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Preface

Professor Wojciech Pietraszkiewicz is one of the leading Polish scientists in the
theory of shells (thin-walled structures) and in continuum mechanics. His scientific
contribution covers several areas, such as:

e Statics and dynamics of classical and non-classical theory of shells, including
six-parameter theory of shells;

Mechanics of classical and Cosserat continua;

Finite rotations in mechanics of solids and structures;

Non-linear mechanics and FE analysis of multi-fold shell structures;

Intrinsic non-linear theory of thin shells;

Non-linear phase transitions in shells;

Refined thermomechanics of shells;

Differential geometry of surface in 3D space.

This volume of the Advanced Structured Materials Series is dedicated to Prof.
W. Pietraszkiewicz on the occasion of his 80th birthday, and it contains papers on
beams, plates and shells prepared by his friends and colleagues from Austria,
Belarus, France, Germany, India, Italy, Mexico, Poland, Russia, Slovenia, UK,
Ukraine and USA.

Prof. W. Pietraszkiewicz was born on January 23rd 1939 in Wilno (then in
Poland; currently Vilnius, the capital of Lithuania). He received a MSc degree in
1961 and a PhD degree in 1966 from the Department of Civil Engineering of the
Gdansk University of Technology. The same department honored him with a DSc
degree (habilitation) in 1977. He became the Extraordinary Professor in 1983 and
received the title of Full Professor from the President of Poland in 1990.

In the period 1961-1966 he worked in the Gdansk University of Technology.
Next he moved to the Institute of Fluid-Flow Machinery of the Polish Academy of
Sciences in Gdansk, where in the years 19662009 he held the positions of a Head
of Division, a Deputy Director, a Director, and a Head of the Department of
Mechanics of Structures and Materials. He retired in 2010, and, since 2016, he is a
Full Professor at the Gdansk University of Technology.
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viii Preface

Wojciech Pietraszkiewicz

From the beginning of his scientific carrier Prof. W. Pietraszkiewicz was
internationally active. He was a visiting professor in 1971-1972 at the University of
Illinois Urbana-Champaign (USA) on the Fulbright Scholarship. In the years 1976—
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Wojciech Pietraszkiewicz with Leonid Zubov and Victor Berdichevski,
during [IUTAM symposium, Thbilisi, (1978)

1997, he had several appointments as a visiting professor at the Ruhr-Universitt
Bochum (Germany), where he spent in total over 5 years. In 2001 he was a visiting
professor at RWTH Aachen (Germany). In 2000-2007, he visited several times the
Université de Poitiers (France). During his carrier, he lectured in over 30 scientific
institutions in Germany, USA, Netherlands, Switzerland, Italy, Belgium, France,
UK, Hungary, Czech Republic, Brazil, China, Russia and Ukraine.

Prof. W. Pietraszkiewicz organized several international conferences: Shell
Structures: Theory and Applications (SSTA) (many times since 1986), Euromech
Colloquium 197 Finite Rotations in Structural Mechanics (Jabtonna, 1985), and
3rd Meeting Scientific Foundations of Mechanics of Materials, Machinery,
Structures and Technological Processes (Gdansk, 1984). Especially famous is the
large international SSTA conference; Prof. Pietraszkiewicz chaired the International
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With Philippe Ciarlet (on the left) and Satya Atluri (on the right),
ICCES’11, Nanjing (2011)

Advisory Board of its seven editions: Szklarska Porgba (1986), Jurata (1998, 2002,
2005, 2009) and Gdansk (2013, 2017). Four volumes of post-conference papers
were published by Balkema as a follow-up of the last four editions of the SSTA
conference. In the years 2006-2016, he co-chaired the session on shells and plates
within the Solid Mechanics (SOLMECH) conference, which is organized biennially
by the Institute of Fundamental Technological Research of the Polish Academy of
Sciences (IPPT PAN).

e
¥

-

Ireneusz Kreja, Jacek Chréscielewski, J.N. Reddy, Wojciech Pietraszkiewicz,
and Victor Eremeyeyv, at the SSTA conference, Jurata, (2009)



Preface xi

He co-edited special issues of several international journals, such as: Archives of
Civil Engineering (1999, 2003), Journal of Theoretical and Applied Mechanics
(2003), ZAMM (2014) and Mathematics and Mechanics of Solids (2015).

Prof. Pietraszkiewicz received several awards for outstanding research
achievements from the Polish Academy of Sciences (1975, 1979, 1982) and an
award of the Polish Ministry of National Education (2002). Since 2005 he is the
Honorary Member of the Polish Society of Theoretical and Applied Mechanics. In
2011 he obtained The Wei-Zhang Chien Award at the ICCES’11 in Nanjing, China,
for his “fundamental contributions in the intrinsic theory of shells”.

Prof. W. Pietraszkiewicz published 5 monographs, 4 textbooks and lecture notes,
178 original refereed papers in journals and books, presented 174 lectures at sci-
entific meetings (most published in Proceedings), edited 17 volumes of collected
papers, and supervised 11 PhD dissertations. It is also worth to mention, that he
served as a section editor and wrote several entries for the section Shells in
Encyclopedia of Continuum Mechanics (Springer, Berlin, Heidelberg, 2019).

The 80th birthday of Prof. W. Pietraszkiewicz is a good occasion to thank Him
not only for his excellent and well known papers on shells but also for his friendly
and supportive attitude, which helped many of us to stay in science and work on
shells. On behalf of ourselves and all the contributors to this volume,

Best wishes Prof. Pietraszkiewicz on the occasion of your 80th birthday !

Selected publications of Prof. Wojciech Pietraszkiewicz

(A list of publications with full texts are available at http://www.imp.gda.
pl/en/wpietraszkiewicz/.)

Books

1. Pietraszkiewicz, W.: Elastic Materials (in Polish). Bulletin No. 652, Institute of
Fluid-Flow Machinery of PASci., Gdansk (1969)
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f. Mech., Nr. 10 Ruhr-Universitit Bochum, Bochum (1977)

3. Pietraszkiewicz, W.: Finite Rotations and Lagrangean Description in the
Non-linear Theory of Shells. Polish Scientific Publishers, Warszawa—Poznan
(1979)

4. Pietraszkiewicz, W.: Finite rotations in the non-linear theory of thin shells. In:
Olszak, W. (ed.) Thin Shell Theory, New Trends and Applications, CISM
Courses and Lectures, vol 240, Springer, Wien, pp 153-208 (1980)
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Raton (2005)
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(2010)
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. Pietraszkiewicz, W., Witkowski, W. (eds.): Shell Structures: Theory and

Applications — Proceedings of the 11th SSTA 2017 Conference, vol 4. CRC
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. Bielewicz, Eu., Pietraszkiewicz, W.: Design of cylindrical shell roofs.

Confrontation of folded plate methods and Schorer’s approximation (in Polish).
Arch. Inz. Lad. 9(1):89-105

Bouby, C., Fortuné, D., Pietraszkiewicz, W., Vallée, C.: Direct determination
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Igor V. Andrianov

Abstract This short paper is devoted to analysis of contribution by Professor
Pietraszkiewicz to the Theory of Shells.

I'met Professor Pietraszkiewicz in 1992 at SSTA92 in Janovice. I was familiar with
his work before, but I consider personal acquaintance with this remarkable scientist
and man as a great success. [ was impressed by the erudition of Prof. Pietraszkiewicz,
and not only in the Theory of Shells.

It must be said that at that time Polish scientists were in a very favorable position—
fluent in both English and Russian, they could use the achievements of both Western
and Soviet science. Although some scientific journals of the USSR were translated
into English, the quality of these translations was usually very low. In addition, the
style of writing papers in the USSR did not help spread the achievements of Soviet
scientists in the West.

The Soviet Theory of Shells was strong WRT theoretical achievements, in the
West, more attention was paid to applications, and the exchange of ideas at that time
was limited. In recent years, I regretted that the achievements of the Soviet Theory
of Shells are little known and often “the wheel reinvented” occurs in the West, and
in a significantly weakened form.

On many key issues my opinion coincided with Prof. Pietraszkiewicz’ ones. In
1992, FEM codes were just beginning their winning march. The enthusiasm was
incredible, it seemed that all problems could be solved. The analytical methods were
recalled with a smile. Paying tribute to FEM codes, Prof. Pietraszkiewicz called
for a harmonious combination of numerical and analytical (especially asymptotic)
methods.

L. V. Andrianov (&)

Institute of General Mechanics, RWTH Aachen University, Templergraben 64, 52056 Aachen,
Germany

e-mail: igor.andrianov @ gmail.com
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At the suggestion of Prof. Pietraszkiewicz at SSTA-2005 I made a review
report on the application of asymptotic methods in the Theory of Shells (see [1]). I
insisted that asymptotic, numerical, and rigorous mathematical methods are not com-
peting, but mutually complementary approaches. This report was met with under-
standing by the computer community, which is not surprizing—by this time, both the
strengths and weaknesses of FEM codes were well-understood [4]. Not all experts
of the mathematical Theory of Shells agreed with my opinion, but it was strongly
supported by Prof. Pietraszkiewicz. It makes sense to dwell on this point.

In a some sense, Theory of Shells can be separated into Physical, Computational,
Asymptotical and Mathematical subtheories. Representatives of the Mathematical
subtheory made a significant contribution to Theory of Shells, justifying and some-
times corrected the results initially obtained at a low level of mathematical rigor,
see, e.g., [5]. However, on this way it is difficult not to be carried away with purely
mathematical generalizations that go far beyond real physical problems.

As John von Neumann mentioned: “At a great distance from its empirical source,
or after much “abstract” inbreeding, a mathematical subject is in danger of degenera-
tion. At the inception, the style is usually classical; when it shows signs of becoming
baroque, then the danger signal is up. ... In any event, whenever this stage is reached,
the only remedy seems to me to be the rejuvenating return to the source: the reinjec-
tion of more or less directly empirical ideas” [3].

Of course, the separation of Theory of Shells into several subtheories should
not be taken too literally. SSTA conferences (initiated by Prof. Pietraszkiewich)
greatly contributed to the fruitful exchange of ideas from representatives of different
communities.

Modern Civil and Industrial Engineering widely used composite and other arti-
ficially created materials with complicated properties. The shape and structure of
thin-walled structures are also becoming more complex. This means that unemploy-
ment is not threat the Theory of Shells experts. Just look at the terms in the head-
lines of leading scientific journals: architected, functionally graded, active, dynamic,
smart, phononic materials; meta-, nano-, graphene materials, etc. Shell systems are
also becoming more complex: morphing shell structures, multifunctional material
systems, etc. Some authors even see this as the renaissance of continuum mechanics,
see [2]. “Probably, this is not a renaissance of the old continual mechanics, based
on its classical models, but the birth of new areas. On the one hand, models of new
materials were needed, and on the other hand, it made sense to construct them, thanks
to new possibilities of numerical analysis and modern computers” (V.N. Pilipchuk,
private message).

Analysis of the existing literature allows us to conclude: many authors try to use
automatically the existing classical theories to describe new objects. “But new wine
must be put into new bottles” (Luke 5: 36-39, KJV). For example, to develop a
theory of nanotubes, it is necessary to take into account a number of specific effects
(discreteness, surface tension) and to work in close cooperation with experimenters.
Unfortunately, one can observe the disunity of the communities of physicists and
mechanicians. For example, in some physical papers, devoted to the nanotubes, the
results of the Theory of Shells, well known to mechanicians, are being rediscovered.
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A detailed overview of the books and papers written by Prof. Pietraszkiewicz is
not my task. I note only an interesting aspect of the current state of the art. The
main results obtained by Prof. Pietraszkiewicz constitute the derivation of refined
nonlinear equations Theory of Shells and their analysis. Now that the solution of
complex nonlinear problems does not present unsolvable difficulties, the value of
such theoretical studies increases.

Last but not least. The number of bad papers is multiplying. Probably the tendency
is winning, but a new, dramatic problem arises: how to select in the mud the papers
conveying innovative ideas? [6]. Of course, this is a serious problem, especially for
beginners. I offer a simple and natural solution: read books and articles that have
stood the test of time. Books and papers by Prof. Pietraszkiewicz belong to this
category.
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and Pulsed Loads

N. A. Abrosimov, L. A. Igumnov, S. M. Aizikovich and A. V. Elesin

Abstract The formulation and solution method of problems of nonlinear dynamic
deformation, loss of stability and supercritical behavior of composite spatial shell
structures under combined loading by quasistatic and pulsed effects is considered.
The structure is assumed to be made up by rigidly joining plates and shells of revolu-
tion along the lines coinciding with the coordinate directions of the joined elements.
Separate elements of the structure can be made of both composite and conventional
isotropic materials. A kinematic model of deformation of the structural elements is
based on the hypothesis of the applied theory of shells. This approach is aimed at
analyzing nonstationary deformation processes in composite structures with small
deformations but with large displacements and rotation angles and is implemented
in the framework of a simplified version of the geometrically nonlinear shell theory.
Physical relations in composite structural elements are established based on the the-
ory of effective moduli for the entire package as a whole, and in metallic ones in
the framework of the plastic flow theory. Equations of motion of a composite shell
structure are derived using the virtual displacement principle with additional provi-
sions providing joint operation of the structural elements. To solve the formulated
initial boundary-value problems, an effective numerical approach has been devel-
oped, which is based on the finite-difference discretization of variational equations
of motion for spatial variables and an explicit second-order accuracy time integration
scheme. The admissible time integration step is determined using Neumann’s spec-
tral criterion. In doing so, the quasistatic loading regime is modeled by assigning an
external factor in the form of a linearly increasing time function attaining a stationary
value during three periods of the lowest-form vibrations of the composite structure.
This method is especially resultative in analyzing thin-walled shells, as well as the
structural element is affected by local loads, which necessitates condensation of the
grid in the zones of quickly changing solutions for spatial variables. The reliability
of the developed approach is corroborated by comparing the computational results
with experimental data. The characteristic forms of dynamic loss of strength and crit-
ical loads of smooth composite and isotropic cylindrical shells as well as of shells
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stiffened by a system of discrete ribs under combined loading by axial compression
and external pressure have been analyzed.

Keywords Composite and isotropic materials - Plates - Shells of revolution -
Nonlinear deformation - Stability - Numerical methods - Quasistatic and dynamic
loading

1 Introduction

Due to high strength and stiffness characteristics, composite materials open new
possibilities in constructing rational structures in various fields of modern technology.
In a number of cases, structural elements of composite materials can be subjected to
combined effects of pulsed and static loading, leading to significant changes of form
and loss of stability of these structural elements. To use the potential of composite
materials more effectively, comprehensive study of dynamic deformation and loss of
stability of composite shell structures under hybrid quasistatic and dynamic effects
is required.

The analysis of publications on nonlinear nonstationary deformation and loss of
stability of shell structures shows that the overwhelming majority of the papers tackle
axisymmetric problems for smooth structural elements, such as cylindrical, conical
and spherical shells, made, as a rule, of conventional materials [1-5]. Only a small
range of nonlinear problems of dynamics and stability for composite shells of rev-
olution under non-axisymmetric pulsed effects has been analyzed [6—15]. Thus, in
[10], the results of experimental-numerical investigation of the instability region of
a steel cylindrical shell under pulsed loading by external pressure in combination
with external (or internal) static pressure are presented. In [11], the results of exper-
imentally studying the effect of internal static pressure and rate of loading on the
stability of aluminum cylindrical shells of under pulsed loading by external pressure
are given. In [15], a methodology of numerically analyzing nonlinear nonstationary
deformation and loss of stability of cylindrical shells made of composite materials
under combined quasistatic and pulsed effects is presented. There are significantly
fewer works on analyzing nonstationary dynamic problems of shell structures. Prob-
lems of dynamic deformation and stability of stiffened cylindrical shells have mostly
been analyzed. In [16], the linear problems of dynamic deformation and strength of
orthotropic cylindrical shells stiffened by circular ribs, loaded by axial compression
and external pressure were analyzed. To describe the deformation of the skin, the
Kirchhoff-Love hypothesis was used, whereas the deformation of ribs was described
based on the Kirchhoff-Klebsh technical theory. The solution is constructed with
Bubnov-Galerkin’s method, using polynomial approximation of displacements. In
[17], a similar formulation is used for analyzing a nonlinear problem of dynamic
buckling of layered cylindrical shells stiffened with frames and loaded by uniform
external pressure (with a monomial approximation of deflection). Dynamic problems
of stiffened shells with various approximations were also studied in [18-21].
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In [12], experimental analysis of buckling of thin-walled cylindrical shells under
local pulsed loading by external pressure and different values of axial static compres-
sion is presented. Dynamic stability of stiffened cylindrical shells is experimentally
studied in [20]. In [21, 22], the results of investigating the stability of cylindrical
shells under the effect of axial static loading and a pressure wave incident in the
direction of the longitudinal axis are given. It was found in the experiments that,
depending on the rigidity of stiffening ribs and their location, local (‘arch’) or gen-
eral form of loss of stability takes place. This fact necessitates taking into account
the discrete character of stiffening elements.

A concise analysis of the above works testifies to the fact that the issues of theo-
retically analyzing nonlinear problems of dynamic behavior and loss of stability of
composite shell structures, accounting for discrete location of stiffening elements and
effects of interconnection of buckling forms under a combined effect of quasistatic
and pulsed loading, have not been studied well enough.

The present paper is aimed at numerically modeling nonlinear nonstationary
deformation and loss of stability of shell structures under combined quasistatic and
pulsed effects.

2 Constructing the Resolving Equation Set

Itis assumed that the shell structure is formed by rigidly joining plates and shells made
of composite and (or) conventional isotropic materials along the lines coinciding with
the coordinate directions of the joined elements. Elements of structures (substructures
or their parts) are joined along the lines of intersection of their internal surfaces. Thus,
a composite part of the structure is formed by stacking adjacent symmetrical layers
with reinforcement angles +£¢*(k = 1, K). Structural elements can have variable
thickness.

Each substructure is analyzed in an orthogonal curvilinear coordinate system
o (i =1,3) coinciding with the main curvature lines and the outer normal to the
internal surface of the shell.

Lame coefficients defining the metric properties of the shell element are:

Hy = AZy, H, = AxZ,, Hy =1, (D

where Z; = (1 + kia3); Zr = (1 + koa3); Ay, Ay, ki, ko are coefficients of the
first quadratic form and main curvatures of internal surface S.

In what follows, it is assumed that geometric and mechanical characteristics of
the shell structure and the loading effects acting on it are such that linear distribution
of tangential components of the displacement vector through the thickness of the
package holds, and normal displacement is constant through the thickness [23]

Uj(ar, oz, a3, 1) = uj(a, @, t) + azp; (o, 00, 1), (j=1,2),
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Us(ay, ap, a3, 1) = uz(ay, a, t). 2)

In the above expression, u; («;, o, t) are displacements of the coordinate surface

in directions «; (i = 1,3), respectively; ¢;(oty, 00,1) (j = 1,2) are angles of
rotation of the normal to the internal surface.

In constructing geometrical relations, expressions of the quadratic version of

the nonlinear elasticity theory will be used [24], which, taking into account non-

deformability of the material of the shell in the direction of coordinate a3 and the
averaging of the shear deformation through the shell thickness, can be written as [23]

1
ey = Z—(811 +e5/2+asxn), (1 2),
1
1 1
epn = Z_(512 + £13823/2 + azx12) + Z—(€21 +e13623/2 + a3 x21), (1 — 2),
1 2
1
e;3 = Z—(¢1 +e), (1—2), 3)
1

where

1 Bul un BA1

= — —— —— + kyus, 1 2),
e A1 30{1 + A1A2 30[2 + s ( - )
19 0A
=y B Oy,
A1 30[1 A]Az 80:2
10 dA
L S ()}
Al 80[1 A1A2 8062
1 3¢ $1 0A;
=—— —, (1-2),
12 A] 30{1 A]Az 8052 ( )
Lous -2
13 = —— — KUy, d .
13 Al 80!1 141

It is assumed that the composite element of the structure is formed by cross-
stacking £¢* (k = ﬁ) a large enough number of composite layers. Keeping in
mind the assumed hypotheses, physical relations for the cross-reinforced composite
material of the shell can be written as

o = Anenr +Apen, oxn = Axe; + Apexn,

o1 = Aszern, 013 = Ayers, 03 = Assens. €]

It is assumed here that coefficients A,,, are certain smooth or stepped (for a
layered material) functions of variable «3. After substituting strains (3) into relations
(4), stresses 011, 023, 012, 013, 023 can be expressed through certain generalized
deformational characteristics €11, €22, €12, €21, €13, €23, X11» X22,> X12, X21. However,
it is more natural to describe the stressed state of composite shells of revolution by
formulating defining relations, using generalized force factors—forces and moments.
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h

(N11, Nio, My1, My, Q13) =/(011,012,063611,063012,013)Z2d0537 (I —2).
0

®)

After integrating relation (5) through the thickness of the shell, keeping in mind
(3),4), H = A, H, ~ A, be expressed as [23]

Ni = Bungn + Bieéxn + Cixun + Ciaxze, (11— 2),

Nip = Byjen + Biiea + C3xi2 + Cizxar, (11— 2),

My = Cnen + Cpgn + Dixn + Diaxz, (1 —2),

My = C33812 + 33821 + Dy xi2 + Diixor, (1= 2),

O3 =Ki(ez+¢1), (1—2), (6)

where

En=en+en/2,  (1—2),

€12 = €12 + €3623/2,
0 0 i
Bjy=1I?. Bn=By=1Jj, ij =1, Co=Cy=1J,,
Ji _ 7(0) 12 _ p21 _ 700 (1) 12 _ ~21 _ (D)
B33 =I5 ;. B3y = By = Ji3, ¢ =1Iy;, GCi=C J

33 — Y335
(2) _ _ 7@ JJ (2) 12 _ 2l _ 72
DJ]_I]] s Dip=Dy =Jy, D33_I33H, Dy3 = D33 = J33,

K. = h2 iﬂ B H(k>_m 1-2 (=12
T A® T (L4 k) J=5%

]+3]+3
he =2k — 21, hi= (@ +2-1) /2,

K
o1 o .
I = = AV =gt (=012 (d-2),

k=1
302)11 — . ZA(K)H(K)( i+1 z+1)
(l) () o i+1 z+1
= A
Jiz 1 Z 2 (2 1)

i 1 K) (i i :
J3(3)=,~+_12A“( -t (=0,1,2),
k=1

Axf) are effective stiffness characteristics of the layer, which are expressed through

elasticity moduli E;';), G, G%) and Poisson’s ratios v'5 in the axes of orthotropy



10 N.A. Abrosimov et al.

of the layer, using known relations [23]; z, are coordinates of the layers counted from
the internal surface of the shell.

Total strains e; of the isotropic parts of the structure will be represented as a
sum of elastic e;; and plastic e;; components. Elastic strains are related with stresses
through Hook’s law

o, = Aredij + 21 el’-j, @)

3
where e = > e;;; A, u are Lame parameters; §; ; is Kronecker delta. Plastic com-
i=1
ponents of the strain are defined by relations of the flow theory with linear kinematic
hardening [25]

! 3 3
2
e;;zfe';;dt; S e =0; & = S Z - Zol=0,
5 i=1 =
Sij = 0ij —08ij — pij; 0 = (o1 +0on)/3; pij =2ge]; ®)

pij is tensor of residual micro-strains; g is modulus of linear hardening of the mate-
rial; y is scalar parameter; o, is yield strength; S;; is deviator of effective stresses;
the upper dot indicates time derivative.

One of the important properties of the applied theory is its being energy-consistent,
that is, the ability to obtain initial equations as conditions of a steady state of a
certain energy functional. Thus, to derive equations of motion of a shell structure of
revolution, the virtual displacement principle [24] will be used, which, taking into
account (1)—(8), will be written for each element of the structure as [26]

// Nyp 9(3uy) N21 3(5u1)+ Ny 3A28u _ N2 BAI(SM
A dar T Ay | AA, 900 T A A,

Ny 9(Bup) | Nip 9(dup)  Nip 944
Ay  dap Al day A1A, dap

— (Q13 + N11€13 + Nipea3)kiduy + —— Suy

Ny 04>
- - —=8up — (023 + N2ex3 + Noje13)kadun
A1A, 0oy
(Qn + Ni1€13 + Ni2gg3) 9(du3) 4 (023 + Nopeps + Najer3) 9(8us)
Aq da Ay dan
My 9(8 Moy 9(8
+ Nijkidus + NopkoSusz + M1 ( ¢1) 21 ( 1)
Al 0day Ay dap

Mp 3(8¢) " Mys 9(5¢2)
Ay  dan Al daq

My 0Ay; My 94
A1Ap day A1Ap dan
(M]] dA] M>1 0A

P '] ) AjArdad
AAy By AAy 8a1)¢2+ 0238¢2] AjAzdayday

) ¢1+ Q138¢1 + ——

+ //[(3111'4'1 + B12$1)duy + (Biiiiz + Biado)dun + Biyiizdus
s

+ (Bxa¢1 + Boiii1 )81 + (Baaga + Baiiiz)dpn] AyAzdaidon
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2

" 3 2
_ // (Z Fidui+y Mj&z;j) doyday =y / (N?lau? + N oud + 096l
¢ \i=l j=1

i:lrio

4

+ MYy 560 + MPy009) Ander = 3 / (V9y8u3 + NS, sl + 0F6u
i=3 0
2

+ M§15¢?+M§25¢3)A1d¢x1 —Zf (N7 8ut + Njysus + QFsul
izlf,*
4

+ M1*18¢T+M]"28¢’2“)A2da2—2/ (N3, 8u% + N3y0ub + Q%o
i:31w.>k

+ M38¢T + M3,8¢5) Ajdey =0, &)

where
h
(B11, Bz = Bay, Bzz)=/(,0, wsp, @3p) Z1Zy das,
0
1 oh
Fi=A4p+BiB|\g+qg——) 172,
B] 8051
A A BB 1 oh 1 oh
3= 4A4142p 1021 ¢ %Blaal quzaaz’
1 oh
My =hB1B)|q1 +q——— ), (11— 2).

B] 80!1

p is density; g, p are external and internal pressures; g;, p; (j = 1,2) are tan-
gential loads in the directions of coordinate axes «;; S is integration region on
the internal surface; B; (j =1, 2) are coefficients of the first quadratic form of
external surface; F?, rr (i = ﬁ) are boundary and joining lines of region S,
Ni(’j, Qf?, Mioj; N}, Q% My areforces and moments applied to the corresponding
boundary and joining lines.

