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Abstract Recently, TiO2–Montmorillonite-based composites have attracted a great 
deal of attention as efficient photocatalysts for the degradation/reduction of organic 
contaminants and heavy metals in waters and wastewaters. It can be claimed that the 
most popular benefits of using TiO2–Montmorillonite photocatalysts are an enhance-
ment in the photocatalytic removal of contaminants due to their high adsorption 
capacity, high photocatalytic activity of nanoscaled TiO2 deposited on 
Montmorillonite surface and low costs. Otherwise, the use of naked nanoscaled 
TiO2 is not recommended because of its low adsorption ability, fast agglomeration 
in water and due to the issue of recovery of such small particles from water. 
Differently from naked TiO2, the photocatalytic removal of contaminants by TiO2–
Montmorillonite is enhanced through the mechanism so-called Adsorb & Shuttle 
(A&S) which is based on the use of highly adsorbing domains to increase the quan-
tity of contaminants near TiO2 photocatalytic sites. Adsorb & Shuttle process can be 
affected by TiO2–Montmorillonite characteristics (i.e. TiO2 loading, surface area, 
pore size and degree of TiO2 crystallinity) as well as the type of contaminant. In this 
chapter, the following points will be highlighted: (i) mechanisms of TiO2 photoca-
talysis for the removal of organic contaminants and heavy metals, (ii) recent prog-
ress on synthesis of TiO2–Montmorillonite photocatalysts via different methods and 
(iii) recent discussions regarding the photocatalytic removal of contaminants by 
TiO2–Montmorillonite composites.

Keywords TiO2–Montmorillonite · Photocatalysis · Adsorb & Shuttle · Water 
remediation · Organic contaminants · Heavy metals

13.1  Introduction

Due to the dramatic increase in population growth and agricultural and industrial-
ization activities, water demand has increased up to ninefold in the twentieth cen-
tury (Shenvi et al. 2015). Many countries are expected to face water crisis in the next 
decades. Thereby, water purification and reuse have become one of the major global 
concerns in scientific community. Researchers are developing water purification 
technologies that might be environmentally friendly, economical, and efficient. 
Among these technologies, the photocatalysis has been considered as one of the 
most efficient and low-cost processes for water decontamination (Malato et  al. 
2009; Zheng et al. 2013; Shenvi et al. 2015; Zhang et al. 2018). Titanium dioxide 
has been extensively in environmental remediation due to its desirable photocata-
lytic activity, high photostability, non-toxicity, low cost and biocompatibility 
(Hashimoto et al. 2005; Nakata and Fujishima 2012; Fagan et al. 2016; Waqas et al. 
2017). The photocatalysis process is focused on the absorption of UV light by TiO2 
leading to photoexcite the electrons from the valence band to conduction band; 
therefore, electron/hole pair charges will be formed at the surface of TiO2. Organic 
pollutants can be directly degraded by positive holes at the valence band or by the 
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produced hydroxyl radicals via H2O/positive holes reaction, while the reduction of 
heavy metals to lower/higher metallic states occurs at the conduction band of TiO2 
by the photogenerated electrons in the presence of hole scavenger molecules (Lee 
and Park 2013, Lu 2013, Djellabi et al. 2014, Djellabi and Ghorab 2015a, b, Litter 
2015, Djellabi et al. 2016a, b, c, Djellabi et al. 2017, Litter 2017, Marinho et al. 
2018).

One of the major obstacles facing the implementation of photocatalysis stems 
from the fact that the photocatalytic removal of pollutants from water depends on 
adsorption rate of pollutants on the photocatalyst surface. Therefore, it is difficult to 
photodecompose many hazardous pollutants that hardly adsorb on TiO2 surface, due 
to poor affinity of TiO2 for hydrophobic organic substances. Additionally, industrial 
wastewaters usually contain several organic and inorganic pollutants which com-
pete for the adsorption sites of the TiO2 surface, thus inhibiting the efficiency of the 
process. On the other hand, the photo-oxidation of single organic pollutant can pro-
duce many harmful by-products/intermediates that could not be adsorbed on TiO2 
surface for further degradation. It is worth noting that, in practice, the use of 
nanoscale TiO2 particles is not recommended due to the issue of recovery of such 
fine particles from water, and also these nanoscale particles are prone to agglomer-
ate in water limiting the photoactivity. In order to overcome drawbacks of commer-
cial TiO2, many offers have been made to design new composite photocatalysts via 
several strategies including metal/non-metal doping, sensitization and coupling of 
semiconductors. In particular, the combination of TiO2 nanoparticles with porous 
adsorbent materials has been proved to be a successful strategy for enhancing the 
photocatalytic efficiency as reported by several authors (Bhattacharyya et al. 2004; 
Romero et al. 2006; Zou et al. 2006; Yahiro et al. 2007; Mahalakshmi et al. 2009; 
Yang et al. 2009; Zhang et al. 2009; Manova et al. 2010; Yu et al. 2012; Vicente et al. 
2013; Djellabi et al. 2014; Du and Zheng 2014; Wang et al. 2014; Belver et al. 2015; 
Yang et al. 2015; Belver et al. 2016; López-Muñoz et al. 2016; Belver et al. 2017; 
Gebru and Das 2017; Petronella et al. 2017; Srikanth et al. 2017; MiarAlipour et al. 
2018). Among these minerals, Montmorillonite has been widely used. 
Montmorillonite contains layered structure and exhibits very high porosity and high 
external and internal surface area and large CE capacity which allow the adsorption 
of organic or metallic pollutants via electrostatic of ion exchange within its inter-
laminar spaces (Kameshima et al. 2009a; Chen et al. 2012). It is important to point 
out that the introduction of TiO2 nanoparticles into layered Montmorillonite 
enhances the photocatalytic activity due to synergistic effects resulting from the 
combination of adsorbent and TiO2. On the other hand, the Montmorillonite can 
stabilize TiO2 nanoparticles and increase the concentration of pollutants into the 
surface of the composite leading to facilitate their degradation/reduction by the pho-
toactive TiO2 particles. Certain aspects regarding the recent progress on synthesis 
and application of TiO2–Montmorillonite for water remediation will be highlighted 
in the chapter.
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13.2  Mechanism of TiO2 Photocatalysis for Water Treatment

