®

Check for
updates

Adapting a Conversational Text
Generator for Online Chatbot Messaging

Lorenz Cuno Klopfenstein®™) | Saverio Delpriori, and Alessio Ricci

DiSPeA, University of Urbino, Urbino, Italy
cuno.klopfenstein@uniurb.it

Abstract. Conversational interfaces and chatbots have a long history,
but have only recently been hyped as a disruptive technology ready to
replace mobile apps and Web sites. Many online messaging platforms
have introduced support to third-party chatbots, which can be proce-
durally programmed, but usually rely on a retrieval-based specification
language (such as AIML), natural language processing to detect the
user’s intent, or on machine learning. In this work we present a work-
in-progress integration of a widely-used system for story generation, the
Tracery grammar, a conversational agent design tool, the Bottery system,
and online messaging platforms. The proposed system provides a com-
plete and easy-to-use system that allows the creation of chatbots with
a graph-based dialogue structure, a contextual memory, pattern-based
text matching, and advanced text generation capabilities, that aims for
being well-suited for experts and technically unskilled authors alike. Fea-
tures of the system and future additions are discussed and compared to
existing solutions.

Keywords: Conversational interfaces - Chatbots * Story generation -
Generative text

1 Introduction

Software applications that engage with users through text-based conversations
using natural languages, usually called “chatbots”, have been making headlines
recently and have captured the interest of major tech companies [17].

Chatbots have a long history, which includes attempts at emulating human
language patterns as seen in the conversational mechanisms of ELIZA [25]. These
early experiments arguably fueled many of the later tries at playing Turing’s
“Imitation Game” and to make natural language conversation with a computer
possible. ALICE is one of the noteworthy systems developed with this aim: a
chatbot based on the AIML language and capable of responding based on pattern
matching, which allowed it to achieve the Loebner prize multiple times [24].

While exchanging messages through a teletype console could appear as an
interesting contraption in 1966, almost fifty years later the majority of the human

© Springer Nature Switzerland AG 2019
S. S. Bodrunova et al. (Eds.): INSCI 2018 Workshops, LNCS 11551, pp. 87-99, 2019.
https://doi.org/10.1007/978-3-030-17705-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17705-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-17705-8_8

88 L. C. Klopfenstein et al.

population is accustomed to daily sending and receiving SMS or using online mes-
saging. Top messaging apps nowadays reach a vast audience, rivalling that of the
most popular social networks [22]. These highly popular messaging platforms
have shown to be the ideal ground for chatbots: over the course of the last years,
starting in 2014, many of these platforms have added support to chatbots, in
the form of third-party software that can conduct text conversations with their
users. Thanks to their quickly rising prominence, chatbots have been announced
as the new platform aimed at replacing mobile apps and Web sites [10]. Most
messaging platforms also allow chatbots to access features that go beyond sim-
ple text exchanges: bots can now exchange messages with pictures, sounds, or
geographical positions. Some platforms also include advanced UI elements that
can enhance the look or the functionality of chatbot messages, using buttons,
quick replies, or special representations for common online transactions [12].

Users show a growing interest in chatbots, not only for small talk, but also
as aids for productivity tasks, entertainment, and communication [4]. Successful
chatbot applications in real-world usage include customer assistance, conversa-
tional commerce, ELIZA-like “chatterbot” conversations [14], virtual assistants,
which may exploit contextual information or known personal preferences [1],
multiplayer games [13], or emphatic learning companions for kids [26].

Major tech companies have also started focusing heavily on conversational
interfaces. Many chatbot middleware systems open to third-party developers are
now on offer, including a multi-platform connector with procedural dialogues
and NLP capabilities', machine learning systems for virtual assistants?, intent-
detection text processors®, hosting platforms for AIML-based chatbots*, and
solutions with graphical dialogue building and NLP support®.

Conversational interfaces in literature often rely on pattern matching systems
(such as the AIML syntax originally used by ALICE) or different natural lan-
guage processing (NLP) techniques, which attempt to extract the user’s intent
from text. Some recent attempts make use of deep learning techniques [11]. Chat-
bot systems can be categorized into retrieval-based or generative-based (whether
they pick predefined responses or generate new ones) and into their application
to an open or closed domain [20]. Many chatbots can make use of external lin-
guistic resources or knowledge ontologies, they can extract answers from knowl-
edge bases using information retrieval techniques, or they can be integrated with
existing systems in order to provide access to services [21].