After applying to (9) a well-known integral transform procedure, the system of
equations of motion of a part of a composite shell will have the following form:

Li(N) + Q11A1Acky + Fy = A Ay (Buiiy + Biad),
Ly(N) + QnA1Asky + F, = A Ay(Buiiis + Biod),

[3(A2Q11) n 0(A102)

— A1Ay(kiNi1 + kaNop) + F3 = A{ Ay Byiis - (10)
3051 80[2

Li(M) — Q13A1A; + My = A1 Ay (B¢ + Baiiiy),
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Ly(M) — Q03A1 Ay + My = A Ay (B + Bajiin),

0(A>T; A (A T 0A
(2”)—T22—2+ (]21)+T12—1, (1= 2).
oo dr au dar

O11 = Q13 +Niteiz + Npexz, (1—2),

Li(T) =

and the natural boundary conditions on contour I'? (i =1,4) and (or) joining
I} (i =1, 4) lines will be

Niu=N{: No=Np: Qu=0): Myu=M); Mp=M), (1-2),
Niu=N{; No=Njy 0u=07 Mu=M;, M,=M) (1-2).
(11)

Equipping relations (1)—(11) with a required number of initial conditions

ui@r, 02,0) = Uf(ar, @), ¢j(ar, a2,0) = ¢ (a1, @),
iy, @2, 0) = Ul (ar, o), (e, 02,0) = (e, 00) (i=1.3, j=1,2),
(12)

and assigning initial camber, one obtains a complete equation system for analyzing
nonlinear processes of deformation and loss of stability of composite plate-shell
structures under combined quasistatic and pulsed loading. In doing so, the quasistatic
loading mode is modeled by assigning an external effect in the form of a linearly
increasing function in time, which attains a stationary value during three lowest-form
oscillation periods of the composite structure.

It noteworthy that in basis o (i = 1, 3), which is assumed to be common for all
the structural elements along joining lines I'/ (i = ﬁ), conditions of rigid gluing
must be fulfilled.

A critical load of loss of stability is identified by a characteristic kink on the curve
of maximal loading amplitude—maximal deflection.

3 The Numerical Method of Analyzing the Initial
Boundary-Value Problem

The numerical method of analyzing the formulated problem us based on an explicit
variational-difference scheme [26]. The internal surface of each of the plate-shell
elements of the structure is covered by a grid of triangular and (or) quadrangular
meshes. The discretization is done in such a way that the nodes of the grid coincide
along the joining lines.

Approximating with operators
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1 _
frdf = Zﬂkfk,Zﬂk—l Br=—(k=Tmn),
k=1 k=1
o L —et)a
o dif = Zﬁkfk—<—1> (=12 (13
% =1 > (@ — ot )ab

k=1

functions and derivatives contained in variational Eq. (9), and using summation of
virtual works over the elementary areas and sides of the grid meshes instead of
integrating over the internal surfaces and contours, yields a system of grid equations
of the second order in time, defining the motion of internal, boundary and joining
nods:

L (N) +do(Q11ky) + = Byjii; + Biadi,

A
(A1){A2)
F

L, (N d k _—
d,(N) +do(Qnks) + A (A

O Oxn F
a <<A1>) +d2<®> — do(Nuiky o+ Nooko) vy

(Q AT g + QZAI‘ o+ QTATy: + Q3AT )/AS* = Byiis, (14)

= Byyiia + Biadh,

M,

7 B e B . ,
(A1) (Ad) 26¢1 + Bl

Ly, (M) +do(Q13) +

M .
Lg,(M) + do(Q23) + m = By + Boyiia,

T Tyd A Ty T1rdr Ay
=) (28] () ()

& Nan)  Uan@y) 24y ) T Ay

+ (TR ATy + T\ ATy + T ALy + T/, AT ) /AS., (1= 2),

AS,, AT, AT+ are areas and side lengths of all the meshes adjacent to the analyzed
nod; the angle brackets designate an average value.

The obtained semi-discrete system has the same structure as initial system of
equations of motion (10), and is solved using an explicit scheme of the second-order
accuracy relative to time step:

At

Co(pkHl2y e ket2y oo AL _ )
i (2 =0 (12 + B Bu— BB (Fu;Bx — Fy,B-12),
L~t3(tk+l/2) = L',3(,k—1/2) n I?t (Fug),
11
At

$i (7172) = ¢ (FF71%) + (FyBii — Fyy B2y,

Bi1By» — B2 By
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ui () = (%) + Arig (), (1 =T.3% j—1,2), (k=0.00).
65 (1Y) = (1) + Arg; (172),

where generalized forces and moments F),,, Fy, are defined by the left-hand sides of
system (14). Time integration step At is defined using Neumann’s spectral feature
[27], which yields condition:

At < 2/wpax, (15)

where w,,,, is maximal eigenfrequency of semi-discrete system (14).

The concretization of evaluation (15) for linear bending equations of motion of
composite bars, which follow from (10) for u, = ¢, = 0 and from the dependence
of the rest of the grid functions on the single coordinate «;, will be written in the
following form:

Aay, %S(Tl 1/2
At = n:;o?’ % > (asi)l/z 16)
2/w(fo), (1) < o o (551)'"2
2(a+1
o =] Sa-p+ 2 e
12 /2
6 2+1) B 2 168>
+ [(a—nzu_ﬂw - Aa%) _ am?} |
2 2
%(%> |:g<%> _é_l] Eq
0= , o0 = —

2 b
[;(%)2_1_1} _ s G
a n a o

where A« is dimensionless step of the grid; » is dimensionless thickness of the bar;
E|,, G3 are longitudinal and shear moduli.

Evaluation (16) is also applicable to the integration of system (14). In doing so, it
is assumed that A« means minimal linear dimension of a two-dimensional mesh.

The above methodology of numerically integrating equations of motion of shell
structures can lead on quadrangular meshes to ‘sand-glass’ instability [28], which,
although not accompanied by exponentially increasing computational inaccuracy,
can contribute to the accumulation of inaccuracies in computations, resulting in the
distortion of displacement fields. This phenomenon is caused by incompleteness
of difference operators (13), defined on quadrangular meshes. To overcome this
undesirable effect, it is suggested to define generalized forces and moments F,,,
Fy, in (14) as a sum of respective generalized forces obtained for difference grids on
quadrangular and triangular meshes. The approximation on triangular meshes is done
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with a small coefficient. Modernized in this way, the difference scheme becomes free
from the “sand-glass’ instability.

4 Investigation Results

4.1 Numerical Analysis of Loss of Stability of Cylindrical
Shells, Accounting for Quasistatic Preloading

To corroborate the reliability and accuracy of the suggested approach, the numerical
results were compared with experimental data [11] on dynamic stability of isotropic
cylindrical shells preloaded by internal pressure followed by a pulse of external
pressure of various rates.

The geometric and physical-mechanical parameters of the material of the shell
were as follows: R/h = 104; & = 0.0005m; L/R = 1.9; E = 73 GPa; v = 0.3,
p = 2700 kg/m>3, o, = 0.37 GPa; g = 0.6 GPa, L is length of the generatrix of the
shell.

Static internal pressure was applied by compressed air, whereas pulsed pressure
resulted from an electro-hydraulic discharge resulting from the explosion of cali-
brated copper wires [11]. The edges of the shell were secured in the way close to
rigid clamping.

Figure 1 compares experimental and numerical results for dynamic amplification
factor K = F§ /Fé) as a function of the rate loading by a pulse of external pressure
F;r (FF, F30—are critical loss of stability loads under dynamic and static external
pressure, respectively). The given results were obtained for static internal pressure
F; ", which in a dimensionless is defined by expression F; = %’(%)2 and, in this
particular case, is equal to F; = 0.07.

The obtained results testify to good agreement between the numerical and exper-
imental data.

Figure 2 presents characteristic forms of loss of stability under static and dynamic
loading with various rates of the external pressure, accounting for the preloading by
internal pressure F; = 0.42.

It follows from the present results that increasing the rate of external pressure leads
to substantially increasing the dynamic overload factor, and that there is a trend of

Fig. 1 Dynamic overload K

factor as a function of 4 ®
loading rate (the dots
correspond to the
experimental data [2], the 2
curve shows numerical

results using the present

methodology) 0 1 2 3 4 E'GPas
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(a. | '
| (‘.
Fig. 2 Characteristic forms of waveformation in isotropic cylindrical shells under various rates

of the pressure pulse: a static loading by external pressure; b, ¢, d dynamic loading by external
pressure with the rates of 10, 30, 50 GPa/s

the increase of the number of waves along both the circumference and length of the
shell with the increasing loading rate, which was noted in [11].

Further on, a cylindrical shell was considered, which was made of a composite
material with the following geometric and physical mechanical parameters: R =
0.072 m; R/h = 112, L/R = 2.22; E, = 200 GPa; E; = E/30; G1» = G153 =
623 = E2/2; Vi = 025, p = 1800 kg/m3

The results of analyzing the effect of the reinforcement angle and static preloading
by internal pressure on the loss of stability process of the shell during subsequent
loading by a pulse of external pressure with various rates are presented in Figs. 3, 4,
5 and 6.

Figure 3 shows a time history of absolute values of maximal deflections U5 of
the shell for various reinforcement angles and rates of the external pressure pulse,

Fy R 2
preloaded by internal static pressure F; =

The deformed configurations of the shells observed at the moment of loss of
stability and computed for different reinforcement patterns in a wide range of external
pressure rates, accounting for static internal pressure F; = 0.1, are presented in
Fig. 4.
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Fig.3 Absolute values of the maximum deflection of the shell as a function of time, accounting for
the preloading by internal static pressure F; = 0.1 for the external pressure pulse rates of: 5 GPa/s
(1); 10 GPa/S (2); 20 GPa/s (3); 30 GPa/s (4); 50 GPa/s (5) and reinforcement angles of: 90°(a);
60°(b); 45°(c); 30°(d) relative to the generatrix of the shell, respectively
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Fig. 3 (continued)

It is evident from Figs. 3, and 4 that the reinforcement angle and the external
pressure pulse rate significantly affect both the critical value of the loss of stability
load and the characteristic forms of waveformation of the composite cylindrical
shells.

In the process of loss of stability, the shells with the reinforcement angle close to
90°, exhibit localization of the bulges along the generatrix, their number increasing
with the loading rate, and the axisymmetric buckling forms tending to transform into
non-axisymmetric ones. The process for the shells with the reinforcement angle of
60° is characterized by changing the deformation configuration with the increasing
pressure pulse rate from the bulges along the generatrix to a corrugated form of loss
of stability. The shells with the reinforcement angle of 45° lose their stability with a
clearly pronounced corrugated configuration, the number of corrugations increasing
with the pressure pulse rate. For the shells with the 30°-reinforcement angle, the
form of loss of stability is characterized by practically retaining the initial cylindrical
geometry except for the zone of boundary effects.

Figure 5 depicts the results of analyzing the effect of loading rates on the dynamic
overload factor for different reinforcement patterns.

Itis evident that the dynamic factor grows with the pressure pulse rate, this relation
being more pronounced in the shells with higher anisotropy.

The deformed geometries of the shells illustrating the effect of reinforcement
angle on the character of loss of stability under quasistatic and dynamic loading with
the pulse rate of 5 GPa/s, both with and without preloading, are shown in Fig. 6.

Shells with strongly pronounced anisotropy lose their stability in the process of
quasistatic deformation with forming dimples along the generatrix, whereas loss of
stability of shells with the reinforcement angle of 45° is in the form of corrugation,
the corrugating level being higher along the clamped edges.
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(a}. (b)' (C).

Reinforcement angle 90°

Reinforcement angle 60°

Reinforcement angle 45°

Reinforcement angle 30°

Fig.4 Characteristic forms of loss of stability of composite cylindrical shells loaded by an external
pressure pulse with the rates of: 10 (a); 30 (b); 50 (c¢) GPa/s
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[X]

0 5 10 15 20 25 30 35 40 F7,GPa/s

Fig. 5 Dynamic overload factor as a function of pressure pulse rate for different reinforcement
angles: 90°(1); 60°(2); 45°(3); 30°(4) relative to the generatrix of the shell

Loss of stability of a dynamically loaded shell with the reinforcement angle of
90° is characterized by the formation of two rows of dimples along the generatrix
and the stiffening rib in the middle part of the shell.

Loss of stability of the shells with 60°- and 45°-reinforcement angles is caused by
dimples along the entire generatrix of the shell and by increasing their number along
the circumference of the shell with the 45°-reinforcement angle. The shell with the
30°-reinforcement angle loses its stability by corrugating.

The shells with the 90° reinforcement angle lose their stability under a combined
effect of quasistatic and dynamic loading by forming two or three rows of dimples
for the internal pressures of F; = 0.1 and F; = 0.35, respectively. The shells
with the reinforcement angle of 60° lose their stability by forming dimples along the
generatrix of the shell. The characteristic form of loss of stability of the shells with
the 45°-reinforcement angle is by corrugating, the number of corrugations increasing
with the internal static pressure. The shells with the 30°-reinforcement angle lose
their stability by forming ring-shaped wrinkles near the clamped edges of the shell.

A comparative analysis if the deformed geometries of the shells in the process of
loss of stability revealed their qualitative differences under static and dynamic load-
ing. Varying the reinforcement angle results in the transformation of characteristic
forms of loss of stability of the shell, from the configurations with elongated dimples
along the generatrix of the shell to corrugated forms.

The increase in the rate of growth of the external pressure pulse in dynamically
loaded composite cylindrical shells results in the increase of the number of waves
both in the circumferential and longitudinal directions.

It follows from the obtained results that the loading rate, the level of static preload-
ing and the reinforcement level significantly affect both the value of the dynamic



Computer Modeling of Nonlinear Deformation ... 21

{a. {b.(c. | l

Quasistatic

Without preloading

Preloaded by static internal pressure f‘:_,,' =0,1

Preloaded by static internal pressure F;' =035

Fig. 6 Characteristic forms of loss of stability of composite cylindrical shells for different rein-
forcement angles (90°(a); 60°(b); 45°(c); 30°(d)) relative to the generatrix of the shell
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overload factor and the characteristic forms of waveformation in the process of loss
of stability of composite cylindrical shells.

4.2 Numerical Analysis of Loss of Stability of Isotropic
and Composite Cylindrical Shells Under Dynamic
External Pressure and (or) Axial Compression

The reliability of the introduced methodology was corroborated by comparing the
theoretical results with the experimental data on dynamic stability of cylindrical
shells loaded by an internal pressure pulse [13]. The shells lost stability by forming
six bulges in the circumferential direction. The critical pulse value was computed to be
I = 1.4 x 10° Pa-s, while the corresponding experimental value was I, = 1.72 x 103
Pa-s, which testifies to satisfactory agreement between the numerical results and the
experimental data. The quantitative difference is evidently due to the imperfections
in the measuring scheme (as it is noted in [13]) incomplete adequacy between the
numerical scheme and the experimental conditions.

Then, dynamic behavior and loss of stability of a cylindrical shell (R =
0.072m, R/h = 100, L/R = 2) under uniform compression was considered.
The shell was made of aluminum: E = 77.5 GPa, p = 2700 kg/m3, v=03,0+=
0.16 GPa, g = 1 GPa.

The results of the analysis of elastic and elastoplastic loss of stability of a shell
with free ends, loaded by a combination of external pressure and axial compression
pulses are given in Figs. 7, and 8.

The curves with odd numbers correspond to the elastoplastic behavior of the shell
material and the even ones to the ideally elastic behavior. Curves 1, 2 were computed
for purely axial loading with the rate of growth of pressure V; = 1.1 x 103 GPars,
curves 3, 4 for loading by external pressure with the rate of V3 = 10 GPa/s, and curves
5, 6 for loading by a combination of pulses of axial compression and external pressure
of a triangular form, with the rates of growth of the pressure on the ‘ascending’ parts
being the same as in the case of pure axial compression and external pressure, and
the rates on the ‘descending’ ones being 36 times bigger, and the loading attained its
maximum value in 7, = 3.6 x 10™*s.

It follows from the above results that under combined loading, in the case of
elastic deformation, the process of loss of stability starts from the edges of the shell
by forming twelve dimples facing the center of the curvature, and then, as the process
develops, a belt of twelve dimples is formed in the middle part of the shell, which
are shifted a quarter of a wave relative to the edge ones.

In the case of elastoplastic behavior, the process begins with forming ring wrinkles
at the edges of the shell; then the number of wrinkles grows, and they shift to the
central cross-section of the shell. Later, a belt in the form of a dodecahedral prism is
formed in the region of the central cross-section.
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From the analysis of the curves depicted in Fig. 7 it follows that accounting for
physical nonlinearity results in substantially lower critical values of loading, this
effect being more pronounced in the case of combined loading.

Further on, composite cylindrical shells secured on the ends by rigid discs, loaded
by linearly increasing radial pressure or axial compression, were considered. The
effect of the reinforcement pattern and the shell thickness on the critical value of
the load and the character of initial supercritical behavior. The shell had the follow-
ing geometrical parameters: R = 0.072 m; R/h = 112; L/R = 2.2. The physical-
mechanical properties of the shell varied in the following limits: E; = 200 GPa; E,
= E1/2 - E1/30; G12 = G13 = G23 = E2/2; Vi = 025, p = 1800 kg/l’l’l3 (FigS. 9
and 10).

In the case of circumferential reinforcement, a large number of rhomb-shaped
dimples are clearly observed, as compared with the longitudinal reinforcement. An
analogous effect is observed for the shells with strongly pronounced anisotropy,
reinforced along the generatrix (Fig. 11).

The analysis of the waveformation showed that in this case loss of stability takes
place by forming eight elongated dimples along the generatrix for the both reinforce-
ment patterns and is practically independent of the degree of anisotropy of the shell
material (Fig. 12).

It is seen that the decrease in the circumferential modulus results in the substan-
tial drop of the critical loads of axial compression and external pressure. With the
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Fig. 8 Characteristic forms of loss of stability under combined loading: for elastic (a) and elasto-
plastic (b) behavior of the shell material

Fig. 9 Time history of U, 'k
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3 4

Fig. 10 Characteristic forms of waveformation as a result of loss of stability under axial loading
(the numbering of the pictures in the same as that of the curves in Fig. 9)

Fig. 11 Time histories of U, ik
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Fig. 12 Critical loads of axial compression (a) and external pressure (b) as a function of the
thickness of the shell reinforced along the generatrix. Curves 1 correspond to E{/E; = 2, and curves
2to E{/E; =30

increasing shell thickness, the effect of the degree of anisotropy of the shell material
on the value of the critical load becomes less pronounced.

4.3 Numerical Analysis of Dynamic Buckling of Discretely
Stiffened Cylindrical Shells Loaded by Axial
Compression and External Pressure

The reliability of the introduced methodology was corroborated by comparing the
theoretical results with experimental data on dynamic stability of stiffened cylindrical
shells loaded by an external pressure pulse [13]. A comparative analysis was done for
elastoplastic shells stiffened by circumferential ribs. The process of loss of stability
of the stiffened shells consisted of two stages. First, local loss of stability between the
stiffening ribs was observed, then total loss of stability took place, with the formation
of waves covering the circumferential ribs. The computed value of the critical pulse
for the stiffened shells was equal to I = 2.2 x 10* Pa-s, with the corresponding
experimental value being I, = 2.52 x 103 Pa-s. The computational results and the
experimental data show satisfactory agreement. The quantitative difference between
the numerical and experimental results may be due to inaccuracies in the measuring
scheme (as it was noted in [13]) and not complete correspondence between the
numerical scheme and the experimental conditions.

The dynamic behavior and loss of stability of a stringer cylindrical section
(R = 0.072 m, L/R = 2, stringers with the cross-section dimensions of 1.6 - 1073
m x 3 - 1073 m) with free ends, loaded by linearly increasing external pressure. The
structure was made of aluminum: E = 77.5 GPa; p = 2700 kg/m3; v=0.3; 0+« =
0.16 GPa; g = 1 GPa.

The results of analyzing the elastic and elastoplastic deformation of a cylindrical
shell stiffened by twenty-four stringers, loaded by external pressure at a rate of
V3 = 10 GPa/s, are presented in Figs. 13, 14 and 15.
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Fig. 13 Time histories of maximal deflections for different thicknesses of the shell of the stringer
section. The curves with odd numbers 1, 3, 5, 7, 9 correspond to elastoplastic behavior of the shell
and the stiffening elements, calculated for R/h = 50, 75, 100, 125, 250, respectively; the analogous
curves with even numbers 2, 4, 6, 8, 10 correspond to elastic deformation of the structure
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Fig. 14 Values of critical pressure for elastic (curve 1) and elastoplastic (curve 2) behavior of the
material of the structure as a function of the shell thickness

Fig. 15 Characteristic forms of loss of stability for elastic (a) and elastoplastic (b) deformation of
the structures with the shell thickness of R/h = 100
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Fig. 16 Characteristic forms of loss of stability of a shell stiffened with six stringers: a, b after
loading by external pressure at a rate of V3 = 2 GPa/s, ¢, d after loading by axial compression at a
rate of V1 = 36 GPa/s; a, ¢ computed using the model with discrete spacing of stringers, b, d using
the structurally orthotropic theory

The analysis of loss of stability shows that, in the case of elastic deformation of the
material of the structure, loss of stability results in the formation of elongated bulges
along the generatrix of the cylinder. For R/h = 50, the stringer section transforms
into a regular hexagonal prism, while with the decreasing shell thickness the number
of the form of loss of stability increases and, beginning with R/h > 150, the structure
loses its stability by arching, the stiffening stringers acting as intermediate supports.

In the case of elastoplastic behavior of the structural material, loss of stability by
arching is characteristic both for the shells of medium thickness R/h < 75, and for
the thin enough ones, R/h > 125. In the intermediate range of shell thicknesses, 125
< R/h < 75, loss of stability takes place in the form of the ‘Chinese lantern’ (see
Fig. 15 6). In the case of loading with high rates of growth of external pressure, the
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Fig. 17 Characteristic forms of loss of stability of a shell stiffened with twenty-four stringers: a,
b after loading by external pressure at arate of V3 =2 GPa/s, ¢, d after loading by axial compression
at a rate of Vi = 36 GPa/s; a, ¢ computed using the model with discrete spacing of stringers, b,
d using the structurally orthotropic theory
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Fig. 18 Critical values of external pressure (a) and axial compression (b) as a function of stiffening
stringers (curve 1 corresponds to the discrete model, curve 2—to the structurally orthotropic theory)
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length of the bulges in the middle part of the ‘Chinese lantern’ decreases, and three
rows of dimples are formed. It follows from the obtained results that, in computing
critical values of external pressure on a stringer-stiffened cylindrical shell, taking
account of the physical nonlinearity becomes necessary beginning with R/h < 200.

The conducted investigations and the experimental results [13, 20] on dynamic
stability of rib-stiffened cylindrical shells under nonstationary external pressure tes-
tify to the fact that spacing between the stiffening elements, as well as their stiffness,
affect the process of dynamic buckling and, in particular, the dominating form of loss
of stability (general or local), in a rather complex way. However, by now, the over-
whelming majority of theoretical results have been obtained when analyzing ribbed
shells according to a structurally orthotropic model. The scope of such approach, as
a rule, remains unidentified.

In what follows, a comparative analysis of the loss of stability forms and critical
values of axial compression and external pressure is given for a stringer cylindrical
shell, computed in the framework of the structurally orthotropic theory and a model
with discrete spacing of stringers. The geometrical parameters of a stringer cylindrical
section were as follows: R = 0.072m; R/h = 100; L/R = 2; the cross-sectional
dimensions of the stringers were 1.6 - 1073 x 3 - 10~ m. The structure was made
of aluminum: £ = 77.5GPa; p = 2700 kg/m3; v = 0.3; o, = 0.16GPa;.
g = 1 GPa. On its ends, the structure was secured with rigid discs (Figs. 16, 17 and
18).

It follows from the results obtained that, when the number of stringers is less that
twenty four, the structurally orthotropic scheme not only yields qualitatively different
forms of loss of stability as compared with the discrete model, but also substantially
underestimates critical loading values.

5 Conclusion

Based on the results of the conducted studies, the following can be concluded. Internal
static pressure results in substantially increasing the critical load of loss of stability of
cylindrical shells. The number of waves both in the circumferential and longitudinal
directions of the shell tends to increase with the loading rate. The characteristic form
of the deformed configuration in the process of loss of stability strongly depends on
the reinforcement angle.

The analysis of stability of isotropic shells has shown that taking into account
physical nonlinearities leads to substantially decreasing critical loads, this effect
being more pronounced in the case of combined loading.

It was concluded from the analysis of stability of composite shells that decreasing
the circumferential modulus leads to a considerable drop of critical values of axial
compression and external pressure. The effect of the degree of anisotropy of the shell
material on the critical loading value increases with the shell thickness.

In analyzing critical values of external pressure for stringer-stiffened cylindrical
shells, accounting for physical nonlinearities becomes necessary beginning with R/h
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< 200. The structurally orthotropic scheme not only yields qualitatively different
forms of loss of stability, as compared with the discrete model, but also substantially
underestimates critical loading values.
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Analytical Buckling Analysis )
of Cylindrical Shells with Elliptic Cross L
Section Subjected to External Pressure

Igor 1. Andrianov and Alexander A. Diskovsky

Abstract An analytical algorithm for studying the stability of a cylindrical shells
with elliptic cross section subjected to external pressure is proposed. It is based
on perturbation procedure. The mentioned buckling problem can be solved using
FEM. However, FEM solutions may be less manageable, for instance, in terms of
optimal design, than the associated approximate analytical models. The approximate
formulas obtained are sufficiently accurate and can be used in engineering practice.

1 Introduction

Cylindrical shells with elliptic cross section (ECSh) are frequently used in the manu-
facturing of aircrafts, missiles, boilers, pipelines, automobiles, and some submarine
structures [1]. We can mention fuselage or tank of hypersonic aircraft [2]. Elliptic
steel hollow sections are used as element of modern building facade [3]. In recent
years, hot-rolled elliptical hollow sections have attracted significant attention from
engineers and architects owing to their complementary qualities of aesthetic appear-
ance and structural efficiency. Hot-rolled and cold-formed structural steel tubular
members of elliptical cross-section are widely used in the civil engineering [4, 5]. In
addition, it often occurs that shells designed to be circular cylindrical deviate mea-
surably from perfect circularity once they are fabricated. Laterally loaded cylindrical
clusters have been effectively employed as energy dissipators in impact attenuation
devices [6]. ECSh can be made from composite, sandwich or functionally graded
materials and reinforced by ribs [1, 7-10].