The photonic and mechanistic pathways underlying the phenomenon of TiO2 pho-
tocatalysis for water/air remediation have been extensively investigated and reported 
(Herrmann 1999; Fujishima et al. 2000; Rauf and Ashraf 2009; Byrne et al. 2017). 
Photocatalysis is a green strategy that can be employed for environment remedia-
tion and energy production using semiconductor photocatalysts under light irradia-
tion. As above-mentioned, titanium dioxide semiconductor (TiO2) has been largely 
applied because of its special physical and photonic characteristics. When TiO2 sur-
face is irradiated by photon energy (h𝝊) of higher than or equal to TiO2 band gap 
energy, which is known to be 3.2 eV (anatase) or 3.0 eV (rutile), photo-induced 
electrons/positive holes changes will be formed at the surface of TiO2 via the excita-
tion of electrons from the valence band (VB) to conduction band (CB) in femtosec-
onds. Figure 13.1 illustrates the possible pathways for the production of electron/
hole pairs on TiO2 particle. For TiO2 case, usually, the photonic excitation requests 
a light wavelength < 400 nm. A positively charged empty valence band will be pro-
duced when the electron moves to the conduction band. Different redox reactions 
occur at the surface of photoexcited TiO2 which are responsible for the oxidation 
and reduction of pollutants and widely reported as follows:

 Photonic excitation of TiO TiO e h2 2: + → +− +hυ  (13.1)

Fig. 13.1 Mechanistic pathways occurring at the photoexcited semiconductor particle
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 Trapping of electrons e eCB TR: − −→  (13.2)

 Trapping of positive holes h hVB TR: + +→  (13.3)

 
Recombination of charges e h h e heatTR VB TR CB: − + + −+ ( )→ +

 (13.4)

 
Scavenging of electrons O e O

ads
: 2 2( ) + →− °−

 (13.5)

 Photoreduction of metallic cationsbye M e Mn
CB

n− + − −( )++ →: 1

 (13.6)

 Production of hydroxyl radicals OH h OH: − + °+ →  (13.7)

 Oxidation of organicsby OH R H OH R H O° ° °− + → +: 2  (13.8)

 
Oxidation of organicsby h RH h R Intermediate s Final + + +°+ → → ( ): / pproducts

 
(13.9)

 Protonation of superoxides O OH HOO: 2
°− ° °+ →  (13.10)

 Co scavenging of e HOO e HO− + →− ° − −: 2  (13.11)

 Production of H O HOO H H O2 2 2 2: − ++ →  (13.12)

eTR
−  and hTR

+ in (Eq. 13.4) show the trapping of electrons at the conduction and the 
holes at the valence band, respectively. It is important to note that the trapping of 
charges takes place at the surface of the semiconductor, while their recombination 
does not occur immediately after the photonic excitation (Fujishima et al. 2000). 
Without the presence of electron scavengers such as oxygen in the medium, the 
photogenerated electrons can easily recombine with the positive holes accompany-
ing with dissipation of heat energy. Therefore, in order to carry out the photocataly-
sis action, the presence of electrons acceptor is imperative to avoid the quick 
electron/hole recombination (enhanced separation of charges ensures an efficient 
photocatalytic reaction). As shown in Eq. 13.5, the presence of oxygen molecules 
inhibits the combination of electron/hole pair charges; therefore, the production of 
superoxides radical •O2

− takes place. Afterwards, •O2
− species can be further proton-

ated to produce the hydroperoxyl radical HOO• and then H2O2 as indicated in 
Eqs. 13.10, 13.11 and 13.12. It was reported that HOO• species may also play the 
role of electrons scavenging at the conduction band which enhances the separation 
charges. It was deduced that all photocatalytic pathways occur because of the 
 presence of both dissolved oxygen (DO) and water molecules to balance the redox 
reactions at the surface of the semiconductor. In the absence of water, the highly 
reactive hydroxyl radicals (•OH) can not be produced by the positive holes which 
limits the oxidation of organic pollutants. Some researchers have reported that the 
degradation of organics by photocatalytic action does not take place without H2O 
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molecules. However, Byrne and Eggins reported that some small organic molecules 
(e.g., oxalate and formic acid) can be oxidized by photocatalytic system without 
water (Byrne and Eggins 1998).

While hTR
+  has been extensively considered to be a powerful oxidant (+1.0 to 

+3.5 V against NHE) for the degradation of organic species directly without hydroxyl 
radicals formation step, this pathway is still quite inconclusive. However, eTR

–  is 
known to be a good reductant (+0.5 to −1.5 V against NHE), which depends on the 
kind of the semiconductor as well as the reaction condition. Because the photocata-
lytic oxidation and reduction pathways take place mainly at the surface of the pho-
toexcited semiconductor, the comprehension of the involved steps during the 
oxidation of organic pollutants is very important in the formulation of kinetic expres-
sion. Overall, the degradation of organics usually includes the formation by- products 
(intermediates) and further mineralized to CO2 and H2O as shown in (Eq. 13.13).

