
An Algebraic Approach to Maliciously
Secure Private Set Intersection

Satrajit Ghosh1(B) and Tobias Nilges2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
satrajit@cs.au.dk

2 ITK Engineering GmbH, Rülzheim, Germany

Abstract. Private set intersection (PSI) is an important area of research
and has been the focus of many works over the past decades. It describes
the problem of finding an intersection between the input sets of at least
two parties without revealing anything about the input sets apart from
their intersection.

In this paper, we present a new approach to compute the intersection
between sets based on a primitive called Oblivious Linear Function Eval-
uation (OLE). On an abstract level, we use this primitive to efficiently
add two polynomials in a randomized way while preserving the roots of
the added polynomials. Setting the roots of the input polynomials to be
the elements of the input sets, this directly yields an intersection pro-
tocol with optimal asymptotic communication complexity O(mκ). We
highlight that the protocol is information-theoretically secure against a
malicious adversary assuming OLE.

We also present a natural generalization of the 2-party protocol for
the fully malicious multi-party case. Our protocol does away with expen-
sive (homomorphic) threshold encryption and zero-knowledge proofs.
Instead, we use simple combinatorial techniques to ensure the security. As
a result we get a UC-secure protocol with asymptotically optimal com-
munication complexity O((n2+nm)κ), where n is the number of parties,
m is the set size and κ is the security parameter. Apart from yielding
an asymptotic improvement over previous works, our protocols are also
conceptually simple and require only simple field arithmetic. Along the
way we develop techniques that might be of independent interest.

1 Introduction

Private set intersection (PSI) has been the focus of research for decades and
describes the following basic problem. Two parties, Alice and Bob, each have a

S. Ghosh—Supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement #669255 (MPCPRO), the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement #731583 (SODA)
and the Independent Research Fund Denmark project BETHE.
T. Nilges—Part of the research leading to these results was done while the author was
at Aarhus University. Supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement #669255 (MPCPRO).

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 154–185, 2019.
https://doi.org/10.1007/978-3-030-17659-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17659-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-17659-4_6

An Algebraic Approach to Maliciously Secure Private Set Intersection 155

set SA and SB, respectively, and want to find the intersection S∩ = SA ∩ SB of
their sets. This problem is non-trivial if both parties must not learn anything
but the intersection. There are numerous applications for PSI from auctions [29]
over advertising [32] to proximity testing [30].

Over the years several techniques for two-party PSI have been proposed,
which can be roughly placed in four categories: constructions built from specific
number-theoretic assumptions [8,9,21,23,28,38], using garbled circuits [20,32],
based on oblivious transfer (OT) [10,26,31,33–36] and based on oblivious polyno-
mial evaluation (OPE) [7,12,13,17,18]. There also exists efficient PSI protocols
in server-aided model [24].

Some of these techniques translate to the multi-party setting. The first
(passively secure) multi-party PSI (MPSI) protocol was proposed by Freed-
man et al. [13] based on OPE and later improved in a series of works [5,25,37]
to achieve full malicious security. Recently, Hazay and Venkitasubramaniam [19]
proposed new protocols secure against semi-honest and fully malicious adver-
saries. They improve upon the communication efficiency of previous works by
designating a central party that runs a version of the protocol of [13] with all
other parties and aggregates the results.

Given the state of the art, it remains an open problem to construct a protocol
with asymptotically optimal communication complexity in the fully malicious
multi-party setting. The main reason for this is the use of zero-knowledge proofs
and expensive checks in previous works, which incur an asymptotic overhead
over passively secure solutions.

In a concurrent and independent work, Kolesnikov et al. [27] presented a new
paradigm for solving the problem of MPSI from oblivious programmable pseu-
dorandom functions (OPPRF). Their approach yields very efficient protocols for
multi-party PSI, but the construction achieves only passive security against n−1
corruptions. However, their approach to aggregate the intermediate results uses
ideas similar to our masking scheme in the multi-party case.

1.1 Our Contribution

We propose a new approach to (multi-party) private set intersection based on
oblivious linear function evaluation (OLE). OLE allows two mutually distrusting
parties to evaluate a linear function ax + b, where the sender knows a and b,
and the receiver knows x. Nothing apart from the result ax + b is learned by
the receiver, and the sender learns nothing about x. OLE can be instantiated in
the OT-hybrid model from a wide range of assumptions with varying communi-
cation efficiency, like LPN [1], Quadratic/Composite Residuosity [22] and Noisy
Encodings [14,22], or even unconditionally [22].

Our techniques differ significantly from previous works and follow a new
paradigm which leads to conceptually simple and very efficient protocols. Our
approach is particularly efficient if all input sets are of similar size. To showcase
the benefits of our overall approach, we also describe how our MPSI protocol
can be modified into a threshold MPSI protocol.

156 S. Ghosh and T. Nilges

Concretely, we achieve the following:

– Two-party PSI with communication complexity O(mκ) and computational
cost of O(m log m) multiplications. The protocol is information theoretically
secure against a malicious adversary in the OLE-hybrid model.

– UC-secure Multi-party PSI in fully malicious setting with communication
complexity O((n2 + nm)κ) and computational complexity dominated by
O(nm log m) multiplications for the central party and O(m log m) multipli-
cations for other parties.

– A simple extension of the multi-party PSI protocol to threshold PSI, with
the same complexity. To the best of our knowledge, this is the first actively
secure threshold multi-party PSI protocol.1

In comparison to previous works which rely heavily on exponentiations in
fields or groups, our protocols require only field addition and multiplication
(and OWF in the case of MPSI).

If we compare our result with the asymptotically optimal 2-party PSI pro-
tocols by [8,23], which have linear communication and computation, our first
observation is that although they only have a linear number of modular expo-
nentiations, the number of field operations is not linear but rather in the order
of O(mκ), and further they need a ZK proof in the ROM for each exponenti-
ation, which is also expensive. Additionally, their result is achieved with spe-
cific number-theoretic assumptions, so the parameter sizes are probably not
favourable compared to our protocol, and the construction is not black-box.
We provide a detailed comparison of the concrete efficiency of our result with
the recent protocol by Rindal and Rosulek [36], which has very good concrete
efficiency.

In the setting of MPSI, our techniques result in asymptotic efficiency improve-
ments over previous works in both communication and computational complexity
(cf. Table 1).

We want to emphasize that our efficiency claims hold including the com-
munication and computation cost for the OLE, if the recent instantiation by
Ghosh et al. [14] is used, which is based on noisy Reed-Solomon codes. This
OLE protocol has a constant communication overhead per OLE if instantiated
with an efficient OT-extension protocol like [31] and therefore does not influence
the asymptotic efficiency of our result.

Our results may seem surprising in light of the information-theoretic lower
bound of O(n2mκ) in the communication complexity for multi-party PSI in the
fully malicious UC setting. We circumvent this lower bound by considering a
slightly modified ideal functionality, resulting in a UC-secure solution for multi-
party PSI with asymptotically optimal communication overhead. By asymptoti-
cally optimal, we mean that our construction matches the optimal bounds in the
plain model for m > n, even for passive security, where n is the number of par-
ties, m is the size of the sets and κ is the security parameter. All of our protocols
work over fields F that are exponential in the size of the security parameter κ.

1 Please see the full version of the paper [15].

An Algebraic Approach to Maliciously Secure Private Set Intersection 157

Table 1. Comparison of multi-party PSI protocols, where n is the number of parties,
m the size of the input set and κ a security parameter. Here, THE denotes a threshold
homomorphic encryption scheme, CRS a common reference string and OPPRF an
oblivious programmable PRF. The computational cost is measured in terms of number
of multiplications. Some of the protocols perform better if the sizes of the input sets
differ significantly, or particular domains for inputs are used. The overhead described
here assumes sets of similar size, with κ bit elements.

Protocol Tools Communication Computation Corruptions Security

[27] OPPRF O(nmκ) O(nκ2) n − 1 semi-honest

[19] THE O(nmκ) O(nm logmκ) n − 1 semi-honest

[25] THE, ZK O(n2m2κ) O(n2m + nm2κ) n − 1 malicious

[5] THE, ZK O(n2mκ) O(n2m + nmκ) t < n/2 malicious

[19] CRS, THE O((n2 + nm logm)κ) O(m2κ) n − 1 malicious

Ours+ [14] OLE O((n2 + nm)κ) O(nm logm) n − 1 maliciousa

aOur protocol is UC-secure in the fully malicious setting.

We believe that our approach provides an interesting alternative to existing
solutions and that the techniques which we developed can find application in
other settings as well.

1.2 Technical Overview

Abstractly, we let both parties encode their input set as a polynomial, such
that the roots of the polynomials correspond to the inputs. This is a standard
technique, but usually the parties then use OPE to obliviously evaluate the
polynomials or some form of homomorphic encryption. Instead, we devise an
OLE-based construction to add the two polynomials in an oblivious way, which
results in an intersection polynomial. Kissner and Song [25] also create an inter-
section polynomial similar to ours, but encrypted under a layer of homomorphic
encryption, whereas our technique results in a plain intersection polynomial.
Since the intersection polynomial already hides everything but the intersection,
one could argue that the layer of encryption in [25] incurs additional overhead
in terms of expensive computations and complex checks.