However, conversational interfaces often fall short of their user’s expectations.
Current systems generally have poor social skills, with limited capabilities for the
reuse of previous knowledge and context [2]. While most chatbots and virtual
assistant promise a natural and human-like interaction, they often fail at clearly
revealing their effective capabilities and in correctly processing the full context of a

! Microsoft Bot Connector, https://dev.botframework.com.

2 Dialogflow, backed by Google, https://dialogflow.com.

3 Wit.ai, https://wit.ai.

* Pandorabots, https://pandorabots.com.

5 IBM Watson Assistant, https://www.ibm.com/watson/services/conversation/.

https://dev.botframework.com
https://dialogflow.com
https://wit.ai
https://pandorabots.com
https://www.ibm.com/watson/services/conversation/

Adapting a Conversational Text Generator for Online Chatbot Messaging 89

conversation [16]. A very careful design and user interaction (UX) effort must be
made to ensure success, suggesting conversational UX design to be a distinctive
and emerging discipline focused on replicating human conversation [19].

1.1 Contribution

Most common messaging platforms provide programming interfaces and soft-
ware development kits for easy chatbot development. Many middleware solutions
allow development of chatbots for a multitude of messaging platforms. However,
development platforms either require advanced programming skills or they pro-
vide generic chatbot templates that offer limited customization—especially for
unskilled users. In this work, this issue is tackled by proposing a flexible and
easy-to-use system for creating modern chatbots based on Bottery, a prototyping
system for generative contextual conversations modelled as finite state machines,
which is specifically designed for non-technical users.

In the next section, an operative overview of Bottery is provided. A thorough
presentation of its design and syntax helps in filling the lack of an adequate
documentation of the system in previous literature. A novel system for creating
chatbots is proposed, illustrating how it combines the flexibility of Bottery-based
conversational agents and the UX features of modern messaging platforms. In the
last section, advantages and shortcomings of the proposed system are discussed,
along with possible future developments and extension to the existing Bottery
syntax.

2 Conversational Agents with Bottery

Bottery is a conversational agent prototyping platform [7]. Originally released
in 2017, it takes inspiration from Tracery and provides a syntax, an editor, and
an integrated simulator that allows for interactive testing of an agent. To the best
of our knowledge, this paper provides Bottery’s first documentation in literature.

In the following sections, we will introduce the two systems mentioned above
and describe the process of adapting them to be used as an online messaging
chatbot. The design choices in transforming conversational agent interactions
into a message-based conversation are outlined, together with a proposed soft-
ware architecture.

2.1 Tracery and Generative Text

Tracery is an easy-to-use and lightweight grammar system that enables users
to generate any kind of texts or stories [9]. Syntax and authoring tools were
published in 2014 [5]. An online editor is available and allows users to create and
test Tracery grammars interactively [8].

The system is based on a standard context-free grammar, defined by a set
of rewrite rules that operate on the input text. Symbols within the text, which
are enclosed in ‘# hashtags, are replaced with a string. Replacement strings can,

90 L. C. Klopfenstein et al.

in turn, be terminals (strings on which no further rewrite rules can be applied)
or they can be composed by more symbols. When multiple replacement strings
apply to a symbol, the system picks one at random. Other rewrite rules can
perform simple but desirable text transformations, such as word capitalization
or switching between “a” and “an” depending on how a symbol is expanded.

Context-free grammars exhibit strong limitations and have been shown to
be inadequate to generate complex stories, since they generally lack the ability
to maintain contextual history and formal causality [3], even though Tracery
includes the ability to keep a limited form of context while processing rewrite
rules [5]. These limitations notwithstanding, the system has been successfully
adopted in games and more elaborate story generation tools [6,15,23].

A Tracery grammar is expressed in JSON format as a simple list of rewrite
rules that associate symbols with one or more expanded strings.

{
"alienName": ["Jaglan Beta", "Santraginus V", "Kakrafoon", "Traal"],
"action": [
"wrap it around you for warmth as you bound across #alienName#",
"lie on it on the brilliant marble-sanded beaches of #alienName#",
"sleep under it beneath the stars which shine so redly on #alienName#",
"use it to sail a raft down the slow heavy river #alienName#"
1,
"origin": ["The towel has great practical value, you can #action#; #action
#; and of course #action#."]