 
Organic contaminants Intermediate s CO H O minera

TiO

→ ( )→ + +
2

2 2

/hυ

ll salts
 

(13.13)

Therefore, photocatalysis reaction can be divided into five steps as reported by Fogler 
and Herrmann (Fogler 2006; Herrmann 1999), as schematically revealed in Fig. 13.2:

 1. Transfer of the pollutant species form the solution to the surface of the 
semiconductor.

 2. Pollutant species adsorption into the surface of the photoexcited 
semiconductor.

 3. The photocatalytic reaction takes place for the adsorbed phase at the surface of 
the photoexcited semiconductor (oxidation of organics and reduction of heavy 
metals).

 4. Desorption of the organics by-products or metallic/metal species from the sur-
face of the semiconductor.

 5. Mass transfer of the intermediate(s) from the interface domain to the bulk solu-
tion. However, by-products could also be adsorbed on the photocatalyst surface.

Beside the oxidation of organics by photocatalytic action, photocatalytic removal 
of metal ions from solution by different photocatalysts has attracted much attention 
recently. The reduction of several metallic cations was investigated and reported in 
the literature which includes Ag+, Au3+, Cd2+, Cr6+, Cu2+, Fe3+, Hg2+, Ni2+, Pb2+, Pt4+, 
Rh3+, Tl+, U6+, Zn2+ and As3+(Litter 1999; Kajitvichyanukul et al. 2002; Ruvarac- 
Bugarčić et al. 2005; Cristante et al. 2006; Kabra et al. 2008; Murruni et al. 2008; 
Williams et al. 2008; Litter 2009; López-Muñoz et al. 2009; Rodríguez et al. 2010; 
Lenzi et  al. 2011; Singh and Chaudhary 2013; Mahlamvana and Kriek 2014; 
Mohamed and Salam 2014; Mahlamvana and Kriek 2015; Anggraini et al. 2016; 
Saien et al. 2016; Guo et al. 2017; Lee et al. 2017; Fontana et al. 2018; Marinho et al. 
2018). It is important to note that the photocatalytic ability of a semiconductor such 
as TiO2 for the reduction of metal cation can be obtained usually from the correla-
tions of the metal cation redox potentials relative to the TiO2 conduction band edge, 
as shown in Fig. 13.3. Many researchers have reported that these potentials can be 
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Fig. 13.2 Steps in heterogeneous photocatalytic reaction. (a) Oxidation of organic pollutants, (b) 
reduction of metal cations

Fig. 13.3 Positions of CB 
and VB edges of TiO2 
relative to the standard 
potentials of several redox 
couples
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shifted by pH or by solution conditions such as the concentration of species and the 
presence of co-adsorbates. The deposition of produced metal species after the pho-
toreduction reaction on the photocatalyst surface can take place (Djellabi et  al. 
2016a, b, c). Moreover, in order to ensure an efficient reduction of metal cations, the 
addition of hole scavenger molecules (sacrificial electron donor) to the solution is 
very important. The oxidation of organic molecules on the photocatalyst surface 
allows the separation of electrons for metal cation reduction, as well as inhibits the 
reoxidation of metal cation. Furthermore, the choice of the hole scavenger molecule 
(usually a small organic molecule) is a key parameter, since the efficiency of metal 
cation reduction depends on the balancing oxidation reaction (Tan et  al. 2003; 
Djellabi and Ghorab 2015a, b; Djellabi et al. 2016a, b, c). In addition, several groups 
have reported that the coordinated ligands to a metal cation such as EDTA can play 
the role of hole scavenger for the photocatalytic reduction of metal cations.

The mechanisms of metal cations photoreduction by TiO2 can occur by direct or 
indirect reduction pathways (Fig.  13.4). The direct reduction takes place via the 
photogenerated electrons at the CB of the photocatalyst, in which, the conduction 
band edge of the photocatalyst must be more negative that the Mn+/M(n-1)+ redox 
potential. When the metal cation valance charges are higher than 1 (i.e. Cr(VI)), 
single-electron transfer versus multiple-electron transfer pathways are still not clear. 
Testa et al. (Testa et al. 2001; Testa et al. 2004) have reported that, via EPR analysis, 
the single-electron transfer can take place for the photoreduction of Cr(VI) by pho-
tocatalysis, in which the reduction of Cr(VI) to Cr(III) passes by the formation of 
metastable Cr(V). While most researchers envision the direct transfer from CB of 
TiO2 to metal cation, some groups (Marinho et al. 2017) have reported that indirect 
reduction of metal cation could also be possible. They suggested that species, such 

Fig. 13.4 Pathways of photocatalytic reduction and oxidation of metal ions on TiO2
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as CO2
•− (E0(CO2/ CO2

•−) ≈ − 2.0 V), produced through the oxidation of electron 
donor molecules (hole scavengers) can reduce some metal cations. It is claimed that 
the indirect electron transfer system occurs independently of the redox potential of 
the metal ions. Additionally, the oxidation of metal cations, which can reach a higher 
oxidation state such as As(III) to As(V), can also occurred by the photogenerated 
oxidizing species or directly by positive holes at the conduction band (Fig. 13.4).

