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Preface

Eurocrypt 2019, the 38th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Darmstadt, Germany, during May
19–23, 2019. The conference was sponsored by the International Association for
Cryptologic Research (IACR). Marc Fischlin (Technische Universität Darmstadt,
Germany) was responsible for the local organization. He was supported by a local
organizing team consisting of Andrea Püchner, Felix Günther, Christian Janson, and
the Cryptoplexity Group. We are deeply indebted to them for their support and smooth
collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. The invited
talks and the talks presenting the best paper/best young researcher spanned over both
tracks.

We received a total of 327 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 58 Program Committee
members. Committee members were allowed to submit at most one paper, or two if
both were co-authored. Submissions by committee members were held to a higher
standard than normal submissions. The reviewing process included a rebuttal round for
all submissions. After extensive deliberations the Program Committee accepted 76
papers. The revised versions of these papers are included in these three volume pro-
ceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the paper “Quantum
Lightning Never Strikes the Same State Twice” by Mark Zhandry. The runner-up was
the paper “Compact Adaptively Secure ABE for NC1 from k Lin” by Lucas Kowalczyk
and Hoeteck Wee. The Best Young Researcher Award went to the paper “Efficient
Verifiable Delay Functions” by Benjamin Wesolowski. All three papers received
invitations for the Journal of Cryptology.

The program also included an IACR Distinguished Lecture by Cynthia Dwork,
titled “Differential Privacy and the People’s Data,” and invited talks by Daniele
Micciancio, titled “Fully Homomorphic Encryption from the Ground Up,” and
François-Xavier Standaert, titled “Toward an Open Approach to Secure Cryptographic
Implementations.”

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions can be very disappointing, especially rejections of very
good papers that did not find a slot in the sparse number of accepted papers. We
sincerely hope that these works eventually get the attention they deserve.

We are also indebted to the members of the Program Committee and all external
reviewers for their voluntary work. The committee’s work is quite a workload. It has
been an honor to work with everyone. The committee’s work was tremendously
simplified by Shai Halevi’s submission software and his support, including running the
service on IACR servers.



Finally, we thank everyone else—speakers, session chairs, and rump-session
chairs—for their contribution to the program of Eurocrypt 2019. We would also like to
thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2019 Yuval Ishai
Vincent Rijmen
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Differential Privacy and the People’s Data

IACR DISTINGUISHED LECTURE

Cynthia Dwork1

Harvard University
dwork@seas.harvard.edu

Abstract. Differential Privacy will be the confidentiality protection method
of the 2020 US Decennial Census. We explore the technical and social chal-
lenges to be faced as the technology moves from the realm of information
specialists to the large community of consumers of census data.

Differential Privacy is a definition of privacy tailored to the statistical anal-
ysis of large datasets. Roughly speaking, differential privacy ensures that any-
thing learnable about an individual could be learned independent of whether the
individual opts in or opts out of the data set under analysis. The term has come
to denote a field of study, inspired by cryptography and guided by theoretical
lower bounds and impossibility results, comprising algorithms, complexity
results, sample complexity, definitional relaxations, and uses of differential
privacy when privacy is not itself a concern.

From its inception, a motivating scenario for differential privacy has been the
US Census: data of the people, analyzed for the benefit of the people, to allocate
the people’s resources (hundreds of billions of dollars), with a legal mandate for
privacy. Over the past 4–5 years, differential privacy has been adopted in a
number of industrial settings by Google, Microsoft, Uber, and, with the most
fanfare, by Apple. In 2020 it will be the confidentiality protection method for the
US Decennial Census.

Census data are used throughout government and in thousands of research
studies every year. This mainstreaming of differential privacy, the transition
from the realm of technically sophisticated information specialists and analysts
into much broader use, presents enormous technical and social challenges. The
Fundamental Theorem of Information Reconstruction tells us that overly
accurate estimates of too many statistics completely destroys privacy. Differ-
ential privacy provides a measure of privacy loss that permits the tracking and
control of cumulative privacy loss as data are analyzed and re-analyzed. But
provably no method can permit the data to be explored without bound. How will
the privacy loss “budget” be allocated? Who will enforce limits?

More pressing for the scientific community are questions of how the mul-
titudes of census data consumers will interact with the data moving forward. The
Decennial Census is simple, and the tabulations can be handled well with
existing technology. In contrast, the annual American Community Survey,
which covers only a few million households yearly, is rich in personal details on
subjects from internet access in the home to employment to ethnicity, rela-
tionships among persons in the home, and fertility. We are not (yet?) able to

1 Supported in part by NSF Grant 1763665 and the Sloan Foundation.



offer differentially private algorithms for every kind of analysis carried out on
these data. Historically, confidentiality has been handled by a combination of
data summaries, restricted use access to the raw data, and the release of
public-use microdata, a form of noisy individual records. Summary statistics are
the bread and butter of differential privacy, but giving even trusted and trust-
worthy researchers access to raw data is problematic, as their published findings
are a vector for privacy loss: think of the researcher as an arbitrary
non-differentially private algorithm that produces outputs in the form of pub-
lished findings. The very choice of statistic to be published is inherently not
privacy-preserving! At the same time, past microdata noising techniques can no
longer be considered to provide adequate privacy, but generating synthetic
public-use microdata while ensuring differential privacy is a computationally
hard problem. Nonetheless, combinations of exciting new techniques give
reason for optimism.

xiv C. Dwork



Towards an Open Approach to Secure
Cryptographic Implementations

François-Xavier Standaert1

UCL Crypto Group, Université Catholique de Louvain, Belgium

Abstract. In this talk, I will discuss how recent advances in side-channel
analysis and leakage-resilience could lead to both stronger security properties
and improved confidence in cryptographic implementations. For this purpose, I
will start by describing how side-channel attacks exploit physical leakages such
as an implementation’s power consumption or electromagnetic radiation. I will
then discuss the definitional challenges that these attacks raise, and argue why
heuristic hardware-level countermeasures are unlikely to solve the problem
convincingly. Based on these premises, and focusing on the symmetric setting,
securing cryptographic implementations can be viewed as a tradeoff between the
design of modes of operation, underlying primitives and countermeasures.

Regarding modes of operation, I will describe a general design strategy for
leakage-resilient authenticated encryption, propose models and assumptions on
which security proofs can be based, and show how this design strategy
encourages so-called leveled implementations, where only a part of the com-
putation needs strong (hence expensive) protections against side-channel
attacks.

Regarding underlying primitives and countermeasures, I will first emphasize
the formal and practically-relevant guarantees that can be obtained thanks to
masking (i.e., secret sharing at the circuit level), and how considering the
implementation of such countermeasures as an algorithmic design goal (e.g., for
block ciphers) can lead to improved performances. I will then describe how
limiting the leakage of the less protected parts in a leveled implementations can
be combined with excellent performances, for instance with respect to the
energy cost.

I will conclude by putting forward the importance of sound evaluation
practices in order to empirically validate (by lack of falsification) the assump-
tions needed both for leakage-resilient modes of operation and countermeasures
like masking, and motivate the need of an open approach for this purpose. That
is, by allowing adversaries and evaluators to know implementation details, we
can expect to enable a better understanding of the fundamentals of physical
security, therefore leading to improved security and efficiency in the long term.

1 The author is a Senior Research Associate of the Belgian Fund for Scientific Research
(FNRS-F.R.S.). This work has been funded in part by the ERC Project 724725.



Fully Homomorphic Encryption
from the Ground Up

Daniele Micciancio

University of California, Mail Code 0404, La Jolla,
San Diego, CA, 92093, USA
daniele@cs.ucsd.edu

http://cseweb.ucsd.edu/*daniele/

Abstract. The development of fully homomorphic encryption (FHE), i.e.,
encryption schemes that allow to perform arbitrary computations on encrypted
data, has been one of the main achievements of theoretical cryptography of the
past 20 years, and probably the single application that brought most attention to
lattice cryptography. While lattice cryptography, and fully homomorphic
encryption in particular, are often regarded as a highly technical topic, essen-
tially all constructions of FHE proposed so far are based on a small number of
rather simple ideas. In this talk, I will try highlight the basic principles that make
FHE possible, using lattices to build a simple private key encryption scheme that
enjoys a small number of elementary, but very useful properties: a simple
decryption algorithm (requiring, essentially, just the computation of a linear
function), a basic form of circular security (i.e., the ability to securely encrypt its
own key), and a very weak form of linear homomorphism (supporting only a
bounded number of addition operations.)

All these properties are easily established using simple linear algebra and
the hardness of the Learning With Errors (LWE) problem or standard worst-case
complexity assumptions on lattices. Then, I will use this scheme (and its abstract
properties) to build in a modular way a tower of increasingly more powerful
encryption schemes supporting a wider range of operations: multiplication by
arbitrary constants, multiplication between ciphertexts, and finally the evalua-
tion of arithmetic circuits of arbitrary, but a-priory bounded depth. The final
result is a leveled1 FHE scheme based on standard lattice problems, i.e., a
scheme supporting the evaluation of arbitrary circuits on encrypted data, as long
as the depth of the circuit is provided at key generation time. Remarkably,
lattices are used only in the construction (and security analysis) of the basic
scheme: all the remaining steps in the construction do not make any direct use of
lattices, and can be expressed in a simple, abstract way, and analyzed using
solely the weakly homomorphic properties of the basic scheme.

Keywords: Lattice-based cryptography � Fully homomorphic encryption �
Circular security � FHE bootstrapping

1 The “leveled” restriction in the final FHE scheme can be lifted using “circular security” assumptions
that have become relatively standard in the FHE literature, but that are still not well understood.
Achieving (non-leveled) FHE from standard lattice assumptions is the main theoretical problem still
open in the area.

https://orcid.org/0000-0003-3323-9985
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On ELFs, Deterministic Encryption,
and Correlated-Input Security

Mark Zhandry(B)

Princeton University, Princeton, USA
mzhandry@princeton.edu

Abstract. We construct deterministic public key encryption secure for
any constant number of arbitrarily correlated computationally unpre-
dictable messages. Prior works required either random oracles or non-
standard knowledge assumptions. In contrast, our constructions are
based on the exponential hardness of DDH, which is plausible in elliptic
curve groups. Our central tool is a new trapdoored extremely lossy func-
tion, which modifies extremely lossy functions by adding a trapdoor.

1 Introduction

The Random Oracle Model [7] is a useful model whereby one models a hash
function as a truly random function. Random oracles have many useful prop-
erties, such as collision resistance, pseudorandomness, correlation intractability,
extractability, and more. Unfortunately, random oracles do not exist in the real
world, and some random oracle properties are uninstantiable by concrete hash
functions [11]. This has lead to a concerted effort in the community toward con-
structing hash functions with various strong security properties from standard,
well-studied, and widely-accepted assumptions.

Correlated Input Security. In this work, we focus on one particular property
satisfied by random oracles, namely correlated input security. Here, the adversary
is given yi = f(xi) for inputs x1, . . . , xk which may come from highly non-
uniform and highly correlated distributions. At the simplest level, we ask that
the adversary cannot guess any of the xi, though stronger requirements such
as the pseudorandomness of the yi are possible. Correlated input security has
applications to password hashing and searching on encrypted data [16] and is
closely related to related-key security [4]. It is also a crucial security requirement
for deterministic public key encryption [3], which is essentially a hash function
with a trapdoor.

Correlated input secure functions follow trivially in the random oracle model,
and standard-model constructions for specific classes of functions such as low-
degree polynomials [16] or “block sources” [5,8,9,14,19] are known. However,
there has been little progress toward attaining security for arbitrary correlations
from standard assumptions, even in the case of just two correlated inputs.
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This Work. In this work, we construct hash functions and deterministic public
key encryption (DPKE) with security for any constant number of arbitrarily
correlated sources. In addition, we only require computational unpredictability
for our sources, and our DPKE scheme even achieves CCA security. Our main
new technical tool is a new construction of extremely lossy functions (ELFs) [22]
that admit a trapdoor. Our construction is secure, assuming that DDH (or more
generally k-Lin) is exponentially hard to solve. Such an assumption is plausible
on elliptic curves.

1.1 Details

We now give an overview of our results and our approach. We start with
correlated-input security for one-way functions, and gradually build up to our
ultimate goal of deterministic public key encryption.

Correlated Input Secure OWFs. First, we observe that Zhandry’s Extremely
Lossy Functions (ELFs) [22] already give correlated-input secure one-way func-
tions for any constant number of inputs. Recall that an ELF is a variant of a lossy
trapdoor function (LTDF), which were introduced by Peikert and Waters [18].
LTDFs are functions with two modes, an injective mode that contains a secret
trapdoor for inversion, and a lossy mode that is information-theoretically un-
invertible. The security requirement is that these modes are computationally
indistinguishable, if you do not know the trapdoor. LTDFs have many applica-
tions, including CCA-secure public key encryption [18], deterministic public key
encryption [8], and more.

Similarly, and ELF also has two modes, injective and lossy similar to above.
However the key difference is that in the lossy mode, the image size is so small
that it is actually polynomial. Clearly, such a lossy mode can be distinguished
from injective by an adversary whose running time is a slightly larger polynomial.
So ELFs actually have a spectrum of lossy modes of differing polynomial image
sizes, and the exact image size is chosen based on the adversary just large enough
to fool it. The other main difference between ELFs and LTDFs is that, due to
the particulars of Zhandry’s construction, the injective mode for ELFs does not
contain a trapdoor. Zhandry constructs ELFs based on the exponential hardness
of the DDH assumption, or more generally exponential k-Lin.

Let f be an injective mode ELF. Consider a source S of d correlated inputs
x1, . . . , xd as well as auxiliary information aux. Our goal is to show that, given
aux and f(x1), . . . , f(xd), it is computationally infeasible to find any of the xi.
A necessary condition on S is that each xi are computationally unpredictable
given aux alone. Note that we will allow sources for which xi is predictable given
some of the other xj . Note that such a source captures the setting where, say,
x2 = x1 + 1, etc.

We now prove that f is one-way for any such computationally unpredictable
source. To prove security, we first switch f to be a lossy mode with polynomial
image size p. Since d is assumed to be constant, the number of possible value for
the vector f(x1), . . . , f(xd) is pd, also a polynomial. Therefore, this value can be
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guessed by the adversary with inverse polynomial probability. As such, if xi can
be guessed given aux and f(x1), . . . , f(xd) with non-negligible probability ε, it
can also be guessed given just aux with probability at least ε/pd, contradicting
the unpredictability of S.

Correlated Input Secure PRGs. Next, we turn to the much harder task of con-
structing a PRG G for a constant number of correlated inputs. Here, the adver-
sary is given aux, y1, . . . , yd where either (1) yi = G(xi) for all i or (2) yi is
chosen at random in the domain of G. The adversary tries to distinguish the two
cases. In order for security to be possible at all, we need to place some minimal
restrictions on the source S:

– As in the case of one-wayness, we must require that S is computationally
unpredictable

– All the xi must be distinct, with high probability. Otherwise, the adversary
identify the yi = G(xi) case by simply testing the equality of the yi.

In this paper, in order to match notation from Zhandry [22], we will call a func-
tion G satisfying indistinguishability a hardcore function for computationally
unpredictable sources on d inputs.

ELFs are not alone guaranteed to be such hardcore functions, as the outputs
are not guaranteed to be random. Instead we build G by starting from Zhandry’s
hardcore function, which works in the case d = 1; that is, for single computa-
tionally unpredictable sources. Zhandry’s construction is built from ELFs, but
requires more machinery to prove pseudorandomness.

The core idea of Zhandry’s hardcore function G is the following: first extract
many Goldreich-Leving hardcore bits, far too many to be simultaneously hard-
core. These cannot be output in the clear, as they would allow for trivial inver-
sion. Instead, the bits are scrambled by feeding them through an ELF-based
circuit. Zhandry shows (1) that the GL bits can be replaced with random with-
out detection, and (2) if the GL bits are replaced with random, then the output
of the circuit is random.

Unfortunately, for correlated sources, the GL bits for different inputs will be
correlated: for example if the two inputs differ in a single bit, then if the parity
function computing the GL bit is 0 in that position, the two GL bits will be
identical. Therefore, the inputs to step (2) in Zhandry’s proof may be highly
correlated, and his circuit does not guarantee security against correlated inputs.

To mitigate this issue, we carefully modify Zhandry’s function G. The idea
is, rather than having fixed GL parities, we generate the GL parities as func-
tions of the input itself. Different inputs will hopefully map to independent
parities, leading to independent GL bits. We have to be careful, however, in
order to avoid any circularities in the analysis, since we need the GL parities to
be (pseudo)random and independent (in order to apply the GL theorem), but
generating such random independent parities already seems to require extracting
pseudorandom strings for arbitrarily correlated sources, leaving us back where
we started.
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Our construction works as follows: we have another ELF instance, which
is applied to the input x, resulting in an value w. Then we apply a d-wise
independent function R to w to generate the actual parities. Zhandry shows
that this composition of an ELF and a d-wise independent function is collision-
resistant for d ≥ 2, meaning the d different xi will indeed map to distinct parities,
and in fact distinct wi. Next, in the lossy mode for the ELF, there are only
a polynomial number of w; since d is constant, there are also a polynomial
number of possible d-tuples of (w1, . . . , wd). Therefore, we can actually guess
the (w1, . . . , wd) vector that will result from applying the ELF to the xi with
inverse-polynomial probability. Next, since R is d-wise independent, we can take
d independent sets of GL parities and program R to output these parities on
the corresponding d values of w. This is not quite enough to show that the
GL parities are themselves pseudorandom for correlated sources (since we only
successfully program with inverse-polynomial probability), but with a careful
proof we show that it is sufficient to prove the pseudorandomness of the overall
construction.

Deterministic Public Key Encryption. Next, we turn to constructing determin-
istic public key encryption (DPKE). A DPKE protocol consists of 3 algorithms,
(DPKE.Gen,DPKE.Enc,DPKE.Dec). DPKE.Gen creates a secret/public key pair
sk, pk. DPKE.Enc is a deterministic procedure that uses the public key pk to
scramble a message m, arriving at a ciphertext c. DPKE.Dec is also determinis-
tic, and maps the ciphertext c back to m.

We first consider security in the single-input setting; we note that it was
previously open to construction DPKE for even a single arbitrary computa-
tionally unpredictable source. The canonical way to build DPKE [3] is to use
an ordinary randomized public key encryption scheme with CPA security. The
idea is to hash the message m using a hash function H, and use H(m) as the
randomness r: DPKE.Enc(pk,m) = DPKE.Enc(pk,m;H(r)) where DPKE.Enc is
the randomized PKE encryption algorithm. In the random oracle model for H,
Bellare, Boldyreva and O’Neill [3] show that this scheme obtains the strongest
possible notion of security. One may hope that some ELF-based hash function
H might be sufficient.

Unfortunately, Brzuska, Farshim and Mittelbach [10] give strong evidence
that this scheme cannot be proven secure in the standard model, even under very
strong assumptions. In particular, they devise a public key encryption scheme
PKE.Enc such that, for any concrete hash function H, DPKE.Enc will be inse-
cure. Their construction uses indistinguishability obfuscation [2] (iO), which is
currently one of the more speculative tools used in cryptography. Nonetheless, in
order to give a standard model construction of DPKE, one must either deviate
from the scheme above, or else prove conclusively that iO does not exist.

On the other hand, lossy trapdoor functions have proven useful for building
DPKE in the standard model (e.g. [8,9]). One limitation of these techniques,
however, is that since the image size of a LTDF is always at least sub-exponential,
constructions based on LTDFs tend to require high min-entropy/computational
unpredictability requirements.
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Our First Construction. We start by abstracting the constructions of Braker-
ski and Segev [9]. They construct DPKE for sub-exponentially unpredictable
sources by essentially analyzing specific constructions of Lossy Trapdoor Func-
tions (LTDFs), and showing that they satisfy the desired security experiment.

Our first construction abstracts their construction to work with arbitrary
LTDFs. Our construction is the following, based on a semantically secure public
key encryption scheme PKE.Enc, a special kind of pseudorandom generator G,
and a LTDF f generated in the injective mode:

DPKE.Enc(pk,m) = PKE.Enc(pk, f(m);G(m))

To prove security, we first switch to f being in the lossy mode. Now, notice
that if m can be predicted with probability p, then it can still be predicted with
probability p/r even given f(m), by simply guessing the value of f(m), which
will be correct with probability 1/r. In particular, if p is sub-exponentially small
and r is sub-exponential, then p/r is also sub-exponential. Any LTDF can be set
to have a sub-exponential-sized lossy mode by adjusting the security parameter
accordingly.

Next, we observe that if G is hardcore for sub-exponentially unpredictable
sources, then G(m) will be pseudorandom given f(m). Such a G can be built by
extracting a sufficiently small polynomial-number of Goldreich-Levin [15] bits,
and then expanding using a standard PRG.

At this point, we can replace G(m) with a random bitstring, and then rely
on the semantic security of PKE.Enc to show security, completing the security
proof.

But what about arbitrary computationally unpredictable sources, which may
not be sub-exponentially secure? Intuitively, all we need is that (1) r can be
taken to be an arbitrarily small super-polynomial, and (2) that G is secure
for arbitrary unpredictable sources, instead of just sub-exponential sources. We
then recall that Zhandry’s [22] construction of G already satisfies (2), and that
ELF’s themselves almost satisfy (1). Unfortunately, the resulting scheme is not
an encryption scheme: Zhandry’s ELFs do not have a trapdoor in the injective
mode, meaning there is no way to decrypt.

Therefore, we propose the notion of a trapdoor ELFs, which combines the
functionality of ELFs and LTDFs by allowing for both a polynomial image
size and a trapdoor. Using a trapdoor ELF, the above construction becomes
a secure DPKE scheme for any computationally unpredictable source. For now
we will simply assume such trapdoor ELFs; we discuss constructing such func-
tions below.

CCA Security. Next we turn to achieving CCA security for DPKE. CCA security
has received comparatively less attention in the deterministic setting, though
some standard-model constructions are known [8,17,19]. In particular, we are
not aware of any constructions for computationally unpredictable sources, sub-
exponentially hard or otherwise.

We observe that by combining techniques for building CCA-secure encryption
from LTDFs [8,18] with our abstraction of Brakerski and Segev [9], we can
achieve CCA security for sub-exponentially hard sources. The idea is to use
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all-but-one LTDFs, a generalization of LTDFs where the function f has many
branches. In the injective mode, each branch is injective. In the lossy mode, a
single branch is lossy, and the inverse function works for all other modes. The
adversary cannot tell injective from lossy, even if it knowns the branch b∗. Peikert
and Waters [18] show how to generically construct such ABO LTDFs from any
LTDF.

First, we modify the definition to require that indistinguishability from injec-
tive and lossy holds even if the adversary can make inversion queries on all
branches other than b∗. The generic construction from standard LTDFs satisfies
this stronger notion.

Then, our CCA-secure construction can be seen as combining our con-
struction above with the construction of [8]. We encrypt using the algorithm
DPKE.Enc(pk,m) = (b = G0(m),PKE.Enc(pk, f(b,m);G1(m))) where G0, G1

are strong pseudorandom generators, and f(b,m) is the ABO LTDF evaluation
on branch b. Here, we require PKE.Enc to be a CCA-secure PKE scheme.

Intuitively, G0 determines the branch, and if it is injective, then each message
has its own branch. Once the branch is fixed, the rest of the scheme basically
becomes our basic scheme from above. The challenge ciphertext will be set to be
the lossy branch, which can be proven to hide the message following the same
proof as our basic scheme. We will need to simulate CCA queries, which can
be handled by using the CCA-security of PKE.Enc and the security of f under
inversion queries.

Using standard LTDFs, we thus get the first CCA-secure scheme for sub-
exponentially hard computationally unpredictable sources.

Turning to the setting of arbitrary unpredictable sources, we need to replace
the ABO LTDF with an ABO trapdoor ELF, which works. Unfortunately, as
discussed below, the generic construction of ABO LTDF in [18] does not apply to
trapdoor ELFs, so we need a different approach to construct an ABO trapdoor
ELF. Our approach is outlined below when we discuss our ELF constructions.

Correlated Inputs. Next, we turn to constructing DPKE for correlated inputs.
Here, we require essentially the same security notion as for hardcore functions;
the only difference is in functionality, since there is a trapdoor for inversion.

In the case of CPA security, security trivially follows if we replace G with our
hardcore function for correlated inputs. We therefore easily get the first DPKE
scheme secure for a constant number of correlated sources. We also note that
if the source is sub-exponentially unpredictable, our scheme can be based on
standard LDTFs.

We can similarly extend this idea to get CCA security. Except here, we
will need a trapdoor ELF with several lossy branches, one for each challenge
ciphertext.

Constructing Trapdoor ELFs. Finally, we turn to actually constructing trapdoor
ELFs. Our trapdoor ELFs will be based on Zhandry’s ELFs, which are in turn
based on constructions of LTDFs [13]. But unfortunately, Zhandry’s ELFs lose
the trapdoor from the LTDFs. Here, we show how to resurrect the trapdoor.
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Zhandry’s construction basically iterates Freeman et al.’s [13] LTDF at many
security levels. Freeman et al.’s construction expands the inputs by a modest
factor. Thus, Zhandry needs to compress the outputs of each iteration in order
for the size to not grow exponentially. Unfortunately, this compression results in
the trapdoor being lost, since it is un-invertible.

Instead, we opt to avoid compression by more carefully choosing the security
parameters being iterated. Zhandry chooses powers of 2 from 2 up to the global
security parameter. Instead, we choose double exponentials 22

i

. We still cannot
go all the way to the global security parameter, but we show that we can go high
enough in order to capture any polynomial. Thus, we obtain ELFs that admit a
trapdoor.

For our application to CCA-security, we need to introduce branches into
our trapdoor ELFs. Unfortunately, the approach of Peikert and Waters [18] is
insufficient for our purposes. In particular, they introduce branching by apply-
ing many different LTDFs in parallel to the same input, outputting all images.
The overall image size is then roughly the product of the image sizes of each
underlying LTDF. The branch specifies which subsets of LTDFs are applied; the
LTDFs corresponding to the lossy branch are all set to be lossy. In this way, the
lossy branch will indeed be lossy. On the other hand, any other branch will have
at least one LTDF which is injective, meaning the overall function is injective.
Unfortunately for us, this approach results in an exponential blowup in the size
of the image space for the lossy branch, even if the original image size was poly-
nomial. Hence, applying this transformation to an ELF would not result in an
ABO ELF.

Instead, we opt for a direct construction though still based on Freeman et
al.’s scheme. Recall Freeman et al.’s scheme: the function f−1 is specified by an
n × n matrix A over Zq, and the function f is specified by A, but encoded in
the exponent of a cryptographic group over order q: gA. The function f takes
an input x ∈ {0, 1}n, and maps it to gA·x by carrying out appropriate group
operations on gA. The inverse function f−1 uses A−1 to recover gx from gA·x,
and then solves for x, which is efficient since x is 0/1.

In the lossy mode, A is set to be a matrix of rank 1. By DDH, this is
indistinguishable from full rank when just given gA. On the other hand, now the
image size of f is only q. By setting 2n � q, this function will now be lossy.

We now give a direct construction of an ABO trapdoor ELF. Our idea is to
make the matrices tall, say 2n rows and n columns. Note that any left inverse
of A will work for inverting the function, and there are many.

Our actual construction is the following. For branches in {0, 1}a, f−1 will be
specified by 2a+1 matrices B,Ai,t for i ∈ [a], t ∈ {0, 1}. The description of f will
simply be the corresponding encoded values of B,Ai,t. The branch b ∈ {0, 1}a

corresponds to the matrix Ab = B +
∑

i Ai,bi .
For a lossy mode with branch b, we set Ab to be rank 1. Then we choose Ai,t

at random and set B = Ab − ∑
i Ai,bi .

We would now like to prove security. For a given branch b∗, suppose an
adversary can distinguish the injective mode from the mode where b∗ is lossy.
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We now show how to use such an adversary to distinguish gC for a full-rank
n × n C from a random rank-1 C.

First, we will set Ab∗ to be the matrix C, except with n more rows appended,
all of which are zero. We can easily construct gAb∗ from gC without knowing C.
Then we choose random Ai,t. Finally, we set B = Ab∗ −∑

i Ai,bi . We can easily
construct gB given gC, again without knowing C.

Now notice that for each branch b, we know the bottom n rows of Ab, and
moreover for b �= b∗ they are full rank. Therefore, we can invert on any branch
other than b∗, allowing us to simulate the adversary’s queries.

Unfortunately, the distribution simulated is not indistinguishable from the
correct distribution. After all, Ab∗ is all zeros on the bottom n rows, which is eas-
ily detectable by the adversary. In order to simulate the correct distribution, we
actually left-multiply all the matrices B,Ai,t by a random matrix R ∈ Z

2n×2n
q .

This can easily be done in the exponent. Moreover, now in the case where C is
random, the matrices B,Ai,t are actually random. On the other hand if C is
rank 1, we correctly simulate the case where b∗ is lossy.

Our construction above can easily be extended to multiple lossy branches by
iterating the construction several times, one for each branch that needs to be
lossy. Then, we notice that we actually achieve a polynomial image size by setting
q to be a polynomial, and then relying on the exponential hardness of DDH to
prove indistinguishability. Thus, we achieve trapdoor ELFs with multiple lossy
branches, as needed for our construction.

1.2 Discussion

Of course, one way to achieve a hash function with security for correlated
inputs—or more generally any security property—is to simply make the “tauto-
logical” assumption that a given hash function such as SHA has the property.
Assuming the hash function is well designed, such an assumption may seem
plausible. In fact, for practical reasons this is may be the preferred approach.

However, in light of the impossibility of instantiating random oracles in gen-
eral [11], it is a priori unclear which hash function properties are achievable in
the standard model. It could be, for example, that certain correlations amongst
inputs will always be trivially insecure, even for the best-designed hash functions.
The only way to gain confidence that a particular hash function property is plau-
sible at all is to give a construction provably satisfying the property under well-
studied and widely accepted computational assumptions. Our correlated-input
secure PRG G does exactly this.

On Exponential Hardness. Our constructions rely on the exponential hardness
of DDH, which is plausible in elliptic curve groups based on the current state
of knowledge. Elliptic curves have been studied for some time, and to date no
attack has been found that violates the exponential hardness in general elliptic
curves.

In fact, exponential hardness is exactly what makes elliptic curves desirable
for practical cryptographic applications today. DDH over finite fields is solv-
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able in subexponential time, meaning parameters must be set much larger to
block attacks. This leads to much less efficient schemes. Some of the most effi-
cient protocols in use today rely on elliptic curves, precisely because we can set
parameters aggressively and still remain secure. Thus, the exponential hardness
of DDH in elliptic curve groups is widely assumed for real-world schemes.

We also remark that, as explained by Zhandry [22], polynomial-time and even
sub-exponential-time hardness are insufficient for one-way functions secure for
arbitrary min-entropy sources, which in particular are implied by our correlated-
input secure constructions. Therefore, some sort of extremely strong hardness is
inherent in our applications.

Concretely, security for arbitrary min-entropy sources implies the following:
for any super-logarithmic function t(n), there is a problem in NP that (1) only
requires t(n) bits of non-determinism, but (2) is still not contained in P . Put
another way, the problem can be brute-forced in very slightly super-polynomial
time, but is not solvable by any algorithm in polynomial time, showing that
brute-force is essentially optimal. This can be seen as a scaled-down version of
the exponential time hypothesis. Thus, while exponential hardness may not be
required for the applications, a scaled-down version of exponential hardness is
required.

Common Random String. Our constructions are based on Zhandry’s ELFs,
which require a common random string (crs); this crs is just the description
of the injective-mode function. Thus our hardcore functions require a crs, and
moreover, we only obtain security if the crs is sampled independently of the
inputs. A natural question is whether this is required. Indeed, the following
simple argument shows that pseudorandomness for even a single information-
theoretically unpredictable source is impossible without a crs. After all, for a fixed
function G, let S sample a random input x conditioned on the first bit of G(x)
being 0. Then the first bit of G(x) will always be zero, whereas the first bit of a
random string will only be zero half the time. This argument also easily extends
to the setting of a crs, but where the sampler depends on a crs. It also extends
for security for DPKE schemes where the messages depend on the public key, as
noted in [19].

Even if we restrict to inputs that are statistically close to uniform, but allow
two inputs to be slightly correlated, a crs is still required for pseudorandom-
ness. Indeed, for a function G that outputs n-bit strings, consider the following
sampler: choose two inputs x0, x1 at random, conditioned on the first bit of
G(x0) ⊕ G(x1) being 0.

In the case of one-wayness, the above does not quite apply (since G(x) may
still hide x), but we can show that one-wayness without a crs is impossible for any
super-constant number of correlated inputs. Basically, for d inputs, the sampler
S will choose a random (d − 1) log λ-bit string x1, which has super-logarithmic
min-entropy since d is super-constant. Then it will divide x into d − 1 blocks of
log λ bits z2, . . . , zd. It will then sample random x2, . . . , xd such that the first
log λ bits of G(xi) are equal to zi (which requires O(λ) evaluations of G). Finally,
it outputs x1, . . . , xd. Given the outputs y1, . . . , yd, it is easy to reconstruct x1.
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Of course, we only achieve security for a constant number of correlated inputs
with a crs, so this leaves open the interesting problem of constructing a one-way
function for a constant number of correlated inputs without using a crs.

Barriers to Correlated-Input Security. Even with a crs, correlated-input security
has been difficult to achieve. The following informal argument from Wichs [21]
gives some indication why this is the case. Let P1, P2 be two functions. Consider
correlated x1, x2 sampled as x1 = P1(r), x2 = P2(r), for the same choice of
random r. Now, a reduction showing correlated-input security would need to
transform an attacker A for the correlated inputs into an algorithm B for some
presumably hard problem. But it seems that B needs to some how feed into A a
valid input G(x1), G(x2), and then use A’s attack in order to solve it’s problem.
But the only obvious way to generate a valid input for general P1, P2 is to choose
a random r and set x1 = P1(r), x2 = P2(r). But then B already knows what A
would do, making A’s attack useless.

The standard way (e.g. [1]) to get around this argument is to use G that are
lossy, and this is the approach we use, exploiting the two modes of the ELF.
Our results show that it is possible to attain security for a constant number of
inputs.

What about larger numbers of correlated inputs? Wichs [21] shows that
proofs relative to polynomial-time falsifiable assumptions that make black-box
use of the adversary are impossible for any super-logarithmic number of corre-
lated messages. Note that the impossibility does not apply to our results for
three reasons:

– Our reduction requires knowing the adversary’s success probability and run-
ning time, and is therefore very slightly non-black box. In the language of [12],
our reduction is “non-uniform”

– We require exponential hardness, not polynomial-time hardness
– We only achieve a constant number of correlated messages.

Nonetheless, Wichs impossibility represents a barrier to significantly improv-
ing our results.

Deterministic Public Key Encryption. Deterministic public key encryption can
be thought of as an injective hash function that also has a trapdoor. As a
result, the definitions of security for DPKE are related to strong security notions
for hash functions such as correlated-input security. We note that [6] construct
correlated-input secure DPKE for an arbitrary number of correlated min-entropy
sources. Their underlying building blocks are LTDFs and universal computa-
tional extractors (UCE’s). Note that UCE’s are a strong “uber” type assump-
tion on hash functions that includes many different security properties, including
correlated-input security. Therefore, the main difficulty in their work is showing
how to take a hash function that already attains the security notion they want
(and then some) and then building from it a function that also has a trapdoor.

Our correlated-input secure hash function is likely not a UCE. In particular,
in light of Wich’s impossibility results discussed above, we don’t expect to be able
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to prove that our construction is correlated-input secure for a large number of
inputs. More we do not expect to be able to prove all UCE security properties for
our assumption. Therefore, we cannot simply plug our hash function construction
into [6] to get a DPKE scheme.

2 Preliminaries

Definition 1. Consider a distribution D on pairs (x, aux), indexed by the secu-
rity parameter λ. We say that D is computationally unpredictable if, for any
probabilistic polynomial time adversary A, there is a negligible function ε such
that

Pr[A(aux) = x : (x, aux) ← D(λ)] < ε(λ)

In other words, A cannot efficient guess x given aux.

Lemma 1. Let D be a source of tuples (x, aux, z) such that (x, aux) is computa-
tionally unpredictable. Let F be a distribution over functions f with the following
property. f(aux, x, z) is function such that, for any aux, f(aux, ·, z) has polyno-
mial image size, and that it is possible to efficiently compute the polynomial-sized
image. Then D′ which samples (x, aux′ = (aux, f, f(aux, x, z))) is computation-
ally unpredictable.

Proof. If there is an A adversary for D′, we can simply make a random guess for
the value of f(aux, x, z), which will be right with inverse polynomial probability.
In this case, we correctly simulate the view of A, meaning A outputs x with
non-negligible probability. Overall, we break the computational unpredictability
of x with inverse polynomial probability. �	

We will also consider a notion of computationally unpredictable sources on
multiple correlated inputs:

Definition 2. Consider a distribution D on tuples (x1 . . . , xd, aux), indexed by
the security parameter λ. We say that D is computationally unpredictable if the
following hold:

– For any i �= j, Pr[xi = xj ] is negligible.
– For any probabilistic polynomial time adversary A, there is a negligible func-

tion ε such that

Pr[A(aux) ∈ {x1, . . . , xd} : (x1, . . . , xd, aux) ← D(λ)] < ε(λ)

In other words, each distribution (xi, aux) is computationally unpredictable.

Notice we do not require xi to be unpredictable given xj , j �= i. As such,
distributions such as x, x + 1, x + 2, aux = ∅ are considered unpredictable.

We now consider hardcore functions:
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Definition 3. Let G be a sampling procedure for deterministic functions G on
n = n(λ) bits with m = m(λ) bit outputs. We say that G is hardcore for any
computationally unpredictable source if for any computationally unpredictable
source D for x ∈ {0, 1}n, and any adversary A, there is a negligible function ε
such that:

|Pr[A(G,G(x), aux) = 1] − Pr[A(G,R, aux)]| < ε(λ)

where G ← G, (x, aux) ← D(λ) and R is random in {0, 1}m. In other words,
G(x) is pseudorandom even given aux.

Definition 4. Let G be a sampling procedure for deterministic functions G on
n = n(λ) bits with m = m(λ) bit outputs. We say that G is hardcore for any
computationally unpredictable source over d-inputs if for any computationally
unpredictable source D for d inputs x1 . . . , xd ∈ {0, 1}n, and any adversary A,
there is a negligible function ε such that:

|Pr[A(G,G(x1), . . . , G(xd), aux) = 1] − Pr[A(G,R1, . . . , Rd, aux)]| < ε(λ)

where G ← G, (x1, . . . , xd, aux) ← D(λ) and R1 . . . , Rd are random in {0, 1}m.
In other words, G(x) is pseudorandom even given aux and the correlated inputs.

2.1 Deterministic Public Key Encryption

A deterministic public key encryption scheme is a tuple of efficient algorithms
(DPKE.Gen,DPKE.Enc,DPKE.Dec), where DPKE.Enc,DPKE.Dec are determin-
istic maps between messages and ciphertexts, and DPKE.Gen is randomized pro-
cedure for producing secret and public key pairs.

For security, we consider several possible notions. Security for arbitrary
computational sources means that (pk, c∗ = DPKE.Enc(pk,m), aux) is com-
putationally indistinguishable from (pk, c∗ = DPKE.Enc(pk, R), aux), where
(m, aux) is sampled from an arbitrary computationally unpredictable source
and R is uniformly random, and (sk, pk) ← DPKE.Gen(λ). CCA security
means the same holds even if the adversary can later ask for decryption
queries on ciphertexts other that c∗. Security for arbitrary correlated sources
means that (pk,DPKE.Enc(pk,m1), . . . ,DPKE.Enc(pk,m1), aux) is indistinguish-
able from (pk,DPKE.Enc(pk, R1), . . . ,DPKE.Enc(pk, Rd), aux) for arbitrary com-
putationally unpredictable sources on d inputs.

2.2 ELFs

We recall the basic definition of Extremely Lossy Functions (ELFs) from
Zhandry. We slightly change notation, but the definition is equivalent.

A Lossy Trapdoor Function, or LTDF [18], is a function family with two
modes: an injective mode where the function is injective and there is a trap-
door for inversion, and a lossy mode where the image size of the function is
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much smaller than the domain. The security requirement is that no polynomial-
time adversary can distinguish the two modes. An Extremely Lossy Function,
or ELF [22], is a related notion without a trapdoor in the injective mode, but
with a more powerful lossy mode. In particular, in the lossy mode the image size
can be taken to be a polynomial r. One fixed polynomial r is insufficient (since
then the lossy mode could easily be distinguished from injective), but instead,
the polynomial r is tuned based on the adversary in question to be just large
enough to fool the adversary.

Definition 5 (Zhandry [22]). An ELF consists of two algorithms ELF.GenInj
and ELF.GenLossy, as well as a function N = N(M) such that log N is polyno-
mial in log M . ELF.GenInj takes as input an integer M , and outputs the descrip-
tion of a function f : [M ] → [N ] such that:

– f is computable in time polynomial in the bit-length of their input, namely
log M .

– With overwhelming probability (in log M), f is injective.

ELF.GenLossy on the other hand takes as input integers M and r ∈ [M ]. It
outputs the description of a function f : [M ] → [N ] such that:

– For all r ∈ [M ], |f([M ])| ≤ r with overwhelming probability. That is, the
function f has image size at most r.

– For any polynomial p and inverse polynomial function δ (in log M), there is
a polynomial q such that: for any adversary A running in time at most p,
and any r ∈ [q(log M),M ], we have that

|Pr[A(f) = 1 : f ← ELF.GenInj(M)]
−Pr[A(f) = 1 : f ← ELF.GenLossy(M, r)| < δ

In other words, no polynomial-time adversary A can distinguish an injective
f from an f with polynomial image size.

3 Correlated-Input Hardcore Functions

In this section, we build our correlated-input hardcore function. First, we recall
Zhandry’s [22] construction of hardcore functions for arbitrarily uncorrelated
sources. The following description is taken essentially verbatim from Zhandry.

Construction 1. Let q be the input length and m be the output length. Let λ be
a security parameter. We will consider inputs x as q-dimensional vectors x ∈ F

q
2.

Let ELF be an ELF. Let M = 2m+λ+1, and let n be the bit-length of the ELF
on input m + 1. Set N = 2n. Let � be some polynomial in m,λ to be determined
later. First, we will construct a function H ′ as follows.

Choose random f1, . . . , f� ← ELF.GenInj(M) where fi : [M ] → [N ], and let
h1, . . . , h�−1 : [N ] → [M/2] = [2m+λ] and h� : [N ] → [2m] be sampled from
pairwise independent and uniform function families. Define f = {f1, . . . , f�} and
h = {h1, . . . , h�}. Define H ′

i : {0, 1}i → [M/2] (and H ′
� : {0, 1}� → [2m]) as

follows:



16 M. Zhandry

– H ′
0() = 1 ∈ [2m+λ]

– H ′
i(b[1,i−1], bi) : compute yi = H ′

i−1(b[1,i−1]), zi ← fi(yi||bi), and output
yi+1 ← hi(zi).

Then we set H ′ = H ′
�. Then to define H, choose a random matrix R ∈ F

�×q
2 .

The description of H consists of f ,h,R. Then set H(x) = H ′(R ·x). A diagram
of H is given in Fig. 1.

Fig. 1. An example taken from Zhandry [22] for � = 3. Notice that each iteration is
identical, except for the final iteration, where h� has a smaller output.

Our Construction. We will modify Zhandry’s construction as follows. Sample
f ,h as in Construction 1. Then define the function HR(x) to be the function H
using Goldreich-Levin parities R.

Our modification will be to generate R as a function of x, and then apply
HR(x). In particular, we will set R = u(v(x)) where v ← ELF.GenInj(M)
and u is a d-wise independent function. Actually, we need a stronger property
of u: that each row of R is specified by an independent d-wise independent
function ui.

Theorem 2. If ELF is a secure ELF, then Hu(v(x))(x) = H ′(u(v(x)) · x) is a
hardcore function for computationally unpredictable sources on d inputs, for any
constant d.

Proof. First, we recall some basic facts proved by Zhandry:

Claim. If � ≥ m + λ, and if b is drawn uniformly at random, then (H ′,H ′(b))
is statistically close to (H ′, R) where R is uniformly random in [2m].

Therefore, given a source D which samples messages m1, . . . ,md and auxil-
iary information aux, it is sufficient to prove the following are indistinguishable:
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(f ,h, u, v, aux, {H ′(u(v(xi)) · xi)}i) and (f ,h, u, v, aux, {H ′(bi)}i) for uniformly
random bi.

Our proof will follow the same high-level idea as in Zhandry, but make adjust-
ments along the way in order to prove security for correlated sources. Let A be
an adversary with non-negligible advantage ε in distinguishing the two cases. We
will assume it always checks that the images v(xi) are all distinct and rejects if
they are; by the property of the source D and the injectivity of v, this check will
never trigger if sampled as above. Nonetheless, if the check triggers, we assume
A outputs a random bit and aborts.

Let Ri = u(v(xi)). Define b(j)
i so that the first j bits of b(j)

i are equal to the
first j bits of Ri ·xi, and the last �−i bits are uniformly random and independent
of x1, . . . ,xd.

We now define a sequence of hybrids. In Hybrid j, A is given the distribution
(f ,h, u, v, aux, {H ′(b(j)

i )}i). Then A distinguishes Hybrid 0 from Hybrid �
with probability ε. Now we choose an j at random from [�]. The adversary
distinguishes Hybrid j − 1 from Hybrid j with expected advantage at least
ε/�. Next, observe that since bits j + 1 through t are random in either case,
they can be simulated independently of the challenge. Moreover, H ′(b) can be
computed given H ′

j−1(b[j−1]), the bit bj (be it random or equal to R · x), and
the random bj+1, . . . , b�. Also, the d-wise independent functions uj+1, . . . , u� are
never evaluated on the xi, so they can be simulated as well. Let u[j](x) denote
the output (u1(x), . . . , uj(x)).

Thus, we can construct an adversary A′ that distinguishes the following dis-
tributions:

(j, f ,h, u1, . . . , uj , v, aux, {H ′
j−1(u[j−1](v(xi)) · xi), uj(v(xi)) · xi}i) and

(j, f ,h, u1, . . . , uj , v, aux, {H ′
j−1(u[j−1](v(xi)) · xi), bi}i)

with advantage ε/�, where j is chosen randomly in [�], where bi are random bits.
Next, notice that ε/5� is non-negligible, meaning there is an inverse polyno-

mial δ such that ε/5� ≥ δ infinitely often. Then, there is a polynomial r such A′

cannot distinguish fi generated as ELF.GenLossy(M, r) from the honest fi gen-
erated from ELF.GenInj(M), except with probability at most δ. Similarly we’ll
generate v by ELF.GenLossy(M, r).

This means, if we generate fi, v ← ELF.GenLossy(M, r), we have that A′ still
distinguishes the distributions

(j, f ,h, u1, . . . , uj , v, aux, {H ′
j−1(u[j−1](v(xi)) · xi), uj(v(xi)) · xi}i) and

(j, f ,h, u1, . . . , uj , v, aux, {H ′
j−1(u[j−1](v(xi)) · xi), bi}i)

with advantage ε′ = ε/� − 4δ.
Next, we define new hybrids J0, . . . , Jd, where Jk is the distribution:

(j, f ,h, u1, . . . , uj , v, aux, {H ′
i−1(u[j−1](v(xi)) · xi), qi}i)

where qi = uj(v(xi)) · xi for i ≤ k and qi is uniformly random for i > k.
Notice that J0 and Jd are the two distributions distinguished with probability ε′.
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Therefore, for a random k ∈ [d], the expected distinguishing advantage between
Ji−1 and Ji is ε′/d. Thus, A′ can be used to construct an adversary A′′ that
distinguishes the two distributions:

(
j, k, f ,h, {ui}i, v, aux,
{H ′

j−1(u[j−1](v(xi)) · xi)}i∈[d], {uj(v(xi)) · xi}i<k, uj(v(xk)) · xk

)

and
(

j, k, f ,h, {ui}i, v, aux,
{H ′

j−1(u[j−1](v(xi)) · xi)}i∈[d], {uj(v(xi)) · xi}i<k, bk

)

with advantage ε′/4. Next, we devise an adversary A′′′ which distinguishes
(

j, k, f ,h, {ui}i, v, aux,
{v(xi),H ′

i−1(u[j−1](v(xi)) · xi)}i, {ri · xi}i<k, rk · xk

)

and
(

j, k, f ,h, {ui}i, v, aux,
{v(xi),H ′

i−1(u[j−1](v(xi)) · xi)}i, {ri · xi}i<k, bk

)

We recall that our adversary aborts if v(xi) are not distinct. In the case where
they are distinct, given one of the samples in the preceding equations, A′′′ sam-
ples uj such that uj(v(xi)) = ri and that uj is sampled uniformly according
to the d-wise independent sampling procedure. Then A′′′ simulates the samples
expected by A′′. The result is A′′′ distinguishes the two cases with probability
ε′/d.

Now fix f ,h, u1, . . . , uj−1, v, which fixes H ′
i−1. Let y

(j)
i = H ′

j−1(u[j−1](v(xi)) ·
xi). Notice that since f ,h, u1, . . . , uj−1, v are fixed and H ′

j−1 has image size

at most r, there are at most rd possible values for the vector (y(j)
1 , . . . , y

(j)
d ),

and recall that r is a polynomial. If d is constant, then rd is still polynomial.
Moreover, there are at most rd values for the vector (v(x1), . . . , v(xd)).

Now, we use Lemma 1. Since xk, aux is computationally unpredictable and
since there are only a polynomial number of images of v and H ′

j−1, we have

(xk, (j, k, f ,h, u1, . . . , uj−1, v, aux, {v(xi),H ′
j−1(u[j−1](v(xi)) · xi)}i))

is computationally unpredictable as well. Even more, it must be that
(

xk, auxk =
(

j, k, f ,h, {ui}i, v, aux,
{v(xi),H ′

j−1(u[j−1](v(xi)) · xi)}i, {ri, ri · xi}i<k

))

is computationally unpredictable, since there are only 2d possible values to guess
for ri · xi.

Therefore, by Goldreich-Levin, we have that (auxk, rk, rk ·xk) is computation-
ally indistinguishable from (auxk, rk, bk) for random bk. Putting this together in
a simple hybrid argument, we have that the following are indistinguishable:

(
j, k, f ,h, u1, . . . , uj−1, v, aux,
{v(xi),H ′

i−1(u[j−1](v(xi)) · xi)}i, {ri · xi}i<k, rk · xk

)

and
(

j, k, f ,h, u1, . . . , uj−1, v, aux,
{v(xi),H ′

i−1(u[j−1](v(xi)) · xi)}i, {ri · xi}i<k, bk

)
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But these are exactly the distributions distinguished by A′′′. Therefore, we
must have ε′/d, and hence ε′, is negligible. But since ε′ = ε/� − 4δ and δ ≤ ε/5�,
we have that ε′ is lower bounded by δ/5/� infinitely often, a contradiction. This
completes the proof. �	

4 Trapdoor ELFs

Here, we define and construct ELFs with a trapdoor, combining the features of
LDTFs and ELFs.

Definition 6. An Trapdoor ELF consists of two algorithms TELF.GenInj and
TELF.GenLossy, as well as a function N = N(M) such that log N is polynomial
in log M . TELF.GenInj takes as input an integer M , and outputs the description
of two functions f : [M ] → [N ] and f−1 : [N ] → [M ] ∪ {⊥} such that:

– f, f−1 are computable in time polynomial in the bit-length of their input,
namely log M .

– With overwhelming probability (in log M), f−1(f(x)) = x for all x ∈ [M ]. In
particular f is injective.

TELF.GenLossy on the other hand takes as input integers M and r ∈ [M ]. It
outputs the description of a function f : [M ] → [N ] such that:

– For all r ∈ [M ], |f([M ])| ≤ r with overwhelming probability. That is, the
function f has image size at most r.

– For any polynomial p and inverse polynomial function δ (in log M), there is
a polynomial q such that: for any adversary A running in time at most p,
and any r ∈ [q(log M),M ], we have that

|Pr[A(f) = 1 : (f, f−1) ← TELF.GenInj(M)]
− Pr[A(f) = 1 : f ← TELF.GenLossy(M, r)| < δ

In other words, no polynomial-time adversary A can distinguish an injective
f from an f with polynomial image size, in the case that A does not get the
trapdoor for f .

We also consider all-but-some Trapdoor ELFs, which contain many branches,
some of which are lossy:

Definition 7. An All-but-one Trapdoor ELF consists of algorithms TELF.GenInj
and TELF.GenLossy, as well as a function B = B(M), N = N(M) such that
log B, log N are polynomial in log M . TELF.GenInj takes as input an integer M ,
and outputs the description of two functions f : [B] × [M ] → [N ] and f−1 :
[B] × [N ] → [M ] ∪ {⊥} such that:

– f, f−1 are computable in time polynomial in the bit-length of their input,
namely log M .
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– With overwhelming probability (in log M), for all branches b ∈ [B], we have
that f−1(b, f(b, x)) = x for all x ∈ [M ]. In particular f(b, ·) is injective.

TELF.GenLossy on the other hand takes as input integers M and r ∈ [M ],
and a branch b∗ ∈ [B]. It outputs the description of functions f : [B]×[M ] → [N ]
and f−1 : [B] × [N ] → [M ] ∪ {⊥} such that:

– For all r ∈ [M ], |f(b, [M ])| ≤ r with overwhelming probability. That is, the
function f(b∗, ·) has image size at most r.

– With overwhelming probability (in log M), for all branches b ∈ [B] \ {b∗},
f−1(b, f(b, x)) = x for all x ∈ [M ].

– For any polynomial p and inverse polynomial function δ (in log M), there is
a polynomial q such that: for any adversary A running in time at most p and
playing the following game, it’s advantage is at most δ:

• First, A chooses a branch b∗, which is sends to the challenger.
• The challenger then either runs (f, f−1) ← TELF.GenInj(M) or runs

(f, f−1 ← TELF.GenLossy(M, b∗, r), and sends f to A.
• A can make queries to f−1 on all branches other than b∗.
• A outputs a guess b for which f it was given

A’s advantage is defined to be the difference

|Pr[A(f) = 1 : (f, f−1) ← TELF.GenInj(M)]

− Pr[A(f) = 1 : (f, f−1) ← TELF.GenLossy(M, b∗, r)|
In other words, no polynomial-time adversary A can distinguish an injective
f from an f where branch b∗ has polynomial image size, in the case that A
does not get the trapdoor for f .

An all-but-some Trapdoor ELF generalizes the above to allow the lossy mode
to contain multiple lossy branches. We omit the details of the definition.

4.1 Constructing Trapdoor ELFs

Here, we construct Trapdoor ELFs from exponentially-hard DDH, which is
plausible on certain elliptic curve groups. Our construction will follow mostly
Zhandry’s [22] construction of ELFs, with some modifications to obtain a
trapdoor.

Zhandry’s scheme works as follows: first, he considers a bounded adversary
ELF, which is secure against only adversaries of an a priori bounded running
time. This scheme more or less follows from lossy trapdoor functions in the
literature, just pushed into extreme parameter regimes. Then, he iterates the
scheme many times, for many different bounds on the adversaries running time.
ELF security follows by invoking security for the bounded adversary ELF that
is just large enough to fool the given adversary.

We will adopt the same approach. In particular, we will construct a bounded
adversary Trapdoor ELF following the LTDFs from the literature. We will triv-
ially inherit the trapdoors from these schemes. Then, we will iterate the con-
struction. Zhandry’s construction, in order to remain efficient, must compress
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the image every after every iteration. This unfortunately means Zhandry’s con-
struction does not have a functioning trapdoor. We therefore devise a way to
avoid compressing the input, allowing the trapdoor to remain intact.

Bounded Adversary Trapdoor ELFs. Here, we define a bounded adver-
sary Trapdoor ELF, which is a Trapdoor ELF where security is guaranteed only
against a prior bounded adversaries. The definition follows almost immediately
from adapting Zhandry’s bounded adversary ELF definition by adding a trap-
door.

Informally, in an ordinary Trapdoor ELF, r can be chosen based on the
adversary to be just high enough to fool it. In contrast, in a bounded adversary
Orf, r must be chosen independent of the adversary, and then security only
applies to adversaries with running time sufficiently smaller than r. Moreover,
the adversary gets to learn r.

Definition 8. An bounded adversary Trapdoor ELF consists of two algorithms
TELF.GenInj′ and TELF.GenLossy′, and a function N = N(M, r). TELF.GenInj′

takes as input an integer M and integer r ∈ [M ] and outputs the description of
two functions f : [M ] → [N ] and f−1 : [N ] → [M ] ∪ {⊥} such that:

– f, f−1 are computable in time polynomial in the bit-length of their input,
namely log M .

– With overwhelming probability (in log M), f−1(f(x)) = x for all x ∈ [M ]. In
particular f is injective.

TELF.GenLossy′ also takes as input integers M and r ∈ [M ]. It outputs the
description of a function f : [M ] → [N ] such that:

– For all r ∈ [M ], |f([M ])| ≤ r with overwhelming probability. That is, the
function f has image size at most r.

– For any polynomial p and inverse polynomial function δ (in log M), there is
a polynomial q such that: for any adversary A running in time at most p,
and any r ∈ [q(log M),M ], we have that

|Pr[A(r, f) = 1 : (f, f−1) ← TELF.GenInj′(M)]
− Pr[A(r, f) = 1 : f ← TELF.GenLossy′(M, r)| < δ

In other words, no polynomial-time adversary A can distinguish an injective
f from an f with polynomial image size, in the case that A does not get
the trapdoor for f . Unlike an ordinary Trapdoor ELF, this holds even if the
adversary knows r.

Constructing Bounded Adversary Trapdoor ELFs. Our construction of
bounded adversary Trapdoor ELFs, like Zhandry’s ELFs, is based on the DDH-
based lossy trapdoor functions of Peikert and Waters [18] and Freeman et al. [13].
In fact, since Zhandry did not need the trapdoor of prior constructions, the
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construction for ELFs was very slightly simplified. In contrast, our construction
almost verbatim matches the construction Freeman et al., except that the group
size is set to be much smaller, in particular polynomial. In order to maintain
security in this regime, we must rely on the exponential hardness of the group.

Cryptographic Groups. The following definitions and notation are almost verba-
tim from Zhandry [22].

Definition 9. A cryptographic group consists of an algorithm Group.Gen which
takes in a security parameter λ, and produces a (description of a) cyclic group
G of prime order p ∈ [2λ, 2 × 2λ), and a generator g for G such that:

– The group operation × : G2 → G is polynomial-time computable in λ.
– Exponentiation by elements in Zp is polynomial-time computable in λ.
– The representation of a group element h has size polynomial in λ.

For some notation: given a matrix A ∈ Z
m×n
p , we write gA ∈ G

m×n to be the
m×n matrix of group elements gAi,j . Analogously define gw for a vector w ∈ Z

n
p .

Given a matrix Â ∈ G
m×n of group elements and a vector v ∈ Z

n
p , write Â · v

to mean ŵ ∈ G
m where ŵi =

∏n
j=1 Â

vj

i,j . Using this notation, (gA) · v = gA·v.
Therefore, the map gA,v �→ gA·v is efficiently computable.

Definition 10. The exponential decisional k-linear assumption (k-eLin) on a
cryptographic group specified by Group.Gen holds if there is a polynomial q(··)
such that the following is true. For any time bound t and probability ε, let λ =
log q(t, 1/ε). Then for any adversary A running in time at most t, the following
two distributions are indistinguishable, except with advantage at most ε:

(G, g, ga1 , . . . , gak , gc, ga1b1 , · · · gakbk) :
(G, g, p) ← Group.Gen(λ)
ai, bi, c ← Zp

, and

(G, g, ga1 , . . . , gak , g
∑k

i=1 bi , ga1b1 , · · · gakbk) :
(G, g, p) ← Group.Gen(λ)
ai, bi ← Zp

k = 1 corresponds to the eDDH assumption above.
As a special case, k = 1 corresponds to the exponential DDH assumption. A

plausible candidate for a cryptographic group supporting the eDDH assumption
or k-linear assumption are groups based on elliptic curves. Despite over a decade
or research, the best attacks on many elliptic curves are generic attacks which
require exponential time. Therefore, the eDDH assumption on these groups
appears to be a very reasonable assumption.

Construction. Our construction is as follows, and will be parameterized by k.
TELF.GenInj′k(M, r) does the following.

– Let λ be the largest integer such that (2 × 2λ)k < r. Run (G, g, p) ←
Group.Gen(λ).
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– Let m be the smallest integer such that 2m ≥ M . Let R be an efficiently
invertible function from [M ] into {0, 1}m.

– Let n ≥ m (e.g. m = 2n) be chosen such that a random matrix sampled from
Z

n×m
p has rank m with overwhelming probability. Note that a random square

matrix will be singular with probability 1/p, and in our case, p is polynomial.
Hence we require m somewhat larger than n.

– Choose a random matrix n × m matrix A of elements in Z
n×m
p . Set Â = gA.

– Output functions f, f−1. f is defined as f(x) = Â · (R(x)). The description
of f will consist of (G, p, Â, R,m, n).
f−1 is defined as follows. Let B ∈ Z

m×n
p such that B ·A is the identity. Given

a vector v ∈ G
n, compute w = B · v. Then, try to compute the discrete

log of each component by testing if the component is g0 or g1. If any of the
discrete log computations fail, then output ⊥. Otherwise, let y be the vector
of exponents obtained. Invert R on y to obtain x. If inversion fails, output ⊥.
Otherwise, output x. The description of f−1 will consist of (G, p,B, R,m, n).
TELF.GenLossy′

k(M, r) is identical to TELF.GenInj′k(M, r), except the matrix
A is chosen to be random of rank k, rather than full rank. In this case, there
is no B and hence no function f−1.

Theorem 3. If Group.Gen is a group where the k-eLin assumption holds for
some constant k, then (TELF.GenInj′k,TELF.GenLossy′

k) is a bounded adversary
Trapdoor ELF.

Proof. For correctness, notice that w computed by f−1 is equal to B · v =
B · Â · R(x) = gB·A·R(x) = gR(x). Therefore, when f−1 is given a valid output
of f , it will recover gR(x), and the discrete log computations will yield R(x) and
the final inversion of R will yield x, as desired.

Security follows from an almost identical argument to the security of bounded
adversary ELFs in Zhandry [22], and we only sketch the details here. All that
needs to be shown is that gA for a random matrix is indistinguishable from gA for
a random rank-k matrix. This follows by standard hybrid arguments (e.g. [20])
and the assumed k-linear assumption. �	

Constructing Ordinary Trapdoor ELFs. We now turn to using bounded
adversary Trapdoor ELFs to construct ordinary Trapdoor ELFs. Here, we depart
slightly from Zhandry [22]. Zhandry’s idea is to iterate many bounded adversary
functions as r ranges over the powers of 2. The injective mode just sets all the
bounded adversary functions to be injective. For the lossy mode, a single function
is set to be lossy, namely the function that is big enough to fool the adversary
in question.

One issue that immediately becomes apparent in the above approach is that
the bounded adversary functions are expanding. As such, the overall domain
will grow exponentially with the number of iterations, leading to an inefficient
scheme. Zhandry gets around this by applying a pairwise independent function
between each bounded adversary function to compress the output and keep it
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polynomial in size. Unfortunately, this compression destroys any trapdoor in the
bounded adversary function.

Instead, our approach is to not compress the outputs, but be very careful
about which r we choose for our bounded adversary Trapdoor ELFs. In partic-
ular, notice that our bounded adversary Trapdoor ELFs expand the input by a
factor of Ck × log r, for some constant C that depends on k. Therefore, if our
construction uses a sequence r1, . . . , rt of r’s, the overall expansion is Ct

k

∏
log ri.

We need this expansion factor to be polynomial in size.
Notice that the powers of 2, namely ri = 2i, used by Zhandry do not work, as

the overall expansion will be Ct
kt!. We need rt = 2t to be larger than any polyno-

mial in our security parameter log M (so that we can set r based on any adver-
sary), meaning the overall expansion factor will be at least C log log M

k (log log M)!.
Notice that (log log M)! is super-polynomial in log M , leading to an inefficient
scheme.

Instead, we choose ri = 22
i

, and let i go from 1 to t =
√

log log M . We see
that the overall expansion factor is:

Ct
k

t∏

i=1

log ri = C
√
log log M

k

t∏

i=1

2i

≤ C log log M
k

t∏

i=1

2i = (log M)log Ck

t∏

i=1

2i

= (log M)log Ck2
∑t

i=1 i ≤= (log M)log Ck2t2 = (log M)1+log Ck

We also note that rt = 22
√

log log M

is larger than any polynomial in log M .
This means that for any polynomial p, we can always choose i so that ri will be
at most approximately p2. This is exactly what we need to argue security.

In more detail, our construction does the following. Assume for the bounded
adversary Trapdoor ELF that N = N(M, r) satisfies log N ≤ C(log M)(log r)
for some universal constant C, as in our bounded adversary construction. Then
TELF.GenInj(M) does the following:

– Let t be the smallest integer such that 22
t2 ≥ M .

– Let M1 = M .
– For i = 1, . . . , t, Run (fi, f

−1
i ) ← TELF.GenInj′(Mi, ri) for ri = 22

i

. Let Ni be
the output space of fi, and set Mi+1 = Ni.

– Let f : [M ] → [Nt] be ft ◦ ft−1 ◦ · · · ◦ f1. Let f−1 attempt to compute
f−1
1 ◦ . . . f−1

t , and output ⊥ if any of the inversions fail.
– Output (f, f−1).

TELF.GenLossy(M, r) is the same as TELF.GenInj, except that it lets i∗ be
the largest integer such that ri∗ ≤ r and i∗ ≤ t. It then computes fi∗ ←
TELF.GenLossy′(Mi∗ , ri∗) instead of using TELF.GenInj′. It lets f be defined as
above, and outputs f (but no f∗).
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Theorem 4. If (TELF.GenInj′,TELF.GenLossy′) is a bounded-adversary Trap-
door ELF satisfying log N ≤ C(log M)(log r) for some constant C, then we have
that (TELF.GenInj,TELF.GenLossy) is an ordinary Trapdoor ELF.

Proof. The image size in the lossy mode is guaranteed by how we chose i∗.
Namely, the image size on input r is at most ri∗ which is at most r.

It remains to prove security. Let p be a polynomial and σ be an inverse
polynomial in log M . Let p′ be p plus the running time of TELF.GenInj. Let q be
the polynomial guaranteed by (TELF.GenInj′,TELF.GenLossy′) for p′ and σ.

Notice that q will be a polynomial in the log Mi, the domain for the functions
(TELF.GenInj′,TELF.GenLossy′), and not in log M . Nonetheless, we can redefine
q to be a polynomial in log M since log Mi is polynomial in log M .

Consider any adversary A for (TELF.GenInj,TELF.GenLossy) running in time
at most p. Let r = r(M) be a computable function of M such that r ∈
(q(log M),M ]. Our goal is to show that A distinguishes f from TELF.GenInj(M)
from TELF.GenLossy(M, r) with advantage less than δ.

Toward that goal, let i∗ be the largest integer such that ri∗ = 22
i∗ ≤ r and

i∗ ≤ t. We construct an adversary A′ for (TELF.GenInj′,TELF.GenLossy′) with
r = ri∗ . Let fi∗ be the f that A′ receives, where fi∗ is either TELF.GenInj′(M, ri∗)
or TELF.GenLossy′(M, ri∗). Then A′ simulates the rest of f for itself, setting
(fi, f

−1
i ) ← TELF.GenInj′(Mi, ri) for i �= i∗. A′ then runs A on the simulated f .

Notice that A′ runs in time at most p′. Thus by the bounded-adversary secu-
rity of (TELF.GenInj′,TELF.GenLossy′), A′ cannot distinguish injective or lossy
mode, except with advantage σ. Moreover, if fi∗ ← TELF.GenInj′(M, ri∗), then
this corresponds to TELF.GenInj, and if fi∗ ← TELF.GenLossy′(M, ri∗), then
this corresponds to TELF.GenLossy(M, r). Thus, A′ and A have the same dis-
tinguishing advantage, and therefore A cannot distinguish the two cases except
with probability less than σ. �	

4.2 Constructing All-but-some Trapdoor ELFs

We now turn to constructing All-but-some Trapdoor ELFs. It is sufficient to
construct a bounded adversary version of All-but-some Trapdoor ELFs, which
can then be converted into full All-but-some Trapdoor ELFs using the conversion
in the preceding section. Here, we describe how to do this. We focus on the all-
but-one case, the all-but-some being a simple generalization.

Construction. Our construction is as follows, and will be parameterized by
k. The branch set B will be interpreted as {0, 1}a for some polynomial a.
TELF.GenInj′k(M, b, r) does the following.

– Let λ be the largest integer such that (2 × 2λ)k < r. Run (G, g, p) ←
Group.Gen(λ).

– Let m be the smallest integer such that 2m ≥ M . Let R be an efficiently
invertible function from [M ] into {0, 1}m.
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– Let n ≥ m be chosen such that a random matrix sampled from Z
n×m
p has rank

m with overwhelming probability. Note that a random square matrix will be
singular with probability 1/p, and in our case, p is polynomial. Therefore, we
need to choose an n somewhat larger than m. It suffices to set n = 2m.

– Choose 2a + 1 random 2n × m matrices B,Ai,t in Z
2n×m
q , and let Âi,t =

gAi,t , B̂ = gB.
Define Ab = B +

∑
i Ai,bi .

– Output functions f, f−1. f is defined as f(b, x) = Âb · (R(x)). Note that
Âb can be computed from Âi,t, B̂. The description of f will consist of
(G, p, B̂, {Âi,t}, R,m, n).
f−1(b, v) is defined as follows. Let A−1

b ∈ Z
m×2n
p such that A−1

b · Ab is the
identity. Given a vector v ∈ G

n, compute w = A−1
b ·v. Then, try to compute

the discrete log of each component by testing if the component is g0 or g1.
If any of the discrete log computations fail, then output ⊥. Otherwise, let y
be the vector of exponents obtained. Invert R on y to obtain x. If inversion
fails, output ⊥. Otherwise, output x. The description of f−1 will consist of
(G, p,B, {Ai,t}, R,m, n).
TELF.GenLossy′

k(M, b, r) is identical to TELF.GenInj′k(M, b, r), except the
matrix Ab is chosen to be random of rank k, rather than full rank. Then
B is set to Ab − ∑

i Ai,bi .

Theorem 5. If Group.Gen is a group where the k-eLin assumption holds for
some constant k, then (TELF.GenInj′k,TELF.GenLossy′

k) is a bounded adversary
all-but-one Trapdoor ELF.

Proof. We just need to show, given a branch b∗, how to embed a challenge gC

into the description of f so that:

– If C is full rank, B,Ai,t is distributed as in the injective mode, namely uni-
formly random.

– If C has rank k, then B,Ai,t is distributed as in the lossy mode for branch
b∗, namely Ab∗ is random of rank k.

– We can simulate inversion queries on all other branches.

To do so, we exploit the fact that we have some extra rows to work with.
We will assume the challenge gC is n × m. We will choose a uniformly random
matrix S ∈ Z

2n×2n
p . We will set A′

b∗ to be the block matrix with C on top, and
02n×m on bottom. Then we will set Ab∗ = S · A′

b∗ .
We will choose A′

i,t as random 2n×m matrices, and then set Ai,t = S ·A′
i,t.

Finally, we will set B = Ab∗ − ∑
i Ai,b∗

i
= S ·

(
A′

b∗ − ∑
i A

′
i,b∗

i

)
.

We can now compute gAi,t using our knowledge of Ai,t, and gB using our
knowledge of Ai,t, S, and gC.

It is straightforward to show that if C is a uniformly random matrix, then
so are all the matrices B,Ai,t. Moreover, if C is random of rank k, is is straight-
forward that the matrices are random, subject to Ab∗ being rank k, as desired.
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It remains to prove that we can answer inversion queries. Here, we simply
use the fact that we know the bottom n × m matrices in the clear, meaning we
can perform the inversion operation as in standard Trapdoor ELFs. As the last
step, we just verify our inversion by evaluating the Trapdoor ELF on the derived
pre-image, ensuring that it matches the provided image point. �	

We can easily use the above techniques to extend to � lossy branches in several
ways. One way is to simply evaluate � different Trapdoor ELFs in sequence; to
set the � different branches, simply assign one branch to each of the Trapdoor
ELFs.

5 DPKE for Computationally Unpredictable Sources

In this section, we show our basic DPKE construction, a deterministic public
key encryption scheme (DPKE) for arbitrary computational sources.

The Construction. The message space for our scheme is [M ]. We will use a hard-
core function G with domain [M ], a PKE scheme (PKE.Gen,PKE.Enc,PKE.Dec),
and a trapdoor ELF (TELF.GenInj,TELF.GenLossy).

– DPKE.Gen runs (sk′, pk′) ← PKE.Gen(λ), (f, f−1) ← TELF.GenInj(M), and
G ← G. It outputs sk = (sk′, f−1) and pk = (pk′, f,G).

– DPKE.Enc(pk,m) runs PKE.Enc(pk′, f(m);G(m)). That is, it encrypts f(m)
under the semantically secure encryption scheme, using random coins G(m)

– DPKE.Dec(sk, c): run y ← PKE.Dec(sk′, c). If y = ⊥ output ⊥. Otherwise run
m ← f−1(y) and output m.

Correctness of the scheme is immediate. For security, we have the following
theorem:

Theorem 6. For any constant d, if G is hardcore for arbitrary computation-
ally unpredictable sources on d inputs, (PKE.Gen,PKE.Enc,PKE.Dec) is seman-
tically secure, and (TELF.GenInj,TELF.GenLossy) is a secure Trapdoor ELF, then
(DPKE.Gen,DPKE.Enc,DPKE.Dec) is a secure deterministic public key encryp-
tion scheme for arbitrary single computationally unpredictable sources on d
inputs. If (PKE.Gen,PKE.Enc,PKE.Dec) has pseudorandom ciphertexts, then so
does (DPKE.Gen,DPKE.Enc,DPKE.Dec).

Proof. Consider an arbitrary computationally unpredictable source D, sam-
pling messages m1, . . . ,md and auxiliary information aux. We will prove the
pseudorandom ciphertext case, the other case being analogous. We need to
prove that (pk,DPKE.Enc(pk,m1), . . . ,DPKE.Enc(pk,md), aux) is computation-
ally indistinguishable from (pk, C1, . . . , Cd, aux), where (sk, pk) ← DPKE.Gen(λ),
(m1, . . . ,md, aux) ← D, and Ci are chosen uniformly random from the ciphertext
space.

Suppose toward contradiction that we have an adversary A which distin-
guishes the two distributions with advantage ε. Let p be a polynomial such that
1/p ≥ ε infinitely often. We prove security through a sequence of hybrids:
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– H0. In this hybrid, the adversary is given (pk, c1, . . . , cd, aux) where pk =
(pk′, f,G), (sk′, pk′) ← PKE.Gen(λ), (f, f−1) ← TELF.GenInj(M), G ← G,
and ci = DPKE.Enc(pk,mi) = PKE.Enc(pk′, f(mi);G(mi)).

– H1. In this hybrid, we change f to be lossy. That is we choose r so that A
cannot distinguish f ← TELF.GenLossy(M, r) from f , except with probability
1/3p. We then replace f with f ← TELF.GenLossy(M, r).

– H2. In this hybrid, we change ci = PKE.Enc(pk′, f(mi);G(mi)) to ci =
PKE.Enc(pk′, f(mi);Ri). That is, we replace G(mi) with Ri. We now claim
that A distinguishes H1 from H2 with negligible probability.
To prove this, notice that by Lemma1 and the fact that d is constant, we
have that (m1, . . . ,md, (aux, f, f(m1), . . . , f(md))) is also computationally
unpredictable. Then by the hardcore-ness of G, we have that

(G(m1), . . . , G(md), (aux, G, f, f(m1), . . . , f(md)))

is indistinguishable from

(R1, . . . , Rd, (aux, G, f, f(m1), . . . , f(md)))

Finally by post-processing with PKE.Enc, we have that

({PKE.Enc(pk, f(mi);G(mi))}, aux, G, f, {f(mi)}, pk)

is indistinguishable from

({PKE.Enc(pk, f(mi);Ri)}, aux, G, f, {f(mi)}, pk)

The first case is H1, and the second is H2, proving their indistinguishability.
– H3. Now we just change each ci to be a uniformly random ciphertext Ci. The

indistinguishability from H2 follows from the pseudorandomness of PKE.Enc.
– H4. Finally, we change f back to the injective mode, generating (f, f−1) ←
TELF.GenInj(M) By analagous arguments, A distinguishes H4 from H3 with
advantage 1/3p. The result is that the adversary now sees (pk, C, aux).

Putting it all together, A distinguishes H0 from H4 with advantage at most
2/3p − negl ≤ 1/p ≤ ε, a contradiction. �	

6 Achieving CCA Security

In this section, we turn to building CCA-secure DPKE for computationally
unpredictable sources.

We will loosely follow Peikert and Waters [18], who build CCA-secure pub-
lic key encryption from lossy trapdoor functions (LTDFs). The main difficulty
is that we want to switch to lossy mode in order to prove the security of the
challenge ciphertext, but need to maintain the ability to decrypt all other cipher-
texts. Their core idea is to devise a LTDF with many “branches”, each ciphertext
using a different branch. The challenge ciphertext is set to be encrypted using a
lossy, and all others are injective.

We will use this idea, but the technical implementation will be somewhat
different, and of course we will use a Trapdoor ELF with branches instead of an
LTDF. The details are below.
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6.1 Our Construction

Our building blocks will be a pseudorandom generator G, a CCA-secure public
key encryption scheme (PKE.Gen,PKE.Enc,PKE.Dec), and an all-but-one Trap-
door ELF (TELF.GenInj′,TELF.GenLossy′).

– DPKE.Gen runs (sk′, pk′) ← PKE.Gen(λ), (f, f−1) ← TELF.GenInj′(M), and
G0, G1 ← G. It outputs sk = (sk′, f−1) and pk = (pk′, f,G0, G1).

– DPKE.Enc(pk,m) runs b ← G0(m) to select a branch. Then it applied
our scheme from Sect. 5, using the branch b. Namely, it computes d ←
PKE.Enc(pk′, f(b,m);G1(m)). The output is the ciphertext c = (b, d).

– DPKE.Dec(sk, c): run y ← PKE.Dec(sk′, c′). If y = ⊥ output ⊥. Oth-
erwise, it runs m ← f−1(b, y). Finally, it checks that the ciphertext is
well-formed by re-encrypting m. Namely, it verifies that b = G0(m) and
d = PKE.Enc(pk, f(b,m);G1(m)). If the checks fail, it outputs ⊥. Otherwise,
it outputs m.

The completeness of the scheme is immediate. Next, we prove security.

Theorem 7. For any constant d, if G is an injective hardcore function for
any computationally unpredictable sources on d inputs, (PKE.Gen,PKE.Enc,
PKE.Dec) is CCA-secure, (TELF.GenInj,TELF.GenLossy) is a secure all-but-d
Trapdoor ELF, then (DPKE.Gen,DPKE.Enc,DPKE.Dec) is a CCA-secure deter-
ministic public key encryption scheme for arbitrary computationally unpre-
dictable sources on d inputs. If (PKE.Gen,PKE.Enc,PKE.Dec) has pseudorandom
ciphertexts, then so does (DPKE.Gen,DPKE.Enc,DPKE.Dec).

Proof. For simplicity, we prove the case d = 1, the more general case being
a straightforward adaptation. Consider an arbitrary computationally unpre-
dictable source D, sampling messages m and auxiliary information aux. We will
prove the pseudorandom ciphertext case, the other case being analogous. We
need to prove that (pk,DPKE.Enc(pk,m), aux) is computationally indistinguish-
able from (pk, C, aux), where (sk, pk) ← DPKE.Gen(λ), (m, aux) ← D, and C is
chosen uniformly random from the ciphertext space. This must hold even if an
adversary can make decryption queries on any ciphertext except the challenge.

Suppose toward contradiction that we have an adversary A which distin-
guishes the two distributions with advantage ε. Let p be a polynomial such that
1/p ≥ ε infinitely often. We prove security through a sequence of hybrids:

– H0. Here, we give the adversary (pk, c∗, aux) where pk = (pk′, f,G0, G1),
(sk′, pk′) ← PKE.Gen(λ), and (f, f−1) ← TELF.GenInj(M), and G0, G1 ← G.
Also, we set c∗ = DPKE.Enc(pk,m) = (b∗, d∗) where b∗ = G0(m) and d∗ =
PKE.Enc(pk′, f(b∗,m);G1(m)).

– H1. In this hybrid, we change f to be lossy on the branch b∗. That is,
(f, f−1) ← TELF.GenInj(M, b∗, r), where r is chosen so that A cannot dis-
tinguish this change except with advantage 1/3p.
We need to make sure that we can still answer CCA queries. For this, we just
need that G0 is injective, so that any other valid ciphertext will correspond
to a different branch.
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– H2. In this hybrid, we replace G1(m) with random. We now claim that this
change is indistinguishable to the adversary.
Toward that end, first observe that since G0 is hardcore, we have that
(G0, G0(m), aux) is indistinguishable from (G0, S, aux) for a uniformly random
S. This means that (m, (aux, G0, G0(m))) is computationally unpredictable.
But then by Lemma 1, we also have that (m, (aux, G0, b

∗, f, f−1, f(b∗,m))) is
computationally unpredictable, where (f, f−1) ← TELF.GenLossy(M, b∗, r)
for b∗ = G0(m). Finally, by the hardcore property of G1, we have that
the distribution (G1, G1(m), aux, G0, b

∗, f, f−1, f(b∗,m)) is indistinguishable
from (G1, R, aux, G0, b

∗, f, f−1, f(b∗,m)) for a random R.
Now notice that an adversary given (G1, R, aux, G0, b

∗, f, f−1, f(b∗,m)) for
R = G1(m) (resp. random) can easily simulate the view of A in H1 (resp.
H2) by using f−1 to answer decryption queries. Therefore, if A distinguishes
the two hybrids, we can easily create a distinguisher for these two distribution,
arriving at a contradiction.

– H3. Now we just change c to be a uniformly random ciphertext C. The indis-
tinguishability from H2 follows from the CCA-secure pseudorandomness of
PKE.Enc.
Now notice that the d∗ portion of the adversary’s view is completely inde-
pendent of m.

– H4. Now we invoke the hardcore-ness of G0 one more time to replace G0(m)
with a random b∗.

– H5. Finally, we change f back to the injective mode, generating (f, f−1) ←
TELF.GenInj(M) By analagous arguments, A distinguishes H5 from H4 with
advantage 1/3p. The result is that the adversary now sees (pk, C, aux).

Putting it all together, A distinguishes H0 from H5 with advantage at most
2/3p − negl ≤ 1/p ≤ ε, a contradiction. �	
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PSL University, 75005 Paris, France

romain.gay@ens.fr
3 INRIA, Paris, France

4 University of Virginia, Charlottesville, USA

Abstract. We develop techniques for constructing trapdoor functions
(TDFs) with short image size and advanced security properties. Our app-
roach builds on the recent framework of Garg and Hajiabadi [CRYPTO
2018]. As applications of our techniques, we obtain

– The first construction of deterministic-encryption schemes for block-
source inputs (both for the CPA and CCA cases) based on the Com-
putational Diffie-Hellman (CDH) assumption. Moreover, by applying
our efficiency-enhancing techniques, we obtain CDH-based schemes
with ciphertext size linear in plaintext size.

– The first construction of lossy TDFs based on the Decisional Diffie-
Hellman (DDH) assumption with image size linear in input size,
while retaining the lossiness rate of [Peikert-Waters STOC 2008].

Prior to our work, all constructions of deterministic encryption based
even on the stronger DDH assumption incurred a quadratic gap between
the ciphertext and plaintext sizes. Moreover, all DDH-based construc-
tions of lossy TDFs had image size quadratic in the input size.

At a high level, we break the previous quadratic barriers by introduc-
ing a novel technique for encoding input bits via hardcore output bits
with the use of erasure-resilient codes. All previous schemes used group
elements for encoding input bits, resulting in quadratic expansions.

1 Introduction

Trapdoor functions (TDFs) are a fundamental primitive in cryptography and are
typically used as a fundamental building block in the construction of advanced
primitives such as CCA2-secure public-key encryption (PKE). Introduced in
the 70s [DH76,RSA78], TDFs are a family of functions, where each individual
function in the family is easy to compute, and also easy to invert if one posses an
additional trapdoor key. The basic security requirement is that of one-wayness,
requiring that a randomly chosen function from the family be one-way.

The usefulness of TDFs stems from the fact that the inversion algorithm
recovers the entire input. This stands in sharp contrast to PKE, wherein the
c© International Association for Cryptologic Research 2019
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decryption algorithm may not recover the underlying randomness. This input
recovery feature of TDFs is what makes them a useful tool, especially in appli-
cations where proofs of well-formedness are required.

On the other hand, building TDFs turns out to be much more difficult than
building PKE, mostly due to the requirement of recovering the entire input,
which in turn is the reason behind the lack of black-box transformations from
PKE to TDFs [GMR01]. Specifically, in groups with discrete-log based hardness
assumptions, this restricts the use of operations such as exponentiation, for which
we do not have a generic trapdoor. Furthermore, in some applications we need
TDFs to be robust, providing enhanced security properties rather than mere
one-wayness (e.g., [BBO07,PW08,PW11,PVW08,BFOR08,RS09]).

Recently, Garg and Hajiabadi [GH18] introduced a new approach for build-
ing TDFs, obtaining the first construction of TDFs from the Computational
Diffie-Hellman (CDH) assumption. Although their approach gives new feasi-
bility results, their constructed TDFs are limited in certain ways: (a) Their
TDFs are not robust enough—for example, it is not clear how to go beyond one-
wayness, obtaining more advanced properties such as those required by deter-
ministic encryption [BBO07,BFOR08,BFO08] or CCA2 security; and (b) The
length of their TDF images grows (at least) quadratically with the length of the
input.

We stress that Point (b) is not just an artifact of the construction of [GH18].
In fact, we do not know of any TDF constructions (even based on the stronger
decisional Diffie-Hellman (DDH) assumption) with advanced properties, such as
deterministic-encryption security, with images growing linearly in their inputs.1

Since TDFs are typically used as building blocks in more advanced primitives,
designing more efficient TDFs translates into the same features in target applica-
tions. For example, lossy TDFs [PW08,PW11] are an extremely versatile prim-
itive with a long list of applications; e.g., [BFOR08,BHY09,BBN+09,MY10,
BCPT13].

1.1 Our Results

We develop techniques for constructing efficient and robust TDFs. As concrete
applications of our new techniques, we obtain the first construction of deter-
ministic encryption for block sources (in the sense of [BFO08]) under the CDH
assumption. We give both CPA and CCA2 versions of our constructions. We
stress that prior to our work we knew how to build (even) CPA-secure deter-
ministic encryption only from decisional assumptions, including DDH, QR, DCR
and LWE [BFO08,Wee12]. Thus, in addition, we also obtain instantiations under
the hardness of factoring assumption.

Furthermore, we show how to use our efficiency techniques to obtain:
1 We note that building a TDF providing mere one-wayness with linear-size images is

simple: if TDF.F(ik, ·) maps n-bit inputs to nc-bit outputs, define TDF.F′(ik, x||x′),
where |x| = n and |x′| = nc, as TDF.F(ik, x)||x′. Although this transformation results
in TDFs with linear-image size, it destroy more advanced properties such as CCA2
security, deterministic-encryption security and the lossiness rate.
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1. The first CDH-based deterministic encryption schemes with ciphertext size
linear in plaintext size. Additionally, our CDH-based deterministic-encryption
schemes beat all the previous DDH-based schemes in terms of ciphertext size.
The sizes of other parameters (e.g., the secret key and public key) remain the
same. See Table 1 for a comparison.

2. The first construction of lossy TDFs ([PW08,PW11]) from DDH with image
size linear in input size. Our DDH-based lossy TDFs achieve the same lossi-
ness rate as in [PW08,PW11]. All previous DDH-based lossy TDF construc-
tions (achieving non-trivial lossiness rates) resulted in images quadratically
large in their inputs.

Table 1. Bit complexity: p is the order of the group and n is the bit size of the TDF
input. Here (n, k)-LTDF means lossy TDFs where in lossy mode the image-space size
is at most 2k. We call 1 − k/n the lossiness rate.

work assumption primitive index key trapdoor key image

ours CDH CCA2 DE Θ(n2 log p) Θ(n2 log p) log p + Θ(n)

[BFO08] DDH CCA2 DE Θ(n2 log p) Θ(n2 log p) Θ(n log p)

ours DDH (n, log p)-LTDF Θ(n2 log p) Θ(n2 log p) log p + Θ(n)

[PW08,
PW11,
FGK+10]

DDH (n, log p)-LTDF Θ(n2 log p) Θ(n2 log p) Θ(n log p)

1.2 Technical Overview

In this section we give an overview of our techniques for constructing robust
and efficient TDFs. We will build TDFs with several abstract properties, and we
will apply these techniques to the setting of deterministic encryption and lossy
TDFs as concrete applications.

Our constructions rely on the same primitive of recyclable one-way function
with encryption (OWFE) used by [GH18], so we first review this notion. An
OWFE consists of a one-way function f(pp, ·) : {0, 1}n → {0, 1}ν , where pp is
a public parameter, along with encapsulation/decapsulation algorithms (E,D).
Specifically, E takes as input pp, an image y ∈ {0, 1}ν of f(pp, ·), a target index
i ∈ [n] and a target bit b ∈ {0, 1}, and produces an encapsulated ciphertext ct
and a corresponding key bit e ∈ {0, 1}. The algorithm D allows us to retrieve e
from ct using any pre-image x of y, if xi = b. For security, letting y := f(pp, x), we

require that if (ct, e) $←− E(pp, y, (i, 1−xi)), then even knowing both x and ct, one
cannot distinguish e from a truly random bit. Finally, letting E1 and E2 refer to
the first and second output pars of E, the recyclability requirement says that the
output of E1 does not depend on y, namely, we have: ct = E1(pp, (i, b)) and e =
E2(pp, y, (i, b)). (See Definition 4.) The work of [GH18] gives CDH instantiations
of this notion.
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Approach of [GH18]. A property implied by recyclable OWFE is the follow-
ing: given x ∈ {0, 1}n and two fresh encapsulated ciphertexts (ct0, ct1) made
w.r.t. y := f(pp, x) and an arbitrary target index i and target bits 0 and 1
(respectively), one cannot distinguish the values of the corresponding two key
bits (e0, e1) from a pair in which we replace e1−xi

with a random bit. Exploiting
this property, [GH18] set their index key to contain encapsulated ciphertexts
cti,b made w.r.t. each value of i ∈ [n] and b ∈ {0, 1}—they put all the corre-
sponding randomness values [ri,b] in the trapdoor key. The input to their TDF
contains x ∈ {0, 1}n and the output u consists of y := f(pp, x) as well as a 2 × n
matrix M of bits (ei,b)i∈[n],b∈{0,1}, where for all i, they set ei,xi

:= D(pp, x, cti,xi
)

and set ei,1−xi
to be a random bit. Since TDFs are not allowed to make use of

randomness, they draw ei,1−xi
for all i from an additional part of their input

which they call the blinding part. For inverting u := (y,M), the inverter may
make use of its knowledge of all the randomness values underlying cti,b’s to form
the corresponding key bits w.r.t. y. Then the inverter may check each column
of the resulting matrix, M′, against the corresponding column of the matrix
M, and look for a matched coordinate. This would enable recovering half of the
input bits (on average). The one-wayness of their scheme follows by the property
alluded to above. Namely, for any i ∈ [n], we may switch e1−xi

from uniformly
random to E2(pp, y, (i, 1 − xi); ri,1−xi

). Consequently, the image of the trapdoor
function becomes: (y, (ei,b)i,b), where ei,b := E2(pp, y, (i, b); ri,b) for all i ∈ [n]
and b ∈ {0, 1}. In other words, the entire view of a TDF adversary may be
computed from y alone. At this point, the one-wayness of the TDF follows from
the one-wayness of the underlying OWFE. Finally, [GH18] boosts correctness by
repeating the above process in parallel. For future reference, we call the above
initial TDF (which enables the recovery of half of the bits) TDF gadget.

Lack of perfect correctness in [GH18]. The TDF of [GH18] only achieves
a weak form of correctness, under which the inversion algorithm may fail
w.r.t. any index/trapdoor keys for a negligible fraction of the inputs. This
severely restricts the applicability of CCA2-enhancing techniques, such as
those of [RS09,KMO10], for obtaining CCA2 secure primitives. Even for the
CPA case, the lack of perfect correctness hindered the construction of CPA-
secure deterministic encryption schemes. Deterministic public-key encryption
schemes [BBO07] are TDFs which hide information about plaintexts drawn
from high min-entropy sources. There are various forms of this definition,
e.g., [BBO07,BFO08,BFOR08,BS11,MPRS12]. Strong versions of this notion
have so far been realized in the random oracle model [BBO07] and are subject
to impossibility results [Wic13]. Boldyreva, Fehr and O’Neill [BFO08] formu-
lated a relaxation of this notion (called block-source security), and showed how
to realize this relaxed notion under standard assumptions such as DDH and
LWE. Informally, block-source security requires that the (deterministic) encryp-
tions of any two sources with high min entropy (more than a threshold k) remain
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computationally indistinguishable.2 Ideally, we want k << n, where n is plain-
text size.

The TDF of [GH18] does not achieve block-source security for the same
reason that degraded their correctness property: The TDF input contains a
blinding part, which in turn is copied in the clear in the output (but in hidden
spots). To see how this breaks security, consider two sources, where the first one
fixes the blinding part to all zeros, and the second one fixes it to all ones. Then
it would be easy to distinguish between the outputs of the TDF w.r.t. these two
sources, even though they may have high min entropy.

Enhancing to perfect correctness. We fix the imperfect correctness of [GH18] via
a mirroring technique. Recall that the bits of the blinding input were previously
used to form the values of ei,1−xi

. Now, instead of having a blinding part in
the input for making up the values of ei,1−xi

, we set ei,1−xi
:= ai − ei,xi

, where
a := (a1, . . . , an) ∈ {0, 1}n is a random vector that comes from the index key.
This way we get rid of inclusion of blinders as part of the input—the input
now solely consists of a string x ∈ {0, 1}n. We show that this method improves
correctness: Our TDF is now perfectly correct for all but a negligible fraction of
index/trapdoor keys; see Remark 1.

Lossy-like properties of our TDF toward obtaining deterministic encryption. So
far, we showed how to fix the imperfect-correctness problem of [GH18], but this
by itself does not guarantee deterministic-encryption security. Toward this goal,
we show that the mirroring technique allows us to establish a lossy-like property
for our TDFs, which in turn gives us block-source security.3 Specifically, let y
be an image point of f(pp, ·) of the OWFE scheme, and let S be the set of all
pre-images of y (which can be of exponential size under our CDH instantiation).
We can now set the index key as iky, where (a) iky loses information w.r.t. all
pre-images of y: for all x, x′ ∈ S we have TDF.F(iky, x) = TDF.F(iky, x′) and (b) iky
is computationally indistinguishable from an honestly generated ik. We exploit
this property to prove block-source security for our TDFs.

Having achieved block-source CPA security, we may boost this scheme into a
CCA2-secure deterministic-encryption scheme using the techniques of [RS09,
KMO10].4 Specifically, we show how to use our lossiness property to prove
k-repetition security (introduced by [RS09]) for our TDF. Intuitively, k-
repetition security requires one-wayness to hold even if the given input is evalu-

2 This is the indistinguishability-based, single-message version of their notion,
which as they show, is equivalent to the multiple-message version both for the
indistinguishability- and simulation-based definitions.

3 We note that this lossiness property is weaker than the one of [PW08,PW11], but it
can be realized under CDH. We will later show efficient DDH-based instantiations
of lossiness in the sense of [PW08,PW11].

4 We mention that the transformation of [RS09] results in CCA-secure PKE schemes
which use randomness, but this can be avoided by using the techniques of [KMO10]
to get CCA2-secure TDFs.
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ated under k-randomly chosen functions. The scheme of [GH18] fails to achieve
k-repetition security, exactly because of the presence of blinders.

Finally, we mention that based on CDH we do not get lossiness in the sense
of [PW08,PW11] as the amount of information we lose is negligible over the
entire input space. Nevertheless, our weak lossiness property which can be real-
ized under CDH suffices for our deterministic-encryption application, and may
find other applications later.

Efficiency of our TDFs so far: quadratically large images. Under CDH instantia-
tions of the above approach, for plaintexts of n bits, the bit-size of the ciphertext
is Θ(n2) in the CPA case, and Θ(n2ω(log n)) in the CCA case. In contrast, the
DDH-based constructions of [BFO08] give ciphertext size Θ(n2) both for the
CPA and CCA cases.

Sources of inefficiency. Recall our TDF gadget has image size Θ(n). This TDF
gadget may fail to recover any given bit of the input with probability 1/2. Thus,
we ran many TDF gadgets in parallel, resulting in Θ(n2) image size. We refer to
this as correctness repetition. For the CCA2 case, since we relied on techniques
of [RS09,KMO10] we needed to perform yet another repetition, which we call
CCA2 repetition. This justifies the further blowup in CCA2 image size.

We develop techniques for avoiding both these repetitions, sketched below.

Erasure-resilient codes to the rescue: linear-image TDFs. We give techniques
involving the use of erasure-resilient codes for making the size of our TDF images
linear, while preserving other properties. Recall that under our TDF gadget, for
a randomly chosen input x ∈ {0, 1}n and for any index i ∈ [n], the inversion
algorithm either recovers xi correctly, or outputs ⊥ for this bit position (with
probability 1/2). Notice that the inversion process has a local property, in the
sense that each bit individually may be recovered or not with probability 1/2.

Now instead of performing parallel repetition which results in a quadratic-size
blowup, we boost correctness through the use of erasure-resilient codes. Suppose
(Encode,Decode) is an erasure-resilient code, where Encode : {0, 1}n → {0, 1}m

(for m = cn ∈ O(n)), and where Decode only needs c1n (noise-free) bits of a
codeword Encode(x)—for c1 sufficiently smaller than c—in order to recover x.
Such codes may be built from Reed-Solomon codes by adapting them to bit
strings; see Definition 8.

The starting point of our technique is the following: On input x ∈ {0, 1}n,
apply the TDF gadget on the encoded input z := Encode(x). To invert, we
no longer need to recover all the m bits of z; recovering c1n of them will do.
Unfortunately, for codes over binary alphabets, the value of c1/c is much greater
than 1/2 and our TDF gadget may be incapable of recovering that many bits.
We get around this issue by doing repetition but for a constant number of times:
Instead of applying the TDF gadget to z := z1 . . . zm, apply it to the t-repetition
copy of z where we repeat each bit of z t times. By choosing the underlying
constants appropriately and using the mirroring idea, we can ensure perfect
correctness for all but a negligible fraction of index/trapdoor keys. This way,
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images will grow linearly. The proof of CPA block-source security follows almost
similarly as before.

Concretely, under CDH instantiations, CPA ciphertexts (for plaintexts of n
bits) consist of one group element and a constant number of bits.5 This substan-
tially improves the ciphertext size of previous DDH-based schemes under which
a ciphertext consists of n group elements.

Keeping image size linear in CCA-like applications. So far, we showed how
to build linear-image TDFs with additional properties (e.g., block-source CPA
security). Typically, TDFs with enhanced properties (such as k-repetition secu-
rity [RS09] or lossy properties [PW08,PW11]) can be boosted into CCA2 prim-
itives, but this requires “parallel repetition” of the base object, increasing the
sizes. Our linear-image TDF turns out to be k-repetition secure, but we cannot
afford to use previous techniques for getting CCA2 security, because we would
like to keep image size linear. Here is where our other techniques come into play:
We develop a half-simulation method for proving CCA2 security for our same
TDF scheme without any further modifications. For this, we just need to choose
the constant c in m = cn big enough. Our CCA techniques are different from
those of [PW08,PW11,RS09], which implicitly or explicitly relied on repetition.

As an application, we will get a CDH-based block-source CCA-secure deter-
ministic encryption, beating the ciphertext size of DDH-based schemes. We now
sketch our techniques.

Let (Encode,Decode) be a code obtained by repeating the output bit of
a codeword (which in turn is obtained based on a linear-size-output error-
correcting code) t times for a constant t. See Definition 8 and the two para-
graphs afterward. A codeword z may be thought of as a string of m/t blocks,
each consisting of entirely either t zeros or t ones.

Recall that a trapdoor key tk consists of all randomness values ri,b’s used to
form cti,b’s (which are in turn fixed in the index key ik). On input x ∈ {0, 1}n

we form z := Encode(x) ∈ {0, 1}m and return u := (y,M :=
( e1,0,...,em,0
e1,1,...,em,1

)
),

where y := f(pp, z), ei,zi
= D(pp, z, cti,zi

) and ei,1−zi
= ai − ei,zi

, where a :=
(a1, . . . , am) ∈ {0, 1}m is sampled in ik. The inversion algorithm will recover the
ith bit of z iff ei,1−zi

= 1 − E2(pp, y, (i, 1 − zi); ri,1−zi
). Say the ith column of M

is hung if ei,1−zi
= E2(pp, y, (i, 1−zi); ri,1−zi

)—if this happens, then the inverter
cannot decide on the ith bit of z.

Let us argue CCA2 security w.r.t. two sources S0 and S1: The adversary
should distinguish (ik,TDF.F(ik, x0)) from (ik,TDF.F(ik, x1)), where xb

$←− Sb. For
deterministic encryption we may assume all CCA queries happen after seeing the
index key and challenge ciphertext (Definition 2).

Our CCA2 simulation is based on a half-trapdoor simulation technique
under which we forget one randomness value from each pair (ri,0, ri,1) in the
trapdoor. Specifically, letting x� be the challenge plaintext, imagine a half-
trapdoor key obtained based on x� from tk as tkrd,z� := (r1,z�

1
, . . . , rm,z�

m
),

where z� = Encode(x�). We perform half-trapdoor inversion of a given point

5 We have not yet optimized nor tried to get some upper bounds on the constants.
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u :=
(
y,

( e1,0,...,em,0
e1,1,...,em,1

))
w.r.t. tkrd,z� as follows: Build (potentially) a noisy code-

word z as follows: in order to recover the bits of the jth block, if at least for one
index i in this block we have ei,z�

i
= 1 − E2(pp, y, (i, z�

i ); ri,z�
i
), set all the bits of

z in this block to 1 − z�
i ; otherwise, set all those bits to the corresponding bit

values of z� in those coordinates. Once z is formed, decode it to get a string and
check if the re-encryption of that string gives back u. If so, return the string.

Letting x� be the challenge plaintext (and recalling that all CCA queries
are post-challenge), we first show we may use tkrd,z� (instead of the full key
tk) to reply to the CCA queries, without the adversary noticing any difference,
using the following two facts. First, for a queried point u, if u is not a valid
image (i.e., it does not have a pre-image), then both (full and half) inversions
return ⊥. This is because at the end of either inversion we re-encrypt the result
to see whether we get the given image point back. So suppose for the queried
u :=

(
y,M :=

( e1,0,...,em,0
e1,1,...,em,1

))
we have u := TDF.F(ik, x) for some x ∈ {0, 1}n\{x�}.

(If x = x�, then u will be the challenge ciphertext itself and hence not a permitted
query.) Let S ⊆ [m/t] contain the indices of those blocks on which z and z� differ,
where z := Encode(x). Note the half-trapdoor inversion w.r.t. tkrd,z� will correctly
recover all the bits of z that correspond to the blocks which are not in S.

For the blocks in S, we show that by choosing the constants appropriately,
then for sufficiently-many indices j ∈ S, the jth block of M is not hung; namely,
for at least one index i in this block we have ei,1−zi

= 1 − E2(pp, y, (i, 1 −
zi); ri,1−zi

). For any index j ∈ S such that the above holds, the half-inversion
process (w.r.t. tkrd,z�) will recover the jth block of z (by definition). We will use
these facts to argue we will have enough correctly generated bits in order to able
to do error correction.

Once we solely use tkrd,z� to reply to decryption queries, letting u� :=(
y�,

(
e�
1,0,...,e�

m,0

e�
1,1,...,e�

m,1

))
be the corresponding challenge ciphertext, we may replace

each e�
i,1−z�

i
with E2(pp, y�, (i, 1− z�

i ); ri,1−z�
i
), and simultaneously set the ith bit

of the vector a of the index key as ai := E2(pp, y�, (i, z�
i ); ri,z�

i
)+E2(pp, y�, (i, 1−

z�
i ); ri,1−z�

i
). This change goes unnoticed by the security of the OWFE. At this

point the challenge ciphertext and index key only depend on y� and we only use
z� to decide which randomness value from each pair of tk to forget. We will now
switch back to using the full trapdoor, with analysis similar to before. At this
point, the entire view of the adversary may be simulated using y� := f(pp, z�),
and thus we have block-source security in this hybrid similar to the CPA case.

Lossy TDFs. Recall that a TDF is lossy [PW08,PW11] if one may generate index
keys in a lossy way which is (1) indistinguishable from honestly generated index
keys and (2) which results in statistical loss of information if used during the
evaluation algorithm. We show we can adapt the trapdoor functions of [PW08,
PW11] using our erasure-resilient code based technique for encoding input bits
via hardcore output bits. This allows us to obtain lossy TDFs based on DDH with
image size linear in input size. All previous DDH-based constructions of lossy
TDFs incur a quadratic blowup in image size [PW08,PW11,FGK+10,Wee12].
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We defer the reader to Sect. 6 for details. We leave open the exciting problem of
constructing lossy trapdoor functions from CDH.

Other related work. OWFE is a relaxation of the notion of (chameleon) hash
encryption and its variants, which in turn imply strong primitives such as
laconic oblivious transfer and identity-based encryption (IBE) in a non-black-box
way [CDG+17,DG17b,DG17a,BLSV18,DGHM18].

Freeman et al. [FGK+10] give additional constructions and simplifications to
the TDF construction of [PW08,PW11]. Further constructions of (lossy) TDFs
from various assumptions are given in [Wee12,HO12,HO13]. As for efficient
TDFs, Boyen and Waters show that in the bilinear setting one may drastically
shorten the index-key size of the Peikert-Waters lossy-TDF construction from a
quadratic number of group elements to linear [BW10].

Concurrent Work. In an exciting independent and concurrent work, Koppula
and Waters [KW18] show that TDF techniques can be used to upgrade any
attribute-based encryption or predicate encryption scheme to its CCA secure
variant. Similarly to this work, Koppula and Waters build on the ideas from
the CDH-based TDF construction of Garg and Hajiabadi [GH18]. In particular,
Koppula and Waters [KW18] independently came up with a similar version of
the mirroring technique along the way, which we also developed in this paper.
However, the focus of our work is very different from that of Koppula and Waters.
In particular, we develop efficient techniques for applications such as TDFs,
deterministic encryption and lossy trapdoor functions.

Paper organization. We give standard definitions and lemmas in Sect. 2 and
OWFE-related definitions in Sect. 3. We give our (inefficient) construction of
TDFs with deterministic-encryption security in Sect. 4 and give our efficient
construction in Sect. 5. Finally, we give our DDH-based lossy TDF construction
with linear image size in Sect. 6.

2 Preliminaries

Notation. We use λ for the security parameter. We use
c≡ to denote com-

putational indistinguishability between two distributions and use ≡ to denote
two distributions are identical. For any ε > 0, we write ≈ε to denote that two
distributions are statistically close, within statistical distance ε, and use

s≡ for
statistical indistinguishability. For a distribution S we use x

$←− S to mean x is
sampled according to S and use y ∈ S to mean y ∈ sup(S), where sup denotes

the support of a distribution. For a set S we overload the notation to use x
$←− S

to indicate that x is chosen uniformly at random from S. If A(x1, . . . , xn) is a
randomized algorithm, then A(a1, . . . , an), for deterministic inputs a1, . . . , an,
denotes the random variable obtained by sampling random coins r uniformly at
random and returning A(a1, . . . , an; r).
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The min-entropy of a distribution S is defined as H∞(S) �= − log
(maxx Pr[S = x]). We call a distribution S a (k, n)-source if H∞(S) ≥ k and
sup(S) ⊆ {0, 1}n.

2.1 Standard Definitions

Definition 1 (Trapdoor functions (TDFs)). Let n = n(λ) be a polynomial.
A family of trapdoor functions TDF with domain {0, 1}n consists of three PPT
algorithms TDF.KG, TDF.F and TDF.F−1 with the following syntax and security
properties.

– TDF.KG(1λ): Takes the security parameter 1λ and outputs a pair (ik, tk) of
index/trapdoor keys.

– TDF.F(ik, x): Takes an index key ik and a domain element x ∈ {0, 1}n and
deterministically outputs an image element u.

– TDF.F−1(tk, u): Takes a trapdoor key tk and an image element u and outputs
a value x ∈ {0, 1}n ∪ {⊥}.
We require the following properties.

– Correctness:

Pr
(ik,tk)

[∃x ∈ {0, 1}n s.t. TDF.F−1(tk,TDF.F(ik, x)) �= x] = negl(λ), (1)

where the probability is taken over (ik, tk) $←− TDF.KG(1λ).
– One-wayness: For any PPT adversary A, we have Pr[A(ik, u) = x] =

negl(λ), where (ik, tk) $←− TDF.KG(1λ), x $←− {0, 1}n and u := TDF.F(ik, x).

Remark 1. The work of Garg and Hajiabadi [GH18] builds a TDF with a
weaker correctness guarantee, under which for any choice of (ik, tk), we are

allowed to have a negligible inversion error (over the choice of x
$←− {0, 1}n).

Although the correctness condition of [GH18] implies that for a randomly chosen
(ik, tk) and a randomly chosen x, the probability of an inversion error is negligi-
ble, it falls short in certain applications, such as CCA2 constructions, for which
a stronger correctness condition, as that given in Definition 1, is needed.

We will now define a single-message-based notion of indistinguishability
for deterministic encryption of block sources, which as proved in [BFO08], is
equivalent to both the simulation-based and indistinguishability-based multiple-
message notions.

Definition 2 (Deterministic-encryption security [BFO08]). Let TDF =
(TDF.KG,TDF.F,TDF.F−1) be as in Definition 1. We say that TDF is (k, n)-
CPA-indistinguishable if for any two (k, n)-sources S1 and S2 we have

(ik,TDF.F(ik,S1))
c≡ (ik,TDF.F(ik,S2)), where (ik, ∗) $←− TDF.KG(1λ).
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We say that TDF is (k, n)-CCA2-indistinguishable if for any two (k, n)-
sources S0 and S1, and any PPT adversary A the following probability is negli-
gible:

Pr

[
b = b′ : (ik, tk)

$←− TDF.KG(1λ), b
$←− {0, 1}, x� $←− Sb, u

� := TDF.F(ik, x�)
b′ ← AODec(ik, u�)

]
− 1

2

where on input u, the decryption oracle ODec returns TDF.F−1(tk, u) if u �= u�,
and ⊥ otherwise.

We remark that considering only CCA2 queries (as opposed to both CCA1
and CCA2 queries) in the CCA2-indistinguishability definition for deterministic
encryption is without loss of generality, since the plaintexts are not chosen by
the adversary. See [BFO08] for further explanation.

Definition 3 (Computational Diffie-Hellman (CDH) assumption). Let
G be a group-generator scheme, which on input 1λ outputs (G, p, g), where G

is the description of a group, p is the order of the group which is always a
prime number and g is a generator of the group. We say that G is CDH-hard
if for any PPT adversary A: Pr[A(G, p, g, ga1 , ga2) = ga1a2 ] = negl(λ), where

(G, p, g) $←− G(1λ) and a1, a2
$←− Zp.

2.2 Standard Lemmas

Lemma 1 (Chernoff inequality). Let X1, . . . ,Xm be independent Boolean
variables each of expected value at least p. Then, for all ε > 0:

Pr

[
1
m

m∑

i=1

Xi < p − ε

]

< e−2ε2m.

Lemma 2 (Leftover hash lemma [ILL89]). Let X be a random variable over
X and h : S × X → Y be a 2-universal hash function, where |Y| ≤ 2m for some
m > 0. If m ≤ H∞(X ) − 2 log

(
1
ε

)
, then (h(S,X ),S) ≈ε (U ,S), where S is

uniform over S and U is uniform over Y.

3 Smooth Recyclable OWFE

We recall the definition of recyclable one-way function with encryption
from [GH18]. We adapt the definition to a setting in which the underlying input
distribution is not necessarily uniform. We will also define a smoothness notion,
which generalizes the one-wayness notion.

Definition 4 (Recyclable one-way function with encryption (OWFE)).
A recyclable (k, n)-OWFE scheme consists of the PPT algorithms K, f, E1, E2

and D with the following syntax.
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– K(1λ): Takes the security parameter 1λ and outputs a public parameter pp (by
tossing coins) for a function f(pp, ·) from n bits to ν bits.

– f(pp, x): Takes a public parameter pp and a preimage x ∈ {0, 1}n, and deter-
ministically outputs y ∈ {0, 1}ν .

– E1(pp, (i, b); ρ): Takes a public parameter pp, an index i ∈ [n], a bit b ∈ {0, 1}
and randomness ρ, and outputs a ciphertext ct.6

– E2(pp, y, (i, b); ρ): Takes a public parameter pp, a value y, an index i ∈ [n], a
bit b ∈ {0, 1} and randomness ρ, and outputs a bit e. Notice that unlike E1,
which does not take y as input, the algorithm E2 does take y as input.

– D(pp, ct, x): Takes a public parameter pp, a ciphertext ct and a preimage x ∈
{0, 1}n, and deterministically outputs a bit e.

We require the following properties.

– Correctness. For any choice of pp ∈ K(1λ), any index i ∈ [n], any preim-
age x ∈ {0, 1}n and any randomness value ρ, the following holds: letting
y := f(pp, x), b := xi and ct := E1(pp, (i, xi); ρ), we have E2(pp, y, (i, xi); ρ) =
D(pp, ct, x).

– (k, n)-One-wayness: For any (k, n) source S and any PPT adversary A:

Pr[f(pp,A(pp, y)) = y] = negl(λ),

where pp
$←− K(1λ), x $←− S and y := f(pp, x).

– Security for encryption: For any i ∈ [n] and x ∈ {0, 1}n:

(x, pp, ct, e)
c≡ (x, pp, ct, e′)

where pp
$←− K(1λ), ρ

$←− {0, 1}∗, ct := E1(pp, (i, 1 − xi); ρ), e :=

E2

(
pp, f(pp, x), (i, 1 − xi); ρ

)
and e′ $←− {0, 1}.

Whenever we say an OWFE scheme (without specifying the parameters), we
mean k = n.

Notation 2. We define E(pp, y, (i, b); ρ) �= (E1(pp, (i, b); ρ),E2(pp, y, (i, b); ρ)).

We will now define the notion of smoothness which extends the one-wayness
property to an indistinguishability-based property.

Definition 5 (Smoothness). Let (K, f,E,D) be as in Definition 4. We say that
(K, f,E,D) is (k, n)-smooth if for any two (k, n)-sources S1 and S2 we have

(pp, f(pp, x1))
c≡ (pp, f(pp, x2)), where pp

$←− K(1λ), x1
$←− S1 and x2

$←− S2.

In the full version of this paper, we show that the recyclable OWFE
from [GH18] based on CDH is (k, n)-smooth, for any k ≥ log p+ω(log λ), where
p is the order of the underlying CDH-hard group.

6 ct is assumed to contain (i, b).
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4 Strong TDFs from Smooth Recyclable OWFE

In this section we show that recyclable OWFE implies the existence of TDFs
with almost-perfect correctness in the sense of Definition 1. This improves the
correctness property of [GH18]; see Remark 1. Moreover, we show that if the
base recyclable OWFE scheme is smooth (Definition 5), then the resulting TDF
satisfies the notions of security for deterministic encryption (Definition 2). We
will then use this statement along with the CDH-based OWFE from [GH18] to
obtain the first deterministic-encryption scheme based on CDH. In particular,
the existence of deterministic encryption (even) with CPA security from CDH
has been open until now.

A central new tool developed in this work is a mirroring technique, which we
will describe below. As notation, for a matrix M ∈ Z

k×n
2 , we define RSum(M) �=

M1 + · · · + Mk ∈ Z
n
2 , where Mi for i ∈ [k] denotes the ith row of M.

Definition 6. (The mirror Function Mir) Let (K, f,E1,E2,D) be a recyclable
OWFE scheme. For a public parameter pp, a value x ∈ {0, 1}n, a matrix
CT :=

(
ct1,0,ct2,0,...,ctn,0
ct1,1,ct2,1,...,ctn,1

)
of ciphertexts outputted by E1, and a vector a ∈

{0, 1}n, the function Mir(pp, x,CT, a) outputs a matrix M ∈ Z
2×n
2 , where

M :=
(

b1,0,b2,0,...,bn,0
b1,1,b2,1,...,bn,1

)
is formed deterministically and uniquely according to

the following two rules:

1. for all i ∈ [n]: bi,xi
= D(pp, cti,xi

, x); and
2. RSum(M) = a.

Note that the above computation is deterministic and can be done efficiently.

Construction 3 (TDF construction). We now present our TDF construction.

Base primitive. A recyclable OWFE scheme E = (K, f,E,D). Let Rand be the
randomness space of the algorithm E.

Construction. The construction is parameterized over two parameters n =
n(λ) and r = r(λ), where n is the input length to the function f(pp, ·), and r will
be instantiated in the correctness proof. The input space of the TDF is {0, 1}n.

– TDF.KG(1λ):
1. Sample pp ← K(1λ).
2. For each h ∈ [r]:

Ph :=

(
ρ
(h)
1,0 , ρ

(h)
2,0 , . . . , ρ

(h)
n,0

ρ
(h)
1,1 , ρ

(h)
2,1 , . . . , ρ

(h)
n,1

)
$←− Rand2×n, (2)

CTh :=

(
E1(pp, (1, 0); ρ(h)1,0),E1(pp, (2, 0); ρ(h)2,0), . . . ,E1(pp, (n, 0); ρ(h)n,0)
E1(pp, (1, 1); ρ(h)1,1),E1(pp, (2, 1); ρ(h)2,1), . . . ,E1(pp, (n, 1); ρ(h)n,1)

)

.

(3)
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3. For h ∈ [r] sample ah
$←− {0, 1}n.

4. Form the index key ik and the trapdoor key tk as follows:

ik := (pp,CT1, . . . ,CTr, a1, . . . , ar), (4)

tk := (pp,P1, . . . ,Pr) . (5)

– TDF.F(ik, x): Parse ik as in Eq. 4. Set y := f(pp, x). Return

u := (y,Mir(pp, x,CT1, a1), . . . ,Mir(pp, x,CTr, ar)) . (6)

– TDF.F−1(tk, u):
1. Parse tk := (pp,P1, . . . ,Pr) and parse Ph for h ∈ [r] as in Eq. 2.
2. Parse u := (y,M1, . . . ,Mr), where for all h ∈ [r], Mh ∈ Z

2×n
2 .

3. Reconstruct x := x1 · · · xn ∈ {0, 1}n bit-by-bit as follows. To recover the
ith bit of x:

(a) If for some h ∈ [r], Mh[i] =
(

E2(pp,y,(i,0);ρ
(h)
i,0 )

1−E2(pp,y,(i,1);ρ
(h)
i,1 )

)
, set xi = 0. Here

Mh[i] denotes the ith column of Mh.

(b) Else, if for some h ∈ [r], Mh[i] =
(

1−E2(pp,y,(i,0);ρ
(h)
i,0 )

E2(pp,y,(i,1);ρ
(h)
i,1 )

)
, set xi = 1.

(c) Otherwise, halt and return ⊥.
4. Return x.

Lemma 3 (TDF correctness). We have

Pr
(ik,tk)

[∃x ∈ {0, 1}n s.t. TDF.F−1(tk, (TDF.F(ik, x))) �= x] ≤ n2n

2r
, (7)

where the probability is taken over (ik, tk) $←− TDF.KG(1λ). For instance, setting:
r = n + ω(log λ) gives a negligible inversion error.

Lemma 4 (TDF one-wayness and CPA-indistinguishability security).
Assuming E is an OWFE scheme (i.e., an (n, n)-OWFE scheme), the TDF
(TDF.KG,TDF.F,TDF.F−1) given in Construction 3 is one-way. That is, for any
PPT adversary A

Pr[A(ik,TDF.F(ik, x)) = x] = negl(λ), (8)

where (ik, tk) $←− TDF.KG(1λ) and x
$←− {0, 1}n. Moreover, if E is (k, n)-smooth

(Definition 5), the constructed TDF is (k, n)-CPA-indistinguishable (Defini-
tion 2).

We may now combine the CDH-based OWFE from [GH18], Lemmas 3 and 4
to get the first CPA-secure deterministic encryption scheme from CDH.

Corollary 1 (CDH implies deterministic encryption). Let G be a CDH-
hard group scheme. For any k ≥ log p + ω(log λ) and any n ≥ k (where p is
the order of the underlying group), there exists a (k, n)-CPA-indistinguishable
deterministic encryption scheme with plaintext size n (in bits) and ciphertext
size Θ(n2).
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4.1 Proof of Correctness: Lemma 3

Proof. We will use notation given in Construction 3. Note that for a given x ∈
{0, 1}n, the inversion succeeds unless there exists an index i ∈ [n] for which the
following bad event happens.

– Badx,i: for all h ∈ [r], ah[i] = E2(pp, y, (i, 0); ρ(h)i,0 ) + E2(pp, y, (i, 1); ρ(h)i,0 ) ∈ Z2,
where ah[i] denotes the i’th coordinate of ah ∈ {0, 1}n.

Since the bits ah[i] for all h ∈ [r] are chosen uniformly at random (indepen-
dently of pp and ρi,b’s), we have: Pr[Badx,i] = 2−r. Doing a union bound over
all column i ∈ [n] gives the probability n · 2−r of an inversion error for a given
x. We conclude using a union bound over all x ∈ {0, 1}n. ��

4.2 Proof of One-Wayness and CPA Security: Lemma 4

To prove Lemma 4 we first give a simulated way of sampling an index key together
with an image point for a target input value.

Definition 7 (Simulated distribution Sim). Let E = (K, f,E,D) be the
underlying recyclable OWFE scheme. Fix x ∈ {0, 1}n and let y := f(pp, x). We
define a simulator Sim(pp, n, y), which samples a simulated index key iksim with
a corresponding simulated TDF image usim for x, as follows. For h ∈ [r] sample

rh
i,b

$←− {0, 1}∗ for all (i, b) ∈ [n] × {0, 1}, and set

(CTh,Mh) $←−
(
E1(pp, (1, 0); rh

1,0), . . . ,E1(pp, (n, 0); rh
n,0)

E1(pp, (1, 1); rh
1,1), . . . ,E1(pp, (n, 1); rh

n,1)

)
,

(
E2(pp, y, (1, 0); rh

1,0), . . . ,E2(pp, y, (n, 0); rh
n,0)

E2(pp, y, (1, 1); rh
1,1), . . . ,E2(pp, y, (n, 1); rh

n,1)

)
. (9)

Let

iksim := (pp,CT1, . . . ,CTr,RSum(M1), . . . ,RSum(Mr))
usim := (y,M1, . . . ,Mr).

Equipped with the above definition, we now give of the proof of Lemma4.

Proof of Lemma 4. For any distribution S over {0, 1}n, we show that the sole
security-for-encryption requirement of the recyclable OWFE implies that

(x, ik,TDF.F(ik, x))
c≡ (x,Sim(pp, n, y)), (10)

where x
$←− S, pp $←− K(1λ), (ik, ∗) $←− TDF.KG(1λ) and y := f(pp, x).

We first show how to use Eq. 10 to derive the one-wayness and indistin-
guishability security of the resulting TDF from the corresponding one-wayness
and smoothness of the underlying OWFE scheme, and will then prove Eq. 10.

For one-wayness, if there exists an inverter A that with non-negligible prob-
ability can compute x from (ik,TDF.F(ik, x)—where (ik, ∗) $←− TDF.KG(1λ) and
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x
$←− {0, 1}n—then Eq. 10 implies that with non-negligible probability the adver-

sary A can compute x from Sim(pp, n, y), where y := f(pp, x). However, this latter
violates the one-wayness of f, because the computation of Sim(pp, n, y) may be
done efficiently with knowledge of pp, n and y.

For indistinguishability security (Definition 2) let S0 and S1 be two (k, n)
sources and assume that the recyclable OWFE scheme is k-smooth (Definition 5).

Letting (ik, ∗) $←− TDF.KG(1λ), x0
$←− S0, x1

$←− S1, y0 := f(pp, x0) and y1 :=
f(pp, x1), by Eq. 10 we have

(ik,TDF.F(ik, x0))
c≡ Sim(pp, n, y0)

c≡ Sim(pp, n, y1)
c≡ (ik,TDF.F(ik, x1)),

where the second indistinguishability follows from the k-smoothness of the recy-
clable OWFE scheme, which states (pp, y0)

c≡ (pp, y1).
We are left to prove Eq. 10. Fix the distribution S for which we want to prove

Eq. 10. To this end, we change the simulator Sim given in Definition 7 to define
a new simulator Sim′ which on input Sim′(pp, x) samples a pair (ik′

sim, u′
sim) as

follows. Let y := f(pp, x). For all h ∈ [r], let CTh be sampled as in Sim(pp, n, y),
but with the following modification to Mh:

– Letting Mh :=
(

e
(h)
1,0 ,...,e

(h)
n,0

e
(h)
1,1 ,...,e

(h)
n,1

)
be formed as in Sim(pp, y), for any i ∈ [n] change

e
(h)
i,1−xi

to a random bit (fresh for each index).

Having defined how CTh and Mh are sampled for h ∈ [r] during Sim′(pp, x),
form (ik′

sim, u′
sim) exactly as how (iksim, usim) is formed during Sim(pp, n, y).

