Chapter 4)
Analysis of Data-Flow Complexity Shethie
and Architectural Implications

Daniel Liibke, Tobias Unger, and Daniel Wutke

Abstract Service orchestrations are frequently used to assemble software compo-
nents along business processes. Despite much research and empirical studies into
the use of control-flow structures of these specialized languages, like BPEL and
BPMN2, no empirical evaluation of data-flow structures and languages, like XPath,
XSLT, and XQuery, has been made yet. This paper presents a case study on the
use of data transformation languages in industry projects in different companies
and across different domains, thereby showing that data flow is an important and
complex property of such orchestrations. The results also show that proprietary
extensions are used frequently and that the design favors the use of modules, which
allows for reusing and testing code. This case study is a starting point for further
research into the data-flow dimension of service orchestrations and gives insights
into practical problems that future standards and theories can rely on.

4.1 Introduction

The usage of analytical business processes is common in practice and has been the
subject of many research projects. The logical next step, the execution of business
process models, is nowadays catching up on both practical usage and a research
subject.

D. Liibke (2<)
FG Software Engineering, Leibniz Universitdt Hannover, Hannover, Germany
e-mail: daniel.luebke @inf.uni-hannover.de

T. Unger
Opitz Consulting Deutschland GmbH, Gummersbach, Germany

D. Wutke
W&W Informatik GmbH, Ludwigsburg, Germany
e-mail: daniel.wutke @ ww-informatik.de

© Springer Nature Switzerland AG 2019 59
D. Liibke, C. Pautasso (eds.), Empirical Studies on the Development of Executable
Business Processes, https://doi.org/10.1007/978-3-030-17666-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17666-2_4&domain=pdf
mailto:daniel.luebke@inf.uni-hannover.de
mailto:daniel.wutke@ww-informatik.de
https://doi.org/10.1007/978-3-030-17666-2_4

60 D. Liibke et al.

So far, most research has focused on the control flow of processes, e.g., the graph-
based structures in BPMN [20] or the usage of activities in BPEL. For example,
Hertis and Juric [7] and Liibke [9] analyzed control-flow dimensions of industrial
BPEL processes.

However, for executable processes, especially those that orchestrate multiple
services, the data-flow dimension is also important: data needs to be transferred
between different activities in the process and needs to be converted into a format
consumable by the services being orchestrated.

So far, we know no publications that deal with the implementation and the
complexity of data flow in executable business processes and their relationship to
the control flow.

Without knowing the data-flow dimension, existing approaches to model, test,
and verify business processes cannot judge whether and to what extent they must
include the data-flow dimension. Also, there are no reliable sources for practitioners
working in implementation projects to estimate implementation and testing effort
with regard to the data flow.

In order to fill this gap, we conducted a case study of executable business
processes implemented in BPEL that is presented in this chapter. This study aims
at providing metrics of data flow and comparing it to the control-flow dimension
of processes collected from a number of industry projects. This is a first step to
better comprehending the challenges modelers and developers face when developing
executable business processes.

Research into data flow has proved difficult because all vendors of BPEL engines
provide proprietary implementations and extensions. Without knowing the exact
causes, this can be a sign that the technologies provided by the BPEL standard are
insufficient and/or that the data-flow implementation is an important development
task that vendors chose to optimize in order to better sell their products.

The case study presented in this paper was conducted based on a collection of
executable BPEL processes from three companies from different domains, ranging
from processes for system-internal service integration to cross-organizational busi-
ness processes. The analyzed process models target one out of three different BPEL
engines and are built using the respective vendor-specific modeling tool and employ
the vendor-specific BPEL extension supported by the target platform.

This paper is structured according to the suggestion by Runeson et al. [16]: First,
related work is discussed in Sect.4.2 before BPEL as the modeling language of
the process models used in the case study is shortly introduced in Sect.4.3. The
case study design is outlined afterward in Sect.4.4, and its results are presented
in Sect.4.5. The latter contains subsections for detailing the metrics and their
interpretation as well as possible threats to their validity. Finally, conclusions and
possible future work are given in Sect. 4.6.

4 Analysis of Data-Flow Complexity and Architectural Implications 61

4.2 Related Work

4.2.1 Earlier Studies

There are not that many but still some empirical studies on the practical usage of
BPEL and BPMN.

Cardoso [4] tried to empirically validate process-flow metrics for BPEL pro-
cesses with a complexity metric defined by him. However, no data-flow dimensions
are discussed.

zur Muehlen and Recker [20] did the first study into the practical usage
of BPMN: they studied which visible BPMN elements were used by different
stakeholder groups. Because the executable information, especially data input and
output, is stored in non-visible attributes, the study does not contain any information
about it. In addition, the analyzed process models are descriptive only.

Hertis and Juric [7] did a much larger study into metrics of BPEL processes:
however, they collected process-flow-related data only, e.g., different activity counts
and activity usage patterns. No data-flow metrics were described nor gathered. Also,
Liibke [9] analyzed timelines of static BPEL metrics in an industry project. These
metrics were process flow related, and no insights about data flow could be taken
from those. Thus, data-flow dimensions of industry BPEL processes are not known.

Song et al. [18] conducted an empirical study on data-flow bugs in BPEL
processes. However, the authors did not characterize the data-flow dimension itself
but concentrated on three data-flow bug categories.

All in all, no empirical studies into the characterization of data-flow dimensions
of executable business processes in BPEL or BPMN2 have been made to the
authors’ knowledge as of today.

4.2.2 Theory

One of the reasons no empirical studies about the data-flow dimension of processes
have been made might be that in the history of the research into business processes.
Empirical research has mainly concentrated on analytical models. Even with the
rise of standardized executable languages, namely, BPEL and BPMN?2, research
has mostly concentrated on the already existing properties of analytical models:
process-flow complexity.

As a result, not many publications about data flow are available which in turn
might explain the missing empirical evidence: if no theories are created that need to
be verified, empirical research has no research questions to answer.

Cardoso [5] first raised the question on how to measure data-flow metrics. The
metric that would measure the code complexity of data transformations is called
“interface integration complexity” by him. However, the paper is only a position

62 D. Liibke et al.

paper that concludes with the question “[h]ow to calculate the interface integration
complexity of BPEL4WS containers.”

