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Abstract The chapter concerns nine-node quadrilateral shell elements derived for
the Reissner-Mindlin kinematics and Green strain. They are based on the potential
energy functional extended to include drilling rotations. A standard element of this
class suffers from locking and over-stiffening; several special techniques are needed
to improve its performance. We developed three nine-node shell elements with the
membrane strains enhanced by the EAS11 representation of Bischoff andRamm (Int.
J. Num.Meth. Eng. 40:4427–4449, 1997 [2]). The transverse shear strains are treated
either by theANSmethod of Jang andPinsky (Int. J.Num.Meth. Eng. 24:2389–2411,
1987 [6]), or are enhanced by the EAS6 representation of Sansour and Kollmann
(Comput. Mech. 24:435–447, 2000 [17]), or remain unmodified. We also modify the
EAS transformation rule, extending the idea put forward in Park and Lee (Comput.
Mech. 15:473–484, 1995 [15]) for curved shells. Several numerical examples provide
comparison of three 9-EAS11 elements to our MITC9i shell element of Wisniewski
and Turska (Comput. Mech. 62, 499–523, 2018 [20]).

1 Introduction

The chapter concerns nine-node quadrilateral shell elements derived for theReissner-
Mindlin kinematics and Green strain. They are based on the potential energy func-
tional extended to include the drilling rotation. The standard element of this class
suffers from locking and over-stiffening, and several special techniques are needed to
improve its performance. Our best MITC9i shell element described in [20] is based
on the method of improved two-level approximations of covariant strains (MITCi),
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and was gradually developed in [13, 14, 21]. The other important features of this
element are as follows:

1. To reduce shape distortion effects, the so-calledCorrected Shape Functions (CSF)
of [3] are extended to shells and used instead of the standard ones. In effect, all
patch tests are also passed for shifts of the midside nodes along straight element
sides and for arbitrary shifts of the central node.

2. Several extensions of the CSF are proposed to enable computations of non-flat
shells. In particular, a criterion is put forward to determine the shift parameters
associated with the central node for non-flat elements. Additionally, a method is
presented to construct a parabolic side for a shiftedmidside node, which improves
accuracy for symmetric curved edges.

3. Drilling rotations are included by using the drilling Rotation Constraint equation,
in a way consistent with the additive/multiplicative rotation update scheme for
large rotations. It is shown that the CSF reduce the sensitivity of a solution to the
regularization parameter γ of the penalty method for this constraint.

In the current chapter, we compare the MITC9i shell element to the nine-node shell
elements with the membrane strains enhanced by the EAS11 representation of [2].
The transverse shear strains are treated either by the ANS method of [6], or are
enhanced by the EAS6 representation of [17], or remain unmodified. We also mod-
ify the EAS transformation rule extending the idea put forward in [15]. Several
numerical examples provide comparison of three 9-EAS11 elements to our MITC9i
shell element.

2 Basic Shell Equations with Drilling Rotation

Two-field functional In the present work, we use a two-field extended shell func-
tional depending on displacements and three-parameter rotations,

F2(χ , Q0)
.=
∫
B
W (C) dV + Fext + Fdrill(χ ,Q0), (1)

whereχ is the deformation function andQ0 ∈ SO(3) is the rotation tensor. The strain
energy densityW depends on the right Cauchy-Green deformation tensor C .= FT F,
where F .= ∇χ is the deformation gradient. Fext is the potential of external loads.
The last component in Eq. (1) is added to incorporate the drilling rotation using the
penalty method,

Fdrill
.= 1

2

∫
M

γ c2 dA, c
.= 1

2

[
(F0t2) · (Q0t1) − (F0t1) · (Q0t2)

]
, (2)
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Fig. 1 The reference surface
(ζ = 0) of nine-node shell
element
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where c is the l.h.s. of the (1, 2) component of the Rotation Constraint (RC) equation,
skew(QT

0 F0) = 0, and γ ∈ (0,∞) is the regularization parameter; the importance of
this constraint was already noticed in [1] though it was used for a different purpose.
Note that F0 and Q0 are associated with the reference (middle) shell surface for the
initial configuration, and t1 and t2 are the tangent vectors of the local Cartesian basis
on this surface.

