
Localized Parametric Vibrations
of Laminated Cylindrical Shell Under
Non-uniform Axial Load Periodically
Varying with Time

Gennadi Mikhasev and Rovshen Atayev

Abstract Based on the equivalent single layer model for laminated shells, paramet-
ric vibrations of thin laminated non-circular cylindrical shells under non-uniform
axial load periodically varying with time are studied. As the governing equations,
the non-linear coupled differential equations written in terms of the displacement
and stress functions accounting for transverse shears are used. It is assumed that the
effective (reduced) shear modulus for an entire laminated package is much less than
the reduced Young’s modulus. Using the asymptotic method of Tovstik in combina-
tion with the multiple scales method with respect to time, solutions of the governing
equations are constructed in the form of functions which are exponentially decay far
from some generatrix and growingwith time in the case of parametric resonance. The
system of two differential equations with periodic in time coefficients and accounting
for shears is derived to determine the amplitude of parametric vibrations. The main
regions of parametric instability taking into account transverse shears were found.
An example of parametric vibrations of a sandwich cylinder with the magnetorheo-
logical core affected by a magnetic field is considered.

1 Introduction

Parametric vibrations of amechanical system are vibrationswhich occur when one or
several parameters of a system change as a result of an external influence (boundary
conditions, forces, temperature,magnetic or electric field, etc.). The simplest example
of parametrically excited vibrations is the dynamic response of a single-degree-of-
freedom system—pendulum with an oscillating point of suspension [11, 17, 35].
Thin-walled constructions and their structural elements (beams, plates and shells)
are also very sensitive to periodically varying external excitations. Often, parametric
vibrations in such members occur when external forces lead to the appearance in a
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mechanical system of initial stresses having components periodically varying with
time [9].

Apparently, for the first time, the problem on parametric vibrations of shells
was considered by Chelomey [12]. He studied the dynamic instability of circular
cylindrical shells, compressed by the non-stationary forces applied at the shell ends.
Later, parametric vibrations of cylindrical shells under periodic axial and radial
forces were considered by Markov [22], Oniashvili [32], Wenzke [40], Yao [42,
43], Vijayaraghavan and Evan-Ivanowski [38], Baruch [2] and many others. The
general setting of problems on dynamic instability of thin single layer shells under
periodic external forces was given by Bolotin [9]. Using equations of membrane
and general theories of thin shells, he derived the coupled differential equations
in variations describing motion of a thin shell in the neighbourhood of a dynamic
membrane stress state. Subsequently, problems on parametric vibrations of thin shells
under different loading schemes and various complicating factors (in a nonlinear
setting, taking into account energy dissipation, anisotropy, reinforcement, transverse
shears, temperature field, initial imperfections etc.) was considered by many authors
(s., among many others, [3, 4, 6–8, 10, 18, 19, 31, 33, 39]).

Last decade, the wide use of new composite materials in designing of slender
engineering structures stimulated intensive investigations on dynamics of thin-walled
laminated and functionally graded elements. However, among an enormous amount
of papers on the dynamics of layered structures subjected to external periodic forces,
parametrically excited vibrations of layered shells and their dynamic instability are
not well understood. This is explained by the complexity of formulation of a non-
linear problem for multi-layered thin-walled structures. We shall refer to examples
of a very small number of studies on parametric vibrations of thin-walled sandwich
elements and multi-layered beams, plates and shells. So, the dynamic stability of
thin-walled composite beams, taking into account shear deformation and fiber ori-
entation angle, subjected to axial external force, was studied in Refs. [20, 21]. The
parametric vibrations and dynamic instability of laminated composite panels sub-
jected to non-uniform compressive in-plane harmonic edge loadingwere investigated
in [37]. Using the multiple scales method, the authors obtained analytical expres-
sions for the simple and combination resonance instability regions. It was revealed
that under localized edge loading, the combination of resonance instability zones
are as important as zones of a simple resonance instability. In paper [1], using the
variational Ritz method and the R-functions theory, dynamical instability and non-
linear parametric vibrations of symmetrically laminated plates of complex shapes
and having different cut-outs were considered. The non-linear parametric vibrations
of thin laminated composite cylindrical shells subjected to harmonic axial loading
were investigated in reference [14]. Considering different lamination schemes, the
authors of this paper give a detailed study of parametric resonance of axially stretched
and compressed cylinders. Using the Galerkin’s technique, in paper [36], parametric
vibrations of laminated inhomogeneous orthotropic conical shells under axial load
varying with time were investigated. The non-linear dynamic behaviour and para-
metric vibrations of cylindrical shells functionally graded in the thickness direction
under periodic axial loading were studied in Refs. [13, 34].
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As a rule, the main methods of studying parametric vibrations of shells are vari-
ational ones (e.g., Ritz, Galerkin procedures) which permit to reduce the original
equations to the well-known Mathieu-Hill differential equation. The advantage of
this approach is that it allows finding all regions of parametric instability. However,
it turns out to be computationally very expensive if the problem is two-dimensional
and the shell stress state is inhomogeneous. Similar problems arise if, for example,
a shell is non-circular and/or loading is inhomogeneous. In such cases, some modes
of natural vibrations of a thin shell (for instance eigenmodes of a medium-length
cylindrical shell corresponding to a low part of spectrum) can be localized in the
vicinity of some line(s), called the weakest one(s), that makes it necessary to account
for a large number of terms in the series when using the Ritz or Galerkin procedure
or some other technique.

