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Abstract A framework for the asymptotic derivation of plate models from three-
dimensional elasticity theory is reviewed and extended. This is shown to subsume the
pure membrane and bending limits that have been derived via gamma convergence
or alternative asymptotic methods, and to incorporate Koiter’s model for finite defor-
mations with small midsurface strains. Amodel that accommodates largemidsurface
strains and which satisfies the relevant Legendre-Hadamard necessary condition for
energy minimizers is also proposed.

1 Introduction

Contemporary research on the theoretical foundation of theories of thin plates and
shells emphasizes their relationship to three-dimensional finite elasticity theory.
These efforts are typically based on the method of gamma convergence [1], con-
cerned with the limiting variational problem for small thickness, or on asymptotic
analysis of the weak forms of the equilibrium equations [2, 3]. However, neither
method has generated a model that accommodates bending and stretching in a single
framework. The current state of the art in the rigorous derivation of plate theory
by gamma convergence is illustrated by [1], which concludes with the observation:
“A wide open problem is the question of whether we can rigorously justify theories
which are two-dimensional but still involve the small thickness parameter ... A typical
case involves boundary conditions that cause part of the shell to stretch, but another
part to bend with no stretching.” Indeed, such problems are of primary interest in
applications. Evidently, then, at present there exists no rigorously derived model for
combined bending and stretching. The situation brings to mind Koiter’s famous pun
[4]: “Extreme rigour in the analysis of physical problems, we are inclined to believe,
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may easily lead to rigor mortis. ...Flexible bodies like thin shells require a flexible
approach. ...”.

In contrast, thework ofHilgers andPipkin [5–7], inspired by the need for a regular-
ization of membrane theory for problems in which membrane theory has no solution,
furnishes the first careful consideration of the relationship between plate theory and
modern three-dimensional nonlinear elasticity in the presence of combined bending
and stretching. This work subsumes the models obtained by asymptotic analysis and
gamma convergence, and furnishes an extension of Koiter’s small-strain model [8,
9] to large midsurface strains. In view of these facts the failure of the community to
acknowledge this body of work is discouraging. Perhaps this state of affairs may be
attributed to the syndrome to which Koiter alluded.

A parallel approach based on asymptotic expansion of the local differential equa-
tions has recently been pursued by Dai and co-workers [10]. An interesting open
question, originally posed by Koiter [4], concerns the relationship between the equa-
tions generated by this procedure and the Euler-Lagrange equations associated with
the energies generated by the present approach.

In the present work we review the Hilgers-Pipkin model from the point of view
developed in [11, 12] for thin elastic bodies. In particular, we relax some of the
restrictive assumptions imposed in their treatment. Attention is confined to plates.
This allows us to illustrate the main ideas as simply as possible while avoiding the
less important details associated with the differential geometry of shells. Extensions
of these ideas to shells are discussed in [13], and tomaterially-uniform bodies in [14,
15]. The latter framework accommodates a variety of inelastic phenomena.

Standard notation is adopted. Thus, we use bold face for vectors and tensors and
indices to denote their Cartesian components. Latin indices take values in {1, 2, 3};
Greek in {1, 2}. The latter are associated with surface coordinates and associated vec-
tor and tensor components. A dot between bold symbols is used to denote the standard
inner product. Thus, ifA1 andA2 are second-order tensors, thenA1 ·A2 = tr(A1At

2),

where tr(·) is the trace and the superscript t is used to denote the transpose. The norm
of a tensor A is |A| = √

A · A. The notation ⊗ identifies the standard tensor product
of vectors. IfM is a fourth-order tensor, thenM [A] is the second-order tensor with
components Mi A j B A j B . We use Div to denote the three-dimensional divergence
operator, and div its two-dimensional counterpart. For example, DivA = Ai A,Aei
and divA = Aiα,αei , where {ei } is an orthonormal basis and subscripts preceded
by commas are used to denote partial derivatives with respect to Cartesian coordi-
nates. We also use∇ to denote the two-dimensional gradient. The unit vector k = e3
identifies the orientation of the plate midplane prior to deformation.

In the purely mechanical setting of nonlinear elasticity discussed here, the Piola
stress P̃ of the three-dimensional theory is given by the values of the function

P̃(F̃) =WF̃, (1)

the derivative with respect to the deformation gradient F̃ of the strain energy W (F̃)

per unit reference volume. The material is assumed to be uniform for the sake of
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simplicity, so that the strain-energy function does not depend explicitly on position x
in a reference configuration κ . Superposed tildes are used to denote three-dimensional
quantities. The same symbols, without tildes, are used to denote their midplane
values.

The force per unit area transmitted across a surface with unit normal N in κ is

p̃ = P̃(F̃)N. (2)

It is well known that this, together with the equilibrium equation

DivP̃ = 0, (3)

are the natural boundary condition and Euler equation for energy-minimizing defor-
mations under conditions of conservative loading without body force, holding on a
subset of ∂κ and in κ respectively.

A plate is a material body identified with κ, which is generated by the parallel
translation of a plane region Ω, with piecewise smooth boundary curve ∂Ω, in the
direction orthogonal to Ω. The body itself occupies the volume Ω̄ × [−h/2, h/2],
where Ω̄ = Ω ∪ ∂Ω and h is the (uniform) thickness. Let l be another length scale
such as the diameter of Ω or an interior hole. We assume that h/ l � 1. Further, we
regard l as a fixed scale and adopt it as the measure of length. This allows us to put
l = 1 and thus to simplify the notation.

Our goal is an optimal expression for the term E in the expansion

E = E + o(h3) (4)

of the potential energy E of the thin three-dimensional body, in which h � 1. This
is shown below to have the form

E = hE1 + h3E3, (5)

in which E1 and E3 are not explicitly dependent on h. We will show that E1 is the
conventional membrane energy, whereas E3 is associated with bending and strain-
gradient effects.