Reissner-Mindlin kinematics The initial configuration of the shell is parameterized
by the natural coordinates ξ, η ∈ [−1,+1] on the reference (middle) surface, and
the normal coordinate ζ ∈ [−h/2,+h/2], where h is the initial shell thickness, see
Fig. 1. For the deformed configuration, we use the Reissner-Mindlin kinematical
assumptions,

x(ξ, η, ζ ) = x0(ξ, η) + ζ Q0(ξ, η) t3(ξ, η), (3)

where x is a position vector at an arbitrary ζ and x0 at ζ = 0. Besides, t3 is the unit
normal vector in the initial configuration. The rotation tensor Q0 is parameterized
by the canonical rotation vector ψ ,

Q0(ψ)
.= I + sinω

ω
ψ̃ + 1 − cosω

ω2
ψ̃2, (4)

where ω = ‖ψ‖ = √
ψ · ψ ≥ 0 and ψ̃

.= ψ × I. This parametrization is used within
the load step, and is a part of the rotation update scheme based on quaternions, to
handle unrestricted rotations.

The deformation function χ : x = χ(X) maps the initial (non-deformed) con-
figuration of a shell onto the current (deformed) one. Let us write the deformation
gradient as follows:

F .= ∂x
∂X

= ∂x
∂ξ

J−1, (5)
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where ξ
.= {ξ, η, ζ } and the Jacobian matrix J .= ∂X/∂ξ . The right Cauchy-Green

deformation tensor is C .= FT F and the Green strain is defined as E .= 1

2
(C − C0),

where C0
.= C|x=X = I. The Green strain can be linearized in ζ ,

E(ζ ) ≈ E0 + ζE1, (6)

where the 0th order strainE0 includes themembrane components ε and the transverse
shear components γ /2 while the 1st order strain E1 includes the bending/twisting
components κ . The transverse shear part of E1 is typically neglected, i.e. κα3 ≈ 0
(α = 1, 2). By Eq. (3), the normal strains ε33 and κ33 are equal to zero and must be
either recovered from an auxiliary condition, such as the plane stress condition used
in the current chapter, or be introduced by the EAS method.

3 Corrected Shape Functions for Nine-Node Shell Element

The standard isoparametric shape functions for a nine-node element are derived
assuming that the midside nodes (5, 6, 7, 8) are located at the middle positions
between the corner nodes, and that the central node 9 is located at the element center,
see Fig. 2a. When these nodes are shifted from the middle positions then the physical
space parameterized by the standard shape functions is distorted, see e.g. Figs. 13a
and 20 in [14].

To alleviate this problem, in [3] the Corrected Shape Functions (CSF) were pro-
posed with six additional parameters α, β, γ, ε, θ, κ ∈ [−1,+1], see Fig. 2b, which
define shifts of the midside nodes and the central node from the middle positions in
the local coordinates space. The CSF for the nine-node element are defined in two
steps. First, the CSF of the eight-node (serendipity) element are defined,

1 2

6

7

8 9

5

34

1,2,3,4 - corner nodes
5,6,7,8 - midside nodes
9 - central node

1 2

6

7

8 9

5

34
(a) (b)

Fig. 2 Nine-node element: a Numbering and naming of nodes, b Shift parameters
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N̄1
.= 1

4
(1 − ξ)(1 − η)

(1 + α)(1 + ε) − (1 + α)(1 + η) − (1 + ε)(1 + ξ)

(1 + α)(1 + ε)
,

N̄2
.= 1

4
(1 + ξ)(1 − η)

(1 − α)(1 + β) − (1 − α)(1 + η) − (1 + β)(1 − ξ)