13.3  TiO2–Montmorillonite-Based Composites

Aluminosilicate clay minerals have been widely used as adsorbents and to immobi-
lize TiO2 nanoparticles for water and wastewater purification. They are inexpensive, 
abundantly available and non-toxic and have good sorption properties and ion- 
exchange potential for pollutants (Özcan et al. 2005). They possess a wide pore size 
distribution, ranging from micro- (<20  Å) to mesopores (20–500  Å). The high 
porosity of these minerals is produced from fractures in the particle surfaces, stag-
gered layer edges, whereas spaces are generated by overlapping of stacked layers 
and interlayer areas (Rutherford et al. 1997). The incorporation of various species 
and nanoparticles into the interlayer space allows aluminosilicates to be utilized as 
new functional materials (Yariv 2002). The basic structure of aluminosilicate miner-
als consists of a tetrahedral sheet of polymerized silica and octahedral sheet of alu-
mina. The alumina octahedra can polymerize in two dimensions by sharing four O 
atoms, in which two oxygen atoms are left unshared, providing a 2- negative charge. 
This negative charge is counterbalanced by hydrated cations, e.g. Na+, Mg2+, Ca2+, 
etc., which are located in the interlamellar space. Such interlamellar cations are 
typically exchangeable, while the quantity of exchangeable cations shows the 
cation- exchange capacity (CEC) of the clay minerals. The Montmorillonites are 
aluminosilicate minerals which possess 2:1 layer phyllosilicates: two Si tetrahedral 
sheets are separated by one Al octahedral sheet (T-O-T) (Fig. 13.5). The isomorphic 
exchanges in the sheets, mostly in octahedral ones for Montmorillonite clays, create 
deficits of positive electric charges (Volzone et  al. 2002). A fundamental 

Fig. 13.5 Structure of Montmorillonite
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characteristic of Montmorillonite is to absorb water and expand. Therefore, the vol-
ume of Montmorillonite increases, and the swelling pressure occurs (Fig. 13.6). The 
swelling behaviour of Montmorillonite is produced due to two mechanisms defined 
as crystalline swelling and osmotic swelling. These mechanisms work differently 
depending on the degree of hydration and the nature of cation in the interlayers.

In recent years, aluminosilicates, especially Montmorillonite, have been widely 
used as supports of TiO2 for photocatalytic water treatment. Insertion of TiO2 into 
aluminosilicates not only enhances the elimination of organic/inorganic pollutants 
via simple adsorption due to their high adsorption capabilities but also enhances the 
overall photocatalytic efficiency by increasing the concentration of species to be oxi-
dized or reduced by active TiO2 sites. Furthermore, the introduction of TiO2  particles 
into the interlays of mineral clay leads to the formation of well-distributed TiO2 
nanoparticles with small size which increases the photocatalytic efficiency (Fig. 13.7). 
In addition, clay-based photocatalysts are easy to separate from the solution after the 
photocatalytic treatment. In general, an effective TiO2 support (i) must be chemically 

Fig. 13.6 Swelling of Montmorillonite

Fig. 13.7 Main advantages of TiO2–Montmorillonite-based composites compared to TiO2

R. Djellabi et al.



301

inert, (ii) can form bonds with titanium dioxide without diminishing its photoactiv-
ity, (iii) has a large surface area and (iv) must be easy to remove after treatment.

13.3.1  Synthesis Methods

For the synthesis of TiO2-clay/adsorbent-based photocatalysts, there are two ways 
(Fig. 13.8): (i) insertion/diffusion of TiO2 nanoparticles powder (commercial or pre- 
synthesized) into material interlayers by diffusion and (ii) in situ synthesis of TiO2 
deposited into either material interlayers or on the external surface. For the in situ 
synthesis, the most applied, there are many techniques such as sol-gel, impregna-
tion, chemical vapour deposition and hydrothermal. Various TiO2–Montmorillonite 
have been synthesized using different methods for the photocatalytic removal of 
organics and heavy metals, and a brief comparison is shown in Table 13.1.

13.3.1.1  Sol-gel Method

Sol-gel has been widely used to design of TiO2/porous support composites. In 
 general, it involves hydrolysis polymerization, followed by drying and thermal 
treatment steps. The pillaring ways for the synthesis of pillared TiO2/porous support 
are usually included in three steps: (i) Ti(VI)-containing compound is hydrolyzed 
to get Ti(OH)4 sol particles; (ii) intercalation of Ti(OH)4 sol particles into the 
Montmorillonite interlayers; and (iii) the mixture then is dried and calcined to trans-
form the metal polyoxocations into TiO2 pillars. However, most of Ti(OH)4 colloi-
dal could not introduce into the interlayer space of Montmorillonite and remained 
on the external surface, in which TiO2–Montmorillonite sandwiched structure can-
not be obtained. To solve this problem, many research groups have used organic 
surfactants in order to homogeneously intercalate TiO2 nanoparticles within the 
interlayer space of Montmorillonite (Fig. 13.9). These surfactants usually facilitate 

Fig. 13.8 Commonly used techniques for the synthesis of TiO2–Montmorillonite composites
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Table 13.1 TiO2–Montmorillonite-based composites for the photocatalytic water remediation

Photocatalyst Synthesis method Light Pollutant References

TiO2–M Hydrothermal method 
with pH switching

UV Methyl orange Huo et al. (2018)

TiO2–M Solid diffusion UV Methylene blue Liang et al. (2017)
TiO2–M Sol-gel UV 1,4-Dioxane Kameshima et al. 