If a particular deformation minimizes the three-dimensional energy; i.e., if it is
stable, then the perturbationΔE relative to that deformation satisfiesΔE ≥ 0 for any
kinematically possible alternative. This in turn yieldsΔE1 + o(h)/h ≥ 0. Passing to
the limit, we obtain ΔE1 ≥ 0, and conclude that at leading order in thickness, stable
deformations minimize the membrane energy. If attention is restricted to deforma-
tions that are strain-free at the midsurface, and if the boundary data are compatible
with such deformations, thenΔE1 vanishes identically and the same argument yields
ΔE3 ≥ 0. In this case admissible deformations of the plate correspond to pure bend-
ing, and three-dimensional energy minimizers minimize E3, again at leading order
in thickness. These observations underlie the approach to membrane and inexten-
sional bending theory via gamma convergence. However, in the case of combined
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bending and stretching of a finite-thickness plate in which terms of order h and h3 are
retained simultaneously, the inequality ΔE ≥ 0 satisfied by equilibria in the three-
dimensional theory does not imply that ΔE ≥ 0. This is the reason why the method
of gamma convergence, which is concerned exclusively with the derivation of the
limiting minimization problem, has not succeeded in generating a single model for
combined bending and stretching, except in the fortuitous circumstance - exempli-
fied by special cases of the linear theory—when the two effects decouple at leading
order [16]. Accordingly, we do not expect E to be minimized at a stable equilibrium
state. One may seek to rectify this situation by expanding the energy to higher orders
in h. However, in the nonlinear theory it is impractical to do so, as this requires
higher-order three-dimensional elastic moduli [3], which are excessively unwieldy
for strain-energy functions commonly used in nonlinear elasticity theory.

An interesting exception to the foregoing observation occurs when E1 = O(h2).
In this caseE /h3 = Ē + o(h3)/h3,where Ē does not depend explicitly on h.Passing
to the limit, we conclude that minimizers in the exact theory correspond to minimiz-
ers in the approximate theory; that is, if a deformation minimizes E , than it also
minimizes Ē at leading order, and vice versa. This situation obtains in the case of
wrinkling, in which the energies of stretching and bending are of comparable order
[17–19]. We will show that in such circumstances Ē may be identified with Koiter’s
expression for the energy. This fact lends further support to the widespread view [20]
that Koiter’s model provides the best ’all-around’ theory of plates and shells, despite
the fact that it does not emerge as a gamma limit or a formal asymptotic limit.

Of course, there is also a need for a single model of combined stretching and
bending when the two contributions to the energy are not comparable in magnitude.
This case calls for careful consideration, detailed in Sect. 8.

We assume throughout that equilibrium deformations satisfy the strong-ellipticity
condition

a ⊗ b · M (F̃)[a ⊗ b] > 0 for all a ⊗ b �= 0, (6)

where
M (F̃) =WF̃F̃ (7)

is the tensor of elasticmoduli. It is well known that this conditionmust hold pointwise
in the body if F̃(x) is the gradient of an energy-minimizing deformation.

We shall also make use of the strain-dependent elastic moduli C (Ẽ), where

Ẽ = 1
2 (F̃

t F̃ − I ) (8)

is the strain in which I is the identity for 3-space, and

C (Ẽ) = UẼẼ (9)

in which
U (Ẽ) = W (F̃) (10)
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is the associated strain-energy function. An application of the chain rule, combined
with the minor symmetries of C , furnishes

M (F̃)[A] = AS̃ + F̃C (Ẽ)[F̃t
A] (11)

for any tensor A, where
S̃ = UẼ (12)

is the symmetric second Piola-Kirchhoff stress, given in terms of the Piola stress by

P̃ = F̃S̃. (13)

We assumeU (·) to be convex in a neighborhood of the origin in strain space, with
the origin furnishing an isolated local minimum. Thus S̃ vanishes at zero strain, and
C (0) is positive definite in the sense thatA · C (0)[A] > 0 for all non-zero symmetric
A. Then,

S̃ = C (0)[Ẽ] + o(
∣
∣
∣Ẽ

∣
∣
∣ ). (14)

It follows from (11), (14) that

M (I)[A] = C (0)[A] (15)

and hence that our hypotheses yields strong ellipticity at zero strain, as in classical
linear elasticity theory.

2 Small-Thickness Estimate of the Energy

Position in the reference placement of the plate may be written

x = u + ςk, (16)

where u ∈ Ω and ς ∈ [−h/2, h/2]. We assume the origin to lie onΩ . The projection

1 = I − k ⊗ k, (17)

is the identity on the translation space Ω ′ of Ω . The three-dimensional deformation
gradient satisfies dỹ = F̃dx, where ỹ = χ̃ (x) is the position after deformation of the
material point x and χ̃ is the deformation function. Using this with ỹ = ŷ(u,ς) =
χ̃(u+ςk) and du ∈ Ω ′ yields the alternative representations

(F̃1)du+F̃kdς = dŷ = (∇ŷ)du + (ŷ)′dς, (18)
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where ∇() is the (two-dimensional) gradient with respect to u at fixed ς and the
notation ()′ is used to denote ∂()/∂ς at fixed u. It follows from F̃ = F̃1 + F̃k ⊗ k
that

F̂ = ∇ŷ + ŷ′ ⊗ k, (19)

where F̂(u, ς) = F̃(u+ ςk).