(1 − α)(1 + β)
,

N̄3
.= 1

4
(1 + ξ)(1 + η)

(1 − γ )(1 − β) − (1 − γ )(1 − η) − (1 − β)(1 − ξ)

(1 − γ )(1 − β)
,

N̄4
.= 1

4
(1 − ξ)(1 + η)

(1 + γ )(1 − ε) − (1 + γ )(1 − η) − (1 − ε)(1 + ξ)

(1 + γ )(1 − ε)
,

N̄5
.= (ξ 2 − 1)(1 − η)

2(α2 − 1)
, N̄6

.= (1 + ξ)(η2 − 1)

2(β2 − 1)
,

N̄7
.= (ξ 2 − 1)(1 + η)

2(γ 2 − 1)
, N̄8

.= (1 − ξ)(η2 − 1)

2(ε2 − 1)
,

(7)

which account for shifts of the midside nodes from the middle positions. Next, the
basis function for the central node 9 is added hierarchically to them. The obtained
CSF for the nine-node element are as follows:

Ni (ξ, η) = N̄i (ξ, η) − N̄i (θ, κ) N9(ξ, η), i = 1, . . . , 8,

N9
.= (ξ 2 − 1)(η2 − 1)

(θ2 − 1)(κ2 − 1)
,

(8)

where N̄i (θ, κ)
.= N̄i (ξ = θ, η = κ), see [3], Eq. (20). When the shift parameters are

equal to zero, then the CSF of Eq. (8) reduce to the standard shape functions.
These six parameters are computed as proportional to the distance in the physical

space, and to determine them, several nonlinear equationsmust be solved: 4 equations
with 1 unknown for themidside nodes and2 equationswith 2 unknowns for the central
node. This is done only once, so the time overhead is insignificant.

In [20], several extensions of the method of calculating the shift parameters are
presented, which enable the use of theCSF for nine-node shell elements located in 3D
space. They provide an improved accuracy of a solution for non-flat shell elements.
Besides a method of constructing symmetric side curves for shifted midside nodes is
described; we refer a reader interested in details to this paper. The so-extended CSF
can also be applied to the 9-EAS11 shell elements, and, as our tests prove, they can
be very beneficial, e.g. they are needed to pass the bending patch test for some types
of nodal shifts.

4 Characteristics of 9-EAS11 Shell Elements

In the current chapter, we consider the class of nine-node shell elements with the
Enhanced Assumed Strain (EAS) method applied to membrane strains. The EAS
methodwas introduced in [18] for four-node elements; in thismethod, the compatible
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strains Ec are enhanced additively, i.e. E = Ec + Eenh, where Eenh is obtained from
covariant components in a basis at the element center (“c”).

Enhancement of membrane strainsTheEASenhancement of themembrane strains
ε is constructed at a Gauss Point “g” as follows:

Eenh
g = J−T

c Eξg J−1
c

(
jc
jg

)
, Eξ

.=
⎡
⎣ E11 E12 0
E12 E22 0
0 0 0

⎤
⎦ , (9)

where the Jacobian is Jc
.= [ gc1 | gc2 | h

2
tc3 ] and gc

1, gc
2 are natural vectors at the

element center. Note that a general rule to transform the covariant components Eξ to
the Cartesian ones is ECART = J−T Eξ J−1, see [19] Eq. (2.24) or [22] Eq. (7).

In the 9-EAS11 shell elements, the membrane strains ε are enhanced by the
representation with 11 multipliers qi , as in [2] Eq. (30),

E11 = Pξ (q1 + ηq2 + η2q3),

E22 = Pη (q9 + ξq10 + ξ 2q11), (10)

E12 = Pξ (q4 + ηq5) + Pη(q6 + ξq7) + Pξ Pηq8,

where Pξ
.= 1 − 3ξ 2 and Pη

.= 1 − 3η2. This representation uses the following poly-
nomial bases:

E11 : {Pξ , Pξ η, Pξ η
2},

E22 : {Pη, Pηξ, Pηξ
2}, (11)

E12 : {Pξ , Pη, Pξ η, Pηξ, Pξ Pη}.

