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Abstract In this article we obtain exact solutions of finite inhomogeneous defor-
mations of three-dimensional micropolar elastic bodies. We consider a model of the
physically linear isotropic compressible material with six material parameters. The
obtained solutions describe following types of finite deformations: cylindrical bend-
ing of a rectangular plate, straightening of a cylindrical sector, double cylindrical
bending, pure bending of a circular cylinder sector, inflation and reversing of a hol-
low sphere. The results can be used to verify two-dimensional models of micropolar
elastic shells.

1 Introduction

In this paper we derive exact solutions for problems of large inhomogeneous defor-
mations of compressible isotropic micropolar elastic bodies. By a micropolar body
we mean a continuous medium with couple stresses and rotational interactions of
material particles. This model is also called the Cosserat continuum. The basics of
the nonlinear theory of the Cosserat elastic continuum had been given in [5, 8–11, 14,
16]. The model of a micropolar medium is used to describe granular polycrystalline
bodies, polymers, composites, suspensions, liquid crystals, geophysical structures,
biological tissues, metamaterials, nanostructured materials, etc. The exact solutions
can be used to a experimental determination ofmaterial parameters in the constitutive
relations of themedium. Also they can be used to control the accuracy of calculations
in numerical solution of nonlinear equilibrium equations for micropolar bodies.

The derived solutions are special cases of one-dimensional deformations of
micropolar elastic bodies. Those are suchdeformations forwhich the systemof partial
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differential equations of equilibrium reduces to a system of ordinary differential
equations. A general method of constructing a class of one-dimensional deforma-
tions of a non-linear elastic Cosserat continuum is presented in [12]. In this paper the
exact solutions describe the following types of one-dimensional deformations of a
micropolar elastic medium: cylindrical bending of a rectangular plate, straightening
of a circular cylinder sector, inflation and reversing of a cylindrical tube, pure bend-
ing of a circular cylinder sector, double cylindrical bending, inflation and reversing
of a hollow sphere. These types of deformations correspond to universal solutions of
equilibrium equations for the incompressible isotropicmicropolar bodieswhichwere
obtained in the earlier paper [18]. In the case of compressed bodies, exact solutions
in explicit analytic form for large deformations can be obtain only for some specific
constitutive relations of an elastic material. In the present paper we use a model
of the physically linear isotropic compressible micropolar body with six material
parameters.

The micropolar shell model is two-dimensional analogue of the Cosserat contin-
uum [1, 3, 4, 6, 13]. It is also called the Cosserat surface. In this model, by a shell
we mean a material surface or a two-dimensional material continuum. Each point
(particle) of this continuum has six degrees of freedom of an absolutely rigid body.
The rotational degrees of freedom of a surface particle are kinetically independent
of its displacement field. Solutions of problems of stretching, bending, inflation and
reversing of cylindrical and spherical Cosserat surfaces, and bending of flat plates
were obtained in the paper [17] for finite deformations. The solutions [17] describe
nonlinear deformations of the shells, similar to the deformations corresponding to
represented here solutions of three-dimensionalmicropolar theory of elasticity. Com-
parison of solutions obtainedwithin the theory of shells and solutions obtainedwithin
the three-dimensional theory can be used to verify relations of the theory of microp-
olar shells.

2 Initial Relations of Nonlinear Micropolar Elasticity

The deformation of the elastic medium is described by a mapping of the reference
configuration to the current configuration. In the case of a micropolar continuum, it
is determined by two kinematically independent fields of displacement and rotation

R = R(r) = r + u(r), H = H(r),

where r = xs is , R = Xk ik , (s, k = 1, 2, 3), xs and Xk are Cartesian coordinates of
the reference and current configurations, respectively, ik are the unit vectors of the
Cartesian coordinates, u is a displacement vector field, H is a proper orthogonal
tensor, which describes the rotational degrees of freedom of the micropolar medium.
It is called the microrotation tensor (or turntensor).

Below we use the following gradient, divergence, and rotor operators in the ref-
erence configuration coordinates
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grad� = rn ⊗ ∂�

∂qn
, div� = rn · ∂�

∂qn
,

rot� = rn × ∂�

∂qn
, rn = ik

∂qn

∂xk
,

where � is an arbitrary differentiable tensor field of any order, qn = qn(x1, x2, x3)
are curvilinear coordinates (the Lagrangian coordinates).

The system of equations of a micropolar elastic medium in the absence of mass
forces and moments includes the following equations [5, 8–11, 14, 16]:

Equilibrium equations

divD = 0, divG + (
FT · D)

× = 0. (1)

Constitutive relations

D = P · H, G = K · H,

P = ∂W

∂E
, K = ∂W

∂L
, W = W (E,L).

(2)

Geometric relations

F = gradR, E = F · HT,

L = 1

2
rn ⊗

(
∂H
∂qn

· HT

)

×
= 1

2
Itr

[
H · (rotH)T

] − H · (rotH)T .
(3)

Here D, G are the stress and couple stress tensors of the first Piola-Kirchhoff type,
P, K are a stress and a couple stress tensors of the second Piola-Kirchhoff type, E,
L are deformations tensors of a nonlinear micropolar continuum called stretch and
wryness tensors, respectively [5, 8–11, 14], I is a unit tensor, W is a strain energy
density. Symbol �× means the vector invariant of a second-order tensor �:

�× = (Φmnrm ⊗ rn)× = Φmnrm × rn.