The total strain energy in a given deformation is

S =
∫

κ

W (F̃(x))dv =
∫

Ω

∫ h/2

−h/2
W (F̂(u, ς))dςda. (20)

If χ̃(x) is sufficiently smooth, then by Leibniz’ Rule and Taylor’s Theorem, applied
to the small parameter h,

∫ h/2

−h/2
W (F̂(u, ς))dς = hW (F) + 1

24h
3W ′′ + ..., (21)

where, by the chain rule,

W ′ = P · F′ and W ′′ = P′ · F′ + P · F′′ (22)

in which
F(n) = F̂(n)

|ς=0 (23)

and
P = P̃(F), P′ = M (F)[F′]. (24)

From (19) we have

F̂′ = ∇ŷ′ + ŷ′′ ⊗ k and F̂′′ = ∇ŷ′′ + ŷ′′′ ⊗ k. (25)

It follows that

F = ∇r + d ⊗ k, F′ = ∇d + g ⊗ k, and F′′ = ∇g + h ⊗ k, (26)

where
r = y, d = y′, g = y′′ and h = y′′′, (27)

in which
y(n) = ŷ(n)

|ς=0 (28)

are independent functions of u ∈ Ω. These are the coefficient vectors in the order—
ς3 expansion
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ŷ(u, ς) = r(u) + ςd(u) + 1
2ς

2g(u) + 1
6ς

3h(u) + ... . (29)

Here r(u) is the position of a material point on the deformed image ω of the midsur-
face Ω; its gradient ∇r maps Ω ′ to the tangent plane Tω to ω at the material point u.

The functions d(u), g(u) and h(u) provide information about the three-dimensional
deformation in the vicinity of the midplane.

The regularity of the three-dimensional deformation required by the expansion
(29) is not implied by Ball’s existence theory for equilibria [21]. Nevertheless, any
piecewise C2 equilibrium deformation, possessing a potential jump in its normal
derivative across a smooth surface in κ , is in fact C2 in the presence of strong ellip-
ticity. It is straightforward to show that it is actuallyCn for arbitrary n. Further, in [22]
strong ellipticity is used with degree-theoretic arguments to obtain partial existence
results for classically smooth (i.e., C2) equilibria, albeit under pure displacement
boundary data. Given our adoption of strong ellipticity, it is thus natural to describe
equilibria in terms of Euler equations for a suitable energy functional evaluated on
the class of deformations represented by (29).

We write the strain energy as

S =
∫

κ

W (F̃(x))dv = S + o(h3), (30)

where

S =
∫

Ω

W (d, g,h,∇r,∇d,∇g)da (31)

in which

W = hW (∇r + d ⊗ k)+ 1
24h

3{P · (∇g + h ⊗ k) + P′ · (∇d + g ⊗ k)} (32)

is the order—h3 strain energy per unit area of Ω . We show below that this formula
subsumes the strain energies associated with conventional membrane theory and
inextensional bending theory.

We remark that this expression does not furnish the complete strain energy for the
order—ς3 truncation of the three-dimensional deformation. The latter contributes
additional terms at higher order in h. However, rather than model a given truncation,
our objective here is an accurate order—h3 expression for the potential energy that
is as accurate as possible by the standard of the three-dimensional theory and which
yields a meaningful minimization problem in its own right.

In [7] a through-thickness expansion scheme for the three-dimensional deforma-
tion is adopted which has the effect of suppressing the term involving ∇g in the
order—h3 potential energy. However, the leading-order term in that scheme is not
the deformation of the midplane. Instead, it is the average of the deformation through
the thickness. In general, the value of ς at which this average is attained depends
on the deformation and is not known in advance. Thus, the formulation given in [7]
has the inconvenient feature that the surface whose deformation is described by the
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theory cannot be identified beforehand. We show here that the present expansion
scheme ultimately yields an expression for the energy equivalent to that given in [7],
but with the leading-order term given by the deformation r(u) of the midplane.

To obtain an order—h3 expansion of the potential energy of the loads, we first
consider the simplest case in which ∂Ω consists of the union of disjoint arcs ∂Ωe and
∂Ωn,where essential and natural boundary conditions, respectively, are specified. For
example, suppose three-dimensional position is assigned on ∂κCe = ∂Ωe × C,where
C = [−h/2, h/2]. We refer to this as a clamped edge. If dead loads are assigned
on ∂κCn = ∂Ωn × C, then the potential energy of the three-dimensional body is
E = S − L , where S is the total strain energy defined by (20), and

L =
∫

∂Ωn

(

∫ h/2

−h/2
p̃ · χ̃dς)da (33)

is the load potential, in which p̃(x) = p̂(u, ς) is the assigned (three-dimensional)
Piola traction. Using a formula like (21), it is straightforward to show that

L = L + o(h3), (34)

where

L =
∫

∂Ωn

χ(r,d, g)da (35)

with
χ(r,d, g) =pr · r + pd · d + pg · g, (36)

and with
pr = hp + 1

24h
3p′′, pd = 1

12h
3p′ and pg = 1

24h
3p, (37)

in which pr , pd and pg are assigned and the primes identify derivatives of the three-
dimensional traction with respect to ς, evaluated at ς = 0. The order—h3 estimate
of the potential energy is thus given by

E =
∫

Ω

Wda − L , (38)

with

L =
∫

∂Ωn

(pr · r + pd · d + pg · g)ds, (39)

Comparison with (5) furnishes

E1 =
∫

Ω

W (∇r + d ⊗ k)da −
∫

∂Ωn

p · rds (40)
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and

24E3 =
∫

Ω

{M (F)[∇d + g ⊗ k] · (∇d + g ⊗ k) + P · (∇g + h ⊗ k)}da

−
∫

∂Ωn

(p′′ · r + 2p′ · d + p · g)ds. (41)

We also consider conservative pressure loads. In this case the plate is fixed along
the entire edge ∂Ω, and ∂Ωn is empty. We suppose a volume of compressible gas
to be bounded by the lower lateral surface ∂κ− of the plate together with the walls
of a rigid container; the plate is, in effect, a deformable lid. Let V − be the enclosed
volume; i.e., the volume of the compressible gas. The pressure-volume relation of
the gas is given by the function p−(V −).We further assume the upper lateral surface
of the plate, ∂κ+, to be acted upon by a uniform pressure p+ of fixed intensity. It is
shown in [12] that

V − = 1
3

∫

∂κ−
χ̃ · F̃∗

kda, (42)

apart from an unimportant constant, where the superscript ∗ refers to the cofactor.
The tractions on the upper and lower lateral surfaces are

p̃± = ∓p±(F̃±)∗k, (43)

where F± = F̂(u,±h/2). Further, the load potential is [12]