In our case, both parties simply evaluate the intersection polynomial on
their input sets and check if it evaluates to 0. This construction is information-
theoretically secure in the OLE-hybrid model and requires only simple field
operations. Conceptually, we compute the complete intersection in one step. In
comparison to the naive OPE-based approach2, our solution directly yields an
asymptotic communication improvement in the input size. Another advantage
is that our approach generalizes to the multi-party setting.

We start with a detailed overview of our constructions and technical chal-
lenges.

2 Here we mean an OPE is used for each element of the receiver’s input set. This can
be circumvented by clever hashing strategies, e.g. [13,19].

158 S. Ghosh and T. Nilges

Oblivious polynomial addition from OLE. Intuitively, OLE is the general-
ization of OT to larger fields, i.e. it allows a sender and a receiver to compute
a linear function c(x) = ax + b, where the sender holds a, b and the receiver
inputs x and obtains c. OLE guarantees that the receiver learns nothing about
a, b except for the result c, while the sender learns nothing about x.

Based on this primitive, we define and realize a functionality OPA that allows
to add two polynomials in such a way that the receiver cannot learn the sender’s
input polynomial, while the sender learns nothing about the receiver’s polyno-
mial or the output. We first describe a passively secure protocol. Concretely,
assume that the sender has an input polynomial a of degree 2d, and the receiver
has a polynomial b of degree d. The sender additionally draws a uniformly ran-
dom polynomial r of degree d. Both parties point-wise add and multiply their
polynomials, i.e. they evaluate their polynomials over a set of 2d + 1 distinct
points α1, . . . , α2d+1, resulting in ai = a(αi), bi = b(αi) and ri = r(αi) for
i ∈ [2d + 1]. Then, for each of 2d + 1 OLEs, the sender inputs ri, ai, while the
receiver inputs bi and thereby obtains ci = ribi+ai. The receiver interpolates the
polynomial c from the 2d+1 (αi, ci) and outputs it. Since we assume semi-honest
behaviour, the functionality is realized by this protocol.

The biggest hurdle in achieving active security for the above protocol lies in
ensuring a non-zero b and r as input. Otherwise, e.g. if b = 0, the receiver could
learn a. One might think that it is sufficient to perform a coin-toss and verify
that the output satisfies the supposed relation, i.e. pick a random x, compute
a(x),b(x), r(x) and c(x) and everyone checks if b(x)r(x) + a(x) = c(x) and if
b(x), r(x) are non-zero3. For r(x) �= 0, the check is actually sufficient, because r
must have degree at most d, otherwise the reconstruction fails, and only d points
of r can be zero (r = 0 would require 2d+1 zero inputs). For b �= 0, however, just
checking for b(x) �= 0 is not sufficient, because at this point, even if the input
b �= 0, the receiver can input d zeroes in the OLE, which in combination with the
check is sufficient to learn a completely. We resolve this issue by constructing an
enhanced OLE functionality which ensures that the receiver input is non-zero.
We believe that this primitive is of independent interest and describe it in more
detail later in this section.

Two-party PSI from OLE. Let us first describe a straightforward two-party
PSI protocol with one-sided output from the above primitive. Let SA and SB

denote the inputs for Alice and Bob, respectively, where |SP| = m. Assuming
that Bob is supposed to get the intersection, they pick random pA and pB with
the restriction that pP(γ) = 0 for γ ∈ SP. As they will use OPA, deg pA = 2m,
while deg pB = m. Further, Alice picks a uniformly random polynomial rA of
degree m and inputs pA, rA into OPA. Bob inputs pB, obtains p∩ = pA + pBrA
and outputs all γj ∈ SB for which p∩(γj) = 0. Obviously, rA does not remove
any of the roots of pB, and therefore all points γ where pB(γ) = 0 = pA(γ)
remain in p∩.

3 Since this check leaks some information about the inputs, we have to perform the
check in a secure manner.

An Algebraic Approach to Maliciously Secure Private Set Intersection 159

However, as a stepping stone for multi-party PSI, we are more interested
in protocols that provide output to both parties. If we were to use the above
protocol and simply announce p∩ to Alice, then Alice could learn Bob’s input.
Therefore we have to take a slightly different approach. Let uA be an additional
random polynomial chosen by Alice. Instead of using her own input in the OPA,
Alice uses rA,uA, which gives sB = uA + pBrA to Bob. Then they run another
OPA in the other direction, i.e. Bob inputs rB,uB and Alice pA. Now, both
Alice and Bob have a randomized “share” of the intersection, namely sA and
sB, respectively. Adding sA and sB yields a masked but correct intersection. We
still run into the problem that sending either sB to Alice or sA to Bob allows the
respective party to learn the other party’s input. We also have to use additional
randomization polynomials r′

A, r′
B to ensure privacy of the final result.

Our solution is to simply use the masks u to enforce the addition of the two
shares. Let us fix Alice as the party that combines the result. Bob computes s′

B =
sB −uB +pBr′

B and sends it to Alice. Alice computes p∩ = s′
B + sA −uA +pAr′

A.
This way, the only chance to get rid of the blinding polynomial uB is to add both
values. But since each input is additionally randomized via the r polynomials,
Alice cannot subtract her own input from the sum. Since the same also holds
for Bob, Alice simply sends the result to Bob.

The last step is to check if the values that are sent and the intersection
polynomial are consistent. We do this via a simple coin-toss for a random x,
and the parties evaluate their inputs on x and can abort if the relation p∩ =
pB(rA + r′

B) + pA(r′
A + rB) does not hold, i.e. p∩ is computed incorrectly. This

type of check enforces semi-honest behaviour, and was used previously e.g. in [2].

A note on the MPSI functionality. We show that by slightly modifying
the ideal functionality for multi-party PSI we get better communication effi-
ciency, without compromising the security at all. A formal definition is given
in Sect. 6.1. Typically, it is necessary for the simulator to extract all inputs from
the malicious parties, input them into the ideal functionality, and then continue
the simulation with the obtained ideal intersection. In a fully malicious setting,
however, this requires every party to communicate in O(mκ) with every other
party—otherwise the input is information-theoretically undetermined and can-
not be extracted—which results in O(n2mκ) communication complexity.

The crucial observation here is that in the setting of multi-party PSI, an
intermediate intersection between a single malicious party and all honest parties
is sufficient for simulation. This is due to the fact that inputs by additional
malicious parties can only reduce the size of the intersection, and as long as
we observe the additional inputs at some point, we can correctly reduce the
intersection in the ideal setting before outputting it. On a technical level, we
no longer need to extract all malicious inputs right away to provide a correct
simulation of the intersection. Therefore, it is not necessary for every party to
communicate in O(mκ) with every other party. Intuitively, the intermediate
intersection corresponds to the case where all malicious parties have the same

160 S. Ghosh and T. Nilges

input. We therefore argue that the security of this modified setting is identical
to standard MPSI up to input substitution of the adversary.4

Multi-party PSI. The multi-party protocol is a direct generalization of the
two-party protocol, with some small adjustments. We consider a network with
a star topology, similar to the recent result of [19]. One party is set to be the
central party, and all other parties (mainly) interact with this central party to
compute the result. The main idea here is to delegate most of the work to the
central party, which in turn allows to reduce the communication complexity.
Since no party is supposed to get any intermediate intersections, we let each
party create an additive sharing of their intersection with the central party.

First, consider the following (incorrect) toy example. Let each party Pi exe-
cute the two-party PSI as described above with P0, up to the point where both
parties have shares si

P0
, s′

Pi
. All parties Pi send their shares s′

Pi
to P0, who

adds all polynomials and broadcasts the output. By design of the protocols and
the inputs, this yields the intersection of all parties. Further, the communica-
tion complexity is in O(nmκ), which is optimal. However, this protocol also
allows P0 to learn all intermediate intersections with the other parties, which
is not allowed. Previously, all maliciously secure multi-party PSI protocols used
threshold encryption to solve this problem, and indeed it might be possible to use
a similar approach to ensure active security for the above protocol. For exam-
ple, a homomorphic threshold encryption would allow to add all these shares
homomorphically, without leaking the intermediate intersections. But thresh-
old encryption incurs a significant computational overhead (and increases the
complexity of the protocol and its analysis) which we are unwilling to pay.

Instead, we propose a new solution which is conceptually very simple. We add
another layer of masking on the shares sPi

, which forces P0 to add all intermedi-
ate shares—at least those of the honest parties. For this we have to ensure that
the communication complexity does not increase, so all parties exchange seeds
(instead of sending random polynomials directly), which are used in a PRG to
mask the intermediate intersections. This technique is somewhat reminiscent of
the pseudorandom secret-sharing technique by Cramer et al. [6]. We emphasize
that we do not need any public key operations.