Below we will use the model of the compressible isotropic physically linear
micropolar continuum [10]. This model is determined by the quadratic function
of the strain energy density

2W = λtr2(E − I) + (μ + β) tr
[
(E − I) · (E − I)T

]

+ (μ − β) tr(E − I)2 + δtr2L + (γ + η) tr
(
L · LT

) + (γ − η) trL2.
(4)

where λ, μ, β, δ, γ, η are material constants. Also we will use the Poisson’s ratio,
which is expressed as

ν = λ

2 (λ + μ)
.
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For thismaterialmodel the stress tensorP is a linear function of the tensor (E − I),
and the couple stress tensor K is a linear function of the wryness tensor L:

P = λI (trE − 3) + (μ + β) (E − I) + (μ − β)
(
ET − I

)
,

K = δItrL + (γ + η)L + (γ − η)LT.
(5)

Let us consider a special case of deformation of the micropolar medium such that
H = A, where A a proper orthogonal macrorotation tensor. I.e. it is the orthogonal
multiplier in the polar expansion of the strain gradient [7]

F = U · A. (6)

Here U is a symmetric positive definite stretch tensor [7]. In this case, according to
(3) and (6), we have

E = ET = U.

Let us suppose that material constants δ, γ and η are zero. Then it follows from
(5) that the couple stresses are absence: K = 0, and the stress tensor P is symmetric
and is expressed by the formula

P = λItr(U − I) + 2μ (U − I) , (7)

and the strain energy density has the form

W = 1

2
λtr2(U − E) + μtrU2. (8)

The relations (7), (8) correspond to the model of the harmonic or the semi-linear
material which is well-known in the theory of elasticity of simple materials [7]. Thus
themodel of the physically linear micropolar body reduces to themodel of the simple
harmonic material when δ = γ = η = 0 and H = A. In other words, the physically
linear micropolar material (4) can be considered as a generalization of the harmonic
material model to the moment elastic medium.

In the nonlinear theory of elasticity of simple materials, a number of exact solu-
tions are known for finite deformations [7]. These solutions belong to the class of
isotropic incompressible bodies. The list of models of compressible nonlinear elastic
bodies, that allow explicit exact solutions, is quite small. Most of these exact solu-
tions was found for semi-linear material [7]. As it shows below, the model of the
physically linear micropolar body also allows to obtain several exact solutions about
inhomogeneous finite deformations.

When the equilibrium problems are solving by the semi-inverse method, we
give the finite deformations of a medium by the mapping QM = QM(qs), where
qs (s = 1, 2, 3) are curvilinear coordinates in the reference configuration (the
Lagrangian coordinates), and QM (M = 1, 2, 3) are curvilinear coordinates in the
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current configuration (the Eulerian coordinates). Further, we use the following coor-
dinate systems:

Cartesian:

q1 = x1, q2 = x2, q3 = x3,

Q1 = X1, Q2 = X2, Q3 = X3.

Cylindrical:

q1 = r, q2 = ϕ, q3 = z,

Q1 = R, Q2 = Φ, Q3 = Z ,

x1 = r cosϕ, x2 = r sinϕ, x3 = z,

X1 = R cosΦ, X2 = R sinΦ, X3 = Z .

Spherical:

q1 = r, q2 = ϕ, q3 = θ,

Q1 = R, Q2 = Φ, Q3 = Θ,

x1 = r cosϕ cos θ, x2 = r sinϕ cos θ, x3 = r sin θ,

X1 = R cosΦ cosΘ, X2 = R sinΦ cosΘ, X3 = R sinΘ.

Note, θ = ±π
2 at the sphere poles.

For these orthogonal coordinates we use the orthonormalized base vectors tangent
to curvilinear coordinate curves.As above, i1, i2, i3 are the unit vectors of theCartesian
coordinates. The basis vectors er , eϕ, ez and eR , eΦ , eZ associated with cylindrical
coordinates are expressed as

er = i1 cosφ + i2 sin φ, eφ = −i1 sin φ + i2 cosφ, ez = i3,

eR = i1 cosΦ + i2 sinΦ, eΦ = −i1 sinΦ + i2 cosΦ, eZ = i3.

The basis vectors associated with the spherical coordinates are presented as

er = (i1 cosϕ + i2 sinϕ) cos θ + i3 sin θ,

eϕ = −i1 sinϕ + i2 cosϕ,

eθ = − (i1 cosϕ + i2 sinϕ) sin θ + i3 cos θ,

eR = (i1 cosΦ + i2 sinΦ) cosΘ + i3 sinΘ,

eΦ = −i1 sinΦ + i2 cosΦ,

eΘ = − (i1 cosΦ + i2 sinΦ) sinΘ + i3 cosΘ.

In this paper we present the exact solution for six families of finite deformations of
the micropolar theory of elasticity. Each family is characterized by a mapping QM =
QM(qs). This mapping gives the field of displacement of the medium and contains
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one unknown function of one variable. Microrotation in a micropolar medium is
kinematically independent of displacements. Thus the mapping QM(qs) have to
supplemented by a set of orthogonal tensor fields H(qs) to complete the description
of the deformation. Each of the six families of the inhomogeneous deformations
contains several subfamilies that differ in microrotation fields. For each subfamily,
the expressions for the tensors E and L are obtained using the formula (3). The
expression for the deformation gradient F is identical for all solutions from one
family.

3 Cylindrical Bending of Rectangular Plate

A mapping QM = QM(qs) has the form

R = R(x1), Φ = kx2, Z = αx3. (9)

where k, α are constants. Considering thatR = ReR + ZeZ , we obtain the deforma-
tion gradient

F = R′i1 ⊗ eR + kRi2 ⊗ eΦ + αi3 ⊗ eZ , R′ = dR

dx1
.