L =
∫ V −

V −
0

p−(x)dx − p+(V + V −), (44)

where V −
0 is an arbitrary constant and

V =
∫

κ

det F̃dv (45)

is the volume of the deformed plate.
We suppose that

p± = hn P± + o(hn), (46)

with P± = O(1) and n = 1 or n = 3. It is then easy to show that

L = L + o(hn), (47)

where

L = hn[
∫ V

V−
0

P−(x)dx − P+V ] (48)
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and

V = 1
3

∫

Ω

αr · nda, (49)

where n is the unit normal to the deformed midsurface ω, α is the areal stretch of
the midsurface, and Nanson’s formula has been used in the form

αn = F∗k (50)

with α = |F∗k| . Using (26)1 with F∗k = Fe1 × Fe2, we obtain αn = (∇r)e1 ×
(∇r)e2 and thus reduce (48) to a functional of the midsurface position field. We
note in passing that the determinant of the deformation gradient, evaluated at the
midplane, is J = Fe1 × Fe2 · Fk. Thus,

J = αn · d. (51)

Accordingly, the requirement J > 0 is equivalent to the requirement d ∈ S+, where
S+ is the half-space

S+ = {v : v · n > 0}. (52)

We do not impose bulk incompressibility in the present work, although doing so
presents no difficulty.

3 Membrane Limit

Membrane theory is associated with the leading order energy in (5). Thus,

E /h = Em + o(h)/h, (53)

where

Em =
∫

Ω

W (∇r + d ⊗ k)da −
∫

∂Ωn

p · rds (54)

is the membrane energy in the dead-load boundary-value problem. In the case of
pressure loading with n = 1 in (48), the relevant energy is

Em =
∫

Ω

W (∇r + d ⊗ k)da − [
∫ V

V−
0

P−(x)dx − P+V ], (55)

where V is defined in (49). In either case the energy is a functional of the midplane
deformation field r and the director field d.

The energy is stationary with respect to d if and only if the membrane is in a state
of plane stress; i.e.,
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{WF(∇r + d ⊗ k)}k = 0. (56)

From (1) and (13) we then have that Sk = 0, which combines with the symmetry of
S to yield

S = Sαβeα ⊗ eβ. (57)

To prove that (56) may be solved uniquely for d, we first show that any solu-
tion, d̄ say, minimizes W pointwise. To this end we fix ∇r and define M(d) =
W (∇r + d ⊗ k). Let d(u) be a twice-differentiable function. The derivatives of
σ(u) = M(d(u)) are

σ̇ = ḋ · P(∇r + d ⊗ k)k = ḋ · Md (58)

and

σ̈ = d̈ · P(∇r + d ⊗ k)k + ḋ ⊗ k ·M (∇r + d ⊗ k)[ḋ ⊗ k]
= d̈ · Md + ḋ · (Mdd)ḋ. (59)

Thus,
Md(d̄) = P(∇r + d̄ ⊗ k)k (60)

vanishes by (56), whereas

Mdd(d̄) = A (∇r + d̄ ⊗ k), (61)

where A (F) is the acoustic tensor defined, for any vector v, by

A (F)v = {M (F)[v ⊗ k]}k. (62)

This is positive definite by virtue of the strong ellipticity condition (6).
We conclude that σ̈ > 0 on straight-line paths defined by d(u) = ud2 + (1 −

u)d1 with d1,d2 ∈ S+ fixed and 0 ≤ u ≤ 1. These paths are admissible because the
domain S+ of M(·) is convex. Integrating with respect to u yields σ̇ (u) > σ̇ (0) for
u ∈ (0, 1] and σ(1) − σ(0) > σ̇ (0), proving that M(d) is a strictly convex function;
i.e.,

M(d2) − M(d1) > Md(d1) · (d2 − d1) (63)

for all unequal pairs d1,d2. It follows that M is minimized absolutely at a stationary
point and hence that (56) has a unique solution d̄(∇r).

An interesting and heretofore unknown corollary is that for a given midplane
deformation, the strain energy is minimized absolutely when the midplane is in a
state of plane stress.

With this solution incorporated, the membrane energy reduces to the functional
of r defined by (54) or (55) with their integrands replaced byW (∇r + d̄(∇r) ⊗ k).
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However, it transpires that this function fails to satisfy the relevant (two-dimensional)
Legendre-Hadamard condition, even ifW is strongly elliptic in the three-dimensional
sense. This is due to the presence of compressive stresses in the plane stress-
deformation relation,whereas such stresses are precludedby theLegendre-Hadamard
condition [23].

To elaborate, we define the membrane strain-energy function

W (∇r) =W (∇r + d̄(∇r) ⊗ k). (64)

Its derivatives are

∂W/∂ri,α = ∂W /∂Fiα + (∂W /∂d j )K jiα, (65)

where K jiα = ∂ d̄ j/Fiα and Fi A are the components of (26)1 with Fiα = ri,α and
Fi3 = di . The derivatives ∂W /∂d j vanish identically by (56), yielding

∂W/∂ri,α = Piα. (66)

The associated moduli are

Eiα jβ = ∂2W/∂ri,α∂r j,β . (67)

The operative Legendre-Hadamard necessary condition for energy minimizers is
[24]

Eiα jβxi x j yα yβ ≥ 0 for all xi , yα. (68)

For frame-invariant strain energies, this has the interesting consequence that the sym-
metric (plane) second Piola-Kirchhoff stress Sαβ, defined by Piα = Fiγ Sγβ, satisfies

Sαβ yα yβ ≥ 0, (69)

and is thus positive semi-definite [23].
To see this we observe that by virtue of frame invariance, W is a function, U

say, of the surface metric aαβ = FiαFiβ, or, equivalently, of the surface strain εαβ =
1
2 (FiαFiβ − δαβ), where δαβ is the Kronecker delta. The chain rule then yields

Sαβ = ∂U/∂εαβ, (70)

in which we understand εαβ to be replaced by 1
2 (εαβ + εβα) in the function U, with

εαβ and εβα being regarded as independent when computing the partial derivative.
With this it follows by straightforward application of the chain rule that

Eiα jβ = δi j Sαβ + FiμFjλDαμβλ, (71)

where
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Dαμβλ = ∂2U/∂εαμ∂εβλ (72)

are the plane-stress elastic moduli. These possess the usual major and minor sym-
metries.