Parizi and Ghani [15] also raised the question of measurements for data-flow
complexity. However, they only cite Cardoso’s original question and offer no further
theory or answers themselves.

Some related work is available from the GRID domain, in which BPEL processes
have been used to orchestrate academic workflows. For example, Slomiski [17]
compared different approaches and GRID-specific challenges like handling large
data sets and streaming data. However, in usual business application domains, data
is not that large but structured in a more complex manner: data often needs to be
converted between heterogeneous data models, and conversion frequently involves
conditional logic to determine the attributes that need to be copied and possibly
converted.

The importance of considering data flow in addition to control flow in the context
of formal verification of BPEL processes has been recognized by Moser et al. [13]
and Zheng et al. [19] where the authors describe algorithms for deriving the data
flow of BPEL processes and incorporating it into formal process representations,
such as Petri nets or automata.

A related area to service orchestrations is the design of service choreographies,
in which services are not centrally orchestrated but instead call each other. Meyer
et al. [12] present an approach that relies on a global data model that is mapped to
the local data model of each service. The approach visualizes mappings by the use
of UML diagrams and references existing standards like OWL and XPath but does
not try to assess which data transformation technique would fit the approach and
how much development effort this layer requires. Nikaj et al. [14] also present an
approach to derive a REST service design from BPMN choreographies. While the
approach helps to identify resources and appropriate verbs, the data model is clearly
marked as out of scope.

4.3 Business Process Execution Language (BPEL)

The Business Process Execution Language (BPEL) is a language for modeling
executable business processes and standardized by OASIS [8]. It is focused on
orchestrating web services that are described by WSDL and XML Schema.

BPEL is defined by a set of activities that is split into basic activities and
structured activities. Basic activities perform a function, e.g., calling a service
(invoke), doing data transformations (assign), or waiting for an inbound
message (receive). Structured activities contain other activities and define the
control flow between them, e.g., executing one activity after another (sequence)
or looping (forEach, repeatUntil, while). The structured activity £low
allows graph-based modeling and parallel activity execution. All other activities are
block based and may only be nested hierarchically.

4 Analysis of Data-Flow Complexity and Architectural Implications 63

For handling XML data, BPEL mandates XPath and—yvia an XPath extension
function—XSLT. XPath can be used for conditions (e.g., in an if or as a loop
condition) or for copying data. Data copies are defined in copy elements inside an
assign activity. A small code snippet copying data from a received message to
a response message, for example, is implemented as follows (namespace prefixes
have been omitted for clarity):

<process>

1

2

3 <variable messageType="sayHello" name="sayHelloRequest" />
4 <variable messageType="sayHelloResponse " name="sayHelloResponse " />
5 <variable messageType="name" name="string" />

6

7 <sequence>

8 <receive

9 name="ReceiveSayHello "

10 operation="sayHello"

11 variable="sayHelloRequest"

12 >

13 <assign name="PrepareResponse ">

14 <copy>

15 <from>bpel:doXslTransform(

16 ‘prepareSayHelloResponse. xsl’,

17 $sayHelloRequest. parameters)

18 </from>

19 <to part="parameters" variable="sayHelloResponse "/>
20 </copy>

21 <copy>

22 <from>$sayHelloRequest. parameters /lastName)</ from>
23 <to variable="name"/>

24 </copy>

25 </assign>

26 <reply

27 name="ReplySayHello"

28 operation="sayHello"

29 variable="sayHelloResponse "

30 e 1>

31 </sequence>

32 </process>

A message is received by the receive activity (line 7) and copied to the variable
sayHelloRequest. The variable sayHelloRespnse is prepared by an assign activity
(line 13). The assign has two copy blocks. The first copy (line 14) uses XSLT
via BPEL’s built-in doXslTransform XPath function and copies the result to the
response. The second copy (line 21) simply copies the result of an XPath expression
to an atomic variable. The reply (line 26) sends the newly created message to the
caller.

Like most WS-* standards, BPEL is designed to be extensible: new query and
expression languages besides XPath can be referenced by the use of URNSs, and a
placeholder extension activity can contain vendor-specific activities.

Although BPEL has been superseded by the BPMN standard, it is still used, and
many companies have large repositories of BPEL processes that contain lessons
learned that apply not only to BPEL but to executable business processes and service
orchestrations in general.

64 D. Liibke et al.

4.4 Case Study Design

4.4.1 Research Questions

We formulate our research goal according to the goal/question/metric (GQM)
method [1]:

The purpose of this study is to characterize the implementation of data flow in
BPEL processes from the point of view of a solution architect in the context
of executable business process development projects.

We refined this overall research goal into the following questions:

RQ1: Which data-flow modeling choices are preferred on specific tools?
The BPEL standard itself supports XPath and XSLT (via an XPath extension
function). However, BPEL is designed with many extensibility points. One of
those extensions can be the use of other languages to formulate expressions
and queries on XML data. For example, many BPEL engines support XQuery
(e.g., Apache ODE and its derivatives, ActiveVOS, and Oracle BPM Suite),
while others allow to embed Java code or offer custom XML data mappings
(both options, e.g., IBM WebSphere Process Server (WPS)). When several
data-flow implementation choices are available, the question which ones are
preferred (or being pushed upon) by developers arises. We hypothesize a) that
the developers prefer to use the proprietary extensions provided by the tools,
which in general should be more prominently offered in the development tools
and should be more powerful than the standard ones because otherwise the
tool vendors would have had no incentive to implement those, and b) that the
most powerful options XQuery and Java are preferred over other implementation
choices. We measure this by counting lines of code and expect XQuery and Java
to have the largest amount of lines on ActiveVOS/Oracle and WebSphere Process
Server, respectively.

RQ2: What amount of data flow is portable, i.e., standards compliant?
Because we expect the proprietary data-flow implementation choices to be
preferred by the developers, our hypothesis is that no BPEL process is fully
standards compliant with regard to its data-flow implementation. Because we
expect XPath and XSLT to be used nevertheless in some spots (e.g., for
formulating conditions and transforming XML data, where XSLT can excel in
some circumstances), some portions of the data flow are expected to be standards
compliant, i.e., use XPath and/or XSLT. Because we expect most XML messages
to be produced by non-standards-compliant code and we expect those to make
the bulk of data-flow implementation code, we hypothesize that less of 10% of

4 Analysis of Data-Flow Complexity and Architectural Implications 65

the lines of data-flow code are implemented in one of the languages offered by
the BPEL standard.