The mapping (9) is supplemented by four subfamilies of microrotation.

3.1 Subfamily 1A

H = i1 ⊗ eR + i2 ⊗ eΦ + i3 ⊗ eZ ,

E = R′i1 ⊗ i1 + kRi2 ⊗ i2 + αi3 ⊗ i3,

L = ki2 ⊗ i3.

(10)

According to (2), (5), (10) the stress and couple stress Piola type tensors are
defined as

D = D1R i1 ⊗ eR + D2Φ i2 ⊗ eΦ + D3Z i3 ⊗ eZ ,

D1R = (λ + 2μ) R′ + λkR + λα − (2μ + 3λ) ,

D2Φ = λR′ + (λ + 2μ) kR + λα − (2μ + 3λ) ,

D3Z = λR′ + λkR + (λ + 2μ)α − (2μ + 3λ) .

(11)

G = G2Z i2 ⊗ eZ + G3Φ i3 ⊗ eΦ,

G2Z = k (γ + η) , G3Φ = k (γ − η) .
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The equilibrium equation (1)2 is satisfied identically for the considered deforma-
tion. The equilibrium equation (1)1 is reduced to a scalar equation

∂D1R

∂x1
− kD2Φ = 0. (12)

From (11) the Eq. (12) is reduced to a ordinary differential equation in the unknown
function R(x1):

R′′ − k2R = −k (1 − ν (α − 1))

1 − ν
. (13)

The solution of this differential equation is

R(x1) = c1e
−kx1 + c2e

kx1 + (1 − ν (α − 1))

k (1 − ν)
. (14)

In view of 0 ≤ x1 ≤ h, where h is a plate thickness, we can write the boundary
conditions of the absence of external loads on the faces of the plate

D1R

∣∣∣
x1=0,h

= 0. (15)

The constants of integration are determined from (11), (13), (14) and (15) as

c1 = − (1 − ν (α − 1)) ekh

k (1 − ν)
(
1 + ekh

) ,

c2 = (1 − ν (α − 1)) (1 − 2ν)

k (1 − ν)
(
1 + ekh

) .

3.2 Subfamily 1B

H = −i1 ⊗ eR + i2 ⊗ eΦ − i3 ⊗ eZ ,

E = −R′i1 ⊗ i1 + kRi2 ⊗ i2 − αi3 ⊗ i3,

L = −ki2 ⊗ i3.

So we have

D1R = (λ + 2μ) R′ − λkR + λα + (2μ + 3λ) ,

D2Φ = −λR′ + (λ + 2μ) kR − λα − (2μ + 3λ) ,

D3Z = λR′ − λkR + (λ + 2μ)α + (2μ + 3λ) ,

G2Z = k (γ + η) , G3Φ = −k (γ − η) .
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The equation for the unknown function R(x1) differs from the case of 1A:

R′′ − k2R = k (1 + ν (1 + α))

1 − ν
.

The solution of this differential equation is

R(x1) = c1e
−kx1 + c2e

kx1 + (1 + ν (α + 1))

k (1 − ν)
.

The integrations constants are determined from (15) as

c1 = (1 − 2ν) (1 + ν (α + 1)) ekh

k (1 − ν)
(
1 + ekh

) ,

c2 = − 1 + ν (α + 1)

k (1 − ν)
(
1 + ekh

) .

3.3 Subfamily 1C

H = i1 ⊗ eR − i2 ⊗ eΦ − i3 ⊗ eZ ,

E = R′i1 ⊗ i1 − kRi2 ⊗ i2 − αi3 ⊗ i3,

L = −ki2 ⊗ i3.

The stress and couple stress tensors have components

D1R = (λ + 2μ) R′ − λkR − λα − (2μ + 3λ) ,

D2Φ = −λR′ + (λ + 2μ) kR + λα + (2μ + 3λ) ,

D3Z = −λR′ + λkR + (λ + 2μ)α + (2μ + 3λ) ,

G2Z = k (γ + η) , G3Φ = k (γ − η) .

The equation for the unknown function R(x1) is written as

R′′ − k2R = k (1 + ν (α + 1))

1 − ν
.

The solution of this differential equation is

R(x1) = c1e
−kx1 + c2e

kx1 − 1 + ν (α + 1)

k (1 − ν)
.
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From (15) we obtain

c1 = − (1 − 2ν) (1 + ν (α + 1)) ekh

k (1 − ν)
(
1 + ekh

) ,

c2 = 1 + ν (α + 1)

k (1 − ν)
(
1 + ekh

) .

3.4 Subfamily 1D

H = −i1 ⊗ eR − i2 ⊗ eΦ + i3 ⊗ eZ ,

E = −R′i1 ⊗ i1 − kRi2 ⊗ i2 + αi3 ⊗ i3,

L = ki2 ⊗ i3.

We have

D1R = (λ + 2μ) R′ + λkR − λα + (2μ + 3λ) ,

D2Φ = λR′ + (λ + 2μ) kR − λα + (2μ + 3λ) ,

D3Z = −λR′ − λkR + (λ + 2μ) α − (2μ + 3λ) ,

G2Z = k (γ + η) , G3Φ = −k (γ − η) .

The equation for the unknown function R(x1) has the form

R′′ − k2R = k (1 − ν (α − 1))

1 − ν
.

The solution of this differential equation is

R(x1) = c1e
−kx1 + c2e

kx1 − (1 − ν (α − 1))

1 − ν
.

Using (15) we have

c1 = (1 − ν (α − 1)) ekh

k (1 − ν)
(
1 + ekh

) ,

c2 = − (1 − 2ν) (1 − ν (α − 1))

k (1 − ν)
(
1 + ekh

) .