The Legendre-Hadamard condition (68) may thus be reduced to

xi xi Sαβ yα yβ + Dαμβλyαzμyβ zλ ≥ 0, (73)

where zμ = xi Fiμ is a two-vector on the undeformed midplane. For the choice xi =
ni—the unit normal to the deformed midsurface—zμ vanishes. We then obtain (69)
and the conclusion that energy minimizers necessarily yield a stress field that is
pointwise positive semi-definite. This severe restriction means that boundary-value
problems based on W will generally fail to have energy minimizing solutions. In
such circumstances well-posedness may be restored via relaxation, in which the
function W is replaced by its quasiconvexification [25]; i.e., the largest quasiconvex
function not exceedingW anywhere on its domain. The latter automatically satisfies
the Legendre-Hadamard inequality at all deformations and provides the foundation
for the tension-field theory of elastic membranes [26]. Precisely the same model
emerges directly by the method of gamma convergence [27].

4 Pure Bending

For deformations that generate zero strain at the midplane, our constitutive hypothe-
ses imply that the midplane stressP and edge traction p vanish identically, and hence
that

E /h3 = Eb + o(h3)/h3, (74)

where

24Eb =
∫

Ω

M (F)[∇d + g ⊗ k] · (∇d + g ⊗ k)da

−
∫

∂Ωn

(p′′ · r + 2p′ · d)ds (75)

in the case of dead loading.Moreover, themidplane value of the deformation gradient
is then a rotation, R say, implying that ∇r = R1 and d = Rk = n, the unit normal
to the deformed midsurface. Thus d is determined by ∇r; we write d = d̄(∇r) as
before. It follows that Eb is a functional of the midplane deformation and the vector
field g.

This energy is stationary with respect to g if and only if

{M (F)[∇d̄ + g ⊗ k]}k = 0, (76)
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or
A (F)g = −{M (F)[∇d̄]}k, (77)

whereA (F) is the acoustic tensor defined by (62). Thus (76) has the unique solution
g = ḡ(∇r,∇∇r), say.

The solution ḡ also minimizes the strain energy. To see this we fix ∇r and define

B(g) = 1
2M (∇r + d̄ ⊗ k)[∇d̄ + g ⊗ k] · (∇d̄ + g ⊗ k). (78)

Consider a parametrized path g(u). The derivatives of σ(u) = B(g(u)) with respect
to u are

σ̇ = ġ · {M (∇r + d̄ ⊗ k)[∇d̄ + g ⊗ k]}k = ġ · Bg (79)

and

σ̈ = g̈ · {M (∇r + d̄ ⊗ k)[∇d̄ + g ⊗ k]}k + ġ ⊗ k · M (∇r + d̄ ⊗ k)[ġ ⊗ k]
= g̈ · Bg + ġ· (Bgg)ġ, (80)

where we have used the major symmetry of M . Thus,

Bg(ḡ) = {M (∇r + d̄ ⊗ k)[∇d̄ + ḡ ⊗ k]}k (81)

vanishes by (76), and
Bgg = A (∇r + d̄ ⊗ k). (82)

Then, σ̈ > 0 on straight-line paths defined by g(u) = ug2 + (1 − u)g1 with g1, g2
fixed and 0 ≤ u ≤ 1. These paths belong to the convex set E3, the domain of B(·).
Integrating with respect to u yields σ̇ (u) > σ̇ (0) for u ∈ (0, 1] and σ(1) − σ(0) >

σ̇ (0), proving that the function B(g) is strictly convex; i.e.,

B(g2) − B(g1) > Bg(g1) · (g2 − g1) (83)

for all unequal pairs g1, g2. It follows that B is minimized absolutely at a stationary
point and thus that the solution ḡ to (77) furnishes the optimal order - h3 energy.

The explicit energy is obtained from (75) on noting, from (11) with F = R, that

M (R)[∇n + ḡ ⊗ k] · (∇n + ḡ ⊗ k) = B · C (0)[B], (84)

where

B = Rt [∇n+ḡ ⊗ k] (85)

is the bending strain [1, 11].
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Further, (74) implies that Eb furnishes the rigorous leading-order energy for iso-
metric deformations of the midplane in the limit as thickness tends to zero. This
result is in precise agreement with that obtained by formal asymptotic expansions
[3] and the method of gamma convergence [1]. Nevertheless the result is not entirely
satisfactory. For, Gauss’ Theorema Egregium implies that the deformed midsurface
is necessarily developable; i.e, that it is a cylinder or a cone. Accordingly Eb does
not furnish a model of plates that can be used in general applications. In view of
this fact one is forced to conclude, in keeping with Koiter’s remark, that its rigorous
derivation via gamma convergence is a somewhat overstated achievement as far as
applications are concerned.

5 Asymptotic Model for Combined Bending and Stretching

Having derived the order—h3 expansion of the potential energy for a three-
dimensional deformation (cf. (5), (40), (41)), we use it to derive energetically opti-
mal director fields d and g for a given midplane deformation r. That is, we minimize
the energy with respect to these director fields at a fixed midplane deformation.
Accordingly, we impose the stationarity condition

hĖ1 + h3 Ė3 + o(h3) = 0, (86)

in which the superposed dot refers to the variational (or Gateaux) derivative. We re-
gard this as an asymptotic expansion of the three-dimensional equilibrium statement
E · = 0. Accordingly, we require

Ė1 = 0 and Ė3 = 0. (87)

The first of these follows simply on dividing (86) by h and evaluating the resulting
equation in the limit h → 0; the second result then follows on division by h3 and
passage to the same limit.