In this paper, we propose the approach based on using the asymptotic method of
Tovstik [29] in combinationwith themultiple scalesmethodwith respect to time. This
approach allows finding the main regions of parametric instability for the case when
excited vibrations are localized in the vicinity of the weakest lines or points [23]. The
basic purpose of the paper is to study the influence of transverse shears in a laminated
shell with low effective shear modulus on the main region of parametric instability.
As an example, the localized parametric vibrations of a sandwich cylindrical shell
with magnetorheological core under inhomogeneous axial loading varying with time
are considered taking into account shears, with the energy dissipation being ignored.

2 Non-linear Equations

Weconsider a thin laminated cylindrical shell of length L consisting of N transversely
isotropic layers. Each layer is characterized by thickness h j , Young’s modulus E j ,
shear modulus G j , Poisson’s ratio ν j , and density ρ j , where j = 1, 2, . . . , N (the
numbering of layers begins with the innermost lamina). The middle surface of any
fixed layer is taken as the reference surface with the axial and circumferential coordi-
nates α1 and α2, respectively, as shown in Fig. 1. In the general case, the cylindrical
shell is non-circular with radius of the reference surface equal to R2(α2). The shell
is under the axial force

T ◦
11 = T ◦

10(α2) + T ◦
1c(α2) cosΩ∗t∗, (1)

which is non-uniformly distributed along the shell edge and the superposition of
static and dynamic components, the last one being the periodic function of time t∗
with the excitation frequency Ω∗. Here, T ◦

11 is the membrane hoop stress resultant
acting in the reference surface. Additional restrictions on this force will be made
below.

To predict parametric vibrations of the laminated shell, we shall apply to the
equivalent single layer (ESL) theory based on the generalized kinematic hypotheses
of Timoshenko [16] (these hypotheses are also listed in paper [25]). In the framework
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Fig. 1 Coordinate system
on the reference surface of
laminated non-circular
cylindrical shell.
Non-uniformly distributed
non-stationary axial force

of this theory, Grigoluk and Kulikov [16] have derived the system of five nonlinear
differential equations with respect to the five magnitudes, ui ,w,ψi , where u1, u2,w
are displacements of a point on the reference surface in the axial, circumferential and
normal directions, respectively, andψ1,ψ2 are shears in the axial and circumferential
directions. Because of awkwardness, these equations are not written down here.
However, if vibrations occur with formation of a large number of waves although in
one direction at the shell surface and ui � w, then these equationsmay be essentially
simplified.

Let a,φ be the shear functions, and χ is the displacement function such that [16]

ψ1 = ∂a

∂α1
+ ∂φ

∂α2
, ψ2 = ∂a

∂α2
− ∂φ

∂α1
, (2)

and

a = −η2

η1

h2

β
Δχ, w =

(
1 − h2

β
Δ

)
χ. (3)

Introduce also the stress function Φ which serves to define the membrane stress
resultants in the reference surface:

Ti j = δi jΔΦ − ∂2Φ

∂αi∂α j
, (4)
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where Δ = ∂2/∂α2
1 + ∂2/∂α2

2 is the Laplace operator in the curvilinear coordinates
α1,α2, and δi j is Kronecker’s symbol (δi i = 1; δi j = 0, i �= j). Then the five cou-
pled equations with respect to ui ,w,ψi are reduced to the following compact system
of nonlinear differential equations [16]:

D

(
1 − θh2

β
�
)

�2χ − ∂2Φ

∂α2
2

∂2w

∂α2
1

+ 2
∂2Φ

∂α1∂α2

∂2w

∂α1∂α2

+ ∂2Φ

∂α2
1

(
1

R2
− ∂2w

∂α2
2

)
+ ρ0h

∂2w

∂t2
= 0,

�2Φ − Eh

[
1

R2

∂2w

∂α2
1

+
(

∂2w

∂α1∂α2

)2

− ∂2w

∂α2
1

∂2w

∂α2
2

]
= 0,

(5)

1 − ν

2

h2

β
Δφ = φ, (6)

which has to be considered together with the last equation from (3). In the above
equations,

E = 1 − ν2

h

N∑
j=1

E jh j

1 − ν2
j

, ν =
N∑
j=1

E jh jν j

1 − ν2
j

⎛
⎝ N∑

j=1

E jh j

1 − ν2
j

⎞
⎠

−1

,

D = Eh3

12(1 − ν2)
η3, ρ0 =

N∑
k=1

ρkξk, h =
N∑
j=1

h j

(7)

are the reduced Young’s modulus, Poisson’s ratio, bending stiffness, density and
total thickness of the laminated shell, respectively. These equations contain also
parameters η1, η2, η3, θ and β introduced as follows:

