness tensor.When reducing to themid surface of a homogeneous plate with
isotropic material behavior, the coupling stiffness tensors vanish.

in-plane–out-of-plane coupling:BBB = OOO (38)

in-plane–transverse shear coupling:c = o (39)

out-of-plane–transverse shear coupling:d = o (40)

For completely decoupled deformation states the constitutive equations can be con-
siderably simplified.
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N = AAA : G (41)

L = DDD: K (42)

q = Z· g (43)

To be exact,AAA is the in-plane stiffness,DDD is the out-of-plane stiffness, and Z is the
transverse shear stiffness. These linear mappings are in accordance with Hooke’s law
in linear elasticity of three-dimensional Cauchy continua [9]. In the case of isotropy,
these constitutive tensors read as follows.

AAA = Dip νP ⊗ P + 0.5Dip (1−ν) (P � P + P � P) (44)

DDD = Dop νP ⊗ P + 0.5Dop (1−ν) (P � P + P � P) (45)

Z = DtsP (46)

Herein we have introduced three engineering interpretations. These are the in-plane
stiffness Dip, the out-of-plane stiffness Dop, and the transverse shear stiffness Dts.

Dip = Y h

1 − ν2
Dop = Y h3

12
(
1 − ν2

) Dts = κ
Y h

2 (1 + ν)
(47)

Herein, Y is Young’s modulus and ν is Poisson’s ratio. The parameter κ is a tuning
parameter to account for the shear energy contribution. Furthermore we make use of
the following metric tensors where � and � are conjugation products [33].

P ⊗ P = eα ⊗ eα ⊗ eβ ⊗ eβ

P � P = eα ⊗ eβ ⊗ eβ ⊗ eα P � P = eα ⊗ eβ ⊗ eα ⊗ eβ

Wecan identify the following relations of the constitutivemeasures introduced above.

Dop = h2

12
Dip ∧ DDD = h2

12
AAA (48)

However, in context of isotropy, the stiffness tensors possess twomaterial parameters,
one geometry parameter and one tuning parameter. Restrictions on these coefficients
are as follows which result for reasons of stability (Y , h), physical interpretation (h),
and consistency (κ).

Y > 0 − 1 < ν <
1

2
h > 0 0 < κ ≤ 1 (49)

Alternative representation forms of Eqs. (44)–(46)were given by, e.g. Naumenko and
Eremeyev [29], Aßmus et al. [7], or Altenbach [2]. However, following properties
apply to the constitutive tensorsHHH ∈ {AAA,DDD}.
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B:HHH: A = A:HHH: B (50)

A:HHH = A�:HHH (51)

HHH: A = HHH: A� (52)

A:HHH: A ≥ 0 (53)

HHH: Askw = 0 (54)

Herein A and B are chosen arbitrary. For the second-order constitutive tensor Z, the
following applies.

Z· a = a· Z (55)

a· Z· a ≥ 0 (56)

Herein a is chosen arbitrary.

2.6 Variational Principle

Exact solutions in closed-form are only available for a small family of problems.
For the formulation of approximation methods it is helpful to use equivalent vari-
ational statements instead of equilibrium conditions. Variational principles provide
information on the extremal properties of functionals. A typical representative is
the principle of virtual work. The principle of virtual work for present generalized
problem can be formulated as follows.

δWint = δWext (57)

with

δWint =
∫

S

(N: δG + L: δK + q· δg) dS (58)

δWext =
∫

δS

(nν· δv + mν· δϕ + qνδw) d(∂S) +
∫

S

(pδw + s· δv) dS (59)

The equilibrium equations introduced in preceding sections are fulfilled for the
deformable plane surface if and only if Eq. (57) holds for all virtual fields δv, δϕ,
and δw.
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2.7 Classification and Formalization

As apparent in the splitted representation of the equlibrium equations, we can iden-
tify three different states. The first one is the in-plane state [Eq. (28)], the second
is the transverse shear state [Eq. (29)], and the third one is the out-of-plane state
[Eq. (30)]. In progress, this also becomes apparent in the constitutive equations (41),
(42), and (43)whereby reasons for simplification due to decoupling are clearly stated.
However, we herein use the designation ‘superposed’ in the sense that all three states
are uncoupled but heterodyne. This is reasonable in context of linearity, as pre-
supposed in present treatise. For coupled deformation states, it is not possible to
decompose the original problem into various subproblems. However, it turns out that
the direct approach results in a generalized framework for the treatment of slender
structures like thin plates.