Concretely, all parties exchange a random seed and use it to compute a
random polynomial in such a way that every pair of parties Pi, Pj holds two
polynomials vij ,vji with vij +vji = 0. Then, instead of sending s′

Pi
, each party

Pi computes s′′
Pi

= s′
Pi

+
∑

vij and sends this value. If P0 obtains this value, it
has to add the values s′′

Pi
of all parties to remove the masks, otherwise s′′

Pi
will

be uniformly random.
Finally, to ensure that the central party actually computed the aggregation,

we add a check similar to two-party PSI, where the relation, i.e. computing the
sum, is verified by evaluating the inputs on a random value x which is obtained
by a multi-party coin-toss.

4 Our multi-party PSI functionality uses similar idea as augmented semi-honest multi-
party PSI as in previous works [27].

An Algebraic Approach to Maliciously Secure Private Set Intersection 161

Threshold (M)PSI. We defer the threshold extensions to the full version of
this paper [15] and only give a very brief technical overview.

First of all, we clarify the term threshold PSI. We consider the setting where
all parties have m elements as their input, and the output is only revealed if the
intersection of the inputs among all parties is bigger than a certain threshold
�. In [16] Hallgren et al. defined this notion for two party setting, and finds
application whenever two entities are supposed to be matched once a certain
threshold is reached, e.g. for dating websites or ride sharing.

We naturally extend the idea of threshold PSI from [16] to the multi-party
setting and propose the first actively secure threshold multi-party PSI protocol.
On a high level, our solution uses a similar idea to [16], but we use completely
different techniques and achieve stronger security and better efficiency. The main
idea is to use a robust secret sharing scheme, and the execution of the protocol
basically transfers a subset of these shares to the other parties, one share for
each element in the intersection. If the intersection is large enough, the parties
can reconstruct the shared value.

Specifically, the trick is to modify the input polynomials of each party Pi for
the MPSI protocol and add an additional check. Instead of simply setting pi

such that pi(γj) = 0 for all γj ∈ Si, we set p̃i(γj) = 1. Further, for each of the
random polynomials r̃i, r̃′

i we set r̃i(γj) = ρj and r̃′
i(γj) = ρ′

j , where ρ1, . . . , ρn,
ρ′
1, . . . , ρ

′
n are the shares of two robust (�, n)-secret sharings of random values s0i

and s1i , respectively. Now, by computing the modified intersection polynomial
p̃∩ as before, each party obtains exactly m∩ = |S∩| shares, one for each γj ∈ Si.

Now if m∩ ≥ � then each party can reconstruct r∩ =
∑n

i=1 (s0i + s1i). Other-
wise the intersection remains hidden completely. We omitted some of the details
due to the space constraints and refer to the full version [15].

A New Flavour of OLE. One of the main technical challenges in constructing
our protocols is to ensure a non-zero input into the OLE functionality by the
receiver. Recall that an OLE computes a linear function ax + b. We define an
enhanced OLE functionality (cf. Sect. 3) which ensures that x �= 0, otherwise
the output is uniformly random. Our protocol which realises this functionality
makes two black-box calls to a normal OLE and is otherwise purely algebraic.

Before we describe the solution, let us start with a simple observation. If the
receiver inputs x = 0, an OLE returns the value b. Therefore, it is critical that
the receiver cannot force the protocol to output b. One way to achieve this is
by forcing the receiver to multiply b with some correlated value via an OLE,
let’s call it x̂. Concretely, we can use an OLE where the receiver inputs x̂ and
a random s, while the sender inputs b and obtains x̂b + s. Now if the sender
uses a + bx̂ + s, 0 as input for another OLE, where the receiver inputs x, the
receiver obtains ax + bx̂x + sx. Which means that if x̂ = x−1 then the receiver
can extract the correct output. This looks like a step in the right direction, since
for x = 0 or x̂ = 0, the output would not be b. On the other hand, the receiver
can now force the OLE to output a by choosing x̂ = 0 and x = 1, so maybe we
only shifted the problem.

162 S. Ghosh and T. Nilges

The final trick lies in masking the output such that it is uniform for incon-
sistent inputs x, x̂. We do this by splitting b into two shares that only add
to b if x · x̂ = 1. The complete protocol looks like this: the receiver plays
the sender for one OLE with input x−1, s, and the sender inputs a random
u to obtain t = x−1u + s. Then the sender plays the sender for the sec-
ond OLE and inputs t + a, b − u, while the receiver inputs x and obtains
c′ = (t + a)x + b − u = ux−1x + sx + ax + b − u = ax + b + sx, from which the
receiver can subtract sx to get the result. A cheating receiver with inconsistent
input x∗, x̂∗ will get ax + b + u(x∗x̂∗ − 1) as an output, which is uniform over
the choice of u.

2 Preliminaries

We assume |F| ∈ θ(2κ), where κ is a statistical security parameter. Typically,
x ∈ F denotes a field element, while p ∈ F[X] denotes a polynomial. Let M0(p)
denote the zero-set for p ∈ F[X], i.e. ∀x ∈ M0(p),p(x) = 0.

In the proofs, x̂ denotes an element either extracted or simulated by the
simulator, while x∗ denotes an element sent by the adversary.

We slightly abuse notation and denote by v = PRGd(s) the deterministic
pseudorandom polynomial of degree d derived from evaluating PRG on seed s.

2.1 Security Model

We prove our protocol in the Universal Composability (UC) framework [4]. In
the framework, security of a protocol is shown by comparing a real protocol π
in the real world with an ideal functionality F in the ideal world. F is supposed
to accurately describe the security requirements of the protocol and is secure
per definition. An environment Z is plugged either to the real protocol or the
ideal protocol and has to distinguish the two cases. For this, the environment
can corrupt parties. To ensure security, there has to exist a simulator in the
ideal world that produces a protocol transcript indistinguishable from the real
protocol, even if the environment corrupts a party. We say π UC-realises F if for
all adversaries A in the real world there exists a simulator S in the ideal world
such that all environments Z cannot distinguish the transcripts of the parties’
outputs.

Oblivious Linear Function Evaluation. Oblivious Linear Function Evalua-
tion (OLE) is the generalized version of OT over larger fields. The sender has
as input two values a, b ∈ F that determine a linear function f(x) = a · x + b
over F, and the receiver gets to obliviously evaluate the linear function on input
x ∈ F. The receiver will learn only f(x), and the sender learns nothing at all.
The ideal functionality is shown in Fig. 1.

2.2 Technical Lemmas

We state several lemmas which are used to show the correctness of our PSI
protocols later on.

An Algebraic Approach to Maliciously Secure Private Set Intersection 163

Lemma 2.1. Let p,q ∈ F[X] be non-trivial polynomials. Then,

M0(p) ∩ M0(p + q) = M0(p) ∩ M0(q) = M0(q) ∩ M0(p + q).

This lemma shows that the sum of two polynomials contains the intersection
with respect to the zero-sets of both polynomials.

Fig. 1. Ideal functionality for oblivious linear function evaluation.

Proof. Let M∩ = M0(p) ∩ M0(q).
“ ⊇ ”: ∀x ∈ M∩: p(x) = q(x) = 0. But p(x) + q(x) = 0, so x ∈ M0(p + q).
“ ⊆ ”: It remains to show that there is no x such that x ∈ M0(p)∩M0(p+q)

but x /∈ M∩, i.e. M0(p) ∩ (M0(p+q) \ M∩) = ∅. Similarly, M0(q) ∩ (M0(p+
q) \ M∩) = ∅.

Assume for the sake of contradiction that M0(p) ∩ (M0(p + q) \ M∩) �= ∅.
Let x ∈ M0(p) ∩ (M0(p + q) \ M∩). Then, p(x) = 0, but q(x) �= 0, otherwise
x ∈ M∩. But this means that p(x) + q(x) �= 0, i.e. x /∈ M0(p + q). This
contradicts our assumption, and we get that M0(p) ∩ (M0(p + q) \ M∩) = ∅.

Symmetrically, we get that M0(q) ∩ (M0(p + q) \ M∩) = ∅. The claim
follows.
�

Lemma 2.2. Let d ∈ poly(log |F|). Let p ∈ F[X], deg(p) = d be a non-trivial
random polynomial with Pr[x ∈ M0(p)] ≤ negl(|F|) for all x. Then, for all
q1, . . . ,ql ∈ F[X] with deg(qi) ≤ d,

Pr[(M0(p) ∩ M0(
l∑

i=1

qi + p)) �= (M0(p) ∩
l⋂

i=1

M0(qi))] ≤ negl(|F|).

This lemma is basically an extension of Lemma 2.1 and shows that the sum of
several polynomials does not create new elements in the intersection unless the
supposedly unknown zero-set of p can be guessed with non-negligible probability.