β = 12(1 − ν2)

Ehη1
q44, q44 =

[
N∑
j=1

(
λ j − λ2

jo

λ j j

)]2

N∑
j=1

(
λ j − λ2

jo

λ j j

)
G−1

j

+
N∑
j=1

λ2
j0

λ j j
G j ,

λ j =
δ j∫

δ j−1

f 20 (z)dz, λ jn =
δ j∫

δ j−1

f j (z) fn(z)dz (n = 0, j), θ = 1 − η2
2/(η1η3),

η1 =
N∑
j=1

ξ−1
j π1 jγ j − 3c212, η2 =

N∑
j=1

ξ−1
j π2 jγ j − 3c12c13,
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η3 = 4
N∑
j=1

(ξ2j + 3ζ j−1ζ j )γ j − 3c213, hξ j = h j , hζn = δn (n = 0, j),

1

12
h3π1 j =

δ j∫
δ j−1

g2(z) dz,
1

12
h3π2 j =

δ j∫
δ j−1

z g(z) dz,

1

2
h2π3 j =

δ j∫
δ j−1

g(z) dz, c13 =
N∑
j=1

(ζ j−1 + ζ j )γ j , c12 =
N∑
j=1

ξ−1
j π3 jγ j ,

γ j = E jh j

1 − ν2
j

⎛
⎝ N∑

j=1

E jh j

1 − ν2
j

⎞
⎠

−1

,

(8)

where f0(z), f j (z), g(z) are continuous functions defined as

f0(z) = 1

h2
(z − δ0)(δN − z) z ∈ [δ0, δN ],

f j (z) = 1

h2j
(z − δ j−1)(δ j − z) z ∈ [δ j−1, δ j ],

f j (z) = 0 z /∈ [δ j−1, δ j ], g(z) =
z∫
0
f0(x)dx .

(9)

Here, z = δ j is the coordinate of the upper surface of the j th layer and z = δ0 is the
coordinate of the inner bound of the shell as shown in Fig. 2.

Nonlinear equations (5) are very complicated for the analysis of parametric vibra-
tions and instability. However, it may be simplified by means of linearization of
equations in the neighbourhood of the membrane stress state induced by acting axial
force (1).

Fig. 2 Cross-section of the
laminated shell

hN

δN

δ0δ1

δN-1

δk
δk-1

hN-1

hk

h2

h1
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3 Linearisation of Governing Equations and Additional
Assumptions

Let
T (m)
i j , Φ(m),χ(m),w(m),φ(m) (10)

be functions describing the dynamic membrane stress state S (m) generated by the
periodic axial force (1). The membrane stress resultants T (m)

11 , T (m)
12 , T (m)

22 are readily
found from the membrane stress-strain state equations. If the shell edges are free in
the circumferential direction, then T (m)

11 = T ◦
11(α2, t∗), T (m)

22 = T (m)
12 = 0 for anyα2

and t∗. The associated in-plane and normal displacements u(m)
i ,w(m) are easily found

from the constitutive equations and strain-displacements correlations [16] which are
not written down here.

The problem is to study the shell behaviour in the neighbourhood of themembrane
state S (m) and particularly, to determine the correlation of parameters resulting in
the dynamic instability of this state. For this purpose, we shall consider the adja-
cent stress-strain state S which is infinitesimally close to the dynamic membrane
state S (m) and characterized by functions Z (m) + Z , where Z (m) is any from func-
tions (10), and Z is any of the required associated functions χ, Φ. If Z turns out to
bounded for t∗ → ∞, then the shell vibrations are called the parametrically stable
ones. Otherwise, one says that the stateS (m) is parametrically unstable.

To perform the linearisation of Eq. (5) in the neighborhood of state S (m), we
assume that

∂T ◦
11

∂α2
∼ T ◦

11 as h∗ → 0, (11)

where h∗ = h/R, and R is the characteristic dimension which will be introduced
below.Condition (11)means that the variability of the axial load in the circumferential
direction is small. When taking into account correlations coupling w(m) and T ◦

11 [16],
one can reveal that

∂w(m)

∂α2
∼ w(m) as h∗ → 0. (12)

In what follows, we shall study vibrations which are characterized by a large number
of short waves in the axial direction. It is assumed that

∂Z

∂α1
∼ h−1/4

∗ Z as h∗ → 0. (13)

We note that conditions (12), (13) implies the strong inequality

∂2w(m)

∂α1α2
� ∂2Z

∂α1α2
as h∗ → 0. (14)

for any required function Z .
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Let us substitute functions Φ(m) + Φ, w(m) + w, χ(m) + χ into Eq. (5). Then,
taking into account inequality (14) and performing the linearizion, one arrives at the
following equations

Eh3η3
12
(
1 − ν2

)
(
1 − θh2

β
�
)

�2χ + 1

R2(α2)

∂2Φ

∂α2
1

+ T ◦
11(α2, t∗)

∂2

∂α2
1

(
1 − h2

β
�
)

χ

+ρ0h
∂2

∂t2∗

(
1 − h2

β
�
)

χ = 0, �2Φ − Eh

R2(α2)

∂2

∂α2
1

(
1 − h2

β
�
)

χ = 0.