It can be shown that resultant force vector acting in sections of a deformable body
Φ = const is equal to zero for all subfamilies 3A – 3D. The resultant moment has
direction of the vector eZ and value
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M = l

h∫

0

(
RDφΦ + GφZ

)
dr ,

where l is length of the sector of the cylinder along the coordinate z (0 ≤ z ≤ l).
The constant κ can be computed from given bending moment M . And constant

α can be calculated from given longitudinal force acting in sections Z = const

F = φ1

r1∫

r0

DzZrdr .

Here φ1 is a sector angle (0 ≤ φ ≤ φ1).

4 Straightening of a Circular Hollow–Cylinder Sector

A mapping QM = QM(qs) is described by

X1 = X1(r), X2 = ξφ, X3 = αz, (16)

where ξ, α are constants. In view of

R = X1i1 + X2i2 + X3i3,

we find the deformation gradient

F = X ′
1er ⊗ i1 + ξ

r
eφ ⊗ i2 + αez ⊗ i3, X ′

1 = dX1

dr
.

The mapping (16) is supplemented by four subfamilies of microrotations.

4.1 Subfamily 2A

H = er ⊗ i1 + eφ ⊗ i2 + ez ⊗ i3,

E = X ′
1er ⊗ er + ξ

r
eφ ⊗ eφ + αez ⊗ ez,

L = −1

r
eφ ⊗ ez .

(17)
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From (2), (5) and (17) the stress and couple stress tensors have the form

D = Dr1er ⊗ i1 + Dφ2eφ ⊗ i2 + Dz3ez ⊗ i3,

Dr1 = (λ + 2μ) X ′
1 + λ

ξ

r
+ λα − (2μ + 3λ) ,

Dφ2 = λX ′
1 + (λ + 2μ)

ξ

r
+ λα − (2μ + 3λ) ,

Dz3 = λX ′
1 + λ

ξ

r
+ (λ + 2μ)α − (2μ + 3λ) ,

(18)

G = Gφ3eφ ⊗ i3 + Gz2ez ⊗ i2,

Gφ3 = − (γ + η)
1

r
, Gz2 = − (γ − η)

1

r
.

The equilibrium equation (1)2 is satisfied identically for the considered defor-
mation. The equilibrium equation (1)1 is reduced to a scalar ordinary differential
equation

1

r

∂

∂r

(
r Dr1

)
= 0. (19)

In view of r0 ≤ r ≤ r1, where r0, r1 are inner and outer radii, respectively, the bound-
ary conditions for the absence of external loads on the lateral surfaces of the cylinder
sector are written as

Dr1

∣∣∣
r=r0,r1

= 0. (20)

In view of (19), (20), we obtain

Dr1 ≡ 0. (21)

The identity (21) is reduced to an ordinary differential equation in the unknown
function X1(r), namely

X ′
1 + ξν

(1 − ν) r
= 1 + (1 − α) ν

1 − ν
.

The solution of this differential equation has the form

X1(r) = 1 + (1 − α) ν

1 − ν
r − ξν

1 − ν
ln r + const.

The integration constant corresponds to a rigid displacement and could assume any
value, including zero.
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4.2 Subfamily 2B

H = −er ⊗ i1 + eφ ⊗ i2 − ez ⊗ i3,

E = k1X
′
1er ⊗ er + k2

ξ

r
eφ ⊗ eφ + k3αez ⊗ ez,

L = −1

r
eφ ⊗ ez .

We have

Dr1 = (λ + 2μ) X ′
1 − λ

ξ

r
+ λα + (2μ + 3λ) ,

Dφ2 = −λX ′
1 + (λ + 2μ)

ξ

r
− λα − (2μ + 3λ) ,

Dz3 = λX ′
1 − λ

ξ

r
+ (λ + 2μ)α + (2μ + 3λ) .

Gφ3 = (γ + η)
1

r
, Gz2 = − (γ − η)

1

r
.

The equation for the unknown function X1(r) differs from the case 2A:

X ′
1 − ξν

(1 − ν) r
= −1 + (1 + α) ν

1 − ν
.

The solution of this differential equation is

X1(r) = −1 + (1 + α) ν

1 − ν
r + ξν

1 − ν
ln r + const.

4.3 Subfamily 2C

H = er ⊗ i1 − eφ ⊗ i2 − ez ⊗ i3,

E = X ′
1er ⊗ er − ξ

r
eφ ⊗ eφ − αez ⊗ ez,

L = −1

r
eφ ⊗ ez .

The components of the stress and couple stress tensors are expressed as
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Dr1 = (λ + 2μ) X ′
1 − λ

ξ

r
− λα − (2μ + 3λ) ,

Dφ2 = −λX ′
1 + (λ + 2μ)

ξ

r
+ λα + (2μ + 3λ) ,

Dz3 = −λX ′
1 + λ

ξ

r
+ (λ + 2μ)α + (2μ + 3λ) ,

Gφ3 = (γ + η)
1

r
, Gz2 = (γ − η)

1

r
.

The equation in the unknown function X1(r) is

X ′
1 − ξν

(1 − ν) r
= 1 + (1 + α) ν

1 − ν
.

The solution of this differential equation is given by

X1(r) = 1 + (1 + α) ν

1 − ν
r + ξν

1 − ν
ln r + const.

4.4 Subfamily 2D

H = −er ⊗ i1 − eφ ⊗ i2 + ez ⊗ i3,

E = −X ′
1er ⊗ er − ξ

r
eφ ⊗ eφ + αez ⊗ ez,

L = −1

r
eφ ⊗ ez .