164 S. Ghosh and T. Nilges

Proof. “⊆”: We first observe that
⋂l

i=1 M0(qi) ⊆ M0(
∑l

i=1 qi): it holds that
for all x ∈

⋂l
i=1 M0(qi), qi(x) = 0 for i ∈ [l]. It follows that

∑l
i=1 qi(x) = 0,

i.e. x ∈ M0(
∑l

i=1 qi).
“⊇”: Assume for the sake of contradiction that

(M0(p) ∩ M0(
l∑

i=1

qi) + p) �= (M0(p) ∩
l⋂

i=1

M0(qi))

with non-negligible probability ε. Let M = M0(
∑l

i=1 qi + p) \
⋂l

i=1 M0(qi).
Then with probability at least ε, the set M is not empty. Further, we can

bound |M| ≤ d. Pick a random x ∈ M. It now holds that Pr[x ∈ M0(p)] ≥ ε/d,
which directly contradicts our assumption that for an unknown p the probability
of guessing x ∈ M0(p) is negligible over choice of p. The claim follows.
�
Lemma 2.3. Let d, d′ ∈ poly(log |F|). Let r ∈ F[X], deg(r) = d be a uniformly
random polynomial. For all non-trivial p ∈ F[X], deg(p) = d′,

Pr
r∈F[X]

[(M0(r) ∩ M0(p)) �= ∅] ≤ negl(|F|).

This lemma establishes that the intersection of a random polynomial with
another polynomial is empty except with negligible probability.

Proof. This follows from the fundamental theorem of algebra, which states that
a polynomial of degree d evaluates to 0 in a random point only with probability
d/|F|.

Since r (and therefore all x ∈ M0(r)) is uniformly random and |M0(r)| = d,
while |M0(p)| = d′, we get that

Pr[(M0(r) ∩ M0(p)) �= ∅] ≤ dd′/|F|.

�

Lemma 2.4. Let d ∈ poly(log |F|). Let p ∈ F[X], deg(p) = d be a fixed but
unknown non-trivial polynomial. Further let r ∈ F[X], deg(r) = d be a uniformly
random polynomial. For all non-trivial q, s ∈ F[X] with deg(q) ≤ d and deg(s) ≤
d,

Pr
r∈F[X]

[(M0(p) ∩ M0(ps + rq)) �= (M0(p) ∩ M0(q))] ≤ negl(|F|).

This lemma shows that the multiplication of (possibly maliciously chosen)
polynomials does not affect the intersection except with negligible probability,
if one random polynomial is used.

Proof.

M0(p) ∩ M0(ps + rq)
Lemma 2.1

= M0(p) ∩ (M0(ps) ∩ M0(qr))

= M0(p) ∩ (
(M0(p) ∪ M0(s)) ∩ (M0(q) ∪ M0(r))

)

= M0(p) ∩ (
(M0(p) ∩ M0(q)) ∪ (M0(p) ∩ M0(r)︸ ︷︷ ︸

T1

)

∪ (M0(s) ∩ M0(q)
︸ ︷︷ ︸

⊆M0(q)

) ∪ (M0(s) ∩ M0(r)︸ ︷︷ ︸
T2

)
)

An Algebraic Approach to Maliciously Secure Private Set Intersection 165

From Lemma 2.3 it follows that Pr[T1 �= ∅] ≤ d2/|F|, and also Pr[T2 �= ∅] ≤
d2/|F|. Since

M0(p) ∩
(
(M0(p) ∩ M0(q)) ∪ M0(q)

)
= M0(p) ∩ M0(q),

we get

Pr
r∈F[X]

[(M0(p) ∩ M0(ps + rq)) �= (M0(p) ∩ M0(q))] ≤ 2d2/|F|.

�

3 Enhanced Oblivious Linear Function Evaluation F
OLE+

In this section we present an enhanced version of the OLE functionality. The
standard OLE functionality allows the sender to input a, b, while the receiver
inputs x and obtains ax + b. For our applications, we do not want the receiver
to be able to learn b, i.e. it has to hold that x �= 0. Our approach is therefore
to modify the OLE functionality in such a way that it outputs a random field
element upon receiving an input x = 0 (cf. Fig. 2). A different approach might be
to output a special abort symbol or 0, but crucially the output must not satisfy
the relation ax + b. This is a particularly useful feature, as we will show in the
next section.

Fig. 2. Ideal functionality for the enhanced oblivious linear function evaluation.

While it might be possible to modify existing OLE protocols in such a way
that a non-zero input is guaranteed, we instead opt to build a protocol black-box
from the standard OLE functionality FOLE.

We refer to the introduction for an abstract overview and a description of
the ideas of our construction. The formal description of the protocol is given
in Fig. 3.

Lemma 3.1. Π
OLE+ unconditionally UC-realizes FOLE+ in the FOLE-hybrid

model.

166 S. Ghosh and T. Nilges

Proof. The simulator against a corrupted sender simulates both instances of
FOLE. Let α1 be the sender’s input in the first OLE, and (α2, α3) be the inputs
into the second OLE. The simulator sets b̂ = α1 + α3 and â = α2 − t̂, where
t̂ is chosen as the uniformly random output to AS of the first OLE. The sim-
ulator simply inputs (inputS, (â, b̂)) into F

OLE+ . Let us briefly argue that this
simulation is indistinguishable from a real protocol run. The value t̂ is indis-
tinguishable from a valid t, since the receiver basically uses a one-time-pad s
to mask the multiplication. Therefore, the sender can only change his inputs
into the OLEs. Since his inputs uniquely determine both â and b̂, the extraction
by the simulator is correct and the simulation is indistinguishable from a real
protocol run.

Fig. 3. Protocol that realizes F
OLE+ in the FOLE-hybrid model.

Against a corrupted receiver, the simulator simulates the two instance of
FOLE and obtains the receiver’s inputs (ξ1, ξ3) and ξ2. If ξ1 · ξ2 = 1, the simula-
tor sets x̂ = ξ2, sends (inputR, x̂) to F

OLE+ and receives (output, c). It forwards
c′ = c + ξ2ξ3 to AR. If ξ1 · ξ2 �= 1, the simulator sends (inputR, 0) to F

OLE+

and forwards the output c to the receiver. It remains to argue that this simula-
tion is indistinguishable from the real protocol. From A’s view, the output c is
determined as

c = uξ1ξ2 + aξ2 + b − u + ξ2ξ3 = aξ2 + b + u(ξ1ξ2 − 1) + ξ2ξ3.

We can ignore the last term, since it is known to A. If ξ1ξ2 �= 1, then u(ξ1ξ2 −1)
does not vanish and the result will be uniform over the choice of u. Thus, by
using ξ2 as the correct input otherwise, we extract the correct value and the
simulation is indistinguishable from the real protocol.
�

4 Randomized Polynomial Addition from OLE

Concretely, we have two parties, the sender with a polynomial of degree 2d
as input and the receiver with a polynomial of degree d as input. The goal is
that the receiver obtains the sum of these two polynomials such that it cannot
learn the sender’s polynomial fully. We want to achieve this privacy property by

An Algebraic Approach to Maliciously Secure Private Set Intersection 167

using a randomization polynomial that prevents the receiving party from simply
subtracting its input from the result. This functionality is defined in Fig. 4.

Notice that we have some additional requirements regarding the inputs of the
parties. First, the degree of the inputs has to be checked, but the functionality
also makes sure that the receiver does not input a 0 polynomial, because oth-
erwise he might learn the input of the sender. Also note that the functionality
leaks some information about the sender’s polynomial. Looking ahead in the PSI
protocol, where the input of the sender is always a uniformly random 2d degree
polynomial, this leakage of the ideal functionality will not leak any non-trivial
information in the PSI protocol.

Fig. 4. Ideal functionality that allows to obliviously compute an addition of polynomi-
als.

It is instructive to first consider a passively secure protocol. In the semi-
honest case, both sender and receiver evaluate their input polynomials on a
set of distinct points P = {α1, . . . , α2d+1}, where d is the degree of the input
polynomials. The sender additionally picks a random polynomial r ∈ F[X] of
degree d and also evaluates it on P.

Instead of using OLE in the “traditional” sense, i.e. instead of computing
ab + r where r blinds the multiplication of the polynomials, we basically com-
pute rb + a. This means that the sender randomizes the polynomial of the
receiver, and then adds his own polynomial. This prevents the receiver from
simply subtracting his input polynomial and learning a. In a little more detail,
sender and receiver use 2d + 1 OLEs to add the polynomials as follows: for each
i ∈ [2d + 1], the sender inputs (ri, ai) in OLE i, while the receiver inputs bi and
obtains si = ribi + ai. He then interpolates the resulting polynomial s of degree
2d using the 2d + 1 values si.

In going from passive to active security, we have to ensure that the inputs
of the parties are correct. Here, the main difficulty obviously lies in checking
for b = 0. In fact, since FOPA does not even leak a single point ai we have to
make sure that all bi �= 0. However, this can easily be achieved by using F

OLE+

168 S. Ghosh and T. Nilges

instead of FOLE. We also have to verify that the inputs are well-formed via a
simple polynomial check. For a more detailed overview we refer the reader to
the introduction.