(15)
Let both edges be simply supported and free of a diaphragm. Then, in terms of

the displacement and stress functions, the corresponding conditions read [16]:

χ = �χ = �2χ = Φ = �Φ = 0,
∂φ

∂α1
= 0 at α1 = 0, L . (16)

It is seen that Eq. (15) for χ and Φ are not coupled with Eq. (6) for φ, and the
boundary condition (16) for φ is independent of the residual conditions. Hence, one
may set φ = 0. We note that for other variants of boundary conditions (for instance,
for simply supported edges with a diaphragm), the function φ is not identically zero
and serves to take into account shears in a neighbourhood of the shell edges [25].

Equation (15) derived in the framework of ESL theory for laminated shells is the
generalization of classical and well-known Mushtari–Donnell–Vlasov type equa-
tions [15, 30, 41] for single layer isotropic shells. It is seen that Eq. (15) contain
the terms proportional to β−1 ∼ G−1, where G = q44/h is so-called the reduced or
effective shear modulus for the laminated shell. When G → ∞, Eq. (15) degenerate
into the classical equations not accounting for shear effects. We note that if G ∼ E
then Eq. (15) become asymptotically incorrect because they generate integrals (solu-
tions) with very high index of variation [25]. In what follows, we assume that the
laminated shell is shear deformable so thatG � E . The another essential assumption
is that the shell is sufficiently thin.

4 Reduction of Equations to Dimensionless Form

Let

μ4 = h2η3
12R2

(
1 − ν2

) (17)

be a small parameter characterizing the shell thickness, where R is the above men-
tioned characteristic size of the shell. We introduce the dimensionless coordinates,
time and counterparts of the required functions:
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s = α1

R
, ϕ = α2

R
, t = t∗/Tc, χ = Rχ̂(s,φ), Φ = μ2EhR2Φ̂(s,φ),

F (ϕ, t) = T ◦
11 (Rφ)

μ2Eh
= f0(ϕ) + μ f1(ϕ) cos(Ωt)

(18)

where Tc = R
√

ρ0
E is the characteristic time, and Ω = tcΩ∗ is the dimensionless

frequency of the periodic axial force. The last equation means that the non-stationary
component of the applied force is small when comparing with the static one.

We assume also the following asymptotic estimates:

h2

R2β
= μ2κ,

θh2

R2β
= μ3τ , κ, τ ∼ 1 as μ → 0, (19)

which are valid for sufficiently thin shell containing a “soft” core or several such
layers. The last estimation is introduced because of the smallness of a parameter
θ; for instance, for a single layer isotropic shell [16], θ = 1/85. Correlations (19)
imply that the reduced shear modulus G is small when comparing with the reduced
Young’s modulus E so that G ∼ h∗E as h∗ → 0.

The substitution of Eqs. (17)–(19) into Eq. (15) results in the differential equations

μ4
(
1 − μ3τ�)�2χ̂ + μ2k(ϕ)

∂2Φ̂

∂s2
+ μ2F (ϕ, t)

∂2

∂s2
(
1 − μ2κ�) χ̂

+ ∂2

∂t2
(
1 − μ2κ�) χ̂ = 0,

μ2�2Φ̂ − k(ϕ)
∂2

∂s2
(
1 − μ2κ�) χ̂ = 0,

(20)

written in the dimensionless form, where k(ϕ) = R/R2(Rϕ) is the dimensionless
curvature. The corresponding boundary conditions for the functions χ̂, Φ̂ at s =
0, l = L/R are not changed and expressed by relations (16), whereχ, Φ are replaced
by their dimensionless counterparts.

5 Asymptotic Approach

Let ϕ = ϕ0 be the “weakest generatrix” in the neighbourhood of which localized
parametric vibrations are excited. Following to the approach developed in [29], the
formal asymptotic solution of Eq. (20) is sought in the form of series

χ̂ (φ, t,μ) = sin
(
qns
μ

) ∞∑
j=0

μ j/2χ j (ξ, t0, t1, ...) exp
(
i
(
μ−1/2 pξ + 1

2bξ
2
))

,

qn = μπnl−1 ∼ 1, n = 1, 2, . . . , ξ = μ− 1
2 (ϕ − ϕ0) ,

i = √−1, tm = μmt, m = 0, 1, . . . ,

(21)
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where�b > 0,χ j are polynomials in ξ and tm is “slow time” form ≥ 1. The function
Φ̂ is constructed in the same form. It is also assumed that

p, qn, |b|, |y|,
∣∣∣∣∂y∂x

∣∣∣∣ ∼ 1 as μ → 0, (22)

where y is any of functions χ j , Φ j and x is any their argument. We fix n and omit
this subscript in what follows.