The security-for-encryption requirement of the OWFE scheme implies that
(x, iksim, usim)

c≡ (x, ik′
sim, u′

sim), where x
$←− S, y := f(pp, x), (iksim, usim) $←−

Sim(pp, n, y) and (ik′
sim, u′

sim) $←− Sim′(pp, x). Moreover, it is easy to verify that

(x, ik′
sim, u′

sim) is identically distributed to (x, ik,TDF.F(ik, x)), where (ik, tk) $←−
TDF.KG(1λ). The proof is now complete. ��

The TDF given in Construction 3 is CPA secure (in a deterministic-
encryption sense), but it is not hard to show that the construction is not CCA2
secure. However, we show in the full version of this paper that using techniques
of [RS09,KMO10] one may use the TDF of Construction 3 to build another
TDF which is CCA2 secure. This upgrading further increases the ciphertext
size, resulting in ciphertext size Θ(n3) (for the CDH-based instantiation), where
n is the plaintext size.

5 Efficient Strong TDFs from Smooth OWFE

The TDF and deterministic encryption presented in Sect. 4 have the drawback
that the output size grows at least quadratically with the input size. The reason
behind this blowup is that we had to do “repetitions,” resulting in Θ(n/2) out-
put bits for every single bit of the input. In this section we show how to do away
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with excessive use of repetition, and to obtain TDFs (and deterministic encryp-
tion) whose image/ciphertext size grows linearly with input size. Our main idea
involves the use of error-correcting codes, taking advantage of the local inver-
sion property of our basic TDF. As a result, we will obtain the first CPA-secure
deterministic encryption scheme with linear ciphertext size based on CDH. We
stress that, even relying on DDH, previous DDH-based deterministic-encryption
and TDF schemes resulted in quadratically large ciphertexts.

Definition 8 ((m,n, d)2-Codes). We recall the notion of (m,n, d)2 error-
correcting codes. Such a code is given by efficiently computable functions
(Encode,Decode), where Encode : {0, 1}n → {0, 1}m, and where

1. Distance. For any two distinct x1, x2 ∈ {0, 1}n we have Hdst(Encode(x1),
Encode(x2)) ≥ d, where Hdst denotes the Hamming distance.

2. Erasure correction. For any x ∈ {0, 1}n, letting z := Encode(x), given any
string z′ ∈ {0, 1,⊥}m, which has at most d − 1 ⊥ symbols, and whose all
non-⊥ symbols agree with z, we have Decode(z′) = x.

3. Error correction. For any x ∈ {0, 1}n, letting z := Encode(x), given any
z′ ∈ {0, 1}m such that Hdst(z, z′) < d/2, we have Decode(z′) = x.

We are interested in binary codes with constant rate, constant relative dis-
tance, that is: m = cn, and d = c1n. Such codes can be obtained by concatenating
codes with constant rate and constant relative distance over large fields—such as
Reed-Solomon codes—with codes with constant rate and binary alphabet. See
for instance binary Justesen codes [Jus72].

Definition 9 (rECC code). We define a code that suites our purposes,
which is the concatenation of an ECC code with a repetition code. Specifi-
cally, for a repetition constant t, a t-rECC code (Encode,Decode) consists of
Encode : {0, 1}n → {0, 1}m, which is obtained by first applying a (cn, n, c1n)2
code and then repeating each bit of the cn bit codeword t times. Thus, m = tcn.
Note that this code is now a (tcn, n, tc1n)2-code.

Looking ahead, we remark that the use of these repetition codes makes decod-
ing later easier. Specifically, with this repetition, an m bit codeword can be
viewed as having cn blocks of t bits each. Furthermore, for decoding it is enough
to recover one bit per block for at least cn − c1n + 1 blocks.

In our constructions, it is instructive to think of c = 200, c1 = 20 and t = 9
for convenience in proofs.7

Block index versus bit index. Having codes given as above based on repetition,
for a codeword z ∈ {0, 1}m we talk about a jth block of z for j ∈ [m/t] to refer
to the collections of the bits with indices {(j − 1)t + 1, . . . , jt}.

7 The choices of the constants were made as above so to have slackness in proofs—they
have not been optimized for efficiency.
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Construction 4 (TDF construction). We now describe our TDF construction.

Base primitive. A t-rECC code (Encode,Decode), where Encode : {0, 1}n →
{0, 1}m, and a recyclable OWFE scheme E = (K, f,E,D), where f’s input space
is {0, 1}m. We will instantiate the value of constant t in the correctness proof.
Let Rand be the randomness space of the encapsulation algorithm E.

Construction.

– TDF.KG(1λ):
1. Sample pp ← K(1λ) and

P :=
(

ρ1,0, ρ2,0, . . . , ρm,0

ρ1,1, ρ2,1, . . . , ρm,1

)
$←− Rand2×m, (11)

CT :=
(
ct1,0, ct2,0, . . . , ctm,0

ct1,1, ct2,1, . . . , ctm,1

)
, (12)

where for all i ∈ [m] and b ∈ {0, 1}, cti,b := E1(pp, (i, b); ρi,b).

2. Sample a
$←− {0, 1}m.

3. Form the index key ik and the trapdoor key tk as follows:

ik := (pp, a,CT) tk := (pp, a,P). (13)

– TDF.F(ik, x): Parse ik := (pp, a,CT). Let z := Encode(x) and y := f(pp, z).
Return

u := (y,Mir(pp, z,CT, a)). (14)

– TDF.F−1(tk, u):
1. Parse tk := (pp, a,P) and parse P as in Equation (11). Parse u := (y,M),

where M ∈ Z
2×m
2 . If RSum(M) �= a, then return ⊥.

2. Construct z′ := z′
1 · · · z′

m bit-by-bit as follows. To recover the ith bit of z′:
(a) If M[i] =

(
E2(pp,y,(i,0);ρi,0)

1−E2(pp,y,(i,1);ρi,1)

)
, set z′

i = 0. Here M[i] denotes the ith
column of M.

(b) Else if M[i] =
(

1−E2(pp,y,(i,0);ρi,0)
E2(pp,y,(i,1);ρi,1)

)
, set z′

i = 1.
(c) Else, set z′

i = ⊥.
3. Letting x := Decode(z′), if TDF.F(ik, x) = u, then return x. Otherwise,

return ⊥.

We will now give the correctness and security statements about our TDF,
and will prove them in the subsequent subsections.

Lemma 5 (Correctness). Using a t-rECC code (Encode,Decode) with param-
eters (tcn, n, tc1n)2 (Definition 9), we have

Pr
(ik,tk)

[∃x ∈ {0, 1}n s.t. TDF.F−1(tk, (TDF.F(ik, x))) �= x] ≤ 2n ·e− (2tc1−c)2n

22t−1c . (15)

In particular, by choosing the repetition constant t based on c and c1 in such a
way that 2tc1 > c and that (2tc1−c)2

22t−1c ≥ 0.7, we will have a negligible error.
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Lemma 6 (TDF one-wayness and CPA-indistinguishability security).
Assuming E is an (n,m)-OWFE scheme, the TDF (TDF.KG,TDF.F,TDF.F−1)
given in Construction 3 is one-way. That is, for any PPT adversary A

Pr[A(ik,TDF.F(ik, x)) = x] = negl(λ), (16)

where (ik, tk) $←− TDF.KG(1λ) and x
$←− {0, 1}n. Moreover, assuming that the

underlying OWFE scheme is (k,m)-smooth (Definition 5), the constructed TDF
is (k, n)-indistinguishable (Definition 2).

Theorem 5 (CCA2-indistinguishability security). Assuming that the
underlying OWFE scheme is (k,m)-smooth and by appropriately choosing the
parameters (in particular we will have t, c, c1 ∈ O(1)), the constructed TDF is
(k, n)-CCA2-indistinguishable.

We may now combine the CDH-based OWFE from [GH18], 5 with Theorem 5
to get the following corollary.

Corollary 2 (CDH implies efficient deterministic encryption). Let G be
a CDH-hard group scheme. For any k ≥ log p+ω(log λ) and any n ≥ k (where p
is the order of the underlying group), there exists a (k, n)-CCA2-indistinguishable
deterministic encryption scheme with plaintext size n (in bits) and ciphertext size
log p + O(n).

We prove Lemmas 5 and 6 in the full version of this paper.

5.1 Proof of CCA2 Security: Theorem 5

We give the proof of Theorem 5 via a series of lemmas. We first start with the
following notation.

Notation 6. For an OWFE scheme (K, f,E1,E2,D), letting P :=
(ρ1,0,ρ2,0,...,ρm,0

ρ1,1,ρ2,1,...,ρm,1

)

we define

E(pp, y,P) �=
(
E1(pp, (1, 0); ρ1,0), . . . ,E1(pp, (m, 0); ρm,0)
E1(pp, (1, 1); ρ1,1), . . . ,E1(pp, (m, 1); ρm,1)

)
,

(
E2(pp, y, (1, 0); ρ1,0), . . . ,E2(pp, y, (m, 0); ρm,0)
E2(pp, y, (1, 1); ρ1,1), . . . ,E2(pp, y, (m, 1); ρm,1)

)
.

Half-trapdoor keys. In the proof of Theorem 5 we will make use of an alternative
way of inversion which works with respect to knowledge of half of all the random-
ness values that were fixed in the trapdoor key. We refer to such trapdoor keys
as half trapdoor keys (or simulated trapdoor keys). Recall that a real trapdoor
key is of the form

(pp, a, (ρ1,0, ρ1,1), . . . , (ρm,0, ρm,1)). (17)

A half-trapdoor key is a reduced version of a full trapdoor key in that we forget
one randomness value from each pair, while remembering whether we chose
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to keep the first or the second coordinate of that pair. Formally, given a full
trapdoor key as in Equation (17), a half trapdoor key is obtained based on
a string s ∈ {0, 1}m as tkrd := (pp, a, s, (ρ1, . . . , ρm)), where ρi = ρi,si . (The
subscript rd stands for “reduced.”)

We will now define how to perform inversion w.r.t. half-trapdoor keys.

Definition 10 (Half-trapdoor inversion TDF.F−1
rd ). For an image u :=

(y,M) of our constructed TDF and a half-trapdoor key tkrd := (pp, a, s,
(ρ1, . . . , ρm)) we define TDF.F−1

rd (tkrd, u) as follows:

1. If RSum(M) �= a ∈ Z
m
2 , then return ⊥.

2. Construct z′ ∈ {0, 1}m bit by bit as follows. For all i ∈ [m], we denote by
M[i] =

(
ei,0
ei,1

)
the i’th column of M. If ei,si = 1 − E2(pp, y, (i, si); ρi), then set

z′
i = 1 − si; otherwise set z′

i = ⊥.
3. For all j ∈ [cn], if ∃i∗ ∈ {(j − 1)t + 1, . . . , jt} such that z′

i∗ �= ⊥ then for all
i ∈ {(j − 1)t + 1, . . . , jt} set z′′

i = z′
i∗ ; else set z′′

i = si
4. Letting x := Decode(z′′), if TDF.F(ik, x) = u, return x. Otherwise, return ⊥.

As terminology, we say that TDF.F−1
rd (tkrd, u) is able to open the ith column of

M if z′
i �= ⊥ (i.e., if ei,si = 1 − E2(pp, y, (i, si); ρi)).

We first fix some notation and will then prove a useful property about half-
inversion simulation, which in turn will be used in the CCA2 proof.

Notation 7 (Half trapdoor keys). For a given tk := (pp, a, (ρ1,0, ρ1,1), . . . ,
(ρm,0, ρm,1)) and z ∈ {0, 1}m we define tk/z

�= (pp, a, z, ρ1,z1 , . . . , ρm,zm
).

We now give the following lemma about the effectiveness of the half-trapdoor
inversion procedure.

Lemma 7 (Half-trapdoor inversion). Fix x ∈ {0, 1}n and let z :=
Encode(x). Using code (Encode,Decode) and setting t such that 1 − 2−t ≥
1
2 + c1

2c − 2
c1

, we have

Pr
(ik,tk)

[∃x′ ∈ {0, 1}n\{x} s.t. TDF.F−1(tk, u′) �= TDF.F−1
rd (tkrd, u′)] = 2ne− (c1−4)2n

2c1 ,

where (ik, tk) $←− TDF.KG(1λ), u′ := TDF.F(ik, x′) and tkrd := tk/z. Thus, by
appropriately choosing c1 and c (and t based on these two values) the above
probability will be negligible.

Proof. Fix x ∈ {0, 1}n and let z := Encode(x). For a sampled (ik, tk) we define
the event Bad as

Bad := ∃x′ ∈ ({0, 1}n \ {x}) s.t. TDF.F−1(tk, u′) �= TDF.F−1
rd (tkrd, u′),

where u′ := TDF.F(ik, x′) and tkrd := tk/z.
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First, note that if TDF.F−1(tk,TDF.F(ik, x′)) = ⊥, then TDF.F−1
rd (tkrd,

TDF.F(ik, x′)) = ⊥, and if TDF.F−1
rd (tkrd,TDF.F(ik, x′)) �= ⊥, then

TDF.F−1(tk,TDF.F(ik, x′)) = x′ = TDF.F−1
rd (tkrd,TDF.F(ik, x′)). This follows

from the descriptions of TDF.F−1
rd and TDF.F−1, and from the correctness prop-

erty of TDF.F−1.
Thus, defining

Bad′ : ∃x′ ∈ ({0, 1}n \ {x}) s.t.
(
TDF.F−1

rd (tkrd, (TDF(ik, x′))) = ⊥)
,

we have Pr[Bad] ≤ Pr[Bad′]. In what follows, for any fixed x′ ∈ {0, 1}n we will
show

Pr[Badx′ ] ≤ e− (c1−4)2n
2c1 ,

where we define Badx′ := TDF.F−1
rd (tkrd, (TDF(ik, x′))) = ⊥. This will complete

the proof.
For the fixed x′ ∈ {0, 1}n, let u′ := TDF.F(ik, x′) and z′ := Encode(x′). Parse

u′ := (y′,M′).
In order to argue about the correctness of the output of TDF.F−1

rd (tkrd, u′),
let z∗ denote the string that is constructed bit-by-bit during the execution of
TDF.F−1

rd (tkrd, u′). We will show that the fractional distance Hdst(z
∗,z′)

m ≤ c1
2c , and

thus by the error-correction property of the underlying code (Item 3 of Defini-
tion 8) we will have TDF.F−1

rd (tkrd, u′) = x′, as desired.
Let S ⊆ [cn] be the set of block indices on which z and z′ are different. (Recall

the notion of block index from the paragraphs after Definition 8.) Suppose |S| = v
and let S := {u1, . . . , uv}. Note that v ≥ c1n. We have

1. For any block index j ∈ [cn] \ S, all those t bits of z′ which come from its jth
block will be equal to those of z∗. Namely, for all i ∈ {(j − 1)t + 1, . . . , jt} we
have z′

i = z∗
i .

2. For any block index j ∈ S, if the jth block of z′ is different from that of
z∗, then all the columns of the jth block of M′ are hung; Namely, for all
i ∈ {(j − 1)t + 1, . . . , jt}, M′[i] is hung. This fact follows easily by inspection.

With the above intuition in mind, for j ∈ [v] let Wj be a Boolean random variable
where Wj = 0 if the entire uj ’th block of M′ is hung (i.e., all the corresponding
t columns are hung), and Wj = 1, otherwise. Note that for all j: Pr[Wj = 1] =
1 − 2−t; this follows from the random choice of the vector a which is fixed in ik.
Thus, by the bounds fixed in the lemma we have Pr[Wj = 1] ≥ 1

2 + c1
2c − 2

c1
. Let

p := 1 − 2−t. We have

Pr[Badx′ ] ≤ Pr[
1
v

v∑

j=1

Wj <
c1
2c

] ≤ Pr[
1
v

v∑

j=1

Wj < p − (
1
2

− 2
c1

)] ≤∗ e−2( 1
2− 2

c1
)2v

≤ e−2( 1
2− 2

c1
)2c1n = e

− 2(c1−4)2c1n

4c21 = e− (c1−4)2n
2c1 ,

(18)

where the probability marked with ∗ follows from the Chernoff bounds. The
proof is now complete. ��
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Our CCA2 hybrids will also make use of a simulated way of producing
index/trapdoor keys. This procedure is described below.

Definition 11 (Simulated TDF key generation). We define a simu-
lated key-generation algorithm for the TDF given in Construction 4. Let
(K, f,E1,E2,D) be the underlying OWFE scheme. The simulated key genera-
tion algorithm TDF.KGsim(pp, y) takes pp and an image y of the function f

as input, and outputs (ik, tk) formed as follows. Sample P
$←− Rand2×m and

set (CT,M) := E(pp, y,P). (See Notation 6.) Set ik := (pp,RSum(M),CT) and
tk := (pp,RSum(M),P).

We will now describe the hybrids for proving CCA2 security of the determin-
istic encryption scheme. We define the hybrids with respect to a distribution D
and will then instantiate the distribution in the subsequent lemmas.

Hybrid H0[D]: real game.

– Index/trapdoor keys. Sample (ik, tk) $←− TDF.KG(1λ).
– Challenge ciphertext. Set u := TDF.F(ik, x), where x ← D.
– CCA2 inversion queries. Reply to each inversion query u′ �= u with
TDF.F−1(tk, u′).

Hybrid H1[D]: half-trapdoor inversion. Same as H0 except we reply to inversion
queries using a half trapdoor and by using the algorithm TDF.F−1

rd .

– Index/trapdoor keys. Sample (ik, tk) $←− TDF.KG(1λ). Set the index key to
be ik and form the trapdoor key as follows: sample x ← D, let z := Encode(x)
and set the trapdoor key to be tkrd := tk/z (Notation 7).

– Challenge ciphertext. Return u := TDF.F(ik, x), where recall that x was
sampled in the previous step.

– CCA2 inversion queries. Reply to each inversion query u′ �= u with
TDF.F−1

rd (tkrd, u′).

Hybrid H2[D]: half-trapdoor inversion with a simulated index key. Same as H1[D]
except that we sample the index key and the challenge ciphertext jointly in a
simulated way.

– Index/trapdoor keys:
1. Sample x ← D, and let z := Encode(x). Set y := f(pp, z).

2. Sample (ik, tk) $←− TDF.KGsim(pp, y).
3. Set the index key to be ik and the trapdoor key to be tkrd := tk/z.

– Challenge ciphertext. Return u := TDF.F(ik, x), where recall that x was
sampled above.

– CCA2 inversion queries. Reply to each inversion query u′ �= u with
TDF.F−1

rd (tkrd, u′).
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Hybrid H3[D]: Full trapdoor inversion with a simulated index key. Same as H2[D]
except we use tk as the trapdoor key (instead of tkrd) and will reply to each CCA2
inversion query u′ �= u with TDF.F−1(tk, u′). That is:

– Index/trapdoor keys:
1. Sample x ← D, and let z := Encode(x). Set y := f(pp, z).

2. Let the index/trapdoor key be (ik, tk) $←− TDF.KGsim(pp, y).
– Challenge ciphertext. Return u := TDF.F(ik, x).
– CCA2 inversion queries. Reply to each inversion query u′ �= u with
D(tk, u′).

The above concludes the description of the hybrids. We now define some
notation and will then prove some lemmas.

Notation. For i ∈ {0, 1, 2, 3} we use outi[D] to denote the output bit of an
underlying adversary in hybrid Hi[D]. For i, j ∈ {0, 1, 2, 3} and two distributions
S0 and S1, we write Hi[S0]

c≡ Hj [S1] to mean that for all PPT adversaries A we
have |Pr[outi[S0] = 1] − Pr[outj [S1] = 1]| = negl(λ).

The proof of Theorem5 follows from the following lemmas.

Lemma 8 (Indistinguishability of Hybrids H0 and H1). By appropriately
choosing the parameters for c, c1 and t, for any PPT adversary A we have
|Pr[out0[D] = 1] − Pr[out1[D] = 1]| = negl(λ).

Lemma 9 (Indistinguishability of Hybrids H1 and H2). If the OWFE sat-
isfies the security-for-encryption property, then for any distribution D and any
PPT adversary A, we have |Pr[out1[D] = 1] − Pr[out2[D] = 1]| = negl(λ).

Lemma 10 (Indistinguishability of Hybrids H2 and H3). If the OWFE
satisfies the security-for-encryption property and by choosing the parameters
appropriately, then for any distribution D and any PPT adversary A, we have
|Pr[out2[D] = 1] − Pr[out3[D] = 1]| = negl(λ).

Lemma 11 (CCA2 Security in H3). If the OWFE is (k,m)-smooth, then
for any two (k, n) sources S0 and S1 and any PPT adversary A, we have
|Pr[out3[S0] = 1] − Pr[out3[S1] = 1]| = negl(λ).

Proof of Theorem 5. By applying the above lemmas, for any (k, n)-sources S0

and S1, we have:

H0[S0]
c≡ H1[S0]

c≡ H2[S0]
c≡ H3[S0]

c≡ H3[S1]
c≡ H2[S1]

c≡ H1[S1]
c≡ H0[S1].

We prove these lemmas in the full version of the paper.
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6 Lossy TDFs with Linear-Image Size

In this section, using our erasure-resilient code techniques, we show how to adapt
a variant of the TDFs from [PW08,PW11] to obtain the first lossy trapdoor func-
tions with images growing linearly in their inputs, based on the DDH assump-
tion. This improves upon the lossy TDFs from [PW08,PW11], whose output
size is quadratic in the input size. We first recall the definition of lossy TDF
from [PW08,PW11].

Definition 12 (Lossy TDFs [PW08,PW11]). An (n, k)-lossy TDF ((n, k)-
LTDF) is given by four PPT algorithms TDF.KG, TDF.KGls, TDF.F, TDF.F−1,
where TDF.KGls(1λ) only outputs a single key (as opposed to a pair of keys), and
where the following properties hold:

– Correctness in real mode. The TDF (TDF.KG,TDF.F,TDF.F−1) satisfies
correctness in the sense of Definition 1.

– k-Lossiness. For all but negligible probability over the choice of ikls
$←−

TDF.KGls(1λ), we have |TDF.F(ikls, {0, 1}n)| ≤ 2k, where we use
TDF.F(ikls, {0, 1}n) to denote the set of all images of TDF.F(ikls, ·).

– Indistinguishability of real and lossy modes. We have ik
c≡ ikls, where

(ik, ∗) $←− TDF.KG(1λ) and ikls
$←− TDF.KGls(1λ).

Lossiness rate. In the definition above, we refer to the fraction 1 − k/n as
the lossiness rate, describing the fraction of the bits lost. Ideally, we want this
fraction to be as close to 1 as possible, e.g., 1 − o(1).

Our LTDF construction makes use of a balanced predicate, defined below.

6.1 Lossy TDF from DDH

Our LTDF construction makes use of the following notation.

Notation . Letting x ∈ {0, 1}n and M :=
( g1,0,g2,0...,gn,0

g1,1,g2,1,...,gn,1

)
we define x � M =

∏

j∈[n]

gj,xj
. For i ∈ [n], b ∈ {0, 1} and M as above, we define the matrix M′ :=

(M −−−→
(i,b)

g′) to be the same as M except that instead of gi,b we put g′ in M′.

If M is matrix of group elements, then Mr denotes entry-wise exponentiation to
the power of r.

Overview of the construction and techniques. Let us first demonstrate the idea
for retrieving the first bit of the input. Imagine two 2 × n matrices M and M′,
where M :=

( g1,0,...,gn,0
g1,1,...,gn,1

)
is chosen at random and where M′ := (Mr −−−→

(1,b)
g1),

where r
$←− Zp, b

$←− {0, 1} and g1
$←− G. That is, M′ is a perturbed rth power

of M, in that we replace one of the two elements of the first column of the
exponentiated matrix with a random group element.
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Think of (M,M′) as the index key. Suppose an evaluator TDF.F with input
x ∈ {0, 1}n wants to use (M,M′) to communicate her first bit x1 to an inverter
who has knowledge of b, g1 and r. A first attempt for TDF.F would be to output
two group elements (g̃, g′

1) := (x � M, x � M′). Given (g̃, g′
1), if g′

1 = g̃r, then
x1 = 1 − b; otherwise, x1 = b—hence allowing TDF.F−1 to recover x1.8

The above method is in fact what used (implicitly) in all previous
approaches [PW08,FGK+10,PW11]. However, the cost paid is high: for commu-
nicating one bit of information we need to output (at least) one group element.

We will now illustrate our main idea. Let BL : G → {0, 1} be a balanced
predicate, meaning that BL(g∗) on a randomly generated g∗ is a completely
random bit. (We will show how to build this object unconditionally.) Returning
to the above idea, instead of sending (g̃, g′

1) we will send (g̃,BL(g′
1)) ∈ (G, {0, 1}).

Before arguing correctness and security, note that this method yields linear image
size for the whole input, because the group element g̃ can be re-used across all
indices.

To argue correctness, let us see how TDF.F−1—given b, r and g1—may invert
an encoding (g̃, b′) of the first bit of x. To this end, note the following two facts:

1. If x1 = 1 − b, then b′ = BL(g̃r).
2. If x1 = b, then b′ = BL( g̃rg1

gr
1,b

).

Thus, if BL(g̃r) �= BL( g̃rg′
1

gr
1,b

), then we can determine the value of x1. This is
because in this case we either have

– b′ = BL(g̃r) and b′ �= BL( g̃rg1
gr
1,b

): which implies x1 = 1 − b;

– b′ �= BL(g̃r) and b′ = BL( g̃rg1
gr
1,b

): which implies x1 = b.

Summing up the above discussion, we are unable to determine the value of
x1 only when BL(g̃r) = BL( g̃rg1

gr
1,b

). This happens with probability 1/2 because the
predicate BL is balanced. For any constant c, we may reduce this probability to
(1/2)c via repetition for c times. Thus, by choosing the constant c appropriately,
and doing the above procedure for every index, we will be able to retrieve a
good fraction of all the bits of x, which will make the rest retrievable using error
correction.

For security, we will show that this method admits a simple lossy way of
generating public keys.

We now formally define the notion of balanced predicates, which will be used
in our LTDF construction.

Definition 13 (Balanced predicates). We say a randomized predicate P :

S×{0, 1}∗ → {0, 1} is balanced over set S if Pr[P(x; r) = 0] = 1/2, where x
$←− S

and r
$←− {0, 1}∗.

8 For simplicity assume g1 �= gr
1,b, hence we will not have a hung situation.
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In the above definition, if S = {0, 1}n, then we have a trivial predicate, one
which returns, say, the first bit of its input. For our LTDF construction, we
require the existence of a predicate for the underlying group G. Assuming any
1-1 mapping G → {0, 1}n (which may not be surjective), we may define the
predicate P as the inner product function over F2: i.e., P(x, r) = 〈x, r〉.
Construction 8 (Linear-image lossy TDF). Let G be a group scheme and let
(Encode,Decode) be an erasure code, where Encode : {0, 1}n → {0, 1}m (Defini-
tion 8). Also, let BL be a balanced predicate for the underlying group (Defini-
tion 13).

We define our LTDF construction (TDF.KG,TDF.KGls,TDF.F,TDF.F−1) as
follows.

– TDF.KG(1λ):

1. Sample (G, p, g) $←− G(1λ), and

M :=
(

g1,0, g2,0, . . . , gm,0

g1,1, g2,1, . . . , gm,1

)
$←− G

2×m. (19)

2. For all i ∈ [m], sample gi
$←− G, ρi

$←− Zp and bi
$←− {0, 1}.

3. Sample random coins r for the underlying function BL.
4. Set the index and trapdoor keys as

ik := (M, (Mρ1 −−−→
(1,b1)

g1), . . . , (Mρm −−−−−→
(m,bm)

gm), r) (20)

tk := (M, (ρ1, b1, g1), . . . , (ρm, bm, gm), r). (21)

– TDF.KGls(1λ): Return ikls := (M,Mρ1 , . . . ,Mρm , r), where M and ρi for i ∈
[m] and r are sampled as above.

– TDF.F(ik, x ∈ {0, 1}n): Parse ik := (M,M1, . . . ,Mm, r). Set z := Encode(x)
and return

u := (z � M,BL(z � M1; r), . . . ,BL(z � Mm; r)), (22)

– TDF.F−1(tk, u):
1. Parse tk := (M, (ρ1, b1, g1), . . . , (ρm, bm, gm), r) and u := (gc, b

′
1, . . . , b

′
m).

Parse M as in Eq. 19.
2. Construct z′ := z′

1 · · · z′
m ∈ {0, 1,⊥}m as follows. For i ∈ [m]:

(a) Set g′
i := gρi

c and g′′
i := g

ρi
c

g
ρi
i,bi

· gi. Then

i. If BL(g′
i; r) = BL(g′′

i ; r), set z′
i = ⊥;

ii. Else, if b′
i = BL(g′

i; r), set zi = 1 − bi. Else (i.e., b′
i = BL(g′′

i ; r)),
set zi = bi.

3. Return Decode(z′).

The following theorem gives the lossiness property of the scheme.
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Theorem 9 (Linear-image LTDF from DDH). Using code (Encode,
Decode) such that 4tc1 > 3tc and if (4tc1−3tc)2

24t−1c ≥ 0.7, the LTDF of Construc-
tion 8 is (n, log p)-lossy with image size log p+cn ∈ Θ(n). By setting n ∈ ω(log p)
we obtain 1 − o(1) lossiness rate.

We prove all the required properties below.

Lemma 12 (log p-Lossiness). For any ikls ∈ TDF.KGls(1λ) we have

|TDF.F(ikls, {0, 1}n)| ≤ p,

where recall that p is the order of the underlying group.

Proof. Parse ikls := (M,M1, . . . ,Mm). It is easy to verify that for any two mes-
sages x, x′ ∈ {0, 1}n we have

TDF.F(ikls, x) �= TDF.F(ikls, x′) ⇐⇒ x � M �= x′ � M. (23)

The statement of the lemma now follows, since {x � M | x ∈ {0, 1}n} ⊆ G, and
thus we have |{x � M | x ∈ {0, 1}n}| ≤ p. ��

Lemma 13 (Indistinguishability of real and lossy modes). We have ik
c≡

ikls, where (ik, ∗) $←− TDF.KG(1λ) and ikls
$←− TDF.KGls(1λ).

Proof. Immediate by the DDH assumption using standard techniques. ��
Lemma 14 (Correctness in real mode). Using code (Encode,Decode), we
have

Pr
(ik,tk)

[∃x ∈ {0, 1}n s.t. TDF.F−1(tk, (TDF.F(ik, x))) �= x] ≤ 2n ·e− (2tc1−c)2

22t−1c
n. (24)

In particular, by choosing the repetition constant t such that 2tc1 > c and that
(2tc1−c)2

22t−1c ≥ 0.7, the probability in Equation (24) will be negligible.

Proof. Fix x ∈ {0, 1}n and let z := Encode(x). All probabilities below are taken
over the random choice of (ik, tk). Parse

tk :=
(
M :=

(
g1,0, g2,0, . . . , gm,0

g1,1, g2,1, . . . , gm,1

)
, (ρ1, b1, g1), . . . , (ρm, bm, gm), r

)
.

For input x ∈ {0, 1}n, let Failx be the event that TDF.F−1(tk,TDF.F(ik, x)) �=
x. Fix x ∈ {0, 1}n and let z := Encode(x) ∈ {0, 1}m. Also, let u := TDF(ik, x) :=
(gc, b

′
1, . . . , b

′
m).

Recall that z consists of cn blocks, where each block consists of t identical
bits (Definition 9). For each block index j ∈ [cn] we define an event Badj , which
corresponds to the event that the inversion algorithm fails to recover the bit that
corresponds to the jth block. That is, Badj occurs if all the t repetitions inside
block j leads to failure during inversion. More formally:
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– Badj : The event that for all i ∈ {(j − 1)t + 1, . . . , jt}: BL(g′
i; r) = BL(g′′

i ; r),
where g′

i := gρi
c and g′′

i := g
ρi
c

g
ρi
i,bi

· gi.

Note that all Badj are i.i.d. events and we have Pr[Badj ] = (1/2)t. The reason
for this is that all of (g1, . . . , gn) are sampled uniformly at random independently
of all other values, and thus the two group elements g′

i and g′′
i are uniform and

independent.
Let Goodj = Badj and note that Pr[Goodj ] = 1 − (1/2)t. We now have

Pr[Failx] ≤ Pr[
cn∑

j=1

Goodj ≤ cn − c1n] = Pr[
1
cn

cn∑

j=1

Goodj ≤ 1 − c1
c

]

= Pr[
1
cn

cn∑

j=1

Goodj ≤ 1 − 1
2t

− (
c1
c

− 1
2t

)] ≤∗ e−2cn(
2tc1−c

2tc
)
2

≤ e− (2tc1−c)2

22t−1c
n,

(25)

where the inequality marked with * follows from the Chernoff inequality (The-
orem 1 with p = 1 − 1/2t and ε = c1/c − 1/2t. Note that since we must have
ε > 0, we should have 2tc1 > c.)

We conclude using a union bound over all x ∈ {0, 1}n. ��
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Abstract. We give an efficient decision procedure that, on input two
(acyclic) expressions making arbitrary use of common cryptographic
primitives (namely, encryption and pseudorandom generators), deter-
mines (in polynomial time) if the two expressions produce computation-
ally indistinguishable distributions for any cryptographic instantiation
satisfying the standard security notions of pseudorandomness and indis-
tinguishability under chosen plaintext attack. The procedure works by
mapping each expression to a symbolic pattern that captures, in a fully
abstract way, the information revealed by the expression to a computa-
tionally bounded observer. Our main result shows that if two expressions
are mapped to different symbolic patterns, then there are secure pseu-
dorandom generators and encryption schemes for which the two distri-
butions can be distinguished with overwhelming advantage. At the same
time if any two (acyclic) expressions are mapped to the same pattern,
then the associated distributions are indistinguishable.

Keywords: Symbolic security · Greatest fixed points ·
Computational soundness · Completeness · Pseudorandom generators ·
Information leakage

1 Introduction

Formal methods for security analysis (e.g., [1,9,13,21,33,34]) typically adopt
an all-or-nothing approach to modeling adversarial knowledge. For example, the
adversary either knows a secret key or does not have any partial information
about it. Similarly, either the message underlying a given ciphertext can be
recovered, or it is completely hidden. In the computational setting, commonly
used in modern cryptography for its strong security guarantees, the situation is
much different: cryptographic primitives usually leak partial information about
their inputs, and in many cases this cannot be avoided. Moreover, it is well known
that computational cryptographic primitives, if not used properly, can easily
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lead to situations where individually harmless pieces of partial information can
be combined to recover a secret in full. This is often the case when, for example,
the same key or randomness is used within different cryptographic primitives.

Starting with the seminal work of Abadi and Rogaway [3], there has been
considerable progress in combining the symbolic and computational approaches
to security protocol design and analysis, with the goal of developing methods
that are both easy to apply (e.g., through the use of automatic verification tools)
and provide strong security guarantees, as offered by the computational secu-
rity definitions. Still, most work in this area applies to scenarios where the use
of cryptography is sufficiently restricted that the partial information leakage of
computational cryptographic primitives is inconsequential. For example, [3] stud-
ies expressions that use a single encryption scheme as their only cryptographic
primitive. In this setting, the partial information about a key k revealed by a
ciphertext {|m|}k is of no use to an adversary (except, possibly, for identifying
when two different ciphertexts are encrypted under the same, unknown, key),
so one can treat k as if it were completely hidden. Other works [4,28] combine
encryption with other cryptographic primitives (like pseudorandom generation
and secret sharing,) but bypass the problem of partial information leakage sim-
ply by assuming that all protocols satisfy sufficiently strong syntactic restrictions
to guarantee that different cryptographic primitives do not interfere with each
other.

1.1 Our Results

In this paper we consider cryptographic expressions that make arbitrary (nested)
use of encryption and pseudorandom generation, without imposing any syntactic
restrictions on the messages transmitted by the protocols. In particular, following
[3], we consider cryptographic expressions like ({|m|}k, {|{|k|}k′ |}k′′), representing
a pair of ciphertexts: the encryption of a message m under a session key k,
and a double (nested) encryption of the session key k under two other keys
k′, k′′. But, while in [3] key symbols represent independent randomly chosen keys,
here we allow for derived keys obtained using a length doubling pseudorandom
generator k �→ G0(k);G1(k) that on input a single key k outputs a pair of
(statistically correlated, but computationally indistinguishable) keys G0(k) and
G1(k). The output of the pseudorandom generator can be used anywhere a
key is allowed. In particular, pseudorandom keys G0(k), G1(k) can be used to
encrypt messages, or as messages themselves (possibly encrypted under other
random or pseudorandom keys), or as input to the pseudorandom generator. So,
for example, one can iterate the application of the pseudorandom generator to
produce an arbitrary long sequence of keys G1(r),G1(G0(r)),G1(G0(G0(r))), . . ..

We remark that key expansion using pseudorandom generators occurs quite
often in real world cryptography. In fact, the usefulness of pseudorandom gen-
erators is not limited to reducing the amount of randomness needed by crypto-
graphic algorithms, and pseudorandom generators are often used as an essen-
tial tool in secure protocol design. For example, they are used in the design of
forward-secure cryptographic functions to refresh a user private key [7,25], they
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are used in the best known (in fact, optimal [30]) multicast key distribution
protocols [10] to compactly communicate (using a seed) a long sequence of pseu-
dorandom keys, and they play an important role in Yao’s classic garbled circuit
construction for secure two-party computation to mask and selectively open part
of a hidden circuit evaluation [24,35].

Pseudorandom generators (like any deterministic cryptographic primitive)
inevitably leak partial information about their input key.1 Similarly, a ciphertext
{|e|}k may leak partial information about k if, for example, decryption succeeds
(with high probability) only when the right key is used for decryption. As we
consider the unrestricted use of encryption and pseudorandom generation, we
need to model the possibility that given different pieces of partial information
about a key, an adversary may be able to recover that key completely. Our main
result shows how to do all this within a fairly simple symbolic model of computa-
tion, and still obtain strong computational soundness guarantees. Our treatment
of partial information is extremely simple and in line with the spirit of formal
methods and symbolic security analysis: we postulate that, given any two dis-
tinct pieces of partial information about a key, an adversary can recover the key
in full. Perhaps not surprisingly, we demonstrate (Theorem3) that the result-
ing symbolic semantics for cryptographic expressions is computationally sound,
in the sense that if two (acyclic2) expressions are symbolically equivalent, then
for any (length regular) semantically secure encryption scheme and (length dou-
bling) pseudorandom generator the probability distributions naturally associated
to the two expressions are computationally indistinguishable. More interestingly,
we justify our symbolic model by proving a corresponding completeness theorem
(Theorem 2), showing that if two cryptographic expressions are not symbolically
equivalent (according to our definition), then there is an instantiation of the cryp-
tographic primitives (satisfying the standard security notion of indistinguishabil-
ity) such that the probability distributions corresponding to the two expressions
can be efficiently distinguished with almost perfect advantage. In other words, if
we want the symbolic semantics to be computationally sound with respect to any
standard implementation of the cryptographic primitives, then our computation-
ally sound symbolic semantics is essentially optimal. Moreover, our completeness
theorem concretely shows what could go wrong when encrypting messages under
related keys, even under a simple eavesdropping (passive) attack.

1.2 Techniques

A key technical contribution of our paper is a syntactic characterization of
independent keys that exactly matches its computational counterpart, and a

1 For example, G0(k) gives partial information about k because it allows to distinguish
k from any other key k′ chosen independently at random: all that the distinguisher
has to do is to compute G0(k

′) and compare the result to G0(k).
2 For cyclic expressions, i.e., expressions containing encryption cycles, our soundness

theorem still holds, but with respect to a slightly stronger “co-inductive” adversarial
model based on greatest fixed point computations [26].
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corresponding notion of computationally sound key renaming (Corollary 1).
Our syntactic definition of independence is simple and intuitive: a set of keys
k1, . . . , kn is symbolically independent if no key ki can be obtained from another
kj via the syntactic application of the pseudorandom generator. We show that
this simple definition perfectly captures the intuition behind the computational
notion of pseudorandomness: we prove (Theorem 1) that our definition is both
computationally sound and complete, in the sense that the keys k1, . . . , kn are
symbolically independent if and only if the associated probability distribution is
indistinguishable from a sequence of truly independent uniformly random keys.
For example, although the probability distributions associated to pseudoran-
dom keys G0(k) and G1(k) are not independent in a strict information theoretic
sense, the dependency between these distributions cannot be efficiently recog-
nized when k is not known because the joint distribution associated to the pair
(G0(k),G1(k)) is indistinguishable from a pair of independent random values.

A key component of our completeness theorem is a technical construction
of a secure pseudorandom generator G and encryption scheme {|·|}k satisfying
some very special properties (Lemma 4) that may be of independent interest.
The properties are best described in terms of pseudorandom functions. Let fk

be the pseudorandom function obtained from the length-doubling pseudorandom
generator G using the classic construction of [17]. We give an algorithm that on
input any string w and two ciphertexts c0 = {|m0|}k0

and c1 = {|m1|}k1
(for

arbitrarily chosen, and unknown messages m0,m1) determines if k1 = fk0(w),
and, if so, completely recovers the value of the keys k0 and k1 with overwhelming
probability. Building on this lemma, we define the symbolic semantics by means
of an abstract adversary that is granted the ability to recover the keys k0, k1
whenever it observes two ciphertext encrypted under them. Our completeness
theorem offers a precise technical justification for such strong symbolic adversary.

1.3 Active Attacks and Other Cryptographic Primitives

Our work focuses on security definitions with respect to passive attacks for
two reasons. First, indistinguishability is essentially3 the only notion of security
applicable to primitives as simple as pseudorandom generators. Second, using
passive security definitions only makes our main result (Theorem2) stronger:
our completeness theorem shows that if two expressions map to different sym-
bolic patterns, then security can be completely subverted even under a simple
eavesdropping attack. Still, we remark that our definitions and techniques could
be useful also for the analysis of security under more realistic attacks in the
presence of active adversaries, e.g., if combined together with other soundness
results [5,6,11,19,32]. Also, our results immediately extend to other crypto-
graphic primitives (e.g., non-interactive commitment schemes) which can be

3 Active attacks against pseudorandom generators may be considered in the context
of leakage resilient cryptography, fault injection analysis, and other side-channel
attacks, which are certainly interesting, but also much more specialized models than
those considered in this paper.



68 D. Micciancio

modeled as a weakening of public key encryption. Possible extension to other
cryptographic primitives, e.g., using the notion of deduction soundness [8,12] is
also an interesting possibility. However, such extensions are outside the scope of
this paper, and they are left to future work.

1.4 Related Work

Cryptographic expressions with pseudorandom keys, as those considered in this
paper, are used in the symbolic analysis of various cryptographic protocols,
including multicast key distribution [28–30], cryptographically controlled access
to XML documents [4], and (very recently) the symbolic analysis of Yao’s gar-
bled circuit construction for secure two party computation [24]. However, these
works (with the exception of [24], which builds on the results from a preliminary
version of our paper [27]) use ad-hoc methods to deal with pseudorandom keys by
imposing syntactic restrictions on the way the keys are used. Even more general
(so called “composed”) encryption keys are considered in [23], but only under
the random oracle heuristics. We remark that the use of such general composed
keys is unjustified in the standard model of computation, and the significance of
the results of [23] outside the random oracle model is unclear. In fact, our com-
pleteness results clearly show that modeling key expansion as new random keys
is not sound with respect to computationally secure pseudorandom generators
in the standard model.

The problem of defining a computationally sound and complete symbolic
semantics for cryptographic expressions has already been studied in several
papers before, e.g., [3,14,31]. However, to the best of our knowledge, our is
the first paper to prove soundness and completeness results with respect to the
standard notion of computationally secure encryption [18]. In the pioneering
work [3], Abadi and Rogaway proved the first soundness theorem for basic cryp-
tographic expressions. Although in their work they mention various notions of
security, they focus on a (somehow unrealistic) variant of the standard security
definition that requires the encryption scheme to completely hide both the key
and the message being encrypted, including its length. This is the notion of
security used in many other works, including [22]. The issue of completeness was
first raised by Micciancio and Warinschi [31] who proved that the logic of Abadi
and Rogaway is both sound and complete if one assumes the encryption scheme
satisfies a stronger security property called confusion freeness (independently
defined also in [2], and subsequently weakened in [14]). We remark that most
symbolic models are trivially complete for trace properties. However, the same
is not true for indistinguishability security properties.

The notion of completeness used in [2,14,31] is different from the one stud-
ied in this paper. The works [2,14,31] consider restricted classes of encryption
schemes (satisfying stronger security properties) such that the computational
equivalence relation induced on expressions is the same for all encryption schemes
in the class. In other words, if two expressions can be proved not equivalent
within the logic framework, then the probability distributions associated to the
two expressions by evaluating them according to any encryption scheme (from
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the given class) are computationally distinguishable. It can be shown that no
such notion of completeness can be achieved by the standard security defini-
tion of indistinguishability under chosen plaintext attack, as considered in this
paper, i.e., different encryption schemes (all satisfying this standard notion of
security) can define different equivalence relations. In this paper we use a dif-
ferent approach: instead of strengthening the computational security definitions
to match the symbolic model of [3], we relax the symbolic model in order to
match the standard computational security definition of [18]. Our relaxed sym-
bolic model is still complete, in the sense that if two expressions evaluate to
computationally equivalent distributions for any encryption scheme satisfying
the standard security definition, then the equality between the two expressions
can be proved within the logic. In other words, if two expressions are not equiva-
lent in our symbolic model, then the associated probability distributions are not
computationally equivalent for some (but not necessarily all) encryption scheme
satisfying the standard computational security notion.

1.5 Organization

The rest of the paper is organized as follows. In Sect. 2 we review basic notions
from symbolic and computational cryptography as used in this paper. In Sect. 3
we present our basic results on the computational soundness of pseudorandom
keys, and introduce an appropriate notion of key renaming. In Sect. 4 we present
our symbolic semantics for cryptographic expressions with pseudorandom keys.
In Sect. 5, we present our main result: a completeness theorem which justifies
the definitional choices made in Sect. 4. A corresponding soundness theorem is
given in Sect. 6. Section 7 concludes the paper with some closing remarks.

2 Preliminaries

In this section we review standard notions and notation from symbolic and com-
putational cryptography used in the rest of the paper. The reader is referred to
[3,26] for more background on the symbolic model, and [15,16,20] (or any other
modern cryptography textbook) for more information about the computational
model, cryptographic primitives and their security definitions.

We write {0, 1}∗ to denote the set of all binary strings, {0, 1}n for the set
of all strings of length n, |x| for the bitlength of a string x, ε for the empty
string, and “;” (or simple juxtaposition) for the string concatenation operation
mapping x ∈ {0, 1}n and y ∈ {0, 1}m to x; y ∈ {0, 1}n+m. We also write x � y
if x is a suffix of y, i.e., y = zx for some z ∈ {0, 1}∗. As usual, x ≺ y is x � y
and x �= y. The powerset of a set A is denoted ℘(A).

As a general convention, we use bold uppercase names (Exp,Pat, etc.) for
standard sets of symbolic expressions, bold lowercase names (keys,parts) for
functions that return sets of symbolic expressions, and regular (non-bold) names
(shape, norm) for functions returning a single symbolic expression. We also use
uppercase letters (e.g., A,S) for set-valued variables, and lowercase letters (x, y)
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for other variables. Calligraphic letters (A,G, E , etc.) are reserved for probability
distributions and algorithms in the computational setting.

2.1 Symbolic Cryptography

In the symbolic setting, messages are described by abstract terms. For any given
sets of key and data terms Keys, Data, define Exp as the set of cryptographic
expressions generated by the grammar

Exp ::= Data | Keys | (Exp,Exp) | {|Exp|}Keys, (1)

where (e1, e2) denotes the ordered pair of subexpressions e1 and e2, and {|e|}k

denotes the encryption of e under k. We write Exp[Keys,Data] (and, simi-
larly, for patterns Pat[Keys,Data] later on) to emphasize that the definition
of Exp depends on the underlying sets Keys and Data. As a notational con-
vention, we assume that the pairing operation is right associative, and omit
unnecessary parentheses. E.g., we write {|d1, d2, d3|}k instead of {|(d1, (d2, d3))|}k.
All ciphertexts in our symbolic expressions represent independent encryptions
(each using fresh randomness in the computational setting), even when carrying
the same message. This is so that an adversary cannot distinguish between, say,
({|0|}k, {|0|}k) and ({|0|}k, {|1|}k). Sometimes (e.g., when adding an equality predi-
cate “Exp = Exp” to the language of expressions) it is desirable for equality of
symbolic terms to correspond to equality of their computational interpretations.
This can be easily achieved by decorating symbolic ciphertexts with a “random-
ness” tag, so that identical expressions {|m|}r

k = {|m|}r
k correspond to identical

ciphertexts, while independent encryptions (of possibly identical messages) are
represented by different symbolic expressions {|m|}r

k �= {|m|}r′

k . An alternative (and
syntactically cleaner) method to represent identical ciphertexts is to extend the
symbolic syntax with a variable assignment operation, like

let c := {|Exp|}Keys in Exp′,

where the bound variable c may appear (multiple times) in the second expres-
sion Exp′. Here, each “let” expression implicitly encrypts using independent
randomness, and identical ciphertexts are represented using bound variables.
All our definitions and results are easily adapted to these extended expressions
with explicit randomness tags or bound variables.

In [3,26], Keys = {k1, . . . , kn} and Data = {d1, . . . , dn} are two flat sets
of atomic keys and data blocks. In this paper, we consider pseudorandom keys,
defined according to the grammar

Keys ::= Rand | G0(Keys) | G1(Keys), (2)

where Rand = {r1, r2, . . .} is a set of atomic key symbols (modeling truly ran-
dom and independent keys), and G0, G1 represent the left and right half of a



Symbolic Encryption with Pseudorandom Keys 71

length doubling pseudorandom generator k �→ G0(k);G1(k). Notice that gram-
mar (2) allows for the iterated application of the pseudorandom generator, so
that from any key r ∈ Rand, one can obtain keys of the form

Gb1(Gb2(. . . (Gbn(r)) . . .))

for any n ≥ 0, which we abbreviate as Gb1b2...bn(r). (As a special case, for n = 0,
Gε(r) = r.) For any set of keys S ⊆ Keys, we write G

∗(S) and G
+(S) to denote

the sets

G
∗(S) = {Gw(k) | k ∈ S,w ∈ {0, 1}∗}

G
+(S) = {Gw(k) | k ∈ S,w ∈ {0, 1}∗, w �= ε}

of keys which can be obtained from S through the repeated application of the
pseudorandom generator functions G0 and G1, zero, one or more times. Using
this notation, the set of keys generated by the grammar (2) can be written as
Keys = G

∗(Rand). It is also convenient to define the set

G
−(S) = {k | G+(k) ∩ S �= ∅} =

⋃

k′∈S

{k | k′ ∈ G
+(k)}.

Notice that, for any two keys k, k′, we have k ∈ G
−(k′) if and only if k′ ∈ G

+(k),
i.e., G− corresponds to the inverse relation of G+.

The shape of an expression is obtained by replacing elements from Data and
Keys with special symbols � and ◦. Formally, shapes are defined as expressions
over these dummy key/data symbols:

Shapes = Exp[{◦}, {�}].

For notational simplicity, we omit the encryption keys ◦ in shapes and write {|s|}
instead of {|s|}◦. Shapes are used to model partial information (e.g., message size)
that may be leaked by ciphertexts, even when the encrypting key is not known.
(See Lemma 5 for a computational justification.)

The symbolic semantics of cryptographic expressions is defined by mapping
them to patterns, which are expressions containing subterms of the form {|s|}k,
where s ∈ Shapes and k ∈ Keys, representing undecryptable ciphertexts. For-
mally, the set of patterns Pat[Keys,Data] is defined as

Pat ::= Data | Keys | (Pat,Pat) | {|Pat|}Keys | {|Shapes|}Keys. (3)

Since expressions are also patterns, and patterns can be regarded as expres-
sions over the extended sets Keys ∪ {◦}, Data ∪ {�}, we use the letter e
to denote expressions and patterns alike. We define a subterm relation � on
Pat[Keys,Data] as the smallest reflexive transitive binary relation such that

e1 � (e1, e2), e2 � (e1, e2), and e � {|e|}k (4)

for all e, e1, e2 ∈ Pat[Keys,Data] and k ∈ Keys. The parts of a pattern e ∈ Pat
are all of its subterms:

parts(e) = {e′ ∈ Pat | e′ � e}. (5)
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The keys and shape of a pattern are defined by structural induction according
to the obvious rules

keys(d) = ∅ shape(d) = �
keys(k) = {k} shape(k) = ◦

keys(e1, e2) = keys(e1) ∪ keys(e2) shape(e1, e2) = (shape(e1), shape(e2))
keys({|e|}k) = {k} ∪ keys(e) shape({|e|}k) = {|shape(e)|}

where d ∈ Data, k ∈ Keys, e, e1, e2 ∈ Pat[Keys,Data], and shape(s) = s
for all shapes s ∈ Shapes. Notice that, according to these definitions, keys(e)
includes both the keys appearing in e as a message, and those appearing as an
encryption key. On the other hand, parts(e) only includes the keys that are used
as a message. As an abbreviation, we write

pkeys(e) = parts(e) ∩ keys(e)

for the set of keys that appear in e as a message. So, for example, if e =
(k, {|0|}k′ , {|k′′|}k) then keys(e) = {k, k′, k′′}, but pkeys(e) = {k, k′′}. This is
an important distinction to model the fact that an expression e only provides
partial information about the keys in keys(e) \ parts(e) = {k′}.

2.2 Computational Model

We assume that all algorithms and constructions take as an implicit input a (pos-
itive integer) security parameter �, which we may think as fixed at the outset.
We use calligraphic letters, A,B, etc., to denote randomized algorithms or the
probability distributions defined by their output. We write x ← A for the oper-
ation of drawing x from a probability distribution A, or running a probabilistic
algorithm A with fresh randomness and output x. The uniform probability dis-
tribution over a finite set S is denoted by U(S), and we write x ← S as an abbre-
viation for x ← U(S). Technically, since algorithms are implicitly parameterized
by the security parameter �, each A represents a distribution ensemble, i.e., a
sequence of probability distributions {A(�)}�≥0 indexed by �. For brevity, we will
informally refer to probability ensembles A simply as probability distributions,
thinking of the security parameter � as fixed. We use standard asymptotic nota-
tion O(f), ω(f), etc., and write f ≈ g if the function ε(�) = f(�)−g(�) = �−ω(1) is
negligible. Two probability distributions A0 and A1 are computationally indis-
tinguishable (written A0 ≈ A1) if for any efficiently computable predicate D,
Pr{D(x) : x ← A0} ≈ Pr{D(x) : x ← A1}.

Cryptographic Primitives. In the computational setting, cryptographic expres-
sions evaluate to probability distributions over binary strings, and two expres-
sions are equivalent if the associated distributions are computationally indistin-
guishable. We consider cryptographic expressions that make use of two standard
cryptographic primitives: pseudorandom generators, and (public or private key)
encryption schemes.
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A pseudorandom generator is an efficient algorithm G that on input a string
x ∈ {0, 1}� (the seed, of length equal to the security parameter �) outputs a string
G(x) of length bigger than �, e.g., 2�. We write G0(x) and G1(x) for the first and
second half of the output of a (length doubling) pseudorandom generator, i.e.,
G(x) = G0(x);G1(x) with |G0(x)| = |G1(x)| = |x| = �. A pseudorandom generator
G is computationally secure if the output distribution {G(x) : x ← {0, 1}�} is
computationally indistinguishable from the uniform distribution U({0, 1}2�) =
{y : y ← {0, 1}2�}.

A (private key) encryption scheme is a pair of efficient (randomized) algo-
rithms E (for encryption) and D (for decryption) such that D(k, E(k,m)) = m
for any message m and key k ∈ {0, 1}�. The encryption scheme is secure if
it satisfies the following definition of indistinguishability under chosen plaintext
attack. More technically, for any probabilistic polynomial time adversary A, the
following must hold. Choose a bit b ∈ {0, 1} and a key k ∈ {0, 1}� uniformly at
random, and let Ob(m) be an encryption oracle that on input a message m out-
puts E(k,m) if b = 1, or E(k, 0|m|) if b = 0, where 0|m| is a sequence of 0s of the
same length as m. The adversary A is given oracle access to Ob(·), and attempts
to guess the bit b. The encryption scheme is secure if Pr{AOb(·) = b} ≈ 1/2. For
notational convenience, the encryption E(k,m) of a message m under a key k is
often written as Ek(m). Public key encryption is defined similarly. All our results
hold for private and public key encryption algorithms, with hardly any difference
in the proofs. So, for simplicity, we will focus the presentation on private key
encryption, but we observe that adapting the results to public key encryption is
straightforward.

In some of our proofs, it is convenient to use a seemingly stronger (but
equivalent) security definition for encryption, where the adversary is given access
to several encryption oracles, each encrypting under an independently chosen
random key. More formally, the adversary A in the security definition is given
access to a (stateful) oracle Ob(i,m) that takes as input both a message m
and a key index i. The first time A makes a query with a certain index i, the
encryption oracle chooses a key ki ← {0, 1}� uniformly at random. The query
Ob(i,m) is answered using key ki as in the previous definition: if b = 1 then
Ob(i,m) = E(ki,m), while if b = 0 then Ob(i,m) = E(ki, 0|m|).

Computational evaluation. In order to map a cryptographic expression from Exp
to a probability distribution, we need to pick a length doubling pseudorandom
generator G, a (private key) encryption scheme E , a string representation γd for
every data block d ∈ Data, and a binary operation4 π used to encode pairs of
strings.
4 We do not assume any specific property about π, other than invertibility and effi-

ciency, i.e., π(w1, w2) should be computable in polynomial (typically linear) time,
and the substrings w1 and w2 can be uniquely recovered from π(w1, w2), also in
polynomial time. In particular, π(w1, w2) is not just the string concatenation oper-
ation w1; w2 (which is not invertible), and the strings π(w1, w2) and π(w2, w1) may
have different length. For example, π(w1, w2) could be the string concatenation of a
prefix-free encoding of w1, followed by w2.
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Since encryption schemes do not hide the length of the message being
encrypted, it is natural to require that all functions operating on messages are
length-regular, i.e., the length of their output depends only on the length of their
input. For example, G is length regular by definition, as it always maps strings
of length � to strings of length 2�. Throughout the paper we assume that all keys
have length � equal to the security parameter, and the functions d �→ γd, π and
E are length regular, i.e., |γd| is the same for all d ∈ Data, |π(x1, x2)| depends
only on |x1| and |x2|, and |E(k, x)| depends only on � and |x|.
Definition 1. A computational interpretation is a tuple (G, E , γ, π) consisting of
a length-doubling pseudorandom generator G, a length regular encryption scheme
E, and length regular functions γd and π(x1, x2). If G is a secure pseudorandom
generator, and E is a secure encryption scheme (satisfying indistinguishability
under chosen plaintext attacks, as defined in the previous paragraphs), then we
say that (G, E , γ, π) is a secure computational interpretation.

Computational interpretations are used to map symbolic expressions in Exp
to probability distributions in the obvious way. We first define the evaluation σ�e�
of an expression e ∈ Exp[Keys,Data] with respect to a fixed key assignment
σ : Keys → {0, 1}�. The value σ�e� is defined by induction on the structure of the
expression e by the rules σ�d� = γd, σ�k� = σ(k), σ�(e1, e2)� = π(σ�e1�, σ�e2�),
and σ�{|e|}k� = E(σ(k), σ�e�). All ciphertexts in a symbolic expressions are eval-
uated using fresh independent encryption randomness. The computational eval-
uation �e� of an expression e is defined as the probability distribution obtained
by first choosing a random key assignment σ (as explained below) and then
computing σ�e�. When Keys = G

∗(Rand) is a set of pseudorandom keys, σ
is selected by first choosing the values σ(r) ∈ {0, 1}� (for r ∈ Rand) indepen-
dently and uniformly at random, and then extending σ to pseudorandom keys
in G

+(Rand) using a length doubling pseudorandom generator G according to
the rule

G(σ(k)) = σ(G0(k));σ(G1(k)).

It is easy to see that any two expressions e, e′ ∈ Exp with the same shape
s = shape(e) = shape(e′) always map to strings of exactly the same length,
denoted |�s�| = |σ�e�| = |σ′�e′�|. The computational evaluation function σ�e� is
extended to patterns by defining σ�s� = 0|�s�| for all shapes s ∈ Shapes. Again,
we have |σ�e�| = |�shape(e)�| for all patterns e ∈ Pat, i.e., all patterns with the
same shape evaluate to strings of the same length.

Notice that each expression e defines a probability ensemble �e�, indexed
by the security parameter � defining the key length of G and E . Two symbolic
expressions (or patterns) e, e′ are computationally equivalent (with respect to
a given computational interpretation (G, E , γ, π)) if the corresponding probabil-
ity ensembles �e� and �e′� are computationally indistinguishable. An equivalence
relation R on symbolic expressions is computationally sound if for any two equiv-
alent expressions (e, e′) ∈ R and any secure computational interpretation, the
distributions �e� and �e′� are computationally indistinguishable. Conversely, we
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say that a relation R is complete if for any two unrelated expressions (e, e′) /∈ R,
there is a secure computational interpretation such that �e� and �e′� can be
efficiently distinguished.

3 Symbolic Model for Pseudorandom Keys

In this section we develop a symbolic framework for the treatment of pseudoran-
dom keys, and prove that it is computationally sound and complete. Specifically,
we give a symbolic criterion for a set of keys which is satisfied if and only if the
joint distribution associated to the set of keys is computationally indistinguish-
able from the uniform distribution. Before getting into the technical details we
provide some intuition.

Symbolic keys are usually regarded as bound names, up to renaming. In the
computational setting, this corresponds to the fact that changing the names of
the keys does not alter the probability distribution associated to them. When
pseudorandom keys are present, some care has to be exercised in defining an
appropriate notion of key renaming. For example, swapping r and G0(r) should
not be considered a valid key renaming because the probability distributions
associated to (r,G0(r)) and (G0(r), r) can be easily distinguished.5 A conserva-
tive approach would require a key renaming μ to act simply as a permutation over
the set of atomic keys Rand. However, this is overly restrictive. For example,
renaming (G0(r),G1(r)) to (r0, r1) should be allowed because (G0(r),G1(r)) rep-
resents a pseudorandom string, which is computationally indistinguishable from
the truly random string given by (r0, r1). The goal of this section is to precisely
characterize which key renamings can be allowed, and which cannot, to preserve
computational indistinguishability.

The rest of the section is organized as follows. First, in Sect. 3.1, we intro-
duce a symbolic notion of independence for pseudorandom keys. Informally, two
(symbolic) keys are independent if neither of them can be derived from the
other through the application of the pseudorandom generator. We give a com-
putational justification for this notion by showing (see Theorem1) that the stan-
dard (joint) probability distribution associated to a sequence of symbolic keys
k1, . . . , kn ∈ Keys in the computational model is pseudorandom precisely when
the keys k1, . . . , kn are symbolically independent. Then, in Sect. 3.2, we use this
definition of symbolic independence to define a computationally sound notion
of key renaming. Intuitively, in order to be computationally sound and achieve
other desirable properties, key renamings should map independent sets to inde-
pendent sets. In Corollary 1 we prove that, under such restriction, applying a
renaming to cryptographic expressions yields computationally indistinguishable
distributions. This should be contrasted with the standard notion of key renam-
ing used in the absence of pseudorandom keys, where equivalent expressions
evaluate to identical probability distributions.

5 All that the distinguisher has to do, on input a pair of keys (σ0, σ1), is to compute
G0(σ1) and check if the result equals σ0.
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3.1 Independence

In this section we define a notion of independence for symbolic keys, and show
that it is closely related to the computational notion of pseudorandomness.

Definition 2. For any two keys k1, k2 ∈ Keys, we say that k1 yields k2 (written
k1 � k2) if k2 ∈ G

∗(k1), i.e., k2 can be obtained by repeated application of
G0 and G1 to k1. Two keys k1, k2 are independent (written k1 ⊥ k2) if neither
k1 � k2 nor k2 � k1. We say that the keys k1, . . . , kn are independent if ki ⊥ kj

for all i �= j.

Notice that any two keys satisfy Gw0(r0) � Gw1 if and only if r0 = r1 and
w0 � w1. As an example, they keys G0(r)⊥G01(r) are independent, but the
keys G0(r) � G10(r) are not. As usual, we write k1 ≺ k2 as an abbreviation for
(k1 � k2)∧ (k1 �= k2). Notice that (Keys,�) is a partial order, i.e., the relation
� is reflexive, antisymmetric and transitive. Pictorially a set of keys S ⊆ Keys
can be represented by the Hasse diagram6 of the induced partial order (S,�).
(See Fig. 1 for an example.) Notice that this diagram is always a forest, i.e., the
union of disjoint trees with roots roots(S) = S \G+(S). S is an independent set
if and only if S = roots(S), i.e., each tree in the forest associated to S consists
of a single node, namely its root.

r1

G10(r1) G1(r1)

G01(r1) G11(r1)

G0(r2)

G00(r2) G010(r2) G110(r2)

G01(r2)

Fig. 1. Hasse diagram associated to the set of keys S = {r1, G10(r1), G1(r1), G01(r1),
G11(r1), G0(r2), G00(r2), G010(r2), G110(r2), G01(r2)}. For any two keys, k1 � k2 if
there is a directed path from k1 to k2. The keys {G0(r2),G01(r2)} form an independent
set because neither G0(r2) � G01(r2), nor G01(r2) � G0(r2). The Hasse diagram of
S is a forest consisting of 3 trees with roots roots(S) = {r1,G0(r2),G01(r2)}.

We consider the question of determining, symbolically, when (the compu-
tational evaluation of) a sequence of pseudorandom keys k1, . . . , kn is pseudo-
random, i.e., it is computationally indistinguishable from n truly random inde-
pendently chosen keys. The following lemma shows that our symbolic notion
of independence corresponds exactly to the standard cryptographic notion of
computational pseudorandomness. We remark that the correspondence proved
in the lemma is exact, in the sense that the symbolic condition is both necessary
6 The Hasse diagram of a partial order relation � is the graph associated to the

transitive reduction of �, i.e., the smallest relation R such that � is the symmetric
transitive closure of R.
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and sufficient for symbolic equivalence. This should be contrasted with typical
computational soundness results [3], that only provide sufficient conditions for
computational equivalence, and require additional work/assumptions to estab-
lish the completeness of the symbolic criterion [14,31].

Theorem 1. Let k1, . . . , kn ∈ Keys = G
∗(Rand) be a sequence of symbolic

keys. Then, for any secure (length doubling) pseudorandom generator G, the
probability distributions �k1, . . . , kn� and �r1, . . . , rn� (where r1, . . . , rn ∈ Rand
are distinct atomic keys) are computationally indistinguishable if and only if the
keys k1, . . . , kn are (symbolically) independent, i.e., ki ⊥ kj for all i �= j.

Proof. We first prove the “only if” direction of the equivalence, i.e., indepen-
dence is a necessary condition for the indistinguishability of �r1, . . . , rn� and
�k1, . . . , kn�. Assume the keys in (k1, . . . , kn) are not independent, i.e., ki � kj

for some i �= j. By definition, kj = Gw(ki) for some w ∈ {0, 1}∗. This allows
to deterministically compute �kj� = Gw(�ki�) from �ki� using the pseudoran-
dom generator. The distinguisher between �r1, . . . , rn� and �k1, . . . , kn� works
in the obvious way: given a sample (σ1, . . . , σn), compute Gw(σi) and compare
the result to σj . If the sample comes from �k1, . . . , kn�, then the test is satis-
fied with probability 1. If the sample comes from �r1, . . . , rn�, then the test is
satisfied with exponentially small probability because σi = �ri� is chosen at ran-
dom independently from σj = �rj�. This concludes the proof for the “only if”
direction.

Let us now move to the “if” direction, i.e., prove that independence is a
sufficient condition for the indistinguishability of �r1, . . . , rn� and �k1, . . . , kn�.
Assume the keys in (k1, . . . , kn) are independent, and let m be the number of
applications of G0 and G1 required to obtain (k1, . . . , kn) from the basic keys in
Rand. We define m + 1 tuples Ki = (ki

1, . . . , k
i
n) of independent keys such that

– K0 = (k1, . . . , kn)
– Km = (r1, . . . , rn), and
– for all i, the distributions �Ki� and �Ki+1� are computationally indistinguish-

able.

It follows by transitivity that �K0� = �k1, . . . , kn� is computationally indistin-
guishable from �Km� = �r1, . . . , rn�. More precisely, any adversary that dis-
tinguishes �k1, . . . , kn� from �r1, . . . , rn� with advantage δ, can be efficiently
transformed into an adversary that breaks the pseudorandom generator G with
advantage at least δ/m. Each tuple Ki+1 is defined from the previous one Ki

as follows. If all the keys in Ki = {ki
1, . . . , k

i
n} are random (i.e., ki

j ∈ Rand for
all j = 1, . . . , n), then we are done and we can set Ki+1 = Ki. Otherwise, let
ki

j = Gw(r) ∈ Keys \Rand be a pseudorandom key in Ki, with r ∈ Rand and
w �= ε. Since the keys in Ki are independent, we have r /∈ Ki. Let r′, r′′ ∈ Rand
be two new fresh key symbols, and define Ki+1 = {ki+1

1 , . . . , ki+1
n } as follows:

ki+1
h =

⎧
⎨

⎩

Gs(r′) if ki
h = Gs(G0(r)) for some s ∈ {0, 1}∗

Gs(r′′) if ki
h = Gs(G1(r)) for some s ∈ {0, 1}∗

ki
h otherwise
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It remains to prove that any distinguisher D between �Ki� and �Ki+1� can be
used to break (with the same success probability) the pseudorandom generator
G. The distinguisher D′ for the pseudorandom generator G is given as input a
pair of strings (σ′, σ′′) chosen either uniformly (and independently) at random or
running the pseudorandom generator (σ′, σ′′) = G(σ) on a randomly chosen seed
σ. D′(σ′, σ′′) computes n strings (σ1, . . . , σn) by evaluating (ki+1

1 , ki+1
2 , . . . , ki+1

n )
according to an assignment that maps r′ to σ′, r′′ to σ′′, and all other base keys
r ∈ Rand to independent uniformly chosen values. The output of D′(σ′, σ′′)
is D(σ1, . . . , σn). Notice that if σ′ and σ′′ are chosen uniformly and indepen-
dently at random, then (σ1, . . . , σn) is distributed according to �Ki+1�, while if
(σ′, σ′′) = G(σ), then (σ1, . . . , σn) is distributed according to �Ki�. Therefore
the success probability of D′ in breaking G is exactly the same as the success
probability of D in distinguishing �Ki� from �Ki+1�. ��

3.2 Renaming Pseudorandom Keys

We will show that key renamings are compatible with computational indistin-
guishability as long as they preserve the action of the pseudorandom generator,
in the sense specified by the following definition.

Definition 3 (pseudo-renaming). For any set of keys S ⊆ Keys, a renaming
μ : S → Keys is compatible with the pseudorandom generator G if for all k1, k2 ∈
S and w ∈ {0, 1}∗,

k1 = Gw(k2) if and only if μ(k1) = Gw(μ(k2)).

For brevity, we refer to renamings satisfying this property as pseudo-renamings.

Notice that the above definition does not require the domain of μ to be the
set of all keys Keys, or even include all keys in Rand. So, for example, the
function mapping (G0(r0),G1(r0)) to (r0,G001(r1)) is a valid pseudo-renaming,
and it does not act as a permutation over Rand. The following lemmas show
that Definition 3 is closely related to the notion of symbolic independence.

Lemma 1. Let μ be a pseudo-renaming with domain S ⊆ Keys. Then μ is a
bijection from S to μ(S). Moreover, S is an independent set if and only if μ(S)
is an independent set.

Proof. Let μ : S → Keys be a pseudo-renaming. Then μ is necessarily injective,
because for all k1, k2 ∈ S such that μ(k1) = μ(k2), we have μ(k1) = μ(k2) =
Gε(μ(k2)). By definition of pseudo-renaming, this implies k1 = Gε(k2) = k2.
This proves that μ is a bijection from S to μ(S).

Now assume S is not an independent set, i.e., k1 = Gw(k2) for some k1, k2 ∈ S
and w �= ε. By definition of pseudo-renaming, we also have μ(k1) = Gw(μ(k2)).
So, μ(S) is not an independent set either. Similarly, if μ(S) is not an independent
set, then there exists keys μ(k1), μ(k2) ∈ μ(S) (with k1, k2 ∈ S) such that
μ(k1) = Gw(μ(k2)) for some w �= ε. Again, by definition of pseudo-renaming,
k1 = Gw(k2), and S is not an independent set. ��
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In fact, pseudo-renamings can be equivalently defined as the natural exten-
sion of bijections between two independent sets of keys.

Lemma 2. Any pseudo-renaming μ with domain S can be uniquely extended to
a pseudo-renaming μ̄ with domain G

∗(S). In particular, any pseudo-renaming
can be (uniquely) specified as the extension μ̄ of a bijection μ : A → B between
two independent sets A = roots(S) and B = μ(A).

Proof. Let μ : S → Keys be a pseudo-renaming. For any w ∈ {0, 1}∗ and k ∈
S, define μ̄(Gw(k)) = Gw(μ(k)). This definition is well given because μ is a
pseudo-renaming, and therefore for any two representations of the same key
Gw(k) = Gw′(k′) ∈ G

∗(S) with k, k′ ∈ S, we have Gw(μ(k)) = μ(Gw(k)) =
μ(Genw′(k′)) = Gw′(μ(k′)). Moreover, it is easy to check that μ̄ is a pseudo-
renaming, and any pseudo-renaming that extends μ must agree with μ̄. We now
show that pseudo-renamings can be uniquely specified as bijections between two
independent sets of keys. Specifically, for any pseudo-renaming μ with domain S,
consider the restriction μ0 of μ to A = roots(S). By Lemma 1, μ0 is a bijection
between independent sets A and B = μ0(A). Consider the extensions of μ and μ0

to G
∗(S) = G

∗(roots(S)) = G
∗(A). Since μ and μ0 agree on A = roots(S), both

μ̄ and μ̄0 are extensions of μ0. By uniqueness of this extension, we get μ̄0 = μ̄.
Restricting both functions to S, we get that the original pseudo-renaming μ can
be expressed as the restriction of μ̄0 to S. In other words, μ can be expressed
as the extension to S of a bijection μ0 between two independent sets of keys
A = roots(S) and B = μ(A). ��

We remark that a pseudo-renaming μ : S → Keys cannot, in general, be
extended to one over the set Keys = G

∗(Rand) of all keys. For example,
μ : G0(r0) �→ r1 is a valid pseudo-renaming, but it cannot be extended to include
r0 in its domain.

The next lemma gives one more useful property of pseudo-renamings: they
preserve the root keys.

Lemma 3. For any pseudo-renaming μ : A → Keys, we have μ(roots(A)) =
roots(μ(A)).

Proof. By Lemma 1, μ is injective. Therefore, μ(roots(A)) equals μ(A \
G

+(A)) = μ(A) \ μ(G+(A)). From the defining property of pseudo-renamings
we also easily get that μ(G+(A)) = G

+(μ(A)). Therefore, μ(roots(A)) =
μ(A) \ G

+(μ(A)) = roots(μ(A)). ��
Using Lemma 2, throughout the paper we specify pseudo-renamings as bijec-

tions between two independent sets of keys. Of course, in order to apply
μ : S → μ(S) to an expression e, the key set keys(e) must be contained in
G

∗(S). Whenever we apply a pseudo-renaming μ : S → Keys to an expres-
sion or pattern e, we implicitly assume that keys(e) ⊂ G

∗(S). (Typically,
S = roots(keys(e)), so that keys(e) ⊂ G

∗(roots(keys(e))) = G
∗(S) is always
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satisfied.) Formally, the result of applying a pseudo-renaming μ to an expression
or pattern e ∈ Pat(Keys,Data) is defined as

μ(d) = d μ({|e|}k) = {|μ(e)|}μ̄(k)

μ(k) = μ̄(k) μ(s) = s
μ(e1, e2) = (μ(e1), μ(e2))

for all d ∈ Data, k ∈ Keys, e, e1, e2 ∈ Pat(Keys,Data) and s ∈ Shapes. We
can now define an appropriate notion of symbolic equivalence up to renaming.

Definition 4. Two expressions or patterns e1, e2 ∈ Pat(Keys,Data) are
equivalent up to pseudo-renaming (written e1 ∼= e2), if there is a pseudo-
renaming μ such that μ̄(e1) = e2. Equivalently, by Lemma2, e1 ∼= e2 if there
is a bijection μ : roots(keys(e1)) → roots(keys(e2)) such that μ̄(e1) = e2.

It easily follows from the definitions and Theorem 1 that ∼= is an equiva-
lence relation, and expressions that are equivalent up to pseudo-renaming are
computationally equivalent.

Corollary 1. The equivalence relation ∼=) is computationally sound, i.e., for
any two patterns e1, e2 ∈ Pat(Keys,Data) such that e1 ∼= e2, the distributions
�e1� and �e2� are computationally indistinguishable.

Proof. Assume e1 ∼= e2, i.e., there exists a bijection μ : roots(keys(e1)) →
roots(keys(e2)) such that μ̄(e1) = e2. Let n be the size of A1 = roots(keys(e1))
and A2 = roots(keys(e2)) = μ(A1). We show that any distinguisher D between
�e1� and �e2� = �μ̄(e1)� can be efficiently transformed into a distinguisher A
between �A1� and �A2� with the same advantage as D. Since A1 and A2 are
independent sets of size n, by Theorem 1 the probability distributions �A1� and
�A2� are indistinguishable from �r1, . . . , rn�. So, �A1� and �A2� must be indis-
tinguishable from each other, and A’s advantage must be negligible. We now
show how to build A from D. The distinguisher A takes as input a sample σ
coming from either �A1� or �A2�. A evaluates e1 according to the key assignment
A1 �→ σ, and outputs D(σ�e1�). By construction, σ�e1� is distributed according
to �e1� when σ = �A1�, while it is distributed according to �e2� = �μ̄(e1)� when
σ = �A2� = �μ(A1)�. It follows that A has exactly the same advantage as D. ��

Based on the previous corollary, it is convenient to define a notion of “normal
pattern”, where the keys have been renamed in some standard way.

Definition 5. The normalization of e ∈ Pat is the pattern norm(e) = μ(e)
obtained by applying the pseudo-renaming μ(ki) = ri, where K = {k1, . . . , kn} =
roots(keys(e)) and r1, . . . , rn ∈ Rand.

It immediately follows from the definition that norm(e) ∼= e, and that any
two patterns e0, e1 are equivalent up to renaming (e0 ∼= e1) if and only if their
normalizations norm(e0) = norm(e1) are identical.
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4 Symbolic Semantics

Following [3,26], the symbolic semantics of an expression e ∈ Exp is defined
by specifying the set of keys S ⊆ keys(e) recoverable from e by an adversary,
and a corresponding pattern proj(e, S), which, informally, represents the adver-
sary’s view of e when given the ability to decrypt only under the keys in S.
Informally, proj(e, S) can be thought as the projection of e onto the subset of
expressions that use only keys in S for encryption. More specifically, proj(e, S)
is obtained from e by replacing all undecryptable subexpression {|e′|}k � e (where
k /∈ S) with a pattern {|shape(e′)|}k that reveals only the shape of the encrypted
message. The formal definition of proj is given in Fig. 2.

We remark that the definition of proj is identical to previous work [3,26],
as it treats pseudo-random keys Keys = G

∗(Rand) just as regular keys, disre-
garding their internal structure. (Relations between pseudorandom keys will be
taken into account when defining the set of keys S known to the adversary.) In
particular, as shown in [3,26], this function satisfies the following properties7

proj(e,Keys) = e (6)
proj(proj(e, S), T ) = proj(e, S ∩ T ). (7)

In order to define S, we need to specify the set of keys rec(e) ⊆ keys(e)
that an adversary may (potentially) extract from all the parts of an expression
(or pattern) e. In the standard setting, where keys are atomic symbols, and
encryption is the only cryptographic primitive, rec(e) can be simply defined
as the set of keys appearing in e as a message. This is because the partial
information about a key k revealed by a ciphertext {|m|}k is of no use to an
adversary, except possibly for telling when two ciphertexts are encrypted under
the same key. When dealing with expressions that make use of possibly related
pseudorandom keys and multiple cryptographic primitives, one needs to take
into account the possibility that an adversary may combine different pieces of
partial information about the keys in mounting an attack. To this end, we define
rec(e) to include all keys k such that either

1. e contains k as a message (directly revealing the value of k), or
2. e contains both a message encrypted under k (providing partial information

about k) and some other related key k′ (providing an additional piece of
information about k).

In other words, our definition postulates that the symbolic adversary can fully
recover a key k whenever it is given two distinct pieces of partial information
about it. In addition, rec(e) contains all other keys that can be derived using
the pseudorandom generator G.
7 Notice that by (7), the functions proj(·, S) and proj(·, T ) commute, i.e.,
proj(proj(e, S), T ) = proj(proj(e, T ), S) for any expression e. Indeed, for
example, if S = {k1}, T = {k2} and e = {|{|m|}k1

|}
k2

, then proj(e, {k1}) =

{|{|�|}|}
k2

, proj(e, {k2}) = {|{|�|}k1
|}
k2

, and proj(proj(e, {k1}), {k2}) =

proj(proj(e, {k2}), {k1}) = proj(e, ∅) = {|{|�|}|}
k2

.
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Definition 6. For any pattern e, let rec(e) = keys(e) ∩ G
∗(K) where

K = keys(e) ∩ (parts(e) ∪ G
−(keys(e)))

= pkeys(e) ∪ (keys(e) ∩ G
−(keys(e))).

The expression keys(e) ∩G
∗(K) simply extends the set of known keys K using

the pseudorandom generator. The interesting part of Definition 6 is the set K,
which captures the key recovery capabilities of the adversary: pkeys(e) are all
the keys that appear in e as a message, and keys(e)∩G

−(keys(e)) are the keys
for which the adversary can obtain some additional partial information.8 Our
definition may seem overly conservative, as it postulates, for example, that a
key k can be completely recovered simply given two ciphertexts {|�|}k and {|�|}k′

where k′ = G101(k) is derived form k using the (one-way) functions G0,G1. In
Sect. 5 we justify our definition by showing that there are encryption schemes
and pseudorandom generators for which this is indeed possible, and proving
a completeness theorem for the symbolic sematics associated to Definition 6.
Specifically, if our definition enables a symbolic attacker to distinguish between
two expressions e and e′, then there is also an efficient computational adversary
that distinguishes between the corresponding probability distributions for some
valid computational interpretation of the cryptographic primitives.

The functions proj and rec are used to associate to each expression e a
corresponding key recovery map Fe, which, on input a set of keys S, outputs the
set of keys Fe(S) potentially recoverable from e when using the keys in S for
decryption.

Fe : keys(e) → keys(e) where Fe(S) = rec(proj(e, S)). (8)

A symbolic adversary that intercepts the expression e, and whose initial knowl-
edge is the empty set of keys S0 = ∅, can obtain more and more keys S1 = Fe(S0),
S2 = Fe(S1),. . . , Si+1 = Fe(Si) = F

i+1
e (∅), and ultimately recover all the keys

in the set9

fix(Fe) =
⋃

n≥0

Sn =
⋃

n≥0

F
n
e (∅). (9)

In summary, the symbolic semantics of an expression e can be defined as follows.

Definition 7. The (least fixed point) symbolic semantics of a cryptographic
expression e is the pattern

pattern(e) = norm(proj(e,fix(Fe)))

where fix(Fe) =
⋃

n≥0 F
n
e (∅).

8 By symmetry, and the final application of G in the definition of rec, keys recoverable
from partial information of type keys(e)∩G

+(keys(e)) are also captured implicitly
by the this definition, simply by swapping the role of the two keys.

9 As we will see, the key recovery map Fe is monotone, i.e., if S ⊆ S′, then Fe(S) ⊆
Fe(S

′), for any two sets of keys S, S′. Therefore, Fe defines a monotonically increasing
sequence of known sets of keys S0 ⊂ S1 ⊂ S2 ⊂ . . . Sn = Sn+1 and the set of keys
recoverable by the adversary Sn = fix(Fe) is precisely the least fixed point of Fe, i.e.,
the smallest set S such that Fe(S) = S.
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Fig. 2. The pattern function proj : Pat[Keys,Data] × ℘(Keys) → Pat[Keys,Data]
where k ∈ Keys, d ∈ Data, and (e1, e2), {|e|}k ∈ Pat[Keys,Data]. Intuitively,
proj(e, S) is the observable pattern of e, when using the keys in S for decryption.

In the above definition, S = fix(Fe) is the set of all keys recoverable by an
adversary that intercepts e, proj(e, S) is (the symbolic representation of) what
part of e can be decrypted by the adversary, and the final application of norm
takes care of key renamings.

We conclude this section by observing that the function rec satisfies the
fundamental property

rec(proj(e, S)) ⊆ rec(e) (10)

which, informally, says that projecting an expression (or pattern) e does not
increase the amount of information recoverable from it. In fact, for any pat-
tern e, the set rec(e) depends only on the sets keys(e) and pkeys(e). More-
over, this dependence is monotone. Since we have keys(proj(e, S)) ⊆ keys(e)
and pkeys(proj(e, S)) ⊆ pkeys(e), by monotonicity we get rec(proj(e, S)) ⊆
rec(e).

As an application, [26, Theorem 1] shows that for any functions proj, rec
satisfying properties (6), (7) and (10), the function Fe(S) = rec(proj(e, S)) is
monotone, i.e., if S ⊆ T , then Fe(S) ⊆ Fe(T ).

5 Completeness

In this section we prove that the symbolic semantics defined in Sect. 4 is com-
plete, i.e., if two cryptographic expressions map to different symbolic patterns
(as specified in Definition 7), then the corresponding probability distributions
can be efficiently distinguished. More specifically, we show that for any two such
symbolic expressions e0, e1, there is a secure computational interpretation �·�
(satisfying the standard computational notions of security for pseudorandom
generators and encryption schemes) and an efficiently computable predicate D
such that Pr{D(�e0�)} ≈ 0 and Pr{D(�e1�)} ≈ 1.

The core of our completeness theorem is the following lemma, which shows
that computationally secure encryption schemes and pseudorandom generators
can leak enough partial information about their keys, so to make the keys com-
pletely recoverable whenever two keys satisfying a nontrivial relation are used to
encrypt. The key recovery algorithm A described in Lemma 4 provides a tight
computational justification for the symbolic key recovery function rec described
in Definition 6.
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Lemma 4. If pseudorandom generators and encryption schemes exist at all,
then there is a secure computational interpretation (G, E , γ, π) and a determinis-
tic polynomial time key recovery algorithm A such that the following holds. For
any (symbolic) keys k0, k1 ∈ Keys, messages m0,m1, and binary string w �= ε,

– if k1 = Gw(k0), then A(Eσ(k0)(m0), Eσ(k1)(m1), w) = σ(k0) for any key assign-
ment σ; and

– if k1 �= Gw(k0), then A(Eσ(k0)(m0), Eσ(k1)(m1), w) = ⊥ outputs a special
symbol ⊥ denoting failure, except with negligible probability over the random
choice of the key assignment σ.

Proof. We show how to modify any (length doubling) pseudorandom genera-
tor G′ and encryption scheme E ′ to satisfy the properties in the lemma. Before
describing the actual construction, we provide some intuition. The idea is to use
an encryption scheme that splits the key k = (k[0]; k[1]), uses half of the key
(say, k[1]) and leaks the first half k[0] as part of the ciphertext. Notice that this
is already enough to tell if two ciphertexts are encrypted under the same key, as
exposed by patterns like ({|�|}k, {|�|}k′). But, still, this does not leak any infor-
mation about the messages, which are well protected by the undisclosed portion
of the keys. In order to prove the lemma, we need an appropriate pseudoran-
dom generator which, when combined with the encryption scheme, leads to a key
recovery attack. Similarly to the encryption scheme, the pseudorandom generator
uses only k[0] (which is expanded by a factor 4, to obtain a string twice as long as
the original k), and uses the result to “mask” the second part k[1]. Specifically,
each half of the output Gb(k) equals (G′

0b(k[0]),G′
1b(k[0]) ⊕ k[1]). Now, given an

encryption under k (which leaks k[0]), and a one-way function Gb(k) (for any bit
b) of the key, one can recover k[1] as follows: expand k[0] to (G′

0b(k[0]),G′
1b(k[0]))

and use the result to unmask Gb(k), to reveal (0, k[1]). The same argument is
easily adapted to work for any one-way function Gw(k) corresponding to an arbi-
trary sequence of applications w of the pseudorandom generator. The problem
with this intuitive construction is that it requires to see the full output of Gb(k).
If, instead, we are given only two ciphertexts (encrypted under k and Gb(k)) one
gets to learn only the first half Gb(k), which is not enough to recover k[1]. An
easy fix to this specific problem is to let Gb(k) to mask (k[1], k[1]) instead of
(0, k[1]). But this would not allow the attack to carry over to longer applications
Gw(k) of the pseudorandom generator. So, the actual construction required to
prove the lemma is a bit more complex, and splits the key into three parts.

The new E and G use keys that are three times as long as those of E ′ and G′.
Specifically, each new key σ(k) consists of three equal length blocks which we
denote as σ(k)[0], σ(k)[1] and σ(k)[2], where each block can be used as a seed
or encryption key for the original G′ and E ′. Alternatively, we may think of k as
consisting of three atomic symbolic keys k = (k[0], k[1], k[2]), each corresponding
to � bits of σ(k). For notational simplicity, in the rest of the proof, we fix a
random key assignment σ, and, with slight abuse of notation, we identify the
symbolic keys k[i] with the corresponding �-bit strings σ(k)[i]. So, for example,
we will write k and k[i] instead of σ(k) and σ(k)[i]. Whether each k[i] should be
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interpreted as a symbolic expression or as a bitstring will always be clear from
the context.

The new encryption scheme E(k,m) = k[0]; k[1]; E ′(k[2],m) simply leaks the
first two blocks of the key, and uses the third block to perform the actual encryp-
tion. It is easy to see that if E ′ is secure against chosen plaintext attacks, then
E ′ is also secure. Moreover, E can be made length regular simply by padding the
output of E ′ to its maximum length.

For the pseudo-random generator, assume without loss of generality that G′

is length doubling, mapping strings of length � to strings of length 2�. We need
to define a new G mapping strings of length 3� to strings of length 6�. On input
k = k[0]; k[1]; k[2], the new G stretches k[0] to a string of length 6� corresponding
to the symbolic expression

(G00(k[0]),G010(k[0]),G110(k[0]),G01(k[0]),G011(k[0]),G111(k[0])) (11)

and outputs the exclusive-or of this string with (0; k[2]; k[2]; 0; k[2]; k[2]). The
expression (11) is evaluated using G′. Since G′ is a secure length doubling pseu-
dorandom generator, and the keys in (11) are symbolically independent, by The-
orem 1 expression (11) is mapped to a pseudorandom string of length 6�. Finally,
since taking the exclusive-or with any fixed string (0; k[2]; k[2]; 0; k[2]; k[2]) maps
the uniform distribution to itself, the output of G is also computationally indis-
tinguishable from a uniformly random string of length 6�. This proves that G
is a secure length doubling pseudorandom generator as required. It will be con-
venient to refer to the first and second halves of this pseudorandom generator
G(k) = G0(k);G1(k). Using the definition of G, we see that for any bit b ∈ {0, 1},
the corresponding half of the output consists of the following three blocks:

Gb(k)[0] = �G0b(k[0])� (12)
Gb(k)[1] = �G01b(k[0])� ⊕ k[2] (13)
Gb(k)[2] = �G11b(k[0])� ⊕ k[2]. (14)

Next, we describe the key recovery algorithm A. This algorithm takes as input
two ciphertexts Ek0(m0), Ek1(m1) and a binary string w. The two ciphertexts
are only used for the purpose of recovering the partial information about the
keys k0[0], k0[1], k1[0], k1[1] leaked by E . So, we assume A is given k0[0], k0[1]
and k1[0], k1[1] to start with. Let w = wn . . . w1 be any bitstring of length n, and
define the sequence of keys ki = (ki[0], ki[1], ki[2]) by induction as

k0 = k0, ki+1 = Gwi+1(k
i)

for i = 0, . . . , n − 1. Notice that, if k0 and k1 are symbolically related by k1 =
Gw(k0), then the last key in this sequence equals kn = k1 as a string in {0, 1}3�.

Using (12), the first block of these keys can be expressed symbolically as

ki[0] = �Gui
(k0[0])� where ui = 0wi0wi−1 . . . 0w1.

So, Algorithm A(k0[0], k0[1], k1[0], k1[1], w) begins by computing the value of all
ki[0] = �Gui

(k0[0])� (for i = 0, . . . , n) starting from the input value k0[0] and
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applying the pseudorandom generator G′ as directed by ui. At this point, A may
compare kn[0] with its input k1[0], and expect these two values to be equal.
If the values differ, A immediately terminates with output ⊥. We will prove
later on that if k1 �= Gw(k0), then kn[0] �= k1[0] with high probability, and
A correctly outputs ⊥. But for now, let us assume that k1 = Gw(k0), so that
k1 = �Gw(k0)� = kn and the condition kn[0] = k1[0] is satisfied. In this case, A
needs to recover and output the key k0. Since algorithm A is already given k0[0]
and k0[1] as part of its input, all we need to do is to recover the last block k0[2]
of the key. To this end, A first uses (13) to compute kn−1[2] as

k1[1] ⊕ G0(G1(Gwn
(kn−1[0]))) = kn[1] ⊕ �G01wn

(kn−1[0])�
= kn[1] ⊕ (Gwn

(kn−1)[1] ⊕ kn−1[2])
= kn[1] ⊕ (kn[1] ⊕ kn−1[2]) = kn−1[2].

Similarly, starting from kn−1[2], A uses (14) to compute ki[2] for i = n − 2, n −
3, . . . , 0 as

ki+1[2] ⊕ G1(G1(Gwi+1(k
i[0]))) = ki+1[2] ⊕ �G11wi+1(k

i[0])�

= ki+1[2] ⊕ (Gwi+1(k
i)[2] ⊕ ki[2])

= ki+1[2] ⊕ (ki+1[2] ⊕ ki[2]) = ki[2].

At this point, A can output (k0[0], k0[1], k0[2]) = (k0[0], k0[1], k0[2]) = k2. This
completes the analysis for the case k1 = Gw(k0).

We need to show that if k1 �= Gw(k0), then the probability that kn[0] = k1[0]
is negligible, so that A correctly outputs ⊥. Since we are interested only in the
first blocks kn[0], k1[0] of the keys, we introduce some notation. For any bitstring
v = v1 . . . vm, let 0|v = 0v10v2 . . . 0vm be the result of shuffling v with a string of
zeros of equal length. If we express kn[0] = G0|w(k0[0]) in terms of k0[0], the goal
becomes to prove that G0|w(k0[0]) and k1[0] evaluate to different strings with
overwhelming probability. The proof proceeds by cases, depending on whether
k0 ⊥ k1, k0 ≺ k1, or k1 � k0, and makes use of the symbolic characterization of
computational independence from Sect. 3.

Case 1. If k0 ⊥ k1, then k0 = Gv0(r0) and k1 = Gv1(r1) for some r0, r1, v0, v1
such that either r0 �= r1, or v0, v1 are not one a suffix of the other. It follows
that k0[0] = G0|v0(r0) and k1[0] = G0|v1(r1) are also symbolically independent
because either r0 �= r1, or (0|v0), (0|v1) are not one a suffix of the other. In this
case, also kn[0] = G0|w(k0[0]) and k1[0] are symbolically independent. It fol-
lows, from Theorem 1, that the distribution �G0|w(k0[0]), k1[0]� is computation-
ally indistinguishable from the evaluation �r0, r1� of two independent uniformly
random keys. In particular, since r0 and r1 evaluate to the same bitstring with
exponentially small probability 2−�, the probability that kn[0] = G0|w(k0[0]) and
k1[0] evaluate to the same string is also negligible.

Case 2. If k1 ≺ k0, then k0 = Gv(k1) for some string v �= ε, and k0[0] =
G0|v(k1[0]). Then, the pair of keys (kn[0], k1[0]) where

kn[0] = G0|w(k0[0]) = G0|w(G0|v(k1[0])) = G0|wv(k1[0])
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is symbolically equivalent to (Gu(r), r) for some u = (0|wv) �= ε. So, by Theo-
rem 1, we can equivalently bound the probability δ (over the random choice of
σ) that �Gu(r)�σ evaluates to �r�σ. The trivial (identity) algorithm I(y) = y
inverts the function defined by Gu with probability at least δ. Since u �= ε, Gu

defines a one-way function, and δ must be negligible.

Case 3. Finally, if k0 � k1, then k1 = Gv(k0) for some string v �= w, and
k1[0] = G0|v(k0[0]). This time, we are given a pair of keys

(kn[0], k1[0]) = (G0|w(k0[0]),G0|v(k0[0]))

which are symbolically equivalent to (G0|w(r),G0|v(r)). As before, by Theorem 1,
it is enough to evaluate the probability δ that G0|w(r) and G0|v(r) evaluate to
the same bitstring. If v is a (strict) suffix of w or w is a (strict) suffix of v, then
δ must be negligible by the same argument used in Case 2. Finally, if v and
w are not one a suffix of the other, then G0|w(r) and G0|v(r) are symbolically
independent, and δ must be negligible by the same argument used in Case 1.

We have shown that in all three cases, the probability δ that Gun
(k0[0]) and

k1[0] evaluate to the same bitstring is negligible. So, the test performed by A
fails (expect with negligible probability) and A outputs ⊥ as required by the
lemma. ��

We use Lemma 4 to distinguish between expressions that have the same
shape. Expressions with different shapes can be distinguished more easily sim-
ply by looking at their bitsize. Recall that for any (length regular) instantiation
of the cryptographic primitives, the length of all strings in the computational
interpretation of a pattern �e� (denoted |�e�|) depends only on shape(e). In other
words, for any two patterns e0, e1, if shape(e0) = shape(e1), then |�e0�| = |�e1�|.
The next lemma provides a converse of this property, showing that whenever two
patterns have different shape, they may evaluate to strings of different length.
So, secure computational interpretations are not guaranteed to protect any piece
of partial information about the shape of symbolic expressions.

Lemma 5. If pseudorandom generators and encryption schemes exist at all,
then for any two expressions e0 and e1 with shape(e0) �= shape(e1), there exists
a secure computational interpretation (G, E , γ, π) such that |�e0�| �= |�e1�|.
Proof. We show how to modify any secure computational interpretation simply
by padding the output length, so that the lemma is satisfied. More specifically,
we provide a computational interpretation such that the length of �e0� is different
from the length of any expression with different shape. Let S = {shape(e) | e ∈
parts(e0)} be the set of all shapes of subexpressions of e0, and let n = |S| + 1.
Associate to each shape s ∈ S a unique number ϕ(s) ∈ {1, . . . , n − 1}, and
define ϕ(s) = 0 for all shapes s /∈ S. Data blocks and keys are padded to
bit-strings of length congruent to ϕ(�) and ϕ(◦) modulo n, respectively. The
encryption function first applies an arbitrary encryption scheme, and then pads
the ciphertext E(m) so that its length modulo n equals ϕ({|s|}), for some shape
s such that |m| = ϕ(s). The pairing function π is defined similarly: if the two
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strings being combined in a pair have length |m0| = ϕ(s0) (mod n) and |m1| =
ϕ(s1) (mod n), then the string encoding the pair (m0,m1) is padded so that
its length equals ϕ(s0, s1) modulo n. It is easy to check that all patterns e are
evaluated to strings of length |�e�| = ϕ(shape(e)) (mod n). Since shape(e0) ∈ S
and shape(e1) /∈ S, we get |�e0�| �= 0 (mod n) and |�e1�| = 0 (mod n). In
particular, |�e0�| �= |�e1�|. ��

We are now ready to prove our completeness theorem, and establish the
optimality of our symbolic semantics.

Theorem 2. For any two expressions e0 and e1, if pattern(e0) �= pattern(e1),
then there exists a secure computational interpretation (G, E , γ, π) and a polyno-
mial time computable predicate D such that Pr{D(�e0�)} ≈ 0 and Pr{D(�e1�)} ≈
1, i.e., the distributions �e0� and �e1� can be distinguished with negligible proba-
bility of error.

Proof. We consider two cases, depending on the shapes of the expressions. If
shape(e0) �= shape(e1), then let �·� be the computational interpretation defined
in Lemma 5. Given a sample α from one of the two distributions, the distinguisher
D simply checks if |α| = |�shape(e1)�|. If they are equal, it accepts. Otherwise
it rejects. It immediately follows from Lemma 5 that this distinguisher is always
correct, accepting all samples α from �e1�, and rejecting all samples α from �e0�.

The more interesting case is when shape(e0) = shape(e1). This time the
difference between the two expressions is not in their shape, but in the value
of the keys and data. This time we use the computational interpretation �·�
defined in Lemma 4, and show how to distinguish between samples from �e0�
and samples from �e1�, provided pattern(e0) �= pattern(e1).

Let Si
b = F

i
eb

(∅) be the sequence of sets of keys defined by eb. We know
that ∅ = S0

b ⊆ S1
b ⊆ S2

b ⊆ · · · ⊆ Sn
b = fix(Feb

) for some integer n. Let
ei
b = Pat(eb, S

i
b) be the sequence of patterns defined by the sets Si

b. Since
pattern(e0) �= pattern(e1), we have en

0 �∼= en
1 . Let i the smallest index such

that ei
0 �∼= ei

1. We will give a procedure that iteratively recovers all the keys in
the sets S0

b , S1
b , . . . , Si−1

b , and then distinguishes between samples coming from
the two distributions associated to e0 and e1.

The simplest case is when i = 0, i.e., e00 �∼= e01. In this case S0
0 = ∅ = S0

1 ,
and we do not need to recover any keys. Since e0 and e1 have the same shape,
D can unambiguously parse α as a concatenation of data blocks d, keys k and
ciphertexts of type {|s|}k, without knowing if α comes from �e0� or �e1�. If the
two patterns e00, e

0
1 differ in one of the data blocks, then D can immediately tell

if α comes from e00 or e01 by looking at the value of that piece of data. So, assume
all data blocks are identical, and e00 and e01 differ only in the values of the keys.
Consider the set P of all key positions in e00 (or, equivalently, in e01), and for
every position p ∈ P , let kp

b be the key in e0b at position p. (Positions include
both plain keys kp

b and ciphertexts {|sp|}ke
b
.) For any two positions p, p′, define

the relation rb(p, p′) between the keys kp
b and kp′

b to be
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rb(p, p′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+w if kp′
b = Gw(kp

b ) for some w ∈ {0, 1}+
−w if kp

b = Gw(kp′
b ) for some w ∈ {0, 1}+

0 if kp
b = kp′

b

⊥ otherwise.

Notice that if r0(p, p′) = r1(p, p′) for all positions p, p′ ∈ P , then the map
μ(kp

0) = kp
1 is a valid pseudo-renaming. Since μ(e00) = e01, this would show

that e00
∼= e01, a contradiction. So, there must be two positions p, p′ such that

r0(p, p′) �= r1(p, p′), i.e., the keys at positions p and p′ in the two expressions e00
and e01 satisfy different relations. At this point we distinguish two cases:

– If two keys are identical (rb(p, p′) = 0) and the other two keys are unrelated
(r1−b(p, p′) = ⊥), then we can determine the value of b simply by checking
if the corresponding keys recovered from the sample α are identical or not.
Notice that even if the subexpression at position p (or p′) is a ciphertext, the
encryption scheme defined in Lemma 4 still allows to recover the first 2� bits
of the keys, and this is enough to tell if two keys are identical or independent
with overwhelming probability.

– Otherwise, it must be the case that one of the two relations is rb(p, p′) = ±w
for some string w. By possibly swapping p and p′, and e0 and e1, we
may assume that r0(p, p′) = +w while r1(p, p′) �= +w. In other words,
kp′
0 = Gw(kp

0), while kp′
1 �= Gw(kp

0). We may also assume that the subex-
pressions at position p and p′ are ciphertexts. (If the subexpression at one
of these positions is a key, we can simply use it to encrypt a fixed message
m, and obtain a corresponding ciphertext.) Let α0, α

′
0 be the ciphertexts

extracted from α corresponding to positions p and p′. We invoke the algo-
rithm A(α0, α

′
0, w) from Lemma 4 and check if it outputs a key or the special

failure symbol ⊥. The distinguisher accepts if and only if A(α0, α
′
0, w) = ⊥.

By Lemma 4, if α was sampled from �e0�, then A(α0, α
′
0, w) will recover the

corresponding key with probability 1, and D rejects the sample α. On the
other hand, if α was sampled from �e1�, then A(α0, α

′
0, w) = ⊥ with over-

whelming probability, and D accepts the sample α.

This completes the description of the decision procedure D when i = 0. When
i > 1, we first use Lemma 4 to recover the keys in S1

b . Then we use these keys
to decrypt the corresponding subexpressions in α, and use Lemma 4 again to
recover all the keys in S2

b . We proceed in a similar fashion all the way up to
Si−1

b . Notice that since all the corresponding patterns ej
0

∼= ej
1 (for j ≤ i) are

equivalent up to renaming, all the keys at similar positions p, p′ satisfy the same
relations r0(p, p′) = r1(p, p′), and we can apply Lemma 4 identically, whether
the sample α comes from �e0� or �e1�. This allows to recover the keys in Si

b, at
which point we can parse (and decrypt) α to recover all the data blocks, keys
and ciphertexts appearing in ei

b. Finally, using the fact that ei
0 �∼= ei

1, we proceed
as in the case i = 0 to determine the value of b. ��
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6 Computational Soundness

Computational soundness results for symbolic cryptography usually forbid
encryption cycles, e.g., collections of ciphertexts where ki is encrypted under
ki+1 for i = 1, . . . , n − 1, and kn is encrypted under k1. Here we follow an alter-
native approach, put forward in [26], which defines the adversarial knowledge
as the greatest fixed point of Fe, i.e., the largest set S such that Fe(S) = S.
Interestingly, [26] shows that under this “co-inductive” definition of the set of
known keys, soundness can be proved in the presence of encryption cycles, offer-
ing a tight connection between symbolic and computational semantics. At the
same time, [26, Theorem 2] also shows that if e has no encryption cycles, then
Fe has a unique fixed point, and therefore fix(Fe) = FIX(Fe). So, computational
soundness under the standard “least fixed point” semantics for acyclic expres-
sions follows as a corollary. We remark that Fe may have a unique fixed point
even if e contains encryption cycles. So, based on [26, Theorem 2], we generalize
the definition of acyclic expressions to include all expressions e such that Fe has
a unique fixed point fix(Fe) = FIXe(Fe).

In this section we extend the results of [26] to expressions with pseudorandom
keys. But, before doing that, we explain the intuition behind the co-inductive
(greatest fixed point) semantics. Informally, using the greatest fixed point cor-
responds to working by induction on the set of keys that are hidden from the
adversary, starting from the empty set (i.e., assuming that no key is hidden a-
priori), and showing that more and more keys are provably secure. Formulating
this process in terms of the complementary set of potentially known keys, one
starts from the set of all keys K = keys(e), and repeatedly applies Fe to it. By
monotonicity of Fe the result is a sequence of smaller and smaller sets

K ⊃ Fe(K) ⊃ F
2
e(K) ⊃ F

3
e(K) ⊃ · · ·

of potentially known keys, which converges to the greatest fixed point

FIX(Fe) =
⋂

n

F
n
e (keys(e)).

We emphasize FIX(Fe) should be interpreted as the set of keys that are only
potentially recoverable by an adversary. Depending on the details of the encryp-
tion scheme (e.g., if it provides some form of key dependent message security),
an adversary may or may not be able to recover all the keys in FIX(Fe). On the
other hand, all keys in the complementary set Keys(e) \ FIX(Fe) are provably
secret, for any encryption scheme providing the minimal security level of indis-
tinguishability under chosen message attack. Using the greatest fixed point, one
can define an alternative symbolic semantics for cryptographic expressions,

PATTERN(e) = norm(proj(e,FIX(Fe))). (15)

In general, fix(Fe) can be a strict subset of FIX(Fe), so (15) may be different from
the patterns defined in Sect. 4. However, if e is acyclic, then FIX(Fe) = fixe(Fe),
and therefore PATTERN(e) = pattern(e).
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Theorem 3. For any secure computational interpretation (G, E , γ, π) and any
expression e, the distributions �e� and �PATTERN(e)� are computationally indis-
tinguishable. In particular, if PATTERN(e0) = PATTERN(e1), then �e0� ≈ �e1�, i.e.,
the equivalence relation induced by PATTERN is computationally sound.

Corollary 2. If e0, e1 are acyclic expressions, and pattern(e0) = pattern(e1),
then �e0� and �e1� are computationally indistinguishable.

The proof of the soundness theorem is pretty standard, and similar to pre-
vious work, and can be found in the full version of the paper [27].

7 Conclusion

We presented a generalization of the computational soundness result of Abadi
and Rogaway [3] (or, more precisely, its co-inductive variant put forward in [26])
to expressions that mix encryption with a pseudo-random generator. Differently
from previous work in the area of multicast key distribution protocols [28–30],
we considered unrestricted use of both cryptographic primitives, which raises
new issues related partial information leakage that had so far been dealt with
using ad-hoc methods. We showed that partial information can be adequately
taken into account in a simple symbolic adversarial model where the attacker
can fully recover a key from any two pieces of partial information. While, at
first, this attack model may seem unrealistically strong, we proved, as our main
result, a completeness theorem showing that the model is essentially optimal.

A slight extension of our results (to include the random permutation of
ciphertexts) has recently been used in [24], which provides a computationally
sound symbolic analysis of Yao’s garbled circuit construction for secure two
party computation. The work of [24] illustrates the usefulness of the methods
developed in this paper to the analysis of moderately complex protocols, and
also provides an implementation showing that our symbolic semantics can be
evaluated extremely fast even on fairly large expressions, e.g., those describing
garbled circuits with thousands of gates. Our results can be usefully generalized
even further, to include richer collections of cryptographic primitives, e.g., dif-
ferent types of (private and public key) encryption, secret sharing schemes (as
used in [4]), and more. Extensions to settings involving active attacks are also
possible [19,32], but probably more challenging.

Acknowledgments. The author thanks the anonymous Eurocrypt 2019 referees for
their useful comments.
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Abstract. The notion of covert security for secure two-party com-
putation serves as a compromise between the traditional semi-honest
and malicious security definitions. Roughly, covert security ensures that
cheating behavior is detected by the honest party with reasonable prob-
ability (say, 1/2). It provides more realistic guarantees than semi-honest
security with significantly less overhead than is required by malicious
security.

The rationale for covert security is that it dissuades cheating by parties
that care about their reputation and do not want to risk being caught.
But a much stronger disincentive is obtained if the honest party can
generate a publicly verifiable certificate when cheating is detected. While
the corresponding notion of publicly verifiable covert (PVC) security has
been explored, existing PVC protocols are complex and less efficient than
the best covert protocols, and have impractically large certificates.

We propose a novel PVC protocol that significantly improves on prior
work. Our protocol uses only “off-the-shelf” primitives (in particular,
it avoids signed oblivious transfer) and, for deterrence factor 1/2, has
only 20–40% overhead compared to state-of-the-art semi-honest proto-
cols. Our protocol also has, for the first time, constant-size certificates
of cheating (e.g., 354 bytes long at the 128-bit security level).

As our protocol offers strong security guarantees with low overhead,
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we suggest that it is the best choice for many practical applications of
secure two-party computation.

1 Introduction

Secure two-party computation allows two mutually distrusting parties PA and
PB to evaluate a function of their inputs without requiring either party to reveal
their input to the other. Traditionally, two security notions have been consid-
ered [7]. Protocols with semi-honest security can be quite efficient, but only
protect against passive attackers who do not deviate from the prescribed pro-
tocol. Malicious security, in contrast, categorically prevents an attacker from
gaining any advantage by deviating from the protocol; unfortunately, despite
many advances over the past few years, protocols achieving malicious security
are still noticeably less efficient than protocols with semi-honest security.

The notion of covert security [3] was proposed as a compromise between
semi-honest and malicious security. Roughly, covert security ensures that while
a cheating attacker may be successful with some small probability, the attempted
cheating will fail and be detected by the other party with the remaining proba-
bility. The rationale for covert security is that it dissuades cheating by parties
that care about their reputation and do not want to risk being caught. Covert
security thus provides stronger guarantees than semi-honest security; it can also
be achieved with better efficiency than malicious security [3,6,9,17].

Nevertheless, the guarantee of covert security is not fully satisfactory. Covert
security only ensures that when cheating is unsuccessful, the honest party detects
the fact that cheating took place—but it provides no mechanism for the honest
party to prove this fact to anyone else (e.g., a judge or the public) and, indeed,
existing covert protocols do not provide any such mechanism. Thus, a cheating
attacker only risks harming its reputation with one other party; even if the honest
party publicly announces that it caught the other party cheating, the cheating
party can simply counter that it is being falsely accused.

Motivated by this limitation of covert security, Asharov and Orlandi [2] pro-
posed the stronger notion of publicly verifiable covert (PVC) security. As in the
covert model, any attempted cheating is detected with some probability; now,
however, when cheating is detected the honest party can generate a publicly ver-
ifiable certificate of that fact. This small change would have a significant impact
in practice, as a cheating attacker now risks having its reputation publicly and
permanently damaged if it is caught. Alternatively (or additionally), the cheat-
ing party can be brought to court and fined for its misbehavior; the parties may
even sign a contract in advance that describes the penalties to be paid if either
party is caught. Going further, the parties could execute a “smart contract” in
advance of the protocol execution that would automatically pay out if a valid
certificate of cheating is posted on a blockchain. All these consequences are infea-
sible in the original covert model and, overall, the PVC model seems to come
closer to the original goal of covert security.
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Asharov and Orlandi [2] mainly focus on feasibility; although their protocol is
implementable, it is not competitive with state-of-the-art semi-honest protocols
since, in particular, it requires a stronger variant of oblivious transfer (OT) called
signed OT and thus is not directly compatible with OT extension. Subsequent
work by Kolesnikov and Malozemoff [13] shows various efficiency improvements
to the Asharov-Orlandi protocol, with the primary gain resulting from a new,
dedicated protocol for signed-OT extension. (Importantly, signed-OT extension
does not follow generically from standard OT extension, and so cannot take
advantage of the most-efficient recent constructions of the latter.)

Unfortunately, existing PVC protocols [2,13] seem not to have attracted
much attention; for example, to the best of our knowledge, they have never
been implemented. We suggest this is due to a number of considerations:

– High overhead. State-of-the-art PVC protocols still incur a significant over-
head compared to known semi-honest protocols, and even existing covert pro-
tocols. (See Sect. 6.)

– Large certificates. Existing PVC protocols have certificates of size at least
κ · |C| bits, where κ is the (computational) security parameter and |C| is the
circuit size.1 Certificates this large are prohibitively expensive to propagate
and are incompatible with some of the applications mentioned above (e.g.,
posting a certificate on a blockchain).

– Complexity. Existing PVC protocols rely on signed OT, a non-standard
primitive that is less efficient than standard OT, is not available in existing
secure-computation libraries, and is somewhat complicated to realize (espe-
cially for signed-OT extension).

1.1 Our Contributions

In this work we put forward a new PVC protocol in the random oracle model
that addresses the issues mentioned above. Specifically:

– Low overhead. We improve on the efficiency of prior work by roughly a
factor of 3× for deterrence factor 1/2, and even more for larger deterrence.
(An exact comparison depends on a number of factors; we refer to Sect. 6 for
a detailed discussion.) Strikingly, our PVC protocol (with deterrence factor
1/2) incurs only 20–40% overhead compared to state-of-the-art semi-honest
protocols based on garbled circuits.

– Small certificates. We achieve, for the first time, constant-size certificates
(i.e., independent of the circuit size or the lengths of the parties’ inputs).
Concretely, our certificates are small: at the 128-bit security level, they are
only 354 bytes long.

– Simplicity. Our protocol avoids entirely the need for signed OT, and relies
only on standard building blocks such as (standard) OT and circuit garbling.

1 We observe that the certificate size in [13] can be improved to O(κ · n) bits (where
n is the parties’ input lengths) by carefully applying ideas from the literature. In
many cases, this is still unacceptably large.
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We also dispense with the XOR-tree technique for preventing selective-failure
attacks; this allows us to avoid increasing the number of effective OT inputs.
This reduction in complexity allowed us to produce a simple and efficient
(and, to our knowledge, the first) implementation of a PVC protocol.

Overview of the paper. In Sect. 2 we provide an overview of prior PVC pro-
tocols and explain the intuition behind the construction of our protocol. After
some background in Sect. 3, we present the description of our protocol in Sect. 4
and prove security in Sect. 5. Section 6 gives an experimental evaluation of our
protocol and a comparison to prior work.

2 Technical Overview

We begin by providing an overview of the approach taken in prior work designing
PVC protocols. Then we discuss the intuition behind our improved protocol.

2.1 Overview of Prior Work

At a high level, both previous works constructing PVC protocols [2,13] rely
on the standard cut-and-choose paradigm [18] using a small number of garbled
circuits, with some additional complications to achieve public verifiability. Both
works rely crucially on a primitive called signed OT ; this is a functionality similar
to OT but where the receiver additionally learns the sender’s signatures on all
the values it obtains. Roughly, prior protocols proceed as follows:

1. Let λ be a parameter that determines the deterrence factor (i.e., the prob-
ability of detecting misbehavior). PA picks random seeds {seedj}λ

j=1 and PB

chooses a random index ĵ ∈ {1, . . . , λ} that will serve as the “evaluation
index” while the j �= ĵ will be “check indices.” The parties run signed OT
using these inputs, which allows PB to learn {seedj}j �=ĵ along with signatures
of PA on all those values.

2. PA generates λ garbled circuits, and then sends signed commitments to those
garbled circuits (along with the input-wire labels corresponding to PA’s input
wires). Importantly, seedj is used to derive the (pseudo)randomness for the
jth garbling as well as the jth commitment.
The parties also use signed OT so that PB can obtain the input-wire labels
for its inputs across all the circuits.

3. For all j �= ĵ, party PB checks that the commitment to the jth garbled circuit
is computed correctly based on seedj and that the input-wire labels it received
are correct; if this is not the case, then PB can generate a certificate of cheating
that consists of the inconsistent values plus their signatures.

4. Assuming no cheating was detected, PB reveals ĵ to PA, who then sends the
ĵth garbled circuit and the input-wire labels corresponding to its own inputs
for that circuit. PB can then evaluate the garbled circuit as usual.
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Informally, we refer to the jth garbled circuit and commitment as the jth instance
of the protocol. If PA cheats in the jth instance of the protocol, then it is caught
with probability at least 1 − 1

λ (i.e., if j is a check index). Moreover, if PA is
caught, then PB has a signed seed (which defines what PA was supposed to do in
the jth instance) and also a signed commitment to an incorrect garbled circuit or
incorrect input-wire labels. These values allow PB to generate a publicly verifiable
certificate that PA cheated.

As described, the protocol still allows PA to carry out a selective-failure
attack when transferring garbled labels for PB’s input wires. Specifically, it may
happen that a malicious PA corrupts a single input-wire label (used as input to
the OT protocol) for the ĵth garbled circuit—say, the label corresponding to a
‘1’ input on some wire. If PB aborts, then PA learns that PB’s input on that wire
was equal to 1. Such selective-failure attacks can be prevented using the XOR-
tree approach [18].2 This approach introduces significant overhead because it
increases the number of effective inputs, which in turn requires additional signed
OTs. The analysis in prior work [2,3,13] shows that to achieve deterrence factor
(i.e., probability of being caught cheating) 1/2, a replication factor of λ = 3 with
ν = 3 is needed. More generally, the deterrence factor as a function of λ and the
XOR-tree expansion factor ν is (1 − 1

λ ) · (1 − 2−ν+1).

Practical performance. Several aspects of the above protocol are relatively
inefficient. First, the dependence of the deterrence factor on the replication fac-
tor λ is not optimal due to the XOR tree, e.g., to achieve deterrence factor 1/2
at least λ = 3 garbled circuits are needed (unless ν is impractically large); the
issue becomes even more significant when a larger deterrence factor is desired.
In addition, the XOR-tree approach used in prior work increases the effective
input length by at least a factor of 3, which necessitates 3× more signed OTs;
recall these are relatively expensive since signed-OT extension is. Finally, prior
protocols have large certificates. This seems inherent in the more efficient pro-
tocol of [13] due to the way they do signed-OT extension. (Avoiding signed-OT
extension would result in a much less efficient protocol overall.)

2.2 Our Solution

The reliance of prior protocols on signed OT and their approach to preventing
selective-failure attacks affect both their efficiency as well as the size of their
certificates. We address both these issues in the protocol we design.

As in prior work, we use the cut-and-choose approach and have PB evaluate
one garbled circuit while checking the rest, and we realize this by having PA

choose seeds for each of λ executions and then allowing PB to obliviously learn
all-but-one of those seeds. One key difference in our protocol is that we utilize the
seeds chosen by PA not only to “derandomize” the garbled-circuit generation and
commitments, but also to derandomize the entire remainder of PA’s execution,

2 For reasonable values of the parameters, the XOR-tree approach will be more efficient
than a coding-theoretic approach [18].
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and in particular its execution of the OT protocol used to transfer PB’s input-
wire labels to PB. This means that after PB obliviously learns all-but-one of the
seeds of PA, the rest of PA’s execution is entirely deterministic; thus, PB can verify
correct execution of PA during the entire rest of the protocol for all-but-one of
the seeds. Not only does this eliminate the need for signed OT for the input-wire
labels, but it also defends against the selective-failure attack described earlier
without the need to increase the effective input length at all.

As described, the above allows PB to detect cheating by PA but does not
yet achieve public verifiability. For this, we additionally require PA to sign its
protocol messages; if PA cheats, PB can generate a certificate of cheating from
the seed and the corresponding signed inconsistent transcript.

Thus far we have focused on the case where PA is malicious. We must also
consider the case of a malicious PB attempting to frame an honest PA. We
address this by also having PB commit in advance to its randomness3 for each
of the λ protocol instances. The resulting commitments will be included in PA’s
signature, and will ensure that a certificate will be rejected if it corresponds to
an instance in which PB deviated from the protocol.

Having PB commit to its randomness also allows us to avoid the need for
signed OT in the first step, when PB learns all-but-one of PA’s seeds. This is
because those seeds can be reconstructed from PB’s view of the protocol, i.e.,
from the transcript of the (standard) OT protocol used to transfer those seeds
plus PB’s randomness. Having PA sign the transcripts of those OT executions
serves as publicly verifiable evidence of the seeds used by PA.

We refer to Sect. 4 for further intuition behind our protocol, as well as its
formal specification.

3 Covert Security with Public Verifiability

Before defining the notion of PVC security, we review the (plain) covert model [3]
it extends. We focus on the strongest formulation of covert security, namely the
strong explicit cheat formulation. This notion is formalized via an ideal function-
ality that explicitly allows an adversary to specify an attempt at cheating; in
that case, the ideal functionality allows the attacker to successfully cheat with
probability 1−ε, but the attacker is caught by the other party with probability ε;
see Fig. 1. (As in [2], we also allow an attacker to “blatantly cheat,” which guar-
antees that it will be caught.) For simplicity, we adapt the functionality such
that only PA has this option (since this is what is achieved by our protocol). For
conciseness, we refer to a protocol realizing this functionality (against malicious
adversaries) as having covert security with deterrence ε.

The PVC model extends the above to consider a setting wherein, before
execution of the protocol, PA has generated keys (pk, sk) for a digital-signature
scheme, with the public key pk known to PB. We do not require that (pk, sk) is
3 As an optimization, we have PB commit to seeds, just like PA, and then use those

seeds to generate the (pseudo)randomness to use in each instance. (This optimization
is critical for realizing constant-size certificates.).
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Fig. 1. Functionality F for covert security with deterrence ε for two-party computation
of a function f .

honestly generated, or that PA gives any proof of knowledge of the secret key
sk corresponding to the public key pk. In addition, the protocol is augmented
with two additional algorithms, Blame and Judge. The Blame algorithm is run
by PB when it outputs corrupted. This algorithm takes as input PB’s view of
the protocol execution thus far, and outputs a certificate cert which is then sent
to PA. The Judge algorithm takes as input PA’s public key pk, (a description of)
the circuit C being evaluated, and a certificate cert, and outputs 0 or 1.

A protocol Π along with algorithms Blame, Judge is said to be publicly veri-
fiable covert with deterrence ε for computing a circuit C if the following hold:

Covert security: The protocol Π has covert security with deterrence ε. (Since
the protocol includes the step of possibly sending cert to PA if PB outputs
corrupted, this ensures that cert itself does not violate privacy of PB.)

Public verifiability: If the honest PB outputs cert in an execution of the pro-
tocol, then we know Judge(pk, C, cert) = 1, except with negligible probability.

Defamation freeness: If PA is honest, then the probability that a malicious
PB generates a certificate cert for which Judge(pk, C, cert) = 1 is negligible.4

As in prior work on the PVC model, we assume the Judge algorithm learns
the circuit C through some “out-of-band” mechanism; in particular, we do not
include C as part of the certificate. In some applications (such as the smart-
contract example), it may indeed be the case that the party running the Judge
algorithm is aware of the circuit being computed in advance. When this is not the
case, a description of C must be included as part of the certificate. However, we
stress that the description of a circuit may be much shorter than the full circuit;
for example, specifying a circuit for computing the Hamming distance between
two 106-bit vectors requires only a few lines of high-level code in modern secure-
computation platforms even though the circuit itself may have millions of gates.

4 Note that defamation freeness implies that the protocol is also non-halting detection
accurate [3].
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Alternately, there may be a small set of commonly used “reference circuits” that
can be identified by ID number rather than by their complete wiring diagram.

4 Our PVC Protocol

4.1 Preliminaries

We let [n] = {1, . . . , n}. We use κ for the (computational) security parameter,
but for compactness in the protocol description we let κ be an implicit input to
our algorithms. For a boolean string y, we let y[i] denote the ith bit of y.

We let Com denote a commitment scheme. We assume for simplicity that it is
non-interactive, but this restriction can easily be removed. The decommitment
decom is simply the random coins used during commitment. H is a hash function
with 2κ-bit output length.

We say a party “uses randomness derived from seed” to mean that the party
uses a pseudorandom function (with seed as the key) in CTR mode to obtain
sufficiently many pseudorandom values that it then uses as its random coins. If
m1,m2, . . . is a transcript of an execution of a two-party protocol (where the
parties alternate sending the messages), the transcript hash of the execution is
defined to be H = (H(m1),H(m2), . . .).