(2009a)
TiO2–M Sol-gel UV As(V), As(III) Li et al. (2012)
TiO2–M Sol-gel UV Hg(II) Dou et al. (2011a, b)
TiO2–M Sol-gel UV Methylene blue Chen et al. (2012)
TiO2–M Sol-gel using 

conventional heating 
and microwave heating

UV Solophenyl red 3BL Damardji et al. 
(2009a, b)

TiO2–M Sol-gel UV Di-n-butyl phthalate Ooka et al. (2003)
Diethyl phthalate
Dimethyl phthalate
Bisphenol-A

M1–TiO2–M 
(M1: Ag, au, 
Pd)

Sol-gel UV, Vis Chlorobenzene 
benzaldehyde

Mishra et al. (2018)

TiO2–M Sol-gel UV Congo red Dvininov et al. 
(2009)

TiO2–M Sol-gel UV Methylene blue Chen et al. (2014)
TiO2–M Electrophoretic 

deposition
UV Methylene blue Rastgar et al. (2013)

TiO2–M Intra-gallery templating UV Methylene blue Yang et al. (2013)
TiO2–M Sol-gel UV Dimethachlor Belessi et al. (2007)
TiO2–M Hydrothermal UV Methyl orange 

rhodamine B
Butman et al. (2018)

TiO2–M Impregnation UV Methylene blue 
remazol black

Sahel et al. (2014)
Ag–TiO2–M
TiO2–M Impregnation UV Chlorobenzene 

methylene blue
Mishra et al. (2017a, 
b)

TiO2–M Impregnation UV Methylene blue Miao et al. (2006)
TiO2–M Solvothermal UV Methylene blue Liu et al. (2009)
TiO2–M Hydrothermal method/

solid diffusion
UV Methyl orange Yuan et al. (2011)

TiO2–M Hydrothermal method/
solid diffusion

UV 2,4-Dichlorophenol Zhang et al. (2015)

TiO2–M Sol-gel UV 2,4-Dichlorophenol Manova et al. (2010)
TiO2–M Sol-gel UV Methylene blue, E. coli Fatimah (2012)
TiO2–M Hydrothermal method UV Pharmaceuticals Hassani et al. 

(2017a, b)

(continued)
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the access of Ti(OH)4 into the interlayer space of Montmorillonite. Therefore, this 
method not only improves the dispersion of TiO2 onto Montmorillonite surface but 
also leads to improvement the pore size and the surface area by increase of basal 
space of the Montmorillonite.

Table 13.1 (continued)

Photocatalyst Synthesis method Light Pollutant References

TiO2–M Impregnation UV 
Solar

Crystal violet, 
rhodamine B, congo 
red, methylene blue 
methyl orange, Cr(VI)

Djellabi et al. 
(2014), Djellabi 
et al. (2016a), 
Djellabi et al. 
(2016b, c)

TiO2–M Impregnation UV Methylene blue Rossetto et al. 
(2010)

TiO2–M Wet grinding in an 
agate mill

UV-Vis Phenol Ménesi et al. (2008)

TiO2–M Hydrothermal UV Trichloroethylene Ooka et al. (1999)
Ag–TiO2–M Thermal decomposition 

method
UV S. aureus, E. coli Krishnan and 

Mahalingam (2017)
Ag–TiO2–M Microwave heating/

impregnation
UV, Vis Chlorobenzene Mishra et al. (2017a, 

b)
TiO2–Fe–M Impregnation UV Toluene Liang et al. (2016)
TiO2–
Fe3O4–M

Sol-gel/coprecipitation 
under N2

UV Methylene blue Chen et al. (2015)

CdS–M Hydrothermal method UV-Vis Methylene blue 
rhodamine 6G

Boukhatem et al. 
(2013)

Fe(III)/
TiO2–M

TiO2 pillarization 
followed by Fe(III) ion 
exchange

UV Methylene blue Fatimah et al. (2015)

N–TiO2–M N-doped TiO2 
impregnation with 
Montmorillonite

Visible Bisphenol-A Hsing et al. (2018)

g-C3N4/
TiO2–M

Hydrolysis, 
dehydroxylation and 
crystallization

Visible Organics CN105107542A

V–TiO2–M Sol-gel UV-Vis Sulforhodamine B Chen et al. (2010), 
Chen et al. (2011)C–TiO2–M

CdS/TiO2–M Hydrothermal synthesis Visible Methylene blue Wang et al. (2015)
MgO–TiO2–
Al2O3/M

Inflating, intercalation 
and reassembling 
method

/ / Dou et al. (2011a, b)

TiO2–
CeO2–M

Water-based method Solar Parathion methyl Henych et al. (2017)

SiO2–
TiO2–M

Hydrothermal method/
solid diffusion

/ / Kameshima et al. 
(2009b)

TiO2–M/
PTP–SDS

In situ chemical 
oxidative 
polymerization

UV Rhodamine 6G Khalfaoui- Boutoumi 
et al. (2013)
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Sun et al. (2015) have used cetyltrimethylammonium (CTA+) surfactant to syn-
thesis TiO2–Montmorillonite by sol-gel method. They found that the basal space was 
enlarged from 15.54 Å for the original Ca-Montmorillonite sample to 38.71 Å for 
CTA+-Montmorillonite. Tahir et al. (Tahir and Amin 2013) have synthesized TiO2–
Montmorillonite by sol-gel method using isopropanol as a surfactant. They reported 
that the Montmorillonite controls the crystal growth of TiO2: the size of TiO2 
nanoparticles decreased from 18.73 (pure TiO2) to 13.87  nm after adding the 
Montmorillonite, while the BET surface area and pore volume increased. Chen et al. 
(2012) have synthesized TiO2–Montmorillonite by sol-gel method with the high-
molecular-weight polymer surfactant POP (polyoxypropylene-backboned di- 
quaternary salt) as an expand species. They reported that the use of polymer surfactant 
POP leads to the formation of the delaminated structure and considerably improves 
the porosity and surface area of the composites. Also, the resulting TiO2–
Montmorillonite exhibited a good thermal stability after calcination at 800 °C. The 
anatase to rutile phase transformation was not detected even under calcination at 
900 °C (SEM images in Fig. 13.10). On the other hand, they reported that the increase 
of POP amount leads to decrease the size of TiO2 particles in the composite.