We applied to each of these bases, the Gram-Schmidt orthogonalization with respect
to the inner product function

∫ +1
−1

∫ +1
−1 fi fk dξdη, where fi , fk are terms of the basis

considered, and obtained

E11 : {A Pξ , B Pξ η, −C Pξ η
2},

E22 : {A Pη, B Pηξ, −C Pηξ
2}, (12)

E12 : {A Pξ , A Pη, B Pξ η, B Pηξ, C Pξ Pη},

where A
.= √

5/4, B
.= √

15/4 and C
.= 5/8. Hence, the bases of Eq. (11) are orthog-

onal and this procedure only renormalized them.When the bases of Eq. (12) are used
in Eq. (10), then A, B and C only affect values of multipliers qi . We have checked on
the example of Sect. 5.3 that the use of Eq. (12) does not change the solution indeed.

The EAS transformation rule for curved shells A Jacobian at the element center
is used in Eq. (9), hence, this transformation can be inadequate for curved shells. To
account for a shell curvature but to retain the original form of Eq. (9) for flat shells,
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we modified the idea of [15], which uses at Gauss points, the Cartesian basis for the
element center properly rotated forward; it is designated Local coordinate system 2,

see p. 478 therein. Because we need to determine the Jacobian J .=[ g1 | g2 | h
2

t3 ] at
a Gauss point, we apply this idea to the vectors g1 and g2 as follows:

1. The normal vectors, tc3 at the element center and tg3 at a Gauss point, are computed
in a standard manner.

2. tc3 is rotated into tg3 by the canonical rotation vector v .= θn, where

n = tc3 × tg3/‖tc3 × tg3‖, θ
.= arccos(tc3 · tg3). (13)

Here the vector n defines an axis of rotation and θ is the rotation angle. A cor-
responding rotation tensor R(v) is defined by Eq. (4), where ψ is replaced by v.
Note that tg3 = R(v) tc3 by definition.

3. The natural basis vectors at the element center are forward-rotated to the Gauss
point as follows:

g∗
1 = R(v) gc

1, g∗
2 = R(v) gc2. (14)

Alternatively, we can re-write Eq. (14) using Eq. (8.6) of [19] as follows:

g∗
1 = gc1 + s (n × gc

1) + (1 − c)[n × (n × gc
1)],

g∗
2 = gc2 + s (n × gc

2) + (1 − c)[n × (n × gc2)], (15)

where c
.= cos θ = tc3 · tg3 and s

.= sin θ = sin(arccos(c)). Note that these formulas
are different than those of [15] Eq. (31).

4. Using Eq. (14) or (15), we can define the modified Jacobian J∗ .=[ g∗
1 | g∗

2 | h
2

tg3 ].
Note that J∗ = R(v) Jc, and we can use its inverse (J∗)−1 = J−1

c RT (v) instead
of Jc−1 in Eq. (9). For flat shells, v = 0, hence, R(v) = I and (J∗)−1 = J−1

c , as
required.

Remark. The forward-rotated Cartesian basis of [15] was proposed to obtain invariant
Assumed Strain elements, which can pass both the patch and locking tests. (The
Assumed Strain method in this paper does not use the two-level interpolations of
strains; hence, it is different than amethod of the same name of [4]). The independent
strain fields are assumed with respect to a local coordinate system defined at the
element centroid, e.g. for the shell with six degrees of freedom per node, 52 terms
are assumed. The numerical results of [15] indicate that their elements perform well,
but effects of the new Local coordinate system 2 on accuracy for curved shells and
distorted meshes are mixed; e.g. in the “Pinched ring” example accuracy worsens.