Numerical studies of ECSh use variational methods: Bubnov-Galerkin [8, 11],
Kantorovich with trigonometrical basis functions in axial [12—14] or circumferential
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direction [2, 9, 15], FEM [3]. The finite-difference method is also used [16-18], in
[17] it is used in conjunction with energy minimization.

The mentioned buckling problem can be solved using FEM. However, FEM solu-
tions may be less manageable, for instance, in terms of optimal design, than the
associated approximate analytical models. An analytical study of the stability of
ECSh was carried out by Babenko on the basis of Pogorelov’s geometric method
[19-21]. In these papers it is shown how a regular classical buckling mode becomes
local in the circumferential direction for the load less than the classical buckling
load. It leads to the localization of the postbuckling behavior in the vicinity of the
weak generatrix of the middle surface. On the basis of this result it is proposed to
calculate the stability of ECSh replacing it with a circular cylindrical shell of the
maximum radius of curvature. Numerically and experimentally, this approach has
been confirmed in [12—14] and [14, 22] respectively.

Theoretical and experimental research showed two mechanisms of buckling:
bifurcation and collapse. It can be concluded that nonlinear effects are important
for this type of shell and that a linear bifurcation type of analysis should be used with
caution for shells with a radius of curvature to thickness ratio Ry/# less than 270
[18]. It would appear that for Ry/h < 270, a bifurcation buckling should give good
results and for Ry/h > 270 a nonlinear analysis should be used. With the use of
bifurcation buckling analysis, the assumption of membrane prebuckling state gives
good results [11, 14, 18].

Many studies [23, 24] showed, that ECSh are much less sensitive to imperfections,
a sentence that was in sharp contrast to the significant imperfection sensitivity of
circular cylindrical shells.

Experimental results are described in [9, 11, 14, 15, 22]. As a rule, the experi-
mental values of buckling pressure are lower than theoretical ones. It is noted that
the elliptical cross section tends under the action of the pressure to the circular one,
and the critical load for ECSh is higher than for the circle cylindrical shell with the
same cross section perimeter.

In this paper perturbation procedure is used for construction of simple expressions,
described a linear bifurcation type of buckling of cylindrical shells with elliptic cross
section. The remainder of the paper is organized as follows. In Sect. 2 we analyse char-
acteristics of the elliptic cross section. Semimembrane theory is applied in Sect. 3.
In Sect. 4 we use perturbation procedure. Comparison with known numerical and
experimental results is given in Sect. 5. Finally, concluding remarks are presented in
Sect. 6.

2 Characteristics of the Elliptic Cross Section
It is well known that the ellipse radius R(«) and curvature « («) are given by [3]

A
R(a) = Z(sinza + b* cos® a)%; k(@) = 1/R(a),
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where b = B/A;A and B are the major and minor axis width values, respectively,
and « is the angle from the ellipse centre.

Instead of considering the ellipse centre angle o, one may use the tangential
angle 6 between the normal at any given point, for instance P and the major axis

6 = arctan(b tan o). One can easily express the exact radius R(6) and curvature
k (0) by means of the following Fourier cosine series

R(®) = Roll + Y rax cos(2k0) |5k (8) = kol 1 + _ 2 cos(2kD)];
1 1

2 2
1 1
Ry =— [ R()dO; =—— [ R(® 2k6)do;
0 271/ (0)dO; ra 2nR0/ (6) cos(2k0)
0 0

2 2
1 1
Ko = —/K(G)d@; A = —/K(@) cos(2k0)dO, k=1,2,... (1)
2w 2K
0 0

It can be mentioned fast decrease of the coefficients in the Fourier series. E.g., for
A/B = 1.5 one obtains [3]

R(6) = Rp[1 — 0.59 cos(20) + 0.15 cos(46) — 0.034 cos(66) + 0.0077 cos(80) —...1.  (2)

It is obvious that (2) are alternating series with rapidly decreasing terms.

3 Semimembrane Theory

The prebuckling state is assumed to be momentless, which is completely justified
for a sufficiently long shell [25], viz.

L > hRy, 3)

where h, L are the shell thickness and length.
The circumferential stress is [25].

R(6
%ZQ;y @

For simplification of stability equation semimembrane theory is used. It can be
obtained using Vlasov assumptions [26] and justified due asymptotic procedure [27].
Semimomentous stability equation can be written as follows [26]:
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ER2  9%W  QR(@) 0W E 2(9)84W 0
K =0,
12(1 — v?) 9s8 h  0s dx*
0
5= f R(©)do, 5)
0

where W is the normal displacement, E, v are the Young modulus and the Poisson
coefficient of the shell material, Q is the lateral external pressure, x is the longitudinal
coordinate.

In addition to simplifying the original shell equation, it is necessary to simplify the
boundary conditions. The splitting of the boundary conditions, given in [27], leads
to an important conclusion: in the first approximation, the edge effect for sufficiently
long shell does not affect the magnitude of the buckling load. For simply supported
shell

*wW
atx=0,L T'=0,V(Tp)) =0,W=0,— =0 (6)
ox2
boundary conditions for Eq. (5) take the form [27]:
W
atx =0, L W:O,—2=O. 7
X

In (6) T1, Ty, are the membrane forces, V is the circumferential displacement.

4 Perturbation Solution of Eigenvalue Problem

Eigenvalue problem (5), (7) allows separation of variables
. TX
W = w(s) sm(T). (8)

Then one obtains

Ro[1 + ) ryp cos(2k6
B _dw B B +23 Aoy cos(2k6)lw = 0
- —_— cos w=0,
12(1—12) ds® h ds® " LAR? .
w(s) = w(s + 2w Ry). ©)]

Let us introduce homotopy small parameter ¢ and represent the eigenfunction w
and eigenvalue Q in the following form
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w=wy+ew +wr+...;0=00+e0 +0r+... (10)

In recent years the so-called homotopy perturbation method has received large
attention (the term “method of artificial small parameters” is also used). Its essence
is as follows. In the boundary value problem (BVP) the parameter is introduced so
that for ¢ = 0 one obtains a BVP which admits a simple solution, and for ¢ = 1 one
obtains the governing BVP. Then the perturbation method regarding ¢ is apllied and
we put ¢ = 1 in the final formula [28].

Now regular perturbation procedure for eigenvalue problems [29, 31] is used.
After substitution Ansatz (10) in eigenvalue problem (9) and splitting with respect
to powers of ¢ one obtains:

Eh2 dSwo Q()R() d6w0 ET[4

=0, 11
12(1—12) ds® ' h ds® | LRZ (v

Eh2 d8w1 Q()R() d6w1 Q1R0 déwo E7T4

7 Wi
12(1 — v?) ds8 h  ds® h  ds® L*R;
QoRo d®wy 2En*
=15 1 rax cos(2k0) + L4—ng° sz,( cos(2k0)],

(12)
wi(s) = wi(s + 27 Ry), i=0,1,2,... (13)

The eigenvalue problem (11), (13) is self-adjoint, which solution can be found in
the following form:

. ns
wo(s) = C sin(—), (14)
Ro

o §2n2 e
S = + 7 (15)

ES 12(1 —v%)  no4

where § = h/Ry,l = L/Ry.
The minimal eigenvalue is determined by the expression

Qomin = le*) - Elncléll le)' (16)

For practically important cases n* >> 1, this allows for a minimization analyti-
cally and the familie Southwell-Papkovich formula [31] is obtained

L5 |
Q _ omst [yénzmzzslj. an

ES  9I(1 —v2)3/4°

Here [...] denotes integer part of (...).
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In accordance with the regular perturbation procedure for eigenvalue problems
[29, 30], the equation of the first approximation (12) is multiplied by wg(s) and
is integrated in respect to s from 0 to 27 Ry. Taking into account that eigenvalue
problem (12), (13) is self-adjoint, one obtains

0 _ 0f'r _ xhan "
ES = 4E$ 204n6 "

We note an important circumstance. In the first approximation, the correction to
the eigenvalue is determined by the resonant harmonic of the Fourier series with the
number 2n. Using the expressions of the zero (15) and first (18) approximations and
suppose ¢ = 1, we obtain a simple approximate formula for calculating the buckling
load of a cylindrical shell with the elliptic cross section subjected to external pressure.

0 ~min(Qg” + 01"). (19)

As is known, semimembrane equations are not very accurate for very long shells,
when shell can be treated as ring [31]. Stability equation for ring can be written in
the following form

Enh? &2 1\d*W OR d2+1 2d2W_0 0)
ds? R2 -

nA_W\ds ') @t T h ds?
Using above explained perturbation procedure one obtains buckling load for ellip-
tic ring

H—_" _n=2 @21)
—V

5 Proof of Accuracy

To verify the obtained formulas, let us compare our calculations with experimental
results (ER) [11], the Bubnov-Galerkin approach (BGA) [11], and finite-difference
method (FD) [17].

Yao and Jenkins obtained buckling pressures from tests on simply supported
polyvinyl chloride shells [11]. They compared the test results with a theory in which
the prebuckled state is calculated from linear membrane theory. Buckling pressures
are obtained from an eigenvalue problem based on the Bubnov-Galerkin method.
By virtue of known theorems of the calculus of variations, this method gives upper
bounds for the first eigenvalue.
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Tablel A/B=1.5

39

8 1 qER [11] qBGA [11] qFD [17] (18)

0.00282 1.485 1.28 1.21 1.46 1.30
0.00728 0.00728 1.188 5.29 5.67 5.65
0.0134 1.485 11.83 14.30 13.86 14.40

Bushnell used BOSOR3 code based on FD approximation [17]. It was shown that
the prebuckling stress distributions are very similar to those predicted by membrane
theory. Cross section shape changing also does not play any significant role.

We calculate nondimensional quantity ¢ = 10*(1 — v?)/ Q and suppose, in accor-
dance with experiment [11], v = 0.37. Numerical results are presented in Table 1
(for A/B = 1.5).

One can see sufficient accuracy of obtained approximate solution.

6 Concluding Remarks

Modern codes using FEM make it possible to easily obtain numerical solutions to
problems of buckling of a cylindrical shell with elliptic cross section subjected to
external pressure. However, FEM solutions may be less manageable, for instance, in
terms of optimal design, than the associated approximate analytical models. These
analytical models must be simple, informative and accurate. Formula (19) satisfies
these requirements. Of course, one must remember the limitations imposed by the
approximate model used:L >> /hRy, 1 >> h/Ry.
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Subclasses of Mechanical Problems )
Arising from the Direct Approach i
for Homogeneous Plates

Marcus ABmus, Konstantin Naumenko and Holm Altenbach

Abstract Pavel Andreevich Zhilin proposed a theory for deformable directed sur-
faces which builds a generalized framework in context of linear engineering theories
of plates. We introduce this theory axiomatically, delineate the basic ideas and for-
malize the governing equations. In doing so we present a self-contained set of equa-
tions for time-invariant problems. Thereof, subclasses of mechanical problems can be
deduced, whereby in present context the main existing theories are derived. These are
in-plane and out-of-plane loaded plate problems. Next to the in-plane loaded plate
problem, we also distinguish between transverse shear-deformable and transverse
shear-rigid out-of-plane loaded plates. Typical representatives are the plate theories
by Kirchhoff, Reissner, and Mindlin.

Keywords Generalized plate theory - In-plane + Out-of-plane + Transverse shear

1 Introduction

1.1 Motivation

Our intention is to present a framework to treat mechanical problems on slender
structures with uniform thickness. Hereby we reduce our concern to initially flat
structures, i.e. uncurved in the reference placement. The treatment of such theories
has a long tradition, since their original beginnings date back more than 150 years.
All attempts associated can be considered as theories for dimensionally-reduced
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continua. However, engineers usually have a pragmatic perception, so that we have
to divide our introduction.

Let us start with more abstract considerations in context of generalized continua.
A modern notion to the direct approach for plates is based on the treatise of Erick-
sen and Truesdell [11] which was revitalizing a topic associated with continua which
exhibit independent rotational degrees of freedom. Hereby, the Cosserat brothers [10]
were the godfathers since their ideas were used as parent model. For further attempts,
Green [15] introduced the so called Cosserat surface. Such surface is kinematically
equivalent to the 6-parameter plate theory. Zhilin [44] proposed a physically moti-
vated theory with only five parameters as sufficient. Therein, drilling rotations are
neglected. This rotation about the normal to the surface is not considered as inde-
pendent variable since the structural rigidity is much higher than resistance against
the out-of-plane rotations.

Turning to the historical developments of engineering applications, we have to
leave the pathway of such non-classical approaches connected with Cosserat-type
theories of plates, or more general, Cosserat-type shells, cf. [4]. First efforts to pre-
dict the structural mechanics of plates were done by Germain [14]. Lagrange [21]
delivered corrections to this attempts. Also Navier [30] and Poisson [34] participated
in this early endeavors. A completed plate theory was delivered by Kirchhoff [19] for
the first time, who also revealed flaws of the latter ones. This theory retains valid for
shear rigid plates. It is also known as Kirchhoff-Love plate theory (or Kirchhoff-Love
shell theory) in english-speaking regions, while the achievement of Love [23] was
an extension to initially curved surfaces what was already shown by Aron [5], what
however, was unnoticed during that time. Improvements to Kirchhoff’s theory were
proposed only about 100 years later. Reissner [36, 37] and Mindlin [24] contemplated
extensions to shear-deformable plates which was broaden the scope of application
of plate theories drastically. However, these improvements were originally ignited
approximately 30 years earlier by Timoshenko [39, 40], who incorporated first-order
transverse shear effects at beams. It is worth to mention that Mindlin [24] and Reiss-
ner [37] used different approaches to derive a plate theory incorporating transverse
shear effects.

The research area of plate theories has gained an overwhelming variety of
approaches and directions, so that it is almost impossible to get an overview of
all branches. This includes developments with six- or seven-parameter theories to
incorporate thickness distortion (extensible director) [8], approaches to consider
moderate deflections [12, 17], higher order approaches to transverse shear defor-
mations [35], whereby all developments are derived mathematically consistent or
not [3]. Nowadays, these theoretical advances are often correlated to developments of
finite elements since numerical solutions gained therewith are liberated from severely
restricted boundary conditions of closed-form solutions.

However, since a dimensional reduction cannot be fully reconciled with classical
3D Cauchy continuum theory [20], we take the quest by introducing a planar elas-
tic surface ab initio. This is called direct approach. A deformable plane surface is
introduced, and two-dimensional field equations are formulated in analogy to three-
dimensional continuum theory. Thereby, it is our intention to represent the governing
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equations in a modern spirit where we adopt tensor notation for a rational represen-
tation. In the sequel we will operate on the two-dimensional body mid surface while
restrictions are made for the thin-walled spatial systems considered. To be exact,
these are as follows:

o the mid surface, that is the surface which halves the thickness of the plate at each
point, is a plane

e the plate thickness is small compared to the dimensions of the mid surface

e the outer surfaces surfaces of the plate enclose a homogeneous and continuous,
i.e. continuously connected, material

Naturally the direct approach claims for a delicate interplay between physics and
mathematics. Based on this concept, engineering theories for plates can be introduced
in a natural way, as we will present here. Our journey will thus take us from a five-
parameter theory to a two-parameter, a three-parameter and a one-parameter theory.

1.2 Frame of Reference

We reduce ourselves to the mid surface of slender bodies with uniform thickness
h(Xy) = h VYa € {1, 2}. For what follows, we refer to this two-dimensional body
manifold &, which is henceforth introduced as primitive concept. In context of the
original volume V of the three-dimensional body manifold ‘B, following relation
hold.

V={X1.X2,X3) e BCE : (X, X,) €6 CE* X3 e[, +1/]} (1)

Herein, " is the n-dimensional Euclidean space. A visualization of the choice of &
is given in Fig. 1. For the sake of clarity we designate the outer surface of the three-
dimensional body B with GS=. To be exact, these are defined as follows.

Gt —— G : —i—ﬁ )
Xo=0 2 |x,=o

We introduce an orthonormal basis {e,, r} Yo € {1, 2} of a right-handed coordinate
system with the Euclidean norm |e,| = |n| = 1, while following relation holds.

e X e
=———=¢| Xe 3)
ler X €3]

For what follows, it is also beneficial to introduce the first metric tensor P = e, ® e,.
The surface considered features a boundary 9&. At this boundary we introduce
outward normals v, whereby we do not distinguish between different directions. The
normals introduced are related as follows.
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Fig. 1 Reference surface in context of a slender body and the degrees of freedom endowed

ven =0 “4)
The position vector r of a material point on & can be written as follows.
r=ro+v-+wn (@)

Herein, ro = X,e, is the position in the reference placement, v = v,e,, is the in-plane
displacement vector and w is the deflection. Furthermore, we introduce rotations of
a material point, characterized by the vector ¥ = —¢,e; + ¢ e,. To sum up, the
degrees of freedom possessed by the surface continuum can be written in a rational
spirit.

a=vie +wme,+wn (6)

@ =gie; + pe N

Herein, a is the vector of translational degrees of freedom and ¢ = ¢,e, is the
vector of rotational degrees of freedom. Furthermore, the relations ¢ = ¢ x n and
¥ = —¢ x n hold.

We limit ourselves to the static case and restrict our concern to the derivation of
classical engineering theories in this field. This is highlighted by Eqgs. (6) and (7),
resulting in a so called five-parameter theory. Such a theory is a special case of the
Cosserat surface, cf. [31]. However, following restrictions are introduced.
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e kinematics

— displacements, deflections, and rotations remain small

— strains (in-plane and transverse shear strains) and curvature changes are small

— i.e. a linear differential correlation of displacements/deflections/rotations and
strains/curvature changes can be assumed

e material properties

— homogeneous and isotropic
— purely elastic and scleronomous

Preceding restrictions result in geometrical and physical linear theories, i.e. so called
1st order structural theories.

1.3 Preliminaries

In this paper we apply a direct notation for tensors, whenever possible. Tensors
of zeroth order (or scalars) are symbolised by italic letters (e.g. a), italic lower-
case bold letters denote first-order tensors (or monads) (e.g. a=a; ¢; or b=b; e;),
second-order tensors (or dyads) are designated by italic uppercase bold letters (e.g.
A=A, e Qe, or B=B,,e, ® e,), third-order tensors (or triads) by italic low-
ercase bold calligraphic letters (e.g. @ =a,qr €, ® €, ® e,), and fourth-order ten-
sors (or tetrads) are symbolised by italic uppercase bold calligraphic letters (e.g.
A=Agne, Qe e, R e,), whereas Einstein sum convention is applied. Latin
indices run through the values 1, 2, and 3, while Greek indices run through the
values 1 and 2.

In the following, essential operations for tensors used in this paper are introduced
based on a Cartesian coordinate system and orthonormal bases, e.g. {e;}:

e the scalar product
a-b=a;bjej-ej=a;bj=a o eR, ®)
e the cross product
axb=a;bje; x e;j=a;b; €, ex=c, €))
e the dyadic product
a®b=a;bje;®e;=C, (10)
e the composition of a second and a first-order tensor

Aca=ApaeQey-e;=A a0, ¢=d, (11)
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e the composition of two second-order tensors
A-B=A;,, B,e;Qey-e,e,=An, Bnoe, @e,=D (12)
e the cross product between a second and a first-order tensor
AXb=A,bjegQ@e, xej=A;,bj€, e Qe=G, (13)
e the double scalar product between two second-order tensors

A:B=A;,,B,e, Re,:e, e,
:Alm Bmo (14)

e the double scalar product between a fourth and a second-order tensor

A: Bzqurs B, €, & €y Re Qesie, Ve,
=A,ys Bge,e,=F. (15)

As previously applied, €; is the permutation symbol

+1 if (i, j, k) is an even permutation of (1, 2, 3)
€x =1 —1 if (i, j, k) is an odd permutation of (1,2,3) . (16)
0 if (i, j, k) is not a permutation of (1, 2, 3)

Each tensor A can be decomposed in its symmetric AY™ (A = A" orb- A = A-b)
and antimetric part A (A = —AT or b A = —A-b).

Asym — [A 4 AT]

1
A=AV 4 AT 2
AN =1[A-AT]

a7)

The norm of a vector a is defined as |a| = [a- a]”*. The Nabla operator V is
defined as V, =e¢, 9/sx, for two-dimensional considerations and V3 =e; ?/sx; in three
dimensions. V[ is the divergence, and V[ is the gradient of a tensor. VY™ =
14[VO + V '] is the symmetric part of the associated gradient, where [ holds true
for every differentiable tensor field. The transposed gradient is defined as V[0 =
[VO]" where O holds for all first-order tensors.

2 The Original Problem

In the present treatise we follow the perspective of Zhilin [44]. As already mentioned,
this is driven by a more pragmatic viewpoint since we neglect drilling rotations at
deformable directed surfaces. In context of engineering applications this is justifiable
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since the rigidity against wrinkling is considerably bigger than against bending and
torsion of the surface. In the sequel we delineate the tenets of this theory. Thereby
we use a more appropriate notation for representation. The theory is expected to find
applications in the treatment of mechanics of thin walled structural elements with
arbitrary loadings and stiffnesses.

2.1 Kinematics

We introduce deformations measures associated with three distinct deformation
states. Thereby we neglect terms of higher order for the in-plane displacement gra-
dient and the rotational gradient.

G=V"" (18)
K=v""¢ (19)
g=V,w+eo (20)

Herein, G = Gqge, ® eg is the second-order in-plane strain tensor, K = K,geq ®
ey is the second-order curvature change tensor, and g = g, €, is the first-order trans-
verse shear strain tensor. The tensors G and K are symmetric. In the sequel we will
introduce dual measures to these deformation tensors.

2.2 Kinetics

Analogous to Cauchys theorem, boundary quantities are defined by forces and
moments acting at the surface which is the starting point of Zhilin’s approach.
Thereby we make use of tangential forces sg, orthogonal forces ps, and out-of-
plane moments mg acting at the surface.

. Asg . A@mg x n) . Aps
n, = lim m,= lim —— gy = lim —— 21
AL—0 AL AL—0 AL AL—0 AL

Herein L is alength measure. The vectors and the scalar of the left hand sides indicate
the boundary resultants of the in-plane state n,, the out-of-plane state m, and the
transverse shear state g,. The orientation of the cut is defined by the corresponding
normal. Thereby we make use of the boundary normals n and v, introduced in
Sect. 1.2. Following Cauchy [9], a tensor field exists to the boundary resultants
introduced in Eq. (21). The following applies to boundaries with normals n.

n-N=o n-L=o0 n-qg=0 (22)
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forces ‘ ‘ moments ‘ ‘ external loading ‘

surface

Fig. 2 Forces and moments at the surface as well as exemplary loading at the outer faces

However, with the boundary normal v, which points along the plane directions, the
following boundary loads result.

vN=n  vL=m,  vg=gq, (23)

As with Cauchy’s Lemma, the resultants at opposite edges are equal in magnitude,
but opposite.

n,(—v) = —n,(v) my,(—v) = —m,(v) @(=v) = —q,(v) (24)

Tensors for the stress resultants arise from Egs. (22) and (23). Here N = Nyge, ® eg
is the in-plane force tensor, L = M,ge, ® eg is the polar tensor of moments, and
q = Qqe, [32] is the transverse shear force vector. Components of these measures
are visualized in Fig. 2. It is worth to mention that the tensors N and L are symmetric.

2.3 Egquilibria

In present context we here built the local forms of the equilibrium of forces and the
equilibrium of moments. This results in the so called Euler’s laws of motion whereby
we neglect acceleration terms for the sake of brevity. Thereby forces acting at the
outer faces G* are summarized by means of the overall surface force vector f.

f=G(s,p) f=s+pn (25)

Herein s = s, e, is tangential and pn the orthogonal portion. We furthermore intro-
duce moments m = —m,e; + mje;. The local forms of force and moment equilib-
rium are given as follows.

Vi- (N+q®n) +f=o0 (26)
Voe (=L Xn)+qgxn+m=o0 27

Obviously the overall force tensor F = F,; e, ® ¢, = N +q ®n = Nyge, ® eg +
Qqe, ® n and the axial tensor of moments M = —L x n = M,ge, @ n x eg are
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both not symmetric. Alternatively one can introduce a representation where all shares
are clearly distinguished.

V,-N +s =0 (28)
Vi-q +p =0 29)
VooL—q+mxn=o0 (30)

Therein we have splitted the force equilibrium into an in-plane [Eq. (26)- P] and
an out-of-plane part [Eq. (26)- n]. We have furthermore rewritten the moment equi-
librium for the sake of clarity. Apparently this presentation offers the advantage to
operate with the symmetric measures N and L, while the transverse shear measure
q ® n is reduced to the tensor of first order q.

In context of engineering applications we assume that moments are resulting
from forces acting at the outer faces solely, i.e. independent moments do not exist.
Therefore, we can write the moments as functions of the tangential forces.

m = K(s) mxnzgs a3

However, by no means our theoretical framework is restricted to the constrain intro-
duced in Eq. (31).

2.4 Boundary Conditions

The following boundary conditions are required to solve the field equations intro-
duced above. Thereby we distinguish between so called Dirichlet 9&p and Neu-
mann boundaries dGy, which are defined as follows at the boundary 9& of the
two-dimensional body manifold.

06 = 06p U 9By 06pNIGNy =0 (32)

In the sequel, prescribed quantities are designated with a superscript star.

2.4.1 Dirichlet Boundary Conditions

The Dirichlet boundary conditions are constraints in the form of given translations
and rotations.

v(ro) =v*(ro)
@(ro) = @*(ro) Vroedbp (33)
w(ro) = w*(ro)

Homogeneous Dirichlet boundary conditions can also be specified.
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2.4.2 Neumann Boundary Conditions

The Neumann boundary conditions link forces and moments that can act as loads on
the boundary of the surface continuum with the stress resultants.

v-N =nj v- L =m* veqg=gq, YrogedGy (34)

v

2.4.3 Initial Conditions

On the other hand it is possible to introduce translations and rotations and veloc-
ity fields thereof at time r = 7y, representing the initial state. Since we restrict
our concern to the scleronomous case, we drop the description of [(r, t)) VO €
{v,v, 0,9, w, W}

2.5 Constitutive Relations

In present treatise we assume linear elastic material behavior. In context of engineer-
ing applications we can presuppose this. In this case, the kinetic measures depend on
the first gradient of the degrees of freedom in maximum. So, the measures introduced
in Egs. (22) and (23) depend on the measures given in Eqgs. (18), (19), and (20) solely.
In generalized form, the constitutive equations can be given as follows.