The complete actively secure protocol is shown in Fig. 5. Here, we use two
instances of FOLE that implement a commitment and a check. We named the
first OLE that is used for a commitment to a blinding value u F com

OLE. The check
is performed by comparing the blinded reconstructed polynomial s evaluated in
xS with the inputs in this location using the second OLE denoted by F check

OLE .5

Fig. 5. Protocol that realizes FOPA in the (F
OLE+ , FOLE)-hybrid model.

Lemma 4.1. ΠOPA unconditionally UC-realizes FOPA in the FOLE+-hybrid
model.

Proof (Sketch). Corrupted Sender. The simulator SS against a corrupted
sender proceeds as follows. It simulates F (i)

OLE+ and thereby obtains (r∗
i , a∗

i) for
all i ∈ [2d + 1]. From these values, the simulator reconstructs r̂ and â. It aborts
in Step 3 if deg(r̂) > d or deg(â) > 2d. It also aborts if â or r̂ are zero, and
otherwise sends (inputS, (â, r̂)) to FOPA.

The extraction of the corrupted sender’s inputs is correct if his inputs r∗

corresponds to a polynomial of degree d and a∗ corresponds to a polynomial of
degree 2d. Thus, the only possibility for an environment to distinguish between

5 The commitment we implicitly use has been used previously in [11], as has the check
sub-protocol.

An Algebraic Approach to Maliciously Secure Private Set Intersection 169

the simulation and the real protocol is by succeeding in answering the check while
using a malformed input, i.e. a polynomial of incorrect degree or 0-polynomials.
If the polynomials have degree greater than d and 2d, respectively, the resulting
polynomial s has degree 2d+1 instead of 2d, i.e. the receiver cannot reconstruct
the result from 2d+1 points. Since the sender learns nothing about the receiver’s
inputs, the thus incorrectly reconstructed polynomial will be uniformly random
from his point of view and the probability that his response to the challenge is
correct is 1/|F|. Also, both â and r̂ have to be non-zero, because in each case
the polynomials are evaluated in 2d + 1 points, and it requires 2d + 1 zeros as
ai, ri to get a 0 polynomial. But since both a, r have degree at most 2d, there
are at most 2d roots of these polynomials. Therefore, in order to pass the check,
a(x) and b(x) would need to be 0, which is also checked for.

Corrupted Receiver. The simulator SR against a corrupted receiver simulates
F (i)

OLE+ and obtains b∗
i for all i ∈ [2d + 1]. It reconstructs b̂ and aborts the

check in Step 3 if deg(b̂) > d. The simulator sends (inputR, b̂) to FOPA and
receives (res, ŝ). It evaluates ŝ on P and returns si for the corresponding OLEs.
SR simulates the rest according to the protocol.

Clearly, if the corrupted receiver AR inputs a degree d polynomial, the simu-
lator will extract the correct polynomial. In order to distinguish the simulation
from the real protocol, the adversary can either input 0 in an OLE or has to
input a polynomial of higher degree, while still passing the check. In the first
case, assume w.l.o.g. that AR cheats in F (j)

OLE+ for some j. This means AR receives

a value ŝi, which is uniformly random. This means that only with probability
1/|F| will ŝi satisfy the relation rb + a and the check will fail, i.e. he can lie
about u, but the commitment to u cannot be opened without knowing t. In
the second case, the resulting polynomial would be of degree 2d + 1, while the
receiver only gets 2d+1 points of the polynomial. Therefore the real polynomial
is underdetermined and A can only guess the correct value ŝ(x), i.e. the check
will fail with overwhelming probability.
�

5 Maliciously Secure Two-Party PSI

In this section we provide a maliciously secure two-party PSI protocol with
output for both parties, i.e. we realize FPSI as described in Fig. 6.

Fig. 6. Ideal functionality FPSI for two-party PSI.

170 S. Ghosh and T. Nilges

Fig. 7. Protocol Π2PSI UC-realises FPSI in the FOPA-hybrid model.

We briefly sketch the protocol in the following; a more detailed overview
can be found in the introduction. First, Alice and Bob simply transform their
input sets into polynomials. Then, both compute a randomized share of the
intersection via our previously defined OPA in such a way that Alice can send
her share to Bob without him being able to learn her input. This can be achieved
by adding a simple mask to the intermediate share. Bob adds both shares and
sends the output to Alice. The protocol only requires two OPA and a simple
check which ensures semi-honest behaviour, and no computational primitives. A
formal description is given in Fig. 7.

Theorem 5.1. The protocol Π2PSI UC-realises FPSI in the FOPA-hybrid model
with communication complexity O(mκ).

Proof. Let us argue that p∩ = pA(r′
A + rB) + pB(rA + r′

B) actually hides the
inputs. The main observation here is that r′

P + rP̄ is uniformly random as
long as one party is honest. Since pA + pB validly encodes the intersection

An Algebraic Approach to Maliciously Secure Private Set Intersection 171

Fig. 8. Simulator SA against a corrupted Alice.

(see Lemma 2.1), p∩ is uniformly random over the choice of the randomization
polynomials rA, r′

A, rB and r′
B, except for the roots denoting the intersection.

Corrupted Alice. We show the indistinguishability of the simulation of SA

(cf. Fig. 8). The simulator extracts Alice’s inputs and then checks for any devi-
ating behaviour. If such behaviour is detected, it aborts, even if the protocol
would succeed. Proving indistinguishability of the simulation shows that the
check in the protocol basically enforces semi-honest behaviour by Alice, up to
input substitution.

Consider the following series of hybrid games.

Hybrid 0: RealAA

Π2PSI
.

Hybrid 1: Identical to Hybrid 0, except that S1 simulates FOPA, learns all
inputs and aborts if α∗

A �= p̂A(x) or β∗
A �= r̂A(x), but the check is passed.

Let α∗
A = αA + e be AA’s check value. Then the check in Step 6 will fail

with overwhelming probability. Let σ denote the outcome of the check. If AA

behaves honestly, then

σ = α∗
A(rB(x) + δ∗

A) + pB(x)(β∗
A + r′

B(x)) − p∩(x) = 0.

Using α∗
A = αA + e, however, we get

σ′ = (αA+e)(rB(x)+δ∗
A)+pB(x)(β∗

A+r′
B(x))−p∩(x) = e·(rB(x)+δ∗

A) �= const.

This means that the outcome of the check is uniformly random from AA’s
view over the choice of rB (or pB for β∗

A �= rA(x)). Therefore, the check will
fail except with probability 2/|F| and Hybrids 0 and 1 are statistically close.

172 S. Ghosh and T. Nilges

Hybrid 2: Identical to Hybrid 1, except that S2 aborts according to Step 6
in Fig. 8.
An environment distinguishing Hybrids 1 and 2 must manage to send s′∗

A such
that

s′∗
A + ûA − ûB �= p̂A · (r̂B + r̂′

A)

while passing the check in Step 6 with non-negligible probability.
Let f = s′∗

A + ûA − ûB − p̂A · (r̂B + r̂′
A). We already know that f(x) = 0,

otherwise we have α∗
A = αA + f(x) �= αA (or an invalid β∗

A), and the check
fails. But since x is uniformly random, the case that f(x) = 0 happens only
with probability m/|F|, which is negligible. Therefore, Hybrid 1 and Hybrid 2
are statistically close.
Hybrid 3: Identical to Hybrid 2, except that S3 generates the inputs ŝA, ŝB
according to Step 5 in Fig. 8 and adjusts the output. This corresponds to
IdealSA

FPSI
.

The previous hybrids established that the inputs p̂A, r̂A are extracted cor-
rectly. Therefore, by definition, ŜA = M0(p̂A). It remains to argue that
the simulated outputs are indistinguishable. First, note that the received
intersection Ŝ∩ = M0(p̂B) defines p̂B. From Lemma 2.4 it follows that
M0(p∩) = M0(p̂A) ∩ M0(p̂B) = Ŝ∩ w.r.t. M0(p̂B), even for a maliciously
chosen r̂A, i.e. the AA cannot increase the intersection even by a single ele-
ment except with negligible probability.
Further, note that ŝA = p̂A · r̂B + ûB is uniformly distributed over the choice
of ûB, and p̂∩ is uniform over the choice of r̂B, r̂′

B.
Finally, since r̂B, r̂′

B are uniformly random and the degree of p̂B is m, i.e.
maxi |Si| + 1, the values α̂B, β̂B and δ̂B are uniformly distributed as well. In
conclusion, the Hybrids 2 and 3 are statistically close.

As a result we get that for all environments Z,

RealAA

Π2PSI
(Z) ≈s IdealSA

FPSI
(Z).

Corrupted Bob. The simulator against a corrupted Bob is essentially the same
as the one against a corrupted Alice, except for a different way to check his
inputs.For the full proof we refer the reader to the full version [15] of the paper.

Efficiency. The protocol makes two calls to OPA, which in turn is based on
OLE. Overall, 2m calls to OLE are necessary in OPA. Given the recent constant
overhead OLE of Ghosh et al. [14], the communication complexity of Π2PSI lies
in O(mκ).