We let ΠOT be an OT protocol realizing a parallel version of the OT func-
tionality, as in Fig. 2.

Fig. 2. Functionality FOT for parallel oblivious transfer.

Garbling. Our protocol relies on a (circuit) garbling scheme. For our purposes, a
garbling scheme is defined by algorithms (Gb,Eval) having the following syntax:

– Gb takes as input the security parameter 1κ and a circuit C with n = n1 +n2

input wires and n3 output wires. It outputs input-wire labels {Xi,0,Xi,1}n
i=1,

a garbled circuit GC, and output-wire labels {Zi,0, Zi,1}n3
i=1.

– Eval is a deterministic algorithm that takes as input a set of input-wire labels
{Xi}n

i=1 and a garbled circuit GC. It outputs a set of output-wire labels
{Zi}n3

i=1.
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Correctness is defined as follows: For any circuit C as above and any input
w ∈ {0, 1}n, consider the experiment in which we first run ({Xi,0,Xi,1}n

i=1,GC,
{Zi,0, Zi,1}n3

i=1) ← Gb(1κ, C) followed by {Zi} := Eval({Xi,w[i]},GC). Then,
except with negligible probability, it holds that Zi = Zi,y[i] and Zi �= Zi,1−y[i]

for all i, where y = C(w).
A garbling scheme can be used by (honest) parties PA and PB to compute C

in the following way: first, PA computes ({Xi,0,Xi,1}n
i=1,GC, {Zi,0, Zi,1}n3

i=1) ←
Gb(1κ, C) and sends GC, {Zi,0, Zi,1}n3

i=1 to PB. Next, PB learns the input-wire
labels {Xi,w[i]} corresponding to some input w. (In a secure-computation proto-
col, PA would send PB the input-wire labels corresponding to its own portion of
the input, while the parties would use OT to enable PB to learn the input-
wire labels corresponding to PB’s portion of the input.) Then PB computes
{Zi} := Eval({Xi,w[i]},GC). Finally, PB sets y[i], for all i, to be the (unique)
bit for which Zi = Zi,y[i]; the output is y.

We assume the garbling scheme satisfies the standard security definition [10,
15]. That is, we assume there is a simulator SGb such that for all C, w, the
distribution

{
SGb(1κ, C, C(w))

}
is computationally indistinguishable from

{
({Xi,0, Xi,1}n

i=1,GC, {Zi,0, Zi,1}n3
i=1) ← Gb(1κ, C) : ({Xi,w[i]},GC, {Zi,0, Zi,1}n3

i=1)
}

.

As this is the “minimal” security notion for garbling, it is satisfied by garbling
schemes including all state-of-the-art optimizations [4,14,20].

4.2 Our Scheme

We give a high-level description of our protocol below; a formal definition of the
protocol is provided in Fig. 3. The Blame algorithm is included as part of the
protocol description (cf. Step 6) for simplicity. The Judge algorithm is specified
in Fig. 5.

We use a signature scheme (Gen,Sign,Vrfy). Before executing the protocol,
PA runs Gen to obtain public key pk and private key sk; we assume that PB

knows pk before running the protocol. As noted earlier, if PA is malicious then
it may choose pk arbitrarily.

The main idea of the protocol is to run λ parallel instances of a “basic”
garbled-circuit protocol that is secure against a semi-honest PA and a mali-
cious PB. Of these instances, λ − 1 will be checked by PB, while a random one
(the ĵth) will be evaluated by PB to learn its output. To give PB the ability to
verify honest behavior in the check instances, we make all the executions deter-
ministic by having PA use (pseudo)randomness derived from corresponding seeds
{seedA

j }j∈[λ]. That is, PA will uniformly sample each seed seedA
j and use it to

generate (pseudo)randomness for its jth instance. Then PA and PB run an OT
protocol ΠOT (with malicious security) that allows PB to learn λ − 1 of those
seeds. Since PA’s behavior in those λ − 1 instances is completely determined by
PB’s messages and those seeds, it is possible for PB to check PA’s behavior in
those instances.
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Fig. 3. Full description of our PVC protocol (part I).

The above idea allows PB to catch a cheating PA, but not to generate a
publicly verifiable certificate that PA has cheated. To add this feature, we have
PA sign the transcripts of each instance, including the transcript of the execution
of the OT protocol by which PB learned the corresponding seed. If PA cheats
in, say, the jth instance (j �= ĵ) and is caught, then PB can output a certificate
that includes PB’s view (including its randomness) in the execution of the jth
OT protocol (from which seedA

j can be recomputed) and the transcript of the
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Fig. 4. Full description of our PVC protocol (part II).

jth instance, along with PA’s signature on the transcripts. Note that, given the
randomness of both PA and PB, the entire transcript of the instance can be
recomputed and anyone can then check whether it is consistent with seedA

j . We
remark that nothing about PB’s inputs is revealed by a certificate since PB uses
a dummy input in all the check instances.

There still remains the potential issue of defamation. Indeed, an honest PA’s
messages might be deemed inconsistent if PB includes in the certificate fake
messages different from those sent by PB in the real execution. We prevent
this by having PB commit to its randomness for each instance at the beginning
of the protocol, and having PA sign those commitments. Consistency of PB’s
randomness and the given transcript can then be checked as part of verification
of the certificate.

As described, the above would result in a certificate that is linear in the
length of PB’s inputs, since there are that many OT executions (in each instance)
for which PB must generate randomness. We compress this to a constant-size
certificate by having PB also generate its (pseudo)randomness from a short seed.

The above description conveys the main ideas of the protocol, though various
other modifications are needed for the proof of security. We refer the reader to
Figs. 3 and 5 for the details.

4.3 Optimizations

Our main protocol is already quite efficient, but we briefly discuss some addi-
tional optimizations that can be applied.

Commitments in the random-oracle model. When standard garbling
schemes are used, all the values committed during the course of the protocol have
high entropy; thus, commitment to a string r can be done by simply computing
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Fig. 5. The Judge algorithm.

H(r) (if H is modeled as a random oracle) and decommitment requires only
sending r.

Using correlated oblivious transfer. One optimization introduced by
Asharov et al. [1] is using correlated OT for transferring PB’s input-wire labels
when garbling is done using the free-XOR approach [14]. This optimization is
compatible with our protocol in a straightforward manner.

Avoiding committing to the input-wire labels. In our protocol, we have PA

commit to its input-wire labels (along with the rest of the garbled circuit). This
is done to prevent PA from sending incorrect input-wire labels in the final step.
We observe that this is unnecessary if the garbling scheme has the additional
property that it is infeasible to generate a garbled circuit along with incorrect
input-wire labels that result in a valid output when evaluated. (We omit a formal
definition.) Many standard garbling schemes have this property.

5 Proof of Security

The remainder of this section is devoted to a proof of the following result:

Theorem 1. Assume Com is computationally hiding/binding, H is collision-
resistant, the garbling scheme is secure, ΠOT realizes FOT, and the signature
scheme is existentially unforgeable under a chosen-message attack. Then protocol
Πpvc along with Blame as in step 6 and Judge as in Fig. 5 is publicly verifiable
covert with deterrence ε = 1 − 1

λ .
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Proof. We separately prove covert security with ε-deterrence (handling the cases
where either PA or PB is corrupted), public verifiability, and defamation freeness.

Covert Security—MaliciousPA

Let A be an adversary corrupting PA. We construct the following simulator S
that holds pk and runs A as a subroutine, while playing the role of PA in the
ideal world interacting with F:

1. Choose uniform κ-bit strings {seedB
j }j∈[λ], set hj ← Com(seedB

j ) for all j,
and send {hj}j∈[λ] to A.

2. For all j ∈ [λ], run ΠOT with A, using input 0 and randomness derived from
seedB

j . In this way, S obtains {seedA
j }j∈[λ]. Let transj denote the transcript

of the jth execution.
3. For j ∈ [λ], run an execution of ΠOT with A, using input 0n2 and randomness

derived from seedB
j . Let Hj denote the transcript hash of the jth execution.

4. Receive {cj}j∈[λ] from A.
5. Receive {σj} from A. If any of the signatures are invalid, send ⊥ to F and

halt.
6. For all j ∈ [λ], use seedA

j and the messages sent previously to simulate the
computation of an honest PA in steps 3 and 4, and in particular compute
Ĥj , ĉj . Let J be the set of indices for which (Ĥj , ĉj) �= (Hj , cj).
There are now three cases:

– If |J | ≥ 2 then send blatantCheat to F, send cert := (j, transj ,Hj , cj , σj ,

seedB
j , decomB

j ) to A (for uniform j ∈ J), and halt.
– If |J | = 1 then send cheat to F. If F returns corrupted then set caught :=
true; if F returns (undetected, y), set caught := false. In either case,
continue below.

– If |J | = 0 then set caught :=⊥ and continue below.
0′. Rewind A and run steps 1′–6′ below until5 |J ′| = |J | and caught′ =

caught.
1′. Choose uniform ĵ ∈ [λ]. For j �= ĵ, choose uniform κ-bit strings {seedB

j }
and set hj ← Com(seedB

j ). Set hĵ ← Com(0κ). Send {hj}j∈[λ] to A.
2′. For all j �= ĵ, run ΠOT with A, using input 0 and randomness derived

from seedB
j . In this way, S obtains {seedA

j }j �=ĵ. For the ĵth execution,
use the simulator SOT for protocol ΠOT, thus extracting both seedA

ĵ and
witnessĵ. Let transj denote the transcript of the jth execution.

3′. For all j �= ĵ, run ΠOT with A, using input 0n2 and randomness derived
from seedB

j . For j = ĵ, use the simulator SOT for protocol ΠOT, thus
extracting {Bĵ,i,b}i∈[n2],b∈{0,1} . Let Hj denote the transcript hash of the
jth execution.

4′. Receive {cj}j∈[λ] from A.
5′. Receive {σj} from A. If any of the signatures are invalid, then return to

step 1′.
5 We use standard techniques [8,16] to ensure that S runs in expected polynomial

time; details are omitted for the sake of the exposition.
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6′. For all j ∈ [λ], use seedA
j and the messages sent previously to simulate

the computation of an honest PA in steps 3′ and 4′, and in particular
compute Ĥj , ĉj . Let J ′ be the set of indices for which (Ĥj , ĉj) �= (Hj , cj).
If |J ′| = 1 and ĵ �∈ J ′ then set caught′ := true. If |J ′| = 1 and ĵ ∈ J ′ then
set caught′ := false. If |J ′| = 0 then set caught′ :=⊥.

7. If |J ′| = 1 and caught′ = true, then send cert := (j, transj ,Hj , cj , σj , seed
B
j )

to A (where j is the unique index in J ′) and halt.
Otherwise, send (ĵ, {seedA

j }j �=ĵ,witnessĵ) to A.
8. Receive GC, {Ai}i∈[n1], {hA

i,b}i∈[n1],b∈{0,1} , {Zi,b}i∈[n3],b∈{0,1} , and the corre-
sponding decommitments from A. If any of the decommitments are incorrect,
send ⊥ to F and halt.
Otherwise, there are two possibilities:

– If |J ′| = 1 and caught′ = false, then use {Bĵ,i,b}i∈[n2],b∈{0,1} and the value
y received from F to compute an output z exactly as an honest PB would.
Send z to F and halt.

– If |J ′| = 0, then compute an effective input x ∈ {0, 1}n1 using seedA
ĵ and

the input-wire labels {Ai}i∈[n1]. Send x to F and halt.

We now show that the joint distribution of the view of A and the output of PB

in the ideal world is computationally indistinguishable from the joint distribution
of the view of A and the output of PB in a real protocol execution. We prove this
by considering a sequence of experiments, where the output of each is defined to
be the view of A and the output of PB, and showing that the output of each is
computationally indistinguishable from the output of the next one.

Expt0. This is the ideal-world execution between S (as described above) and
the honest PB holding some input y, both interacting with functionality F.

By inlining the actions of S,F, and PB, we may rewrite the experiment as
follows:

1. Choose uniform κ-bit strings {seedB
j }j∈[λ], set hj ← Com(seedB

j ) for all j,
and send {hj}j∈[λ] to A.

2. For all j ∈ [λ], run ΠOT with A, using input 0 and randomness derived from
seedB

j . Obtain {seedA
j }j∈[λ] as the outputs. Let transj denote the transcript

of the jth execution.
3. For j ∈ [λ], run an execution of ΠOT with A, using input 0n2 and randomness

derived from seedB
j . Let Hj denote the transcript hash of the jth execution.

4. Receive {cj}j∈[λ] from A.
5. Receive {σj} from A. If any of the signatures are invalid, then PB outputs ⊥

and the experiment halts.
6. For all j ∈ [λ], use seedA

j and the messages sent previously to A to simulate
the computation of an honest PA in steps 3 and 4, and in particular compute
Ĥj , ĉj . Let J be the set of indices for which (Ĥj , ĉj) �= (Hj , cj).
There are now three cases:

– If |J | ≥ 2, send cert := (j, transj ,Hj , cj , σj , seed
B
j ) to A (for uniform

j ∈ J). Then PB outputs corrupted and the experiment halts.
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– If |J | = 1 then with probability ε set caught := true and with the remain-
ing probability set caught := false. If caught = true then PB outputs
corrupted (but the experiment continues below in either case).

– If |J | = 0 then set caught :=⊥ and continue below.
0′. Rewind A and run steps 1′–6′ below until |J ′| = |J | and caught′ =

caught (using standard techniques [8,16] to ensure the experiment runs
in expected polynomial time).

1′. Choose uniform ĵ ∈ [λ]. For j �= ĵ, choose uniform κ-bit strings {seedB
j }

and set hj ← Com(seedB
j ). Set hĵ ← Com(0κ). Send {hj}j∈[λ] to A.

2′. For all j �= ĵ, run ΠOT with A, using input 0 and randomness derived from
seedB

j . Obtain {seedA
j }j �=ĵ as the outputs of these executions. For the ĵth

execution, use the simulator SOT for protocol ΠOT, thus extracting both
seedA

ĵ and witnessĵ. Let transj denote the transcript of the jth execution.
3′. For j �= ĵ, run an execution of ΠOT with A using input 0n2 and random-

ness derived from seedB
j . For j = ĵ, use the simulator SOT for protocol

ΠOT, thus extracting {Bĵ,i,b}i∈[n2],b∈{0,1} . Let Hj denote the transcript
hash of the jth execution.

4′. Receive {cj}j∈[λ] from A.
5′. Receive {σj} from A. If any of the signatures are invalid, then return to

step 1′.
6′. For all j ∈ [λ], use seedA

j and the messages sent previously to simulate
the computation of an honest PA in steps 3′ and 4′, and in particular
compute Ĥj , ĉj . Let J ′ be the set of indices for which (Ĥj , ĉj) �= (Hj , cj).
If |J ′| = 1 and ĵ �∈ J ′ then set caught′ := true. If |J ′| = 1 and ĵ ∈ J ′ then
set caught′ := false. If |J ′| = 0 then set caught′ :=⊥.

7. If |J ′| = 1 and caught′ = true, then send cert := (j, transj ,Hj , cj , σj , seed
B
j )

to A (where j is the unique index in J ′) and halt.
Otherwise, send (ĵ, {seedA

j }j �=ĵ,witnessĵ) to A.
8. Receive GC, {Ai}i∈[n1], {hA

i,b}i∈[n1],b∈{0,1} , {Zi,b}i∈[n3],b∈{0,1} , and the corre-
sponding decommitments from A. If any of the decommitments are incorrect,
then PB outputs ⊥ and the experiment halts.
Otherwise, there are two possibilities:

– If |J ′| = 1 and caught′ = false then use {Bĵ,i,b}i∈[n2],b∈{0,1} and y to
compute z exactly as in the protocol. PB outputs z and the experiment
halts.

– If |J ′| = |J | = 0, compute an effective input x ∈ {0, 1}n1 using seedA
ĵ

and the input-wire labels {Ai}i∈[n1]. Then PB outputs f(x, y) and the
experiment halts.

Expt1. Here we modify the previous experiment in the following way: Choose a
uniform ĵ ∈ [λ] at the outset of the experiment. Then in step 6:

– If |J | ≥ 2 then send cert := (j, transj ,Hj , cj , σj , seed
B
j ) to A for uniform

j ∈ J \ {ĵ}. Then PB outputs corrupted and the experiment halts.
– if |J | = 1 set caught := true if ĵ �∈ J and set caught := false if ĵ ∈ J .
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Since ĵ �∈ J with probability ε when |J | = 1, the outputs of Expt1 and Expt0
are identically distributed.

Expt2. The previous experiment is modified as follows: In step 1, do not choose
seedB

ĵ . Instead, in step 1 set hĵ ← Com(0κ), and in steps 2 and 4 use true
randomness in the ĵth execution of ΠOT.

It is immediate that the distribution of the output of Expt2 is computation-
ally indistinguishable from the distribution of the output of Expt1.

Expt3. We change the previous experiment in the following way: In steps 2 and
4, use SOT to run the ĵth instances of ΠOT. In doing so, extract all of A’s inputs
in those executions.

It follows from security of ΠOT that the distribution of the output of Expt3 is
computationally indistinguishable from the distribution of the output of Expt2.

Expt3a. Because steps 1′–4′ in Expt3 are identical to steps 1–4, we can “col-
lapse” the rewinding and thus obtain the following experiment Expt3a that is
statistically indistinguishable from Expt2 (with the only difference occurring in
case of an aborted rewinding in the latter):

1. Choose uniform ĵ ∈ [λ]. For j �= ĵ, choose uniform κ-bit strings {seedB
j } and

set hj ← Com(seedB
j ). Set hĵ ← Com(0κ). Send {hj}j∈[λ] to A.

2. For all j �= ĵ, run ΠOT with A, using input 0 and randomness derived from
seedB

j . Obtain {seedA
j }j �=ĵ as the outputs of these executions. For the ĵth

execution, use the simulator SOT for protocol ΠOT, thus extracting both seedA
ĵ

and witnessĵ. Let transj denote the transcript of the jth execution.
3. For all j �= ĵ, run ΠOT with A using input 0n2 and randomness derived from

seedB
j . For j = ĵ, use the simulator SOT for protocol ΠOT, thus extracting

{Bĵ,i,b}i∈[n2],b∈{0,1} . Let Hj denote the transcript hash of the jth execution.
4. Receive {cj}j∈[λ] from A.
5. Receive {σj} from A. If any of the signatures are invalid, then PB outputs ⊥

and the experiment halts.
6. For all j ∈ [λ], use seedA

j and the messages sent previously to A to simulate
the computation of an honest PA in steps 3 and 4, and in particular compute
Ĥj , ĉj . Let J be the set of indices for which (Ĥj , ĉj) �= (Hj , cj).
There are now two cases:

– If |J | ≥ 2, or if |J | = 1 and ĵ �∈ J , then choose uniform j ∈ J \ {ĵ} and
send cert := (j, transj ,Hj , cj , σj , seed

B
j ) to A. Then PB outputs corrupted

and the experiment halts.
– If |J | = 1 and ĵ ∈ J , or if |J | = 0, then continue below.

7. Send (ĵ, {seedA
j }j �=ĵ,witnessĵ) to A.

8. Receive GC, {Ai}i∈[n1], {hA
i,b}i∈[n1],b∈{0,1} , {Zi,b}i∈[n3],b∈{0,1} , and the corre-

sponding decommitments from A. If any of the decommitments are incorrect,
then PB outputs ⊥ and the experiment halts.
Otherwise, there are two possibilities:

– If |J | = 1 then PB uses {Bĵ,i,b}i∈[n2],b∈{0,1} and y to compute z exactly
as in the protocol. PB outputs z and the experiment halts.
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– If |J | = 0, then compute an effective input x ∈ {0, 1}n1 using seedA
ĵ

and the input-wire labels {Ai}i∈[n1]. Then PB outputs f(x, y) and the
experiment halts.

Expt4. We modify the previous experiment as follows: In step 8, if |J | = 0 (and
PB has not already output ⊥ in that step), use y to compute z exactly as in the
protocol. Then PB outputs z and the experiment halts.

Since |J | = 0, we know that cĵ is a commitment to a correctly computed gar-
bled circuit along with commitments to (correctly permuted) input-wire labels
{Aĵ,i,b} and output-wire labels. Thus—unless A has managed to violate the com-
mitment property of Com—if PB does not output ⊥ in this step it must be the
case that the values GC, {Ai}i∈[n1], {hA

i,b}i∈[n1],b∈{0,1} , and {Zi,b}i∈[n3],b∈{0,1}
sent by A in step 8 are correct. Moreover, since |J | = 0 the execution of ΠOT in
step 4 was run honestly by A using correct input-wire labels {Bĵ,i,b}. Thus, eval-
uating GC using {Ai}i∈[n1] and {Bĵ,i,y[i]} yields a result that is equal to f(x, y)
as computed in Expt3.

Since Com is computationally binding, this means that the distribution of
the output of Expt4 is computationally indistinguishable from the distribution
of the output of Expt3a.

Expt5. Here we change the previous experiment in the following way: The com-
putation in step 6 is done only for j ∈ [λ] \ {ĵ}; let Ĵ ⊆ [λ] \ {ĵ} be the set of
indices for which (Ĥj , ĉj) �= (Hj , cj). Then:

– If Ĵ �= ∅ choose uniform j ∈ Ĵ and send cert := (j, transj ,Hj , cj , σj , seed
B
j ) to

A. Then PB outputs corrupted and the experiment halts.
– If Ĵ = ∅ then run steps 7 and 8 as in Expt4.

Letting J be defined as in Expt4, note that

|J | ≥ 2 or |J | = 1; ĵ �∈ J ⇐⇒ Ĵ �= ∅

and

|J | = 1, ĵ ∈ J or |J | = 0 ⇐⇒ Ĵ = ∅.

Thus, the outputs of Expt4 and Expt5 are identically distributed.

Expt6. We now modify the previous experiment by running the ĵth instances of
ΠOT honestly in steps 2 and 4, using input 1 in step 2 and input y in step 4.

It follows from security of ΠOT that the distribution of the output of Expt6 is
computationally indistinguishable from the distribution of the output of Expt5.

Expt7. Finally, we modify the previous experiment so the ĵth instance of ΠOT

in steps 2 and 4 uses pseudorandomness derived from a uniform seed seedB
ĵ , and

we compute hĵ ← Com(seedB
ĵ ).

It is immediate that the distribution of the output of Expt7 is computation-
ally indistinguishable from the distribution of the output of Expt6.
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Since Expt7 corresponds to a real-world execution of the protocol between
A and PB holding input y, this completes the proof.

Covert Security—MaliciousPB

Let A be an adversary corrupting PB. We construct the following simulator S
that runs A as a subroutine while playing the role of PB in the ideal world
interacting with F:

0. Run Gen to generate keys (pk, sk), and send pk to A.
1. Receive {hj}j∈[λ] from A.
2. Use the simulator SOT for protocol ΠOT to interact with A. In this way,

S extracts A’s inputs {bj}j∈[λ]; let J := {j : bj = 1}. As part of the
simulation, return uniform κ-bit strings {seedA

j }j /∈J and {witnessj}j∈J as
output to A.

3. For each j /∈ J , run this step exactly as an honest PA would. For each j ∈ J
do:
– If |J | = 1 then let ĵ be the unique index in J . Use SOT to interact with A

in the ĵth execution of ΠOT. In this way, S extracts A’s input y for that
execution. Send y to F, and receive in return a value z. Compute

({Aĵ,i}, {Bĵ,i},GCĵ, {Zĵ,i,b}) ← SGb(1
κ, C, z),

where we let {Aĵ,i} correspond to input wires of PA and {Bĵ,i} correspond
to input wires of PB. Return {Bĵ,i} as output to A from this execution
of ΠOT.

– If |J | > 1 then act as an honest PA would but using true randomness.
4. For each j /∈ J , compute cj exactly as an honest PA would. For each j ∈ J

do:
– If |J | = 1 then compute hA

ĵ,i,0 ← Com(Aĵ,i) and let hA
ĵ,i,1 be a commitment

to the 0-string. Compute cĵ ← Com(GCĵ, {hA
ĵ,i,b}, {Zĵ,i,b}), where each

pair (hA
ĵ,i,0, h

A
ĵ,i,1} is in random permuted order.

– If |J | > 1 then compute cj exactly as an honest PA would but using true
randomness.

Send {cj}j∈[λ] to A.
5–6. Compute signatures {σj} as an honest PA would, and send them to A.

7. If |J | �= 1 then abort. Otherwise, receive (ĵ, {seedj}j �=ĵ,witnessĵ) from A
and verify these as an honest PA would. (If verification fails, then abort.)

8. Send GCĵ, {Aĵ,i}, {hA
ĵ,i,b} (in the same permuted order as before), and

{Zĵ,i,b} to A, along with the corresponding decommitments. Then halt.

We show that the distribution of the view of A in the ideal world is com-
putationally indistinguishable from its view in a real protocol execution. (Note
that PA has no output.) Let Expt0 be the ideal-world execution between S (as
described above) and the honest PA holding some input x, both interacting with
functionality F.

Expt1. Here we modify the previous experiment when |J | = 1 as follows. In step
3, compute

({Aĵ,i,b}, {Bĵ,i,b},GCĵ, {Zĵ,i,b}) ← Gb(1κ, C),
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and return the values {Bĵ,i,y[i]} as output to A from the simulated execution
of ΠOT in that step. In steps 4 and 8, the values Aĵ,i,x[i] are used in place of Aĵ,i.

It follows from security of the garbling scheme that the view of A in Expt1
is computationally indistinguishable from its view in Expt0.

Expt2. Now we change the previous experiment when |J | = 1 as follows: In step
3, compute hA

ĵ,i,b ← Com(Aĵ,i,b) for all i, b. It follows from the hiding property
of the commitment scheme that the view of A in Expt2 is computationally
indistinguishable from its view in Expt1.

Expt3. This time, the previous experiment is modified by executing protocol
ΠOT with A when |J | = 1 in step 3. Security of ΠOT implies that the view of A
in Expt3 is computationally indistinguishable from its view in Expt2.

Expt4. The previous experiment is now modified in the following way. In step 2,
also choose uniform {seedA

j }j∈J and {witnessAj }j �∈J , and use pseudorandomness
derived from {seedA

j }j∈J in steps 3 and 4 in place of true randomness. Also, in
step 7 continue to run the protocol as an honest PA would even in the case that
|J | �= 1.

It is not hard to show that when |J | �= 1 then PA aborts in Expt4 with
all but negligible probability. Computational indistinguishability of A’s view in
Expt4 and Expt3 follows.

Expt5. Finally, we change the last experiment by executing protocol ΠOT in
step 2. It follows from the security of ΠOT that the view of A in Expt5 is
computationally indistinguishable from its view in Expt4.

Since Expt5 corresponds to a real-world execution of the protocol, this com-
pletes the proof.

Public Verifiability and Defamation Freeness

It is easy to check (by inspecting the protocol) that whenever an honest PB

outputs corrupted then it also outputs a valid certificate. Thus our protocol
satisfies public verifiability. It is similarly easy to verify defamation freeness
under the assumptions of the theorem.

6 Implementation and Evaluation

We implemented our PVC protocol using the optimizations from Sect. 4.3 and
state-of-the-art techniques for garbling [4,20], oblivious transfer [5], and OT
extension [12]. Our implementation uses SHA-256 for the hash function (mod-
eled as a random oracle) and the standard ECDSA implementation provided by
openssl as the signature scheme. We target κ = 128 in our implementation.

We evaluate our protocol in both LAN and WAN settings. In the LAN setting,
the network bandwidth is 1 Gbps and the latency is less than 1 ms; in the WAN
setting, the bandwidth is 200 Mbps and the latency is 75 ms. In either setting, the
machines running the protocol have 32 cores, each running at 3.0 GHz. Due to
pipelining, we never observe any issues with memory usage. All reported timing
results are computed as the average of 10 executions.
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6.1 Certificate Size

The size of the certificate in our protocol is independent of the circuit size or the
lengths of the parties’ inputs. The following figure gives a graphical decomposi-
tion of the certificate. (Note that since we instantiate Com by a random oracle
as discussed in Sect. 4.3, we do not need to include an extra decommitment in
the certificate.) In total, a certificate requires 354 bytes.

Hj contains 4 hash values, corresponding to a 4-round OT protocol obtained
by piggybacking a 2-round OT-extension protocol with a 3-round base-OT pro-
tocol. The signature size varies from 70–72 bytes; we allocate 72 bytes for the
signature so the total length of a certificate is fixed.

6.2 Comparison to Prior PVC Protocols

Because it enables signed-OT extension, the PVC protocol by Kolesnikov and
Malozemoff [13] (the KM15 protocol) would be strictly more efficient than the
original PVC protocol by Asharov and Orlandi [2]. We therefore focus our atten-
tion on the KM15 protocol. We compare our protocol to theirs in three respects.

Parameters. We briefly discuss the overhead needed to achieve deterrence fac-
tors larger than 1

2 for each protocol. Recall that in the KM15 protocol the overall
deterrence factor ε depends on both the garbled-circuit replication factor λ and
the XOR-tree expansion factor ν as ε = (1 − 1

λ ) · (1 − 2−ν+1). For deterrence
ε ≈ 1 − 1

2k
, setting λ = 2k+1, ν = k + 2 gives the best efficiency. In contrast, our

protocol achieves this deterrence with λ = 2k, ν = 1, which means garbling half
as many circuits and avoiding the XOR-tree approach altogether. For example,
to achieve deterrence ε = 7/8, our protocol garbles 8 circuits, whereas prior work
would need to garble 16 circuits. Additionally, prior work would need to execute
5× as many OTs. (Plus, in prior work each OT is actually a signed OT, which
is more expensive than standard OT; see next.)

Signed OT vs. standard OT. Signed OT induces higher costs than standard
OT in terms of both communication and computation. As an illustration, fix
the deterrence factor to 1/2. In that case our protocol runs OT extension twice,
where each is used for n2 OTs on κ-bit strings. Compared to this, the KM15
protocol needs to run 3n2 OTs on 2κ-bit strings. The total communication com-
plexity of the OT step (for the input-wire labels) is 4κn2 bits in our protocol,
while in the KM15 protocol it is 3 ∗ 2 ∗ 3κn2 + 3 ∗ 2.6κn2 = 25.8κn2 bits, more
than 6× higher.

Moreover, signed OT also has a very high computational overhead:

– Signed-OT extension needs to use a wider matrix (by a factor of roughly
2.6×) compared to standard OT extension. Besides the direct penalty this
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Table 1. Circuits used in our evaluation. The parties’ input lengths are n1 and n2,
and the output length is n3. The number of AND gates in the circuit is denoted by |C|.

Circuit n1 n2 n3 |C|
AES-128 128 128 128 6800

SHA-128 256 256 160 37300

SHA-256 256 256 256 90825

Sorting 131072 131072 131072 10223K

Integer mult. 2048 2048 2048 4192K

Hamming dist. 1048K 1048K 22 2097K

incurs, a wider matrix means that the correlation-robust hash H cannot be
based on fixed-key AES but must instead be based on a hash function like
SHA-256. This impacts performance significantly.

– As part of signed-OT extension, PB needs to reveal κ random columns in
the matrix. Even with AVX operations, this incurs significant computational
overhead.

Signed-OT extension [13] is complex, and we did not implement it in its entirety.
However, we modified an existing (standard) OT-extension protocol to match
the matrix width required by signed-OT extension; this can be used to give a
conservative lower bound on the performance of signed-OT extension. Our results
indicate that signed-OT extension requires roughly 5× more computation than
state-of-the-art OT extension.

Certificate size. In the KM15 protocol, the certificate size is at least 2κ·n2 bits.
Even for AES (with only 128-bit input length), this gives a certificate roughly
10× larger than ours.

6.3 Comparing to Semi-Honest and Malicious Protocols

We believe our PVC protocol provides an excellent performance/security tradeoff
that makes it the best choice for many applications of secure computation.

Performance. Our protocol is not much less efficient that the best known semi-
honest protocols, and is significantly faster than the best known malicious
protocols.

Security. The PVC model provides much more meaningful guarantees than the
notion of semi-honest security, and may be appropriate for many (even if
not all) applications of secure computation where full malicious security is
overkill.

To support the first point, we compare the performance of our PVC proto-
col against state-of-the-art two-party computation protocols. The semi-honest
protocol we compare against is a garbled-circuit protocol including all existing
optimizations; for the malicious protocol we use the recent implementation of
Wang et al. [19]. Our comparison uses the circuits listed in Table 1.



118 C. Hong et al.

Table 2. Comparing the running times of our protocol and a semi-honest protocol in
the LAN and WAN settings.

Circuit
LAN setting WAN setting

Our PVC Semi-honest Slowdown Our PVC Semi-honest Slowdown

AES-128 25 ms 15 ms 1.60× 960 ms 821 ms 1.17×
SHA-128 34 ms 25 ms 1.36× 1146 ms 977 ms 1.17×
SHA-256 48 ms 38 ms 1.27× 1252 ms 1080 ms 1.16×

Sort. 3468 ms 2715 ms 1.28× 13130 ms 12270 ms 1.07×
Mult. 1285 ms 1110 ms 1.16× 5707 ms 5462 ms 1.04×

Hamming 2585 ms 1550 ms 1.67× 11850 ms 6317 ms 1.69×

Running time. In Table 2 we compare the running time of our protocol to that
of a semi-honest protocol. From the table, we see that over a LAN our protocol
adds at most 36% overhead except in two cases: AES and Hamming-distance
computation. For AES, the reason is that the circuit is small and so the overall
time is dominated by the base OTs. For Hamming distance, the total input
size is equal to the number of AND gates in the circuit; therefore, the cost of
processing the inputs becomes more significant.

In the WAN setting, our PVC protocol incurs only 17% overhead except for
the Hamming-distance example (for a similar reason as above).

The comparison between our PVC protocol and the malicious protocol is
shown in Table 3. As expected, our PVC protocol achieves much better perfor-
mance, by a factor of 4–18×.

Table 3. Comparing the running times of our protocol and a malicious protocol in the
LAN and WAN settings.

Circuit
LAN setting WAN setting

Our PVC Malicious [19] Speedup Our PVC Malicious [19] Speedup

AES-128 25 ms 157 ms 6.41× 960 ms 11170 ms 11.6×
SHA-128 34 ms 319 ms 9.47× 1146 ms 13860 ms 12.1×
SHA-256 48 ms 612 ms 12.6× 1252 ms 17300 ms 13.8×

Sort. 3468 ms 45130 ms 13.0× 13130 ms 197900 ms 15.1×
Mult. 1285 ms 17860 ms 13.9× 5707 ms 99930 ms 17.5×

Hamming 2586ms 11380 ms 4.40× 11850 ms 76280 ms 6.44×

Table 4. Communication complexity in MB of our protocol with λ = 2 and other
protocols.

AES-128 SHA-128 SHA-256 Sort. Mult. Hamming

Semi-honest 0.2218 1.165 2.800 313.1 128.0 96.01
Malicious [11] 3.545 17.69 42.95 2953 1228 662.7

Our PVC 0.2427 1.205 2.844 325.1 128.2 144.2
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Communication complexity. We also compare the communication complex-
ity of our protocol to other protocols in a similar way; see Table 4. In this
comparison we use the same semi-honest protocol as above, but use the more
communication-efficient protocol by Katz et al. [11] as the malicious protocol.
We see that, with the exception of the Hamming-distance example, the commu-
nication of our protocol is very close to the semi-honest case.

6.4 Higher Deterrence Factors

Another important aspect of our protocol is how the performance is affected
by the deterrence factor. Recall that the deterrence factor ε is the probability
that a cheating party is caught, and in our protocol ε = 1 − 1

λ where λ is the
garbled-circuit replication factor. The performance of our protocol as a function
of ε is shown in Table 5. We see that when doubling the value of λ, the running
time of the protocol increases by only ≈20% unless the circuit is very small (in
which case the cost of the base OTs dominates the total running time). The
running time when ε = 3/4 (i.e., λ = 4) is still less than twice the running time
of a semi-honest protocol.

Table 5. Running time in milliseconds of our protocol for different λ. ε = 1 − 1
λ
.

AES-128 SHA-128 SHA-256 Sort. Mult. Hamming

LAN
λ = 2 25 34 49 3468 1285 2586
λ = 4 36 46 59 3554 1308 3156
λ = 8 47 57 71 3954 1396 4856
λ = 16 101 127 152 6238 2355 7143
λ = 32 175 228 229 7649 2995 12984

WAN
λ = 2 960 1146 1252 13130 5707 11850
λ = 4 1112 1375 1700 14400 5952 12899
λ = 8 1424 1912 2436 16130 6167 19840
λ = 16 1920 2094 2191 19087 7801 36270
λ = 32 3228 3434 3535 25197 9229 64468

6.5 Scalability

Our protocol scales linearly in all parameters, and so can easily handle large
circuits. To demonstrate this, we benchmarked our protocol with different input
lengths, output lengths, and circuit sizes. Initially, the input and output lengths
are all 128 bits, and the circuit size is 1024 AND gates. We then gradually
increase one of the input/output lengths or circuit size (while holding everything
else constant) and record the running time. Since the dependence is linear in all
cases, we report only the marginal cost (i.e., the slope), summarized in Table 6.
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Table 6. Scalability of our protocol.

n1 (μs/bit) n2 (μs/bit) n3 (μs/bit) |C| (μs/gate)

LAN 0.20 0.88 0.23 0.29

WAN 0.61 3.13 0.62 1.10
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Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

15. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

16. Lindell, Y.: A note on constant-round zero-knowledge proofs of knowledge. J. Cryp-
tol. 26(4), 638–654 (2013)

17. Lindell, Y.: Fast cut-and-choose-based protocols for malicious and covert adver-
saries. J. Cryptol. 29(2), 456–490 (2016)

18. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

19. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: 24th ACM Conference on Computer and Com-
munications Security (CCS), pp. 21–37. ACM Press (2017)

20. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-662-46803-6_8


Efficient Circuit-Based PSI
with Linear Communication

Benny Pinkas1(B), Thomas Schneider2, Oleksandr Tkachenko2,
and Avishay Yanai1

1 Bar-Ilan University, Ramat Gan, Israel
benny@pinkas.net, ay.yanay@gmail.com
2 TU Darmstadt, Darmstadt, Germany

{schneider,tkachenko}@encrypto.cs.tu-darmstadt.de

Abstract. We present a new protocol for computing a circuit which
implements the private set intersection functionality (PSI). Using cir-
cuits for this task is advantageous over the usage of specific protocols for
PSI, since many applications of PSI do not need to compute the inter-
section itself but rather functions based on the items in the intersection.

Our protocol is the first circuit-based PSI protocol to achieve linear
communication complexity. It is also concretely more efficient than all
previous circuit-based PSI protocols. For example, for sets of size 220 it
improves the communication of the recent work of Pinkas et al. (EURO-
CRYPT’18) by more than 10 times, and improves the run time by a
factor of 2.8x in the LAN setting, and by a factor of 5.8x in the WAN
setting.

Our protocol is based on the usage of a protocol for computing oblivi-
ous programmable pseudo-random functions (OPPRF), and more specif-
ically on our technique to amortize the cost of batching together multiple
invocations of OPPRF.

Keywords: Private Set Intersection · Secure computation

1 Introduction

The functionality of Private Set Intersection (PSI) enables two parties, P1 and
P2, with respective input sets X and Y to compute the intersection X∩Y without
revealing any information about the items which are not in the intersection.
There exist multiple constructions of secure protocols for computing PSI, which
can be split into two categories: (i) constructions that output the intersection
itself and (ii) constructions that output the result of a function f computed on
the intersection. In this work, we concentrate on the second type of constructions
(see Sect. 1.2 for motivation). These constructions keep the intersection X ∩ Y
secret from both parties and allow the function f to be securely computed on top
of it, namely, yielding only f(X∩Y ). Formally, denote by FPSI,f the functionality
(X,Y ) �→ (f(X ∩ Y ), f(X ∩ Y )).
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 122–153, 2019.
https://doi.org/10.1007/978-3-030-17659-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17659-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-17659-4_5


Efficient Circuit-Based PSI with Linear Communication 123

A functionality for computing f(X ∩ Y ) can be naively implemented using
generic MPC protocols by expressing the functionality as a circuit. However,
naive protocols for computing f(X ∩ Y ) have high communication complexity,
which is of paramount importance for real-world applications. The difficulty in
designing a circuit for computing the intersection is in deciding which pairs of
items of the two parties need to be compared. We refer here to the number of
comparisons computed by the circuit as the major indicator of the overhead,
since it directly affects the amount of communication in the protocol (which
is proportional to the number of comparisons, times the length of the repre-
sentation of the items, times the security parameter). Since the latter factors
(input length and security parameter) are typically given, and since the circuit
computation mostly involves symmetric key operations, the goal is to minimize
the communication overhead as a function of the input size. We typically state
this goal as minimizing the number of comparisons computed in the circuit. The
protocol presented in this paper is the first to achieve linear communication
overhead, which is optimal.

Suppose that each party has an input set of n items. A naive circuit for this
task compares all pairs and computes O(n2) comparisons. More efficient cir-
cuits are possible, assuming that the parties first order their respective inputs in
specific ways. For example, if each party has sorted its input set then the inter-
section can be computed using a circuit which first computes, using a merge-sort
network, a sorted list of the union of the two sets, and then compares adjacent
items [HEK12]. This circuit computes only O(n log n) comparisons. The proto-
col of [PSSZ15] (denoted “Circuit-Phasing”) has P1 map its items to a table
using Cuckoo hashing, and P2 maps its items using simple hashing. The inter-
section is computed on top of these tables by a circuit with O(n log n/ log log n)
comparisons. This protocol is the starting point of our work.

A recent circuit-based PSI construction [PSWW18] is based on a new hashing
algorithm, denoted “two-dimensional Cuckoo hashing”, which uses a table of size
O(n) and a stash of size ω(1). Each party inserts its inputs to a separate table,
and the hashing scheme assures that each value in the intersection is mapped
by both parties to exactly one mutual bin. Hence, a circuit which compares the
items that the two parties mapped to each bin, and also compares all stash
items to all items of the other party, computes the intersection in only ω(n)
comparisons (namely, the overhead is slightly more than linear, although it can
be made arbitrarily close to being linear).

Our work is based on the usage of an oblivious programmable pseudo-random
function (OPPRF), which is a new primitive that was introduced in [KMP+17].
An OPRF—oblivious pseudo-random function (note, this is different than an
OPPRF)—is a two-party protocol where one party has a key to a PRF F and
the other party can privately query F at specific locations. An OPPRF is an
extension of the protocol which lets the key owner “program” F so that it has
specific outputs for some specific input values (and is pseudo-random on all other
values). The other party which evaluates the OPPRF does not learn whether it
learns a “programmed” output of F or just a pseudo-random value.
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1.1 Overview of Our Protocol

The starting point for our protocols is the Circuit-Phasing PSI protocol
of [PSSZ15], in which O(n) bins are considered and the circuit computes
O(n log n/ log log n) comparisons. Party P1 uses Cuckoo hashing to map at most
one item to each bin, whereas party P2 maps its items to the bins using simple
hashing (two times, once with each of the two functions used in the Cuckoo
hashing of the first party). Thus, P2 maps up to S = O(log n/ log log n) items to
each bin. Since the parties have to hide the number of items that are mapped
to each bin, they pad the bins with “dummy” items to the maximum bin size.
That is, P1 pads all bins so they all contain exactly one item and P2 pads all
bins so they all contain S items.

Both parties use the same hash functions, and therefore for each input ele-
ment x that is owned by both parties there is exactly one bin to which x is
mapped by both parties. Thus, it is only needed to check whether the item that
P1 places in a bin is among the items that are placed in this bin by P2. This is
essentially a private set membership (PSM) problem: As input, P1 has a single
item x and P2 has a set Σ with |Σ| items, where S = |Σ|. As for the output,
if x ∈ Σ then both parties learn the same random output, otherwise they learn
independent random outputs. These outputs can then be fed to a circuit, which
computes the intersection. The Circuit-Phasing protocol [PSSZ15] essentially
computes the PSM functionality using a sub-circuit of the overall circuit that it
computes. Namely, let S = O(log n/ log log n) be an upper bound on the number
of items mapped by P2 to a single bin. For each bin the sub-circuit receives one
input from P1 and S inputs from P2, computes S comparisons, and feeds the
result to the main part of the circuit which computes the intersection itself (and
possibly some function on top of the intersection). Therefore the communication
overhead is O(nS) = O(n log n/ log log n). A very recent work in [CO18] uses the
same hashing method and computes the PSM using a specific protocol whose out-
put is fed to the circuit. The circuit there computes only ω(n) comparisons but
the PSM protocol itself incurs a communication overhead of O(log n/ log log n)
and is run O(n) times. Therefore, the communication overhead of [CO18] is also
O(n log n/ log log n).

We diverge from the protocol of [PSSZ15] in the method for comparing the
items mapped to each bin. In our protocol, the parties run an oblivious pro-
grammable PRF (OPPRF) protocol for each bin i, such that party P2 chooses
the PRF key and the programmed values, and the first party learns the out-
put. The function is “programmed” to give the same output βi for each of the
O(log n/ log log n) items that P2 mapped to this bin. Therefore, if there is any
match in this bin then P1 learns the same value βi. Then, the parties evaluate
a circuit, where for each bin i party P1 inputs its output in the corresponding
OPPRF protocol, and P2 inputs βi. This circuit therefore needs to compute only
a single comparison per bin.

The communication overhead of an OPPRF is linear in the number of pro-
grammed values. Thus, a stand alone invocation of an OPPRF for every bin
incurs an overall overhead of O(n log n/ log log n). We achieve linear overhead
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for comparing the items in all bins, by observing that although each bin is of
maximal size O(log n/ log log n) (and therefore naively requires to program this
number of values in the OPPRF), the total number of items that need to be
programmed in all bins is O(n). We can amortize communication so that the
total communication of computing all O(n) OPPRFs is the same as the total
number of items, which is O(n).

In addition to comparing the items that are mapped to the hash tables, the
protocol must also compare items that are mapped to the stash of the Cuckoo
hashing scheme. Fixing a stash size s = O(1), the probability that the stash does
not overflow is O(n−(s+1)) [KMW09]. It was shown in [GM11] that a stash of
size O(log n) ensures a negligible failure probability (namely, a probability that is
asymptotically smaller than any polynomial function). Each item that P1 places
in the stash must be compared to all items of P2, and therefore a straightforward
implementation of this step requires the circuit to compute ω(n) comparisons.
However, we show an advanced variant of our protocol that computes all com-
parisons (including elements in the stash) with only O(n) comparisons.

In addition to designing a generic O(n) circuit-based PSI protocol, we also
investigate an important and commonly used variant of the problem where each
item is associated with some value (“payload”), and it is required to compute a
function of the payloads of the items in the intersection. (For example, compute
the sum of financial transactions associated with these items). The challenge is
that each of the S items that the second party maps to a bin has a different
payload and therefore it is hard to represent them using a single value. (The
work in [PSSZ15,CO18], for example, did not consider payloads). We describe
a variant of our PSI protocol which injects the correct payloads to the circuit
while keeping the O(n) overhead.

Overall, the work in this paper improves the state of the art in two dimen-
sions:

– With regards to asymptotic performance, we show a protocol for circuit-
based PSI which has only O(n) communication. This cost is asymptotically
smaller than that of all known circuit-based constructions of PSI, and matches
the obvious lower bound on the number of comparisons that must be com-
puted.

– With regards to concrete overhead, our most efficient protocols improve
communication by a factor of 2.6x to 12.8x, and run faster by factor 2.8x to
5.8x compared to the previous best circuit-based PSI protocol of [PSWW18].
We demonstrate this both analytically and experimentally.

1.2 Motivation for Circuit-Based PSI

Most research on computing PSI focused on computing the intersection itself
(see Sect. 1.4). On the other hand, many applications of PSI are based
on computing arbitrary functions of the intersection. For example, Google
reported a PSI-based application for measuring the revenues from online ad
viewers who later perform a related offline transaction (namely, ad conversion
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rates) [Yun15,Kre17]. This computation compares the set of people who were
shown an ad with the set of people who have completed a transaction. These sets
are held by the advertiser, and by merchants, respectively. A typical use case is
where the merchant inputs pairs of the customer-identity and the value of the
transactions made by this customer, and the computation calculates the total
revenue from customers who have seen an ad, namely customers in the intersec-
tion of the sets known to the advertiser and the merchant. Google reported imple-
menting this computation using a Diffie-Hellman-based PSI cardinality protocol
(for computing the cardinality of the intersection) and Paillier encryption (for
computing the total revenues) [IKN+17,Kre18]. In fact, it was recently reported
that Google is using such a “double-blind encryption” protocol in a beta version
of their ads tool.1 However, their protocol reveals the size of the intersection, and
has substantially higher runtimes than our protocol as it uses public key opera-
tions, rather than efficient symmetric cryptographic operations (cf. Sect. 7.4).

Another motivation for running circuit-based PSI is adaptability. A proto-
col that is specific for computing the intersection, or a specific function such as
the cardinality of the intersection, cannot be easily changed to compute another
function of the intersection (say, the cardinality plus some noise to preserve dif-
ferential privacy). Any change to a specialized protocol will require considerable
cryptographic know-how, and might not even be possible. On the other hand,
the task of writing a new circuit component which computes a different function
of the intersection is rather trivial.

Circuit-based protocols also benefit from the existing code base for generic
secure computation. Users only need to design the circuit to be computed,
and can use available libraries of optimized code for secure computation, such
as [HEKM11,EFLL12,DSZ15,LWN+15].

1.3 Computing Symmetric Functions

We focus in this work on constructing a circuit which computes the intersection.
On top of that circuit it is possible to compose a circuit for computing any
function that is based on the intersection. In order to preserve privacy, that
function must be a symmetric function of the items in the intersection. Namely,
the output of the function must not depend on the order of its inputs.

If the function that needs to be computed is non-symmetric, then the circuit
for computing the intersection must shuffle its output, in order to place each
item of the intersection in a location which is independent of the other values.
The result is used as the input to the function. The size of this “shuffle” step
is O(n log n), as is described in [HEK12], and it dominates the O(n) size of the
intersection circuit. We therefore focus on the symmetric case.2

1 https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-
cut-a-secret-ad-deal-to-track-retail-sales.

2 Note that outputting the intersection is a non-symmetric function. Therefore in
that case the order of the elements must be shuffled. However, it is unclear why a
circuit-based protocol should be used for computing the intersection, since there are
specialized protocols for this which are much more efficient, e.g. [KKRT16,PSZ18].

https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales
https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales
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Most interesting functions of the intersection (except for the intersection
itself) are symmetric. Examples of symmetric functions include:

– The size of the intersection, i.e., PSI cardinality (PSI-CA).
– A threshold function that is based on the size of the intersection. For example

identifying whether the size of the intersection is greater than some threshold
(PSI-CAT). An extension of PSI-CAT, where the intersection is revealed only
if the size of the intersection is greater than a threshold, can be used for
privacy-preserving ridesharing [HOS17]. Other public-key based protocols for
this functionality appear in [ZC17,ZC18].

– A differentially private [Dwo06] value of the size of the intersection, which is
computed by adding some noise to the exact count.

– The sum of values associated with the items in the intersection. This is used
for measuring ad-generated revenues (cf. Sect. 1.2).

The circuits for computing all these functions are of size O(n). Therefore, with
our new construction the total size of the circuits for applying these functions
to the intersection is O(n).

1.4 Related Work

We classify previous works into dedicated protocols for PSI, generic protocols
for circuit-based PSI, and dedicated protocols for PSI cardinality.

PSI. The first PSI protocols were based on public-key cryptography, e.g., on
the Diffie Hellman function (e.g. [Mea86], with an earlier mention in [Sha80]),
oblivious polynomial evaluation [FNP04], or blind RSA [DT10]. More recent pro-
tocols are based on oblivious transfer (OT) which can be efficiently instantiated
using symmetric key cryptography [IKNP03,ALSZ13]: these protocols use either
Bloom filters [FNP04] or hashing to bins [PSZ14,PSSZ15,KKRT16,PSZ18].
All these PSI protocols have super-linear complexity and many of them were
compared experimentally in [PSZ18]. PSI protocols have also been evaluated
on mobile devices, e.g., in [HCE11,ADN+13,CADT14,KLS+17]. PSI protocols
with input sets of different sizes were studied in [KLS+17,PSZ18,RA18].

Circuit-based PSI. These protocols use secure evaluation of circuits for PSI.
A trivial circuit for PSI computes O(n2) comparisons which result in O(σn2)
gates, where σ is the bit-length of the elements.

The sort-compare-shuffle (SCS) PSI circuit of [HEK12] computes O(n log n)
comparisons and is of size O(σn log n) gates (even without the final shuffle layer).

The Circuit-Phasing PSI circuit of [PSSZ15] uses Cuckoo hashing to O(n)
bins by one party and simple hashing by the other party which maps at most
O(log n/ log log n) elements per bin. Therefore, the Circuit-Phasing circuit has
a size of O(σn log n/ log log n) gates.

The recent circuit-based PSI protocol of [CO18] applies a protocol based on
OT extension to compute private set membership in each bin. The outputs of
the invocations of this protocol are input to a comparison circuit. The circuit
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itself computes a linear number of comparisons, but the total communication
complexity of the private set membership protocols is of the same order as that
of the Circuit-Phasing circuit [PSSZ15] with O(σn log n/ log log n) gates.

Another recent circuit-based PSI protocol of [FNO18, Sect. 8] has communi-
cation complexity O(σn log log n). It uses hashing to O(n) bins where each bin
has multiple buckets and then runs the SCS circuit of [HEK12] to compute the
intersection of the elements in the respective bins.

The two-dimensional Cuckoo hashing circuit of [PSWW18] uses a new variant
of Cuckoo hashing in two dimensions and has an almost linear complexity of
ω(σn) gates.

In this work, we present the first circuit-based PSI protocol with a true linear
complexity of O(σn) gates.

PSI Cardinality. Several protocols for securely computing the cardinality of
the intersection, i.e., |X ∩ Y |, were proposed in the literature. These protocols
have linear complexity and are based on public-key cryptography, namely Diffie-
Hellman [DGT12], the Goldwasser-Micali cryptosystem [DD15], or additively
homomorphic encryption [DC17]. However, these protocols reveal the cardinality
of the intersection to one of the parties. In contrast, circuit-based PSI protocols
can easily be adapted to efficiently compute the cardinality and even functions
of it using mostly symmetric cryptography.

1.5 Our Contributions

In summary, in this paper we present the following contributions:

– The first circuit-based PSI protocol with linear asymptotic communication
overhead. We remark that achieving a linear overhead is technically hard
since hashing to a table of linear size requires a stash of super-linear size in
order to guarantee a negligible failure probability. It is hard to achieve linear
overhead with objects of super-linear size.

– A circuit-based PSI protocol with small constants and an improved concrete
overhead over the state of the art. As a special case, we consider a very
common variant of PSI, namely threshold PSI, in which the intersection is
revealed only if it is bigger/smaller than some threshold. Surprisingly, our
protocol is 1–2 orders of magnitude more efficient than the state-of-the-art
[ZC18] and has the same asymptotic communication complexity of O(n),
despite the fact that the protocol in [ZC18] is a special purpose protocol for
threshold-PSI.

– Our protocol supports associating data (“payload”) with each input (from
both parties), and compute a function that depends on the data associated
with the items in the intersection. This property was not supported by the
Phasing circuit-based protocol in [PSSZ15]. It is important for applications
that compute some function of data associated with the items in the inter-
section, e.g., aggregate revenues from common users (cf. Sect. 1.2).
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– On a technical level, we present a new paradigm for handling ω(1) stash sizes
and obtaining an overall overhead that is linear. This is achieved by running
an extremely simple dual-execution variant of the protocol.

– Finally, with regards to concrete efficiency, we introduce a circuit-based PSI
protocol with linear complexity. This is achieved by using Cuckoo hashing
with K = 3 instead of K = 2 hash functions, and no stash. This protocol
substantially reduces communication (by a factor of 2.6x to 12.8x) and run-
time (by a factor of 2.8x to 5.8x) compared to the best previous circuit-based
PSI protocol of [PSWW18].

2 Preliminaries

2.1 Setting

There are two parties, which we denote as P1 (the “receiver”) and P2 (the
“sender”). They have input sets, X and Y , respectively, each of which contains
n items of bitlength λ. We assume that both parties agree on a function f
and wish to securely compute f(X ∩ Y ). They also agree on a circuit C that
receives the items in the intersection as input and computes f . That is, C has
O(nλ) input wires if we consider a computation on the elements themselves or
O(n(λ + ρ)) if we consider a computation on the elements and their associated
payloads where the associated payload of each item has bitlength ρ. We denote
the computational and statistical security parameters by κ and σ, respectively.
Denote the set 1, . . . , c by [c]. We use the notation X(i) to denote the i-th element
in the set X.

2.2 Security Model

This work, similar to most protocols for private set intersection, operates in
the semi-honest model, where adversaries may try to learn as much informa-
tion as possible from a given protocol execution but are not able to deviate
from the protocol steps. This is in contrast to malicious adversaries which are
able to deviate arbitrarily from the protocol. PSI protocols for the malicious
setting exist, but they are less efficient than protocols for the semi-honest set-
ting, e.g., [FNP04,DSMRY09,HN10,DKT10,FHNP16,RR17a,RR17b]. The only
circuit-based PSI protocol that can be easily secured against malicious adver-
saries is the Sort-Compare-Shuffle protocol of [HEK12]: here a circuit of size O(n)
can be used to check that the inputs are sorted, resulting in an overall complex-
ity of O(n log n). For the recent circuit-based PSI protocols that rely on Cuckoo
hashing, ensuring that the hashing was done correctly remains the challenge.The
semi-honest adversary model is appropriate for scenarios where execution of the
intended software is guaranteed via software attestation or business restrictions,
and yet an untrusted third party is able to obtain the transcript of the protocol
after its execution, by stealing it or by legally enforcing its disclosure.
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FUNCTIONALITY 1 (Two-Party Computation)

Parameters. The Boolean circuit C to be computed, with I1, I2 inputs and
O1, O2 outputs associated with P1 and P2 resp.
Inputs. P1 inputs bits x1, . . . , xI1 and P2 inputs bits y1, . . . , yI2 .
Outputs. The functionality computes the circuit C on the parties’ inputs and
returns the outputs to the parties.

2.3 Secure Two-Party Computation

There are two main approaches for generic secure two-party computation of
Boolean circuits with security against semi-honest adversaries: (1) Yao’s garbled
circuit protocol [Yao86] has a constant round complexity and with today’s most
efficient optimizations provides free XOR gates [KS08], whereas securely eval-
uating an AND gate requires sending two ciphertexts [ZRE15]. (2) The GMW
protocol [GMW87] also provides free XOR gates and also sends two ciphertexts
per AND gate using OT extension [ALSZ13].

The main advantage of the GMW protocol is that all symmetric crypto-
graphic operations can be pre-computed in a constant number of rounds in a
setup phase, whereas the online phase is very efficient, but requires interaction
for each layer of AND gates. In more detail, the setup phase is independent of the
actual inputs and precomputes multiplication triples for each AND gate using
OT extension in a constant number of rounds. The online phase begins when
the inputs are provided and involves a communication round for each layer of
AND gates. See [SZ13] for a detailed description and comparison between Yao
and GMW.

In our protocol we make use of Functionality 1.

2.4 Cuckoo Hashing

Cuckoo hashing [PR01] uses two hash functions h0, h1 to map n elements to
two tables T0, T1 which each contain (1 + ε)n bins. (It is also possible to use a
single table T with 2(1 + ε)n bins. The two versions are essentially equivalent).
Each bin accommodates at most a single element. The scheme avoids collisions
by relocating elements when a collision is found using the following procedure:
Let b ∈ {0, 1}. An element x is inserted into a bin hb(x) in table Tb. If a prior
item y exists in that bin, it is evicted to bin h1−b(y) in T1−b. The pointer b is
then assigned the value 1− b. The procedure is repeated until no more evictions
are necessary, or until a threshold number of relocations has been reached. In the
latter case, the last element is put in a special stash. It was shown in [KMW09]
that for a stash of constant size s the probability that the stash overflows is
at most O(n−(s+1)). It was also shown in [GM11] that this failure probablity is
negligilble when the stash is of size O(log n). An observation in [KM18] shows
that this is also the case when s = O(ω(1) · log n

log log n ). After insertion, each item
can be found in one of two locations or in the stash.
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2.5 PSI Based on Hashing

Existing constructions for circuit-based PSI require the parties to reorder their
inputs before inputting them to the circuit. In the sorting network-based circuit
of [HEK12], the parties sort their inputs. In the hashing-based construction
of [PSSZ15], the parties map their items to bins using a hashing scheme.

It was observed as early as [FNP04] that if the two parties agree on the same
hash function and use it to assign their respective input to bins, then the items
that one party maps to a specific bin only need to be compared to the items
that the other party maps to the same bin. However, the parties must be careful
not to reveal to each other the number of items that they mapped to each bin,
since this leaks information about their input sets. Therefore, the parties agree
beforehand on an upper bound m for the maximum number of items that can
be mapped to a bin (such upper bounds are well known for common hashing
algorithms, and can also be substantiated using simulation), and pad each bin
with random dummy values until it has exactly m items in it. If both parties use
the same hash algorithm, then this approach considerably reduces the overhead
of the computation from O(n2) to O(β · m2) where β is the number of bins.

When using a random hash function h to map n items to n bins such that x
is mapped to bin h(x), the most occupied bin has at most m = lnn

ln lnn (1 + o(1))
items with high probability [Gon81]. For instance, for n = 220 and a desired
error probability of 2−40, a careful analysis shows that m = 20. Cuckoo hashing
is much more promising, since it maps n items to 2n(1+ ε) bins, where each bin
stores at most m = 1 items.

It is tempting to let both parties, P1 and P2, map their items to bins using
Cuckoo hashing, and then only compare the item that P1 maps to a bin with
the item that P2 maps to the same bin. The problem is that P1 might map x
to h0(x) whereas P2 might map it to h1(x). Unfortunately, they cannot use a
protocol where P1’s value in bin h0(x) is compared to the two bins h0(x), h1(x)
in P2’s input, since this reveals that P1 has an item which is mapped to these two
locations. The solution used in [FHNP16,PSZ14,PSSZ15] is to let P1 map its
items to bins using Cuckoo hashing, and P2 map its items using simple hashing.
Namely, each item of P2 is mapped to both bins h0(x), h1(x). Therefore, P2

needs to pad its bins to have exactly m = O(log n/ log log n) items in each bin,
and the total number of comparisons is O(n log n/ log log n).

3 OPPRF – Oblivious Programmable PRF

Our protocol builds on a (batched) oblivious programmable pseudorandom func-
tion (OPPRF). In this section we gradually present the properties required by
that kind of a primitive, by first describing simpler primitives, namely, Pro-
grammable PRF (and its batched version) and Oblivious PRF.

3.1 Oblivious PRF

An oblivious PRF (OPRF) [FIPR05] is a two-party protocol implementing
a functionality between a sender and a receiver. Let F be a pseudo-random
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function (PRF) such that F : {0, 1}κ × {0, 1}� → {0, 1}�. The sender inputs
a key k to F and the receiver inputs q1 . . . , qc. The functionality outputs
F (k, q1), . . . , F (k, qc) to the receiver and nothing to the sender. In another vari-
ant of oblivious PRF the sender is given a fresh random key k as an output
from the functionality rather than choosing it on its own. In our protocol we will
make use of a “one-time” OPRF functionality in which the receiver can query a
single query, namely, the sender inputs nothing and the receiver inputs a query
q; the functionality outputs to the sender a key k and to the receiver the result
Fk(q). Let us denote that functionality by FOPRF.

3.2 (One-Time) Programmable PRF (PPRF)

A programmable PRF (PPRF) is similar to a PRF, with the additional prop-
erty that on a certain “programmed” set of inputs the function outputs “pro-
grammed” values. Namely, for an arbitrary set X and a “target” multi-set T ,
where |X| = |T | and each t ∈ T is uniformly distributed3, it is guaranteed
that on input X(i) the function outputs T (i). Let T be a distribution of such
multi-sets, which may be public to both parties.

The restriction of the PPRF to be only one-time comes from the fact that we
allow the elements in T to be correlated. If the elements are indeed correlated
then by querying it two times (on the correlated positions) it would be easy to
distinguish it from a random function.

We capture the above notion by the following formal definition:

Definition 1. An 	-bits PPRF is a pair of algorithms F̂ = (Hint, F ) as follows:

– Hint(k,X, T ) → hintk,X,T : Given a uniformly random key k ∈ {0, 1}κ, the
set X where |X(i)| = 	 for all i ∈ [|X|] and a target multi-set T with |T | = |X|
and all elements in T are uniformly distributed (but may be correlated), output
the hint hintk,X,T ∈ {0, 1}κ·|X|.

– F (k, hint, x) → y�. Given a key k ∈ {0, 1}κ, a hint hint ∈ {0, 1}κ·|X| and an
input x ∈ {0, 1}�, output y� ∈ {0, 1}�.

We consider two properties of a PPRF, correctness and security:

– Correctness. For every k, T and X, and for every i ∈ [|X|] we have:

F (k, hint,X(i)) = T (i).

– Security. We say that an interactive machine M is a PPRF oracle over F̂ if,
when interacting with a “caller” A, it works as follows:

1. M is given a set X from A.
2. M samples a uniformly random k ∈ {0, 1}κ and T from T , invokes
hint ← Hint(k,X, T ) and hands hint to A.

3 We require that each element in T is uniformly random but the elements may be
correlated.
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CONSTRUCTION 2 (PPRF)

Let F ′ : {0, 1}κ × {0, 1}� → {0, 1}� be a PRF.

– Hint(k, X, T ). Interpolate a polynomial p over the points{(
X(i) , F ′

k(X(i)) ⊕ T (i)
)}

i∈[|X|]. Return p as the hint.

– F (k, hint, x). Interpret hint as a polynomial, denoted p. Return F ′
k(x) ⊕

p(x).

3. M is given an input x ∈ {0, 1}� from A and responds with F (k, hint, x).
4. M halts (any subsequent queries will be ignored).

The scheme F̂ is said to be secure if, for every X input by A (i.e. the caller),
the interaction of A with M is computationally indistinguishable from the
interaction with the PPRF oracle S, where S outputs a uniformly random
“hint” {0, 1}κ·|X| and a“PRF result” from {0, 1}�.

The definition is reminiscent of a semantically secure encryption scheme.
Informally, semantic security means that whatever is efficiently computable
about the cleartext given the ciphertext, is also efficiently computable with-
out the ciphertext. Also here, whatever can be efficiently computable given X
is also efficiently computable given only |X|. That implicitely means that the
interaction with a PPRF oracle M over (KeyGen, F ) does not leak the elements
in X.

Our security definition diverges from that of [KMP+17] in two aspects:

1. In [KMP+17], A has many queries to M in Step 3 of the interaction, whereas
our definition allows only a single query. In the (n, t)-security definition
in [KMP+17] this corresponds to setting t = 1. Our definition is weaker
in this sense, but this is sufficient for our protocol as we invoke multiple
instances of the one-time PPRF.

2. The definition in [KMP+17] compensates for the fact that A has many
queries, by requiring that the function F outputs an independent target value
for every x ∈ X. Our definition is stronger as it allows having correlated
target elements in T . In the most extreme form of correlation all values in
T are equal, which makes the task of the adversary “easier”. We require the
security property to hold even in this case.

We present in Construction 2 a polynomial-based PPRF scheme that is based
on the construction in [KMP+17].

Theorem 3. Construction 2 is a PPRF.

Proof. It is easy to see that this construction is correct. For every k,X and T ,
let p = Hint(k,X, T ), then for all i ∈ |X| it holds that

F (k, p,X(i)) = F ′(k,X(i)) ⊕ p(X(i))
= F ′(k,X(i)) ⊕ F ′(k,X(i)) ⊕ T (i)
= T (i)
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as required.We now reduce the security of the scheme to the security of a PRF
(i.e., to the standard PRF definition, with many oracle accesses). Let M be a
PPRF oracle over F̂ of Construction 2. Assume there exists a distinguisher D and
a caller A such that D distinguishes between the output of M after interacting
with A, when A chooses X and x as its inputs, and the output of S(1κ, |X|)
(where S is the simulator described in Definition 1) with probability μ.

We present a distinguisher D′ that has an oracle access to either a truly
random function R(·) or a PRF F̃ (k, ·). The distinguisher D′ runs as follows:

Given an oracle O to either R(·) or F̃ (k, ·), D′ samples T from T , then, for
every i ∈ [|X|] it queries the oracle on X(i) and obtains O(X(i)). It interpolates
the polynomial p using the points {(X(i),O(X(i)) ⊕ T (i))}i∈|X| and provides
p’s coefficients to D. For the query x, D′ hands D the value O(x) ⊕ p(x) and
outputs whatever D outputs.

Observe that if O is truly random, then the values {R(X(i)) ⊕ T (i))}i∈[|X|]
are uniformly random and thus the polynomial p is uniformly random and inde-
pendent of T . If x /∈ X then the value R(x)⊕p(x) is obviously random since R(x)
is independent of p. In addition, if x = X(i) for some i, then the value R(x)⊕p(x)
equals T (i) for some i ∈ [|X|], which is uniformly random since T is sampled from
T and every t ∈ T is distributed uniformly. Therefore, the pair (p,R(x) ⊕ p(x))
is distributed identically to the output of S. On the other hand, if O is a pseu-
dorandom function, then the values {Fk(X(i)) ⊕ T (i))}i∈[|X|] from which the
polynomial p is interpolated, along with the second output Fk(x)⊕p(x), are dis-
tributed identically to the output of M upon an interaction with A. This leads
to the same distinguishing success probability μ, for both D and D′, which must
be negligible. �	

3.3 Batch PPRF

Note that the size of the hint generated by algorithm KeyGen is κ · |X| (i.e.,
the polynomial is represented by |X| coefficients, each of size κ bits). In
our setting we use an independent PPRF per bin, where each bin contains
at most O(log n/ log log n) values. Therefore the hint for one bin is of size
O(κ·log n/ log log n), and the size of all hints is O(κ·n·log n/ log log n). However,
we know that the total number of values in all P2’s bins is 2n, since each value is
stored in (at most) two locations of the table4. We next show that it is possible
to combine the hints of all bins to a single hint of length 2n, thus reducing the
total communication for all hints to O(n).

We first present a formal definition of the notion of batch PPRF.

Definition 2. An 	-bits, β-bins PPRF (or (	, β)-PPRF) is a pair of algorithms
F̂ = (KeyGen, F ) as follows:

4 In the actual implementation we use a more general variant of Cuckoo hashing with
a parameter K ∈ {2, 3} where each item is stored in K locations in the table. The
size of the hint will be K · n.
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CONSTRUCTION 4 (Batched PPRF)

Let F ′ : {0, 1}κ × {0, 1}� → {0, 1}� be a PRF.

– Hint(k, X, T ).
Given the keys k = k1, . . . , kβ , the sets X = X1, . . . , Xβ and the tar-

get multi-sets T = T1, . . . , Tβ , interpolate the polynomial p using
the points {(Xj(i), F

′(kj , Xj(i)) ⊕ Tj(i))}j∈β;i∈[|Xj |]. Return p as the

hint.
– F (k, hint, x).

Interpret hint as a polynomial, denoted p. Return F ′(k, x)⊕ p(x). (Same
as in Construction 2.)

– Hint(k,X, T ) → hintk,X,T . Given a set of uniformly random and independent
keys k = k1, . . . , kβ ∈ {0, 1}κ, the sets X = X1, . . . , Xβ where |Xj(i)| = 	
for all j ∈ [β] and i ∈ [|X|] and a target multi-sets T = T1, . . . , Tβ where for
every j ∈ [β] it holds that |Tj | = |Xj | and all elements in Tj are uniformly dis-
tributed (but, again, may be correlated), output the hint hintk,X,T ∈ {0, 1}κ·N

where N =
∑β

j=1 |Xj |.
– F (k, hint, x) → y�. Given a key k ∈ {0, 1}κ, a hint hint ∈ {0, 1}κ·N and an

input x ∈ {0, 1}�, output y� ∈ {0, 1}�.

As before, we want a batched PPRF to have the following properties:

– Correctness. For every k = k1, . . . , kβ, T = T1, . . . , Tβ and X = X1, . . . , Xβ

as above, we have
F (kj , hint,Xj(i)) = Tj(i)

for every j ∈ [β] and i ∈ [|Xj |].
– Security. We say that an interactive machine M is a batched PPRF oracle

over F̂ if, when interacting with a “caller” A, it works as follows:
1. M is given X = X1, . . . , Xβ from A.
2. M samples uniformly random keys k = k1, . . . , kβ and target multi-sets
T = T1, . . . , Tβ from T , and invokes hint ← Hint(k,X, T ) hands hint to
A.
3. M is given β queries x1, . . . , xβ from A and responds with y�

1 , . . . , y
�
β

where y�
j = F (kj , hint, xj).

4. M halts.
The scheme F̂ is said to be secure if for every disjoint sets X1, . . . , Xβ (where
N =

∑
j∈[β] |Xj |) input by a PPT machine A, the output of M is computa-

tionally indistinguishable from the output of S(1κ, N), such that S outputs a
uniformly random hint ∈ {0, 1}κ·N and a set of β uniformly random values
from {0, 1}�.

Construction 4 is a batched version of Construction 2.

Theorem 5. Construction 4 is a secure (	, β)-PPRF.
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Proof. For correctness, note that for every j ∈ [β] and i ∈ [|Xj |] it holds that

F (kj , p,Xj(i)) = F ′(kj ,Xj(i)) ⊕ p(Xj(i))
= F ′(ki,Xj(i)) ⊕ F ′(ki,Xj(i)) ⊕ Tj(i)
= Tj(i).

The security of the scheme is reduced to the security of a batch PRF F̃ .
Informally, a batch PRF works as follows: Sample uniform keys k1, . . . , kβ ∈
{0, 1}κ and for a query (j, x) respond with F̃ (kj , x). One can easily show that a
batch PRF is indistinguishable from a set of β truly random functions R1, . . . , Rβ

where on query (j, x) the output is Rj(x).
Let M be a batched PPRF oracle over F̂ of Construction 4. Assume there

exists a distinguisher D and a caller A such that D distinguishes between the
output of M after interacting with A, when A chooses X1, . . . , Xβ and x1, . . . , xβ

as its inputs, and the outputs of S(1κ, N), where S is the simulator described in
Definition 2.

We present a distinguisher D′ that has an oracle access O, to either a batch
PRF F̃ (kj , ·) or a set of truly random functions Rj(·) (where j ∈ [β]). The distin-
guisher D′ works as follows: sample T1, . . . , Tβ from T , interpolate a polynomial
p with the points {(Xj(i),O(j,Xj(i)) ⊕ Tj(i))}j∈[β];i∈[|Xj |] and hand p’s coeffi-
cients to D as the hint. Then, for query xj of D, respond with y�

j = O(xj)⊕p(xj).
Finally, D′ outputs whatever D outputs.

First note that if O is a set of truly random functions then the polynomial p is
uniformly random and independent of y�

1 , . . . , y
�
β because all interpolation points

are uniformly random. Now, if xj /∈ Xj then the result is obviously uniformly
random. Otherwise, if xj = Xj(i) for some i then note that the result is Tj(i)
which is uniformly random as well, since the other elements in Tj are unknown.
Thus, this is distributed identically to the output of S(1κ, N). On the other
hand, if O is a batch PRF then the interpolation points {(Xj(i),O(j,Xj(i)) ⊕
Tj(i))}j∈[β];i∈[|Xj |] along with y�

1 , . . . , y
�
β are distributed identically to the output

of M upon an interaction with A. This leads to the same distinguishing success
probability for both D and D′, which must be negligible. �	

3.4 Batch Oblivious Programmable Pseudorandom Functions

In this section we define a two-party functionality for batched oblivious pro-
grammable pseudorandom function (Functionality 6), which is the main building
block in our PSI protocols. The functionality is parametrised by a (	, β)-PPRF
F̂ = (Hint, F ) and interacts with a sender, who programs F̂ with β sets, and
a receiver who queries F̂ with β queries. The functionality guarantees that the
sender does not learn what are the receiver’s queries and the receiver does not
learn what are the programmed points.

Given a protocol that realizes FOPRF and a secure (	, β)-PPRF, the realization
of Functionality 6 is simple and described in Protocol 7.

Theorem 8. Given an (	, β)-PPRF, Protocol 7 securely realizes Functionality
6 in the FOPRF-hybrid model.
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FUNCTIONALITY 6 (Batch Oblivious PPRF)

Parameters. A (�, β)-PPRF F̂ = (Hint, F ).
Sender’s inputs. These are the following values:

– Disjoint sets X = X1, . . . , Xβ where |Xj(i)| ∈ {0, 1}� for every j ∈ [β] and
i ∈ [|Xj |]. Let the total number of elements in all sets be N =

∑
j |Xj |.

– The sets T = T1, . . . , Tβ sampled independently from T .

Receiver’s inputs. The queries x1, . . . , xβ ∈ {0, 1}�.

The functionality works as follows:

1. Sample uniformly random and independent keys k = k1, . . . , kβ .
2. Invoke Hint(k, X, T ) → hint.
3. Output hint to P1 (P2 can compute it on its own from k, X, T ).
4. For every j ∈ [β] output F (kj , hint, xj) to the receiver.

PROTOCOL 7 (Batch Oblivious PPRF)

The protocol is defined in the FOPRF-hybrid model and receives an (�, β)-PPRF
F̂ = (Hint, F ) as a parameter. The underlying PRF in both FOPRF and F̂ is
the same and denoted F ′. The protocol proceeds as follows:

1. The parties invoke β instances of FOPRF. In the j ∈ [β] instance, P2 inputs
nothing and receives the key kj , and P1 inputs xj and receives F ′(kj , xj).

2. Party P2 invokes p ← Hint(k, X, T ) and sends p to P1.
3. For every j ∈ [β], party P1 outputs F ′(kj , xj) ⊕ p(xj).

Proof. Note that party P2 receives nothing in the functionality but receives
k1, . . . , kβ in the real execution as output from FOPRF. Therefore, P2’s view can
be easily simulated with the simulator of FOPRF.

As for the view of P1, from the security of the PPRF it follows that it is
indistinguishable from the output of S(1κ, N) where S is the simulator from
Definition 2. �	

4 A Super-Linear Communication Protocol

4.1 The Basic Construction

Let Ca,b be a Boolean circuit that has 2 · a · (b + λ) input wires, divided to a
sections of 2b + λ inputs wires each. For each section, the first (resp. second)
β input wires are associated with P1 (resp. P2). The last λ input wires are
associated with P1 as well. Denote the first (resp. second) β bits input to the i-
th section by ui,1 (resp. vi,2) and the last λ bits by zi. The circuit first compares
ui,1 to vi,2 for every i ∈ [α] and produces wi = 1 if ui,1 = vi,2 and 0 otherwise.
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PROTOCOL 9 (Private Set Intersection)

Inputs. P1 has X = {x1, . . . , xn} and P2 has Y = {y1, . . . , yn}.
Protocol. The protocol proceeds in 3 steps as follows:
1. Hashing. The parties agree on hash functions H1, H2 : {0, 1}� → [β],

which are used as follows:
• P1 uses H1, H2 in a Cuckoo hashing construction that maps x1, . . . , xn

to a table Table1 of β = 2(1 + ε)n entries, where input xi is mapped to
either entry Table1[H1(xi)] or Table1[H2(xi)] or the stash Stash (which
is of size s)a. Since β > n, P1 fills the empty entries in Table1 with a
uniformly random value.

• P2 maps y1, . . . , yn to Table2 of β entries using both H1 and H2. That
is, yi is placed in both Table2[H1(yi)] and Table2[H2(yi)]. (Obviously,
some bins will have multiple items mapped to them. This is not an issue,
and there is even no need to use a probabilistic upper bound on the
occupancy of the bin.)

2. Computing batch OPPRF. P2 samples uniformly random and inde-
pendent target values t1, . . . , tβ ∈ {0, 1}κ. The parties invoke an (λ, β)-
OPPRF (Functionality 6; recall that λ is the bit-length of the items).
P2 inputs Y1, . . . , Yβ and T1, . . . , Tβ where Yj = Table2[j] = {y||j | y ∈
Y ∧ j ∈ {H1(y), H2(y)}} and Tj has |Yj | elements, all equal to tj . If,
j = H1(y) = H2(y) for some y ∈ Y then P2 adds a uniformly random ele-
ment to Table2[j]. P1 inputs Table1[1], . . . ,Table1[β] and receives y�

1 , . . . , y�
β .

According to the definition of the OPPRF, if Table1[j] ∈ Table2[j] then
y�

j = tj .
3. Computing the circuit. The parties use a two-party computation (Func-

tionality 1) with the circuit Cβ+s·n,γ .b For section j ∈ [β] of the circuit,
party P1 inputs the first γ bits of y�

j and Table1[j], and P2 inputs the first
γ bits tj ; for the β + j-th section P1 inputs Stash[�j/n� + 1] and P2 inputs
Table[(j mod n) + 1].

a We discuss the value of s in Sect. 4.2 and the value of ε in Sect. 7.1.
b We discuss the value of γ in Sect. 4.2.

Then, the circuit computes and outputs f(Z) where Z = {zi | wi = 1}i∈[a] and
f is the function required to be computed in the FPSI,f functionality.

Correctness. If z ∈ X ∩ Y then z is mapped to both Table2[H1(z)] and
Table2[H2(z)] by P2. There are two cases: (1) z is mapped to Table1[Hb(z)]
by P1 for b ∈ {1, 2}. (2) z is mapped to Stash by P1. In the first case the match
is found in section Hb(z) of the circuit; in the second case the match is certainly
found since every item in the Stash is compared to every item in Y .

Two items x ∈ X and y ∈ Y where x 
= y will not be matched, since by the
properties of the PPRF P1 receives a pseudorandom output. Since the parties
only input the first γ bits of the PPRF results, those values will be matched with
probability 2−γ . See Sect. 4.2 for a discussion on limiting the failure probability.
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Security. The security of the protocol follows immediately from the security of
the OPPRF and the two-party computation functionalities.

4.2 Limiting the Failure Probability

Protocol 9 might fail due to two reasons:

– Stash size. For an actual implementation, one needs to fix s and ε so that the
stash failure probability will be smaller than 2−σ. If the stash is overflowed
(i.e., more than s items are mapped to it) then the protocol fails.5 As dis-
cussed in Sect. 2, setting s = O(log n/ log log n) makes the failure probability
negligible.

– Input encoding. The circuit compares the first γ bits of y�
j of P1 to the first

γ bits of tj of P2. Thus, the false positive error probability in each comparison
equals 2−γ (due to F (x), for x /∈ Y , being equal to the programmed output),
and therefore the overall probability of a false positive is at most β · 2−γ =
2(1 + ε)n · 2−γ .

4.3 Reducing Computation

A major computation task of the protocol is interpolating the polynomial which
encodes the hint. If we use Cuckoo hashing with K = O(1) hash functions
then the polynomial encodes O(n) items and is of degree O(n). This section
describes how to reduce the asymptotic overhead of computing the polynomial
and therefore we will use asymptotic notation. The concrete overhead is discussed
in Sect. 7.2.

The overhead of interpolating a polynomial of degree O(n) over arbitrary
points is O(n2) operations using Lagrange interpolation, or O(n log2 n) opera-
tions using FFT. The overhead can be reduced by dividing the polynomial to
several lower-degree polynomials. In particular, let us divide the β = O(n) bins
to B “mega-bins”, each encompassing β/B bins. Suppose that we have an upper
bound such that the number of items in a mega-bin is at most m, except with
negligible probability. Then the protocol can invoke a batch OPPRF for each
mega-bin, using a different hint polynomial. Each such polynomial is of degree
m. Therefore the computation overhead is O(B · m log2 m). Ideally, the upper
bound on the number of items in a mega-bin, m, is of the same order as the
expected number of items in a mega-bin, O(n/B). In this case the computation
overhead is O(n/B · B · log2(n/B)) = O(n log2(n/B)) and will be minimized
when the number of mega-bins B is maximal.

It is known that when mapping O(n) items to B = n/ log n (mega-)bins,
then with high probability the most occupied bin has less than m = O(n/B) =
O(log n) items. When interested in concrete efficiency we can use the analysis

5 In that case either not all items are stored in the stash – resulting in the protocol
ignoring part of the input and potentially computing the wrong output, or P1 needs
to inform P2 that it uses a stash larger than s – resulting in a privacy breach.
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in [PSZ18] to find the exact number of mega-bins to make the failure prob-
ability sufficiently small (see Sect. 7.2). When interested in asymptotic analy-
sis, it is easy to deduce from the analysis in [PSZ18] that with B = n/ log n
mega-bins, the probability of having more than ω(log n) items in a mega-
bin is negligible. Therefore when using this number of mega-bins, the com-
putation overhead is only ω((n/ log n) · log2(n)) = ω(n log n) using Lagrange
interpolation. Using FFT interpolation, the asymptotic overhead is reduced to
ω((n/ log n) log n(log log n)2) = ω(n · (log log n)2). But since we map relatively
few items to each mega-bin the gain in practice of using FFT is marginal.

5 A Linear Communication Protocol

We describe here a protocol in which the circuit computes only O(n) compar-
isons. This protocol outperforms the protocols in Sect. 4.1 or in [PSWW18,CO18]
which have a circuit that computes ω(n) comparisons. A careful analysis reveals
that those protocols require O(n) comparisons to process all items that were
mapped to the Cuckoo hash table, and an additional s ·n comparisons to process
the s = ω(1) items that were mapped to the stash. We note that the concurrent
and independent work of [FNO18] proposes to use a PSI protocol for unbal-
anced set sizes, such as in the work of [KLS+17], to reduce the complexity of
handling the stash from ω(n) to O(n) in PSI protocols. However, their idea can
only be applied when the output is the intersection itself. When the output is a
function of the intersection then their protocol has communication complexity
O(n log log n), cf. Sect. 1.4). In contrast, we achieve O(n) communication even
when the output is a function of the intersection.

We present two different techniques to achieve a linear communication pro-
tocol with failure probability that is negligible in the statistical security param-
eter σ. The first technique (see Sect. 5.1) is implied by a mathematical analysis
of the failure probability (as argued in Sect. 1.4). The second technique (see
Sect. 5.2) is implied by the empirical analysis presented in [PSZ18].

5.1 Linear Communication via Dual Execution

We overcome the difficulty of handling the stash by running a modified version
of the protocol in three phases. The first phase is similar to the basic protocol,
but ignores the items that P1 maps to the stash. Therefore this phase inputs to
the circuit the O(n) results of comparing P1’s input items (except those mapped
to the stash) with all of P2’s items. The second phase reverses the roles of the
parties, and in addition now P1 inputs only the items that it previously mapped
to the stash. In this phase P2 uses Cuckoo hashing and might map some items
to the stash. The last phase only compares the items that P1 mapped to the
stash in the first phase, to the items that P2 mapped to the stash in the second
phase, and therefore only needs to handle very few items. Below, we describe
our protocol in more detail: In Protocol 10, we describe our protocol in more
detail.
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PROTOCOL 10 (PSI with Linear Communication)

Inputs. P1 has X = {x1, . . . , xn} and P2 has Y = {y1, . . . , yn}.
Protocol. The protocol proceeds in 3 phases as follows:

1. Run steps 1-2 of Protocol 9. Denote the items mapped to P1’s table by XT

(i.e., excluding the items mapped to the stash). In the end of this phase,
for every j ∈ [β], P1 holds the OPPRF result y�

j and P2 holds the target
value tj .

2. Reverse the roles of P1 and P2 and run steps 1-2 of Protocol 9 again, where
P1 inputs XS = X�XT (i.e., only the items that were previously mapped
to the stash) and P2 inputs Y . Since the roles are reversed then P1 maps
XS using simple hashing and P2 maps Y using Cuckoo hashing. Denote
the items mapped to the table and stash of P2 by YT and YS , respectively.
In the end of this phase, for every j ∈ [β], P1 has the target value t̃j and
P2 has the OPPRF result ỹ�

j .
3. The parties use secure two-party computation (Functionality 1) with the

circuit C2β+s2,γ (where s is the stash size). For section j ∈ [β] of the
circuit, P1 and P2 input the first γ bits of y�

j and tj resp. For section
j ∈ {β +1, . . . , 2β} of the circuit P1 and P2 input the first γ bits of t̃j and
ỹ�

j , respectively. Finally, for the rest s2 sections of the circuit, the parties
input every combination of XS ×YS (padded with uniformly random items
so that |XS | = |YS | = s).

Correctness & Efficiency. The protocol compares every pair in X × Y and
therefore every item in the intersection is input to the circuit exactly once:
Sections 1, . . . , β of the circuit cover all pairs in XT × Y , sections β + 1, . . . , 2β
cover all pairs in XS × YT and sections 2β + 1, . . . , 2β + s2 covers all pairs in
XS × YS . This implies that the result of the three-phase construction is exactly
the intersection X ∩ Y . The communication complexity in the first two steps of
the protocol is O(n · κ) as they involve the execution of a OPPRF with at most
O(n) items to the parties. The communication complexity of the third step is
O(n · γ) since it involves 2n + s2 comparisons of γ-bit elements. Since the stash
size is s = O(log n), overall there are O(n) comparisons.

Security. As in the basic protocol (see Sect. 4.1), the security of this protocol
is implied by the security of the OPPRF and secure two-party computation.

5.2 Linear Communication via Stash-Less Cuckoo Hashing

The largest communication cost factor in our protocols is the secure evaluation of
the circuit. The asymptotically efficient Protocol 10 requires computing at least
two copies of the basic circuit (for Phases 1 and 2), and it is therefore preferable
to implement a protocol which has better concrete efficiency. We design a pro-
tocol that requires no stash (while achieving a small failure probability of less
than 2−40), and hence uses no dual execution.



142 B. Pinkas et al.

In order to be able to not use the stash, hashing is done with K > 2 hash
functions. We take into account the results of [PSZ18], which ran an empirical
evaluation for the failure probability of Cuckoo hashing (failure is defined as the
event where an item cannot be stored in the table and must be stored in the
stash). They run experiments for a failure probability of 2−30 with K = 3, 4 and
5 hash functions, and extrapolated the results to yield the minimum number of
bins for achieving a failure probability of less than 2−40. The results showed that
β = 1.27n, 1.09n, and 1.05n bins are required for K = 3, 4, and 5, respectively.

The main obstacle in using more than two hash functions in previous works
on PSI was that the communication was still linear in O(maxb · β), where maxb

is the maximal number of elements in a bin of the simple hash table. The value
of maxb increases with K since each item is stored K times in the simple hash
table. In our protocol the communication for the circuit is independent of maxb,
as it only depends on the number of bins β. The communication for sending the
polynomials, whose size is O(K · n · κ), is just a small fraction of the overall
communication and was in our experiments always smaller than 3%. In this
paper, we therefore use K = 3 hash functions for our stash-less protocol.

6 PSI with Associated Payload

In many cases, each input item of the parties has some “payload” data associated
with it. For example, an input item might include an id which is a credit card
number, and a payload which is a transaction that was paid using this credit card.
The parties might wish to compute some function of the payloads of the items
in the intersection (for example, the sum of the financial transactions associated
with these items). However, a straightforward application of our techniques does
not seem to support this type of computation: Recall that P2 might map multiple
items to each bin. The OPPRF associates a single output β to all these items,
and this value is compared in the circuit with the output α of P1. But if P2

inserts a single item to the circuit, it seems that this item cannot encode the
payloads of all items mapped to this bin.

The 2D Cuckoo hashing circuit-based PSI protocol of [PSWW18] handles
payloads well, since each comparison involves only a single item from each party.
While our basic protocol cannot handle payloads, we show here how it can be
adapted to efficiently encode payloads in the input to the circuit.

Let Table1 and Stash be P1’s table and stash after mapping its items using
Cuckoo hashing and let Table2 be P2’s table after mapping its items using simple
hashing. In addition, denote by U(x) and V (y) the payloads associated with
x ∈ X and y ∈ Y respectively and assume that all payloads have the same
length δ. The parties invoke two instances of batch OPPRF as follows:

1. A batch OPPRF where P1 inputs Table1[1], . . . ,Table1[β] and P2 inputs
Table2[1], . . . ,Table2[β] and T1, . . . , Tβ where Tj has |Table2[j]| elements, all
equal to a uniformly random and independent value tj ∈ {0, 1}λ. This is the
same invocation of a batch OPPRF as in Protocol 9. At the end, P1 has the
OPPRF results y�

1 , . . . , y
�
β and P2 has the target values t1, . . . , tj .
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2. In the second batch OPPRF, P2 chooses the target values such that
the elements in the set Tj are not equal. Specifically, P1 inputs
Table1[1], . . . ,Table1[β] and P2 samples t̃1, . . . , t̃β uniformly, and inputs
Table2[1], . . . ,Table2[β] and T1, . . . , Tβ where Tj(i) = t̃j ⊕ V (Table2[j](i)).
Denote the OPPRF results that P1 obtains by ỹ�

1 , . . . , ỹ
�
β .

Then, the circuit operates in the following way: For the j-th section, P1 inputs
Table1[j], y�

j , ỹ�
j and U(Table1[j]), and P2 inputs tj and t̃j . The circuit compares

y�
j to tj . If they are equal then it forwards to the sub-circuit that computes

f the item Table1[j] itself, P1’s payload U(Table1[j]) and P2’s payload ỹ�
j ⊕ t̃j .

This holds since if Table1[j] is the i-th item in P2’s table, namely, Table2[j](i),
then the value ỹ�

j received by P1 is ỹ�
j = t̃j ⊕ V (Table2[j](i)). Thus, ỹ�

j ⊕ t̃j =
V (Table2[j](i)) as required.

Efficiency. The resulting protocol has the same asymptotic complexity as our
initial protocols without payloads. The number of comparisons in the circuit is
the same as in the basic circuit.

Table 1. The results of [PSZ18] for the required stash sizes s for K = 2 hash functions
and β = 2.4n bins, and the minimum OPPRF output bitlength γ to achieve failure
probability < 2−40 when mapping n elements into β bins with Cuckoo hashing. For
K > 2 hash functions we choose a large enough number of bins β to achieve stash
failure probability < 2−40.

# Elements n 28 212 216 220 224

Stash size s for K = 2 12 6 4 3 2

OPPRF output length γ K = 2, β = 2.4n 50 54 58 62 66

K = 3, β = 1.27n, s = 0 49 53 57 61 65

K = 4, β = 1.09n, s = 0 49 53 57 61 65

K = 5, β = 1.05n, s = 0 49 53 57 61 65

7 Concrete Costs

In this section we evaluate the concrete costs of our protocol for concrete values
of the security parameters. We set the computational security parameter to
κ = 128, and the statistical security parameter to σ = 40.

7.1 Parameter Choices for Sufficiently Small Failure Probability

For K = 2 hash functions, following previous works on PSI (e.g., [PSSZ15,
PSWW18]), we set the table size parameter for Cuckoo hashing to ε = 0.2, and
use a Cuckoo table with β = 2n(1 + ε) = 2.4n bins. The resulting stash sizes for
mapping n elements into β = 2.4n bins, as determined by the experiments in
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[PSZ18], are summarized in Table 1. Note that we use here concrete values for
the stash size, and are aiming for a failure probability smaller than 2−40. This
can either be achieved using the basic protocol of Sect. 4.1 with the right choice
of the stash size, or by running the three rounds O(n) complexity protocol of
Sect. 5.

Another option is described in Sect. 5.2, where we use more than two hash
functions (specifically, use K = 3, 4, or 5 functions), with the hash table being of
size β = 1.27n, 1.09n, or 1.05n, respectively. These parameters achieve a failure
probability smaller than 2−40 according to the experimental analysis in [PSZ18].

As described in Sect. 4.2, even if there are no stash failures, the scheme can
fail due to collisions in the output of the PRF, with probability β · 2−γ , where γ
is the output bitlength of the OPPRF. To make this failure probability smaller
than the statistical security parameter (which we set to 40), the output bitlength
of the OPPRF must be γ = 40 + log2 β bits.

7.2 Computing Polynomial Interpolation

We implemented interpolation of polynomials of degree d using an O(d2) algo-
rithm based on Lagrange interpolation in a prime field where the prime is the
Mersenne prime 261 − 1. The runtime for interpolating a polynomial of degree
d = 1024 was 7 ms, measured on an Intel Core i7-4770K CPU with a sin-
gle thread. The runtimefor different values of d behaved (very accurately) as a
quadratic function of d. The actual algorithmsare those implemented in NTL
v10.0 with field arithmetics replaced with our customized arithmetic opera-
tionsover the Mersenne prime 261 − 1. Most importantly, this field enables an
order of magnitude faster multiplication of field elements: multiplying x · y with
|x|, |y| ≤ 61 is implemented by multiplying x and y over Z to obtain z = xy with
|z| ≤ 122. Then the result is the sum of the element represented by the lower 61
bits of z with the element represented by the higher 61 bits of z (and therefore
no expensive modular reduction is required). The Mersenne prime 261 −1 allows
the use of at least 40-bit statistical security for up to n = 220 elements for all our
algorithms using permutation-based hashing (cf. [PSSZ15]). To use larger sets,
we see two possible solutions: (i) using a larger Mersenne prime or (ii) reducing
the statistical security parameter σ (e.g., using σ = 38 for achieving less than 2−σ

failure probability for n = 222 elements, K = 3 hash functions, and β = 1.27n
bins). The required minimum bit-length of the elements using permutation-based
hashing with failure probability 2−σ is computed as 	 = σ + 2 log2 n − log2 β.
The OPPRF output is also ≤ 61 bits in most cases as shown in Table 1.

For reducing the computation complexity of our protocol, we use the app-
roach described in Sect. 4.3, where instead of interpolating a polynomial of degree
K ·n, where K is the number of hash functions and n is the number of elements
for PSI, we interpolate multiple smaller polynomials of degree at most d = 1024.
We therefore have to determine the minimum number of mega-bins B such that
when mapping N = K · n elements to B bins, the probability of having a bin
with more than maxb = 1024 elements is smaller than 2−40. As in the analysis
for simple hashing in [PSZ18], we use the formula from [MR95]:
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P (“∃ bin with ≥ maxb elements”) ≤
B∑

i=1

P (“bin i has ≥ maxb elements”)

= B ·
N∑

i=maxb

(
N

i

)

·
(

1
B

)i

·
(

1 − 1
B

)N−i

.

We depict the corresponding numbers in Table 2. With these numbers and
our experiments for polynomial interpolation described above, the estimated
runtimes for the polynomial interpolation are B · 7 ms. The hints (polynomials)
that need to be sent have size B · maxb · γ bits which is only slightly larger than
the ideal communication of K · n · γ bits when using one large polynomial as
shown in Table 2.

Note that in contrast to many PSI solutions whose main run-time bottleneck
is already network bandwidth (which cannot be easily improved in many settings
such as over the Internet), the run-time of our protocols can be improved by using
multiple threads instead of one thread. Since the interpolation of polynomials for
different mega-bins is independent of each other, the computation scales linearly
in the number of physical cores and thus can be efficiently parallelized.

Table 2. Parameters for mapping N = K · n elements to B mega-bins s.t. each mega-
bin has at most maxb ≤ 1024 elements with probability smaller than 2−40. The lower
half of the table contains the expected costs for the polynomial interpolations.

# hash functions K = 2 K = 3

Set size n = 212 n = 216 n = 220 n = 212 n = 216 n = 220

# mega-bins B 11 165 2663 16 248 4002

Maximum number of
elements maxb

944 1021 1024 975 1021 1024

Polynomial interpola-
tion [in milliseconds]

126 1815 29293 183 2809 45335

Size of hints [in bits] 560736 9770970 169068544 826800 14432856 249980928

Ideal size of hints for
one polynomial [in
bits]

436330 7505580 128477895 651264 11206656 191889408

7.3 Communication and Depth Comparison

We first compute the communication complexity of our basic construction
from Sect. 4.1. The communication is composed of (a) the OPRF evaluations
for each of the B bins, (b) the hints consisting of the polynomials, (c) the circuit
for comparing the outputs of the OPPRFs in each bin, and (d) the circuit for
comparing the s elements on the stash with the n elements of P2.

With regards to (a), the OPRF protocol of [KKRT16], which was also used
in [KMP+17], has an amortized communication of at most 450 bits per OPRF
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evaluation for set sizes up to n = 224 elements (cf. [KKRT16, Table 1]). This
amounts to B · 450 bits of communication.

With regards to (b), for the size of the hints in the OPPRF construction
we use the values given in Table 2. These numbers represent the communication
when using mega-bins, and are slightly larger than the ideal communication of
K · n coefficients of size γ bits each, that would have been achieved by using a
single polynomial for all values. However, it is preferable to use mega-bins since
their usage substantially improves the computation complexity as described in
Sect. 4.3, while the total communication for the hints is at most 3% of the total
communication. (This also shows that any improvements of the size of the hints
will have only a negligible effect on the total communication).

With regards to (c), the circuit compares B elements of bitlength γ, and hence
requires B · (γ − 1) AND gates. With 256 bits per AND gate [ALSZ13,ZRE15]
this yields B · (γ − 1) · 256 bits of communication.

With regards to (d), the final circuit consists of s · n comparisons of
bitlength σ. This requires sn(σ − 1) · 256 bits of communication.

We now analyze the communication complexity of our O(n) protocol
described in Sect. 5. The main difference compared to the basic protocol ana-
lyzed above is that a different method is used for comparing the elements of
the stash, i.e., replacing step (d) above. The new method replaces this step by
letting P2 use Cuckoo hashing of its n elements into B bins and then evaluating
OPRF for each of these bins. This requires B ·450 bits of communication plus B
comparisons of γ bit values. Overall, this amounts to B · (450+(γ −1) ·256) bits
of communication. For simplicity, we omit the communication for comparing the
elements for phase 3 which compares the elements on the two stashes, as it is
negligible.

Comparison to Previous Work. In Table 3, we compare the resulting com-
munication of our protocols to those of previous circuit-based PSI protocols of
[HEK12,PSSZ15,PSWW18,FNO18]. As can be seen from this table, our pro-
tocols improve communication by an integer factor, where the main advantage
of our protocols is that their communication complexity is independent of the
bitlength of the input elements. Namely, for arbitrary input bitlengths, our no-
stash protocol improves the communication over the previous best protocol of
[PSWW18] by a factor of 12.8x for n = 212 to a factor of 10.1x for n = 220. For
fixed bitlength of σ = 32 bits, our no-stash protocol improves communication
over [PSWW18] by a factor of 5.7x for n = 212 to a factor of 2.6x for n = 220.

Circuit Depth. For some secure circuit evaluation protocols like GMW
[GMW87] the round complexity depends on the depth of the circuit. In Table 4,
we depict the circuit depths for concrete parameters of our protocols and previ-
ous work, and show that our circuits have about the same low depth as the
best previous works [PSSZ15,PSWW18]. In more detail, the Sort-Compare-
Shuffle (SCS) circuit of [HEK12] has depth log2 σ · log2 n when using depth-
optimized comparison circuits. The protocols of [PSSZ15,PSWW18] have depth
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Table 3. Communication in MB for circuit-based PSI on n elements of fixed bitlength
σ = 32 (left) and arbitrary bitlength hashed to σ = 40 + 2 log2(n) − 1 bits (right).
The numbers for previous protocols are based on the circuit sizes given in [PSWW18,
Table 3] with 256 bit communication per AND gate. The best values are marked in
bold.

σ = 32 Arbitrary σ

Protocol n = 212 216 220 212 216 220

SCS [HEK12] 104 2 174 42 976 205 4 826 106 144

Circuit-Phasing [PSSZ15] 130 1 683 21 004 320 5 552 97 708

Hashing + SCS [FNO18] - 1 537 21 207 - 3 998 72 140

2D CH [PSWW18] 51 612 6 582 115 1 751 25 532

Ours Basic Sect. 4.1 41 550 8 123 65 870 12 731

Ours Advanced Sect. 5 35 604 10 277 35 604 10 277

Ours No-Stash Sect. 5.2 9 149 2 540 9 149 2 540

Breakdown:

OPRF 0.3 (3%) 5 (3%) 72 (3%) 0.3 (3%) 5 (3%) 72 (3%)

Sending polynomials 0.1 (1%) 2 (1%) 30 (1%) 0.1 (1%) 2 (1%) 30 (1%)

Circuit 9 (96%) 142 (96%) 2438 (96%) 9 (96%) 142 (96%) 2438 (96%)

Improvement factor 5.7x 4.1x 2.6x 12.8x 11.8x 10.1x

log2 σ. A depth-optimized SCS circuit for the construction in [FNO18] has depth
log2(σ− log2(n/b)) · log2((1+δ)b), where concrete parameters for n, δ, b are given
in [FNO18, Table 1]. Our protocols consist of circuits for comparing the elements
on the stash of bitlength σ and the outputs of the OPPRFs of length γ and there-
fore have depth max(log σ, log γ) = max(log σ, log2(40 + 2 log2(n) − 1)).

Table 4. Circuit depth for circuit-based PSI on n elements of fixed bitlength σ =
32 (left) and arbitrary bitlength hashed to σ = 40 + 2 log2(n) − 1 bits (right).

σ = 32 Arbitrary σ

Protocol n = 212 216 220 212 216 220

SCS [HEK12] 60 80 100 72 98 126

Circuit-Phasing [PSSZ15] 5 5 5 6 7 7

Hashing + SCS [FNO18] - 42 36 - 54 51

2D CH [PSWW18] 5 5 5 6 7 7

Our Protocols 6 6 6 6 7 7

7.4 Runtime Comparison

In this section we compare the runtimes of different PSI protocols. In Sect. 7.2
we conducted experiments for polynomial interpolation, the main new part of
our protocol, and we show below that this step takes only a small fraction of the
total runtime. We also implemented our most efficient protocol (see Sect. 5.2).6

In addition, we estimate the runtime of our less efficient basic protocol (see

6 Our implementation is available at https://github.com/encryptogroup/OPPRF-PSI.

https://github.com/encryptogroup/OPPRF-PSI
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Sect. 4.1) and the protocol with linear communication overhead (see Sect. 5)
based on the experiments of the interpolation procedure and rigorous estimations
from previous works.

Previous Work. As we have seen in the analysis of the communication over-
head in Sect. 7.3, our protocols provide better improvements to performance in
the case of arbitrary bitlengths. The previous work of [PSWW18] gave runtimes
only for fixed bitlength of 32 bits in [PSWW18, Table 4]. Therefore, we extrap-
olate the runtimes of the previous protocols from fixed bitlength to arbitrary
bitlength based on the circuit sizes given in [PSWW18, Table 3]. The estimated
runtimes are given in Table 5. The LAN setting is a 1 Gbit/s network with round-
trip time of 1 ms and the WAN setting is a 100 Mbit/s network with round-trip
time of 100 ms. Runtimes were not presented in [FNO18], but since their circuit
sizes and depths are substantially larger than those of [PSWW18] (cf. Tables 3
and 4), their runtimes will also be substantially higher than those of [PSWW18].

Our Implementation. We implemented and benchmarked our most efficient
no-stash OPPRF-based PSI protocol (see Sect. 5.2) on two commodity PCs
with an Intel Core i7-4770K CPU. We instantiated our protocol with secu-
rity parameter κ = 128 bits, K = 3 hash functions, B = 1.27n bins, and no
stash (see Sect. 5.2). Our OPPRF implementation is based on the OPRF pro-
tocol of [PSZ18].7 For the secure circuit evaluation, we used the ABY frame-
work [DSZ15]. The run-times are averaged over 50 executions. The results are
described in Table 5.

Comparison with PSI Protocols. As a baseline, we compare our perfor-
mance with specific protocols for computing the intersection itself. (However, as
is detailed in Sect. 1.2, our protocol is circuit-based and therefore has multiple
advantages compared to specific PSI protocols). Our best protocol is slower by a
factor of 41x than today’s fastest PSI protocol of [KKRT16] for n = 220 elements
in the WAN setting (cf. Table 5).

Comparison with Public Key-Based PSI Variant Protocols. Our circuit-
based protocol is substantially faster than previous public key-based protocols
for computing variants of PSI, although they have similar asymptotic linear com-
plexity. As an example, consider comparing whether the size of the intersection
is greater than a threshold (PSI-CAT). In our protocol, we can compute the
PSI-CAT functionality by extending the PSI circuit of Table 5 with a Hamming
distance circuit (which, using the size-optimal construction of [BP06], adds less
than n AND gates). The final comparison with the threshold adds another log2 n

7 This OPRF protocol has communication that is higher by 10% to 15% than the
communication of the OPRF protocol of [KKRT16]. But since OPRF requires less
than 3% of the total communication, this additional cost is negligible in our protocol.



Efficient Circuit-Based PSI with Linear Communication 149

Table 5. Total run-times in ms for PSI variant protocols on n elements of arbitrary
bitlength using GMW [GMW87] for secure circuit evaluation and one thread. Numbers
for all but our protocols are based on [PSWW18]. The best values for generic circuit-
based PSI protocols are marked in bold.

Network LAN WAN

Protocol n = 212 216 220 212 216 220

Special-purpose PSI protocols (as baseline)

DH/ECC PSI

[Sha80,Mea86,DGT12]

3296 49010 7904054 4082 51866 8008771

BaRK-OPRF [KKRT16] 113 295 3882 540 1247 14604

Generic circuit-based PSI protocols

Circuit-Phasing [PSSZ15] 7825 67292 1126848 37380 327976 4850571

2D CH [PSWW18] 5031 25960 336134 22796 129436 1512505

Ours Basic Sect. 4.1 (estimated) 2908 13767 182204 12934 63861 752695

Ours Advanced Sect. 5 (estimated) 1674 9763 148436 7372 43675 597885

Ours No-Stash Sect. 5.2, Total 1 199 8 486 120 731 5 910 22 134 261 481

Breakdown:

OPRF 724 (60%)1097 (13%) 5844 (5%) 2867 (49%) 4164 (19%) 26121 (10%)

Polynomial interpolation 183 (15%)2809 (33%)45335 (38%) 183 (3%) 2809 (13%) 45335 (17%)

Polynomial transmission 16 (1%) 145 (2%) 667 (0%) 816 (13%) 1079 (5%) 4012 (2%)

Polynomial evaluation 58 (5%)1344 (16%)21768 (18%) 58 (1%) 1344 (6%) 21768 (8%)

Circuit 218 (18%)3091 (36%)47117 (39%) 1986 (34%)12738 (57%)164245 (63%)

Improvement over [PSWW18] 4.2x 3.1x 2.8x 3.9x 5.8x 5.8x

AND gates [BPP00] which are negligible as well. For the PSI-CAT functionality,
[ZC17] report runtimes of 779 s for n = 211 elements, [HOS17] report runtimes
of 728 s for n = 211 elements, and [ZC18] report runtimes of at least 138 s for
n = 100 elements, whereas our protocol requires 0.52 s for n = 211 elements and
0.34 s for n = 100 elements. Hence, we improve over [ZC17] by a factor of 1 498x,
over [HOS17] by a factor of 1 400x, and over [ZC18] by a factor of 405x. As an
example for computing PSI-CAT with larger set sizes, our protocol requires 124 s
for n = 220 elements.

The protocol described by Google for computing ad revenues [Yun15,Kre17]
(see Sect. 1.2) is based on the DH-based PSI protocol which is already 65x slower
than our protocol for n = 220 elements over a LAN (cf. Table 5) and leaks the
intersection cardinality as an intermediate result. Here, too, our circuit would
be only slightly larger than the PSI circuit of Table 5.

Comparison with Circuit-Based PSI Protocols. As can be seen from
Table 5, our no-stash protocol from Sect. 5.2 is substantially more efficient than
our basic protocol and our linear asymptotic overhead protocol from Sect. 4.1
and Sect. 5, respectively. It improves over the best previous circuit-based PSI
protocol from [PSWW18] by factors of 4.2x to 2.8x in the LAN setting, and
by factors of 5.8x to 3.9x in the WAN setting. From the micro-benchmarks in
Table 5, we also observe that the runtimes for the polynomial interpolation are
a significant fraction of the total runtimes of our protocols (3% to 33% for the
interpolation and 1% to 18% for the evaluation). Since polynomials are indepen-
dent of each other, the interpolation and evaluation can be trivially parallelized
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for running with multiple threads, which would give this part of the computation
a speed-up that is linear in the number of physical cores of the processor.
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Abstract. Private set intersection (PSI) is an important area of research
and has been the focus of many works over the past decades. It describes
the problem of finding an intersection between the input sets of at least
two parties without revealing anything about the input sets apart from
their intersection.

In this paper, we present a new approach to compute the intersection
between sets based on a primitive called Oblivious Linear Function Eval-
uation (OLE). On an abstract level, we use this primitive to efficiently
add two polynomials in a randomized way while preserving the roots of
the added polynomials. Setting the roots of the input polynomials to be
the elements of the input sets, this directly yields an intersection pro-
tocol with optimal asymptotic communication complexity O(mκ). We
highlight that the protocol is information-theoretically secure against a
malicious adversary assuming OLE.

We also present a natural generalization of the 2-party protocol for
the fully malicious multi-party case. Our protocol does away with expen-
sive (homomorphic) threshold encryption and zero-knowledge proofs.
Instead, we use simple combinatorial techniques to ensure the security. As
a result we get a UC-secure protocol with asymptotically optimal com-
munication complexity O((n2+nm)κ), where n is the number of parties,
m is the set size and κ is the security parameter. Apart from yielding
an asymptotic improvement over previous works, our protocols are also
conceptually simple and require only simple field arithmetic. Along the
way we develop techniques that might be of independent interest.

1 Introduction

Private set intersection (PSI) has been the focus of research for decades and
describes the following basic problem. Two parties, Alice and Bob, each have a
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set SA and SB, respectively, and want to find the intersection S∩ = SA ∩ SB of
their sets. This problem is non-trivial if both parties must not learn anything
but the intersection. There are numerous applications for PSI from auctions [29]
over advertising [32] to proximity testing [30].

Over the years several techniques for two-party PSI have been proposed,
which can be roughly placed in four categories: constructions built from specific
number-theoretic assumptions [8,9,21,23,28,38], using garbled circuits [20,32],
based on oblivious transfer (OT) [10,26,31,33–36] and based on oblivious polyno-
mial evaluation (OPE) [7,12,13,17,18]. There also exists efficient PSI protocols
in server-aided model [24].

Some of these techniques translate to the multi-party setting. The first
(passively secure) multi-party PSI (MPSI) protocol was proposed by Freed-
man et al. [13] based on OPE and later improved in a series of works [5,25,37]
to achieve full malicious security. Recently, Hazay and Venkitasubramaniam [19]
proposed new protocols secure against semi-honest and fully malicious adver-
saries. They improve upon the communication efficiency of previous works by
designating a central party that runs a version of the protocol of [13] with all
other parties and aggregates the results.

Given the state of the art, it remains an open problem to construct a protocol
with asymptotically optimal communication complexity in the fully malicious
multi-party setting. The main reason for this is the use of zero-knowledge proofs
and expensive checks in previous works, which incur an asymptotic overhead
over passively secure solutions.

In a concurrent and independent work, Kolesnikov et al. [27] presented a new
paradigm for solving the problem of MPSI from oblivious programmable pseu-
dorandom functions (OPPRF). Their approach yields very efficient protocols for
multi-party PSI, but the construction achieves only passive security against n−1
corruptions. However, their approach to aggregate the intermediate results uses
ideas similar to our masking scheme in the multi-party case.

1.1 Our Contribution

We propose a new approach to (multi-party) private set intersection based on
oblivious linear function evaluation (OLE). OLE allows two mutually distrusting
parties to evaluate a linear function ax + b, where the sender knows a and b,
and the receiver knows x. Nothing apart from the result ax + b is learned by
the receiver, and the sender learns nothing about x. OLE can be instantiated in
the OT-hybrid model from a wide range of assumptions with varying communi-
cation efficiency, like LPN [1], Quadratic/Composite Residuosity [22] and Noisy
Encodings [14,22], or even unconditionally [22].

Our techniques differ significantly from previous works and follow a new
paradigm which leads to conceptually simple and very efficient protocols. Our
approach is particularly efficient if all input sets are of similar size. To showcase
the benefits of our overall approach, we also describe how our MPSI protocol
can be modified into a threshold MPSI protocol.
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Concretely, we achieve the following:

– Two-party PSI with communication complexity O(mκ) and computational
cost of O(m log m) multiplications. The protocol is information theoretically
secure against a malicious adversary in the OLE-hybrid model.

– UC-secure Multi-party PSI in fully malicious setting with communication
complexity O((n2 + nm)κ) and computational complexity dominated by
O(nm log m) multiplications for the central party and O(m log m) multipli-
cations for other parties.

– A simple extension of the multi-party PSI protocol to threshold PSI, with
the same complexity. To the best of our knowledge, this is the first actively
secure threshold multi-party PSI protocol.1

In comparison to previous works which rely heavily on exponentiations in
fields or groups, our protocols require only field addition and multiplication
(and OWF in the case of MPSI).

If we compare our result with the asymptotically optimal 2-party PSI pro-
tocols by [8,23], which have linear communication and computation, our first
observation is that although they only have a linear number of modular expo-
nentiations, the number of field operations is not linear but rather in the order
of O(mκ), and further they need a ZK proof in the ROM for each exponenti-
ation, which is also expensive. Additionally, their result is achieved with spe-
cific number-theoretic assumptions, so the parameter sizes are probably not
favourable compared to our protocol, and the construction is not black-box.
We provide a detailed comparison of the concrete efficiency of our result with
the recent protocol by Rindal and Rosulek [36], which has very good concrete
efficiency.

In the setting of MPSI, our techniques result in asymptotic efficiency improve-
ments over previous works in both communication and computational complexity
(cf. Table 1).

We want to emphasize that our efficiency claims hold including the com-
munication and computation cost for the OLE, if the recent instantiation by
Ghosh et al. [14] is used, which is based on noisy Reed-Solomon codes. This
OLE protocol has a constant communication overhead per OLE if instantiated
with an efficient OT-extension protocol like [31] and therefore does not influence
the asymptotic efficiency of our result.

Our results may seem surprising in light of the information-theoretic lower
bound of O(n2mκ) in the communication complexity for multi-party PSI in the
fully malicious UC setting. We circumvent this lower bound by considering a
slightly modified ideal functionality, resulting in a UC-secure solution for multi-
party PSI with asymptotically optimal communication overhead. By asymptoti-
cally optimal, we mean that our construction matches the optimal bounds in the
plain model for m > n, even for passive security, where n is the number of par-
ties, m is the size of the sets and κ is the security parameter. All of our protocols
work over fields F that are exponential in the size of the security parameter κ.

1 Please see the full version of the paper [15].
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Table 1. Comparison of multi-party PSI protocols, where n is the number of parties,
m the size of the input set and κ a security parameter. Here, THE denotes a threshold
homomorphic encryption scheme, CRS a common reference string and OPPRF an
oblivious programmable PRF. The computational cost is measured in terms of number
of multiplications. Some of the protocols perform better if the sizes of the input sets
differ significantly, or particular domains for inputs are used. The overhead described
here assumes sets of similar size, with κ bit elements.

Protocol Tools Communication Computation Corruptions Security

[27] OPPRF O(nmκ) O(nκ2) n − 1 semi-honest

[19] THE O(nmκ) O(nm logmκ) n − 1 semi-honest

[25] THE, ZK O(n2m2κ) O(n2m + nm2κ) n − 1 malicious

[5] THE, ZK O(n2mκ) O(n2m + nmκ) t < n/2 malicious

[19] CRS, THE O((n2 + nm logm)κ) O(m2κ) n − 1 malicious

Ours+ [14] OLE O((n2 + nm)κ) O(nm logm) n − 1 maliciousa

aOur protocol is UC-secure in the fully malicious setting.

We believe that our approach provides an interesting alternative to existing
solutions and that the techniques which we developed can find application in
other settings as well.

1.2 Technical Overview

Abstractly, we let both parties encode their input set as a polynomial, such
that the roots of the polynomials correspond to the inputs. This is a standard
technique, but usually the parties then use OPE to obliviously evaluate the
polynomials or some form of homomorphic encryption. Instead, we devise an
OLE-based construction to add the two polynomials in an oblivious way, which
results in an intersection polynomial. Kissner and Song [25] also create an inter-
section polynomial similar to ours, but encrypted under a layer of homomorphic
encryption, whereas our technique results in a plain intersection polynomial.
Since the intersection polynomial already hides everything but the intersection,
one could argue that the layer of encryption in [25] incurs additional overhead
in terms of expensive computations and complex checks.

In our case, both parties simply evaluate the intersection polynomial on
their input sets and check if it evaluates to 0. This construction is information-
theoretically secure in the OLE-hybrid model and requires only simple field
operations. Conceptually, we compute the complete intersection in one step. In
comparison to the naive OPE-based approach2, our solution directly yields an
asymptotic communication improvement in the input size. Another advantage
is that our approach generalizes to the multi-party setting.

We start with a detailed overview of our constructions and technical chal-
lenges.

2 Here we mean an OPE is used for each element of the receiver’s input set. This can
be circumvented by clever hashing strategies, e.g. [13,19].
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Oblivious polynomial addition from OLE. Intuitively, OLE is the general-
ization of OT to larger fields, i.e. it allows a sender and a receiver to compute
a linear function c(x) = ax + b, where the sender holds a, b and the receiver
inputs x and obtains c. OLE guarantees that the receiver learns nothing about
a, b except for the result c, while the sender learns nothing about x.

Based on this primitive, we define and realize a functionality OPA that allows
to add two polynomials in such a way that the receiver cannot learn the sender’s
input polynomial, while the sender learns nothing about the receiver’s polyno-
mial or the output. We first describe a passively secure protocol. Concretely,
assume that the sender has an input polynomial a of degree 2d, and the receiver
has a polynomial b of degree d. The sender additionally draws a uniformly ran-
dom polynomial r of degree d. Both parties point-wise add and multiply their
polynomials, i.e. they evaluate their polynomials over a set of 2d + 1 distinct
points α1, . . . , α2d+1, resulting in ai = a(αi), bi = b(αi) and ri = r(αi) for
i ∈ [2d + 1]. Then, for each of 2d + 1 OLEs, the sender inputs ri, ai, while the
receiver inputs bi and thereby obtains ci = ribi+ai. The receiver interpolates the
polynomial c from the 2d+1 (αi, ci) and outputs it. Since we assume semi-honest
behaviour, the functionality is realized by this protocol.

The biggest hurdle in achieving active security for the above protocol lies in
ensuring a non-zero b and r as input. Otherwise, e.g. if b = 0, the receiver could
learn a. One might think that it is sufficient to perform a coin-toss and verify
that the output satisfies the supposed relation, i.e. pick a random x, compute
a(x),b(x), r(x) and c(x) and everyone checks if b(x)r(x) + a(x) = c(x) and if
b(x), r(x) are non-zero3. For r(x) �= 0, the check is actually sufficient, because r
must have degree at most d, otherwise the reconstruction fails, and only d points
of r can be zero (r = 0 would require 2d+1 zero inputs). For b �= 0, however, just
checking for b(x) �= 0 is not sufficient, because at this point, even if the input
b �= 0, the receiver can input d zeroes in the OLE, which in combination with the
check is sufficient to learn a completely. We resolve this issue by constructing an
enhanced OLE functionality which ensures that the receiver input is non-zero.
We believe that this primitive is of independent interest and describe it in more
detail later in this section.

Two-party PSI from OLE. Let us first describe a straightforward two-party
PSI protocol with one-sided output from the above primitive. Let SA and SB

denote the inputs for Alice and Bob, respectively, where |SP| = m. Assuming
that Bob is supposed to get the intersection, they pick random pA and pB with
the restriction that pP(γ) = 0 for γ ∈ SP. As they will use OPA, deg pA = 2m,
while deg pB = m. Further, Alice picks a uniformly random polynomial rA of
degree m and inputs pA, rA into OPA. Bob inputs pB, obtains p∩ = pA + pBrA
and outputs all γj ∈ SB for which p∩(γj) = 0. Obviously, rA does not remove
any of the roots of pB, and therefore all points γ where pB(γ) = 0 = pA(γ)
remain in p∩.

3 Since this check leaks some information about the inputs, we have to perform the
check in a secure manner.
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However, as a stepping stone for multi-party PSI, we are more interested
in protocols that provide output to both parties. If we were to use the above
protocol and simply announce p∩ to Alice, then Alice could learn Bob’s input.
Therefore we have to take a slightly different approach. Let uA be an additional
random polynomial chosen by Alice. Instead of using her own input in the OPA,
Alice uses rA,uA, which gives sB = uA + pBrA to Bob. Then they run another
OPA in the other direction, i.e. Bob inputs rB,uB and Alice pA. Now, both
Alice and Bob have a randomized “share” of the intersection, namely sA and
sB, respectively. Adding sA and sB yields a masked but correct intersection. We
still run into the problem that sending either sB to Alice or sA to Bob allows the
respective party to learn the other party’s input. We also have to use additional
randomization polynomials r′

A, r′
B to ensure privacy of the final result.

Our solution is to simply use the masks u to enforce the addition of the two
shares. Let us fix Alice as the party that combines the result. Bob computes s′

B =
sB −uB +pBr′

B and sends it to Alice. Alice computes p∩ = s′
B + sA −uA +pAr′

A.
This way, the only chance to get rid of the blinding polynomial uB is to add both
values. But since each input is additionally randomized via the r polynomials,
Alice cannot subtract her own input from the sum. Since the same also holds
for Bob, Alice simply sends the result to Bob.

The last step is to check if the values that are sent and the intersection
polynomial are consistent. We do this via a simple coin-toss for a random x,
and the parties evaluate their inputs on x and can abort if the relation p∩ =
pB(rA + r′

B) + pA(r′
A + rB) does not hold, i.e. p∩ is computed incorrectly. This

type of check enforces semi-honest behaviour, and was used previously e.g. in [2].

A note on the MPSI functionality. We show that by slightly modifying
the ideal functionality for multi-party PSI we get better communication effi-
ciency, without compromising the security at all. A formal definition is given
in Sect. 6.1. Typically, it is necessary for the simulator to extract all inputs from
the malicious parties, input them into the ideal functionality, and then continue
the simulation with the obtained ideal intersection. In a fully malicious setting,
however, this requires every party to communicate in O(mκ) with every other
party—otherwise the input is information-theoretically undetermined and can-
not be extracted—which results in O(n2mκ) communication complexity.