N=A:G+B:K+—cC-g (35)
L=8:G+D:K+d-g (36)
g=<:G+d:g+272-g 37

Herein A and D are fourth-order stiffness tensors, B is a fourth-order coupling
stiffness tensor, -¢ and-d are third-order coupling stiffness tensors, and Z is a second-
order stiffness tensor. When reducing to the mid surface of a homogeneous plate with
isotropic material behavior, the coupling stiffness tensors vanish.

in-plane—out-of-plane coupling: 8 = O (38)
in-plane—transverse shear coupling: € = -0 39)
out-of-plane—transverse shear coupling: d = ¢ (40)

For completely decoupled deformation states the constitutive equations can be con-
siderably simplified.
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N=A:G (41)
L=D:K 42)
q9=7-g (43)

To be exact, A is the in-plane stiffness, D is the out-of-plane stiffness, and Z is the
transverse shear stiffness. These linear mappings are in accordance with Hooke’s law
in linear elasticity of three-dimensional Cauchy continua [9]. In the case of isotropy,
these constitutive tensors read as follows.

A=Dy,vP®P+0.5D;,(1—v) (PR P+ PHEP) (44)
D=DyvP®P+0.5Dy, (1-v) (PR P+ PEP) (45)
Z = D P (46)

Herein we have introduced three engineering interpretations. These are the in-plane
stiffness D;p, the out-of-plane stiffness D,p, and the transverse shear stiffness Dy.

Yh Y K3

Tio Do == o=

Dy, @7)

Yh
o—
2(1+v)
Herein, Y is Young’s modulus and v is Poisson’s ratio. The parameter « is a tuning

parameter to account for the shear energy contribution. Furthermore we make use of
the following metric tensors where X and H are conjugation products [33].

PRP=e, Qe QegReg
PXP=e,QesRQ@es R e, PHP=e,QeRe,eg

We can identify the following relations of the constitutive measures introduced above.

h? h?

Dop 12

However, in context of isotropy, the stiffness tensors possess two material parameters,
one geometry parameter and one tuning parameter. Restrictions on these coefficients
are as follows which result for reasons of stability (Y, &), physical interpretation (h),
and consistency (k).

1
Y>0 —1<v<§ h>0 O<xk<1 49

Alternative representation forms of Egs. (44)—(46) were given by, e.g. Naumenko and
Eremeyev [29], ABmus et al. [7], or Altenbach [2]. However, following properties
apply to the constitutive tensors H € {A, D}.
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B:H:A =A:H:B (50)
A:H =A":H (51)
H:A = H:AT (52)
A:H:A >0 (53)
H: A =0 (54)

Herein A and B are chosen arbitrary. For the second-order constitutive tensor Z, the
following applies.

Z-a=a-Z (55)
a-Z-a>0 (56)

Herein a is chosen arbitrary.

2.6 Variational Principle

Exact solutions in closed-form are only available for a small family of problems.
For the formulation of approximation methods it is helpful to use equivalent vari-
ational statements instead of equilibrium conditions. Variational principles provide
information on the extremal properties of functionals. A typical representative is
the principle of virtual work. The principle of virtual work for present generalized
problem can be formulated as follows.

SWinl = 3Wext (57)

with

S Wine =/(N:8G+L:6K+q-8g)d6 (58)
S

SWext = / (ny v +my- 8¢ + q,6w) d(06) + / (pdw + 5+ 6v)dS (59)
IS S
The equilibrium equations introduced in preceding sections are fulfilled for the

deformable plane surface if and only if Eq. (57) holds for all virtual fields év, §¢,
and éw.



Subclasses of Mechanical Problems Arising from the Direct ... 55

2.7 Classification and Formalization

As apparent in the splitted representation of the equlibrium equations, we can iden-
tify three different states. The first one is the in-plane state [Eq. (28)], the second
is the transverse shear state [Eq. (29)], and the third one is the out-of-plane state
[Eqg. (30)]. In progress, this also becomes apparent in the constitutive equations (41),
(42), and (43) whereby reasons for simplification due to decoupling are clearly stated.
However, we herein use the designation ‘superposed’ in the sense that all three states
are uncoupled but heterodyne. This is reasonable in context of linearity, as pre-
supposed in present treatise. For coupled deformation states, it is not possible to
decompose the original problem into various subproblems. However, it turns out that
the direct approach results in a generalized framework for the treatment of slender
structures like thin plates.

Based on the boundary value problem presented in the previous sections, a struc-
tured overview is developed, which is graphically presented in form of a Tonti dia-
gram [41]. The left column records the equilibria as a function of the field variables,
their flux and their production terms. The right column contains the field variables
including their temporal and spatial derivatives. These measures result in the driving
forces which are connected to the field variables via constitutive laws (Fig. 3).

kinetic quantities constitutive laws strains/curvature changes
| | N=A:G |
L= D:K
N,L q q = Z-g G.K,g
[ [
equations of motion deformation
_ Sym
V.- (N+qen) +f =o G_V%ymv
3 q K =V,"¢
V,: (~Lxn)+gxn+m = o g =Vw+o
[ [
loads initial conditions
V.V, W, W
Sf =G(s,p), m = K(s) surface S ek
Neumann boundary conditions 06 = 0Cp U dGN Dirichlet boundary conditions
dSp N OGN = 0
* * * * * *
fy. My dy boundary 0& vowL#

Fig. 3 Tonti diagram for the five parameter deformable plane surface problem, adapted from [6]



56 M. ABmus et al.

3 Subclasses

3.1 In-Plane Loaded Plate Problem

Present problem is concerned with the subproblem where all forces and deforma-
tions acting in-plane. This case is often referred to as membrane state, causing some
confusion since we will also consider compression, what is not the case for mem-
branes. Of course, the treatment of membranes is a separate problem. Therefore,
others coined the state considered as ‘disc’ state or ‘disc’ problem [18]. Obviously
this choice has also shortcomings. That is the reason why we call it in-plane loaded
plate problem. Following restrictions are introduced in the context of the theory
introduced in Sect. 2:

e The surface is only loaded in-plane.
e The surface is stretched and sheared, but not bent.
e All normals to the surface shift parallel.

These restrictions induce various consequences. The kinematics are reduced to the
translational degrees of freedom

Vv =vie| + e (60)
Therefore, the in-plane strain tensor is sufficient to describe deformation measures.
G=V,""vy =Gupe,®eg 61)

Since only tangential loads are acting, kinetics are defined through forces n,,.

A
n, = lim =38 (62)

So, the in-plane force tensor results.
nN=o v-N =n, (63)
The analogy of Cauchy’s lemma remains with the following part.
n,(—v) = —n,(v) (64)
For boundary conditions, only in-plane portions remain.

v(rg) =v*(ro) YrygedGp (65)
veN =nj Vroedby (66)

The equilibrium equations reduces to the following in-plane portion.
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V,oN+s=o 67)
The material behavior is solely determined by the in-plane relations
N=A:G (68)
with the in-plane stiffness tensor.
A=Di,vPRP +05D;;(1-v) (PX P+ PHP) (69)

In context of Eq. (57) we can reduce the terms of internal and external work for the
in-plane loaded problem to the following expressions.

SWine = / (N:5G)dG& (70)
S

8Wm=/(n.,-8v)d(36)+/(s-8v)d6 (71)
56 &

3.2 Out-of-Plane Loaded Plate Problems

Present problem is concerned with the subproblems where all forces and deforma-
tions acting out-of-plane. In present treatise we assume that moments acting at the
surface arise from tangential loads at the surface solely. Since tangential loads are
unconsidered in the out-of-plane loaded case, these moments remain zero (m = o,
m x n = 0). This is also in the sense of Mindlin [24] and Kirchhoff [19].

3.2.1 Shear-Deformable Plate

First we want to treat the problem of shear-flexible (also shear-deformable or shear-
soft) plate problem. This problem is associated with the names Reissner [36, 37] and
Mindlin [24]. We introduce following restrictions in context of the overall problem:

e The surface is loaded out-of-plane only, i.e. only orthogonal portions of the load
vector.

e The surface is bent, bot not stretched and strained.

e The deflection is unequal zero.

Thus, the degrees of freedom are reduced to deflections wn and rotations ¢. There-
fore, deformation measures considered are the curvature change tensor and the trans-
verse shear strain vector.
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K=V,""¢ (72)
g=Vow+o (73)

Since only orthogonal loads are acting, kinetics are defined through forces g, .

A(mg x n) lim 2P

mENN T AL YA W
For boundary conditions, only moment and transverse shear portions remain.
n-L=o0 v-L=m, (75)
n-qg=0 v-q =gy (76)
Cauchy’s Lemma for residually moments and forces remain.
m,(—v) = —m,(v) gv(=v) = —¢»(v) 77

In terms of boundary conditions, we can now define out-of-plane rotations and out-
of-plane forces.

@(ro) = @*(ro) Y rye dbp (78)
w(ro) = w*(ro) Vroe€dGp (79)
v-L =m;] YroedGy (80)
v.g =gq, Vroge dGy 81

The equilibria are reduced to terms for the out-of-plane deformation.

V,L—g=o0 (82)
Vaeq+p=0 (83)

The material behaviour is described by the constitutive tensors for the out-of-plane
state while considering transverse shear deformations separately.

L=D:K (84)

Herein, the out-of-plane and transverse shear relations for the stiffness tensors

D =Dy, vP® P +0.5D,,(1—v) (PR P + P B P) (86)
Z = D P (87)

are used. Considering the principle of virtual work, we can reduce the required terms
to the following.
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S Wi =/(L:8K+q-8g)d6 (88)
S

§We = f (my- 80 + gy6w) d(9S) + / (psw) A6 (89)
LI S

3.2.2 Shear-Rigid Plate

As a last point we want to derive the shear rigid problem which is widely used in
engineering sciences as it is probably the simplest approach to treat mechanical prob-
lems at slender structures. This problem is associated with the name Kirchhoff [19].
Assumptions:

e The surface is loaded out-of-plane only, i.e. only orthogonal portions of the load
vector.

e The surface is bent, bot not stretched and strained.

e All normals to the surface remain orthogonal for arbitrary deformations, i.e. rota-
tions of material points are no longer independent.

This last key point is related to the transverse shear stiffness. In the shear-rigid case,
the shear stiffness tends to infinity (D — 00). While considering this case, we can
substitute the rotation-curvature-change relation (19) since

Q= —V2W (90)

holds true now. This induces, that only one degree of freedom remains. so that
K = —V;"" [V,w] results. Furthermore, g = Vo,w — V,w = o holds true. Due to
this relation, the system is adequately described by a unknown function for the
deflection w, the only remaining independent degree of freedom. Within this context,
we can reformulate Eq. (30) to V. L = ¢ and insert this expression in Eq. (29). As
becomes apparent, the set of governing equations depends on the moments and their
dual measures solely.

V,-[V,eL]+p =0 1)
L=D:K (92)
K = -V [Vow] (93)

The transverse shear stresses g are unequal zero and can be determined through
equilibrium equations since there is no separate constitutive relation. The only con-
stitutive measure remaining is the out-of-plane stiffness tensor.

D =Dy vP &P +05D,(1—v) (PR P+ PHP) (94)
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However, concerning the boundary conditions kinetic measures and boundary con-
ditions, Eqgs. (74)—(81) hold true. The terms of virtual work are reduced as follows.

SWine = f (L:8K)dG& (95)
S

S Wext =/(mu'5[—V2W]+qv3w)d(3(‘5)+/(l75w)d6 (96)
& &

4 Conclusion

We have introduced a plane surface with its kinematic degrees of freedom, the geom-
etry of deformation, strain and curvature change measures, compatibility conditions,
external and internal loads and equlibria. The constitutive equations are streamlined
by the smart choice of the position of & in 8. Boundary conditions are introduced
which are important for the practical implementation of the local forms of the equi-
libria introduced. Finally, a variational principle is exploited to generate a solution
approach for displacement, deflection, and rotation fields of lesser smoothness. In
this sense we may conclude that the direct approach results in a geometrically exact,
elegant, and concise description of the governing equations. However, since our
starting point was reduced to a fully linear framework it is unfeasible to derive the
membrane problem thereof.

Based on the representation introduced we distinguish three basic subproblems. A
visualization of these sets is given in Fig. 4. Through typical engineering assumptions
that are clearly formulated we have derived classical theories for plates. Hereby we
have shown, that the direct approach for plates is in fact applicable for a wide class
of problems - all subproblems fit into this framework without conceptual problems.
Thereby this gives it conceptual and methodological clearness. The considerations
presented can be enlarged when terms of inertia are taken into account. We have
furthermore omitted to decay in special cases of the these subclasses. Such depictions
in scalar representation will occasionally be associated with special loading scenarios
or boundary conditions, respectively.

in-plane loaded plate out-of-plane loaded plate

in-plane problem shear-flexible plate shear-rigid plate

Fig. 4 Euler diagram with subclass problems designating special cases of the superposed problem
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Popular computation approaches for closed-form solutions of the problems pre-
sented are delivered by, e.g. Navier [30], Nadai [25], and Levy [22]. Approximation
methods are given by Ritz [38], Galerkin [13], Wlassow [42, 43], and Kantoro-
witsch [16]. Hereby, the use of Airys stress function [1] is advantageous. Practical
implementations are presented in, e.g. [26-28].
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Large Oscillations Around Curled m
Equilibrium Configurations of Uniformly | %o
Loaded Euler-Bernoulli Beams:

Numerical and Experimental Evidences

D. Baroudi, I. Giorgio and E. Turco

Abstract In this paper, we show that equilibrium configurations of a clamped beam
under distributed load, resembling a curled pending wire—whose existence has been
mathematically established—can be obtained experimentally using ‘soft’ beams, i.e.
beams for which the ratio between amplitude of the load and bending stiffness is
large enough. Moreover, we introduce a Hencky-type discrete model, i.e. a finite
dimensional Lagrangian model, for the ‘soft’ Elastica and build a numerical code
for determining its motion, in the most general nonlinear regime. This code is able
to qualitatively describe observed nonlinear dynamical behavior.

Keywords Nonlinear beam - Hencky bar-chain - Discrete modelling

1 Introduction

Since the introduction of the Elastica by Bernoulli and Euler [15, 27], beam theory
has attracted the attention of various scientists due to its importance both from the
mathematical point of view [17] and in its applications to structural mechanics. The
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literature on the subject is huge and many relevant problems have been studied with
sufficient completeness [7, 9, 26, 29, 37, 43, 45]. However, the richness of the model
is such that there are still interesting and practically significant problems, that lack a
complete study, especially in case of a beam in large deformation under distributed
load—which leads to non-autonomous variational problems/Euler-Lagrange equa-
tions. In the paper [19] the existence of non-trivial (curled) equilibrium shapes of a
clamped Euler beam under uniformly distributed dead load orthogonal to the straight
reference configuration has been shown and a study of the properties of the global
and local minimizers of the total energy has been performed. The last years have been
characterized by a rediscovery of old models conjectured to study, with very simple
tools, classical mechanical problems such as, one example for all, the computation
of the buckling load of a beam. Hencky, in his work [30] which dates back to 1920,
proposed a very simple, but extremely sharp, road to compute the buckling load of a
rectilinear planar beam.' The keynote was to consider the beam as an assemblage of
rigid links and elastic joints. In this way the equilibrium equations, or the stationarity
condition of the potential energy, allow to estimate the buckling load quickly. The
accuracy of such an estimate improves by increasing the number of elastic joints and
rigid links. One of the more attractive point of Hencky’s concept is that of avoiding
the necessity of a continuum model since the problem naturally arises in a discrete
environment. Moreover, recent I"-convergence results have shown that Hencky’s
model is a fully reliable approximation of continuous inextensible [4] and extensi-
ble [3] Euler beams. Of note, this discrete model is intrinsically nonlinear and for
this reason naturally avoids issues related to the objectivity of the energy when a
linearization (around a given deformed configuration) is performed.

Limiting us to mechanical problems, the application of Hencky’s idea can be seen
in a series of recent works which treat beams, see [24, 31, 40, 41, 46], assemblage
of beams, see [25, 47, 52], and specifically designed materials, see [5, 14, 16, 50].
This last research line, fairly trend in last decades, is the additional reason which
suggests to take into consideration Hencky’s models. Indeed, this kind of problems
are characterized by a very large number of structural elements, therefore, the use of
models as simple as possible is a forced road to follow. On the other hand, the study of
complex metamaterials [8, 12, 28, 33, 44], such as pantographic structures, based on
models which can be seen as generalization of that proposed by Hencky have proven
to be fairly effective for predicting the mechanical behavior in static problems in
large displacements, see [47, 49], and also the onset of failure phenomena [48]. The
importance of studying nonlinear beam under distributed load has become clear in the
recent past. Let us cite for instance the very active field of microstructured continua
and in particular its significant branch in which the fundamental element constituting
the microstructure is represented by a beam. In particular, in pantographic continua
[2, 10, 21, 22] the single fiber, in a first approximation, can be modeled as a beam
interacting with the other fibers, in the homogenized limit, a distributed load.

11t has to be remarked that an outline of Hencky’s idea can also be found in the work of Gabrio
Piola almost one century before, see [20, 23].



Large Oscillations Around Curled Equilibrium ... 67

Some examples of studies which consider the nonlinear dynamics of beams
described by simple discrete models are [25, 31, 52]. The present work aims at
contributing in this direction. Indeed, we consider some very simple physical experi-
ments reproducible without expensive tools concerning the curled equilibrium shape
of ahighly flexible beam under a gravity load. We also investigate the planar nonlinear
motion in the neighborhood of this configuration.

We assume the same hypotheses characterizing the continuous beam model: (i)
the elastic stored energy depends quadratically (a more general dependence could
easily be considered) upon the curvature; (ii) the axis of the beam is inextensible;
(iii) the shear deformation of the cross-section with respect to the axis is negligible;
(iv) the cross-section is assumed undeformable. As we will see Hencky’s model is
consistent with these usual assumptions.

The paper, after this brief introduction, describes the main ingredients necessary
to build the discrete model in Sect. 2. Successively, in Sect. 3, are reported firstly
a complete description of two physical experiments along with the estimated data
and successively the comparison between physical and numerical experiments both
for static and dynamic cases. Section4 closes the paper discussing the main results
along with possible extensions of this work.

2 Naturally Discrete Model of Elastica

In order to describe the behavior of a ‘soft’ cantilever beam under gravity load, we
follow the Hencky technique of discretization [39, 51, 53] and consider a discrete
system which consists of an articulated chain of N, rigid rods of length 1 connected
each other by means of zero-torque hinges. Each joint is equipped by a rotational
spring in order to model the resistance to be bent of the system (see Fig.1). The
configurations of the introduced system are completely defined by specifying the
evolution of N, Lagrangian coordinates, @;(¢), which represent the orientation of
the rigid rods with respect to the x-axis pointing along the horizontal direction while
the y-axis is directed vertically upwards. The system prior to deformation is straight
and disposed along the x-axis. Each rigid segment is characterized by a mass, m;, and
a moment of inertia, J; with respect to an axis orthogonal to the plane of the motion
and passing through the mass center. Therefore, the position of the mass center for
each segment can be easily written as

!xim = Yier 1 (1= %) cos(@e(1) o
%k

yi) = i n (1 — %) sin(Pe (1))

where §;; is the Kronecker delta and, by a differentiation with respect to time, the
velocities of the mass centers are evaluated as follows
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5i() = = Xjey 0 (1= %) i) sin(@i(1) @
3i(0) =Yy n (1= %) Be(r) cos(Py (1))

The adopted kinematic description of the discrete beam leads to a convenient for-
mulation of the motion equations derived from the following Lagrangian

L=K-w 3)

where X and ¥ are the kinetic and potential energies of the system, respectively.
Specifically, the kinetic energy, using Konig’s theorem and after some algebraic
manipulations, assumes the form

N,

; 2
X = Z %mi |:Z n <1 — é%k) by sin(@k):| +

i=1 k=1

. 2
: Sik \ 1.
[Z n (1 - 7") by cos(qsk)] + kb7 @)

k=1

The potential energy ¥ consists of two contributions, namely an elastic term ¥,
which is assumed to be

Ne
W =Y kpi[cosh(g;) — 1] (5)

i=1

where we introduce the relative angles between rods, i.e. ¢; = @, (due to the clamp-
ing constraint) and ¢; = @; — @;_; fori > 2 and a uniform lumped bending stiffness
kp; related to the rotational springs [22, 47], and a gravitational term ¥,,, which is

N, i Si
Wy =) gmi [Z n (1 - 7") sin(cbk)} (6)
i=1

k=1

being g the magnitude of the gravity acceleration. We remark that the potential
energy in Eq. (5) should be only positive definite, hence, any convex function can
be employed for this purpose, not necessarily a simple quadratic function. It is also
worth noting that the first relevant term in a Taylor expansion of each addend of the
assumed potential Eq. (5) is the classical quadratic form expressed in terms of the
relative angle.

In order to take into account also a possible viscous dissipation (for a more general
framework, see e.g. [6, 18]) occurring during the motion due to the interaction of
the ‘soft’ beam with the air, we introduce, as a first approximation, the Rayleigh
dissipation function as follows
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Fig. 1 Hencky-type discrete y
model for a highly flexible

cantilever beam (ON

Dy, 1

)

N,
<1 )
R=) —cpi ¢? 7
; SCbi 9; (7
The Euler-Lagrange equations of motion, thus, can be deduced as

3 (9K 0K | 0 Wy | OR o i1 N ®
- - —F — 4+ — 4+ — = ori =1...
at\ad; ) a0 | 0 | 0d; | 9, ‘

Equation (8) is solved numerically by means of the computing system Wolfram
Mathematica with a differential-algebraic system of equations (DAEs) solver after a
proper transformation to a standard form.

3 Physical Experiments and Numerical Simulations

The previously introduced Lagrangian model is tested in this section with two rel-
evant experimental cases. Specifically, we consider two samples made up of two
different materials and sizes to reproduce the equilibrium configurations related to
a local minimum for the energy, and we investigate also the dynamic behavior of
such specimens in a regime of large oscillation around the curled stable equilibrium
configurations found out. In the first case, we examine a paper strip of size 329 x 20
mm, whose thickness is about 0.17 mm and its mass is 0.62 £ 0.02 g. The second
case involves a similar strip of a thin isotropic sheet of polyethylene terephthalate,
namely PET, of size 220 x 20 mm and thickness about 0.15 mm. The mass of the
strip is 0.91 £ 0.02 g; moreover, we add at the free end of the specimen a further
mass, i.e. a ‘paper clip’ of 0.41 + 0.02 g (see Fig.2).
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Fig. 2 Curled stable equilibrium configurations: paper beam a; PET beam with a tip mass b

3.1 Using the Curled Static Configuration to Estimate
Mechanical Parameters

First of all, let us consider the local-minimum energy configurations for the two
specimens under test (see Fig.2). Figure3 shows the pictures of the equilibrium
shapes for the beams and also the equilibrium configurations obtained by finding the

(a)

ST e e 2 e |

T lowoatos

Fig. 3 Comparison between measured and simulated equilibrium configurations: paper beam a;
PET beam with a mass on the tip b



Large Oscillations Around Curled Equilibrium ... 71

corresponding local minimum of the potential energy ¥ in the examined cases for
N, = 30.

In order to obtain the agreement exhibit in Fig. 3, we use for the lumped bending
stiffness the following expression

kpi = Ypju/n 9

where jj, is the second moment of area of the beam cross section and Y}, i.e. the
Young modulus of the material, is used as a material parameter which we identify to
fit the ‘measured’ shape. Particularly, we found for the paper beam that ¥, = 1.25
GPa and for the PET beam that Y;, = 2.5 GPa, starting from an initial guess near to
the known values of the elastic moduli of the considered materials.

3.2 Large Oscillations Around Curled Stable Equilibrium
Configurations

As illustrative examples of the foregoing, we consider some in-plane oscillating
motions around the curled equilibrium configurations which are presented before.
From the experiments, we evaluate the Lagrangian coordinates of the effective initial
configurations (see Fig.4 with the overlap between the computed piecewise linear
curve and the picture of the beam for both the specimens treated) and then, specifying
these values and zero angular velocities as initial conditions, we solve the Egs. (8) to
obtain the motions that originate from those. The evolutions in terms of orientations
@, (1) and angular velocities @; (r) are shown in Fig.5 and Fig. 6, respectively, for
the two cases examined of the paper and the PET beam. Figure 6 also displays a
zoom of the initial part of the motion. Since the initial shapes and the equilibrium

(a) (b)

~0l06 0,04 -u.uj

=0.04

Fig. 4 Initial configurations: paper beam a; PET beam with a mass on the tip b
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8 10 F 2 p 6 8 10
time (s) time (s)

Fig. 5 Large oscillations, ®; (¢), around the equilibrium configurations: paper beam a; PET beam
with a mass on the tip b. The plots of Lagrangian coordinates result in an increasing order from the
P1(1) to P (1)

configurations, towards which the evolutions approach, are both curves where the
curvature never changes its sign (i.e. the curve never crosses its tangent, and therefore
the coordinates @; (¢) for a given instant do not decrease with the index i), we note
that the plots of Lagrangian coordinates, in Fig. 5, result in an almost increasing order
from @(t) to @y, (¢) and tend to compact each other for the last part of the beam.
Indeed, this terminal part remains almost undeformed. As shown in Fig. 6, the same
sequence in the disposition of the plots disappears for the angular velocities. These
last exhibit a maximum value around less than a quarter of the beam length at the very
beginning of the motion and subsequently the trend of all the histories is governed by
the dissipation (the curves are neatly superimposed on top of each other by the lowest
index, and hence it is possible to see which segment presents the velocity peak). In
the performed simulations, the viscous coefficients are roughly estimated to fit the
dissipative behavior of the real ‘soft’ beams. Specifically, we found ¢, = 107> Nms
for the beam made up of paper and ¢, = 5 x 107> Nms in the case of the PET.
In Fig.7 are plotted the evolution, along the motion, of the kinetic and potential
energy for the paper and for the PET beam. Their trends are almost counter-phase
and consistent with what we expected; indeed, the kinetic energy tends to vanish
because of the dissipation while the potential energy approaches the value related to
the local minimum around which the beams oscillate. For the sake of brevity, Fig. 8
shows the trajectory in phase space of the Lagrangian coordinate @y, (¢) for both the
cases investigated, since the qualitative behavior of the trajectories related to the other
coordinates is very similar. In the initial part of the motion the nonlinear behavior is
remarkable while towards the end, for the effect of viscous dissipation, the system
becomes almost linear and a point of stable equilibrium is easily detectable.
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Fig. 6 Histories of the angular velocities, ®; () with a zoomed initial part: paper beam a; PET
beam with a mass on the tip b

@ e ‘ ‘ ‘ ‘ 000024
1.x107F 4 0.000094
X >
5x10°8[ 1 -0.000052
0.} 1-0.0002
0 2 4 6 8 10
time (s)
(b) ‘ ‘ ‘ ‘ ‘ ‘
3.x10°8f 1 -0.00028
2.x10°8f 1 -0.00034
X >
1.x1078 1 -0.00041
0.} 1-0.00048
0 2 4 6 8 10
time (s)

Fig.7 Histories of the kinetic energy X (blue solid line) and potential energy ¥ (purple solid line):
paper beam a; PET beam with a mass on the tip b
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Fig. 8 Phase path of the Lagrangian coordinate related to the last rigid segment: paper beam a;
PET beam with a mass on the tip b

4 Concluding Remarks and Future Challenges

Herein, the local minimum configurations for highly flexible beams predicted
in [19] and characterized by curled shapes are shown experimentally and pre-
dicted numerically. Besides, using a Hencky-type discrete model for describing
such mechanical systems, we adopt a Lagrangian formulation, which is compu-
tationally efficient for determining the motion in the most general nonlinear regime,
and compare the solutions of the obtained differential equations with experimen-
tal tests with a good qualitative agreement. We expect, therefore, that when a
more accurate measurement campaign will be performed and when the lumped
parameters in the considered Lagrangian functions will be suitably fitted a per-
fect quantitative agreement will become possible (see e.g. [1, 34, 36, 38]). Con-
sidered their great efficiency, we also expect that similar codes will be useful in
the study of the nonlinear dynamics of Timoshenko beams [13] and lattice systems
including many beams in large deformations as pantographic metamaterials [11, 32,
35, 42, 49].