RQ3: Is the data flow in executable business processes larger than the
process flow? Because executable business processes possibly connect to many
different systems exposing different services and business objects (BOs), we
expect data transformations to be an integral and large part of a business process
solution. As metrics for measuring complexity, we use the number of conditional
branches (e.g., if and switch) and the number of iterations (e.g., for, while,
and repeat until loops). For measuring the size, we use the number of lines
of code (data flow) and the number of basic activities (process flow). For all
these metrics, we hypothesize that the data-flow dimension is larger than the
process-flow dimension: (1) We estimate that more lines of code are needed than
there are basic activities because the XML messages usually contain more than
ten elements. (2) We also expect that there are more conditions and loops. The
more statements exist (regardless of the abstraction level), the more conditions
and loops are required to order them. Following of (1)+(2), we expect more
data-flow conditions and iterations, although we doubt any direct relationship.
Originally, we planned to compare not only LOCs and counts but also the
complexity of BPEL control-flow structures and the complexity of the data-
flow implementations. However, while McCabe’s cyclomatic complexity [11]
can be easily applied to XQuery, no adaption to BPEL nor XSLT is available.
Cardoso’s complexity metric [3] has many weights in formulas and is not well
defined for all graph-based processes (BPEL’s flow activity). The weights forbid
direct comparisons to McCabe’s unweighted complexity metric. Therefore, we
decided to use counts of iterations and conditions instead of a more sophisticated
complexity metric.

RQ4: Are data-flow implementations mainly large but linear or mainly
complex? From an architecture perspective, an interesting question is where
complexity is located. Thus, one important question is whether the code con-
cerned with the data flow is not only large compared to the process flow but
whether it is mainly linear, thus “easy” code, or whether it contains many control-
flow structures. We expect the data-flow code to be simple because we expect
most of the code to simply insert values into XML templates. Only at some
points we expect decisions for optional elements or loops for lists. However,
we expect more conditions than loops. Therefore, we hypothesize that we have
maximum one condition per four lines of data transformation code and maximum
one iteration per five lines of code.

RQS5: What are possible factors for increased complexity of data flow? From
an architecture point of view, it is important to know and identify drivers of
data-flow complexity to better plan and estimate implementation and testing.
Because we think that data flow is mainly needed to prepare messages, we
hypothesize that the number of message exchange activities (receive, reply,
invoke, onMessage, onEvent) correlates linearly to the lines of data-flow code.
If this correlation holds, it can be used on analytical models, which contain the
message exchanges, to better judge the technical implementation later on. We

66 D. Liibke et al.

also hypothesize that the data-flow complexity measured by counting conditions
and iterations also correlates linearly to the number of message exchange
activities: the usage of conditions and iterations is probably dependent on the
differences in the schemas being integrated but should behave the same within
one project.

4.4.2 Case and Subject Selection

For answering the outlined research questions, we conduct a case study on processes
from three different companies. All processes are BPEL processes so that the
choices and metrics are comparable and influences of product choices can be
isolated from the modeling language.

The processes target different BPEL engines (Informatica ActiveVOS 9.2, IBM
WebSphere Process Server 7.1 and WebSphere Business Process Manager (BPM)
8.5, Oracle Business Process Management Suite 12c) and are modeled using the
respective vendor-supplied modeling tool.

Informatica ActiveVOS is a BPEL engine which supports the full WS-BPEL
2.0 standard but also has proprietary extensions for modeling BPEL processes and
visualizing them as BPMN. One of these extensions is the support of XQuery
for expressions and queries, i.e., in all places where XPath is allowed. XQuery
as a superset of XPath is more powerful and can be used to fully replace XSLT
transformations.

IBM WebSphere Process Server (WPS) and its successor Business Process
Manager (BPM) are workflow engines on top of a JEE application server. In addition
to BPEL, IBM BPM also supports modeling and execution of processes modeled in
BPMN. As this study focuses on BPEL processes, only the BPEL-specific aspects
of BPM are discussed. Besides WS-BPEL 1.1 processes, WPS/BPM supports the
execution of state machines and business rules. Service integration is performed
via an integration solution (WebSphere ESB) that comes with the workflow engine.
Regarding data flow, WPS/BPM supports standard XPath expressions as well as the
vendor-specific business object maps, XML maps, and Java code embedded in the
BPEL process model.

Oracle Business Process Management Suite 12c¢ is a toolset and integration
platform for development and execution of SOA-based applications. Among other
components, the BPEL Process Manager supports the execution of BPEL 2.0
processes. Oracle also provides a set of vendor-specific extensions like XQuery
integration in XPath, a replay activity for restarting scopes, and human tasks.

In the following, we present an overview of the processes used in the case study,
following the categorization proposed in Chap. 2.

The first project that is contained in our analysis is Terravis (see Table 4.1).
Terravis is a process integration platform that allows to conduct cross-organizational
processes between land registries, notaries, and banks [2]. The project uses the
ActiveVOS BPEL engine, which is developed by Informatica. We analyzed a

4 Analysis of Data-Flow Complexity and Architectural Implications 67

Table 4.1 Aggregated metadata for the ActiveVOS process collection (Terravis, classification

according to [10])

Collection name
Process count
Domain
Geography
Time

Boundaries
Relationship

Scope

Process model purpose
People involvement
Process language
Execution engine
Model maturity

Terravis

86

Land register transactions
Switzerland

12-2017

Cross-organizational 23%, intraorganizational 17%,
intra-system 60%

Calls another 17%, calls another/is being called 24%, event
triggered 16%, is being called 1%

Core 34%, technical 38%, auxiliary 28%

Executable

Mostly 17%, partly 3%, none 79%

WS-BPEL 2.0, BPEL4People, plus vendor extensions
ActiveVOS 9.2.x

Productive 100%

Table 4.2 Aggregated metadata for the WPS/BPM process collection

Collection name
Process count
Domain
Geography
Time

Boundaries
Relationship

Scope

Process model purpose
People involvement
Process language

Execution engine

Model maturity

Banking and Insurance
75

Banking, insurance
Germany

05-2017

Cross-organizational 4%, intraorganizational 67%, within
system 29%

Calls another 12%, is being called 64%, is being called/calls
another 5%, no call 19%

Core 13%, technical 87%

Executable

None 92%, partly 8%

WS-BPEL 1.1 plus vendor extensions

IBM WebSphere Process Server 7.1, IBM Business Process
Manager 8.5

lustrative 3%, productive 73%, retried 24%

snapshot taken from the repository, which was taken in December 2017. We needed
to exclude processes from this project that use XQuery 2.0 features that are not
supported by our analysis tool.