The modified EAS transformation rule for curved shells of Eq. (14) was imple-
mented in our 9-EAS11 shell elements and tested in Sect. 5.2; no improved accuracy
was obtained in this test, but, undoubtedly, more tests are necessary to draw a final
conclusion.
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Fig. 3 Sampling points used in [6] for: a γ31 and b γ32. a = √
1/3

Treatment of transverse shear strains The transverse shear strains γ are treated in
the 9-EAS11 shell elements in three ways:

1. By using the ANS of [6], where the two-level approximations are applied to the
covariant (COV) components, which involves the 2 × 3 and 3 × 2 tying point
schemes of Fig. 3 and the following interpolation functions:

γ31 : N̄1 = η(η − 1)

2
, N̄2 = 1 − η2, N̄3 = η(η + 1)

2
, (16)

γ32 : S̄1 = ξ(ξ − 1)

2
, S̄2 = 1 − ξ 2, S̄3 = ξ(ξ + 1)

2
. (17)

The same locations of the tying points were used earlier in [5].
2. By using the EAS method, with the transformation rule of Eq. (9) and the matrix

Eξ
.=
⎡
⎢⎣

0 0 E13

0 0 E23

E13 E23 0

⎤
⎥⎦ . (18)

The covariant transverse shear components of the enhancement are assumed as
in [17], Eqs. (127) and (128),

E13 = Pξ (q1 + ηq2 + η2q3), E23 = Pη (q4 + ξq5 + ξ 2q6), (19)

where 6 parameters are used—this variant is designated EAS6.
3. By using unmodified transverse shear strains.

Finally, the bending/twisting strain κ is unmodified in the tested 9-EAS11 elements.
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Table 1 Tested 9-EAS11 shell elements with drilling rotation

Element CSF Strains

Membrane ε Bending κ Transverse shear γ

Tested elements

9-EAS11/DISP/ANS [2] No EAS11 DISP ANS of [6]

9-EAS11/DISP/EAS6 [17] No EAS11 DISP EAS6 of [17],
Eqs. (127) and (128)

9-EAS11/DISP/DISP [own] No EAS11 DISP DISP

Reference element

MITC9i [20] Yes MITCi MITCi MITCi

16-DISP, 4 × 4 GP [own] No DISP DISP DISP

5 Numerical Examples

In this section, we present numerical tests of three nine-node 9-EAS11 shell elements
described in Sect. 4 and listed in Table1, where “DISP” means that the strain is not
modified.

All the tested and reference shell elements are of the Reissner-Mindlin type and
have 6 dofs/node; the drilling rotation is incorporated as specified in Eqs. (1) and
(2), for more details see Sects. 2 and 5 of [20]. Note that in all these elements:

1. the CSF are implemented in the version extended for shells of [20], Sect. 4, which
enables calculation of shift parameters for non-flat elements.

2. the 3 × 3 Gauss integration is used in all nine-node elements, and they all have
a correct rank.

All these FEs were derived by ourselves using the automatic differentiation program
AceGen described in [8], and were tested within the finite element program FEAP
developed by Taylor [23]. The use of these programs is gratefully acknowledged.
Our parallel multithreaded (OMP) version of FEAP is described in [7].

5.1 Patch Tests

The standard five-element patch of elements was proposed in [16] and we run this
test also for the mesh distorted by shifts of nodes shown in Fig. 4. The membrane and
bending patch tests are performed as described in [12]; the transverse shear test is
performed for the load case defined for a nine-node plate in [5], see “Shearing case”
in Fig. 2b therein.

Four cases of nodal shifts are considered, see Fig. 4: (A) zero shifts (regular
mesh), (B) arbitrary shifts of node 25, (C) parallel shifts of nodes 21–24, and (D)
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Fig. 4 Five-element patch test for the mesh distorted by shifts of some nodes (circles not to scale)

perpendicular shifts nodes 21–24, for which edges of the central element are curved.
For more details on these tests see [20]. The conclusions are as follows:

1. For the 9-EAS11 elements, the membrane patch test is passed for all cases of
nodal shifts for the standard shape functions. As the CSF are not needed, we can
say that 9-EAS11 performs better than MITC9i, which needs the CSF to pass
Case B and C, and, even with the CSF, fails for Case D.