The substitution of Eq. (21) into Eq. (20) results in the sequence of equations

j∑
ς=0

Lςχ j−ς = 0, j = 0, 1, 2, . . . , (23)

where the operators Lς are introduced as follows

L0z = ∂2z
∂t20

+ H 2 (p, q,ϕ0) z,

H (p, q,φ0) =
√

(p2+q2)
2

1+κ(p2+q2)
+ k2(ϕ0)q4

(p2+q2)
2 − f0(ϕ0)q2,

L1z =
(
b ∂L0

∂ p + ∂L0
∂ϕ0

)
ξz − i ∂L0

∂ p
∂z
∂ξ

,

L2z = 1
2

(
b2 ∂2L0

∂ p2 + 2b ∂2L0
∂ p∂ϕ0

+ ∂2L0

∂ϕ2
0

)
ξ2z − 1

2
∂2L0

∂ p∂ϕ0
z

− 1
2

∂2L0
∂ p2

(
i z + ∂2z

∂ξ2

)
− i

(
b ∂2L0

∂ p2 + ∂2L0
∂ p∂ϕ0

)
ξ ∂z

∂ξ
+ Nz, . . .

Nz = 2 ∂2z
∂t0∂t1

− q2 f1(ϕ0) cos (Ωt0)z + q6τ z.

(24)

Consider Eq. (23) step by step.
In the zero-order approximation ( j = 0), one has the homogeneous equation

L0χ0 = 0. Its solution may be written in the form:

χ0 = P0,c (ξ, t1, t2, ...) cos (ω0t0) + P0,s (ξ, t1, t2, ...) sin (ω0t0) ,

ω0 = H (p, q,ϕ0) ,
(25)

where P0,c, P0,s are polynomials in ξ with coefficients depending on “slow time”.
In the first-order approximation ( j = 1), one obtains the non-homogeneous equa-

tion
∂2χ1

∂t20
+ H 2 (p, q,ϕ0) χ1 = ∂H 2

∂ p

(
i
∂χ0

∂ξ
− bξχ0

)
− ∂H 2

∂ϕ0
ξχ0. (26)

which has unbounded solutions (as t0 → ∞) called secular terms. To eliminate these
terms, one needs to assume
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∂H 2

∂ p
= 0,

∂H 2

∂ϕ0
= 0. (27)

The above equations serve to determine a wave parameter p = p◦ and the weakest
generatrix ϕ0 = ϕ◦

0. There are three different cases:

(case A) q > z0;
(case B) q < z0;
(case C) q = z0,

where z0 is a root of the equation

− 2k2(ϕ0) (1 + κqz)2 + z4 (2 + κqz) = 0. (28)

Equation (28) was derived earlier [24] under studying free localized vibrations of
an axially pre-stressed laminated non-circular cylindrical shell. It contains a param-
eter κ accounting for shear in the shell. When G → ∞, then κ → 0 (shear is disre-
garded) and this root z0 = 1 [29].

If q > z0 (case A), then

p = 0, ω0 =
√
k2(ϕ0) − f0(ϕ0)q2 + q4

1 + κq2
, (29)

and the weakest generatrix ϕ0 is found from the equation

2k(ϕ0)k
′(ϕ0) − f ′

0(ϕ0)q
2 = 0, (30)

and for q < z0 (case B), one obtains the correlations

p = √
q(z0 − q), ω0 =

√
k2(ϕ0)q2

z20
− f0(ϕ0)q2 + q2z20

1 + κqz0
, (31)

and the following equation

2k(ϕ0)k
′(ϕ0) − f ′

0(ϕ0)z
2
0 = 0 (32)

which serves to determine ϕ0. In what follows, we consider the magnitude R =
R2(ϕ0) as the characteristic dimension of the shell.

When q = z0 (case C), Eqs. (29), (30) coincide with Eqs. (31), (32), respectively.

Remark 1 Let

f (1)
cr = min

ϕ0

1

f0(ϕ0)

[
k2(ϕ0)

q2
+ q2

1 + κq2

]
(33)

for q > z0 and ϕ0 defined from Eq. (30), and
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f (2)
cr = min

ϕ0

1

f0(ϕ0)

[
k2(ϕ0)

z20
+ z20

1 + κz20

]
(34)

for q ≤ z0 and ϕ0 determined from Eq. (32). Then Fcr = μ2Ehmin
{
f (1)
cr , f (2)

cr

}
is

the critical buckling axial force for a thin laminated circular cylindrical shell [28].
We assume that f0(ϕ0) < min

{
f (1)
cr , f (2)

cr

}
for anyϕ0. In other words, the inhomoge-

neous axial force (1) does not reach the critical buckling value Fcr at any generatrix.
Then the magnitudes under radicals in Eqs. (29), (31) will be positive for any angle
ϕ0.