Itis worth noting that, in case of PET beam, the presence of the point mass, i.e. the
paper clip, at the end of the beam makes stable the ‘curled equilibrium’. Of course,
we can add length to the strip to achieve the stable configuration under the distributed
own weight but, on the other hand, removing the tip mass and hence, reducing the
gravity load, we can show that the only minimum is, in this circumstance, the global
one. Indeed, it can be proven that below a critical value of the external load the
only minimum for the energy is related to the classical equilibrium configuration
which resembles the pending wire shape of a cantilever beam. Specifically, Fig.9
exhibits, for the PET beam without tip mass, a stroboscopic motion sampled at the
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Fig.9 Stroboscopic motion of the PET beam without mass on the tip. The initial shape is highlighted
in green, while the final configuration is red. Near each configuration is specified the corresponding

time

rate of 10 images per second from the initial configuration (green solid line), the
same displayed also in Fig. 4b, to the image of the current configuration captured at

1.4 s (red solid line).
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Unsymmetrical Wrinkling m
of Nonuniform Annular Plates e
and Spherical Caps Under Internal

Pressure

Svetlana M. Bauer and Eva B. Voronkova

Abstract Unsymmetrical buckling of inhomogeneous annular plates and spheri-
cal shallow shells subjected to internal pressure is studied. The effect of material
heterogeneity, shallowness and ratio of inner to outer radii on the buckling load is
examined. The unsymmetric part of the solution is sought in terms of multiples of
the harmonics of the angular coordinate. A numerical method is employed to obtain
the lowest load value, which leads to the appearance of waves in the circumferential
direction. It is shown that if the elasticity modulus decreases away from the center
of a plate, the critical pressure for unsymmetric buckling is sufficiently lower than
for a plate with constant mechanical properties.

1 Introduction

The possibility of unsymmetrical buckling of internally pressurised spherical, tori-
spherical, ellipsoidal shells has been discussed by many authors (e.g., [1, 2, 5, 13,
15]). Bushnell emphasized that nonlinearity of the prebuckling state is significant in
such problems. Sufficiently precise approximation of the prebuckling state is crucial
in predicting of buckling load and mode shape [5, 11].

Panov and Feodos’ev were the first who analyzed unsymmetrical buckling of
the thin circular isotropic plates under normal pressure [15]. They suggested that
under sufficiently large load an unsymmetric state branched from the axisymmetric
one and waves developed near the edge of the plates. Panov and Feodos’ev repre-
sented nonaxisymmetric displacement in the form w = (1 — r?)>(A + Br* cosnf)
and examined the bending problem by Galerkin procedure.

In this approach the prebuckling axisymmetric state was approximated by function
with only one unknown parameter. Later, Feodos’ev showed that the elastic surface

S. M. Bauer (X) - E. B. Voronkova
St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, Russia
e-mail: s.bauer@spbu.ru

E. B. Voronkova
e-mail: e.voronkova@spbu.ru

© Springer Nature Switzerland AG 2019 79
H. Altenbach et al. (eds.), Recent Developments in the Theory of Shells,
Advanced Structured Materials 110, https://doi.org/10.1007/978-3-030-17747-8_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17747-8_6&domain=pdf
mailto:s.bauer@spbu.ru
mailto:e.voronkova@spbu.ru
https://doi.org/10.1007/978-3-030-17747-8_6

80 S. M. Bauer and E. B. Voronkova

of plates or shells under large deformations could not be described by one or two
unknown parameters in approximating functions [11]. Existence of unsymmetric
equilibrium states for a simply supported circular plate was showed by Morozov [14],
and Piechocki proved the uniqueness theorem [16].

Cheo and Reiss studied axially unsymmetric equilibrium states of a clamped
circular plate subjected to a surface load [6]. They confirmed that a ring of large
circumferential compressive stress develops near the edge of the plate and indicates
possibility of wrinkling near the edge. Cheo and Reiss suspected that Panov and
Feodos’ev had found unstable unsymmetric state in [15], and underlined the approx-
imation function with two unknown parameters was “too inaccurate to adequately
describe the wrinkling of the plate”.

The postbuckling asymmetrical behaviour of annular plates was considered
in [17]. The critical load and number of waves depended on the boundary condi-
tions, the ratio between the inner and outer radii and the loads applied. Experiments
on uniform heating of thin circular plates with fixed edges and formation of waves
near plate’s edge are discussed in [12].

Coman investigated the wrinkling of a uniformly stretched circular plate under
transverse pressure [7]. He showed that the critical load increases with the background
tension. Comparisons of the asymptotic approximations with numerical calculations
was reported in [9, 10].

The asymmetric bifurcation for a shallow spherical cap subjected to either external
or internal pressure was treated in [8]. Two-term asymptotic predictions for the
buckling pressure and one-term approximations of the corresponding wave number
were derived.

This paper deals with buckling of an annular plates and spherical caps with nonuni-
form mechanical characteristics. Such a plate or a cap can be used as the simplest
model of Lamina Cribrosa (LC) in the human eye [3]. Buckling of the LC in a non-
axisymmetric state in the neighborhood of the edge could cause edamas and folds at
the periphery of the LC and loss of sight.

2 Problem Formulation

Consider a shallow spherical elastic shell of uniform thickness # > 0, subjected to
uniformly distributed inner pressure p, as shown in Fig. 1. The equation of the shell
middle surface is given by z = H (1 — r?/a®) , where a is the base radius, H is the
rise of the mid-surface at the center. The cap is thin and shallow, which means that the
ratio of its thickness to the radius of curvature R = a?/(2H) is much less than unity
(h/R < 1), and that the apex rise is much less that the curvature radius (H < R).
A spherical shell may also be named as shallow if H/a < 1/8.

We assume meridional material inhomogeneity for the shell, i.e. Young’s modulus
E is spatially dependent. For a shallow spherical shell we may set the modulus of
elasticity £ = E(r).
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Fig.1 Geometry of the spherical cap

For a spherical cap with meridional inhomogeneity under inner pressure the well-
known Donnell-Mushtari-Vlasov equations can be written in the form

2

oD | 0°D | 1
DAAW+ —LT W)+ —L,(w) =P+ Lw, F)— =AF,
or or? R

D

AAF d (1
E ar

- % (1) h 1
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where r and 6 are polar coordinates in the base plane, w(r, 6) is the displacement in
the direction of z, F (r, 0) is the Airy stress function, D(r) = E(r)h3/12(1 —1?) s
the bending stiffness, and v is Poisson’s coefficient. The Laplacian is defined as

92 10 1 92
A= o =2
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We shall further use the notations ()’ = 9()/dr, O =a(0) /36. The differential
operators that appear in (1) are listed in Appendix.
Let us introduce the following dimensionless quantities

* r * ﬂw P* ﬂ3 Pa4 F* ﬂZ F (2)
ro=—-, = PRE) = 3 - )
a T Eqoh* E
a’ 2 2
A=B—, =12(1 —v9).
Ben P 1 =v7)
Here E,, is an average value of Young’s modulus in the radial direction
1
E, = 3 //E(r)rdrd@, E(r)=Eof(r), 3)
s

where f () is a smooth position function, S denotes the area of the shell mid-surface.
The dimensionless forms of Egs. (1) are (with the asterisks being omitted)
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g1 (NAAw + g (r)LT (w) + g/ ()L (w) = P+ L(w, F) — AAF,
e (r)AAF + gg(r)Ll’(F) + gg’(r)Lz’(F) =—Lw,w)/2+ AAw, @)
g1(r) = Eof (r)/Eay, 2(r) = 1/g1(r).

We remark here that the deformation of the externally pressurised spherical shell
can be described by the same system of Eqs. (4) after reversing signs before the last
terms on the right-hand site. By taking A = 0 in Eqgs. (4) one can obtain the governing
equations for the inhomogeneous circular plate subjected to normal pressure.

The boundary conditions for the problem are the following. The outer edge of
the shell is clamped but can move freely in the radial direction without rotation. In
addition, all sought-for functions must fulfil the boundedness condition at the apex
of the shell. In this case the system (4) are completed by the set of conditions

/

. F F F
w:w:——|——=—(—> =0 at r =1, (®)]
r
wW=w=F=F=0 at r=0. (6)

We also consider a truncated spherical shell—a shell with a circular opening at
the top. For this situation the inner edge of the shell can be assumed to be supported
by roller which can slide along a vertical wall. This constrain can be written as

w =0, Nyg=0, (M) —My+2My=0, u=0 at r=5. (7)

Here r = § = a;,/a is a dimensionless radial coordinate of the inner edge, u
denotes the horizontal radial components of displacement, M,, My, M,y are merid-
ional, circumferential and twisting moments, respectively, and N, is tangential stress
resultant.

In the terms of the displacement component w and stress function F, the boundary
conditions (7) are equivalent to

PR

=0 ﬁ‘T‘Q
&1(r) ((Aw) + — <vr—v> ) +&(NLy(w) =0, ()
AF 1 .. ,
& (r) ((AF) T (F+F) > + gh(r)Ly (F) = —A%.

Setting A = 0 in (8) we arrive at set of boundary conditions for an annular plate.
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2.1 Axisymmetric Behavior

The governing equations of the symmetrical problem can be obtain from Egs. (4).
For the shell closed at the top we have

O, © G Pr 09
g1<®6’+70—r—20)+g]<®6+v 0>=—+ C2 — Ad,,

r 2 r

©))
& (cbg+%6 — %) + g <<D6—v%) = —(;)—;2)+A®0,
where ®9 = w; and &, = Fj; and boundary conditions
Oy=Py=0 at r =0, 1. (10)
2.1.1 Equations for Truncated Shell
For the the truncated spherical shell Egs. (4) become
wooowow Y w Pr  wdg C
81 (w +T—r—2)+g1(w +v7) =7+ ; —A<I>0+7,
1D
2 <¢g+%6 - %) + g (cbg)—v%) = —?—5’+A@0,
and the boundary conditions are
w=w=0,=0 at r=1, (12)

W =0, @ - ®y+Aw=0 at r=03,
r

and
C = —p32/2 —W(8)Dy(8) + ASD( ().

3 Equations for Buckling

Asymmetrical solutions of problem (4) with appropriate boundary conditions branch
from a solution of axisymmetric states. To detect the occurrence of wrinkling we seek
for a solution of Egs. (4) in the form

w(r, 0) = wy(r) + ew,, cos(nf), F(r,0) = Fy(r) 4+ e F,; cos(nb), (13)
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where wy(r), Fy(r) describe prebuckling axisymmetric state, ¢ is infinitesimal
parameter, n is a mode number and w,(r), F,(r) are the non-symmetrical com-
ponents.

After substitution of (13) in (4), using Egs. (9) (or (11)), and linearization with
respect to ¢ we obtain

7 "

w F
810 Apwy + L1(g1, wy) = —AAF, + T”cpo + Tn®o +
 (F, n? c(weom
+®0 T_r_an _q)() T_r_zwn ) (14)
” ’ 2
w , (w, n
g2AnAnFn +£2(827 Fn) == AAan - Tn®0 - ®() (T - r_zwn> .

The definitions of the operators £, £, are listed in Appendix.
Boundary conditions (5) and (6) are reduced to

w,=w,=F,=F,=0 at r=0, L. (15)
For the truncated shell we replace the constrain at the shell apex by
w, =0, F,—rF,=0,

2 /
9 ((Anwny - - () ) + 813, 0n) = 0, (16)

’ AnFn 1+V _ {1
82 ((AnFn) + - + = (n* — l)F’) + gL, (Fy) = —AT

forr =6.

4 Numerical Results and Discussion

Buckling equation (14) with boundary conditions (15) or (16) constitute an eigen-
value problem, in which the parameter p is implicit and appears in the equations
through the functions ®( and ®,.

We use standard MATLAB functions to solve nonlinear axisymmetric problem (9)
together with (10) or (12). The value of P, for which (14) with (15) or (16), have
nontrivial solution, was found by using the finite difference method [6, 13]. We
regard the smallest of these eigenvalues as the buckling load.

Figure 2 illustrates behaviour of the normalized critical load P¢" and the critical
mode number m for a homogeneous shallow spherical shell. P}; corresponds to the
buckling load of axisymmetric equilibrium state of an isotropic homogeneous circular
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Fig. 2 Dependence of the

normalized critical load P<" 2r O\ -0O- ﬁ i g ]
on the mode number m for a ‘\‘ - A=5
uniform shallow spherical 1.8+ i

shell. Solid line corresponds ‘
to a circular plate (A = 0),
dashed and dash-dotted Qf‘
lines—to a shell with A =3 o

and A = 5, respectively. P;'[’ S_‘ 1.4r
denotes the buckling
pressure for a uniform 12+
circular plate

12 14 16 18 20
mode number, m

Table 1 Normalized buckling load (P<"/ P;lr ) and corresponding wave numbers for the heteroge-
nous plate and shallow shells

q=0 g=1 q=3
A=0
P”/P;,'l’ 1 0.76 0.41
Mode number, m 14 14 15
A=5
P”/P[‘,‘lr 1.25 0.96 0.5
Mode number, m 17 17 18
A=10
P‘"”/P;l’ 1.51 1.16 0.59
Mode number, m 20 20 21

plate (P,; = 64453). The critical load P increases as the shallowness parameter
A increases.

To study the effect of the varying rate of inhomogeneity on the critical load
and buckling mode, we assume exponential law for material inhomogeneity: E =
Eye™1". The buckling load for unsymmetrical buckling was calculated numerically
over a large range of parameters Ey, g, but for constant average value of the elastic
modulus (3). The results are summarized in Table 1 and Fig. 3. The parameter value
q = 0 corresponds to uniform plate with constant Young’s modulus.

The normalized buckling pressure P/ P/ decreases as the rate of inhomogeneity
|g| increases, whereas the buckling mode m increases with |g| (see Table 1). Similar
results we reported in [4].
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Fig. 3 Change of the 1.6— ; ;
normalized buckling *.. B A4=0
pressure P" when the 1.4 & -O- A=3
degree of heterogeneity of 0 ﬁ - IO
the shell g changes for 1.2 B
different values of the o
curvature parameter A. Pyy B_‘g 1
denotes the buckling ™~
pressure for a uniform a' 0.8
circular plate
0.61 1
0.4 1
02— : . : :

0 0.5 1 1.5 2 25 3
inhomogeneity rate, ¢

Table 2 Normalized buckling load (P<"/ P;]’ ) for the homogenous annular plate and truncated
shells

§=0 5=01  |§=015 |§=02 §=0.25
A=0
P”/P;l’ 1 1.08 1.14 1.25 1.37
Mode number, m 14 13 12 11 11
A=5
P”/P;l’ 1.25 1.35 1.43 1.55 1.7
Mode number, m 17 16 15 14 14
A=10
P”/P;'l’ 1.51 1.64 1.74 1.88 1.6
Mode number, m 20 18 18 17 16

The results for an annular plate and truncated shell are presented in Table2,
Figs.4 and 5. The normalized buckling pressure P/ P,/ increases as the radius
of the opening § increases, while the buckling mode m has opposite behavior: it
decreases when § increases.

We note closely adjacent values of the critical load for the consecutive wave
number, e.g. for the uniform spherical shell with A = 7 the critical loads differ
between each other by less than 1% (P = 87044 for m = 18 and P = 87415
for m = 19). The truncated shell (with A = 7 and radius of the opening § = 0.1)
wrinkles at P = 94296, and the buckling mode has 17 waves, while for 16 waves
the critical load is 95316. Thus, the considered plates and shells are sensitive to initial
imperfections of form or to initial stresses.
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Fig. 4 Dependence of the
normalized buckling
pressure P¢" on the radius of
the opening § for different
values of the curvature
parameter A. Py} denotes
the buckling pressure for a
uniform circular plate

Fig. 5 Dependence of the
normalized critical load P¢"
of an annular plate (§ = 0.1)
on the mode number m for
different values of the
inhomogeneity rate g. P;lr
denotes the buckling
pressure for a uniform
circular plate

l

cr
PP

PC7'/

8- 4-0
2r-0O- A=4 1
e A =10
1.8} 1
1.6 i
14} E
121 1
1 . ‘ ‘ ‘ ‘ ‘ ‘ 4
0 0.05 0.1 0.15 0.2 0.25
Radius of the opening, &
2

B a=00 g Fe
= e
-0 g2 0

Mode number, m

The axisymmetrical stability for the internally pressurized shell was studied in [8].
Authors came to conclusion that the dimensionless critical load A — 0 as shallow-
ness parameter pu = 2(3(1 — vI)V4(H )2 grows. We report here the opposite
behavior: the non-dimensionless pressure P* grows as parameter A increases. After
matching dimensionless variables employed in [8] and in the current paper (2)

p=AY2 r=P*/(4u") = P*/(4A%)

we can conclude that the results of the both studies are in good agreement.
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5 Conclusion

The wrinkling of the annular plates and shallow spherical shells under subjected to
internal pressure has been studied in this work. Prebuckling stress-state in a narrow
zone near the shells edge makes a major contribution to the unsymmetrical buck-
ling mode and the value of the critical load. It is shown that if the elasticity modulus
decreases away from the center of a plate, the critical pressure for unsymmetric buck-
ling is sufficiently lower than for a plate with constant mechanical properties. Number
of waves in the circumferential direction increases with the degree of nonuniformity.
The buckling load and corresponding mode number increase as the shallowness
parameter grows. For a truncated shallow shell the wrinkling pressure increases as
the radius of the opening increases, while the buckling mode decreases.

Acknowledgements This research was supported by the Russian Foundation for Basic Research
(project no. 18-01-00832).

Appendix

The differential operators that appear in (1) are defined by

, . ¥ ¥ % AR
L(x,y) =x" (y— + %) +y” <— + —2) -2 (—) <X> .

r r r r r r
L =2+ eni 28 23t

72 73’
" y o ¥
Ly(y) =y :|:v<—+—2).
roor
The differential operators introduced in (13) are given by

L1(g1,wy) = g1 LT (wa) + g/L3 (wy),
L(g2, F) = g4L1, (Fy) + g5 L5, (Fy),

where

L 24w 2n+1,  3n?,
LY(y) =2y"+ y' - ¥4+ =5,
r r2 r3

y/ I’l2 .
Ly (y) =y”iv<———2y>-
r r
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Two-Dimensional Model of a Plate, Made | m)
of Material with the General Anisotropy L

A. K. Belyaev, N. F. Morozov, P. E. Tovstik, T. P. Tovstik and A. V. Zelinskaya

Abstract A new two-dimensional linear model of the second order accuracy
describing deformations of an anisotropic heterogeneous in the thickness direction
plate is proposed. The case of the general anisotropy with 21 elastic modules is stud-
ied. The asymptotic expansions of solutions of 3D equations of the theory of elasticity
in power series with small thickness parameter are used. The zero asymptotic approx-
imation was constructed earlier and it is similar to the Kirchhoff-Love model. Also
earlier the models of the second order accuracy were built for an isotropic material
and for partial cases of anisotropy (for transversely isotropic and for monoclinic
materials). In this work the general case is studied. A peculiarity of the proposed
model is that the model includes the zero, the first, and the second approximations
in contrary to the more simple models where summands of the first asymptotic order
are absent. The proposed model may be applied to multi-layered and to functionally
graded plates. The model may be used to solve various static and vibration problems.
A 2D system of three PDE with the constant coefficients is obtained. The harmonic
solution is investigated more detailed, and in this case the problem is reduced to a
linear algebraic system.

Keywords Anisotropic heterogeneous plate + Two-dimensional model - The
second order accuracy * Bending - Vibrations - Waves propagation.
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1 Introduction

Derivation of two-dimensional approximate models of thin plates and shells is one
of the classic problems of mechanics [1-6]. The equation of bending and vibrations
of a plate can be obtained from three-dimensional equations of the elasticity theory
by applying the Kirchhoff-Love (KL) hypotheses [1, 2]. The more complex and
more accurate equations accounting for transversal shear are derived by means of
the Timoshenko—Reissner (TR) hypotheses [3, 7]. The two-dimensional equations
can also be obtained by expansions of the plate quantities in series of Legendre
polynomials in the thickness direction [8, 9]. Similarly, the two-dimensional shell
equations can be written directly as an equilibrium equation for a two-dimensional
elastic media [10].

The numerous investigations are devoted to delivering of 2D approximate models
of thin plates and shells made of anisotropic materials (we mention the books [9,
11-13], containing an extensive bibliography).

For a transversely isotropic material the 2D equations of the second order accuracy
(SOA) are delivered and investigated in [ 14—19]. The SOA of 2D models is important
for the multi-layered plates with the alternating hard and soft layers because the
models based on the classic KL and TR models lead to the large errors.

An analysis of multi-layered orthotropic plates with the arbitrary orientation of
the main directions of orthotropy is reduced to investigation of heterogeneous in the
thickness direction monoclinic plates. Asymptotic analysis of monoclinic plates is
performed in [20], and in [21] 2D equations of SOA are delivered.

In the case of the general anisotropy (with 21 elastic modules) the classic KL and
TR models also are unacceptable. In [22] for anisotropic plates and in [23] for shells
the generalized TR model is proposed. These models are obtained by using kinematic
hypotheses and lead to equations of 10th differential order. Among the solutions,
following from these models, there are the boundary layers. It is desirable to exclude
the boundary layers from solutions (see [23]) because they describe stress states with
the very large variability that are not typical for shell theories. The shell theory is
based on the assumption that the typical length of picture of deformations is larger
than the shell thickness, and the boundary layer does not satisfy this assumption.

In [24] based on the asymptotic expansions, elaborated in [15—-17], the 2D model
of a multi-layered plate with the general anisotropy is delivered. This model leads to
equations of 8th differential order and it is similar to the KL. model with the equivalent
elastic modules. This model is of the zero order of accuracy and it is not acceptable
for a multi-layered plate with the alternating hard and soft layers.

In this work we consider an anisotropic heterogeneous plate of the general
anisotropy (with 21 elastic modules) and construct the higher asymptotic approx-
imations. For the general anisotropy the asymptotic solution is essentially more
difficult and bulky compared with the monoclinic material. To construct a model of
the SOA for a material with the general anisotropy it is necessary to built asymptotic
solutions of the zero, the first, and the second approximations, and for a monoclinic
material the first approximation is absent.
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As aresult a PDE system with constant coefficients is obtained. The differential
order of this system is the same as the order of the TR model, but this system
essentially more complex. For a heterogeneous in the thickness direction plate to find
coefficients it is necessary to calculate repeated integrals of elastic modules. Closed
solutions of the boundary value problems for a finite plate do not exist because a
separation of variables is impossible. A harmonic solution for an infinite plate is
considered for that the problem is reduced to a system of linear algebraic equations.
The harmonic bending and vibration problems are considered.

2 The Main Equations and Assumptions

Consider a thin elastic plate of the constant thickness 4. In the main Cartesian
co-ordinate system xp, X, X3 the equilibrium equations read as:

Ea(’”+f 0, i=123 h_ < 2.1)
i = 1 =1,2,95, —— =X3=7= =, .
ox; 2 =N 7=,

Jj=1

where o;; are the stresses, and f; are the intensities of the external forces.
In the case of the general anisotropy of material the stresses o;; are expressed
through the strains y;; as follows

1 8uk 8u1
= , = — ), 2.2
ojj Y Vi = <8xl + Bxk> (2.2)

where C = {C;ju} is the elastic tensor of the 4th rank with 21 independent compo-
nents, and u (x, x,, z) are the deflections.
Here the tensor designations are not used, and strains ¢;; are as follows:

8l/li aul au . . ..
Fre si,=2y,-j=8—+a—xf i#j, i,j=1273. (2.3)

Eii = Vii =
We write strains and stresses as 6D vectors. Then the elasticity relation (2.2) read
as [13]:

c=Ee¢e E= (Ei./)i,jzl _____ 6° 2.4)
T T -
o = (011, 022, 033, 023, 013, 012) ", € = (&11, €22, €33, £23, €13, £12) " .

Here and later 7 denotes transposition, the bold letters are used for vectors, for
matrices and for operators, the product of vectors and matrices is denoted by dot().
The matrix E is symmetric and positively definite. It is assumed that elastic modules
E;; do not depend on tangential co-ordinates x, x;, and they may depend on x3 = z.
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A dependence on z has place for functionally graded plates, and for multilayered
plates modules E; ; are piece-wise functions of z.