This grammar can, for instance, generate the following text:

The towel has great practical value, you can sleep under it beneath the stars which shine so
redly on Santraginus V; use it to sail a mini raft down the slow heavy river Traal; and of
course lie on it on the brilliant marble-sanded beaches of Kakrafoon.

2.2 Bottery Agent Syntax

The Bottery syntax allows authors to create an agent by specifying 4 compo-
nents:

(a) A set of states in which the agent can be, with information that describes
the conditions in which the agent moves from one state to another;

(b) A memory that can be read and manipulated freely, giving a “blackboard”-
style representation of the agent’s state for dialogue and text generation [18];

(c) An optional set of global transitions, that allow the agent to switch to a
given state in response to certain conditions;

(d) An optional Tracery-based grammar. Text produced by the agent is used
as an input string for text generation through the grammar. The expanded
text is used as the agent’s final output for the user.

Agent States. States describe the agent’s position within the dialogue, as
defined by the script. Each state is uniquely identified by an identifier. A state
contains instructions about the agent’s behavior (its output) and its reactions
to user input.

Adapting a Conversational Text Generator for Online Chatbot Messaging 91

In particular, states of the agent are composed of the following:

(a) An alphanumeric ID, unique within the same chatbot script (the initial
state must have the ID “origin” by convention);

(b) A list of actions that are executed when the state is entered by the bot;

(c) A list of exits that describe transitions to another state and the conditions
they require;

(d) A set of suggestion chips: suggested text inputs that are provided by the
agent.

Actions. On entering a state, the agent will perform a set of actions. These can
be expressed in a variety of ways. For instance, “onEnter” actions are always
performed when the state is entered. On the contrary, “onEnterDoOne” actions
are prefixed by conditions: the agent will only perform the first action whose
condition is satisfied, if any. Actions expressed as “onEnterSay” provide simple
text strings that are always output by the agent. Additionally, agents may also
play audio files through “onEnterPlay” actions or execute arbitrary Javascript
functions through “onEnterFxn”.

Actions executed by “onEnter” and “onEnterDoOne” are expressed using
action syntax: a space-delimited sequence of expressions that are executed in
order. Expressions can rely on a very limited set of operations using a Javascript-
inspired syntax, that allows to operate on variables in the agent’s blackboard
(e.g., “counter++” increments a variable). String expressions or constants are
evaluated using the Tracery grammar and output by the agent.

Conditions for “onEnterDoOne” actions can also be written using a limited
syntax, which includes basic arithmetic and logical operators, that accesses vari-
ables in the blackboard (e.g., “counter>4”). Simple strings are directly matched
against the last user input. The asterisk character ‘*’ matches any user input.
When no condition is given, the condition is always verified.

Exits. All states have one or more exits that describe possible transitions of the
agent to other states. Exists are expressed following this syntax:

“[condition ...] -> target [action ...]”

Conditions and actions are expressed using the same syntax as above. The
target state is referenced by its ID. The ‘@ character can be used to reference
the agent’s current state (i.e., the agent re-enters the same state).

Executing an Agent. An agent based on this system acts like a finite state
machine (FSM). It can be displayed as a graph, with states connected by arcs,
each of which marked with a condition that must be satisfied to transition the
agent from one state to another.

On entering a state, the agent will: (1) execute all available actions; (2) dis-
play suggestion chips to the user, if any; (3) wait for user input; (4) evaluate
exits and pick the first that satisfies its condition; (5) execute actions associated
with the picked exit; (6) move to the target state; repeat.

92 L. C. Klopfenstein et al.

2.3 Adapting Bottery to Online Messaging Platforms

The basic mechanism animating the FSM-based execution flow of a Bottery
agent can be adapted to the reactive nature of online messaging: (1) receive new
user input; (2) evaluate exits on the current state (including global exits) and
pick the first whose conditions are satisfied; (3) execute all actions associated
with the exit; (4) move agent to the target state; (5) execute all actions of the
new state; (6) display suggestions chips, if any.

The direct interface between the target messaging platform and the con-
versational agent simulation is limited to sending and receiving text messages.
When receiving a text message, the conversational agent will handle the input
by performing a state change, executing actions, and/or outputting any number
of text responses, before returning to a waiting state.

Agent script (JSON)

Messaging -~ » Bottery

module <-- agent Current state pointer

Messaging
platform

Blackboard

Fig. 1. Software architecture of the proposed system.

The proposed system’s architecture is shown in Fig. 1: a messaging module (a
specialized software module that interacts with an online messaging platform)
receives messages from users and forwards them to the Bottery engine. Any
output generated by the agent is returned back to the user in the form of text
messages.