The crucial observation here is that in the setting of multi-party PSI, an
intermediate intersection between a single malicious party and all honest parties
is sufficient for simulation. This is due to the fact that inputs by additional
malicious parties can only reduce the size of the intersection, and as long as
we observe the additional inputs at some point, we can correctly reduce the
intersection in the ideal setting before outputting it. On a technical level, we
no longer need to extract all malicious inputs right away to provide a correct
simulation of the intersection. Therefore, it is not necessary for every party to
communicate in O(mκ) with every other party. Intuitively, the intermediate
intersection corresponds to the case where all malicious parties have the same
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input. We therefore argue that the security of this modified setting is identical
to standard MPSI up to input substitution of the adversary.4

Multi-party PSI. The multi-party protocol is a direct generalization of the
two-party protocol, with some small adjustments. We consider a network with
a star topology, similar to the recent result of [19]. One party is set to be the
central party, and all other parties (mainly) interact with this central party to
compute the result. The main idea here is to delegate most of the work to the
central party, which in turn allows to reduce the communication complexity.
Since no party is supposed to get any intermediate intersections, we let each
party create an additive sharing of their intersection with the central party.

First, consider the following (incorrect) toy example. Let each party Pi exe-
cute the two-party PSI as described above with P0, up to the point where both
parties have shares si

P0
, s′

Pi
. All parties Pi send their shares s′

Pi
to P0, who

adds all polynomials and broadcasts the output. By design of the protocols and
the inputs, this yields the intersection of all parties. Further, the communica-
tion complexity is in O(nmκ), which is optimal. However, this protocol also
allows P0 to learn all intermediate intersections with the other parties, which
is not allowed. Previously, all maliciously secure multi-party PSI protocols used
threshold encryption to solve this problem, and indeed it might be possible to use
a similar approach to ensure active security for the above protocol. For exam-
ple, a homomorphic threshold encryption would allow to add all these shares
homomorphically, without leaking the intermediate intersections. But thresh-
old encryption incurs a significant computational overhead (and increases the
complexity of the protocol and its analysis) which we are unwilling to pay.

Instead, we propose a new solution which is conceptually very simple. We add
another layer of masking on the shares sPi

, which forces P0 to add all intermedi-
ate shares—at least those of the honest parties. For this we have to ensure that
the communication complexity does not increase, so all parties exchange seeds
(instead of sending random polynomials directly), which are used in a PRG to
mask the intermediate intersections. This technique is somewhat reminiscent of
the pseudorandom secret-sharing technique by Cramer et al. [6]. We emphasize
that we do not need any public key operations.

Concretely, all parties exchange a random seed and use it to compute a
random polynomial in such a way that every pair of parties Pi, Pj holds two
polynomials vij ,vji with vij +vji = 0. Then, instead of sending s′

Pi
, each party

Pi computes s′′
Pi

= s′
Pi

+
∑

vij and sends this value. If P0 obtains this value, it
has to add the values s′′

Pi
of all parties to remove the masks, otherwise s′′

Pi
will

be uniformly random.
Finally, to ensure that the central party actually computed the aggregation,

we add a check similar to two-party PSI, where the relation, i.e. computing the
sum, is verified by evaluating the inputs on a random value x which is obtained
by a multi-party coin-toss.

4 Our multi-party PSI functionality uses similar idea as augmented semi-honest multi-
party PSI as in previous works [27].
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Threshold (M)PSI. We defer the threshold extensions to the full version of
this paper [15] and only give a very brief technical overview.

First of all, we clarify the term threshold PSI. We consider the setting where
all parties have m elements as their input, and the output is only revealed if the
intersection of the inputs among all parties is bigger than a certain threshold
�. In [16] Hallgren et al. defined this notion for two party setting, and finds
application whenever two entities are supposed to be matched once a certain
threshold is reached, e.g. for dating websites or ride sharing.

We naturally extend the idea of threshold PSI from [16] to the multi-party
setting and propose the first actively secure threshold multi-party PSI protocol.
On a high level, our solution uses a similar idea to [16], but we use completely
different techniques and achieve stronger security and better efficiency. The main
idea is to use a robust secret sharing scheme, and the execution of the protocol
basically transfers a subset of these shares to the other parties, one share for
each element in the intersection. If the intersection is large enough, the parties
can reconstruct the shared value.

Specifically, the trick is to modify the input polynomials of each party Pi for
the MPSI protocol and add an additional check. Instead of simply setting pi

such that pi(γj) = 0 for all γj ∈ Si, we set p̃i(γj) = 1. Further, for each of the
random polynomials r̃i, r̃′

i we set r̃i(γj) = ρj and r̃′
i(γj) = ρ′

j , where ρ1, . . . , ρn,
ρ′
1, . . . , ρ

′
n are the shares of two robust (�, n)-secret sharings of random values s0i

and s1i , respectively. Now, by computing the modified intersection polynomial
p̃∩ as before, each party obtains exactly m∩ = |S∩| shares, one for each γj ∈ Si.

Now if m∩ ≥ � then each party can reconstruct r∩ =
∑n

i=1 (s0i + s1i ). Other-
wise the intersection remains hidden completely. We omitted some of the details
due to the space constraints and refer to the full version [15].

A New Flavour of OLE. One of the main technical challenges in constructing
our protocols is to ensure a non-zero input into the OLE functionality by the
receiver. Recall that an OLE computes a linear function ax + b. We define an
enhanced OLE functionality (cf. Sect. 3) which ensures that x �= 0, otherwise
the output is uniformly random. Our protocol which realises this functionality
makes two black-box calls to a normal OLE and is otherwise purely algebraic.

Before we describe the solution, let us start with a simple observation. If the
receiver inputs x = 0, an OLE returns the value b. Therefore, it is critical that
the receiver cannot force the protocol to output b. One way to achieve this is
by forcing the receiver to multiply b with some correlated value via an OLE,
let’s call it x̂. Concretely, we can use an OLE where the receiver inputs x̂ and
a random s, while the sender inputs b and obtains x̂b + s. Now if the sender
uses a + bx̂ + s, 0 as input for another OLE, where the receiver inputs x, the
receiver obtains ax + bx̂x + sx. Which means that if x̂ = x−1 then the receiver
can extract the correct output. This looks like a step in the right direction, since
for x = 0 or x̂ = 0, the output would not be b. On the other hand, the receiver
can now force the OLE to output a by choosing x̂ = 0 and x = 1, so maybe we
only shifted the problem.
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The final trick lies in masking the output such that it is uniform for incon-
sistent inputs x, x̂. We do this by splitting b into two shares that only add
to b if x · x̂ = 1. The complete protocol looks like this: the receiver plays
the sender for one OLE with input x−1, s, and the sender inputs a random
u to obtain t = x−1u + s. Then the sender plays the sender for the sec-
ond OLE and inputs t + a, b − u, while the receiver inputs x and obtains
c′ = (t + a)x + b − u = ux−1x + sx + ax + b − u = ax + b + sx, from which the
receiver can subtract sx to get the result. A cheating receiver with inconsistent
input x∗, x̂∗ will get ax + b + u(x∗x̂∗ − 1) as an output, which is uniform over
the choice of u.

2 Preliminaries

We assume |F| ∈ θ(2κ), where κ is a statistical security parameter. Typically,
x ∈ F denotes a field element, while p ∈ F[X] denotes a polynomial. Let M0(p)
denote the zero-set for p ∈ F[X], i.e. ∀x ∈ M0(p),p(x) = 0.

In the proofs, x̂ denotes an element either extracted or simulated by the
simulator, while x∗ denotes an element sent by the adversary.

We slightly abuse notation and denote by v = PRGd(s) the deterministic
pseudorandom polynomial of degree d derived from evaluating PRG on seed s.

2.1 Security Model

We prove our protocol in the Universal Composability (UC) framework [4]. In
the framework, security of a protocol is shown by comparing a real protocol π
in the real world with an ideal functionality F in the ideal world. F is supposed
to accurately describe the security requirements of the protocol and is secure
per definition. An environment Z is plugged either to the real protocol or the
ideal protocol and has to distinguish the two cases. For this, the environment
can corrupt parties. To ensure security, there has to exist a simulator in the
ideal world that produces a protocol transcript indistinguishable from the real
protocol, even if the environment corrupts a party. We say π UC-realises F if for
all adversaries A in the real world there exists a simulator S in the ideal world
such that all environments Z cannot distinguish the transcripts of the parties’
outputs.

Oblivious Linear Function Evaluation. Oblivious Linear Function Evalua-
tion (OLE) is the generalized version of OT over larger fields. The sender has
as input two values a, b ∈ F that determine a linear function f(x) = a · x + b
over F, and the receiver gets to obliviously evaluate the linear function on input
x ∈ F. The receiver will learn only f(x), and the sender learns nothing at all.
The ideal functionality is shown in Fig. 1.

2.2 Technical Lemmas

We state several lemmas which are used to show the correctness of our PSI
protocols later on.
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Lemma 2.1. Let p,q ∈ F[X] be non-trivial polynomials. Then,

M0(p) ∩ M0(p + q) = M0(p) ∩ M0(q) = M0(q) ∩ M0(p + q).

This lemma shows that the sum of two polynomials contains the intersection
with respect to the zero-sets of both polynomials.

Fig. 1. Ideal functionality for oblivious linear function evaluation.

Proof. Let M∩ = M0(p) ∩ M0(q).
“ ⊇ ”: ∀x ∈ M∩: p(x) = q(x) = 0. But p(x) + q(x) = 0, so x ∈ M0(p + q).
“ ⊆ ”: It remains to show that there is no x such that x ∈ M0(p)∩M0(p+q)

but x /∈ M∩, i.e. M0(p) ∩ (M0(p+q) \ M∩) = ∅. Similarly, M0(q) ∩ (M0(p+
q) \ M∩) = ∅.

Assume for the sake of contradiction that M0(p) ∩ (M0(p + q) \ M∩) �= ∅.
Let x ∈ M0(p) ∩ (M0(p + q) \ M∩). Then, p(x) = 0, but q(x) �= 0, otherwise
x ∈ M∩. But this means that p(x) + q(x) �= 0, i.e. x /∈ M0(p + q). This
contradicts our assumption, and we get that M0(p) ∩ (M0(p + q) \ M∩) = ∅.

Symmetrically, we get that M0(q) ∩ (M0(p + q) \ M∩) = ∅. The claim
follows. 
�

Lemma 2.2. Let d ∈ poly(log |F|). Let p ∈ F[X], deg(p) = d be a non-trivial
random polynomial with Pr[x ∈ M0(p)] ≤ negl(|F|) for all x. Then, for all
q1, . . . ,ql ∈ F[X] with deg(qi) ≤ d,

Pr[(M0(p) ∩ M0(
l∑

i=1

qi + p)) �= (M0(p) ∩
l⋂

i=1

M0(qi))] ≤ negl(|F|).

This lemma is basically an extension of Lemma 2.1 and shows that the sum of
several polynomials does not create new elements in the intersection unless the
supposedly unknown zero-set of p can be guessed with non-negligible probability.
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Proof. “⊆”: We first observe that
⋂l

i=1 M0(qi) ⊆ M0(
∑l

i=1 qi): it holds that
for all x ∈

⋂l
i=1 M0(qi), qi(x) = 0 for i ∈ [l]. It follows that

∑l
i=1 qi(x) = 0,

i.e. x ∈ M0(
∑l

i=1 qi).
“⊇”: Assume for the sake of contradiction that

(M0(p) ∩ M0(
l∑

i=1

qi) + p) �= (M0(p) ∩
l⋂

i=1

M0(qi))

with non-negligible probability ε. Let M = M0(
∑l

i=1 qi + p) \
⋂l

i=1 M0(qi).
Then with probability at least ε, the set M is not empty. Further, we can

bound |M| ≤ d. Pick a random x ∈ M. It now holds that Pr[x ∈ M0(p)] ≥ ε/d,
which directly contradicts our assumption that for an unknown p the probability
of guessing x ∈ M0(p) is negligible over choice of p. The claim follows. 
�
Lemma 2.3. Let d, d′ ∈ poly(log |F|). Let r ∈ F[X], deg(r) = d be a uniformly
random polynomial. For all non-trivial p ∈ F[X], deg(p) = d′,

Pr
r∈F[X]

[(M0(r) ∩ M0(p)) �= ∅] ≤ negl(|F|).

This lemma establishes that the intersection of a random polynomial with
another polynomial is empty except with negligible probability.

Proof. This follows from the fundamental theorem of algebra, which states that
a polynomial of degree d evaluates to 0 in a random point only with probability
d/|F|.

Since r (and therefore all x ∈ M0(r)) is uniformly random and |M0(r)| = d,
while |M0(p)| = d′, we get that

Pr[(M0(r) ∩ M0(p)) �= ∅] ≤ dd′/|F|.

�

Lemma 2.4. Let d ∈ poly(log |F|). Let p ∈ F[X], deg(p) = d be a fixed but
unknown non-trivial polynomial. Further let r ∈ F[X], deg(r) = d be a uniformly
random polynomial. For all non-trivial q, s ∈ F[X] with deg(q) ≤ d and deg(s) ≤
d,

Pr
r∈F[X]

[(M0(p) ∩ M0(ps + rq)) �= (M0(p) ∩ M0(q))] ≤ negl(|F|).

This lemma shows that the multiplication of (possibly maliciously chosen)
polynomials does not affect the intersection except with negligible probability,
if one random polynomial is used.

Proof.

M0(p) ∩ M0(ps + rq)
Lemma 2.1

= M0(p) ∩ (M0(ps) ∩ M0(qr))

= M0(p) ∩ (
(M0(p) ∪ M0(s)) ∩ (M0(q) ∪ M0(r))

)

= M0(p) ∩ (
(M0(p) ∩ M0(q)) ∪ (M0(p) ∩ M0(r)︸ ︷︷ ︸

T1

)

∪ (M0(s) ∩ M0(q)
︸ ︷︷ ︸

⊆M0(q)

) ∪ (M0(s) ∩ M0(r)︸ ︷︷ ︸
T2

)
)
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From Lemma 2.3 it follows that Pr[T1 �= ∅] ≤ d2/|F|, and also Pr[T2 �= ∅] ≤
d2/|F|. Since

M0(p) ∩
(
(M0(p) ∩ M0(q)) ∪ M0(q)

)
= M0(p) ∩ M0(q),

we get

Pr
r∈F[X]

[(M0(p) ∩ M0(ps + rq)) �= (M0(p) ∩ M0(q))] ≤ 2d2/|F|.


�

3 Enhanced Oblivious Linear Function Evaluation F
OLE+

In this section we present an enhanced version of the OLE functionality. The
standard OLE functionality allows the sender to input a, b, while the receiver
inputs x and obtains ax + b. For our applications, we do not want the receiver
to be able to learn b, i.e. it has to hold that x �= 0. Our approach is therefore
to modify the OLE functionality in such a way that it outputs a random field
element upon receiving an input x = 0 (cf. Fig. 2). A different approach might be
to output a special abort symbol or 0, but crucially the output must not satisfy
the relation ax + b. This is a particularly useful feature, as we will show in the
next section.

Fig. 2. Ideal functionality for the enhanced oblivious linear function evaluation.

While it might be possible to modify existing OLE protocols in such a way
that a non-zero input is guaranteed, we instead opt to build a protocol black-box
from the standard OLE functionality FOLE.

We refer to the introduction for an abstract overview and a description of
the ideas of our construction. The formal description of the protocol is given
in Fig. 3.

Lemma 3.1. Π
OLE+ unconditionally UC-realizes FOLE+ in the FOLE-hybrid

model.
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Proof. The simulator against a corrupted sender simulates both instances of
FOLE. Let α1 be the sender’s input in the first OLE, and (α2, α3) be the inputs
into the second OLE. The simulator sets b̂ = α1 + α3 and â = α2 − t̂, where
t̂ is chosen as the uniformly random output to AS of the first OLE. The sim-
ulator simply inputs (inputS, (â, b̂)) into F

OLE+ . Let us briefly argue that this
simulation is indistinguishable from a real protocol run. The value t̂ is indis-
tinguishable from a valid t, since the receiver basically uses a one-time-pad s
to mask the multiplication. Therefore, the sender can only change his inputs
into the OLEs. Since his inputs uniquely determine both â and b̂, the extraction
by the simulator is correct and the simulation is indistinguishable from a real
protocol run.

Fig. 3. Protocol that realizes F
OLE+ in the FOLE-hybrid model.

Against a corrupted receiver, the simulator simulates the two instance of
FOLE and obtains the receiver’s inputs (ξ1, ξ3) and ξ2. If ξ1 · ξ2 = 1, the simula-
tor sets x̂ = ξ2, sends (inputR, x̂) to F

OLE+ and receives (output, c). It forwards
c′ = c + ξ2ξ3 to AR. If ξ1 · ξ2 �= 1, the simulator sends (inputR, 0) to F

OLE+

and forwards the output c to the receiver. It remains to argue that this simula-
tion is indistinguishable from the real protocol. From A’s view, the output c is
determined as

c = uξ1ξ2 + aξ2 + b − u + ξ2ξ3 = aξ2 + b + u(ξ1ξ2 − 1) + ξ2ξ3.

We can ignore the last term, since it is known to A. If ξ1ξ2 �= 1, then u(ξ1ξ2 −1)
does not vanish and the result will be uniform over the choice of u. Thus, by
using ξ2 as the correct input otherwise, we extract the correct value and the
simulation is indistinguishable from the real protocol. 
�

4 Randomized Polynomial Addition from OLE

Concretely, we have two parties, the sender with a polynomial of degree 2d
as input and the receiver with a polynomial of degree d as input. The goal is
that the receiver obtains the sum of these two polynomials such that it cannot
learn the sender’s polynomial fully. We want to achieve this privacy property by
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using a randomization polynomial that prevents the receiving party from simply
subtracting its input from the result. This functionality is defined in Fig. 4.

Notice that we have some additional requirements regarding the inputs of the
parties. First, the degree of the inputs has to be checked, but the functionality
also makes sure that the receiver does not input a 0 polynomial, because oth-
erwise he might learn the input of the sender. Also note that the functionality
leaks some information about the sender’s polynomial. Looking ahead in the PSI
protocol, where the input of the sender is always a uniformly random 2d degree
polynomial, this leakage of the ideal functionality will not leak any non-trivial
information in the PSI protocol.

Fig. 4. Ideal functionality that allows to obliviously compute an addition of polynomi-
als.

It is instructive to first consider a passively secure protocol. In the semi-
honest case, both sender and receiver evaluate their input polynomials on a
set of distinct points P = {α1, . . . , α2d+1}, where d is the degree of the input
polynomials. The sender additionally picks a random polynomial r ∈ F[X] of
degree d and also evaluates it on P.

Instead of using OLE in the “traditional” sense, i.e. instead of computing
ab + r where r blinds the multiplication of the polynomials, we basically com-
pute rb + a. This means that the sender randomizes the polynomial of the
receiver, and then adds his own polynomial. This prevents the receiver from
simply subtracting his input polynomial and learning a. In a little more detail,
sender and receiver use 2d + 1 OLEs to add the polynomials as follows: for each
i ∈ [2d + 1], the sender inputs (ri, ai) in OLE i, while the receiver inputs bi and
obtains si = ribi + ai. He then interpolates the resulting polynomial s of degree
2d using the 2d + 1 values si.

In going from passive to active security, we have to ensure that the inputs
of the parties are correct. Here, the main difficulty obviously lies in checking
for b = 0. In fact, since FOPA does not even leak a single point ai we have to
make sure that all bi �= 0. However, this can easily be achieved by using F

OLE+
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instead of FOLE. We also have to verify that the inputs are well-formed via a
simple polynomial check. For a more detailed overview we refer the reader to
the introduction.

The complete actively secure protocol is shown in Fig. 5. Here, we use two
instances of FOLE that implement a commitment and a check. We named the
first OLE that is used for a commitment to a blinding value u F com

OLE. The check
is performed by comparing the blinded reconstructed polynomial s evaluated in
xS with the inputs in this location using the second OLE denoted by F check

OLE .5

Fig. 5. Protocol that realizes FOPA in the (F
OLE+ , FOLE)-hybrid model.

Lemma 4.1. ΠOPA unconditionally UC-realizes FOPA in the FOLE+-hybrid
model.

Proof (Sketch). Corrupted Sender. The simulator SS against a corrupted
sender proceeds as follows. It simulates F (i)

OLE+ and thereby obtains (r∗
i , a∗

i ) for
all i ∈ [2d + 1]. From these values, the simulator reconstructs r̂ and â. It aborts
in Step 3 if deg(r̂) > d or deg(â) > 2d. It also aborts if â or r̂ are zero, and
otherwise sends (inputS, (â, r̂)) to FOPA.

The extraction of the corrupted sender’s inputs is correct if his inputs r∗

corresponds to a polynomial of degree d and a∗ corresponds to a polynomial of
degree 2d. Thus, the only possibility for an environment to distinguish between

5 The commitment we implicitly use has been used previously in [11], as has the check
sub-protocol.
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the simulation and the real protocol is by succeeding in answering the check while
using a malformed input, i.e. a polynomial of incorrect degree or 0-polynomials.
If the polynomials have degree greater than d and 2d, respectively, the resulting
polynomial s has degree 2d+1 instead of 2d, i.e. the receiver cannot reconstruct
the result from 2d+1 points. Since the sender learns nothing about the receiver’s
inputs, the thus incorrectly reconstructed polynomial will be uniformly random
from his point of view and the probability that his response to the challenge is
correct is 1/|F|. Also, both â and r̂ have to be non-zero, because in each case
the polynomials are evaluated in 2d + 1 points, and it requires 2d + 1 zeros as
ai, ri to get a 0 polynomial. But since both a, r have degree at most 2d, there
are at most 2d roots of these polynomials. Therefore, in order to pass the check,
a(x) and b(x) would need to be 0, which is also checked for.

Corrupted Receiver. The simulator SR against a corrupted receiver simulates
F (i)

OLE+ and obtains b∗
i for all i ∈ [2d + 1]. It reconstructs b̂ and aborts the

check in Step 3 if deg(b̂) > d. The simulator sends (inputR, b̂) to FOPA and
receives (res, ŝ). It evaluates ŝ on P and returns si for the corresponding OLEs.
SR simulates the rest according to the protocol.

Clearly, if the corrupted receiver AR inputs a degree d polynomial, the simu-
lator will extract the correct polynomial. In order to distinguish the simulation
from the real protocol, the adversary can either input 0 in an OLE or has to
input a polynomial of higher degree, while still passing the check. In the first
case, assume w.l.o.g. that AR cheats in F (j)

OLE+ for some j. This means AR receives

a value ŝi, which is uniformly random. This means that only with probability
1/|F| will ŝi satisfy the relation rb + a and the check will fail, i.e. he can lie
about u, but the commitment to u cannot be opened without knowing t. In
the second case, the resulting polynomial would be of degree 2d + 1, while the
receiver only gets 2d+1 points of the polynomial. Therefore the real polynomial
is underdetermined and A can only guess the correct value ŝ(x), i.e. the check
will fail with overwhelming probability. 
�

5 Maliciously Secure Two-Party PSI

In this section we provide a maliciously secure two-party PSI protocol with
output for both parties, i.e. we realize FPSI as described in Fig. 6.

Fig. 6. Ideal functionality FPSI for two-party PSI.
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Fig. 7. Protocol Π2PSI UC-realises FPSI in the FOPA-hybrid model.

We briefly sketch the protocol in the following; a more detailed overview
can be found in the introduction. First, Alice and Bob simply transform their
input sets into polynomials. Then, both compute a randomized share of the
intersection via our previously defined OPA in such a way that Alice can send
her share to Bob without him being able to learn her input. This can be achieved
by adding a simple mask to the intermediate share. Bob adds both shares and
sends the output to Alice. The protocol only requires two OPA and a simple
check which ensures semi-honest behaviour, and no computational primitives. A
formal description is given in Fig. 7.

Theorem 5.1. The protocol Π2PSI UC-realises FPSI in the FOPA-hybrid model
with communication complexity O(mκ).

Proof. Let us argue that p∩ = pA(r′
A + rB) + pB(rA + r′

B) actually hides the
inputs. The main observation here is that r′

P + rP̄ is uniformly random as
long as one party is honest. Since pA + pB validly encodes the intersection
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Fig. 8. Simulator SA against a corrupted Alice.

(see Lemma 2.1), p∩ is uniformly random over the choice of the randomization
polynomials rA, r′

A, rB and r′
B, except for the roots denoting the intersection.

Corrupted Alice. We show the indistinguishability of the simulation of SA

(cf. Fig. 8). The simulator extracts Alice’s inputs and then checks for any devi-
ating behaviour. If such behaviour is detected, it aborts, even if the protocol
would succeed. Proving indistinguishability of the simulation shows that the
check in the protocol basically enforces semi-honest behaviour by Alice, up to
input substitution.

Consider the following series of hybrid games.

Hybrid 0: RealAA

Π2PSI
.

Hybrid 1: Identical to Hybrid 0, except that S1 simulates FOPA, learns all
inputs and aborts if α∗

A �= p̂A(x) or β∗
A �= r̂A(x), but the check is passed.

Let α∗
A = αA + e be AA’s check value. Then the check in Step 6 will fail

with overwhelming probability. Let σ denote the outcome of the check. If AA

behaves honestly, then

σ = α∗
A(rB(x) + δ∗

A) + pB(x)(β∗
A + r′

B(x)) − p∩(x) = 0.

Using α∗
A = αA + e, however, we get

σ′ = (αA+e)(rB(x)+δ∗
A)+pB(x)(β∗

A+r′
B(x))−p∩(x) = e·(rB(x)+δ∗

A) �= const.

This means that the outcome of the check is uniformly random from AA’s
view over the choice of rB (or pB for β∗

A �= rA(x)). Therefore, the check will
fail except with probability 2/|F| and Hybrids 0 and 1 are statistically close.
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Hybrid 2: Identical to Hybrid 1, except that S2 aborts according to Step 6
in Fig. 8.
An environment distinguishing Hybrids 1 and 2 must manage to send s′∗

A such
that

s′∗
A + ûA − ûB �= p̂A · (r̂B + r̂′

A)

while passing the check in Step 6 with non-negligible probability.
Let f = s′∗

A + ûA − ûB − p̂A · (r̂B + r̂′
A). We already know that f(x) = 0,

otherwise we have α∗
A = αA + f(x) �= αA (or an invalid β∗

A), and the check
fails. But since x is uniformly random, the case that f(x) = 0 happens only
with probability m/|F|, which is negligible. Therefore, Hybrid 1 and Hybrid 2
are statistically close.
Hybrid 3: Identical to Hybrid 2, except that S3 generates the inputs ŝA, ŝB
according to Step 5 in Fig. 8 and adjusts the output. This corresponds to
IdealSA

FPSI
.

The previous hybrids established that the inputs p̂A, r̂A are extracted cor-
rectly. Therefore, by definition, ŜA = M0(p̂A). It remains to argue that
the simulated outputs are indistinguishable. First, note that the received
intersection Ŝ∩ = M0(p̂B) defines p̂B. From Lemma 2.4 it follows that
M0(p∩) = M0(p̂A) ∩ M0(p̂B) = Ŝ∩ w.r.t. M0(p̂B), even for a maliciously
chosen r̂A, i.e. the AA cannot increase the intersection even by a single ele-
ment except with negligible probability.
Further, note that ŝA = p̂A · r̂B + ûB is uniformly distributed over the choice
of ûB, and p̂∩ is uniform over the choice of r̂B, r̂′

B.
Finally, since r̂B, r̂′

B are uniformly random and the degree of p̂B is m, i.e.
maxi |Si| + 1, the values α̂B, β̂B and δ̂B are uniformly distributed as well. In
conclusion, the Hybrids 2 and 3 are statistically close.

As a result we get that for all environments Z,

RealAA

Π2PSI
(Z) ≈s IdealSA

FPSI
(Z).

Corrupted Bob. The simulator against a corrupted Bob is essentially the same
as the one against a corrupted Alice, except for a different way to check his
inputs.For the full proof we refer the reader to the full version [15] of the paper.

Efficiency. The protocol makes two calls to OPA, which in turn is based on
OLE. Overall, 2m calls to OLE are necessary in OPA. Given the recent constant
overhead OLE of Ghosh et al. [14], the communication complexity of Π2PSI lies
in O(mκ).

The computational cost of the protocol is dominated by multi-point evalua-
tion of polynomials of degree m, which requires O(m log m) multiplications using
fast modular transform [3]. Note that this cost includes computational cost of
the OLE instantiation from [14]. This concludes the proof. 
�
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6 Maliciously Secure Multi-party PSI

6.1 Ideal Functionality

The ideal functionality for multi-party private set intersection F*
MPSI simply

takes the inputs from all parties and computes the intersection of these inputs.
Our functionality F*

MPSI in Fig. 9 additionally allows an adversary to learn the
intersection and then possibly update the result to be only a subset of the original
result.

Fig. 9. Ideal functionality F*
MPSI for multi-party PSI.

Let us briefly elaborate on why we chose to use this modified functionality. In
the UC setting, in order to extract the inputs of all malicious parties, any hon-
est party has to communicate with all malicious parties. In particular, since the
simulator has to extract the complete input, this requires at least O(nm) commu-
nication per party for the classical MPSI functionality. In turn, for the complete
protocol, this means that the communication complexity lies in O(n2m).

Instead, we want to take an approach similar to the recent work of
Hazay et al. [19], i.e. we have one central party, and some of the work is dele-
gated to this party. This removes the need for the other parties to extensively
communicate with each other and potentially allows communication complexity
O(mn), which is asymptotically optimal in any setting. However, if we assume
that the central party and at least one additional party are corrupted, the hon-
est party does not (extensively) interact with this additional party and does not
learn its inputs; it can only learn the input of the central party. If the input set
of the other malicious party is the same as the one of the central party, the out-
put remains the same. If this input is different, however, the actual intersection
might be smaller. One might argue that this case simply corresponds to input
substitution by the malicious party, but for any type of UC simulation this poses
a problem, since the output of the honest party in the protocol might be different
from the intersection in the ideal world. Thus, F*

MPSI allows a malicious party
to modify the output. Crucially, the updated intersection can only be smaller
and may not changed arbitrarily by the adversary. We believe that this weaker
multiparty PSI functionality is sufficient for most scenarios.
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6.2 Multi-party PSI from OLE

Our multi-party PSI protocol uses the same techniques that we previously
employed to achieve two-party PSI. This is similar in spirit to the approach
taken in [19], who employ techniques from the two-party PSI of [13] and apply
them in the multi-party setting. We also adopt the idea of a designated central
party that performs a two-party PSI with the remaining parties, because this
allows to delegate most of the computation to this party and saves communi-
cation. Apart from that, our techniques differ completely from [19]. Abstractly,
they run the two-party PSI with each party and then use threshold encryption
and zero-knowledge proofs to ensure the correctness of the computation. These
tools inflict a significant communication and computation penalty.

In our protocol (cf. Fig. 10) we run our two-party PSI between the central
party and every other party, but we ensure privacy of the aggregation not via
threshold encryption and zero-knowledge proofs, but instead by a simple masking
of the intermediate values and a polynomial check. This masking is created in a
setup phase, where every pair of parties exchanges a random seed that is used
to create two random blinding polynomials which cancel out when added.

Once the central party receives all shares of the computation, it simply add
these shares, thereby removing the random masks. The central party broadcasts
the result to all parties. Then, all parties engage in a multi-party coin-toss and
obtain a random value x. Since all operations in the protocol are linear oper-
ations on polynomials, the parties evaluate their input polynomials on x and
broadcast the result. This allows every party to locally verify the relation and
as a consequence also the result. Here we have to ensure that a rushing adver-
sary cannot cheat by waiting for all answers before providing its own answer.
We solve this issue by simply committing to the values first, and the unveiling
them in the next step. This leads to malleability problems, i.e. we have to use
non-malleable commitments6.

Theorem 6.1. The protocol ΠMPSI computationally UC-realises F∗
MPSI in the

FOPA-hybrid model with communication complexity in O((n2 + nm)κ).

Proof. We have to distinguish between the case where the central party is mali-
cious and the case where it is honest. We show UC-security of ΠMPSI by defining
a simulator S for each case which produces an indistinguishable simulation of
the protocol to any environment Z trying to distinguish the ideal world from
the real world. The approach of the simulation is straightforward: the simulator
extracts the input polynomials into FOPA and thus obtains an intersection of
the adversary’s inputs.

In the case of an honest central party, all parties communicate with this
party, i.e. the simulator can extract all inputs of all malicious parties. In the
case where P0 is malicious, however, the simulator can at most learn the central
party’s input at the beginning. He inputs this result into the ideal functionality

6 In order to achieve our claimed efficiency we actually use UC commitments, but
non-malleable commitments are sufficient for the security of the protocol.
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Fig. 10. Protocol ΠMPSI UC-realises F*
MPSI in the FOPA-hybrid model.

and uses the intermediate result for the simulation. The malicious central party
can later “simulate” the other malicious parties and thereby possibly change
the intersection for the honest parties. We show that A can only reduce the
intersection unless it already knows x ∈ Sj for at least one j ∈ H, i.e. we assume
that A cannot predict a single element of the set of an honest party except with
negligible probability. This reduced intersection can be passed by the simulator
to the ideal functionality.



176 S. Ghosh and T. Nilges

Fig. 11. Simulator SP0 for P0 ∈ A.

P0 is malicious: Consider the simulator in Fig. 11.

We show the indistinguishability of the simulation and the real protocol
through the following hybrid games. In the following, let A denote the dummy
adversary controlled by Z.

Hybrid 0: RealAΠMPSI
.

Hybrid 1: Identical to Hybrid 0, except that S1 simulates FOPA and learns
all inputs.
Hybrid 2: Identical to Hybrid 1, except that S2 aborts according to Step 7
in Fig. 11.
Hybrid 3: Identical to Hybrid 2, except that S3 aborts if the extracted p̂0

are not identical, but the check is passed.
Hybrid 4: Identical to Hybrid 3, except that S4 replaces the vjl between
honest parties j, l by uniformly random polynomials.
Hybrid 5: Identical to Hybrid 4, except that S5 generates the inputs ŝj

0, ŝj

according to Step 6 in Fig. 11 and adjusts the output. This corresponds to
Ideal

SP0

F*
MPSI

.

Hybrids 0 and 1 are trivially indistinguishable. We show that Hybrid 1
and Hybrid 2 are computationally indistinguishable in Lemma6.1.1. This step
ensures that the correct p̂0 was extracted, and that all the intermediate values of
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the honest parties are added up. Hybrids 2 and 3 are indistinguishable due to the
security of the coin-toss. This is formalized in Lemma 6.1.2. As an intermediate
step to complete the full simulation, we replace all pseudorandom polynomi-
als vjl between honest parties j, l by uniformly random ones. Computational
indistinguishability of Hybrid 3 and Hybrid 4 follows from a straightforward
reduction to the pseudorandomness of PRG. We establish the statistical indis-
tinguishability of Hybrids 4 and 5 in Lemma6.1.3. As a result we get that for
all PPT environments Z,

RealAΠMPSI
(Z) ≈c Ideal

SP0

F*
MPSI

(Z).

Lemma 6.1.1. Assume that NMCOM is a bounded-concurrent non-malleable
commitment scheme against synchronizing adversaries. Then Hybrid 1 and
Hybrid 2 are computationally indistinguishable.

Proof. The only difference between Hybrid 1 and Hybrid 2 lies in the fact that
S2 aborts if the extracted p̂A evaluated on x does not match the check value
α0, but the check is still passed. Therefore, in order for Z to distinguish both
hybrids, it has to be able to produce a value α∗

0 �= p̂A(x) and pass the check
with non-negligible probability ε. W.l.o.g. it is sufficient that α∗

0 is incorrect for
only one p̂0. We show that such a Z breaks the non-malleability property of
NMCOM.

Let σ denote the outcome of the check. If A is honest, i.e. α0 = p̂0(x) and
βi
0 = r̂i

0(x), then

σ =
n∑

i=0

(α0(βi + δ0) + αi(βi
0 + δi)) − p∩(x) = 0, (1)

where
p∩ =

∑

i∈A

(si + si
0) +

∑

j∈H

(sj + sj
0).

We first observe that
∑

j∈H (sj + sj
0) =

∑
j∈H p̂j(r̂

j
0 + r̂′

j) + p̂0(r̂′
0 + r̂j) is uni-

form over the choice of the r̂j , r̂′
j . Therefore, if A uses p∗

∩ without adding
∑

j∈H (sj + sj
0), the check will fail with overwhelming probability.

Since A controls the inputs of the malicious parties i ∈ A, in order to pass
the check it is sufficient for A to satisfy the following simplification of Eq. (1).

σ′ =
∑

j∈H

(α0(βj + δ0) + αj(β
j
0 + δj)) −

∑

j∈H

(sj(x) + sj
0(x)) = const

Here const is a fixed constant known to A (0 if A is honest) determined by setting
the inputs αi, βi for i ∈ A accordingly. But if α∗

0 �= p̂0(x), i.e. α∗
0 = α0 + e, then

we get that
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σ′ =
∑

j∈H

((α0 + e)(βj + δ0) + αj(β
j
0 + δj)) −

∑

j∈H

(sj(x) + sj
0(x))

=
∑

j∈H

(α0(βj + δ0) + αj(β
j
0 + δj)) −

∑

j∈H

(sj(x) + sj
0(x)) + e

∑

j∈H

(βj + δ0)

= e
∑

j∈H

(βj + δ0) �= const

Similarly for βj
0 �= r̂j

0(x) for any j ∈ H. Thus, except for the case of α∗
0 =

α0 + e/
∑

j∈H βj , the check will fail for α∗
0 �= p̂0(x). But since we assumed that

A passes the check with non-negligible probability, and NMCOM is statistically
binding, A has to produce a valid commitment to α̃0 = α0 + e/

∑
j∈H (βj + δ0)

with the same probability.
Note, that A interacts in both the left and right session of NMCOM with the

same party (actually all parties simultaneously, since everything is broadcast).
But this means that A cannot let the left session finish before starting the right
session, i.e. A is a synchronizing adversary against NMCOM. Concretely, in the
left session, S2 commits to (p̂j(x), r̂j(x), r̂′

j(x)) = (αj , βj , δj) for j ∈ H, while A
commits in the right session to (α0, {βi

0}i∈[n], δ0) and (αi, βi, δi) for i ∈ A to S2.
Further, the number of sessions that A can start is bounded in advance at n−1,
i.e. it is sufficient to consider bounded-concurrency.

Consider the two views

Real = {ŝj , {comj}}j∈H, Rand = {ŝj , {ĉomj}}j∈H,

where comj ← NMCOM.Commit(αj , βj) and ĉomj ← NMCOM.Commit(0). Real
corresponds to a real protocol view of A before committing itself7.

Obviously, Real ≈c Rand if NMCOM is non-malleable. However, we will argue
that A cannot output a valid commitment on α̃0 except with negligible proba-
bility, i.e.

Pr[(com∗
0, unv

∗
0, (α̃0, {β̃i

0}i∈[n], δ̃0) ← A(Rand) ∧ valid] ≤ negl(κ),

where valid is the event that NMCOM.Open(com∗
0, unv

∗
0, (α̃0, {β̃i

0}i∈[n], δ0) =
1. We first observe that p̂j and r̂j for j ∈ H cannot be obtained
by A via ŝj = p̂j · r̂j

0 − ûj . The polynomial ŝj itself is uniformly
random over the choice of ûj , and the only equation that A has is
p̂∩ =

∑
i∈A (si + si

0) +
∑

j∈H (sj + sj
0) =

∑
i∈A (p̂0 · (r̂i + r̂′

0) + p̂i · (r̂i
0 + r̂′

i)) +
∑

j∈H (p̂0 · (r̂j + r̂′
0) + p̂j · (r̂j

0 + r̂′
j)). Note, that the honest r̂j , r̂′

j have degree d
and therefore hide p̂j . Further, the commitments comj contain the value 0 and
are therefore independent of p̂j and r̂j . Thus, the probability that A obtains a
commitment on α̃0 is negligible.

7 For ease of notation, here we assume that the commitments are completely sent
before A commits himself. The very same argument also holds if A only received
synchronized messages of comj and has to start committing concurrently.
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But since Real ≈c Rand, we also get that

Pr[(com∗
0, unv

∗
0, (α̃0, {β̃i

0}i∈[n], δ̃0) ← A(Real) ∧ valid] ≤ negl(κ),

which contradicts our assumption that A produces the commitment with non-
negligible probability ε.

In conclusion, Hybrid 1 and Hybrid 2 are computationally indistinguish-
able. 
�

Lemma 6.1.2. Assume that ΠCT provides a uniformly random x with compu-
tational security. Then Hybrid 2 and Hybrid 3 are computationally indistinguish-
able.

Proof. Assume that there exists an environment Z that distinguishes Hybrids 2
and 3 with non-negligible probability ε. In order to distinguish Hybrid 2 and
Hybrid 3 Z has to provide two distinct polynomials for a malicious P0 and still
pass the check in the protocol. Then we can construct from Z an adversary B
that predicts the outcome of ΠCT with non-negligible probability.

Let A input w.l.o.g. two polynomials p̂1
0 �= p̂2

0. The check with the random
challenge x allows A to send only one value α∗

0, but from Lemma 6.1.1 we know
that it has to hold that α∗

0 = p̂1
0(x) = p̂2

0(x), or the check will fail. First note
that two polynomials of degree m agree in a random point x over F only with
probability m/|F|, which is negligible in our case.

Our adversary B proceeds as follows. It simulates the protocol for Z according
to S1 up to the point where S1 learns the polynomials p̂1

0 �= p̂2
0. B sets f = p̂1

0−p̂2
0

and computes the roots γ1, . . . , γm of f . One of these roots has to be the random
point x, otherwise p̂1

0(x) − p̂2
0(x) �= 0 and the check in ΠMPSI fails (since there

is only one α∗
0). B picks a random index l ∈ [m] and predicts the output of

the coin-flip as γl. Thus, B predicts the outcome of the coin-toss correctly with
probability ε/m, which is non-negligible. This contradicts the security of ΠCT.

This establishes the indistinguishability of Hybrid 2 and Hybrid 3. 
�

Lemma 6.1.3. Hybrid 4 and Hybrid 5 are statistically close.

Proof. A malicious environment Z can distinguish Hybrid 4 and Hybrid 5 if
(a) the extracted inputs are incorrect or if (b) the simulated messages can be
distinguished from real ones.

Concerning (a), if the inputs were not correctly extracted, Z would receive
different outputs in the two hybrids. We already established that the extracted
polynomial p̂0 is correct. Similarly, the extracted r̂j

0 are also correct. By impli-
cation this also ensures that the intermediate intersection is computed correctly.

We argue that the correction of the intersection is also correct, i.e. the set
Ŝ′

∩ is computed correctly and in particular it holds that (M0(p∗
∩) ∩ M0(p̂j)) ⊆

Ŝ∩. First of all, we have to show that the intermediate intersection polynomial
p̂int actually provides the intersection for all parties. For all Pj it holds with
overwhelming probability:
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M0(p̂j) ∩ M0(p̂int) = M0(p̂j) ∩ M0(
∑

j∈H

(p̂0 · (r̂j + r̂′
0) + p̂j · (r̂j

0 + r̂′
j)))

Lemma 2.2= M0(p̂j) ∩ (
⋂

j∈H

M0((p̂0 · (r̂j +r̂′
0) + p̂j · (r̂j

0+r̂′
j)))

Lemma 2.4= M0(p̂j)∩ (
⋂

j∈H

M0(p̂0) ∩ M0(p̂j))

= Ŝ∩

Once the intermediate intersection is computed, the adversary can only add
an update polynomial p̂upt to get the final intersection polynomial p∗

∩. It remains
to show that this final intersection does not include any points that were not
already in the intermediate intersection for any of the parties’ polynomials p̂j .

For this, we consider the intersection of every honest party’s (unknown) input
pj with the intersection. It has to hold that Ŝ′

∩ ⊆ Ŝ∩ for all Pj except with
negligible probability. Here we require that Pr[x ∈ M0(pj)] ≤ negl(|F|) for all
x, i.e. the adversary can only guess an element of Pj ’s input set.

M0(p̂j) ∩ M0(p∗
∩) = M0(p̂j) ∩ (M0(p̂int + p̂upt))

Lemma 2.2= M0(p̂j) ∩ (M0(p̂int) ∩ M0(p̂upt))

= M0(p̂j) ∩ (Ŝ∩ ∩ M0(p̂upt))

⊆ M0(p̂j) ∩ Ŝ∩ = Ŝ∩

Therefore, Ŝ′
∩ ⊆ Ŝ∩, and the output in both hybrids is identical.

Regarding (b), we make the following observations. Since S4 sends ŝ′
j =

ŝj − uj +
∑

i�=j vij , the value ŝ′
j is uniformly random over the choice of uj (and

over
∑

vij , if t ≤ n−2). Therefore, the simulation of ŝ′
j is identically distributed

to Hybrid 4.
Similarly, we have:

∑

j∈H

(ŝ′
j + ŝj

0) =
∑

j∈H

(p̂0 · (r̂j + r̂′
0) + p̂j · (r̂j

0 + r̂′
j)) [+

∑

i∈A,j∈H

vij ]

We can ignore the vij values, since these are known to A. The sum is uniform over
the choice of the r̂j , r̂′

j apart from the points γ ∈ Ŝ∩ (since FOPA guarantees that
p̂0 �= 0) and therefore identically distributed to Hybrid 5, since the extraction in
correct.


�

P0 is honest: The proof itself is very similar to the proof of a corrupted
P0. It is actually easier to simulate in the sense that SP̄0

observes the inputs
of all malicious parties. In this sense, ΠMPSI actually realises FMPSI if P0 is
honest, since no adjustment of the output is necessary. We refer to the full
version [15] of the paper for the proof.
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Efficiency. The setup, i.e. the distribution of seeds, has communication com-
plexity O(n2κ). The oblivious addition of the polynomials has communication
overhead of O(nmκ). The check phase first requires a multi-party coin-toss.

In the full version of this paper [15], we sketch a coin-tossing protocol in com-
bination with an OLE-based commitment scheme (replacing the non-malleable
commitment for better efficiency) that results in an asymptotic communication
overhead of O(n2κ) for the check and the coin-toss phase. Combining this with
the above observations, ΠMPSI has communication complexity O((n2 + nm)κ)
in the FOLE-hybrid model.

For concrete instantiations of FOLE, the OLE protocol of Ghosh et al. [14]
has a constant communication overhead per OLE. In summary, the complete
protocol has communication complexity O((n2+nm)κ), which is asymptotically
optimal for m ≥ n.

Similar to the two-party case, the computational cost is dominated by the cost
of polynomial interpolation. In particular, the central party has to run the two-
party protocol n times, which leads to a computational overhead of O(nm log m)
multiplications. The other parties basically have the same computational over-
head as in the two-party case. 
�

7 Performance Analysis

In this section, we give an estimation of the communication efficiency with con-
crete parameters and provide a comparison with existing results. For this, we
simply count the number of field elements that have to be sent for the protocols.
We first look at the communication overhead of the OLE primitive. Instanti-
ated with the result by Ghosh et al. [14], each OLE has an overhead of 64 field
elements including OT extension (32 without), which translates to 256 field ele-
ments per item per OPA. The factor 4 stems from the fact that OPA needs 2d
OLE to compute a degree d output, and OLE+ requires two OLE per instance.

Table 2. Comparison of two-party PSI protocols from [36] for input-size m =
{216, 220}, where κ denotes statistical security parameter, σ denotes size of each item
in bits, SM denotes standard model, ROM denotes random oracle model.

Protocol Communication cost

m = 216 m = 220

[36] (EC-ROM) 79 MB (κ = 40) 1.32 GB (κ = 40)

[36] (DE-ROM) 61 MB (κ = 40) 1.07 GB (κ = 40)

[36] (SM, σ = 40) 451 MB (κ = 40) >7.7 GB (κ = 40)

[36] (SM, σ = 64) 1.29 GB (κ = 40) 22.18 GB (κ = 40)

Ours (σ = 40) 80 MB (κ = 40) 1.25 GB (κ = 40)

Ours (σ = 64) 128 MB (κ = 64) 2 GB (κ = 64)
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2-party PSI. To get a feeling for the concrete communication efficiency of
our two-party protocol, we compare it with the recent maliciously UC-secure
protocols from [36]. These protocols give only one-sided output, whereas our
protocol gives two-sided output. However, OPA is sufficient for one-sided PSI,
consequently a one-sided PSI would cost 256 field elements per item in our case.

Table 2 clearly shows that the communication overhead of our protocol is
significantly less than the standard model (SM) protocol from [36]. Note that
our instantiation is also secure in SM, given O(κ) base OTs. Like [36] we use the
OT-extension protocol from [31] for the instantiation. Even if we compare our
result to the ROM approach of [36], we achieve fairly competitive communication
efficiency.

One should consider that in the ROM there exist other PSI protocols with
linear communication complexity [8,23]. The concrete bandwidth of those pro-
tocols are much less than our specific instantiation, for example for sets of 220

elements the total communication cost of [8] is about 213 MB8. Further [23] has
lower bandwidth than [8]. However, in both the cases communication efficiency
comes at the cost of huge computational expenses due to lots of public key oper-
ations. We believe that the simple field arithmetic of our protocols (including
the cost of the OLE of [14]) does not incur such a drawback in practice.

Table 3. Comparison of communication overhead per party of MPSI protocol with [27]
for 220 elements with 40 bit statistical security, without the cost for OT extension.

Protocol Parties Corr. Comm. 220 elements

[27] (passive) n n − 1 (n − 1) · 467 MB

Ours (active) n n − 1 ≈ 2.5 GB

Ours (passive) n n − 1 ≈ 1.25 GB

Multi-party PSI. To the best of our knowledge, there are currently no mali-
ciously secure MPSI implementations with which we could compare our result.
A direct comparison with the passively secure MPSI from [27], however, directly
shows the difference in asymptotic behaviour to our result. Their communication
costs per party increase with the number of parties, whereas it remains constant
in our case (except for the central party). If we average over all parties, the cen-
tral party’s overhead can be distributed over all parties, which at most doubles
the average communication cost per party (cf. Table 3). We can upper bound the
communication cost per party by 2.5 GB for 220 elements (excluding the cost
for OT extension in order to get comparable results to [27]). From the table we
can deduce that with only 6 parties, our actively secure protocol is more efficient
than their passive one. Replacing the actively secure OPA in our MPSI protocol
with the passively secure one yields a passively secure MPSI protocol. We gain

8 For reference see Figure 8 of [36].
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another factor of 2 in communication efficiency and our construction is more
efficient than [27] starting from 4 parties.
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Abstract. A k-collision for a compressing hash function H is a set of k
distinct inputs that all map to the same output. In this work, we show

that for any constant k, Θ

(
N

1
2 (1− 1

2k−1
)
)

quantum queries are both

necessary and sufficient to achieve a k-collision with constant probabil-
ity. This improves on both the best prior upper bound (Hosoyamada et
al., ASIACRYPT 2017) and provides the first non-trivial lower bound,
completely resolving the problem.

1 Introduction

Collision resistance is one of the central concepts in cryptography. A collision
for a hash function H : {0, 1}m → {0, 1}n is a pair of distinct inputs x1 �= x2

that map to the same output: H(x1) = H(x2).

Multi-collisions. Though receiving comparatively less attention in the literature,
multi-collision resistance is nonetheless an important problem. A k-collision for
H is a set of k distinct inputs {x1, . . . , xk} such that xi �= xj for i �= j where
H(xi) = H(xj) for all i, j.

Multi-collisions frequently surface in the analysis of hash functions
and other primitives. Examples include MicroMint [RS97], RMAC [JJV02],
chopMD [CN08], Leamnta-LW [HIK+11], PHOTON and Parazoa [NO14],
Keyed-Sponge [JLM14], all of which assume the multi-collision resistance of
a certain function. Multi-collisions algorithms have also been used in attacks,
such as MDC-2 [KMRT09], HMAC [NSWY13], Even-Mansour [DDKS14], and
LED [NWW14]. Multi-collision resistance for polynomial k has also recently
emerged as a theoretical way to avoid keyed hash functions [BKP18,BDRV18],
or as a useful cryptographic primitives, for example, to build statistically hiding
commitment schemes with succinct interaction [KNY18].

Quantum. Quantum computing stands to fundamentally change the field of cryp-
tography. Importantly for our work, Grover’s algorithm [Gro96] can speed up
brute force searching by a quadratic factor, greatly increasing the speed of pre-
image attacks on hash functions. In turn, Grover’s algorithm can be used to find
ordinary collisions (k = 2) in time O(2n/3), speeding up the classical “birthday”
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attack which requires O(2n/2) time. It is also known that, in some sense (dis-
cussed below), these speedups are optimal [AS04,Zha15a]. These attacks require
updated symmetric primitives with longer keys in order to make such attacks
intractable.

1.1 This Work: Quantum Query Complexity of Multi-collision
Resistance

In this work, we consider quantum multi-collision resistance. Unfortunately, little
is known of the difficulty of finding multi -collisions for k ≥ 3 in the quantum
setting. The only prior work on this topic is that of Hosoyamada et al. [HSX17],
who give a O(24n/9) algorithm for 3-collisions, as well as algorithms for general
constant k. On the lower bounds side, the Ω(2n/3) from the k = 2 case applies
as well for higher k, and this is all that is known.

We completely resolve this question, giving tight upper and lower bounds
for any constant k. In particular, we consider the quantum query complexity of
multi-collisions. We will model the hash function H as a random oracle. This
means, rather than getting concrete code for a hash function H, the adversary is
given black box access to a function H chosen uniformly at random from the set
of all functions from {0, 1}m into {0, 1}n. Since we are in the quantum setting,
black box access means the adversary can make quantum queries to H. Each
query will cost the adversary 1 time step. The adversary’s goal is to solve some
problem—in our case find a k-collision—with the minimal cost. Our results are
summarized in Table 1. Both our upper bounds and lower bounds improve upon
the prior work for k ≥ 3; for example, for k = 3, we show that the quantum
query complexity is Θ(23n/7).

Table 1. Quantum query complexity results for k-collisions. k is taken to be a constant,
and all Big O and Ω notations hide constants that depend on k. In parenthesis are
the main restrictions for the lower bounds provided. We note that in the case of 2-to-1
functions, m ≤ n + 1, so implicitly these bounds only apply in this regime. In these
cases, m characterizes the query complexity. On the other hand, for random or arbitrary
functions, n is the more appropriate way to measure query complexity. We also note
that for arbitrary functions, when m ≤ n + log(k − 1), it is possible that H contains
no k-collisions, so the problem becomes impossible. Hence, m ≥ n + log k is essentially
tight. For random functions, there will be no collisions w.h.p unless m � (1 − 1

k
)n, so

algorithms on random functions must always operate in this regime.

Upper Bound (Algorithm) Lower Bound

[BHT98] O(2m/3) for k = 2 (2-to-1)

[AS04] Ω(2m/3) for k = 2 (2-to-1)

[Zha15a] O(2n/3) for k = 2 (Random, m ≥ n/2) Ω(2n/3) for k = 2 (Random)

[HSX17] O

(
2

1
2 (1− 1

3k−1 )n
)

(m ≥ n + log k)

This Work O

(
2

1
2
(1− 1

2k−1
)n

)
(m ≥ n + log k) Ω

(
2

1
2
(1− 1

2k−1
)n

)
(Random)
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1.2 Motivation

Typically, the parameters of a hash function are set to make finding collisions
intractable. One particularly important parameter is the output length of the
hash function, since the output length in turn affects storage requirements and
the efficiency of other parts of a cryptographic protocol.

Certain attacks, called generic attacks, apply regardless of the implementa-
tion details of the hash function H, and simply work by evaluating H on several
inputs. For example, the birthday attack shows that it is possible to find a col-
lision in time approximately 2n/2 by a classical computer. Generalizations show
that k-collisions can be found in time Θ(2(1−1/k)n)1.

These are also known to be optimal among classical generic attacks. This is
demonstrated by modeling H as an oracle, and counting the number of queries
needed to find (k-)collisions in an arbitrary hash function H. In cryptographic
settings, it is common to model H as a random function, giving stronger average
case lower bounds.

Understanding the effect of generic attacks is critical. First, they cannot be
avoided, since they apply no matter how H is designed. Second, other parameters
of the function, such as the number of iterations of an internal round function,
can often be tuned so that the best known attacks are in fact generic. Therefore,
for many hash functions, the complexity of generic attacks accurately represents
the actual cost of breaking them.

Therefore, for “good” hash functions where generic attacks are optimal, in
order to achieve security against classical adversaries n must be chosen so that
t = 2n/2 time steps are intractable. This often means setting t = 2128, so n = 256.
In contrast, generic classical attacks can find k-collisions in time Θ(2(1−1/k)n).
For example, this means that n must be set to 192 to avoid 3-collisions, or 171
to avoid 4-collisions.

Once quantum computers enter the picture, we need to consider quantum
queries to H in order to model actual attacks that evaluate H in superposition.
This changes the query complexity, and makes proving bounds much more diffi-
cult. Just as understanding query complexity in the classical setting was crucial
to guide parameter choices, it will be critical in the quantum world as well.

We also believe that quantum query complexity is an important study
in its own right, as it helps illuminate the effects quantum computing will
have on various areas of computer science. It is especially important to cryp-
tography, as many of the questions have direct implications to the post-
quantum security of cryptosystems. Even more, the techniques involved are
often closely related to proof techniques in post-quantum cryptography. For
example, bounds for the quantum query complexity of finding collisions in ran-
dom functions [Zha15a], as well as more general functions [EU17,BES17], were
developed from techniques for proving security in the quantum random oracle
model [BDF+11,Zha12,TU16]. Similarly, the lower bounds in this work build on
techniques for proving quantum indifferentiability [Zha18]. On the other hand,

1 Here, the Big Theta notation hides a constant that depends on k.
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proving the security of MACs against superposition queries [BZ13] resulted in
new lower bounds for the quantum oracle interrogation problem [van98] and
generalizations [Zha15b].

Lastly, multi-collision finding can be seen as a variant of k-distinctness, which
is essentially the problem of finding a k-collision in a function H : {0, 1}n →
{0, 1}n, where the k-collision may be unique and all other points are distinct. The
quantum query complexity of k-distinctness is currently one of the main open
problems in quantum query complexity. An upper bound of (2n)

3
4− 1

4(2k−1) was
shown by Belovs [Bel12]. The best known lower bound is Ω((2n)

3
4− 1

2k ) [BKT18].
Interestingly, the dependence of the exponent on k is exponential for the upper
bound, but polynomial for the lower bound, suggesting a fundamental gap our
understanding of the problem.

Note that our results do not immediately apply in this setting, as our algo-
rithm operates only in a regime where there are many (≤ k-)collisions, whereas
k-distinctness applies even if the k-collision is unique and all other points are
distinct (in particular, no (k−1)-collisions). On the other hand, our lower bound
is always lower than 2n/2, which is trivial for this problem. Nonetheless, both
problems are searching for the same thing—namely a k-collisions—just in dif-
ferent settings. We hope that future work may be able to extend our techniques
to solve the problem of k-distinctness.

1.3 The Reciprocal Plus 1 Rule

For many search problems over random functions, such as pre-image search,
collision finding, k-sum, quantum oracle interrogation, and more, a very simple
folklore rule of thumb translates the classical query complexity into quantum
query complexity.

In particular, let N = 2n, all of these problems have a classical query com-
plexity Θ(N1/α) for some rational number α. Curiously, the quantum query
complexity of all these problems is always Θ(N

1
α+1 ).

In slightly more detail, for all of these problems the best classical q-query
algorithm solves the problem with probability Θ(qc/Nd) for some constants c, d.
Then the classical query complexity is Θ(Nd/c). For this class of problems, the
success probability of the best q query quantum algorithm is obtained simply by
increasing the power of q by d. This results in a quantum query complexity of
Θ(Nd/(c+d)). Examples:

– Grover’s pre-image search [Gro96] improves success probability from q/N
to q2/N , which is known to be optimal [BBBV97]. The result is a query
complexity improvement from N = N1/1 to N1/2.
Similarly, finding, say, 2 pre-images has classical success probability q2/N2; it
is straightforward to adapt known techniques to prove that the best quantum
success probability is q4/N2. Again, the query complexity goes from N to
N1/2. Analogous statements hold for any constant number of pre-images.

– The BHT collision finding algorithm [BHT98] finds a collision with probabil-
ity q3/N , improving on the classical birthday attack q2/N . Both of these are
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known to be optimal [AS04,Zha15a]. Thus quantum algorithms improve the
query complexity from N1/2 to N1/3.
Similarly, finding, say, 2 distinct collisions has classical success probability
q4/N2, whereas we show that the quantum success probability is q6/N2.
More generally, any constant number of distinct collisions conforms to the
Reciprocal Plus 1 Rule.

– k-sum asks to find a set of k inputs such that the sum of the outputs is 0.
This is a different generalization of collision finding than what we study in this
work. Classically, the best algorithm succeeds with probability qk/N . Quan-
tumly, the best algorithm succeeds with probability qk+1/N [BS13,Zha18].
Hence the query complexity goes from N1/k to N1/(k+1).
Again, solving for any constant number of distinct k-sum solutions also con-
forms to the Reciprocal Plus 1 Rule.

– In the oracle interrogation problem, the goal is to compute q+1 input/output
pairs, using only q queries. Classically, the best success probability is clearly
1/N. Meanwhile, Boneh and Zhandry [BZ13] give a quantum algorithm with
success probability roughly q/N, which is optimal.

Some readers may have noticed that Reciprocal Plus 1 (RP1) rule does not
immediately appear to apply the Element Distinctness. The Element Distinct-
ness problem asks to find a collision in H : [M ] → [N ] where the collision is
unique. Classically, the best algorithm succeeds with probability Θ(q2/M2). On
the other hand, quantum algorithms can succeed with probability Θ(q3/M2),
which is optimal [Amb04,Zha15a]. This does not seem to follow the prediction
of the RP1 rule, which would have predicted q4/M2. However, we note that
unlike the settings above which make sense when N � M , and where the com-
plexity is characterized by N , the Element Distinctness problem requires M ≤ N
and the complexity is really characterized by the domain size M . Interestingly,
we note that for a random expanding function, when N ≈ M2, there will with
constant probability be exactly one collision in H. Thus, in this regime the colli-
sion problem matches the Element Distinctness problem, and the RP1 rule gives
the right query complexity!

Similarly, the quantum complexity for k-sum is usually written as Mk/(k+1),
not N1/(k+1). But again, this is because most of the literature considers H for
which there is a unique k-sum and H is non-compressing, in which case the
complexity is better measured in terms of M . Notice that a random function
will contain a unique k collision when N ≈ Mk, in which case the bound we
state (which follows the RP1 rule) exactly matches the statement usually given.

On the other hand, the RP1 rule does not give the right answer for k-
distinctness for k ≥ 3, since the RP1 rule would predict the exponent to approach
1/2 for large k, whereas prior work shows that it approaches 3/4 for large k. That
RP1 does not apply perhaps makes sense, since there is no setting of N,M where
a random function will become an instance of k-distinctness: for any setting of
parameters where a random function has a k-collision, it will also most likely
have many (k − 1)-collisions.
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The takeaway is that the RP1 Rule seems to apply for natural search prob-
lems that make sense on random functions when N � M . Even for problems
that do not immediately fit this setting such as Element Distinctness, the rule
often still gives the right query complexity by choosing M,N so that a random
function is likely to give an instance of the desired problem.

Enter k-collisions. In the case of k-collisions, the classical best success probability
is qk/N (k−1), giving a query complexity of N (k−1)/k = N1−1/k. Since the k-
collision problem is a generalization of collision finding, is similar in spirit to the
problems above, and applies to compressing random functions, one may expect
that the Reciprocal Plus 1 Rule applies. If true, this would give a quantum
success probability of q2k−1/Nk−1, and a query complexity of N (k−1)/(2k−1) =
N

1
2 (1− 1

2k−1 ).
Even more, for small enough q, it is straightforward to find a k-collision with

probability O(q2k−1/Nk−1) as desired. In particular, divide the q queries into
k − 1 blocks. Using the first q/(k − 1) queries, find a 2-collision with probability
(q/(k − 1))3/N = O(q3/N). Let y be the image of the collision. Then, for each
of the remaining (k − 2) blocks of queries, find a pre-image of y with probability
(q/(k − 1))2/N = O(q2/N) using Grover search. The result is k colliding inputs
with probability O(q3+2(k−2)/Nk−1) = O(q2k−1/Nk−1). It is also possible to
prove that this is a lower bound on the success probability (see lower bound
discussion below). Now, this algorithm works as long q ≤ N1/3, since beyond this
range the 2-collision success probability is bounded by 1 < q3/N . Nonetheless, it
is asymptotically tight in the regime for which it applies. This seems to suggest
that the limitation to small q might be an artifact of the algorithm, and that a
more clever algorithm could operate beyond the N1/3 barrier. In particular, this
strongly suggests k-collisions conforms to the Reciprocal Plus 1 Rule.

Note that the RP1 prediction gives an exponent that depends polynomially
on k, asymptotically approaching 1/2. In contrast, the prior work of [HSX17]
approaches 1/2 exponentially fast in k. Thus, prior to our work we see an expo-
nential vs polynomial gap for k-collisions, similar to the case of k-distinctness.

Perhaps surprisingly given the above discussion2, our work demonstrates that
the right answer is in fact exponential, refuting the RP1 rule for k-collisions.

As mentioned above, our results do not immediately give any indication for
the query complexity of k-distinctness. However, our results may hint that k-
distinctness also exhibits an exponential dependence on k. We hope that future
work, perhaps building on our techniques, will be able to resolve this question.

1.4 Technical Details

The Algorithm. At their heart, the algorithms for pre-image search, colli-
sion finding, k-sum, and the recent algorithm for k-collision, all rely on Grover’s
algorithm. Let f : {0, 1}n → {0, 1} be a function with a fraction δ of accept-
ing inputs. Grover’s algorithm finds the input with probability O(δq2) using q

2 At least, the authors found it surprising!.
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quantum queries to f . Grover’s algorithm finds a pre-image of a point y in H
by setting f(x) to be 1 if and only if H(x) = y.

The BHT algorithm [BHT98] uses Grover’s to find a collision in H. First, it
queries H on q/2 = O(q) random points, assembling a database D. As long as
q � N1/2, all the images in D will be distinct. Now, it lets f(x) be the function
that equals 1 if and only if H(x) is found amongst the images in D, and x is not
among the pre-images. By finding an accepting input to f , one immediately finds
a collision. Notice that the fraction of accepting inputs is approximately q/N.

By running Grover’s for q/2 = O(q) steps, one obtains a such a pre-image,
and hence a collision, with probability O((q/N)q2) = O(q3/N).

Hosoyamada et al. show how this idea can be recursively applied to find
multi-collisions. For k = 3, the first step is to find a database D2 consisting of r
distinct 2-collisions. By recursively applying the BHT algorithm, each 2-collision
takes time N1/3. Then, to find a 3 collision, set up f as before: f(x) = 1 if and
only if H(x) is amongst the images in D and x is not among the pre-images.
The fraction of accepting inputs is approximately r/N, so Grover’s algorithm
will find a 3-collision in time (N/r)1/2. Setting r to be N1/9 optimizes the total
query count as N4/9. For k = 4, recursively build a table D3 of 3-collisions, and
set up f to find a collision with the database.

The result is an algorithm for k-collisions for any constant k, using
O(N

1
2 (1− 1

3k−1 )) queries.

Our algorithm improves on Hosoyamada et al.’s, yielding a query complexity
of O(N

1
2 (1− 1

2k−1
)). Note that for Hosoyamada et al.’s algorithm, when construct-

ing Dk−1, many different Dk−2 databases are being constructed, one for each
entry in Dk−1. Our key observation is that a single database can be re-used
for the different entries of Dk−1. This allows us to save on some of the queries
being made. These extra queries can then be used in other parts of the algorithm
to speed up the computation. By balancing the effort correctly, we obtain our
algorithm. Put another way, the cost of finding many (k-)collisions can be amor-
tized over many instances, and then recursively used for finding collisions with
higher k. Since the recursive steps involve solving many instances, this leads to
an improved computational cost.

In more detail, we iteratively construct databases D1,D2, . . . , Dk. Each Di

will have ri i-collisions. We set rk = 1, indicating that we only need a single
k-collision. To construct database D1, simply query on r1 arbitrary points. To
construct database Di, i ≥ 2, define the function fi that accepts inputs that col-
lide with Di−1 but are not contained in Di−1. The fraction of points accepted by
fi is approximately ri−1/N . Therefore, Grover’s algorithm returns an accepting
input in time (N/ri−1)1/2. We simply run Grover’s algorithm ri times using the
same database Di−1 to construct Di in time ri(N/ri−1)1/2.

Now we just optimize r1, . . . , rk−1 by setting the number of queries to con-
struct each database to be identical. Notice that r1 = O(q), so solving for ri

gives us
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rk = O

(
q2− 1

2k−1

N1− 1
2k−1

)

Setting rk = 1 and solving for q gives the desired result. In particular, in the
case k = 3, our algorithm finds a collision in time O(N3/7).

The Lower Bound. Notice that our algorithm fails to match the result one
would get by applying the “Reciprocal Plus 1 Rule”. Given the discussion above,
one may expect that our iterative algorithm could potentially be improved on
even more. To the contrary we prove that, in fact, our algorithm is asymptotically
optimal for any constant k.

Toward that end, we employ a recent technique developed by Zhandry [Zha18]
for analyzing quantum queries to random functions. We use this technique to
show that our algorithm is tight for random functions, giving an average-case
lower bound.

Zhandry’s “Compressed Oracles.” Zhandry demonstrates that the information
an adversary knows about a random oracle H can be summarized by a database
D∗ of input/output pairs, which is updated according to some special rules. In
Zhandry’s terminology, D∗ is the “compressed standard/phase oracle”.

This D∗ is not a classical database, but technically a superposition of all
databases, meaning certain amplitudes are assigned to each possible database.
D∗ can be measured, obtaining an actual classical database D with probability
equal to its amplitude squared. In the following discussion, we will sometimes
pretend that D∗ is actually a classical database. While inaccurate, this will give
the intuition for the lower bound techniques we employ. In the Sect. 4 we take
care to correctly analyze D∗ as a superposition of databases.

Zhandry shows roughly the following:

– Consider any “pre-image problem”, whose goal is to find a set of pre-images
such that the images satisfy some property. For example, k-collision is the
problem of finding k pre-images such that the corresponding images are all
the same.
Then after q queries, consider measuring D∗. The adversary can only solve
the pre-image problem after q queries if the measured D∗ has a solution to
the pre-image problem.
Thus, we can always upper bound the adversary’s success probability by
upper bounding the probability D∗ contains a solution.

– D∗ starts off empty, and each query can only add one point to the database.
– For any image point y, consider the amplitude on databases containing y as

a function of q (remember that amplitude is the square root of the proba-
bility). Zhandry shows that this amplitude can only increase by O(

√
1/N)

from one query to the next. More generally, for a set S of r different images,
the amplitude on databases containing any point in S can only increase by
O(
√|S|/N).
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The two results above immediately imply the optimality of Grover’s search.
In particular, the amplitude on databases containing y is at most O(q

√
1/N)

after q queries, so the probability of obtaining a solution is the square of this
amplitude, or O(q2/N). This also readily gives a lower bound for the collision
problem. Namely, in order to introduce a collision to D∗, the adversary must add
a point that collides with one of the existing points in D∗. Since there are at most
q such points, the amplitude on such D∗ can only increase by O(

√
q/N). This

means the overall amplitude after q queries is at most O(q3/2/N1/2). Squaring
to get a probability gives the correct lower bound.

A First Attempt. Our core idea is to attempt a lower bound for k-collision by
applying these ideas recursively. The idea is that, in order to add, say, a 3-
collision to D∗, there must be an existing 2-collision in the database. We can
then use the 2-collision lower bound to bound the increase in amplitude that
results from each query.

More precisely, for very small q, we can bound the amplitude on databases
containing � distinct 2-collisions as O( (q3/2/N1/2)�). If q � N1/3, � must be a
constant else this term is negligible. So we can assume for q < N1/3 that � is a
constant.

Then, we note that in order to introduce a 3-collision, the adversary’s new
point must collide with one of the existing 2-collisions. Since there are at most
�, we know that the amplitude increases by at most O(

√
�/N1/2) = O(1/N1/2)

since � is a constant. This shows that the amplitude on databases with 3-collisions
is at most q/N1/2.

We can bound the amplitude increase even smaller by using not only the
fact that the database contains at most � 2-collisions, but the fact that the
amplitude on databases containing even a single 2-collision is much less than 1.
In particular, it is O(q3/2/N1/2) as demonstrated above. Intuitively, it turns out
we can actually just multiply the 1/N1/2 amplitude increase in the case where
the database contains a 2-collision by the q3/2/N1/2 amplitude on databases
containing any 2-collision to get an overall amplitude increase of q3/2/N .

Overall then, we upper bound the amplitude after q < N1/3 queries by
O(q5/2/N), given an upper bound of O(q5/N2) on the probability of finding
a 3-collision. This lower bound can be extended recursively to any constant
k-collisions, resulting in a bound that exactly matches the Reciprocal Plus 1
Rule, as well as the algorithm for small q! This again seems to suggest that our
algorithm is not optimal.

Our Full Proof. There are two problems with the argument above that, when
resolved, actually do show our algorithm is optimal. First, when q ≥ N1/3, the
O(q3/2/N1/2) part of the amplitude bound becomes vacuous, as amplitudes can
never be more than 1. Second, the argument fails to consider algorithms that find
many 2-collisions, which is possible when q > N1/3. Finding many 2-collisions
of course takes more queries, but then it makes extending to 3-collisions easier,
as there are more collisions in the database to match in each iteration.
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In our full proof, we examine the amplitude on the databases containing a
3-collision as well as r 2-collisions, after q queries. We call this amplitude gq,r.
We show a careful recursive formula for bounding g using Zhandry’s techniques,
which we then solve.

More generally, for any constant k, we let g
(k)
q,r,s be the amplitude on databases

containing exactly r distinct (k − 1)-collisions and at least s distinct k-collisions
after q queries. We develop a multiply-recursive formula for the g(k) in terms of
the g(k) and g(k−1). We then recursively plug in our solution to g(k−1) so that the
recursion is just in terms of g(k), which we then solve using delicate arguments.

Interestingly, this recursive structure for our lower bound actually closely
matches our algorithm. Namely, our proof lower bounds the difficulty of adding
an i-collision to a database D∗ containing many i − 1 collisions, exactly the
problem our algorithm needs to solve. Our techniques essentially show that every
step of our algorithm is tight, resulting in a lower bound of Ω

(
N

1
2 (1− 1

2k−1
)
)
,

exactly matching our algorithm. Thus, we solve the quantum query complexity
of k-collisions.

1.5 Other Related Work

Most of the related work has been mentioned earlier. Recently, in [HSTX18],
Hosoyamada, Sasaki, Tani and Xagawa gave the same improvement. And they
also showed that, their algorithm can also find a multi-collision for a more general
setting where |X| ≥ l

cN
· |Y | for any positive value cN ≥ 1 which is in o(N

1
2l−1 )

and find a multiclaw for random functions with the same query complexity. They
also noted that our improved collision finding algorithm for the case |X| ≥ l · |Y |
was reported in the Rump Session of AsiaCrypt 2017. They did not give an
accompanying lower bound.

2 Preliminaries

Here, we recall some basic facts about quantum computation, and review the
relevant literature on quantum search problems.

2.1 Quantum Computation

A quantum system Q is defined over a finite set B of classical states. In this
work we will consider B = {0, 1}n. A pure state over Q is a unit vector in C

|B|,
which assigns a complex number to each element in B. In other words, let |φ〉
be a pure state in Q, we can write |φ〉 as:

|φ〉 =
∑
x∈B

αx|x〉

where
∑

x∈B |αx|2 = 1 and {|x〉}x∈B is called the “computational basis” of
C

|B|. The computational basis forms an orthonormal basis of C|B|.
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Given two quantum systems Q1 over B1 and Q2 over B2, we can define a
product quantum system Q1 ⊗ Q2 over the set B1 × B2. Given |φ1〉 ∈ Q1 and
|φ2〉 ∈ Q2, we can define the product state |φ1〉 ⊗ |φ2〉 ∈ Q1 ⊗ Q2.

We say |φ〉 ∈ Q1 ⊗ Q2 is entangled if there does not exist |φ1〉 ∈ Q1 and
|φ2〉 ∈ Q2 such that |φ〉 = |φ1〉 ⊗ |φ2〉. For example, consider B1 = B2 = {0, 1}
and Q1 = Q2 = C

2, |φ〉 = |00〉+|11〉√
2

is entangled. Otherwise, we say |φ〉 is un-
entangled.

A pure state |φ〉 ∈ Q can be manipulated by a unitary transformation U .
The resulting state |φ′〉 = U |φ〉.

We can extract information from a state |φ〉 by performing a measure-
ment. A measurement specifies an orthonormal basis, typically the computa-
tional basis, and the probability of getting result x is |〈x|φ〉|2. After the mea-
surement, |φ〉 “collapses” to the state |x〉 if the result is x.

For example, given the pure state |φ〉 = 3
5 |0〉+ 4

5 |1〉 measured under {|0〉, |1〉},
with probability 9/25 the result is 0 and |φ〉 collapses to |0〉; with probability
16/25 the result is 1 and |φ〉 collapses to |1〉.

We finally assume a quantum computer can implement any unitary trans-
formation (by using these basic gates, Hadamard, phase, CNOT and π

8 gates),
especially the following two unitary transformations:

– Classical Computation: Given a function f : X → Y , one can imple-
ment a unitary Uf over C

|X|·|Y | → C
|X|·|Y | such that for any |φ〉 =∑

x∈X,y∈Y αx,y|x, y〉,

Uf |φ〉 =
∑

x∈X,y∈Y

αx,y|x, y ⊕ f(x)〉

Here, ⊕ is a commutative group operation defined over Y .
– Quantum Fourier Transform: Let N = 2n. Given a quantum state |φ〉 =∑2n−1

i=0 xi|i〉, by applying only O(n2) basic gates, one can compute |ψ〉 =∑2n−1
i=0 yi|i〉 where the sequence {yi}2

n−1
i=0 is the sequence achieved by applying

the classical Fourier transform QFTN to the sequence {xi}2
n−1

i=0 :

yk =
1√
N

2n−1∑
i=0

xiω
ik
n

where ωn = e2πi/N , i is the imaginary unit.
One interesting property of QFT is that by preparing |0n〉 and applying QFT2

to each qubit, (QFT2|0〉)⊗n = 1√
2n

∑
x∈{0,1}n |x〉 which is a uniform superpo-

sition over all possible x ∈ {0, 1}n.

For convenience, we sometimes ignore the normalization of a pure state which
can be calculated from the context.
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2.2 Grover’s Algorithm and BHT Algorithm

Definition 1 (Database Search Problem). Suppose there is a func-
tion/database encoded as F : X → {0, 1} and F−1(1) is non-empty. The problem
is to find x∗ ∈ X such that F (x∗) = 1.

We will consider adversaries with quantum access to F , meaning they submit
queries as

∑
x∈X,y∈{0,1} αx,y|x, y〉 and receive in return

∑
x∈X,y∈{0,1} αx,y|x, y ⊕

F (x)〉. Grover’s algorithm [Gro96] finds a pre-image using an optimal number
of queries:

Theorem 1 ([Gro96,BBHT98]). Let F be a function F : X → {0, 1}. Let t =
|F−1(1)| > 0 be the number of pre-images of 1. There is a quantum algorithm
that finds x∗ ∈ X such that F (x∗) = 1 with an expected number of quantum

queries to F at most O

(√
|X|
t

)
even without knowing t in advance.

We will normally think of the number of queries as being fixed, and con-
sider the probability of success given the number of queries. The algorithm from
Theorem 1, when runs for q queries, can be shown to have a success probability
min(1, O(q2/(|X|/t))). For the rest of the paper, “Grover’s algorithm” will refer
to this algorithm.

Now let us look at another important problem: 2-collision finding problem
on 2-to-1 functions.

Definition 2 (Collision Finding on 2-to-1 Functions). Assume |X| =
2|Y | = 2N . Consider a function F : X → Y such that for every y ∈ Y ,
|F−1(y)| = 2. In other words, every image has exactly two pre-images. The
problem is to find x �= x′ such that F (x) = F (x′).

Brassard, Høyer and Tapp proposed a quantum algorithm [BHT98] that
solved the problem using only O(N1/3) quantum queries. The idea is the fol-
lowing:

– Prepare a list of input and output pairs, L = {(xi, yi = F (xi)}t
i=1 where xi

is drawn uniformly at random and t = N1/3;
– If there is a 2-collision in L, output that pair. Otherwise,
– Run Grover’s algorithm on the following function F ′: F ′(x) = 1 if and only

if there exists i ∈ {1, 2, · · · , t}, F (x) = yi = F (xi) and x �= xi. Output the
solution x, as well as whatever xi it collides with.

This algorithm takes O(t+
√

N/t) quantum queries and when t = Θ(N1/3), the
algorithm finds a 2-collision with O(N1/3) quantum queries.

2.3 Multi-collision Finding and [HSX17]

Hosoyamada, Sasaki and Xagawa proposed an algorithm for k-collision finding
on any function F : X → Y where |X| ≥ k|Y | (k is a constant). They generalized
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the idea of [BHT98] and gave the proof for even arbitrary functions. We now
briefly talk about their idea. For simplicity in this discussion, we assume F is a
k-to-1 function.

The algorithm prepares t pairs of 2-collisions (x1, x
′
1), · · · , (xt, x

′
t) by running

the BHT algorithm t times. If two pairs of 2-collisions collide, there is at least
a 3-collision (possibly a 4-collision). Otherwise, it uses Grover’s algorithm to
find a x′′ �= xi, x′′ �= x′

i and f(x′′) = f(xi) = f(x′
i). The number of queries is

O(tN1/3 +
√

N/t). When t = Θ(N1/9), the query complexity is O(N4/9).
By induction, finding a (k − 1)-collision requires O(N (3k−1−1)/(2·3k−1)) quan-

tum queries. By preparing t (k−1)-collisions and applying Grover’s algorithm to

it, it takes O(tN (3k−1−1)/(2·3k−1) +
√

N
t ) quantum queries to get one k-collision.

It turns out that t = Θ(N1/3k

) and the complexity of finding k-collision is
O(N (3k−1)/(2·3k)).

2.4 Compressed Fourier Oracles and Compressed Phase Oracles

In [Zha18], Zhandry showed a new technique for analyzing cryptosystems in the
random oracle model. He also showed that his technique can be used to re-prove
several known quantum query lower bounds. In this work, we will extend his
technique in order to prove a new optimal lower bound for multi-collisions.

The basic idea of Zhandry’s technique is the following: assume A is making a
query to a random oracle H and the query is

∑
x,u,z ax,u,z|x, u, z〉 where x is the

query register, u is the response register and z is its private register. Instead of
only considering the adversary’s state

∑
x,u,z ax,u,z|x, u + H(x), z〉 for a random

oracle H, we can actually treat the whole system as∑
x,u,z

∑
H

ax,u,z|x, u + H(x), z〉 ⊗ |H〉

where |H〉 is the truth table of H. By looking at random oracles that way,
Zhandry showed that these five random oracle models/simulators are equivalent:

1. Standard Oracles:

StO
∑
x,u,z

ax,u,z|x, u, z〉 ⊗
∑
H

|H〉 ⇒
∑
x,u,z

∑
H

ax,u,z|x, u + H(x), z〉 ⊗ |H〉

2. Phase Oracles:

PhO
∑
x,u,z

ax,u,z|x, u, z〉 ⊗
∑
H

|H〉 ⇒
∑
x,u,z

ax,u,z|x, u, z〉 ⊗
∑
H

ωH(x)·u
n |H〉

where ωn = e2πi/N and PhO = (I ⊗QFT† ⊗ I) · StO · (I ⊗QFT⊗ I). In other
words, it first applies the QFT to the u register, applies the standard query,
and then applies QFT† one more time.
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3. Fourier Oracles: We can view
∑

H |H〉 as QFT|0N 〉. In other words, if we
perform Fourier transform on a function that always outputs 0, we will get a
uniform superposition over all the possible functions

∑
H |H〉.

Moreover,
∑

H ωH(x)·u|H〉 is equivalent to QFT|0N ⊕ (x, u)〉. Here ⊕ means
updating (xor) the x-th entry in the database with u.
So in this model, we start with

∑
x,u,z a0

x,u,z|x, u, z〉 ⊗ QFT|D0〉 where D0 is
an all-zero function. By making the i-th query, we have

PhO
∑

x,u,z,D

ai−1
x,u,z,D|x, u, z〉⊗QFT|D〉 ⇒

∑
x,u,z,D

ai−1
x,u,z,D|x, u, z〉⊗QFT|D⊕(x, u)〉

The Fourier oracle incorporates QFT and operates directly on the D registers:

FourierO
∑

x,u,z,D

ai−1
x,u,z,D|x, u, z〉 ⊗ |D〉 ⇒

∑
x,u,z,D

ai−1
x,u,z,D|x, u, z〉 ⊗ |D ⊕ (x, u)〉

4. Compressed Fourier Oracles: The idea is basically the same as Fourier
oracles. But when the algorithm only makes q queries, the database D with
non-zero weight contains at most q non-zero entries.
So to describe D, we only need at most q different (xi, ui) pairs (ui �= 0) which
says the database outputs ui on xi and 0 everywhere else. And D ⊕ (x, u) is
doing the following: (1) if x is not in the list D and u �= 0, put (x, u) in D;
(2) if (x, u′) is in the list D and u′ �= u, update u′ to u′ ⊕u in D; (3) if (x, u′)
is in the list and u′ = u, remove (x, u′) from D.
In the model, we start with

∑
x,u,z a0

x,u,z|x, u, z〉⊗|D0〉 where D0 is an empty
list. After making the i-th query, we have

CFourierO
∑

x,u,z,D

ai−1
x,u,z,D|x, u, z〉⊗ |D〉 ⇒

∑
x,u,z,D

ai−1
x,u,z,D|x, u, z〉⊗ |D ⊕ (x, u)〉

5. Compressed Standard/Phase Oracles: These two models are essentially
equivalent up to an application of QFT applied to the query response register.
From now on we only consider compressed phase oracles.
By applying QFT on the u entries of the database registers of a compressed
Fourier oracle, we get a compressed phase oracle.
In this model, D contains all the pair (xi, ui) which means the oracle outputs
ui on xi and uniformly at random on other inputs. When making a query on
|x, u, z,D〉,

– if (x, u′) is in the database D for some u′, a phase ωuu′
n will be added to

the state; it corresponds to update w to w + u in the compressed Fourier
oracle model where w = D(x) in the compressed Fourier database.

– otherwise a superposition is appended to the state |x〉 ⊗∑u′ ωuu′
n |u′〉; it

corresponds to put a new pair (x, u) in the list of the compressed Fourier
oracle model;

– also make sure that the list will never have an (x, 0) pair in the compressed
Fourier oracle model (in other words, it is |x〉⊗∑y |y〉 in the compressed
phase oracle model); if there is one, delete that pair;

– All the ‘append’ and ‘delete’ operations above mean applying QFT.
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3 Algorithm for Multi-collision Finding

In this section, we give an improved algorithm for k-collision finding. We use the
same idea from [HSX17] but carefully reorganize the algorithm to reduce the
number of queries.

As a warm-up, let us consider the case k = 3 and the case where F : X → Y
is a 3-to-1 function, |X| = 3|Y | = 3N . They gives an algorithm with O(N4/9)
quantum queries. Here is our algorithm with only O(N3/7) quantum queries:

– Prepare a list L = {(xi, yi = F (xi))}t1
i=1 where xi are distinct and t1 = N3/7.

This requires O(N3/7) classical queries on random points.
– Define the following function F ′ on X:

F ′(x) =

{
1, x �∈ {x1, x2, · · · , xt1} and F (x) = yj for some j

0, otherwise

Run Grover’s algorithm on function F ′. Wlog (by reordering L), we find
x′
1 such that x′

1 �= x1 and F (x′
1) = F (x1) using O(

√
N/N3/7) = O(N2/7)

quantum queries.
– Repeat the last step t2 = N1/7 times, we will have N1/7 2-collisions L′ =

{(xi, x
′
i, yi)}t2

i=1. This takes O(N1/7 ·
√

N/N3/7) = O(N3/7) quantum queries.
– If two elements in L′ collide, simply output a 3-collision. Otherwise, run

Grover’s on function G:

G(x) =

{
1, x �∈ {x1, x2, · · · , xt2 , x

′
1, · · · , x′

t2} and F (x) = yj for some j

0, otherwise

A 3-collision will be found when Grover’s algorithm finds a pre-image of 1 on
G. It takes O(

√
N/N1/7) = O(N3/7) quantum queries.

Overall, the algorithm finds a 3-collision using O(N3/7) quantum queries.
The similar algorithm and analysis works for any constant k and any k-to-

1 function which only requires O(N (2k−1−1)/(2k−1)) quantum queries. Let t1 =
N (2k−1−1)/(2k−1), t2 = N (2k−2−1)/(2k−1), · · · , ti = N (2k−i−1)/(2k−1), · · · , tk−1 =
N1/(2k−1). The algorithm works as follows:

– Assume F : X → Y is a k-to-1 function and |X| = k|Y | = kN .
– Prepare a list L1 of input-output pairs of size t1. With overwhelming proba-

bility (1 − N−1/2k

), L1 does not contain a collision. By letting t0 = N , this
step makes t1

√
N/t0 quantum queries.

– Define a function F2(x) that returns 1 if the input x is not in L1 but the
image F (x) collides with one of the images in L1, otherwise it returns 0. Run
Grover’s on F2 t2 times. Every time Grover’s algorithm outputs x′, it gives
a 2-collision. With probability 1 − O(N−1/2k

) (explained below), all these t2
collisions do not collide. So we have a list L2 of t2 different 2-collisions. This
step makes t2

√
N/t1 quantum queries.
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– For 2 ≤ i ≤ k − 1, define a function Fi(x) that returns 1 if the input x is not
in Li−1 but the image F (x) collides with one of the images of (i−1)-collisions
in Li−1, otherwise it returns 0. Run Grover’s algorithm on Fi ti times. Every
time Grover’s algorithm outputs x′, it gives an i-collision. With probability
1 − O(t2i /ti−1) = 1 − O(N−1/2k

), all these ti collisions do not collide. So we
have a list Li of ti different i-collisions. This step makes ti

√
N/ti−1 quantum

queries.
– Finally given tk−1 (k − 1)-collisions, using Grover’s to find a single x′ that

makes a k-collision with one of the (k − 1)-collision in Lk−1. This step makes
tk
√

N/tk−1 quantum queries by letting tk = 1 = N (2k−k−1)/(2k−1).

The number of quantum queries made by the algorithm is simply:

k−1∑
i=0

ti+1

√
N/ti =

k−1∑
i=0

√
N

t2i+1

ti

=
k−1∑
i=0

√
N · N

2·(2k−(i+1)−1)−(2k−i−1)

2k−1

= k · N (2k−1−1)/(2k−1)

So we have the following theorem:

Theorem 2. For any constant k, any k-to-1 function F : X → Y (|X| =
k|Y | = kN), the algorithm above finds a k-collision using O(N (2k−1−1)/(2k−1))
quantum queries.

We now show the above conclusion holds for an arbitrary function F : X → Y
as long as |X| ≥ k|Y | = kN . To prove this, we use the following lemma:

Lemma 1. Let F : X → Y be a function and |X| = k|Y | = kN . Let μF =
Prx

[|F−1(F (x))| ≥ k
]
be the probability that if we choose x uniformly at random

and y = F (x), the number of pre-images of y is at least k. We have μF ≥ 1
k .

Proof. We say an input or a collision is good if its image has at least k pre-images.
To make the probability as small as possible, we want that if y has less than

k pre-images, y should have exactly k − 1 pre-images. So the probability is at
least

μF =
|{x |x is good}|

|X| ≥ kN − (k − 1)N
kN

=
1
k

��
Theorem 3. Let F : X → Y be a function and |X| ≥ k|Y | = kN . The above
algorithm finds a k-collision using O(N (2k−1−1)/(2k−1)) quantum queries with
overwhelming probability.
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Proof. We prove the case |X| = k|Y |. The case |X| > k|Y | follows readily by
choosing an arbitrary subset X ′ ⊆ X such that |X ′| = k|Y | and restrict the
algorithm to the domain X ′.

As what we did in the previous algorithm, in the list L1, with overwhelming
probability, there are 0.999μF · t1 good inputs by Chernoff bound because every
input is good with probability μF . Then every 2-collision in L2 has probability
0.999μF to be good. So by Chernoff bound, L2 contains at least 0.9992μF t2 good
2-collisions with overwhelming probability. By induction, in the final list Lk−1,
with overwhelming probability, there are 0.999k−1μF ·tk−1 good (k−1)-collisions.
Finally, the algorithm outputs a k-collision with probability 1, by making at most
O(
√

N/(0.99k−1μF tk−1)) quantum queries.
As long as k is a constant, the coefficients before ti are all constants. The num-

ber of quantum queries is scaled by a constant and is still O(N (2k−1−1)/(2k−1))
and the algorithm succeeds with overwhelming probability. ��

4 Lower Bound for Multi-collision Finding

4.1 Idea in [Zha18]

We will first show how Zhandry re-proved the lower bound of 2-collision finding
using compressed oracle technique. The idea is that when we are working under
compressed phase/standard oracle model, a query made by the adversary (x, u)
can be recorded in the compressed oracle database.

Suppose before making the next quantum query, the current joint state is
the following

|φ〉 =
∑

x,u,z,D

ax,u,z,D|x, u, z〉 ⊗ |D〉

where x is the query register, u is the response register, z is the private storage
of the adversary and D is the database in the compressed phase oracle model.
Consider measuring D after running the algorithm. Because the algorithm only
has information about the points in the database D, the only way to have a non-
trivial probability of finding a collision is for the D that results from measurement
to have a collision. More formally, here is a lemma from [Zha18].

Lemma 2 (Lemma 5 from [Zha18]). Consider a quantum algorithm A making
queries to a random oracle H and outputting tuples (x1, · · · , xk, y1, · · · , yk, z).
Let R be a collection of such tuples. Suppose with probability p, A outputs a
tuple such that (1) the tuple is in R and (2) H(xi) = yi for all i. Now consider
running A with compressed standard/phase oracle, and suppose the database D
is measured after A produces its output. Let p′ be the probability that (1) the
tuple is in R, and (2) D(xi) = yi for all i (and in particular D(xi) �= ⊥). Then

√
p ≤

√
p′ +

√
k/2n

As long as k is small, the difference is negligible. So we can focus on bounding
the probability p′.
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Let P̃1 be a projection spanned by all the states with z,D containing at least
one collision in the compressed phase oracles. In other words, z contains x �= x′

such that D(x) �= ⊥, D(x′) �= ⊥ and D(x) = D(x′).

P̃1 =
∑
x,u,z

z,D:≥1 collision

|x, u, z,D〉〈x, u, z,D|

We care about the amplitude (square root of the probability)
∣∣∣P̃1|φ〉

∣∣∣. As in the

above lemma,
∣∣∣P̃1|φ〉

∣∣∣ =
√

p′ and k = 2. Moreover, we can bound the amplitude
of the following measurement.

P1 =
∑
x,u,z

D:≥1 collision

|x, u, z,D〉〈x, u, z,D|

Here “D :≥ 1 collision” meaning D as a compressed phase oracle, it has a
pair of x �= x′ such that D(x) = D(x′). It is easy to see |P1|φ〉| ≥ |P̃1|φ〉|. So we
will focus on bounding |P1|φ〉| in the rest of the paper.

For every |x, u, z,D〉, after making one quantum query, the size of D will
increase by at most 1. Let |φi〉 be the state before making the (i+1)-th quantum
query and |φ′

i〉 be the state after it. Let O be the unitary over the joint system
corresponding to an oracle query, in other words, |φ′

i〉 = O|φi〉. By making q
queries, the computation looks like the following:

– At the beginning, it has |φ0〉;
– For 1 ≤ i ≤ q, it makes a quantum query; the state |φi−1〉 becomes |φ′

i−1〉;
and it applies a unitary on its registers U i ⊗ id to get |φi〉 where U i is some
unitary defined over the registers x, u, z.

– Finally measure it using P1, the probability of finding a collision (in the
compressed phase oracle) is at most |P1|φq〉|2

We have the following two lemmas:

Lemma 3. For any unitary U i,

|P1|φ′
i−1〉| = |P1 · (U i ⊗ id) · |φ′

i−1〉| = |P1|φi〉|
Proof. Intuitively, P1 is a measurement on the oracle’s register and U i is a uni-
tary on the adversary’s registers, applying the unitary does not affect the mea-
surement P1.

Because U i is a unitary defined over the registers x, u, z and P1 is a projective
measurement defined over the database register D, we have

∣∣P1 · (U i ⊗ id) · |φ′
i−1〉

∣∣ =

∣∣∣∣∣∣P1 · (U i ⊗ id) ·
∑

x,u,z,D

αx,u,z,D|x, u, z,D〉
∣∣∣∣∣∣

=

∣∣∣∣∣P1 · (U i ⊗ id) ·
∑
D

|ψD〉 ⊗ |D〉
∣∣∣∣∣
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=
√ ∑

D≥1 collision

|U i|ψD〉|2 =
√ ∑

D≥1 collision

||ψD〉|2

which is the same as |P1|φ′
i−1〉|. ��

Lemma 4. |P1|φ′
i〉| ≤ |P1|φi〉| +

√
i√
N
.

Proof. We have

|P1|φ′
i〉| = |P1O|φi〉|

= |P1O (P1|φi〉 + (I − P1)|φi〉)|
≤ |P1OP1|φi〉| + |P1O(I − P1)|φi〉|
≤ |P1|φi〉| + |P1O(I − P1)|φi〉|

|P1OP1|φi〉| ≤ |P1|φi〉| is because P1|φi〉 contains only D with collisions. By
making one more query, the total magnitude will not increase.

So we only need to bound the second term |P1O(I − P1)|φi〉|. (I − P1)|φ〉
contains only states |x, u, z,D〉 that D has no collision. If after applying O to
a state |x, u, z,D〉, the size of D does not increase (stays the same or becomes
smaller), the new database still does not contain any collision. Otherwise, it
becomes

∑
u′ ωuu′

n |x, u, z,D ⊕ (x, u′)〉. And only |D| ≤ i out of N possible D ⊕
(x, u′) contain a collision.

|P1O(I − P1)|φi〉| =

∣∣∣∣∣∣∣P1O
∑

x,u,z,D
D: no collision

ax,u,z,D|x, u, z,D〉

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣P1

∑
x,u,z,D

D: no collision

1√
N

∑
u′

ωuu′
n ax,u,z,D|x, u, z,D ⊕ (x, u′)〉

∣∣∣∣∣∣∣

≤

⎛
⎜⎝ ∑

x,u,z,D
D: no collision

i

N
· a2

x,u,z,D

⎞
⎟⎠

1/2

≤
√

i√
N

��
By combining Lemmas 3 and 4, we have that |P1|φi〉| ≤ ∑i−1

j=1

√
j√
N

=

O(i3/2/N1/2). So we re-prove the following theorem:

Theorem 4. For any quantum algorithm, given a random function f : X → Y
where |Y | = N , it needs to make Ω(N1/3) quantum queries to find a 2-collision
with constant probability.
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4.2 Intuition for Generalizations

Here is the intuition for k = 3: as we have seen in the proof for k = 2, after
T1 = O(N1/3) quantum queries, the database has high probability to contain a
2-collision. Following the same formula, after making T2 queries, the amplitude
that it contains two 2-collisions is about

T2∑
T1+1

√
i√
N

= O

(
T

3/2
2 − T

3/2
1√

N

)
⇒ T2 = O(22/3N1/3)

And similarly after Ti = O(i2/3N1/3), the database will contain i 2-collisions.
Now we just assume between the (Ti−1 + 1)-th query and Ti-th query, the
database contains exactly (i − 1) 2-collisions.

Every time a quantum query is made to a database with i 2-collisions, with
probability at most i/N, the new database will contain a 3-collision. Similar to
the Lemma 4, when we make queries until the database contains m 2-collisions,
the amplitude that it contains a 3-collision in the database is at most

m∑
i=1

√
i√
N

(Ti − Ti−1) ≈
∫ m

1

x1/6

N1/6
dx ≈ x7/6/N1/6

which gives us that the number of 2-collisions is m = N1/7. And the total number
of quantum queries is Tm = m2/3 · N1/3 = N3/7 which is what we expected.

In the following sections, we will show how to bound the probabil-
ity/amplitude of finding a k = 2, 3, 4-collision and any constant k-collision with
constant probability. All the proof ideas are explained step by step through the
proof for k = 2, 3, 4. The proof for any constant k is identical to the proof for
k = 4 but every parameter is replaced with functions of k.

4.3 Lower Bound for 2-Collisions

Let P2,j be a projection spanned by all the states with D containing at least j
distinct 2-collisions in the compressed phase oracle model.

P2,j =
∑
x,u,z

D:≥j 2-collisions

|x, u, z,D〉〈x, u, z,D|

Let the current joint state be |φ〉 (after making i quantum queries but before
the (i + 1)-th query), and |φ′〉 be the state after making the (i + 1)-th quantum
query.

|φ〉 =
∑

x,u,z,D

ax,u,z,D|x, u〉 ⊗ |z,D〉

We have the relation following from Lemma 4:

|P2,1|φ′〉| ≤ |P2,1|φ〉| +
√

i√
N

|P2,j |φ′〉| ≤ |P2,j |φ〉| +
√

i√
N

|P2,j−1|φ′〉| for all j > 0
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Let |φ0〉, |φ1〉, · · · , |φi〉 be the state after making 0, 1, · · · , i quantum queries
respectively. Let fi,j = |P2,j |φi〉|. We rewrite the relations using fi,j :

fi,1 ≤ fi−1,1 +
√

i − 1√
N

=
∑

0≤l<i

√
l√
N

<
i3/2

√
N

fi,j ≤ fi−1,j +
√

i − 1
N

fi−1,j−1

=
∑

0≤l1<i

√
l1√
N

fl1,j−1

=
∑

0≤lj<lj−1<···<l2<l1<i

j∏
k=1

(√
lk√
N

)

<
1
j!

∑
0≤lj ,lj−1,··· ,l2,l1<i

j∏
k=1

(√
lk√
N

)

=
1
j!

(fi,1)
j

<

(
e · i3/2

j
√

N

)j

We observe that when i = o(j2/3N1/3), fi,j = o(1).

Corollary 1. For any quantum algorithm, given a random function f : X → Y
where |Y | = N , by making i queries, the probability of finding constant j 2-
collisions is at most O

(
( i3

N )j
)
.

Theorem 5. For any quantum algorithm, given a random function f : X → Y
where |Y | = N , it needs to make Ω(j2/3N1/3) quantum queries to find j 2-
collisions with constant probability.

4.4 Lower Bound for 3-Collisions

Let P3,k be a projection spanned by all the states with D containing at least k
distinct 3-collisions in the compressed phase model. And let P3,j,k be a projection
spanned by all the states with D containing exactly j distinct 2-collisions and
at least k 3-collisions.

Let the current joint state be |φ〉 (after making i quantum queries but before
the (i + 1)-th query), and |φ′〉 be the state after making the (i + 1)-th quantum
query. We have the following relation similar to Lemma 4:

|P3,k|φ′〉| ≤ |P3,k|φ〉|

+

∣∣∣∣∣∣∣∣∣∣
P3,k

∑
l≥0

∑
x,u,z

D: exactly l 2-collisions
exactly k−1 3-collision

1√
N

∑
u′

ωuu′
n · αx,u,z,D|x, u, z,D ⊕ (x, u′)〉

∣∣∣∣∣∣∣∣∣∣
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where the first term means D already contains at least k 3-collisions before the
query; and the second term is the case where a new 3-collision is added into the
database. Similar to Lemma 4, only l out of N u′ will make D ⊕ (x, u′) contain
k 3-collisions. So we have,

|P3,k|φ′〉| ≤ |P3,k|φ〉| +

√√√√√√
∑
l≥0

l

N

∑
x,u,z

D: exactly l 2-collisions
exactly k−1 3-collision

|α|2x,u,z,D

≤ |P3,k|φ〉| +
√∑

l≥0

l

N
|P3,l,k−1|φ〉|2

Let gi,k be the amplitude |P3,k|φi〉| and gi,j,k = |P3,j,k|φi〉|. It is easy to see
gi,0 ≤ 1 for any i ≥ 0 since it is an amplitude. We have the following:

gi,k ≤ gi−1,k +
√∑

l≥0

l

N
· g2i−1,l,k−1

Let fi,j = |P2,j |φi〉|. Define h3(i) = max{2e · i3/2√
N

, 10N1/8}. We have the
following lemma:

Lemma 5.

gi,k ≤ gi−1,k +

√
h3(i − 1)

N
gi−1,k−1 + fi−1,h3(i−1)

Proof.

gi,k ≤ gi−1,k +
√∑

l≥0

l

N
· g2i−1,l,k−1

≤ gi−1,k +

√√√√ ∑
0≤l≤h3(i−1)

l

N
· g2i−1,l,k−1 +

√ ∑
l>h3(i−1)

1 · g2i−1,l,k−1

≤ gi−1,k +

√
h3(i − 1)

N
·
√∑

l≥0

g2i−1,l,k−1 +
√ ∑

l>h3(i−1)

g2i−1,l,k−1

≤ gi−1,k +

√
h3(i − 1)

N
· gi−1,k−1 + fi−1,h3(i−1)

Here, in the last line, we used the fact that
∑

l≥0 g2i−1,l,k−1 represents the total
probability of the database having k − 1 distinct 3-collisions, and so is equal
to g2i−1,k−1. Similarly, we used that

∑
l>h3(i−1) g2i−1,l,k−1 represents the total

probability of having at least k − 1 distinct 3-collisions and at least h3(i − 1)
distinct 2-collisions. This probability is bounded above by the probability of just
having at least h3(i − 1) distinct 2-collisions, which is f2

i−1,h3(i−1). ��
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Lemma 6. Define Ai =
∑i−1

l=0

√
h3(l)

N . Then gi,k can be bounded as the follow-
ing:

gi,k ≤ Ak
i

k!
+ 2−N1/8

for all i ≤ N1/2, 1 ≤ k ≤ N1/8

Proof. If we expand Lemma 5, we have

gi,k ≤ gi−1,k +

√
h3(i − 1)

N
gi−1,k−1 + fi−1,h3(i−1)

≤ gi−2,k +
i−1∑

l=i−2

(√
h3(l)
N

gl,k−1 + fl,h3(l)

)

...

≤ g0,k +
i−1∑
l=0

(√
h3(l)
N

gl,k−1 + fl,h3(l)

)

where if k ≥ 1, g0,k = 0. Next,

gi,k ≤
∑

0≤l<i

√
h3(l)
N

gl,k−1 +
∑

0≤l<i

fl,h3(l)

≤
∑

0≤l<i

√
h3(l)
N

gl,k−1 + N1/2

(
1
2

)10N1/8

≤
∑

0≤l<i

√
h3(l)
N

gl,k−1 + 2−9.5N1/8

By recursively expanding the inequality, let C = 2−9.5N1/8
, we will get

gi,k ≤
∑

0≤l1<i

√
h3(l1)

N
gl1,k−1 + C

≤
∑

0≤l1<i

√
h3(l1)

N

⎛
⎝ ∑

0≤l2<l1

√
h3(l2)

N
gl2,k−2 + C

⎞
⎠+ C

≤
∑

0≤l1<i

√
h3(l1)

N

⎛
⎝ ∑

0≤l2<l1

√
h3(l2)

N

⎛
⎝ ∑

0≤l3<l2

√
h3(l3)

N
· · ·
⎞
⎠+ C

⎞
⎠+ C

=
∑

0≤lk<···<l1<i

k∏
j=1

(√
h3(lj)

N

)
+ C

k−1∑
t=0

∑
0≤lt<···<l1<i

t∏
j=1

(√
h3(lj)

N

)

<
Ak

i

k!
+

k−1∑
t=0

At
i

t!
· C

<
Ak

i

k!
+ eAi · 2−9.5N1/8
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We then bound Ai for all i ≤ N1/2 (we can always assume i = o(N1/2),
because finding any constant-collision using O(N1/2) quantum queries is easy
by a quantum computer, just repeatedly applying Grover’s algorithm):

Ai ≤
i∑

l=1

√
2e · l3/2

N3/4
+

∑
l:h3(l)=10N1/8

√
10N1/8

N1/2

≤
√

2e · i7/4

N3/4
+ O

(
N−1/48

)
Which implies Ai < 2e · N1/8 (by letting i =

√
N). So we complete the proof:

gi,k ≤ Ak
i

k!
+ eAi · 2−9.5N1/8

≤ Ak
i

k!
+ e2e·N1/8 · 2−9.5N1/8

<
Ak

i

k!
+ 2−N1/8

��
Theorem 6. For any quantum algorithm, given a random function f : X → Y
where |Y | = N , it needs to make Ω(j4/7N3/7) quantum queries to find j 3-
collisions for any j ≤ N1/8 with constant probability.

Proof. We have two cases:

– When j is a constant: If i∗ = o(N3/7), we have gi∗,j ≤ o(1) + O(N−1/48).
– When j is not a constant: For any j, let i∗ be the largest integer such that

Ai∗ < 1
2e · j. In this case, i∗ = O

(
j4/7N3/7

)
. So the probability of having at

least j 3-collisions is bounded by g2i∗,j where gi∗,j ≤ (eAi∗/j)j + 2−N1/8 ≤
2−j+1 + 2−N1/8

= o(1).

��

4.5 Lower Bound for 4-Collisions

Here we show the proof for lower bound of finding 4-collisions. The proof for
arbitrary constant has the same structure but different parameters which is
shown in the next section. We prove the case of 4-collisions here to give the idea
before generalizing.

Let fi,j be the amplitude of the database containing at least j 3-collisions
after making i quantum queries, gi,j,k be the amplitude of the database contain-
ing exactly j 3-collisions and at least k 4-collisions after i quantum queries, gi,k

be the amplitude of containing at least k 4-collisions after i quantum queries.
As we have seen in the last proof, we have

gi,k ≤ gi−1,k +
√∑

l≥0

l

N
g2i−1,l,k−1
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Define h4(i) = max{(2e)3/2 · i7/4

N3/4 , 10N1/16}. Again, we can bound gi,k by
dividing the summation into two parts:

gi,k ≤ gi−1,k +

√√√√ ∑
l≤h4(i−1)

l

N
g2i−1,l,k−1 +

√ ∑
l>h4(i−1)

1 · g2i−1,l,k−1

≤ gi−1,k +

√
h4(i − 1)

N
gi−1,k−1 + fi−1,h4(i−1)

...

≤
∑

0≤l<i

√
h4(l)
N

gl,k−1 +
∑

0≤l<i

fl,h4(l)

The second term can be bounded as the following (and we can safely assume
i < N1/2)

∑
0≤l<i

fl,h4(l) ≤
∑

0≤l<i

(
A

h4(l)
l

h4(l)!
+ 2−N1/8

)

≤
∑

0≤l<i

(
eAl

h4(l)

)h4(l)

+ N1/2 · 2−N1/8

≤
∑

0≤l<i

(
1
2

+ o(1)
)10N1/16

+ N1/2 · 2−N1/8

≤ 2−9.5N1/16

Let Bi =
∑

0≤l<i

√
h4(l)

N . And similarly, for all i ≤ N1/2,

Bi ≤ (2e)3/4 i15/8

N7/8
+ O(N− 1

16 · 1
14 )

The proof follows from the last proof for k = 3. A generalized version (for any
constant) can be found in the next section. And Bi is bounded by B√

N which
is at most 2e · N1/16.

Finally we have the following closed form:

gi,k ≤ Bk
i

k!
+

k−1∑
l=0

Bl
i

l!
· 2−9.5N1/16

<
Bk

i

k!
+ eB√

N · 2−9.5N1/16 ≤ Bk
i

k!
+ 2−N1/16

So we can conclude the following theorem:

Theorem 7. For any quantum algorithm, given a random function f : X → Y
where N = |Y |, it needs to make Ω(j8/15N7/15) quantum queries to find j 4-
collisions for any j ≤ N1/16 with constant probability.
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4.6 Lower Bound for Finding a Constant-Collision

In this section, we are going to show that the theorem can be generalized to
any constant-collision. Let fi,j be the amplitude of the database containing at
least j distinct s-collisions after i quantum queries, gi,j,k be the amplitude of the
database containing exactly j distinct s-collisions and at least k distinct (s+1)-
collisions after i quantum queries. Also let gi,k be the amplitude of the database
with at least k distinct (s + 1)-collisions after i quantum queries.

We assume fi,j is only defined for i ≤ √
N, 1 ≤ j ≤ N1/2s

and gi,k is only
defined for i ≤ √

N, 1 ≤ k ≤ N1/2s+1
. It holds for the base cases s = 4.

Define hs(i) (for any s ≥ 3) as the following:

hs(i) = max

{
(2e)

2s−2−1
2s−3

i(2
s−1−1)/2s−2

N (2s−2−1)/2s−2 , 10 · N1/2s

}

It holds for s = 3, 4 where h3(i) = max{(2e) · i3/2/N1/2, 10N1/8} and h4(i) =
max{(2e)3/2 · i7/4/N3/4, 10N1/16}.

Define Ai,s =
∑i−1

l=0

√
hs(l)

N . It is easy to see Ai and Bi in the last proof are

Ai,3 and Ai,4. And we have Ai,s ≤ (2e)
2s−2−1
2s−2 i(2

s−1)/2s−1

N(2s−1−1)/2s−1 +O(N−1/(2s(2s−2))).

Lemma 7. Ai,s ≤ (2e)
2s−2−1
2s−2 i(2

s−1)/2s−1

N(2s−1−1)/2s−1 + O(N−1/(2s(2s−2))) holds for all
constant s ≥ 3.

The lemma is consistent with the cases where s = 3, 4.

Proof.

Ai,s =
i−1∑
l=0

√
hs(l)
N

=
∑

l:hs(l)=10N1/2s

√
10N1/2s

N
+

∑
l:hs(l)>10N1/2s

√
hs(l)
N

=
∑

l:hs(l)=10N1/2s

√
10N1/2s

N
+

i−1∑
l=0

(2e)
2s−2−1
2s−2

l(2
s−1−1)/2s−1

N (2s−2−1)/2s−1 · N−1/2

where the second summation is at most (2e)
2s−2−1
2s−2 i(2

s−1)/2s−1

N(2s−1−1)/2s−1 and the first
summation is at most

∑
l:hs(l)=10N1/2s

√
10N1/2s

N
=

√
10N1/2s

N
· O

(
N( 1

2s +1− 1
2s−2 )· 2s−2

2s−1−1

)

≤ O

(
N− 1

2+
1

2s+1 · N
2s−3

4(2s−1−1)

)

≤ O
(
N− 1

2s(2s−2)

)
which completes the proof. ��
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Finally, we assume fi,j ≤ Aj
i,s

j! +O(2−N1/2s

) which holds for both s = 3, 4. We

are going to show it holds for (s+1), in other words, gi,k ≤ Ak
i,s+1
k! +O(2−N1/2s+1

).
And by induction, it holds for all constant s.

As we have seen in the last proof, we have the following inequality:

gi,k ≤ gi−1,k +
√∑

l≥0

l

N
g2i−1,l,k−1

≤ gi−1,k +

√
hs+1(i − 1)

N
· gi−1,k−1 + fi−1,hs+1(i−1)

where as i ≤ N1/2, for sufficient large N , the last term fi−1,hs+1(i−1) can be
bounded as:

fi−1,hs+1(i−1)

≤ A
hs+1(i−1)
i−1,s

hs+1(i − 1)!
+ O(2−N1/2s

)

≤

⎛
⎜⎜⎝e ·

(2e)
2s−2−1
2s−2 (i−1)(2

s−1)/2s−1

N(2s−1−1)/2s−1 + O(N−1/(2s(2s−2)))

max
{

(2e)
2s−1−1
2s−2 (i−1)(2s−1)/2s−1

N(2s−1−1)/2s−1 , 10 · N1/2s+1

}
⎞
⎟⎟⎠

10N1/2s+1

+ O(2−N1/2s

)

≤
(

1
2

+ o(1)
)10N1/2s+1

+ O(2−N1/2s

)

< 2−9.8N1/2s+1

By expanding the inequality, we get

gi,k ≤
i−1∑
l=0

√
hs+1(l)

N
gl,k−1 + N1/2 · 2−9.8N1/2s+1

≤
i−1∑
l=0

√
hs+1(l)

N
gl,k−1 + 2−9.5N1/2s+1

≤ Ak
i,s+1

k!
+

k−1∑
l=0

Al
i,s+1

l!
· 2−9.5N1/2s+1

≤ Ak
i,s+1

k!
+ eAi,s+1 · 2−9.5N1/2s+1

Because i ≤ √
N , Ai,s+1 < 2eN1/2s+1

. Finally, we have

gi,k ≤ Ak
i,s+1

k!
+ 2−N1/2s+1

which completes the induction. So we have the following theorem:
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Corollary 2. For any constant s ≥ 2, let fi,j be the amplitude of the database
containing at least j s-collisions after i quantum queries. For all 1 ≤ j ≤ N1/2s

,
we have

fi,j ≤ Aj
i,s

j!
+ O(2−N1/2s

)

where

Ai,s ≤ (2e)
2s−2−1
2s−2

i(2
s−1)/2s−1

N (2s−1−1)/2s−1 + O(N−1/(2s(2s−2)))

Theorem 8. For any quantum algorithm, given a random function f : X →
Y where N = |Y |, it needs to make Ω(j2

s−1/(2s−1)N (2s−1−1)/(2s−1)) quantum
queries to find j s-collisions for any j ≤ N1/2s

.
Moreover, for any quantum algorithm, given a random function f : X → Y

where N = |Y |, it needs to make Ω(N (2s−1−1)/(2s−1)) quantum queries to find
one s-collision.

Acknowledgements. This work is supported in part by NSF. Opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of NSF.

References

[Amb04] Ambainis, A.: Quantum walk algorithm for element distinctness. In: 45th
FOCS, pp. 22–31. IEEE Computer Society Press, October 2004

[AS04] Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the
element distinctness problems. J. ACM 51(4), 595–605 (2004)

[BBBV97] Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and
weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523
(1997)

[BBHT98] Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quan-
tum searching. Fortschritte der Physik: Progress Phys. 46(4–5), 493–505
(1998)
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Abstract. In (single-server) Private Information Retrieval (PIR), a
server holds a large database DB of size n, and a client holds an index
i ∈ [n] and wishes to retrieve DB[i] without revealing i to the server. It
is well known that information theoretic privacy even against an “hon-
est but curious” server requires Ω(n) communication complexity. This is
true even if quantum communication is allowed and is due to the ability
of such an adversarial server to execute the protocol on a superposition of
databases instead of on a specific database (“input purification attack”).

Nevertheless, there have been some proposals of protocols that achieve
sub-linear communication and appear to provide some notion of privacy.
Most notably, a protocol due to Le Gall (ToC 2012) with communication
complexity O(

√
n), and a protocol by Kerenidis et al. (QIC 2016) with

communication complexity O(log(n)), and O(n) shared entanglement.
We show that, in a sense, input purification is the only potent adver-

sarial strategy, and protocols such as the two protocols above are secure
in a restricted variant of the quantum honest but curious (a.k.a specious)
model. More explicitly, we propose a restricted privacy notion called
anchored privacy, where the adversary is forced to execute on a clas-
sical database (i.e. the execution is anchored to a classical database).
We show that for measurement-free protocols, anchored security against
honest adversarial servers implies anchored privacy even against specious
adversaries.

Finally, we prove that even with (unlimited) pre-shared entanglement
it is impossible to achieve security in the standard specious model with
sub-linear communication, thus further substantiating the necessity of
our relaxation. This lower bound may be of independent interest (in
particular recalling that PIR is a special case of Fully Homomorphic
Encryption).

1 Introduction

Private Information Retrieval (PIR), introduced by Chor et al. [CGKS95], is
perhaps the most basic form of joint computation with privacy guarantee. PIR
c© International Association for Cryptologic Research 2019
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is concerned with privately retrieving an entry from a database, without reveal-
ing which entry has been accessed. Formally, a PIR protocol is a communication
protocol between two parties, a server holding a large database DB contain-
ing n binary entries1, and a client who wishes to retrieve the ith element of
the database but without revealing the index i. Privacy can be defined using
standard cryptographic notions such as indistinguishability or simulation (see
[Gol04]). The simplicity of this primitive is since there is no privacy require-
ment for the database (i.e. we allow sending more information than necessary)
and that the server is not required to produce any output in the end of the
interaction, so functionality and privacy are one sided.

Clearly PIR is achievable by sending all of DB to the client. This will have
communication complexity n and will be perfectly private under any plausible
definition since the client sends no information. The absolute optimal result one
could hope for is a protocol with logarithmic communication, matching the most
communication efficient protocol without privacy constraints, in which the client
sends the index i to the server and receives DB[i] in response.

Alas, [CGKS95] proved that linear (in n) communication complexity is nec-
essary for PIR, and that this is the case even in the presence of arbitrary setup
information.2 Despite its pessimistic outlook, this lower-bound served (already in
[CGKS95] itself) as starting point to two extremely prolific and influential lines
of research, showing that the communication complexity can be vastly improved
if we place some restrictions on the server. The first considered multiple non-
interacting servers (see, e.g., [Efr12,DG15] and references therein), instead of
just a single server, and the second considered computationally bounded servers
and relying on cryptographic assumptions (see, e.g., [CMS99,Gen09,BV11]).

While our discussion so far referred to protocols executed by classical parties
over classical communication channels, the focus of this work is on the quantum
setting, where there is a quantum communication channel between the client
and server, and where the parties themselves are capable of performing quan-
tum operations. Importantly, we still only require functionality for a classical
database and a classical index.

One could hope that introducing quantum channels could allow an informa-
tion theoretic solution to a problem that classically can only be solved using
cryptographic assumptions, as has been the case for quantum key distribution
[BB84], quantum money [Wie83], quantum digital signatures [GC01], quantum
coin-flipping [Moc07,CK09,ACG+16] and more [BS16]. Indeed, the notion of
Quantum PIR (or QPIR) is quite a natural extension of its classical counterpart
and has also been extensively studied in the literature. Nayak’s famous result on
the impossibility of random access codes [Nay99] implies a linear lower bound

1 Throughout this work we will focus on the setting of binary database. We do note
that there is vast literature concerned with optimizations for the case of larger alpha-
bet.

2 Setup refers to any information that is provided to the parties prior to the execution
of the protocol by a trusted entity, but crucially one that does not depend on the
parties’ inputs. Shared randomness or shared entanglement are common examples.
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for non-interactive protocols (ones that consists of only a single message from
the server to the client), and implicitly, via extension of the same methods, also
for multi-round protocols. Formal variants of this lower bound were proven also
by Jain, Radhakrishnan and Sen [JRS09] (in terms of quantum mutual informa-
tion) and by Baumeler and Broadbent [BB15]. Indeed, one could trace back all of
these results to the notion of adversary purification which was used to show the
impossibility of various cryptographic tasks in the information-theoretic quan-
tum model starting as early as [Lo97,LC97,May97]. In the context of QPIR, it
can be shown that executing a QPIR protocol with sub-linear communication on
a superposition of databases instead of on a single database, will leave the server
at the end of the execution with a state that reveals some information about the
index i. This is made explicit in [JRS09, Section 3.1] and is also implicit in the
proof of [BB15].

Most relevant to our work is the aforementioned [BB15], which provides an
analysis from a cryptographic perspective and considers a well defined adversar-
ial model known as privacy against specious adversaries, or the specious model
for short. This adversarial model was introduced by Dupuis, Nielsen and Sal-
vail [DNS10] as a quantum counterpart to the classical notion of honest but
curious (a.k.a semi-honest) adversaries.3 A specious adversary can be thought
of as one that contains, as a part of its local state, a sub-state which is indistin-
guishable from that of the respective honest party, even when inspected jointly
with the other party’s local state.4

Let us provide a high level description of the specious model. We provide a
general outline for two-party protocols, and not one that is specific to QPIR.
Consider a protocol executed between parties A,B on input registers X,Y
respectively. Let A,B also denote the local state of the parties at a given point
in time. Then the state of an honest execution of the protocol on inputs XY
can be described by the joint density matrix of the registers XABY . A specious
adversarial strategy for party A can be thought of as one where at any point in
time, the local state of the adversary is of the form A′XA (i.e. the adversary is
allowed to maintain additional information, possibly in superposition with other
parts of the system), such that the reduced density matrix of XABY is still
indistinguishable from the one obtained in an honest execution. This provides a
potential advantage to a specious adversary (compared to an honest A) since it
is quite possible that together with A′, the joint state is no longer honest. Thus
the local view of the adversary, i.e. the registers A′XA, might in fact reveal
information about B’s input Y that was supposed to have been kept private.

In the QPIR setting, say taking A to be the server and B to be the client, the
register X holds the database DB, and Y holds the index i. Indeed, [BB15] shows

3 As [DNS10] point out, their model is stronger, i.e. excludes a larger class of attacks,
compared to the honest but curious model, even when restricted to a completely
classical setting.

4 More accurately, indistinguishability is required to hold even in the presence of
an environment which can be arbitrary correlated (or entangled) with the parties’
inputs. In the quantum setting this usually corresponds to the environment.



222 D. Aharonov et al.

that it is sufficient that A′ contains a purification of XA, where X is a uniform
distribution over all databases. We call this the purification attack. Thus, while
the adversary pretends to execute the protocol on a randomly sampled database,
it is in fact executed on a superposition of all possible databases at the same time
(indeed this is the case since A′ contains a purification of X). As explained above,
this methodology is not new, but [BB15] analyze and show that no meaningful
notion of QPIR can be achieved against this class of adversaries.

While the negative results could leave us pessimistic as to the abilities of
quantum techniques to improve the state of the art on single-server PIR, there
is some optimism suggested by two works. Le Gall [LG12] proposed a protocol
with sub-linear communication (specifically O(

√
n)). Kerenidis et al. [KLGR16]

proposed two protocols – an explicit one, with O(log n) communication, which
requires linear pre-shared entanglement; and a second protocol, with poly-
logarithmic communication (and does not require pre-shared entanglement). In
terms of privacy, it is shown that in a perfectly honest execution of the protocol,
client’s privacy is preserved. It might not be immediately clear how to trans-
late this proof of privacy to the existing security models and reconcile it with
the negative results. It is explained in [LG12] that the protocol is not actually
secure if the server deviates from the protocol. However, as [BB15] observed,
even a specious attacker that purifies the adversary can violate the security of
the protocol, and the privacy proof strongly hinges on the honest execution using
a classical database.