We have

Dr1 = (λ + 2μ) X ′
1 + λ

ξ

r
− λα + (2μ + 3λ) ,

Dφ2 = λX ′
1 + (λ + 2μ)

ξ

r
− λα + (2μ + 3λ) ,

Dz3 = −λX ′
1 − λ

ξ

r
+ (λ + 2μ)α − (2μ + 3λ) ,

Gφ3 = − (γ + η)
1

r
, Gz2 = (γ − η)

1

r
.

The equation for the unknown function X1(r) has the form

X ′
1 + ξν

(1 − ν) r
= −1 + (1 − α) ν

1 − ν
.
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The solution of this differential equation is

X1(r) = −1 + (1 − α) ν

1 − ν
r − ξν

1 − ν
ln r + const.

It can be shown that resultant force vector acting in sections of a deformable body
X2 = const has the direction of the vector i2 and value

F2 = l

r1∫

r0

Dφ2dr ,

where l is a cylinder sector length (0 ≤ z ≤ l).
The resultant force vector acting in sections of a deformable body X3 = const

has the direction of the vector i3 and value

F3 = φ1

r1∫

r0

Dz3rdr ,

where φ1 is a cylinder sector angle (0 ≤ φ ≤ φ1).
The constants ξ and α can be computed from given forces F2 and F3. And we

can compute the bending moment which is required for straightening a circular
hollow-cylinder sector. The resultant moment acts in sections of a deformable body
X2 = const, and has the direction of the vector i3 and value

M = l

r1∫

r0

(
X1Dφ2 + Gz3

)
dr .

5 Pure Bending and Reversing of a Circular
Hollow–Cylinder Sector

We set up a mapping QM = QM(qs) by defining

R = R(r), Φ = κφ, Z = αz. (22)

where κ and α are constants. In view of

r = rer + zez, R = ReR + ZeZ ,
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we find the deformation gradient

F = R′er ⊗ eR + κR

r
eφ ⊗ eΦ + αez ⊗ eZ , R′ = dR

dr
.

The mapping (22) is supplemented by four subfamilies of microrotations.

5.1 Subfamily 3A

H = er ⊗ eR + eφ ⊗ eΦ + ez ⊗ eZ ,

E = R′er ⊗ er + κR

r
eφ ⊗ eφ + αez ⊗ ez,

L = κ − 1

r
eφ ⊗ ez .

(23)

Using (2), (5), (23) stress and couple stress tensors are given by

D = DrRer ⊗ eR + DφΦeφ ⊗ eΦ + DzZez ⊗ eZ ,

DrR = (λ + 2μ) R′ + λ
κR

r
+ λα − (2μ + 3λ) ,

DφΦ = λR′ + (λ + 2μ)
κR

r
+ λα − (2μ + 3λ) ,

DzZ = λR′ + λ
κR

r
+ (λ + 2μ)α − (2μ + 3λ) ,

(24)

G = GφZeφ ⊗ eZ + GzΦez ⊗ eΦ,

GφZ = (γ + η)
κ − 1

r
, GzΦ = (γ − η)

κ − 1

r
.

The equilibrium equation (1)2 is satisfied identically for the considered deforma-
tion. The equilibrium equation (1)1 is reduced to a scalar equation

∂DrR

∂r
+ DrR − κDφΦ

r
= 0. (25)

Using (24), the Eq. (25) is reduced to an ordinary differential equation in the unknown
function R(r):

R′′ + R′

r
− κ2 R

r2
= (κ − 1) ((α − 1) ν − 1)

(1 − ν) r
.
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The solution for this differential equation is

R(r) = c1r
κ + c2r

−κ + (κ − 1) ((α − 1) ν − 1)
(
1 − κ2

)
(1 − ν)

r.

In view of r0 ≤ r ≤ r1, where r0, r1 are inner and outer radii, respectively, the
boundary conditions for the absence of external loads on the lateral surfaces of the
cylinder sector are written in the form

DrR

∣
∣∣
r=r0,r1

= 0. (26)

The constants of integration c1 and c2 can be obtained from the boundary condi-
tions (26). Their expressions are cumbersome enough to write them explicit here.

5.2 Subfamily 3B

H = −er ⊗ eR + eφ ⊗ eΦ − ez ⊗ eZ ,

E = k1R
′er ⊗ er + k2

κR

r
eφ ⊗ eφ + k3αez ⊗ ez,

L = −κ + 1

r
eφ ⊗ ez .

Now we have

DrR = (λ + 2μ) R′ − λ
κR

r
+ λα + (2μ + 3λ) ,

DφΦ = −λR′ + (λ + 2μ)
κR

r
− λα − (2μ + 3λ) ,

DzZ = λR′ − λ
κR

r
+ (λ + 2μ)α + (2μ + 3λ) .

GφZ = (γ + η)
κ + 1

r
, GzΦ = − (γ − η)

κ + 1

r
.

The equation in the unknown R(r) differs from the case 3 :

R′′ + R′

r
− κ2 R

r2
= − (κ + 1) ((α + 1) ν + 1)

(1 − ν) r
.

The solution of this differential equation is given by

R(r) = c1r
κ + c2r

−κ − (κ + 1) ((α + 1) ν + 1)
(
1 − κ2

)
(1 − ν)

r.
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5.3 Subfamily 3C

H = er ⊗ eR − eφ ⊗ eΦ − ez ⊗ eZ ,

E = R′er ⊗ er − κR

r
eφ ⊗ eφ − αez ⊗ ez,

L = −κ + 1

r
eφ ⊗ ez .