The second process collection contains processes from the banking and insurance
domain (see Table 4.2) with a strong focus on technical integration processes.
The processes use the IBM WebSphere Process Server and IBM Business Process
Manager BPEL engines and integration solutions. The analyzed snapshot was taken

in May 2017.

68 D. Liibke et al.

Table 4.3 Aggregated metadata for the Oracle SOA Suite process collection

Collection name Wholesale and Retail Trade

Process count 23

Domain Commerce

Geography Europe

Time 2015

Boundaries Cross-organizational 17%, intraorganizational 83%
Relationship Calls another 96%, is being called 4%
Scope Technical 100%

Process model purpose Executable

People involvement None 96%, partly 4%

Process language WS-BPEL 2.0 plus vendor extensions
Execution engine Oracle SOA Suite 12.1

Model maturity Illustrative 4%, productive 96%

Table 4.4 Proprietary extensions for data-flow definition
XQuery in assign activities, import of XQuery modules for usage
Informatica ActiveVOS in XQuery statements embedded into the assign activities
Oracle BPM Suite XQuery in XPath

IBM WebSphere Process Java, business object (BO) maps, XML maps
Server/Business Process
Manager

The Oracle process collection shown in Table 4.3 is used to integrate retailers
with their suppliers.

4.4.3 Data Collection and Analysis Procedure

In the first step, the data transformations of the collected processes have been
analyzed: the main goal is to identify the proprietary extensions used for defining
the data flow. The extensions found are presented in Table 4.4.

The data collection for the static metrics itself was done with a custom static
code analyzer named BPELStats that had been developed under the umbrella of the
BPELUnit project and is now developed as a standalone project. BPELStats has
been originally developed for gathering the metrics presented in [9] and is available
as open source.

Among other metrics, BPELStats can count BPEL activities by type and has been
extended as part of this study to compute the number of occurrences, iterations,

Uhttps://github.com/dluebke/bpelstats.

https://github.com/dluebke/bpelstats

4 Analysis of Data-Flow Complexity and Architectural Implications 69

conditions, and LOCs for XPath, XSLT, XQuery, BOMaps, XMLMaps,2 and Java
code. The calculation is based on whole files: if a file is imported into the BPEL
process, all functions, templates, etc. are counted toward the metrics, and no check
is made whether a certain piece is actually called by the process or not. All of our
extensions have been contributed to the BPELStats project and are freely available
and can be reviewed.

Clean checkouts of the process projects have been done first. The total sample
size contains 184 executable BPEL processes. Where necessary, a full build has
been triggered before the analysis when the build is necessary to copy all external
dependencies (e.g., WSDLs, XML Schemas, reused XSLT and XQuery files) to
their correct positions enabling BPELStats to also follow and resolve imports of
those files from the BPEL processes.

4.4.4 Validity Procedure

In order to ensure the correctness of the measurements, the BPELStats tool was
tested with both unit tests and manual tests. The whole gathering routines were
automated by using shell scripts in order to eliminate human error. These shell
scripts were also tested by all researchers in this study in order to show that the
results are correctly computed.

For allowing other researchers to replicate this study, the used scripts have been
made available.® This also allows other researchers to check their correctness.

We tried to cover as many different BPEL toolsets as possible to strengthen
external validity. With three completely different BPEL engines used in three
large industrial projects at different organizations, we are confident to be able to
distinguish influences imposed by the tooling and the project from those that are
inherent to the problem of service orchestrations and executable business processes.

4.5 Results

Within this section, we present the plain results of our case study, which mainly
include the metrics being gathered as part of our measurements. The interpretation
of these measurements is presented in the following section.

2 As XMLMaps are compiled to XSL transformations during build time, their metrics are calculated
using the XSLT sublanguage parser and hence show up as XSLT metrics in the results with their
occurrences being counted separately.

3The files are accessible at http://www.daniel-luebke.de/files/bpm-dataflowcomplexity.tgz.

http://www.daniel-luebke.de/files/bpm-dataflowcomplexity.tgz

70 D. Liibke et al.

4.5.1 Metrics

For answering our research questions, we collected the metrics required to answer
them.

The first analysis computed the occurrences of data flow in the process collection
and the lines of code of data-flow code. An occurrence is a place at which data-flow
code is embedded into the process. If the process has five assign activities, there are
at least five occurrences of data-flow mappings, depending on the number and type
of copy statements. Each data-flow occurrence contains at least one line of code but
can contain multiple ones. This means that the number of occurrences is equal to or
less than the number of lines of code.

We aggregated the metrics as shown in Table 4.5 according to the different
languages that we found in the process set. The language which has the most
occurrences in our process set is XPath. However, XQuery has more lines of code.
Java is the third most often used language followed by XSLT.

We aggregated this data further and clustered the languages into portable (stan-
dards compliant, i.e., XPath, XSLT) and non-portable (not mandated by the BPEL
standard, i.e., XQuery, Java, BOMaps, and XMLMaps). The results are shown in
Table 4.6: nearly half of the occurrences (46%) of data-flow code are portable, but
only 8.96% of lines of code are written in standard-mandated languages.

