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Abstract In the framework of general stability theory for three-dimensional bodies,
the buckling analysis has been carried out for a circular plate subjected to the radial
compression. It was assumed that the surface stresses are acting on its faces and the
behavior of the plate is described by the Gurtin–Murdoch model. For an arbitrary
isotropic material, the system of linearized equilibrium equations is derived, which
describes the behavior of a plate in a perturbed state. In the case of axisymmet-
ric perturbations, the stability analysis is reduced to solving a linear homogeneous
boundary-value problem for a system of three ordinary differential equations. It is
shown that for a plate with identical faces, it is sufficient to consider only half of
the plate to study its stability. For two specific models of bulk material (Harmonic
model and Blatz–Ko model), the buckling analysis has been carried out for a circular
plate made of aluminum. It was found, in particular, that the stability of the plate
increases with a decrease in its overall size. This effect is due to the influence of
surface stresses and is quite significant at the micro- and nanoscale.

1 Introduction

The problem of equilibrium stability for deformable bodies is of major importance
because the exhaustion of bearing capacity and the collapse of engineering structures
quite often occurs due to the buckling under external loads. Due to the development
of modern technologies and the appearance of newmaterials, the problem of stability
analysis while taking into account the various surface phenomena becomes relevant
[11]. For example, the deformation pattern of bodies at micro- and nanoscale is
often significantly different from the behavior of macro-sized bodies, which can
be explained by surface effects [1]. To model surface phenomena, especially in
nanomechanics [4, 17], the theory of elasticity with surface stresses has received
development. In this theory, in addition to the ordinary stresses distributed in the
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volume, the independent surface stresses are also taken into account at the boundary
of the body or its part. These stresses generalize the well-known in hydromechanics
scalar surface tension to the case of solids. The introduction of surface stresses allows,
in particular, describing the size effect typical for nanomaterials [3, 9, 16].

The present research is dedicated to the buckling analysis of nonlinearly elastic
plateswith surface stresses. To take into account the influence of the latter, theGurtin–
Murdoch model [6] is used, which from the mechanical point of view is equivalent to
a deformable body with a glued elastic membrane. Accounting for surface stresses
allows studying the buckling features of micro- and nanosized plates.

2 Governing Equations

In the framework of Gurtin–Murdoch model, the set of static equations for a non-
linearly elastic body with surface stresses in the absence of body forces consists of
[14] the equilibrium equations

◦∇ ·D = 0 (1)

the equilibrium conditions on the part of the body surface �s , where the surface
stresses are acting (

n · D − ◦∇s · Ds

)∣∣∣
�s

= t (2)

the constitutive equations

D = P · C, P = 2
∂W (G)

∂G
, Ds = Ps · Cs, Ps = 2

∂Ws(Gs)

∂Gs
(3)

and the geometric relations

G = C · CT, C = ◦∇ R, Gs = Cs · CT
s , Cs = ◦∇sR

∣∣∣
�s

(4)

Here D and P are the Piola and Kirchhoff stress tensors, respectively;
◦∇ is the

three-dimensional nabla-operator in Lagrangian coordinates;
◦∇s is the surface nabla-

operator; Ds and Ps are the surface stress tensors of the Piola and Kirchhoff type; n
is the unit vector normal to the surface of the undeformed body; t is the surface loads
vector; W and Ws are the bulk and surface strain energy densities, respectively; G
and Gs are the Cauchy–Green strain tensors in the volume and on the surface of the
body; C and Cs are the deformation gradients; and R is the position vector in the
actual configuration.

Taking (3) into account, the following relations are valid for the Kirchhoff stress
tensor P in the case of an isotropic body [8, 10]:
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P =
3∑

k=1

χkdk ⊗ dk, χk = 2
∂W (G1,G2,G3)

∂Gk
, G =

3∑
k=1

Gkdk ⊗ dk (5)

whereGk,dk(k = 1, 2, 3) are the eigenvalues and eigenvectors of the Cauchy–Green
strain tensor G. At the same time, the expression for the surface stress tensor of
Kirchhoff type Ps takes the form [1]:

Ps = κ1Is + 2κ2Gs, κθ = 2
∂Ws( j1, j2)

∂ jθ
, jθ = trGθ

s , θ = 1, 2 (6)

Here j1, j2 are the invariants of the surface Cauchy–Green strain tensor Gs ; I and
Is = I − n ⊗ n are the three-dimensional and surface unit tensors, respectively.