Remark 2 Theoretically, parametric instability is observed in the case when the ratio
of the frequency of an external force to the frequency of natural vibrations is equal
or close to one of the following values [43]

Ω

ω
= 2

1
,

2

2
,

2

3
, . . . (35)

However, there are usually only cases where this ratio is 2/1, 2/2, less often 2/3.
At that, the condition Ω/ω = 2/2 corresponds to usual resonance.

We will consider here the case that is of most interest, where Ω ≈ 2ω0. Let

Ω = 2ω0 + μσ, σ → 0 when μ → 0, (36)

where σ is the frequency detuning parameter.
In the second-order approximation ( j = 2), one arrives again at the non-

homogeneous equation

∂2χ2

∂t20
+ H 2(p, q,ϕ0)χ2 = −Nc cos (ω0t0) − Ns sin (ω0t0)+

+r
[
P0,c cos (3ω0t0 + σt1) + P0,s sin (3ω0t0 + σt1)

]
,

(37)

where

Nc = − 1
2

∂2H 2

∂ p2
∂2P0,c
∂ξ2

+ aξ ∂P0,c
∂ξ

+
[
cξ2 + 1

2a + τ (p2+q2)3

1+κ(p2+q2)

]
P0,c+

+2ω0
∂P0,s
∂t1

+ r
[
P0,s sin(σt1) − P0,c cos(σt1)

]

Ns = − 1
2

∂2H 2

∂ p2
∂2P0,s
∂ξ2

+ aξ ∂P0,s
∂ξ

+
[
cξ2 + 1

2a + τ (p2+q2)3

1+κ(p2+q2)

]
P0,s−

−2ω0
∂P0,c
∂t1

+ r
[
P0,s cos(σt1) − P0,c sin(σt1)

]
,

a = −i
(
b ∂2H 2

∂ p2 + ∂2H 2

∂ p∂ϕ0

)
, c = 1

2

(
b2 ∂2H 2

∂ p2 + 2b ∂2H 2

∂ p∂ϕ0
+ ∂2H 2

∂ϕ2
0

)
, r = 1

2q
2 f1(ϕ0).

(38)
The partial solution of Eq. (37) contains the secular terms generated by the first

two components at the right hand of the equation. The conditions for their absence
are equality
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Nc = 0, Ns = 0

which results in the differential equation

− 1
2

∂2H 2

∂ p2
∂2X
∂ξ2

+ aξ ∂X
∂ξ

+
[
cξ2 + 1

2a + τ(p2+q2)
3

1+κ(p2+q2)

]
X+

2ω0E−1
∂X
∂t1

+ r(ϕ0)SσX = O,

(39)

where X = (Po,s, P0,c)T, O = (0, 0)T are the two-dimensional vectors, and

E−1 =
(
0 −1
1 0

)
, Sσ =

(
cos(σt1) sin(σt1)
sin(σt1) − cos(σt1)

)
(40)

are the 2 × 2 matrices.
For the vector equation (39) to have a solution in the form of polynomials in ξ,

we have to assume c = 0. Hence (see Eq. (38) for c),

b =
{

∂2(H 2)

∂ p2

}−1
⎧⎨
⎩−∂2(H 2)

∂ p∂ϕ0
± i

√
∂2(H 2)

∂ p2
∂2(H 2)

∂ϕ2
0

−
[
∂2(H 2)

∂ p∂ϕ0

]2⎫⎬
⎭ . (41)

It is seen that �b > 0 if the inequalities

∂2(H 2)

∂ p2
> 0,

∂2(H 2)

∂ p2
∂2(H 2)

∂ϕ2
0

−
[
∂2(H 2)

∂ p∂ϕ0

]2
> 0 (42)

hold simultaneously.
If q > z0, then inequalities (42) imply

2[(k ′(ϕ0)]2 + 2k(ϕ0)k
′′(ϕ0) − f ′′

0 (ϕ0)q
2 > 0, (43)

and for q < z0, one has

{
2[k ′(ϕ0)]2 + 2k(ϕ0)k ′′(φ0) − f ′′

0 (ϕ0)z2
} [

8 + 9κqz + 3(κqz)2
]

>

4
[
f ′
0(ϕ0)

]2
(1 + κqz)3.

(44)

In what follows, we consider the special case when k ≡ 1 (a circular cylinder) and
f0(ϕ) is a function. Then Eq. (32) and inequalities (43), (44) result in the conditions

f ′
0(ϕ0) = 0, f ′′

0 (ϕ0) < 0, (45)

which mean that the weakest generatrix ϕ = ϕ0 is that which is more stressed by the
compressive force. The required parameter b becomes
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b = i

√
−q4(1 + κq2)2 f ′′

0 (ϕ0)

2q4(2 + κq2) − 4(1 + κq2)2
(46)

for q > z0 (case A), and

b = i

√
−q(1 + κq2)3 f ′′

0 (ϕ0)

4(z0 − q)[8 + 9κqz0 + 3(κqz0)2] (47)

if q < z0 (case B).