In the next step, we analyzed the relationship between the process flow and the
data flow. Figure 4.1 depicts the relationship between the number of basic activities
and the lines of data-flow code. The plots indicate a linear relationship between
basic activities and data flow. Therefore, we computed Spearson’s linear correlation
coefficient between these two dimensions, which is ¢ = 0.8162 (Terravis), ¢ =
0.9035 (Wholesale and Retail Trade), ¢ = 0.6962 (Banking and Insurance), and

Table 4.5 Data-flow occurrences and LOCs by engine and implementation choice

Metric ActiveVOS Oracle BPM IBM WPS/BPM
XPath occurrences 2419 2380 738
XPath LOCs 2865 2380 738
XSLT occurrences 4 0 0
XSLT LOCs 4437 0 0
XQuery occurrences 4173 108 0
XQuery LOCs 21, 888 10, 010 0
Java occurrences 0 0 2193
Java LOCs 0 0 13,298
BOMap occurrences 0 0 32
BOMap LOCs 0 0 3676
XMLMap occurrences 0 0 0
XMLMap LOCs 0 0 0
Total occurrences 6596 2488 2963

Total LOCs 29, 190 12,390 17,712

4 Analysis of Data-Flow Complexity and Architectural Implications 71

Table 4.6 Percentages of

; Portability Percentage (S)LOCs Percentage occurrences
used data-flow technologies

Portable 8.96% 46%
Not portable 91% 54%
ActiveVOS Oracle
B ° B

o o

o o

o (=]
- © ° - w0
c o c
> — =] —
o o
o o o o
o g4 o g4
2 ° 2 °
0 N s o o

o o ° o o,

g4 & g

o+ ° o - o

T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Basic Activities Basic Activities

WPS

5000
I

(S)LOC Count
3000

0 1000

0 100 200 300 400 500

Basic Activities

Fig. 4.1 Data-flow (S)LOC count and number of basic activities

¢ = 0.848 combined for the whole data set. Except for the Banking and Insurance
data set, the relationship between the basic activities and the data-flow lines of code
is linear. As such, we added regression lines to Fig. 4.1.

In order to judge whether the process-flow or data-flow dimension is larger,
we computed a two-sided, paired Wilcoxon test: for the Terravis data set p =
1.101 x 10719, for the Wholesale and Retail Trade data set p = 2.886 x 1073,
and for the Banking and Insurance data set p = 5.947 x 1074, If all data sets are
combined, the Wilcoxon test results in p = 1.946 x 10731, All computed p-values
are much smaller than 0.01, which is a commonly accepted threshold for highly
significant results.

In the next step, we drilled down into the nature of the control flow and
data flow and computed the number of iterations and conditions within each
language. We plotted the conditions of each dimension against each other in
Fig.4.2 and the iterations against each other in Fig.4.3. For each project alone
and all combined, we again computed Spearson’s linear correlation coefficient for

72 D. Liibke et al.

ActiveVOS Oracle
8 _ ° o 8 .
84 ° ° ° 84
o v o v
f=4 f=4
o o | o S o |
= o© = o
© e}
5 o 5 o
O © 7 O © 7
o o o
o | ° o o | o
5 9) 5 ®
R oo _ 8 . 8 1 % °
o ° 8 8 o
o i)&g o -8°® ° ° o
T T T T T T T T T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Data-flow conditions Data—-flow conditions
WPS
o
S -
S | o
® *
=
oS o |
= [e)
©
f=
QS o |
o ©
m
o |
% <
R Ooooo @
8£99
o oo

T T T T T T
0 50 100 150 200 250 300

Data-flow conditions

Fig. 4.2 BPEL conditions and data-flow conditions

both conditions (ccong = {0.75,0.5671, 0.6053, 0.6538}) and iterations (¢;; =
{0.591, 0.9503, —0.1554, 0.6444}). Because |c| < 0.75| holds for correlation coef-
ficients with two exceptions (conditions for Terravis and iterations for Wholesale
and Retail Trade), our data cannot support any linear correlation, especially because
there are also correlation coefficients with different signs (c;; is negative for WPS).

We also conducted a two-tailed, paired Wilcoxon test for differences between
the process-flow and data-flow dimension on this data: for conditions of the three
projects and all projects combined

Peona = (0.5215,0.0001651, 0.6319, 0.07883)

and for iterations

pir = (4.997 x 10~7,0.0009128, 0.6768, 1.59 x 10~8) While for all p-values
concerning the conditions p > 0.05 holds, nearly all p-values—except for the WPS
project—hold p < 0.01.

These differences concerning the different projects and BPEL engines led to
another drill-down into the data. As shown in Fig. 4.4, we plotted the distribution of
conditions and iterations in relation to the lines of data-flow code. We split this data
by projects and additionally combined the processes using XQuery from the Terravis
process set and the Wholesale and Retail Trade process set. The plot suggests that
the number of conditions and iterations in the data flow is significantly different

4 Analysis of Data-Flow Complexity and Architectural Implications 73

ActiveVOS Oracle
o o
N N
o
w0 w0
w <~ 7 o » 2
=4 f=4
S o
© ° ® °
g 2 ° g 2
- -
i o oo °
[} o 53] o
w H o o w H oo
[ele] o o o
o @
a0 o o o o o o o
oo © [
O - OO O 00 o o 400
T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Data—flow iterations Data—flow iterations
WPS
o]
N
w _|
w -
f=4
o
®
2 2
o
w
o
o o
w
o
o
o
o
O - Cooooo O

T T T T T T T
0 10 20 30 40 50 60

Data—flow iterations

Fig. 4.3 BPEL iterations and data-flow iterations

between the data sets, also when the data sets use the same language, which is the
case in Terravis and Wholesale and Retail Trade for XQuery.

The median values of conditions per lines of data-flow code are below 0.15.
Except for the Wholesale and Retail Trade data set, they are even below 0.10. All
values for the iterations are below 0.075, and the median values are all below 0.025.
The data indicates that there are more conditions per lines of code than iterations.

For answering the last research question, we computed the number of message
exchange activities in the processes and computed the correlation coefficient to the
lines of data-flow code. The results are summarized in Table 4.7: For two of the
three data sets, we get a correlation coefficient ¢ with ¢ > 0.75, which hints at a
linear relationship. The exception is the WPS data set, which mainly uses Java. The
mean of the message activities per lines of data-flow code is between 0.026 and
0.054 in the data sets.