As in [17] for an asymptotic analysis we divide stresses 0;; and strains ¢&;; in the
groups of tangential o, ¢, and transversal o,,, &, stresses and strains and put

T T
o; = (o011, 022, 012)" , 0, = (013, 023, 033)" , 2.5)

T T .
& = (11, €, €12)" , & = (€13, €23, €33)" ,

where
Ey\ E; Eg E\s Eys Esg
A={Ajj}=|EnxEnEx |, B={Bjjl=| Eu Exu Ess |,
E16 Ex Egs E3 Exz E36
2.6
Ess Eys Ess 26)
C={Cij} = | Es5 Ega Ez4
E3s E3q E33
Then elasticity relations (2.4) accept the form:
oo=A-&+B-¢g, 0,=BT -5, +C-¢,, 2.7
Excluding small transversal strains &, we obtain
oo=A"¢ +B.Clo, &=Clog, —CLB . ¢ (2.8)
where
A*=A—-B-C"'.BT. (2.9)

We suppose that the planes z = —h/2 and z = h/2 are free that yields the bound-
ary conditions

013 = 023 = 033 =0, Z=:|:h/2, Z=h. (210)

The external surface forces may be included in the body forces by using the Dirac
delta-function.
Introduce dimensionless variables (with the sign”) by relations

(i, xo, wn, ug, w3} = Uk, X, d, g, wh, 2=12, p=h/1, @2.11)
{Aij, Bij, Cij, 0i;} = E{A;j, Bij, Cij, 6i;}, {fiY=(E/D{fi}, i,j=1,2,3, ’

where [ is the typical length of waves in tangential directions, E is the typical value
of elastic modules,  is the small parameter. Further the sign” is omitted. As a result
we get a system of 6th order with the small parameter
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ow

—_ = & s
97 HE33

— = _p(pw—e3), =12,

9z | 2.12)
B = _u(proi+ proi + f) =g, =12,

—pu(p1o13 + pro23 + f3) = g3,

where p; = 3()/dx1, p» = 9()/dx>.

3 Transformation of System (2.12)
We introduce the 2D vectors

u=(u,u)’, o5= (o3, 0m)", &=(63)", £=1 " GBI
the differential operators

T
_ T _ (P10 p
p_(p]vpz) ’ P_(O pZ Pl) ’ (32)

and the integral operators

172 z z
Ia(Z)E/ Zdz, I(Z) / Z(2)dz, Io(Z)E/ Z(z)dz. (3.3)
—1/2 -1/2 0

In these designations Eqgs. (2.12) may be written as a system of integral equations

w = wo + plo(e33),
u=puu—ulp(pw — &),

3.4
oy = 1P 0, + pf,), 34)
o33 = —pu I’ -0y + U f3),
where
&n = (7, 337 =C7'-(0, —BTg), & =P-u, (3.5)
o, =A*Pu+B-Clg, o, = (o], o33)T. '

InEgs. (3.4) wo(x1, x2), up(x, 1, xp) are the arbitrary functions that are to be found
from boundary conditions o,,(1/2) = 0. The boundary conditions ¢,,(—1/2) = 0 are
satisfied due to designation of operator I (see Eq.(3.3)).
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Equations (3.4) are the main system for the following analysis. The values u, u,,
w, 013, 023, 033 are the main unknowns of Egs. (3.4). The rest unknowns containing in
the right sides of Egs. (3.4) are expressed through the main unknowns by Egs. (3.5).

We assume that all elastic modules have the identical orders, and the variability
of unknowns is moderate, p;, p» ~ 1. Let o,, oy, o, be the typical values of the
tangential stresses o1y, 012, 022, Of the transversal shear stresses o3, 023, and of
the normal stresses o33, respectively. From Eqgs. (2.1) in the dimensionless variables
(2.11) the following asymptotic estimates

Oy ~ WOy, Oy ~ Oy ~ 0. (3.6)

are valid.
Accepting that the transversal stresses are neglected (o, = 0, = 0), we get the
classic KL model based on the elasticity relations

o, =A*g (3.7)

with the equivalent elastic modules A*. The equations of this model coincide with
the zero approximation of the asymptotic solution of Eqs. (3.4), constructed in [24]
(see the next Sect. 4).

The orders of functions o, and o33 are different, and we re-write Egs. (3.5) intro-

ducing the block-structure of matrices C™' = {G;;} and C~!-B” = {S;;} as follows:
G G G
c'=(7 5), G = 22 g=(Gi3, G, =G,
g ¢ G Gn (3.8)
S S11 S S ’
C BT = . S= (e ‘3>, s = (831, S32, 533).
(s) <S21 Sy Sos (831, 32, 833)

Then Eqgs. (3.5) read as:
o, =A*Pu+ST.0, + s o33,
& =G0, +gos3 —S-P-u, 3.9)

£33 = gT~O’S + c3033 —s-P-u.

As a result the right sides of Egs. (3.4) are expressed through the main unknowns.
4 Asymptotic Solution of Eqs. (3.4). The Zero
Approximation

We change a scale of unknown functions according with their orders and put:

u=pl, o,=u’6, opn=péyn, L=ul, fr=pf 4.1)
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Omitting the sign” we re-write Eqgs. (3.4) as follows:

w = wy — u Ih(sp-w) + 1’Ih(g" o) + n*ly(cs 033),
u=uy— L(pw) — uly(Sp-u) + u’Io(G-0y) + n’Iy(go33),

oy = —I(L-u) — puI(SE-0y) — u?I(shoss) — I(f), 4.2)
o3 = —I(p”-0y) = 1(f3),
where we use the following designations
L) =P"-A*(2)-P, Sp(2) =8()'P, sp() =s(2)-P. (4.3)

All unknowns in Egs. (4.2) are of the order of the unit. System (4.2) is exact and
it is convenient to construct a solution by using the method of iterations. In the next
sections the solution of the SOA with respect to the small thickness parameter p will
be constructed. Therefore for a simplicity the small summands of the orders of 1
and of u* may be omitted in the first two Egs. (4.2).

In the zero approximation we put £ = 0 in Egs. (4.2) and sequently obtain [24]

w O (x1, x2, 2) = wo(x1, x2),
u@(x1, x2, 2) = wp(x1, X2) — Zpwo(xy, x2)),

00 (x1.x2.2) = ~I(LE)-u®) — I(h), @4
o3 (x1, %2, 2) = H(p" - L()-u®) + I(p”-£) — 1(f2).
The boundary conditions 0¥ (1/2) = a3 (1/2) = 0 give equations
0 (a1, 22, 1/2) = ~L(L(z)u®) — L (f) =0, (4.5)
0%y (x1, X2, 1/2) = LI(p" -L(z)-u®) + L(p" -f;) — L(f3) = 0. ’
By using equality
LI(Z(z)) = (1/2)L.(Z(2)) — L.(z Z(2)) (4.6)

and taking into account that u® = uy — z p wy, we write equations of the zero
approximation as follows [24]:

Lo-up — Njwg +F; =0, @7
N1T~u0—Q2w0+m+F3=O, ’

where

Lo =P L,(A*(2))-P, Ny =P -L(zA*()-P-p, F, =L(f),

0=p" PTLEZAQ)Pp. F=L(f), m=Lpf). &5
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The detailed expressions of operators in Eqgs. (4.7) read as [24]:

0 0 0
Ly = ay)' p} +2a;3 p1p2 + a3 p3.

Lit L © 2, O, 0 O
bo= (L12 Ly )’ L12:“1(3) pi +(“|f»+“33 )Plg’z +ay 3,
Ly = alQ p? + 248 pips + a5 p3,

4.9)
1 1 1 1 1

N, = (xl ) ., Ni= aly p} +3ay pipa + @}y + 2a5)) p1 p3 + a3 p3,

2
1 1 1 1 1
N2 = a3 pi + (afy +2a$)pp2 +3a33) p1p3 +aly p3,

2 2
0 =d}}p +apy

2 2 2 2
pip2 + 263 +2a5)p}p} + 4453 pi p3 + a3 v,
where the coefficients ai(]lf) depend at the moments of the zero, of the first, and of
the second orders of elements of matrix A*(z):

1/2
a)y =1 A} (2) = / FA(dz, i j=1,2,3, k=0,1,2. (4.10)
—1/2

Equations (4.7) describe approximately bending deformations of an anisotropic
plate in frames of the KL hypotheses.

We call a plate with symmetric in z elastic modules (Ej;(—z) = E;;(z)) as a
symmetric (in the thickness direction) plate. For a symmetric plate N; = 0, and the
bending and the tangential deformations may be investigated separately. In the zero
approximation for a symmetric plate all unknown functions are symmetric or anti-
symmetric functions in z. We mark that in the higher approximation the last state is
correct not in all cases (see Sect. 5).

Itis shown [17] that in the case if all elastic modules are of the identical orders then
the zero approximation gives an acceptable exactness for approximate calculations. If
some elements of matrix C in the denominator of Egs. (3.7) are small, then exactness
of the zero approximation is not enough, and it is necessary to construct the higher
approximations. Some important effects of the second order are not described by
Eq. (4.7). The main of these effects is a transversal shear that may be essential for
multi-layered plates with hard and soft alternating layers.

S The Higher Approximations

The first approximation takes into account the summands of the order of w in
Egs.(4.2). IF S = 0 the summands of the order of u in Egs.(4.2) are absent. We
construct here the first approximation for an anisotropic material with S # 0. Such
anisotropy we name as an inclined anisotropy, because it may be obtained at a com-
posite plate, consisting of an orthotropic matrix reinforced by a system of fibres,
inclined to a plane of plate [25] (see also Sect. 6).

For an inclined anisotropy the first approximation read as:
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wl) = w,
u =ug —Tp(pw®) — uly(Sp-u®) =u® — u1y(Sp-u®),
o = —1L-u®) — 8% -0”) - 118 =
= —I(Lu®) + uIL-IoSp-u®)) + I ST IL-u® + 1)) — 1), (5.1
oy =107 o)~ 1(f3) =
= W7 -Lu®) = 1Tl (p-Ldg(Spu®) + p-SEILu®)) +

+ (pT ) — 1(f3).

Here the normal deflection w(? is the same, as in the zero approximation, and the
tangential deflections u") and stresses o(", o33 are changed.

The second approximation is very bulky:

w® = wy + (033 = wo — u?o(sp-u®)),
u® =ug —T(pw®) — uly(Sp-u®) + ’Ip(G-0”) =
= u? — uly(Sp-u?) + pLy(p-sp-u®)+
+ wo(Sp-Io(Sp-u®)) — u?Ip(G-I(L-u®)) — I (G-I(f))),
0® = —I(L-u®) — uI(ST-0M) — n2A(shoy) — I(f,),
o = 1" -0®) —1(f3).

(5.2)

To obtain the final expressions, it is necessary to substitute the values u'” and
o) from Eq.(5.1) and the values u® and o® from Egs. (5.2).
We write the value o as follows:

0@ = 1L u® 4§, L*=L}+4 uli+ u’Ls, (5.3)
with

L;=L=P7-A*(x)-P, L}=—L-IySp) —S5-I(L),
L5 = L-IpIp(p-sp) + L-Io(Sp-1o(Sp)) — L-Io(G-I(L))+

+ SL-I(L-To(Sp)) + SE-I(SL-I(L)) + s - T (p” L)], 6
£ =1, — uSE 1(f) — 1P [L-T(GI(F)) +s,-p -I(f) — sL L(f3)].
Then the forth Eq. (5.2) yields
ol =ML u® + %) — I(fy). (5.5)

The boundary conditions 0® = 03(? = O at z = 1/2 lead to equations for uy wy:

LML u®+f) =0, u®=uy—pzwy
T * 12(0) * (56)
LI(p" -(L*-u™ + 1)) — L(f3) =0.
By using equality (4.6) at Z = o*-u® + f* with I,(Z) = 0, we present Egs. (5.6)

in the form:
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L(L%)-u — L, (L*-p2) wo + L, (f*) =0, (5.7)
L.(z PT L) up — Li(z PT -L* ‘P ) wo + Iu(z PT 1)+ F3=0. '

Therefore, the model of the SOA is built. Equation (5.7) are a PDE system with
constant coefficients with respect to unknown functions uy = (19, #20), wo. The
differential orders of the operators p, P, Sp, sp are equal to the unit, the operator
L is of the second order, and the differential orders of operators L are equal to 2+k.
The presence of p or p” in Egs.(5.7) lead to a growth of the differential orders of
corresponding summands by the unit. The differential order of system (5.7) is the
same as the order of the TR model, but the system (5.7) is essentially more complex.

If the elastic modules depend on z then to find coefficients in Eqgs.(5.7) it is
necessary to calculate repeated integrals. If the elastic modules are constant then the
numerical coefficients appear instead of integral operators I,,, I, Iy and multipliers
z according the following relations:

I, — 1, L, (z) — 0, I.(z%) — 1/12,
I,Ip — 0, I,1p(z) = 1/12, I,(zlp) — 1/12, 1,(zlp(2)) — O,
L,I— 1/2, I,1(z) - —1/2, 1,0 — 1/12, 1,(zI(z)) — O,

I, Iply — 1/24, 1,1pIp(z) — O, I, (zIplp) — 0, I,(zIply(z)) — 1/480, (5.8)
Lol — 1724, TIolz) = 0,  T(Ipl) — 1/24, T (zIpL(z)) — —1/120,
Llly — —1/12, LI(z) — 1/48, T(zllp) — 0,  Tu(zT(z)) — 1/480,

I, II — 1/6, I,II(z) > —1/24, I,(zI) — 1/24, 1,(zIl(z)) - —1/120.

For a symmetric in the thickness direction plate the tangential and the transversal
deflections my be investigated separately only in the zero approximations. In the
higher approximations these deflections may be tied by small terms. For an inclined
anisotropy this connection is of the order of u and for a monoclinic material it is of
the order of 112 (see examples in Sect. 7).

6 Two Examples of Elasticity Relations

We consider a plate, consisting of a homogeneous orthotropic matrix, reinforced by
a system of hard fibers, inclined to axes Ox and Oz by angles « and B (see Fig. 1).
We present elastic modules (2.4) as a sum of modules of a matrix El”]’ and an

additional modules of fibers E l’;

Eij=E?}+Ef i,j=1,...,6, (6.1)

ij?

where the modules El]; are obtained in [25] an assumption, that there is a full contact
between a matrix and fibers, and only an extension of fibers is taken into account.
The potential energy density of fibers is equal
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Fig. 1 A direction of fibers Z

X;

1
Iy = EEfox, ef = afell + a%é?zz + ﬂ§833 +aiaxe1n + ajazerz + axazens, (6.2)

Ef=Eydy, a; =cosasinfB, ap =sinasin B, az = cos B,
f f

where ¢ is the deformation of fiber extension, Ey is the Young modulus of fibers,
and § is the part of volume, occupied by fibers.
Then elastic modules El]; may be found from the equality o;; = 017 /0¢;;:

El,=Esl,  El,=Es;dd}, E[,=Eda},
Efs = Esalay, E{, = Efaiaas, Es = Ejajas,
Ejy=Ejal,  E}y=E;da}, Ef=Ejaa,
E{4 = Efagag, Ezf5 = Efa1a§a3, E3f3 = Efagl, (6.3)

E{6 = Eja1ara3, E;; = Ejaya;, E_{S = Esa1a3,
Eé; = Efa%a%, E{G = Efa1a§a3, E5f6 = Efalzazag,
E4{4 = Eja3al, E{S = Eja1apa3, Esf5 = Esaial.
By the same way several systems of fibers may be considered.
We consider a multi-layered plate with n orthotropic layers of the constant thick-
ness hy, k=1,...,n, Y hp = 1. Let the k-th layer lies in zx_; < z < zx with
z0 = —1/2, zy = zg—1 + hy. For the k-th layer the elasticity relations, connected

with the orthotropic directions, in the matrix form (instead of Egs.(2.4)) read as
[13]:

60 =E®. 0 7 <7<z, (6.4)

with
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5o — (or(k) 58 sk oK) oK) A(k)) 8 — = (¢ (k) a(k) A(k) A(k) Alk) A(k))T

025033 ,023,073, €11,62,833,8623,813, ¢

0 0 o0 EY

EWE® E® o o o
E}’;) Eg; E“‘) 0 0 0

o _ EG ED E<k> 0 0 0
0 0

0

0o 0 0 EY

0
0 0 0 0 0 EY

(6.5)

Here the sign”"marks that the relations (6.4) are written in the auxiliary co-ordinate

system connected with the orthotropic directions of the layer.

Let the angle between axes X of the main and the auxiliary systems be a;. Then

the elasticity relations (2.4) in the main co-ordinate system read as

(6.6)

6.7)

(6.8)

o® =EV.eW, 7 <x<zu
where the matrix E® corresponds to a monoclinic material
EVES ED 0 0 EY
(k) (k) (k) (k)
El% EZ% EZI3 0 0 Ezg
E(k) _ E{S) E( : E§3) (()k) ?k) E§6)
0 0 0 EyEyS O
(k) g (k)
P L
Eyg Ey Exy 0 0 Eg,
and the modules E l(jk) are expressed by E fjk) as follows [13]:
ER = Bt +2 (£ +2£§)) 2t + EX)st,
(k) (k) 4 (k) (k) (k) (k) 4 (k) k)2, Bk 2
Ejy =Epc k+(Ell +Ep 4E66> st Elst E\ = Epy i+ Ey'st
ER = (B - £ - 2Eé/g))c st + (2E(") + B — BY)) cus},
EY) = ERct +2 (£ + 2E(k)> 22+ EOsh B = ER2 4 EW2,
EW = (B _ g® +2E(k)) Bsi + (E(k) E® _ 2Eé’g)) st EX = BD,
Eélé) = E(k) Eg;)) CkSk» Eiﬁ) = 4(1]:1)01% + Eé’;)slf, Efé) = (Eg? — E(k)> Ck Sk,
EW = E®R 4 B0 ED - (Efli) +EW W _zgé/?)q% +ED 4 sh),

with ¢, = cos oy, s, = sin .

Therefore, we get a monoclinic material with piece-vice constant elastic modules

E;;.
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7 Harmonic Solution

The main difficulty in obtaining a closed-form solution of Eq.(5.7) for a finite plate
(for example, for a rectangular plate) consists in satisfying boundary conditions. The
same difficulty arises for the rectangular KL plate with clamped edges. However for
arectangular plate with two opposite simply supported edges (the Navier conditions)
the separation of variables (w(xy, x) = w(x]) sinax;) is possible and the problem
is reduced to the one-dimensional one. A peculiarity of a plate made of the material
with the general anisotropy (with 21 elastic modules) or of a monoclinic plate (with
13 elastic modules) is that there do not exist boundary conditions that admit the
separation of variables. Therefore, only approximate variation methods may be used.
A lot of boundary value problems for laminated plates are solved in book [13]. In [26]
vibrations of a multi-layered rectangular plate with free edges are investigated by the
variation method, and deflection is expanded into a product of Legendre polynomials.

Further, we consider an infinite plate and investigate the harmonic solutions admit-
ting closed-form solutions.

Firstly, we consider a static harmonic problem. Let the external forces be

f,(x1, %2, 2) = £, (2)'TNFTRD) | f1(xy x, 7) = fy(p)e! T NTRD) = /1 (7.1)

where g1, g, are the real-valued wave numbers. We seek the solution of three-
dimensional Egs. (2.12) in the same harmonic form

{(w,u, 07, 033} (x1, X2, 2) = {w, U, 0y, 033} (7)€’ “191T3242) (7.2)
and the solution of two-dimensional Egs. (5.7)
w(xy, xp) = We' 122 1 u(xy, xp) = Ue' 0020 U= (U, U)", (7.3)
where U, W are the unknown amplitudes of deflection.
Inserting Egs. (7.1) and (7.3) into Egs. (5.7) yields to the linear algebraic system

the for unknown variables U, W:

LA -U—-L@Lpx) W+ L{E) =0,

LGp  LYU-LGp L'p) W+ Lep -t + =0 9

Here the differential operators p and P in Egs.(7.4) and (5.8) are to be formally
replaced by

o o 0g\"
p=iq=i(q,q)", P=zQ=z(q71 qz). (7.5)

We consider a bending of a plate with constant elastic modules under action of a
periodic compression applied to a lower plane:
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£, =0, f3(x1,%,2) = F38(z + 1/2)e/ N9t (7.6)
At these assumptions Egs. (7.4) read as:

@Y + 1) + 20+ A + uiy) + w2 +i usg Fs =0,

(7.7)
A + p ) + U + (1) + p by + p2IEYW + Fy =0
with the coefficients that are calculated by using Eqgs. (5.3), (5.4), and (5.8):
LY =-1 1) =@/2)8e11,
17 = —(1/20)1-G-1— (1/24)1-q-sg + (1/6) s, -q" -1+
T.QT
o 1/29180:S0 = (1/12)8018¢ +(1/6)8;-S5 1
Ly =0, Ly =(1/12)1S¢-a— (1/2)Sg 14,
1) = —(/24) 57 1-q + (i/48) So-1-Sg — (i/24) S-S} 1., 78

1 =0, 1V =—1/12)q" 1-Sy — (1/12) " Sy -1,

Y = —i/24)q" 1-G1 + (i/24) q" s}, -q7 1+ (i/24) q" -SL-ST -1,

1) =-1/12)q" 1.q, 1) =0,

15 = (1/120)q" 1-G1-q + (1/480) q” 1-q-sg-q — (1/120) q" -s},-q” 1-q-+
(1/480)q" 1-Sg-So-q + (1/480) " -So-1-Sg-q — (1/120) q”-S},-S7 1.q,

where1 = QT-A*.Q, Sp =S-Q, sp=s-Q.
We present the solutions Eqgs. (7.7) as expansions in power series in [(:

W =Wy+puW, +u*W,, U=Uy+uU + u*U,. (7.9)
In the zero approximation independently of the kind of elastic modules we obtain

F 12F

Wo= -2 2By 2o, (7.10)
9”0

22

where Q is given in Egs. (4.9). In the first approximation
—1
Wi=0. U=-(1f) 1} w. (7.11)

The second approximation is bulky:

15Uy + 155 Wo _ -1
Wy=—2l 2 0 © 22 U=-a) 1<<(l§({)) AV U 18 Wo +iso F3> . (712
22

If we want to find only a normal deflection W with the SOA then instead of
Egs. (7.7) we may use the more simple system
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IVU+10W =0,  uIU+ @Y + plHW + F; =0 (7.13)

and some coefficients (7.8) are not included in Egs. (7.12) and (7.13).The value W,
includes three effects of the second order:

(i) the effect of a transversal shear that is described by a summand with G in lg),

(ii) the effect of an inclined anisotropy that disappear for a monoclinic material

with S = 0, and
(iii) the effect of normal fibers extension that is described by a summands with s¢p
inl$).

The effect of normal fibers extension is always small compared with the zero
L . (2 .
approximation Wy, and two corresponding summands in /,;” may be omitted.
For a monoclinic material S = 0 the effect of transversal shear may be essential
for a plate with a small transversal shear stiffness. Really, Egs. (3.8) and (3.9) yield
g, = G-o, where

Al A Eaa Egs
G=G", G_(E45E55> (7.14)

is the inverse matrix of a transversal shear stiffness, and elements of G are large.
For a transversely isotropic material the generalized TR model taking into account
a transversal shear is built [16].

Calculations show that for a plate made of a material with the inclined anisotropy
(S # 0) the small transversal compliance G does not lead to a growth of deflections.

8 Harmonic Vibrations

We consider free vibrations of an infinite anisotropic plate and seek solutions of the
3D and of the 2D equations in the same forms (7.2) and (7.3), respectively, after
changing the factor ¢/ 191+%:42) by i (191+x24240) \where o is the natural frequency.
According to Egs.(2.4) and (4.1) the external (inertia) forces in the dimensionless
form read as:

. A .
f,(x1, X2, 2) = A p(D)u(z) ez(x1l11+xzqz)’ f3(x1,x2,2) = 72;5(2)11)(1) L (X1q1+x292) (81)
o
with

Po?
Lo

where A is the unknown frequency parameter, and p (z) is the density, pg is the average
density. The sign” again is omitted.

For ahomogeneous in the thickness direction plate the elastic modules are constant
and p = 1, and the dynamic equations instead of Egs. (7.7) are as follows:
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0 1 2 1 2
A + p1f) + 2IDU + 1) + p2AIW + 4 (U + pay W) =0,

s (8.3)
IS + 25U + (15 + p2IEHW + 4 (WZU + (F +1 q) W) =0,

12

where the coefficients li(j-‘)
summands are hold.

The determinant of Eqs. (8.3) give an equation:

are given in Eqs. (7.8). In Egs. (8.3) only the main inertia

A, g1, 92, 1) = 0. (8.4)

This equation is cubic in A with complex coefficients. It is easy to prove that the roots
of Eq. (8.4) are the real positive numbers, A; > 0. For this aim we write Egs. (4.2) in
the differential form:

— = Hy = —p’sp-u+ g o + ey o,

P H, =pw — uSp-u+ u’G-o, + p’goss,

< (8.5)
do T 2.T

=H;—Xpu, H3=—-L-u—uS,-0, — usp, 033

A T

—— =Hys— —pw, Hy=-p -0
w

From the two last Egs. (8.5) it follows:
_T 2 _T dos — dos3
Alg(pu u+pu Cpww) =1, (u - Hg—d— +w(Hy— —=|))=r. (8.6)
z
After integrating by part and using two first Egs. (8.5) we get

r=1,4 (ﬁT-QT-A*-Q-u + uz FST-G-US + +2,u3 Re(o33 gT-Es) + ,u463|a33\2) >0. (8.7)

Therefore, inequality A; > 0 is proved.

The small root of Eq.(8.4), A; = u>Q/12 + O (u*), corresponds to the bending
vibrations, and two rest roots, A, 3 = O(1), correspond to the tangential vibrations.

Equation (8.4) is a dispersion equation because it describes a harmonic wave
propagation according to the factor ¢! 191+*242%) If we take g7 + g3 = 1 then the
velocity of wave is v = —w and the direction of wave propagation is described by
the vector q.

To obtain a stationary bending vibration mode w(xy, x2, r) = W sin g x| sin gxx;
sin wt we ought to consider a sum We!(@1%1=%%2) sin @t — We! @1¥1+42%2) gin ot
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9 Conclusions

The 2D linear model (7.5) of the SOA describing deformations of a heterogeneous
plate in the case of the general anisotropy (with 21 elastic modules) is constructed.
It is necessary to continue investigations of the studied problem. It is desirable to
investigate the peculiarities that appears in the case of plates with inclined anisotropy.
It is interesting to estimate errors for test examples of the 2D models compared with
the exact solutions of 3D equations of the theory of elasticity. The obtained model
is bulky, and it is desirable to propose in the partial cases of plates parameters the
more simple but the exact enough models.

The next step is to solve some static, vibration, and buckling problems for partial
kinds of anisotropy and heterogeneity.