13.3.1.2  Hydrothermal Method

TiO2–Montmorillonite composites can be also synthesized by hydrothermal method. 
It is carried out usually under controlled temperature or pressure using steel pressure 
vessels (autoclaves) with or without Teflon liners. The temperature is frequently 
elevated above the boiling point of water. Aydin Hassani et  al. (2017a, b) have 

Fig. 13.9 Synthesis of TiO2–Montmorillonite by sol-gel using organic surfactants

Fig. 13.10 SEM images of Na-Montmorillonite and TiO2–Montmorillonite synthesized by sol-gel 
method. (Reproduced with permission: Chen et al. 2012)
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synthesized TiO2–Montmorillonite using cetyltrimethylammonium bromide (CTAB) 
as a surfactant, by hydrothermal method (Fig. 13.11). They found that the average 
crystalline size was 25 nm for pure TiO2 and 20 nm for TiO2 in TiO2–Montmorillonite 
(SEM images are shown in Fig. 13.12). They suggested that the Montmorillonite can 
control the crystal growth in TiO2. However, they obtained that the deposition of 
TiO2 did not improve the basal space of the Montmorillonite, which could be 
explained by the deposition of TiO2 nanoparticles on the external surface of the 
Montmorillonite. Zhou et al. (2014) have synthesized CdS–TiO2–Montmorillonite 
by hydrothermal method. They reported that the small angle in the XRD spectrum 
was disappeared after the insertion of CdS–TiO2 nanoparticles which indicates that 
the basal space of the Montmorillonite had been blocked by CdS–TiO2 particles.

Fig. 13.11 Synthesis of TiO2–Montmorillonite by hydrothermal method. (Reproduced with per-
mission: Hassani et al. 2017a, b)

Fig. 13.12 SEM images of Na–Montmorillonite and TiO2–Montmorrilonite synthesized by 
hydrothermal method. (Reproduced with permission: Hassani et al. 2017a, b)
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13.3.1.3  Impregnation Method

The synthesis of TiO2–Montmorillonite by impregnation could be simplified as is 
illustrated in Fig.  13.13, which includes three main steps: (i) contacting the 
Montmorillonite with the TiO2 precursor solution, (ii) filtration and drying the com-
posite and (3) calcination of the composite to form TiO2 crystals.

Djellabi et al. (2016a, b, c) have synthesized TiO2–Montmorillonite with different 
weight ratios (g/g) (5, 10, 20 and 30%) by impregnation with TiCl4 (dissolved in 
C2H2) followed by calcination at 350  °C. They reported that the basal spacing of 
Montmorillonite decreases slightly with TiO2 loading, while the surface area of all 
samples was similar to that of Na-Montmorillonite. On the other hand, the average 
crystallite size of anatase was estimated to be 14–20 nm for all samples (SEM images 
are shown in Fig. 13.14). Compared to sol-gel method, impregnation method usually 
does not improve the based space and the surface area since the deposition of TiO2 
nanoparticles takes place mostly on the external surface of the Montmorillonite, while 
the sandwiched structure could be obtained by sol-gel. Rossetto et al. (2010) have 
synthesized TiO2–Montmorillonite samples using different kinds of Montmorillonite 
by impregnation with TiCl4 (dissolved in cyclohexane), and they found that the sur-
face area of some samples decreased after impregnation of TiO2.

13.3.1.4  Solid Diffusion

Solid diffusion or power sintering is a simple method to make strong binding force 
between TiO2 nanoparticles and porous supports thermal diffusion effect (Wang 
et  al. 2018). Zhang et  al. (2015) and Yuan et  al. (2011) have synthesized TiO2–
Montmorillonite via the immobilization of pre-dispersed nanoscaled TiO2 particles 

Fig. 13.13 Synthesis of TiO2–Montmorillonite by impregnation method
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onto external surface of Montmorillonite. Firstly, they prepared nanoscaled TiO2 
hydrothermal method with an average size less than 5  nm. Then, they mixed 
nanoscaled TiO2-cetyltrimethylammonium bromide (CTAB) solution with swelling- 
Montmorillonite, and finally, the products were calcined at 500  °C.  Yuan et  al. 
(2011) reported that the nanoscaled TiO2 (with 4.66 nm) could be intercalated into 
the interlayer of Montmorillonite due to the presence of CTAB (basal spacing 
increased from 1.26 to 1.87 nm and surface area increased from 28 to 67 m2/g). 
Zhang et al. (2015) reported that the increase of CTAB surfactant increases slightly 
the basal spacing, while, the anatase-to-rutile transformation was observed during 
calcination at 500 °C. However, it was found that the characteristic reflection for the 
anatase phase at 2θ = 25.3° was slightly decreased with CTAB increasing (from 0.1 
to 0.5 wt.%). They explained that the high CTAB concentrations lead to decreasing 
numbers and increasing particle size deposited TiO2 particles into the interlayer. 
With low CTAB amounts, more TiO2 pillars can be immobilized in the interlayer 

Fig. 13.14 SEM images of Na-Montmorillonite and TiO2–Montmorillonite synthesized by 
impregnation method. (Reproduced with permission: Djellabi et al. 2016a, b, c)

13 Titania–Montmorillonite for the Photocatalytic Removal of Contaminants…



308

space, and at the same time, a number of TiO2 particles with smaller size could be 
fixed on the external surface of Montmorillonite. On the contrary, with high CTAB 
concentrations, more CTAB species can block the pores of Montmorillonite, which 
inhibits the access of TiO2 colloids to settle into the pores of Montmorillonite (as 
shown in Fig. 13.15).