2. For the method 1 and 2 of treating the transverse shear described in Sect. 4, and
for the standard shape functions (no CSF), the bending patch test is passed for
Case A but is failed for Cases B, C and D.

Therefore, we implemented the CSF also in the 9-EAS11 elements sand found
that then they pass Case B and C but fail for Case D. The level of errors is similar
to that for MITC9i. We see that the CSF are indispensable though they also do
not solve the problem of curved edges (Case D).

3. The transverse shear patch test is passed for the standard shape functions (no
CSF) for all cases of shifts.

5.2 Curved Cantilever

The curved cantilever is fixed at one end and loaded by a moment Mz at the other,
see Fig. 5. The data is as follows: E = 2 × 105, ν = 0, width b = 0.025 and radius
of curvature R = 0.1. The FE mesh consists of 6 nine-node elements, which have
either regular (Fig. 5a) or distorted shape (Fig. 5b); a definition of distortions is given
in [9] p. 245. For the distorted mesh, this test is very demanding.

The shell thickness h is varied in the range [10−2, 10−6], and the moment is
assumed as Mz = (R/h)−3, so the solution of a linear problem should remain con-
stant. The analytical solution for the curved beam subjected to uniform bending is
uy = MzR2/(E I ) = 0.024, where I is the moment of inertia.
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Fig. 5 Curved cantilever and two meshes: a regular and b distorted
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Fig. 6 Curved cantilever. Displacement uy at point A for the distorted mesh and diminishing
thickness. γ = G. a log-standard scale, b log-log scale to enable comparisons with Fig. 6 of [9]

The displacement uy at point A obtained by a linear analysis are shown in Fig. 6,
where, for the vertical axis, we use either (a) the standard scale or (b) the logscale,
to enable comparisons with Fig. 6 of [9]. We conclude this test as follows:
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1. For the regular mesh, the solutions for all tested elements are represented by the
horizontal line, which is close to the analytical value. Neither one of the tested
elements locks for this mesh despite its curvature. The basic element ‘9-DISP’
severely locks for this mesh; this solution is not shown in these figures.

2. For the distorted mesh, all the tested elements lock for the R/h > 100. The
most accurate is 9-EAS11/DISP/ANS, then MITC9i, 9-EAS11/DISP/EAS6 and
9-EAS11/DISP/DISP. The CSF are not important for this test.

We performed several additional tests to shed some light on the locking for the
distorted mesh, and we found that:

1. The 9-URI2×2 element does not lock for the distorted mesh; this curve is not
shown in Fig. 6. (It is the nine-node Uniformly Reduced Integration (2 × 2 Gauss
points) element, which has 7 spurious zero eigenvalues).

2. The Residual Bending Flexibility (RBF) correction, which is a means to handle
the sinusoidal bending and an extreme slenderness, significantly improves the
results of this test; compare curves for MITC9i and MITC9i+RBF in Fig. 6.

For the nine-node elements, the implementation of the RBF correction must be
slightly different than for the four-node elements of [10]. Assuming an isotropic
elastic material, the transverse shear strain energy for a single element is defined
as follows:

Wγ = 2h
∫ +1

−1

∫ +1

−1

(
G∗

1 ε213 + G∗
2 ε223

)
J dξdη, (20)

where the corrected shear moduli are defined separately for each direction, i.e.