Remark 3 It may be seen that limq→z0 |b| = +∞ for both cases (A, B) and require-
ment (22) for b does not hold if a root q is close to z0. Thus, the case (C), where q
is close to z0, requires an additional consideration.

We will not consider higher approximations because Eq. (5) are not sufficiently
accurate. To construct higher approximations, one needs applying to the full system
of governing equations written in terms of displacements ui ,w,ψi .

Taking Eq. (41) into account, the vector equation (39) admits a solution in the
form

X = Hm(θξ)Ym, θ2 = a

(
∂2H 2

∂ p2

)−1

(48)

where Hm(x) is the Hermit polynomial of the mth degree, and
Ym = (Sm(t1),Cm(t1))

T is the two-dimensional vector with the components depend-
ing on “slow time”.

The substitution of (48) into Eq. (39) leads to the homogeneous vector differential
equation

·
Ym (t1) = Am(t1)Ym(t1) (49)

with the periodic matrix

Am(t1) =
( −a0 sin σt1 −a2,m − aτ + a0 cosσt1
a2,m + aτ + a0 cosσt1 a0 sin σt1

)
, (50)

where,

a0 = q2 f1(ϕ0)

4ω0
, a2,m = a

2m + 1

4ω0
, aτ = τ (p2 + q2)3

2ω0[1 + κ(p2 + q2)] . (51)

The parameters κ, τ appearing in the formula for aτ depend on the reduced shear
modulusG. WhenG → ∞, then κ, τ , aτ → 0 and the matrixAm(t1) coincides with
the appropriate matrix (see also Eqs. (24), (25), (38) for H,ω0 and a, respectively)
obtained in [23].
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Finally, the parametric response of the shell to applied periodic axial force (1) is
given by the formula:

χ = sin
(

πns
l

)
exp

{
iμ−1

[
p(ϕ − ϕ0) + 1

2b(ϕ − ϕ0)
2
]}

×
{
Hm

[
μ− 1

2 (ϕ − ϕ0)θ
]
[Sm(μt) sin(ω0t) + Cm(μt) cos(ω0t)] + O(μ

1
2 )
}

.
(52)

6 Parametric Instability Domains

Depending on the correlation betweenparametersa0, a2,m ,aτ ,σ, solutions ofEq. (49)
are bounded or not. Equation (49) have periodic solutions if and only if their multi-
pliers are equal to one. If the absolute value of all multipliers are more than one, then
their solutions growth indefinitely at t1 → ∞, if less than one, then they decrease [5].

The analysis of Eq. (49) has been performed numerically. We have composed the
monodromy matrix and found its eigenvalues, i.e. the required multipliers. It has
been revealed that the σa0—plane is divided by the lines (see Fig. 3)

a0 = ±
(
a2,m + aτ − σ

2

)
(53)

into the following two domains:

D− = {
(σ, a0) : ∣∣a2,m + aτ − σ

2

∣∣ < |a0|
}
,

D+ = {
(σ, a0) : ∣∣a2,m + aτ − σ

2

∣∣ > |a0|
}
.

(54)

In Fig. 3, each of these domains are shown as the unions of two sub-domains:
D± = D±

1 ∪ D±
2 . On lines (53), solutions of Eq. (49) are bounded and close to har-

monic functions, if a point M(σ, a0) ∈ D+, then solutions are decreasing functions,
and in the domain D− they grow indefinitely. Thus, the domain D− corresponds to
the parametrically unstable vibrations localized in the neighborhood of the weakest
generatrixϕ = ϕ0. The farther a pointM(σ, a0) ∈ D− from lines (53) is situated, the
faster the amplitude of the resonance parametric vibrations increases. We note that
D− is the main region of localized parametric resonance which occurs forΩ ≈ 2ω0.

Comparing the region D− of parametric instability with the analogous domain
for a single layer isotropic shell without taking shear into account [23], one can
conclude that the incorporation of shear effects into the shell model results in the
right shift of the parametric instability domain. If the shell is circular and load (1) is
uniformly distributed in the circumferential direction (k, f0, f1 are constants), then
b = a = a2,m = 0 and the domain D− corresponds to the parametric resonance of
the shear deformable laminated shell where vibrations cover all its surface. If at that
shears are ignored, then the region D− becomes symmetrical with respect to the
σ—and a0—axes.
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Fig. 3 Main regions of parametric instability

When the axial force (1) is stationary, then Eq. (49) admit the solution in explicit
form:

Sm(μt) = c1 sin(μa2,mt) + c2 cos(μa2,mt),
Cm(μt) = −c1 cos(μa2,mt) + c2 sin(μa2,mt),

(55)

where c1, c2 are constants. Then, for both cases, (A) and (B), Eq. (52) defines the
localized eigenmodes of free vibrations of the axially pre-stressed laminated cylin-
drical shell with the dimensionless natural frequencies [24]

ω = ω0 + μa2,m + O
(
μ2) . (56)

7 Examples

The aforementioned equations allow us to give the asymptotic estimate of boundaries
Ω− ≤ Ω ≤ Ω+ for the dimensionless excitation frequencyΩ = tcΩ∗ leading to the
parametrically unstable vibrations:

Ω± = 2ω0 + 4

√
h2

12R2(1 − ν2)
σ±, (57)

where σ± = 2
(
a2,m ± |α0|

)
.