3 Circular Plate with Surface Stresses

Consider a homogeneous circular plate of radius r0 and thickness 2h. We assume
that the surface stresses are acting on its top �+ (z = h) and bottom �− (z = −h)

faces, i.e.�s = �+ ∪ �−. In the case of radial compression of the plate, the position
vector R is given by the following relations [13, 18]:

R = αreR + γ zeZ
R = αr, Φ = ϕ, Z = γ z
0 ≤ r ≤ r0, 0 ≤ ϕ ≤ 2π, |z| ≤ h

(7)

where r, ϕ, z are the cylindrical coordinates in the reference state (Lagrangian
coordinates); R, Φ, Z are the Eulerian cylindrical coordinates;

{
er , eϕ, ez

}
and

{eR, eΦ, eZ } are the orthonormal vector bases of Lagrangian and Eulerian coordi-
nates, respectively; α is the given ratio of radial compression; and γ is the unknown
constant that characterizes the deformation in the thickness direction of the plate.

According to the expressions (4), (7), the deformation gradients in the volume
and on the surface are:

C = α(er ⊗ eR + eϕ ⊗ eΦ) + γ ez ⊗ eZ , C± = α(er ⊗ eR + eϕ ⊗ eΦ) (8)

Hereinafter indexes “+” and “–” denote surface quantities related to the top and
bottom faces of the circular plate, respectively.

From the relations (4), (8) we obtain the expressions for the corresponding
Cauchy–Green strain tensors

G = α2(er ⊗ er + eϕ ⊗ eϕ) + γ 2ez ⊗ ez, G± = α2(er ⊗ er + eϕ ⊗ eϕ) (9)
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It is obvious that for the considered initial strain state the eigenvectorsdk (k = 1, 2, 3)
of the Cauchy–Green strain tensor coincide with the vector basis of Lagrangian
cylindrical coordinates, i.e. d1 = er , d2 = eϕ , d3 = ez , and the eigenvalues Gk are:
G1 = G2 = α2, G3 = γ 2. Thus, taking (5), (6) into account, the following relations
are valid for the Kirchhoff stress tensors:

P = χ1er ⊗ er + χ2eϕ ⊗ eϕ + χ3ez ⊗ ez
P± = (

κ±
1 + 2α2κ±

2

)
(er ⊗ er + eϕ ⊗ eϕ)

(10)

Substituting the above expressions in (3), we find a representation of the Piola stress
tensor D and the surface stress tensors of the Piola type D+ and D− in the case of
radial compression of the circular plate

D = αχ1er ⊗ eR + αχ2eϕ ⊗ eΦ + γχ3ez ⊗ eZ
D± = α

(
κ±
1 + 2α2κ±

2

)
(er ⊗ eR + eϕ ⊗ eΦ)

(11)

It follows from (11) that the equilibrium equations (1) are automatically satisfied if
χ1 = χ2. The equilibrium conditions (2) on the plate faces �+ and �− in the absence
of surface loads are written as follows:

χ3|z=±h = 0 (12)

By solving the equation (12) at given densityW of the bulk strain energy, we find
the unknown constant γ .

4 Equations of Neutral Equilibrium

Suppose that in addition to the discussed initial strain state of the circular plate with
surface stresses, there is an infinitely close equilibrium state under the same external
loads, which is determined by the position vector R̃ = R + ηv. Here η is the small
parameter and v is the vector of additional displacements.

The linearized equilibrium equations for a nonlinearly elastic medium have the
form [5, 10]:

◦∇ ·D• = 0, D• =
[
d

dη
D (R + ηv)

]

η=0

(13)

D• = P• · C + P · ◦∇ v (14)

Here D• and P• are the linearized Piola and Kirchhoff stress tensors, respectively. In
order to find the expression for the latter, a linearization of the constitutive relations
(5) is carried out [12, 14]
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P• =
3∑

k=1

(
χ•
k dk ⊗ dk + χkd•

k ⊗ dk + χkdk ⊗ d•
k

)

G• =
3∑

k=1

(
G•

kdk ⊗ dk + Gkd•
k ⊗ dk + Gkdk ⊗ d•

k

) (15)

By taking into account the fact that vectors dk and d•
k (k = 1, 2, 3) are mutually

orthogonal, i.e. dk · d•
k = 0, following (15) we obtain (m, n = 1, 2, 3; k �= m �= n)

dk · P• · dk = χ•
k , dk · P• · dm = Bndk · G• · dm, Bn = χk − χm

Gk − Gm
(16)

where the relations for χ•
k have the form:

χ•
k =

3∑
n=1

χknG
•
n, χkn = ∂χk(G1,G2,G3)

∂Gn
, G•

n = dn · G• · dn

Equations (16) represent all components of the linearized Kirchhoff stress tensor P•
in the basis {d1,d2,d3} through the components of the linearized Cauchy–Green
strain tensor G•, while the tensor G• itself is

G• = ◦∇ v · CT + C · ◦∇ vT (17)

According to (2), the linearized equilibrium conditions on the top (z = h) and
bottom (z = −h) faces of the plate take the form [1]:

(
ez · D• ∓ ◦∇± · D•

±

)∣∣∣
z=±h

= 0 (18)

Here D•
+ and D

•
− are the linearized surface stress tensors of the Piola type, for which,

taking into account the expressions (3), (6), the following relations are valid [15]

D•
± = P•

± · C± + P± · ◦∇±v±, P•
± = κ±

1
•I± + 2κ±

2
•G± + 2κ±

2G
•
± (19)

where (θ = 1, 2)

κ±
θ

• =
2∑

τ=1

κ±
θτ j

±
τ

•, κ±
θτ = ∂κ±

θ ( j±
1 , j±

2 )

∂ j±
τ

j±
1

• = trG•
±, j±

2
• = 2tr

(
G± · G•

±
)

G•
± = ◦∇±v± · CT

± + C± · ◦∇±vT± , v± = v|z=±h

(20)
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Here P•
+ and P•

− are the linearized surface stress tensors of the Kirchhoff type; G•
+

andG•
− are the linearized surface strain tensors of the Cauchy-Green type; v+ and v−

are the vectors of additional displacements of the plate faces.
We assume that the constant radial displacement is given at the edge of the circular

plate (r = r0), the azimuthal displacement is absent, and there is no friction during
vertical displacement. This leads to the following linearized edge conditions [13]:

er · D• · eZ |r=r0 = v · eR|r=r0 = v · eΦ |r=r0 = 0 (21)

The vector of additional displacements v in the basis of Eulerian cylindrical coor-
dinates is written as:

v = vReR + vΦeΦ + vZeZ (22)

Taking into account the expressions (8), (10), (14), (16), (17), (22) and the fact
that in the considered unperturbed state d1 = er , d2 = eϕ , d3 = ez , the components
of the linearized Piola stress tensor D• in the basis of cylindrical coordinates take
the form:

er · D• · eR = (
χ1 + 2α2χ11

) ∂vR
∂r

+ 2α2χ12

r

(
∂vΦ

∂ϕ
+ vR

)
+ 2αγχ13

∂vZ
∂z

er · D• · eΦ = (
χ1 + α2B3

) ∂vΦ

∂r
+ α2B3

r

(
∂vR
∂ϕ

− vΦ

)

er · D• · eZ = (
χ1 + γ 2B2

) ∂vZ
∂r

+ αγ B2
∂vR
∂z

eϕ · D• · eR = α2B3
∂vΦ

∂r
+ χ2 + α2B3

r

(
∂vR
∂ϕ

− vΦ

)

eϕ · D• · eΦ = 2α2χ12
∂vR
∂r

+ χ2 + 2α2χ22

r

(
∂vΦ

∂ϕ
+ vR

)
+ 2αγχ23

∂vZ
∂z

(23)

eϕ · D• · eZ = χ2 + γ 2B1

r

∂vZ
∂ϕ

+ αγ B1
∂vΦ

∂z

ez · D• · eR = (
χ3 + α2B2

) ∂vR
∂z

+ αγ B2
∂vZ
∂r

ez · D• · eΦ = (
χ3 + α2B1

) ∂vΦ

∂z
+ αγ B1

r

∂vZ
∂ϕ

ez · D• · eZ = 2αγχ13
∂vR
∂r

+ 2αγχ23

r

(
∂vΦ

∂ϕ
+ vR

)
+ (

χ3 + 2γ 2χ33
) ∂vZ

∂z

Similarly, according to the relations (8)–(10), (19), (20), (22), the components
of the linearized surface stress tensors of the Piola type D•