G∗
1 =

(
1

G
+ l21

h2E

)−1

, G∗
2 =

(
1

G
+ l22

h2E

)−1

. (21)

Here l1 and l2 are the lengths of vectors connecting opposite mid-side points.
To avoid an excessive twist, the full RBF correction is applied to the value at
center and only a fraction of it to the remaining part. An integrand of Eq. (20) is
modified as follows:

G∗
1 ε213 ≈ G∗

1 (ε̄c13)
2 + G∗

1c

[
ε213 − (ε̄c13)

2
]
, (22)

where

G∗
1c

.=
(
1

G
+ a

l21
h2E

)−1

, a
.= c

c + (1 − c) (l1/l2)
2 , (23)

and c = 0.04, as suggested in [11]. Similar formulas are used for G∗
2 ε223. For

more details on our implementation of the RBF method, see [19] Sect. 13.2.3.
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3. Comparing the displacements uy of our Fig. 6b and Fig. 6 of [9] (in both figures
the log-log scale is used, but actually for this scale, the differences are not clearly
visible), we conclude that the elements 9-EAS11/DISP/ANS and MITC9i per-
form in this test slightly better than Q2-ANS/EAS. If we use the RBF correction
then MITC9i performs similarly to the Q2-DSG/DSG element of [9].

5.3 Pinched Hemispherical Shell with Hole

A hemispherical shell with an 18◦ hole is loaded by two pairs of equal but opposite
external forces P applied along the 0X and 0Y axes, see Fig. 7. Because of a double
symmetry, a quarter of the hemisphere is modeled. In this test, the shell undergoes an

x y
z

18

R=10
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Fig. 7 Pinched hemispherical shell with hole. Geometry and load
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Fig. 8 Pinched hemispherical shell with hole. Nonlinear solutions. 8 × 8 mesh, μ =G/1000
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almost inextensional deformation and, because it is very thin (thickness h = 0.01),
the membrane locking can manifest itself strongly.

The non-linear analyses are performed using the Newton method and �P = 0.2.
The solution curves for the 8 × 8-elementmesh are shown in Fig. 8, where the inward
displacement under the force is presented.

We see that the solutions for 9-EAS11/DISP/ANS andMITC9i coincide, while for
9-EAS11/DISP/EAS6 and 9-EAS11/DISP/DISP are stiffer. For the 16 × 16-element
mesh, the solutions for 9-EAS11/DISP/ANS and MITC9i coincide with that for the
reference element 16-DISP.

6 Final Remarks

We have developed three nine-node quadrilateral shell elements with the membrane
part enhanced by the EAS method; they are designated 9-EAS11 because the strain
enhancement uses 11 parameters. The preliminary conclusions are as follows:

1. Using the EAS11 enhancement, the membrane patch test is passed for all types of
shifts of nodes, even these for which the element’s edges are curved. Themodified
EAS transformation rule was also implemented, but further tests are needed to
draw a conclusion on its usefulness.

2. For the transverse shear part of the 9-EAS11 element, the ANS method is more
accurate than the EAS6 enhancement and the unmodified strains. Accuracy of
the 9-EAS11/DISP/ANS element is similar or slightly higher than of theMITC9i
element, but MITC9i with the RBF correction is more accurate.

3. The Corrected Shape Functions (CSF) are not needed for the 9-EAS11 elements
to pass the membrane patch test, but are beneficial for the bending patch test, like
for the MITC9i element.

Generally, the preliminary results indicate that the 9-EAS11/DISP/ANS element
compares very well with our MITC9i element.

References

1. Badur, J., Pietraszkiewicz, W.: On geometrically non-linear theory of elastic shells derived
from pseudo-Cosserat continuum with constrained micro-rotations. In: Pietraszkiewicz, W.
(ed.) Finite Rotations in Structural Mechanics, pp. 19–32. Springer, Berlin (1986)

2. Bischoff, M., Ramm, E.: Shear deformable shell elements for large strains and rotations. Int.
J. Num. Meth. Eng. 40, 4427–4449 (1997)

3. Celia,M.A., Gray,W.G.: An improved isoparametric transformation for finite element analysis.
Int. J. Num. Meth. Eng. 20, 1447–1459 (1984)