Liang et al. (2017) have immobilized pure TiO2 (P25, Degussa) onto external 
surface of Montmorillonite using power sintering method proceeding with the fol-
lowing steps: (i) Montmorillonite material and 1 g of P25-TiO2 were mixed; (ii) a 
volume of ethanol was added, and the mixture was milled for 30 min and dried at 
300 °C for 6 h; and (iii) the obtained solid was grinded. They prepared a series of 
TiO2–Montmorillonite of different loads (40%T/M (TiO2/Montmorillonite), 
70%T/M, 80%T/M, 90%T/M, 95%T/M, 98%T/M). The results of TEM morpholo-
gies showed that the nano-TiO2 is loaded successfully onto the Montmorillonite 
surface. However, when TiO2 content increases, TiO2 particles on Montmorillonite 
surface are prone to agglomeration (Fig. 13.16).

13.3.2  Mechanisms of Photocatalytic Removal 
of Contaminants by TiO2–Montmorillonite

The immobilization of nanoscale TiO2 particles onto the Montmorillonite can assist 
in improving the contact between the TiO2 particles and pollutants via the so-called 
Adsorb & Shuttle (A&S) due to its adsorption capability and hydrophobicity prop-
erty. In general, this concept is based on the use of highly adsorbing domains to 
increase the amount (concentration) of contaminants near TiO2 photocatalytic sites 
and therefore enhance the overall efficiency of the photocatalytic process as shown 
schematically in Fig. 13.17. Nevertheless, a second mechanism by which the photo-
catalytic degradation of organic pollutants is obtained through the use of adsorbent 
support is the diffusion of hydroxyl radicals from TiO2 from the photocatalytic sites 
to the adsorbed pollutants on the adsorptive domains, named as “Remote 
Degradation” (Fig. 13.17).

Fig. 13.15 Formation process of TiO2-CTAB-Montmorillonite according to different CTAB con-
tents. (Reproduced with permission: Zhang et al. 2015)
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Fig. 13.16 TEM images of TiO2–Montmorillonite synthesized by solid diffusion process with 
different load ratios (a) 70%T/M, (b) 80%T/M, (c) 90%T/M, and (d) 95%T/M. (Reproduced with 
permission: Liang et al. 2017)

Fig. 13.17 Mechanisms of the photocatalytic removal of pollutants on the surface of TiO2 and 
TiO2–Montmorillonite
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Many research studies reported that TiO2–Montmorillonite composite was more 
efficient than commercial or synthesized naked TiO2 (Rossetto et  al. 2010; Dou 
et al. 2011a; Yuan et al. 2011; Chen et al. 2012; Liang et al. 2017; Mishra et al. 
2017a, b; Butman et al. 2018). TiO2–Montmorillonite can combine the adsorption 
and photocatalytic reaction to efficiently remove contaminants from water (Dvininov 
et al. 2009; Djellabi et al. 2014). Moreover, TiO2–Montmorillonite-based compos-
ites may retain reaction by-products that are produced during the photocatalytic 
reaction for further mineralization. Additionally, employing of TiO2–Montmorillonite 
overcomes the issue of photocatalyst separation in  water purification  systems. 
Because the TiO2 loading onto Montmorillonite can affect the morphology, surface 
area, pore size and TiO2 particle size, it has an important impact on the Adsorb & 
Shuttle process. For higher A&S efficiency, the optimum diffusion distance (dis-
tance between the adsorbing domains and TiO2 sites) should be obtained. 
Nevertheless, the optimal TiO2 loading value depends not only on the type of TiO2–
Montmorillonite characteristics but also on the type of pollutant. Higher interaction 
between the pollutant species and TiO2–Montmorillonite surface is likely to push 
the optimum TiO2 loading towards small values, since high TiO2 content on 
Montmorillonite may require a large diffusion distance of pollutant molecules that 
adsorb strongly on the surface. For the pollutant molecules that adsorb hardly on the 
surface of TiO2–Montmorillonite, the reverse is true. It is worth to note that, there is 
a bottleneck state, in which, the excessive TiO2 content can block the penetration of 
light irradiation. At the optimal TiO2 loading value, the TiO2–Montmorillonite needs 
to adsorb contaminants efficiently and then oxidizes/mineralizes them photocata-
lytically to regenerate the surface for recycling. Djellabi et al. (2016a) have studied 
the effect of TiO2 loading onto the Montmorillonite for the photocatalytic removal 
of Cr(VI) and crystal violet under sunlight. They have synthesized TiO2–
Montmorillonite with different weight ratios (g/g) (5, 10, 20 and 30%), and they 
reported that the dark adsorption of crystal violet decreases with TiO2 content 
increasing, while the Cr(VI) species adsorbs very hardly on TiO2–Montmorillonite 
surface (~ 12% for all samples). For the photocatalytic removal under sunlight, they 
reported that the sample with 10% of TiO2 loading was the most efficient for crystal 
violet photodegradation, while for Cr(VI) reduction, the removal rate increases pro-
portionally with TiO2 loading, and the sample 30% was the most efficient. In a 
straightforward manner, the fact that the efficiency of TiO2–Montmorillonite varies 
from one pollutant to another, using the same sample with 10% of TiO2 loading, 
Djellabi et al. (2014) reported that the efficiency of TiO2–Montmorillonite for the 
removal of five dyes under UV light was more pronounced for cationic dyes than 
anionic in the order crystal violet (97.1%) > methylene blue (93.20%) > rhodamine 
B (79.8%) > methyl orange (36.1%) > congo red (22.6%), which is due to the strong 
interaction between cationic dyes and the negatively charged TiO2–Montmorillonite 
surface.