The computational cost of the protocol is dominated by multi-point evalua-
tion of polynomials of degree m, which requires O(m log m) multiplications using
fast modular transform [3]. Note that this cost includes computational cost of
the OLE instantiation from [14]. This concludes the proof.
�

An Algebraic Approach to Maliciously Secure Private Set Intersection 173

6 Maliciously Secure Multi-party PSI

6.1 Ideal Functionality

The ideal functionality for multi-party private set intersection F*
MPSI simply

takes the inputs from all parties and computes the intersection of these inputs.
Our functionality F*

MPSI in Fig. 9 additionally allows an adversary to learn the
intersection and then possibly update the result to be only a subset of the original
result.

Fig. 9. Ideal functionality F*
MPSI for multi-party PSI.

Let us briefly elaborate on why we chose to use this modified functionality. In
the UC setting, in order to extract the inputs of all malicious parties, any hon-
est party has to communicate with all malicious parties. In particular, since the
simulator has to extract the complete input, this requires at least O(nm) commu-
nication per party for the classical MPSI functionality. In turn, for the complete
protocol, this means that the communication complexity lies in O(n2m).

Instead, we want to take an approach similar to the recent work of
Hazay et al. [19], i.e. we have one central party, and some of the work is dele-
gated to this party. This removes the need for the other parties to extensively
communicate with each other and potentially allows communication complexity
O(mn), which is asymptotically optimal in any setting. However, if we assume
that the central party and at least one additional party are corrupted, the hon-
est party does not (extensively) interact with this additional party and does not
learn its inputs; it can only learn the input of the central party. If the input set
of the other malicious party is the same as the one of the central party, the out-
put remains the same. If this input is different, however, the actual intersection
might be smaller. One might argue that this case simply corresponds to input
substitution by the malicious party, but for any type of UC simulation this poses
a problem, since the output of the honest party in the protocol might be different
from the intersection in the ideal world. Thus, F*

MPSI allows a malicious party
to modify the output. Crucially, the updated intersection can only be smaller
and may not changed arbitrarily by the adversary. We believe that this weaker
multiparty PSI functionality is sufficient for most scenarios.

174 S. Ghosh and T. Nilges

6.2 Multi-party PSI from OLE

Our multi-party PSI protocol uses the same techniques that we previously
employed to achieve two-party PSI. This is similar in spirit to the approach
taken in [19], who employ techniques from the two-party PSI of [13] and apply
them in the multi-party setting. We also adopt the idea of a designated central
party that performs a two-party PSI with the remaining parties, because this
allows to delegate most of the computation to this party and saves communi-
cation. Apart from that, our techniques differ completely from [19]. Abstractly,
they run the two-party PSI with each party and then use threshold encryption
and zero-knowledge proofs to ensure the correctness of the computation. These
tools inflict a significant communication and computation penalty.

In our protocol (cf. Fig. 10) we run our two-party PSI between the central
party and every other party, but we ensure privacy of the aggregation not via
threshold encryption and zero-knowledge proofs, but instead by a simple masking
of the intermediate values and a polynomial check. This masking is created in a
setup phase, where every pair of parties exchanges a random seed that is used
to create two random blinding polynomials which cancel out when added.

Once the central party receives all shares of the computation, it simply add
these shares, thereby removing the random masks. The central party broadcasts
the result to all parties. Then, all parties engage in a multi-party coin-toss and
obtain a random value x. Since all operations in the protocol are linear oper-
ations on polynomials, the parties evaluate their input polynomials on x and
broadcast the result. This allows every party to locally verify the relation and
as a consequence also the result. Here we have to ensure that a rushing adver-
sary cannot cheat by waiting for all answers before providing its own answer.
We solve this issue by simply committing to the values first, and the unveiling
them in the next step. This leads to malleability problems, i.e. we have to use
non-malleable commitments6.

Theorem 6.1. The protocol ΠMPSI computationally UC-realises F∗
MPSI in the

FOPA-hybrid model with communication complexity in O((n2 + nm)κ).

Proof. We have to distinguish between the case where the central party is mali-
cious and the case where it is honest. We show UC-security of ΠMPSI by defining
a simulator S for each case which produces an indistinguishable simulation of
the protocol to any environment Z trying to distinguish the ideal world from
the real world. The approach of the simulation is straightforward: the simulator
extracts the input polynomials into FOPA and thus obtains an intersection of
the adversary’s inputs.

In the case of an honest central party, all parties communicate with this
party, i.e. the simulator can extract all inputs of all malicious parties. In the
case where P0 is malicious, however, the simulator can at most learn the central
party’s input at the beginning. He inputs this result into the ideal functionality

6 In order to achieve our claimed efficiency we actually use UC commitments, but
non-malleable commitments are sufficient for the security of the protocol.

An Algebraic Approach to Maliciously Secure Private Set Intersection 175

Fig. 10. Protocol ΠMPSI UC-realises F*
MPSI in the FOPA-hybrid model.

and uses the intermediate result for the simulation. The malicious central party
can later “simulate” the other malicious parties and thereby possibly change
the intersection for the honest parties. We show that A can only reduce the
intersection unless it already knows x ∈ Sj for at least one j ∈ H, i.e. we assume
that A cannot predict a single element of the set of an honest party except with
negligible probability. This reduced intersection can be passed by the simulator
to the ideal functionality.

176 S. Ghosh and T. Nilges

Fig. 11. Simulator SP0 for P0 ∈ A.

P0 is malicious: Consider the simulator in Fig. 11.

We show the indistinguishability of the simulation and the real protocol
through the following hybrid games. In the following, let A denote the dummy
adversary controlled by Z.

Hybrid 0: RealAΠMPSI
.

Hybrid 1: Identical to Hybrid 0, except that S1 simulates FOPA and learns
all inputs.
Hybrid 2: Identical to Hybrid 1, except that S2 aborts according to Step 7
in Fig. 11.
Hybrid 3: Identical to Hybrid 2, except that S3 aborts if the extracted p̂0

are not identical, but the check is passed.
Hybrid 4: Identical to Hybrid 3, except that S4 replaces the vjl between
honest parties j, l by uniformly random polynomials.
Hybrid 5: Identical to Hybrid 4, except that S5 generates the inputs ŝj

0, ŝj

according to Step 6 in Fig. 11 and adjusts the output. This corresponds to
Ideal

SP0

F*
MPSI

.

Hybrids 0 and 1 are trivially indistinguishable. We show that Hybrid 1
and Hybrid 2 are computationally indistinguishable in Lemma6.1.1. This step
ensures that the correct p̂0 was extracted, and that all the intermediate values of

An Algebraic Approach to Maliciously Secure Private Set Intersection 177

the honest parties are added up. Hybrids 2 and 3 are indistinguishable due to the
security of the coin-toss. This is formalized in Lemma 6.1.2. As an intermediate
step to complete the full simulation, we replace all pseudorandom polynomi-
als vjl between honest parties j, l by uniformly random ones. Computational
indistinguishability of Hybrid 3 and Hybrid 4 follows from a straightforward
reduction to the pseudorandomness of PRG. We establish the statistical indis-
tinguishability of Hybrids 4 and 5 in Lemma6.1.3. As a result we get that for
all PPT environments Z,

RealAΠMPSI
(Z) ≈c Ideal

SP0

F*
MPSI

(Z).

Lemma 6.1.1. Assume that NMCOM is a bounded-concurrent non-malleable
commitment scheme against synchronizing adversaries. Then Hybrid 1 and
Hybrid 2 are computationally indistinguishable.

Proof. The only difference between Hybrid 1 and Hybrid 2 lies in the fact that
S2 aborts if the extracted p̂A evaluated on x does not match the check value
α0, but the check is still passed. Therefore, in order for Z to distinguish both
hybrids, it has to be able to produce a value α∗

0 �= p̂A(x) and pass the check
with non-negligible probability ε. W.l.o.g. it is sufficient that α∗

0 is incorrect for
only one p̂0. We show that such a Z breaks the non-malleability property of
NMCOM.

Let σ denote the outcome of the check. If A is honest, i.e. α0 = p̂0(x) and
βi
0 = r̂i

0(x), then

σ =
n∑

i=0

(α0(βi + δ0) + αi(βi
0 + δi)) − p∩(x) = 0, (1)

where
p∩ =

∑

i∈A

(si + si
0) +

∑

j∈H

(sj + sj
0).

We first observe that
∑

j∈H (sj + sj
0) =

∑
j∈H p̂j(r̂

j
0 + r̂′

j) + p̂0(r̂′
0 + r̂j) is uni-

form over the choice of the r̂j , r̂′
j . Therefore, if A uses p∗

∩ without adding
∑

j∈H (sj + sj
0), the check will fail with overwhelming probability.

Since A controls the inputs of the malicious parties i ∈ A, in order to pass
the check it is sufficient for A to satisfy the following simplification of Eq. (1).