The used algorithm is based on the Cartesian co-ordinate system. It is interesting to
apply the obtained results for heterogeneous anisotropic shells, in partial, for shallow
shells for that the metric is close to the Cartesian metric.
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An Alternative Approach to the Buckling )
Resistance Assessment of Steel, e
Pressurised Spherical Shells

Pawel Blazejewski and Jakub Marcinowski

Abstract Provisions leading to the assessment of the buckling resistance of pres-
surised spherical shells are available since 2008 when they were published first time as
the European Design Recommendations (EDR) (cf. Rotter and Schmidt in Buckling
of Steel Shells: European Design Recommendations. ECCS, 2008 [13], Rotter and
Schmidt in Buckling of Steel Shells: European Design Recommendations. ECCS,
2013 [14]). This collection of recommendations comprises rules which refer to the
buckling resistance of steel shells of different shapes. In the first step of the general
procedure, the calculation of two reference quantities: the elastic critical buckling
reference prer and the plastic reference resistance prp is required. These quantities
should be determined in the linear buckling analysis (LBA) and in the materially
nonlinear analysis (MNA) respectively. Only in the case of spherical shells the exist-
ing procedure has exceptional character. It is based on the geometrically nonlinear
analysis (GNA) and on the geometrically and materially nonlinear analysis (GMNA),
respectively. From this reason, in this particular case there was a need to change the
existing provisions. The first version of a new procedure was presented in the work
of Btazejewski and Marcinowski (Buckling capacity curves for pressurized spher-
ical shells. Taylor & Francis Group, London, pp. 401-406, 2016 [4]). All steps of
the procedure leading to the assessment of buckling resistance of pressurized steel,
spherical shells were presented in that work. The elaborated procedure is consistent
with provisions of Eurocode EN1993-1-6 (cf. Blazejewski and Marcinowski in The
worst geometrical imperfections of steel spherical shells, pp. 219-226, 2014 [3]) and
with general recommendations inserted in Europeans Design Recommendations. In
the present work the proposed capacity curves were compared with the existing
provisions of ECCS for three different fabrication quality classes predicted. Com-
parisons of the author’s proposal with some experimental results obtained by other
authors are presented as well. They have confirmed that the proposed procedure is
less conservative than the existing one but it is still safe.
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Keywords Steel spherical shell + Buckling resistance + Buckling curve - External
pressure - Clamped edge - Numerical simulations - Design recommendations

1 Introduction

Steel, spherical shells subjected to the action of external pressure p are usually very
slender and internal forces which are generated within their domain are compres-
sive. For this reason they are exposed to local or global buckling, probably the most
important reasons for failures of such shells. An accurate assessment of the buckling
resistance, as the maximum pressure p which can be safely sustained, is very impor-
tant from the engineering point of view. The buckling limit state (LS3 according to
EN 1993-1-6) is usually the decisive criterion among all design criteria.

Existing designing provisions define precisely procedures leading to the buckling
resistance assessment of steel shells (cf. EN 1993-1-6). The approach based on the
MNA analysis and LBA analysis is acommonly accepted approach as far as the plastic
reference resistance prp and elastic critical buckling reference pre, are concerned.
These are two reference quantities on the basis of which buckling capacity curves
for particular cases of shells are created. EDR 5th includes provisions which refer
to several cases of shells exposed to buckling. In the existing chapter dedicated
to spherical shells the different approach was adopted. Reference quantities of the
whole procedure pgc, and pgp are determined on the basis of the GNA (geometrically
nonlinear analysis) and the GMNA (geometrically and materially nonlinear analysis)
respectively and it is a single exception in these recommendations.

In this paper an alternative approach was presented, the approach consistent with
the general approach recommended in EN 1993-1-6 (cf. [9]) and in EDR 5th. All steps
of the proposed approach were presented by Btazejewski and Marcinowski [2, 4].
All parameters defining capacity curves were obtained as a result of many numerical
analyses carried out for spherical shells of different geometry and different material
parameters. Spherical caps of semi-angles ¢ = 10°, 20°, 30°, 45°, 60°, 90° and of
following R/t ratios: R/t = 300, 400, 500, 600, 750, 1000 were considered. Seven
different imperfection modes were taken into account and three fabrication quality
classes were considered. Only one case of boundary condition was taken into account:
the fully clamped basic circle of considered caps (see Fig. 1). All calculations were
performed by means of COSMOS/M system (cf. [6]) based on FEM.

In this work also comparison of the proposed approach with experimental results
of other authors was presented and this comparison is a valuable verification test for
buckling capacity curves elaborated by authors.
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Fig. 1 Pressurised, spherical shell

2 Elastic Critical Buckling Resistance and Plastic
Reference Resistance

The elastic critical buckling resistance pger and the plastic reference resistance pgpl
are principal quantities required in the buckling resistance assessment procedure.
An attempt of derivation of the simple formulae on pg.; and prp Was undertaken by
Authors earlier (cf. [3]).

To find this formulae many numerical analyses (LBA—the linear buckling analy-
sis in reference to prer and MNA—the materially nonlinear analysis in a case of pgp1)
were carried out for a huge range of R/¢ ratios and for a great diversity of semiangles
¢ defining the rise of spherical shells. Details of this stage of the research were pre-
sented in [3]. After some supplementary numerical simulations carried out on very
dense mesh the following formulae defining two reference quantities were obtained:

2
t
PRer(LBA) = 1'21E(E> (1)

t
PrpiMNA) = 2.0 fykE )

in which E—Young’s modulus, fy—characteristic value of the yield stress, both
expressed in [MPa].

The formula (1) is identical as critical buckling pressure for the pressurised, full
sphere and is called Zoelly-Leibenson formula (cf. [11, 18]). The formula (2) is the
same as the membrane pressure causing plastification of the whole section of the
pressurised, full sphere.
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The determination of the critical pressure pgrer and the plastic reference pressure
Prp1 according to EDR 5th (cf. [13, 14]) are done in a very similar way. These
quantities are determined from the following formulae:

2
t
DRer(GNA) = 0-97E<E> 3)

t
PrpiGMNA) = 1.80 f g “4)

Coefficients used in these formulae are different than their counterparts in formu-
lae (1) and (2) and it follows from different approaches used in both cases.

The summary of curves presenting the critical pressure due to formulae (1) and
(3) and (2) and (4) respectively are shown in Figs. 2 and 3 as a function of R/t ratio.
Differences between both proposals are easily visible.

Having both reference quantities defined above, and namely pre; and pgrpi, one
can calculate the dimensionless relative slenderness defined in the standard way

A =/ Prol(MNA) / PRer(LBA) (5)

and respectively:

A =/ PRol(GMNA)/ PRer(GNA) (6)

The calculation of relative slenderness is a very easy task due to the fact that all
quantities appearing under the square root symbols are described by formulae.
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Fig. 2 Critical pressure prer according to the proposed procedure and due to EDR 5th provisions
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Fig. 3 Plastic resistance prp) according to the proposed procedure and due to EDR 5th provisions

3 Modified Capacity Curves—Buckling Parameters

To assess the buckling resistance of a pressurised spherical shell one should know
all the buckling parameters Ao, o,  and n describing the standard capacity curve
(cf. EDR 5th and EN 1993-1-6). The dimensionless relative slenderness A is defined
according to Eq. (5) and the buckling strength reduction factor x is equal to the
Pri/Prpl Tatio, where pgy is the characteristic value of the buckling resistance.

Values of buckling parameters can be effectively determined by means of the
approach proposed by Doerich and Rotter [7]. According to this approach a modified
capacity curve should be calculated. This curve is determined for an assumed mode
of imperfection and for the adopted amplitude of this imperfection mode. Particular
points on this curve are obtained for different values of relative slenderness. This
can be achieved by means of artificially changed yield stress and this approach was
adopted in this work.

Seven different modes of imperfections were considered. Detailed considerations
relating to the selection and generation of these imperfection modes were presented
by Btazejewski and Marcinowski [3].

Similarly as in EDR 5th the amplitudes of imperfections were defined as follows

Aw = ém )

where O—is the fabrication quality parameter corresponding to the specified fab-
rication tolerance quality. For three different fabrication quality classes A, B and C
(excellent, high and normal) the quality parameter Q adopts values 40, 25 and 16
respectively.
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Figure 4 presents the example of modified capacity curve obtained as a results
of many numerical analyses carried out for a particular geometry (cf. [3]), for a
specific imperfection mode and adopted quality class. On the abscissa of this plot the
ratio prgmnIa)/PrerLBA) are depicted while the ordinates of this plot present the ratio
DPR(GMNIA)Y/ PRpi(MNA)- The squash limit relative slenderness is defined by the last point
on the horizontal segment of the plot. At this point prgmnIa) 1S €qual to prpivNA)
(the ordinate equal to 1.0) and at the same time the ratio prpivNa)/PRerBA)/iS €qual
to )\(2).

Precise determination of the elastic imperfection reduction factor « is very easy
if the modified capacity curve is plotted. For very slender shells prgmnia) can be
identified as a product of « and pg.,. This means that the value of « is determined
by the final vertical segment of the plot (see Fig. 4).

Transition from the elastic-plastic range into purely elastic range is accomplished
at the point at which the vertical segment starts. At this point A =A,and x =1 — 8.

Analysing all obtained results and comparing them with existing proposal for
cylindrical, and spherical shells (comp. [13]) it was assumed that the Ay value is con-
stant and equal 0.2. Parameters « and 8 were determined from all modified capacity
curves quite accurately due to the fact that they can be detected very distinctly.
Figure 5 presents the “cloud” of calculated alfas for different values of the Awy/t
ratio. Calculation points depicted in Fig. 5 were obtained from modified capacity
curves determined for spherical shells of different R/t ratios, different semi-angles
¢ and for different imperfection modes (seven imperfection modes were consid-
ered). Amplitudes of imperfections were dependent on Q parameter according to
relationship (7).

1,00
=g Capacity curve
1-B=
0,80 |
Parameters:
g 0,60 imperf. 2,
Q. amp.=1,71t
g
I
= 040
=
S
Y
0,20 -
0,1984
0,2952
0,00 "

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35
Premnia) /pRcr[LBAJ

Fig. 4 The modified capacity curve



An Alternative Approach to the Buckling Resistance Assessment ... 115

1,0
0,9 -
05
0,7 -

0,6 - *

0}5 I 4 L
0,4 818
0,3 - ,~

Parameter o.

0,2 — —
0,1+

0,0 - | I I I I I I I 1 !
00 02 04 06 08 10 12 14 16 18 20 22

AW, /[t

Fig. 5 Calculations points defining « as a function of the Awy/f ratio

To guarantee the safety in all possible circumstances o was approximated as a
lower bound of all points depicted in Fig. 5. As a result the following function was
obtained:

0.65
1+ 1.8(Awg /)08

a(Awy/t) = ()

The other parameter describing the final shape of the capacity curve, the § parame-
ter, was determined on the basis of all registered results as a weighted curve approx-
imating points shown in Fig. 6. Also in this case particular points were obtained
for spherical shells of different R/t ratios, different semi-angles ¢ and for different
imperfection modes (seven imperfection modes were considered). Amplitudes of
imperfections were dependent on Q parameter according to relationship (7).

The proposed formula expressing the dependence of the S parameter as a function
of the Awy/t ratio has the following form:

Awk

0.026
B(Awg/t) = 0.87<T> )

Itis worth noting that both determined parameters depend not only on geometrical
characteristics R, ¢, and ¢ but also on fabrication quality class due to the fact that the
Awy/t ratio is expressed by Q. Figures 7 and 8 show plots of o and 8 parameters
as functions of R/t ratios for different values of the Q parameter. In the same figure
proposals of EDR 5th were presented as well.
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Fig. 8 Function B(R/t) for different values of the Q parameter

The comparison of presented proposals with those proposed in EDR 5th shows
that elastic buckling reduction factor « is smaller than its counterpart from EDR
Sth. It means that the buckling strength reduction factor x will be smaller within
the elastic interval. On the other hand the greater values of the plastic range factor
B mean that the elastic-plastic range will be enlarged in comparison to the previous
proposal of EDR 5th in which 8 does not depend on R/? ratio.

The knowledge of @ and 8 parameters allows to determine the plastic limit relative
slenderness A, from the formula

(10)

4 Buckling Capacity Curves

The standard form of the buckling capacity curve consistent with proposals of
Schmidt [15, 16] and Rotter [12] was presented in Fig. 9a.

Due to some significant difficulties arising in the reference to the exact evaluation
of the interaction exponent 7 defining the capacity curve within the elastic-plastic
range, Authors have proposed a modification of this standard capacity curve within
this range. In place of the function shown in Fig. 9a the polynomial of the second
order was proposed, and namely
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Fig. 9 a The standard buckling capacity curve. b The modified buckling capacity curve

xX(A) =ar* +br+c, forig <A <h,

an

This function was shown in Fig. 9b and its coefficients were determined from
continuity conditions at Ao and A, points. They adopt the following form:

(0.4 = 3%,) + 4

a= , (12a)
33(0.04 — 0.4, +22)
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4 2
_ s+ (422 —0.08)
23(0.04 —0.43, +22)
_ «(0.12 - 0.84,) + 1}
22(0.04 —0.4%, +22)

(12b)

(12¢)

It is worth mentioning that in the existing EDR5th provisions the n parameter
defining x (1) in elastic-plastic range (comp. Fig. 8) is constant and equals 1. It means
that within elastic-plastic range x (A) characteristics is linear and do not fulfils smooth
continuity conditions at point of transition to the elastic range. Author’s proposal is
free from this drawback.

Using the approach presented above the capacity curves can be generated for
the spherical shell of specific geometrical and material characteristics and for three
fabrication quality classes. The example of such capacity curves were presented in
Fig. 10. In this figure the transition from the purely elastic range to the elastic-plastic
range was clearly marked.

In the proposed procedure the buckling parameter § is variable and defined by
the Formula (9). In the existing provisions of EDR5th the buckling parameter g is
constant and equals 0.7 (comp. [13]). It means that at the point A = A the buckling
resistance parameter x is equal 0.3 for all three fabrication quality parameters Q
(comp. Fig. 11).

Figure 12 shows the comparison of the present proposal with existing provisions of
EDR 5th. In this case capacity curves are plotted as the function of the characteristic
value of the buckling resistance pgri(R/?). It is visible that existing provisions provide
slightly lower assessment of the buckling resistance, it means that they are more
conservative.
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Fig. 10 Buckling capacity curves for different values of the Q parameter
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Analysing results presented in Fig. 12 one can distinguish two intervals. Within
the first interval defined by R/t for <80-+-420>, differences are smaller than 19%, 35%
and 43% for Q parameters 16, 25 and 40 respectively. These differences decrease for
smaller R/t ratios and it is due to the fact that in both approaches all capacity curves
tend to the same point x = 1.0 and A = Ao = 0.2. This fact is well visible in Fig. 12.

Within the other interval defined by R/t for <420--560>, differences between both
approaches are greater and oscillates between 35% - 44%. Discrepancies decrease
for higher R/t ratios and for R/t = 2400 reach the values 20+-28% for different values
of Q parameter, 16, 25 and 40 respectively.

The complete flow chart of the buckling resistance assessment of pressurised
spherical shells is presented below. This flow chart can be helpful for designers of
tanks, silos and pressure vessel in which spherical shells loaded by external pressure
occur.

5 Determination of the Buckling Resistance—The Flow
Chart

Step 1. Adoption of principal design data: E, f i, R, ¢
Step 2. Calculation of reference quantities and determination of the dimensionless,
relative slenderness A

PRer(LBA) = 1-21E(%)2

= A =/ PRpI(MNA)/ PRer(LBA)
PRpl(MNA) = 2.0 fyk% } \/ ’ )

Step 3. Specification of the fabrication quality class and calculation of the character-
istic value of imperfection amplitude.

ClassA — Q =40 |
ClassB — Q =25 = Awy = E\/Rt
ClassC — Q =16

Step 4. Determination of buckling parameters o and §. Calculation of the plastic
limit relative slenderness A,

_ 0.65
a(AWk/t) = T 18(Aw /0% N _ o
p 1— ﬂ

B(Aw/t) = 0.87(%)0'026 o

Step 5. The buckling strength reduction factor x for different intervals of A (cf.
Fig. 7).



122 P. Btazejewski and J. Marcinowski

x(A) =1, for A < Xg
x(A) = aAZ4+bh+c, for A <A< Ap, where Ag =0.2
X)) = /A%, for A > A,

Step 6. Determination of the polynomial coefficients in the case of elastic-plastic
range.

o a(04-3%,) +4;
23(0.04 — 0.4, +22)
= o eary
3(0. Ahp + 22
. «(0.12 - 0.84,) + 1}
22(0.04 —0.43, +12)

Step 7. Characteristic value of the buckling resistance of the considered spherical
shell

PRk = X * PRpl

6 Illustrative Examples

To show differences between both considered approaches two calculation examples
were presented in which buckling resistances for particular spherical shells were
determined. It is worth noting that presented provisions refer to spherical caps of
semiangles ¢ in the range 10-90 degrees.

6.1 Calculation Example No. 1

Determine the buckling resistance of pressurised spherical shell of given geometrical
parameters and material properties:

— Radius: R = 8000 mm

— Shell thickness: t = 16 mm

— Ratio R/t = 500

— Steel grade S235-fy; = 235 MPa, E = 205 GPa,v =0.3

— Fabrication quality class: C (normal), hence Q = 16

— Shell clamped along its supporting edge, case BC2, hence C. = 0.8, C;; = 0.9
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6.1.1 Buckling Resistance Assessment Procedure According to EDR5th

1. FElastic, critical buckling pressure

2 2
t 2 .01
> = — - 0.8-205000 - <M> = 0.794 MPa
3( 8.0

2
cr = 76‘(‘ W
PR V3(1 —v?) E(R 1 —0.32)
2. Plastic reference resistance
2.t 2-0.016
PRpl = fy,k . Cpl . T =235.0.9- 8—0 = 0.846 MPa

3. Dimensionless relative slenderness

A = /Prot/ Prer = +/0.846/0.794 = 1.032

4. Characteristic imperfection amplitude and elastic imperfection factor o

1 1
Awy = E\/ Rt = 1—6v8.0 -0.016 = 0.022m

0.7 0.7

_ — = 0205
T IX19 A/ 1+ 1.9-(0.022/0.016)07

5. Buckling parameters and the plastic limit relative slenderness A,

B =0.70; 1 = 1.0; b = 0.20

« 0.205
= [ = = 0827
-8 V1-07

6. Determination of the interval on the buckling curve

A=A, h=1.032> i, =0827
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Because it is the case of purely elastic buckling the buckling reduction factor x

should be determined from the formula:

o 0.205

32 Loz~ 0192

X =
7. The characteristic value of the buckling resistance

PRk = X - prp1 = 0.192 - 0.846 = 0.162 MPa
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8. The design value of the buckling resistance
Prd = pri/yw = 0.162/1.1 = 0.147 MPa

where the safety factor y,y; is taken from EN 1993-1-1 and is equal 1.1 (cf. [8]).

6.1.2 The Proposed Procedure Based on Assumptions of EN 1993-1-6
1. FElastic, critical buckling pressure

t\2 0.016\2
Prermp) = 121E( ) =1.21-205000 - ( === ) =0.992MPa

2. Plastic reference resistance

t 0.016
PRpI(MNA) = 2.0 fykE =2.0-235. W = 0.940 MPa

3. Dimensionless relative slenderness

A= \/pRpl(MNA)/pRcr(LBA) = \/0.940/0.992 =0.973

4. Characteristic imperfection amplitude and elastic imperfection factor « and the
plastic range factor g

1 1
Awy = a\/ Rt = Ex/&O -0.016 = 0.022m

0.65 0.65
Ao /1) — _ =0.196
YD = T R Am /00— T4 18(0.022/0.016)08

Aw, | “0%6 0.022.\ 0-026
B(Awy/t) = 0.87(7) = 0.87<'—> =0.877

0.016

5. The plastic limit relative slenderness A,

o 0.196
1-8 1-0.877

6. Determination of the interval on the buckling curve

AM=02<i=0940 < 1, =1.262
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Because it is the case of elastic-plastic buckling the buckling reduction factor x
should be determined from the formula:

x(A) =ar® +br +c,

where:

(0.4 —3%,) + 23 0.196(0.4 — 3 - 1.262) + 1.2623

= =0.594
)»; (0.04 — 0.4, + )%) 1.2623 (0.04 —04-1.262 + 1.2622)

a =

—24 4 a(4x’;‘, - 0.08) —2.1.262% + 0.196(4 12622 — 0.08)
b= = — —1.694
2 3 _ . 2
3 (0.04 04+ A,,) 1.2623(0.04 — 0.4 - 1.262 + 1.2622)

@(0.12 - 0.8%p) + 25 0.196(0.12 — 0.8 - 1.262) + 1.262* 1315
c= = =1

T2 2}~ 1.2622(0.04 — 0.4 - 1.262 + 1.2622
12 (0.04 - 042, +32) ( +1.262%)

x(A) =0.594-0.934> — 1.694 - 0.934 + 1.315 = 0.251
7. The characteristic value of the buckling resistance
PRk = X - Prpl = 0.251-0.940 = 0.236 MPa
8. The design value of the buckling resistance
Pra = Pre/ 1 = 0.236/1.1 = 0.214 MPa

Itis the value higher by 45% than their counterparts obtained according to EDR5th
provisions.

6.2 Calculation Example No. 2

Determine the buckling resistance of pressurised spherical shell of given geometrical
parameters and material properties:

— Radius: R = 8000 mm

— Shell thickness: t = 4 mm

— Ratio R/t = 2000

— Steel grade S235—f i = 235 MPa, E = 205 GPa,v=0.3

— Fabrication quality class: A (excellent), hence Q = 40

— Shell clamped along its supporting edge, case BC2, hence C. = 0.8, C;; = 0.9
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6.2.1 Buckling Resistance Assessment Procedure According to EDR5th

1. FElastic, critical buckling pressure

2 CE(t>2 2 0.8 - 205000 <0'004)2 0.049 MP;
PRor = ———— —) = ———— .08 J==) =o. a
A0 —) O \R V31 —0.32) 8.0
2. Plastic reference resistance

2-t 2-0.004

PRt = frk - Cpt - o = 23509 === = 0.211 MPa

3. Dimensionless relative slenderness

A = /Prpt/ Prer = 4/0.211/0.049 = 2.075

4. Characteristic imperfection amplitude and elastic imperfection factor «

1 1
Awg = E\/ Rt = EVS.O -0.004 = 0.0045 m

0.7 0.7
= =0.2276

CTTHL9 (Aw/00T 1+ 1.9-(0.0045/0.004)075

5. Buckling parameters and the plastic limit relative slenderness A,

B =0.70; 1 = 1.0; A = 0.20

N /0.2276_0871
P=yNV1-8"V1-07

6. Determination of the interval on the buckling curve

A2, —> A=2075> 1, =087l

Because it is the case of purely elastic buckling the buckling reduction factor x
should be determined from the formula:

7. The characteristic value of the buckling resistance

PRk = X - Prpt = 0.053 - 0.211 = 0.0112 MPa
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8. The design value of the buckling resistance
Prd = Pri/xm1 = 0.0112/1.1 = 0.0102 MPa

where the safety factor vy, is taken from EN 1993-1-1 and is equal 1.1.

6.2.2 The Proposed Procedure Based on Assumptions of EN 1993-1-6
1. FElastic, critical buckling pressure

t\?2 0.004\2
Prermpy = 121E( ) =1.21-205000- ( == ) =0.062MPa

2. Plastic reference resistance

t 0.004
PRpI(MNA) = 2.0 fykE =2.0-235. W = 0.235MPa

3. Dimensionless relative slenderness

A =/ Pro1vNA)/ PRerLBA) = +/0.235/0.062 = 1.947

4. Characteristic imperfection amplitude and elastic imperfection factor « and the
plastic range factor g

1 1
Awy = 5«/ Rt = E\/ 8.0-0.004 = 0.0045 m

0.65 0.65
A /1) — _ =0.2183
AW = T R (Aw /008 — T+ 1.8(0.0045/0.004)08

AWk 0.026 0.0045 0.026
ﬂ(Awk/t)=0.87<T> =0.87( i ) —0.8727

0.004

5. The plastic limit relative slenderness A,

W e _ [ 0218 e
P=N1-8 V1-08727

6. Determination of the interval on the buckling curve

A=), = A=1947 > A, = 1.3095
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Because it is the case of purely elastic buckling the buckling reduction factor x
should be determined from the formula:

o  0.2183

2~ Toaz 0057

X =
7. The characteristic value of the buckling resistance

PRk = X - Prpl = 0.057 - 0.235 = 0.0134 MPa
8. The design value of the buckling resistance

Prd = pri/ym1 = 0.0134/1.1 = 0.0122 MPa

Itis the value higher by 31% than their counterparts obtained according to EDR5th
provisions.

Results obtained in presented above computational examples make it possible to
draw the following conclusions. In both approaches the course of procedures is com-
paratively easy and very similar. The similarities between both proposals are only
apparent. The main difference refers to the kind of analyses used to determine two
reference quantities and namely pg., and pg,,;. In existing provisions they were deter-
mined as results of GNA and GMNA analyses respectively. In presented alternative
approach these quantities were determined as results of LBA and MNA analyses
respectively and such approach is consistent with general recommendations of EN
1993-1-6.

The remaining steps of both approaches are analogous. Knowing both reference
quantities pg., and pg, then the dimensionless slenderness A is determined. After
that the amplitude of geometric imperfections is established and required buckling
parameters are determined from appropriate formulae, different for both approaches.
Parameters Ao and Lp define three parts of the buckling curve. Knowing the part
in which the calculated slenderness A occurs, the buckling reduction factor x is
determined from the appropriate formula. The characteristic value of the buckling
resistance is calculated from the formula

PRk = X * PRrpl (13)

and finally, the design value of the buckling resistance is obtained from the formula

PRd = PRk/YMI (14)

where the partial safety factor y,y; is taken from EN 1993-1-1 and is equal 1.1.

Despite apparently large similarity between both proposals final differences in
results are significant. Two examples presented above show that in some cases buck-
ling resistances determined according to the new proposal is nearly 50% higher than
their counterparts calculated according to the existing procedure.
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7 Comparison with Experimental Results

The procedure inserted in EDR5th and the procedure proposed by authors were
compared with three series of experimental results. As a source of comparative anal-
ysis were chosen experiments which had comprised comparatively large number of
examined specimens. The other criterion of the selection was the R/t ratio of the
examined shells. Experiments in which examined caps had R/t ratio correspond-
ing to R/t ratio of domes encountered in engineering practice were selected to the
comparative procedure.

7.1 Experimental Research by Kaplan and Fung [10]

Results of the first comparative series were presented in the paper entitled: “A non-
linear theory of bending and buckling of thin elastic shallow spherical shells” by
Abner Kaplan and Yuan-Cheng Fung in August 1954 as the Technical Note 3212 of
NACA (comp. [10]). In this work not only theoretical considerations but also results
of experimental results were presented.