Challenges. The state of affairs prior to this work, was that (non-trivial) QPIR
was proven impossible even against fairly weak adversaries (namely, specious).
Nevertheless, it appears that [LG12,KLGR16] achieve some non-trivial privacy
guarantee using sub-linear communication. This privacy guarantee appears not
to be captured by the existing security model. Lastly, we notice that all existing
negative results are proven in a standalone model and did not consider protocols
where the parties are allowed to share (honestly generated) setup information,
such as the one by Kerenidis et al. [KLGR16]. In the quantum setting, a natural
question is whether shared entanglement can help in achieving a stronger result.5

The goal of this work is to address these challenges.

1.1 Our Results

Anchored Privacy. We start by formalizing a refinement of the standard notion
of quantum privacy - one where the adversary is not allowed to purify its input
register. We show anchored privacy against specious adversaries follows from
anchored privacy against an honest party, if the protocol itself does not require

5 We note that to the best of our understanding, even prior “entropic” results such
as [JRS09] seem to fall short of capturing the potential additional power of shared
entanglement. This is essentially due to the property that if AB are entangled, then
it is possible that the reduced state of B will have (much) higher von Neumann
entropy than the joint AB (whose entropy might even be 0).
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parties to perform measurements (i.e. is measurement-free). Formally, using our
notation from above, privacy in our model is only required to hold if the reduced
density matrix of the register X is a standard basis element, i.e. a fixed classical
value. We call our model anchored privacy as we can view our adversary as
anchored to a specific value for its input X.

We observe that Le Gall’s O(
√

n) protocol [LG12] and the two protocols
mentioned above by Kerenidis et al. [KLGR16] are in fact private against honest
servers. We prove that explicitly for the pre-shared entanglement protocol by
Kerinidis et al. in AppendixB. Using our reduction we can deduce that these
protocol are also anchored private against specious adversaries, namely that so
long as the adversary does not attempt to execute the protocol on a superposition
of databases (and is still specious in the manner explained above), privacy is
guaranteed. In a sense, we formalize the folklore reliance on input purification
to attack cryptographic schemes (and QPIR in particular), and show that in
a model where input purification is impossible or prevented via some external
restriction, it is possible to achieve security against specious adversaries.

We believe this model is interesting for three main reasons:

1. Conceptually, this model helps clarify the exact reason for the impossibility
of QPIR - it is precisely because of the purification attack. Indeed, there is a
formal sense in which some anchoring is necessary since we know that for any
proposed protocol, allowing to execute on a superposition of inputs allows to
violate security – see the preceding discussion in Sect. 1.

2. We view the anchored specious model as a stepping stone towards more robust
notions. One intriguing future direction (mentioned briefly in our list of open
problems) is to try to develop a malicious analog that still implements the
ideology of “forbidden input purification”, e.g. by forcing the adversary to
“classically open” the database before or after the execution in a manner
that is consistent with the client’s output. Another interesting direction is to
try to enforce anchoring using a two-server setting, thus achieving logarithmic
two-server QPIR (which is currently still beyond reach).

3. We believe that our new model may be plausible in certain situations where
one could certify that the server cannot employ a superposition on databases.
We note that this model can be externally enforced, e.g. by conducting an
inspection of the server’s local computation device (with a very low probabil-
ity) and making sure that it complies, and otherwise apply a heavy penalty.
One could imagine such an inspection verifying that a copy of the database is
stored on a macroscopic device that cannot be placed in superposition using
available technology. Another example of a setting where the anchored model
could be applicable is when the database contains information with some
semantic meaning, so that the client can easily notice when a nonsense value
has been used (this is somewhat similar to the setting considered in [GLM08]).
We recall that semi-honest protocols are often used as building blocks, with
additional external mechanisms that are employed to validate the assump-
tions of the model, and hope that our model can also be used in this way.
Lastly, from a purely scientific perspective, we believe that formalizing and
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pinpointing a non-trivial model where non-trivial QPIR is possible will allow
to better understand this primitive and the relation between quantum privacy
and its classical counterpart.

Improved Lower Bound. It would be instrumental to understand why the
known QPIR lower bounds do not apply to our logarithmic protocol described
above. Specifically, the protocol makes use of setup (pre-shared entanglement),
and one could wonder whether this is the source of improvement, and perhaps
with pre-shared entanglement it is possible to prove security even in the standard
specious model. We show that this is not the case by providing a lower bound
in the specious model even for the one-sided communication from the server to
the client. Namely, we show that linear communication from the server to the
client is necessary even if we allow arbitrary communication from the client to
the server. In particular, this rules out the ability to use the setup to circumvent
the lower bound, since the client (which is assumed to be honest) can generate
the setup locally, and send the server’s share across the channel at the beginning
of the protocol. This completes the picture in terms of the impossibility of QPIR
in the specious model and further justifies our relaxation of the model in order
to achieve meaningful results.

Noting that PIR can be thought of as a special case of Fully Homomor-
phic Encryption (FHE), our lower bound implies that even a Quantum Fully
Homomorphic Encryption (QFHE) with (even approximate) information the-
oretic security cannot have non-trivial communication complexity, even if the
QFHE protocol is allowed to make use of shared entanglement between the
server and the client. We thus generalize (to allow shared prior entanglement)
the impossibility results for (even imperfect) QPIR of [BB15] (as well as those
of [YPF14] which explicitly referred to QFHE).

1.2 Overview of Our Techniques

Anchored-Specious Security. Recall the notation introduced above for two
party protocol (A,B) on inputs (X,Y ), and recall that a specious adversary can
be thought of as one where the local state of the adversary is of the form A′XA.
Now let us consider the case of measurement-free protocols and also assume that
the client’s input Y is a pure state (this can be justified since otherwise we can
apply our argument on the joint state of Y and its purifying environment instead
of Y itself). In such an execution, it holds that at any stage XABY is a pure
superposition (i.e. its density matrix is of rank 1). Now let us consider the joint
state together with the specious adversary’s additional register, i.e. A′XABY .
Since (XABY ) is pure, A′ cannot be entangled with it, and therefore A′ is in
tensor product with the remainder of the state, namely (XABY ). It follows that
the status of the register A′ can be simulated at any point in time without any
knowledge of the other components of the protocol. There is a delicate point
here, since A′ may indeed be in tensor product, but we must also argue that it
is independent of Y . Intuitively, to see why such dependence on Y cannot occur
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consider, e.g., Y = |y1〉 + |y2〉. Then Y A′ is in the sate |y1〉 ⊗ ρA′ + |y2〉 ⊗ ρA′

(importantly the same ρA′ appears twice). However, this state is exactly the
purification of executing the protocol either with Y = |y1〉 or with Y = |y2〉. We
conclude that ρA′ must be the same in both settings, and by extension it can be
shown to be the same for all Y .

After taking care of A′, we need to consider the other part of the adversary’s
state, namely the register (XA). This register is, by definition, identical (or
indistinguishable) from the state of an honest party during the execution. Recall
that we assume our protocol is anchored private against honest servers. So the
local honest state (XA) is guaranteed not to leak information about B’s input.
Add to that the conclusion about A′ being in tensor product and independent of
B’s state, and we get that the entire local state of the specious adversary does
not reveal any disallowed information.

As a conclusion, since we can show, e.g. in Le Gall’s protocol or in our
logarithmic protocol, that an honest execution with a classical X does not leak
information about Y , this will also be the case in the anchored-specious setting.

Obviously many details are omitted from this high level overview. For exam-
ple, a specious adversary is not required to make (XABY ) identical to an honest
execution but rather only statistically close (in trace distance), which requires a
more delicate analysis. Furthermore, the formal construction of a simulator for
the adversary as required by the specious definition requires some care to detail.
For the formal definitions and analysis see Sect. 3 below.

Our Lower Bound. We first note that previous lower bound proofs in [Nay99,
BB15] bounded the total communication complexity by a reduction to quan-
tum random access codes. It is not a-priori clear how to generalize this proof
method to the presence of shared entanglement. To do so, we provide a new lower
bound argument that establishes a linear lower bound on the server’s commu-
nication complexity. Specifically, we show that the server needs to transmit at
least roughly n/2 qubits to the client, no matter how many qubits is transmitted
from the client to the server (assuming that the protocol has sufficiently small
correctness and privacy error). As we mentioned above, such a lower bound triv-
ially extends to hold with prior shared entanglement, since one can think of that
the shared entanglement is established by the client sending messages to the
server.

Our new lower bound argument is based on an interactive leakage chain
rule in [LC18] and might even be considered conceptually simpler than previ-
ous methods. At a high level, we consider a server holding a uniformly random
database a ∈ {0, 1}n and running a QPIR protocol with a client. Initially, from
the client’s point of view, the database a has n-bits of min-entropy, and the
protocol execution can be viewed as an “interactive leakage” that leaks infor-
mation about a to the client. Let mA and mB denote the server and the client’s
communication complexity in the protocol. The interactive leakage chain rule
in [LC18] states that the min-entropy of a can only be decreased by at most
min{2mA,mA + mB}. More precisely, let ρAB denote the states at the end
of the protocol execution where the A register stores the (classical) random
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database a and B denotes the client’s local register. The interactive leakage chain
rule states that Hmin(A|B)ρ ≥ n − min{2mA,mA + mB}. By the operational
meaning of quantum min-entropy, given the client’s state ρB , one cannot pre-
dict the database correctly with probability higher than 2−(n−min{2mA,mA+mB}).
On the other hand, suppose the protocol is secure against specious servers
with sufficiently small correctness and privacy error. We can combine the by-
now standard lower bound argument by Lo [Lo97] and gentle measurement
[Win99,Aar04,ON07], we show that one can reconstruct the database a from
the client’s state ρB with a constant probability. Combining both claims allows
us to establish lower bounds on both the server’s and the total communication
complexity in a unified way.

1.3 Remaining Open Problems

We proposed a new model and a new protocol which, we believe, resurfaces the
question of what can be achieved in the context of QPIR. We believe that a
number of intriguing questions still remain for future work.

1. As discussed above, our model is a relaxation of the specious model, which
is by itself a semi-honest model. Such models are fairly restrictive in the
sense that they make structural assumptions on the adversary (i.e. that it
follows the protocol, or contains a part that follows the protocol). Obviously,
if we hope for non-trivial results, any model that we formalize must preclude
purification of input. It is thus an intriguing question whether it is possible
to formulate malicious adversarial models that are still purification-free, and
what can be said about the plausibility of QPIR in such models. The current
definition of anchored privacy will need to be amended, since a malicious
server is allowed to just ignore its prescribed input, so a different method of
anchoring needs to be devised.

2. Another natural question is whether setup is necessary to achieve logarithmic
QPIR in the anchored specious model. We know from Kerenidis et al.’s result
that polylogarithmic communication is achievable even without setup. Is there
a reason that one can only improve it when assuming a setup? Another sur-
prising aspect is that the shared entanglement created during the setup is
not consumed during the protocol, and can be used for other needs after the
execution of the protocol (e.g., running another execution of PIR, or tele-
portation). A similar phenomenon occurs in quantum information: catalyst
quantum states are useful for mapping one bi-partite state to another using
LOCC, without consuming the catalyst state [JP99,Kli07]. The related notion
of quantum embezzlement [vDH03] has a similar property, but in this case,
the original shared state changes slightly. The authors are not aware of any
other cryptographic protocol with this non-consumption property.

3. Most state of the art classical PIR protocols (both in the multi-server setting
and in the computational cryptographic setting) only require one round of
communication. That is, one message (query) from the client to the server (or
servers) and one response message. All the existing sublinear QPIR protocols
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have multiple rounds. Understanding the round complexity of QPIR in light
of the classical state of the art is also an intriguing direction.

4. A main contribution of this work is to formalize the notion of anchored secu-
rity and show it can be used to provide a non-trivial cryptographic primitive.
It would be interesting to study the relevance of this notion (or adequately
adapted versions) in the context of a variety of other cryptographic tasks.
In particular, the question of whether it is possible to construct informa-
tion theoretically secure fully homomorphic encryption (FHE) given quantum
channels has received attention in recent years (see, e.g., [YPF14]). In homo-
morphic encryption, the server has a function f and the client has an input
x, and the goal of the protocol is for the client to learn f(x) without revealing
any information about x. PIR and FHE functionalities are intimately related
(think about a function fDB(i) = DB[i] for FHE, and about executing PIR with
database equal to the truth table of some function), and it is thus intriguing
whether the anchored model is applicable in the context of FHE as well.

1.4 Paper Organization

General preliminaries are provided in Sect. 2. We present our new model, and the
proof that for pure protocols honest security implies anchored specious security
in Sect. 3. Our new lower bound is stated and proven in Sect. 4. In AppendixB,
we show that the protocol by Kerenidis et al. is anchored private against specious
adversaries.

This work is also available on the arXiv eprint [ABC+19].

2 Preliminaries

Standard preliminaries regarding Hilbert spaces and quantum states can be
found in AppendixA. We provide below background and definitions concerning
two-party quantum protocols, specious adversaries and quantum private infor-
mation retrieval.

2.1 Two-Party Quantum Protocols

As in [BB15], we base our definitions on the works of [GW07] and [DNS10].
However, we make slight adaptations to allow for prior entanglement between
the parties.

Definition 2.1 (Two-party quantum protocol). An s-round, two-party
quantum protocol, denoted Π = {A ,B, ρjoint, s} consists of:

1. input spaces A0 and B0 for parties A and B respectively,
2. initial spaces Ap and Bp (p for pre-shared state) for parties A and B respec-

tively,
3. a joint initial state ρjoint ∈ Ap ⊗ Bp, split between the two parties,
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4. memory spaces A1, . . . ,As for A and B1, . . . ,Bs for B, and communication
spaces X1, . . . ,Xs, Y1, . . . ,Ys−1,

5. an s-tuple of quantum operations (A1, . . . ,As) for A , where A1 : L(A0 ⊗
Ap) �→ L(A1 ⊗ X1), and At : L(At−1 ⊗ Yt−1) �→ L(At ⊗ Xt) (2 ≤ t ≤ s),

6. an s-tuple of quantum operations (B1, . . . ,Bs) for B, where B1 : L(B0 ⊗
Bp ⊗ X1) �→ L(B1 ⊗ Y1), Bt : L(Bt−1 ⊗ Xt) �→ L(Bt ⊗ Yt) (2 ≤ t ≤ s − 1),
and Bs : L(Bs−1 ⊗ Xs) �→ L(Bs).

Note that in order to execute a protocol as defined above, one has to specify
the input, namely a quantum state ρin ∈ S(A0 ⊗ B0) from which the execution
starts.

Definition 2.2 (Protocol Execution). If Π = {A ,B, ρjoint, s} is an s-round
two-party protocol, then the state after the t-th step (1 ≤ t ≤ 2s), and upon input
state ρin ∈ S(A0 ⊗ B0 ⊗ R), for any R, is defined as

ρt(ρin) := (A(t+1)/2 ⊗ IB(t−1)/2) . . . (B1 ⊗ IA1)(A1 ⊗ IB0,Bp
)(ρin ⊗ ρjoint),

for t odd, and

ρt(ρin) := (Bt/2 ⊗ IAt/2) . . . (B1 ⊗ IA1)(A1 ⊗ IB0,Bp
)(ρin ⊗ ρjoint),

for t even. We define the final state of protocol Π = {A ,B, ρjoint, s} upon input
state ρin ∈ S(A0 ⊗ B0 ⊗ R) as: [A � B] (ρin) := ρ2s(ρin).

The communication complexity of a protocol is the number of qubits that
are exchanged between the parties. Slightly more generally, we can consider the
logarithm of the dimension of the message registers Xt, Yt. The formal definition
thus follows.

Definition 2.3 (Communication Complexity). The communication com-
plexity of a protocol as in Definition 2.1 is

s∑

t=1

log dim(Xt) +
s−1∑

t=1

log dim(Yt).

We sometimes also refer to one-sided communication complexity, i.e. the total
communication originating from one party to the other. The communication
complexity of A is defined to be the communication originating from A , or
formally

∑s
t=1 log dim(Xt). Symmetrically the communication complexity of B

is
∑s−1

t=1 log dim(Yt).

2.2 Specious Adversary

Given a two-party quantum protocol Π = {A ,B, ρjoint, s}, an adversary Ã

for A is an s-tuple of quantum operations (A1, . . . ,As), where Ã1 : L(Ã0) �→
L(A1 ⊗ X1) and Ãt : L(Ãt−1 ⊗ Yt−1) �→ L(Ãt ⊗ Xt), 2 ≤ t ≤ s, with Ã1, . . . , Ãs

being Ã ’s memory spaces. The global state after the tth step of a protocol run
with Ã is ρ̃t(Ã , ρin). An adversary B̃ for B is similarly defined.
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Definition 2.4 (Specious adversaries). Let Π = {A ,B, ρjoint, s} be an s-
round two-party protocol. An adversary Ã for A is said to be γ-specious, if there
exists a sequence of quantum operations (called recovery operators) F1, . . . ,F2s,
such that for 1 ≤ t ≤ 2s and for all ρin ∈ S(A0 ⊗ B0 ⊗ R):

1. For all t even, Ft : L(Ãt/2) �→ L(At/2).
2. For all t odd, Ft : L(Ã(t+1)/2 ⊗ X(t+1)/2) �→ L(A(t+1)/2 ⊗ X(t+1)/2).
3. For every input state ρin ∈ S(A0 ⊗ B0 ⊗ R), for any R,

Δ
(
(Ft ⊗ IBt,R)

(
ρ̃t(Ã , ρin)

)
, ρt (ρin)

)
≤ γ. (1)

A γ-specious adversary B̃ for B is similarly defined.

2.3 Quantum Private Information Retrieval

We define QPIR similarly to [BB15].

Definition 2.5 (Quantum Private Information Retrieval). An s-round,
n-bit Quantum Private Information Retrieval protocol (QPIR) is a two-party
protocol ΠQPIR = {A ,B, ρjoint, s}, where A is the server, B is the client, and
ρjoint is an initial state shared between them prior to the protocol. We call ΠQPIR

(1 − δ)-correct if, for all inputs ρin = |x〉〈x|A0 ⊗ |i〉〈i|B0 , with x = x1, . . . , xn ∈
{0, 1}n and i ∈ {1, . . . , n}, there exists a measurement M acting on Bs with
outcome 0 or 1, such that:

Pr {M (trAs
[A � B] (ρin)) = xi} ≥ 1 − δ.

If δ = 0 we say that the protocol is perfectly correct.
We call ΠQPIR ε-private against a (possibly adversarial) server Ã , if there

exists a sequence of quantum operations (simulators) I1, . . . ,Is−1, where It :
L(A0 ⊗ Ap) �→ L(Ãt ⊗ Yt), such that for all 1 ≤ t ≤ s − 1 and for all ρin ∈
S(A0 ⊗ B0 ⊗ R),

Δ
(
trB0 (It ⊗ IB0,R(ρin)) , trBt

(ρ̃2t(Ã , ρin))
)

≤ ε. (2)

If ε = 0 we say that the protocol is perfectly private.
We say that a QPIR protocol is ε-private against a class of servers if it is

ε-private against any server from this class.

We note that in the above definition privacy is required to hold also for
adversarial input states for the client and server, which also includes inputs in
superposition, and even for the case where the client and server (and possibly
a third party) are entangled. Nayak [Nay99,ANTSV02] showed that a perfectly
private QPIR protocol, even only against 0-specious servers, must have commu-
nication complexity at least (1 − H(1 − δ))n, where H(p) is the binary entropy
function. Baumeler and Broadbent [BB15] extended this lower bound to the case
of ε > 0 and presented a communication lower bound of

(
1 − H

(
1 − δ − 2

√
ε(2 − ε)

))
n. (3)
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3 Anchored Privacy Against Specious Adversaries

We now present our new restricted notion of privacy, that we call anchored
privacy. A protocol is anchored private if it satisfies the standard definition of
privacy with respect to classical inputs on the adversary’s side. There is no
privacy requirement for superposition input states on the adversary’s side (and
therefore this notion of privacy is weaker, and hence, easier to achieve). A formal
definition follows.

Definition 3.1 (Anchored Privacy). A QPIR protocol is anchored ε-private
if Eq. (2) holds for all ρin ∈ A0 ⊗ B0 ⊗ R (for any R), for which ρin|A0 = |x〉〈x|
for some x ∈ {0, 1}n.

We note that prior intuitive notions of security such as that implied by the
analysis of Le Gall [LG12] in fact correspond to anchored privacy against honest
servers. Our main theorem below shows that this type of privacy extends to the
specious setting as well.

Theorem 3.2. Let Π be a measurement-free QPIR protocol which is anchored
ε-private against honest servers, then Π is anchored (ε + 3

√
2γ)-private against

γ-specious servers.

Critically, the theorem only holds for measurement-free QPIR protocols. To
see this, consider the following protocol, which will be anchored-private against
honest servers but not anchored-private against specious ones. Let Π be a QPIR
protocol which is anchored-private against honest servers (e.g., Le-Gall’s protocol
[LG12]). Now consider the following protocol Π ′ which first generates a superpo-
sition over all possible databases, then measures this superposition to obtain a
classical value for the database. It then runs Π on this measured database (with
the client using its real input index). Finally, both parties toss out the output
of this first execution, and run Π again, now using the actual input database.

Let us first see that Π ′ is anchored-private against honest servers. This follows
since Π is secure against honest adversaries when executed over input states in
which the server’s input is classical, and hence so is Π ′ which just consists of
two sequential executions of Π over classical databases. However, a purification
of an honest server allows to execute a purification attack on the first execution
of Π in a way that allows to recover the client’s input, even though the database
used as input for Π ′ is completely classical.

Warm-Up. We first give a proof under some simplifying assumptions: (i) γ =
ε = 0. (ii) the input is pure (iii) the purification space is trivial: R = C and (iv)
the specious server’s quantum operations Ãt are unitary. The main point that
makes the analysis easier in this case is assumption (i).

Fix a step of the protocol t.

1. We claim that for every unitary γ-specious adversary, which is perfect (i.e.
γ = 0) the entire state, (written in some fixed but maybe non standard basis),
is of the form |η〉S′ ⊗|ψt〉S,C where |ψt〉 is the state that an honest server and
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client would have when running on the same input. Here, and later, we use
the notation S for all of the honest server registers at step t, C for all of the
client’s registers at step t and S ′ for the specious server’s ancillary register at
step t. Crucially, |η〉 is independent of the (server and client) input.
We now prove the above claim. By the specious property, we know that there
exists a quantum operation Ft which maps the global state at the tth stage to
the state |ψt〉. We know that the state in step t in the honest run is necessarily
pure since Π is measurement free. W.l.o.g. we can assume that the operation
Ft is a unitary Ut, followed by tracing out everything other then the S and
C registers.
Let’s assume towards contradiction that the state in the basis U†

t is of the form
|η(input)〉⊗|ψt〉, where |η(input)〉 depends on the input (where here we mean
both the client and the server’s input). There must be two different input
states such that running them would give |η(1)〉⊗ |ψt(1)〉 and |η(2)〉⊗ |ψt(2)〉
for which |η(1)〉 �= |η(2)〉. Since the honest runs are entirely unitary (by the
measurement-free property) and have different inputs, necessarily, |ψt(1)〉 �=
|ψt(2)〉. By running the specious adversary on a superposition of these two
inputs, we get that after applying Ft, the state becomes a mixture of the two
states, |ψt(1)〉 and |ψt(2)〉. This contradicts the perfect specious property (see
Eq. (1)) – which requires the state to be the pure (since all the operations of
the client and honest servers are unitary, and their input in this case is pure).

2. By the perfect anchored-privacy against the honest server, the state ρt =
trC(|ψt〉〈ψt|S,C) is independent of the client’s input, and therefore, could only
depend on x – the server’s input. To emphasize that independence on the
client’s input (and possible dependence on the server’s input), we denote the
state ρt by ρt(x).

Our goal is to show the anchored-privacy property for the specious server.
Indeed, the two points above show that the specious server’s state (in the fixed
basis we choose to work in) is |η〉〈η| ⊗ ρt(x), which is independent of the client’s
input. Therefore the simulator can generate that state exactly by using the
server’s classical input x, as required (see Eq. (2)).

Outline of the General Proof. For each round t we construct a simulator for
the server in the following way: we first construct a simulator Ĩ x0,0

t for input
|x0〉 ⊗ |0〉 where |x0〉 is an input for the server and |0〉 is an input for the client.
We construct this simulator using the simulator for the honest server along with
the ‘specious operator’, and an ancillary state |σx0,0〉. We then show that |σx0,0〉
is also an appropriate ancillary state for any input |x〉 ⊗ |η〉. Using this, we
show that Ĩ x,0

t is indeed a simulator for any input |x〉 ⊗ |η〉, with slightly worse
parameters.

We are now ready to give the proof in full generality:

Proof (Theorem 3.2 (Proof)). Let Π be a purified QPIR protocol which is
anchored ε-private against honest servers, and let Ã be a γ-specious server for
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Π. W.l.o.g we can assume that Ã is purified, namely, a unitary6. From now on,
we will fix t. We can denote

|ψρin

t 〉〈ψρin

t | = ρt(ρin) (4)

where |ψρin

t 〉 ∈ S ⊗ C ⊗ R for some R, and we use S to represent the server’s
registers S = At ⊗ Yt ⊗ Ap (for t odd. otherwise S = At ⊗ Ap), and C to
represent the client’s registers C = Bt⊗Xt⊗Bp (for t even. otherwise C = Bt⊗Bp).
Furthermore, w.l.o.g we assume the various recovery operators for Ã are purified.
That is, there exist unitary operators F̂t such that Ft(·) = trS′

(
F̂t(·)

)
for some

purification space S ′ which is at the hands of the server (from now on, for the
sake of this proof, where we say “recovery operators” we regard these unitary
F̂t operators). Therefore we can denote

|ψ̃ρin

t 〉〈ψ̃ρin

t | = ρ̃t

(
Ã , ρin

)
(5)

where w.l.o.g |ψ̃ρin

t 〉 ∈ S′ ⊗S ⊗C ⊗R. We note that all of the unitary operators -
At,Bt which are used in the original protocol (by either the server or the client),
Ãt which are used by the specious server Ã , and the recovery F̂t operators are
independent of both the client’s and the server’s inputs.

For each round t, we will start by constructing a simulator for Ã acting
on ρin = |x0〉〈x0|A0 ⊗ |0〉〈0|B0 , where x0 ∈ {0, 1}n (in this specific input, R is
trivial and is thus omitted). By γ-speciousness of Ã , along with our purification
assumptions, there exists a unitary recovery operator F̂2t : L(Ãt) �→ L(S ′ ⊗At)
such that

Δ
(
trS′

((
F̂2t ⊗ IC

)
|ψ̃|x0〉⊗|0〉

2t 〉
)

, |ψ|x0〉⊗|0〉
2t 〉

)
≤ γ (6)

By Lemma A.1, this means that there exists a state |σx0,0〉 ∈ S ′ such that:

Δ
((

F̂2t ⊗ I

)
|ψ̃|x0〉⊗|0〉

2t 〉, |σx0,0〉 ⊗ |ψ|x0〉⊗|0〉
2t 〉

)
≤ √

γ (7)

We can now operate on Eq. (7) with F̂ †
2t ⊗ I to get:

Δ
(
|ψ̃|x0〉⊗|0〉

2t 〉,
(
F̂ †

2t ⊗ I

) (
|σx0,0〉 ⊗ |ψ|x0〉⊗|0〉

2t 〉
))

≤ √
γ (8)

The above connects the states derived from the execution with the specious
server to that with the honest server. By anchored ε-privacy of Π against honest
servers, there exists a simulator It : L(A0 ⊗ Ap) �→ L(At ⊗ Xt) such that for all
x ∈ {0, 1}n and |α〉 ∈ B0 ⊗ R, for any R,

Δ
(
trB0,Bp

((
It ⊗ IB0,Bp

) ◦ (|x〉〈x|A0 ⊗ |α〉〈α|R,B0 ⊗ ρjoint)
)
, trBt

(
|ψ|x〉⊗|α〉

2t 〉
))

≤ ε

(9)
6 This is because we can include the purification register at any point, as the server

could have included himself rather than throwing it away.
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(In fact, the above holds for any mixture over such α’s, by convexity). We can
now define the simulator for ρin corresponding to input state |x0〉⊗ |0〉 to be the
following unitary embedding from A0 ⊗ Ap to S ′ ⊗ A0 ⊗ Ap:

Ĩ x0,0
t (·) = F̂ †

2t ◦ (|σx0,0〉〈σx0,0| ⊗ It (·)) (10)

To show that it indeed satisfies the requirements from a simulator, we com-
bine Eqs. (8), (10), and (9) for x = x0, |α〉 = |0〉, to get that

Δ
(

trB0,Bp

((
Ĩ

x0,0
t ⊗ IB0,Bp

)
◦ (|x0〉〈x0|A0 ⊗ |0〉〈0|B0 ⊗ ρjoint

))
, trBt

(
|ψ̃|x0〉⊗|0〉

2t 〉
))

≤ ε +
√

γ

(11)

We now define the simulator for any input to be this exact simulator:

Ĩt(·) = Ĩ x0,0
t (·); (12)

In the remainder of the proof we show that Ĩt(·) satisfies an inequality similar
to Eq. (11) with respect to all classical server inputs x ∈ {0, 1}n (not necessarily
x0) and any input state |α〉 ∈ B0 ⊗ R for any R, as well as for a mixture of
such α’s; this would imply anchored privacy for the specious server. To this end
we show that also for this input, a similar inequality to Eq. (11) holds (with a
slightly worse bound). Define

|xα+〉 =
1√
2
|0〉R′ |x0〉A0 |0〉B0,R +

1√
2
|1〉R′ |x〉A0 |α〉B0,R,

where we have added an additional (control) qubit in the space R′. The specious
adversary condition applies to this input state as well, and thus using the same
derivation as for Eq. (8)) we get:

Δ
(
|ψ̃|xα+〉

2t 〉,
(
F̂ †

2t ⊗ I

) (
|σxα+〉 ⊗ |ψ|xα+〉

2t 〉
))

≤ √
γ (13)

Using the fact that neither the server nor the client act on the R′ register,
we get:

|ψ|xα+〉
2t 〉 =

1√
2
|0〉R′ ⊗ |ψ|x0〉⊗|0〉

2t 〉S,C,R +
1√
2
|1〉R′ ⊗ |ψ|x〉⊗|α〉

2t 〉S,C,R (14)

Similarly, since the same is true for the adversarial run, we get:

|ψ̃|xα+〉
2t 〉 =

1√
2
|0〉R′ ⊗ |ψ̃|x0〉⊗|0〉

2t 〉S,C,R +
1√
2
|1〉R′ ⊗ |ψ̃|x〉⊗|α〉

2t 〉S′,S,C,R (15)

We plug Eqs. (14) and (15) into Eq. (13), and project the register R′ in the
resulting state onto |1〉R′ to get:
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Δ

(
1√
2

|1〉R′ ⊗ |ψ̃|x〉⊗|α〉
2t 〉S,C,

(
F̂ †

2t ⊗ IR,C
) (

1√
2

|1〉R′ ⊗ |σx,α+ 〉S′ ⊗ |ψ|x〉⊗|α〉
2t 〉S,C

))
≤ √

γ

(16)

Now we apply the fact that F̂ †
2t doesn’t act on the client’s input; the fact that a

unitary operator doesn’t change the distance between states; and the fact that
tracing out doesn’t increase that distance [AKN98], and Eq. (16) becomes:

Δ
(
|ψ̃|x〉⊗|α〉

2t 〉,
(
F̂ †

2t ⊗ I

) (
|σxα+〉 ⊗ |ψ|x〉⊗|α〉

2t 〉
))

≤
√

2γ (17)

Similarly, by projecting onto |0〉R′ instead of |1〉R′ in the derivation of 16, we
get

Δ
(
|ψ̃|x0〉⊗|0〉

2t 〉,
(
F̂ †

2t ⊗ I

) (
|σxα+〉 ⊗ |ψ|x0〉⊗|0〉

2t 〉
))

≤
√

2γ (18)

We now want to apply the triangle inequality to (18), using Eq. (8). Applying
yet again the same sequence of simple argument, namely the fact that unitary
transformations preserve the trace distance and tracing out can only decrease
it, we get

Δ
(|σx0,0〉, |σxα+〉) ≤ 2

√
2γ (19)

And we can use Eq. (19) together with Eq. (17) to get:

Δ
(
|ψ̃|x〉⊗|α〉

2t 〉,
(
F̂ †

2t ⊗ I

) (
|σx0,0〉 ⊗ |ψ|x〉⊗|α〉

2t 〉
))

≤ 3
√

2γ (20)

And finally combine Eqs. (20), (9) and (12) (in a similar way to how we
derived Eq. (11)) to get:

Δ
(
trB0

((
Ĩt ⊗ I

)
(|x〉〈x| ⊗ |α〉〈α| ⊗ ρjoint)

)
, trBt

(
|ψ̃|x〉⊗|α〉

t 〉
))

≤ ε + 3
√

2γ.

(21)

This finishes our proof. 
�

4 Linear Lower Bound in the Specious Model, Even
with Prior Entanglement

In this section we show that in the standard specious model, even allowing
arbitrarily long prior entanglement, it is still impossible to achieve QPIR with
sublinear communication. We do so by presenting a new lower bound argument
based on an interactive leakage chain rule in [LC18], which allows us to establish
linear lower bounds on both the server’s communication complexity and the
total communication complexity in a unified way. Then we observe that the
lower bound on the server’s communication complexity extends trivially to the
case with arbitrary prior entanglement. In the following, we state some useful
preliminaries in Sect. 4.1 and present our lower bound in Sect. 4.2.
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4.1 Quantum Information Theory Background

We first recall the notion of quantum min-entropy. Consider a bipartite quantum
state ρAB . The quantum min-entropy of A conditioned on B is defined as

Hmin(A|B)ρ = − inf
σB

{
inf

{
λ ∈ R : ρAB ≤ 2λIA ⊗ σB

}}
.

When ρAB is a cq-state (i.e., the A register is a classical state), the quantum min-
entropy has a nice operational meaning in terms of guessing probability [KRS09].
Specifically, if Hmin(A|B)ρ = k, then the optimal probability of predicting the
value of A given ρB is exactly 2−k.

In the following, we state the interactive leakage chain rule in [LC18]. Let
ρ = ρAB be a cq-state, that is, the system A is classical while B is quantum. The
interactive leakage chain rule bounds how much the min-entropy Hmin(A|B)ρ

can be decreased by an “interactive leakage” produced by applying a two-party
protocol Π = {A ,B, ρjoint, s} to ρ, where A is treated as a classical input to
A and B is given to B as part of its initial state in ρjoint.

Definition 4.1. Let ρ = ρAB be a cq-state. Let Π = {A ,B, ρjoint, s} be a two-
party protocol where ρjoint contains ρB in the Bp system, and ρin be an input
state where the classical state ρA is copied to A0 as the input for A . (That is,
A0 has an initial state |0〉A0 and we do controlled NOT gates from ρA to |0〉A0 .)
Consider the protocol execution [A � B] (ρin) and let σABs

be the final state
where A denotes the original classical state and Bs denotes the final state of B.
We say σBs

is an interactive leakage of A produced by Π.

Theorem 4.2. Let ρ = ρAB be a cq-state. Let σABs
be the final state of a two-

party protocol Π = {A ,B, ρjoint, s} with certain input state ρin. Let mA and
mB be the communication complexity of A and B, respectively. We have

Hmin(A|Bs)σ ≥ Hmin(A|B)ρ − min{mA + mB, 2mA}, (22)

We will also use the following lemma about gentle measurement, which is first
proved by Winter [Win99] and improved by Ogawa and Nagaoka [ON07], and
is also referred to as the almost-as-good-as-new Lemma by Aaronson [Aar04]. It
says that the post-measurement state of an almost-sure measurement will remain
close to its original. The following version is taken from Wilde’s book [Wil13].

Lemma 4.3. Suppose 0 ≤ Λ ≤ I is a measurement operator such that for a
mixed state ρ,

tr (Λρ) ≥ 1 − ε.

Then the post-measurement state ρ̃ is
√

ε-close to the original state ρ:

||ρ̃ − ρ||tr ≤ √
ε.

We will also need the following lemma, which can be proved by a standard
argument using Uhlmann theorem and the Fuchs and van de Graaf inequal-
ity [FvdG99] (for a proof, see, e.g., [BB15]).
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Lemma 4.4. Suppose ρA, σA ∈ A are two quantum states with purifications
|φ〉AB, |ψ〉AB ∈ A ⊗ B, respectively, and ||ρA − σA||tr ≤ ε. Then there exists a
unitary UB ∈ L(B) such that

|||φ〉AB − IA ⊗ UB |ψ〉AB ||tr ≤
√

ε(2 − ε).

4.2 Our Lower Bound

Theorem 4.5. Let Π = {A ,B, ρjoint = |0〉〈0|, s} be a QPIR protocol for the
server’s database of size n. Suppose Π is (1 − δ)-correct and ε-private against
γ-specious servers with δ ≤ n−4/100, ε ≤ n−8/100. Then the server’s communi-
cation complexity is at least (n − 1)/2 and the total communication complexity
is at least n − 1.

In the above theorem, we consider protocols with no prior setup, i.e.,
ρjoint = |0〉〈0|. We observe that the lower bound for the server’s communication
complexity extends for general ρjoint, since one can think of ρjoint as prepared
by the client, who sends the server’s initial state to the server at the beginning
of the protocol. This simple reduction does not increase the server’s communi-
cation complexity and extends the lower bound on the server’s communication
complexity for arbitrary ρjoint.

Corollary 4.6. Let Π = {A ,B, ρjoint, s} be a QPIR protocol for the server’s
database of size n with arbitrary ρjoint. Suppose Π is (1 − δ)-correct and ε-
private against γ-specious servers with δ ≤ n−4/100, ε ≤ n−8/100. Then the
server’s communication complexity is at least (n − 1)/2.

We now prove Theorem 4.5.

Proof. To establish communication complexity lower bound for Π, we consider
a purified version Π̄ = {Ā , B̄, ρjoint, s} of Π, where both parties’ operations
are purified. Specifically, Ā is modified from A , where the sequence of quantum
operations Ā1, . . . , Ās are unitaries

Ā1 :L(A0 ⊗ Ā0) → L(A1 ⊗ Ā1 ⊗ X1),
Āt :L(At−1 ⊗ Āt−1 ⊗ Yt−1) → L(At ⊗ Āt ⊗ Xt), t = 2, . . . , s;

Ā0 is of sufficiently large dimension and initialized to |0〉; Āt are called purifying
spaces and

trĀt
(ρ̄t(ρin)) = ρt(ρin)

for all ρ ∈ A0 ⊗ B0. The purified B̄ for B is similarly defined.
By inspection, it is easy to verify that Π̄ preserves the properties of Π, i.e.,

Π̄ is also (1 − δ)-correct, ε-private against γ-specious servers, and has the same
communication complexity as Π. Thus, communication complexity lower bound
for Π̄ implies that for Π. Also, note that Ā is a 0-specious adversary for Π.

Now, let us consider an experiment that first samples a uniformly random
database a ∈ {0, 1}n, and use a as the server’s database to run the protocol Π̄
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with an arbitrary fixed input of the client. Note that execution of the protocol
can be viewed as producing an interactive leakage of a. Let ρAB denote the final
state where system A denotes the input a and system B has the client’s final
local state. By Theorem 4.2, we have

H(A|B)ρ ≥ H(A)ρ − min{2mA,mA + mB},

where mA,mB denote the server and the client’s communication complexities,
respectively. The operational meaning of min-entropy says that given the client’s
state ρB , one cannot guess the random database a correctly with probability
higher than 2−(H(A)ρ−min{2mA,mA+mB}). To derive a lower bound on the com-
munication complexity, we show a strategy to predict the database a with prob-

ability at least 1 − n2
√

δ + 2
√

ε(1 − ε) > 1/2, which gives the desired lower
bound.

Let σi
B = trA[Ā � B̄](|a〉〈a|A0 ⊗ |i〉〈i|B0) and σi

A = trB [Ā � B̄](|a〉〈a|A0 ⊗
|i〉〈i|B0).

By the definition of privacy, there exists a quantum operation F such that

Δ
(
trB0F0 ⊗ IB̄0

(
ρ1in

)
, σ1

A

) ≤ ε. (23)

Since trB0F0 ⊗ IB̄0

(
ρ1in

)
= trB0F0 ⊗ IB̄0

(
ρi

in

)
for all i,

Δ
(
trB0F0 ⊗ IB̄0

(
ρ1in

) − σi
A

) ≤ ε (24)

We have, by triangle inequality,

Δ
(
σ1

A − σi
A

) ≤ 2ε.

for all i.
By Lemma 4.4, we have

Δ
(
IA ⊗ U1→i

B |ψ1〉ĀB̄ , |ψi〉ĀB̄

) ≤ 2
√

ε(1 − ε) � ε′, (25)

where |φ〉ĀB̄ and |ψi〉ĀB̄ are purifications of σ1
A and σi

A, respectively.
By the definition of correctness error, there exists measurement Mi such that

Pr
{Mi

(
σi

B

)
= ai

} ≥ 1 − δ.

Let
M′

i =
(
U1→i

B

)† MiU
1→i
B

for i = 2, . . . , n. Thus we have by Eq. (25)

Pr
{M′

i

(
σ1

B

)
= ai

} ≥ 1 − δ − ε′. (26)

By Lemma 4.3, the client can recover σ̃
(i)
B such that

Δ
(
σ̃
(i)
B , σ1

B

)
≤ √

δ + ε′. (27)
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Now we construct a protocol for the client to learn all the bits a = a1, . . . , an.
First the client chooses input |1〉〈1|. Then he plays the protocol Π̄ with Alice
and obtains σ1

B . Measuring σ1
B by M1, the client gets a1 with probability at

least 1 − δ. By Lemma 4.3, the client can recover σ̃1
B such that

Δ
(
σ̃1

B, σ1
B

) ≤
√

δ.

Then the client measures M′
2 on σ̃1

B and then recovers σ̃2
B. Continue this process

and σ̃k
B will be the state recovered from applying M′

k to σ̃k−1
B . We claim that

Δ
(
σ̃k

B, σ1
B

) ≤ k
√

δ + ε′. (28)

Suppose this is true for i = 2, · · · , k. If we measure M′
k+1 on σ̃k+1

B and on σ1
B ,

respectively, and recover σ̃k+1
B and σ̃

(k+1)
B , respectively, we have

Δ
(
σ̃k+1

B , σ̃
(k+1)
B

)
≤ Δ

(
σ̃k

B, σ1
B

) ≤ k
√

δ + ε′ (29)

where the first inequality is because quantum operations do not increase trace
distance. Now use the triangle inequality with Eqs. (27) and (29), and the claim
follows by induction.

By Eqs. (26) and (28), the probability of recovering ai by measuring M′
i on

σ̃i−1
B is at least 1 − i

√
δ + ε′. Therefore, the client learns a with probability at

least
n∏

i=1

(
1 − i

√
δ + ε′

)
≥ 1 − n2

√
δ + ε′,

which is what we need to complete the proof. 
�
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A Hilbert Spaces and Quantum States

The Hilbert space of a quantum system A is denoted by the corresponding
calligraphic letter A and its dimension is denoted by dim(A). Let L(A) be the
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space of linear operators on A. A quantum state of system A is described by
a density operator ρA ∈ L(A) that is positive semidefinite and with unit trace
(tr(ρA) = 1). Let S(A) = {ρA ∈ L(A) : ρA ≥ 0, tr(ρA) = 1} be the set of density
operators on A. When ρA ∈ S(A) is of rank one, it is called a pure quantum state
and we can write ρ = |ψ〉〈ψ|A for some unit vector |ψ〉A ∈ A, where 〈ψ| = |ψ〉†

is the conjugate transpose of |ψ〉. If ρA is not pure, it is called a mixed state and
can be expressed as a convex combination of pure quantum states.

The Hilbert space of a joint quantum system AB is the tensor product of the
corresponding Hilbert spaces A ⊗ B. For ρAB ∈ S(A ⊗ B), its reduced density
operator in system A is ρA = trB(ρAB), where

trB(ρAB) =
∑

i

IA ⊗ 〈i|B (ρAB) IA ⊗ |i〉B

for an orthonormal basis {|i〉B} for B. We sometimes use the equivalent notation,

ρAB |A := trB(ρAB).

Suppose ρA ∈ S(A) of finite dimension dim(A). Then there exists B of dimen-
sion dim(B) ≥ dim(A) and |ψ〉AB ∈ A ⊗ B such that

trB |ψ〉〈ψ|AB = ρA.

The state |ψ〉AB is called a purification of ρA.
The trace distance between two quantum states ρ and σ is

Δ(ρ, σ) = ||ρ − σ||tr,

where ||X||tr = 1
2 tr

√
X†X is the trace norm of X. Hence the trace distance

between two pure states |α〉, |β〉 is

Δ(|α〉〈α|, |β〉〈β|) =
√

1 − |〈α|β〉|2. (30)

Lemma A.1. Consider a quantum state ρXY over two registers X,Y , and
denote ρX = trY (ρXY ). Then if there exists ε, |ϕ〉 s.t. Δ(ρX , |ϕ〉〈ϕ|) ≤ ε, then
there exists ρ̃Y s.t. Δ(ρXY , |ϕ〉〈ϕ|⊗ ρ̃Y ) ≤ √

ε. Furthermore, if ρXY is pure then
so is ρ̃Y .

Proof. It is sufficient w.l.o.g to prove for a pure ρXY , since it is always possible to
purify ρXY by adding an additional register Z, and consider the pure state ρXY Z .
The transitivity of the partial trace operation implies that if the theorem is true
for X, (Y Z), then it is also true for X,Y . Also assume w.l.o.g that |ϕ〉 = |0〉
(this is just a matter of choosing a basis elements).

Thus we will provide a proof in the case where the joint state of X,Y can
be written as a superposition |α〉 =

∑
x,y wx,y|x〉|y〉. Define P0 = Pr[X = 0] =

∑
y |w0,y|2, and note that it must be the case that P0 ≥ 1 − ε. To see this, note



240 D. Aharonov et al.

that P0 is the probability of measuring X = 0 in the experiment where we first
trace out Y and then measuring X. Since Δ(ρX , |0〉〈0|) ≤ ε, the probability of
measuring X = 0 after tracing out Y is ε close to the probability of measuring
X = 0 in |0〉〈0|, which is 1 (see, e.g., [AKN98]). The claim P0 ≥ 1 − ε follows.

Now define |β〉 = 1√
P0

∑
y w0,y|y〉, and let ρ̃Y = |β〉〈β|. Then

Δ(ρXY , |0〉〈0| ⊗ ρ̃Y ) = Δ(|α〉〈α|, |0〉〈0| ⊗ |β〉〈β|) =
√

1 − |〈α|(0, β)〉|2. (31)

We have

〈α|(0, β)〉 = 1√
P0

∑

y

|w0,y|2 =
√

P0, (32)

which implies that indeed Δ(ρXY , |0〉〈0| ⊗ ρ̃Y ) =
√

1 − P0 ≤ √
ε. 
�

B Security Analysis of Kereneidis et al.’s Protocol

For completeness, we restate7 the QPIR protocol with pre-shared entanglement
by Kerenidis et al. [KLGR16, Section 6]. Given a database DB ∈ {0, 1}n for some
n = 2
 as input to the server, and index i ∈ [n] as input to the client (If the
client’s input is a superposition, the algorithm is run in superposition), we denote
the protocol Πn as follows.

The protocol Πn is recursive and calls Πn/2 as a subroutine. For the execution
of Πn, the parties are required to pre-share a pair of entangled state registers

1
2n/4

∑
r∈{0,1}n/2 |r〉R|r〉R′ , where R is held by the server and R′ is held by the

client. They also share an entangled state needed for the recursive application
of the protocol Πn/2 (and the recursive calls it entails). Unfolding the recursion,
this means that for all n′ = 2
′

with �′ ∈ [� − 1], there is an entangled register of
length n′ shared between the client and the server.

The protocol execution is described in shorthand Fig. 1. In what follows we
provide a detailed description and analyze the steps of the protocol to establish
correctness and assert properties that will allow us to analyze privacy.

1. If n = 1 then the database contains a single value. In this case there is no
need for shared entanglement, and the server sends a register F containing
|DB〉 (the final response) to the client, and the protocol terminates. This is
trivially secure and efficient. Otherwise proceed to the next steps.

2. The server denotes DB0, DB1 ∈ {0, 1}n/2 s.t. DB = [DB0‖DB1], i.e. the low-order
and high-order bits of the database respectively. The server starts with two
single-bit registers Q0, Q1 initialized to 0. The server CNOTs Qb with the
inner product of R and DBb so that it contains |r · DBb〉Qb

, and sends Q0, Q1

to the client.

7 We make one minor adaptation – see Remark B.1.
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At this point, the joint state between the client and (an honest) server is
∑

r∈{0,1}n/2

|r〉R|r〉R′ |r · DB0〉Q0 |r · DB1〉Q1 .

In particular the reduced density matrix of the server’s state is independent
of the index i.

3. Let b∗ = � i−1
n � denote the most significant bit of i. The client evaluates a Z

gate on Qb∗ . It sends Q0, Q1 back to the server.
At this point, the joint state between the client and (an honest) server is

∑

r∈{0,1}n/2

(−1)r·DBb∗ |r〉R|r〉R′ |r · DB0〉Q0 |r · DB1〉Q1 .

Importantly, the reduced density matrix of the server, which contains the
registers R,Q0, Q1, is the diagonal matrix that corresponds to the classical
distribution of sampling a random r in register R, and placing r · DB0, r · DB1
in Q0, Q1. This density matrix is independent of b∗ and therefore of i.

4. The server again CNOTs Qb with the inner product of R and DBb.
At this point, the joint state between the client and (an honest) server is

∑

r∈{0,1}n/2

(−1)r·DBb∗ |r〉R|r〉R′ |0〉Q0 |0〉Q1 .

From this point on we disregard Q0, Q1 since they remain zero throughout.
Since this step only involves a local unitary by the server, we are guaranteed
that its reduced density matrix is still independent of i.

5. The server performs QFT on R and the client performs QFT on R′. The
resulting state is

1

23n/4

∑

r,y,w∈{0,1}n/2

(−1)r·(DBb∗ ⊕y⊕w)|y〉R|w〉R′ = 1

2n/4

∑

y∈{0,1}n/2

|y〉R|y ⊕ DBb∗︸ ︷︷ ︸
w

〉R′ .

Since we only performed local operations on the server and client side (without
communication), the server’s density matrix remains perfectly independent
of b∗ and thus of i.

6. Note that at this point, the joint state of the client and server is a “shifted”
entangled state where the shift corresponds to the half-database DBb∗ that
contains the element that the client wishes to retrieve. More explicitly, DB[i] =
DBb∗ [i∗] for i∗ = i (mod n/2) contains the (� − 1) least significant bits of i.
Therefore, for all y,w in the support of the joint state, it holds that DB[i] =
w[i∗] ⊕ y[i∗].
The client will now ignore (temporarily) the register R′ and execute Πn/2

recursively on index i∗. The (honest) server will carry out the protocol with
the value y from the register R serving as the server’s database. Note that
since the register R′ is not touched, for the purposes of executing the protocol
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the value w in R′ is equivalent to have been measured, and the value y in R
is equivalent to the deterministic register w ⊕ DBb∗ .
We are recursively guaranteed that in the end of the execution of Πn/2, the
client receives a register F containing the value y[i∗] = w[i∗] ⊕ DBb∗ [i∗] =
w[i∗]⊕DB[i]. Since the client still maintains the original register R′ containing
w, it can CNOT the value w[i∗] from F and obtain |DB[i]〉A. Namely, in the
end of the execution, the register F indeed contains the desired value DB[i].

7. Lastly, if the client and server desire to “clean up” and restore the shared
entanglement so that it can be reused in consequent executions, the client
can copy the contents of the register F to a fresh register (which is possible
since this register contains a classical value). Since the client and server are
pure (i.e. do not measure) throughout the protocol, they can rewind the
execution of the protocol to restore their initial joint entanglement.

If the final cleanup step is not executed then the total number of rounds of
Πn is 2� + 1, and the total communication complexity is 4l + 1 (recall that � =
log(n)). If the cleanup step is executed, the round complexity and communication
complexity are doubled due to rewinding the execution.

Remark B.1. Note that in the original protocol by Kerenidis et al. step 7 does
not appear, and it is not mentioned that the shared entanglement can be cleaned
and reused.

Lemma B.2. The protocol Πn is a PIR protocol with perfect correctness and
perfect anchored privacy against honest servers. It furthermore has communica-
tion complexity O(log n), and uses O(n) bits of (reusable) shared entanglement.

Proof. The analysis in the body of the protocol establishes that the local view
of the adversary is independent of the input i, when i is treated as a fixed
(classical) parameter. Next, we show that the server’s local state is independent
of the client’s input, even when the input is an arbitrary quantum state.

We observe two facts: (i) since we are interested in the server’s local view,
the input register is traced out, (ii) the client interacts with its input qubits as
control bits for Controlled operations only. By property (i), we can assume for
the sake of the analysis that the qubits are measured just before tracing them
out. Using property (ii), the entire protocol commutes with a measurement in
the standard basis of the input register. Therefore, we can assume the server’s
local view would not be changed by adding a measurement in the standard basis
of the input register at the very beginning of the protocol. By the argument in
the previous paragraph, we already know that for a classical input, the server’s
local view is independent of the input. The measurement in the standard basis
collapses the state a classical, and we conclude that the server’s local view is
independent of the input, for any input state.

In order to comply with the simulation based privacy definition (see Defini-
tion 2.5), we can define the simulators to be simulations of the protocol run with
input i = |0〉〈0|. Since the server’s state is independent of the input, we complete
the proof that the protocol has perfect anchored privacy against honest servers.
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Fig. 1. The QPIR protocol of Kerenidis et al.

The communication complexity and the amount of reusable shared entangle-
ment needed in this protocol follow directly from the protocol. 
�

We can therefore apply Theorem3.2 and conclude that Π is secure against
anchored-specious adversaries.

Corollary B.3. There exists a PIR protocol Π with logarithmic communication
complexity assuming linear shared entanglement, which is perfectly correct and
anchored O(

√
γ)-private against γ-specious adversaries.
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Abstract. The problem of reliably certifying the outcome of a com-
putation performed by a quantum device is rapidly gaining relevance.
We present two protocols for a classical verifier to verifiably delegate a
quantum computation to two non-communicating but entangled quan-
tum provers. Our protocols have near-optimal complexity in terms of the
total resources employed by the verifier and the honest provers, with the
total number of operations of each party, including the number of entan-
gled pairs of qubits required of the honest provers, scaling as O(g log g)
for delegating a circuit of size g. This is in contrast to previous protocols,
whose overhead in terms of resources employed, while polynomial, is far
beyond what is feasible in practice. Our first protocol requires a num-
ber of rounds that is linear in the depth of the circuit being delegated,
and is blind, meaning neither prover can learn the circuit or its input.
The second protocol is not blind, but requires only a constant number
of rounds of interaction.

Our main technical innovation is an efficient rigidity theorem which
allows a verifier to test that two entangled provers perform measurements
specified by an arbitrary m-qubit tensor product of single-qubit Clifford
observables on their respective halves of m shared EPR pairs, with a
robustness that is independent of m. Our two-prover classical-verifier del-
egation protocols are obtained by combining this rigidity theorem with
a single-prover quantum-verifier protocol for the verifiable delegation of
a quantum computation, introduced by Broadbent.

1 Introduction

Quantum computers hold the potential to speed up a wide range of computa-
tional tasks (see, for example, [Mon16]). Recent progress towards implementing
limited quantum devices has added urgency to the already important question
of how a classical verifier can test a quantum device. This verifier could be an
c© International Association for Cryptologic Research 2019
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experimentalist running a new experimental setup; a consumer who has pur-
chased a purported quantum device; or a client who wishes to delegate some
task to a quantum server. In all cases, the user would like to exert some form
of control over the quantum device. For example, the experimentalist may think
that she is testing that a particular experiment prepares a certain quantum
state by performing a series of measurements, i.e. by state tomography, but this
assumes some level of trust in the measurement apparatus being used. For a
classical party to truly test a quantum system, that system should be modeled
in a device-independent way, having classical inputs (e.g. measurement settings)
and classical outputs (e.g. measurement results).

Tests of quantum mechanical properties of a system first appeared in the form
of Bell tests [Bel64,CHSH69]. In a Bell test, a verifier asks classical questions to
a quantum-device and receives classical answers. These tests make one crucial
assumption on the system to be tested: that it consists of two spatially isolated
components that are unable to communicate throughout the experiment. One
can then upper bound the value of some statistical quantity of interest subject
to the constraint that the two devices do not share any entanglement. Such a
bound is referred to as a Bell inequality. While the violation of a Bell inequal-
ity can be seen as a certificate of entanglement, the area of self-testing, first
introduced in [MY04], allows for the certification of much stronger statements,
including about which measurements are being performed, and on which state.
Informally, a robust rigidity theorem is a statement about which kind of appara-
tus, quantum state and measurements, must be used by a pair of isolated devices
in order to succeed in a given statistical test. Following a well-established tradi-
tion, we will refer to such tests as games, call the devices players (or provers),
and the quantum state and measurements that they implement the strategy of
the players. A rigidity theorem is a statement about the necessary structure of
near-optimal strategies for a game.

In 2012, Reichardt, Unger and Vazirani proved a robust rigidity theorem for
playing a sequence of n CHSH games [RUV13]. Aside from its intrinsic inter-
est, this rigidity theorem had two important consequences. One was the first
device-independent protocol for quantum key distribution. The second was a
protocol whereby a completely classical verifier can test a universal quantum
computer consisting of two non-communicating devices. The resulting protocol
for delegating quantum computations has received a lot of attention as the first
classical-verifier delegation protocol. The task is well-motivated: for the foresee-
able future, making use of a quantum computer will likely require delegating the
computation to a potentially untrusted cloud service, such as that announced
by IBM [Cas17].

Unfortunately, the complexity overhead of the delegation protocol
from [RUV13], in terms of both the number of EPR pairs needed for the provers
and the overall time complexity of the provers as well as the (classical) verifier,
while polynomial, is prohibitively large. Although the authors of [RUV13] do
not provide an explicit value for the exponent, in [HPDF15] it is estimated that
their protocol requires resources that scale like Ω(g8192), where g is the number of
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gates in the delegated circuit (notwithstanding the implicit constant, this already
makes the approach thoroughly impractical for even a 2-gate circuit!). The large
overhead is in part due to a very small (although still inverse polynomial) gap
between the completeness and soundness parameters of the rigidity theorem; this
requires the verifier to perform many more Bell tests than the actual number
of EPR pairs needed to implement the computation, which would scale linearly
with the circuit size.

Subsequent work has presented significantly more efficient protocols for
achieving the same, or similar, functionality [McK16,GKW15,HPDF15]. We
refer to Table 1 for a summary of our estimated lower bounds on the complexity
of each of these results (not all papers provide explicit bounds, in which case our
estimates, although generally conservative, should be taken with caution). Prior
to our work, the best two-prover delegation protocol required resources scaling
like g2048 for delegating a g-gate circuit. Things improve significantly if we allow
for more than two provers, however, the most efficient multi-prover delegation
protocols still required resources that scale as at least Ω(g4 log g) for delegat-
ing a g-gate circuit on n qubits. Since we expect that in the foreseeable future
most quantum computations will be delegated to a third-party server, even such
small polynomial overhead is unacceptable, as it already negates the quantum
advantage for a number of problems, such as quantum search.

The most efficient classical-verifier delegation protocols known [FH15,NV17],
with poly(n) and 7 provers, respectively, require resources that scale as O(g3),
but this efficiency comes at the cost of a technique of “post-hoc” verification. In
this technique, the provers must learn the verifier’s input even before they are
separated, so that they can prepare the history state for the computation.1 As a
result, these protocols are not blind2. Moreover, while the method does provide
a means for verifying the outcome of an arbitrary quantum computation, in
contrast to [RUV13] it does not provide a means for the verifier to test the
provers’ implementation of the required circuit on a gate-by-gate basis. Other
works, such as [HH16], achieve two-prover verifiable delegation with complexity
that scales like O(g4 log g), but in much weaker models; for example, in [HH16]
the provers’ private system is assumed a priori to be in tensor product form,
with well-defined registers. General techniques are available to remove the strong
assumption, but they would lead to similar large overhead as previous results.

In contrast, in the setting where the verifier is allowed to have some limited
quantum power, such as the ability to generate single-qubit states and measure
them with observables from a small finite set, efficient schemes for blind verifiable
delegation do exist [ABE10,FK17,Mor14,Bro18,HM15,MF16,FH17,MTH17]
(see also [Fit16] for a recent survey). In this case, only a single prover is needed,
and the most efficient single-prover quantum-verifier protocols can evaluate a

1 Using results of Ji [Ji16], this allows the protocol to be single-round. Alternatively,
the state can be created by a single prover and teleported to the others with the
help of the verifier, resulting in a two-round protocol.

2 Blindness is a property of delegation protocols, which informally states that the
prover learns nothing about the verifier’s private circuit.



250 A. Coladangelo et al.

Table 1. Resource requirements of various delegation protocols in the multi-prover
model. We use n to denote the number of qubits and g the number of gates in the del-
egated circuit. “depth” refers to the depth of the delegated circuit. “Total Resources”
refers to the gate complexity of the provers, the number of EPR pairs of entanglement
needed, and the number of bits of communication in the protocol. To ensure fair com-
parison, each protocol is required to produce the correct answer with probability 99%.
For all protocols except our two new protocols, this requires a polynomial number of
sequential repetitions, which is taken into account when computing the total resources.

Provers Rounds Total Resources Blind

RUV 2012 [RUV13] 2 poly(n) ≥ g8192 yes

McKague 2013 [McK16] poly(n) poly(n) ≥ 2153g22 yes

GKW 2015 [GKW15] 2 poly(n) ≥ g2048 yes

HDF 2015 [HPDF15] poly(n) poly(n) Θ(g4 log g) yes

Verifier-on-a-Leash Protocol (Sect. 4) 2 O(depth) Θ(g log g) yes

Dog-Walker Protocol (Sect. 5) 2 O(1) Θ(g log g) no

quantum circuit with g gates in time O(g). The main reason these protocols are
much more efficient than the classical-verifier multi-prover protocols is that they
avoid the need for directly testing any of the qubits used by the prover, instead
requiring the trusted verifier to directly either prepare or measure the qubits
used for the computation.

New Rigidity Results. We overcome the efficiency limitations of multi-prover
delegation protocols by introducing a new robust rigidity theorem. Our theorem
allows a classical verifier to certify that two non-communicating provers apply a
measurement associated with an arbitrary m-qubit tensor product of single-qubit
Clifford observables on their respective halves of m shared EPR pairs. This is
the first result to achieve self-testing for such a large class of measurements. The
majority of previous works in self-testing have been primarily concerned with
certifying the state and were limited to simple single-qubit measurements in the
X-Z plane. Prior self-testing results for multi-qubit measurements only allow to
test for tensor products of σX and σZ observables. While this is sufficient for
verification in the post-hoc model of [FH15], testing for σX and σZ observables
does not directly allow for the verification of a general computation (unless
one relies on techniques such as process tomography [RUV13], which introduce
substantial additional overhead).

Our first contribution is to extend the “Pauli braiding test” of [NV17], which
allows to test tensor products of σX and σZ observables with constant robustness,
to allow for σY observables as well. This is somewhat subtle due to an ambiguity
in the complex phase that cannot be detected by any classical two-player test;
we formalize the ambiguity and show how it can be effectively accounted for.
Our second contribution is to substantially increase the set of elementary gates
that can be tested, to include arbitrary m-qubit tensor products of single-qubit
Clifford observables. This is achieved by introducing a new “conjugation test”,



VoL: New Schemes for Verifiable Delegated Quantum Computation 251

which tests how an observable applied by the provers acts on the Pauli group.
The test is inspired by general results of Slofstra [Slo16], but is substantially
more direct.

A key feature of our rigidity results is that their robustness scales indepen-
dently of the number of EPR pairs tested, as in [NV17]. This is crucial for the
efficiency of our delegation protocols. The robustness for previous results in par-
allel self-testing typically had a polynomial dependence on the number of EPR
pairs tested. We give an informal statement of our robust rigidity theorem.

Theorem 1 (Informal). Let m ∈ Z>0. Let G be a fixed, finite set of single-qubit
Clifford observables. Then there exists an efficient two-prover test rigid(G,m)
with O(m)-bit questions (a constant fraction of which are of the form W ∈ Gm)
and answers such that the following properties hold:

– (Completeness) There is a strategy for the provers that uses m+1 EPR pairs
and succeeds with probability at least 1 − e−Ω(m) in the test.

– (Soundness) For any ε > 0, any strategy for the provers that succeeds with
probability 1 − ε in the test must be poly(ε)-close, up to local isometries, to
a strategy in which the provers begin with (m + 1) EPR pairs and is such
that upon receipt of a question of the form W ∈ Gm the prover measures the
“correct” observable W .

Although we do not strive to obtain the best dependence on ε, we believe
it should be possible to obtain a scaling of the form C

√
ε for a reasonable con-

stant C. We discuss the test in Sect. 3. The complete analysis can be found in
the full version of the paper.

New Delegation Protocols. We employ the new rigidity theorem to obtain two
new efficient two-prover classical-verifier protocols in which the complexity of
verifiably delegating a g-gate quantum circuit solving a BQP problem scales as
O(g log g).3

We achieve our protocols by adapting the efficient single-prover quantum-
verifier delegation protocol introduced by Broadbent [Bro18] (we refer to this as
the “EPR protocol”), which has the advantage of offering a direct implementa-
tion of the delegated circuit, in the circuit model of computation and with very
little modification needed to ensure verifiability, as well as a relatively simple
and intuitive analysis.

Our first protocol is blind, and requires a number of rounds of interaction
that scales linearly with the depth of the circuit being delegated. The second
protocol is not blind, but only requires a constant number of rounds of inter-
action with the provers. Our work is the first to propose verifiable two-prover

3 The log g overhead is due to the complexity of sampling from the right distribution
in rigidity tests. We leave the possibility of removing this by derandomization for
future work. Another source of overhead is in achieving blindness: in order to hide
the circuit, we encode it as part of the input to a universal circuit, introducing a
factor of O(log g) overhead.
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delegation protocols that overcome the prohibitively large resource requirements
of all previous multi-prover protocols, requiring only a quasilinear amount of
resources, in terms of number of EPR pairs and time. However, notwithstanding
our improvements, a physical implementation of verifiable delegation protocols
remains a challenging task for the available technology.

We introduce the protocols in more detail. The protocols provide different
methods to delegate the quantum computation performed by the quantum ver-
ifier from [Bro18] to a second prover (call him PV for Prover V ). The rigidity
test is used to verify that the second prover indeed performs the same actions as
the honest verifier, which are sequences of single-qubit measurements of Clifford
observables from the set Σ = {X,Y,Z, F,G} (where F and G are defined in (2)).

In the first protocol, one of the provers plays the role of Broadbent’s prover
(call him PP for Prover P ), and the other plays the role of Broadbent’s verifier
(PV). As PV just performs single-qubit and Bell-basis measurements, universal
quantum computational power is not needed for this prover. The protocol is
divided into two sub-games; which game is played is chosen by the verifier by
flipping a biased coin with appropriately chosen probabilities.

– The first game is a sequential version of the rigidity game rigid(Σ,m) (from
Theorem 1) described in Fig. 9. This aims to enforce that PV performs pre-
cisely the right measurements;

– The second game is the delegation game, described in Figs. 6, 7, and 8, and
whose structure is summarized in Fig. 4. Here the verifier guides PP through
the computation in a similar way as in the EPR Protocol.

We remark that in both sub-games, the questions received by PV are of the
form W ∈ Σm, where Σ = {X,Y,Z, F,G} is the set of measurements performed
by the verifier in Broadbent’s EPR protocol. The questions for PV in the two
sub-games are sampled from the same distribution. This ensures that the PV
is not able to tell which kind of game is being played. Hence, we can use our
rigidity result of Theorem1 to guarantee honest behavior of PV in the delegation
sub-game. We call this protocol Verifier-on-a-Leash Protocol, or “leash protocol”
for short.

The protocol requires (2d + 1) rounds of interaction, where d is the depth of
the circuit being delegated (see Sect. 2.3 for a precise definition of how this is
computed). The protocol requires O(n+g) EPR pairs to delegate a g-gate circuit
on n qubits, and the overall time complexity of the protocol is O(g log g). The
input to the circuit is hidden from the provers, meaning that the protocol can
be made blind by encoding the circuit in the input, and delegating a universal
circuit. We note that using universal circuits incurs a log n factor increase in the
depth of the circuit [BFGH10].

The completeness of the protocol follows directly from the completeness of
[Bro18]. Once we ensure the correct behavior of PV using our rigidity test,
soundness follows from [Bro18] as well, since the combined behavior of our verifier
and an honest PV is nearly identical to that of Broadbent’s verifier.

The second protocol also starts from Broadbent’s protocol, but modifies it
in a different way to achieve a protocol that only requires a constant number
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of rounds of interaction. The proof of security is slightly more involved, but the
key ideas are the same: we use a combination of our new self-testing results
and the techniques of Broadbent’s protocol to control the two provers, one of
which plays the role of Broadbent’s verifier, and the other the role of the prover.
Because of the more complicated “leash” structure in this protocol, we call it
the Dog-Walker Protocol. Like the leash protocol, the Dog-Walker Protocol has
overall time complexity O(g log g). Unlike the leash protocol, the Dog-Walker
protocol is not blind. In particular, while PV and PP would have to collude
after the protocol is terminated to learn the input in the leash protocol, in the
Dog-Walker protocol, PV simply receives the input in clear.

Based on the Dog-Walker Protocol, it is possible to design a classical-verifier
two-prover protocol for all languages in QMA. This is achieved along the same
lines as the proof that QMIP = MIP∗ from [RUV13]. The first prover, given
the input, creates the QMA witness and teleports it to the second prover with
the help of the verifier. The verifier then delegates the verification circuit to the
second prover, as in the Dog-Walker Protocol; the first prover can be re-used to
verify the operations of the second one.

Subsequent Work. Bowles et al. [BvCA18] have independently re-derived a vari-
ant of our rigidity test for multi-qubit σX , σY and σZ observables in the con-
text of entanglement certification protocols in quantum networks. Their self-test
result has a slightly smaller set of questions but significantly weaker robustness
bounds.

Recently [Gri17] proposed the first protocol for verifiable delegation of quan-
tum computation by classical clients where such space-like separation can replace
the non-communication assumption, but his protocol is not blind.

Open Questions and Directions for Future Work. We have introduced a new
rigidity theorem and shown how it can be used to transform a specific quantum-
verifier delegation protocol, due to Broadbent, into a classical-verifier protocol
with an additional prover, while suffering very little overhead in terms of the
efficiency of the protocol. We believe that a similar transformation could be per-
formed starting from delegation protocols based on other models of computation,
such as the protocol in the measurement-based model of [FK17] or the protocol
based on computation by teleportation considered in [RUV13], and would lead
to similar efficiency improvements.

Recently, [HZM+17] provided an experimental demonstration of a two-prover
delegation protocol based on [RUV13] for a 3-qubit quantum circuit based on
Shor’s algorithm to factor the number 15; in order to obtain an actual imple-
mentation, necessitating “only” on the order of 6000 CHSH tests, the authors
had to make the strong assumption that the devices behave in an i.i.d. manner
at each use, and could not use the most general testing results from [RUV13].
We believe that our improved rigidity theorem could lead to an implementation
that does not require any additional assumption. We also leave as an open prob-
lem investigating whether (a variant of) our protocol can be made fault-tolerant,
making it more suitable for future implementation.
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We note that our protocols require the verifier to communicate with one prover
after at least one round of communication with the other has been completed.
Therefore, the requirement that the provers do not communicate throughout the
protocol cannot be enforced through space-like separation, and must be taken as
an a priori assumption. Since the protocol of [Gri17] is not blind, it is an open ques-
tion whether there exists a two-prover delegation protocol that consists of a single
round of simultaneous communication with each prover, and is blind and verifi-
able. We also wonder if the fact that blindness is compromised after the provers
collude is unavoidable in this model. A different avenue to achieve this is to rely
on computational assumptions on the power of the provers to achieve protocols
with more properties (non-interactive, blind, verifiable) [DSS16,ADSS17,Mah17,
Mah18], albeit not necessarily in a truly efficient manner.

Finally, due to its efficiency and robustness, our ridigity theorem is a poten-
tially useful tool in many other cryptographic protocols. For instance, an inter-
esting direction to explore is the possibility of exploiting our theorem to achieve
more efficient protocols for device-independent quantum key distribution, entan-
glement certification or other cryptographic protocols involving more complex
untrusted computation of the users.

Organization. In Sect. 2, we give the necessary preliminaries, including outlining
Broadbent’s EPR Protocol (Sect. 2.3). In Sect. 3, we introduce our new rigidity
theorems. In Sect. 4, we present our first protocol, the leash protocol, and in
Sect. 5, we discuss our second protocol, the Dog-Walker Protocol.

2 Preliminaries

2.1 Notation

We often write x = (x1, . . . , xn) ∈ {0, 1}n for a string of bits, and W =
W1 · · · Wm ∈ Σm for a string, where Σ is a finite alphabet. If S ⊆ {1, . . . , m} we
write WS for the sub-string of W indexed by S. For an event E, we use 1E to
denote the indicator variable for that event, so 1E = 1 if E is true, and otherwise
1E = 0. We write poly(ε) for O(εc), where c is a universal constant that may
change each time the notation is used.

H is a finite-dimensional Hilbert space. We denote by U(H) the set of unitary
operators, Obs(H) the set of binary observables (we omit the term “binary” from
here on; in this paper all observables are binary) and Proj(H) the set of projective
measurements on H respectively. We let |EPR〉 denote an EPR pair:

|EPR〉 =
1√
2

(|00〉 + |11〉) .

Observables. We use capital letters X,Z,W, . . . to denote observables. We use
greek letters σ, τ with a subscript σW , τW , to emphasize that the observable W
specified as subscript acts in a particular basis. For example, X is an arbitrary
observable but σX is specifically the Pauli X matrix defined in (1).



VoL: New Schemes for Verifiable Delegated Quantum Computation 255

For a ∈ {0, 1}n and commuting observables σW1 , . . . , σWn
, we write σW (a) =∏n

i=1(σWi
)ai . The associated projective measurements are σWi

= σ0
Wi

−σ1
Wi

and
σu

W = Ea(−1)u·aσW (a). Often the σWi
will be single-qubit observables acting on

distinct qubits, in which case each is implicitly tensored with identity outside of
the qubit on which it acts.

Pauli and Clifford groups. Let

σI =
(

1 0
0 1

)

, σX =
(

0 1
1 0

)

, σY =
(

0 −i
i 0

)

and σZ =
(

1 0
0 −1

)

(1)

denote the standard Pauli matrices acting on a qubit. The single-qubit Weyl-
Heisenberg group

H(1) = H(Z2) =
{

(−1)cσX(a)σZ(b), a, b, c ∈ {0, 1}
}

is the matrix group generated by the Pauli σX and σZ . We let H(n) = H(Zn
2 )

be the direct product of n copies of H(1). The n-qubit Clifford group is the
normalizer of H(n) in the unitary group, up to phase:

G
(n)
C =

{
G ∈ U((C2)⊗n) : GσG† ∈ H(n) ∀σ ∈ H(n)

}
.

Some Clifford observables we will use include

σH =
σX + σZ√

2
, σH′ =

σX − σZ√
2

, σF =
−σX + σY√

2
, σG =

σX + σY√
2

.

(2)
Note that σH and σH′ are characterized by σXσHσX = σH′ and σZσHσZ =
−σH′ . Similarly, σF and σG are characterized by σXσF σX = −σG and
σY σF σY = σG.

2.2 Quantum Circuits

We use capital letters in sans-serif font to denote gates. We work with the uni-
versal quantum gate set {CNOT,H,T}, where the controlled-not gate is the two-
qubit gate with the unitary action

CNOT|b1, b2〉 = |b1, b1 ⊕ b2〉,

and the Hadamard and T gates are single-qubit gates with actions

H|b〉 =
1√
2

(
|0〉 + (−1)b|1〉

)
and T|b〉 = eibπ/4|b〉,

respectively. We will also use the following gates:

X|b〉 = |b ⊕ 1〉, Z|b〉 = (−1)b|b〉, and P|b〉 = ib|b〉.

Measurements in the Z basis (or computational basis) will be denoted by the
standard measurement symbol:
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To measure another observable, W , we can perform a unitary change of basis
UW before the measurement in the computational basis.

We assume that every circuit has a specified output wire, which is measured
at the end of the computation to obtain the output bit. Without loss of generality,
we can assume this is always the first wire. For an n-qubit system, we let Πb,
for b ∈ {0, 1}, denote the orthogonal projector onto states with |b〉 in the output
wire: |b〉〈b|⊗Id. For example, the probability that a circuit Q outputs 0 on input
|x〉 is ‖Π0Q|x〉‖2.

We can always decompose a quantum circuit into layers such that each layer
contains at most one T gate applied to each wire. The minimum number of
layers for which this is possible is called the T depth of the circuit. We note that
throughout this work, we will assume circuits are compiled in a specific form
that introduces extra T gates (see the paragraph on the H gadget in Sect. 2.3).
The T depth of the resulting circuit is proportional to the depth of the original
circuit.

2.3 Broadbent’s EPR Protocol

In this section we summarize the main features of a delegation protocol intro-
duced in [Bro18], highlighting the aspects that will be relevant to understanding
our subsequent adaptation into two-prover protocols. The “EPR Protocol” from
[Bro18] involves the interaction between a verifier VEPR and a prover P . We
write PEPR for the “honest” behavior of the prover. The verifier VEPR has lim-
ited quantum powers. Her goal is to delegate a BQP computation to the prover
P in a verifiable way. Specifically, the verifier has as input a quantum circuit Q
on n qubits and an input string x ∈ {0, 1}n, and the prover gets as input Q. The
verifier and prover interact. At the end of the protocol, the verifier outputs either
accept or reject. The protocol is such that there exist values psound and pcompl

with psound < pcompl such that pcompl−psound, called the soundness-completeness
gap, is a constant independent of input size, and moreover:

Completeness: If the prover is honest and ‖Π0Q|x〉‖2 ≥ 2/3, then the verifier
outputs accept with probability at least pcompl;

Soundness: If ‖Π0Q|x〉‖2 ≤ 1/3, then the probability the verifier outputs accept
is at most psound.

In the EPR protocol, VEPR and PEPR are assumed to share (n + t) EPR
pairs at the start of the protocol, where t is the number of T gates in Q and n
the number of input bits. (In [Bro18] the EPR protocol is only considered in the
analysis, and it is assumed that the EPR pairs are prepared by the verifier.) The
first n EPR pairs correspond to the input to the computation; they are indexed
by N = {1, . . . , n}. The remaining pairs are indexed by T = {n + 1, . . . , n + t};
they will be used as ancilla qubits to implement each of the T gates in the
delegated circuit.
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The behavior of VEPR depends on a round type randomly chosen by VEPR

after her interaction with PEPR. There are three possible round types:

– Computation round (r = 0): the verifier delegates the computation to PEPR,
and at the end of the round can recover its output if PEPR behaves honestly;

– X-test round (r = 1) and Z-test round (r = 2): the verifier tests that PEPR

behaves honestly, and rejects if malicious behavior is detected.

For some constant p, V chooses r = 0 with probability p, and otherwise chooses
r ∈ {1, 2} with equal probability. Since the choice of round type is made after
interaction with PEPR, PEPR’s behavior cannot depend on the round type. In
particular, any deviating behavior in a computation round is reproduced in both
types of test rounds. The analysis amounts to showing that any deviating behav-
ior that affects the outcome of the computation will be detected in at least one
of the test rounds.

In slightly more detail, the high-level structure of the protocol is the following.
VEPR measures her halves of the n qubits in N in order to prepare the input state
on PEPR’s system. As a result the input is quantum one-time padded with keys
that depend on VEPR’s measurement results. For example, in a computation
round, VEPR measures each input qubit in the Z basis, and gets some result
d ∈ {0, 1}n, meaning the input on PEPR’s side has been prepared as Xd |0〉⊗n.
In [Bro18], the input is always considered to be 0, but we can also prepare an
arbitrary classical input x ∈ {0, 1}n by reinterpreting the one-time pad key as
a = d ⊕ x so that the input state on PEPR’s side is Xa |x〉. In a test round,
on the other hand, the input is prepared as the one-time pad of either |0〉⊗n or
|+〉⊗n. Note that as indicated in Fig. 2 this choice of measurements will be made
after the interaction with PEPR has taken place.

The honest prover PEPR applies the circuit Q, which we assume is compiled
in the universal gate set {H,T,CNOT}, to his one-time padded input. We will
shortly describe gadgets that PEPR can apply in order to implement each of the
three gate types. The gadgets are designed in a way that in a test round each
gadget amounts to an application of an identity gate; this is what enables VEPR

to perform certain tests in those rounds that are meant to identify deviating
behavior of a dishonest prover. After each gadget, the one-time padded keys can
be updated by VEPR, who is able to keep track of the keys at any point in the
circuit using the update rules in Table 2.

We now describe the three gadgets, before giving a complete description of
the protocol.

CNOT Gadget. To implement a CNOT gate on wires j and j′, PEPR sim-
ply performs the CNOT gate on those wires of his input qubits. The one-time
pad keys are changed by the update rule in Table 2, because CNOT · XajZbj ⊗
Xaj′Zbj′ = XajZbj+bj′ ⊗ Xaj+aj′Zbj′ · CNOT. Note that CNOT|0〉|0〉 = |0〉|0〉 and
CNOT|+〉|+〉 = |+〉|+〉, so in the test runs, PEPR is applying the identity.

H Gadget. To implement an H gate on wire j, PEPR simply performs the H on
wire j, and the one-time-pad keys are changed as in Table 2. Unlike CNOT, H
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Table 2. Rules for updating the one-time-pad keys after applying each type of gate
in the EPR Protocol, in particular: after applying the i-th T gate to the j-th wire;
applying an H gate to the j-th wire; or applying a CNOT gate controlled on the j-th
wire and targeting the j′-th wire.

Key Update Rule

T Computation Round (aj , bj) ← (aj + ci, bj + ei + aj + ci + (aj + ci)zi)

X-Test, even parity; or Z-test, odd parity (aj , bj) ← (ei, 0)

Z-Test, even parity; or X-test, odd parity (aj , bj) ← (0, bj + ei + zi)

H (aj , bj) ← (bj , aj)

CNOT (aj , bj , aj′ , bj′ ) ← (aj , bj + bj′ , aj + aj′ , bj′ )

does not act as the identity on |0〉 and |+〉, so it is not the identity in a test round.
To remedy this, assume that Q is compiled so that every H gate appears in a
pattern H(TTH)k, where the maximal such k is odd. This can be accomplished
by replacing each H by HTTHTTHTTH, which implements the same unitary. In
test rounds, the T gadget, described shortly, implements the identity, and since
H(IdH)k for odd k implements the identity, H(TTH)k will also have no effect in
test rounds.

Parity of a T Gate. Within a pattern H(TTH)k, the H has the effect of switching
between an X-test round scenario (the state |0〉) and a Z-test round scenario
(the state |+〉). In order to consistently talk about the type of a round while
evaluating the circuit, we can associate a parity with each T gate in the circuit.
The parity of the T gates that are not part of the pattern H(TTH)k will be
defined to be even. A H will always flip the parity, so that within such a pattern,
the first two T gates will be odd, the next two will be even, etc., until the last
two T gates will be odd again.

T Gadget. The gadget for implementing the i-th T gate on the j-th wire is per-
formed on PEPR’s j-th input qubit, and his i-th auxiliary qubit (indexed by n+i),
which we can think of as being prepared in a particular auxiliary state by VEPR

measuring her half of the corresponding EPR pair, as shown in Fig. 1. The gadget
depends on a random bit zi that is chosen by VEPR and sent to the prover.

Fig. 1. The gadget for implementing the i-th T gate on the j-th wire. The gate UWi

implementing the change of basis associated with observable Wi is applied as part of
the procedure V r

EPR (see Fig. 3b) and is determined by the round type r, the parity of
the i-th T gate, zi, ci, and a′

i (the X-key going into the i-th T gate), as in Table 3.
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Table 3. The choice of UWi in the T gadget. We also indicate the observable Wi

associated with the final measurement Wi = U†
Wi

ZUWi .

UWi (observable Wi)

Computation Round a′
i ⊕ ci ⊕ zi = 0 HT (observable G)

a′
i ⊕ ci ⊕ zi = 1 HPT (observable F )

X-Test Round even T gate Id (observable Z)

odd T gate zi = 0 H (observable X)

zi = 1 HP (observable Y )

Z-Test Round odd T gate Id (observable Z)

even T gate zi = 0 H (observable X)

zi = 1 HP (observable Y )

Fig. 2. This figure describes how different pieces of the protocol fit together. VEPR

and PEPR share n + t EPR pairs. The honest prover PEPR can be seen as a procedure
that acts on n + t qubits—the EPR pair halves—depending on a t-bit string z. We
have separated the quantum part of VEPR into its own procedure, called V r

EPR, where
r ∈ {0, 1, 2} indicates the round type, which VEPR runs on her n + t EPR halves, and
the 2t bits c and z. Aside from running V r

EPR, VEPR is classical.

The EPR Protocol. We show how the gadgets just described are used in the
complete protocol. We first describe the protocol for VEPR below. For later
convenience we have divided the action of VEPR into classical actions and a
single quantum subroutine V r

EPR depending on the round type.
The procedure V r

EPR measures each of the n + t EPR halves according to
some observable that depends on r, c, and z. In the case of a computation round,
V 0

EPR measures the qubits in T adaptively. We describe the steps of VEPR, V r
EPR

and the honest behaviour of PEPR in Fig. 3.

Completeness and Soundness. We summarize the relevant part of the analy-
sis of the EPR protocol from [Bro18]. First suppose PEPR behaves honestly. If
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Fig. 3. The EPR Protocol.

‖Π0Q|0n〉‖2 = p, then in a computation round, VEPR outputs accept with prob-
ability p, whereas in a test round, VEPR outputs accept with probability 1. This
establishes completeness of the protocol:

Theorem 2 (Completeness). Suppose the verifier executes the EPR Protocol,
choosing r = 0 with probability p, on an input (Q, |x〉) such that ‖Π0Q|x〉‖2 ≥
1 − δ. Then the probability that VEPR accepts when interacting with the honest
prover PEPR is at least (1 − p) + p(1 − δ).

The following theorem is implicit in [Bro18, Section 7.6], but we include a
brief proof sketch:

Theorem 3 (Soundness). Suppose the verifier executes the EPR Protocol,
choosing r = 0 with probability p, on an input (Q, |x〉) such that ‖Π0Q|x〉‖2 ≤ δ.
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Let P ∗
EPR be an arbitrary prover such that P ∗

EPR is accepted by VEPR with prob-
ability qt conditioned on r 
= 0, and qc conditioned on r = 0. Then the prover’s
overall acceptance probability is pqc + (1 − p)qt, and

qc ≤ 2 (qt δ + (1 − qt)) − δ.

Proof (Proof sketch). Using the notation of [Bro18], let A =
∑

k

∑
Q∈B′

t,n

|αk,Q|2.4 For intuition, A should be thought of as the total weight on attacks
that could change the outcome of the computation, called non-benign attacks
in [Bro18]. By [Bro18], the probability of rejecting in a computation round is
1 − qc ≥ (1 − δ)(1 − A), whereas the probability of rejecting in a test round is
1 − qt ≥ 1

2A. Combining these gives qc ≤ 2(qtδ + (1 − qt)) − δ.

3 Rigidity

Each of our delegation protocols includes a rigidity test that is meant to verify
that one of the provers measures his half of shared EPR pairs in a basis specified
by the verifier, thereby preparing one of a specific family of post-measurement
states on the other prover’s space; the post-measurement states will form the
basis for the delegated computation. This will be used to certify that one of the
provers in our two-prover schemes essentially behaves as the quantum part of
VEPR would in the EPR protocol.

In this section we outline the structure of the test, giving the important
elements for its use in our delegation protocols. We refer the reader to the full
version of the paper for a detailed presentation, including the soundness analysis.
The test is parametrized by the number m of EPR pairs to be used. The test
consists of a single round of classical interaction between the verifier and the
two provers. With constant probability the verifier sends one of the provers a
string W chosen uniformly at random from Σm where the set Σ = {X,Y,Z, F,G}
contains a label for each single-qubit observable to be tested. With the remaining
probability, other queries, requiring the measurement of observables not in Σm

(such as the measurement of pairs of qubits in the Bell basis), are sent.
In general, an arbitrary strategy for the provers consists of an arbitrary entan-

gled state |ψ〉 ∈ HA ⊗HB (which we take to be pure), and measurements (which
we take to be projective) for each possible question.5 This includes an m-bit out-
come projective measurement {Wu}u∈{0,1}m for each of the queries W ∈ Σm.
Our rigidity result states that any strategy that succeeds with probability 1 − ε
in the test is within poly(ε) of the honest strategy, up to local isometries (see

4 Here, we consider the decomposition of the attack as a sum of tensors of Pauli
A =

∑
k

∑
Q∈{I,X,Z,Y } αk,QQ.

5 We make the assumption that the players employ a pure-state strategy for conve-
nience, but it is easy to check that all proofs extend to the case of a mixed strategy.
Moreover, it is always possible to consider (as we do) projective strategies only by
applying Naimark’s dilation theorem, and adding an auxiliary local system to each
player as necessary, since no bound is assumed on the dimension of their systems.
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Theorem 4 for a precise statement). This is almost true, but for an irreconcilable
ambiguity in the definition of the complex phase

√
−1. The fact that complex

conjugation of observables leaves correlations invariant implies that no classical
test can distinguish between the two nontrivial inequivalent irreducible repre-
sentations of the Pauli group, which are given by the Pauli matrices σX , σY , σZ

and their complex conjugates σX = σX , σZ = σZ , σY = −σY respectively. In
particular, the provers may use a strategy that uses a combination of both rep-
resentations; as long as they do so consistently, no test will be able to detect this
behavior.6 The formulation of our result accommodates this irreducible degree
of freedom by forcing the provers to use a single qubit, the (m + 1)-st, to make
their choice of representation (so honest provers require the use of (m + 1) EPR
pairs to test the operation of m-fold tensor products of observables from Σs).

Theorem 4 below summarizes the guarantees of our main test, which is
denoted as rigid(Σ,m). Informally, Theorem4 establishes that a strategy that
succeeds in rigid(Σ,m) with probability at least 1− ε must be such that (up to
local isometries):

– The players’ joint state is close to a tensor product of m EPR pairs, together
with an arbitrary ancilla register;

– The projective measurements performed by either player upon receipt of a
query of the form W ∈ Σm are, on average over the uniformly random choice
of W ∈ Σm, close to a measurement that consists in first, measuring the
ancilla register to extract a single bit that specifies whether to perform the
ideal measurements or their conjugated counterparts, and second, measuring
the player’s m half-EPR pairs in either the bases indicated by W , or their
complex conjugate, depending on the bit obtained from the ancilla register.

For an observable W ∈ Σ, let σW = σ+1
W − σ−1

W be its eigendecomposition,
where σW are the “honest” Pauli matrices defined in (1) and (2). For u ∈ {±1}
let σu

W,+ = σu
W for W ∈ Σ, and

σu
X,− = σu

X , σu
Z,− = σu

Z , σu
Y,− = σ−u

Y , σu
F,− = σ−u

G , σu
G,− = σ−u

F .

(In words, σu
W,− is just the complex conjugate of σu

W .) We note that for the
purpose of our delegation protocols, we made a particular choice of the set Σ. The
result generalizes to any constant-sized set of single-qubit Clifford observables,
yielding a test for m-fold tensor products of single-qubit Clifford observables
from Σ.

Theorem 4. Let ε > 0 and m an integer. Suppose a strategy for the players
succeeds with probability 1−ε in test rigid(Σ,m). For W ∈ Σm and D ∈ {A,B}
let {Wu

D}u be the measurement performed by prover D on question W . Let also
|ψ〉 be the state shared by the players. Then for D ∈ {A,B} there exists an
isometry

VD : HD → (C2)⊗m
D′ ⊗ H

̂D

6 See [RUV12, Appendix A] for an extended discussion of this issue, with a similar
resolution to ours.
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such that
∥
∥(VA ⊗ VB)|ψ〉AB − |EPR〉⊗m ⊗ |aux〉

̂ÂB

∥
∥2 = O(

√
ε), (3)

and positive semidefinite matrices τλ on Â with orthogonal support, for λ ∈
{+,−}, such that Tr(τ+) + Tr(τ−) = 1 and

E
W∈Σm

∑

u∈{±1}m

∥
∥
∥VATrB

(
(IdA ⊗Wu

B )|ψ〉〈ψ|AB(IdA ⊗Wu
B )†)V †

A

−
∑

λ∈{±}

( m⊗

i=1

σui

Wi,λ

2

)
⊗ τλ

∥
∥
∥

1

= O(poly(ε)).

Moreover, players employing the honest strategy succeed with probability 1 −
e−Ω(m) in the test.

The proof of the theorem is based on standard techniques developed in the
literature on “rigidity theorems” for nonlocal games. We highlight two compo-
nents. The first is a “conjugation test” that allows us to extend the guarantees of
elementary tests based on the CHSH game or the Magic Square game, which test
for Pauli σX and σZ observables, to a test for single-qubit Clifford observables—
since the latter are characterized by their action on the Pauli group (see full
version of the paper for details). The second is an extension of the “Pauli braid-
ing test” from [NV17] to handle tensor products of not only σX and σZ , but
also σY Pauli observables (see full version of the paper for details). As already
emphasized in the introduction, the improvements in efficiency of our scheme
are partly enabled by the strong guarantees of Theorem4, and specifically the
independence of the final error dependence from the parameter m.

4 The Verifier-on-a-Leash Protocol

4.1 Protocol and Statement of Results

The Verifier-on-a-Leash Protocol (or “Leash Protocol” for short) involves a clas-
sical verifier and two quantum provers. The idea behind the Leash Protocol
is to have a first prover, nicknamed PV for Prover V , carry out the quantum
part of VEPR from Broadbent’s EPR Protocol by implementing the procedure
V r

EPR. (See Sect. 2.3 for a summary of the protocol and a description of VEPR.
Throughout this section we assume that the circuit Q provided as input is com-
piled in the format described in Sect. 2.3.). A second prover, nicknamed PP for
Prover P , will play the part of the prover PEPR. Unlike in the EPR Protocol,
the interaction with PV (i.e. running V r

EPR) will take place first, and PV will
be asked to perform random measurements from the set Σ = {X,Y,Z, F,G}.
The values z, rather than being chosen at random, will be chosen based on the
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corresponding choice of observable. We let n be the number of input bits and t
number of T gates in Q.

The protocol is divided into two sub-games; which game is played is chosen
by the verifier by flipping a biased coin with probability (pr, pd = 1 − pr).

– The first game is a sequential version of the rigidity game rigid(Σ,m)
described in Fig. 9. This aims to enforce that PV performs precisely the right
measurements;

– The second game is the delegation game, described in Figs. 6, 7, and 8, and
whose structure is summarized in Fig. 4. Here the verifier guides PP through
the computation in a similar way as in the EPR Protocol.

We call the resulting protocol the Leash Protocol with parameters (pr, pd). In
both sub-games the parameter m = Θ(n+ t) is chosen large enough so that with
probability close to 1 each symbol in Σ appears in a random W ∈ Σm at least
n+t times. It is important that PV is not able to tell which kind of game is being
played. Notice also that in order to ensure blindness, we will require that the
interaction with PV in the delegation game is sequential (more details on this
are found in Sect. 4.4). In order for the two sub-games to be indistinguishable,
we also require that the rigidity game rigid(Σ,m) be played sequentially (i.e.
certain subsets of questions and answers are exchanged sequentially, but the
acceptance condition in the test is the same). Note, importantly, that the rigidity
guarantees of rigid(Σ,m) hold verbatim when the game is played sequentially,
since this only reduces the number of ways that the provers can cheat. The
following theorem states the guarantees of the Leash Protocol.

Theorem 5. There are constants pr, pd = 1 − pr, and Δ > 0 such that the
following hold of the Verifier-on-a-Leash Protocol with parameters (pr, pd), when
executed on an input (Q, |x〉).
– (Completeness:) Suppose that ‖Π0Q|x〉‖2 ≥ 2/3. Then there is a strategy

for PV and PP that is accepted with probability at least pcompl = pr(1 −
e−Ω(n+t)) + 8pd/9.

– (Soundness:) Suppose that ‖Π0Q|x〉‖2 ≤ 1/3. Then any strategy for PV and
PP is accepted with probability at most psound = pcompl − Δ.

Further, the protocol leaks no information about x to either prover individually,
aside from an upper bound on the length of x.

The proof of the completeness property is given in Lemma1. The soundness
property is shown in Lemma 4. Blindness is established in Sect. 4.4. We first give a
detailed description of the protocol. We start by describing the delegation game,
specified in Figs. 6, 7 and 8, which describe the protocol from the verifier’s view,
an honest PV’s view, and an honest PP’s view respectively. This will motivate
the need for a sequential version of the game rigid(Σ,m), described in Fig. 9.
As we will show, the rigidity game forces PV to behave honestly. Thus, for
the purpose of exposition, we assume for now that PV behaves honestly, which
results in the joint behavior of PV and V being similar to that of the verifier
VEPR in the EPR Protocol.
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Fig. 4. Structure of the delegation
game.

From the rigidity game we may also
assume that PV and PP share m EPR pairs,
labeled {1, . . . , m}, for m = Θ(n + t). We
will assume that the circuit Q is broken into
d layers, Q = Q1 . . . Qd, such that in every
Q�, each wire has at most one T gate applied
to it, after which no other gates are applied
to that wire. We will suppose the T gates are
indexed from 1 to t, in order of layer.

The protocol begins with an interac-
tion between the verifier and PV. The ver-
ifier selects a uniformly random partition
A,B1, . . . , Bd of {1, . . . , m}, with |A| = Θ(n),
and for every 
 ∈ {1, . . . , d}, |B�| = Θ(t�),
where t� is the number of T gates in Q�. The
verifier also selects a uniformly random W ∈
Σm, and partitions it into substrings WA and
WB1 , . . . ,WBd

, meant to contain observables
to initialize the computation qubits and aux-
iliary qubits for each layer of T gates respec-

tively. The verifier instructs PV to measure his halves of the EPR pairs using
the observables WA first, and then WB1 , . . . ,WBd

, sequentially. Upon being
instructed to measure a set of observables, PV measures the corresponding half-
EPR pairs and returns the results e to the verifier. Breaking this interaction
into multiple rounds is meant to enforce that, for example, the results output
by PV upon receiving WB�

, which we call eB�
, cannot depend on the choice of

observables WB�+1 . This is required for blindness.
Once the interaction with PV has been completed, as in the EPR Protocol,

V selects one of three round types: computation (r = 0), X-test (r = 1), and
Z-test (r = 2). The verifier selects a subset N ⊂ A of size n of qubits to play
the role of inputs to the computation. These are chosen from the subset of A
corresponding to wires that PV has measured in the appropriate observable for
the round type (see Table 4). For example, in an X-test round, PV’s EPR halves
corresponding to input wires should be measured in the Z basis so that PP is left
with a one-time pad of the state |0〉⊗n, so in an X-test round, the computation
wires are chosen from the set {i ∈ A : Wi = Z}. The input wires N are labeled
by X1, . . . ,Xn.

The verifier also chooses subsets T� = T 0
� ∪ T 1

� ⊂ B� of sizes t�,0 and t�,1 =
t� − t�,0 respectively, where t�,0 is the number of odd T gates in the 
-th layer
of Q (recall the definition of even and odd T gates from Sect. 2.3). The wires T 0

�

and T 1
� will play the role of auxiliary states used to perform T gates from the


-th layer. They are chosen from those wires from B� whose corresponding EPR
halves have been measured in a correct basis, depending on the round type. For
example, in an X-test round, the auxiliaries corresponding to odd T gates should
be prepared by measuring the corresponding EPR half in either the X or Y basis
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(see Table 3), so in an X-test round, T 1
� is chosen from {i ∈ B� : Wi ∈ {X,Y }}

(see Table 4). We will let T1, . . . , Tt label those EPR pairs that will be used as
auxiliary states. In particular, the system Ti will be used for the i-th T gate in
the circuit, so if the i-th T gate is even, Ti should be chosen from T 0 = ∪�T

0
� ,

and otherwise it should be chosen from T1 = ∪�T
1
� . The verifier sends labels

T1, . . . , Tt and X1, . . . ,Xn to PP, who will act as PEPR on the n + t qubits
specified by these labels.

Just as in the EPR Protocol, the input on PP’s system specified by
X1, . . . ,Xn is a quantum one-time pad of either |x〉, |0〉⊗n, or |+〉⊗n, depending
on the round type, with V holding the keys (determined by e). Throughout the
interaction, PP always maintains a one-time pad of the current state of the com-
putation, with the verifier in possession of the one-time-pad keys. The verifier
updates her keys as the computation is carried out, using the rules in Table 2.

From PP’s perspective, the protocol works just as the EPR Protocol, except
that he does not receive the bit zi needed to implement the T gadget until during
the T gadget, after he has sent V his measurement result ci (see Fig. 5).

To perform the i-th T gate on the j-th wire, PP performs the circuit shown
in Fig. 5. As Fig. 5 shows, PV has already applied the observable specified by V
to his half of the EPR pair. The T gadget requires interaction with the verifier,
to compute the bit zi, which depends on the measured ci, the value Wi, and one-
time-pad key aj , however, this interaction can be done in parallel for T gates in
the same layer.

Fig. 5. The gadget for implementing the i-th T gate, on the j-th wire.

It is simple to check that the T gadget in Fig. 5 is the same as the T gadget
for the EPR Protocol shown in Fig. 1. In the case of the leash protocol, W is
chosen at random, and then z is chosen accordingly, whereas in the case of the
EPR Protocol, z is chosen at random and then W is chosen accordingly.

We now give the precise protocols for V (Fig. 6) and honest provers PV
(Fig. 7) and PP (Fig. 8).
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Table 4. How the verifier chooses index sets T = T 0∪T 1 and N for each type of round.
These sets determine which systems are labeled by {Ti}t

i=1 and {Xj}n
j=1, respectively.

Computation Round X-test Round Z-test Round

N {i ∈ A : Wi = Z} {i ∈ A : Wi = Z} {i ∈ A : Wi = X}
T 0

� {i ∈ B� : Wi ∈ {G, F}} {i ∈ B� : Wi = Z} {i ∈ B� : Wi ∈ {X, Y }}
T 1

� {i ∈ B� : Wi ∈ {G, F}} {i ∈ B� : Wi ∈ {X, Y }} {i ∈ B� : Wi = Z}

Fig. 6. The Delegation Game: Verifier’s point of view.

Finally, we describe the sequential version of the game rigid(Σ,m) in Fig. 9.
It is no different than rigid(Σ,m), except for the fact that certain subsets of
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Fig. 7. Honest strategy for PV

Fig. 8. Honest strategy for PP

questions and answers are exchanged sequentially, but the acceptance condition
is the same. As mentioned earlier, running the game sequentially only reduces the
provers’ ability to cheat. Hence the guarantees from rigid(Σ,m) hold verbatim
for the sequential version.

Fig. 9. Sequential version of rigid(Σ, m).
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4.2 Completeness

Lemma 1. Suppose the verifier executes the rigidity game with probability pr

and the delegation game with probability pd = 1 − pr, on an input (Q, |x〉) such
that ‖Π0Q|x〉‖2 ≥ 2/3. Then there is a strategy for the provers which is accepted
with probability at least pcompl = pr(1 − e−Ω(n+t)) + 8

9pd.

Proof. The provers PV and PP play the rigidity game according to the honest
strategy, and the delegation game as described in Figs. 7 and 8 respectively. Their
success probability in the delegation game is the same as the honest strategy in
the EPR Protocol, which is at least 2

3 + 2
3

1
3 = 8

9 , by Theorem 2 and since in our
protocol the verifier chooses each of the three types of rounds uniformly.

4.3 Soundness

We divide the soundness analysis into three parts. First we analyze the case of an
honest PV, and a cheating PP (Lemma 2). Then we show that if PV and PP pass
the rigidity game with almost optimal probability, then one can construct new
provers PV′ and PP′, with PV′ honest, such that the probability that they are
accepted in the delegation game is not changed by much (Lemma 3). In Lemma 4,
we combine the previous to derive the desired constant soundness-completeness
gap, where we exclude that the acceptance probability of the provers in the
rigidity game is too low by picking a pr large enough.

Lemma 2 (Soundness against PP). Suppose the verifier executes the delega-
tion game on input (Q, |x〉) such that ‖Π0Q|x〉‖2 ≤ 1/3 with provers (PV,PP∗)
such that PV plays the honest strategy. Then the verifier accepts with probability
at most 7/9.

Proof. Let PP∗ be any prover. Assume that PV behaves honestly and applies
the measurements specified by his query W on halves of EPR pairs shared with
PP∗. As a result the corresponding half-EPR pair at PP∗ is projected onto the
post-measurement state associated with the outcome reported by PV to V.

From PP∗, we define another prover, P ∗, such that if P ∗ interacts with
VEPR, the honest verifer for the EPR Protocol (Fig. 3a), then VEPR rejects with
the same probability that V would reject on interaction with PP∗. The main
idea of the proof can be seen by looking at Fig. 5, and noticing that: (1) the
combined action of V and PV is unchanged if instead of choosing the Wi-values
at random and then choosing zi as a function of these, the zi are chosen uniformly
at random, and then the Wi are chosen as a function of these; and (2) with this
transformation, the combined action of V and PV is now the same as the action
of VEPR in the EPR Protocol.

We now define P ∗. P ∗ acts on a system that includes n + t qubits that,
in an honest run of the EPR Protocol, are halves of EPR pairs shared with
VEPR. P ∗ receives {zi}t

i=1 from VEPR. P ∗ creates m − (n + t) half EPR pairs
(i.e. single-qubit maximally mixed states) and randomly permutes these with
his n + t unmeasured qubits, n of which correspond to computation qubits on



270 A. Coladangelo et al.

systems X1, . . . ,Xn—he sets N to be the indices of these qubits—and t of which
correspond to T-auxiliary states—he sets T 0 and T 1 to be the indices of these
qubits. P ∗ simulates PP∗ on these m qubits in the following way. First, P ∗ gives
PP∗ the index sets N , T 0, and T 1. In the 
-th iteration of the loop (Step 2. in
Fig. 8), PP∗ returns some bits {ci}i∈T�

, and then expects inputs {zi}i∈T�
, which

P ∗ provides, using the bits he received from VEPR. Finally, at the end of the
computation, PP∗ returns a bit cf , and P ∗ outputs {ci}i∈T and cf .

This completes the description of P ∗. To show the lemma we argue that for
any input (Q, |x〉) the probability that V outputs accept on interaction with PV
and PP∗ is the same as the probability that VEPR outputs accept on interaction
with P ∗, which is at most 2

3qt + 1
3qc whenever ‖Π0Q|x〉‖2 ≤ 1/3, by Theorem 3.

Using δ = 1
3 , Theorem 3 gives qc ≤ 5

3 − 4
3qt, which yields

2
3
qt +

1
3
qc ≤ 5

9
+

2
9
qt ≤ 7

9
.

There are two reasons that VEPR might reject: (1) in a computation or X-
test round, the output qubit decodes to 1; or (2) in an evaluation of the gadget
in Fig. 5 (either an X-test round for an even T gate, or a Z-test round for an
odd T gate) the condition ci = aj ⊕ ei fails.

We first consider case (1). This occurs exactly when cf ⊕ af = 1, where af

is the final X key of the output wire, held by VEPR. We note that af is exactly
the final X key that V would hold in the Verifier-on-a-Leash Protocol, which
follows from the fact that the update rules in both the EPR Protocol and the
leash protocol are the same. Thus, the probability that VEPR finds vf ⊕ af = 1
on interaction with P ∗ is exactly the probability that V finds cf ⊕ af = 1 in
Step 5 of Fig. 6.

Next, consider case (2). The condition ci 
= aj ⊕ ei is exactly the condition
in which a verifier interacting with P ∗ as in Fig. 6 would reject (see Step 4.(b)).

Thus, the probability that VEPR outputs reject upon interaction with P ∗ is
exactly the probability that V outputs reject on interaction with PP∗, which, as
discussed above, is at most 7/9.

The following lemma shows soundness against cheating PV∗.

Lemma 3. Suppose the verifier executes the leash protocol on input (Q, |x〉)
such that ‖Π0Q|x〉‖2 ≤ 1/3 with provers (PV∗,PP∗), such that the provers are
accepted with probability 1 − ε, for some ε > 0, in the rigidity game, and with
probability at least q in the delegation game. Then there exist provers PP′ and
PV′ such that PV′ applies the honest strategy and PP′ and PV′ are accepted
with probability at least q − poly(ε) in the delegation game.

Proof. By assumption, PP∗ and PV∗ are accepted in the rigidity game with
probability at least 1−ε. Let VA, VB be the local isometries guaranteed to exist by
Theorem 4, and {τλ} the sub-normalized densities associated with PP∗’s Hilbert
space (recall that playing the rigidity game sequentially leaves the guarantees
from Theorem 4 unchanged, since it only reduces the provers’ ability to cheat).
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First define provers PV′′ and PP′′ as follows. PP′′ and PV′′ initially share
the state

|ψ′〉AB = ⊗m
i=1|EPR〉〈EPR|AB ⊗

∑

λ∈{±}
|λ〉〈λ|A′ ⊗ |λ〉〈λ|B′ ⊗ (τλ)A′′ ,

with registers AA′A′′ in the possession of PP′′ and BB′ in the possession of PV′′.
Upon receiving a query W ∈ Σm, PV′′ measures B′ to obtain a λ ∈ {±}. If λ = +
he proceeds honestly, measuring his half-EPR pairs exactly as instructed. If
λ = − he proceeds honestly except that for every honest single-qubit observable
specified by W , he instead measures the complex conjugate observable. Note
that this strategy can be implemented irrespective of whether W is given at
once, as in the game rigid, or sequentially, as in the Delegation Game. PP′′

simply acts like PP∗, just with the isometry VA applied.
First note that by Theorem4, the distribution of answers of PV′′ to the ver-

ifier, as well as the subsequent interaction between the verifier and PP, generate
(classical) transcripts that are within statistical distance poly(ε) from those gen-
erated by PV∗ and PP∗ with the same verifier.

Next we observe that taking the complex conjugate of both provers’ actions
does not change their acceptance probability in the delegation game, since the
interaction with the verifier is completely classical. Define PP′ as follows: PP′

measures A′ to obtain the same λ as PV′′, and then executes PP′′ or its complex
conjugate depending on the value of λ. Define PV′ to execute the honest behavior
(he measures to obtain λ, but then discards it and does not take any complex
conjugates).

Then PV′ applies the honest strategy, and (PV′,PP′) applies either the same
strategy as (PV′′,PP′′) (if λ = +) or its complex conjugate (if λ = −). Therefore
they are accepted in the delegation game with exactly the same probability.

Combining Lemmas 2 and 3 gives us the final soundness guarantee.

Lemma 4. (Constant soundness-completeness gap) There exist constants
pr, pd = 1 − pr and Δ > 0 such that if the verifier executes the leash proto-
col with parameters (pr, pd) on input (Q, |x〉) such that ‖Π0Q|x〉‖2 ≤ 1/3, any
provers (PV∗,PP∗) are accepted with probability at most psound = pcompl − Δ.

Proof. Suppose provers PP∗ and PV∗ succeed in the delegation game with prob-
ability 7

9 + w for some w > 0, and the testing game with probability 1 − ε∗(w),
where ε∗(w) will be specified below. By Lemma 3, this implies that there exist
provers PP′ and PV′ such that PV′ is honest and the provers succeed in the dele-
gation game with probability at least 7

9+w−g(ε∗(w)), where g(ε) = poly(ε) is the
function from the guarantee of Lemma3. Let ε∗(w) be such that g(ε∗(w)) ≤ w

2 .
In particular, 7

9 + w − g(ε∗(w)) ≥ 7
9 + w

2 > 7
9 . This contradicts Lemma 2.

Thus if provers PP and PV succeed in the delegation game with probability
7
9 + w they must succeed in the rigidity game with probability less than 1 −
ε∗(w). This implies that for any strategy of the provers, on any no instance, the
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probability that they are accepted is at most

max
{

pr + (1 − pr)
(7

9
+

1
18

)
, pr

(
1 − ε∗

( 1
18

))
+ (1 − pr) · 1

}
. (4)

Since ε∗( 1
18 ) is a positive constant, it is clear that one can pick pr large enough

so that

pr

(
1 − ε∗

( 1
18

))
+ (1 − pr) · 1 < pr + (1 − pr)

(7
9

+
1
18

)
. (5)

Select the smallest such pr. Then the probability that the two provers are
accepted is at most

psound := pr + (1 − pr)
(7

9
+

1
18

)
< pr

(
1 − e−Ω(n+t)

)
+ (1 − pr)

8
9

= pcompl,

which gives the desired constant completeness-soundness gap Δ.

4.4 Blindness

We now establish blindness of the Leash Protocol. In Lemma5, we will prove
that the protocol has the property that neither prover can learn anything about
the input to the circuit, x, aside from its length. Thus, the protocol can be
turned into a blind protocol, where Q is also hidden, by modifying any input
(Q,x) where Q has g gates and acts on n qubits, to an input (Ug,n, (Q,x)),
where Ug,n is a universal circuit that takes as input a description of a g-gate
circuit Q on n qubits, and a string x, and outputs Q|x〉. The universal circuit
Ug,n can be implemented in O(g log n) gates. By Lemma 5, running the Leash
Protocol on (Ug,n, (Q,x)) reveals nothing about Q or x aside from g and n.

In the form presented in Fig. 6, the verifier V interacts first with PV, sending
him random questions that are independent from the input x, aside from the
input length n. It is thus clear that the protocol is blind with respect to PV.

In contrast, the questions to PP depend on PV’s answers and on the input,
so it may a priori seem like the questions can leak information to PP. To show
that the protocol is also blind with respect to PP, we show that there is an
alternative formulation, in which the verifier first interacts with PP, sending him
random messages, and then only with PV, with whom the interaction is now
adaptive. We argue that, for an arbitrary strategy of the provers, the reduced
state of all registers available to either prover, PP or PV, is exactly the same
in both formulations of the protocol—the original and the alternative one. This
establishes blindness for both provers. This technique for proving blindness is
already used in [RUV13] to establish blindness of a two-prover protocol based
on computation by teleportation.

Lemma 5 (Blindness of the Leash Protocol). For any strategy of PV∗ and
PP∗, the reduced state of PV∗ (resp. PP∗) at the end of the leash protocol is
independent of the input x, aside from its length.
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Proof. Let PV∗ and PP∗ denote two arbitrary strategies for the provers in the
leash protocol. Each of these strategies can be modeled as a super-operator

TPV : L(HTPV
⊗ HPV) → L(HT ′

PV
⊗ HPV),

TPP,ad : L(HTPP
⊗ HPP) → L(HT ′

PP
⊗ HPP).

Here HTPV
and HT ′

PV
(resp. HTPP

and HT ′
PP

) are classical registers containing the
inputs and outputs to and from PV∗ (resp. PP∗), and HPV (resp. HPP) is the
private space of PV∗ (resp. PP∗). Note that the interaction of each prover with
the verifier is sequential, and we use TPV and TPP,ad to denote the combined
action of the prover and the verifier across all rounds of interaction (formally
these are sequences of superoperators).

Consider an alternative protocol, which proceeds as follows. The verifier first
interacts with PP. From Fig. 8 we see that the inputs required for PP are subsets
N and T1, . . . , Td, and values {zi}i∈T�

for each 
 ∈ {1, . . . , d}. To select the
former, the verifier proceeds as in the first step of the Delegation Game. She
selects the latter uniformly at random. The verifier collects values {ci}i∈T�

from
PP exactly as in the original Delegation Game.

Once the interaction with PP has been completed, the verifier interacts with
PV. First, she selects a random string WN ∈ ΣN , conditioned on the event
that WN contains at least n copies of each symbol in Σ, and sends it to PV,
collecting answers eN . The verifier then follows the same update rules as in the
delegation game. We describe this explicitly for computation rounds. First, the
verifier sets a = eN . Depending on the values {ci}i∈T1 and {zi}i∈T1 obtained in
the interaction with PP, using the equation zi = aj + 1Wi=F + ci she deduces
a value for 1Wi=F for each i ∈ T1 ⊆ B1. She then selects a uniformly random
WB1 ∈ ΣB1 , conditioned on the event that WB1 contains at least t1 copies of each
symbol from Σ, and for i ∈ T1 it holds that Wi = F if and only if zi = aj +1+ci.
The important observation is that, if T1 is a uniformly random, unknown subset,
the marginal distribution on WB1 induced by the distribution described above is
independent of whether zi = aj +1+ci or zi = aj +0+ci: precisely, it is uniform
conditioned on the event that WB1 contains at least t1 copies of each symbol
from Σ. The verifier receives outcomes eB1 ∈ {0, 1}B1 from PV, and using these
outcomes performs the appropriate key update rules; she then proceeds to the
second layer of the circuit, until the end of the computation. Finally, the verifier
accepts using the same rule as in the last step of the original delegation game.

We claim that both the original and alternative protocols generate the same
joint final state:

TPP,ad ◦TPV(ρorig) = TPV,ad ◦TPP(ρalt) ∈ HPP ⊗HT ′
PP
⊗HV ⊗HT ′

PV
⊗HPV, (6)

where we use ρorig and ρalt to denote the joint initial state of the provers, as well
as the verifier’s initialization of her workspace, in the original and alternative
protocols respectively, and TPV,ad and TPP are the equivalent of TPV and TPP,ad

for the reversed protocol (in particular they correspond to the same strategies
PV∗ and PP∗ used to define TPV and TPP,ad). Notice that TPV,ad and TPP are
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well-defined since neither prover can distinguish an execution of the original
from the alternative protocol.7 To see that equality holds in (6), it is possible to
re-write the final state of the protocol as the result of the following sequence of
operations. First, the verifier initializes the message registers with PP∗ and PV∗

using half-EPR pairs, keeping the other halves in her private workspace. This
simulates the generation of uniform random messages to both provers. Then,
the superoperator TPV ⊗ TPP is executed. Finally, the verifier post-selects by
applying a projection operator on HTPV

⊗ HT ′
PV

⊗ HTPP
⊗ HT ′

PP
that projects

onto valid transcripts for the original protocol (i.e. transcripts in which the
adaptive questions are chosen correctly). This projection can be implemented
in two equivalent ways: either the verifier first measures HTPV

⊗ HT ′
PV

, and then
HTPP

⊗HT ′
PP

; based on the outcomes she accepts a valid transcript for the original
protocol or she rejects. Or, she first measures HTPP

⊗HT ′
PP

, and then HTPV
⊗HT ′

PV
;

based on the outcomes she accepts a valid transcript for the alternative protocol
or she rejects. Using the commutation of the provers’ actions, conditioned on
the transcript being accepted, the first gives rise to the first final state in (6),
and the second to the second final state. The two are equivalent because the
acceptance condition for a valid transcript is identical in the two versions of the
protocol.

Since in the first case the reduced state on HT ′
PV

⊗HPV is independent of the
input to the computation, x, and in the second the reduced state on HPP⊗HT ′

PP

is independent of x, we deduce that the protocol hides the input from each of
PV∗ and PP∗.

Remark 1. In order to make a fair comparison between previous delegated com-
putation protocols and ours (see Fig. 1), one must analyze their resource require-
ments under the condition that they produce the correct outcome of the com-
putation with a fixed, let us say 99%, probability. For most protocols, this
is achieved by sequentially repeating the original version, in order to amplify
the completeness-soundness gap. We refer to the full version of the paper for a
sequencial procedure that allows the verifier to obtain the correct output with a
fixed probability (or abort whenever the provers are malicious).

5 Dog-Walker Protocol

The Dog-Walker Protocol again involves a classical verifier V and two provers
PV and PP. As in the leash protocol presented in Sect. 4, PP and PV take the
roles of PEPR and VEPR from [Bro18] respectively. The main difference is that
the Dog-Walker Protocol gives up blindness in order to reduce the number of
rounds to two (one round of interaction with each prover, played sequentially).
After one round of communication with PP, who returns a sequence of mea-
surement outcomes, V communicates all of PP’s outcomes, except for the one

7 One must ensure that a prover does not realize if the alternative protocol is executed
instead of the original; this is easily enforced by only interacting with any of the
provers at specific, publicly decided times.
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Fig. 10. Overview of the soundness of the Dog-Walker Protocol

corresponding to the output bit of the computation, as well as the input x, to
PV. With these, PV can perform the required adaptive measurements with-
out the need to interact with V. It may seem risky to communicate bits sent
by PP directly to PV—this seems to allow for communication between the two
provers! Indeed, blindness is lost. However, if PP is honest, his outcomes {ci}i in
the computation round are the result of measurements he performs on half-EPR
pairs, and are uniform random bits. If he is dishonest, and does not return the
outcomes obtained by performing the right measurements, he will be caught in
the test rounds. It is only in computation rounds that V sends the measurement
results {ci}i to PV.

We notice that PV has a much more important role in this protocol: he
decides himself the measurements to perform according to previous measure-
ments’ outcomes as well as the input x. For this reason, we must augment the
test discussed in Sect. 3 in order to test if PV remains honest with respect to
these new tasks. For this reason, we introduce the Tomography test and prove a
rigidity theorem that will allow us to prove the soundness of the Dog-walker pro-
tocol (see Fig. 10 for a glimpse of the proof structure). Due to space limitations
we refer to the full version of the paper for a presentation of the Tomography
Test, a formal description of the Dog-walker protocol and the proof for their
correctness.

Finally, the Dog-Walker Protocol can be easily extended to a classical-verifier
two-prover protocol for all languages in QMA. Along the same lines of the proof
that QMIP = MIP∗ from [RUV13], one of the provers plays the role of PP, run-
ning the QMA verification circuit, while the second prover creates and teleports
the corresponding QMA witness. In our case, it is not hard to see that the second
prover can be re-used as PV in the Dog-Walker Protocol, creating the necessary
gadgets for the computation and allowing the Verifier to check the operations



276 A. Coladangelo et al.

performed by the first prover. We describe this approach in more details in the
full version of the paper.
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Abstract. Ring signatures allow for creating signatures on behalf of an
ad hoc group of signers, hiding the true identity of the signer among the
group. A natural goal is to construct a ring signature scheme for which
the signature size is short in the number of ring members. Moreover, such
a construction should not rely on a trusted setup and be proven secure
under falsifiable standard assumptions. Despite many years of research
this question is still open.

In this paper, we present the first construction of size-optimal ring
signatures which do not rely on a trusted setup or the random ora-
cle heuristic. Specifically, our scheme can be instantiated from standard
assumptions and the size of signatures grows only logarithmically in the
number of ring members.

We also extend our techniques to the setting of linkable ring signa-
tures, where signatures created using the same signing key can be linked.

Keywords: Ring signatures · Linkable ring signatures ·
Standard model

1 Introduction

Ring signatures, introduced by Rivest, Shamir and Tauman-Kalai [35] allow a
signer to hide in a crowd, or ring of potential signers. More specifically, the
signing algorithm of a ring signature scheme takes as additional input a list of
verification keys R and outputs a signature. Such a signature can be verified given
the ring R. The feature of interest of ring signatures is that given such a signature,
no one, not even an insider in possession of all the secret keys corresponding to
the verification keys in the ring, can tell which key was used to compute this
signature. The original motivation for ring signatures was whistleblowing, where
the leaking party can hide her identity and at the same time convince outsiders
that the leaked information is genuine (by using a ring composed only of people
with access to this information). In terms of security two properties are required
c© International Association for Cryptologic Research 2019
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of ring signatures: unforgeability and anonymity. The first property requires
that an efficient adversary should not be able to forge a signature on behalf
of an honest ring of signers. Anonymity requires that signatures do not give
away by which member they were created. This can be cast as an experiment in
which the adversary has to guess which one out of two ring members created a
signature.

The notion of linkable ring signatures [29] is an extension of the concept
of ring signatures such that there is a public way of determining whether two
signatures have been produced by the same signer. Linkable ring signatures yield
a very elegant approach to e-voting [40]: Every voter is registered with their
verification key. To cast a vote, all a voter has to do is to sign his or her vote
on behalf of the ring of all registered voters. Linkability prevents voters from
casting multiple votes. This can even be turned into an augmentation of the
voting functionality by allowing voters to revote, where only the most recently
cast votes of a set of votes that link counts.

Recently, linkable ring signature have also drawn attention in the domain
of decentralized currencies, where they can be used to implement a mechanism
for anonymized transactions. Linkable ring signatures are, for instance, used
in a cryptocurrency called Monero [32], where they allow payers to hide their
identity in an anonymity set composed of identities from previous transactions.
Currently Monero uses a setup-free Schnorr based ring signature scheme [37]
where the size of signatures scales linearly in the size of the ring. To decrease
the size of the transaction by default Monero uses small rings, which provide
only a limited amount of anonymity. The anonymity definition for linkable ring
signatures needs to be different from the definition for standard ring signatures.
We will elaborate further on this topic below. In both of the above applications
two aspects are of the essence:

– The ring signature scheme should not rely on a trusted setup. Especially in the
e-voting application it is of paramount importance for the acceptance of such
a system that there cannot exist a trapdoor that enables deanonymization of
voters.

– For practical purposes, e.g. for elections with millions of voters, the size of
individual signatures should be essentially independent of the size of the ring
of signers.