While the system in development only includes a messaging module for the
Telegram platform (chosen for ease of development), any number of messaging
modules can be added, making the system multi-platform.

The Bottery agent is composed by: an agent script (specified in JSON using
the syntax described in Sect. 2.2), a pointer to the agent’s current state, a black-
board memory (as a map of variable names and values).

In order to keep the system’s state for multiple concurrent users, the system
will store the current state pointer and the blackboard for each conversation
(e.g., in a database system, identifying each conversation with a unique chat ID),
while the agent’s scripts can be stored once in static JSON files. On receiving a
new message the system will load the agent’s script and restore the conversation
context, by moving the agent to the last state and loading its blackboard into
memory.

Figure 2 describes a simple chatbot providing access to weather information.
The chatbot offers a guided conversation allowing users to pick a city and a date
for which the forecast must be fetched. The conversation is structured over a set
of 7 states, depicted as a graph on the right. The forecast generation makes use
of Tracery to generate random weather information and of an array to keep a

Adapting a Conversational Text Generator for Online Chatbot Messaging 93

{
vgrammar": {
"forecast": ["fair", "a little cloudy", "cloudy", "rain", "storm"]
T,
"states": {
origin": { bt
"onEnterSay": "Welcome to WeatherBot",
"exits": "->choose_city"
"choose_city": {
"onEnterSay": "Enter the city for which you want to know the weather", hoose_daySEeTor_
"exits": "'x' ->choose_day city=INPUT"
X,
"choose_day": {
"onEnterSay": "Choose the day for which you want to know the weather",
N X lsearch_forecas isend_forecast}
"chips": ["today", "tomorrow", "day after tomorrow", "change city"l,
"exits": [
"'today' ->search_forecast day=INPUT",
"'tomorrow' ->search_forecast day=INPUT",
"'day after tomorrow' ->search_forecast day=INPUT",
"'change city' ->choose_city",
"'x' ->error_choose" =
- (et B
"onEnterSay": "Sorry, I don't understand", e wesitienlecest
"exits": "->choose_day" m
3,
"search_forecast": {
"exits": ["(list_citylcityl[day]!=undefined) ->send_forecast", 1w the weather,
"->ask_forecast"] @
3,
"ask_forecast": { today in Urbino the weather will be
"exits": "->send_forecast"
3}, know the weather %)
"send_forecast": { today] tom
"onEnter": "weather=list_cityl[city][dayl", day after tomorrow | change city
"onEnterSay": ["#/day# in #/city# the weather will be #/weather#"],
"exits": "->choose_day" [Message |53YJ
bs
3
¥

Fig. 2. Simple weather chatbot implemented using Bottery (left), states graph (top
right) and example conversation (bottom right).

memory of past queries. An actual implementation of the chatbot could of course
retrieve real weather information within the ask_forecast state by calling an
arbitrarily complex Javascript function.

2.4 Advanced Messaging Features

Most current online messaging platforms are not limited to the exchange of sim-
ple text messages, but also allow users and bots to exchange pictures, audio
messages, and locations. Chatbots in particular have the ability to use advanced
UTI elements, such as buttons, commands, and structures messages on some plat-
forms (e.g., Telegram and Facebook Messenger) [12]. The basic Bottery-based
system described previously provides some extension points that would allow
chatbot authors to make use of these features.

Audio Output: actions marked as “onEnterPlay” instruct the chatbot to play
a given audio file. On supported platforms (such as Telegram) the audio file can
be sent and received by the user as a voice note.

Suggestion Chips: one of the optional components of a Bottery state. They
take the form of one or more strings that are shown to users as suggestions
while waiting for the next input. When a suggestion chip is clicked, the chatbot

94 L. C. Klopfenstein et al.

You have a kitten! . ..

You have a kitten!
What do you want to name your

What do you want to name your kitten? kitten? 03:33

Pufftaco , Fatfluff, Cupcake
Dark Lord Satan

’ Message

B

Fig. 3. Comparison of “suggestion chips” in Bottery (left) and the equivalent “inline
keyboard” in a Telegram bot conversation (right).

behaves just as if the user sent its content as a message. Chips perfectly map to
“quick replies” (on Facebook Messenger) or an “inline keyboard” (on Telegram,
shown in Fig. 3), both features providing a list of buttons that can be tapped to
provide a preset reply to the chatbot.