74 D. Liibke et al.

Conditions Iterations
] o]
0.30 — 0.30 —
- o
: o
0.25 — : 0.25 —
] [e]
o
] o]
0.20 — f 0.20 —
0154 © 0.15 —
o N
o] '
0.10 — : 0.10 —
< -
B R e ==1 I o e
0.05 H 005 - — o
— 8
° — °
0'007D === O_OO,Q“‘EE_E_—Q—
T T T T T T T T T T T T
29 22 23 H T o 29 20 23 H T o
$9 28 s£ @ & 32 g9 88 22 @ § 3
g% g6 g¢ g g% g6 g¢ S
< °© 2 e
Fig. 4.4 Number of data-flow conditions and iterations per LOC
Table 4.7 Message exchanges per process collection and (S)LOC
Metric ActiveVOS Oracle BPM IBM WPS
Message activities 2238 316 750
(S)LOC 41,100 12,390 17,712
Message activities/(S)LOC 0.054 0.026 0.042
Correlation coefficient 0.792 0.907 0.693

4.5.2 Interpretation

4.5.2.1 RQ1: Which Data-Flow Modeling Choices Are Preferred on
Specific Tools?

The results presented in Table 4.5 confirm hypothesis (a) as well as hypothesis (b).
However, the result is most succinct for the IBM WPS collection. One reason is
that Java can be used almost anywhere in IBM Process Server. Furthermore, IBM’s
tooling supports the Java extensions very well. ActiveVOS and Oracle BPM do not
support Java in conditions.

In the case of Oracle, the interpretation is not that easy. Although XQuery is a
popular option for data mapping, the numbers in Table 4.5 show that also XPath is
very popular. One reason is that Oracle integrates XQuery as an XPath extension
function. Whenever XQuery is used, XPath is also used. This means from a

4 Analysis of Data-Flow Complexity and Architectural Implications 75

BPEL perspective you always use a BPEL standard option (XPath), because Oracle
decided to extend XPath. The fact that there are much more XQuery LOCs than
XPath LOCs confirms that XQuery is the preferred option for data transformation.
Furthermore, Oracle provides a modeling tool for XPath.

Compared to IBM and Oracle, ActiveVOS is the most standard compliant engine.
However, the disproportionately larger number of XQuery LOCs proves that the
vendor extension XQuery is preferred over XPath.

Form a skill perspective, we quite often observe that BPEL processes are
modeled by developers. For them, XQuery might be easier to learn than XSLT;
and due to Java being a common language used for developing enterprise software,
a large number of those developers are probably already familiar with Java, so they
do not need to learn new languages like XPath or XSLT.

4.5.2.2 RQ2: What Amount of Data Flow Is Portable, i.e., Standards
Compliant?

Table 4.6 shows that the amount of non-portable data-flow code is over 90%,
i.e., porting a process would lead to a nearly complete reimplementation of the
data flow. However, the occurrences of BPEL-compliant data-flow implementations
and implementations using vendor extensions are nearly equal. One reason is
that ActiveVOS and Oracle BPEL only support XML-based implementations in
conditions. In addition, developers try to make implementation of conditions easy,
i.e., XPath is sufficient by moving complicated transformation to assign activities.
Ironically, the possibility to use Java in WPS also makes things easier for developers.
Java provides a larger set of operators that allow to formulate conditions more easy
and compact. For example, the Exclusive OR (XOR) is not supported in XPath but
in Java.

Another aspect of portability is that each vendor chooses a different implemen-
tation of an extension, even if the extension itself is provided by multiple vendors.
For example, the ActiveVOS XQuery extension is not compatible with Oracle’s
extension, and IBM Java activity is not compatible with Oracle’s Java activity. Thus,
portability would also not increase if comparing the process collections pairwise.

Our results also support the conclusion that there is something wrong with the
standard. Maybe the standard fell victim to its extensibility because every vendor
used the extensibility to differentiate its product. Maybe the vendors also only
approved the standard because of its extensibility because portability was not really
an issue.

For architects, this raises the question which language is the best option to
model data flow. This also raises a lot of research questions: What is the best, most
productive, easy-to-maintain set of data transformation languages? How to decide
on a language in a concrete project setting?

76 D. Liibke et al.

4.5.2.3 RQ3: Is the Data Flow in Executable Business Processes Larger
than the Process-Flow?

The highly significant p-values (all p <= 0.01) confirm our assumption. However,
this contradicts our experience from modeling and implementing process-based
systems. We spend a large part of the modeling effort on modeling the control flow.
The results suggest that we should spend more effort on the data flow. Also, a lot of
project guidelines we saw lack in defining rules for data flow. Therefore, guidelines
should also provide rules and norms for handling the implementation of the data
flow. In addition, the research domain should give data flow more attention.

4.5.2.4 RQ4: Are Data-Flow Implementations Mainly Large but Linear
or Mainly Complex?

Table 4.4 shows that the measurement proves our hypothesis to some extent.
However, the assumption that we expect less conditions than loops is disproved
because we observed significantly different numbers (especially conditions) for each
observed language. Especially, the XQuery transformations of the Wholesale and
Retail Trade process collection contain more conditions than loops. This aspect
needs further research. This research should also investigate whether the design
of the XML Schemas, the chosen query language, or even unknown properties
influence the number of loops and conditions.

4.5.2.5 RQS5: What Are Possible Factors for Increased Complexity of Data
Flow?

Table 4.7 shows a strong linear correlation between message exchange activities
and LOCs. One reason might be that transformations are mostly used to prepare
a service invocation. In a lot of processes, we observe that an invoke activity is
preceded and/or succeeded by assign activities. For example, this correlation allows
to estimate effort for implementing data transformations based on the number of
message exchange activities. Even if we confirmed the strong linear correlation,
the slack between the projects is different. For example, the Wholesale and Retail
Trade process collection shows a higher number of LOCs per message exchanges
than the IBM collection. The reason for this might be similar to Sect.4.5.2.1, i.e.,
the expressiveness of the data transformation language used.

4.5.3 Threats to Validity

We tried to eliminate internal threats to validity as much as possible: because we
only rely on automatically and objectively measured metrics for which the metric

4 Analysis of Data-Flow Complexity and Architectural Implications 77

tool and all scripts are available for public scrutiny, there should be no measurement
errors.

Regarding processes built for the IBM WPS/BPM engines, we identified the fol-
lowing threats to internal validity due to our measurement method: WPS/BPM script
elements allow the execution of arbitrary Java code, not only data transformations.
The collected metrics for Java code do not differentiate between data transformation
and, e.g., business logic and are calculated based on all Java code embedded in the
BPEL process model. This classification would be needed to be done manually and
is both time-consuming and error prone. In addition, WPS/BPM supports importing
Java classes from library projects and external libraries. Both forms of imports
have not been considered when calculating the Java metrics. Finally, the WPS/BPM
BPEL engine comes with an integration solution (WebSphere ESB) which supports
the definition and execution of so-called mediation flows. As part of the integration
logic, data can be transformed in various ways, e.g., via XSL transformations or
custom Java code. Data transformations defined in mediation flows have not been
considered when calculating the respective data-flow metrics in the BPEL processes.