The components of the stress and couple stress tensors are expressed as

DrR = (λ + 2μ) R′ − λ
κR

r
− λα − (2μ + 3λ) ,

DφΦ = −λR′ + (λ + 2μ)
κR

r
+ λα + (2μ + 3λ) ,

DzZ = −λR′ + λ
κR

r
+ (λ + 2μ)α + (2μ + 3λ) ,

GφZ = (γ + η)
κ + 1

r
, GzΦ = (γ − η)

κ − 1

r
.

The equation in the unknown R(r) is written as

R′′ + R′

r
− κ2 R

r2
= (κ + 1) ((α + 1) ν + 1)

(1 − ν) r
.

The solution of this differential equation is given by

R(r) = c1r
κ + c2r

−κ + (κ + 1) ((α + 1) ν + 1)
(
1 − κ2

)
(1 − ν)

r.

5.4 Subfamily 3D

H = −er ⊗ eR − eφ ⊗ eΦ + ez ⊗ eZ ,

E = −R′er ⊗ er − κR

r
eφ ⊗ eφ + αez ⊗ ez,

L = κ − 1

r
eφ ⊗ ez .

Now we have

DrR = (λ + 2μ) R′ + λ
κR

r
− λα + (2μ + 3λ) ,
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DφΦ = λR′ + (λ + 2μ)
κR

r
− λα + (2μ + 3λ) ,

DzZ = −λR′ − λ
κR

r
+ (λ + 2μ) α − (2μ + 3λ) ,

GφZ = (γ + η)
κ − 1

r
, GzΦ = − (γ − η)

κ + 1

r
.

The equation in the unknown R(r) is written as

R′′ + R′

r
− κ2 R

r2
= − (κ − 1) ((α − 1) ν − 1)

(1 − ν) r
.

The solution of this differential equation is

R(r) = c1r
κ + c2r

−κ − (κ − 1) ((α − 1) ν − 1)
(
1 − κ2

)
(1 − ν)

r.

It can be shown that the resultant force vector acting in sections of a deformable
body Φ = const equals zero for all subfamilies 3A – 3D. And the resultant moment
has the direction of the vector eZ and value

M = l

h∫

0

(
RDφΦ + GφZ

)
dr ,

where l is a length of cylinder sector along the coordinate z (0 ≤ z ≤ l).
The constant κ can be computed from given bending moment M . The constant α

can be calculated from given longitudinal force acting in sections Z = const,

F = φ1

r1∫

r0

DzZrdr .

Here φ1 is sector angle (0 ≤ φ ≤ φ1).

6 Double Cylindrical Bending of a Circular
Hollow–Cylinder Sector

A mapping QM = QM(qs) is described by

R = R(r), Φ = sz, Z = tφ, (27)

where s, t are constants. Since
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r = Rer + zez, R = ReR + ZeZ ,

the deformation gradient is found

F = R′er ⊗ eR + t

r
eφ ⊗ eZ + sRez ⊗ eΦ, R′ = dR

dr
.

The mapping (27) is supplemented by four subfamilies of microrotations.

6.1 Subfamily 4A

H = er ⊗ eR + eφ ⊗ eZ − ez ⊗ eΦ,

E = R′er ⊗ er + t

r
eφ ⊗ eφ + sRez ⊗ ez,

L = −1

r
eφ ⊗ ez + sezeφ.

(28)

Using (2), (5), (28) the stress and couple stress tensors are determined as

D = DrRer ⊗ eR + DφZeφ ⊗ eZ + DzΦez ⊗ eΦ,

DrR = (λ + 2μ) R′ + λ
t

r
− λsR − (2μ + 3λ) ,

DφZ = λR′ + (λ + 2μ)
t

r
− λsR − (2μ + 3λ) ,

DzΦ = −λR′ − λ
t

r
+ (λ + 2μ) sR + (2μ + 3λ) ,

(29)

G = GφΦeφ ⊗ eΦ + GzZez ⊗ eZ ,

GφΦ = −s (γ − η) + 1

r
(γ + η) ,

GzZ = s (γ + η) − 1

r
(γ − η) .

The equilibrium equation (1)2 is satisfied identically for the considered deforma-
tion. The equilibrium equation (1)1 is reduced to a scalar equation

∂DrR

∂r
+ DrR

r
− sDzΦ = 0. (30)

From (29), theEq. (30) is reduced to an ordinary differential equations in the unknown
R(r):

R′′ + 1

r
R′ +

(
a1 + a2

r

)
R = a3 + a4

r
, (31)
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a1 = −s2, a2 = − sν

1 − ν
,

a3 = s (1 + ν)

1 − ν
, a4 = 1 + (1 − st) ν

1 − ν
.

The Eq. (31) is a particular case of the extended confluent hypergeometric equation
[2]. Its solution can be represented by Kummer’s functions.

We suppose r0 ≤ r ≤ r1, where r0, r1 are inner and outer radii, respectively. The
boundary conditions for the absence of external loads on the lateral surfaces of the
cylinder sector are written as

DrR

∣∣∣
r=r0,r1

= 0. (32)

6.2 Subfamily 4B

H = er ⊗ eR − eφ ⊗ eZ + ez ⊗ eΦ,

E = R′er ⊗ er − t

r
eφ ⊗ eφ + sRez ⊗ ez,

L = −1

r
eφ ⊗ ez − sezeφ.

Now we have

DrR = (λ + 2μ) R′ − λ
t

r
+ λsR − (2μ + 3λ) ,

DφZ = −λR′ + (λ + 2μ)
t

r
− λsR + (2μ + 3λ) ,

DzΦ = λR′ − λ
t

r
+ (λ + 2μ) sR − (2μ + 3λ) ,

GφΦ = −s (γ − η) − 1

r
(γ + η) ,

GzZ = s (γ + η) + 1

r
(γ − η) .