Global Exits: just like normal exits from a state, they are defined providing a
condition, a target state, and optional actions to execute. However, while local
exits are evaluated only on the state where they are defined, global ones are
evaluated every time the chatbot receives input. This provides a straightforward
opportunity to provide support for top-level always-on interface elements, such
as “commands” in Telegram (messages that start with ¢/’ and are shown in the
bot’s UI) or “persistent menus” in Facebook Messenger.

3 Discussion

Bottery is a complete conversational agent system that provides a full-featured
editing and simulation environment. In its adaptation for online messaging, it is
well suited to implement chatbots with a structured conversation flow—given its
internal representation as an FSM-—while retaining the capability to generate
rich and varied responses, thanks to a grammar-based text generator, and the
ability to keep track of the conversation’s context.

3.1 Future Work

The proposed system is currently in development and is available under an open
source license on GitHub®. While the development version of the system sup-
ports Telegram as a messaging platform, integration with additional platforms
is highly desirable. These additions would also provide additional opportunities
for making use of advanced messaging platform features, outlined in Sect. 2.4.

5 Official repository: https://github.com/ComputerScienceUniUrb /messaging-bottery.

https://github.com/ComputerScienceUniUrb/messaging-bottery

Adapting a Conversational Text Generator for Online Chatbot Messaging 95

{

"grammar": {
"forecast": ["fair", "a little cloudy", "cloudy", "rain", "storm"],
"ask_preamble": ["what's the", "how's the"],
"ask_weather": ["weather in", "weather like in"],
"ask": ["#ask_preamble# #ask_weather#", "#ask_weather#"],
"conjunction": ["and", ""]
3,
"states": {
"origin": {
"onEnterSay": "Welcome to WeatherBot"
},
"forecast_today": {
"onEnterSay": "Today in #/city# the weather will be #forecast#"
},
"forecast_tomorrow": {
"onEnterSay": "Tomorrow in #/city# the weather will be #forecast#"

}
3,
"exits": [

"' #ask# *?' ->forecast_today city=STAR",

"' #ask# * today?' ->forecast_today city=STAR",

"' #ask# * tomorrow? ->forecast_tomorrow city=STAR",

"'#conjunction# today?' ->forecast_tomorrow",

"'#conjunction# tomorrow?' ->forecast_tomorrow",

1,
"initialBlackboard": {
"city": "Urbino"

Fig. 4. Proposed weather chatbot implementation using extensions to Bottery for
enhanced pattern matching.

The Bottery grammar could also be extended in order to introduce support
for pictures, locations, and other data types that are not contemplated by the
original syntax.

Pattern matching capabilities provided by Bottery are very limited, being
constrained to using the ‘*’ character to match the whole user input. Future
versions of the system will introduce AIML-like pattern matching, where the
asterisk can match a sequence of any length. The matched sequence will be
available to the agent as a variable for further processing.

Similarly, pattern matching will be further extended to exploit the agent’s
generative text capabilities: user input will positively match if it can be generated
by any symbol expansion in the pattern, according to a given Tracery grammar.
The ability of using Tracery to easily express variations of the same concept
(including typos) would allow even unskilled chatbot authors to flexibly match
user inputs.

Both these enhancements to pattern matching are shown in Fig. 4, describing
a possible weather chatbot implementation similar to the one in Fig. 2. In this
example user input is processed using global exits, using both partial ‘*’ and
Tracery expansions matching, thus providing a very concise implementation and
a more natural conversation for users.

The introduction of a more capable pattern matching mechanism would make
the system potentially equivalent to AIML-based interpreters. Efforts will be
made to formally map the capabilities of the proposed system to AIML con-
structs, with the purpose of providing a way of automatically transforming an
AIML-based bot into a Bottery agent.

Finally, while the transactions between states provided by Bottery allow the
agent to freely jump from one branch of dialogue to another, keeping track

96 L. C. Klopfenstein et al.

of the switch is left to the script author. The system can be extended to allow
“context digressions” that maintain a stack-based context of the conversation, in
a fashion similar to function calls in a programming language. This would make it
easier for authors to keep track of dialogue state and to structure conversations
into bite-sized sections, for instance providing procedures that handle specific
sub-questions or general conversations for when the chatbot needs to ask for
clarification [1].