Based on the boundary value problem presented in the previous sections, a struc-
tured overview is developed, which is graphically presented in form of a Tonti dia-
gram [41]. The left column records the equilibria as a function of the field variables,
their flux and their production terms. The right column contains the field variables
including their temporal and spatial derivatives. These measures result in the driving
forces which are connected to the field variables via constitutive laws (Fig. 3).

Fig. 3 Tonti diagram for the five parameter deformable plane surface problem, adapted from [6]
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3 Subclasses

3.1 In-Plane Loaded Plate Problem

Present problem is concerned with the subproblem where all forces and deforma-
tions acting in-plane. This case is often referred to as membrane state, causing some
confusion since we will also consider compression, what is not the case for mem-
branes. Of course, the treatment of membranes is a separate problem. Therefore,
others coined the state considered as ‘disc’ state or ‘disc’ problem [18]. Obviously
this choice has also shortcomings. That is the reason why we call it in-plane loaded
plate problem. Following restrictions are introduced in the context of the theory
introduced in Sect. 2:

• The surface is only loaded in-plane.
• The surface is stretched and sheared, but not bent.
• All normals to the surface shift parallel.

These restrictions induce various consequences. The kinematics are reduced to the
translational degrees of freedom

v = v1e1 + v2e2 (60)

Therefore, the in-plane strain tensor is sufficient to describe deformation measures.

G = ∇sym
2 v = Gαβ eα ⊗ eβ (61)

Since only tangential loads are acting, kinetics are defined through forces nν .

nν = lim
�L→0

�sS
�L

(62)

So, the in-plane force tensor results.

n· N = o ν· N = nν (63)

The analogy of Cauchy’s lemma remains with the following part.

nν(−ν) = −nν(ν) (64)

For boundary conditions, only in-plane portions remain.

v(r0) = v�(r0) ∀ r0 ∈ ∂SD (65)

ν· N = n�
ν ∀ r0 ∈ ∂SN (66)

The equilibrium equations reduces to the following in-plane portion.
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∇2· N + s = o (67)

The material behavior is solely determined by the in-plane relations

N = AAA: G (68)

with the in-plane stiffness tensor.

AAA = Dip νP ⊗ P + 0.5Dip (1−ν) (P � P + P � P) (69)

In context of Eq. (57) we can reduce the terms of internal and external work for the
in-plane loaded problem to the following expressions.

δWint =
∫

S

(N: δG) dS (70)

δWext =
∫

δS

(nν· δv) d(∂S) +
∫

S

(s· δv) dS (71)

3.2 Out-of-Plane Loaded Plate Problems

Present problem is concerned with the subproblems where all forces and deforma-
tions acting out-of-plane. In present treatise we assume that moments acting at the
surface arise from tangential loads at the surface solely. Since tangential loads are
unconsidered in the out-of-plane loaded case, these moments remain zero (m = o,
m × n = o). This is also in the sense of Mindlin [24] and Kirchhoff [19].

3.2.1 Shear-Deformable Plate

First we want to treat the problem of shear-flexible (also shear-deformable or shear-
soft) plate problem. This problem is associated with the names Reissner [36, 37] and
Mindlin [24]. We introduce following restrictions in context of the overall problem:

• The surface is loaded out-of-plane only, i.e. only orthogonal portions of the load
vector.

• The surface is bent, bot not stretched and strained.
• The deflection is unequal zero.

Thus, the degrees of freedom are reduced to deflections wn and rotations ϕ. There-
fore, deformation measures considered are the curvature change tensor and the trans-
verse shear strain vector.
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K = ∇sym
2 ϕ (72)

g = ∇2w + ϕ (73)

Since only orthogonal loads are acting, kinetics are defined through forces qν .

mν = lim
�L→0

�(mS × n)

�L
qν = lim

�L→0

�pS
�L

(74)

For boundary conditions, only moment and transverse shear portions remain.

n· L = o ν· L = mν (75)

n· q = 0 ν· q = qν (76)

Cauchy’s Lemma for residually moments and forces remain.

mν(−ν) = −mν(ν) qν(−ν) = −qν(ν) (77)

In terms of boundary conditions, we can now define out-of-plane rotations and out-
of-plane forces.

ϕ(r0) = ϕ�(r0) ∀ r0 ∈ ∂SD (78)

w(r0) = w�(r0) ∀ r0 ∈ ∂SD (79)

ν· L = m�
ν ∀ r0 ∈ ∂SN (80)

ν· q = q�
ν ∀ r0 ∈ ∂SN (81)

The equilibria are reduced to terms for the out-of-plane deformation.