1.1 Our Contributions

In this work, we provide the first construction of ring signatures which simulta-
neously

– does not rely on a trusted setup or the random oracle heuristic,
– can be proven secure under falsifiable standard assumptions, namely the exis-

tence of non-interactive witness indistinguishable proofs [4,8,17,25] and addi-
tional standard assumptions such as the hardness of the Decisional Diffie
Hellman problem [18] or the Learning with Errors problem [34],
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– has signatures of size log(�) · poly(λ), where � is the size of the ring of signers
and λ the security parameter.

Our work therefore settles the problem of size-optimal ring signatures in the
standard model, which has been a long standing open problem. Furthermore, we
extend our techniques to the domain of linkable ring signatures, i.e. we construct
linkable ring signatures of size log(�) ·poly(λ) without setup and in the standard
model. Along the way, we introduce new techniques that enable us to use NIWI
proofs instead of NIZK proofs, which may be of independent interest.

As an additional contribution, we propose a stronger security model for link-
able ring signatures and prove that our linkable ring signature scheme is secure
in this model.

1.2 Our Techniques

To describe our scheme, it is instructive to recall the standard model ring signa-
ture scheme of Bender, Katz, and Morselli [6]. In the BKM scheme, a verifica-
tion key VK = (vk, pk) consists of a verification key vk for a standard signature
scheme and a public key pk for a public key encryption scheme. To sign a message
m given a signing key sk and a ring R = (VK1, . . . ,VK�), one proceeds as follows.
In a first step, locate verification key VKi∗ = (vki∗ , pki∗) corresponding to the
signing key sk in the ring R. Now compute a signature σ of m using the signing key
sk and encrypt σ under pki∗ to obtain a ciphertext cti∗ . Next, for all i �= i∗ com-
pute filler ciphertexts cti as encryptions of 0λ under pki, where VKi = (vki, pki).
Finally, use a non-interactive1 witness-indistinguishable proof π for the state-
ment (m, ct1, . . . , ct�,VK1, . . . ,VK�) to show that there exists an index i∗ such
that cti∗ encrypts a signature σ and that σ verifies for the message m under the
verification key vki∗ . The ring signature is now given by Σ = (ct1, . . . , ct�, π). To
verify a signature Σ for a message m and ring R, use the NIWI verifier to verify
that π is a proof for the statement (m, ct1, . . . , ct�,VK1, . . . ,VK�).

We also briefly review how unforgeability and anonymity of this scheme are
established. To establish unforgeability, note that by the perfect soundness of
the NIWI proof π one of the cti must actually be an encryption of a signa-
ture of m under vki. The security reduction can therefore set up all the pki

such that it knows the corresponding secret keys and decrypt the signature.
Establishing anonymity relies on witness indistinguishability of the NIWI proof
system. That is, the reduction can set up the signature Σ such that in fact two
different ciphertexts cti0 and cti1 encrypt a valid signature (each under their
corresponding verification key). We can now use witness indistinguishability to
switch the witness from index i0 to i1. Thus we can establish that signatures
computed using ski0 are computationally indistinguishable from signatures com-
puted using ski1 . The size of the signature is linear in the ring size �. There are
two major obstacles in making the size of the signatures sublinear:
1 Bender et al. [6] actually use 2-message public-coin witness-indistinguishable proofs

(ZAPs) rather than NIWI proofs, which is a slightly weaker primitive than NIWI
proofs.
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1. The signature contains all the ciphertexts ct1, . . . , ct�.
2. The witness for the validity of statement (m, ct1, . . . , ct�,VK1, . . . ,VK�) is

also of size linear in �.

Reducing the number of Ciphertexts. Starting from the BKM scheme, our first
idea is that if we use an appropriate public key encryption scheme PKE, then
we do not need to include all the ciphertexts ct1, . . . , ct� in the signature, but
only two ciphertexts ct and ct′. The additional property we need from PKE is
that a ciphertexts ct cannot be linked to the public key pk that was used to
compute ct, unless one is in the possession of the corresponding secret key sk.
This property immediately holds if the public key encryption scheme PKE has
pseudorandom ciphertexts. In fact, many constructions of public key encryption
have pseudorandom ciphertexts, e.g. the classic ElGamal scheme based on DDH
[18] or Regev’s scheme based on LWE [34].

Our first modification is thus to compute ct by encrypting the signature σ
under pki∗ and choosing ct′ uniformly at random. We also compute the proof π
differently. Namely, we prove that for a statement of the form (m, ct, ct′,VK1, . . . ,
VK�) it holds that there exist indices i∗ and i† such that either ct is an encryp-
tion of a signature σ∗ of m with respect to the verification key vki∗ under the
public key pki∗ , or ct′ is an encryption of a signature σ† of m with respect to
the verification key vki† under the public key pki† . In this modified scheme, a
signature Σ = (ct, ct′, π) consists of the two ciphertexts ct, ct′ and the proof π.
Verification checks that π is a proof for the statement (m, ct, ct′,VK1, . . . ,VK�).
We will briefly argue that this scheme is still unforgeable and anonymous. First
observe that if the proof π for the statement (m, ct, ct′,VK1, . . . ,VK�) verifies,
then by the perfect soundness of the NIWI proof system either ct or ct′ must
encrypt a signature under a public key pki∗ or pki† respectively. Therefore, we
can again construct a reduction which knows all the secret keys corresponding
to the pki. This way, the reduction will be able to decrypt the signature σ from
ct or ct′. To show anonymity, we transform a signature computed with ski0 into
a signature computed with ski1 via a sequence of hybrids. In the first hybrid step
we will make ct′ an encryption of a signature σ1 of m with respect to the key vki1

under the public key pk1. This change is possible as the ciphertexts of PKE are
pseudorandom. Next, we will use witness-indistinguishability of NIWI to switch
the witness for the statement (m, ct, ct′,VK1, . . . ,VK�). The new witness shows
that ct′ encrypts a valid signature of m. This means that we do not need a wit-
ness for ct anymore. Thus, in the next hybrid steps, we replace the ciphertext
ct by a random string, and then replace this random string by an encryption of
the signature σ1 under the public key pki1 . In the next steps, we can switch the
witness we use to compute the proof π back to using the witness for ct, and in
the last hybrid we make ct′ uniformly random again. Thus, Σ is now computed
using ski1 .

Compressing the Witness. The bigger challenge, however, is reducing the size of
the witness for the membership proofs to linear in log(�). A natural approach
would be to prove membership of the verification key VKi in the ring via a
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Merkle-tree accumulator (as e.g. in the ROM-scheme of [15]). In this approach,
one first hashes the ring R into a succinct digest h, and can then prove member-
ship of VKi in the ring via a log(�)-sized root-to-leaf path. To sign a message
under a ring R, the signer first hashes R into a digest h and computes a NIWI
proof π which simultaneously proves membership of his own key VKi in R via
a succinct membership witness and that ct encrypts a signature for VKi. To
verify such a signature, the verifier recomputes the root hash h for the ring R
and verifies the proof π. While this idea seems to resolve the above issue at first
glance, it raises serious issues itself. First and foremost, we will not be able to
prove unforgeability as above, as membership proofs for Merkle trees only have
computational soundness, but in order to prove unforgeability as above we need
perfect soundness. The problem is that an adversary might also produce a proof
by finding a collision in the Merkle tree instead of forging a signature. If, in fact,
we could use an NIZK proof of knowledge, then this proof strategy can be imple-
mented with routine techniques. NIZK proofs however need a setup, and we only
have NIWI proofs at our disposal. Moreover, for a Merkle tree to be binding it is
necessary that the hashing key is honestly generated, as unkeyed hash functions
are insecure against non-uniform adversaries. Thus, it is also unclear where the
hashing key for the Merkle tree should come from. Consequently, the Merkle
tree approach seems fundamentally stuck in the standard model.

There is, however a loophole in the above argument. Upon closer inspection,
we actually do not need the Merkle tree hash function to be collision resistant.
Instead, we need a guarantee that the hash value h binds to at least one specific
value in the database, which is under the control of the signer. The key ingre-
dient we use to make the construction work is somewhere statistically binding
(SSB) hashing [27]. An SSB hash function allows to compress a database into a
digest h such that h uniquely binds to a specific database entry. More specifically,
the key generator for a SSB hash function takes as an additional input an index
i∗ and produces a hashing key hk. When a database db is hashed into a digest
h using the hashing key hk, the digest h uniquely defines dbi∗ . In other words,
any database db′ with db′

i∗ �= dbi∗ hashes to a digest h′ �= h. To enable short
membership proofs, we require a SSB hash function with local opening. That is,
given a hashing key hk, a digest h of a database db, an index i and a value x,
there is witness τ of size linear in log(|db|) which demonstrates that dbi = x.
Besides the somewhere statistically binding property, we also require that the
SSB hash function is index-hiding, i.e. the hashing key hk computationally hides
the index i at which it is binding. Finally, as there is no trusted setup which
could define the key for the SSB hash function, we must let the signer generate
the hashing key hk itself. However, this again introduces an additional problem.
The standard notion of SSB hashing requires that the somewhere binding prop-
erty holds with overwhelming probability over the coins of the key generator,
but not with probability 1. However, as we let the signer generate the hash-
ing key, the signer may in fact choose bad random coins for which the hashing
key is not binding. We address this problem by using somewhere perfectly bind-
ing (SPB) hashing instead of SSB hashing. In fact, many constructions of SSB
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hashing are already SPB, e.g. the LWE-based construction of [27] can be made
SPB via standard error-truncation techniques, and the DDH- and DCR-based
constructions of [33] are immediately SPB. One additional aspect we require is
that generating a hashing key hk for a database db of size � can be performed
by a circuit of size linear in log(�), but this is the case for the instantiations
above. Equipped with SPB hashing, we can now construct succinct membership
proofs with perfect soundness as follows. The signer generates a hashing key hk
binding at position i (where VKi is the signer’s verification key) and uses hk to
compress R into a digest h. The membership witness shows that hk is binding
at position i and that h opens to VKi at position i. Essentially, a pair (hk, h) of
SPB hashing key hk and digest h form a perfectly binding commitment to VKi,
where we can prove that (hk, h) opens to VKi at position i using a witness of
size linear in log(�).

Relaxing the requirements on SPB hashing. It turns out that we do not need
the opening witnesses for the SPB hashing scheme to be publicly computable.
Indeed, we may allow the opening witness to depend on the private coins used by
the key generator as we need to prove that hk is binding at position i anyway. We
therefore define a slightly weakened notion called Somewhere Perfectly Binding
Hashing with private local Opening. As observed in [33], this notion can imme-
diately be realized from any private information retrieval (PIR) scheme with
fully efficient client (i.e. the clients overhead is logarithmic in the database-size).
Such a PIR scheme can be immediately constructed from fully homomorphic
encryption [12,19,20], avoiding the Merkle tree based approach of [27].

Our Scheme. Armed with these techniques, we can now provide our unlinkable
ring signature scheme. Key generation is as described above. To sign a mes-
sage m with a signing key ski, the signer computes a signature σ on m using
ski and encrypts σ under pki obtaining a ciphertext ct. The ciphertext ct′ is
chosen uniformly random (as in the scheme above). The signer now generates
two hashing keys hk and hk′ which are binding at position i and computes the
hash of R = (VK1, . . . ,VK�) under both hk and hk′, obtaining hash values h
and h′. Finally, the signer computes a NIWI proof π which proves that either
(hk, h) bind to a key VKi and that ct encrypts a signature of m for VKi or
(hk′, h′) bind to a key VKi′ and that ct′ encrypts a signature of m for VKi′ . The
signer then outputs the signature Σ = (ct, ct′, hk, hk′, π). To verify a signature
Σ = (ct, ct′, hk, hk′, π) for a message m and a ring R = (VK1, . . . ,VK�), the
verifier first computes the hashes h and h′ of R using hk and hk′ respectively.
Now it checks if the NIWI proof π verifies for (m, ct, ct′, hk, hk′, h, h′), and if so it
outputs 1. Unforgeability of this scheme is established in pretty much the same
way as described above: If the proof π verifies, then by the somewhere perfectly
binding property of SPB and the perfect soundness of the NIWI proof, one of
the two ciphertexts ct, ct′ must in fact encrypt a valid signature. The unforge-
ability reduction can now recover this signature by setting up the pki such that
it knows a secret key for each of them and can therefore recover a forge. The
idea of establishing anonymity can be outlined as follows. From a high level
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proof perspective, SPB hashing allows us to collapse a ring R of � verification
keys into a ring of just two keys. In other words, we only care about the keys
to which (hk, h) and (hk′, h′) bind. With this in mind, we can essentially imple-
ment the same proof strategy as before, pretending that our ring just consists
of two keys. As before, we will transform a signature computed using a sign-
ing key ski0 into a signature computed using ski1 via a sequence of hybrids. In
the first hybrid, we use the index hiding property of the SPB hash function to
move the binding index of hk′ from i0 to i1. Next, we proceed in a similar way
as above, namely compute a signature σ′ using ski1 and encrypt σ′ under pki1
obtaining a ciphertext ct′. Indistinguishability of this hybrid from the previous
hybrid can be argued via the pseudorandom ciphertexts property of PKE. In the
next step, we switch the witness used to compute the NIWI proof π. That is,
instead of proving that ct encrypts a valid signature under pki0 , we prove that
ct′ encrypts a valid signature under pki1 . Both are valid witnesses as we are
proving an or-statement. Therefore, witness-indistinguishability of NIWI yields
that this hybrid is indistinguishable from the last one. We can now perform the
same hybrid modifications to hk and ct and finally switch the witness again.
Therefore, in the last hybrid we get a signature Σ computed using ski1 . For
details on this construction, refer to Sect. 4.

Definitions of Linkable Anonymity. The exact definition of linkable anonymity
seems to vary between different authors. However, it seems that all these defini-
tions assume that there always remain unspent verification keys in an anonymity
set. Take for instance the definition of linkable anonymity in [30] (Definition 10
on page 13). Their definition of linkable anonymity is essentially the same as
the definition of unlinkable anonymity, with the difference that the adversary is
not given access to a signing oracle. We propose a simple definition for linkable
anonymity similar in spirit to the blindness definition of blind signatures. The
experiment is essentially identical to the anonymity experiment for unlinkable
ring signatures, with the following modification:

– The adversary is not allowed to corrupt the challenge keys VKi0 and VKi1

– In the challenge phase, the adversary submits two message-ring pairs (m0,R0)
and (m1,R1) such that both R0 and R1 contain both VKi0 and VKi1 .

– The experiment flips a bit b ←$ {0, 1}, computes Σ0 ← Sign(SKib
,m0,R0)

and Σ1 ← Sign(SKi1−b
,m1,R1) and returns (Σ0, Σ1) to the adversary

– The adversary must now guess bit b.

Note that the signature Σ0 is computed exactly as in the experiment for unlink-
able anonymity, but now we additionally provide the adversary with a signature
Σ1 computed with the signing key SKi1−b

. Consequently, this definition imme-
diately implies e.g. the definition of [30], but does not impose the restriction
that no signatures under VKi1−b

can be issued. Like the blindness definition for
blind signatures, our definition naturally extends to larger challenge spaces, i.e.
considering challenges of size 2 is complete. For details on this new definition
refer to Sect. 5.
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A linkable Ring Signature Scheme. We will now extend our techniques to the
setting of linkable ring signatures. The underlying idea is rather basic. Every
verification key VK contains a commitment com to a random tag tag. When
a signer signs a message m, he includes tag into the signature Σ and proves
that com unveils to tag. This proof can naturally be included in the NIWI proof
for the validity of the encrypted signature. Now, whenever a secret key SK is
used to sign a message m, its corresponding tag tag is spent. Thus, we can link
signatures by checking whether they have the same tag.

While this idea seems to check out at first glance, we run into trouble when
trying to prove linkable anonymity. In the linkable anonymity experiment the
adversary gets to see the tags of both challenge signatures. This means the
reduction must be able to provide witnesses that both the commitment in VKi0

and the commitment in VKi1 open to the respective tags tagi0 and tagi1 . The
fact that we need to be able to open both commitments, however, makes it
apparently impossible to use the hiding property of the commitments in order
to flip the challenge bit in the security proof. Once again, the situation could
be resolved easily if we had NIZK proofs at our disposal, yet we can only use
witness indistinguishability.

Our way out of this conundrum is based on the following observation. To
achieve linkability, we do not actually need that every verification key has a
unique tag. Instead, a weaker condition is sufficient. Namely, for a ring of size �
it should not be possible to generate �+1 valid signatures with pairwise distinct
tags. We leverage this idea by allowing the commitments in the verification keys
to be malformed in a controlled way. More specifically, instead of putting only
one commitment to a tag tag in the verification key VK, we put 3 commitments
to tag in VK.

As before, each signature contains two hashing keys and two hash values.
Moreover, in the linkable anonymity proof we will set up things in a way such
that for both challenge signatures Σ0 and Σ1, one of (hk, h) and (hk′, h′) will
point to VKi0 and the other one to VKi1 . Assume that a signature Σ contains
a tag tag and that the SPB hash (hk, h) points to VKi, whereas (hk′, h′) points
to VKi′ . We will make the following consistency requirement: If i = i′ we will
require that all three commitments in VKi unveil to the same tag tag. However,
if i �= i′, then we only require that out of the six commitments in VKi and VKi′

that

– at least two unveil to tag,
– at least two unveil to a tag tag′ �= tag,
– at most one commitment does not unveil correctly.

This relaxed binding condition now allows us to exchange the tags of VKi and
VKi′ even though we are handing out signatures which use these tags! We prove
linkable anonymity via a sequence of hybrids. As above, it is instructive to think
that SPB hashing collapses a ring R of � keys into a ring of just two verification
keys. Call these verification keys VK0 and VK1. In the linkable anonymity exper-
iment, there are two signatures, Σ0 and Σ1 for m0 and m1 respectively. In the
first hybrid the challenge bit of the experiment is 0, that is Σ0 is computed using
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the signing key SK0 whereas Σ1 is computed using SK1. In the final experiment,
Σ0 will be computed using SK1 and Σ1 will be computed using SK0. The critical
part of this proof is to switch the tags. Our proof strategy relies critically on the
fact that the tags tag0 and tag1 are identically distributed. Namely, we will not
switch the tags in the signatures, but switch the tags in the verification keys.
More specifically, in the first hybrid VKi0 contains commitments to tag0 and
VKi1 contains commitments to tag tag1. In the last hybrid, VK0 will commit to
tag1 and VK1 will commit to tag0. But since the tags are identically distributed
we can now simply rename them. Therefore, this hybrid is identical to the link-
able anonymity experiment with challenge bit 1. In a first step we make both
signatures Σ0 and Σ1 use both keys VK0 and VK1 by modifying the binding
indices in hk′ appropriately for both signatures. Now, our relaxed binding con-
dition allows us to exchange the tags between VK0 and VK1 one by one. That
is, the relaxed binding condition allows us to forget the unveil information of
one of the six commitments in VK0 and VK1. Say we forget the unveil informa-
tion of the first commitment in VK0. We can then turn this commitment into a
commitment of tag1. Next, we change the first commitment in VK1 into a com-
mitment of tag0. We continue like this alternating between VK0 and VK1, until
we have completely swapped tag0 and tag1. Note that in each step the relaxed
binding condition holds, thus we can argue via witness indistinguishability and
the hiding property of the underlying commitments. Finally, using random tags
tag alone does not achieve the strongest notion of non-framemability, where the
adversary is allowed to steal tags. Thus, we use an idea due to Dolev, Dwork and
Naor [16] commonly used to achieve non-malleability2: We replace the tag tag
by the verification key vk of a signature scheme Sig and additionally sign (m, Σ)
with respect to vk. This, however, has the somewhat surprising consequence that
we do not need the encrypted signatures anymore, we can rely entirely on the
unforgeability of Sig! For details, refer to Sect. 6.

1.3 Related Work

After the initial work of Rivest, Shamir and Tauman [35], a number of works
provided constructions in the random oracle model under various computational
hardness assumptions [1,9,26]. The scheme of Dodis et al. [15] was the first
to achieve sublinear size signatures in the ROM. Libert, Peters, Qian [28] con-
structed a scheme with logarithmic size ring signatures from DDH in the ROM.
Schemes in the CRS model include [10,13,21,23,36,38] achieving varying degrees
of compactness but focusing mainly on practical efficiency. Standard model ring
signatures were simultaneously proposed by Chow et al. [14] and by Bender,
Katz, and Morselli [6]. Malavolta and Schröder [31] build setup free and constant
size ring signatures assuming hardness of a variant of the knowledge of exponent
assumption. Recently, Backes et al. [3] provided a standard model construction
with signatures of size

√
� from a new primitive called signatures with flexible

public key. Linkable Ring signatures were introduced by Liu et al. [29] as linkable

2 E.g. in the construction of IND-CCA secure encryption schemes.
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spontaneous anonymous group signatures. They propose a notion of linkability
which requires that signatures created by the same signer using the same ring
must be publicly linkable. In their security model, a scheme achieves a weaker,
non-adaptive model of anonymity called signer-ambiguity, if given one signature
under signing key SK and ring R as well as a subset of the signing keys cor-
responding to the keys in the ring which does not include SK, the probability
of determining the actual signer as SK is at most negligibly better than guess-
ing one of the remaining keys in the ring uniformly at random. This model is
extended by Boyen and Haies [11], introducing signing epochs which allow for
forward secure notions of anonymity and unforgeability. Recently, several works
described linkable ring signature schemes in post-quantum setting, e.g. [39] based
on the hardness of the Ring-SIS problem or [5] based on the Module-SIS and
Module-LWE problems. Finally, the idea of replacing NIZK proofs with NIWI
proofs in standard model constructions has gained momentum recently, e.g. in
the construction of verifiable random functions (VRFs) [7,24].

2 Preliminaries

We will denote by y ← A(x; r) the execution of algorithm A outputting y, on
input x and random coins r. We will write y ← A(x) if the specific random
coins used are not important. By r ←$ S we denote that r is chosen uniformly
at random from the set S. We will use [n] to denote the set {1, . . . , n}. When
defining experiments we implicitly assume the procedures take as input 1λ as
well as some additional parameters which should be clear form the context. We
will use the symbol ∅ to denote an undefined value.

2.1 Signature Schemes

Definition 1. A signature scheme Sig consists of three PPT algorithms
(KeyGen,Sign,Verify) with the following syntax.

KeyGen(1λ): Takes as input the security parameter 1λ and outputs a pair of
verification and signing keys (vk, sk).

Sign(sk,m): Takes as input a signing key sk and a message m and outputs a
signature σ.

Verify(vk,m, σ): Takes as input a verification key vk, a message m and a signature
σ and outputs either 0 or 1.

We require the following properties of a signature scheme.

Correctness: It holds for every security parameter λ ∈ N and every message m
that given that (vk, sk) ← Sig.KeyGen(1λ), σ ← Sig.Sign(sk,m), then it holds
that Sig.Verify(vk,m, σ) = 1.

Existential Unforgeability under Chosen Message Attacks: It holds that
every PPT adversary A has at most negligible advantage in the following
experiment.
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ExpEUF-CMA(A): 1. The experiment generates a pair of verification and
signing keys (vk, sk) ← Sig.KeyGen(1λ) and provides vk to A.

2. A is allowed to make signing queries of the form (sign,m), upon
which the experiment computes σ ← Sig.Sign(sk,m). Further the
experiment keeps a list of all signing queries.

3. Once A outputs a pair (m∗, σ∗), the experiment checks if m∗ was not
queried in a signing query and if it holds that Sig.Verify(vk,m∗, σ∗) =
1. If so it outputs 1, otherwise 0.

The advantage of A is defined by AdvEUF-CMA(A) = Pr[ExpEUF-CMA(A) =
1].

2.2 Non-interactive Commitment Schemes

Definition 2. A commitment scheme Com syntactically consists of two PPT
algorithms (Commit,Verify) with the following syntax.

Commit(1λ,m): Takes as input a security parameter 1λ, a message m and outputs
a commitment com and unveil information γ.

Verify(com,m, γ): Takes as input a commitment com, a message m and unveil
information γ and outputs either 0 or 1.

We require the following properties of a signature scheme.

Correctness: It holds for every message m that given (com, γ) ← Commit(m),
it holds that Verify(com,m, γ) = 1.

Perfect Binding: It holds that every unbounded adversary A that:

Pr
[

(com,m0, γ0,m1, γ1) ← A :
m0 �= m1 ∧ Verify(com,m0, γ0) = Verify(com,m1, γ1) = 1

]
= 0.

Computational Hiding: We say that a commitment scheme Com =
(Commit,Verify) is computationally hiding if for every pair of messages
(m0,m1) it holds that

com0 ≈c com1,

where (com0, γ0) ← Commit(1λ,m0) and (com1, γ1) ← Commit(1λ,m1). We
denote the advantage of A in distinguishing the commitments as AdvHiding(A).

Non-interactive commitment schemes can be constructed from any injective
one-way function via the Goldreich-Levin hardcore bit [22].

2.3 Public Key Encryption

Definition 3. A public key encryption scheme PKE consists of 3 PPT algo-
rithms (KeyGen,Enc,Dec) with the following syntax.

KeyGen(1λ): Takes as input a security parameter 1λ and outputs a pair of public
and secret keys (pk, sk).
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Enc(pk,m): Takes as input a public key pk and a message m and outputs a
ciphertext ct

Dec(sk, ct): Takes as input a secret key sk and a ciphertext ct and outputs a
message m or ⊥
We require the following properties of a public key encryption scheme.

Perfect Correctness: We say a public key encryption scheme PKE is perfectly
correct, if it holds for all security parameters λ ∈ N and all messages m that
given that (pk, sk) ← PKE.KeyGen(1λ), ct ← PKE.Enc(pk,m), then it holds
that PKE.Dec(sk, ct) = m.

Pseudorandom Public Keys: We require that public keys are computationally
indistinguishable from uniform.

Pseudorandom Ciphertexts: We require that it holds for every message m
that

(pk, u) ≈c (pk,Enc(pk,m)),

where pk and u are chosen uniformly at random.

We denote the advantages of A in breaking pseudorandom public keys and pseu-
dorandom public keys as AdvIND-PK(A) and AdvIND-ENC(A) respectively. Note that
the pseudorandom public keys and pseudorandom ciphertext properties together
immediately imply the standard notion of IND-CPA security.

Such public key encryption schemes can be constructed e.g. from the DDH-
problem [18] or the LWE-problem [34].

2.4 Somewhere Perfectly Binding Hashing

Somewhere statistically binding (SSB) hashing [27] allows a negligible fraction
of the hashing-keys to be non-binding. For our constructions we actually only
require something slightly weaker, a primitive we call somewhere perfectly binding
hashing with private local opening. This notion relaxes the definition of some-
where perfectly binding hashing in that we allow the Gen algorithm to output a
private key shk which the Open algorithm takes as additional input. Below we
give our relaxed definition which we use throughout our paper. For completeness
we recall the original definition of SSB hashing [27] in the full version of this
paper [2] further remark that the LWE-based construction of SBB hashing in [27]
can be made somewhere perfectly binding by a noise truncation argument, and
the DDH- and DCR-based schemes of [33] are immediately somewhere perfectly
binding.

Definition 4. A somewhere perfectly binding hash family with private local
opening SPB is given by a tuple of algorithms (Gen,Hash,Open,Verify) with the
following syntax.

Gen(1λ, n, ind): Takes as input a security parameter 1λ, a database size n and
an index ind and outputs a hashing key hk and a private key shk.
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Hash(hk, db): Takes as input a hashing key hk and a database db and outputs a
digest h.

Open(hk, shk, db, ind): Takes as input a hashing key hk, a private key shk a
database db and an index ind and outputs a witness τ .

Verify(hk, h, ind, x, τ): Takes as input a hashing key hk, a digest h, an index ind,
a value x and a witness τ and outputs either 0 or 1.

Again, to simplify notation, we will not provide the block size of databases as
an input to SPB.Gen but rather assume that the block size for the specific appli-
cation context is hardwired in this function. We require the following properties.

Correctness: We say that SPB = (Gen,Hash,Open,Verify) is correct, if it holds
for all λ ∈ N, all n = poly(λ), all databases db of size n and all indices ind ∈
[n] that given that (hk, shk) ← SPB.Gen(1λ, n, ind), h ← SPB.Hash(hk, db) and
τ ← SPB.Open(hk, shk, db, ind), it holds that

Pr[SPB.Verify(hk, h, ind, dbind, τ) = 1] = 1.

Efficiency: The hashing keys hk generated by Gen(1λ, n, ind) and the witnesses
τ generated by Open(hk, shk, db, ind) are of size log(n) · poly(λ). Moreover,
Verify(hk, h, ind, x, τ) can be computed by a circuit of size log(n) · poly(λ).

Somewhere Perfectly Binding: It holds for all λ ∈ N, all n = poly(λ),
all databases db of size n, all indices i ∈ [n], all database values x and all
witnesses τ that if h = SPB.Hash(hk, db) and Verify(hk, h, ind, x, τ) = 1, then
it holds that x = dbind.

Index Hiding: Every PPT-adversary A has at most negligible advantage in the
following experiment.
ExpI-Hiding(A):

1. A sends (n, ind0, ind1) to the experiment.
2. The experiment chooses a random bit b ←$ {0, 1}, computes

(hk, shk) ← SPB.Gen(1λ, n, indb) and provides hk to A.
3. A outputs a guess b′. If b′ = b, the experiment outputs 1, otherwise 0.

The advantage of A is defined by AdvI-Hiding(A) =
∣∣Pr[ExpI-Hiding(A) = 1] − 1

2

∣∣
Notice that this definition provides a stronger somewhere perfectly binding

guarantee in that we do not have to require that hk has been generated cor-
rectly. We can immediately construct a SPB hash family SPB with private local
opening from any SPB hash family SPB′ with local opening via the following
construction.

SPB.Gen(1λ, n, ind):
Choose random coins r ← {0, 1}λ, compute hk ← SPB′.Gen(1λ, n, ind; 1λ; r)
and output hk and shk ← r.

SPB.Hash(hk, db):
Output SPB′.Hash(hk, db).

SPB.Open(hk, shk = r, db, ind):
Compute τ ′ ← SPB′.Open(hk, db, ind) and output τ ← (τ ′, r).
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SPB.Verify(hk, h, ind, x, τ = (τ ′, r)):
If SPB′.Gen(1λ, n, ind; r) = hk and SPB′.Verify(hk, h, ind, x, τ ′) = 1 output 1,
otherwise 0.

Correctness and index-hiding of SPB follow directly from the correspond-
ing properties of SPB′, the somewhere perfectly binding property follows from
the fact that SPB.Verify ensures explicitly that hk is perfectly binding at index
ind. Consequently, also this property follows from the corresponding property of
SPB′. Moreover, we can also realize a SPB hash family with private local open-
ing from any 2-message private information retrieval scheme with fully efficient
verifier and perfect correctness. This was also observed by [33]. The construc-
tion is straightforward: A hashing key hk for index i consists of the PIR receiver
message, to hash a database db run the PIR sender algorithm on hk and db. The
index hiding property follows by PIR receiver privacy, whereas the SPB prop-
erty follows form perfect correctness. Finally, the receivers private coins serve as
succinct private membership witness.

2.5 Non-interactive Witness-Indistinguishable Proof Systems

Let R be an efficiently computable binary relation, where for (x,w) ∈ R we
call x a statement and w a witness. Moreover, we denote by LR the language
consisting of statements in R, i.e. LR = {x|∃w : (x,w) ∈ R}.

Definition 5 (Non-interactive Proof System). Let R be an efficiently com-
putable witness relation and LR be the language accepted by R. A non-interactive
witness-indistinguishable (NIWI) proof system NIWI for LR consists of two algo-
rithms (Prove,Verify) with the following syntax.

Prove(1λ, x, w): Takes as input a security parameter 1λ, a statement x and a
witness w, output either a proof π or ⊥.

Verify(x, π): Takes as input a statement x, a proof π and outputs either 0 or 1.

We require the following properties.

Perfect Completeness: It holds for all security parameters λ ∈ N, all
statements x ∈ LR and all witnesses w that if R(x,w) = 1 and π ←
NIWI.Prove(1λ, x, w), then it holds that NIWI.Verify(x, π) = 1.

Perfect Soundness: It holds for all security parameters λ ∈ N, all statements
x /∈ LR and all proofs π that NIWI.Verify(x, π) = 0.

Witness-Indistinguishability: Every PPT adversary A has at most negligible
advantage in the following experiment.
ExpWI(A):

– A sends (x,w0, w1) with R(x,w0) = 1 and R(x,w1) = 1 to the exper-
iment.

– The experiment chooses a random bit b ←$ {0, 1}, computes π∗ ←
Prove(1λ, x, wb) and provides π∗ to A.

– A outputs a guess b′. If b′ = b the experiment outputs 1, otherwise 0.
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The advantage of A is defined by AdvWI(A) =
∣∣Pr[ExpWI(A) = 1] − 1

2

∣∣.
Proof-Size: For π = NIWI.Prove(1λ, x, w) it holds that |π| = |Cx|·poly(λ), where

Cx is a verification circuit for the statement x, i.e. (x,w) ∈ R iff Cx(w) = 1.

Non-interactive witness-indistinguishable proofs can be constructed from
NIZK proofs and derandomization assumptions [4,17], from bilinear pairings [25]
and indistinguishability obfuscation [8].

3 Ring-Signatures

In this section we provide the definitions related to ring signatures.

Definition 6 (Ring Signatures). A ring signature scheme RS is given by a
triple of PPT algorithms (KeyGen,Sign,Verify) such that

KeyGen(1λ): takes as input the security-parameter 1λ and outputs a pair
(VK,SK) of verification and signing keys.

Sign(SK,m,R): takes as input a signing key SK, a message m ∈ Mλ and a list
of verification keys R = (VK1, . . . ,VK�), and outputs a signature Σ.

Verify(R,m, Σ): takes as input a ring R = (VK1, . . . ,VK�), a message m ∈ Mλ

and a signature Σ, and outputs either 0 or 1.

Correctness: We say that a ring signature scheme RS = (KeyGen,Sign,Verify)
is correct, if it holds for all λ ∈ N, all � = poly(λ), all i∗ ∈ [�] and all
messages m ∈ Mλ that if for i ∈ [�] (VKi,SKi) ← RS.KeyGen(1λ) and Σ ←
RS.Sign(SKi,m,R), where R = (VK1, . . . ,VK�), then it holds that

Pr[RS.Verify(R,m, Σ) = 1] = 1 − negl(λ),

where the probability is taken over the random coins used by RS.KeyGen and
RS.Sign.

Anonymity: We say that a ring signature scheme RS = (KeyGen,Sign,Verify) is
anonymous against full key exposure, if for every q = poly(λ) and every PPT
adversary A it holds that A has at most negligible advantage in the following
experiment.
ExpRS-Anon(A):

1. For all i = 1, . . . , q the experiment generates the keypairs
(VKi,SKi) ← RS.KeyGen(1λ, ri) using random coins ri.

2. The experiment provides VK1, . . . ,VKq and r1, . . . , rq to A.
3. The adversary provides a challenge (R,m, i0, i1) to the experiment,

such that VKi0 and VKi1 are in the ring R. The experiment flips
a random bit b ←$ {0, 1}, computes Σ∗ ← RS.Sign(SKib

,m,R) and
outputs Σ∗ to A.

4. A outputs a guess b′. If b′ = b, the experiment outputs 1, otherwise 0
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The advantage of A is defined by AdvRS-Anon(A) =
∣
∣Pr[ExpRS-Anon(A) = 1] − 1

2

∣
∣.

Note: We allow that the ring R chosen by A in step 3 may contain maliciously
chosen verification keys that were not generated by the challenger.

Unforgeability: We say that a ring signature scheme RS = (KeyGen,Sign,
Verify) is unforgeable with respect to insider corruption, if for every q =
poly(λ) and every PPT adversary A, it holds that A has at most negligible
advantage in the following experiment.

ExpRS-Unf(A):
1. For all i = 1, . . . , q the experiment generates the keypairs

(VKi,SKi) ← RS.KeyGen(1λ, ri) using random coins ri. It sets VK =
{VK1, . . . ,VKq} and initializes a set C = ∅.

2. The experiment provides VK1, . . . ,VKq to A.
3. A is now allowed to make the following queries:

(sign, i,m,R): Upon a signing query, the experiment checks if VKi ∈
R, and if so computes Σ ← RS.Sign(SKi,m,R) and returns Σ to
A. Moreover, the experiment keeps a list of all signing queries.

(corrupt, i): Upon a corruption query, the experiment adds VKi to
C and returns ri to A.

4. In the end, A outputs a tuple (R∗,m∗, Σ∗). If it holds that R∗ ⊆ VK\C
(i.e. none of the keys in R∗ were corrupted), A never made a signing-
query of the form (sign, ·,m∗,R∗) and it holds that

RS.Verify(R∗,m∗, Σ∗) = 1,

then the experiment outputs 1, otherwise 0.
The advantage of A is defined by AdvRS-Unf(A) = Pr[ExpRS-Unf(A) = 1].

4 Construction of Ring-Signatures

In this section we will provide a construction of a ring signature scheme. Let

– PKE = (KeyGen,Enc,Dec) be a public key encryption scheme with pseudo-
random keys and ciphertexts,

– Sig = (KeyGen,Sign,Verify) be a signature scheme,
– SPB = (Gen,Hash,Open,Verify) be a somewhere perfectly binding hash func-

tion with private local opening and,
– NIWI = (Prove,Verify) be a NIWI-proof system for the language L defined

as follows. We define a witness-relation R: If x = (m, ct, hk, h) and w =
(VK, ind, τ, σ, rct), where VK = (vk, pk), let

R(x,w) ⇔ SPB.Verify(hk, h, ind,VK, τ) = 1
and PKE.Enc(pk, σ; rct) = ct

and Sig.Verify(vk,m, σ) = 1

and let L′ be the language accepted by R. Now, define the language L by

L = {(m, ct1, ct2, hk1, hk2, h1, h2) | (m, ct1, hk1, h1) ∈ L′ or (m, ct2, hk2, h2) ∈ L′}.
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Our ring signature scheme RS = (KeyGen,Sign,Verify) is given as follows.

RS.KeyGen(1λ; r = (rSig, rpk)):
– Compute (vk, sk) ← Sig.KeyGen(1λ; rSig)
– Compute pk ← rpk
– Output VK ← (vk, pk) and SK ← (sk,VK)

RS.Sign(SK = (sk,VK),m,R = (VK1, . . . ,VK�)):
– Parse VK = (vk, pk)
– Compute σ ← Sig.Sign(sk,m)
– Find an index ind ∈ [�] such that VKind = VK
– Compute (hk1, shk1) ← SPB.Gen(1λ, |R|, ind)
– Compute (hk2, shk2) ← SPB.Gen(1λ, |R|, ind)
– Compute h1 ← SPB.Hash(hk1,R)
– Compute h2 ← SPB.Hash(hk2,R)
– Compute τ ← SPB.Open(hk1, shk1,R, ind)
– Compute ct1 ← PKE.Enc(pk, σ; rct)
– Compute ct2 ←$ {0, 1}λ

– Set x ← (m, ct1, ct2, hk1, hk2, h1, h2) and w ← (VK, ind, τ, σ, rct)
– Compute π ← NIWI.Prove(x,w)
– Output Σ ← (ct1, ct2, hk1, hk2, π)

RS.Verify(R,m, Σ):
– Parse Σ = (ct1, ct2, hk1, hk2, π)
– Compute h′

1 ← SPB.Hash(hk1,R)
– Compute h′

2 ← SPB.Hash(hk2,R)
– Output NIWI.Verify((m, ct1, ct2, hk1, hk2, h

′
1, h

′
2), π)

4.1 Correctness

We will first show that our scheme is correct. Assume that VK = (vk, pk) and
SK = (sk,VK) were generated by RS.KeyGen and Σ = (ct1, ct2, hk1, hk2, π) is
the output of RS.Sign(SK,m,R), where R = (VK1, . . . ,VK�). We will show that
it holds that RS.Verify(R,m, σ) = 1. First note that since SPB.Hash is deter-
ministic, it holds that h′

1 = h1 and h′
2 = h2. Also, it obviously holds that

VK = VKind (where ind is the index of VK in R). Now, notice further that
by the correctness of SPB it holds that SPB.Verify(hk1, h1, ind,VKind, τ) = 1.
Moreover, by the correctness of Sig it holds that Sig.Verify(vk,m, σ) = 1. Conse-
quently, (m, ct1, ct2, hk1, hk2, h1, h2) ∈ L and w = (VK, ind, τ, σ, rct) is a witness
for membership. Thus, by the correctness of NIWI it holds that

NIWI.Verify((m, ct1, ct2, hk1, hk2, h1, h2), π) = 1

and consequently RS.Verify(R,m, Σ) outputs 1.
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4.2 Signature Size

For a signature Σ = (ct1, ct2, hk1, hk2, π), the size of the ciphertexts ct1, ct2 is
poly(λ) and independent of the ring-size �. By the efficiency property of SPB
the sizes of the hashing keys hk1, hk2 is bounded by log(�) · poly(λ). Also by the
efficiency property of SPB this size of the witness τ is log(�)·poly(λ) and the SPB-
verification function Verify can be computed by a circuit of size log(�) · poly(λ).

Consequently, the verification circuit Cx for the language L and statement
x = (m, ct1, ct2, hk1, hk2, h1, h2) has size log(�) · poly(λ). By the proof-size prop-
erty of the NIWI proof it holds that |π| = |Cx| · poly(λ) = log(�) · poly(λ). All
together, the size of signatures Σ is log(�) · poly(λ).

4.3 Unforgeability

We will turn to showing that RS is unforgeable.

Theorem 1. The ring signature scheme RS is unforgeable, given that NIWI has
perfect soundness, SPB is somewhere perfectly binding, PKE is perfectly correct,
PKE has pseudorandom public keys and Sig is unforgeable.

The main idea of the proof is that since the NIWI proof has perfect soundness,
it must either hold that (m, ct1, hk1, h1) ∈ L′ or (m, ct2, hk2, h2) ∈ L′. If the
first statement is true, then hk1 corresponds to an index ind1 and A must have
produced a forge for a key VKind1 in R. Likewise, if the second statement is true,
then A must have produced a forge for a key VKind2 in R.

Proof. Let A be a PPT-adversary against the unforgeability experiment of RS
and let further q = poly(λ) an upper bound on the number of key queries of A.
Consider the following two hybrids.

H0: This is the real experiment.
H1: The same as H0, except that for all i ∈ [q] the challenger generates the

public keys pki in VKi by (pki, ŝki) ← PKE.KeyGen(1λ) instead of choosing
pki uniformly at random. Moreover, the challenger stores all the secret keys
(ŝki)i∈[q].

We will first argue that H0 and H1 are computationally indistinguishable
given that the public keys of PKE are pseudorandom.

Claim. There exists a reduction R1 such that AdvIND-PK(RA
1 ) ≥ |Pr[H0(A) =

1] − Pr[H1(A) = 1]|
The reduction R1 is given as follows.

Reduction RA
1 (pk∗)

– Choose an index i∗ ←$ [q] uniformly at random.
– Simulate H0 with the following modifications. For all indices i < i∗ gen-

erate (VKi,SKi) as in H0. For i > i∗ generate (VKi,SKi) as in H1.
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– Generate (VKi∗ ,SKi∗) as follows:
• Compute (vki∗ , ski∗) ← Sig.KeyGen(1λ; rSig)
• Set VKi∗ ← (vki∗ , pk∗) and SKi∗ ← (ski∗ ,VKi∗)

– Output whatever the simulated experiment outputs.

Let PK 0 be the uniform distribution and PK 1 be a distribution sampled by
computing (pk∗, ŝk

∗
) ← PKE.KeyGen(1λ) and outputting pk∗. First observe that

when i∗ = q − 1 and pk∗ was chosen from PK 0, then RA
1 perfectly simulates

H0(A). On the other hand, if i∗ = 0 and pk∗ was chosen from PK 1, then RA
1 per-

fectly simulates H1(A). Moreover, observe that for j = 1, . . . , q − 1 it holds that
RA

1 (PK 0)|i∗=j−1 and RA
1 (PK 1)|i∗=j are identically distributed. Consequently,

we get that

AdvIND-PK(RA
1 ) = |Pr[RA

1 (PK 0)] − Pr[RA
1 (PK 1)]|

= |
q−1∑
j=0

Pr[i∗ = j] · (Pr[RA
1 (PK 0)|i∗ = j] − Pr[RA

1 (PK 1)|i∗ = j])|

=
1
q

· |(Pr[RA
1 (PK 0)|i∗ = q − 1] − Pr[RA

1 (PK 1)|i∗ = 0]

+
q−1∑
j=1

(Pr[RA
1 (PK 1)|i∗ = j] − Pr[RA

1 (PK 0)|i∗ = j − 1]))|

=
1
q

· |(Pr[H0(A) = 1] − Pr[H1(A) = 1])|.

Claim. There exists a reduction R2 such that RA
2 breaks the EUF-CMA security

of Sig with probability AdvH1(A)/q.

The reduction R2 is given as follows.

Reduction RA
2 (VK∗)

– Guess an index i∗ ←$ [q]. For all i �= i∗ generate VKi and SKi as in H1.
Generate VKi∗ = VK∗ as follows. Generate (pk∗, ŝk

∗
) ← KeyGen(1λ) and

set VK∗ ← (vk∗, pk∗), where vk∗ is the verification key provided by the
EUF-CMA experiment. Moreover, store ŝki∗ = ŝk

∗
.

– If A asks to corrupt VK∗ abort.
– If A sends signature query (m,VK∗,R), send m to the signing oracle of

the EUF-CMA game to obtain a signature σ. Compute the signature Σ
by

• Let ind∗ be the index of VK∗ in R.
• Computing (hk1, shk1) ← SPB.Gen(1λ, |R|, ind∗)
• Computing (hk2, shk2) ← SPB.Gen(1λ, |R|, ind∗)
• Computing h1 ← SPB.Hash(hk1, R)
• Computing h2 ← SPB.Hash(hk2, R)
• Computing τ ← SPB.Open(hk1, shk1, R, ind∗)
• Computing ct1 ← PKE.Enc(pk∗, σ; rct)
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• Computing ct2 ←$ {0, 1}λ

• Computing

π ← NIWI.Prove((m, ct1, ct2, hk1, hk2, h1, h2), (VK∗, ind∗, τ, σ, rct))

• Output Σ ← (ct1, ct2, hk1, hk2, π)
– Once A outputs a forge Σ∗ for (m∗,R∗), check if it is valid, that is in

the query phase A has not requested a signature of m∗ for any key
in R∗, none of the keys in R∗ has been corrupted and it holds that
RS.Verify(R,m∗, Σ∗) = 1. If the forge is valid proceed.

– Parse Σ∗ as Σ∗ = (ct∗1, ct
∗
2, hk

∗
1, hk

∗
2, π

∗).
– Let |R∗| = � and let i1, . . . , i� be the indices of the keys in R∗, i.e. R =

(VKi1 , . . . ,VKi�
).

– For j = 1, . . . , �:
∗ Compute σ̌1 ← Dec(ŝkij

, ct∗1) and σ̌2 ← Dec(ŝkij
, ct∗2).

∗ If Sig.Verify(vk∗,m∗, σ̌1) = 1 stop and output σ̌1

∗ If Sig.Verify(vk∗,m∗, σ̌2) = 1 stop and output σ̌2

First note that the key-pair (pki∗ , ŝki∗) is correct for all messages. Notice
further that, unless A asks to corrupt VK∗, H1 and the simulation of R2 are
identically distributed from the view of A. Observe that with probability at least
1/q the adversary A does not trigger an abort. Thus, conditioned that no abort
happened, from the view of A the index i∗ is distributed uniformly random.
Assume now that A outputs a valid forge Σ∗ for (m∗,R∗) with R∗ = (VKi1 , . . . ,
VKi�

). By the perfect soundness of NIWI, it holds that either (m∗, ct∗1, hk
∗
1, h

∗
1) ∈

L′ or (m, ct∗2, hk
∗
2, h

∗
2) ∈ L′. Assume w.l.o.g. that (m, ct∗1, hk

∗
1, h

∗
1) ∈ L′. That is,

there exist (VK†, ind†, τ †, σ†, rct) with VK† = (vk†, pk†) such that

SPB.Verify(hk∗
1, h

∗
1, ind

†, V̌K, τ̌) = 1
and PKE.Enc(pk†, σ†; rct) = ct∗1
and Sig.Verify(vk†,m∗, σ†) = 1

As SPB.Verify(hk∗
1, h

∗
1, ind

†, V̌K, τ̌) = 1 and h∗
1 = SPB.Hash(hk∗

1,R) it holds
by the somewhere perfectly binding property of SPB that VK† = VKi

ind† ,
i.e. vk† = vk†

i
ind† and pk† = pki

ind† . Moreover, by the above it also holds that
ct∗1 = PKE.Enc(pki

ind† , σ†; rct) and Sig.Verify(vki
ind† ,m∗, σ†) = 1.

Now observe that, as i∗ is uniformly random from the view of A, it holds
that iind† = i∗ with probability at least 1/q. Assume therefore that iind† = i∗. As
(pki∗ , ŝki∗) are correct for all messages, it holds that σ̌1 = PKE.Dec(ŝki∗ , ct∗1) =
σ†. Therefore it holds that Sig.Verify(vki

ind† ,m∗, σ̌1) = 1 for the signature σ̌1

decrypted by RA
2 , i.e. σ̌1 is a valid signature of m∗ under vk∗. We conclude that

AdvEUF-CMA(RA
2 ) ≥ 1

q |AdvH1(A) − ν|.
All together, as AdvH1(A) ≥ |AdvH0(A)−q·AdvIND-PK(RA

1 )| and AdvH0(A) =
AdvRS-Unf(A), we can conclude that

AdvRS-Unf(A) ≤ q · Adv(RA
1 ) + q · AdvEUF-CMA(RA

2 ) + ν.

This concludes the proof.
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On Tightness. Using a public key encryption scheme with tight multi-user secu-
rity, we can improve the bound on the advantage above to

AdvRS-Unf(A) ≤ Adv(RA
1 ) + q · AdvEUF-CMA(RA

2 ) + ν.

However, getting rid of the q factor for q · AdvEUF-CMA(RA
2 ) seems beyond the

scope of current techniques.

4.4 Anonymity

We will now turn to establishing anonymity of RS.

Theorem 2. The ring signature scheme RS is anonymous, given that SPB is
index hiding, PKE has pseudorandom ciphertexts and NIWI is computationally
witness-indistinguishable.

Our strategy is to first move the index of hk2 from i0 to i1 and argue indis-
tinguishability via the index-hiding property of SPB. Next we switch ct2 to an
encryption of a signature σ′ of m for the verification key VKi1 . This modification
will not be detected due to the pseudorandom ciphertexts property of the PKE.
Now, we can switch the NIWI witness to a witness for (m, ct2, hk2, h2) ∈ L′.
Next, we perform the first two changes above for hk1 and ct1, switch the wit-
ness back to the witness for (m, ct1, hk1, h1) ∈ L′, and finally replace ct2 with a
random string. The signature in the last experiment is now a real signature of
m under VKi1 .

Proof (Sketch). Let in the following ind0 be the index of VKi0 in R and ind1
be the index of VKi1 ind R, where (i0, i1,m∗,R) is the challenge query of A.
Consider the following hybrids:

H0: This is the real experiment with challenge-bit b∗ = 0.
H1: Same as H0, except that in Σ∗ we compute hk∗

2 using (hk∗
2, shk

∗
2) ←

SPB.Gen(1λ, |R|, ind1) instead of computing (hk∗
2, shk

∗
2) ← SPB.Gen(1λ, |R|,

ind0). Moreover, also compute τ ′ ← τ ← SPB.Open(hk2, shk2,R, ind1).
H2: Same as H1, except that we compute ct∗2 by

– σ′ ← Sig.Sign(ski1 ,m
∗)

– ct∗2 ← PKE.Enc(pki1 , σ
′; rct2)

instead of ct∗2 ←$ {0, 1}λ.
H3: The same as H2, except that we use the witness w′ ← (VKi1 , ind1, τ

′, σ′, rct2)
instead of w ← (VKi0 , ind0, τ, σ, rct1) to compute π, i.e. we compute π ←
NIWI.Prove(x,w′).

H4: The same as H3, except that we compute ct∗1 by ct∗1 ←$ {0, 1}λ.
H5: The same as H4, except that we compute hk∗

1 by (hk∗
1, shk

∗
1) ← SPB.Gen(1λ,

|R|, ind1) instead of (hk∗
1, shk

∗
1) ← SPB.Gen(1λ, |R|, ind0). Moreover, also com-

pute τ by τ ← SPB.Open(hk1, shk1,R, ind1).
H6: The same as H5, except that we compute ct∗1 by

– σ ← Sig.Sign(ski1 ,m
∗)
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– ct∗1 ← PKE.Enc(pki1 , σ; rct1)
instead of ct∗1 ←$ {0, 1}λ.

H7: The same as H6, except that we use the witness w′′ ← (VKi1 , ind1, τ, σ, rct1)
instead of w′ ← (VKi1 , ind1, τ

′, σ′, rct2) to compute π, i.e. we compute π ←
NIWI.Prove(x,w′′).

H8: The same as H7 except that we compute ct∗2 by ct∗2 ←$ {0, 1}λ. This is
identical to the real experiment with b∗ = 1.

It follows by inspection that the above hybrids are indistinguishable. The full
proof can be found in the full version of this paper [2].

5 Linkable Ring-Signatures

In this section we introduce our new model for linkable ring signatures.

Definition 7 (Linkable Ring Signatures). Syntactically, a ring signature
scheme LRS is given by PPT algorithms (KeyGen, Sign, Verify, Link) such that

KeyGen(1λ): takes as input the security-parameter 1λ and outputs a pair
(VK,SK) of verification and signing keys.

Sign(SK,m,R): takes as input a signing key SK, a message m ∈ Mλ and a list
of verification keys R = (VK1, . . . ,VKq), and outputs a signature Σ.

Verify(R,m, Σ): takes as input a ring R = (VK1, . . . ,VKq), a message m ∈ M
and a signature Σ, and outputs either 0 or 1.

Link(Σ1, Σ2,m1,m2): takes as input two signatures and two messages and out-
puts either 0 or 1.

We say that a linkable ring signature scheme LRS = (KeyGen,Sign,Verify,
Link) is correct, if it holds for all λ ∈ N, all q = poly(λ), all i∗ ∈ [�]
and all messages m ∈ Mλ that, if (VKi,SKi) ← LRS.KeyGen(1λ) and Σ ←
LRS.Sign(SKi,m,R), where i ∈ [q] and R = (VK1, . . . ,VKq), then

Pr[LRS.Verify(R,m, σ) = 1] = 1 − negl(λ),

where the probability is taken over the random coins used by LRS.KeyGen and
LRS.Sign.

We will now define security properties of linkable ring signatures and begin
with the core property called linkability. Informally, we may think of it as the
requirement that any two or more uses of a secret key can be publicly linked.
We model this property by letting an adversary output q verification keys and
signatures, where none of the signatures links with each other. In order to break
linkability the adversary has to output one additional signature which does not
link with any of the former signatures. Note that producing q signatures which
do not link is easy. The adversary only has to use the q different secret keys. But
producing the one additional signature without an additional verification key, is
required to be infeasible.
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Definition 8 (Linkability). We say that a linkable ring signature scheme
LRS = (KeyGen,Sign,Verify, Link) has linkability property, if for every q =
poly(λ) and every PPT adversary A, it holds that A has negligible advantage
in the following experiment.

ExpLRS-Link(A):
1. A outputs a set of tuples (VKi, Σi,mi,Ri) for i = 1, . . . , q and another

tuple (σ∗,m∗,R∗). Denote as VK the set of cardinality q such that VKi ∈
VK for i = 1, . . . , q.

2. The experiment outputs 1 if the following conditions hold:
– For all i ∈ [q] we have Ri ⊆ VK and R∗ ⊆ VK
– For all i ∈ [q] we have LRS.Verify(Ri,mi, Σi) = 1 and LRS.Verify(R∗,

m∗, Σ∗) = 1
– For all i, j ∈ [q] such that i �= j, we have LRS.Link(Σi, Σj) = 0 and

LRS.Link(Σi, Σ
∗) = 0

Otherwise, the experiment returns 0.

The advantage of A is defined by AdvLRS-Link(A) = Pr[ExpLRS-Link(A) = 1].

We now turn to anonymity. Since, in linkable ring signatures, there is a public
link function, it is easy to tell whether multiple signatures were produced by the
same signer or not. However, it should still be infeasible to tell which exact user
from a ring produced the signature. We argue that, in contrast to the state-
of-the-art definitions, in our definition anonymity is not lost at the moment an
adversary obtains the first signature of a user. In reality, even when an adversary
obtains multiple signature from the same member, identity of the signer should
still be unknown, i.e. it should be infeasible to associate the signatures with a
verification key. We model this by letting the adversary choose two users, which
need to be always in the same rings, and imposing a permutation on the secret
keys. If an adversary would be able to associate a signature of one of this users
with its verification key, then the adversary would also be able to guess the
permutation.

Definition 9 (Linkable Anonymity). We say that a linkable ring signature
LRS = (KeyGen,Sign,Verify, Link) is linkably anonymous, if for every q = poly(λ)
and every PPT adversary A, it holds that A has negligible advantage in the
following experiment.

ExpLRS-Anon(A):
1. For all i = 1, . . . , q the experiment generates (VKi,SKi) ←

LRS.KeyGen(1λ, ri) using random coins ri and samples b ∈ {0, 1} uni-
formly at random.

2. The experiment provides VK = {VK1, . . . ,VKq} to A.
3. A outputs a set of verification keys U ⊂ VK and two challenge verifica-

tion keys VK∗
0,VK∗

1 ∈ VK \ U . We denote the secret keys corresponding
to VK∗

0,VK∗
1 as SK∗

0,SK∗
1 respectively. The experiment returns ri for all

VKi ∈ U .
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4. The adversary queries for signatures on input a ring R and a verification
key VK ∈ VK \ U such that VK ∈ R.
– If VK∗

0 or VK∗
1 ∈ R but {VK∗

0,VK∗
1} �⊆ R, then the experiment returns

an uniformly random bit and aborts.
– If VK �∈ {VK∗

0,VK∗
1}, then the experiment outputs Σ∗ ←

LRS.Sign(SK,m,R) where SK corresponds to the queried VK.
– If VK = VK∗

0 the experiment outputs Σ∗ ← LRS.Sign(SK∗
b ,m,R).

– If VK = VK∗
1 the experiment outputs Σ∗ ← LRS.Sign(SK∗

1−b,m,R).
5. A submits b̂ ∈ {0, 1} and the experiment outputs 1 if b̂ = b, otherwise it

outputs 0.

The advantage of A is defined by AdvLRS-Anon(A) = |Pr[ExpLRS-Anon(A, q, λ) =
1] − 1/2|.

Finally, we require that a linkable ring signature is non-frameable. This prop-
erty guarantees that it is infeasible for an adversary to forge a signature which
would link with an honest users’ signature, even when the adversary saw a num-
ber of his signatures in the past.

Definition 10 (Non-frameability). We say that a linkable ring signature
LRS = (KeyGen,Sign,Verify, Link) is non-frameable, if for every q = poly(λ) and
every PPT adversary A, it holds that A has negligible advantage in the following
experiment.

ExpLRS-Frame(A):
1. For all i = 1, . . . , q the experiment generates (VKi,SKi) ←

LRS.KeyGen(1λ, ri) using uniformly random coins ri. The experiment sets
VK = {VK1, . . . ,VKq} and initializes a set C = ∅.

2. The experiment provides VK1, . . . ,VKq to A.
3. A is now allowed to make the following queries:

(sign,VKi,m,R): Upon a signing query, the experiment checks if VKi ∈
R, and if so computes Σ ← LRS.Sign(SKi,m,R) and returns Σ to
A. Note that we don’t require R ⊆ VK, so the ring R may contain
verification keys generated by A.

(corrupt,VKi): Upon a corruption query, the experiment adds VKi to
C and returns ri to A.

4. In the end of Phase-1, A outputs (R∗,m∗, Σ∗).
5. The experiment now provides all random coins ri for all i = 1, . . . , q used

to generate the keys to the adversary A.
6. The adversary A outputs (R†,m†, Σ†) and the experiment returns 1 if the

following conditions hold:
– LRS.Verify(R∗,m∗, Σ∗) = 1 and LRS.Verify(R†,m†, Σ†) = 1,
– R∗ ⊆ VK and for all VKi ∈ R∗ we have VKi �∈ C, i.e. all verification

keys in R∗ are from honest users,
– A didn’t obtain Σ∗ from the signing oracle,
– Link(Σ∗, Σ†) = 1.

Otherwise the experiment returns 0.
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The advantage of A is defined by AdvLRS-Frame(A) = Pr[ExpLRS-Frame(A) = 1].

Remark 1 (Unforgeability). Beside the properties defined above, we also require
the standard unforgeability property from ring signatures to hold for linkable
ring signatures.

6 Construction of Linkable Ring Signatures

We will now provide a construction of linkable ring signatures from the following
primitives. Let

– Com = (Commit,Verify) be a non-interactive commitment scheme.
– Sig = (KeyGen,Sign,Verify) be a signature scheme.
– SPB = (Gen,Hash,Open,Verify) be a somewhere perfectly binding hash func-

tion with private local opening.

Before we define the NIWI-proof system NIWI, we will define an algorithm
JointVerify. The algorithm takes as input two commitment triples VK =
(comj)j∈[3] and VK′ = (com′

j)j∈[3], two inputs vk and vk′ as well as two unveil
triples γγγ = (γj)j∈[3], γγγ′ = (γ′

j)j∈[3]. The algorithm checks that one of the commit-
ments com1, com2, com3, com

′
1, com

′
2, com

′
3 at least two open to vk and at least

two open to vk′ and at least 5 open to either vk or vk′. The last condition can
be rephrased as at most one of the 6 commitments does not verify and all the
others open to either vk or vk′. As the name suggests, the algorithm verifies if
the triples VK and VK′ jointly commit to the values vk and vk′, but we allow
some leeway which of the 6 commitments actually commit to which value.

JointVerify(VK,VK′, vk, vk′, γγγ,γγγ′):
– Parse VK = (comj)j∈[3] and VK′ = (com′

j)j∈[3]

– Parse γγγ = (γj)j∈[3], γγγ′ = (γ′
j)j∈[3]

– Compute s ← ∑3
j=1(Com.Verify(comj , vk, γj) + Com.Verify(com′

j , vk, γ
′
j))

– Compute s′ ←∑3
j=1(Com.Verify(comj , vk

′, γj)+Com.Verify(com′
j , vk

′, γ′
j))

– If it holds that s ≥ 2 and s′ ≥ 2 and s + s′ ≥ 5 output 1, otherwise 0.

We remark that the expression JointVerify(VK,VK′, vk, vk′, γγγ,γγγ′) = 1 can be
unrolled into a short (constant size) sequence of conjunctions and disjunc-
tions over expressions of the form Com.Verify(comj , vk, γj) = 1, Com.Verify
(com′

j , vk, γ
′
j) = 1, Com.Verify(comj , vk

′, γj) = 1 and Com.Verify(com′
j , vk

′, γ′
j) =

1 for j = 1, 2, 33.

– NIWI = (Prove,Verify) be a NIWI-proof system for the language L and with
witness-relation R defined as follows. For x = (vk, (hk(i), h(i))i∈[3]) and w =

3 The expression can be unrolled into a disjunction of 6 · ((
5
2

)
+

(
5
3

))
= 480 clauses,

where each clause is a conjunction of 5 Com.Verify statements.
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((ind(i),VK(i), τ (i),γγγγγγγγγ(i))i∈[3], vk
′), where VK(i) = (com(i)

1 , com
(i)
2 , com

(i)
3 ) and

γγγ(i) = (γ(i)
1 , γ

(i)
2 , γ

(i)
3 ) for i = 1, . . . , 3, let

R(x,w) ⇔ SPB.Verify(hk(1), h(1), ind(1),VK(1), τ (1)) = 1

and ∀j ∈ [3] : Com.Verify(com(1)
j , vk, γ

(1)
j ) = 1

or

ind(2) �= ind(3)

and ∀i ∈ {2, 3} : SPB.Verify(hk(i), h(i), ind(i),VK(i), τ (i)) = 1

and JointVerify(VK(2),VK(3), vk, vk′, γγγ(2), γγγ(3)) = 1.

Let L be the language accepted by R.

Our linkable ring signature scheme LRS = (KeyGen,Sign,Verify) is given as
follows.

LRS.KeyGen(1λ):
– Compute (vk, sk) ← Sig.KeyGen(1λ)
– For i = 1, 2, 3 compute (comj , γj) ← Com.Commit(1λ, vk)
– Set γγγ ← (γj)j∈[3]

– Output VK ← (comj)j∈[3] and SK ← (sk,VK, vk, γγγ)
LRS.Sign(SK,m,R = (VK1, . . . ,VK�)):

– Parse SK = (sk,VK, vk, γγγ)
– Parse VK = (comj)j∈[3]

– Find an index ind ∈ [�] such that VKind = VK
– For i = 1, 2, 3 compute (hk(i), shk(i)) ← SPB.Gen(1λ, |R|, ind) and
h(i) ← SPB.Hash(hk(i),R)

– Compute τ (1) ← SPB.Open(hk(1), shk(1),R, ind)
– Set x ← (vk, (hk(i), h(i))i∈[3])
– Set w ← ((ind,VK, τ (1), γγγ), ∅, ∅, ∅)
– Compute π ← NIWI.Prove(x,w)
– Compute σ ← Sig.Sign(sk, (m, (hk(i), h(i))i∈[3], π))
– Output Σ ← (vk, (hk(i))i∈[3], π, σ)

LRS.Verify(R,m, Σ):
– Parse Σ = (vk, (hk(i))i∈[3], π, σ)
– For i ∈ [3] compute h̃(i) ← SPB.Hash(hk(i),R)
– Set x ← (vk, (hk(i), h̃(i))i∈[3])
– Check if NIWI.Verify(x, π) = 1, if not output 0
– Check if Sig.Verify(vk, (m, (hk(i), h̃(i))i∈[3], π), σ) = 1, if not output 0
– Output 1

LRS.Link(Σ1, Σ2):
– Parse Σ1 ← (vk1, (hk

(i)
1 )i∈[3], π1, σ1)

– Parse Σ2 ← (vk2, (hk
(i)
2 )i∈[3], π2, σ2)

– If vk1 = vk2 output 1, otherwise 0
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6.1 Correctness

Again, we will first show correctness of our scheme. Assume that VK =
(com1, com2, com3) and SK = (sk,VK, vk, γγγ) with γγγ = (γ1, γ2, γ3) were gen-
erated by LRS.KeyGen and Σ = (vk, hk(1), hk(2), hk(3), π, σ) is the output of
LRS.Sign(SK,m,R), where R = (VK1, . . . ,VK�). We will show that it holds that
LRS.Verify(R,m, Σ) = 1. As SPB.Hash is deterministic, it holds for the hashes
h̃(1), h̃(2), h̃(3) computed by LRS.Verify(R,m, Σ) that h̃(i) = h(i) (for i = 1, 2, 3),
where the h(i) are the hashes computed by LRS.Sign(SK,m,R). Also, it obvi-
ously holds that VK = VK(1). Now, notice further that by the correctness
of SPB it holds that SPB.Verify(hk(1), h(1), ind,VK, τ (1)) = 1. By the correct-
ness of the commitment scheme Com, it holds that Com.Verify(comj , vk, γj) = 1
for j = 1, 2, 3. Thus, w = ((ind,VK, τ (1), γγγ)), ∅, ∅, ∅) is a valid witness for the
statement x = (vk, (hk(i), h(i))i∈[3]). Consequently, by the correctness of NIWI it
holds that NIWI.Verify(x, π) = 1. Finally, by the correctness of Sig we get that
Sig.Verify(vk, (m, (hk(i), h(i))i∈[3], π), σ) = 1 and LRS.Verify(R,m, Σ) outputs 1.

6.2 Signature Size

For a signature Σ = (vk, (hk(i))i∈[3], π, σ), the size of the signature component
σ is poly(λ) and independent of the ring-size �. By the efficiency property of
SPB the sizes of the hashing keys hk(1), hk(2), hk(3) is bounded by log(�) ·poly(λ).
Furthermore, for a statement x = (vk, (hk(i), h̃(i))i∈[3]), the size of the verification
circuit Cx is dominated SPB.Verify, which by the efficiency property of SPB can
be computed by a circuit of size log(�) · poly(λ). All other algorithms can be
computed by circuits of size poly(λ) and independent of �. Consequently, it holds
that |Cx| = log(�)·poly(λ). By the efficiency property of the NIWI proof, it holds
that |π| = |Cx| · poly(λ) = log(�) · poly(λ). All together, we can conclude that
|Σ| = log(�) · poly(λ).

6.3 Security

Theorem 3. The ring signature scheme LRS is unforgeable, given that NIWI has
perfect soundness, SPB is somewhere perfectly binding, Com is perfectly binding
and Sig is unforgeable.

Theorem 4. The ring signature scheme LRS is linkably anonymous, given that
SPB is index hiding, Com is computationally hiding and NIWI is computationally
witness-indistinguishable.

Theorem 5. The ring signature scheme LRS is perfectly linkable, given SPB
is somewhere perfectly binding, Com is perfectly binding and NIWI has perfect
soundness.

Theorem 6. Given that Sig is unforgeable, Com is perfectly binding and NIWI
is perfectly sound, the scheme LRS has non-framability.

Full proofs of these theorems can be found in the full version of this work [2].
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7 Conclusions

Ring signatures are a well-studied cryptographic primitive with many appli-
cations that include whistleblowing and cryptocurrencies. In this paper we
improved the state-of-the-art by introducing a scheme with signature size that
is logarithmic in the number of ring members, while at the same time relying
on standard assumptions and not requiring a trusted setup. We use novel tech-
niques that combine somewhere statistically binding hashing and NIWI proofs
forming a membership proof. An interesting open question is whether one can
build structure-preserving SSB hashing that can be combined with pairing based
NIWI proofs. Such combination would substantially increase the efficiency of the
proposed membership proof and decrease its size.
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Center for Cybersecurity (Funding numbers: 16KIS0762 and 16KIS0927).
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Abstract. In a group signature scheme, users can anonymously sign
messages on behalf of the group they belong to, yet it is possible to trace
the signer when needed. Since the first proposal of lattice-based group
signatures in the random oracle model by Gordon, Katz, and Vaikun-
tanathan (ASIACRYPT 2010), the realization of them in the standard
model from lattices has attracted much research interest, however, it
has remained unsolved. In this paper, we make progress on this problem
by giving the first such construction. Our schemes satisfy CCA-selfless
anonymity and full traceability, which are the standard security require-
ments for group signatures proposed by Bellare, Micciancio, and Warin-
schi (EUROCRYPT 2003) with a slight relaxation in the anonymity
requirement suggested by Camenisch and Groth (SCN 2004). We empha-
size that even with this relaxed anonymity requirement, all previous
group signature constructions rely on random oracles or NIZKs, where
currently NIZKs are not known to be implied from lattice-based assump-
tions. We propose two constructions that provide tradeoffs regarding the
security assumption and efficiency:

– Our first construction is proven secure assuming the standard LWE
and the SIS assumption. The sizes of the public parameters and the
signatures grow linearly in the number of users in the system.

– Our second construction is proven secure assuming the standard
LWE and the subexponential hardness of the SIS problem. The sizes
of the public parameters and the signatures are independent of the
number of users in the system.

Technically, we obtain the above schemes by combining a secret key
encryption scheme with additional properties and a special type of
attribute-based signature (ABS) scheme, thus bypassing the utilization of
NIZKs. More specifically, we introduce the notion of indexed ABS, which
is a relaxation of standard ABS. The above two schemes are obtained
by instantiating the indexed ABS with different constructions. One is a
direct construction we propose and the other is based on previous work.
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1 Introduction

1.1 Background

Group signatures, originally proposed by Chaum and van Heyst [Cv91], allow
members of a group to sign on behalf of the group while guaranteeing the proper-
ties of authenticity, anonymity, and traceability. The signatures do not reveal the
particular identity of the group member who issued it, however, should the need
arise, a special entity called the group manager can trace the signature back
to the signer using some secret information, thus holding the group members
accountable for their signatures. Due to the appealing properties group signa-
tures offer, they have proven to be useful in many real-life applications including
privacy-protecting mechanisms, anonymous online communication, e-commerce
systems, and trusted hardware attestation such as Intel’s SGX.

Since their introduction, numerous constructions of group signatures have
been proposed with different flavors: in the random oracle model [BBS04,CL04,
GKV10] or standard model [BMW03,BW06,Gro07], supporting static groups
[BMW03] or dynamic groups [BSZ05,BCC+16], and constructions based on
various number theoretical assumptions such as strong RSA [ACJT00,CL02],
paring-based [BW06,Gro07], and lattice-based [GKV10,LLLS13]. Despite the
vast amount of research concerning group signatures, in essence all construc-
tions follow the encrypt-then-prove paradigm presented by Bellare, Micciancio,
and Warinschi [BMW03]. To sign on a message, a group member encrypts its
certificate provided by the group manager and then proves in (non-interactive)
zero-knowledge of the fact that the ciphertext is an encryption of a valid certifi-
cate while also binding the message to the zero-knowledge proof.

Thus far, all group signature schemes have relied on non-interactive zero-
knowledge (NIZK) proofs in the proving stage of the encrypt-then-prove
paradigm. Since NIZKs for general languages are implied from (certified dou-
bly enhanced) trapdoor permutations [FLS90,BY93] and from bilinear maps
[GOS06,GS08], group signatures in the standard model are known to exist from
factoring-based and pairing-based assumptions [BMW03,BW06,BW07,Gro07].
In contrast, constructions of lattice-based group signatures in the standard
model have shown to be considerably difficult. Since the first lattice-based
group signature in the random oracle model (ROM) proposed by Gordon
et al. [GKV10], there has been a rich line of subsequent works [LLLS13,NZZ15,
LNW15,LLM+16a,LLNW16,LNWX18,PLS18], however, all schemes are only
provably secure in the ROM. This situation stems from the notorious fact that
lattices are ill-fit with NIZKs. Although more than a decade has passed since
the emergence of lattices, there is still only one construction of NIZK known
in the standard model [PV08], where the language supported by [PV08] seems
unsuitable to devise group signatures. Notably, the open problem of constructing
lattice-based group signatures in the standard model, which has explicitly been
stated in Laguillaumie et al. [LLLS13] for example, has not made any progress
in the past decade or so. Taking prior works on group signatures into consider-
ation, it seems we would require a breakthrough result for lattice-based NIZKs
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or to come up with a different approach than the encrypt-then-prove paradigm
to obtain a lattice-based group signature in the standard model.

1.2 Our Contribution

In this paper, we make progress on this problem and give the first construction
of group signatures from lattices in the standard model. Our main result can be
stated informally as follows:

Theorem 1 (Informal). Under the hardness of the LWE and SIS problems
with polynomial approximation factors,1 there exists a group signature scheme
with full-traceability and CCA-selfless anonymity in the standard model.

We explain the statement in more details in the following. Here, we basically
adopt the syntax and the security notions of the group signatures defined by
Bellare, Micciancio, and Warinschi [BMW03], which are presumably one of the
most widely accepted definitions. Our construction satisfies the standard notion
of full-traceability, which asserts that an adversary cannot forge a valid signature
that can be opened to an uncorrupted user or that cannot be traced to anyone.
As for anonymity, our construction satisfies CCA-selfless anonymity introduced
by Camenisch and Groth [CG05]. The notion of CCA-selfless anonymity is a
relaxation of CCA-full anonymity defined by Bellare et al. [BMW03]. Informally,
full-anonymity requires that the adversary cannot distinguish signatures from
two different members even if all the signing keys of the members of the system
are exposed and it has access to an open oracle. On the other hand, CCA-selfless
anonymity requires anonymity to hold only when the signing keys of the two
members in question are not exposed and it has access to an open oracle. While
the latter definition is weaker, as discussed by Camenisch and Groth [CG05], it
is sufficient for some natural situations. For example, consider a situation where
an adversary can adaptively corrupt users while the parties cannot erase the
data. In this setting, the former security notion does not buy any more security
than the latter. We emphasize that even with this relaxed security notion, no
group signature from lattices is known in the standard model prior to our work.
In particular, regardless of what the security notion we consider for anonymity,
all prior lattice-based constructions required random oracles.

One potential drawback of the above construction may be that it has rather
large public parameters and signatures, whose sizes grow linearly in the number
of users in the system. A natural question would be whether we can make these
sizes independent of the number of users. As a side contribution, we answer this
question affirmatively under a stronger assumption:

Theorem 2 (Informal). Under the hardness of the LWE problem with polyno-
mial approximation factors and the subexponential hardness of the SIS problem

1 By LWE and SIS problems with polynomial approximation factors, we mean they are
problems which are as hard as certain worst case lattice problems with polynomial
approximation factor.
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with polynomial approximation factors, there exists a group signature scheme
with full-traceability and CCA-selfless anonymity whose sizes of the public
parameters and signatures are independent of the number of users.

These results are obtained by a generic construction of group signatures from
one-time signatures (OTS), secret key encryptions (SKE), and a new primitive
which we call indexed attribute-based signatures (indexed ABS). We require the
standard notion of strong unforgeability for the OTS and it can be instanti-
ated by any existing schemes such as [Moh11]. For the SKE, we require some
special properties. Specifically, we require the SKE to be anonymous in addi-
tion to standard notions of hiding the message. We also require the SKE to
have a decryption circuit with logarithmic depth and the property which we call
key-robustness. Intuitively speaking, the key-robustness requires that the cipher-
text spaces corresponding to two random secret keys to be disjoint with all but
negligible probability. Such an SKE with special properties can be instantiated
from the standard LWE assumption. The indexed ABS is a relaxation of the
standard notion of ABS, where the setup and key generation algorithms take
additional inputs. We require it to satisfy the security notion that we call co-
selective unforgeability and (perfect) privacy. We show two ways of instantiating
the indexed ABS. As for the first instantiation, we provide a construction of
an indexed ABS that is proven to have the required security properties under
the standard hardness of the SIS assumption. This instantiation leads us to
Theorem 1. As for the second instantiation, we view the constrained signature
scheme by Tsabary [Tsa17] as an indexed ABS scheme. Using this we obtain
Theorem 2. We note that unlike our first instantiation, since the constrained
signature scheme in [Tsa17] does not offer sufficient security properties for our
purpose, we need to utilize complexity leveraging that incurs a subexponential
reduction loss to when constructing our group signature.

1.3 Overview of Our Technique

Preprocessing NIZKs. The starting point of our work is the recent break-
through result of preprocessing NIZK for NP from lattices in the standard model
by Kim and Wu [KW18]. In a preprocessing NIZK [DMP88], a trusted third
party generates a proving key kP and a verification key kV independently of the
statement to be proven and provides kP to the prover and kV to the verifier.
The prover can construct proofs using kP and the verifier can validate the proofs
using kV . Preprocessing NIZKs can be seen as a general form of NIZKs; if both
kP and kV need not be secret, then it corresponds to NIZKs in the common
reference string (CRS) model; if kP can be public but kV needs to be secret,
then it corresponds to designated verifier NIZKs [PsV06,DFN06]. The lattice-
based preprocessing NIZK of Kim and Wu [KW18] can be viewed as a designated
prover NIZK (DP-NIZK), where the proving key kP needs to be kept secret but
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the verification key kV can be made public.2 Here, the zero-knowledge property
of DP-NIZKs crucially relies on the fact that the verifier does not know the
proving key kP .

At first glance, DP-NIZKs seem to be all that we require to construct group
signatures. The trusted group manager provides the user a (secret) proving key
kP on time of joining the group and publicly publishes the verification key kV .
This meets the criteria of DP-NIZKs since kP will be kept secret by the group
members and the proofs (i.e., signatures) can be publicly verified. Therefore, one
might be tempted to substitute NIZKs in the CRS model with lattice-based DP-
NIZKs to obtain a lattice-based group signature in the standard model. Unfortu-
nately, this naive approach is trivially insecure. Specifically, the anonymity will
be broken the moment a single group member becomes corrupt. If the group
manager provides the same proving key kP to the group members, then in case
any of the group members become corrupt, kP will be in the hands of the adver-
sary. As we mentioned above, the zero-knowledge property of DP-NIZKs will
break if the proving key kP is known. An easy fix may be to instead provide
proving keys (kP i)i∈I respectively to each group members i ∈ I and publicly
publish the corresponding verification keys (kV i)i∈I . In this case, even if some
of the group members become corrupt, their proving keys will not affect the
zero-knowledge property of the other non-corrupt members using an indepen-
dent proving key. However, the problem with this approach is that each proof
constructed by a proving key kP i is implicitly associated with a unique verifi-
cation key kV i. Since each verification key kV i is associated to a group member
i ∈ I, the adversary can simply check which verification key accepts the proof
(i.e., signature) to break anonymity. Therefore, although DP-NIZKs seem to be
somewhat useful for constructing group signatures, it itself is not sufficient to
be a substitute for NIZKs in the CRS model.

Viewing Attribute-Based Signatures as DP-NIZKs. The problem with
the approach using DP-NIZKs is the following: if we give the same proving key kP

to every group member, then the scheme will be insecure against collusion attacks
and if we give different proving keys kP i individually to each group members,
then the scheme will lose anonymity. Therefore, the primitive we require for
constructing group signatures is something akin to DP-NIZKs that additionally
provides us with both collusion resistance and anonymity.

At this point, we would like to draw the attention to attribute-based signa-
tures (ABS) [MPR11]. In ABS, a signer assigned with an attribute y is provided
a signing key sky from the authority and the signer can anonymously sign a mes-
sage associated with a policy C using sky if and only if C(y) = 1. In addition,
using the master public key mpk, anybody can verify the signature regardless
of who signed it. The first requirement of an ABS, which captures unforge-
ability, is that any collusion of signers with attributes (yi)i∈I cannot forge a
signature on a message associated with a policy C if C(yi) = 0 for all i ∈ I.

2 As mentioned in Sect. 4 of [KW18], their scheme is only publicly verifiable when
considering a slightly weaker notion of zero-knowledge than the standard notion of
zero-knowledge for preprocessing NIZKs. In our work, the weaker notion suffices.
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The second requirement, which captures anonymity, is that given a valid signa-
ture on a message associated with a policy C, the attribute y that was used to
sign the message must remain anonymous. Namely, signatures generated by sky0

and sky1 are indistinguishable if C(y0) = C(y1) = 1. Looking at the similarity
between DP-NIZKs and ABS, it is tempting to view a witness w as an attribute
y and to set the proving key kP as the ABS signing key skw. To prove that w
is a valid witness to the statement x, i.e., (x,w) ∈ R for the NP relation R,
the prover first prepares a circuit Cx(w) := R(x,w) that has the statement x
hard-wired to it. Then the prover signs some message associated with the policy
Cx using its proving key kP = skw and outputs the signature as the proof π. The
verifier can publicly verify the proof π by checking whether or not the signature
is valid. At a high level, the soundness of the proof system would follow from the
unforgeability of ABS and the zero-knowledge property would follow from the
anonymity of ABS. Furthermore, our initial motivation of satisfying collusion
resistance and anonymity is met by the properties of ABS; even if the proving
keys (kP i = skwi

)i∈I are compromised, it cannot be used to prove a statement
x such that R(x,wi) = 0 for all i ∈ I and the proofs constructed by different
proving keys are indistinguishable from one another since the single mpk can
be used to check the validity of all proofs (unlike the above case where unique
verification keys kV i were assigned to each proving keys kP i).

Constructing Groups Signatures from ABS. While the idea of viewing
ABS as some variant of DP-NIZK seems to be a great step forward, the question
of how to use it to construct a group signature remains. Let us come back to
the basic but powerful encrypt-then-prove paradigm of Bellare et al. [BMW03].
Recall that with this approach, the group manager issues a certificate to each
group member i ∈ I and publishes a public key for a public-key encryption
scheme. To sign, a group member i encrypts its certificate as cti under the
public key of the group manager and creates a NIZK proof of the fact that cti
encrypts the certificate. Observe that each group member i implicitly constructs
a member-specific statement xi = cti when generating the NIZK proof and sets
the air of certificate and the randomness used to create cti as the witness wi.
Traceability follows since each statement xi encrypts the identity of the signer
and the group manager who holds the secret key can decrypt them. Anonymity
of the group signature is also intact even though the statement xi used by each
group member is different, due to the semantic security of the underlying public-
key encryption scheme. Now, let us look at the above approach through the lens
of NIZK-like ABSs: The group manager issues a certificate and an ABS signing
key skwi

for some witness wi to each group member i ∈ I, and to sign, a group
member i encrypts its certificate as cti under the public key of the group manager
and uses the ABS signing key skwi

to create an ABS signature for some policy
Cxi

which serves as a NIZK proof of the fact that cti encrypts the certificate.
In order for this approach to work, the witness (i.e., attribute) embedded to the
ABS signing key skwi

must be an accepting input to the policy Cxi
which has the

statement xi = cti hard-wired. Although it may be not obvious at first glance,
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as a matter of fact, this approach is impossible! Notably, the group manager
cannot prepare in advance a witness wi to a statement xi that will be chosen by
the group member at the time of signing. Recall that the witness wi to xi = cti
was the certificate and the randomness used to create cti. The group manager
can embed in the ABS signing key a certificate but not the randomness since
there is no way to not know what kind of randomness will be used to generate
the ciphertext by the group member beforehand. Therefore, to use the ABS as
a type of NIZK proof system, we must devise a mechanism for constructing
statements xi while keeping the witness wi fixed once and for all at the time of
preparation of the ABS signing key.

This brings us to our final idea. To overcome the above problem, we embed
the group member identifier i ∈ I and a key Ki of a secret key encryption
scheme to the ABS signing key ski||Ki

. We then construct the statements xi so
that i and Ki can be reused as the fixed witness.3 The following is the high-level
construction of our group signature.

-GS.KeyGen: The group manager provides user i ∈ I with a key Ki of an SKE
scheme and an ABS signing key ski||Ki

where the string i||Ki is interpreted as
an attribute.

-GS.Sign: To sign on a message M, the group member i ∈ I prepares a ciphertext
cti ← SKE.Enc(Ki, i), views the statement xi as cti, and prepares a circuit
Cxi

with the statement xi hard-wired such that Cxi
(i||Ki) := (i ∈ I) ∧ (i =

SKE.Dec(Ki, cti)). Then using ski||Ki
, it runs the ABS signing algorithm on

message M with Cxi
as the policy. The signature is Σ = (σABS, cti).

-GS.Vrfy: To verify a signature Σ = (σABS, ct), it prepares the circuit Cct(z||y) :=
(z ∈ I) ∧ (z = SKE.Dec(y, ct)) and runs the ABS verification algorithm with
message M, signature σABS and policy Cct.

-GS.Open: To trace a signer from a signature Σ = (σABS, ct), the group manager
uses the secret keys (Ki)i∈I to extract the group member identifier from the
ciphertext ct.

It can be checked that the scheme is correct. If the ciphertext cti encrypts i ∈ I,
then ski||Ki

can be used to construct a signature for the policy Cxi
where xi =

cti. We briefly sketch the traceability and anonymity of our group signature.
First, traceability holds from the key robustness of the SKE scheme and the
unforgeability of the ABS scheme. The former property states that the ciphertext
space of a different set of secret keys must be disjoint. In particular, this implies
that the set of statements xi = cti (i.e., languages) constructed by each group
member will be disjoint. Therefore, since this also implies that the set of policies
Cxi

used by each group members will be disjoint, it allows us to reduce the
problem of traceability to the unforgeability of the underlying ABS scheme. We
note that although key robustness may be a non-standard property to consider
3 Our core idea of fixing the witness can also be realized by instead embedding i ∈ I

and a (weak) PRF seed into the ABS signing key, and using a public key encryption
scheme. We provide detailed discussions on our choice of using SKEs in the full
version.
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for SKE schemes, it is an easy property to satisfy. Second, anonymity holds from
the anonymity and semantic security of the SKE scheme and the anonymity of
the ABS scheme. Here, anonymity of an SKE scheme informally states that the
ciphertext does not leak what secret key was used to construct it. Specifically,
if there were two ciphertexts, it must be difficult to tell whether they are an
encryption under the same key or two different keys. These two properties allow
us to argue that the ciphertext cti leaks no information of the group member
identity. Furthermore, the anonymity of the ABS scheme ensures that σABS does
not leak the group member identity as well. Hence the signature σ = (σABS, cti)
remains anonymous.

Interestingly, our construction does not need to explicitly rely on “certifi-
cates” anymore as was done in prior constructions. This is because the signing
key ski||Ki

is not only a proving key for the NIZK proof system, but also implic-
itly a certificate. In particular, since the ABS can be viewed as a variant of
designated prover NIZKs, the fact that a signer was able to construct a valid
signature implicitly implies that the signer was certified by the group manager.
Therefore, there is no need for adding another layer of certificate to our construc-
tion as was done in previous group signature constructions. Finally, we point out
in advance that our actual construction in Sect. 4 is more complicated than the
above high-level structure due to the fact that we additionally capture CCA
anonymity rather than only CPA anonymity. In CCA anonymity, the adversary
is further provided with an open oracle that opens (i.e., traces) a signature to a
signer. Since in the security proof, the reduction algorithm will no longer hold
the opening key and must simulate the open oracle on its own, extra compli-
cations are incurred compared to the CPA anonymity setting where there is no
such open oracle. This situation is analogous to the difference between CPA and
CCA-encryption schemes.

To the knowledgeable readers, we remark that the above idea is similar to
those of Kim and Wu [KW18] for constructing DP-NIZKs. In particular, the way
we embed a key of an SKE scheme, rather than the witness, to the ABS signing
key is analogous to the way [KW18] embeds the key of an SKE scheme to a
signature of a homomorphic signature scheme [GVW15]. Notably, both schemes
crucially rely on the fact that once some private information has been embedded
into an ABS signing key (resp. a homomorphic signature), the signing key (resp.
signature) can be reused to generate proofs for arbitrary statements.

Constructing ABS with the Desired Properties. We now change the dis-
cussion on how to instantiate the above generic construction. Since we can instan-
tiate SKEs through a combination of relatively standard techniques, we focus
on how to instantiate ABSs from lattices in this overview. A natural way of
instantiating the ABS required in our GS construction would be to use the ABS
scheme proposed by Tsabary [Tsa17] proven secure under the SIS assumption,
which is the only known ABS construction from lattices.4 In their paper, two
ABS schemes are proposed. The first scheme is constructed from homomorphic
4 Actually, the paper proposes constructions of constrained signature (CS), which is a

slightly different primitive from ABS. However, this primitive readily implies ABS.
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signatures and the second is a direct construction. We focus on the second con-
struction here, because the anonymity notion achieved by the first scheme is not
sufficient for our purpose.5 In fact, even the latter scheme does not provide a
sufficient security notion that is required for our purpose, namely, for the proof of
full-traceability. While Tsabary’s ABS scheme achieves selective unforgeability
where the adversary is forced to declare its target policy with respect to which it
will forge a signature at the beginning of the security game, we require the ABS
to be unforgeable even if the adversary is allowed to adaptively choose its target
policy. The necessity of the adaptiveness of the target policy can be seen by recall-
ing that a forgery in the full-traceability game is of the form Σ� = (σ�

ABS, ct
�),

where ct� is an adaptively chosen ciphertext that specifies the target policy Cct� .
An easy way to resolve this discrepancy is to assume the subexponential hardness
of the SIS problem and prove that Tsabary’s scheme is adaptively unforgeable
via complexity leveraging [BB04b]. This approach leads us to Theorem 2.

Though the above approach works, it incurs a subexponential security loss,
which is not desirable. At first glance, one may think that the underlying ABS
must be adaptively unforgeable to be used in our generic GS construction; an
adversary can adaptively make arbitrary many key queries and signing queries,
and generate a forgery depending on the answers which it gets from these queries.
Unfortunately, the only known construction of a lattice-based ABS scheme in the
standard model with such a strong security property is provided by complexity
leveraging as described above. However, a more careful observation reveals that
we do not actually require the full power of adaptive unforgeability. First, the
ABS scheme does not have to support an unbounded number of signing keys
since the number of members in the group signature is fixed at setup in the
static setting. Furthermore, we can relax the syntax of the ABS so that the
key generation algorithm takes a user index i as an additional input, since each
signing key in the group signature is associated with a user index. Finally, we
can relax the unforgeability requirement of the ABS so that the adversary is
forced to make all the key queries at the beginning of the security game while
the target policy associated with the forgery can be chosen adaptively. We call
this security notion co-selective unforgeability, since this is somewhat dual to the
selective unforgeability notion where the key queries can be adaptive but the
target policy is required to be declared at the beginning of the game.

Indeed, co-selective unforgeability is enough for instantiating our generic GS
construction, because, in the construction the attributes hardwired to the signing
keys of the ABS are {i‖Ki} independent from the public parameter of the ABS
and can be chosen at the outset of the security game. With this observation in
mind, we define a relaxed version of ABS which we call indexed ABS and provide
a construction which does not resort to complexity leveraging.

5 More specifically, the first scheme only achieves a so-called weakly-hiding property,
where the key attribute is not leaked from a signature, but two signatures that
are signed by the same user can be linked. Translated into the setting of group
signature, this allows an adversary to link two different signatures by the same user,
which trivially breaks anonymity.
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Constructing Indexed ABS. Our starting point is the observation made by
Tsabary [Tsa17], who showed that a homomorphic signature scheme can be
viewed as a very weak form of an ABS scheme. In light of this observation, we can
view the fully homomorphic signature scheme by Gorbunov, Vaikuntanathan,
and Wichs [GVW15] as a single-user ABS scheme. In the scheme, the master
public key is of the form mpk = (A, �B = [B1‖ · · · ‖Bk]) where A and Bi are
random matrices over Z

n×m
q and a secret key skx for an attribute x ∈ {0, 1}k

is a matrix with small entries �R = [R1‖ · · · ‖Rk] such that �B = A�R + x ⊗ G,
where G is the special gadget matrix whose trapdoor is publicly known. To
sign on a policy F : {0, 1}k → {0, 1} and a message M, the signer uses the
homomorphic evaluation algorithms [BGG+14,GV15] to compute matrices RF

and BF such that BF = ARF + F (x)G from skx, where RF is a matrix with
small entries and BF is a publicly computable matrix. When F (x) = 1, the signer
can compute the trapdoor for the matrix [A‖BF ] from RF using the technique
of [ABB10a,MP12] and sample a short vector eF from a Gaussian distribution
such that [A‖BF ]eF = 0 using the trapdoor. The signature on (F,M) is the
vector eF . It can be seen that eF does not leak information of x, since the
distribution from which it is sampled only depends on the master public key
and F . Furthermore, the scheme satisfies a relaxed version of the co-selective
unforgeability, where the adversary can corrupt a single user but is not allowed
to make signing queries. To see this, let us assume that there is an adversary who
chooses x at the beginning of the game and generates a forgery eF � for F � such
that F �(x) = 0 given (mpk, skx). Then, we can solve the SIS problem using this
adversary. The reduction algorithm is given a matrix A as the problem instance
of SIS and x from the adversary. It then sets �B = A�R+x⊗G and gives skx := �R
to the adversary at the beginning of the game. For the forgery eF � output by
the adversary, we have [A‖BF � ]eF � = 0. Since BF � = ARF � , we can extract
a short vector z := [I‖RF � ]e such that Az = 0, which is a solution to the SIS
problem.

There are two problems with this scheme. First, the scheme can only support
a single user, whereas we need a scheme to support multiple users. It can be seen
that the security of the above scheme can be broken in case the adversary obtains
the keys of two different users. Second, the unforgeability of the scheme is broken
once the adversary is given an access to a signing oracle. Indeed, a valid signature
for a policy-message pair (F,M) is also valid for (F,M′) with different M′ �= M,
since the above signing and verification algorithms simply ignore the messages
M. In other words, the message is not bound to the signature.

We first address the former problem. In order to accommodate multiple
users in the system, we change the master public key of the scheme to be
(A, {�B(i)}i∈[N ]), where N is the number of users. The secret key for a user
i and an attribute x(i) is R(i) such that �B(i) = A�R(i) + x(i) ⊗ G. To sign
on a message, the user i first computes the trapdoor for [A‖B(i)

F ] similarly
to the above single-user construction. It then extends the trapdoor for the
matrix [A‖B(1)

F ‖ · · · ‖B(N)
F ] using the trapdoor extension technique [CHKP10].

Then, it samples a short vector eF from a Gaussian distribution such that
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[A‖B(1)
F ‖ · · · ‖B(N)

F ]eF = 0. It can be observed that eF does not reveal the
attribute x nor the user index i since the distribution from which it is sampled
only depends on the master public key and F . Note that the trapdoor exten-
sion step is essential for hiding the user index i. We can prove unforgeability for
the scheme similarly to the single-user case. A key difference here is that, since
there are now N matrices in the master public key, we can embed up to N user
attributes {x(i)}i∈[N ] into the master public key as B(i) = AR(i) + x(i) ⊗ G.

Next, we address the latter problem. We apply the classic OR-proof tech-
nique [FLS90] and show that a scheme that is unforgeable only when the adver-
sary cannot make signing queries can be generically converted into a scheme
that is unforgeable even when the adversary can make signing queries. To do so,
we introduce a dummy user that is not used in the real system. In the security
proof, the signing queries are answered using the signing key of the dummy user.
In order to enable this proof strategy, a näıve approach would be to change the
scheme so that in order to sign on (F,M), the signer signs on a modified new pol-
icy F ′, which on input x ∈ {0, 1}k outputs F (x) and outputs 1 on input a special
symbol. Then, we associate the attribute of the dummy user with the special
symbol. By the privacy property of the original (no signing query) ABS, the fact
that the signing queries are answered using the dummy key instead of the key
specified by the adversary will be unnoticed. A problem with this approach is
that since the reduction algorithm has the secret key associated with the special
symbol, it can sign on any message and policy. Namely, any forgery output by
the adversary will not be useful for the reduction algorithm since it could have
constructed it on its own to begin with. To resolve this problem, we partition the
space of all possible message-policy pairs into two sets, the challenge set and the
controlled set, using an admissible hash [BB04a,FHPS13]. Then, we associate
the dummy key with an attribute that can sign on any pair in the controlled
set, but not on the challenge set. We then hope that the adversary outputs the
pair that falls into the challenge set, which allows us to successfully finish the
reduction. By the property of the admissible hash, this happens with noticeable
probability and we can prove the security of the resulting scheme.

1.4 Related Works

In the full version, we provide detailed discussions on the different models of
group signatures and constructions based on other assumptions.

2 Preliminaries

2.1 Group Signature

Here, we adopt the definition of group signature schemes from the work of Bel-
lare, Micciancio, and Warinschi [BMW03], with the relaxation regarding the
anonymity suggested by Camenisch and Groth [CG05].
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Syntax. Let {Mκ}κ∈N be a family of message spaces. In the following, we
occasionally drop the subscript and simply write M when the meaning is clear.
A group signature (GS) scheme is defined by the following algorithms:

GS.KeyGen(1κ, 1N ) → (gpk, gok, {gski}i∈[N ]): The key generation algorithm takes
as input the security parameter κ and the number of users N both in the unary
form and outputs the group public key gpk, the opening key gok, and the set
of user secret keys {gski}i∈[N ].

GS.Sign(gpk, gski,M) → Σ: The signing algorithm takes as input the group public
key gpk, the i-th user’s secret key gski (for some i ∈ [N ]), and a message
M ∈ Mκ and outputs a signature Σ.

GS.Vrfy(gpk,M, Σ) → 	 or ⊥: The verification algorithm takes as input the
group public key gpk, the message M, and a signature Σ and outputs 	
if the signature is deemed valid and ⊥ otherwise.

GS.Open(gpk, gok,M, Σ) → i or ⊥: The opening algorithm takes as input the
group public key gpk, the opening key gok, a message M, a signature Σ and
outputs an identity i or the symbol ⊥.

For GS, we require correctness, CCA-selfless anonymity, and full traceability.

Correctness. We require that for all κ, N ∈ poly(κ), (gpk, gok, {gski}i∈[N ]) ∈
GS.KeyGen(1κ, 1N ), i ∈ [N ], M ∈ Mκ, and Σ ∈ GS.Sign(gpk, gski,M), GS.Vrfy
(gpk,M, Σ) = 	 holds.

Full Traceability. We now define the full traceability for GS scheme. This
security notion is defined by the following game between a challenger and an
adversary A. During the game, the challenger maintains lists Q and T , which
are set to be empty at the beginning of the game.

Setup: At the beginning of the game, the challenger runs GS.KeyGen(1κ, 1N ) →
(gpk, gok, {gski}i∈[N ]) and gives (1κ, gpk, gok) to A.

Queries: During the game, A can make the following two kinds of queries
unbounded polynomially many times.
- Corrupt Query: Upon a query i ∈ [N ] from A, the challenger returns gski

to A. The challenger also adds i to T .
- Signing Queries: Upon a query (i,M) ∈ [N ]×Mκ from A, the challenger

runs GS.Sign(gpk, gski,M) → Σ and returns Σ to A. The challenger adds
(i,M) to Q.

Forgery: Eventually, A outputs (M�, Σ�) as the forgery. We say that A wins the
game if:
1. GS.Vrfy(gpk,M�, Σ�) → 	, and
2. either of the following conditions (a) or (b) is satisfied:

(a) GS.Open(gpk, gok,M�, Σ�) = ⊥,
(b) GS.Open(gpk, gok,M�, Σ�) = i� �∈ T ∧ (i�,M�) �∈ Q.

We define the advantage of an adversary to be the probability that the adversary
A wins, where the probability is taken over the randomness of the challenger and



324 S. Katsumata and S. Yamada

the adversary. A GS scheme is said to satisfy full traceability if the advantage
of any PPT adversary A in the above game is negligible for any N = poly(κ).

CCA-Selfless Anonymity. We now define CCA-selfless anonymity for a GS
scheme. This security notion is defined by the following game between a chal-
lenger and an adversary A.

Setup: At the beginning of the game, the adversary A is given 1κ as input and
sends i�0, i

�
1 ∈ [N ] to the challenger. Then the challenger runs GS.KeyGen(1κ,

1N ) → (gpk, gok, {gski}i∈[N ]) and gives (gpk, {gski}i∈[N ]\{i�
0 ,i�

1}) to A.
Queries: During the game, A can make the following two kinds of queries

unbounded polynomially many times.
- Signing Queries: Upon a query (b,M) ∈ {0, 1}×Mκ from A, the challenger

runs GS.Sign(gpk, gski�
b
,M) → Σ and returns Σ to A.

- Open Queries: Upon a query (M, Σ) from A, the challenger runs GS.Open
(gpk, gok,M, Σ) and returns the result to A.

Challenge Phase: At some point, A chooses its target message M�. The chal-
lenger then samples a secret coin coin

$← {0, 1} and computes GS.Sign(gpk,
gski�

coin
,M�) → Σ�. Finally, it returns Σ� to A.

Queries: After the challenge phase, A may continue to make signing and open
queries unbounded polynomially many times. Here, we add a restriction that
A cannot make an open query for (M�, Σ�).

Guess: Eventually, A outputs ̂coin as a guess for coin.

We say that the adversary A wins the game if ̂coin = coin. We define the advan-
tage of an adversary to be |Pr[A wins]−1/2|, where the probability is taken over
the randomness of the challenger and the adversary. A GS scheme is said to be
CCA-selfless anonymous if the advantage of any PPT adversary A is negligible
in the above game for any N = poly(κ).

Remark 3. Note that Camenisch and Groth [CG05] defines selfless anonymity
slightly differently by allowing the adversary to adaptively choose the targets and
corrupt the users other than the targets. However, since the number of users N
is polynomially bounded, these two definitions are equivalent w.l.o.g, and we
chose the above formalization for simplicity of presentation.

2.2 Secret Key Encryption and Other Primitives

We will use some cryptographic primitives such as secret key encryptions (SKE)
and one-time signatures (OTS) to construct a GS scheme. The definitions of
these primitives will appear in the full version. Since we require an SKE to have
some non-standard properties, we provide a brief explanation here. We require
key robustness, which intuitively says that the ciphertext spaces corresponding
to two random secret keys are disjoint with all but negligible probability. In
addition, we require SKE to satisfy INDr-CCA security, which stipulates that a
ciphertext is indistinguishable from a pseudorandom ciphertext that is publicly
samplable, even if the distinguisher is equipped with a decryption oracle.
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2.3 Admissible Hash Functions

Here, we define the notion of admissible hash, which was first introduced by
[BB04a]. We follow the definition of [FHPS13,BV15] with minor changes.

Definition 4. Let � := �(κ) and �′ := �′(κ) be some polynomials. We define the
function WldCmp : {0, 1}� × {0, 1}� × {0, 1}� → {0, 1} as

WldCmp(y, z, w) = 0 ⇔ ∀i ∈ [�]
(

(yi = 0) ∨ (zi = wi)
)

where yi, zi, and wi denote the i-th bit of y, z, and w respectively. Intuitively,
WldCmp is a string comparison function with wildcards where it compares z and
w only at those points where yi = 1. Let {Hκ : {0, 1}�′(κ) → {0, 1}�(κ)}κ∈N be
a family of hash functions. We say that {Hκ}κ is a family of admissible hash
functions if there exists an efficient algorithm AdmSmp that takes as input 1κ

and Q ∈ N and outputs (y, z) ∈ {0, 1}� × {0, 1}� such that for every polynomial
Q(κ) and all X�,X(1), . . . X(Q) ∈ {0, 1}�′(κ) with X� �∈ {X(1), . . . , X(Q)}, we
have

Pr
(y,z)

[

WldCmp(y, z,H(X�)) = 0 ∧
(

∧j∈[Q]WldCmp(y, z,H(X(j)))=1
)]

≥ ΔQ(κ),

for a noticeable function ΔQ(κ), where the probability above is taken over the
choice of (y, z) $← AdmSmp(1κ, Q).

As shown in previous works [Lys02,FHPS13], a family of error correcting
codes {Hκ : {0, 1}�′(κ) → {0, 1}�(κ)}κ∈N with constant relative distance c ∈
(0, 1/2) is an admissible hash function. Explicit and efficient constructions of
such codes are given in [SS96,Zém01,Gol08] to name a few.

3 Indexed Attribute-Based Signatures

In this section, we define the syntax and the security notion of indexed attribute-
based signature (indexed ABS). We require indexed ABS to satisfy unforgeability
and privacy. For the former, we consider two kinds of security notions that we call
co-selective unforgeability and no-signing-query unforgeability. While the latter
notion of unforgeability is weaker, we will show that an indexed ABS scheme
that only satisfies this weaker security notion can be converted into a scheme
with the stronger security notion without loosing privacy.

3.1 Indexed Attribute-Based Signature

Syntax. Let {Cκ}κ∈N be a family of circuits, where Cκ is a set of circuits with
domain {0, 1}k(κ) and range {0, 1}, and the size of every circuit in Cκ is bounded
by poly(κ). Let also {Mκ}κ∈N be a family of message spaces. In the following, we
occasionally drop the subscript and simply write C and M when the meaning
is clear. An indexed attribute-based signature (indexed ABS) scheme for the
circuit class C is defined by the following algorithms:
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ABS.Setup(1κ, 1N ) → (mpk,msk): The setup algorithm takes as input the security
parameter κ and the bound on the number of users N both in the unary form
and outputs the master public key mpk and the master secret key msk.

ABS.KeyGen(msk, i, x) → skx: The key generation algorithm takes as input the
master secret key msk, the user index i ∈ [N ], and the attribute x ∈ {0, 1}k

and outputs the user secret key skx. We assume that i and x are implicitly
included in skx.

ABS.Sign(mpk, skx,M, C) → σ: The signing algorithm takes as input the master
public key mpk, the secret key skx associated to x, a message M ∈ Mκ, and
a policy C ∈ Cκ and outputs the signature σ.

ABS.Vrfy(mpk,M, C, σ) → 	 or ⊥: The verification algorithm takes as input the
master public key mpk, a message M, a policy C, and a signature σ. It outputs
	 if the signature is deemed valid and ⊥ otherwise. We assume that the
verification algorithm is deterministic.

We require correctness, privacy, and co-selective unforgeability.

Correctness. We require correctness: that is, for all κ, N ∈ poly(κ), (mpk,
msk) ∈ ABS.Setup(1κ, 1N ), i ∈ [N ], x ∈ {0, 1}k, C ∈ Cκ such that C(x) =
1, M ∈ Mκ, skx ∈ ABS.KeyGen(msk, i, x), and σ ∈ ABS.Sign(mpk, skx,M, C),
ABS.Vrfy(mpk,M, C, σ) = 	 holds.

Perfect Privacy. We say that the ABS scheme has perfect privacy if for all
κ, N ∈ poly(κ), (mpk,msk) ∈ ABS.Setup(1κ, 1N ), x0, x1 ∈ {0, 1}k, i0, i1 ∈ [N ],
C ∈ Cκ satisfying C(x0) = C(x1) = 1, M ∈ M, skx0 ∈ ABS.KeyGen(msk, i0, x0),
and skx1 ∈ ABS.KeyGen(msk, i1, x1), the following distributions are the same:

{σ0
$← ABS.Sign(mpk, skx0 ,M, C)} ≈ {σ1

$← ABS.Sign(mpk, skx1 ,M, C)}.

Co-selective Unforgeability. We now define the co-selective unforgeability for
ABS scheme. This security notion is defined by the following game between a
challenger and an adversary A. During the game, the challenger maintains a list
Q, which is set to be empty at the beginning of the game.

Key Queries: At the beginning of the game, the adversary A is given 1κ as
input. It then sends 1N , {(i, x(i))}i∈[N ], and S ⊆ [N ] such that x(i) ∈ {0, 1}k

for all i ∈ [N ] to the challenger.
Setup: The challenger runs ABS.Setup(1κ, 1N ) → (mpk,msk) and ABS.KeyGen

(msk, i, x(i)) → skx(i) for i ∈ [N ]. It then gives mpk and {skx(i)}i∈[S] to A.
Signing Queries: During the game, A can make signing queries unbounded

polynomially many times. When A queries (M, C, i) such that M ∈ M, C ∈ C,
i ∈ [N ], and C(x(i)) = 1, the challenger runs ABS.Sign(mpk, skx(i) ,M, C) → σ
and returns σ to A. The challenger then adds (M, C) to Q.

Forgery: Eventually, A outputs (M�, C�, σ�) as the forgery. We say that A wins
the game if:
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1. C� ∈ C,
2. ABS.Vrfy(mpk,M�, C�, σ�) → 	,
3. C�(x(i)) = 0 for i ∈ S,
4. (M�, C�) �∈ Q.

We define the advantage of the adversary to be the probability that the adver-
sary A wins in the above game, where the probability is taken over the coin tosses
made by A and the challenger. We say that a scheme satisfies co-selective unforge-
ability if the advantage of any PPT adversary A in the above game is negligible
in the security parameter.

No-Signing-Query Unforgeability. We now define a weaker definition of
unforgeability. We define the no-signing-query unforgeability game by modifying
the co-selective unforgeability game above by adding some more restrictions on
A. Namely, we prohibit A from making any signing queries and require S �= ∅.
We do not change the winning condition of the game and define the advantage of
A as the probability that A wins. Note that Item 4 becomes vacuous because we
will always have Q = ∅. We say that a scheme satisfies no-signing-query unforge-
ability if the advantage of any PPT adversary A in the game is negligible.

Remark 5 (Comparing indexed ABS with standard ABS). The syntax of the
indexed ABS is a relaxation of the standard ABS [MPR11,OT11,SAH16]: the
setup algorithm takes 1N as an additional input and the key generation algorithm
takes an index i as an additional input. It is easy to check that standard ABS
can be used as indexed ABS by simply ignoring the additional inputs.

3.2 From No-Signing-Query to Co-selective Unforgeability

Here, we show that an indexed ABS scheme ABS = (ABS.Setup,ABS.KeyGen,
ABS.Sign,ABS.Vrfy) that is no-signing-query unforgeable can be generically con-
verted into a new indexed ABS scheme ABS′ = (ABS′.Setup,ABS′.KeyGen,
ABS′.Sign,ABS′.Vrfy) that is co-selective unforgeable. If ABS is perfectly pri-
vate, so is ABS′. To enable the resulting scheme ABS′ to deal with function class
C = {Cκ}κ∈N, where Cκ is a set of circuits C such that C : {0, 1}k(κ) → {0, 1},
we require ABS to be able to deal with a (slightly) more complex function class
F = {Fκ}κ∈N. We define Fκ as

Fκ =
{

F [˜M, C] : {0, 1}k(κ)+2�(κ)+1 → {0, 1}
∣

∣

∣

˜M ∈ {0, 1}�(κ), C ∈ Cκ

}

, (1)

where F [˜M, C] is defined in Fig. 1. We assume that the circuit F [˜M, C] is deter-
ministically constructed from ˜M and C in a predetermined way. Let {Hκ}κ be
a family of collision resistant hash functions where an index h ∈ Hκ specifies
a function h : {0, 1}∗ → {0, 1}�′(κ), where {0, 1}�′(κ) is the input space of an
admissible hash function Hκ : {0, 1}�′(κ) → {0, 1}�(κ). We construct ABS′ as
follows.
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ABS′.Setup(1κ, 1N ): It runs ABS.Setup(1κ, 1N+1) → (mpk,msk) and samples a
random index of collision resistant hash function h

$← Hκ. It then outputs
the master public key mpk′ = (mpk, h) and the master secret key msk′ := msk.

ABS′.KeyGen(msk, i, x): It runs ABS.KeyGen(msk, i, x‖02�+1) → skx‖02�+1 and
returns sk′

x := skx‖02�+1 .
ABS′.Sign(mpk′, sk′

x,M, C): It first parses mpk′ → (mpk, h) and sk′
x → skx‖02�+1

and computes ˜M = H(h(M‖C)). It then constructs a circuit F [˜M, C] that is
defined as in Fig. 1. It finally runs ABS.Sign(mpk, skx‖02�+1 ,M, F [˜M, C]) → σ
and outputs σ′ := σ.

ABS′.Vrfy(mpk′,M, C, σ): It first parses mpk′ → (mpk, h). It then computes ˜M =
H(h(M‖C)) and constructs a circuit F [˜M, C] that is defined as in Fig. 1. It
then outputs ABS.Vrfy(mpk,M, F [˜M, C], σ).

Fig. 1. Description of the circuit F [˜M, C].

Correctness. We observe that if C(x) = 1, we have F [˜M, C](x‖02�+1) = C(x) =
1 by the definition of F [˜M, C]. The correctness of ABS′ therefore follows from
that of ABS.

Perfect Privacy. The following addresses the privacy of ABS′.

Theorem 6. If ABS is perfectly private, so is ABS′.

Proof. If C(x0) = C(x1) = 1, we have F [˜M, C](x0‖02�+1) = C(x0) = 1 and
F [˜M, C](x1‖02�+1) = C(x1) = 1 by the definition of F [˜M, C]. The theorem
therefore follows from the perfect privacy of ABS.

Co-selective Unforgeability. The following theorem addresses the co-selective
unforgeability of ABS′. The proof will appear in the full version.

Theorem 7. If ABS is no-signing-query unforgeable and perfectly private, Hκ

is a family of collision resistant hash functions, and Hκ is an admissible hash
function, then ABS′ is co-selective unforgeable.
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4 Generic Construction of Group Signatures

In this section, we give a generic construction of a GS scheme from three building
blocks: an indexed ABS, an OTS, and an SKE. As we will show in Sect. 7, by
appropriately instantiating the building blocks, we obtain the first lattice-based
GS scheme in the standard model.

Ingredients. Here, we give a generic construction of a GS scheme GS =
(GS.KeyGen,GS.Sign,GS.Vrfy,GS.Open) from an indexed ABS scheme ABS =
(ABS.Setup,ABS.KeyGen,ABS.Sign,ABS.Vrfy) with perfect privacy and co-
selective unforgeability, an OTS scheme OTS = (OTS.KeyGen,OTS.Sign,
OTS.Vrfy) with strong unforgeability, and an SKE scheme SKE =
(SKE.Gen,SKE.Enc,SKE.Dec) with key robustness and INDr-CCA security. We
require the underlying primitives to satisfy the following constraints:

– SKE.Mκ ⊇ [N + 1] × {0, 1}�1(κ), where SKE.Mκ denotes the plaintext space
of SKE and �1(κ) denotes the upper-bound on the length of ovk that is output
by OTS.Setup(1κ).

– We require the underlying indexed ABS scheme to be able to deal with func-
tion class C = {Cκ}κ∈N, where Cκ is defined as

Cκ =
{

C[ovk, ct]
∣

∣

∣ ovk ∈ {0, 1}�1(κ), ct ∈ {0, 1}�2(κ)
}

, (2)

where C[ovk, ct] is defined in Fig. 2 and �2(κ) is the upper bound on the length
of a ciphertext ct output by SKE.Enc(K,M) for K ∈ SKE.Gen(SKE.Setup(1κ))
and M ∈ SKE.Mκ.

– We require OTS.Mκ = {0, 1}∗, where OTS.Mκ denotes the message space
of OTS. Note that any OTS scheme with sufficiently large message space can
be modified to satisfy this condition by applying a collision resistant hash to
a message before signing.

Construction. We construct GS as follows.

GS.KeyGen(1κ, 1N ): It first samples pp
$← SKE.Setup(1κ) and (mpk,msk) $←

ABS.Setup(1κ, 1N+1). It then samples Ki
$← SKE.Gen(pp) and ski‖Ki

$←
ABS.KeyGen(msk, i, i‖Ki) for i ∈ [N ]. Finally, it outputs

gpk := ( pp, mpk ) , gok := { Ki }i∈[N ] ,
{

gski :=
(

i, Ki, ski‖Ki

) }

i∈[N ]
.

GS.Sign(gski,M): It first samples (ovk, osk) $← OTS.KeyGen(1κ) and computes
ct

$← SKE.Enc(Ki, i‖ovk). It then runs

ABS.Sign(mpk, ski‖Ki
, C[ovk, ct],M) → σ,

where the circuit C[ovk, ct] is defined in Fig. 2. It further runs
OTS.Sign(osk,M‖σ) → τ . Finally, it outputs Σ := (ovk, ct, σ, τ).
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GS.Vrfy(gpk,M, Σ): It first parses Σ → (ovk, ct, σ, τ). It then outputs 	 if

ABS.Vrfy(mpk,M, C[ovk, ct], σ) = 	 ∧ OTS.Vrfy(ovk,M‖σ, τ) = 	,

where C[ovk, ct] is defined in Fig. 2. Otherwise, it outputs ⊥.
GS.Open(gpk, gok,M, Σ): It first runs GS.Vrfy(gpk,M, Σ) and returns ⊥ if the

verification result is ⊥. Otherwise, it parses Σ → (ovk, ct, σ, τ). It then com-
putes di ← SKE.Dec(Ki, ct) for i ∈ [N ] and outputs the smallest index i such
that di �= ⊥. If there is not such i, it returns ⊥.

Fig. 2. Description of the circuit C[ovk, ct].

Remark 8 (Construction Using Public Key Encryption). We remark that we
may be able to obtain an alternative construction using a public key encryption
(PKE) instead of an SKE. See full version for further discussion.

Correctness. We show that correctly generated signature Σ = (ovk, ct, σ, τ)
passes the verification. We have OTS.Vrfy(ovk,M‖σ, τ) = 	 by the correct-
ness of OTS. Furthermore, we have ABS.Vrfy(mpk,M, C[ovk, ct], σ) = 	 since
C[ovk, ct](i‖Ki) = 1, which follows from SKE.Dec(Ki, ct) = i‖ovk by the correct-
ness of SKE.

CCA-Selfless Anonymity. The following theorem addresses the CCA-selfless
anonymity of the above GS scheme. The proof will appear in the full version.

Theorem 9. If ABS is perfectly private and co-selective unforgeable, OTS is
strongly unforgeable, and SKE is INDr-CCA-secure and key robust, then GS con-
structed above is CCA-selfless anonymous.

Traceability. The following addresses the traceability of the above GS scheme.

Theorem 10. If ABS is co-selective unforgeable and SKE has key robustness,
then GS constructed above has full traceability.
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Proof. Let us fix a PPT adversary A and consider the full traceability
game played between A and a challenger. Let (M�, Σ�) be a forgery out-
put by A. We define F1 to be the event that A wins the game and
GS.Open(gpk, gok,M�, Σ�) = ⊥ holds, and F2 be the event that A wins the game
and GS.Open(gpk, gok,M�, Σ�) = i� holds for i� such that i� �∈ T . Since both
F1 and F2 are collectively exhaustive events of a successful forgery, it suffices to
prove Pr[F1] = negl(κ) and Pr[F2] = negl(κ).

Lemma 11. If ABS is co-selective unforgeable, we have Pr[F1] = negl(κ).

Proof. For the sake of the contradiction, let us assume that F1 happens with
non-negligible probability ε. We then construct an adversary B that breaks the
co-selective unforgeability of ABS with the same probability. The adversary B
proceeds as follows.

At the beginning of the game, B is given 1κ from its challenger. B then
samples pp

$← SKE.Setup(1κ) and Ki
$← SKE.Gen(pp) for i ∈ [N ] and sub-

mits 1N , {(i, i‖Ki)}i∈[N ], and S = [N ] to its challenger. Then, B receives mpk
and {ski‖Ki

}i∈[N ] from the challenger. It then gives 1κ, gpk := (pp,mpk), and
gok := {Ki}i∈[N ] to A and keeps {gski := (i,Ki, ski‖Ki

)}i∈[N ] secret. During the
game, A makes signing and corrupt queries. These queries are trivial to han-
dle because B has {gski}i∈[N ]. In particular, B can handle all signing queries
from A without making signing query to its challenger. Eventually, A will out-
put a forgery (M�, Σ� = (ovk�, ct�, σ�, τ�)). If GS.Vrfy(gpk,M�, Σ�) = 	 and
GS.Open(gpk, gok,M�, Σ�) = ⊥ hold, B outputs (M�, C[ovk�, ct�], σ�) as its
forgery. Otherwise, B aborts.

We claim that B wins the game whenever F1 happens. To prove this, we first
observe that ABS.Vrfy(mpk, C[ovk�, ct�], σ�) = 	 holds because GS.Vrfy(gpk,M�,
Σ�) = 	. We then show that B has not made any prohibited key query. Namely,
we show C[ovk�, ct�](i‖Ki) = 0 for all i ∈ [N ]. This follows since otherwise we
have SKE.Dec(Ki, ct

�) �= ⊥ for some i, which contradicts GS.Open(gpk, gok,M�,
Σ�) = ⊥. We also note that B has not made any signing query. Since B’s simu-
lation is perfect, we can conclude that B wins the game with probability ε. This
concludes the proof of the lemma.

Lemma 12. If ABS is co-selective unforgeable and SKE has key robustness, we
have Pr[F2] = negl(κ).

Proof. For the sake of the contradiction, let us assume that F2 happens with
non-negligible probability ε. We then construct an adversary B that breaks the
co-selective unforgeability of ABS with non-negligible probability. We show this
by considering the following sequence of games. In the following, let Ei denote
the probability that F2 occurs and the challenger does not abort in Game i.

Game 0: We define Game 0 as the ordinary full traceability game between A and
the challenger. By assumption, we have Pr[E0] = ε.

Game 1: In this game, the challenger samples j� $← [N ] at the beginning of the
game and aborts if j� �= i� at the end of the game. Since the view of A
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is independent from j� and GS.Open does not output any symbol outside
[N ] ∪ {⊥}, we have Pr[E1] = ε/N .

Game 2: In this game, the challenger aborts the game as soon as j� �= i� turns
out to be true. Namely, it aborts if A makes a corruption query for j�, or
i� defined at the end of the game does not equal to j�. Since this is only a
conceptual change, we have Pr[E2] = Pr[E3].

Game 3: In this game, we change the previous game so that the challenger
aborts at the end of the game if |{i ∈ [N ] : SKE.Dec(Ki, ct

�) �= ⊥}| �= 1
for (M�, Σ� = (ovk�, ct�, σ�, τ�)) output by A as the forgery. We claim
that the probability that F2 and |{i ∈ [N ] : SKE.Dec(Ki, ct

�) �= ⊥}| �= 1
occur at the same time is negligibly small. Note that by the definition of
GS.Open, F2 implies SKE.Dec(Ki� , ct�) �= ⊥ for i� ∈ [N ]. We therefore have
|{i ∈ [N ] : SKE.Dec(Ki, ct

�) �= ⊥}| ≥ 2. However, the probability of this
occurring is bounded by

Pr [ |{i ∈ [N ] : SKE.Dec(Ki, ct
�) �= ⊥}| ≥ 2 ]

≤ Pr

⎡

⎣

pp
$← SKE.Setup(1κ), Kj

$← SKE.Gen(pp) for j ∈ [N ] :
∃ct� ∈ {0, 1}∗, ∃i, i� ∈ [N ]

s.t. i �= i� ∧ SKE.Dec(Ki, ct
�) �= ⊥ ∧ SKE.Dec(Ki� , ct�) �= ⊥

⎤

⎦

≤
∑

i,i�∈[N ] s.t. i�=i�

Pr

⎡

⎣

pp
$← SKE.Setup(1κ), Ki,Ki�

$← SKE.Gen(pp) :
∃ct� ∈ {0, 1}∗

s.t. SKE.Dec(Ki, ct
�) �= ⊥ ∧ SKE.Dec(Ki� , ct�) �= ⊥

⎤

⎦

≤ N(N − 1)/2 · negl(κ)
= negl(κ),

where the second inequality is by the union bound and the third inequality is
by the key robustness of SKE. Therefore, we have |Pr[E2]−Pr[E3]| = negl(κ).

We then replace the challenger in Game 3 with an adversary B against the co-
selective unforgeability of ABS with advantage Pr[E3]. The adversary B proceeds
as follows.

At the beginning of the game, B is given 1κ from its challenger. Then, B
chooses its guess j� $← [N ] for i�, samples pp

$← SKE.Setup(1κ) and Ki
$←

SKE.Gen(pp) for i ∈ [N ], and sends 1N , {(i, i‖Ki)}i∈[N ], and S = [N ]\{j�} to
the challenger. Then, B receives mpk and {ski‖Ki

}i∈[N ]\{j�} from the challenger.
It then sets gpk := (pp,mpk), gski := (i,Ki, ski‖Ki

) for i ∈ [N ]\{j�}, and gok :=
{Ki}i∈[N ] and gives 1κ, gpk, and gok to A. During the game, A makes two kinds
of queries. B answers the queries as follows.