3.2 Conclusions

Online messaging chatbots based on the proposed system have several signifi-
cant capabilities. They can: (a) easily define a structured dialogue tree, using
states connected by exits; (b) perform question-answer dialogues using a pattern
matching system based on categories (correspondence between user input and a
string), in particular if extended with capabilities described in Sect. 3.1; (c) rely
on a general-purpose memory that can be used to guide conversation, provide
context, or drive more advanced “business” logic; (d) make use of a Tracery
grammar for text generation, either to make chatbot output more variegated or
for more advanced story generation; (e) make use of logical and arithmetic con-
ditions; (f) call any procedural function, using the power of a Turing complete
language like Javascript with access to the chatbot’s memory.

Tracery’s text generation features can be used in this context to provide dis-
tinctive and various output with minimal programming expertise. The system’s
elementary text generation capabilities gain much higher potential thanks to the
interaction with Bottery’s states graph and the adoption of a general-purpose
memory. Both measures allow the agent to maintain a detailed knowledge of the
state of the conversation, which can easily be used to model more complex agent
behavior and more appropriate text generation.

While the proposed system places itself firmly among other retrieval-based
closed-domain chatbot systems, such as those based on AIML, there are some
noteworthy improvements that Bottery provides. According to the categories
established by Augello et al., the use of tree-structured dialogues provides facil-
ities to support context management at practice level: independent branches of
conversation can be assigned to a specific situation and can be split up into
scenes, thus granting a much more powerful alternative to AIML “topics”. At
a functional level, while AIML and ChatScript offer the “that” tag or “rejoin-
der” rules to manage small one-level conversation trees, the same functionality
can be replicated using a dialogue branch [2]. Structured memory, that can be
accessed by the chatbot’s logic, offer a powerful alternative to the “get” and
“set” tags in AIML. On the other hand, while AIML offers the ability to add
new rules (through the “learn” tag), the proposed system offers no such option
to dynamically extend the chatbot’s intelligence.

The overall syntax used to define a chatbot is mostly declarative and can
be expressed in simple, structured JSON. The option to make use of imperative
Javascript code provides a powerful extension point, which can be also exploited

Adapting a Conversational Text Generator for Online Chatbot Messaging 97

to provide service integration or access to external knowledge bases [21]. How-
ever, it weakens the declarative nature of the chatbot’s JSON-only script.

A graph-based chatbot script provides several options for visualization, which
allow users to more easily explore and edit the flow of a conversation. The sys-
tem’s ease of use—especially if compared with editing complex XML files with
pattern matching strings or unfathomable NLP rules—harks back to Tracery’s
long history of making advanced text generation tools available to technically
unskilled users [5].

References

1. Angara, P., et al.: Foodie fooderson a conversational agent for the smart kitchen.
In: Proceedings of the 27th Annual International Conference on Computer Sci-
ence and Software Engineering, pp. 247-253 (2017). http://dl.acm.org/citation.
cfm?id=3172795.3172825

2. Augello, A., Gentile, M., Dignum, F.: An overview of open-source chatbots social
skills. In: Diplaris, S., Satsiou, A., Fglstad, A., Vafopoulos, M., Vilarinho, T. (eds.)
INSCI 2017. LNCS, vol. 10750, pp. 236-248. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77547-0_18

3. Black, J.B., Wilensky, R.: An evaluation of story grammars. Cogn. Sci. 3(3), 213~
229 (1979). https://doi.org/10.1016/S0364-0213(79)80007-5

4. Brandtzaeg, P.B., Fglstad, A.: Why people use chatbots. In: Kompatsiaris, I., et al.
(eds.) INSCI 2017. LNCS, vol. 10673, pp. 377-392. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70284-1_30

5. Compton, K., Filstrup, B., Mateas, M.: Tracery: approachable story grammar
authoring for casual users. In: Proceedings of the AIIDE Workshop, Intelligent
Narrative Technologies 2014, pp. 64-67 (2014). https://www.aaai.org/ocs/index.
php/INT/INT7 /paper/view/9266

6. Compton, K., Kybartas, B., Mateas, M.: Tracery: an author-focused generative
text tool. In: Schoenau-Fog, H., Bruni, L.E., Louchart, S., Baceviciute, S. (eds.)
ICIDS 2015. LNCS, vol. 9445, pp. 154-161. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-27036-4_14

7. Compton, K., Leigh, N., et al.: “Bottery” official source code repository. https://
github.com/google/bottery. Accessed 23 Aug 2018