The equation in the unknown R(r) differs from the case 4:

R′′ + 1

r
R′ +

(
a1 + a2

r

)
R = a3 + a4

r
,

a1 = −s2, a2 = sν

1 − ν
,

a3 = − s (1 + ν)

1 − ν
, a4 = k1 (1 + (1 + st) ν)

1 − ν
.
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6.3 Subfamily 4C

H = −er ⊗ eR − eφ ⊗ eZ − ez ⊗ eΦ,

E = −R′er ⊗ er − t

r
eφ ⊗ eφ − sRez ⊗ ez,

L = −1

r
eφ ⊗ ez − sezeφ.

The components of the stress and couple stress tensors are expressed as

DrR = (λ + 2μ) R′ + λ
t

r
+ λsR + (2μ + 3λ) ,

DφZ = λR′ + (λ + 2μ)
t

r
+ λsR + (2μ + 3λ) ,

DzΦ = λR′ + λ
t

r
+ (λ + 2μ) sR + (2μ + 3λ) ,

GφΦ = s (γ − η) + 1

r
(γ + η) ,

GzZ = s (γ + η) + 1

r
(γ − η) .

The equation in the unknown R(r) has the form

R′′ + 1

r
R′ +

(
a1 + a2

r

)
R = a3 + a4

r
,

a1 = −s2, a2 = sν

1 − ν
,

a3 = s (1 + ν)

1 − ν
, a4 = − (1 + (1 − st) ν)

1 − ν
.

6.4 Subfamily 4D

H = −er ⊗ eR + eφ ⊗ eZ + ez ⊗ eΦ,

E = −R′er ⊗ er + t

r
eφ ⊗ eφ + sRez ⊗ ez,

L = −1

r
eφ ⊗ ez + sezeφ.

Now we obtain
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DrR = (λ + 2μ) R′ − λ
t

r
− λsR + (2μ + 3λ) ,

DφZ = −λR′ + (λ + 2μ)
t

r
+ λsR − (2μ + 3λ) ,

DzΦ = −λR′ + λ
t

r
+ (λ + 2μ) sR − (2μ + 3λ) ,

GφΦ = s (γ − η) − 1

r
(γ + η) ,

GzZ = s (γ + η) − 1

r
(γ − η) .

The equation in the unknown R(r) is written as

R′′ + 1

r
R′ +

(
a1 + a2

r

)
R = a3 + a4

r
, (33)

a1 = −s2, a2 = − sν

1 − ν
,

a3 = − s (1 + ν)

1 − ν
, a4 = − (1 + (1 − st) ν)

1 − ν
.

Let us consider the deformation (27) of the cylinder sector such that the ends
z = 0 and z = l are joined. Here l is a length of the cylinder sector. In this case the
deformed body is a circular hollow cylinder in the current configuration. Then we
have the conditions

Φ

∣∣∣
z=0

= 0, Φ

∣∣∣
z=l

= 2π.

And we find that s = 2π
l .

It can be shown that the resultant moment acting in sections of a deformable body
Z = const equal zero for all subfamilies 4A – 4D. And the resultant force vector has
the direction of the vector eZ and its value is

F = l

r1∫

r0

DφZdr .

The deformation parameter t can be computed from given force F .

7 Radially Symmetric Deformation of a Hollow Sphere

We give a mapping QM = QM(qs) in the form

R = R(r), Φ = φ, Θ = θ. (34)
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In view of

r = Rer , R = ReR, (35)

the deformation gradient has the form

F = R′er ⊗ eR + R

r
eφ ⊗ eΦ + R

r
eθ ⊗ eΘ, R′ = dR

dr
.

The mapping (34) is supplemented by four subfamilies of microrotation.

7.1 Subfamily 5A

H = er ⊗ eR + eφ ⊗ eΦ + eθ ⊗ eΘ,

E = R′er ⊗ er + R

r
eφ ⊗ eφ + R

r
eθ ⊗ eθ.

(36)

From (2), (5) and (36), the stress and couple stress tensors have the form

D = DrRer ⊗ eR + DφΦeφ ⊗ eΦ + DθΘeθ ⊗ eΘ,

DrR = (λ + 2μ) R′ + 2λ
κR

r
− (3λ + 2μ) ,

DφΦ = DθΘ = λR′ + 2 (λ + μ)
R

r
− (3λ + 2μ) .

(37)

The wryness tensor L and couple stress tensor G are zero tensors.
The equilibrium equation (1)2 is satisfied identically for the considered deforma-

tion. The equilibrium equation (1)1 is reduced to a scalar equation

∂DrR

∂r
+ 2

DrR − DφΦ

r
= 0. (38)

In consequence of (37), the Eq. (38) is reduced to an ordinary differential equation
in the unknown function R(r), namely

R′′ + 2
R′

r
− 2

R

r2
= 0. (39)

The solution for this differential equation is

R(r) = c1r + c2
r

. (40)
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We give the boundary conditions in the form

DrR

∣
∣∣
r=r0

= −p0, DrR

∣
∣∣
r=r1

= −p1. (41)

Here r0 and r1 are inner and outer radii, respectively, p0 and p1 are pressures per unit
area in the reference configuration in the inner and outer surfaces, respectively.

Using (37), (40) and (41) the integration constants are presented as

c1 = 1 − (1 − 2ν)
(
r31 p1 − r30 p0

)

2μ (1 + ν)
(
r31 − r30

) , c2 = − (p1 − p0) r31r
3
0

4μ
(
r31 − r30

) .