+ and D•
− are written as

follows:
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er · D•
± · eR = (

κ±
1 + 6α2κ±

2 + ξ±) ∂v±
R

∂r
+ ξ±

r

(
∂v±

Φ

∂ϕ
+ v±

R

)

er · D•
± · eΦ = (

κ±
1 + 4α2κ±

2

) ∂v±
Φ

∂r
+ 2α2κ±

2

r

(
∂v±

R

∂ϕ
− v±

Φ

)

er · D•
± · eZ = (

κ±
1 + 2α2κ±

2

) ∂v±
Z

∂r
(24)

eϕ · D•
± · eR = 2α2κ±

2

∂v±
Φ

∂r
+ κ±

1 + 4α2κ±
2

r

(
∂v±

R

∂ϕ
− v±

Φ

)

eϕ · D•
± · eΦ = ξ± ∂v±

R

∂r
+ κ±

1 + 6α2κ±
2 + ξ±

r

(
∂v±

Φ

∂ϕ
+ v±

R

)

eϕ · D•
± · eZ = κ±

1 + 2α2κ±
2

r

∂v±
Z

∂ϕ
ez · D•

± = 0

ξ± = 2α2(κ±
11 + 4α2κ±

12 + 4α4κ±
22)

v±
R = vR

∣∣
z=±h , v±

Φ = vΦ

∣∣
z=±h , v±

Z = vZ
∣∣
z=±h

Taking into account the expressions (23), we write the equations of neutral equi-
librium (13), describing the perturbed state of the circular plate, in the scalar form:

(
χ1 + 2α2χ11

) ∂2vR
∂r2

+ α2(B3 + 2χ12)

r

∂2vΦ

∂r∂ϕ
+ αγ (B2 + 2χ13)

∂2vZ
∂r∂z

+χ2 + α2B3

r2
∂2vR
∂ϕ2

+ (χ3 + α2B2)
∂2vR
∂z2

+ χ1 + 2α2χ11

r

∂vR
∂r

−2χ2 + α2(B3 + 2χ22)

r2
∂vΦ

∂ϕ
− χ2 + 2α2χ22

r2
vR = 0

(
χ1 + α2B3

) ∂2vΦ

∂r2
+ α2(B3 + 2χ12)

r

∂2vR
∂r∂ϕ

+ χ2 + 2α2χ22

r2
∂2vΦ

∂ϕ2

+αγ (B1 + 2χ23)

r

∂2vZ
∂ϕ∂z

+ (χ3 + α2B1)
∂2vΦ

∂z2
+ χ1 + α2B3

r

∂vΦ

∂r
(25)

+2χ2 + α2(B3 + 2χ22)

r2
∂vR
∂ϕ

− χ2 + α2B3

r2
vΦ = 0

(
χ1 + γ 2B2

) ∂2vZ
∂r2

+ αγ (B2 + 2χ13)
∂2vR
∂r∂z

+ χ2 + γ 2B1

r2
∂2vZ
∂ϕ2

+αγ (B1 + 2χ23)

r

∂2vΦ

∂ϕ∂z
+ (χ3 + 2γ 2χ33)

∂2vZ
∂z2

+χ1 + γ 2B2

r

∂vZ
∂r

+ αγ (B2 + 2χ23)

r

∂vR
∂z

= 0
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According to the relations (22)–(24), the linearized equilibrium conditions (18)
on the plate faces are written as follows (z = ±h):

(
χ3 + α2B2

) ∂vR
∂z

+ αγ B2
∂vZ
∂r

∓ (κ±
1 + 6α2κ±

2 + ξ±)

(
∂2vR
∂r2

+ 1

r

∂vR
∂r

− vR
r2

)

∓2α2κ±
2 + ξ±
r

(
∂2vΦ
∂r∂ϕ

− 1

r

∂vΦ
∂ϕ

)
∓ κ±

1 + 4α2κ±
2

r2

(
∂2vR
∂ϕ2 − 2

∂vΦ
∂ϕ

)
= 0

(
χ3 + α2B1

) ∂vΦ
∂z

+ αγ B1
r

∂vZ
∂ϕ

∓ 2α2κ±
2 + ξ±
r

(
∂2vR
∂r∂ϕ

+ 1

r

∂2vΦ
∂ϕ2 + 1

r

∂vR
∂ϕ

)
(26)

∓(κ±
1 + 4α2κ±

2 )