4. Huang, H-Ch.: Static and Dynamic Analyses of Plates and Shells. Springer, Berlin (1989)
5. Huang, H.C., Hinton, E.: A nine node Lagrangian Mindlin plate element with enhanced shear

interpolation. Eng. Comput. 1, 369–379 (1984)



On Performance of Nine-Node Quadrilateral Shell Elements … 725

6. Jang, J., Pinsky, P.M.: An assumed covariant strain based 9-node shell element. Int. J. Num.
Meth. Eng. 24, 2389–2411 (1987)

7. Jarzebski, P., Wisniewski, K., Taylor, R.L.: On parallelization of the loop over elements in
FEAP. Comput. Mech. 56(1), 77–86 (2015)

8. Korelc, J.: Multi-language andmulti-environment generation of nonlinear finite element codes.
Eng. Comput. 18, 312–327 (2002)

9. Koschnick, F., Bischoff, G.A., Camprubi, N., Bletzinger, K.U.: The discrete strain gap method
and membrane locking. Comput. Methods Appl. Mech. Eng. 194, 2444–2463 (2005)

10. MacNeal, R.H.: A simple quadrilateral shell element. Comput. Struct. 8(2), 175–183 (1978)
11. MacNeal, R.H.: Finite Elements: Their Design and Performance.Mechanical Engineering, vol.

89. Marcel Dekker Inc., New York (1994)
12. MacNeal, R.H., Harder, R.L.: A proposed standard set of problems to test finite element accu-

racy. Finite Elem. Anal. Des. 1, 3–20 (1985)
13. Panasz, P., Wisniewski, K.: Nine-node shell elements with 6 dofs/node based on two-level

approximations. Part I: theory and linear tests. Finite Elem. Anal. Des. 44, 784–796 (2008)
14. Panasz, P., Wisniewski, K., Turska, E.: Reduction of mesh distortion effects for nine-node

elements using corrected shape functions. Finite Elem. Anal. Des. 66, 83–95 (2013)
15. Park, H.C., Lee, S.W.: A local coordinate system for assumed strain shell element formulation.

Comput. Mech. 15, 473–484 (1995)
16. Robinson, J., Blackham, S.: An evaluation of lower order membranes as contained in MSC.

NASTRAN,ASAandPAFECFEMSystems,Robinson andAssociates,Dorset, England (1979)
17. Sansour, C., Kollmann, F.G.: Families of 4-node and 9-node finite elements for a finite defor-

mation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements.
Comput. Mech. 24, 435–447 (2000)

18. Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incom-
patible modes. Int. J. Num. Meth. Eng. 29, 1595–1638 (1990)

19. Wisniewski, K.: Finite rotation shells. Basic Equations and Finite Elements for Reissner Kine-
matics. Springer, Berlin (2010)

20. Wisniewski, K., Turska, E.: Improved nine-node shell elementMITC9i with reduced distortion
sensitivity. Comput. Mech. 62, 499–523 (2018)

21. Wisniewski, K., Panasz, P.: Two improvements in formulation of nine-node element MITC9.
Int. J. Num. Meth. Eng. 93, 612–634 (2013)

22. Wisniewski, K.,Wagner,W., Turska, E., Gruttmann, F.: Four-node Hu-Washizu elements based
on skew coordinates and contravariant assumed strain. Comput. Struct. 88, 1278–1284 (2010)

23. Zienkiewicz, O.C., Taylor, R.L.: The finite element method. In: Basic Formulation and Linear
Problems, vol. 1, 4th edn. McGraw-Hill (1989)


	On Performance of Nine-Node Quadrilateral Shell Elements 9-EAS11 and MITC9i
	1 Introduction
	2 Basic Shell Equations with Drilling Rotation
	3 Corrected Shape Functions for Nine-Node Shell Element
	4 Characteristics of 9-EAS11 Shell Elements
	5 Numerical Examples
	5.1 Patch Tests
	5.2 Curved Cantilever
	5.3 Pinched Hemispherical Shell with Hole

	6 Final Remarks
	References