For a fixed midplane deformation (ṙ = 0), Eq. (87)1 reduces to

∫

Ω

WF · ḋ ⊗ kda = 0 (88)

in which the variation ḋ is arbitrary in Ω. This is valid under both dead-load and
pressure loading conditions, with n = 3 in the latter case (cf. (48)). Accordingly, by
the Fundamental Lemma,

Pk = 0 in Ω, (89)

whereP = P̃(∇r + d ⊗ k).This is precisely the plane-stress condition (56), yielding
d =d̄(∇r) and thus determining d in terms of the midplane deformation field r.
Because we are considering the latter to be fixed, Eq. (87)2 reduces to
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∫

Ω

{2M (F)[∇d̄ + g ⊗ k] · ġ ⊗ k + P · (∇ġ + ḣ ⊗ k)}da −
∫

∂Ωn

p · ġds = 0,

(90)
where the major symmetry of M has been invoked. This also applies in the case of
conservative pressure loading with n = 3 in (48) and with ∂Ωn = ∅. Invoking (89)
and integrating the term involving ∇ġ by parts, using ġ|∂Ωe= 0, we reduce this to

∫

Ω

[2P′k − div(P1)] · ġda +
∫

∂Ωn

(P1ν − p) · ġds = 0 (91)

which implies that

2P′k = div(P1) in Ω and p = P1ν on ∂Ωn. (92)

The second of these results is of course in precise agreement with the three-
dimensional theory. However, the first is not. To see this we note that in the three-
dimensional theory (3) holds at all points of the plate and hence on the midplane in
particular, where it reduces to

div(P1) + P′k = 0. (93)

We attempt to reconcile this with (92)1 by using the three-dimensional theory to
relate P′k to the tractions p̃± at the upper and lower lateral surfaces of the plate. With
N = ± k as appropriate, a Taylor expansion of (2) furnishes

p̃± = p̂(u, ± h/2) = ±Pk + (h/2)P′k ± (h2/8)P′′k + O(h3). (94)

Equivalently,

p̃+ + p̃− = hP′k + O(h3) and p̃+ − p̃− = 2Pk + O(h2). (95)

Then, if p̃± = O(h3), as in the case of pressure loading with n = 3 (cf. (43)), we
conclude that

Pk = O(h2) and P′k = O(h2). (96)

The first of these is consistent with the prediction (89), whereas the second implies
that (92)1 and (93) are consistent with each other in the sense that both yield the
estimate div(P1) = O(h2). With this information we may re-write (41) as

24E3 =
∫

Ω

{M (F)[∇d + g ⊗ k] · (∇d + g ⊗ k)}da +
∫

∂Ωe

P1ν · gds

−
∫

∂Ωn

(p′′ · r + 2p′ · d)ds + O(h2). (97)
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where we have made use (92)2 and (89), the latter implying that d =d̄(∇r), which
we assume to hold on the closure of Ω. Recalling that E3 is multiplied by h3 in the
expansion (5), we are justified in suppressing terms of order O(h2) in E3 as this does
not affect the accuracy of the expansion. For consistency we must then suppress P′k;
i.e., we must impose

{M (F)[∇d̄ + g ⊗ k]}k = 0, (98)

which, as we have seen in the case of pure bending, uniquely determines
g = ḡ(∇r,∇∇r) in Ω. With g|∂Ωe fixed by the data for the three-dimensional parent
model, and with P now determined by ∇r, we conclude that if the part ∂Ωe of the
boundary is clamped; i.e., if r and the normal derivative r,ν are assigned thereon,
then the full gradient ∇r, consisting of the normal and tangential derivatives of r, is
likewise fixed on ∂Ωe and hence that the integral

∫

∂Ωe
P1ν · gds is fixed by the data.

Accordingly its variational derivative vanishes and the energy may be effectively
reduced to

24E3 =
∫

Ω

M (F)[∇d̄ + ḡ ⊗ k] · (∇d̄ + ḡ ⊗ k)da −
∫

∂Ωn

(p′′ · r + 2p′ · d̄)ds,

(99)
which is a functional of r alone. Because of (98) we may simplify the first integrand
to

M (F)[∇d̄ + ḡ ⊗ k] · (∇d̄ + ḡ ⊗ k) = P′1 · ∇d̄, (100)

but we refrain from doing this so as to preserve the symmetry of the original expres-
sion.

With the foregoing results in effect the approximate energy becomes

E = h

{∫

Ω

W (∇r + d̄ ⊗ k)da −
∫

∂Ωn

p · r ds
}

+ 1
24h

3

{∫

Ω

M (F)[∇d̄ + ḡ ⊗ k] · (∇d̄ + ḡ ⊗ k)da

−
∫

∂Ωn

(p′′ · r + 2p′ · d̄)ds

}

, (101)

in the case of dead loading, in which p, p′ and p′′ are assigned on ∂Ωn. In the case
of pressure loading with n = 3 in (48), the relevant energy is

E = h
∫

Ω

W (∇r + d̄ ⊗ k)da + 1
24h

3
∫

Ω

M (F)[∇d̄ + ḡ ⊗ k] · (∇d̄ + ḡ ⊗ k)da

− h3
[
∫ V

V−
0

P−(x)dx − P+V

]

. (102)

In both cases this energy is a functional of the midplane deformation alone.