Because this case study is based on a small set of projects, there are however
threats to external validity. Especially, the question of generalizability to other BPEL
projects has to be raised.

This case study uses three different BPEL tool chains, and we could identify
differences between the different projects. However, due to limitations in our data
set, we cannot tell whether these differences arise from the tools only—which is
certainly true for the different data-flow languages being offered—or whether dif-
ferences are caused by other project constraints. There are no theories nor empirical
evidence for possible impact factors: from our point of view, probable candidates are
the difference between the service contracts of composed services and architecture
choices that can distribute data transformations between different infrastructure
artifacts (e.g., enterprise service bus (ESB) or process implementation) and own
services (e.g., custom services implemented in a “classical” programming language
like Java).

The results clearly show that more than half of the data flow is implemented
with non-portable vendor extensions. To our knowledge, our data set covers all
proprietary extensions except JavaScript that is, for example, offered by ActiveVOS.
However, under these circumstances, we also expect that the same data-flow
complexity is contained therein, even though it might be implemented differently.

Further cases will be needed to judge and strengthen the external validity and
also to build and validate first theories about causalities that influence data-flow
complexity. This case study will therefore serve as a first piece of the puzzle to
unravel the understanding and drivers of data flow in executable business processes,
but clearly further steps are required in order to exactly pinpoint influencing factors.

78 D. Liibke et al.

4.6 Conclusions and Future Work

4.6.1 Conclusions for Researchers

To our knowledge, this case study was the first empirical study that did not only
consider the process-flow dimension but also the data-flow dimension of executable
business processes—in this case modeled in BPEL.

Our study clearly shows that the data-flow dimension is larger than the process-
flow dimension regarding both statements (LOCs vs. activities) and complexity
(conditions and iterations). This means that theoretical concepts, e.g., for verifying
process flow, fail to deliver a complete solution until they are not extended by
data-flow analysis. This also means that with current techniques, verification of the
process flow alone cannot replace testing of executable business processes because
the tests are covering the data transformations that are otherwise left out. While
“processes are not data,” it is certainly true that “processes cannot be implemented
without data flow.”

The study also shows that BPEL processes, although they are modeled in a
standardized language, are amended with many proprietary extensions. This in turn
means that researchers need to have knowledge about the tools that have been used
to develop the processes being researched.

Our case study resulted in a new possible estimation metric: the number of
message exchanges that can be computed on the analytical process model prior to
implementation of the executable model correlates very well to the lines of data-flow
code. However, the average number of message exchanges per lines of data-flow
code varies between 0.03 and 0.05 between the data sets.

Better formalization of data transformations would improve the possibilities to
analyze the data flow from a research perspective. With this in mind, BPMN 2.0
as a standard lacks even behind BPEL with all proprietary extensions: the BPMN
standardization committee opted to not standardize any technical bindings. As such,
there are no data transformation languages mandated by the standard. Instead,
the choice is left to the tool vendor. This means that BPMN research with the
goal of gaining insights into executable BPMN in a general sense is probably
impossible. A realistic goal would be to study the BPMN “dialect,” which is created
by the vendor implementation. With this in mind, the usage of BPEL processes as
research subjects is probably easier but warrants the question of how much of the
empirical results gained in BPEL processes can be generalized to BPMN executable
processes.

4.6.2 Conclusions for Practitioners

While some BPM vendors advertise their tools with “zero code” and other buz-
zwords, our study clearly shows that the data-flow dimension is important and
even larger and more complex than the process-flow dimension. Practitioners and

4 Analysis of Data-Flow Complexity and Architectural Implications 79

especially software architects need to be aware of the implications of the “hidden
logic” that is usually hidden behind nice-looking models:

» Especially, data-flow implementation seems to be highly specific to a chosen
BPMS. None of the studied projects achieved portability. This means that by
choosing a tool, the project will probably be dependent on this tool in the future
if high migration costs are to be avoided.

e Data flow builds its own new layer of complexity. This means that effort
for development and especially testing the higher number of conditions and
iterations needs to be planned for. Also, architects should consider making
guidelines on how to structure, format, etc. data-flow code in their projects to
help developers build better and more maintainable executable processes.

* For better communication between stakeholders, it would be good to see the data
flow clearer in the analytical models. Usage of data objects in BPMN is one way,
which are only used in about 25% of all models [20], to better communicate
which data is sent/received from where.

e We have shown that the number of message exchanges can be used to predict
the lines of data-flow code. While this needs to be further improved into an
estimation method, architects can leverage this knowledge.

* Although data-flow code uses conditions and iterations, it only uses few of them.
This means that most of the code is fairly easy and should be easy to develop and
test.

* Additionally, the overall solution architecture should address the data flow more.
At which components or areas inside or outside the executable process should
what type of data-flow logic be placed? In the projects analyzed as part of this
research, most code was embedded directly into the BPEL processes themselves,
while only a small amount was placed in surrounding areas like an enterprise
service bus or supporting services. For example, Danei et al. [6] propose
a multilayered approach with clear responsibilities for each layer. Empirical
analysis should be used to gain further insight into benefits and drawbacks of
different architectural choices.

4.6.3 Outlook and Future Work

The ultimate goal should be to identify causal relationships between projects’
properties and their data-flow complexity. Most likely, this will include architectural
decisions outside the modeling language itself, like the complexity and diversity of
the underlying data models of the orchestrated services. Also, the use of vendor-
specific functionality is very apparent. Causes for this should be subject to future
research, especially with the aim to provide improvements to relevant standards.
One worthwhile angle of future research would be an empirical comparison of
the data-flow languages typically used with regard to development effort and
understandability.

80 D. Liibke et al.

Although the case study used BPEL processes, executable processes modeled
in BPMN2 also need to deal with data transformations. We expect complexity
drivers for data transformations to be independent of the process modeling language.
However, a further research angle would be the investigation of data flow in BPMN2
processes as well: unfortunately because BPMN?2 is not standardized in the area of
technical bindings, we expect research to be more difficult and the metrics harder to
compare between different process engines than with BPEL.