σ′ =
∑

j∈H

(α0(βj + δ0) + αj(β
j
0 + δj)) −

∑

j∈H

(sj(x) + sj
0(x)) = const

Here const is a fixed constant known to A (0 if A is honest) determined by setting
the inputs αi, βi for i ∈ A accordingly. But if α∗

0 �= p̂0(x), i.e. α∗
0 = α0 + e, then

we get that

178 S. Ghosh and T. Nilges

σ′ =
∑

j∈H

((α0 + e)(βj + δ0) + αj(β
j
0 + δj)) −

∑

j∈H

(sj(x) + sj
0(x))

=
∑

j∈H

(α0(βj + δ0) + αj(β
j
0 + δj)) −

∑

j∈H

(sj(x) + sj
0(x)) + e

∑

j∈H

(βj + δ0)

= e
∑

j∈H

(βj + δ0) �= const

Similarly for βj
0 �= r̂j

0(x) for any j ∈ H. Thus, except for the case of α∗
0 =

α0 + e/
∑

j∈H βj , the check will fail for α∗
0 �= p̂0(x). But since we assumed that

A passes the check with non-negligible probability, and NMCOM is statistically
binding, A has to produce a valid commitment to α̃0 = α0 + e/

∑
j∈H (βj + δ0)

with the same probability.
Note, that A interacts in both the left and right session of NMCOM with the

same party (actually all parties simultaneously, since everything is broadcast).
But this means that A cannot let the left session finish before starting the right
session, i.e. A is a synchronizing adversary against NMCOM. Concretely, in the
left session, S2 commits to (p̂j(x), r̂j(x), r̂′

j(x)) = (αj , βj , δj) for j ∈ H, while A
commits in the right session to (α0, {βi

0}i∈[n], δ0) and (αi, βi, δi) for i ∈ A to S2.
Further, the number of sessions that A can start is bounded in advance at n−1,
i.e. it is sufficient to consider bounded-concurrency.

Consider the two views

Real = {ŝj , {comj}}j∈H, Rand = {ŝj , {ĉomj}}j∈H,

where comj ← NMCOM.Commit(αj , βj) and ĉomj ← NMCOM.Commit(0). Real
corresponds to a real protocol view of A before committing itself7.

Obviously, Real ≈c Rand if NMCOM is non-malleable. However, we will argue
that A cannot output a valid commitment on α̃0 except with negligible proba-
bility, i.e.

Pr[(com∗
0, unv

∗
0, (α̃0, {β̃i

0}i∈[n], δ̃0) ← A(Rand) ∧ valid] ≤ negl(κ),

where valid is the event that NMCOM.Open(com∗
0, unv

∗
0, (α̃0, {β̃i

0}i∈[n], δ0) =
1. We first observe that p̂j and r̂j for j ∈ H cannot be obtained
by A via ŝj = p̂j · r̂j

0 − ûj . The polynomial ŝj itself is uniformly
random over the choice of ûj , and the only equation that A has is
p̂∩ =

∑
i∈A (si + si

0) +
∑

j∈H (sj + sj
0) =

∑
i∈A (p̂0 · (r̂i + r̂′

0) + p̂i · (r̂i
0 + r̂′

i)) +
∑

j∈H (p̂0 · (r̂j + r̂′
0) + p̂j · (r̂j

0 + r̂′
j)). Note, that the honest r̂j , r̂′

j have degree d
and therefore hide p̂j . Further, the commitments comj contain the value 0 and
are therefore independent of p̂j and r̂j . Thus, the probability that A obtains a
commitment on α̃0 is negligible.

7 For ease of notation, here we assume that the commitments are completely sent
before A commits himself. The very same argument also holds if A only received
synchronized messages of comj and has to start committing concurrently.

An Algebraic Approach to Maliciously Secure Private Set Intersection 179

But since Real ≈c Rand, we also get that

Pr[(com∗
0, unv

∗
0, (α̃0, {β̃i

0}i∈[n], δ̃0) ← A(Real) ∧ valid] ≤ negl(κ),

which contradicts our assumption that A produces the commitment with non-
negligible probability ε.

In conclusion, Hybrid 1 and Hybrid 2 are computationally indistinguish-
able.
�

Lemma 6.1.2. Assume that ΠCT provides a uniformly random x with compu-
tational security. Then Hybrid 2 and Hybrid 3 are computationally indistinguish-
able.

Proof. Assume that there exists an environment Z that distinguishes Hybrids 2
and 3 with non-negligible probability ε. In order to distinguish Hybrid 2 and
Hybrid 3 Z has to provide two distinct polynomials for a malicious P0 and still
pass the check in the protocol. Then we can construct from Z an adversary B
that predicts the outcome of ΠCT with non-negligible probability.

Let A input w.l.o.g. two polynomials p̂1
0 �= p̂2

0. The check with the random
challenge x allows A to send only one value α∗

0, but from Lemma 6.1.1 we know
that it has to hold that α∗

0 = p̂1
0(x) = p̂2

0(x), or the check will fail. First note
that two polynomials of degree m agree in a random point x over F only with
probability m/|F|, which is negligible in our case.

Our adversary B proceeds as follows. It simulates the protocol for Z according
to S1 up to the point where S1 learns the polynomials p̂1

0 �= p̂2
0. B sets f = p̂1

0−p̂2
0

and computes the roots γ1, . . . , γm of f . One of these roots has to be the random
point x, otherwise p̂1

0(x) − p̂2
0(x) �= 0 and the check in ΠMPSI fails (since there

is only one α∗
0). B picks a random index l ∈ [m] and predicts the output of

the coin-flip as γl. Thus, B predicts the outcome of the coin-toss correctly with
probability ε/m, which is non-negligible. This contradicts the security of ΠCT.

This establishes the indistinguishability of Hybrid 2 and Hybrid 3.
�

Lemma 6.1.3. Hybrid 4 and Hybrid 5 are statistically close.

Proof. A malicious environment Z can distinguish Hybrid 4 and Hybrid 5 if
(a) the extracted inputs are incorrect or if (b) the simulated messages can be
distinguished from real ones.

Concerning (a), if the inputs were not correctly extracted, Z would receive
different outputs in the two hybrids. We already established that the extracted
polynomial p̂0 is correct. Similarly, the extracted r̂j

0 are also correct. By impli-
cation this also ensures that the intermediate intersection is computed correctly.

We argue that the correction of the intersection is also correct, i.e. the set
Ŝ′

∩ is computed correctly and in particular it holds that (M0(p∗
∩) ∩ M0(p̂j)) ⊆

Ŝ∩. First of all, we have to show that the intermediate intersection polynomial
p̂int actually provides the intersection for all parties. For all Pj it holds with
overwhelming probability:

180 S. Ghosh and T. Nilges

M0(p̂j) ∩ M0(p̂int) = M0(p̂j) ∩ M0(
∑

j∈H

(p̂0 · (r̂j + r̂′
0) + p̂j · (r̂j

0 + r̂′
j)))

Lemma 2.2= M0(p̂j) ∩ (
⋂

j∈H

M0((p̂0 · (r̂j +r̂′
0) + p̂j · (r̂j

0+r̂′
j)))

Lemma 2.4= M0(p̂j)∩ (
⋂

j∈H

M0(p̂0) ∩ M0(p̂j))

= Ŝ∩

Once the intermediate intersection is computed, the adversary can only add
an update polynomial p̂upt to get the final intersection polynomial p∗

∩. It remains
to show that this final intersection does not include any points that were not
already in the intermediate intersection for any of the parties’ polynomials p̂j .

For this, we consider the intersection of every honest party’s (unknown) input
pj with the intersection. It has to hold that Ŝ′

∩ ⊆ Ŝ∩ for all Pj except with
negligible probability. Here we require that Pr[x ∈ M0(pj)] ≤ negl(|F|) for all
x, i.e. the adversary can only guess an element of Pj ’s input set.

M0(p̂j) ∩ M0(p∗
∩) = M0(p̂j) ∩ (M0(p̂int + p̂upt))

Lemma 2.2= M0(p̂j) ∩ (M0(p̂int) ∩ M0(p̂upt))

= M0(p̂j) ∩ (Ŝ∩ ∩ M0(p̂upt))

⊆ M0(p̂j) ∩ Ŝ∩ = Ŝ∩

Therefore, Ŝ′
∩ ⊆ Ŝ∩, and the output in both hybrids is identical.

Regarding (b), we make the following observations. Since S4 sends ŝ′
j =

ŝj − uj +
∑

i�=j vij , the value ŝ′
j is uniformly random over the choice of uj (and

over
∑

vij , if t ≤ n−2). Therefore, the simulation of ŝ′
j is identically distributed

to Hybrid 4.
Similarly, we have:

∑

j∈H

(ŝ′
j + ŝj

0) =
∑

j∈H

(p̂0 · (r̂j + r̂′
0) + p̂j · (r̂j

0 + r̂′
j)) [+

∑

i∈A,j∈H

vij]

We can ignore the vij values, since these are known to A. The sum is uniform over
the choice of the r̂j , r̂′

j apart from the points γ ∈ Ŝ∩ (since FOPA guarantees that
p̂0 �= 0) and therefore identically distributed to Hybrid 5, since the extraction in
correct.