∇2·L − q = o (82)

∇2· q + p = 0 (83)

The material behaviour is described by the constitutive tensors for the out-of-plane
state while considering transverse shear deformations separately.

L = DDD: K (84)

q = Z· g (85)

Herein, the out-of-plane and transverse shear relations for the stiffness tensors

DDD = Dop νP ⊗ P + 0.5Dop (1−ν) (P � P + P � P) (86)

Z = DtsP (87)

are used. Considering the principle of virtual work, we can reduce the required terms
to the following.
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δWint =
∫

S

(L: δK + q· δg) dS (88)

δWext =
∫

δS

(mν· δϕ + qνδw) d(∂S) +
∫

S

(pδw) dS (89)

3.2.2 Shear-Rigid Plate

As a last point we want to derive the shear rigid problem which is widely used in
engineering sciences as it is probably the simplest approach to treat mechanical prob-
lems at slender structures. This problem is associated with the name Kirchhoff [19].
Assumptions:

• The surface is loaded out-of-plane only, i.e. only orthogonal portions of the load
vector.

• The surface is bent, bot not stretched and strained.
• All normals to the surface remain orthogonal for arbitrary deformations, i.e. rota-
tions of material points are no longer independent.

This last key point is related to the transverse shear stiffness. In the shear-rigid case,
the shear stiffness tends to infinity (Dts → ∞). While considering this case, we can
substitute the rotation-curvature-change relation (19) since

ϕ = −∇2w (90)

holds true now. This induces, that only one degree of freedom remains. so that
K = −∇sym

2

[∇2w
]
results. Furthermore, g = ∇2w − ∇2w = o holds true. Due to

this relation, the system is adequately described by a unknown function for the
deflectionw, the only remaining independent degree of freedom.Within this context,
we can reformulate Eq. (30) to ∇· L = q and insert this expression in Eq. (29). As
becomes apparent, the set of governing equations depends on the moments and their
dual measures solely.

∇2·[∇2·L] + p = 0 (91)

L = DDD : K (92)

K = −∇sym
2

[∇2w
]

(93)

The transverse shear stresses q are unequal zero and can be determined through
equilibrium equations since there is no separate constitutive relation. The only con-
stitutive measure remaining is the out-of-plane stiffness tensor.

DDD = Dop νP ⊗ P + 0.5Dop (1−ν) (P � P + P � P) (94)
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However, concerning the boundary conditions kinetic measures and boundary con-
ditions, Eqs. (74)–(81) hold true. The terms of virtual work are reduced as follows.

δWint =
∫

S

(L: δK ) dS (95)

δWext =
∫

δS

(mν· δ [−∇2w] + qνδw) d(∂S) +
∫

S

(pδw) dS (96)

4 Conclusion

We have introduced a plane surface with its kinematic degrees of freedom, the geom-
etry of deformation, strain and curvature change measures, compatibility conditions,
external and internal loads and equlibria. The constitutive equations are streamlined
by the smart choice of the position of S in B. Boundary conditions are introduced
which are important for the practical implementation of the local forms of the equi-
libria introduced. Finally, a variational principle is exploited to generate a solution
approach for displacement, deflection, and rotation fields of lesser smoothness. In
this sense we may conclude that the direct approach results in a geometrically exact,
elegant, and concise description of the governing equations. However, since our
starting point was reduced to a fully linear framework it is unfeasible to derive the
membrane problem thereof.

Based on the representation introduced we distinguish three basic subproblems. A
visualization of these sets is given in Fig. 4. Through typical engineering assumptions
that are clearly formulated we have derived classical theories for plates. Hereby we
have shown, that the direct approach for plates is in fact applicable for a wide class
of problems - all subproblems fit into this framework without conceptual problems.
Thereby this gives it conceptual and methodological clearness. The considerations
presented can be enlarged when terms of inertia are taken into account. We have
furthermore omitted to decay in special cases of the these subclasses. Such depictions
in scalar representationwill occasionally be associatedwith special loading scenarios
or boundary conditions, respectively.

Fig. 4 Euler diagram with subclass problems designating special cases of the superposed problem
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Popular computation approaches for closed-form solutions of the problems pre-
sented are delivered by, e.g. Navier [30], Nádai [25], and Levy [22]. Approximation
methods are given by Ritz [38], Galerkin [13], Wlassow [42, 43], and Kantoro-
witsch [16]. Hereby, the use of Airys stress function [1] is advantageous. Practical
implementations are presented in, e.g. [26–28].
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