We hope that we can pursue these possible future research topics on data flow in
executable business processes together with other researchers and industry partners
and hope that this case study and the published tooling help others to replicate
this study and provide answers to data-flow research questions on other interesting
topics!

References

1. V.R. Basili, Applying the goal/question/metric paradigm in the experience factory, in Software
Quality Assurance and Measurement: A Worldwide Perspective, vol. 7, no.4 (Chapman and
Hall, London, 1995), pp. 21-44

2. W. Berli, D. Liibke, W. Mockli, Terravis — large scale business process integration between
public and private partners, in Lecture Notes in Informatics (LNI), ed. by E. Plodereder, L.
Grunske, E. Schneider, D. Ull. Proceedings INFORMATIK 2014, vol. P-232 (Gesellschaft fiir
Informatik e.V., Bonn, 2014), pp. 1075-1090

3. J. Cardoso, Complexity analysis of BPEL web processes. Softw. Process Improv. Pract. J. 12,
35-49 (2006)

4. J. Cardoso, Process control-flow complexity metric: an empirical validation, in IEEE Inter-
national Conference on Services Computing, 2006. SCC’06 (IEEE, Piscataway, 2006), pp.
167-173

5. J. Cardoso, About the data-flow complexity of web processes, in 6th International Workshop
on Business Process Modeling, Development, and Support: Business Processes and Support
Systems: Design for Flexibility. The 17th Conference on Advanced Information Systems
Engineering (CAiSE’05) (2015)

6. M. Danei, J. Elliott, M. Heiler, T. Kerwien, V. Stiehl, Effectively and efficiently implementing
complex business processes - a case study, in Empirical Studies on the Development of
Executable Business Processes, Chapter 3 (Springer, Cham, 2019)

7. M. Hertis, M.B. Juric, An empirical analysis of business process execution language usage.
IEEE Trans. Softw. Eng. 40(08), 738-757 (2014)

8. D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M.
Ford, Y. Goland, A. Guizar, N. Kartha, C.K. Liu, R. Khalaf, D. Konig, M. Marin, V. Mehta,
S. Thatte, D. van der Rijn, P. Yendluri, A. Yiu, Web Services Business Process Execution
Language Version 2.0 (OASIS, Clovis, 2007)

9. D. Liibke, Using metric time lines for identifying architecture shortcomings in process
execution architectures, in 2nd International Workshop on Software Architecture and Metrics
(SAM), 2015 IEEE/ACM (IEEE, Piscataway, 2015), pp. 55-58

10. D. Liibke, A. Ivanchikj, C. Pautasso, A template for categorizing empirical business process
metrics, in Business Process Management Forum - BPM Forum 2017, ed. by J. Carmona, G.
Engels, A. Kumar (Springer, Cham, 2017)

11. T.J. McCabe, A complexity measure, in Proceedings of the 2Nd International Conference on
Software Engineering, ICSE 76, Los Alamitos (IEEE Computer Society Press, Washington,
1976), 407 pp.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Analysis of Data-Flow Complexity and Architectural Implications 81

A. Meyer, L. Pufahl, K. Batoulis, D. Fahland, M. Weske, Automating data exchange in process
choreographies. Inf. Syst. 53, 296-329 (2015)

S. Moser, A. Martens, K. Gorlach, W. Amme, A. Godlinski, Advanced verification of
distributed ws-bpel business processes incorporating cssa-based data flow analysis, in /EEE
International Conference on Services Computing (SCC 2007), July 2007, pp. 98-105

A. Nikaj, M. Weske, J. Mendling, Semi-automatic derivation of RESTful choreographies from
business process choreographies. Softw. Syst. Model. 18(2), 1195-1208 (2019)

R.M. Parizi, A.A.A. Ghani, An ensemble of complexity metrics for BPEL web processes,
in Ninth ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, 2008. SNPD ’08 (2008)

P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Research in Software Engineeering —
Guidelines and Examples (Wiley, Hoboken, 2012)

A. Slomiski, On using BPEL extensibility to implement OGSI and WSRF grid workflows.
Concurr. Comput. Pract. Exp. 18(10), 1229-1241 (2006)

W. Song, C.Z. Zhang, H.-A. Jacobsen, An empirical study on data flow bugs in business
processes. IEEE Trans. Cloud Comput. PP, 1 (2018)

Y. Zheng, J. Zhou, P. Krause, Analysis of BPEL data dependencies, in 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications (EUROMICRO 2007) Aug
2007, pp. 351-358

M. zur Muehlen, J. Recker, How much language is enough? Theoretical and practical use of
the business process modeling notation, in Advanced Information Systems Engineering: 20th
International Conference, CAiSE 2008 Montpellier, June 16-20, 2008 Proceedings, ed. by Z.
Bellahseéne, M. Léonard (Springer, Berlin, 2008), pp. 465479

	4 Analysis of Data-Flow Complexity and Architectural Implications
	4.1 Introduction
	4.2 Related Work
	4.2.1 Earlier Studies
	4.2.2 Theory

	4.3 Business Process Execution Language (BPEL)
	4.4 Case Study Design
	4.4.1 Research Questions
	4.4.2 Case and Subject Selection
	4.4.3 Data Collection and Analysis Procedure
	4.4.4 Validity Procedure

	4.5 Results
	4.5.1 Metrics
	4.5.2 Interpretation
	4.5.2.1 RQ1: Which Data-Flow Modeling Choices Are Preferred on Specific Tools?
	4.5.2.2 RQ2: What Amount of Data Flow Is Portable, i.e., Standards Compliant?
	4.5.2.3 RQ3: Is the Data Flow in Executable Business Processes Larger than the Process-Flow?
	4.5.2.4 RQ4: Are Data-Flow Implementations Mainly Large but Linear or Mainly Complex?
	4.5.2.5 RQ5: What Are Possible Factors for Increased Complexity of Data Flow?

	4.5.3 Threats to Validity

	4.6 Conclusions and Future Work
	4.6.1 Conclusions for Researchers
	4.6.2 Conclusions for Practitioners
	4.6.3 Outlook and Future Work

	References