�

P0 is honest: The proof itself is very similar to the proof of a corrupted
P0. It is actually easier to simulate in the sense that SP̄0

observes the inputs
of all malicious parties. In this sense, ΠMPSI actually realises FMPSI if P0 is
honest, since no adjustment of the output is necessary. We refer to the full
version [15] of the paper for the proof.

An Algebraic Approach to Maliciously Secure Private Set Intersection 181

Efficiency. The setup, i.e. the distribution of seeds, has communication com-
plexity O(n2κ). The oblivious addition of the polynomials has communication
overhead of O(nmκ). The check phase first requires a multi-party coin-toss.

In the full version of this paper [15], we sketch a coin-tossing protocol in com-
bination with an OLE-based commitment scheme (replacing the non-malleable
commitment for better efficiency) that results in an asymptotic communication
overhead of O(n2κ) for the check and the coin-toss phase. Combining this with
the above observations, ΠMPSI has communication complexity O((n2 + nm)κ)
in the FOLE-hybrid model.

For concrete instantiations of FOLE, the OLE protocol of Ghosh et al. [14]
has a constant communication overhead per OLE. In summary, the complete
protocol has communication complexity O((n2+nm)κ), which is asymptotically
optimal for m ≥ n.

Similar to the two-party case, the computational cost is dominated by the cost
of polynomial interpolation. In particular, the central party has to run the two-
party protocol n times, which leads to a computational overhead of O(nm log m)
multiplications. The other parties basically have the same computational over-
head as in the two-party case.
�

7 Performance Analysis

In this section, we give an estimation of the communication efficiency with con-
crete parameters and provide a comparison with existing results. For this, we
simply count the number of field elements that have to be sent for the protocols.
We first look at the communication overhead of the OLE primitive. Instanti-
ated with the result by Ghosh et al. [14], each OLE has an overhead of 64 field
elements including OT extension (32 without), which translates to 256 field ele-
ments per item per OPA. The factor 4 stems from the fact that OPA needs 2d
OLE to compute a degree d output, and OLE+ requires two OLE per instance.

Table 2. Comparison of two-party PSI protocols from [36] for input-size m =
{216, 220}, where κ denotes statistical security parameter, σ denotes size of each item
in bits, SM denotes standard model, ROM denotes random oracle model.

Protocol Communication cost

m = 216 m = 220

[36] (EC-ROM) 79 MB (κ = 40) 1.32 GB (κ = 40)

[36] (DE-ROM) 61 MB (κ = 40) 1.07 GB (κ = 40)

[36] (SM, σ = 40) 451 MB (κ = 40) >7.7 GB (κ = 40)

[36] (SM, σ = 64) 1.29 GB (κ = 40) 22.18 GB (κ = 40)

Ours (σ = 40) 80 MB (κ = 40) 1.25 GB (κ = 40)

Ours (σ = 64) 128 MB (κ = 64) 2 GB (κ = 64)

182 S. Ghosh and T. Nilges

2-party PSI. To get a feeling for the concrete communication efficiency of
our two-party protocol, we compare it with the recent maliciously UC-secure
protocols from [36]. These protocols give only one-sided output, whereas our
protocol gives two-sided output. However, OPA is sufficient for one-sided PSI,
consequently a one-sided PSI would cost 256 field elements per item in our case.

Table 2 clearly shows that the communication overhead of our protocol is
significantly less than the standard model (SM) protocol from [36]. Note that
our instantiation is also secure in SM, given O(κ) base OTs. Like [36] we use the
OT-extension protocol from [31] for the instantiation. Even if we compare our
result to the ROM approach of [36], we achieve fairly competitive communication
efficiency.

One should consider that in the ROM there exist other PSI protocols with
linear communication complexity [8,23]. The concrete bandwidth of those pro-
tocols are much less than our specific instantiation, for example for sets of 220

elements the total communication cost of [8] is about 213 MB8. Further [23] has
lower bandwidth than [8]. However, in both the cases communication efficiency
comes at the cost of huge computational expenses due to lots of public key oper-
ations. We believe that the simple field arithmetic of our protocols (including
the cost of the OLE of [14]) does not incur such a drawback in practice.

Table 3. Comparison of communication overhead per party of MPSI protocol with [27]
for 220 elements with 40 bit statistical security, without the cost for OT extension.

Protocol Parties Corr. Comm. 220 elements

[27] (passive) n n − 1 (n − 1) · 467 MB

Ours (active) n n − 1 ≈ 2.5 GB

Ours (passive) n n − 1 ≈ 1.25 GB

Multi-party PSI. To the best of our knowledge, there are currently no mali-
ciously secure MPSI implementations with which we could compare our result.
A direct comparison with the passively secure MPSI from [27], however, directly
shows the difference in asymptotic behaviour to our result. Their communication
costs per party increase with the number of parties, whereas it remains constant
in our case (except for the central party). If we average over all parties, the cen-
tral party’s overhead can be distributed over all parties, which at most doubles
the average communication cost per party (cf. Table 3). We can upper bound the
communication cost per party by 2.5 GB for 220 elements (excluding the cost
for OT extension in order to get comparable results to [27]). From the table we
can deduce that with only 6 parties, our actively secure protocol is more efficient
than their passive one. Replacing the actively secure OPA in our MPSI protocol
with the passively secure one yields a passively secure MPSI protocol. We gain

8 For reference see Figure 8 of [36].

An Algebraic Approach to Maliciously Secure Private Set Intersection 183

another factor of 2 in communication efficiency and our construction is more
efficient than [27] starting from 4 parties.

References

1. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 8

2. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

3. Borodin, A., Moenck, R.: Fast modular transforms. J. Comput. Syst. Sci. 8(3),
366–386 (1974). http://dx.doi.org/10.1016/S0022-0000(74)80029-2

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

5. Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection
with quasi-linear complexity. IEICE Trans. 95–A(8), 1366–1378 (2012)

6. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

7. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9 8

8. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 13

9. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

10. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 789–800. ACM Press, November 2013

11. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient
actively secure two-party computation from oblivious linear function evaluation.
In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017,
pp. 2263–2276. ACM Press, October/November 2017

12. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with
simulation-based security. J. Cryptol. 29(1), 115–155 (2016)

13. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-642-32009-5_39
http://dx.doi.org/10.1016/S0022-0000(74)80029-2
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1

184 S. Ghosh and T. Nilges

14. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 22

15. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. Cryptology ePrint Archive, Report 2017/1064 (2017). https://eprint.
iacr.org/2017/1064

16. Hallgren, P.A., Orlandi, C., Sabelfeld, A.: Privatepool: privacy-preserving rideshar-
ing. In: 30th IEEE Computer Security Foundations Symposium, CSF 2017, 21–25
August 2017, Santa Barbara, CA, USA, pp. 276–291 (2017)

17. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
90–120. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 4

18. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. J. Cryptol. 25(3), 383–433 (2012)

19. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8 8

20. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS 2012. The Internet Society, February 2012

21. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: Proceedings of the 1st ACM Conference on Electronic Commerce,
EC 1999, pp. 78–86 (1999)

22. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

23. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 26

24. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5 13

25. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

26. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818–829. ACM
Press, October 2016

27. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1257–1272. ACM
Press, October/November 2017

28. Meadows, C., Mutchler, D.: Matching secrets in the absence of a continuously
available trusted authority. IEEE Trans. Softw. Eng. SE-13(2), 289–292 (1987)

29. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: EC, pp. 129–139 (1999)

30. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Loca-
tion privacy via private proximity testing. In: NDSS 2011. The Internet Society,
February 2011

https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://eprint.iacr.org/2017/1064
https://eprint.iacr.org/2017/1064
https://doi.org/10.1007/978-3-662-46497-7_4
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/11535218_15

An Algebraic Approach to Maliciously Secure Private Set Intersection 185

31. Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with
application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 22

32. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: 24th USENIX Security Symposium, USENIX
Security 2015, 12–14 August 2015, Washington, D.C., USA, pp. 515–530 (2015)

33. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Proceedings of the 23rd USENIX Security Symposium, 20–22 August
2014, San Diego, CA, USA, pp. 797–812 (2014)

34. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur. 21(2), 7:1–7:35 (2018)

35. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 9

36. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 1229–1242. ACM Press, October/November 2017

37. Sang, Y., Shen, H.: Privacy preserving set intersection based on bilinear groups.
In: Proceedings of the Thirty-First Australasian Conference on Computer Science,
ACSC 2008, vol. 74. pp. 47–54 (2008)

38. Shamir, A.: On the power of commutativity in cryptography. In: de Bakker, J., van
Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–595. Springer, Heidelberg
(1980). https://doi.org/10.1007/3-540-10003-2 100

https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/3-540-10003-2_100

	An Algebraic Approach to Maliciously Secure Private Set Intersection
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Security Model
	2.2 Technical Lemmas

	3 Enhanced Oblivious Linear Function Evaluation
	4 Randomized Polynomial Addition from OLE
	5 Maliciously Secure Two-Party PSI
	6 Maliciously Secure Multi-party PSI
	6.1 Ideal Functionality
	6.2 Multi-party PSI from OLE

	7 Performance Analysis
	References