Dou et  al. (2011a) reported that TiO2–Montmorillonite (with a 22  wt% TiO2 
load) had higher adsorption and photocatalytic activities than synthesized TiO2 
nanoparticles for the removal of Hg(II) from water. They observed that both photo-
catalysts turned black with Hg(0) nanoparticles under UV illumination. They found 
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that the photo-efficiency of TiO2–Montmorillonite and TiO2 nanoparticles decreases 
after 40 min due to the deposition of Hg metal on the TiO2 surface, resulting in less 
reactivity. Li et  al. (2012) have used TiO2–Montmorillonite as an adsorbent to 
remove As(III) and As(V) from water with or without UV irradiation. They reported 
that, with UV irradiation of TiO2–Montmorillonite, the removal rate of As(III) and 
As(V) increased from 94.58% to 97.71% and from 98.56% to 99.65%, respectively. 
They suggested that As(III) oxidation to As(V) takes place by TiO2 particles, fol-
lowed by fast As(V) adsorption on TiO2–Montmorillonite surface.

The pore size of TiO2–Montmorillonite can also affect the A&S process. As 
explained before, the synthesis conditions including the method, type of surfactants, 
calcination and TiO2 loading could affect directly the pore size of TiO2–
Montmorillonite. In general, based on the pore size, materials could be divided into 
three groups: microporous (< 2 nm), mesoporous (2–50 nm) and macroporous (> 
50 nm). Meso- and macroporous adsorbents are suitable for the adsorption/absorp-
tion of contaminant molecules with different sizes, which in turn facilitate their 
photocatalytic decomposition. This was indeed observed by Yuan et al. (2011), who 
reported that the TiO2–Montmorillonite sample with higher pore size and pore vol-
ume exhibited a higher photocatalytic efficiency for organic molecules. Chen et al. 
(2012) reported that the photoactivity of TiO2–Montmorillonite was not a function 
of TiO2 loading of the composite photocatalyst, but it depends on the contact 
between TiO2–Montmorillonite surface and the dye species. Yang et al. (2013) have 
synthesized TiO2–Montmorillonite samples with ordered interlayer mesoporous 
structure, and they reported that the photocatalytic efficiency for the degradation of 
methylene blue increases proportionally with increase of pore size.

Butman et al. (2018) have synthesized TiO2–Montmorillonite samples with high 
degree of crystallinity (nanocrystals) for degradation of methyl orange and rhoda-
mine B under UV. They reported that the high decolourization rate was due to the 
higher degree of crystallinity for TiO2 pillars and higher porosity. On the other hand, 
they suggested that the anatase and rutile phase ratio can strongly influence the rate 
of photocatalytic oxidation of dyes. Also, they proposed that the formation of Ti–O–
Si cross-links between pillars and silicate layers of Montmorillonite may limit the 
electron/hole recombination. Therefore, the higher the crystallites of TiO2, the 
greater the number of cross-linking bonds can be formed; thus, a higher photocata-
lytic efficiency is found.

Mishra et al. (2018) have prepared metal-loaded TiO2–Montmorillonite compos-
ites (M = Ag, Au, Pd; 1% by wt.) for the photodegradation of chlorobenzene and 
benzaldehyde under UV and visible light. It was found that the surface area and 
pore size increased slightly in the presence of metals. They reported that both the 
dark adsorption and the photocatalytic degradation of chlorobenzene and benzalde-
hyde by Metal–TiO2–Montmorillonite were higher than TiO2–Montmorillonite 
under UV and visible irradiations. It is worth to note that, based on their results, 
TiO2–Montmorillonite exhibited a photocatalytic activity under visible light. They 
found that, among the as-synthesized composites, Ag–TiO2–Montmorillonite shows 
the highest photocatalytic efficiency for chlorobenzene and benzaldehyde degrada-
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tion under visible light. They suggested that the high photocatalytic performance of 
Ag–TiO2–Montmorillonite may be due to the high excitation lifetime (2.60 ns).

13.4  Conclusions

 – Coupling of nanoscale TiO2 particles with Montmorillonite promotes the photo-
catalytic performance for the removal of organic pollutants and heavy metals.

 – Montmorillonite samples with high specific surfaces areas, high adsorption 
capacity and high hydrophobicity could be a good choice for the synthesis of 
effective TiO2–Montmorillonite.

 – Many researchers reported that the Montmorillonite can control the crystal 
growth and the thermal stability of TiO2 better than naked TiO2.

 – The use of polymer surfactants during the synthesis of TiO2–Montmorillonite 
such as cetyltrimethylammonium (CTA+) and polyoxypropylene-backboned di- 
quaternary (POP) allows intercalating homogeneously TiO2 nanoparticles within 
the interlayer space of Montmorillonite (obtain a sandwich structure) and reduces 
the agglomeration of TiO2 particles, and it improves the pore size and the surface 
area by increasing of basal space of the Montmorillonite. It is worth noting that 
the concentration of surfactant should be optimized.

 – TiO2 loading in the Montmorillonite can affect significantly the structure of 
TiO2–Montmorillonite depending on the synthesis conditions; at high loading, 
TiO2 is prone to agglomerate and block the pore of the Montmorillonite.

 – The photocatalytic removal of organic pollutants and heavy metals is carried out 
through the so-called Adsorb & Shuttle (A&S), in which pollutants adsorbed on 
the adsorbing domains (Montmorillonite) diffuse on the surface to the TiO2 pho-
tocatalytic. The Adsorb & Shuttle process efficiency depends strongly on the 
TiO2–Montmorillonite characteristics (TiO2 loading, pore size, adsorption capac-
ity and TiO2 particle size) as well as the type of pollutant.

 – Unlike naked nanoparticles TiO2, TiO2–Montmorillonite is a low-cost and envi-
ronmentally friendly photocatalyst which prevents the release of TiO2 nanopar-
ticles to the environment, and it can retain reaction by-products that are produced 
during the photocatalytic reaction for further mineralization.
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