8. Compton, K., et al.: Online Tracery editor. http://brightspiral.com/tracery/.
Accessed 23 Aug 2018

9. Compton, K., et al.: “Tracery” official source code repository. https://github.com/
galaxykate/tracery. Accessed 13 Sept 2018

10. Dale, R.: The return of the chatbots. Nat. Lang. Eng. 22(5), 811-817 (2016).
https://doi.org/10.1017/S1351324916000243

11. Kamphaug, A., Granmo, O.-C., Goodwin, M., Zadorozhny, V.I.: Towards open
domain chatbots—a GRU architecture for data driven conversations. In: Diplaris,
S., Satsiou, A., Fglstad, A., Vafopoulos, M., Vilarinho, T. (eds.) INSCI 2017. LNCS,
vol. 10750, pp. 213-222. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-77547-0_16

12. Klopfenstein, L.C., Delpriori, S., Malatini, S., Bogliolo, A.: The rise of bots: a
survey of conversational interfaces, patterns, and paradigms. In: Proceedings of
the 2017 ACM Conference on Designing Interactive Systems, DIS, pp. 555-565
(2017). https://doi.org/10.1145/3064663.3064672

http://dl.acm.org/citation.cfm?id=3172795.3172825
http://dl.acm.org/citation.cfm?id=3172795.3172825
https://doi.org/10.1007/978-3-319-77547-0_18
https://doi.org/10.1007/978-3-319-77547-0_18
https://doi.org/10.1016/S0364-0213(79)80007-5
https://doi.org/10.1007/978-3-319-70284-1_30
https://doi.org/10.1007/978-3-319-70284-1_30
https://www.aaai.org/ocs/index.php/INT/INT7/paper/view/9266
https://www.aaai.org/ocs/index.php/INT/INT7/paper/view/9266
https://doi.org/10.1007/978-3-319-27036-4_14
https://doi.org/10.1007/978-3-319-27036-4_14
https://github.com/google/bottery
https://github.com/google/bottery
http://brightspiral.com/tracery/
https://github.com/galaxykate/tracery
https://github.com/galaxykate/tracery
https://doi.org/10.1017/S1351324916000243
https://doi.org/10.1007/978-3-319-77547-0_16
https://doi.org/10.1007/978-3-319-77547-0_16
https://doi.org/10.1145/3064663.3064672

98

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L. C. Klopfenstein et al.

Klopfenstein, L.C., Delpriori, S., Paolini, B.D., Bogliolo, A.: Code hunting games:
a mixed reality multiplayer treasure hunt through a conversational interface. In:
Diplaris, S., Satsiou, A., Fglstad, A., Vafopoulos, M., Vilarinho, T. (eds.) INSCI
2017. LNCS, vol. 10750, pp. 189-200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-77547-0_14

Kubon, D., Metheniti, E., Hladkd, B.: Politician — an imitation game. In: Diplaris,
S., Satsiou, A., Fglstad, A., Vafopoulos, M., Vilarinho, T. (eds.) INSCI 2017. LNCS,
vol. 10750, pp. 201-212. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-77547-0-15

Kybartas, B., Verbrugge, C., Lessard, J.: Subject and subjectivity: a conversational
game using possible worlds. In: Nunes, N., Oakley, I., Nisi, V. (eds.) ICIDS 2017.
LNCS, vol. 10690, pp. 332-335. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-71027-3_37

Luger, E., Sellen, A.: “Like having a really bad PA”: the gulf between user expec-
tation and experience of conversational agents. In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, CHI 2016, pp. 5286-5297
(2016). https://doi.org/10.1145/2858036.2858288

McTear, M.F.: The rise of the conversational interface: a new kid on the block?
In: Quesada, J.F., Martin Mateos, F.J., Lépez-Soto, T. (eds.) FETLT 2016. LNCS
(LNAI), vol. 10341, pp. 38-49. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69365-1_3

Montfort, N., Pérez y Pérez, R., Harrell, D.F., Campana, A.: Slant: a blackboard
system to generate plot, figuration, and narrative discourse aspects of stories. In:
Proceedings of the Fourth International Conference on Computational Creativ-
ity, ICCC 2013, p. 168 (2013). http://www.computationalcreativity.net/iccc2013/
download /iccc2013-montfort-et-al.pdf

Moore, R.J., Arar, R., Ren, G.J., Szymanski, M.H.: Conversational UX design. In:
Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, CHI EA 2017, pp. 492-497 (2017). https://doi.org/10.1145/
3027063.3027077