Example 1 Not specifying a quantity of layers and a type of material for each layer,
as the first example, we shall consider a circular cylindrical shell under the action of
the nonuniform axial loading (1), (18), where f0 = 0.5(1 + cosϕ), f1 = 1. Here, the
weakest line is the generatrix ϕ = ϕ0 ≡ 0, where the not uniformly distributed axial
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Fig. 4 Main regions for parametric resonance versus the shear parameter κ form = 0 and different
number of semi-waves in the axial direction, n = 1, 2, 3

forces (1) reach the maximum value. Figure4 shows the boundaries of main regions
for parametric resonanceversus the shear parameterκ form = 0 anddifferent number
of semi-waves in the axial direction, n = 1, 2, 3. It is seen that in the κΩ—plane, the
main domains of parametric instability are narrow regions with the width increasing
together with the mode number n. The influence of shears on these regions depends
also on a number n: for the first mode (n = 1,m = 0) corresponding to the lowest
natural frequency, the effect of a shear parameter κ turns out to be weak, however it
becomes noticeable when a number n grows. It may be also seen that the increase of
a shear parameter κ results in the decrease of both the boundary values Ω± for the
parametric excitation frequency and the eigenfrequency ω0. Similar effect of shears
on natural frequencies of a thin medium-length laminated cylinder has been recently
detected in paper [27].

Example 2 Consider a sandwich circular cylindrical shell of radius R = 1m and
length L = 4mwith the core of thickness h2 made of amagnetorheological elastomer
(MRE). The face layers having the same thickness h1 = h3 are fabricated of theABS-
plastic SD-0170 with parameters E1 = E3 = 1.5 × 109 Pa, ν1 = ν3 = 0.4, ρ1 =
ρ3 = 1.4 × 103 kg/m3. Here, the MRE under consideration is treated as an isotropic
and elastic material with the Poisson’s ratio ν2 = 0.3, density ρ2 = 2.63g/sm3 and
the shear modulus G2 which depends on the magnetic field induction B [26]:

G2 = (4.500 + 14.978 B), kPa (58)

The shell is under the non-uniform axial force periodically varying with time and
specified in the previous example. In Fig. 5, the boundaries of the main regions of
parametric resonance versus the magnetic induction B are shown for different values
of the core thickness h2 = 6, 9, 12mm. It is seen that the effect of magnetic field
on the main regions of instability depends on the thickness of “soft” core made of
MRE: it is weak for small h2 and becomes noticeable for h2 ≥ 12mm at the interval
0 < B < 50mT.
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Fig. 5 Main regions of parametric resonance versus the magnetic field induction B for different
thickness h2 of the MRE core

8 Conclusions

Based on the equivalent single layer theory for thin laminated shells, parametric
vibrations of laminated non-circular cylindrical shell under non-uniform axial load
periodically varying in time were investigates. It was assumed that the reduced shear
modulus for a laminated shell is less than the reduced Young’s modulus. The non-
linear differential equations in terms of displacement and stress functions, taking
into account transverse shears, were considered as the governing ones. Using the
procedure of linearisation, the non-linear equations were reduced to those describing
vibrations of a shell in the neighbourhood of non-stationary membrane stress state.

To study unstable localised parametric vibrations related to the main region of
dynamic instability, it was assumed that the excitation frequency is close to one
of the natural frequencies corresponding to a localized eigenmode. The asymptotic
method of Tovstik in combination with the multiple scales technique was used to
predict the dynamic localized response of the shell in the neighbourhood of the
weakest generatrix. It was revealed that there exist three different localized modes
of parametric vibrations for a thin laminated cylindrical shell subjected to an axial
load varying with time. The first type of modes (case A) may be approximated by an
exponentially decaying function without any oscillations, the second type of modes
(case B) is given by a function which rapidly oscillates and exponentially decreases
far away from the weakest line, and the third one (case C) can not be represented by
an exponentially decaying function and requires an additional consideration. It was
observed that the implementation of one or another form of parametric vibrations of
a laminated shell with low reduced shear modulus depends on the ratio of dimension-
less shear parameter and wave parameter proportional to a number of waves in the
axial direction. Regardless of an expected form of localized parametric vibrations,
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we have derived the system of differential equations with periodic coefficients which
accounts for transverse shears and is invariant with respect to geometric dimensions,
physical parameters, a number of layers and the load distribution law along the shell
edge as well. The numerical analysis of this system allowed finding main regions
corresponding to both stable and unstable parametric vibrations.

The example considered showed that effect of shear on themain region of paramet-
ric resonance depends on both a number of waves on the shell surface and thickness
of “soft” layers or core.
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