(
∂2vΦ
∂r2

+ 1

r

∂vΦ
∂r

− vΦ
r2

+ 1

r2
∂2vΦ
∂ϕ2 + 2

r2
∂vR
∂ϕ

)
= 0

(
χ3 + 2γ 2χ33

) ∂vZ
∂z

+ 2αγχ13
∂vR
∂r

+ 2αγχ23

r

(
∂vΦ
∂ϕ

+ vR

)

∓(κ±
1 + 2α2κ±

2 )

(
∂2vZ
∂r2

+ 1

r

∂vZ
∂r

+ 1

r2
∂2vZ
∂ϕ2

)
= 0

while the linearized edge conditions (21) take the form (r = r0):

(
χ1 + γ 2B2

) ∂vZ
∂r

+ αγ B2
∂vR
∂z

= 0, vR = 0, vΦ = 0 (27)

Thus, the stability analysis of a circular plate with surface stresses in the general
case is reduced to solving a linear homogeneous boundary-value problem (25)–(27)
for the system of three partial differential equations.

5 Axisymmetric Buckling

In the special case of axisymmetric perturbations (∂vR/∂ϕ = 0, ∂vΦ/∂ϕ = 0,
∂vZ/∂ϕ = 0), the boundary-value problem (25)–(27) becomes much simpler. The
use of substitution [13]

vR = VR (z) J1 (βr) , vΦ = VΦ (z) J1 (βr) vZ = VZ (z) J0 (βr) (28)

β = ζm/r0, J1 (ζm) = 0, m = 1, 2, ...

leads to the separation of the variable r in the problem and allows to satisfy the
linearized boundary conditions (27) at the edge of the plate. Here J0 and J1 are the
Bessel functions of the first kind.
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Given the representation (28), the linearized equilibriumequations (25) arewritten
as follows (hereinafter ′ denotes the derivative with respect to z):

(χ3 + α2B2)V
′′
R − β2

(
χ1 + 2α2χ11

)
VR − αβγ (B2 + 2χ13)V

′
Z = 0

(χ3 + α2B1)V
′′
Φ − β2 (

χ1 + α2B3
)
VΦ = 0 (29)

(χ3 + 2γ 2χ33)V
′′
Z − β2

(
χ1 + γ 2B2

)
VZ + αβγ (B2 + 2χ13)V

′
R = 0

Similarly, the linearized equilibrium conditions (26) take the form (z = ±h):

(
χ3 + α2B2

)
V ′
R ± β2(κ±

1 + 6α2κ±
2 + ξ±)VR − αβγ B2VZ = 0(

χ3 + α2B1
)
V ′

Φ ± β2(κ±
1 + 4α2κ±

2 )VΦ = 0 (30)(
χ3 + 2γ 2χ33

)
V ′
Z + 2αβγχ13VR ± β2(κ±

1 + 2α2κ±
2 )VZ = 0

As a result, the axisymmetric buckling analysis for the circular plate with surface
stresses is reduced to solving a linear homogeneous boundary-value problem (29),
(30) for the system of three ordinary differential equations.

If the elastic properties of the top and bottom faces of the plate are the same, i.e.
κ+

θ = κ−
θ and κ+

θτ = κ−
θτ (θ, τ = 1, 2), then the boundary-value problem (29), (30)

has two independent sets of solutions [13, 15]. The First set is formed by solutions
for which the deflection of a plate is an odd function of z (symmetric buckling):

VR(z) = VR(−z), VΦ(z) = VΦ(−z), VZ (z) = −VZ (−z)

For the Second set of solutions, the deflection is an even function of z (flexural
buckling):

VR(z) = −VR(−z), VΦ(z) = −VΦ(−z), VZ (z) = VZ (−z)

Due to this, it is sufficient to consider only half of the plate (0 ≤ z ≤ h) to study
its stability. The boundary conditions at the middle surface (z = 0) follow from the
evenness and oddness of the unknown functions VR, VΦ, VZ :

a) for the First set of solutions:

V ′
R(0) = V ′

Φ(0) = VZ (0) = 0 (31)

b) for the Second set of solutions:

VR(0) = VΦ(0) = V ′
Z (0) = 0 (32)

Thus, the stability analysis of a plate with identical faces can be reduced to solving
two linear homogeneous boundary-value problems for the half-plate: (29)–(31) and
(29), (30), (32).
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6 Numerical Results

As an example, we have studied the stability of a circular plate made of aluminum in
the case of axisymmetric perturbations. Two different models of bulk material were
considered:

1) Harmonic model [7] (λ1, λ2, λ3 are the principal stretches)