An experimental program was carried out on a series of shallow spherical caps
having a base diameter of 8 inches, nominal radii of curvature of 20 and 30 inches, and
nominal thicknesses varying from 0.032 to 0.102 inch. The edges of the specimens
were held between two rings which were bolted to a circular plate thus providing a
clamped edge support.

The specimens were made by spinning from flat sheet. The magnesium alloy QQ-
M-44 was selected because of its favorable ratio of yield stress to Young’s modulus us
compared with other non-heat treated metals. Material parameters were as follows:
Young’s modulus: E = 6.5 10° psi = 44815.92 MPa, the yield stress: fy = 29900
psi = 206.15 MPa; Poisson’s ratio v = 0.32.

Pressure measurements were made using a Bourdon tube for pressure over 20
psi and a mercury manometer for pressures under 20 psi. More details referring to
experimental procedures can be found in [10].

Capacity curves generated for geometrical and material parameters the same as
those from experiments were presented in Fig. 13. Three different fabrication quality
classes defined by parameters Q (comp. EN 1993-1-6, [13, 15]) were taken into
account. Markers in a form of circles shown in Fig. 13 refers to results obtained by
Kaplan and Fung and presented in [10]. Characteristic values of the critical pressure
Prk Were expressed in MPa.

Looking at Fig. 13 one can observe that critical pressures obtained in experiments
of Kaplan and Fung are always above all three capacity curves proposed in EN 1993-
1-6 and [13]. It means that limits defined by capacity curves obtained by means of
the new procedure are generally conservative as it should be. Only in two cases
experimental results are little bit lower than the capacity curve for the O = 40
corresponding to the best fabrication quality class. This comparison indicates that
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Fig. 13 The test results of Kaplan and Fung compared with new predictions

the new proposals are conservative relative to these tests. No information is available
on the actual imperfections in these tests, so no judgement can be made concerning
the appropriate fabrication quality class. Probably in these two cases geometrical
imperfections were higher than those predicted for the best admissible class defined
by O = 40.

7.2 Experimental Research by Seaman [17]

The second series of experimental results which was the basis of comparative analysis
was published in the paper entitled: “The nature of buckling in thin spherical shells”
(cf. [17]). This work was the part of PhD thesis of Lynn Seaman. The paper included
not only theoretical considerations related to buckling resistance of spherical shells
but also the wide part in which results of experimental investigations were presented.
Experiments were conducted on a big series of specimens counting 40 pieces.

A plastic was chosen as the shell material rather than aluminum or other light
metals which have usually been used by other authors in experimental investiga-
tions. The particular plastic chosen was a polyvinyl chloride which was available in
thicknesses from 0.010 to 0.080 inch.

The shell segments were formed from polyvinyl chloride (P.V.C.) sheets by a
process known as vacuum drawing. In this method a single mold, the female, was
required. The plastic sheet was heated, drawn into the mold, and allowed to cool in
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the new shape. Since the shells were to have five different radii—135, 25, 35, 45 and
80 inches, five molds were manufactured from aluminium.

After forming the shells it was necessary to find the thickness and radius to which
the shell actually conformed. Thicknesses were read to the nearest ten thousandth of
an inch with an dial gage at five positions in the shell—one at the apex of the shell,
and the other four at points halfway between the apex and the edge. An average of
the five readings was taken as the shell thickness. The thickness variation was about
1% except for the very thin shells where variations were 10-12%.

The radius of the spherical shell can be found if the rise in the center is known.
The rise was measured to the nearest thousandth of an inch. The radius was then
computed from the easy derived formula

_ H? 4+ r?
T 2H

R (15)

where H is the rise in the center, r is the radius of the supported circular edge used
in this measurement and » = 5.25 inch.

All other details of the adopted measurement procedures used in conducted exper-
iments were described in [17].

There were two basically different types of tests used. The constant volume test
was the most important and it was of the controlled displacement type. A certain
strain or displacement was applied to the shell and the pressure which was required
to make the shell stay in that position was read. The other type, the constant pressure
test, was carried out by increasing the load until buckling occurred and hence the
control was on the load, not on the displacement.

Capacity curves generated for geometrical and material parameters the same as
those from experiments were presented in Fig. 14. The following material parameters
specified in [17] were used: E = 498-10% psi = 3433.6 MPa; Sfyk = 4500 psi =
33.0 MPa; v = 0.41. Three different fabrication quality classes defined by parameters
QO (comp. EN 1993-1-6, [4, 13]) were taken into account. Markers in a form of
circles shown in Fig. 14 refer to results obtained by Seaman and presented in [17].
Characteristic values of the critical pressure pgrx were expressed in MPa.

Looking at Fig. 14 one can observe that critical pressures obtained in experiments
of Seaman are generally above all three capacity curves proposed in [3, 4]. It means
that limits defined by proposed capacity curves are generally conservative as it should
be. Only in two cases experimental results are little bit lower than the capacity curve
for the O = 16 corresponding to the worst fabrication quality class. It can be assumed
that in these two cases geometrical imperfections were higher than those predicted
for the worst admissible class defined by Q = 16.
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Fig. 14 The test results of Seaman compared with new predictions

7.3 Experimental Research by Btachut [1]

The third series of experimental results was a series of six metal dome tests which was
reported by Btachut [1]. These domes were CNC-machined from 245 mm diameter
mild steel billet. The shells had a heavy edge ring, integral with the wall, used
to model a fully clamped boundary condition. The shallowness parameter, A, was
chosen to be between 3.5 and 5.5. After final machining, these domes were stress-
relieved in a vacuum furnace, followed by shape and wall thickness measurements
using an (XYZ) coordinate measuring table (cf. [1]). Measurements were made along
14 equally spaced meridians and at 10 mm arc-length intervals. The height-to-wall
thickness ratio varied approximately from 2.5 to 4.0 and the radius-to-thickness ratio
from 300 to 1800. Examining the scatter of wall thickness, and radial deviations from
perfect geometry it was concluded that they all were, geometrically, nearly-perfect.
The average mechanical properties of the mild steel were measured as: Young’s
modulus E = 207.0 GPa, yield stress fyx = 303.5 MPa and Poisson’s ratio v = 0.28.
Other details of this experimental work can be found in [1].

The test results of Btachut [1] are compared with the new proposals in Fig. 15. All
have buckling resistances far above the predictions of Btazejewski and Marcinowski
[3, 4], which is not surprising because they were very precisely manufactured.
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Fig. 15 The test results of Btachut compared with new predictions

8 Conclusions

The buckling resistance of steel, spherical, pressurised shells can be assessed accord-
ing to the existing since 2008 EDR5th provisions (cf. [13, 14]). Authors of the present
paper have elaborated the alternative approach (cf. [3, 4]) which is consistent with
general provisions of EN1993-1-6. These two approaches were compared in this
work. They are relatively simple, clear and does not require an engineer to have spe-
cial skills. Presented calculation examples have shown details of both procedures.
They revealed the general tendency: EDRS5th provisions give too conservative assess-
ments of buckling resistances. In some domains of R/ ratio differences in buckling
resistances have exceeded value of 40%.

The comparison of the new procedure with chosen experimental results published
by other authors was presented in this work as well. Buckling resistance predictions
are generally lower than their counterparts obtained experimentally. In single cases
one or two test results fell into the lower fabrication quality classes but none lay below
the lowest class prediction. These comparative analyses and those presented in [5] do
confirm that the current new proposal is well supported by experiments conducted in
the past. Hence it follows that the proposed procedure deserves a recommendation.
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Asymptotically-Accurate Nonlinear )
Hyperelastic Shell Constitutive Model L
Using Variational Asymptotic Method

Ramesh Gupta Burela and Dineshkumar Harursampath

Abstract The focus of this work is on the development of asymptotically-accurate
nonlinear hyperelastic constitutive model for thin shell structures using Variational
Asymptotic Method (VAM). In this work, these structures are analyzed for both geo-
metric and material nonlinearities. The geometric nonlinearity is handled by allowing
finite deformations and generalized warping functions through Green strain, while
the material nonlinearity is incorporated through strain energy density function of
hyperelastic material model. Using the inherent small parameters (moderate strains,
very small thickness-to-wavelength ratio and very small thickness-to-initial radius
of curvature) for the application of VAM, the process begins with three-dimensional
nonlinear hyperelasticity and it weakly decouples the analysis into a one-dimensional
through-the-thickness nonlinear analysis and a two-dimensional nonlinear shell anal-
ysis. Through-the-thickness analysis is analytical work, providing 3-D warping func-
tions and two-dimensional nonlinear constitutive relation for Nonlinear Finite Ele-
ment Analysis of shells. Current theory and code are demonstrated through standard
test cases and validated with literature.

1 Introduction

Current work focuses on development of asymptotically-accurate nonlinear hyper-
elastic constitutive model for thin shell structures using Variational Asymptotic
Method (VAM). In general shell structures are three-dimensional (3-D) in nature.
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Their relative geometric dimensions between thickness () to planner dimensions
and/or initial radius of curvature enable them to be reduced to two-dimensional (2-
D) smooth reference surfaces. Analysis of 2-D structures is computationally efficient
as compared to 3-D finite element analysis especially in case of combined nonlinear
analysis. In the current work, systematic dimensional reduction is carried out using
Variational Asymptotic Method (VAM) [1] with moderate strains, very small thick-
ness to shortest wavelength of the deformation along the shell reference surface, and
thickness to initial radius of curvatures as small parameters without making use of any
ad hoc kinematic assumptions. The development starts with 3-D nonlinear shell prob-
lem and mathematically splits the analysis into a nonlinear one-dimensional (1-D)
through-the-thickness analysis, and a nonlinear (2-D) shell analysis. Through-the-
thickness analysis provides a 2-D nonlinear constitutive law for the shell analysis.
These structures are analyzed for both geometric and material nonlinearities. The
geometric nonlinearity is handled by allowing finite deformations and generalized
warping functions [2, 3] through the Green strain while the material nonlinearity
is incorporated through hyperelastic material model [4]. Analytical development of
shell modeling (consist of 2-D nonlinear constitutive law and warping functions) is
an extension of plate model [5]. Current work is the first to provide analysis of shell
reference surface with asymptotically-accurate shell nonlinear constitutive law using
VAM. Integration of nonlinear FEA and asymptotically accurate nonlinear constitu-
tive model has led to reliable analysis of shell structures and finds its application in
the design and manufacturing of shell surfaces of aircrafts, cars, ships, deployable
structures, etc. Validation of present theory is carried out with two standard test cases.
Current analysis results match well with the literature.

2 Analysis

3-D combined nonlinear hyperelastic problem can be weakly decoupled into one-
dimensional (1-D) through-the-thickness (along the normal of shell) nonlinear anal-
ysis, and a 2-D nonlinear analysis of reference surface of shell. This dimensional
reduction process is carried out using the mathematical methodology, VAM. The
starting point of the application of the VAM is 3-D potential energy function. In the
current work compressible neo-Hookean model [4] is chosen (because of its appli-
cability of material model for moderate strains) with the following expression for
the 3-D strain energy density, ¥:

e Compressible neo-Hookean model (NH model)

v = % (InJ)? + % (trC — 3) — yu InJ (1)
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Q(xl’ x2, x3)

_ B2
el
=
deformed
' reference
undeformed surface
reference
surface

Fig.1 Shell deformation

where A and p are isotropic hyperelastic material parameters (Lamé constants),
are related to Young’s modulus and Poisson’s ratio, A = Ev £ )), J

=20 M = 300
=det(F) and C = F' F.

2.1 Kinematics

Figure | represents schematic representation of shell deformation. Shell reference
surface usually chosen to be the mid-surface, in its undeformed state, is mathemat-
ically represented by a set of arbitrary but independent curvilinear coordinates, x,
while x3 is the shell normal coordinate (Here and throughout the formulation, Greek
indices assume values 1 and 2 while Latin indices assume 1, 2, and 3. Dummy indices
are summed over their range except where explicitly indicated.) In order to simplify
the formulation, lines of curvatures are assumed to be the curvilinear coordinate
curves. Unit vectors along x; in the undeformed and deformed configurations are
denoted by b; and B;, respectively. Any material point Q(x;, x,, x3) in the unde-
formed and deformed configurations are described by the position vectors,  and R,
respectively, from any point O, which is fixed in a reference frame whose motion
itself is inertial and/or known, such that
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F(xp, X2, X3) = r(xy, X2) + x3b3(x1, X2) 2
R(x1. %2, x3) = R(x1, x2) + x3B3(x1, %) +w; (x1, %2, x3)Bi (x1, x12). (3)

where r and R are position vectors of any material point on the reference surface
of undeformed and deformed configurations respectively and w; (x1, x;, x3) are 3-
D warping field components. Here, w; and w, are in-plane warpings (due to local
rotations of line elements normal to the reference surface) and wj is out-of-plane
warping (stretching or contraction of the normal line elements). Thus the formulation
accounts for the contraction or extension of the normal through-the-thickness. The
covariant and contravariant base vectors in the undeformed state are, g; = ar - and
g = 3 [ 5=€ijk8; X 8k,respectively, where g = det (g, g j) is determinant of the metrlc
tensor for the undeformed configuration and €, are measure numbers of permutation
tensor. In the same way, the covariant base vectors for the deformed configuration
are given by G; = 3R . The relation between the two set of unit vectors, b; and B;
can be prescribed by an arbitrarily large rotation specified in terms of the matrix
of direction cosines ® (x1, x») so that B; = ®;;b; and ®;; = B;.b;. In the present
scheme, all possible deformations (large displacements and rotatlons) are allowed and
the corresponding 3-D strains are Green strain (I”) whose Lagrangian components
are

1
I = E(FikTij —Iij) “)

where F;; are mixed bases components of the deformation gradient tensor, given by
Fij = B;.Gy gk.b ; and I;; are elements of the 3 x 3 identity matrix.

2.2 Potential Due to Load

Specific work done by the loads acting on the top and bottom surfaces of the shell
and by the body force distribution on the normal are

Pr=t"wt+p"w + (¢"w) )

where, through-out the text, ( ) symbolizes definite integral (of the enclosures within
the angular brackets) through-the-thickness of the shell. T and 8 are 3 x 1 column
matrices representing the traction forces acting on the top and bottom surfaces respec-
tively of the shell; wt and w™ are 3 x 1 column matrices containing the warping
functions corresponding to top and bottom surfaces of the shell; and ¢ is a 3 x 1
column matrix of body forces.
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2.3 Total Potential Energy

The total potential energy per unit mid-surface area of the shell is given by IT =
() — Pr. The stationary point of the functional, I7, with respect to the 3-D warping
components, w;, subjected to constraints ({(w; (x1, X2, x3)) =0 and (x3wy (x1, X2, X3))
=0 because, Eq. (3) is 6 times redundant and thus requires 6 equations; 5 constraints
with respect to warping functions and another one to specify the deformed surface
as provided by [3]) is obtained by setting the first variation equal to zero.

2.4 Zeroth-Order Approximation

Application of usual calculus of variation in order to find unknown 3-D warping func-
tions is not feasible because of the resulting set of differential equations and associated
boundary conditions. VAM can be applied as an alternative to find unknown func-
tions in an asymptotic form. Application of VAM requires inherent small parameters;
these identifiable small parameters are of two kinds. The first are geometric small
parameters, where thickness is much smaller than planner dimensions or radius of
curvatures. Thus, we can represent the geometric small parametersas /! < 1 and/or
h/r < 1[6], where h, [, r are the thickness, characteristic length and characteristic
radius of curvatures. Second, we can identify the strains ¢ < 1 as moderately small
parameters. By taking advantage of these small parameters, 3-D potential energy
can be classified into different orders of energies such that major contribution of
energy is referred as the zeroth order energy and subsequent energy contributions
are termed as the first order and higher order energies. Solution of zeroth order energy
results in unknown warping functions that are substituted back into the strain energy
expression followed by integration along the shell normal (through the thickness)
to result in 2-D energy (zeroth order energy), followed by first and higher order
energy contributions. Thus, 3-D energy is represented as a series of 2-D energies.
Hence, dimensional reduction leads to a computational efficiency that is achieved as
a byproduct while targeting asymptotic accuracy.

In order to proceed with dimensional reduction process of shells, one has to assess
and keep track of the orders [5, 7] of all the quantities affecting the formulation. ¢ is the
order of the maximum strain (moderate) anywhere and at any time in the shell and  is
the order of the 3-D material stiffness (all of which are assumed to be of the same order
i.e., isotropic). Orders of magnitude of the 2-D generalized strain components can be
estimated based on their contribution to the moderate 3-D strains. Thus .4 ~ O(¢),
X3kap ~ O(€) and x3kep ~ O(€) where g;; and &y are the 2-D in-plane strains
along x; and x, respectively, y); is the in-plane shear strain, «;; and k;; are the
deformed reference surface bending curvatures about coordinate curves x; and x;
respectively, w is the deformed reference surface twisting curvature, w = % and
y13 and y»3 are the transverse shear strains, k1, and k», are the undeformed reference
surface curvatures about coordinate curves x; and x, respectively, and kj» and ky;
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are the undeformed reference surface twisting curvatures. And, the relative order of
magnitude of the small parameters are taken as g3 ~ O(€), h/l and h/r ~ 0(€?),
VAM requires one to find the leading terms of the functional to be minimized based on
the estimated orders. For the first approximation, these leading terms are denoted by
ITy which corresponds to energy of order ue?. The leading asymptotically accurate
solutions, for the unknown 3-D warping functions are found by minimizing the
functional subject to constraints: (w;(x;, X2, x3)) = 0 and x3w, (x1, X2, x3)) = 0.

e Warping Functions: Zeroth-Order Approximation

X3 5x%3
a — Ya T A1 6
Wa =¥, 3(4 3h2> (6)
* hz( + ) (enn + ) x32( + ) @)
w3 N+ 2u | 24 K11 22 X3 (€11 22 B K11 T K22

Zeroth-order warping functions doesn’t have any contribution from initial curvatures
of shell which are same as plate [5]. These warping functions are substituted back
into the zeroth-order energy expression Iy, and integrated over the thickness to get
the 2-D energy. The first approximation to the energy functional coincides with that
of classical plate theory. However, we do not use ad hoc kinematic assumptions
such as the Kirchhoff assumption to obtain this result. Zeroth-order 2-D stiffness
matrix is derived as double derivative of 2-D energy with respect to strain vector,
e=1{e11 €2 Y12 K11 kKn © Vi3 y23}T, and is given below (non-zero stiffness ele-
ments).

~ 4hp (. + p B30+ I Shp
G =G =~ o Cas = Gy = ) e = T = Gy =
11 22 )L+2IJ/ 33 M, 644 55 3()\.+2ﬂ) 66 12 77 88 6
2hAp WBap
G2 = , Cas = ®)

A42u 6(A +21)

The elements of zeroth-order stiffness matrix % are a constant part of first-order
stiffness matrix to be introduced later in this section.

2.5 First-Order Approximation

Perturbed warping functions can be found by minimizing the energy IT; of order e %
with perturbed warping functions, such that v; (xq, x2, x3,1) < w; (x1, X2, X3, 1)
where I is subjected to corresponding constraints

(vi(x1, X2, x3)) = 0 and (x3v (x1, X2, x3)) =0 )
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e Warping Functions: First-Order Perturbation
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2(}~+2/J-) 50 oo, V13611 400+ 20) Y13€22 8723712:|
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12(A+2 ) 20 +2p) " 2475 127 g7 2471
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NER (ﬁ 220 — 2202 — 1643 (3x3 8320 — 3242 — 24u3) ,
+x3 | —= + K11k22 + K11 + K
D) 300+ 2u)3 122 60k +20)3 ( 1 22)
3+2u r oA+ p®)
3
k k _— k k _— k k
+x3 [( 11611 +k22k22) 60210 + (k11x22 + koK) 60+ 20 + (k12 + k21) 60+ 20)
3 S+ 2 2
S AL + 12
X3 320+ 210) (V13 V23) (12)

Thus, perturbed warping functions are derived in terms of 2-D generalized strains and
initial/undeformed curvatures. These are substituted back into the original energy
density function and integrated through the thickness to derive the 2-D nonlinear
constitutive law, which is input to the 2-D nonlinear shell analysis. Present theory is
implemented using a symbolic manipulator, Mathematica.®

2.6 Shell Stiffness Matrix

Dimensionally reduced form of shell stiffness matrix is derived from the double
derivative of v, (2-D strain energy) with respect to a 2-D generalized strain vector,
e. This constitutive law will be given as an input to the 2-D nonlinear finite element
analysis of the shell’s reference surface. Derived constitutive law is represented as a
summation of constant, linear and quadratic parts of generalized strain vector.

Fij = G+ Lhe + Lierer (i, jk1=1,2,...8) (13)

wheree = 8 X 1 column matrix of 2-D strains; %’ is the 8 x 8 constant part of stiffness
matrix due to initial curvature (excluding the constant part corresponding to zeroth
order energy); .Z represents the linear part and is a 8 x8x8 3-D matrix; and 2
represents the quadratic part and is a 8 x8x8x8 4-D matrix symmetric about its
superscripted 3rd and 4th indices. Note that ., ¢, .Z and 2 are all symmetric about
their subscripted 1st and 2nd indices. Initial curvature contribution is appended to
plate stiffness elements [5] accordingly. For completeness all the nonzero stiffness
coefficients of matrices ¥, .Z and 2 are presented in Appendix.

3 Nonlinear Shell Theory

Consistent with 2-D nonlinear constitutive law, a set of equations (compatibility
equations, kinematics and equilibrium equations) are developed (similar to those in
[5, 8] such that they form the governing equations for 2-D nonlinear shell theory.
Compact form of 2-D strain-displacement relations provided by [8] are

Su + Vo = OF g + Uy +ko(r +u) (14)
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T T
where y1 = [e11, €12, 2713] » v2 = [€21, €22, 2723, & =[1,0,0]" and &, = [0,

1,0]” and @ is the matrix of direction cosines. Expressions for components of the
total curvature in the deformed configuration can be found in terms of the direction

cosine matrix ® [9] as
- 0,07 -
Ky =— Tt Ok,OT (15)

o

where K, = [—kg2 ko1 ka3]T + [—Kao ka1 Ko3]” with the first term on the right hand
side being initial curvature of the shell reference surface and the second term being
load-induced additional elastic curvature.

3.1 Nonlinear Finite Element Analysis

Finite Element Analysis (FEA) is a versatile numerical technique that can be used for
reference surface (2-D) analysis. Thus, 2-D nonlinear FEA is more reliable analysis
for complex geometric, boundary and loading conditions with the combination of
asymptotically accurate nonlinear constitutive law (derived in the previous section)
for the combined nonlinear analysis of shell structures. This is the first attempt to
integrate NFEA and asymptotically accurate nonlinear shell constitutive law using
VAM.

4 Numerical Results

An in-house unified module has been developed in Mathematica for the analysis of
thin hyperelastic shells, which is to be part of VAMNLM (Variational Asymptotic
Method for Non-Linear Material models) software utilizing the nonlinear constitu-
tive law developed in Sect.2.6, and nonlinear shell theory described in the Sect. 3.
This program incorporates the Newton-Raphson iteration procedure [10] to solve all
nonlinear equations. Loads are applied gradually in an incremental form. For each
load step, iterations are carried out to obtain a converged equilibrium position of the
shell reference surface in the form of 2-D displacements. Overall procedure of the
combined geometrically and materially nonlinear analysis of shells is given in Fig. 2.
Validation of current development and code is demonstrated through two standard
test cases that are available in literature [11, 12]. Both these test cases are modeled
using dimensionally reduced form of neo-Hookean hyperelastic constitutive law.
First test case is thin cylinder having open ends on both sides as shown in Fig. 3,
is subjected to uniform line load, 34 (total line load) and rests on a rigid line support.
Because of the symmetry of load and structure only one quarter of the model is
analyzed and modeled by a uniform 8 x4 mesh. Geometric and material properties
used are: Length, [ = 30, arc radius, r = 9, thickness, 7 = 0.2, Lamé constants,
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Thickness, Lamé
constants
1D Nonlinear analysis
(Through-the-thickness
analysis)

2D Nonlinear FEA
(2D shell analysis)

Initial curvatures

Update
constitutive
la

Update

load step
No
3D Recovery analysis |< Yes
Fig. 2 Overview of non-linear hyperelastic shell analysis
Table 1 Thin cylinder subjected to line load
Details Literature [12] Current
Deflection at A 15.5 15.6

A = 24000 and p = 6000. Four-noded isoparametric elements, with reduced Gauss
quadrature (1 x 1), are used for the analysis. Comparison of displacement at point
A is carried out with literature [12] as observed in Table 1, results matches well.

Pinched hemispherical shell subjected to two alternating radial point loads is used
as a second test case. Geometric and material properties are: Radius, r = 10, thick-
ness, i = 0.04, Lamé constants, A = 3.9375 x 107 and p = 2.625 x 107. Here
also due to symmetry of the load and structures only one-eight of the model is ana-
lyzed and modeled by 6 x 8 mesh as shown in Fig.4. Four-noded isoparametric
elements, with reduced Gauss quadrature (1 x 1), are used for the analysis. Deflec-
tion due to load of 100 (consistent units) from the current analysis and code matches
well with literature [11] and shown in Table 2.
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18

A \

30

Fig. 3 Thin cylinder subjected to lined load and support

Fig. 4 A quarter of pinched — 18
hemispherical shell mesh ¢ TN A
with alternative radial loads Frée
O ¥
g 3
£ e
§ %
S %
P/2
X
Free Y
P/2

Table 2 Pinched hemispherical shell with a 18° hole subjected to radially alternating point forces

Details Literature [11] Current
Displacement, Ux 32 3.21
Displacement, Uy 5.8 5.78
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5 Conclusions

An asymptotically-accurate 2-D nonlinear hyperelastic constitutive model and 3-D
warping functions for shell structures using Variational Asymptotic Method (VAM)
based on moderate strains, very small thickness-to-wavelength ratio and thickness-
to-radius of curvatures as small parameters were derived. An intrinsic formulation
of 2-D nonlinear shell theory consistent with the 2-D nonlinear constitutive law was
developed and corresponding numerical tool nonlinear finite element analysis was
developed. Current development is demonstrated with standard test cases made of
hyperelastic material model and present results show good agreement with litera-
ture. Derivation of recovery relations (by product of 1-D analysis) to represent 3-D
displacements, strains and stresses along the shell normal are at the final stage for
near future publication.

Acknowledgements The authors are grateful to Jagath Kamineni for his support to simulate the
test cases.
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