– When A makes a corrupt query for i ∈ [N ], B proceeds as follows. If i = j�,
B aborts. Otherwise, it gives gski to A.

– When A makes a signing query for (i,M), B answers the query using gski if
i �= j�. If i = j�, B first samples (ovk, osk) $← OTS.KeyGen(1κ) and computes
ct

$← SKE.Enc(Kj� , j�‖ovk). It then makes a signing query (M, C[ovk, ct], j�)
to its challenger, who returns σ to B. Then, it runs OTS.Sign(osk,M‖σ) → τ
and returns Σ := (ovk, ct, σ, τ) to A.
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Eventually, A will output a forgery (M�, Σ� = (ovk�, ct�, σ�, τ�)). If
either of GS.Vrfy(gpk,M�, Σ�) = 	 or i� = j� does not hold, where
i� := GS.Open(gpk, gok,M�, Σ�), B aborts. It also aborts if |{i ∈ [N ] :
SKE.Dec(Ki, ct

�) �= ⊥}| �= 1. Otherwise, B outputs (M�, C[ovk�, ct�], σ�) as its
forgery.

We claim that B wins the game whenever E3 occurs. To see this,
we first observe that we have ABS.Vrfy(mpk, C[ovk�, ct�], σ�) = 	 by
GS.Vrfy(gpk,M�, Σ�) = 	. We then prove that B has never made pro-
hibited corrupt queries. Namely, we show C[ovk�, ct�](i‖Ki) = 0 for all
i ∈ [N ]\{i�}. This follows since we have |{i ∈ [N ] : SKE.Dec(Ki, ct

�) �=
⊥}| = 1 and SKE.Dec(Ki� , ct�) �= ⊥, where the latter follows from
GS.Open(gpk, gok,M�, Σ�) = i�. Finally, we show that B has never made pro-
hibited signing queries. Recall that B has only made signing queries of the form
(M, C[ovk, ct], i�) and all such queries are made in order to answer the sign-
ing query (i�,M) made by A. Because A has won the game, we have M� �= M,
which implies (M�, C[ovk�, ct�]) �= (M, C[ovk, ct]) as desired. Since B simulates
Game 3 perfectly, we have that the winning probability of B is exactly Pr[E3].
This concludes the proof of the lemma.

5 Construction of Indexed ABS from Lattices

In this section, we give a new construction of indexed ABS scheme from the SIS
assumption. Combined with an appropriate SKE scheme and OTS scheme, we
can instantiate the generic construction of GS in Sect. 4 to obtain the first lattice-
based GS scheme in the standard model. We refer Sect. 7 to more discussions.

5.1 Preliminaries on Lattices

Here, we recall some facts on lattices that are needed for the exposition of
our construction. Throughout this section, n, m, and q are integers such that
n = poly(κ) and m ≥ n�log q�. In the following, let SampZ(γ) be a sampling
algorithm for the truncated discrete Gaussian distribution over Z with parameter
γ > 0 whose support is restricted to z ∈ Z such that |z| ≤ √

nγ.6

Definition 13 (The SIS Assumption). Let n,m, q, β be integer parameters.
We say that the SIS(n,m, q, β) hardness assumption holds if for any PPT adver-
saries A we have

Pr[A · z = 0 ∧ 0 < ‖z‖∞ ≤ β(κ) : A $← Z
n(κ)×m(κ)
q(κ) , z ← A(1κ,A)] ≤ negl(κ).

We also say that the SIS(n,m, q, β) problem is subexponentially hard if the above
probability is bounded by 2−O(nε) · negl(κ) for some constant 0 < ε < 1.

6 During construction, we fix n and consider this very weak bound for one-dimensional
discrete Gaussian samples for simplicity of analysis.



334 S. Katsumata and S. Yamada

For any n = poly(κ), any m = poly(n), any β(n) > 0, and q ≥ β
√

n · ω(log n),
it is known that the SIS(n,m, q, β) problem is as hard as certain worst case
lattice problems with approximation factor β(n) · poly(n). We abuse the term
and refer to SIS(n,m, q, β) with β ≤ poly(κ) as the SIS problem with polynomial
approximation factor.

Trapdoors. Let A ∈ Z
n×m
q . For all V ∈ Z

n×m′
q , we let A−1

γ (V) be an output
distribution of SampZ(γ)m×m′

conditioned on A · A−1
γ (V) = V. A γ-trapdoor

for A is a trapdoor that enables one to sample from the distribution A−1
γ (V) in

time poly(n,m,m′, log q), for any V. We slightly overload notation and denote
a γ-trapdoor for A by A−1

γ . We also define the special gadget matrix G ∈
Z

n×m
q as the matrix obtained by padding In ⊗ (1, 2, 4, 8, . . . , 2	log q
) with zero-

columns. The following properties had been established in a long sequence of
works [GPV08,CHKP10,ABB10a,ABB10b,MP12,BLP+13].

Lemma 14 (Properties of Trapdoors). Lattice trapdoors exhibit the follow-
ing properties.

1. Given A−1
γ , one can obtain A−1

γ′ for any γ′ ≥ γ.
2. Given A−1

γ , one can obtain [A‖B]−1
γ and [B‖A]−1

γ for any B.
3. For all A ∈ Z

n×m
q and R ∈ Z

m×m, one can obtain [AR + G‖A]−1
γ for

γ = m · ‖R‖∞ · ω(
√

log m).
4. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1

γ0
)

where A ∈ Z
n×m
q for some m = O(n log q) and is 2−n-close to uniform,

where γ0 = ω(
√

n log q log m).

Lemma 15 (Fully Homomorphic Computation [GV15]). There exists a
pair of deterministic algorithms (PubEval,TrapEval) with the following proper-
ties.

– PubEval(�B, F ) → BF . Here, �B = [B1‖ · · · ‖Bk] ∈ (Zn×m
q )k and F : {0, 1}k →

{0, 1} is a circuit.
– TrapEval(�R, F, x) → RF,x. Here, �R = [R1‖ . . . ‖Rk] ∈ (Zn×m

q )k, ‖Ri‖∞ ≤ δ

for i ∈ [k], x ∈ {0, 1}k, and F : {0, 1}k → {0, 1} is a circuit with depth
d. We have PubEval(A�R + x ⊗ G) = ARF,x + F (x)G where we denote
[x1G‖ · · · ‖xkG] by x ⊗ G. Furthermore, we have ‖RF,x‖∞ ≤ δ · m · 2O(d).

– The running time of (PubEval,TrapEval) is bounded by poly(k, n,m, 2d, log q).

The above algorithms are taken from [GV15], which is a variant of a similar
algorithms proposed by Boneh et al. [BGG+14]. The algorithms in [BGG+14]
work for any polynomial-sized circuit F , but ‖RF,x‖∞ becomes super-polynomial
even if the depth of the circuit is shallow (i.e., logarithmic depth). On the other
hand, the above algorithm runs in polynomial time only when F is of logarith-
mic depth, but ‖RF,x‖∞ can be polynomially bounded. The latter property is
useful since our main focus is on the constructions of GS schemes from the SIS
assumption with polynomial approximation factors.
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5.2 Construction

Here, we show our construction of indexed ABS. The scheme satisfies no-signing-
query unforgeability. By applying the conversion in Sect. 3.2 to the scheme,
we can obtain a scheme with co-selective unforgeability. Note that the signing
and the verification algorithm below ignore the input message M. This is not a
problem because the no-signing-query security does not require non-malleability
with respect to the message.

We denote the circuit class that is dealt with by the scheme by {Fκ}κ, where
Fκ is a set of circuits F such that F : {0, 1}k(κ) → {0, 1} and with depth at
most dF = O(log κ).

ABS.Setup(1κ, 1N ): On input 1κ and 1N , it sets the parameters n, m, q, γ0, γ,
and β as specified later in this section, where q is a prime number. Then,
it picks random matrices B(i)

j
$← Z

n×m
q for i ∈ [N ], j ∈ [k]. We denote

�B(i) = [B(i)
1 ‖ · · · ‖B(i)

k ]. It also picks (A,A−1
γ0

) $← TrapGen(1n, 1m, q) such that
A ∈ Z

n×m
q and a random vector r $← {0, 1}m. It then computes u := Ar ∈ Z

n
q .

It finally outputs

mpk =
(

A, {�B(i)}i∈[N ], u,
)

and msk =
(

A−1
γ0

, {�B(i)}i∈[N ]

)

.

ABS.KeyGen(msk, i, x): On input msk = (A−1
γ0

, {�B(i)}i∈[N ]), i ∈ [N ], and x ∈
{0, 1}k, it samples �R(i) $← A−1

γ0

(

�B(i)−x⊗G
)

where �R(i) ∈ Z
m×mk using A−1

γ0
.

Note that �B(i) = A�R(i) +x⊗G and ‖�R(i)‖∞ ≤ γ0
√

n holds by the definition
of the distribution A−1

γ0
(�B(i) − x ⊗ G). It then outputs skx := (i, �R(i)).

ABS.Sign(mpk, skx,M, F ): It outputs ⊥ if M �∈ Mκ, F �∈ F , or F (x) = 0. Other-
wise, it first parses skx → (i, �R(i)). It then computes B(i)

F := PubEval(�B(i), F )
and R(i)

F,x := TrapEval(�R(i), F, x) such that ‖R(i)
F,x‖∞ ≤ γ. By Lemma

15 and since F (x) = 1, we have B(i)
F = AR(i)

F,x + G. It then computes

[A‖B(i)
F ]−1

β from R(i)
F,x (see Item 3 in Lemma 14) and further computes

[

A‖B(1)
F ‖ · · · ‖B(N)

F

]−1

β
from [A‖B(i)

F ]−1
β (see Item 2 in Lemma 14). Finally,

it samples e $← [A‖B(1)
F ‖ · · · ‖B(N)

F ]−1
β (u) and outputs the signature σ := e ∈

Z
m(N+1).

ABS.Vrfy(mpk,M, σ, F ): It outputs ⊥ if F �∈ F or σ = e �∈ Z
m(N+1). Otherwise,

it first computes B(i)
F = PubEval(F, �B(i)) for i ∈ [N ]. It then checks whether

‖e‖∞ ≤ √
nβ and

[

A‖B(1)
F ‖ · · · ‖B(N)

F

]

e = u. If they hold, it outputs 	 and
otherwise ⊥.

Correctness. The correctness of the scheme can be seen by observing that
the verification equation and ‖e‖∞ ≤ √

nβ follow from the definition of the
distribution [A‖B(1)

F ‖ · · · ‖B(N)
F ]−1

β (u) from which e is sampled.
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Parameter Selection. As long as the maximum depth of the circuit class Fκ is
bounded by O(log κ), we can set all of n, m, γ0, γ, β, and q to be polynomial in κ.
Notably, this allows us to reduce the security of the scheme to SIS(n,m, q, βSIS)
with βSIS = poly(κ). We refer to the full version for the precise requirements for
these parameters and a concrete selection.

5.3 Security Proofs

Theorem 16. Our ABS scheme is perfectly private.

Proof. It can be seen that the signature σ = e for (F,M) is chosen from the
distribution [A‖B(1)

F ‖ · · · ‖B(N)
F ]−1

β (u), which only depends on mpk and F . The
theorem readily follows.

Theorem 17. Our ABS scheme satisfies no-signing-query unforgeability assum-
ing SIS(n,m, q, βSIS) is hard.

The proof will appear in the full version.

6 Instantiating SKE

Here, we discuss how to instantiate the SKE required for the generic construction
of GS in Sect. 4. Since this can be done by a combination of known results and
standard techniques, we only give a high level overview here and refer to the full
version for the details. We require the SKE to be INDr-CCA secure and to have
key robustness and a decryption circuit with O(log κ)-depth. The requirement
for the depth of the circuit is needed to combine it with our indexed ABS scheme
in Sect. 5.2, which can only deal with circuits with logarithmic depth.

To obtain such a scheme, we follow the MAC-then-Encrypt paradigm and
show a generic construction of such an SKE from another SKE and a MAC. For
the latter SKE, we require INDr-CPA security, key robustness, and a decryption
circuit with O(log κ)-depth. For the MAC, we require strong unforgeability and
a verification circuit with O(log κ)-depth. Although an insecure example of the
MAC-then-Encrypt approach is known [BN00], we avoid the pitfall by authenti-
cating a part of the ciphertext in addition to the plaintext using the MAC. We
also note that the Encrypt-then-MAC approach may not work in our setting,
because the MAC part may reveal the information about the user and destroy
the INDr-CCA security (in particular, anonymity) of the resulting SKE scheme.

It remains to show how to instantiate the inner SKE and MAC. For the SKE,
we use a secret key variant of the Regev encryption scheme [Reg05], where we
pad the message with zeroes before encrypting it and the decryption algorithm
returns ⊥ to a ciphertext that does not conform to this format. The padding
makes the ciphertext somewhat redundant, and due to this redundancy, we can
prove key robustness of the scheme by a standard counting argument. The INDr-
CPA security of the scheme is proven from the LWE assumption by a straight-
forward reduction. The decryption circuit of the scheme can be implemented
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by an O(log κ)-depth circuit, since the decryption algorithm only involves basic
algebraic operations such as the computation of an inner-product, modulo reduc-
tion, and comparison, all of which are known to be in NC1. We then discuss how
to instantiate the MAC. We need the MAC scheme to have strong unforgeabil-
ity and a decryption circuit with O(log κ)-depth. To obtain such a scheme, we
downgrade the (public key) signature scheme proposed by Micciancio and Peik-
ert [MP12] to a MAC scheme. Since the scheme satisfies strong unforgeability
as a signature scheme, it is trivial to see that the scheme is strongly unforgeable
as a MAC as well. The verification circuit of the scheme can be implemented
by an O(log κ)-depth circuit, since the verification algorithm only involves basic
algebraic operations, similarly to the decryption algorithm of the above SKE.

We finally remark that another way of obtaining the SKE required for the
generic construction in Sect. 4 may be to downgrade the CCA-secure public
key encryption scheme by Micciancio and Peikert [MP12] to an SKE scheme.
However, this approach requires the LWE assumption with larger approximation
factor than our approach described above.

7 New Group Signature Constructions

By combining all the results in the previous sections, we obtain the first lattice-
based group signatures in the standard model. We show two instantiations, which
provide tradeoffs between the security assumption and efficiency. The first instan-
tiation leads to a scheme that is proven secure under the SIS and LWE assump-
tion with polynomial approximation factors, but has long group public key and
signatures that are linear in the number of users N . The second instantiation
is more efficient and these parameters do not depend on N . However, in order
to prove security, we have to assume the subexponential hardness of the SIS
problem (with polynomial approximation factors).

First Instantiation. The generic construction of GS schemes in Sect. 4 requires
an OTS scheme, an SKE scheme, and an indexed ABS scheme. We instantiate the
OTS by the scheme proposed by Mohassel [Moh11], which is strongly unforgeable
under the SIS assumption with polynomial approximation factors. We instan-
tiate the SKE by the scheme that is sketched in Sect. 6 (and described in full
details in the full version. The scheme satisfies INDr-CCA security under the
LWE assumption with polynomial approximation factors, key-robustness, and
can have arbitrarily large message space, which are the required properties for the
generic construction. Furthermore, the maximum depth of the decryption circuit
of the SKE, which is denoted by dDec hereafter, is O(log κ). We now consider how
to instantiate the indexed ABS scheme. In addition to the perfect privacy and
co-selective unforgeability, we require the indexed ABS to be capable of dealing
with the circuit class Cκ defined in Eq. (2). It is easy to see that we can bound the
maximum depth dC of circuits in Cκ by dC = O(log N +log �1 +dDec) = O(log κ).
To obtain such an indexed ABS scheme, we apply the conversion in Sect. 3.2
to our indexed ABS scheme in Sect. 5.2, whose no-signing-query unforgeabil-
ity is shown under the SIS assumption with polynomial approximation factors.
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Note that the conversion requires a collision resistant hash, which is known to
be implied by the same SIS assumption [MR04]. In order to make sure that the
ABS scheme obtained through this conversion can deal with the circuit class
Cκ, we require the original indexed ABS to be capable of dealing with a cir-
cuit class Fκ defined in Eq. (1). It is easy to see that the function WldCmp can
be implemented by an O(log �)-depth circuit and thus we can bound the maxi-
mum depth dF of the circuit class Fκ by dF = dC + O(log �) = O(log κ). Since
dF = O(log κ), we can instantiate the latter indexed ABS by the construction
in Sect. 5.2. Summing up the above discussion, we have the following theorem:

Theorem 18 (Theorem 1 restated). Under the hardness of the SIS and LWE
with polynomial approximation factors, we have a group signature scheme with
CCA-selfless anonymity and full traceability in the standard model whose sizes
of the public parameters and signatures are linear in the number of users N .

Second Instantiation. Here, we show another way of instantiating our generic
construction in Sect. 4. We use the same SKE as the first instantiation above,
but we instantiate the indexed ABS scheme with the scheme proposed by
Tsabary [Tsa17]. To do so, we first state the following theorem.

Theorem 19 (Adapted from Sect. 6 of [Tsa17]). There is an indexed ABS
scheme for the circuit class Cκ defined in Eq. (2) with perfect privacy and co-
selective unforgeability whose master public key and signature sizes are bounded
by poly(κ), i.e., independent of the number of users N , assuming the subexpo-
nential hardness of the SIS problem with polynomial approximation factors.

The above theorem is obtained by the result by [Tsa17], but some adaptations
are required. We refer to the full version for discussions.

We then combine the ABS scheme given by Theorem 19 with the SKE scheme
used in the first instantiation. We then obtain the following theorem.

Theorem 20 (Theorem 2 restated). Under the hardness of the LWE prob-
lem and the subexponential hardness of the SIS problem with polynomial approx-
imation factors, there exists a group signature scheme with full-traceability and
CCA-selfless anonymity whose sizes of the public parameters and signatures are
poly(κ), i.e., independent of the number of users N .
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Abstract. We propose a modular security treatment of blind signatures
derived from linear identification schemes in the random oracle model.
To this end, we present a general framework that captures several well
known schemes from the literature and allows to prove their security. Our
modular security reduction introduces a new security notion for identi-
fication schemes called One-More-Man In the Middle Security which we
show equivalent to the classical One-More-Unforgeability notion for blind
signatures.

We also propose a generalized version of the Forking Lemma due to
Bellare and Neven (CCS 2006) and show how it can be used to greatly
improve the understandability of the classical security proofs for blind
signatures schemes by Pointcheval and Stern (Journal of Cryptology
2000).

Keyword: Blind signatures

1 Introduction

Blind Signatures are a fundamental cryptographic building block. Informally, a
blind signature scheme is an interactive protocol between a signer and an user in
which the signer issues signatures on messages chosen by the user. There are two
security requirements: blindness ensures that the signer cannot link a signature
to the run of the protocol in which it was created and one-more unforgeability
that the user cannot forge a new signature. Originally proposed by Chaum [12]
as the basis of his e-cash system, blind signatures have since found numerous
applications including e-voting [22] and anonymous credentials [3,5,9–11,13,19].
Despite a flurry of schemes having been published over the past three and a
half decades, only a handful of works has considered blind signature schemes
which are mutually efficient, instantiable from standard assumptions, and remain
secure even when executed in an arbitrarily concurrent fashion. The notoriously
difficult task of constructing such schemes was first tackled by Pointcheval and
Stern [21]. Their groundbreaking work introduces the well-known forking lemma
and shows how it can be applied to prove security of the Okamoto-Schnorr blind
signature scheme [18] under the discrete logarithm assumption in the random
oracle model (ROM) [8]. Their proof technique was subsequently employed to
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 345–375, 2019.
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Table 1. Examples of linear function families. Group type functions are defined over
G of prime order q with generators g1, g2, RSA type functions are defined over an RSA
modulus N = pq and a ∈ Z

∗
N satisfying ord(a) > 2λ. Set S is the challenge set.

Name Type Definition of linear function F : D → R S Collision resistance

OS Group F : Z2
q → G, (x1, x2) �→ gx1

1 gx2
2 Zq DLOG

OGQ RSA F : Zλ × Z
∗
N → Z

∗
N , (x1, x2) �→ ax1xλ

2 Zλ RSA

FS RSA F : (Z∗
N )k → (Z∗

N )k, (x1, . . . , xk) �→ (x2
1, . . . , x

2
k) Z

k
2 FACTORING

prove the security of further schemes [4,20,23]. Unfortunately, due to the com-
plexity and subtlety of the argument in [21], these works present either only
proof sketches [20] or follow the proof of [21] almost verbatim.

1.1 Our Contribution: A Modular Framework for Blind Signatures

In this work, we propose a general framework which shows how to derive a blind
signature scheme from any linear function family (with certain properties), as
recently introduced by Backendahl et al. [2]. Whereas blindness can be proved
directly, one-more unforgeability is proved in two modular steps. In the first step,
one builds a linear identification scheme from the linear function family. One-
more unforgeability of the blind signature scheme in the random oracle model
is shown to be tightly equivalent to a new and natural security notion of the
linear identification scheme, which we call one-more man-in-the-middle security.
In the second, technically involved, step it is shown that the latter is implied
by collision resistance of the linear function family. Our framework captures
several important schemes from the literature including the Okamoto-Schnorr
(OS) [18], the Okamoto-GQ (OGQ) [18], and (a slightly modified version of) the
Fiat-Shamir (FS) [20] blind signature schemes and offers, for the first time, a
complete and formal proof for some of them. We now provide some details of
our contributions.

Linear Function Families and Identification Schemes. A canonical iden-
tification scheme ID [1] is a three-move protocol of a specific form in which a
prover P convinces a verifier Ver (holding a public key pk) that he knows the
corresponding secret key sk . ID = ID[LF] is a linear identification scheme [2] if
it follows a certain homomorphic structure induced by a linear function LF. For
our purpose of building blind signatures, we will also require LF to be perfectly
correct, collision resistant, and the kernel to contain a torsion-free element. (Note
that this also makes LF many-to-one.) Example instantiations of (collision resis-
tant) linear function families can be derived from OS, OGQ, and FS, cf. Table 1.

We introduce a natural new security notion for (arbitrary, not necessar-
ily linear) canonical identification schemes called One-More Man-in-the-Middle
(OMMIM)-security. Informally, ID is OMMIM-secure if it is infeasible to com-
plete QP+1 (or more) runs of ID in the role of prover P after completing at most
QP runs of ID in the role of verifier Ver. Note that OMMIM is weaker than
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standard Man-in-the-Middle security [15] (which we show to be unachievable
for linear identification schemes) but stronger than impersonation against active
attacks [7,14].

OMMIM Security of Linear Identification Schemes. Our first main
result can be stated as follows:

Theorem 1 (informal). If LF is collision resistant, then ID[LF] is OMMIM
secure.

Our proof is based on a new Subset Forking Lemma that generalizes the one
by Bellare and Neven [6] and contains many technical ingredients from [21] who
prove the security of the Okamoto-Schnorr Blind Signature scheme. Unfortu-
nately, the security bound from Theorem1 is only meaningful if QQP+1

V ≤ |C| =:
q, where QV refers to the (potentially large) number of sessions with the ver-
ifier and challenge set C is a parameter of the identification scheme. We next
show in Theorem 2 that a natural generalization of Schnorr’s ROS-problem [24]
to linear functions can be used to break the OMMIM of ID[LF]. The ROS-
problem (for the relevant parameters) becomes information theoretically hard
when QQP+1

V ≤ q. For all other cases, it can be solved in sub-exponential time
(QV + 1) 2

√
log q/(1+log(QV+1)) using Wagner’s k-List algorithm [25]. Our ROS-

based attack works whenever C is a finite field, which is the case for OS and OGQ.

Canonical Blind Signature Schemes. We introduce the notion of canonical
blind signature schemes (BS), which are three-move blind signature schemes of
a specific form. In terms of security we define blindness and one-more unforge-
ability (OMUF). Intuitively, OMUF states that the adversary cannot produce
more valid message-signatures pairs, then it has completed successful sessions
with the signer. (Note that each such session yields a valid message-signature
pair.) Here we consider a natural and strong version of OMUF in which aban-
doned session with the signer (i.e., sessions that are started but never completed)
are not counted as a successful sessions with the signer as they do not yield a
valid message-signature pair. We propose a general compiler to convert any lin-
ear identification scheme ID[LF] and a hash function H into a canonical blind
signature scheme BS[LF,H]. Our second main result can be stated as follows:

Theorem 3 (informal). OMUF security of BS[LF,H] is tightly equivalent to
OMMIM security of ID[LF] in the random oracle model.
Theorem 4 (informal). BS[LF,H] is perfectly blind.

Figure 1 summarizes our modular security analysis of BS[LF,H]. Combining
our main theorems, we obtain security proofs for the OS, OGQ, and FS blind
signature schemes. Here, the number of random oracle queries QH corresponds
to the number QV of open sessions with the verifier, whereas the number QS

of signing sessions corresponds to the number of sessions QP with the prover.
Hence, OMUF security of BS[LF,H] is only guaranteed if QQS+1

H � q, i.e., for
polylogarithmically parallel signing sessions QS. Our ROS-based attack demon-
strates that this restriction is required.
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Fig. 1. Overview of our modular security analysis for BS[LF,H]. The arrows denote
security implications.

1.2 Technical Details

We now give an intuition for the proof of Theorem1. Roughly, it states that
one can reduce the OMMIM security of ID[LF] from the problem of finding a
non-trivial collision with respect to the linear function LF. Our proof follows the
ideas of Pointcheval and Stern [21], but uses as a key ingredient a novel forking
lemma, which enables us to present the proof in [21] in a much more clean and
general fashion. The main idea behind our reduction is to run the adversary M
against OMMIM-security twice, where the instance I and randomness ω in the
second run are kept the same, and part of the oracle answers, denoted h,h′, are
re-sampled uniformly. In this way, we hope to obtain from M two distinct values
χ̂, χ̂′ which yield a collision with respect to LF. The main challenge in our setting
is that χ̂ and χ̂′ depend on the internal state of M. To show that χ̂ �= χ̂′ with
high probability, one requires an intricate argument that heavily builds upon
a generalized version of Bellare and Neven’s Forking Lemma [6]. Our lemma is
tailored toward the ideas of the proof in [21] and allows for a more fine-grained
replay strategy than the version of [6]. More precisely, our version of the forking
lemma considers not only the probability of successfully running an algorithm
twice with the same instance I, randomness ω, and (partially distinct) oracle
answers h,h′, but also allows to analyze in more detail the properties of the
triples (I, ω,h), (I, ω,h′).

1.3 Blind Signatures from Lattices?

We remark that our proof requires linear functions with perfect correctness.
This leaves open the question of whether our framework can be extended to
cover also the lattice-based identification scheme due to Lyubashevsky [16] and
the resulting blind signature scheme due to Rückert [23]. At a technical level,
imperfect correctness causes a problem in the proof of Theorem 3 which relates
the OMMIM-security of ID[LF] to OMUF-security of BS[LF,H]. If the adver-
sary manages to abort even a single run of BS[LF,H] in the simulated OMUF
experiment, our reduction fails at simulating the necessary amount of completed
runs of BS[LF,H] to the adversary. This subtlety in the proof arises from the
fact that in the OMMIM experiment, there is no way of telling whether a run
of ID[LF] with the adversary in the role of the verifier was completed. On the
other hand, in BS[LF,H], the user can prove to the signer that it obtained an
invalid signature for a particular run of the protocol and hence force a restart.
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We leave it as an open problem to adapt our framework to linear functions with
correctness errors.

2 Preliminaries and Notation

Sets and Algorithms. We denote as h $← H the uniform sampling of the
variable s from the set H. If � is an integer, then [�] is the set {1, . . . , �}. We
write bold lower case letters h to denote a vector of elements and denote the
length of h as |h|. For j > 1, we write h[j] to refer to the first j entries of h. For
1 ≤ j ≤ Q and g ∈ Hj−1 we now define the conditional distribution h′ $← HQ|g
which samples h′ $← HQ conditioned on h′

[j−1] = g. (This can be implemented
by copying vector g into the first j − 1 entries of h′ and next sampling the
subvector h′

j , . . . ,h
′
Q

$← HQ−j+1.)
We write bold upper case letters A to denote matrices. We denote the i-

th row vector of A as Ai and the j-th entry of Ai as Ai,j . We use uppercase
letters A,B to denote algorithms. Unless otherwise stated, all our algorithms are
probabilistic and we write (y1, ...) $← A(x1, ...) to denote that A returns (y1, ...)
when run on input (x1, ...). We write AB to denote that A has oracle access to B
during its execution. Any probabilistic algorithm A(x), on some input x can be
written as a deterministic algorithm A(x;ω) on input x and randomness ω. We
use standard code-based security games and write GA ⇒ 1 to denote the event
that algorithm A is successful in game G.

3 Linear Functions and Identification Schemes

A module is specified by two sets S and M, where S is a ring with multiplicative
identity element 1S and 〈M,+, 0〉 is an additive Abelian group and a mapping ·
: S×M → M, s.t. for all r, s ∈ S and x, y ∈ M we have (i) r ·(x+y) = r ·x+r ·y;
(ii) (r + s) · x = r · x + s · x; (iii) (rs) · x = r · (s · x); and (iv) 1S · x = x.

Syntax of Linear Function Families. A linear function family LF [2] is a
tuple of algorithms (PGen,F). On input the security parameter, the randomized
algorithm PGen returns some parameters par, which implicitly define the sets
S = S(par),D = D(par) and R = R(par). S is a set of scalars such that D and
R are modules over S. Further, F(par , ·) implements a mapping from D to R. To
simplify our presentation, we will omit par from F’s input from now on. F(·) is
required to be a module homomorphism, meaning that for any (x, y) ∈ (D × D)
and s ∈ S:

F(s · x + y) = s · F(x) + F(y).

We say that LF has a torsion-free element from the kernel if for all par
generated with PGen, there exist z∗ ∈ D \ {0} such that (i) F(z∗) = 0; and (ii)
for all s ∈ S satisfying s · z∗ = 0 we have s = 0. Note that this implies that F is
a many-to-one mapping.
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Security Properties of Linear Function Families. We now define two
security properties of a linear function family (collision resistance and ROS secu-
rity) which will play a significant role in the subsequent sections.

We define the advantage of an adversary A, breaking the collision resistance
of LF as

AdvCR
LF (A) := Pr

par
$←PGen,(x1,x2)

$←A(par)

[F(x1) = F(x2) ∧ x1 �= x2]

and say that LF is (ε, t)-CR if for all adversaries A running in time Time(A) ≤ t
we have AdvCR

LF (A) ≤ ε.
The ROS (Random inhomogenities in an Overdetermined, Solvable system

of linear equations) problem was introduced by Schnorr [24] (also in the context
of blind signatures). Here, we generalize Schnorr’s formulation to linear function
families. For a linear function family LF we define the advantage of an adversary
A as

AdvROS
LF (A) := Pr[ROSA

LF ⇒ 1],

where game ROSLF is defined in Fig. 2. We furthermore say that LF is
(ε, t, �,QH)-ROS secure if for all adversaries A running in time Time(A) ≤ t
and making at most QH queries to the random oracle, we have AdvROS

LF (A) ≤ ε.

Fig. 2. Game ROSLF, where H : {0, 1}∗ → S is a random oracle.

The following Lemma summarizes the known hardness results for the Gen-
eralized ROS-Problem for the specific case in which S is a field of prime order q.

Lemma 1 ([17,24,25]). Let LF be a linear function family for which S is a field
of prime order q. For every t, LF is (t, ε = Q�+1

H /q, �,QH)-ROS secure. Con-
versely, LF is not (t, 1/4, �, QH)-ROS secure for QH = (� + 1) 2log q/(1+log(�+1))

and t = O
(
(� + 1)2log q/(1+log(�+1))

)
.

Examples of Linear Function Families. We now give three examples of
LF with the required properties. We remark that [2] contains more examples of
linear functions, but not all of them have a torsion-free element from the kernel.

Okamoto-Schnorr. PGen returns the parameters par := (G, g1, g2) $←
PGen(1λ), where g1, g2 ∈ G, q is prime, and |G| = q. par defines sets S,D,R,
and the homomorphic evaluation function F as

S := Zq; D := Z
2
q; R := G; F : Z2

q → G, (x1, x2) �→ gx1
1 gx2

2 .
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It is not hard to see that F is an homomorphism. It is also not hard to see that
collision resistance of LF is equivalent to the discrete logarithm problem over G,
i.e., AdvCR

LF (A) = AdvDLOG
G

(B). For all parameters par and for w = logg1
(g2),

the element z∗ = (z∗
1 , z∗

2) := (w,−1), yields a torsion-free in the kernel of LF
since F(z∗) = gw

1 g−1
2 = 1, where 1 = 0G is the neutral element in G. Furthermore,

for all s ∈ Zq satisfying s · z∗ = (s · w,−s) = (0, 0) we have s = 0 mod q since q
is prime.

Okamoto-Guillou-Quisquater. PGen returns the parameters par := (N =
pq, λ, a) $← PGen(1λ), where p, q are prime and λ is prime and co-prime with
N,ϕ(N) and a ∈ Z

∗
N , ord(a) > 2λ. The parameters par define

S := Zλ; R := Z
∗
N ; D = {(x1, x2 = za� x1

λ �) mod N | x1 ∈ Zλ, z ∈ Z
∗
N},

where D is an abelian group with the group operation (x1, x2) ◦ (y1, y2) = (x1 +
y1 mod λ, x2y2a

� x1+y1
λ � mod N). The evaluation function F is defined as

F : Zλ × Z
∗
N → Z

∗
N ,F(x1, x2) := ax1xλ

2 .

F is an homomorphism, since:

F((x1, x2) ◦ (y1, y2)) = F(x1 + y1 mod λ, x2y2a
� x1+y1

λ � mod N)

= ax1+y1 mod λ
(
x2y2a

� x1+y1
λ �)λ

= a((x1+y1) mod λ)+λ� x1+y1
λ �(x2y2)λ (1)

= ax1+y1(x2y2)λ (2)
= F(x1, x2)F(y1, y2),

where (1) and (2) follow from the identity: (x mod λ) = x − λ�x
λ�.

A collision (x1, x2) �= (y1, y2) with F(x1, x2) = F(y1, y2) implies ax1−y1 =
(y2/x2)λ with gcd(λ, x1 − x2) = 1 from which one can extract the a1/λ using
the extended Euclidean Algorithm. Hence, collision resistance is implied by the
RSA assumption.

For all parameters par , z∗ = (z∗
1 , z∗

2) := (−1, a1/λ) is a torsion-free element in
the kernel of F since F(z∗) = a−1 mod λ(a1/λ)λa� −1

λ � = a(−1 mod λ)+� −1
λ �a = 1,

where 1 = 0R is the neutral element in R. Furthermore, for all s ∈ Zλ satisfying
s · z∗ = (−s, (a1/λ)sa� −s

λ �) = (0, 1) we have s = 0 mod λ.

Fiat-Shamir. PGen returns parameters par := (N = pq, k), where p, q are prime
and k is an integer. Parameters par define

S := Z
k
2 ; D := (Z∗

N )k
,R := (Z∗

N )k;

F : (Z∗
N )k → (Z∗

N )k,F(x1, . . . , xk) �→ (x2
1, . . . , x

2
k).

Clearly, collision resistance of LF is equivalent to factorization. For all parameters
par , z∗ = (z∗

1 , . . . , z∗
k) := (−1, . . . ,−1) is a torsion-free element from the kernel

of F since F(z∗) = (1, . . . , 1), where (1, . . . , 1) = 0R is the neutral element in R.
Furthermore, for all s ∈ Z

k
2 satisfying s · z∗ = (−1s1 , . . . ,−1sk) = (1, . . . , 1) we

have s = 0 mod 2.
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4 Canonical Identification Schemes

4.1 Syntax and Security

We now recall the definition of define canonical identification schemes [1] and
discuss their security notions.

Definition 1 (Canonical Identification Scheme). A canonical identifica-
tion scheme is a tuple of algorithms ID = (IGen,P,Ver).

– The key generation algorithm IGen takes as input parameters par and out-
puts a public/secret key pair (pk , sk). We assume that pk implicitly defines a
challenge set C = C(pk).

– The prover algorithm P is split into two randomized algorithms P1,P2, i.e.,
P = (P1,P2). P1 takes as input a secret key sk and returns a commitment R
and a state st. The deterministic algorithm P2 takes as input a state st, a
secret key sk, a commitment R, and a challenge c ∈ C. It returns a response
s.

– The deterministic verification algorithm Ver takes as input a public key pk, a
commitment R, a challenge c ∈ C, and a response s. It returns b ∈ {0, 1}.
The diagram below depicts an interaction between prover P and verifier V.

For correctness we require that for all (pk, sk) ∈ IGen(par), all (st , R) ∈ P1(sk),
all c ∈ C, and all s ∈ P2(sk,R, c, st), it holds that Ver(pk,R, c, s) = 1.

Prover P(sk) Verifier V(pk)

(st , R) $← P1(sk) R−→
c←− c $← C

s ← P2(sk , R, c, st) s−→ b ← Ver(pk , R, c, s)
Output 1 Output b

Standard security notions for canonical identification schemes include imper-
sonation security against passive and active attacks, and Man-in-the-Middle
security [1,7]. We now introduce a new security notion called One-More Man-
in-the-Middle security. The One-More Man-in-the-Middle (OMMIM) security
experiment for an identification scheme ID and an adversary A is defined in Fig. 3.
Adversary A simultaneously plays against a prover (modeled through oracles P1
and P2) and a verifier (modeled through oracles V1 and V2). Session identifiers
pSid and vSid are used to model an interaction with the prover and the veri-
fier, respectively. A call to P1 returns a new prover session identifier pSid and
sets flag pSesspSid to open. A call to P2(pSid , ·) with the same pSid sets the
flag pSesspSid to closed. Similarly, a call to V1 returns a new verifier session
identifier vSid and sets flag vSessvSid to open. A call to V2(vSid , ·) with the
same pSid sets the flag vSessvSid to closed. A closed verifier session vSid is
successful if the oracle V2(vSid , ·) returns 1. Lines 03–06 define several inter-
nal random variables for later references. Variable QP2(A) counts the number
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of closed prover sessions and QP1(A) counts the number of abandoned sessions
(i.e., sessions that were opened but never closed). Most importantly, variable
�(A) counts the number of successful verifier sessions and variable QP2(A) counts
the number of closed sessions with the prover. Adversary A wins the OMMIM
game, if �(A) ≥ QP2(A) + 1, i.e., if A convinces the verifier in at least one
more successful verifier sessions than there exist closed sessions with the prover.
The OMMIM advantage function of an adversary A against ID is defined as
AdvOMMIM

ID (A) := Pr[OMMIMA
ID ⇒ 1].

We say that ID is (ε, t,QV, QP1 , QP2)-OMMIM secure if for all adversaries
A satisfying Time(A) ≤ t, QV(A) ≤ QV, QP2(A) ≤ QP2 , and QP1(A) ≤ QP1 , we
have AdvOMMIM

ID (A) ≤ ε.

Fig. 3. The One-More Man-in-the-Middle security game OMMIMA
ID

We remark that impersonation against active and passive attacks is a weaker
notion than OMMIM security, whereas Man-in-the-Middle (MIM) security is
stronger. Concretely, in the standard MIM experiment the winning condition
is relaxed in the sense that there only has to exist a successful session with the
verifier with a transcript that does not result from a closed session with the
prover.
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4.2 Identification Schemes from Linear Function Families

As showed in [2], a linear function family LF directly implies a canonical iden-
tification scheme ID[LF]. The construction is given in Fig. 4, where par $← PGen
are fixed global system parameters. We will prove later that ID[LF] is OMMIM
secure. This is the best we can hope for since by the linearity of LF, ID[LF] can
never be (fully) MIM secure. (Concretely, an adversary receiving a commitment
R from the prover can send R′ = F(r̂) + R for some r̂ �= 0 to the verifier. After
forwarding c′ = c from verifier to prover, it receives s from the prover and sub-
mits s′ = s + r̂ to the verifier. Since (R, c, s) �= (R′, c′, s′), A wins the MIM
experiment with advantage 1.)

Fig. 4. Construction of ID[LF] := (IGen,P := (P1,P2),Ver) with challenge set C = S.

Theorem 1. Suppose LF is a linear function family with a torsion-free element
from the kernel. If LF is (ε′, t′)-CR secure, then ID[LF] is (ε, t,QV, QP2 , QP1)-
OMMIM secure where

t′ = 2t, ε′ = O

((
ε − (QVQP)QP2+1

q

)2 1
Q2

VQ3
P2

)

and QP = QP1 + QP2 .

The proof of this theorem will be given in Sect. 6.

Theorem 2. Let LF be a linear function family. If ID[LF] is (ε, t,QV, QP2 , QP1 =
0)-OMMIM secure then LF is (ε, t, � = QP2 , QH = QV)-ROS secure.

Proof. Let A be an (ε, t, �,QH)-adversary in game ROS. We assume w.l.o.g.
that A only makes distinct queries to the random oracle H. In Fig. 5, we show
how to construct an (ε, t,QV, QP2 , QP1)-adversary B that is executed in game
OMMIMID and uses A as a subroutine. First, B starts QP2 sessions with the
Prover oracle P1, receiving commitments R. Next, A is executed, where B answers
a query of the form H(a) from A as c′

a , where c′
a := V1(

∑QP2
j=1 ajRj). Note that
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Fig. 5. Adversary B in the OMMIMB
ID game

in this manner, each query to H prompts B to open a session with the verifier
in OMMIMID. Finally, from A’s solution to the ROS problem, B successfully
closes QP2 + 1 (out of Q) sessions with the verifier.

If A is successful then cQP2+1 = −1 and ∧ Ac = 0. Furthermore for all
i ∈ [QP2 + 1], H(Zi) = Ai,QP2+1 and we have

F(s′
i) =F(

QP2∑

j=1

Ai,jsj) =
QP2∑

j=1

Ai,j(cj · pk + Rj) = pk
QP2∑

j=1

Ai,jcj + R′
Zi

=pk · c′
Zi

+ R′
Zi

,

which is equivalent to Ver(pk ,R′
Zi

, c′
Zi

, s′
i) = 1. This shows bi = 1 for all i ∈

[QP2 + 1], which concludes the proof.

5 Canonical Blind Signature Schemes

5.1 Syntax of Canonical Blind Signature Schemes

We now introduce the syntax of a canonical blind signature scheme. We use the
term canonical to describe a three-move blind signature protocol in which the
signer’s and the user’s moves consist of picking and sending a random strings
of some length, and the user’s final signature is a deterministic function of the
conversation and the public key. For simplicity, we assume the existence of a
public set of parameters par .

Definition 2 (Canonical Blind Signature Scheme). A canonical blind sig-
nature scheme BS is a tuple of algorithms BS = (KG,S,U,Ver).

– The key generation algorithm KG outputs a public key/secret key pair (pk , sk).
We assume that pk implicitly defines a challenge set C = C(pk).
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– The Signer algorithm S is split into two algorithms S = (S1,S2). S1 returns
the first message of the transcript, commitment R and the Signers’s state stS.
Deterministic algorithm S2 takes as input the Signer’s state stS, a secret key
sk, a commitment R, and a challenge c ∈ C. It returns with the last message
of the transcript, the answer s.

– The User algorithm U is split into two algorithms U = (U1,U2). U1 takes
as input the public key pk, a commitment R, a message m and returns the
Users’ state stU and the second message of the transcript, a challenge c ∈ C.
Deterministic algorithm U2 takes as input the public key pk, the transcript
(R, c, s), a message m, the Users’ state stU and outputs a signature σ.

– The deterministic verification algorithm Ver takes as input a message m, a
signature σ, a public key pk and outputs a bit b indicating accept (b = 1) or
reject (b = 0).

The diagram below depicts an interaction between signer S and user U.
For perfect correctness we require that for all (pk , sk) $← KG(par), m ∈
{0, 1}∗, σ being the output of the interaction of S(sk) and U(pk ,m) we have
Ver(pk , σ,m) = 1.

Signer S(sk) User U(pk ,m)

(stS, R) $← S1(sk) R−→
c←− (stU, c) $← U1(pk , R,m)

s ← S2(sk , R, c, stS)
s−→ σ ← U2(pk , R, c, s,m, stU)

Output 1 Output σ

We remark that modeling S2 and U2 as deterministic algorithms is w.l.o.g.
since randomness can be transmitted through the states.

5.2 Security of Canonical Blind Signature Schemes

Security of a Canonical Blind Signature Scheme BS is captured by two security
notions: blindness and one more unforgability.

Blindness. Intuitively, blindness ensures that a signer S that issues signatures
on two messages (m0,m1) of its own choice to a user U, can not tell in what order
it issues them. In particular, S is given both resulting signatures σ0,σ1, and gets
to keep the transcripts of both interactions with U. Let A be an adversary in
the BlindA

BS experiment. In BS, the experiment takes the role of an User and A
takes the role of the signer. First, the experiment selects a random bit b which
will decide the order of adversarially chosen messages in both transcripts. Then
A is given access to all three oracles Init, U1 and U2. By convention, A first has
to query oracle Init. Then, by the definition of the experiment, A may query at
most two sessions. During these two sessions A learns two sets of transcripts T 0 =
(R0, c0, s0) and T 1 = (R1, c1, s1). In transcripts T 0 and T 1, the experiment
embeds messages mb and m1−b, respectively. If A behaves honestly, A learns
signatures σb and σ1−b on messages mb and m1−b, else nothing at all. At the
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Fig. 6. Games defining BlindA
BS for a canonical blind signature scheme BS, with the

convention that A makes exactly one query to Init at the beginning of its execution.

end of the experiment, for A to win, A has to guess the bit b. In Fig. 6 we formally
define the BlindA

BS experiment. Formally, the advantage function of an adversary
A in attacking the blindness of BS is defined as AdvBlind

BS (A) := Pr[BlindA
BS ⇒

1] − 1
2 . We say BS is perfectly blind if AdvBlind

BS (A) = 0.

OMUF-Security of Blind Signature Schemes. We now define the stan-
dard unforgeability notion for blind signatures, namely one-more unforgeability.
Intuitively, One-More Unforgeability ensures that a user U can not produce a
single signature more than it should be able to learn from interactions with the
signer S. Let A be an adversary in the OMUFA

BS experiment, which takes the
role of the User. Let QS ← QS1 + QS2 . Session identifier sid ∈ [QS] is used to
model one interaction with the signer. A call to S1 returns a new session iden-
tifier sid ∈ [QS] and sets flag sesssid to open. A call to S2(sid , ·) with the same
sid sets the flag sesssid to closed. The closed sessions result in QS2 different
transcripts (Rk, ck, sk), where each challenge ci is adversarially chosen. (The
remaining QS1 abandoned sessions are of the form (Rk,⊥,⊥) and hence do not
contain a complete transcript.) A wins the experiment, if it is able to produce
�(A) ≥ QS2(A)+1 signatures (on distinct messages) after having interacted with
QS2(A) ≤ QS2 closed signer sessions (from which he should be able to compute �
signatures). In Fig. 7 we formally define the OMUFA

BS experiment. Formally, the
advantage function of an adversary A in attacking the One-More Unforgeability
of BS is defined as AdvOMUF

BS (A) := Pr[OMUFA
BS ⇒ 1].

We say that BS is (ε, t,QS1 , QS2)-OMUF secure if for all adversaries A satis-
fying Time(A) ≤ t, QS2(A) ≤ QS2 , and QS1(A) ≤ QS1 , we have AdvOMUF

BS (A) ≤
ε. In the random oracle model we say BS is (ε, t,QS1 , QS2 , QH)-OMUF secure if
for all adversaries A variables ε, t,QS1 and QS2 satisfy the latter conditions and
QH is the number of queries to H.
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Fig. 7. OMUFA
BS Game

5.3 Linear Blind Signature Schemes

Let LF be a linear function family and H a random oracle. Figure 8 shows how
to construct a blind signature scheme BS[LF,H].

Fig. 8. Let LF be a linear function and H : {0, 1}∗ → C be a hash function. This figure
shows the construction of the canonical blind signature scheme BS[LF,H] = (KG, S =
(S1, S2),U = (U1,U2),Ver).
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Theorem 3. Let LF be a linear function family and H be a random oracle.
ID[LF] is (ε′, t′, QV, QP1 , QP2)-OMMIM secure if and only if BS[LF,H] is (ε, t,
QS1 , QS2 , QH)-OMUF secure, where

t′ = t, ε′ = ε, QV = QH + QS2 + 1, QP1 = QS1 , QP2 = QS2 .

Proof. Let A be an (ε, t,QS1 , QS2 , QH)-OMUF adversary in the OMUFBS

experiment. In Fig. 9 we construct an (ε′, t′, QV, QP1 , QP2)-OMMIM adversary
B that is executed in the OMMIMID experiment that perfectly simulates A’s
oracles S1, S2 and H via its own oracles P1, P2, and V1, respectively. Suppose that
A is successful, i.e., it outputs QP2 + 1 valid signatures on distinct messages and
the number of successfully sessions with the signer is at most QP2 . Since σi is
a valid signature on mi, B can make a successful query to oracle V2(vSid , s′

i) in
line 06 resulting in bi = 1. Overall, B makes QP2 +1 successful queries to V2 such
that the internal counter �(A) is set to QP2 + 1 and B wins. This proves ε′ ≥ ε.
Moreover, the number of abandoned sessions (denoted as QS1) in the OMUFBS

experiment equals the number of abandoned sessions (denoted as QP1) in the
OMMIMID experiment and the number of calls to oracle V1 is bounded by QH

plus additional QP + 1 implicit calls in Line 04.

Fig. 9. Reduction from OMMIMB
ID to OMUFA

BS

Let B be an (ε, t,QV, QP1 , QP2)-OMMIM adversary in the OMMIMID

experiment. In Fig. 10 we construct an (ε′, t′, QS1 , QS2 , QH)-OMUF adversary
A that is executed in the OMUFBS experiment that perfectly simulates B’s
oracles P1, P2 and V1 via its own oracles S1, S2 and H, respectively. To simulate
oracle V2, A executes the same code as specified in the OMMIMID experiment,
with the only difference being line 20. This additional line does not change the
behavior of V2 and is thus not detectable by B. Suppose that B is successful, i.e.,
it completes QP2 sessions as a verifier and QP2 + 1 sessions as a prover (denoted
as �(B) in the OMMIMID experiment). From the QP2 + 1 successful calls of
B to V2, it follows that A learns QP2 + 1 transcripts (R, c, s) from the view of
an honest User in BS. Since messages m are constructed by calling U1, A cre-
ates QP2 + 1 signatures after learning values s by simply following the protocol
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specification of U2. This proves ε′ ≥ ε. Moreover the number of abandoned ses-
sions (denoted as QP1(B)) in the OMMIMID experiment equals the number of
abandoned sessions (denoted as QS1(A)) in the OMUFBS experiment.

Fig. 10. Reduction from OMUFA
BS to OMMIMB

ID

Theorem 4. If LF is a linear function, then BS[LF,H] is perfectly blind.

Proof. Let A be an adversary playing in game BlindA
BS[LF,H]. After its execution,

A holds (m0,σ0), (m1,σ1) where σ0 is a signature on m0 and σ1 is a signature
on m1. (Here we assume without loss of generality that both signatures are valid
as otherwise A obtains σ0 = σ1 = ⊥ and thus AdvA

Blind,BS[LF,H] = 0.) Adversary
A furthermore learns two transcripts T 1 = (R1, c1, s1) and T 2 = (R2, c2, s2)
from its interaction with the first and the second signer session, respectively.
The goal of A is to match the message/signature pairs with the two transcripts.

We show that there exists no adversary which is able to distinguish, whether
the message m0 was used by the experiment to create Transcript T 1 or T 2.
We argue that for all sessions 1 ≤ i ≤ 2 and indexes 0 ≤ j ≤ 1, the tuple
(T i,mj ,σj) completely determines stj = (α(i,j),β(i,j)). This implies that given
A’s view, it is equally likely that the experiment was executed with b = 0 or
b = 1 since for both choices b ∈ {0, 1} there exists properly distributed states
(st0, st1) that would have resulted in A’s view.

It remains to argue that T i = (Ri, ci, si), mj , and σj = (c′
j , s

′
j) determine

values α(i,j),β(i,j) such that c′
j = H(Ri +β(i,j) ·pk +F(α(i,j)),mj) and α(i,j) =
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s′
j − si,β(i,j) = ci − c′

j . Uniformity of (α(i,j),β(i,j)) is implied by uniformity of
(s′

j , c
′
j), which come from the experiment.

Since T i is a valid transcript, we have F(si) = Ri + ci · pk . Therefore

Ri + β(i,j) · pk + F(α(i,j)) = Ri + (ci − c′
j) · pk + F(s′

j − si)

= Ri + ci · pk − F(si) + F(s′
j) − c′

j · pk
= F(s′

j) − c′
j · pk .

Since σj is a valid signature on mj we have H(F(s′
j) − c′

j · pk ,mj) = c′
j which

concludes the proof.

Corollary 1. Let LF be a linear function family with a torsion-free element
from the kernel. If LF is (ε′, t′)-CR secure, then BS[LF,H] is (ε, t,QS1 , QS2 , QH)-
OMUF secure where

t′ = 2t, ε′ = O

((
ε − (Q + QS)QS2+1

q

)2 1
Q2Q3

S2

)

,

QS = QS2 + QS1 and Q = QH + QS2 + 1. Moreover, BS[LF,H] is perfectly blind.

Proof. The proof of the one-more unforgability security follows from combining
Theorems 1 and 3. Perfect blindness follows directly from Theorem4.

6 Proof of Theorem1

Before we give the proof of Theorem1, we provide some intuition about the
difficulty that arises in the context of proving the OMMIM-security of ID[LF]
and how our proof overcomes it. The main issue is that the adversary M in
OMMIM can interleave sessions between the oracles P1,P2 and V1, V2. This
gives M strong adaptive capabilities which lead to the ROS-attack described in
Sect. 4.2. The ROS-attack is reflected in Corollary 2, which can be translated
into an upper bound on M’s success probability of providing our reduction with
two identical values χ̂, χ̂′ that result from running the adversary twice with fixed
public key pk and randomness ω, but (partially) different replies h,h′ to V1. If
the adversary succeeds in setting χ̂ = χ̂′, the reduction fails in recovering a
collision with respect to LF, i.e., values χ̂ �= χ̂′ s.t. LF(χ̂) = LF(χ̂′).

To prove the bound in Corollary 2, our proof follows the ideas of [21], but
takes into account also the abandoned sessions with P1, which [21] does not con-
sider. The intuitive idea behind ensuring χ̂ �= χ̂′ is to run M on an instance I = pk
that could be the result of applying F to either sk or ŝk = sk+z∗ from the domain
D of F. One can show that from M’s perspective, the resulting view is identical
in both cases (Lemma 7). On the other hand, since χ̂ depends non-trivially on
sk (or ŝk, respectively), it should take (with high probability) different values
from the reduction’s point of view, depending on whether the reduction used sk
or sk +z∗ as a preimage to pk . Indeed, this intuition is supported by Corollary 2.
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However, Corollary 2 can only be translated into an upper bound on the proba-
bility that χ̂ takes the same particular value C(sk , ω,h), regardless of whether
sk or ŝk was used by the reduction. Intuitively, C(sk , ω,h) is the value that
is most likely taken by the random variable χ̂′, which occurs as the result of
rewinding M with the same sk , ω, but a partially different set of V1-replies h′

(i.e., the probability is over the fresh values in h′). To ensure that χ̂ �= χ̂′, the
analysis first defines the set B of tuples (sk , ω,h) which yield a successful run of
M, but for which χ̂(sk , ω,h) �= C(sk , ω,h). It then estimates the probability that
both tuples (sk , ω,h), (sk , ω,h′) that are used to run M, are tuples from the set
B. The final step of the proof is to leverage this fact to obtain a lower bound on
the success probability of the reduction, i.e., to ensure that χ̂ �= χ̂′ (Lemma 2).
To argue that not only both runs of M are successful, but yield tuples in B, we
present a more general version of the forking lemma by Bellare and Neven [6].

6.1 The Reduction Algorithm

Let M be an (ε, t,QV, QP1 , QP2)-OMMIM adversary that plays in game
OMMIMID[LF]. Without loss of generality, we will assume throughout the proof
that QP1(M) = QP1 , QP2(M) = QP2 , QV(M) = QV, �(M) = QP2 + 1, as well as
QP1 ≥ QP2 .

For 1 ≤ i ≤ QP2 +1, we define an auxiliary algorithm Ai which ‘sandboxes’ M
and that will be used later by another adversary B to break collision resistance
of LF. More concretely, Ai obtains as input an instance I = sk , runs M on
random tape ω and uses vector h ∈ CQV to answer M’s QV queries to V1. The
description of algorithm Ai is given in Fig. 11. Note that Ai is deterministic for
fixed randomness ω.

Analysis of Ai. To analyze Ai, we now introduce some notation. First, consider
the variables Ĵ i, χ̂i, ŝ

′, and ĥi defined on Lines 32 through 35 of Fig. 11. These
variables are introduced to simplify the referencing of values associated with
successful calls to the verification oracle V2(vSid , ·) over the course of the proof.
Concretely, the variable

χ̂i = ŝ′
i − ĥi · sk

results from the i-th successful call to the verification oracle V2(vSid , ·), whereas
the index Ĵ i indicates which session identity vSid corresponds to this call.

We will fix an execution of Ai via the tuples I = sk , h, and Ai’s randomness
ω. We define the set W of successful inputs of Ai as the set of all such tuples
(I, ω,h) which lead to a successful run of Ai, i.e.,

W := {(I, ω,h) | Ĵ i �= 0; (Ĵ i, χ̂i) ← Ai(I,h;ω)}

Note that W is independent of i and, by construction of Ai,

Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ W] = AdvOMMIM
ID[LF] (M) = ε.
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We can view Ĵ i, χ̂i, ŝ
′, and ĥi as random variables whose distribution is induced

by the the uniform distribution on (I × Ω × CQV). Furthermore, their outcome
is uniquely determined given (I, ω,h) ∈ W, so let us write in this case

(
Ĵ i(I, ω,h), χ̂i(I, ω,h)

)
← Ai(I,h;ω).

Fig. 11. Wrapping adversaries Ai for 1 ≤ i ≤ QP2 + 1

In the following, when stating probability distributions over I, ω, and h,
unless specified differently, we will always refer to the uniform distributions.
That is, (I, ω,h) $← (I × Ω × CQV).

We consider the following probability for fixed (I, ω,h), j, c and i:

Pr
h′ $←CQV |h [j−1]

[Ĵ i(I, ω,h′) = j ∧ χ̂i(I, ω,h′) = c], (3)

where the conditional probability h′ $← CQV |h[j−1] was introduced in Sect. 2.
We denote by ci,j(I, ω,h) the lexicographically first value c s.t. the probabil-

ity in (3) is maximized when (I, ω,h), j, i are fixed. We then write Ci(I, ω,h) =
ci,Ĵ i(I,ω,h)(I, ω,h). For fixed i, j, let us define Bi,j ⊂ W as
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Fig. 12. Adversary B against CR of LF.

Bi,j := {(I, ω,h) ∈ W | Ĵ i(I, ω,h) = j ∧ χ̂i(I, ω,h) �= Ci(I, ω,h)}.

and

βi,j = Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ Bi,j ]

δi,j = Pr
(I,ω,h)

$←(I×Ω×CQV ),h′ $←CQV |h [j−1]

[
χ̂i(I, ω,h′) �= χ̂i(I, ω,h)
∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]
.

Lemma 2. For all i, j: δi,j ≥ βi,j

(
βi,j

8 − 1
2q

)
.

The proof of this lemma is postponed to Sect. 6.3.

Lemma 3. There exist i ∈ [QP2 + 1], j ∈ [QV] such that βi,j >(

ε −
Q

QP2
+1

V ·(QP2
+QP1

QP1
)

q

)

· 1
2QV(QP2+1) .

The proof of this lemma is postponed to Sect. 6.4.

Adversary B against CR of LF. We are now ready to describe our (ε′, t′)-
adversary B depicted in Fig. 12, which plays in the collision resistance game of
LF. B works roughly as follows. It first samples randomness ω $← Ω, a secret key
sk $← D, a vector h $← CQV , and an index i∗ $← [QP2 + 1] and runs Ai∗ on input
(I = sk,h;ω). It samples a second random vector h′ as h′ $← CQV |h[Ĵ i∗ −1] and
runs Ai∗ a second time with the same randomness ω and the same instance I,
but replacing h by h′. In the case that B does not abort, note that by definition
of Ai∗ ,

F(χ̂i∗) = F(ŝ′
i∗ − ĥi∗ · sk)

= S′
Ĵ i∗ − hĴ i∗ · pk = R′

Ĵ i∗
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Because Ai∗ sees identical answers for the first Ĵ i∗ − 1 queries to V1, it behaves
identically in both runs until it receives the answer to the Ĵ i∗ -th query to V1.
In particular, Ai∗ poses the same Ĵ i∗ -th query to V1 which means that F(χ̂′

i∗) =
R′

Ĵ i∗ and therefore also F(χ̂i∗) = F(χ̂′
i∗). We now consider

ε′ = AdvCR
LF (B) = Pr

par
$←PGen,(χ̂i∗ ,χ̂′

i∗ )
$←B(par)

[χ̂i∗ �= χ̂′
i∗ ∧ F(χ̂i∗) = F(χ̂′

i∗)]

=
QV∑

j=1

Pr[χ̂i∗ �= χ̂′
i∗ ∧ F(χ̂i∗) = F(χ̂′

i∗) ∧ Ĵ i∗ = Ĵ
′
i∗ = j]

=
QV∑

j=1

Pr[χ̂i∗ �= χ̂′
i∗ ∧ Ĵ i∗ = Ĵ

′
i∗ = j] =

QV∑

j=1

δi∗,j

≥ 1
QP2 + 1

· max
i∈[QP2+1]

QV∑

j=1

δi,j

≥ max
i,j

βi,j

2(QP2 + 1)

(
βi,j

4
− 1

q

)
,

where for the first inequality we used that
∑

δi∗,j = maxi

∑
δi,j with probability

at least 1/(QP2 + 1) and in the last step we applied Lemma 2. By Lemma 3 we
finally obtain

ε′ ≥
ε −

Q
QP2

+1

V ·(QP2
+QP1

QP1
)

q

32Q2
V(QP2 + 1)3

·
⎛

⎝ε −
Q

QP2+1

V · (QP2+QP1
QP1

)

q
− 16Q2

V(QP2 + 1)2

q

⎞

⎠

= O

((
ε − (QVQP1)

QP2+1

q

)2 1
Q2

VQ3
P2

)

,

where the last equality holds for QP1 ≥ QP2 .

6.2 A Generalized Forking Lemma

In this section we will introduce our Subset Forking Lemma, a generalization of
the forking lemma that will be useful for proving Lemma2.

Lemma 4 (Subset Splitting Lemma). Let B ⊂ X × Y be such that

Pr
(x,y)

$←X×Y
[(x, y) ∈ B] ≥ ε.

For any α ≤ ε, define

Bα =
{
(x, y) ∈ X × Y | Pr

y′ $←Y
[(x, y′) ∈ B] ≥ ε − α

}
.

Then

Pr
y,y′ $←Y,x

$←X
[(x, y′) ∈ B ∧ (x, y) ∈ B] ≥ (ε − α) · α.
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Proof. The standard splitting lemma [21] states that

∀(x, y) ∈ Bα : Pr
y′ $←Y

[(x, y′) ∈ B] ≥ ε − α (4)

Pr
(x,y)

$←B
[(x, y) ∈ Bα] ≥ α/ε (5)

For the conditional probability, we have that

Pr
y,y′ $←Y,x

$←X
[(x, y′) ∈ B | (x, y) ∈ B]

≥ Pr
y,y′ $←Y,x

$←X
[(x, y′) ∈ B ∧ (x, y) ∈ Bα | (x, y) ∈ B]

= Pr
y,y′ $←Y,x

$←X
[(x, y′) ∈ B | (x, y) ∈ Bα ∩ B] · Pr

(x,y)
$←X×Y

[(x, y) ∈ Bα | (x, y) ∈ B]

= Pr
y,y′ $←Y,x

$←X
[(x, y′) ∈ B | (x, y) ∈ Bα] · Pr

(x,y)
$←X×Y

[(x, y) ∈ Bα | (x, y) ∈ B]

= Pr
y,y′ $←Y,x

$←X
[(x, y′) ∈ B | (x, y) ∈ Bα] · Pr

(x,y)
$←B

[(x, y) ∈ Bα]

≥ (ε − α) · α

ε
,

where the inequalities follow from (4) and (5), respectively. We conclude the
proof by

Pr
y,y′ $←Y,x

$←X
[(x, y′) ∈ B ∧ (x, y) ∈ B]

= Pr
y,y′ $←Y,x

$←X
[(x, y′) ∈ B | (x, y) ∈ B] · Pr

(x,y)
$←X×Y

[(x, y) ∈ B]

≥ (ε − α) · α

ε
· ε = (ε − α) · α.

Lemma 5 (Subset Forking Lemma). Fix any integer Q ≥ 1 and a set H of
size > 2 as well as a set of side outputs Σ, instances I, and a randomness space
Ω. Let C be an algorithm that on input (I,h) ∈ I × HQ and randomness ω ∈ Ω
returns a tuple (j, σ), where 1 ≤ j ≤ Q and σ ∈ Σ. We partition its input space
I × Ω × HQ into sets W1, . . . ,WQ where for fixed 1 ≤ j ≤ Q, Wj is the set of
all (I, ω,h) that result in (j, σ) ← C(h, I;ω) for some arbitrary side output σ.

For any 1 ≤ j ≤ Q and B ⊆ Wj define

acc(B) := Pr
(I,ω,h)

$←I×Ω×HQ

[(I, ω,h) ∈ B]

frk(B, j) := Pr
(I,ω,h)

$←I×Ω×HQ,h′ $←CQV |h [j−1]

[
hj �= h′

j

(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B
]

.

Then

frk(B, j) ≥ acc(B) ·
(
acc(B)

4
− 1

|H|
)

.
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Proof. By applying Lemma 4 to ε = acc(B), α := ε/2, and to the two sets
X = I × Ω × Hj−1 and Y = HQ−j+1, we obtain

Pr
(I,ω,h)

$←I×Ω×HQ,h′ $←CQV |h [j−1]

[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B] ≥ acc2(B)
4

.

Next, we observe that

frk(B, j) = Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B ∧ hj �= h′
j ]

= Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B] − Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B ∧ hj = h′
j ]

≥ Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B] − Pr[(I, ω,h) ∈ B ∧ hj = h′
j ]

= Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B] − Pr[(I, ω,h) ∈ B]
|H| ,

where the last equation follows from independence and uniformity of hj and h′
j .

We continue with

= Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B] − Pr[(I, ω,h) ∈ B]
|H|

≥ acc2(B)
4

− Pr[(I, ω,h) ∈ B]
|H| =

acc2(B)
4

− acc(B)
|H|

= acc(B) ·
(
acc(B)

4
− 1

|H|
)

,

which completes the proof.

Note that Lemma 5 implies the version of the Forking Lemma in [6]. Namely,
by, defining the set W =

⋃
j Wj , acc(W) = Pr

(I,ω,h)
$←I×Ω×HQ,(j,σ)←C(I,h;ω)

[j ≥ 1]

and frk :=
Q∑

j=1

frk(Wj , j), we obtain

frk =
Q∑

j=1

frk(Wj , j) =
Q∑

j=1

acc(Wj) ·
(
acc(Wj)

4
− 1

|H|
)

=

⎛

⎝
Q∑

j=1

acc2(Wj)
4

⎞

⎠ − acc(W)
|H| ≥ 1

4Q

⎛

⎝
Q∑

j=1

acc(Wj)

⎞

⎠

2

− acc(W)
|H|

=
1

4Q
acc2(W) − acc(W)

|H| = acc(W) ·
(
acc(W)

4Q
− 1

|H|
)

,

where the inequality follows from Jensen’s inequality (Lemma 3 in [6]).
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6.3 Proof of Lemma 2

We will show in the following that for all (I, ω,h) $← (I × Ω × CQV), d ∈ D:

αi,j(I, ω,h, d) := Pr
h′ $←CQV |h [j−1]

[χ̂i(I, ω,h′) �= d ∧ Ĵ i(I, ω,h′) = j]

≥ μi,j(I, ω,h)/2, (6)

where

μi,j(I, ω,h) := Pr
h′ $←CQV |h [j−1]

[(I, ω,h′) ∈ Bi,j ∧ hj �= h′
j ].

For a true/false statement s, define B(s) as 1 if s is true and 0 otherwise. It
is easy to see that (6) implies the theorem statement since

δi,j = Pr
(I,ω,h)

$←(I×Ω×CQV ),h′ $←CQV |h [j−1]

[
χ̂i(I, ω,h′) �= χ̂i(I, ω,h)
∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]

=
∑

d

Pr
(I,ω,h)

$←(I×Ω×CQV ),h′ $←CQV |h [j−1]

[
χ̂i(I, ω,h′) �= d ∧ χ̂i(I, ω,h) = d

∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]

=
∑

d

EI,ω,h [B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · αi,j(I, ω,h, d)]

≥ 1
2

∑

d

EI,ω,h [B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · μi,j(I, ω,h)],

where in the last step, we have applied linearity and monotonicity of the
expectation and the fact that due to (6), for all I, ω,h ∈ CQV , d, we have
αi,j(I, ω,h, d) ≥ μi,j(I, ω,h)/2. We continue with

1
2

∑

d

EI,ω,h [B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · μi,j(I, ω,h)]

=
1
2

·
∑

d

Pr
(I,ω,h)

$←(I×Ω×CQV ),h′ $←CQV |h [j−1]

[
χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j
∧(I, ω,h′) ∈ Bi,j ∧ hj �= h′

j

]

=
1
2

· Pr
(I,ω,h)

$←(I×Ω×CQV ),h′ $←CQV |h [j−1]

[
Ĵ i(I, ω,h) = j
∧(I, ω,h′) ∈ Bi,j ∧ hj �= h′

j

]
(7)

≥ 1
2
· Pr
(I,ω,h)

$←(I×Ω×CQV ),h′ $←CQV |h [j−1]

[(I, ω,h) ∈ Bi,j∧(I, ω,h′) ∈ Bi,j∧hj �= h′
j ]

(8)

=
1
2

· frk(Bi,j , j) (9)

≥ βi,j

(
βi,j/8 − 1

2q

)
, (10)
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where from (7) to (8), we have used the fact that (I, ω,h′) ∈ Bi,j implies
Ĵ i(I, ω,h′) = j. The inequality from (9) to (10) follows directly from Lemma 5.

We prove (6) by analyzing two cases. For all I, ω,h, d, we define

γi,j(I, ω,h, d) := Pr
h′ $←CQV |h [j−1]

[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j ∧ hj �= h′
j ].

Case 1: γi,j(I, ω,h, d) ≥ μi,j(I, ω,h)/2.
Note that in this case we can assume d �= Ci(I, ω,h). (This is because if

d = Ci(I, ω,h), then γi,j(I, ω,h, d) ≤ Pr[χ̂i(I, ω,h′) = Ci(I, ω,h) ∧ (I, ω,h′) ∈
Bi,j ] = 0 which would trivialize the claim.)

αi,j(I, ω,h, d) = Pr
h′ $←CQV |h [j−1]

[χ̂i(I, ω,h′) �= d ∧ Ĵ i(I, ω,h′) = j]

≥ Pr[χ̂i(I, ω,h′) = Ci(I, ω,h) ∧ Ĵ i(I, ω,h′) = j]

≥ Pr[χ̂i(I, ω,h′) = d ∧ Ĵ i(I, ω,h′) = j]

Using again that (I, ω,h′) ∈ Bi,j implies Ĵ i(I, ω,h′) = j, we obtain

Pr[χ̂i(I, ω,h′) = d ∧ Ĵ i(I, ω,h′) = j] ≥ Pr[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j ]
≥ γi,j(I, ω,h, d) ≥ μi,j(I, ω,h)/2.

Case 2: γi,j(I, ω,h, d) < μi,j(I, ω,h)/2. Now,

αi,j(I, ω,h, d) = Pr
h′ $←CQV |h [j−1]

[χ̂i(I, ω,h′) �= d ∧ Ĵ i(I, ω,h′) = j]

≥ Pr[χ̂i(I, ω,h′) �= d ∧ (I, ω,h′) ∈ Bi,j ∧ hj �= h′
j ]

= Pr[(I, ω,h′) ∈ Bi,j ∧ hj �= h′
j ]

− Pr[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j ∧ hj �= h′
j ]

= μi,j(I, ω,h) − γi,j(I, ω,h, d) > μi,j(I, ω,h)/2.

This proves (6) and hence the lemma.

6.4 Proof of Lemma 3

Consider again the algorithm Ai in Fig. 11 and its internal variables. On input
(I = sk , ω = (ωM, r),h), Ai invokes M on pk = F(sk) and randomness ωM

and answers its queries using the values in r,h. Similarly as before, this allows
us to fix an execution of M (within Ai) via a tuple of the form (I, ω,h) =
(I, (ωM, r),h). Let c(I, ω,h) denote the vector of challenge values as defined in
Line 20 of Fig. 11.

Recall that we have assumed that F : D −→ R and the existence of a torsion-
free element z∗ ∈ D \{0} such that (i) F(z∗) = 0; and (ii) ∀s ∈ C : s · z∗ = 0 =⇒
s = 0.
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Lemma 6. Consider the mapping

Φ : W −→ (I × Ω × CQV), (sk , (ωM, r), h) �→ (sk + z∗, (ωM, r − z∗ · c(I, ω, h)), h),

where we make the convention that for v ∈ D ∪ C ∪ R, v · ⊥ := 0. Then Φ is a
permutation on W.

For the proof we require the following lemma.

Lemma 7. Let (I, ω,h) ∈ W. Then the tuples (I, ω,h) and Φ(I, ω,h) fix the
same execution of M.

Proof. We show that M sees identical values in both executions corresponding
to (I, ω,h) and Φ(I, ω,h). To this end we consider all values in the view of M.

– Initial input to M. Since Φ does not alter the values of ωM, we only need to
verify that M obtains the same public key in both executions. This is ensured
via F(sk + z∗) = F(sk) + F(z∗) = F(sk) = pk .

– Outputs of oracle P1. Oracle P1 consecutively returns the values from R =
F(r), as defined in Line 01 of Fig. 11. They remain the same in both executions
since F(r) = R = R − 0 · c(I, ω,h) = F(r) − F(z∗) · c(I, ω,h) = F(r − z∗ ·
c(I, ω,h)).

– Outputs of oracle P2. Oracle P2 consecutively returns the values from s =
csk + r, as defined in Line 01 of Fig. 11. They remain the same in both
executions since r + sk · c(I, ω,h) = s = r − z∗ · c(I, ω,h) + z∗ · c(I, ω,h) +
sk · c(I, ω,h) = (r − z∗ · c(I, ω,h)) + (sk + z∗) · c(I, ω,h).

– Outputs of oracle V2. Oracle P2 consecutively returns the values from b.
They remain the same in both executions since they depend on R, h, and
the randomness ωM.

Thus, (I, ω,h) and Φ(I, ω,h) fix the same executions of M.

Proof (Proof of Lemma 6). First note that Lemma 7 implies that Φ maps to
W. It remains to prove that Φ is also a bijection. Suppose Φ is not injective.
Thus, for distinct tuples (I, (ωM, r),h) �= (I ′, (ω′

M, r′),h′), Φ (I, (ωM, r),h) =
Φ(I ′, (ω′

M, r′),h′). This implies ωM = ω′
M and h = h′. Similarly, sk + z∗ =

sk ′ + z∗, which implies that sk = sk ′. Lastly, r − z∗ · c (I, (ωM, r),h) =
r′ − z∗ · c(I ′, ω′

M, r′,h′). Since Φ (I, (ωM, r),h) = Φ(I ′, (ω′
M, r′),h′), by Claim 7,

(I, (ωM, r),h) and (I ′, (ω′
M, r′),h′) fix the same execution and therefore also

c (I, (ωM, r),h) = c(I ′, (ω′
M, r′),h′). This implies r = r′, leading to the contra-

diction (I, (ωM, r),h) = (I ′, (ω′
M, r′),h′).

To prove that Φ is surjective, we consider the function Φ−1 : (I×Ω×CQV) −→
(I×Ω×CQV), defined as Φ−1(sk , (ωM, r),h) = (sk−z∗, (ωM, r+z∗·c(I, ω,h)),h),
which is the inverse of Φ. With the same argument as above, one can also prove
that Φ−1 is injective which implies the surjectivity of Φ.

We now introduce the following notation. Let B =
⋃

i,j

Bi,j and let G = W \B.

That is, for all (I, ω,h) ∈ G, we have ∀k ∈ [QP2 + 1] : χ̂k(I, ω,h) = Ck(I, ω,h).
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The following combinatorial lemma lower bounds the probability that χ̂ takes
different values (i.e., differs in at least one component) as a result of distinct
instances I = sk, I ′ = sk + z∗.

Lemma 8. For any fixed (I, (ωM, r)) ∈ I × Ω,

Pr
h

$←CQV

[(I, (ωM, r),h) ∈ G ∧ Φ (I, (ωM, r),h) ∈ G] ≤
Q

QP2+1

V · (QP2+QP1
QP1

)

q
.

Proof. We argue by contradiction. Thus, assume that for some (I, (ωM, r)) ∈
I × Ω,

Pr
h

$←CQV

[(I, (ωM, r),h) ∈ G ∧ Φ (I, (ωM, r),h) ∈ G] >
Q

QP2+1

V · (QP2+QP1
QP1

)

q
.

Then there exist a set {u1, ..., uQP2+1} of QP2 +1 distinct indices from [QV] such
that

Pr
h

$←CQV

[
((I, (ωM, r),h) ∈ G) ∧ (Φ (I, (ωM, r),h) ∈ G)
∧∀j : Ĵ j (I, (ωM, r),h) = uj

]
>

(QP2+QP1
QP1

)

q
.

Similarly, there exists a vector d ∈ (C ∪ {⊥})QP2+QP1 of challenges such that
d has exactly QP1 entries which are ⊥ and furthermore has the property that

Pr
h

$←CQV

[
((I, (ωM, r),h) ∈ G) ∧ (Φ (I, (ωM, r),h) ∈ G)
∧ (c (I, (ωM, r),h) = d) ∧

(
∀j : Ĵ j (I, (ωM, r),h) = uj

)
]

>
1

qQP2+1
.

Lastly, there exists a set {v1, ..., vQV−QP2−1} of QV −QP2 − 1 distinct indices
from [QV]\{u1, ..., uQP2+1} and a vector (h̃v1 , ..., h̃vQV−QP2

−1) ∈ CQV−QP2−1 such
that

Pr
h

$←CQV

[
((I, (ωM, r),h) ∈ G) ∧ (Φ (I, (ωM, r),h) ∈ G) ∧ (c (I, (ωM, r),h) = d)
∧

(
∀j : Ĵ j (I, (ωM, r),h) = uj

)
∧

(
∀j : hvj

= h̃vj

)
]

>
1

qQP2+1qQV−QP2−1
=

1
qQV

.

Since the random variable h takes a particular value k ∈ CQV with probability
exactly q−QV , the statement inside the probability term above must be true for
at least two distinct vectors k,k′ ∈ CQV . Furthermore, since the condition in the
probability term above fixes all but the QP2 + 1 components {u1, ..., uQP2+1} of
k and k′, there exists an index i ∈ [QP2 + 1] s.t. kui

�= k′
ui

.
W.l.o.g., let i be the smallest such index. This implies that ∀j < ui : kj = k′

j

and kui
�= k′

ui
. Therefore,

Ci(I, (ωM, r), k) = Ci(I, (ωM, r), k ′). (11)
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Furthermore, by Lemma 7,

Ci(I, (ωM, r),k) = ŝ′
i(I, (ωM, r),k) − sk · kui

= ŝ′
i(Φ(I, (ωM, r),k)) − sk · kui

= ŝ′
i(Φ(I, (ωM, r),k)) − sk · kui

+ z∗ · kui
− z∗ · kui

= ŝ′
i(Φ(I, (ωM, r),k)) − (sk + z∗) · kui

+ z∗ · kui

= Ci(Φ(I, (ωM, r),k)) + z∗ · kui

= Ci(I, ωM, r − z∗ · c(I, (ωM, r),k),k) + z∗ · kui
. (12)

Analogously, we infer

Ci(I, (ωM, r),k′) = ŝ′
i(I, (ωM, r),k′) − sk · k′

ui

= Ci(I, ωM, r − z∗ · c(I, (ωM, r),k′),k′) + z∗ · k′
ui

. (13)

Combining (in this order) Eqs. 12, 11, and 13, we obtain:

Ci(I, ωM, r − z∗ · c(I, (ωM, r),k),k) + z∗ · kui

= Ci(I, (ωM, r),k) = Ci(I, (ωM, r),k′)
= Ci(I, ωM, r − z∗ · c(I, (ωM, r),k′),k′) + z∗ · k′

ui
. (14)

Since above we have fixed c(I, (ωM, r),k) = c(I, (ωM, r),k′) = d, we also know
that

Ci(I, ωM, r − z∗ · c(I, (ωM, r),k),k)
= Ci(I, ωM, r − z∗ · d,k)
= Ci(I, ωM, r − z∗ · d,k′) (15)

= Ci(I, ωM, r − z∗ · c(I, (ωM, r),k′),k′), (16)

where 15 follows again from the fact that ∀j < ui : kj = k′
j . By combining 14 and

16, it now follows that z∗ ·kui
= z∗ ·k′

ui
or, equivalently, z∗ ·(kui

−k′
ui

) = 0. Thus,
torsion-freeness of z∗ implies that kui

= k′
ui

which contradicts the assumption
that kui

�= k′
ui

. This completes the proof.

Corollary 2. Pr
(I,ω,h )

$←(I×Ω×CQV )

[(I, ω, h)∈G ∧ Φ(I, ω, h)∈G]≤
Q

QP2
+1

V
·(QP2

+QP1
QP1

)

q
.

Discussion. The lower bound in Corollary 2 exponentially depreciates with the
number QP2 of parallel sessions allowed in the OMMIM experiment. Unfor-
tunately, the ROS-attack in Sect. 4.2 shows that the bound in Corollary 2 can
not be improved beyond a factor of

(QP2+QP1
QP1

)
. The reason for this is that our

attacker computes χ̂ in a manner that does not depend on h, but only on ω, I
(more precisely, any contribution of h ‘cancels out’ in the values returned by
the attacker). Therefore, χ̂ always takes the ‘most likely’ value according to
3 in the sense that, regardless of h, the attacker can force (ω, I,h) ∈ G and
Φ(ω, I,h) ∈ G.
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Lemma 9. Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ B] ≥ 1
2

(

ε −
Q

QP2
+1

V ·(QP2
+QP1

QP1
)

q

)

.

Proof. We partition G into subsets Gg,Gb such that all elements in Gg are mapped
into G via Φ and all elements in Gb are mapped into B via Φ. It follows that

Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ G]

= Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ Gg] + Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ Gb]. (17)

By Corollary 2 and because Φ is a bijection, we can infer that

Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ Gg] ≤
Q

QP2+1

V · (QP2+QP1
QP1

)

q
, (18)

Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ Gb] ≤ Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ B]. (19)

It follows from 17, 18, 19 that

Pr[(I, ω,h) ∈ G] ≤
Q

QP2+1

V · (QP2+QP1
QP1

)

q
+ Pr[(I, ω,h) ∈ B]. (20)

From 20, we can bound Pr[(I, ω,h) ∈ B] as

Pr[(I, ω,h) ∈ B] = Pr[(I, ω,h) ∈ W] − Pr[(I, ω,h) ∈ G]

≥ Pr[(I, ω,h) ∈ W] − Pr[(I, ω,h) ∈ B] −
Q

QP2+1

V · (QP2+QP1
QP1

)

q
.

Since ε = Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ W], we finally obtain

Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h) ∈ B] ≥ 1
2

⎛

⎝ε −
Q

QP2+1

V · (QP2+QP1
QP1

)

q

⎞

⎠ .

We are now ready to prove Lemma 3, i.e., we show that there exist i ∈

[QP2 +1], j ∈ [QV] such that βi,j >

(

ε −
Q

QP2
+1

V ·(QP2
+QP1

QP1
)

q

)

· 1
2QV(QP2+1) . Toward

a contradiction, suppose instead that for all i ∈ [QP2 +1], j ∈ [QV], we have that

Pr
(I,ω,h)

$←(I×Ω×CQV )

[(I, ω,h)∈Bi,j ]<

⎛

⎝ε −
Q

QP2+1

V · (QP2+QP1
QP1

)

q

⎞

⎠ · 1
2QV(QP2 + 1)

.
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By Lemma 9,

1
2

⎛

⎝ε −
Q

QP2+1

V · (QP2+QP1
QP1

)

q

⎞

⎠ ≤ Pr[(I, ω,h) ∈ B] = Pr[(I, ω,h) ∈
⋃

i,j

Bi,j ]

≤
∑

i,j

Pr[(I, ω,h) ∈ Bi,j ] <
1
2

⎛

⎝ε −
Q

QP2+1

V · (QP2+QP1
QP1

)

q

⎞

⎠ .

This is a contradiction.
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Abstract. We construct a verifiable delay function (VDF). A VDF is a
function whose evaluation requires running a given number of sequential
steps, yet the result can be efficiently verified. They have applications
in decentralised systems, such as the generation of trustworthy public
randomness in a trustless environment, or resource-efficient blockchains.
To construct our VDF, we actually build a trapdoor VDF. A trapdoor
VDF is essentially a VDF which can be evaluated efficiently by parties
who know a secret (the trapdoor). By setting up this scheme in a way
that the trapdoor is unknown (not even by the party running the setup,
so that there is no need for a trusted setup environment), we obtain
a simple VDF. Our construction is based on groups of unknown order
such as an RSA group, or the class group of an imaginary quadratic field.
The output of our construction is very short (the result and the proof of
correctness are each a single element of the group), and the verification
of correctness is very efficient.

1 Introduction

We describe a function that is slow to compute and easy to verify: a verifiable
delay function (henceforth, VDF) in the sense of [4]1. These functions should
be computable in a prescribed amount of time Δ, but not faster (the time mea-
sures an amount of sequential work, that is work that cannot be performed faster
by running on a large number of parallel cores), and the result should be easy
to verify (i.e., for a cost polylog(Δ)). These special functions are used in [15]
(under the name of slow-timed hash functions) to construct a trustworthy ran-
domness beacon: a service producing publicly verifiable random numbers, which
are guaranteed to be unbiased and unpredictable. These randomness beacons,
introduced by Rabin in [17], are a valuable tool in a public, decentralised set-
ting, as it is not trivial for someone to flip a coin and convince their peers that
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the outcome was not rigged. A number of interesting applications of VDFs have
recently emerged—see [4] for an overview. Most notably, they can be used to
design resource-efficient blockchains, eliminating the need for massively power-
consuming mining farms. VDFs play a key role in the Chia blockchain design
(chia.net), and the Ethereum Foundation (ethereum.org) and Protocol Labs
(protocol.ai) are teaming up to investigate the technology of VDFs which
promise to play a key role in their respective platforms.

There is thereby a well-motivated need for an efficient construction. This
problem was left open in [4], and we address it here with a new, simple, and
efficient VDF.

1.1 Contribution

An efficient construction. The starting point of our construction is the time-
lock puzzle of Rivest, Shamir and Wagner [18]: given as input an RSA group
(Z/NZ)×, where N is a product of two large, secret primes, a random element
x ∈ (Z/NZ)×, and a timing parameter t, compute x2t

. Without the factorisation
of N , this task requires t sequential squarings in the group. More generally, one
could work with any group G of unknown order. This construction is only a
time-lock puzzle and not a VDF, because given an output y, there is no efficient
way to verify that y = x2t

.
The new VDF construction consists in solving an instance of the time-lock

puzzle of [18], and computing a proof of correctness, which allows anyone to
efficiently verify the result. Fix a timing parameter Δ, a security level k (say,
128, 192, or 256), and a group G. Our construction has the following properties:

1. It is Δ-sequential (meaning that it requires Δ sequential steps to evaluate)
assuming the classic time-lock assumption of [18] in the group G.

2. It is sound (meaning that one cannot produce a valid proof for an incorrect
output) under some group theoretic assumptions on G, believed to be true
for RSA groups and class groups of quadratic imaginary number fields.

3. The output and the proof of correctness are each a single element of the group
G (also, the output can be recovered from the proof and a 2k-bit integer; so
it is possible to transmit a single group element and a small integer instead
of 2 group elements).

4. The verification of correctness requires essentially two exponentiations in the
group G, with exponents of bit-length 2k.

5. The proof can be produced in O(Δ/ log(Δ)) group operations.

For applications where a lot of these proofs need to be stored, widely dis-
tributed, and repeatedly verified, having very short and efficiently verifiable
proofs is invaluable.

Following discussions about the present work at the August 2018 workshop
at Stanford hosted by the Ethereum Foundation and the Stanford Center for
Blockchain Research, we note that our construction features two other useful
properties: the proofs can be aggregated and watermarked. Aggregating consists
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in producing a single short proof that simultaneously proves the correctness of
several VDF evaluations. Watermarking consists in tying a proof to the evalua-
tor’s identity; in a blockchain setting, this allows to give credit (and a reward) to
the party who spent time and resources evaluating the VDF. These properties
are discussed in Sect. 7.

Note that the method we describe to compute the proof requires an amount
O(Δ/ log(Δ)) group operations. Hence, there is an interval between the guaran-
teed sequential work Δ and the total work (1 + ε)Δ, where ε = O(1/ log(Δ)).
For practical parameters, this ε is in the order of 0.05, and this small part of
the computation is easily parallelizable, so that the total evaluation time with
s cores is around (1 + 1/(20s))Δ. This gap should be of no importance since
anyways, computational models do not capture well small constant factors with
respect to real-world running time. Precise timing is unlikely to be achievable
without resorting to trusted hardware, thus applications of VDFs are designed
not to be too sensitive to these small factors.

If despite these facts it is still problematic in some application to know the
output of the VDF slightly before having the proof, it is possible to eliminate
this gap by artificially considering the proof as part of the output (the output
is now a pair of group elements, and the proof is empty). The resulting protocol
is still Δ-sequential (trivially), and as noted in Remark 5, it is also sound. We
also propose a second method in Sect. 4.3 which allows to exponentially reduce
the overhead of the proof computation at the cost of lengthening the resulting
proof by a few group elements.

Trapdoor verifiable delay function. The construction proposed is actually a trap-
door VDF, from which we can derive an actual VDF. A party, Alice, holds a
secret key sk (the trapdoor), and an associated public key pk. Given a piece of
data x, a trapdoor VDF allows to compute an output y from x such that anyone
can easily verify that either y has been computed by Alice (i.e., she used her
secret trapdoor), or the computation of y required an amount of time at least
Δ (where, again, time is measured as an amount of sequential work). The veri-
fication that y is the correct output of the VDF for input x should be efficient,
with a cost polylog(Δ).

Deriving a verifiable delay function. Suppose that a public key pk for a trapdoor
VDF is given without any known associated secret key. This results in a simple
VDF, where the evaluation requires a prescribed amount of time Δ for everyone
(because there is no known trapdoor).

Now, how to publicly generate a public key without any known associated pri-
vate key? In the construction we propose, this amounts to the public generation
of a group of unknown order. A standard choice for such groups are RSA groups,
but it is hard to generate an RSA number (a product of two large primes) with a
strong guarantee that nobody knows the factorisation. It is possible to generate
a random number large enough that with high probability it is divisible by two
large primes (as done in [19]), but this approach severely damages the efficiency
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of the construction, and leaves more room for parallel optimisation of the arith-
metic modulo a large integer, or for specialised hardware acceleration. It is also
possible to generate a modulus by a secure multiparty execution of the RSA key
generation procedure among independent parties, each contributing some secret
random seeds (as done in [6]). However, in this scenario, a third party would
have to assume that the parties involved in this computation did not collude to
retrieve the secret. We propose to use the class group of an imaginary quadratic
order. One can easily generate an imaginary quadratic order by choosing a ran-
dom discriminant, and when the discriminant is large enough, the order of the
class group cannot be computed. These class groups were introduced in cryptog-
raphy by Buchmann and Williams in [9], exploiting the difficulty of computing
their orders (and the fact that this order problem is closely related to the dis-
crete logarithm and the root problems in this group). To this day, the best known
algorithms for computing the order of the class group of an imaginary quadratic
field of discriminant d are still of complexity L|d|(1/2) under the generalised Rie-
mann hypothesis, for the usual function Lt(s) = exp

(
O

(
log(t)s log log(t)1−s

))
,

as shown in [14] and [20].

Circumventing classic impossibility results. Finally, we further motivate the
notion of trapdoor VDF by showing that it constitutes an original tool to circum-
vent classic impossibility results. We illustrate this in Sect. 8 with a simple and
efficient identification protocol with surprising zero-knowledge and deniability
properties.

1.2 Time-Sensitive Cryptography and Related Work

Rivest, Shamir and Wagner [18] introduced in 1996 the use of time-locks for
encrypting data that can be decrypted only in a predetermined time in the future.
This was the first time-sensitive cryptographic primitive taking into account the
parallel power of possible attackers. Other timed primitives appeared in different
contexts: Bellare and Goldwasser [1,2] suggested time capsules for key escrowing
in order to counter the problem of early recovery. Boneh and Naor [7] introduced
timed commitments: a hiding and binding commitment scheme, which can be
forced open by a procedure of determined running time. More recently, and as
already mentioned, the notion of slow-timed hash function was introduced in
[15] as a tool to provide trust to the generation of public random numbers.

Verifiable delay functions. These slow-timed hash functions were recently revis-
ited and formalised by Boneh et al. in [4] under the name of verifiable delay
functions. The function proposed in [15], sloth, is not asymptotically efficiently
verifiable: the verification procedure (given x and y, verify that sloth(x) = y)
is faster than the evaluation procedure (given x, compute the value sloth(x))
only by a constant factor. The authors of [4] proposed practical constructions
that achieve an exponential gap between evaluation and verification, but do not
strictly achieve the requirements of a VDF. For one of them, the evaluation
requires an amount polylog(Δ) of parallelism to run in parallel time Δ. The
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other one is insecure against an adversary that can run a large (but feasible)
pre-computation, so the setup must be regularly updated. The new construction
we propose does not suffer these disadvantages.

Pietrzak’s verifiable delay function. Independently from the present work,
another efficient VDF was proposed in [16]. The author describes an elegant con-
struction, provably secure under the classic time-lock assumption of [18] when
implemented over an RSA group (Z/NZ)× where N is a product of two safe
primes. The philosophy of [16] is close to our construction: it consists in solving
the puzzle of [18] (for a timing parameter Δ), and computing a proof of correct-
ness. Their proofs can be computed with O(

√
Δ log(Δ)) group multiplications.

However, the proofs obtained are much longer (they consist of O(log(Δ)) group
elements, versus a single group element in our construction), and the verification
procedure is less efficient (it requires O(log(Δ)) group exponentiations, versus
essentially two group exponentiations in our construction—for exponents of bit-
length the security level k in both cases).

In the example given in [18], the group G is an RSA group for a 2048 bit
modulus, and the time Δ is set to 240 sequential squarings in the group, so
the proofs are 10KB long. In comparison, in the same setting, our proofs are
0.25KB long.

1.3 Notation

Throughout this paper, the integer k denotes a security level (typically 128, 192,
or 256), and the map H : {0, 1}∗ → {0, 1}2k denotes a secure cryptographic hash
function. For simplicity of exposition, the function H is regarded as a map from
A∗ to {0, 1}2k, where A∗ is the set of strings over some alphabet A such that
{0, 1} ⊂ A. The alphabet A contains at least all nine digits and twenty-six
letters, and a special character �. Given two strings s1, s2 ∈ A∗, denote by
s1||s2 their concatenation, and by s1|||s2 their concatenation separated by �.
The function int : {0, 1}∗ → Z≥0 maps x ∈ {0, 1}∗ in the canonical manner
to the non-negative integer with binary representation x. The function bin :
Z≥0 → {0, 1}∗ maps any non-zero integer to its binary representation with no
leading 0-characters, and bin(0) = 0.

2 Trapdoor Verifiable Delay Functions

Let Δ : Z>0 → R>0 be a function of the (implicit) security parameter k. This
Δ is meant to represent a time duration, and what is precisely meant by time is
explained in Sect. 3 (essentially, it measures an amount of sequential work). A
party, Alice, has a public key pk and a secret key sk. Let x be a piece of data.
Alice, thanks to her secret key sk, is able to quickly evaluate a function trapdoorsk
on x. On the other hand, other parties knowing only pk can compute evalpk(x) in
time Δ, but not faster (and important parallel computing power does not give a
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substantial advantage in going faster; remember that Δ measures the sequential
work), such that the resulting value evalpk(x) is the same as trapdoorsk(x).

More formally, a trapdoor VDF consists of the following components (very
close to the classic VDF defined in [4]):

keygen → (pk, sk) is a key generation procedure, which outputs Alice’s public key
pk and secret key sk. As usual, the public key should be publicly available,
and the secret key is meant to be kept secret.

trapdoorsk(x,Δ) → (y, π) takes as input the data x ∈ X (for some input space
X ), and uses the secret key sk to produce the output y from x, and a (possibly
empty) proof π. The parameter Δ is the amount of sequential work required
to compute the same output y without knowledge of the secret key.

evalpk(x,Δ) → (y, π) is a procedure to evaluate the function on x using only the
public key pk, for a targeted amount of sequential work Δ. It produces the
output y from x, and a (possibly empty) proof π. This procedure is meant
to be infeasible in time less than Δ (this will be expressed precisely in the
security requirements).

verifypk(x, y, π,Δ) → true or false is a procedure to check if y is indeed the correct
output for x, associated to the public key pk and the evaluation time Δ,
possibly with the help of the proof π.

Note that the security parameter k is implicitly an input to each of these
procedures. Given any key pair (pk, sk) generated by the keygen procedure, the
functionality of the scheme is the following. Given any input x and time param-
eter Δ, let (y, π) ← evalpk(x,Δ) and (y′, π′) ← trapdoorsk(x,Δ). Then, y = y′

and the procedures verifypk(x, y, π,Δ) and verifypk(x, y′, π′,Δ) both output true.
We also require the protocol to be sound, as in [4]. Intuitively, we want that

if y′ is not the correct output of evalpk(x,Δ) then verifypk(x, y′,Δ) outputs false.
We however allow the holder of the trapdoor to generate misleading values y′.

Definition 1 (Soundness). A trapdoor VDF is sound if any polynomially
bounded algorithm solves the following soundness-breaking game with negligible
probability (in k): given as input the public key pk, output a message x, a value
y′ and a proof π′ such that y′ �= evalpk(x,Δ), and verifypk(x, y′, π′,Δ) = true.

The second security property is that the correct output cannot be produced
in time less than Δ without knowledge of the secret key sk. This is formalised in
the next section via the Δ-evaluation race game. A trapdoor VDF is Δ-sequential
if any polynomially bounded adversary wins the Δ-evaluation race game with
negligible probability.

3 Wall-Clock Time and Computational Assumptions

Primitives such as verifiable delay functions or time-lock puzzles wish to deal
with the delicate notion of real-world time. This section discusses how to formally
handle this concept, and how it translates in practice.
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3.1 Theoretical Model

A precise notion of wall-clock time is difficult to capture formally. However, we
can get a first approximation by choosing a model of computation, and defining
time as an amount of sequential work in this model. A model of computation is
a set of allowable operations, together with their respective costs. For instance,
working with circuits with gates ∨, ∧ and ¬ which each have cost 1, the notion of
time complexity of a circuit C can be captured by its depth d(C), i.e., the length
of the longest path in C. The time-complexity of a boolean function f is then
the minimal depth of a circuit implementing f , but this does not reflect the time
it might take to actually compute f in the real world where one is not bound
to using circuits. A random access machine might perform better, or maybe a
quantum circuit.

A good model of computation for analysing the actual time it takes to solve
a problem should contain all the operations that one could use in practice (in
particular the adversary). From now on, we suppose the adversary works in a
model of computation M. We do not define exactly M, but only assume that
it allows all operations a potential adversary could perform, and that it comes
with a cost function c and a time-cost function t. For any algorithm A and input
x, the cost C(A, x) measures the overall cost of computing A(x) (i.e., the sum of
the costs of all the elementary operations that are executed), while the time-cost
T (A, x) abstracts the notion of time it takes to run A(x) in the model M. For
the model of circuits, one could define the cost as the size of the circuit and the
time-cost as its depth. For concreteness, one can think of the model M as the
model of parallel random-access machines.

All forthcoming security claims are (implicitly) made with respect to the
model M. The time-lock assumption of Rivest, Shamir and Wagner [18] can be
expressed as Assumption 1 below.

Definition 2 ((δ, t)-time-lock game). Let k ∈ Z>0 be a difficulty parameter,
and A be an algorithm playing the game. The parameter t is a positive integer,
and δ : Z>0 → R>0 is a function. The (δ, t)-time-lock game goes as follows:

1. An RSA modulus N is generated at random by an RSA key-generation pro-
cedure, for the security parameter k;

2. A(N) outputs an algorithm B;
3. An element g ∈ Z/NZ is generated uniformly at random;
4. B(g) outputs h ∈ Z/NZ.

Then, A wins the game if h = g2
t

mod N and T (B, g) < tδ(k).

Assumption 1 (Time-lock assumption). There is a cost function δ : Z>0 →
R>0 such that the following two statements hold:

1. There is an algorithm S such that for any modulus N generated by an RSA
key-generation procedure with security parameter k, and any element g ∈
Z/NZ, the output of S(N, g) is the square of g, and T (S, (N, g)) < δ(k);
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2. For any t ∈ Z>0, no algorithm A of polynomial cost2 wins the (δ, t)-time-lock
game with non-negligible probability (with respect to the difficulty parame-
ter k).

The function δ encodes the time-cost of computing a single modular squaring,
and Assumption 1 expresses that without knowledge of the factorisation of N ,
there is no faster way to compute g2

t

mod N than performing t sequential
squarings.

With this formalism, we can finally express the security notion of a trapdoor
VDF.

Definition 3 (Δ-evaluation race game). Let A be a party playing the game.
The parameter Δ : Z>0 → R>0 is a function of the (implicit) security parameter
k. The Δ-evaluation race game goes as follows:

1. The random procedure keygen is run and it outputs a public key pk;
2. A(pk) outputs an algorithm B;
3. Some data x ∈ X is generated according to some random distribution of min-

entropy at least k;
4. BO(x) outputs a value y, where O is an oracle that outputs the evaluation

trapdoorsk(x′,Δ) on any input x′ �= x.

Then, A wins the game if T (B, x) < Δ and evalpk(x,Δ) outputs y.

Definition 4 (Δ-sequential). A trapdoor VDF is Δ-sequential if any polyno-
mially bounded player (with respect to the implicit security parameter) wins the
above Δ-evaluation race game with negligible probability.

Observe that it is useless to allow A to adaptively ask for oracle evalua-
tions of the VDF during the execution of A(pk): for any data x′, the procedure
evalpk(x′,Δ) produces the same output as trapdoorsk(x′,Δ), so any such request
can be computed by the adversary in time O(Δ).

Remark 1. Suppose that the input x is hashed as H(x) (by a secure crypto-
graphic hash function) before being evaluated (as is the case in the construction
we present in the next section), i.e.

trapdoorsk(x,Δ) = tsk(H(x),Δ),

for some procedure t, and similarly for eval and verify. Then, it becomes unnec-
essary to give to B access to the oracle O. We give a proof in Appendix A when
H is modeled as a random oracle.

Remark 2. At the third step of the game, the bound on the min-entropy is fixed
to k. The exact value of this bound is arbitrary, but forbidding low entropy is
important: if x has a good chance of falling in a small subset of X , the adversary
can simply precompute the VDF for all the elements of this subset.
2 i.e., C(A, g) = O(f(len(g))) for a polynomial f , with len(g) the binary length of g.
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3.2 Timing Assumptions in the Real World

Given an algorithm, or even an implementation of this algorithm, its actual run-
ning time will depend on the hardware on which it is run. If the algorithm is
executed independently on several single-core general purpose CPUs, the vari-
ations in running time between them will be reasonably small as overclocking
records on clock-speeds barely achieve 9GHz (cf. [10]), only a small factor higher
than a common personal computer. Assuming the computation is not parallelis-
able, using multiple CPUs would not allow to go faster. However, specialized
hardware could be built to perform a certain computation much more efficiently
than on any general purpose hardware.

For these reasons, the theoretical model developed in Sect. 3.1 has a limited
accuracy. To resolve this issue, and evaluate precisely the security of a timing
assumption like Assumption 1, one must estimate the speed at which the current
state of technology allows to perform a certain task, given a possibly astronom-
ical budget. To this end, the Ethereum Foundation and Protocol Labs [13] are
currently investigating extremely fast hardware implementations of RSA mul-
tiplication, and hope to construct a piece of hardware close enough to today’s
technological limits, with the goal of using the present construction in their
future platforms. Similarly, the Chia Network has opened a competition in the
near future for very fast multiplication in the class group of a quadratic imagi-
nary field.

4 Construction of the Verifiable Delay Function

Let x ∈ A∗ be the input at which the VDF is to be evaluated. Alice’s secret
key sk is the order of a finite group G, and her public key is a description of
G allowing to compute the group multiplication efficiently. We also assume that
any element g of G can efficiently be represented in a canonical way as binary
strings bin(g). Also part of Alice’s public key is a hash function HG : A∗ → G.

Example 1 (RSA setup). A natural choice of setup is the following: the group G
is (Z/NZ)× where N = pq for a pair of distinct prime numbers p and q, where
the secret key is (p − 1)(q − 1) and the public key is N , and the hash function
HG(x) = int(H(“residue” ||x)) mod N (where H is a secure cryptographic
hash function). For a technical reason explained later in Remark 4, we actually
need to work in (Z/NZ)×/{±1}, and we call this the RSA setup.

Example 2 (Class group setup). For a public setup where we do not want the
private key to be known by anyone, one could choose G to be the class group
of an imaginary quadratic field. The construction is simple. Choose a random,
negative, square-free integer d, of large absolute value, and such that d ≡ 1
mod 4. Then, let G = Cl(d) be the class group of the imaginary quadratic field
Q(

√
d). Just as we wish, there is no known algorithm to efficiently compute the

order of this group. The multiplication can be performed efficiently, and each
class can be represented canonically by its reduced ideal. Note that the even
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part of |Cl(d)| can be computed if the factorisation of d is known. Therefore one
should choose d to be a negative prime, which ensures that |Cl(d)| is odd. See [8]
for a review of the arithmetic in class groups of imaginary quadratic orders, and
a discussion on the choice of cryptographic parameters.

Consider a targeted evaluation time given by Δ = tδ for a timing parameter t,
where δ is the time-cost (i.e., the amount of sequential work) of computing a
single squaring in the group G (as done in Assumption 1 for the RSA setup).

To evaluate the VDF on input x, first let g = HG(x). The basic idea (which
finds its origins in [18]) is that for any t ∈ Z>0, Alice can efficiently compute
g2

t

with two exponentiations, by first computing e = 2t mod |G|, followed by
ge. The running time is logarithmic in t. Any other party who does not know
|G| can also compute g2

t

by performing t sequential squarings, with a running
time tδ. Therefore anyone can compute y = g2

t

but only Alice can do it fast,
and any other party has to spend a time linear in t. However, verifying that
the published value y is indeed g2

t

is long: there is no shortcut to the obvious
strategy consisting in recomputing g2

t

and checking if it matches. To solve this
issue, we propose the following public-coin succinct argument, for proving that
y = g2

t

. The input of the interaction is (G, g, y, t). Let Primes(2k) denote the
set containing the 22k first prime numbers.

1. The verifier samples a prime � uniformly at random from Primes(2k).
2. The prover computes π = g�2t/�� and sends it to the verifier.
3. The verifier computes r = 2t mod �, (the least positive residue of 2t modulo

�), and accepts if g, y, π ∈ G and π�gr = y.

Now, it might not be clear how Alice or a third party should compute π = g�2t/��.
For Alice, it is simple: she can compute r = 2t mod �. Then we have �2t/�� =
(2t − r)/�, and since she knows the order of the group, she can compute q = (2t−
r)/� mod |G| and π = gq. We explain in Sect. 4.1 how anyone else can compute
π without knowing |G|, with a total of O(t/ log(t)) group multiplications.

This protocol is made non-interactive using the Fiat-Shamir transformation,
by letting � = Hprime(bin(g)|||bin(y)), where Hprime is a hash function which
sends any string s to an element of Primes(2k). We assume in the security
analysis below that this function is a uniformly distributed random oracle. The
procedures trapdoor, verify and eval are fully described in Algorithms 1, 2 and 3
respectively.

Remark 3. Instead of hashing the input x into the group G as g = HG(x), one
could simply consider x ∈ G. However, the function x 
→ x2t

being a group
homomorphism, bypassing the hashing step has undesirable consequences. For
instance, given x2t

, one can compute (xα)2
t

for any integer α at the cost of only
an exponentiation by α.

Verification. It is straightforward to check that the verification condition π�gr =
y holds if the evaluator is honest. Now, what can a dishonest evaluator do?
That question is answered formally in Sect. 6, but the intuitive idea is easy to
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Data: a public key pk = (G, HG) and a secret key sk = |G|, some input x ∈ A∗,
a targeted evaluation time Δ = tδ.

Result: the output y, and the proof π.
g ← HG(x) ∈ G;
e ← 2t mod |G|;
y ← ge;
� ← Hprime(bin(g)|||bin(y));
r ← least residue of 2t modulo �;
q ← (2t − r)�−1 mod |G|;
π ← gq;
return (y, π);

Algorithm 1: trapdoorsk(x, t) → (y, π)

understand. We will show that given x, finding a pair (y, π) different from the
honest one amounts to solve a root-finding problem in the underlying group G
(supposedly hard for anyone who does not know the secret order of the group).
As a result, only Alice can produce misleading proofs.

Consider the above interactive succinct argument, and suppose that the ver-
ifier accepts, i.e., π�gr = y, where r is the least residue of 2t modulo �. Since
r = 2t − ��2t/��, the verification condition is equivalent to

yg−2t

=
(
πg−�2t/��

)�

.

Before the generation of �, the left-hand side α = yg−2t

is already determined.
Once � is revealed, the evaluator is able to compute β = πg−�2t/��, which is an
�-th root of α. For a prover to succeed with good probability, he must be able
to extract �-th roots of α for arbitrary values of �. This is hard in our groups of
interest, unless α = β = 1G, in which case (y, π) is the honest output.

Remark 4. Observe that in the RSA setup, this task is easy if α = ±1, i.e.
y = ±g2

t

. It is however a difficult problem, given an RSA modulus N , to find an
element α mod N other than ±1 from which �-th roots can be extracted for any
�. This explains why we need to work in the group G = (Z/NZ)×/{±1} instead
of (Z/NZ)× in the RSA setup. This problem is formalized (and generalised to
other groups) in Definition 6.

4.1 Computing the Proof π in O(t/ log(t)) Group Operations

In this section, we describe how to compute the proof π = g�2t/�� with a total
of O(t/ log(t)) group multiplications. First, we mention a very simple algorithm
to compute π, which simply computes the long division �2t/�� on the fly, as
pointed out by Boneh, Bünz and Fisch [5], but requires between t and 2t group
operations. It is given in Algorithm4.
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Data: a public key pk = (G, HG), some input x ∈ A∗, a targeted evaluation
time Δ = tδ, a VDF output y and a proof π.

Result: true if y is the correct evaluation of the VDF at x, false otherwise.
g ← HG(x);
� ← Hprime(bin(g)|||bin(y));
r ← least residue of 2t modulo �;
if π�gr = y then

return true;
else

return false;
end

Algorithm 2: verifypk(x, y, π, t) → true or false

Data: a public key pk = (G, HG), some input x ∈ A∗, a targeted evaluation
time Δ = tδ.

Result: the output value y and a proof π.
g ← HG(x) ∈ G;
y ← g2t

; // via t sequential squarings
� ← Hprime(bin(g)|||bin(y));
π ← g�2t/�� ; // following the simple Algorithm 4, or the faster
Algorithm 5
return (y, π);

Algorithm 3: evalpk(x, t) → (y, π)

We now describe how to perform the same computation with only O(t/ log(t))
group operations. Fix a parameter κ. The idea is to express �2t/�� in base 2κ as

�2t/�� =
∑

i

bi2κi =
2κ−1∑

b=0

b

(
∑

i such that bi=b

2κi

)

.

Similarly to Algorithm4, each coefficient bi can be computed as

bi =
⌊
2κ(2t−κ(i+1) mod �)

�

⌋
,

where 2t−κ(i+1) mod � denotes the least residue of 2t−κ(i+1) modulo �. For each
κ-bits integer b ∈ {0, . . . , 2κ − 1}, let Ib = {i | bi = b}. We get

g�2t/�� =
2κ−1∏

b=0

(
∏

i∈Ib

g2
κi

)b

. (1)

Suppose first that all the values g2
κi

have been memorised (from the sequen-
tial computation of the value y = g2

t

). Then, each product
∏

i∈Ib
g2

κi

can be
computed in |Ib| group multiplications (for a total of

∑
b |Ib| = t/κ multiplica-

tions), and the full product (1) can be deduced with about κ2κ additional group
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Data: an element g in a group G (with identity 1G), a prime number � and a
positive integer t.

Result: g�2t/��.
x ← 1G ∈ G;
r ← 1 ∈ Z;
for i ← 0 to T − 1 do

b ← �2r/�� ∈ {0, 1} ∈ Z;
r ← least residue of 2r modulo �;
x ← x2gb;

end
return x;

Algorithm 4: Simple algorithm to compute g�2t/��, with an on-the-fly long
division [5].

operations. In total, this strategy requires about t/κ + κ2κ group operations.
Choosing, for instance, κ = log(t)/2, we get about t · 2/ log(t) group operations.
Of course, this would require the storage of t/κ group elements.

We now show that the memory requirement can easily be reduced to, for
instance, O(

√
t) group elements, for essentially the same speedup. Instead of

memorising each κ element of the sequence g2
i

, only memorise every κγ element
(i.e., the elements g2

0
, g2

κγ

, g2
2κγ

, . . . ), for some parameter γ (we will show that
γ = O(

√
t) is sufficient). For each integer j, let Ib,j = {i ∈ Ib | i ≡ j mod γ}.

Now,

g�2t/�� =
2κ−1∏

b=0

⎛

⎝
γ−1∏

j=0

∏

i∈Ib,j

g2
κi

⎞

⎠

b

=
γ−1∏

j=0

⎛

⎜
⎝

2κ−1∏

b=0

⎛

⎝
∏

i∈Ib,j

g2
κ(i−j)

⎞

⎠

b
⎞

⎟
⎠

2κj

.

In each factor of the final product, i − j is divisible by γ, so g2
κ(i−j)

is one
of the memorised values. A straightforward approach allows to compute this
product with a total amount of group operations about t/κ + γκ2κ, yet one
can still do better. Write yb,j =

∏
i∈Ib,j

g2
κ(i−j)

, and split κ into two halves, as
κ1 = �κ/2� and κ0 = κ − κ1. Now, observe that for each index j,

2κ−1∏

b=0

yb
b,j =

2κ1−1∏

b1=0

(
2κ0−1∏

b0=0

yb12κ0 + b0,j

)b12
κ0

·
2κ0−1∏

b0=0

(
2κ1−1∏

b1=0

yb12κ0 + b0,j

)b0

The right-hand side provides a way to compute the product with a total of about
2(2κ+κ2κ/2) (instead of κ2κ as in the more obvious strategy). The full method is
summarised in Algorithm5 (on page 29), and requires about t/κ+ γ2κ+1 group
multiplications.

The algorithm requires the storage of about t/(κγ) + 2κ group elements.
Choosing, for instance, κ = log(t)/3 and γ =

√
t, we get about t · 3/ log(t) group

operations, with the storage of about
√

t group elements. This algorithm can
also be parallelised.
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Data: an element g in a group G (with identity 1G), a prime number �, a
positive integer t, two parameters κ, γ > 0, and a table of precomputed
values Ci = g2iκγ

, for i = 0, . . . , �t/(κγ)�.
Result: g�2t/��.
// define a function get_block such that �2t/�� =

∑
i get_block(i)2

κi

get_block ← the function that on input i returns �2κ(2t−κ(i+1) mod �)/��;
// split κ into to halves
κ1 ← �κ/2�;
κ0 ← κ − κ1;
x ← 1G ∈ G;
for j ← γ − 1 to 0 (descending order) do

x ← x2κ

;
for b ∈ {0, . . . , 2κ − 1} do

yb ← 1G ∈ G;
end
for i ← 0, . . . , �t/(κγ)� − 1 do

b ← get_block(iγ + j); // this could easily be optimised by
computing the blocks iteratively as in Algorithm 4 (but
computing blocks of κ bits and taking steps of κγ bits),
instead of computing them one by one.
yb ← yb · Ci;

end
for b1 ∈ {0, . . . , 2κ1 − 1} do

z ← 1G ∈ G;
for b0 ∈ {0, . . . , 2κ0 − 1} do

z ← z · yb12
κ0+b0 ;

end
x ← x · zb12

κ0 ;
end
for b0 ∈ {0, . . . , 2κ0 − 1} do

z ← 1G ∈ G;
for b1 ∈ {0, . . . , 2κ1 − 1} do

z ← z · yb12
κ0+b0 ;

end
x ← x · zb0 ;

end
end
return x;

Algorithm 5: Faster algorithm to compute g�2t/��, given some precomputa-
tions.

4.2 A Practical Bandwidth and Storage Improvement

Typically, an evaluator would compute the output y and the proof π, and send
the pair (y, π) to the verifiers. Each verifier would compute the Fiat-Shamir
challenge

� ← Hprime(bin(g)|||bin(y)),
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then check y = π�g2
t mod �. Instead, it is possible for the evaluator to transmit

(�, π), which has almost half the size (typically, � is in the order of hundreds of
bits while group elements are in the order of thousands of bits). The verifiers
would recover

y ← π�g2
t mod �,

and then verify that � = Hprime(bin(g)|||bin(y)). The two strategies are equiva-
lent, but the second divides almost by 2 the bandwidth and storage footprint.

4.3 A Trade-Off Between Proof Shortness and Prover Efficiency

The evaluation of the VDF, i.e., the computation of y = g2
t

, takes time T = δt,
where δ is the time of one squaring in the underlying group. As demonstrated
in Sect. 4.1, the proof π can be computed in O(t/ log(t)) group operations. Say
that the total time of computing the proof is a fraction T/ω; considering Algo-
rithm 5, one can think of ω = 20, a reasonable value for practical parameters.
One potential issue with the proposed VDF is that the computation of π can
only start after the evaluation of the VDF output g2

t

is completed. So after the
completion of the VDF evaluation, there still remains a total amount T/ω of
work to compute the proof. We call overhead these computations that must be
done after the evaluation of y = g2

t

. Even though this part of the computation
can be parallelised, it might be advantageous for some applications to reduce
the overhead to a negligible amount of work.

We show in the following that using only two parallel threads, the overhead
can be reduces to a total cost of about T/ωn, at the cost of lengthening the proofs
to n group elements (instead of a single one), and n − 1 small prime numbers.
Note that the value of ω varies with T , yet for simplicity of exposition, we
assume that it is constant in the following analysis (a reasonable approximation
for practical purposes).

The idea is to start proving some intermediate results before the full evalua-
tion is over. For instance, consider t1 = t ω

ω +1 . Run the evaluator, and when the
intermediate value g1 = g2

t1 is reached, store it (but keep the evaluator running
in parallel), and compute the proof π1 for the statement g1 = g2

t1 . The computa-
tion of this proof takes time about δt1/ω = T/(ω+1), which is the time it takes
to finish the full evaluation (i.e., going from g1 to y = g2

t

= g2
t/(ω+1)

1 ). Therefore,
the evaluation of y and the first proof π1 finish at the same time. It only remains
to produce a proof π2 for the statement y = g2

t/(ω+1)

1 , which can be done in total
time δt

ω(ω +1) ≤ T/ω2. Therefore the overhead is at most T/ω2. At first glance, it
seems the verification requires the triple (g1, π1, π2), but in fact, the value g1 can
be recovered from π1 and the prime number �1 = Hprime(bin(g)|||bin(g1)) via
g1 = π�

1g
t1 mod �, as done is Sect. 4.2. Therefore, the proof can be compressed to

(�1, π1, π2).
More generally, one could split the computation into n segments of length

ti = tωn−i ω − 1
ωn − 1 , for i = 1, . . . , n. We have that t =

∑n
i=1 ti, and ti = ti−1/ω, so

during the evaluation of each segment (apart from the first), one can compute
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the proof corresponding to the previous segment. The overhead is only the proof
of the last segment, which takes time T ω − 1

ω(ωn − 1) ≤ T/ωn. The proof consists of
the n intermediate proofs and the n − 1 intermediate prime challenges.

5 Analysis of the Sequentiality

In this section, the proposed construction is proven to be (tδ)-sequential, mean-
ing that no polynomially bounded player can win the associated (tδ)-evaluation
race game with non-negligible probability (in other words, the VDF cannot be
evaluated in time less than tδ). For the RSA setup, it is proved under the classic
time-lock assumption of Rivest, Shamir and Wagner [18] (formalised in Assump-
tion 1), and more generally, it is secure for groups where a generalisation of this
assumption holds (Assumption 2).

5.1 Generalised Time-Lock Assumptions

The following game generalises the classic time-lock assumption to arbitrary
families of groups of unknown orders.

Definition 5 (Generalised (δ, t)-time-lock game). Consider a sequence
(Gk)k∈Z>0 , where each Gk is a set of finite groups (supposedly of unknown
orders), associated to a “difficulty parameter” k. Let keygen be a procedure to
generate a random group from Gk, according to the difficulty k.

Fix the difficulty parameter k ∈ Z>0, and let A be an algorithm playing the
game. The parameter t is a positive integer, and δ : Z>0 → R>0 is a function.
The (δ, t)-time-lock game goes as follows:

1. A group G is generated by keygen;
2. A(G) outputs an algorithm B;
3. An element g ∈ G is generated uniformly at random;
4. B(g) outputs h ∈ G.

Then, A wins the game if h = g2
t

and T (B, g) < tδ(k).

Assumption 2 (Generalised time-lock assumption). The generalised
time-lock assumption for a given family of groups (Gk)k∈Z>0 is the following.
There is a cost function δ : Z>0 → R>0 such that the following two statements
hold:

1. There is an algorithm S such that for any group G ∈ Gk (for the difficulty
parameter k), and any element g ∈ G, the output of S(G, g) is the square of
g, and T (S, (G, g)) < δ(k);

2. For any t ∈ Z>0, no algorithm A of polynomial cost wins the (δ, t)-time-lock
game with non-negligible probability (with respect to the difficulty parame-
ter k).

The function δ encodes the time-cost of computing a single squaring in a group
of Gk, and Assumption 2 expresses that without more specific knowledge about
these groups (such as their orders), there is no faster way to compute g2

t

than
performing t sequential squarings.
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5.2 Sequentiality in the Random Oracle Model

Proposition 1 (tδ-sequentiality of the trapdoor VDF in the random
oracle model). Let A be a player winning with probability pwin the (tδ)-
evaluation race game associated to the proposed construction, assuming HG and
Hprime are random oracles and A is limited to q oracle queries3. Then, there is
a player C for the (generalised) (δ, t)-time-lock game, with winning probability
p ≥ (1− q/2k)pwin, and with same running time as A (up to a constant factor4).

Proof. Build C as follows. Upon receiving the group G, C starts running A on
input G. The random oracles HG and Hprime are simulated in a straightforward
manner, maintaining a table of values, and generating a random outcome for any
new request (with distribution uniform in G and in Primes(2k) respectively).
When A(G) outputs an algorithm B, C generates a random x ∈ X (according to
the same distribution as the (tδ)-evaluation race game). If x has been queried by
the oracle already, C aborts; this happens with probability at most q/2k, since
the min-entropy of the distribution of messages in the (tδ)-evaluation race game
is at least k. Otherwise, C outputs the following algorithm B′. When receiving
as input the challenge g, B′ adds g to the table of oracle HG, for the input x
(i.e., HG(x) = g). As discussed in Remark 1, we can assume that the algorithm
B does not call the oracle trapdoorsk(−, y,Δ). Then B′ can invoke B on input x
while simulating the oracles HG and Hprime. Whenever B outputs y, B′ outputs y,
which equals g2

t

whenever y is the correct evaluation of the VDF at x. We assume
that simulating the oracle has a negligible cost, so B′(g) has essentially the
same time-cost as B(x). Then, C wins the (δ, t)-time-lock game with probability
p ≥ pwin(1 − q/2k). ��

6 Analysis of the Soundness

In this section, the proposed construction is proven to be sound, meaning that
no polynomially bounded player can produce a misleading proof for an invalid
output of the VDF. For the RSA setup, it is proved under a new number theoretic
assumption expressing that it is hard to find an integer u �= 0,±1 for which �-th
roots modulo an RSA modulus N can be extracted for arbitrary �-values sampled
uniformly at random from Primes(2k), when the factorisation of N is unknown.
More generally, the construction is sound if a generalisation of this assumptions
holds in the group of interest.

3 In this game, the output of A is another algorithm B. When we say that A is limited
to q queries, we limit the total number of queries by A and B combined. In other
words, if A did x ≤ q queries, then its output B is limited to q − x queries.

4 Note that this constant factor does not affect the chances of C to win the (δ, t)-
time-lock game, since it concerns only the running time of C itself and not of the
algorithm output by C(G).
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6.1 The Root Finding Problem

The following game formalises the root finding problem.

Definition 6 (The root finding game Groot). Let A be a party playing the
game. The root finding game Groot(A) goes as follows: first, the keygen procedure
is run, resulting in a group G which is given to A (G is supposedly of unknown
order). The player A then outputs an element u of G. An integer � is sampled
uniformly from Primes(2k) and given to A. The player A outputs an integer v
and wins the game if v� = u �= 1G.

In the RSA setup, the group G is the quotient (Z/NZ)×/{±1}, where N is a
product of two random large prime numbers. It is not known if this problem can
easily be reduced to a standard assumption such as the difficulty of factoring
N or the RSA problem, for which the best known algorithms have complexity
LN (1/3).

Similarly, in the class group setting, this problem is not known to reduce
to a standard assumption, but it is closely related to the order problem and
the root problem (which are tightly related to each other, see [3, Theorem 3]),
for which the best known algorithms have complexity L|d|(1/2) where d is the
discriminant.