608 M. Shirani and D. J. Steigmann

The solution ḡ to (98) involves the gradient ∇d̄ and may thus be expressed in
terms of the first and second gradients, ∇r and ∇∇r respectively, of the midsurface
deformation function r(u). To derive the explicit form of this function we observe
that the function d̄(∇r) satisfies (56) identically in ∇r. We write the latter in the
form

∂W /∂Fi3 ≡ 0, (103)

where Fi3 = di , and differentiate with respect to ∇r = ri,αei ⊗ eα (with e3 = k),
obtaining

Mi3 jβ + Aik Kk jβ = 0, (104)

where Aik are the components of the acoustic tensor defined in (62) and

Kkjβ = ∂ d̄k/∂r j,β . (105)

Accordingly,
Kkjβ = −A −1

ki Mi3 jβ, (106)

and the chain rule yields
d̄i,α = Ki jβr j,βα. (107)

Then, combining (77) in the form

Aik gk = −Mi3 jα d̄ j,α (108)

with (106), we conclude that

ḡi (∇r,∇∇r) = Ki jα d̄ j,α = Ki jαK jkβrk,αβ (109)

and hence that the second integrand in (101) (or (102)) is a homogeneous quadratic
function of the 2nd derivatives rk,αβ . Moreover, as noted in the discussion of pure-
bending theory, ḡ minimizes the energy E with respect to g.

The patient reader may well wonder why the midplane deformation r was held
fixed (ṙ = 0) in (87)1,2. The reason is that (87)1 would otherwise yield the mem-
brane problem which, as we have seen, fails to possess a solution unless the energy
is replaced by its relaxation, whereas the purpose of the order—h3 expansion is to
regularize the membrane problem. In this case it is logical to regard E as the oper-
ative approximate energy and to render it stationary with respect to r to derive the
relevant equilibrium problem. However, it transpires, rather unexpectedly, that the
minimization problem for E is also typically ill-posed.
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6 Reflection Symmetry and Ill-Posedness

As we have noted, there is no reason to suppose that minimizers of E , if any, are
related to those of the three-dimensional energy E . Nevertheless, it is of interest
to determine whether or not E admits minimizers. If a deformation r minimizes
E , then it satisfies the operative Legendre-Hadamard condition pointwise in Ω . In
the present context this is the requirement that the part of the energy density that is
homogeneous quadratic in the 2nd derivatives ri,αβ be non-negative definite when the
ri,αβ are replaced by vi bαbβ,with vi an arbitrary 3-vector and bα an arbitrary 2-vector
[24]. This restriction affects only the 2nd integrand in (101) (or (102)), which has
the component form

I = Miα jβ d̄i,α d̄ j,β + 2Miα j3d̄i,α ḡ j + Mi3 j3ḡi ḡ j . (110)

Substituting (107) and (106), after some algebra we obtain

I = Giα jβKikλK jlμrk,λαrl,βμ, (111)

where
Giα jβ = Miα jβ − Akl KkiαKljβ. (112)

The relevant Legendre-Hadamard condition is thus given by

Giα jβaia jbαbβ ≥ 0, where ai = Ki jβv j bβ, (113)

and this must hold for every vi and bα.

It transpires that Giα jβ = Eiα jβ , the moduli for pure membrane theory (cf. (67)).
To see this we compute a further derivative of (65), obtaining

Eiα jβ = ∂2W /∂Fiα∂Fjβ + (∂2W /∂Fiα∂dk)Kkjβ

= Miα jβ + Miαk3Kkjβ

= Miα jβ − Akl KliαKkjβ, (114)

and the claim follows on comparison with (112).
In view of the discussion leading to (73) and (69), we conclude that if ai can be

chosen to be aligned with the normal to the deformed midsurface, then minimizers
of E must again deliver a plane 2nd Piola-Kirchhoff stress field that is pointwise
positive semi-definite. Hilgers and Pipkin [7] have shown that this situation obtains
in the practically important case in which the three-dimensional material possesses
reflection symmetry with respect to the midplane Ω; i.e.,U (E) = U (QEQt ), with
Q = I − 2k ⊗ k.This severe restriction on the state of stress implies that minimizers
of E generally fail to exist and therefore that solution procedures relying on the
construction of energy-minimizing sequences of deformations cannot be applied.
This is a serious drawback for the practical implementation of the theory.
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We conclude that the minimization problem for E is generally ill-posed, despite
the fact that the fields d̄ and ḡminimize the energy for any given midsurface position
field. In [7] this is addressed by introducing ad hoc strain-gradient termswhich ensure
that the Legendre-Hadamard condition is automatically satisfied without qualifica-
tion. However, these regularizing terms are unrelated to the three-dimensional parent
theory. Accordingly, in [7] the existence issue is addressed at the expense of accuracy.

7 Koiter’s Model

Another way to cure the problematic ill-posedness of E is simply to suppress the
contribution of the stress to the order—h3 term in the energy. To justify this simpli-
fication we may suppose that Sαβ = O(h) at the outset. The constitutive hypotheses
discussed in Sect. 1 then imply that the strain εαβ = O(h), so that

Sαμ = Dαμβλ(0)εβλ + o(h), (115)

where Dαμβλ(0) are the classical plane-stress elastic moduli evaluated at zero strain.
In view of (11) the stress S may then be suppressed in the second integral in (101)
(or (102)) without affecting the order—h3 accuracy of E . The operative Legendre-
Hadamard condition (113) is then reduced, with the aid of (71), to the inequality

Dαμβλ(0)yαwμyβwλ ≥ 0, (116)

where wμ = ai Fiμ and ai is given by (113)2. That this inequality is automatically
satisfied may be seen on observing that, for any A,

0 ≤ A · C (0)[A] = Dαμβλ(0)AαμAβλ (117)

in the present circumstances, and choosing Aαμ = yαwμ.

In the present circumstances the midplane strain energy is approximated by
1
2Dαμβλ(0)εαμεβλ + o(h2). Because this is multiplied by h in (101) (or (102)), we
then have that E /h3 = Ē + o(h3)/h3 where Ē involves the sum of the integrals of a
homogeneous quadratic function of the surface strain and a homogeneous quadratic
function of the bending strain. Thus energyminimizers in the parent theoryminimize
Ē at leading order in h. Further, the minimization problem for Ē is well posed [20].
Remarkably, Ē is precisely Koiter’s energy for combined bending and stretching [9,
13].