W = 1

2
λ (λ1 + λ2 + λ3 − 3)2 + 2μ

[
(λ1 − 1)2 + (λ2 − 1)2 + (λ3 − 1)2

]

λk = √
Gk, k = 1, 2, 3

2) Blatz–Komodel [2] (I1, I2, I3 are the principal invariants of the Cauchy–Green
strain tensor)

W = 1

2
μb

(
I1 + I−a

3 − 1

a
− 3

)
+ 1

2
μ (1 − b)

(
I2
I3

+ I a3 − 1

a
− 3

)
, a = λ

2μ

I1 = G1 + G2 + G3, I2 = G1G2 + G1G3 + G2G3, I3 = G1G2G3

The surface strain energy densities were assumed to be quadratic functions of the
invariants j±

1 , j±
2 [1]:

W± = 1

8
λ±

(
j±
1 − 2

)2 + 1

4
μ±

(
j±
2 − 2 j±

1 + 2
)

The following values of bulk λ,μ and surface λ±, μ± elastic moduli were used for
the aluminum [4]:

λ = 52.05 GPa, μ = 34.7 GPa, λ± = −3.49 Pa · m, μ± = 6.22 Pa · m

For convenience, the following dimensionless parameters were introduced:

• relative radial compression δ = 1 − α,
• radius-to-thickness ratio r∗

0 = r0/2h,
• relative thickness H∗ = 2hμ/μ+.

By numerical solution of the linearized boundary-value problems (29)–(31) and
(29), (30), (32) we found the spectra of critical values of the relative radial com-
pression δ, corresponding to the different buckling modes of the circular plate with
surface stresses. By analyzing these spectra, the critical radial compression δc was
obtained for plates of various sizes. It should be noted that we did not study the sta-
bility of very thick plates

(
r∗
0 < 5

)
in this paper. As a result, it was determined that

the flexural buckling occurs at the lowest loads, and the critical radial compression
δc corresponds to the first flexural mode (m = 1).
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Fig. 1 Size effect on the
stability of circular plate
with surface stresses.
Harmonic model

Fig. 2 Size effect on the
stability of circular plate
with surface stresses.
Blatz–Ko model (b = 0)

Figures 1 and 2 illustrate the influence of the overall size (scale) of the plate on
its stability. The graphs show the dependencies (solid lines) of the critical radial
compression δc on the relative thickness H∗ (size parameter) for plates with the
different radius-to-thickness ratio r∗

0 . According to the results obtained for both
models of bulk material, the stability of the plate increases with a decrease in size.
This effect is due to the influence of surface stresses. It is negligible at the macroscale
but becomes quite significant at micro- and nanoscale (H∗ ≤ 50). For reference, the
graphs also show the results of the stability analysis for plateswithout surface stresses
(dashed lines). As expected, these results do not depend on the overall size of the
plate.

Additionally, we have analyzed how the geometric proportions (ratios of linear
dimensions) of the circular plate affect its stability. The results are reflected in Figs. 3
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Fig. 3 Effect of plate
proportions on its stability.
Harmonic model

Fig. 4 Effect of plate
proportions on its stability.
Blatz–Ko model (b = 0)

and 4which show the dependencies of the critical radial compression δc on the radius-
to-thickness ratio r∗

0 for plates of different scale H∗. According to them, the thicker
plates are generally more stable, and this fact is more pronounced for smaller plates
due to the influence of surface stresses.

7 Conclusion

In the framework of the bifurcation approach, we studied the stability of a nonlinearly
elastic circular plate with surface stresses. For an arbitrary isotropic material, the sys-
tem of linearized equilibrium equations was derived, which describes the behavior
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of a plate in a perturbed state. In the case of axisymmetric perturbations, the stabil-
ity analysis was reduced to solving a linear homogeneous boundary-value problem
(29), (30) for a system of three ordinary differential equations. Additionally, it was
established that if the elastic properties of the top and bottom faces of the plate are
the same, then it is sufficient to consider only half of the plate to study its stability.
For two specific models of bulk material (Harmonic model and Blatz–Komodel), the
buckling analysis has been carried out for a circular plate made of aluminum in the
case of axisymmetric perturbations. As a result, it was found that the stability of the
plate increases with a decrease in its overall size. This effect is due to the influence
of surface stresses. It is negligible at the macroscale but becomes quite significant at
micro- and nanoscale (H∗ ≤ 50).
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