Ramesh, K., Ravishankaran, S., Joshi, A., Chandrasekaran, K.: A survey of design
techniques for conversational agents. In: Kaushik, S., Gupta, D., Kharb, L., Chahal,
D. (eds.) ICICCT 2017. CCIS, vol. 750, pp. 336-350. Springer, Singapore (2017).
https://doi.org/10.1007/978-981-10-6544-6_31

Satu, M.S., Parvez, M.H., Shamim-Al-Mamun: Review of integrated applications
with AIML based chatbot. In: 1st International Conference on Computer and
Information Engineering, ICCIE 2015, pp. 87-90 (2016). https://doi.org/10.1109/
CCIE.2015.7399324

Smith, J.: The messaging apps report. Technical report (2018). https://www.
businessinsider.com/messaging-apps-report-2018-4

Veale, T.. Appointment in samarra: pre-destination and bi-camerality in
lightweight story-telling systems. In: Proceedings of the Ninth International
Conference on Computational Creativity, ICCC 2018, pp. 128-135 (2018).
http://computationalcreativity.net/iccc2018 /sites/default /files /papers/ICCC_
2018_paper_35.pdf

Wallace, R.S.: The anatomy of A.L.I.C.E. In: Epstein, R. (ed.) Parsing the Turing
Test: Philosophical and Methodological Issues in the Quest for the Thinking Com-
puter, pp. 181-210. Springer, Netherlands (2009). https://doi.org/10.1007/978-1-
4020-6710-5_13

https://doi.org/10.1007/978-3-319-77547-0_14
https://doi.org/10.1007/978-3-319-77547-0_14
https://doi.org/10.1007/978-3-319-77547-0_15
https://doi.org/10.1007/978-3-319-77547-0_15
https://doi.org/10.1007/978-3-319-71027-3_37
https://doi.org/10.1007/978-3-319-71027-3_37
https://doi.org/10.1145/2858036.2858288
https://doi.org/10.1007/978-3-319-69365-1_3
https://doi.org/10.1007/978-3-319-69365-1_3
http://www.computationalcreativity.net/iccc2013/download/iccc2013-montfort-et-al.pdf
http://www.computationalcreativity.net/iccc2013/download/iccc2013-montfort-et-al.pdf
https://doi.org/10.1145/3027063.3027077
https://doi.org/10.1145/3027063.3027077
https://doi.org/10.1007/978-981-10-6544-6_31
https://doi.org/10.1109/CCIE.2015.7399324
https://doi.org/10.1109/CCIE.2015.7399324
https://www.businessinsider.com/messaging-apps-report-2018-4
https://www.businessinsider.com/messaging-apps-report-2018-4
http://computationalcreativity.net/iccc2018/sites/default/files/papers/ICCC_2018_paper_35.pdf
http://computationalcreativity.net/iccc2018/sites/default/files/papers/ICCC_2018_paper_35.pdf
https://doi.org/10.1007/978-1-4020-6710-5_13
https://doi.org/10.1007/978-1-4020-6710-5_13

25.

26.

Adapting a Conversational Text Generator for Online Chatbot Messaging 99

Weizenbaum, J.: ELIZA—a computer program for the study of natural language
communication between man and machine. Commun. ACM 9(1), 36-45 (1966).
https://doi.org/10.5100/jje.2.3-1

Wiggins, J., Mott, B., Pezzullo, L., Wiebe, E., Boyer, K., Lester, J.: Conversational
UX design for kids: toward learning companions. In: Proceedings of the Conversa-
tional UX Design CHI 2017 Workshop (2017). http://researcher.watson.ibm.com/
researcher/files/us-rjmoore/Wiggins.pdf

https://doi.org/10.5100/jje.2.3_1
http://researcher.watson.ibm.com/researcher/files/us-rjmoore/Wiggins.pdf
http://researcher.watson.ibm.com/researcher/files/us-rjmoore/Wiggins.pdf

	Adapting a Conversational Text Generator for Online Chatbot Messaging
	1 Introduction
	1.1 Contribution

	2 Conversational Agents with Bottery
	2.1 Tracery and Generative Text
	2.2 Bottery Agent Syntax
	2.3 Adapting Bottery to Online Messaging Platforms
	2.4 Advanced Messaging Features

	3 Discussion
	3.1 Future Work
	3.2 Conclusions

	References