7.2 Subfamily 5B

H = er ⊗ eR − eφ ⊗ eΦ − eθ ⊗ eΘ,

E = R′er ⊗ er − R

r
eφ ⊗ eφ − R

r
eθ ⊗ eθ,

L = −2

r
eφ ⊗ eθ + 2

r
eθ ⊗ eφ.

Now we obtain

DrR = (λ + 2μ) R′ − 2λ
R

r
− (3λ + 2μ) ,

DφΦ = DθΘ = −λR′ + 2 (λ + μ)
R

r
+ (3λ + 2μ) ,

G = 4η

r
eφ ⊗ eΘ − 4η

r
eθ ⊗ eΦ.

The equation in the unknown function R(r) differs from the case 5A:

R′′ + 2R′

r
− 2aR

r2
= 4a

r
, a = 1 + ν

1 − ν
.

The solution of this equation is given by

R(r) = c1r
− 1−b

2 + c2r
− 1+b

2 − 1 + ν

ν
r, b =

√
9 + 7ν

1 − ν
.

The integration constants c1 and c2 are determined by the boundary conditions (41).
Their expressions are cumbersome enough to write them explicit here.
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8 Reversing of a Hollow Sphere

A mapping QM = QM(qs) has the form

R = R(r), Φ = φ, Θ = −θ. (42)

In view of (35), the deformation gradient is defined by

F = R′er ⊗ eR + R

r
eφ ⊗ eΦ − R

r
eθ ⊗ eΘ, R′ = dR

dr
.

The mapping (42) is supplemented by four subfamilies of microrotations.

8.1 Subfamily 6A

H = −er ⊗ eR + eφ ⊗ eΦ − eθ ⊗ eΘ, (43)

E = −R′er ⊗ er + R

r
eφ ⊗ eφ − R

r
eθ ⊗ eθ, (44)

L = −2

r
eφ ⊗ eθ + 2

r
eθ ⊗ eφ. (45)

In view of (2), (5) and (43), the stress and couple stress tensors are defined as

D = DrRer ⊗ eR + DφΦeφ ⊗ eΦ + DθΘeθ ⊗ eΘ,

DrR = (λ + 2μ) R′ − 2λ
R

r
+ (2μ + 3λ) ,

DφΦ = −λR′ + 2 (λ + μ)
R

r
− (2μ + 3λ) ,

DθΘ = λR′ − 2 (λ + μ)
R

r
+ (2μ + 3λ) ,

(46)

G = GφΘeφ ⊗ eΘ + GθΦeθ ⊗ eΦ,

GφΘ = 4η

r
, GθΦ = 4η

r
.

(47)

The equilibrium equation (1)2 is satisfied identically for the considered deforma-
tion. The equilibrium equation (1)1 is written in the form . Using (46) the equilibrium
equation is reduced to an ordinary differential equation in the unknown function R(r):

R′′ + 2R′

r
− 2aR

r2
= −4a

r
, a = 1 + ν

1 − ν
.
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The solution of this differential equation has the form

R(r) = c1r
− 1+b

2 + c2r
− 1−b

2 + 1 + ν

ν
r, b =

√
9 + 7ν

1 − ν
.

The integration constants c1 and c2 are determined by the boundary conditions (41).
Their expressions are cumbersome enough to write them explicit here.

8.2 Subfamily 6B

H = −er ⊗ eR − eφ ⊗ eΦ + eθ ⊗ eΘ,

E = −R′er ⊗ er − R

r
eφ ⊗ eφ − R

r
eθ ⊗ eθ.

Now we have

DrR = (λ + 2μ) R′ − (2μ + 3λ) ,

DφΦ = −λR′ + 2μ
R

r
+ (2μ + 3λ) ,

DθΘ = −λR′ − 2μ
R

r
+ (2μ + 3λ) .

The wryness tensor L and the couple stress tensor G are zero tensors.
The equation in the unknown function R(r) is same as Eq. (39). Its solution has

the form (40). From the boundary conditions (41) we determine the constants c1 and
c2 as

c1 = −1 − (1 − 2ν)
(
r31 p1 − r30 p0

)

μ (1 + ν)
(
r31 − r30

) , c2 = − (p1 − p0) r31r
3
0

4μ
(
r31 − r30

) .

9 Conclusion

In this paper, several families of finite deformations of a micropolar body had been
considered. Following the semi-inverse method, we reduced the original system
of differential equilibrium equations with three independent variables to a system
of ordinary differential equations. In the present paper we used the model of the
physically linear isotropic compressible micropolar body with six material param-
eters. Its strain energy density is quadratic form of stretch and wryness tensors.
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We consider arbitrary large strains and rotations in spite of this, the ordinary differ-
ential equations obtained in solving problems are linear. This allowed us to construct
the exact solutions for the problems of strong cylindrical bending of a rectangular
plate, straightening of a cylindrical layer, inflation and reversing of a cylindrical tube,
pure bending of a circular cylinder sector, double cylindrical bending, inflation and
reversing of a hollow sphere.

The solutions obtained in this paper within the three-dimensional non-linear
micropolar elasticity theory can be used to verify the two-dimensional theory of
micropolar shells. Also these solutions can be used for establishing the connection
of material constants in the constitutive relations of the two-dimensional shell model
with the material constants of the three-dimensional micropolar medium. To do this
we can use the formulae obtained in the paper [15]. These formulae express the
resultant stresses and the resultant couple stresses in a shell by the stresses and the
couple stresses of a three-dimensional medium averaging through a thickness.
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