The difficulty, of course, is that the magnitude of the stress Sαβ is not known a
priori and thus that the assumptions underpinning Koiter’s model, if true, can only
be justified a posteriori. Fortunately, the feasibility of such a procedure is assured by
the existence of minimizers of Koiter’s energy.
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8 Proposed Model

It is important for the sake of practical analysis to have awell-posed order—h3 model
for combined stretching and bending for use in general applications. This need stems
from the availability and utility of robust numerical methods for computing energy
minimizers directly and from the fact that it is not possible to exert control over
the stress field a priori, as required in the establishment of Koiter’s energy on the
basis of the three-dimensional theory. Further, it is unlikely that the community will
accept a much more complex model based on higher-order expansion of the energy,
its potential well-posedness notwithstanding.

To secure the desired model we note, with reference to (110) and (113), that the
source of ill-posedness stems from the role played by the membrane moduli in the
order—h3 term in the energy functional E . This in turn arises due to the use of the
solution ḡ to (98) in the same term. To avoid this, we replace (101) (or (102)) by

E ′[r, g] =
∫

Ω

W ′(∇r,∇∇r, g)da − L , (118)

where

W ′ = hW (∇r + d̄ ⊗ k) + 1
24h

3M (∇r + d̄ ⊗ k)[∇d̄ + g ⊗ k] · (∇d̄ + g ⊗ k),

(119)
in which d =d̄(∇r) is imposed but the fields r(u) and g(u) are independent; i.e., we
do not impose g =ḡ. The Euler equation for g, namelyW ′

g = 0, is equivalent to (98),
which furnishes g =ḡ. It follows that, in equilibrium, E ′[r, g] and the order—h3 plate
energy are equivalent insofar as the Euler equations and natural boundary conditions
are concerned (see [12] for a derivation). Thus the equilibria of the order—h3 energy
are precisely the equilibria of E ′[r, g]. Moreover, these equilibria render the two
functionals equal.

To elaborate, consider the first variation

Ė ′ =
∫

Ω

[(∂W ′/∂ri,α)ṙi,α + (∂W ′/∂ri,αβ)ṙi,αβ + (∂W ′/∂gi )ġi ]da, (120)

in which we have suppressed the load potential, which is not relevant to the present
discussion. Equilibria in the approximate theory are, by definition, those states for
which Ė ′ vanishes for all kinematically admissible variations ṙi and ġi . This yields
∂W ′/∂gi = 0 in particular, which of course has the unique solution g =ḡ(∇r,∇∇r).
Accordingly,

∂W ′
∂gi

(∇r,∇∇r, ḡ(∇r,∇∇r)) ≡ 0 (121)

for all ∇r and ∇∇r. Differentiation of this identity yields

∂2W ′/∂gi∂r j,α = 0 and ∂2W ′/∂gi∂r j,αβ = 0, (122)
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which may be used to simplify the equilibrium expression for the second variation
Ë ′ accordingly. Thus,

Ë ′ =
∫

Ω

[(∂W ′/∂ri,α)r̈i,α + (∂W ′/∂ri,αβ)r̈i,αβ + (∂W ′/∂gi )g̈i ]da

+
∫

Ω

[(∂2W ′/∂ri,α∂r j,β)ṙi,αṙ j,β + (∂2W ′/∂ri,α∂r j,βμ)ṙi,αṙ j,βμ

+(∂2W ′/∂ri,αμ∂r j,β)ṙi,αμṙ j,β
+(∂2W ′/∂ri,αμ∂r j,βλ)ṙi,αμṙ j,βλ]da
+

∫

Ω

(∂2W ′/∂gi∂g j )ġi ġ j da, (123)

in which the first line vanishes due to the stationarity condition Ė ′ = 0 (cf. (120))
and all parenthetical terms are evaluated at the equilibrium state. Thus in equilibrium
the second variation is a quadratic functional of ṙ and ġ.

We now fix ṙ and minimize the second variation with respect to ġ. This yields the
stationarity condition

∫

Ω

(∂2W ′/∂gi∂g j )ġ j g̈i da = 0, (124)

which in turn implies that
(∂2W ′/∂gi∂g j )ġ j = 0 (125)

pointwise in Ω. The coefficient matrix is seen, with reference to (82), to be
∂2W ′/∂gi∂g j = 1

12Ai j , where A is the positive definite acoustic tensor defined in
(62). Thus the minimizing value is ġ = 0 and the second variation reduces to

Ë ′ =
∫

Ω

[(∂2W ′/∂ri,α∂r j,β)ṙi,αṙ j,β + (∂2W ′/∂ri,α∂r j,βμ)ṙi,αṙ j,βμ

+(∂2W ′/∂ri,αμ∂r j,β)ṙi,αμṙ j,β
+(∂2W ′/∂ri,αμ∂r j,βλ)ṙi,αμṙ j,βλ]da (126)

at equilibrium. This is non-negative for all kinematically admissible ṙ if the defor-
mation r is a minimizer of E ′.

The operative Legendre-Hadamard necessary condition for minimizers in this
case is the requirement that

(∂2W ′/∂ri,αμ∂r j,βλ)viv j bαbβbμbλ ≥ 0 (127)

pointwise inΩ, for all vi and ba [24].With reference to (107) and (119), this is found
to be equivalent to

Miα jβaia jbαbβ ≥ 0, (128)
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where the ai are given by (113)2 andM is evaluated at an equilibrium deformation.
That this is so is an immediate consequence of three-dimensional strong ellipticity.
Accordingly, the Legendre-Hadamard condition for (118) is automatically satisfied
and imposes no a priori restrictions on the stress. This means that E ′[r, g] meets
a fundamental necessary condition for the existence of minimizers without qual-
ification, whereas the order—h3 energy does so only under restrictive conditions
which cannot be verified a priori. It is therefore appropriate to regard equilibria in
the order—h3 model as minimizers of E ′[r, g], although it remains to be proved that
this functional actually possesses a minimizer. This question, which remains open,
is addressed to the mathematically inclined reader.
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