We now prove that to win this game Groot, it is sufficient to win the following
game Groot

X , which is more convenient for our analysis.

Definition 7 (The oracle root finding game Groot
X ). Let A be a party playing

the game. Let X be a function that takes as input a group G and a string s
in A∗, and outputs an element X(G, s) ∈ G. Let O : A∗ → Primes(2k) be
a random oracle with the uniform distribution. The player has access to the
random oracle O. The oracle root finding game Groot

X (A,O) goes as follows:
first, the keygen procedure is run and the resulting group G is given to A. The
player A then outputs a string s ∈ A∗, and an element v of G. The game is won
if vO(s) = X(G, s) �= 1G.

Lemma 1. If there is a function X and an algorithm A limited to q queries
to the oracle O winning the game Groot

X (A,O) with probability pwin, there is an
algorithm B winning the game Groot(B) with probability at least pwin/(q+1), and
same running time, up to a small constant factor.

Proof. Let A be an algorithm limited to q oracle queries, and winning the game
with probability pwin. Build an algorithm A′ which does exactly the same thing
as A, but with possibly additional oracle queries at the end to make sure the
output string s′ is always queried to the oracle, and the algorithm always does
exactly q + 1 (distinct) oracle queries.

Build an algorithm B playing the game Groot, using A′ as follows. Upon
receiving pk = G, B starts running A′ on input pk. The oracle O is simulated
as follows. First, an integer i ∈ {1, 2, ..., q + 1} is chosen uniformly at random.
For the first i − 1 (distinct) queries from A′ to O, the oracle value is chosen
uniformly at random from Primes(2k). When the ith string s ∈ A∗ is queried
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to the oracle, the algorithm B outputs u = X(G, s), concluding the first round
of the game Groot. The game continues as the integer � is received (uniform in
Primes(2k)). This � is then used as the value for the ith oracle query O(s),
and the algorithm A′ can continue running. The subsequent oracle queries are
handled like the first i − 1 queries, by picking random primes in Primes(2k).
Finally, A′ outputs a string s′ ∈ A∗ and an element v of G. To conclude the
game Groot(B), B returns v.

Since O simulates a random oracle with uniform outputs in Primes(2k), A′

outputs with probability pwin a pair (s′, v) such that vO(s′) = X(G, s′) �= 1G;
denote this event winA′ . If s = s′, this condition is exactly v� = u �= 1G, where
u = X(G, s) is the output for the first round of Groot, and O(s) = � is the input
for the second round. If these conditions are met, the game Groot(B) is won.
Therefore

Pr[B wins Groot] ≥ pwin · Pr [s = s′|winA′ ] .

Let Q = {s1, s2, ..., sq+1} be the q + 1 (distinct) strings queried to O by A′,
indexed in chronological order. By construction, we have s = si. Let j be such
that s′ = sj (recall that A′ makes sure that s′ ∈ Q). Then,

Pr [s = s′|winA′ ] = Pr [i = j|winA′ ]

The integer i is chosen uniformly at random in {1, 2, ..., q + 1}, and the values
given to A′ are independent from i (the oracle values are all independent random
variables). So Pr [i = j|winA′ ] = 1/(q+1). Therefore Pr[B wins Groot] ≥ pwin/(q +
1). Since B mostly consists in running A and simulating the random oracle, it is
clear than both have the same running time, up to a small constant factor. ��

6.2 Soundness in the Random Oracle Model

Proposition 2 (Soundness of the trapdoor VDF in the random oracle
model). Let A be a player winning with probability pwin the soundness-breaking
game associated to the proposed scheme, assuming HG and Hprime are random
oracles and A is limited to q oracle queries5. Then, there is a player D for the
root finding game Groot with winning probability p ≥ pwin/(q +1), and with same
running time as A (up to a constant factor).

Proof. Instead of directly building D, we build an algorithm D′ playing the game
Groot

X (D′,O), and invoke Lemma 1. Define the function X as follows. Recall that
for any group G that we consider in the construction, each element g ∈ G admits
a canonical binary representation bin(g). For any such group G, any elements
g, h ∈ G, let

X(G, bin(g)|||bin(h)) = h/g2
t

,

5 In this game, the output of A is another algorithm B. When we say that A is limited
to q queries, we limit the total number of queries by A and B combined. In other
words, if A did x ≤ q queries, then its output B is limited to q − x queries.
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and let X(G, s) = 1G for any other string s. When receiving pk, D′ starts run-
ning A with input pk. The oracle HG is simulated by generating random values
in the straightforward way, and Hprime is set to be exactly the oracle O. The
algorithm A outputs a message x, and pair (y, π) ∈ G × G (if it is not of this
form, abort). Output s = bin(HG(x))|||bin(y) and v = π/HG(x)�2

t/O(s)�. If A
won the simulated soundness-breaking game, the procedure did not abort, and
vO(s) = X(G, s) �= 1G, so D′ wins the game. Hence D′ has winning probabil-
ity pwin. Since A was limited to q oracle queries, D′ also does not do more than q
queries. Applying Lemma1, there is an algorithm D winning the game Groot(B)
with probability p ≥ pwin(1 − ε)/(q + 1). ��
Remark 5. The construction remains sound if instead of considering the output y
and the proof π, we consider the output to be the pair (y, π), with an empty proof.
The winning probability of D in Proposition 2 becomes p ≥ pwin(1 − ε)/(q + 1),
where ε = negl

(
k

log log(|G|) log(q)
)
, by accounting for the unlikely event that the

large random prime O(s) is a divisor of |G|.

7 Aggregating and Watermarking Proofs

In this section, we present two useful properties of the VDF: the proofs can be
aggregated, and watermarked. The methods of this section follow from discus-
sions at the August 2018 workshop at Stanford hosted by the Ethereum Foun-
dation and the Stanford Center for Blockchain Research. The author wishes to
thank the participants for their contribution.

7.1 Aggregation

If the VDF is evaluated at multiple inputs, it is possible to produce a single proof
π̃ ∈ G that simultaneously proves the validity of all the outputs. Suppose that
n inputs are given, x1, . . . , xn. For each index i, let gi = HG(xi). The following
public-coin interactive succinct argument allows to prove that a given list (yi)ni=1

satisfies yi = g2
t

i :

1. The verifier samples a prime � uniformly at random from Primes(2k), and n
uniformly random integers (αi)ni=1 of k bits.

2. The prover computes

π̃ =

(
n∏

i=1

gαi
i

)�2t/��

and sends it to the verifier.
3. The verifier computes r = 2t mod �, (the least positive residue of 2t modulo

�), and accepts if

π̃�

(
n∏

i=1

gαi
i

)r

=
n∏

i=1

yαi
i .
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The single group element π̃ serves as proof for the whole list of n statements
yi = g2

t

i : it is an aggregated proof. The protocol can be made non-interactive by
a Fiat-Shamir transformation: let

s = bin(g1)|||bin(g2)||| . . . |||bin(gn)|||bin(y1)|||bin(y2)||| . . . |||bin(yn),

and let � = Hprime(s), and for each index i, let αi = int(H(bin(i)|||s)) (where H
is a secure cryptographic hash function). For simplicity, we prove the soundness
in the interactive setup (the non-interactive soundness then follows from the
Fiat-Shamir heuristic).

Remark 6. One could harmlessly fix α1 = 1, leaving only αi to be chosen at
random for i > 1. We present the protocol as above for simplicity, to avoid
dealing with i = 1 as a special case in the proof below.

Theorem 1. If there is a malicious prover P breaking the soundness of the
above interactive succinct argument with probability p, then there is a player B
winning the root finding game Groot with probability at least (p2 − 2−k)/3, with
essentially the same running time as P.

Proof. Let I = {0, 1, . . . , 2k − 1}, and let Z = In−1 × Primes(2k). Let Z =
(α2, . . . , αn, �) be a uniformly distributed random variable in Z, and let α1 and
α′
1 be two independent, uniformly distributed random variables in I. Let win

and win′ be the events that P breaks soundness when given (α1, α2, . . . , αn, �)
and (α′

1, α2, . . . , αn, �) respectively. We wish to estimate the probability of the
event double_win = win∧win′∧(α1 �= α′

1). Observe that conditioning over Z = z
for an arbitrary, fixed z ∈ Z, the events win and win′ are independent and have
same probability, so

Pr[win ∧ win′] =
1

|Z|
∑

z∈Z
Pr[win ∧ win′ | Z = z] =

1
|Z|

∑

z∈Z
Pr[win | Z = z]2.

From the Cauchy-Schwarz inequality, we get

1
|Z|

∑

z∈Z
Pr[win | Z = z]2 ≥

(
1

|Z|
∑

z∈Z
Pr[win | Z = z]

)2

= Pr[win]2 = p2.

We conclude that Pr[win∧win′] ≥ p2, and therefore, Pr[double_win] ≥ p2 − 2−k.
With these probabilities at hand, we can now construct the player B for the

root finding game Groot. Run P, which outputs values gi and yi. If yi = g2
t

i

for all i, abort. Up to some reindexing, we can now assume y1 �= g2
t

1 . Draw
α1, α

′
1, α2, . . . , αn uniformly at random from I. Define

x0 = y1/g2
t

1 , x1 =
n∏

i=1

(yαi
i /g2

t

i )αi , x2 = (y1/g2
t

1 )α
′
1

n∏

i=2

(yαi
i /g2

t

i )αi .

Let b be a uniformly random element of {0, 1, 2}. The algorithm B outputs xb. We
get back a challenge �. Run the prover P twice, independently, for the challenges
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(α1, α2, . . . , αn, �) and (α′
1, α2, . . . , αn, �), and suppose that both responses break

soundness, and α1 �= α′
1 (i.e., the event double_win occurs). If x1 �= 1G or

x2 �= 1G, the winning responses from P allow to extract an �-th root of either x1

or x2 respectively. Otherwise, we have x1 = x2, which implies that x
α1−α′

1
0 = 1G,

so x0 is an element of order dividing α1 −α′
1, and one can easily extract any �-th

root of x0. In conclusion, under the event double_win, one can always extract
an �-th root of either x0, x1 or x2, so the total winning probability of algorithm
B is at least (p2 − 2−k)/3. ��

7.2 Watermarking

When using a VDF to build a decentralised randomness beacon (e.g., as a back-
bone for an energy-efficient blockchain design), people who spent time and energy
evaluating the VDF should be rewarded for their effort. Since the output of the
VDF is supposed to be unique, it is hard to reliably identify the person who
computed it. A naive attempt of the evaluator to sign the output would not
prevent theft: since the output is public, a dishonest party could as easily sign
it and claim it their own.

Let the evaluator’s identity be given as a string id. One proposed method
(see [12]) essentially consists in computing the VDF twice: once on the actual
input, and once on a combination of the input with the evaluator’s identity id.
Implemented carefully, this method could allow to reliably reward the evaluators
for their work, but it also doubles the required effort. In the following, we sketch
two cost-effective solutions to this problem.

The first cost-effective approach consists in having the evaluator prove that
he knows some hard-to-recover intermediate value of the computation of the
VDF. Since the evaluation of our proposed construction requires computing in
sequence the elements gi = g2

i

for i = 1, . . . , t, and only the final value y = gt

of the sequence is supposed to be revealed, one can prove that they performed
the computation by proving that they know gt−1 (it is a square root of y, hence
the fastest way for someone else to recover it would be to recompute the full
sequence). A simple way to do so would be for the evaluator to reveal the value
cid = gpid

t−1 (a certificate), where pid = Hprime(id). The validity of the certificate
can be checked via the equation ypid = c2id. The security claim is the following:
given the input x, the output y, the proof π, and the certificate cid, the cost for
an adversary with identifier id′ (distinct from id) to produce a valid certificate
cid′ is as large as actually recomputing the output of the VDF by themself.

The above method is cost-effective as it does not require the evaluator to
perform much more work than evaluating the VDF. However, it makes the
output longer by adding an extra group element: the certificate. Another app-
roach consists in producing a single group element that plays simultaneously
the role of the proof and the certificate. This element is a watermarked proof,
tied to the evaluator’s identity. This can be done easily with our construction.
In the evaluation procedure (Algorithm3), replace the definition of the prime �
by Hprime(id|||bin(g)|||bin(y)) (and the corresponding change must be made in
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the verification procedure). The resulting proof πid is now inextricably tied to
id. Informally, the security claim is the following: given the input x, the output
y, and the watermarked proof πid, the cost for an adversary with identifier id′

(distinct from id) to produce a valid proof πid′ is about as large as reevaluating
the VDF altogether. Indeed, a honest prover, after having computed the output
y, can compute πid at a reduced cost thanks to some precomputed intermediate
values. But an adversary does not have these intermediate values, so they would
have to compute πid′ from scratch. This is an exponentiation in G, with exponent
of bit-length close to t; without any intermediate values, it requires in the order
of t sequential group operations, which is the cost of evaluating the VDF.

8 Circumventing Impossibility Results with Timing
Assumptions

In addition to the applications mentioned in the introduction, we conclude this
paper by showing that a trapdoor VDF also constitutes a new tool for circum-
venting classic impossibility results. We illustrate this through a simple identifi-
cation protocol constructed from a trapdoor VDF, where a party, Alice, wishes
to identify herself to Bob by proving that she knows the trapdoor. Thanks to
the VDF timing properties, this protocol features surprising zero-knowledge and
deniability properties challenging known impossibility results.

As this discussion slightly deviates from the crux of the article (the construc-
tion of a trapdoor VDF), most of the details are deferred to Appendices B and
C, and this section only introduces the main ideas. As in the rest of the paper,
the parameter k is the security level. The identification protocol goes as follows:

1. Bob chooses a challenge c ∈ {0, 1}k uniformly at random. He sends it to Alice,
along with a time limit Δ, and starts a timer.

2. Alice responds by sending the evaluation of the VDF on input c (with time
parameter Δ), together with the proof. She can respond fast using her trap-
door.

3. Upon receiving the response, Bob stops the timer. He accepts if the verifica-
tion of the VDF succeeds and the elapsed time is smaller than Δ.

Remark 7. We present here only an identification protocol, but it is easy to
turn it into an authentication protocol for a message m by having Alice use the
concatenation c||m as input to the VDF.

Since only Alice can respond immediately thanks to her secret, Bob is convinced
of her identity. Since anyone else can compute the response to the challenge in
time Δ, the exchange is perfectly simulatable, hence perfectly zero-knowledge.
It is well-known (and in fact clear from the definition) that a classic interactive
zero-knowledge proof cannot have only one round (this would be a challenge-
response exchange, and the simulator would allow to respond to the challenge
in polynomial time, violating soundness). The above protocol avoids this impos-
sibility thanks to a modified notion of soundness, ensuring that only Alice can
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respond fast enough. This is made formal in Appendix B, via the notion of zero-
knowledge timed challenge-response protocol.

Remark 8. Note that this very simple protocol is also efficient: the “time-lock”
evaluation of the VDF does not impact any of the honest participants, it is
only meant to be used by the simulator. Only the trapdoor evaluation and the
verification are actually executed.

Finally, this protocol has strong deniability properties. Indeed, since anyone
can produce in time Δ a response to any challenge, any transcript of a conversa-
tion that is older than time Δ could have been generated by anyone. In fact the
protocol is on-line deniable against any judge that suffers a communication delay
larger than Δ/2. Choosing Δ to be as short as possible (while retaining sound-
ness) yields a strongly deniable protocol. Full on-line deniability is known to be
impossible in a PKI (see [11]), and this delay assumption provides a new way to
circumvent this impossibility. This is discussed in more detail in Appendix C.

Acknowledgements. The author wishes to thank a number of people with whom
interesting discussions helped improve the present work, in alphabetical order, Dan
Boneh, Justin Drake, Alexandre Gélin, Novak Kaluđerović, Arjen K. Lenstra and Serge
Vaudenay.

A Proof of Remark 1

Model H as a random oracle. Suppose that

trapdoorHsk(x,Δ) = tsk(H(x),Δ),

evalHpk(x,Δ) = epk(H(x),Δ), and

verifypk(x, y,Δ) = vpk(H(x), y,Δ),

for procedures t, e and v that do not have access to H.
Let A be a player of the Δ-evaluation race game. Assume that the output

B of A is limited to a number q of queries to O and H. We are going to build
an algorithm A′ that wins with same probability as A when its output B′ is not
given access to O.

Let (Yi)
q
i=1 be a sequence of random hash values (i.e., uniformly distributed

random values in {0, 1}2k). First observe that A wins the Δ-evaluation race game
with the same probability if the last step runs the algorithm BO′,H′

instead of
BO,H , where

1. H ′ is the following procedure: for any new requested input x, if x has pre-
viously been requested by A to H then output H ′(x) = H(x); otherwise set
H ′(x) to be the next unassigned value in the sequence (Yi);

2. O′ is an oracle that on input x outputs tsk(H ′(x),Δ).
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With this observation in mind, we build A′ as follows. On input pk, A′

first runs AH which outputs AH(pk) = B. Let X be the set of inputs of the
requests that A made to H. For any x ∈ X, A′ computes and stores the pair
(H(x), evalpk(x,Δ)) in a list L. In addition, it computes and stores (Yi, epk(Yi,Δ))
for each i = 1, . . . , q, and adds them to L.

Consider the following procedure O′: on input x, look for the pair of the
form (H ′(x), σ) in the list L, and output σ. The output of A′ is the algorithm
B′ = BO′,H′

. It does not require access to the oracle O anymore: all the potential
requests are available in the list of precomputed values. Each call to O is replaced
by a lookup in the list L, so B′ has essentially the same running time as B.
Therefore A′ wins the Δ-evaluation race game with same probability as A even
when its output B′ is not given access to a evaluation oracle.

B Timed Challenge-Response Identification Protocols

A timed challenge-response identification protocol has four procedures:

keygen → (pk, sk) is a key generation procedure, which outputs a prover’s public
key pk and secret key sk.

challenge → c which outputs a random challenge.
respondsk(c,Δ) → r is a procedure that uses the prover’s secret key to respond

to the challenge c, for the time parameter Δ.
verifypk(c, r,Δ) → true or false is a procedure to check if r is a valid response to

c, for the public key pk and the time parameter Δ.

The security level k is implicitly an input to each of these procedures. The
keygen procedure is used the generate Alice’s public and secret keys, then the
identification protocol is as follows:

1. Bob generates a random c with the procedure challenge. He sends it to Alice,
along with a time limit Δ, and starts a timer.

2. Alice responds r = respondsk(c,Δ).
3. Bob stops the timer. He accepts if verifypk(c, r,Δ) = true and the elapsed time

is smaller than Δ.

Given a time parameter Δ, a Δ-response race game and an associated notion
of Δ-soundness can be defined in a straightforward manner as follows.

Definition 8 (Δ-response race game). Let A be a party playing the game.
The parameter Δ : Z>0 → R>0 is a function of the (implicit) security parameter
k. The Δ-response race game goes as follows:

1. The random procedure keygen is run and it outputs a public key pk;
2. A(pk) outputs an algorithm B;
3. A random challenge c is generated according to the procedure challenge;
4. BO(c) outputs a value r, where O is an oracle that outputs the evaluation

respondsk(c′,Δ) on any input c′ �= c.
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Then, A wins the game if T (B, c) < Δ and verifypk(c, r,Δ) = true.

Definition 9 (Δ-soundness). A timed challenge-response identification proto-
col is Δ-sound if any polynomially bounded player (with respect to the implicit
security parameter) wins the above Δ-response race game with negligible proba-
bility.

It is as immediate to verify that a sound and Δ-sequential VDF gives rise
to a Δ-sound identification protocol (via the construction of Sect. 8). Similarly,
the completeness of the identification protocol (that a honest run of the proto-
col terminates with a successful verification) is straightforward to derive from
the fact that the verification of a valid VDF output always outputs true. There
simply is one additional requirement: if the procedure respondsk(c,Δ) requires
computation time at least ε1, and the channel of communication has a transmis-
sion delay at least ε2, we must have ε1 + 2ε2 < Δ. Finally the zero-knowledge
property is defined as follows.

Definition 10 (Zero-knowledge). A timed challenge-response identification
protocol is (perfectly, computationally, or statistically) zero-knowledge if there
is an algorithm S that on input k, Δ, pk and a random challenge(k,Δ) pro-
duces an output (perfectly, computationally, or statistically) indistinguishable
from respondsk(c, k,Δ), and the running time of S is polynomial in k.

In a classical cryptographic line of though, this zero-knowledge property is
too strong to provide any soundness, since an adversary can respond to the
challenge with a running time polynomial in the security parameter of Alice’s
secret key. This notion starts making sense when the complexity of the algorithm
S is governed by another parameter, here Δ, independent from Alice’s secret.

For the protocol derived from a VDF, the zero-knowledge property is ensured
by the fact that anyone can compute Alice’s response to the challenge in time
polynomial in k, with the procedure eval.

C Local Identification

The challenge-response identification protocol derived from a VDF in Sect. 8 is
totally deniable against a judge, Judy, observing the communication from a long
distance. The precise definition of on-line deniability is discussed in [11]. We
refer the reader there for the details, but the high level idea is as follows. Alice
is presumably trying to authenticate her identity to Bob. Judy will rule whether
or not the identification was attempted. Judy interacts with an informant who is
witnessing the identification and who wants to convince Judy that it happened.
This informant could also be a misinformant, who is not witnessing any iden-
tification, but tries to deceive Judy into believing it happened. The protocol is
on-line deniable if no efficient judge can distinguish whether she is talking to an
informant or a misinformant. The (mis)informant is allowed to corrupt Alice or
Bob, at which point he learns their secret keys and controls their future actions.
When some party is corrupted, Judy learns about it.
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It is shown in [11] that this strong deniability property is impossible to achieve
in a PKI. To mitigate this issue, they propose a secure protocol in a relaxed
setting, allowing incriminating aborts. We propose an alternative relaxation of
the setting, where Judy is assumed to be far away from Alice and Bob (more
precisely: the travel time of a message between Alice and Bob is shorter than
between Alice (or Bob) and Judy6). For example, consider a building whose
access is restricted to authorised card holders. Suppose the card holders do not
want anyone other than the card reader to get convincing evidence that they are
accessing the building (even if the card reader is corrupted, it cannot convince
anyone else). Furthermore, Alice herself cannot convince anyone that the card
reader ever acknowledged her identification attempt. In this context, the card
and the card reader benefit from very efficient communications, while a judge
farther away would communicate with an additional delay. An identification
protocol can exploit this delay to become deniable, and this is achieved by the
timed challenge-response identification protocol derived from a VDF.

The idea is the following. Suppose that the distance between Alice and Judy
is long enough to ensure that the travel time of a message from Alice to Judy is
larger than Δ/2. Then, Judy cannot distinguish a legitimate response of Alice
that took some time to reach her from a response forged by a misinformant that
is physically close to Judy.

More precisely, considering an informant I who established a strategy with
Judy, we can show that there is a misinformant M that Judy cannot distinguish
from I. First of all, Bob cannot be incriminated since he is not using a secret
key. It all boils down to tracking the messages that depend on Alice’s secret key.
Consider a run of the protocol with the informant I. Let t0 be the point in time
where Alice computed s = trapdoorsk(c,Δ). The delay implies two things:

1. The challenge c is independent of anything Judy sent after point in time
t0 − Δ/2.

2. The first message Judy receives that can depend on s (and therefore the first
message that depends on Alice’s secret) arrives after t0 + Δ/2.

From Point 1, at time t0 − Δ/2, the misinformant (who is close to Judy) can
already generate c (following whichever procedure I and Judy agreed on), and
start evaluating evalpk(c,Δ). The output is ready at time t0 + Δ/2, so from
Point 2, the misinformant is on time to send to Judy messages that should depend
on the signature s.

In practice. The protocol is deniable against a judge at a certain distance away
from Alice and Bob, and the minimal value of this distance depends on Δ. An
6 A message does not travel directly from Alice (or Bob) to Judy, since Judy

is only communicating with the (mis)informant. What is measured here is the
sum of the delay between Alice and the (mis)informant and the delay between
the (mis)informant and Judy. There is no constraint on the location of the
(mis)informant, but we assume a triangular inequality: he could be close to Alice
and Bob, in which case his communications with Judy suffer a delay, or he could be
close to Judy, in which case his interactions with Alice and Bob are delayed.
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accurate estimation of this distance would require in the first place an equally
accurate estimation of the real time Δ (in seconds) a near-optimal adversary
would need to forge the response. This non-trivial task relates to the discussion
of Sect. 3.2.

Assuming reasonable bounds for Δ have been established, one can relate
the distance and the communication delay in a very conservative way through
the speed of light. We want Judy to stand at a sufficient distance to ensure
that any message takes at least Δ/2 s to travel between them, so Judy should
be at least cΔ/2m away, where c ≈ 3.00 × 108 m/s is the speed of light. For
security against a judge standing 100m away, one would require Δ ≈ 0.66 µs.
Alice should be able to respond to Bob’s challenge in less time than that. At
this point, it seems unreasonable to assume that such levels of precision can be
achieved (although in principle, distance bounding protocols do deal with such
constraints), yet it remains interesting that such a simple and efficient protocol
provides full deniability against a judge that suffers more serious communication
delays.
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Abstract. Public key quantum money can be seen as a version of the
quantum no-cloning theorem that holds even when the quantum states
can be verified by the adversary. In this work, we investigate quantum
lightning where no-cloning holds even when the adversary herself gener-
ates the quantum state to be cloned . We then study quantum money and
quantum lightning, showing the following results:

– We demonstrate the usefulness of quantum lightning beyond quan-
tum money by showing several potential applications, such as gen-
erating random strings with a proof of entropy, to completely decen-
tralized cryptocurrency without a block-chain, where transactions is
instant and local.

– We give Either/Or results for quantum money/lightning, showing
that either signatures/hash functions/commitment schemes meet
very strong recently proposed notions of security, or they yield quan-
tum money or lightning. Given the difficulty in constructing public
key quantum money, this suggests that natural schemes do attain
strong security guarantees.

– We show that instantiating the quantum money scheme of Aaron-
son and Christiano [STOC’12] with indistinguishability obfuscation
that is secure against quantum computers yields a secure quantum
money scheme. This construction can be seen as an instance of our
Either/Or result for signatures, giving the first separation between
two security notions for signatures from the literature.

– Finally, we give a plausible construction for quantum lightning,
which we prove secure under an assumption related to the multi-
collision resistance of degree-2 hash functions. Our construction is
inspired by our Either/Or result for hash functions, and yields the
first plausible standard model instantiation of a non-collapsing col-
lision resistant hash function. This improves on a result of Unruh
[Eurocrypt’16] which is relative to a quantum oracle.

1 Introduction

Unlike classical bits, which can be copied ad nauseum, quantum bits—called
qubits—cannot in general be copied, as a result of the Quantum No-Cloning
Theorem. No-cloning has various negative implications to the handling of quan-
tum information; for example it implies that classical error correction cannot be
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applied to quantum states, and that it is impossible to transmit a quantum state
over a classical channel. On the flip side, no-cloning has tremendous potential for
cryptographic purposes, where the adversary is prevented from various strategies
that involve copying. For example, Wiesner [36] shows that if a quantum state
is used as a banknote, no-cloning means that an adversary cannot duplicate the
note. This is clearly impossible with classical bits. Wiesner’s idea can also be
seen as the starting point for quantum key distribution [9], which can be used
to securely exchange keys over a public channel, even against computationally
unbounded eavesdropping adversaries.

In this work, we investigate no-cloning in the presence of computationally
bounded adversaries, and it’s implications to cryptography. To motivate this
discussion, consider the following two important applications:

– A public key quantum money scheme allows anyone to verify banknotes.
This remedies a key limitation of Wiesner’s scheme, which requires sending
the banknote back to the mint for verification. The mint has a secret classical
description of the banknote which it can use to verify; if this description is
made public, then the scheme is completely broken. Requiring the mint for
verification represents an obvious logistical hurdle. In contrast, a public key
quantum money scheme can be verified locally without the mint’s involve-
ment. Yet, even with the ability to verify a banknote, it is impossible for
anyone (save the mint) to create new notes.

– Many cryptographic settings such as multiparty computation require a ran-
dom string to be created by a trusted party during a set up phase. But what
if the randomness creator is not trusted? One would still hope for some way
to verify that the strings it produces are still random, or at least have some
amount of (min-)entropy. At a minimum, one would hope for a guarantee that
their string is different from any previous or future string that will be gener-
ated for anyone else. Classically, these goals are impossible. But quantumly,
one may hope to create proofs that are unclonable, so that only a single user
can possibly ever receive a valid proof for a particular string.

The settings above are subtly different from those usually studied in quantum
cryptography. Notice that in both settings above, a computationally unbounded
adversary can always break the scheme. For public key quantum money, the
following attack produces a valid banknote from scratch in exponential-time:
generate a random candidate quantum money state and apply the verification
procedure. If it accepts, output the state; otherwise try again. Similarly, in the
verifiable randomness setting, an exponential-time adversary can always run the
randomness generating procedure until it gets two copies of the same random
string, along with two valid proofs for that string. Then it can give the same
string (but different valid proofs) to two different users. With the current state
of knowledge of complexity theory, achieving security against a computationally
bounded adversary means computational assumptions are required; in particular,
both scenarios imply at a minimum one-way functions.

Unfortunately, most of the techniques developed in quantum cryptography
are inherently information theoretic, and porting these techniques over to the
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computational setting can be tricky task. For example, whereas information-
theoretic security can be often proved directly, computational security must
always be proved by a reduction to the underlying hard computational prob-
lem.

We stress that the underlying problem should still be a classical problem
(that is, the inputs and outputs of the problem are classical), rather than some
quantum problem that talks about manipulating quantum states. For one, we
want a violation of the assumption to lead to a mathematically interesting result,
and this seems much more likely for classical problems. Furthermore, it is much
harder for the research community to study and analyze a quantum assumption,
since it will be hard to isolate the features of the problem that make it hard. For
this work, we want to:

Combine no-cloning and computational assumptions about
classical problems to obtain no-cloning-with-verification.

In addition to the underlying assumption being classical, it would ideally also
be one that has been previously studied by cryptographers, and ideally used in
other cryptographic contexts. This would give the strongest possible evidence
that the assumption, and hence application, are secure.

For now, we focus on the setting of public key quantum money. Constructing
such quantum money from a classical hardness assumption is a surprisingly diffi-
cult task. One barrier is the following. Security would be proved by reduction, an
algorithm that interacts with a supposed quantum money adversary and acts as
an adversary for the underlying classical computational assumption. Note that
the adversary expects as input a valid banknote, which the reduction must sup-
ply. Then it appears the reduction should somehow use the adversary’s forgery to
break the computational assumption. But if the reduction can generate a single
valid banknote, there is nothing preventing it from generating a second—recall
that the underlying assumption is classical, so we cannot rely on the assumption
to provide us with an un-clonable state. Therefore, if the reduction works, it
would appear that the reduction can create two banknotes for itself, in which
case it can break the underlying assumption without the aid of the adversary.
This would imply that the underlying assumption is in fact false.

The above difficulties become even more apparent when considering the
known public key quantum money schemes. The first proposed scheme by Aaron-
son [2] had no security proof, and was subsequently broken by Lutomirski
et al. [28]. The next proposed scheme by Farhi et al. [20] also has no secu-
rity proof, though this scheme still remains unbroken. However, the scheme is
complicated, and it is unclear which quantum states are accepted by the verifi-
cation procedure; it might be that there are dishonest banknotes that are both
easy to construct, but are still accepted by the verification procedure.

Finally, the third candidate by Aaronson and Christiano [3] actually does
prove security using a classical computational problem. However, in order to
circumvent the barrier discussed above, the classical problem has a highly non-
standard format. They observe that a polynomial-time algorithm can, by random
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guessing, produce a valid banknote with some exponentially-small probability p,
while random guessing can only produce n valid banknotes with probability pn.
Therefore, their reduction first generates a valid banknote with probability p,
runs the adversary on the banknote, and then uses the adversary’s forgery to
increase its success probability for some task. This reduction strategy requires a
very carefully crafted assumption, where it is assumed hard to solve a particular
problem in polynomial time with exponentially-small probability p, even though
it can easily be solved with probability p2.

In contrast, typical assumptions in cryptography involve polynomial-time
algorithms and inverse-polynomial success probabilities, rather than exponen-
tial. (Sub)exponential hardness assumptions are sometimes made, but even then
the assumptions are usually closed under polynomial changes in adversary run-
ning times or success probabilities, and therefore make no distinction between
p and p2. In addition to the flavor of assumption being highly non-standard,
Aaronson and Christiano’s assumption—as well as their scheme—have been sub-
sequently broken [1,31].

Turning to the verifiable randomness setting, things appear even more diffi-
cult. Indeed, our requirements for verifiable randomness imply an even stronger
version of computational no-cloning: an adversary should not be able to copy a
state, even if it can verify the state, and moreover even if it devised the original
state itself. Indeed, without such a restriction, an adversary may be able to come
up with a dishonest proof of randomness, perhaps by deviating from the proper
proof generating procedure, that it can clone arbitrarily many times. Therefore,
a fascinating objective is to

Obtain a no-cloning theorem, even for settings where the adversary
controls the entire process for generating the original state.

1.1 This Work: Strong Variants of No-Cloning and Connections
to Post-quantum Cryptography

In this work, we study strong computational variants of quantum no-cloning,
in particular public key quantum money, and uncover interesting relationships
between no-cloning and various cryptographic applications.

Quantum Lightning Never Strikes the Same State Twice. The old adage
about lightning is of course false, but the idea nonetheless captures some of
the features we would like for the verified randomness setting discussed above.
Suppose a magical randomness generator could go out into a thunderstorm, and
“freeze” and “capture” lightning bolts as they strike. Every lightning bolt will
be different. The randomness generator then somehow extracts a fingerprint or
serial number from the frozen lightning bolt (say, hashing the image of the bolt
from a particular direction). The serial number will serve as the random string,
and the frozen lightning bolt will be the proof of randomness; since every bolt
is different, this ensures that the bolts, and hence serial numbers, have some
amount of entropy.
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Of course, it may be that there are other ways to create lightning other than
walking out into a thunderstorm (Tesla coils come to mind). We therefore would
like that, no matter how the lightning is generated, be it from thunderstorms
or in a carefully controlled laboratory environment, every bolt has a unique
fingerprint/serial number.

We seek a complexity-theoretic version of this magical frozen lightning object,
namely a phenomenon which guarantees different outcomes every time, no mat-
ter how the phenomenon is generated. We will necessarily rely on quantum no-
cloning—since in principle a classical phenomenon can be replicated by starting
with the same initial conditions—and hence we call our notion quantum light-
ning. Quantum lightning, roughly, is a strengthening of public key quantum
money where the procedure to generate new banknotes itself is public, allowing
anyone to generate banknotes. Nevertheless, it is impossible for an adversary
to construct two notes with the same serial number. This is a surprising and
counter-intuitive property, as the adversary knows how to generate banknotes,
and moreover has full control over how it does so; in particular it can deviate
from the generation procedure any way it wants, as long as it is computationally
efficient. Nonetheless, it cannot devise a malicious note generation procedure
that allows it to construct the same note twice. This concept of quantum money
can be seen as a formalization of the concept of “collision-free” public key quan-
tum money due to Lutomirski et al. [28].

Slightly more precisely, a quantum lightning protocol consists of two efficient
(quantum) algorithms. The first is a bolt generation procedure, or storm, ,
which generates a quantum state |E〉 on each invocation. The second algorithm,
Ver, meanwhile verifies bolts as valid and also extracts a fingerprint/serial num-
ber of the bolt. For correctness, we require that (1) Ver always accepts bolts
produced by , (2) it does not perturb valid bolts, and (3) that it will always
output the same serial number on a given bolt.

For security, we require the following: it is computationally infeasible to pro-
duce two bolts |E0〉 and |E1〉 such that Ver accepts both and outputs identical
serial numbers. This is true for even for adversarial storms —those that depart
from or produce entangled bolts—so long as is efficient.

Applications. Quantum lightning as described has several interesting applications:

– Quantum money. Quantum lightning easily gives quantum money. A ban-
knote is just a bolt, with the associated serial number signed by the bank
using an arbitrary classical signature scheme. Any banknote forgery must
either forge the bank’s signature, or must produce two bolts with the same
serial number, violating quantum lightning security.

– Verifiable min-entropy. Quantum lightning also gives a way to generate
random strings along with a proof that the string is random, or at least has
min-entropy. Indeed, consider an adversarial bolt generation procedure that
produces bolts such that the associated serial number has low min-entropy.
Then by running this procedure several times, one will eventually obtain in
polynomial time two bolts with the same serial number, violating security.
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Therefore, to generate a verifiable random string, generate a new bolt using
. The string is the bolt’s serial number, and serves as a proof of min-

entropy, which is verified using Ver.
– Decentralized Currency. Finally, quantum lightning yields a simple new

construction of totally decentralized digital currency. Coins are just bolts,
except the serial number must hash to a string that begins with a certain
number of 0’s. Anyone can produce coins by generating bolts until the hash
begins with enough 0’s. Moreover, verification is just Ver, and does not require
any interaction or coordination with other users of the system. This is an
advantage over classical cryptocurrencies such as BitCoin, which require a
large public and dynamic ledger, and requires a pool of miners to verify
transactions. Our protocol does have significant limitations relative to clas-
sical cryptocurrencies, which likely make it only a toy object. We hope that
further developments will yield a scheme that overcomes these limitations.

Connections to Post-quantum Security. One simple folklore way to con-
struct a state that can only be constructed once but never a second time is to
use a collision-resistant hash function H. First, generate a uniform superposition
of inputs. Then apply the H in superposition, and measure the result y. The
state collapses to the superposition |ψy〉 of all pre-images x of y.

Notice that, while it is easy to sample states |ψy〉, it is impossible to sample
two copies of the same |ψy〉. Indeed, given two copies of |ψy〉, simply measure
both copies. Since these are superpositions over many inputs, each state will
likely yield a different x. The two x’s obtained are both pre-images of the same
y, and therefore constitute a collision for H.

The above idea does not yet yield quantum lightning. For verification, one
can hash the state to get the serial number y, but this alone is insufficient. For
example, an adversarial storm can simply choose a random string x, and output
|x〉 twice as its two copies of the same state. Of course, |x〉 is not equal to |ψy〉 for
any y. However, the verification procedure just described does not distinguish
between these two states.

What one needs therefore is mechanism to distinguish a random |x〉 from a
random |ψy〉. Interestingly, as observed by Unruh [34], this is exactly the oppo-
site what one would normally want from a hash function. Consider the usual
way of building a computationally binding commitment from a collision resis-
tant hash function: to commit to a message m, choose a random r and output
H(m, r). Classically, this is computationally binding by the collision resistance
of H: if an adversary can open the commitment to two different values, this
immediately yields a collision for H. Unruh [34] shows in the quantum setting,
collision resistance—even against quantum adversaries—is not enough. Indeed,
he shows that for certain hash functions H it may be possible for the adversary
to produce a commitment, and only afterward decide on the committed value.
Essentially, the adversary constructs a superposition of pre-images |ψy〉 as above,
and then uses particular properties of H to perturb |ψy〉 so that it becomes a
different superposition of pre-images of y. Then one simply de-commits to any
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message by first modifying the superposition and then measuring. This does not
violate the collision-resistance of H: since the adversary cannot copy |ψy〉, the
adversary can only ever perform this procedure once and obtain only a single
de-commitment.

To overcome this potential limitation, Unruh defines a notion of collapsing
hash functions. Roughly, these are hash functions for which |x〉 and |ψy〉 are
indistinguishable. Using such hash functions to build commitments, one obtains
collapse-binding commitments, for which the attack above is impossible. Finally,
he shows that a random oracle is collapse binding.

More generally, an implicit assumption in many classical settings is that,
if an adversary can modify one value into another, then it can produce both
the original and modified value simultaneously. For example, in a commitment
scheme, if a classical adversary can de-commit to both 0 or 1, it can then also
simultaneously de-commit to both 0 and 1 by first de-committing to 0, and then
re-winding and de-committing to 1. Thus it is natural classically to require that
it is impossible to simultaneously produce de-commitments to both 0 and 1.
Similarly, for signatures, if an adversary can modify a signed message m0 into
a signed message m1, then it can simultaneously produce two signed messages
m0,m1. This inspires the Boneh-Zhandry [10,11] definition of security against
quantum adversaries, which says that after seeing a (superposition of) signed
messages, the adversary cannot produce two signed messages.

However, a true quantum adversary may be able, for some schemes, to set
things up so that it can modify a (superposition) of values into one of many
possibilities, but still only be able to ever produce a single value. For example,
it may be that an adversary sees a superposition of signed messages that always
begin with 0, but somehow modifies the superposition to obtain a signed message
that begins with a 1. This limitation for signatures was observed by Garg, Yuen,
and Zhandry [23], who then give a much stronger notion to fix this issue1.

Inspired by the above, we formulate a series Either/Or results for quantum
lightning and quantum money. In particular, in Sect. 4, we show, roughly,

Theorem 1 (informal). If H is a hash function that is collision resistant
against quantum adversaries, then either (1) H is collapsing or (2) it can be
used to build quantum lightning without any additional computational assump-
tions.2

The construction of quantum lightning is inspired by the outline above. One
difficulty is that above we needed a perfect distinguisher, whereas a collapsing
adversary may only have a non-negligible advantage. To obtain an actual quan-
tum lightning scheme, we need to repeat the scheme in parallel many times to

1 Garg et al. only actually discuss message authentication codes, but the same idea
applies to signatures.

2 Technically, there is a slight gap due to the difference between non-negligible and
inverse polynomial. Essentially what we show is that the theorem holds for fixed
values of the security parameter, but whether (1) or (2) happens may vary across
different security parameters.
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boost the distinguish advantage to essentially perfect. Still, defining verification
so that we can prove security is a non-trivial task. Indeed, it is much harder to
analyze what sorts of invalid bolts might be accepted by the verification proce-
dure, especially since we know virtually nothing about the types of states the
given adversary for collapsing accepts.

For example, in order to base security on collision resistance, we would like
to say that if a bolt passes verification, we can measure it and obtain a collision.
But then we need that the classical test (namely evaluating H(x)) and the
quantum test (namely, that it is superposition) both succeed simultaneously.
Unfortunately, these two tests are non-commuting operations, so it is impossible
to test both with certainty simultaneously. If we perform the classical test before
the quantum test, it could be that the second test perturbs the quantum state so
that it is in superposition, but no longer a superposition of pre-images. Similarly,
if we perform the quantum test first, it could be that running the classical test
collapses the state to a singleton. In this case, measuring two accepting bolts
could give us the same pre-image, so we do not get a collision.

Using a careful argument, we show nonetheless how to verify and prove secu-
rity. The intuition is to only perform a single test, and which test is performed
is chosen at random independent of the input. We demonstrate that if a state
had a reasonably high probability of passing, then it must have simultaneously
had a noticeable probability of passing each of the two tests. This is enough to
get a collision. Next, we just repeat the scheme many times in parallel; now if
a bolt even has a non-negligible chance of passing, one of the components must
have a high chance of passing, which in turn gives a collision.

Next, we move on to other Either/Or results. We show that:

Theorem 2 (informal). Any non-interactive commitment scheme that is com-
putationally binding against quantum adversaries is either collapse-binding, or
it can be used to build quantum lightning without any additional computational
assumptions.

The above theorem crucially relies on the commitment scheme being non-
interactive: the serial number of the bolt is the sender’s single message, along
with his private quantum state. If the commitment scheme is not collapse-
binding, the sender’s private state can be verified to be in superposition. If an
adversary produces two identical bolts, these bolts can be measured to obtain
two openings, violating computational binding. In contrast, in the case of inter-
active commitments, the bolt should be expanded to the transcript of the inter-
action between the sender and receiver. Unfortunately, for quantum lightning
security, the transcript is generated by an adversary, who can deviate from the
honest receiver’s protocol. Since the commitment scheme is only binding when
the receiver is run honestly, we cannot prove security in this setting.

Instead, we consider the weaker goal of constructing public key quantum
money. Here, since the mint produces bolts, the original bolt is honestly gen-
erated. The mint then signs the transcript using a standard signature scheme
(which can be built from one-way functions, and hence implied by commitments).
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If the adversary duplicates this banknote, it is duplicating an honest commit-
ment transcript, but the note can be measured to obtain two different openings,
breaking computational binding. This gives us the following:

Theorem 3 (informal). Any interactive commitment scheme that is computa-
tionally binding against quantum adversaries is either collapse-binding, or it can
be used to build public key quantum money without any additional computational
assumptions.

Finally, we extend these ideas to quantum money and digital signatures:

Theorem 4 (informal). Any one-time signature scheme that is Boneh-
Zhandry secure is either Garg-Yuen-Zhandry secure, or it can be used to build
public key quantum money without any additional computational assumptions.

Given the difficulty of constructing public key quantum money (let alone
quantum lightning), the above results suggest that most natural constructions
of collision resistant hash functions, including all of those used in practice, are
likely already collapsing, with analogous statements for commitment schemes
and signatures. If they surprisingly turn out to not meet the stronger quantum
notions, then we would immediately obtain a construction of public key quantum
money from simple tools.

Notice that using our Either/Or results give a potential route toward proving
the security of quantum money/lightning in a way that avoids the barrier dis-
cussed above. Consider building quantum money from quantum lightning, and
in turn building quantum lightning from a collision-resistant non-collapsing hash
function. Recall that a banknote is a bolt, together with the mint’s signature
on the bolt’s serial number. A quantum money adversary either (1) duplicates
a bolt to yield two bolts with the same serial number (and hence same signa-
ture), or (2) produces a second bolt with a different serial number, as well as
a forged signature on that serial number. Notice that (2) is impossible simply
by the unforgeability of the mint’s signature. Meanwhile, in proving that (1) is
impossible, our reduction actually can produce arbitrary quantum money states
(for this step, we assume the reduction is given the signing key). The key is that
the reduction on its own cannot produce the same quantum money state twice,
but it can do so using the adversary’s cloning abilities, allowing it to break the
underlying hard problem.

Quantum Money from Obfuscation. We now consider the task of con-
structing public key quantum money. One possibility is based on Aaronson and
Christiano’s broken scheme [3]. In their scheme, a quantum banknote |$〉 is a
uniform superposition over some subspace S, that is known only to the bank.
The quantum Fourier transform of such a state is the uniform superposition over
the dual subspace S⊥. This gives a simple way to check the banknote: test if |$〉
lies in S, and whether it’s Fourier transform lies in S⊥. Aaronson and Christiano
show that the only state which can pass verification is |$〉.
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To make this scheme public key, one gives out a mechanism to test for mem-
bership in S and S⊥, without actually revealing S, S⊥. This essentially means
obfuscating the functions that decide membership. Aaronson and Christiano’s
scheme can be seen as a candidate obfuscator for subspaces. While unfortunately
their obfuscator has since been broken, one may hope to instantiate their scheme
using recent advances in general-purpose program obfuscation, specifically indis-
tinguishability obfuscation (iO) [7,22].

On the positive side, Aaronson and Christiano show that their scheme is
secure if the subspaces are provided as quantum-accessible black boxes, giving
hope that some obfuscation of the subspaces will work. Unfortunately, proving
security relative to iO appears a difficult task. One limitation is the barrier
discussed above, that any reduction must be able to produce a valid banknote,
which means it can also produce two banknotes. Yet at the same time, it somehow
has to use the adversary’s forgery (a second banknote) to break the iO scheme.
Note that this situation is different from the quantum lightning setting, where
there were many valid states, and no process could generate the same state
twice. Here, there is a single valid state (the state |$〉), and it would appear the
reduction must be able to construct this precise state exactly once, but not twice.
Such a reduction would clearly be impossible. As discussed above Aaronson and
Christiano circumvent this issue by using a non-standard type of assumption;
their technique is not relevant for standard definitions of iO.

In Sect. 5, we prove the security of Aaronson and Christiano’s scheme using
iO. Our solution is to separate the proof into two phases. In the first, we change
the spaces obfuscated from S, S⊥ to T0, T1, where T0 is a random unknown sub-
space containing S, and T1 is a unknown random subspace containing S⊥. This
modification can be proved undetectable using a weak form of obfuscation we
define, called subspace-hiding obfuscation, which in turn is implied by iO. Note
that in this step, we even allow the reduction to know S (but not T0, T1), so it
can produce as many copies of |$〉 as it would like to feed to the adversary. The
reduction does not care about the adversary’s forgery directly, only whether or
not the adversary successfully forges. If the adversary forges when given obfus-
cations of S, S⊥, it must also forge under T0, T1, else it can distinguish the two
cases and hence break the obfuscation. By using the adversary in this way, we
avoid the apparent difficulties above.

In the next step, we notice that, conditioned on T0, T1, the space S is a
random subspace between T⊥

1 and T0. Thus conditioned on T0, T1, the adversary
clones a state |$〉 defined by a random subspace S between T⊥

1 and T0. The
number of possible S is much larger than the dimension of the state |$〉, so in
particular the states cannot be orthogonal. Thus, by no-cloning, duplication is
impossible. We need to be careful however, since we want to rule out adversaries
that forge with even very low success probabilities. To do so, we need to precisely
quantify the no-cloning theorem, which we do. We believe our new no-cloning
theorem may be of independent interest. We note that when applying no-cloning,
we do not rely on the secrecy of T0, T1, but only that S is hidden. Intuitively,
there are exponentially many more S’s between T0, T1 than the dimension of the
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space |$〉 belongs to, so no-cloning implies that a forger has negligible success
probability. Thus we reach a contradiction, showing that the original adversary
could not exist.

We also show how to view Aaronson and Christiano’s scheme as a signature
scheme; we show that the signature scheme satisfies the Boneh-Zhandry defini-
tion, but not the strong Garg-Yuen-Zhandry notion. Thus, we can view Aaronson
and Christiano’s scheme as an instance of our Either/Or results, and moreover
provide the first separation between the two security notions for signatures.

We note that our result potentially relies on a much weaker notion of obfusca-
tion that full iO, giving hope that security can be based on weaker assumptions.
For example, an intriguing open question is whether or not recent constructions
of obfuscation for certain evasive functions [26,35] based on LWE can be used to
instantiate our notion of subspace hiding obfuscation. This gives another route
toward building quantum money from hard lattice problems. This is particularly
important at the present time, where the security of iO in the quantum setting
is somewhat uncertain (see below for a discussion).

Constructing Quantum Lightning. In Sect. 6, we finally turn to actu-
ally building quantum lightning, and hence giving another route to quantum
money. Following our Either/Or results, we would like a non-collapsing collision-
resistant hash function. Unfortunately, Unruh’s counterexample does not yield
an explicit construction. Instead, he builds on techniques of [5] to give a hash
function relative to a quantum oracle3. As it is currently unknown how to obfus-
cate quantum oracles with a meaningful notion of security, this does not give
even a candidate construction of quantum lightning. Instead, we focus on specific
standard-model constructions of hash functions. Finding suitable hash functions
is surprisingly challenging; we were only able to find a single family of candidates,
and leave finding additional candidates as a challenging open problem.

To motivate our construction, we consider the following approach to building
quantum lightning from the short integer solution (SIS) problem. In SIS, an
underdetermined system of homogeneous linear equations is given, specified by
a wide matrix A, and the goal is to find a solution consisting of “small” entries;
that is, a “short” vector x such that A.x = 0. For random linear constraints, SIS
is conjectured to be computationally difficult, which is backed up by reductions
from the hardness of worst-case lattice problems [29]. SIS gives a simple collision
resistant hash function fA(x) = A · x, where the domain is constrained to be
small; given a collision x,x′, one obtains a SIS solution as x − x′.

One may hope that SIS is also non-collapsing, in which case we would obtain
quantum lightning. One (failed) attempt to obtaining a collapsing distinguisher
is the following. Start with superposition of “short” vectors x, weighted by a
Gaussian function. When fA is applied, the superposition collapses to a super-
position over short vectors x that all have the same value of A · x. This will
be a bolt in the scheme, and the serial number will be the common hash. To

3 That is, the oracle itself performs quantum operations.
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verify the bolt, we first check the hash. Then, to verify the bolt is in superpo-
sition, we apply the quantum Fourier transform. Note that if x were a uniform
superposition over all vectors, the QFT would give a uniform superposition over
all vectors in the row-span of A (with some phase terms). Instead, since x is
a superposition over “short” vectors, using the rules of Fourier transforms is
possible to show that the QFT gives a superposition over vectors of the form
r ·A+ e, where r is a random row vector, and e is a Gaussian-weighted random
short row vector.

Intuitively, we just need to distinguish these types of vectors from random
vectors. Unfortunately, distinguishing r ·A+e from random for a random matrix
A is an instance of the Learning With Errors (LWE) problem, which is widely
believed to be comptuationally intractable, as evidenced by quantum reductions
from worst-case lattice problems [32].

We therefore need to “break” LWE by given some trapdoor information. The
usual way to break LWE is to provide a short vector t in the kernel of A. Then,
to distinguish an input u, simply compute u · t, and check if the result is small.
In the case u = r · A + e, then u · t = e · t, which will be small. In contrast, if u
is random, t · u will be large with overwhelming probability.

Unfortunately, the trapdoor t is a SIS solution! In particular, in order for the
distinguisher to work, one can show that t needs to be somewhat smaller than
the size bound on the domain of fA. With such a trapdoor, it is therefore easy
to manufacture collisions for fA, so fA is no longer collision-resistant. Worse
yet, it is straightforward to use the trapdoor to come up with a superposition of
inputs that fools the distinguisher.

We do not know how to make the above approach work, as all ways we are
aware of for breaking LWE involve handing out a SIS solution. One possible
approach would be to obfuscate an LWE distinguisher that has the trapdoor
hardcoded. This allows for distinguishing LWE samples without explicitly hand-
ing out a SIS solution. However, it might be possible to construct a SIS solution
from any such distinguishing program.

We now turn to our actual construction. Our idea is to use linear equations
over restricted domains as in SIS, but will restrict the domain in different ways.
In particular, we will view vectors as specifying symmetric matrices (that is, an
(n+1)n/2-dimensional vector will correspond to an n×n symmetric matrix, with
the vector entries specifying the upper-triangular part of the matrix). Instead
of restricting the size of entries, will instead restrict the rank of the symmetric
matrix. Our construction then follows the rough outline of the SIS-based app-
roach above, intuitively using rank as a stand-in for vector norm. By switching
from vector norm to matrix rank, we are able to arrive at a construction whose
security follows from a plausible computational assumption.

A bolt is then a superposition over rank-bounded matrices satisfying the
linear constraints. Analogous to the SIS approach, we are able to show that
applying the Quantum Fourier transform on such bolts results in a state whose
support consists of matrices A that can be written as A = B + C, where B is
a sum of a few known matrices (based on the precise linear functions), whereas
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C is an arbitrary low-rank matrix. We show how to generate the constraints
along with a public “trapdoor” which allows for such matrices can be identified.
Our trapdoor is simply a row rank matrix in the kernel of the linear constraints,
analogous to how the LWE trapdoor is a short vector in the kernel.

One may be rightfully concerned at this point, as our trapdoor has the same
form as domain elements for our hash function. Indeed, if the rank of the trapdoor
was smaller than the rank of the domain, the trapdoor would completely break
the construction. Importantly for our construction, we show that this matrix can
have higher rank than the allowed inputs to the hash function; as such, it does
not appear useful for generating collisions.

Our scheme can easily be proved secure under the assumed collision-
resistance of our hash function. Unfortunately, this assumption is false. Indeed,
the family of matrices BT B for wide and short matrices A is low rank. By eval-
uating our hash function on such matrices, we turn it into a degree-2 polynomial
over the B matrices. Unfortunately, Ding and Yang [19] and Applebaum et al. [6]
show that such hash functions are not collision resistant4.

However, we will apply a simple trick in order to get our scheme to work.
Namely, we show how to use the attacks above to actually generate superposi-
tions over k colliding inputs for some parameter k that depends on the various
parameters of the scheme. At the same time, the attacks do not seem capable of
generating collisions beyond k. We will therefore set our bolt to be this super-
position over several colliding inputs. Now, we can apply our testing procedure
to each of the inputs separately to verify the bolt. If an adversary creates two
bolts with the same serial number, we can measure to obtain 2k colliding inputs.
By assuming the plausible 2k-multi-collision resistance of our hash functions, we
obtain security.

Our construction requires a common reference string, namely the sequence
of linear constraints and the trapdoor. We show that we can convert our scheme
into the common random string (crs) model by using the common random string
to generate the trapdoor and linear constraints.

1.2 Related Works

Quantum Money. Lutomirski [27] shows another weakness of Wiesner’s scheme:
a merchant, who is allowed to interact with the mint for verification, can use
the verification oracle to break the scheme and forge new currency. Public
key quantum money is necessarily secure against adversaries with a verifica-
tion oracle, since the adversary can implement the verification oracle for itself.
Several alternative solutions to the limitations of Wiesner’s scheme have been
proposed [24,30], though the “ideal” solution still remains public key quantum
money.

4 Technically, they only show this is true if the degree-2 polynomials are random,
whereas ours are more structured, but we show that their analysis extends to our
setting as well.
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Randomness Expansion and Certifiable Randomness. Colbeck [16] proposed the
idea of a classical experimenter, interacting with several potentially untrustwor-
thy quantum devices, can expand a small random seed into a certifiably random
longer seed. Subsequent to our work, Brakerski et al. [12] consider certifiable
randomness in the computational setting. Of of these results are related, but
entirely different from, our version of verifiable randomness. In particular, their
protocols are interactive and privately verifiable, but allows for a classical veri-
fier. In contrast, our protocol is non-interactive (in the crs model) and publicly
verifiable, but requires a quantum verifier.

Obfuscation and Multilinear Maps. There is a vast body of literature on strong
notions of obfuscation, starting with the definitional work of Barak et al. [7].
Garg et al. [22] propose the first obfuscator plausibly meeting the strong notion
of iO, based on cryptographic multilinear maps [17,21,25]. Unfortunately, there
have been numerous attacks on multilinear maps, which we do not fully elaborate
on here. There have been several quantum attacks [4,14,15,18] on obfuscators,
but there are still schemes that remain unbroken. Moreover, there has been some
success in transforming applications of obfuscation to be secure under assump-
tions on lattices [13,26,35], which are widely believed to be quantum hard. We
therefore think it plausible that subspace-hiding obfuscation, which is all we
need for this work, can be based on similar lattice problems. Nonetheless, obfus-
cation is a very active area of research, and we believe that one of the current
obfuscators so some future variant will likely be secure quantum resistant.

Computational No-Cloning. We note that computational assumptions and no-
cloning have been combined in other contexts, such as Unruh’s revocable time-
released encryption [33]. We note however, that these settings do not involve
verification, the central theme of this work.

2 Preliminaries

Throughout this paper, we will let λ be a security parameter. When inputted
into an algorithm, λ will be represented in unary. A function ε(λ) is negligible
if for any inverse polynomial 1/p(λ), ε(λ) < 1/p(λ) for sufficiently large λ. A
function is non-negligible if it is not negligible, that is there exists an inverse
polynomial 1/p(λ) such that ε(λ) ≥ 1/p(λ) infinitely often.

2.1 Quantum Computation

Here, we very briefly recall some basics of quantum computation. A quantum
system Q is defined over a finite set B of classical states. A pure state over Q
is an L2-normalized vector in C

|B|, which assigns a (complex) weight to each
element in B. We will think of pure states as column vectors. The pure state
that assigns weight 1 to x and weight 0 to each y �= x is denoted |x〉.
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A pure state |φ〉 can be manipulated by performing a unitary transformation
U to the state |φ〉. We will denote the resulting state as |φ′〉 = U |φ〉. A unitary is
quantum polynomial time (QPT) if it can be represented as a polynomial-sized
circuit of gates from a finite gate set. |φ〉 can also be measured; the measure-
ment outputs the value x with probability |〈x|φ〉|2. The normalization of |φ〉
ensures that the distribution over x is indeed a probability distribution. After
measurement, the state “collapses” to the state |x〉. Notice that subsequent mea-
surements will always output x, and the state will always stay |x〉.

We define the Euclidean distance ‖|φ〉− |ψ〉‖ between two states as the value
(∑

x |αx − βx|2)
1
2 where |φ〉 =

∑
x αx|x〉 and |ψ〉 =

∑
x βx|x〉.

We will be using the following lemma:

Lemma 1 ([8]). Let |ϕ〉 and |ψ〉 be quantum states with Euclidean distance at
most ε. Then, performing the same measurement on |ϕ〉 and |ψ〉 yields distribu-
tions with statistical distance at most 4ε.

2.2 Public Key Quantum Money

Here, we define public key quantum money. We will slightly modify the usual
definition [2], though the definition will be equivalent under simple transforma-
tions.

– We only will consider what Aaronson and Christiano [3] call a quantum money
mini-scheme, where there is just a single valid banknote. It is straightforward
to extend to general quantum money using a signatures

– We will change the syntax to more closely resemble our eventual quantum
lightning definition, in order to clearly compare the two objects.

Quantum money consists of two quantum polynomial time algorithms Gen,Ver.

– Gen takes as input the security parameter, and samples a banknote |$〉
– Ver verifies a banknote, and if the verification is successful, produces a serial

number for the note.

For correctness, we require that verification always accepts money produced
by Gen. We also require that verification does not perturb the money. Finally,
since Ver is a quantum algorithm, we must ensure that multiple runs of Ver on
the same money will always produce the same serial number. This is captured
by the following two of requirements:

– For a money state |$〉, let H∞(|$〉) = − log2 mins Pr[Ver(|$〉) = s] be the
min-entropy of s produced by applying Ver to |$〉, were we do not count
the rejecting output ⊥ as contributing to the min-entropy. We insist that
E[H∞(|$〉)] is negligible, the expectation over |$〉 ← Gen(1λ). This ensures
the serial number is essentially a deterministic function of the money.

– For a money state |$〉, let |ψ〉 be the state left over after running Ver(|$〉).
We insist that E[|〈ψ|$〉|2] ≥ 1 − negl(λ), where the expectation is over |$〉 ←
Gen(1λ), and any affect Ver has on |ψ〉. This ensures that verification does
not perturb the money.
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For security, consider the following game between an adversary A and a chal-
lenger

– The challenger runs Gen(1λ) to get a banknote |$〉. It runs Ver on the banknote
to extract a serial number s.

– The challenger sends |$〉 to A.
– A produces two candidate quantum money states |$0〉, |$1〉, which are poten-

tially entangled.
– The challenger runs Ver on both states, to get two serial numbers s0, s1.
– The challenger accepts if and only if both runs of Ver pass, and the serial

numbers satisfy s0 = s1 = s.

Definition 1. A quantum money scheme (Gen,Ver) is secure if, for all QPT
adversaries A, the probability the challenger accepts in the above experiment is
negligible.

3 Quantum Lightning

3.1 Definitions

The central object in a quantum lightning system is a lightning bolt, a quantum
state that we will denote as |E〉. Bolts are produced by a storm, , a polynomial
time quantum algorithm which takes as input a security parameter λ and samples
new bolts. Additionally, there is a quantum polynomial-time bolt verification
procedure, Ver, which serves two purposes. First, it verifies that a supposed bolt
is actually a valid bolt; if not it rejects and outputs ⊥. Second, if the bolt is
valid, it extracts a fingerprint/serial number of the bolt, denoted s.

Rather than having a single storm and single verifier Ver, we will actu-
ally have a family Fλ of pairs for each security parameter. We will
have a setup procedure SetupQL(1λ) which samples a pair from some
distribution over Fλ.

For correctness, we have essentially the same requirements as quantum
money. We require that verification always accepts bolts produced by . We
also require that verification does not perturb the bolt. Finally, since Ver is a
quantum algorithm, we must ensure that multiple runs of Ver on the same bolt
will always produce the same fingerprint. This is captured by the following two
of requirements:

– For a bolt |E〉, let

H∞(|E〉,Ver) = − log2 min
s

Pr[Ver(|E〉) = s]

be the min-entropy of s produced by applying Ver to |E〉, were we do
not count the rejecting output ⊥ as contributing to the min-entropy.
We insist that E[H∞(|E〉,Ver)] is negligible, where the expectation is over

and . This ensures the serial number is essen-
tially a deterministic function of the bolt.
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– For a bolt |E〉, let |ψ〉 be the state left over after running Ver(|E〉).
We insist that E[|〈ψ|E〉|2] ≥ 1 − negl(λ), where the expectation is over

, , and any affect Ver has on |ψ〉. This ensures
that verification does not perturb the bolt.

Remark 1. We note that it suffices to only consider the first requirement, since
the serial number is essentially a deterministic function of the bolt. Indeed, by
un-computing the Ver computation after obtaining the serial number, a straight-
forward calculation shows the result will be negligibly close to the original state.

For security, informally, we ask that no adversarial storm can produce two
bolts with the same serial number. More precisely, consider the following exper-
iment between a challenger and a malicious bolt generation procedure :

– The challenger runs , and sends to .
– produces two (potentially entangled) quantum states |E0〉, |E1〉, which it

sends to the challenger.
– The challenger runs Ver on each state, obtaining two fingerprints s0, s1. The

challenger accepts if and only if s0 = s1 �= ⊥.

Definition 2. A quantum lightning scheme has uniqueness if, for all QPT
adversarial storms , the probability the challenger accepts in the game above
is negligible in λ.

4 Either/Or Results

4.1 Infinity-Often Security

Before describing our Either/Or results, we need to introduce a non-standard
notion of security. Typically, a security statement says that no polynomial-time
adversary can win some game, except with negligible probability. A violation
of the security statement is a polynomial-time adversary that can win with
non-negligible probability; that is, some probability ε that is lower bounded
by an inverse-polynomial infinitely often. In our proofs below, we use such an
adversary to devise a scheme for another problem. But to actually get an effi-
cient scheme, we need the adversary’s success probability to actually be inverse-
polynomial, not non-negligible. This motivates the notion of infinitely often
security. A scheme has infinitely-often security if security holds for an infinite
number of security parameters, but not necessarily all security parameters. It
is straightforward to modify all security notions in this work to infinitely-often
variants.

4.2 Collision Resistant Hashing

A hash function is a function H that maps large inputs to small inputs. We will
considered keyed functions, meaning it takes two inputs: a key k ∈ {0, 1}λ, and
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the actual input to be compressed, x ∈ {0, 1}m(λ). The output of H is n(λ) bits.
For the hash function to be useful, we will require m(λ) 
 n(λ).

The usual security property for a hash function is collision resistance, mean-
ing it is computationally infeasible to find two inputs that map to the same
output.

Definition 3. H is collision resistant if, for any QPT adversary A, Pr[H(x0) =
H(x1) ∧ x0 �= x1 : (x0, x1) ← A(k), k ← {0, 1}λ] < negl(λ).

Unruh [34] points out weaknesses in the usual collision resistance definition,
and instead defines a stronger notion called collapsing. Intuitively, it is easy for an
adversary to obtain a superposition of pre-images of some output, by running H
on a uniform superposition and then measuring the output. Collapsing requires,
however, that this state is computationally indistinguishable from a random
input x. More precisely, for an adversary A, consider the following experiment
between A and a challenger

– The challenger has an input bit b.
– The challenger chooses a random key k, which it gives to A.
– A creates a superposition |ψ〉 =

∑
x αx|x〉 of elements in {0, 1}m(λ).

– In superposition, the challenger evaluates H(k, ·) to get the state |ψ′〉 =∑
x αx|x,H(k, x)〉.

– Then, the challenger either:
• If b = 0, measures the H(k, x) register, to get a string y. The state |ψ′〉

collapses to |ψy〉 ∝ ∑
x:H(k,x)=y αx|x, y〉

• If b = 1, measures the entire state, to get a string x,H(k, x). The state
|ψ′〉 collapses to |x,H(k, x)〉

– The challenger returns whatever state remains of |ψ′〉 (namely |ψy〉 or
|x,H(k, x)〉) to A.

– A outputs a guess b′ for b. Define Collapse-Expb(A, λ) as b′.

Definition 4. H is collapsing if, for all QPT adversaries A,
|Pr[Collapse-Exp0(A, λ) = 1] − Pr[Collapse-Exp1(A, λ) = 1]| < negl(λ).

Theorem 5. Suppose H is collision resistant. Then both of the following are
true:

– Either H is collapsing, or H can be used to build a quantum lightning scheme
that is infinitely often secure.

– Either H is infinitely often collapsing, or H can be used to build a quantum
lightning scheme that is secure.

Proof. Let A be a collapsing adversary; the only difference between the two cases
above are whether A’s advantage is non-negligible or actually inverse polynomial.
The two cases are nearly identical, but the inverse polynomial case will simplify
notation. We therefore assume that H is not infinitely-often collapsing, and will
design a quantum lightning scheme that is secure.
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Let A0 be the first phase of A: it receives a hash key k as input, and produces
a superposition of pre-images, as well as it’s own internal state. Let A1 be the
second phase of A: it receives the internal state from A0, plus the superposition
of input/output pairs returned by the challenger. It outputs 0 or 1.

Define qb(λ) = Pr[Collapse-Expb(A, λ) = 1]. By assumption, we have that
|q0(λ) − q1(λ)| ≥ 1/p(λ) for some polynomial p. We will assume q0 < q1, the
other case handled analogously.

For an integer r, consider the function H⊗r(k, ·) which takes as input a string
x ∈ ({0, 1}m(λ))r, and outputs the vector (H(k, x1), . . . , H(k, xr)). The collision
resistance of H easily implies the collision resistance of H⊗r, for any polynomial
r. Moreover, we will use A to derive a collapsing adversary A⊗r for H⊗r which
has near-perfect distinguishing advantage. A⊗r works as follows.

– First, it runs A0 in parallel r times to get r independent states |ψi〉, where
each |ψi〉 contains a superposition of internal state values, as well as inputs
to the hash function.

– It assembles the r superpositions of inputs into a superposition of inputs for
H⊗r, which it then sends to the challenger.

– The challenger responds with a potential superposition over input/output
pairs (through the output value in ({0, 1}n(λ))r is fixed).

– A⊗r disassembles the input/output pairs into r input/output pairs for H.
– It then runs A1 in parallel r times, on each of the corresponding state/input/

output superpositions, to get bits b′
1, . . . , b

′
r.

– A⊗r then computes f = (
∑

i b′
i)/r, the fraction of b′

i that are 1.
– If f > (q0 +q1)/2 (in other words, f is closer to q1 than it is to q0), A outputs

1; otherwise it outputs 0.

Notice that if A⊗r’s challenger uses b = 0 (so it only measures the output
registers), this corresponds to each A seeing a challenger with b = 0. In this case,
each b′

i with be 1 with probability q0. This means that f will be a (normalized)
Binomial distribution with expected value q0. Analogously, if b = 1, each b′

i will
be 1 with probability q1, so f will be a normalized Binomial distribution with
expected value q1. Since q1 − q0 ≥ 1/p(λ), we can use Hoeffding’s inequality to
choose r large enough so that in the b = 0 case, f < (q0 + q1)/2 = q0 + 1/2p(λ)
except with probability 2−λ. Similarly, in the b = 1 case, f > (q0 + q1)/2 =
q1 − 1/2p(λ) except with probably 2−λ. This means A⊗r outputs the correct
answer except with probability 2−λ.

We now describe a first attempt at a quantum lightning scheme:

– SetupQL0 simply samples and outputs a random hash key k. This key will
determine as defined below.

– runs A⊗r
0 (k), where r is as chosen above and A⊗r

0 represents the first
phase of A⊗r.
When A⊗r

0 produces a superposition |ψ〉 over inputs x ∈ {0, 1}rm for H⊗r(k, ·)
as well as some private state, applies H⊗r in superposition, and measures
the result to get y ∈ {0, 1}rn.
Finally, outputs the resulting state |E〉 = |ψy〉.



Quantum Lightning Never Strikes the Same State Twice 427

– Ver0 on input a supposed bolt |E〉, first applies H⊗r(k, ·) in superposition to
the input registers to obtain y, which it measures. It saves y, which will be
the serial number for the bolt.
Next, consider two possible tests Test0 and Test1. In Test0, run A⊗r

1 —the
second phase of A⊗r—on the |E〉 and measure the result. If the result is 1
(meaning A⊗r guesses that the challenger measured the entire input/output
registers), then abort and reject. Otherwise if the result is 0 (meaning A⊗r

guess that the challenger only measured the output), then it un-computes
A⊗r

1 . Note that since we measured the output of A⊗r
1 , un-computing does not

necessarily return the bolt to its original state.
Test1 is similar to Test0, except that the input registers x are measured before
running A⊗r

1 . This measurement is not a true measurement, but is instead
performed by copying x into some private registers. Moreover, the abort con-
dition is flipped: if the result of applying A⊗r

1 is 0, then abort and reject.
Otherwise un-compute A⊗r

1 , and similarly “un-measure” x by un-computing
x from the private registers.
Ver0 chooses a random c, and applies Testc. If the test accepts, then it outputs
the serial number y, indicated that it accepts the bolt.

Correctness. For a valid bolt, Test0 corresponds to the b = 0 challenger, in which
case we know A⊗r

1 outputs 0 with near certainty. This means Ver continues, and
when it un-computes, the result will be negligibly close to the original bolt.
Similarly, Test1 corresponds to the b = 1 challenger, in which case A⊗r

1 outputs
1 with near certainty. Un-computing returns the bolt to (negligibly close to)
its original state. For a valid bolt, the serial number is always the same. Thus,

satisfy the necessary correctness requirements.

Security. Security is more tricky. Suppose instead of applying a random Testc,
Ver0 applied both tests. The intuition is that if Ver accepts, it means that the
two possible runs of A⊗r

1 would output different results, which in turn means
that A⊗r

1 detected whether or not the input registers were measured. For such
detection to even be possible, it must be the case that the input registers are
in superposition. Then suppose an adversarial storm generates two bolts
|E0〉, |E1〉 that are potentially entangled such that both pass verification with the
same serial number. Then we can measure both states, and the result will (with
reasonable probability) be two distinct pre-images of the same y, representing
a collision. By the assumed collision-resistance of H (and hence H⊗r), this will
means a contradiction.

The problem with the above informal argument is that we do not know how
A⊗r

1 will behave on non-valid bolts that did not come from A⊗r
0 . In particular,

maybe it passes verification with some small, but non-negligible success proba-
bility. It could be that after passing Test0, the superposition has changed signifi-
cantly, and maybe is no longer a superposition over pre-images of y, but instead
a single pre-image. Nonetheless, if the auxiliary state registers are not those gen-
erated by A⊗r

0 , it may be that the second test still accepts—for example, it may
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be that if A⊗r’s private state contains a particular string, it will always accept;
normally this string would not be present, but the bolt that remains after per-
forming one of Testc may contain this string. We have to be careful to show that
this case cannot happen, or if it does there is still nonetheless a way to extract
a collision.

Toward that end, we only choose a single test at random. We will first show a
weaker form of security, namely that an adversary cannot produce two bolts that
are both accepted with probability close to 1 and have the same serial number.
Then we will show how to modify the scheme so that it is impossible to produce
bolts that are even accepted with small probability.

Consider a bolt where, after measuring H(k, ·), the inputs registers are not
in superposition at all. In this case, the measurement in Test1 is redundant, and
we therefore know that both runs of Testc are the same, except the acceptance
conditions are flipped. Since the choice of test is random, this means that such
a bolt can only pass verification with probability at most 1/2.

More generally, suppose the bolt was in superposition, but most of the weight
was on a single input x0. Precisely, suppose that when measuring the x registers,
x0 is obtained with probability 1 − α for some relatively small α. We prove:

Claim. Consider a quantum state |φ〉 and a projective partial measurement on
some of the registers. Let |φx〉 be the state left after performing the measurement
and obtaining x. Suppose that some outcome of the measurement x0 occurs with
probability 1 − α. Then ‖|φx0〉 − |φ〉‖ <

√
2α.

Proof. First, the |φx〉 are all orthogonal since the measurement was projec-
tive. Let Pr[x] be the probability that the partial measurement obtains x. It
is straightforward to show that |φ〉 =

∑
y

√
Pr[x]βx|φx〉 for some βx of unit

norm. The overall phase can be taken to be arbitrary, so we can set βx0 = 1.
Then we have 〈φx0 |φ〉 =

√
1 − α. This means ‖|φx0〉 − |φ〉‖2 = 2 − 2(〈φx0 |φ〉) =

2 − 2
√

1 − α ≤ 2α for α ∈ [0, 1]. ��
Now, suppose for the bolt that Test0 passes with probability t. Suppose α ≤

1/200. Then Test1 can only pass with probability at most 3/2−t. This is because
with probability at least 199/200, the measurement in Test1 yields x0. Applying
Claim, the result in this case is at most a distance

√
2/200 = 1

10 from the original
bolt. In this case, since the acceptance criteria for Test1 is the opposite of Test0,
the probability Test1 passes is at most 1 − t + 4

10 by Lemma 1. Over all then,
Test1 passes with probability at most (199/200)

(
1 − t + 4

10

)
+ (1/200) ≤ 3

2 − t.
Therefore, since the test is chosen at random, the probability of passing the

test is the average of the two cases, which is at most 3
4 regardless of t. Therefore,

for any candidate pair of bolts |E0〉|E1〉, either:

(1) If the bolts are measured, two different pre-images of the same y, and hence
a collision for H⊗r, will be obtained with probability at least 1/200

(2) The probability that both bolts accept and have the same serial number is
at most 3

4 .
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Notice that if |E0〉, |E1〉 are produced by an adversarial storm , then event
(1) can only happen with negligible probability, else we obtain a collision-finding
adversary. Therefore, we have that for any efficient , except with negligible
probability, the probability that both bolts produced by accept and have the
same serial number is at most 3

4 .
In the full scheme, a bolt is simply a tuple of λ bolts produced by , and the

serial number is the concatenation of the serial numbers from each constituent
bolt. The above analysis show that for any efficient adversarial storm that
produces two bolt sequences |Eb〉 = (|Eb,1〉, . . . , |Eb,λ〉), the probability that both
sequences completely accept and agree on the serial numbers is, except with
negligible probability, at most

(
3
4

)λ, which is negligible. Thus we obtain a valid
quantum lightning scheme. ��

5 Quantum Money from Obfuscation

In this section, we show that, assuming injective one-way functions exist,
applying indistinguishability obfuscation to Aaronson and Christiano’s abstract
scheme [3] yields a secure quantum money scheme.

5.1 Obfuscation

Definition 5. A subspace hiding obfuscator (shO) for a field F and dimensions
d0, d1 is a PPT algorithm shO such that:

– Input. shO takes as input the description of a linear subspace S ⊆ F
n of

dimension d ∈ {d0, d1}. For concreteness, we will assume S is given as a
matrix whose rows form a basis for S.

– Output. shO outputs a circuit Ŝ that computes membership in S. Precisely,
let S(x) be the function that decides membership in S. Then

Pr[Ŝ(x) = S(x)∀x : Ŝ ← shO(S)] ≥ 1 − negl(n)

– Security. For security, consider the following game between an adversary
and a challenger, indexed by a bit b.

• The adversary submits to the challenger a subspace S0 of dimension d0
• The challenger chooses a random subspace S1 ⊆ F

n of dimension d1 such
that S0 ⊆ S1. It then runs Ŝ ← shO(Sb), and gives Ŝ to the adversary

• The adversary makes a guess b′ for b.
The adversary’s advantage is the probability b′ = b, minus 1/2. shO is secure
if, all PPT adversaries have negligible advantage.

In the full version [37], we show the following theorem, which demonstrates
that indistinguishability obfuscation can be used to build subspace-hiding obfus-
cation:

Theorem 6. If injective one-way functions exist, then any indistinguishability
obfuscator, appropriately padded, is also a subspace hiding obfuscator for field F

and dimensions d0, d1, as long as |F|n−d1 is exponential.
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5.2 Quantum Money from Obfuscation

Here, we recall Aaronson and Christiano’s [3] construction, when instantiated
with a subspace-hiding obfuscator.

Generating Banknotes. Let F = Zq for some prime q. Let λ be the security
parameter. To generate a banknote, choose n a random even integer that is
sufficiently large; we will choose n later, but it will depend on q and λ. Choose
a random subspace S ⊆ F

n of dimension n/2. Let S⊥ = {x : x · y = 0∀y ∈ S}
be the dual space to S.

Let |$S〉 = 1
|F|n/4

∑
x∈S |x〉. Let P0 = shO(S) and P1 = shO(S⊥). Output

|$S〉, P0, P1 as the quantum money state.

Verifying Banknotes. Given a banknote state, first measure the program regis-
ters, obtaining P0, P1. These will be the serial number. Let |$〉 be the remaining
registers. First run P0 in superposition, and measure the output. If P0 outputs
0, reject. Otherwise continue. Notice that if |$〉 is the honest banknote state |$S〉
and P0 is the obfuscation of S, then P0 will output 1 with certainty.

Next, perform the quantum Fourier transform (QFT) to |$〉. Notice that if
|$〉 = |$S〉, now the state is |$S⊥〉. Next, apply P1 in superposition and measure
the result. In the case of an honest banknote, the result is 1 with certainty.
Finally, perform the inverse QFT to return the state. In the case of an honest
banknote, the state goes back to being exactly |$S〉. The above shows that the
scheme is correct. Next, we argue security:

Theorem 7. If shO is a secure subspace-hiding obfuscator for d0 = n/2 and
some d1 such that both |F|n−d1 and |F|d1−n/2 are exponentially-large, then the
construction above is a secure quantum money scheme.

Corollary 1. If injective one-way functions and iO exist, then quantum money
exists.

Proof. We now prove Theorem 7 through a sequence of hybrids

– H0 is the normal security experiment for quantum money. Suppose the adver-
sary, given a valid banknote, is able to produce two banknotes that pass
verification with probability ε.

– H1: here, we recall that Aaronson and Christiano’s scheme is projective, so
verification is equivalent to projecting onto the valid banknote state. Verifying
two states is equivalent to projecting onto the product of two banknote states.
Therefore, in H1, instead of running verification, the challenger measures in
the basis containing |$S〉 × |$S〉, and accepts if and only if the output is
|$S〉 × |$S〉. The adversary’s success probability is still ε.

– H2: Here we invoke the security of shO to move P0 to a higher-dimensional
space. P0 is moved to a random d1 dimensional space containing S0.
We prove that the adversary’s success probability in H2 is negligibly close to



Quantum Lightning Never Strikes the Same State Twice 431

ε. Suppose not. Then we construct an adversary B that does the following. B
chooses a random d0 = n/2-dimensional space S0. It queries the challenger on
S0, to obtain a program P0. It then obfuscates S⊥

0 to obtain P1. B constructs
the quantum state |$S0〉, and gives P0, P1, |$S0〉 to A. A produces two (poten-
tially entangled) quantum states |$0〉|$1〉. B measures in a basis containing
|$S0〉 ⊗ |$S0〉, and outputs 1 if and only if |$S0〉 ⊗ |$S0〉.
If B is given P0 which obfuscates S0, then A outputs 1 with probability ε,
since it perfectly simulates A’s view in H1. If P0 obfuscates a random space
containing S0, then B simulates H2. By the security of shO, we must have that
B outputs 1 with probability at least ε − negl. Therefore, in H2, A succeeds
with probability ε − negl.

– H3: Here we invoke security of shO to move P1 to a random d1-dimensional
space containing S⊥

0 . By an almost identical analysis to he above, we have
that A still succeeds with probability at least ε − negl.

– H4. Here, we change how the subspaces are constructed. First, a random space
T0 of dimension d1 is constructed. Then a random space T1 of dimension d1
is constructed, subject to T⊥

0 ⊆ T1. These spaces are obfuscated using shO
to get programs P0, P1. A random n/2-dimensional space S0 is chosen such
that T⊥

1 ⊆ S0 ⊆ T0. S0 is used to construct the state |$S0〉, which is given to
A along with P0, P1. Then during verification, the space S0 is used again.
The distribution on spaces is identical to that in H3, to A succeeds in H4

with probability ε − negl.

Since on average over T0, T1, A succeeds with probability ε−negl, there exist
fixed T0, T1, T

⊥
0 ⊆ T1, such that the adversary succeeds for these T0, T1 with

probability at least ε − negl.
We now construct a no-cloning adversary C. C is given a state |$S0〉 for a

random S0 such that T⊥
1 ⊆ S0 ⊆ T0, and it tries to clone |$S0〉. To do so, it

constructs obfuscations P0, P1 of T0, T1 using shO, and gives them along with
|$S0〉 to A. C then outputs whatever A outputs. C’s probability of cloning is
exactly the probability A succeeds in H4, which is ε−negl. This gives an instance
of the no-cloning problem. In the full version [37], we prove that the probability of
cloning in this instance is at most 2|F|−n′/2 = 2|F|d1−n/2, which is exponentially
small by the assumptions of the theorem. ��

6 Constructing Quantum Lightning

6.1 Background

Degree-2 Polynomials over Zq. Consider a set A of n degree-2 polynomials over
m variables in Zq for some large prime q. Let fA : Zm

q → Z
n
q be the function

that evaluates each of the polynomials in A on its input. We will be interested
in the compressing case, where n < m.

As shown by [6,19], the function fA is not collision resistant when the coef-
ficients of the polynomials are random. Here, we recreate the proof, and also
discuss the multi-collision resistance of the function.
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To find a collision for fA, choose a random Δ ∈ {0, 1}m. We will find a
collision of the form x,x + Δ. The condition that x,x + Δ collide means P (x +
Δ)−P (x) = 0 for all polynomials in A. Now, since P has degree 2, all the order-2
terms in x in this difference will cancel out, leaving only terms that are linear
in x (and potentially quadratic in Δ). This gives us a system of linear equations
over x, which we can solve provided the equations are consistent. As shown in [6],
these equations are consistent with overwhelming probability provided n ≤ m.

This attack can be generalized to find k +1 colliding inputs. Choose random
Δ1, . . . ,Δk. We will compute an x such that x,x + Δ1, . . . ,x + Δk form k + 1
colliding points. Each Δj generates a system of n equations for x as described
above. Let B = BΔ1,...,Δk

be the matrix consisting of all the rows of BΔj
as

j varies. As long as B is full rank, a solution for x is guaranteed. Again, B
will be full rank with overwhelming probability, provided m ≥ kn. However, if
m � kn, this procedure will fail, and it therefore appears reasonable to assume
the multi-collision resistance of such functions.

Using the above, we can even generate superpositions over k + 1 inputs such
that all the inputs map to the same output. Consider the following procedure:

– Generate the uniform superposition |φ0〉 ∝ ∑
Δ1,...,Δk

|Δ1, . . . ,Δk〉
– Write Δ = (Δ1, . . . ,Δk) In superposition, run the computation above that

maps Δ to the affine space SΔ such that, for all x ∈ S, fA(x) = fA(x + Δj)
for all j. This will be an affine space of dimension m−nk with overwhelming
probability. Then construct a uniform superposition of elements in SΔ. The
resulting state is then: |φ1〉 ∝ ∑

Δ
1√
|SΔ|

∑
x∈SΔ

|Δ,x〉
– Next, in superposition, compute fA(x), and measure the result to get a string

y. The resulting state is |φy〉 ∝ ∑
Δ,x∈SΔ:fA(x)=y

1√
|SΔ| |x,Δ〉

– Finally, in superposition, map (x,Δ1, . . . ,Δk) to (x,x+Δ1, . . . ,x+Δk). The
resulting state is |ψy〉 ∝ ∑

Δ,x∈SΔ:fA(x)=y
1

|SΔ| |x,x + Δ1, . . . 〉
We note that the support of this state is all vectors (x0, . . . ,xk) such that
fA(xi) = y for all i ∈ [0, k]. Moreover, for all but a negligible fraction, the
weight |SΔ| is the same, and so the weights for these components are the
same. Even more, the total weight of the other points is negligible. Therefore,
the this state is negligibly close to the state

∑
x0,...,xk:fA(xi)=y∀i |x0, . . . ,xk〉 =

(∑
x:fA(x)=y |x〉

)⊗(k+1)

∝ |ψ′
y〉⊗(k+1), where |ψ′

y〉 ∝ ∑
x:fA(x)=y |x〉.

Linear Functions over Rank-Constrained Matrices. Here, we consider a related
problem. Consider a set of n linear functions A over rank-d matrices in Z

m×m
q .

Since q is large, a random rank-d matrix in Z
m×m
q will have it’s first d columns

span the entire column space. Therefore, most rank constrained matrices can be
written as (A A · B) for a m × d matrix A and a d × (m − d) matrix B.

Let fA : Zm2

q → Z
n
q be the function that evaluates each of the functions in A

on its input. We can therefore think of fA as a degree-2 polynomial over A,B.
Note, however, that in this case, the function is bipartite: it can be divided into



Quantum Lightning Never Strikes the Same State Twice 433

two sets of variables (A and B) such that it is linear in each set. This means we
can easily invert the function by choosing an arbitrary selection for one of the
sets of variables, and then solving for the other.

Linear Functions over Rank-Constrained Symmetric Matrices. By instead con-
sidering only symmetric matrices, we essentially become equivalent to degree-2
polynomials. In particular, A · AT for A ∈ Z

m×d
q is a symmetric rank-d matrix.

Moreover, any degree-2 polynomial over Zm
q can be represented as a linear poly-

nomial over rank-1 symmetric matrices by tensoring the input with itself.
Note, however, that since Zq is not a closed field, in general we cannot decom-

pose any symmetric rank-d matrix into A ·AT (though we can over the closure).
Therefore, linear functions over rank-constrained symmetric matrices can be seen
as a slightly relaxed version of the degree-2 polynomials discussed above. In par-
ticular it is straightforward to generalize the algorithm for generating superposi-
tions of colliding inputs to generate uniform superpositions of low-rank matrices
that collide.

6.2 Hardness Assumption

Our assumption will have parameters n,m, q, d, e, k, to be described in the fol-
lowing discussion. Let D be the set of symmetric m×m matrices over Zq whose
rank is at most d. We will alternately think of D as matrices, as well as vectors
by writing out all of the

(
m+1
2

)
entries on and above the diagonal.

Let A be a set of n linear functions over D, which we will think of as being n
linear functions over

(
m+1
2

)
variables. Consider the function fA : D → Z

n
q given

by evaluating each linear function in A.
As discussed above, we could imagine assuming that fA is multi-collision

resistant for a random set of linear functions A. However, in order for our ulti-
mate bolt verification procedure to work, we will need A to have a special form.

A is sampled as follows. Let R ∈ Z
e×m
q be chosen at random. Consider the

set of symmetric matrices A ∈ Z
m×m
q such that R · A · RT = 0. This is a

linear subspace of dimension
(
m+1
2

) − (
e+1
2

)
(note that since B is symmetric,

R · A · RT is guaranteed to be symmetric, so we only get
(
e+1
2

)
equations). We

can think of each A as represented by its
(
m+1
2

)
upper-triangular entries, which

gives us an equation over
(
m+1
2

)
variables. Let A be a basis for this space of linear

functions. Thus, we set n =
(
m+1
2

)− (
e+1
2

)
. Note that we will not keep R secret.

Rank d symmetric matrices in Z
m×m
q have

(
d+1
2

)
+ d × (m − d) = d × m − (

d
2

)

degrees of freedom. Therefore, the function fA will be compressing provided that
d × m − (

d
2

)
> n =

(
m+1
2

) − (
e+1
2

)
.

By choosing fA in this way, we provide a “trapdoor” R that will be used for
verifying bolts. This trapdoor is a rank-e matrix in the kernel of fA. If e < d,
this would allow us to compute many colliding inputs, as, for any rank-1 S, the
whole affine space S + αR has rank at most e + 1 ≤ d and maps to the same
value. However, if we choose e > d, R does not appear to let us find collisions.
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Our Assumption. We now make the following hardness assumption. We say a
hash function f is k-multi-collision resistant (k-MCR) if it is computationally
infeasible to find k colliding inputs.

Assumption 8. There exists some functions n, d, e, k in m such that n =(
m+1
2

) − (
e+1
2

)
< d × m − (

d
2

)
, kn ≤ d × m − (

d
2

)
< (2k + 1)n, and e > d, such

that fA as sampled above is (2k + 2)-MCR, even if R is given to the adversary.

For example, we can choose e, d such that m = e + d − 1, in which case
n = d × m − (

d
2

) − e. By choosing e ≈ d, we have d × m − (
d
2

) � 3n, so we can
set k to be 1. We therefore assume that it is computationally infeasible to find
4 colliding inputs to fA.

We stress that this assumption is highly speculative and untested. In the full
version [37], we discuss in more depth possible attacks on the assumption, as
well as weakened versions that are still sufficient for our purposes.

6.3 Quantum Lightning

We now describe our quantum lightning construction.
Parameters. Our scheme will be parameterized by integers n,m, q, d, e, k.
Setup. To set up the quantum lightning scheme, simply sample A,R as above,
and output A,R.
Bolt Generation. We generate a bolt |Ey〉 as a superposition of k + 1 collid-
ing inputs, following the procedure described above. The result is statistically
close to |E′

y〉⊗(k+1) where |E′
y〉 is the equally-weighted superposition over rank-d

symmetric matrices such that applying fA gives y. We will call |E′
y〉 a mini-bolt.

Verifying a Bolt. Full verification of a bolt will run a mini verification on each
of the k+1 mini-bolts. Each mini verification will output an element in Z

n
q ∪{⊥}.

Full verification will accept and output y only if each mini verification accepts
and outputs the same string y. We now describe the mini verification.

Roughly, our goal is to be able to distinguish |E′
y〉 for some y from any

singleton state. We will output y in this case, and for any other state, reject.
Mini verification on a state |φ〉 will proceed in two steps. Recall that super-

position is over the upper triangular portion of m × m matrices. We first apply,
in superposition, the procedure that flips some external bit if the input does not
correspond to a matrix of rank at most d. The bit is initially set to 0. Then we
measure this bit, and abort if it is 1. Notice that for the honest |E′

y〉 state, this
will pass with certainty and not affect the state.

In the next step, we apply the procedure that evaluates fA in superposition,
and flips some external bit if the result is not y. The bit is initially set to 0.
Then we measure this bit, and abort if it is 1. Notice that for the honest |E′

y〉
state, this will pass with certainty and not affect the state.

At this point, if we have not aborted, our state is a superposition of pre-
images of fA which correspond to symmetric rank-d matrices. If our input was
|E′

y〉, the state is the uniform superposition over such pre-images.
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Next, we verify that the state is in superposition and not a singleton state.
To do so, we perform the quantum Fourier transform (QFT) to the state. We
now analyze what the QFT does to |Ey〉.

The support of |E′
y〉 is the intersection of sets S, T where S is the set of all

pre-images of y (not necessarily rank constrained) and T is the set of all rank-d
matrices. We analyze the Fourier transform applied to each set separately.

Recall that the Fourier transform takes the uniform superposition over the
kernel of a matrix to the uniform superposition over its row-span. Therefore,
the superposition over pre-images of 0 is just the uniform superposition of sym-
metric matrices A such that R · A · RT = 0 (or technically, just the upper
triangular part). The fact that the superposition lies in a coset of the kernel
simply introduces a phase term to each element in the superposition.

In the full version [37], we prove the following claim:

Claim. The Fourier transform of the uniform superposition over upper-
triangular parts of rank d symmetric matrices is negligibly close to the uniform
superposition over upper triangular parts of rank m − d symmetric matrices.

Putting this together, since multiplication in the primal domain becomes
convolution in the Fourier domain, after we apply the Fourier transform to our
mini bolt state, the result is the superposition of upper triangular parts of matri-
ces A + B where B is symmetric and rank m − d and A is symmetric such that
R ·A ·RT = 0. The superposition is uniform, though there will be a phase factor
associated with each element.

We therefore compute R · (A + B) · RT = R · B · RT and compute the rank.
Notice that the rank is at most m − d for honest bolt states. Therefore, if the
rank is indeed at most m − d we will accept, otherwise we will reject. Next, we
un-compute R · (A + B) · RT , and undo the Fourier transform. The analysis
above shows that for an honest state |Ey〉, we will accept with overwhelming
probability, and the final both state will be negligibly close to the original bolt.

Note that, in contrast, if the bolt state is a singleton state, then the Fourier
transform will result in a uniform superposition over all symmetric matrices;
when we applyR · (·) ·RT , the result will have rank e with overwhelming proba-
bility. So we set m − d < e to have an almost perfect distinguishing advantage.

Security. We now prove security. Consider a quantum adversary A that is given
A and tries to construct two (possibly entangled) bolts |E0〉, |E1〉. Assume toward
contradiction that with non-negligible probability, verification accepts on both
bolts, and outputs the same serial number y.

Conditioned on acceptance, by the above arguments the resulting mini bolts
must all be far from singletons when we trace out the other bolts. This means
that if we measure the mini-bolts, the resulting superpositions will have high
min-entropy. Therefore, we measure all 2k + 2 mini bolts, and we obtain 2k + 2
colliding inputs that are distinct except with negligible probability. This violates
our hardness assumption.
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Theorem 9. If Assumption 8 holds, then the scheme above is a secure quantum
lightning scheme.

In the full version [37], we show how to modify our construction to get a
collapse-non-binding hash function.
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Abstract. A secret-sharing scheme allows some authorized sets of par-
ties to reconstruct a secret; the collection of authorized sets is called the
access structure. For over 30 years, it was known that any (monotone)
collection of authorized sets can be realized by a secret-sharing scheme
whose shares are of size 2n−o(n) and until recently no better scheme
was known. In a recent breakthrough, Liu and Vaikuntanathan (STOC
2018) have reduced the share size to O(20.994n). Our first contribution is
improving the exponent of secret sharing down to 0.892. For the special
case of linear secret-sharing schemes, we get an exponent of 0.942 (com-
pared to 0.999 of Liu and Vaikuntanathan).

Motivated by the construction of Liu and Vaikuntanathan, we study
secret-sharing schemes for uniform access structures. An access struc-
ture is k-uniform if all sets of size larger than k are authorized, all sets
of size smaller than k are unauthorized, and each set of size k can be
either authorized or unauthorized. The construction of Liu and Vaikun-
tanathan starts from protocols for conditional disclosure of secrets, con-
structs secret-sharing schemes for uniform access structures from them,
and combines these schemes in order to obtain secret-sharing schemes for
general access structures. Our second contribution in this paper is con-
structions of secret-sharing schemes for uniform access structures. We
achieve the following results:

– A secret-sharing scheme for k-uniform access structures for large
secrets in which the share size is O(k2) times the size of the secret.

– A linear secret-sharing scheme for k-uniform access structures for a
binary secret in which the share size is Õ(2h(k/n)n/2) (where h is the
binary entropy function). By counting arguments, this construction
is optimal (up to polynomial factors).

– A secret-sharing scheme for k-uniform access structures for a binary

secret in which the share size is 2Õ(
√
k logn).

Our third contribution is a construction of ad-hoc PSM protocols, i.e.,
PSM protocols in which only a subset of the parties will compute a
function on their inputs. This result is based on ideas we used in the
construction of secret-sharing schemes for k-uniform access structures
for a binary secret.
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1 Introduction

A secret-sharing scheme is a method in which a dealer that holds a secret infor-
mation (e.g., a password or private medical data) can store it on a distributed
system, i.e., among a set of parties, such that only some predefined authorized
sets of parties can reconstruct the secret. The process of storing the secret infor-
mation is called secret sharing and the collections of authorized sets of parties
are called access structures. Interestingly, secret-sharing schemes are nowadays
used in numerous applications (in addition to their obvious usage for secure
storage), e.g., they are used for secure multiparty computation [15,19], thresh-
old cryptography [24], access control [37], attribute-based encryption [29,43],
and oblivious transfer [39,42]. The original and most important secret-sharing
schemes, introduced by Blakley [18] and Shamir [38], are threshold secret-sharing
schemes, in which the authorized sets are all the sets whose size is larger than
some threshold.

Secret-sharing schemes for general access structures were introduced in [32]
more than 30 years ago. However, we are far from understanding constraints on
the share size of these schemes. In the original constructions of secret-sharing
schemes in [32], the share size of each party is 2n−O(log n). New constructions
of secret-sharing schemes followed, e.g., [16,17,33]; however, the share size of
each party in these schemes remains 2n−O(log n). In a recent breakthrough, Liu
and Vaikuntanathan [34] (building on [36]) showed, for the first time, that it is
possible to construct secret-sharing schemes in which the share size of each party
is O(2cn) with an exponent c strictly smaller than 1. In particular, they showed
that every access structure can be realized with an exponent of SLV = 0.994.
Moreover, they showed that every access structure can be realized by a linear
secret-sharing scheme with an exponent of 0.994 (a scheme is linear if each share
can be written as a linear combination of the secret and some global random
field elements; see Sect. 2 for a formal definition). On the negative size, the best
lower bound on the total share size required for sharing a secret for some access
structure is Ω(n2/ log n) [22,23]. Thus, there is a huge gap between the known
upper and lower bounds.

1.1 Our Results

Our first result is an improvement of the secret-sharing exponent of general
access structure. In Sect. 3, we prove the following theorem.

Theorem 1.1. Every access structure over n parties can be realized by a secret-
sharing scheme with a total share size of 20.8916n+o(n) and by a linear secret-
sharing scheme with a total share size of 20.942n+o(n).

In a nutshell, the construction of [34] together with combinatorial covering
designs are being used to establish a recursive construction, which eventually
leads to the improved bounds.

We next construct secret-sharing schemes for uniform access structures. An
access structure is k-uniform if all sets of size larger than k are authorized, all
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sets of size smaller than k are unauthorized, and every set of size k can be
either authorized or unauthorized. Our second contribution is on the construc-
tion of secret-sharing schemes for uniform access structures. The motivation for
studying uniform access structures is twofold. First, they are related to protocols
for conditional disclosure of secrets (CDS), a primitive introduced by Gertner
et al. [28]. By various transformations [2,11–13,34], CDS protocols imply secret-
sharing schemes for uniform access structures. Furthermore, as shown in [34],
CDS protocols and secret-sharing schemes for uniform access structures are a
powerful primitives to construct secret-sharing schemes for general access struc-
tures. Thus, improvements on secret-sharing schemes for uniform access struc-
tures can lead to better constructions of secret-sharing schemes for general access
structures. Second, as advocated in [2], uniform access structures should be stud-
ied as they are a useful scaled-down version of general access structures. Studying
uniform access structures can shed light on the share size required for general
access structures, which is a major open problem.

Three regimes of secret-sharing schemes for uniform access structures have
been studied. The first regime is the obvious one of secret-sharing schemes with
short secrets (e.g., a binary secret). The second regime is secret-sharing schemes
with long secrets. Surprisingly, there are secret-sharing for this regime that are
much more efficient than schemes with short secrets [2]. The third regime is
linear secret-sharing schemes with short secrets. Linear secret-sharing schemes
are schemes where the sharing of the secret is done using a linear transformation;
such schemes are interesting since in many applications linearity is required,
e.g., in the construction of secure multiparty computation protocols in [21] and
in the constructions of Attrapadung [7] and Wee [44] of public-key (multi-user)
attribute-based encryption.

In this paper we improve the constructions of secret-sharing schemes for uni-
form access structures in these three regimes. We describe our results according
to the order that they appear in the paper.

Long secrets. In Sect. 4, we construct secret-sharing schemes for n-party k-
uniform access structures for large secrets, i.e., secrets of size at least 2nk

. Pre-
viously, the share size in the best constructions for such schemes was either ek

times the length of the secret [2] or n times the length of the secret (implied by
the CDS protocol of [2] and a transformation of [12]). We show a construction in
which the share size is O(k2) times the size of the secret. For this construction,
we use the CDS protocol of [2] with k2 parties (in contrast to [2], which uses
it with k parties) with an appropriate k2-input function. Combined with the
results of [12], we get a share size which is at most min(k2, n)-times larger than
the secret size.

Linear schemes. In Sect. 5, we design a linear secret-sharing scheme for k-
uniform access structures for a binary secret in which the share size is
Õ(2h(k/n)n/2) (where h is the binary entropy function). By counting arguments,
our construction is optimal (up to polynomial factors). Previously, the best con-
struction was implied by the CDS protocols of [13,36] and had share size Õ(2n/2).
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Our construction is inspired by a linear 2-party CDS protocol of [27] and the
linear k-party CDS protocols of [13]. We use the ideas of these CDS protocols to
design a linear secret-sharing schemes for balanced k-uniform access structures
(where there is a set B of n/2 parties such that any minimal authorized set
of size k in the access structure contains exactly k/2 parties from B). Using a
probabilistic argument, we show that every k-uniform access structure can be
written as a union of O(n3/2) balanced access structures, thus, we can share the
secret independently for each balanced access structure in the union.

Short secrets. In Sect. 6, we describe a secret-sharing scheme for k-uniform access
structures for a binary secret in which the share size is 2Õ(

√
k log n). Previously,

the best share size in a secret-sharing scheme realizing such access structure was
min

{
2O(k)+Õ(

√
k log n), 2Õ(

√
n)

}
(by combining results of [2,12,36]). To achieve

this result we define a new transformation from a k-party CDS protocol to
secret-sharing schemes for k-uniform access structures. The idea of this transfor-
mation is that the shares of the parties contain the messages in a CDS protocol
of an appropriate function. The difficulty is how to ensure that parties of an
unauthorized set of size k cannot obtain two messages of the same party in the
CDS protocol (otherwise, the privacy of the CDS protocol can be violated). We
achieve this goal by appropriately sharing the CDS messages among the parties.

Ad-hoc PSM. We also study private simultaneous messages (PSM) protocols,
which is a minimal model of secure multiparty computation protocols. In a PSM
protocol there are k parties and a referee; each party holds a private input xi and
sends one message to the referee without seeing the messages of the other par-
ties. The referee should learn the output of a pre-defined function f(x1, . . . , xn)
without learning any additional information on the inputs. We use the ideas of
the last transformation to construct ad-hoc PSM protocols (a primitive intro-
duced in [14]), i.e., PSM protocols in which only a subset of the parties will
compute a function on their inputs. We show that if a function f has a k-party
PSM protocol with complexity C, then it has a k-out-of-n ad-hoc PSM protocol
with complexity O(knC).

1.2 Related Work

Constructions of secret-sharing schemes. Shamir [38] and Blakley [18] showed
that threshold access structures can be realized by linear secret-sharing schemes,
in which the size of every share is the maximum between the log n and the secret
size. Ito, Saito, and Nishizeki constructed secret-sharing schemes for general
access structures in which the share size is proportional either to the DNF or
CNF representation of the access structure. Benaloh and Leichter [16] showed
that access structures that can be described by small monotone formulas can be
realized by efficient secret-sharing schemes. Later, Karchmer and Wigderson [33]
showed that access structures that can be described by small monotone span
programs can also be realized by efficient secret-sharing schemes. Bertilsson and
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Ingemarsson [17] presented multi-linear secret-sharing schemes for general access
structures. All the above schemes have share size 2n−O(log n). This was recently
improved in [34] (as we have already explained).

Secret-sharing schemes for uniform access structures. Secret-sharing schemes
for 2-uniform access structures were first introduced by Sun and Shieh [41].
Such schemes are called schemes for prohibited or forbidden graphs. 2-uniform
access structures were studied in many papers, such as [2,3,9–11,13,27,35,36].
Beimel et al. [11] proved that every 2-uniform access structure can be realized
by a (non-linear) secret-sharing scheme in which the share size of every party
is O(n1/2). Later, Gay et al. [27] presented linear secret-sharing schemes for
such access structures with the same share size. Liu et al. [35] constructed non-
linear secret-sharing scheme for 2-uniform access structures in which the share
size of every party is 2O(

√
log n log log n) = no(1). The notion of k-uniform access

structures was explicitly introduced by [2,12] and was implicit in the work of
[34]. By combining the CDS protocol of [36] and transformations of [2,12], we
obtain that every k-uniform access structure can be realized by a secret-sharing
scheme in which the share size of every party is min

{
2O(k)+Õ(

√
k log n), 2Õ(

√
n)

}
.

Applebaum and Arkis [2] (extending the work of Applebaum et al. [3]) showed a
secret-sharing scheme for k-uniform access structures for long secrets, in which
the share size of every party is O(ek) times the secret size (for long secrets).
Recently, Beimel and Peter [13] proved that every k-uniform access structure
can be realized by a linear secret-sharing scheme in which the share of every
party is min

{
(O(n/k))(k−1)/2, O(n · 2n/2)

}
.

Conditional disclosure of secrets (CDS) Protocols. Our constructions, described
in Sect. 1.1, start from CDS protocols and transform them to secret-sharing
schemes. In a conditional disclosure of secrets protocol, there are k parties and
a referee; each party holds a private input, a common secret, and a common
random string. The referee holds all private inputs but, prior to the protocol, it
does not know neither the secret nor the random string. The goal of the protocol
is that the referee will learn the secret if and only if the inputs of the parties
satisfy some pre-defined condition (e.g., all inputs are equal). The challenge is
that the communication model is minimal – each party sends one message to the
referee, without seeing neither the inputs of the other parties nor their inputs.

CDS protocols were introduced by Gertner et al. [28], who presented a linear
k-party CDS protocol for k-input functions f : [N ]k → {0, 1} with message size
O(Nk). CDS protocols are used in the constructions of many cryptographic pro-
tocols, for example, symmetrically-private information retrieval protocols [28],
attribute based encryption [7,27,44], and priced oblivious transfer [1].

CDS protocols have been studied in many papers [2,3,9,10,12,13,27,31,35,
36]. In the last few years there were dramatic improvements in the message size
of CDS protocols. For a function f : [N ]k → {0, 1}, the message size in the best
known CDS protocols is as follows: (1) For a binary secret, the message size is
2Õ(

√
k log N) [36]. (2) For long secrets (of size at least 2Nk−1), the message size is
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4 times the size of the secret [2]. (3) For a binary secret, there is a linear CDS
protocol with message size O(N (k−1)/2) [13,36]. The best known lower-bound
for general CDS protocol is Ω(log N) [3,5,6].

Private simultaneous messages (PSM) Protocols. The model of k-party PSM
protocols for k-input functions f : [N ]k → {0, 1} was first introduced by Feige
et al. [26], for k = 2, and was generalized to any k in [26,30]. In [26], it was
shown that every 2-input function has a 2-party PSM protocol with message
size O(N). Beimel et al. [11] improved this result by presenting a 2-party PSM
protocol with messages size O(N1/2). The best known lower bound for such 2-
party PSM protocol is 3 log N−O(log log N) [5,26]. It was shown by Beimel et al.
[12] that there exists a k-party PSM protocol with message size O(k3 · Nk/2).

Ad-hoc PSM protocols were presented by Beimel et al. in [14]. They showed
that if there is a k-party PSM protocol for a symmetric function f with message
size C, then there is a k-out-of-n ad-hoc PSM protocol for f with message size
O(k3 · ek · log n · C). Thus, by the PSM protocol of [12], there is a k-out-of-n
ad-hoc PSM protocol for every symmetric function with message size O(k6 ·
ekNk/2 · log n). In [14], they also showed that if there is a n-party PSM protocol
for a function f ′ related to f , with message size C, then there is a k-out-of-n
ad-hoc PSM protocol for f with message size n · C. This construction implies,
in particular, that ad-hoc PSM protocols with poly(n)-communication exist for
NC1 and different classes of log-space computation.

2 Preliminaries

Secret-Sharing Schemes. We present the definition of secret-sharing schemes,
similar to [8,20].

Definition 2.1 (Access Structures). Let P = {P1, . . . , Pn} be a set of par-
ties. A collection Γ ⊆ 2P is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure is a monotone collection Γ ⊆ 2P of non-empty subsets of
P . Sets in Γ are called authorized, and sets not in Γ are called unauthorized.
The family of minimal authorized subsets is denoted by min Γ . We represent a
subset of parties A ⊆ P by its characteristic string xA = (x1, . . . , xk) ∈ {0, 1}n,
where for every j ∈ [n] it holds that xj = 1 if and only if Pj ∈ A. For an access
structure Γ , we define the function fΓ : {0, 1}n → {0, 1}, where for every subset
of parties A ⊆ P , it holds that fΓ (xA) = 1 if and only if A ∈ Γ .

Definition 2.2 (Secret-Sharing Schemes). A secret-sharing scheme with
domain of secrets S is a pair Σ = 〈Π,μ〉, where μ is a probability distribution on
some finite set R called the set of random strings and Π is a mapping from S×R
to a set of n-tuples S1 ×S2 ×· · ·×Sn, where Sj is called the domain of shares of
Pj. A dealer distributes a secret s ∈ S according to Σ by first sampling a random
string r ∈ R according to μ, computing a vector of shares Π(s, r) = (s1, . . . , sn),
and privately communicating each share sj to party Pj. For a set A ⊆ P , we
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denote ΠA(s, r) as the restriction of Π(s, r) to its A-entries (i.e., the shares of
the parties in A).

Given a secret-sharing scheme Σ, define the size of the secret as log |S|, the
share size of party Pj as log |Sj |, the max share size as max1≤j≤n {log |Sj |}, and
the total share size as

∑n
j=1 log |Sj |.

Let S be a finite set of secrets, where |S| ≥ 2. A secret-sharing scheme Σ =
〈Π,μ〉 with domain of secrets S realizes an access structure Γ if the following
two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of parties.
That is, for any set B =

{
Pi1 , . . . , Pi|B|

}
∈ Γ there exists a reconstruction

function ReconB : Si1 × · · · × Si|B| → S such that for every secret s ∈ S and
every random string r ∈ R, ReconB (ΠB(s, r)) = s.

Privacy. Every unauthorized set cannot learn anything about the secret from its
shares. Formally, there exists a randomized function Sim, called the simulator,
such that for any set T =

{
Pi1 , . . . , Pi|T |

}
/∈ Γ , every secret s ∈ S, and every

vector of shares (si1 , . . . , si|T |) ∈ Si1 × · · · × Si|T | ,

Pr[ Sim(T ) = (si1 , . . . , si|T |) ] = Pr[ ΠT (s, r) = (si1 , . . . , si|T |) ],

where the first probability is over the randomness of the simulator Sim and the
second probability is over the choice of r from R at random according to μ.

A scheme is linear if the mapping that the dealer uses to generate the shares
that are given to the parties is linear, as we formalize at the following definition.

Definition 2.3 (Linear Secret-Sharing Schemes). Let Σ = 〈Π,μ〉 be a
secret-sharing scheme with domain of secrets S, where μ is a probability dis-
tribution on a set R and Π is a mapping from S × R to S1 × S2 × · · · × Sn. We
say that Σ is a linear secret-sharing scheme over a finite field F if S = F, the
sets R,S1, . . . , Sn are vector spaces over F, Π is an F-linear mapping, and μ is
the uniform probability distribution over R.

Definition 2.4 (Uniform Access Structures). Let P = {P1, . . . , Pn} be a set
of parties. An access structure Γ ⊆ 2P is a k-uniform access structure, where
1 ≤ k ≤ n, if all sets of size less than k are unauthorized, all sets of size greater
than k are authorized, and each set of size exactly k can be either authorized or
unauthorized.

Definition 2.5 (Threshold Secret-Sharing Schemes). Let Σ be a secret-
sharing scheme on a set of n parties P . We say that Σ is a t-out-of-n secret-
sharing scheme if it realizes the access structure Γt,n = {A ⊆ P : |A| ≥ t}.

Claim 2.6 ([38]). For every set of n parties P and for every t ∈ [n], there is a
linear t-out-of-n secret-sharing scheme realizing Γt,n ⊆ 2P for secrets of size �
in which the share size of every party is max {�, log n}.
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Fact 2.7 ([16]). Let Γ1, . . . , Γt be access structures over the same set of n par-
ties, and let Γ = Γ1 ∪ · · ·∪Γt and Γ ′ = Γ1 ∩ · · ·∩Γt. If there exist secret-sharing
schemes with share size at most k realizing Γ1, . . . , Γt, then there exist secret-
sharing schemes realizing Γ and Γ ′ with share size at most kt. If the former
schemes are linear over a finite field F, then there exist linear secret-sharing
schemes over F realizing Γ and Γ ′ with share size at most kt.

Conditional Disclosure of Secrets Protocols. We next define k-party conditional
disclosure of secrets (CDS) protocols, first presented in [28]. For more details,
see [4].

Definition 2.8 (Conditional Disclosure of Secrets Protocols – Syntax
and Correctness). Let f : X1×· · ·×Xk → {0, 1} be some k-input function. A
k-party CDS protocol P for f with domain of secrets S consists of: (1) A finite
domain of common random strings R, and k finite message domains M1, . . . ,Mk,
(2) Deterministic message computation functions Enc1, . . . ,Enck, where Enci :
Xi × S × R → Mi for every i ∈ [k], and (3) A deterministic reconstruction
function Dec : X1×· · ·×Xk×M1×· · ·×Mk → {0, 1}. We say that a CDS protocol
P is correct (with respect to f) if for every inputs (x1, . . . , xk) ∈ X1×· · ·×Xk for
which f(x1, . . . , xk) = 1, every secret s ∈ S, and every common random string
r ∈ R, Dec(x1, . . . , xk,Enc1(x1, s, r), . . . ,Enck(xk, s, r)) = s.

The message size of a CDS protocol P is defined as the size of largest message
sent by the parties, i.e., max1≤i≤k {log |Mi|}.

Definition 2.9 (Conditional Disclosure of Secrets Protocols – Pri-
vacy). We say that a CDS protocol P is private (with respect to f) if there
exists a randomized function Sim, called the simulator, such that for every
inputs (x1, . . . , xk) ∈ X1 × · · · × Xk for which f(x1, . . . , xk) = 0, every secret
s ∈ S, and every k messages (m1, . . . ,mk) ∈ M1 × · · · × Mk, the prob-
ability that Sim(x1, . . . , xk) = (m1, . . . ,mk) is equal to the probability that
(Enc1(x1, s, r), . . . ,Enck(xk, s, r)) = (m1, . . . ,mk) where the first probability
is over the randomness of the simulator Sim and the second probability is over
the choice of r from R with uniform distribution (the same r is chosen for all
encryptions).

Private Simultaneous Messages Protocols. We next define k-party ad-hoc private
simultaneous messages (PSM) protocols, as presented in [14]. For more details,
see [4].

Definition 2.10 (Ad-hoc Private Simultaneous Messages Protocols –
Syntax and Correctness). Let P = {P1, . . . , Pn} be a set of parties and
let f : Xk → Y be some k-input function. A k-out-of-n ad-hoc PSM proto-
col P for f consists of: (1) A finite domain of common random strings R, and
a finite message domain M , (2) Deterministic message computation functions
Enc1, . . . ,Encn, where Enci : X × R → M for every i ∈ [n], and (3) A deter-
ministic reconstruction function Dec :

(
P
k

)
× Mk → Y . We say that an ad-hoc
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PSM protocol P is correct (with respect to f) if for any set A = {Pi1 , . . . , Pik
} ∈(

P
k

)
, every inputs (xi1 , . . . , xik

) ∈ Xk, and every common random string r ∈ R,
Dec(A,Enci1(xi1 , r), . . . ,Encik

(xik
, r)) = f(xi1 , . . . , xik

).
The message size of an ad-hoc PSM protocol P is the size of the messages

sent by each of the parties, i.e., log |M |.
Definition 2.11 (Ad-hoc Private Simultaneous Messages Protocols –
Privacy). We say that an ad-hoc PSM protocol P is private (with respect to f)
if:

– There exists a randomized function Sim, called a simulator, such that for
every A = {Pi1 , . . . , Pik

} ∈
(
P
k

)
, every inputs (xi1 , . . . , xik

) ∈ Xk, and every
k messages (mi1 , . . . ,mik

) ∈ Mk,

Pr[ Sim(A, f(xi1 , . . . , xik
)) = (mi1 , . . . ,mik

) ]
= Pr[ (Enci1(xi1 , r), . . . ,Encik

(xik
, r)) = (mi1 , . . . ,mik

) ],

where the first probability is over the randomness of the simulator Sim and
the second probability is over the choice of r from R with uniform distribution
(the same r is chosen for all encryptions).

– There exists a randomized function Sim′, called a simulator, such that for
every k′ < k, every A′ =

{
Pi1 , . . . , Pik′

}
∈

(
P
k′

)
, every inputs (xi1 , . . . , xik′ ) ∈

Xk′
, and every k′ messages (mi1 , . . . ,mik′ ) ∈ Mk′

,

Pr[ Sim′(A′) = (mi1 , . . . ,mik′ ) ]
= Pr[ (Enci1(xi1 , r), . . . ,Encik′ (xik′ , r)) = (mi1 , . . . ,mik′ ) ],

where the first probability is over the randomness of the simulator Sim′ and
the second probability is over the choice of r from R with uniform distribution
(the same r is chosen for all encryptions).

A PSM protocol is a k-out-k ad-hoc PSM protocol, where the privacy require-
ment only holds for sets of size k (we do not require that a referee that gets
messages from less than k parties will not learn any information).

Notation. We denote the logarithmic function with base 2 and base e by log
and ln, respectively. Additionally, we use the notation [n] to denote the set
{1, . . . , n}. For 0 ≤ α ≤ 1, we denote the binary entropy of α by h(α) def=
−α log α− (1−α) log(1−α). Next, we present an approximation of the binomial
coefficients.

Fact 2.12. For every k and every n such that k ∈ [n], it holds that
(
n
k

)
=

Θ(k−1/2 · 2h(k/n)n).

3 Secret-Sharing Schemes Realizing General Access
Structures from CDS Protocols

In this section we present a construction of secret-sharing schemes for a general
access structure. The starting point of our results is a work by Liu and Vaikun-
tanathan [34], in which they presented the first general construction with share
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size O(2cn) with a constant c smaller than 1. In the first part of the section, we
give an outline of the construction in [34], presenting their results in terms of
access structures. Our main result, is the following theorem.

Theorem 3.1. Every access structure over n parties can be realized by a secret-
sharing scheme with a total share size of 20.892n+o(n) and by a linear secret-
sharing scheme with a total share size of 20.942n+o(n).

We say that an access structure Γ can be realized with an exponent of S
(resp., linearly realized with an exponent of S) if Γ can be realized by a secret-
sharing scheme (resp., linear secret-sharing scheme) with shares of size at most
2Sn+o(n) where n is the number of participants.1

3.1 Our Construction

Following Liu and Vaikuntanathan [34], we decompose an access structure Γ to
three parts: a bottom part (that handles small sets), middle part (that handles
medium-size sets) and a top part (that handles large sets). Formally, we have
the following proposition.

Proposition 3.2 ([34]). For every access structure Γ over a set of n partici-
pants, and every slice δ ∈ (0, 1

2 ), define the following access structures over the
same set of participants.

Γbot : A ∈ Γbot iff ∃A′ ∈ Γ s.t. A′ ⊆ A and |A′| ≤ (
1
2

− δ)n,

Γmid : A ∈ Γmid iff A ∈ Γ and (
1
2

− δ)n ≤ |A| ≤ (
1
2

+ δ)n, or |A| ≥ (
1
2

+ δ)n

Γtop : A /∈ Γtop iff ∃A′ /∈ Γ s.t. A ⊆ A′ and |A′| ≥ (
1
2

+ δ)n.

Then Γ = Γtop ∩ (Γmid ∪ Γbot). Consequently, if Γtop, Γmid, and Γbot can be
realized (resp., linearly realized) with exponent of S then so is Γ .

The “consequently” part follows from standard closure properties of secret-
sharing schemes (see Fact 2.7). Thus realizing Γ reduces to realizing Γtop, Γbot,
and Γmid. The main work in [34] is devoted to realizing the access structure Γmid.
Their main construction can be summarized as follows.

Lemma 3.3 ([34]). For every access structure Γ and every slice parameter δ ∈
(0, 1

2 ), the access structure Γmid can be realized with an exponent of M(δ) =
h(0.5 − δ) + 0.2h(10δ) + 10δ − 0.2 log(10), and can be linearly realized with an
exponent of M�(δ) = h(0.5 − δ) + 0.2h(10δ) + 10δ − 0.1 log(10).2

1 Formally, such a statement implicitly refers to an infinite sequence of (collections of)
access structures that is parameterized by the number of participants n.

2 The notation M stands for “middle”.
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The extreme slices. Liu and Vaikuntanathan [34] realized Γtop and Γbot with an
exponent of h(12 + δ) by exploiting the fact that the number of authorized (or
non-authorized) sets is exponential in h(12 + δ). (The actual implementation is
based on the classical schemes of [32].) We show that the nice structure of these
access structures can be further exploited.

In particular, for a covering parameter α, the minimal authorized sets of Γbot

can be covered by exponentially-many αn-subsets of n. (A dual statement applies
to the maximal unauthorized sets of Γtop.) This property allows us to realize
Γbot and Γtop by decomposing each of them into (exponentially) many access
structures over αn parties and realizing each access structure via a general secret-
sharing scheme. Overall, we get a tradeoff between the size of the decomposition
(i.e., number of sub-access structures) and the number of players αn in each
part. Formally, in Sect. 3.2 we prove the following statement.

Lemma 3.4. Suppose that every access structure can be realized (resp., linearly
realized) with an exponent of S. Then, for every covering parameter α ∈ ( 12 , 1),
every access structure Γ and every slice parameter δ ∈ (0, 1

2 ), the access struc-
tures Γtop and Γbot can be realized (resp., linearly realized) with an exponent of
X(S, δ, α) def= αS + h(0.5 − δ) − h ((0.5 − δ)/α) α.3

By combining Lemmas 3.3 and 3.4 with Proposition 3.2, we derive the following
Theorem.

Theorem 3.5. Suppose that every access structure can be realized (resp., lin-
early realized) with an exponent of S (resp., S�). Then, for every covering param-
eter α ∈ ( 12 , 1) and slice parameter δ ∈ (0, 1

2 ), every access structure can be
realized with an exponent of max (M(δ),X(S, δ, α)) , and can be linearly realized
with an exponent of max (M�(δ),X(S�, δ, α)) .

We can improve the secret sharing exponent by applying Theorem3.5 recur-
sively as follows. Start with the Liu-Vaikuntanathan bound SLV = 0.994 as an
initial value, and iterate with carefully chosen values for δ and α.

Example 3.6. Consider a single application of Theorem3.5 starting with SLV =
0.994 and taking δ = 0.037 and α = 0.99. In this case, M(δ) < 0.897 and
X(SLV, δ, α) < 0.9931, thus we get an exponent smaller than 0.9931.

Since each step of the recursion is parameterized by both δ and α, the problem
of finding the best choice of parameters in every step of the recursion becomes
a non-trivial optimization problem. In Sect. 3.3, we analyze the recursive pro-
cess and derive an analytic expression for the infimum of the process (over all
sequences of (δi, αi)). This leads to a general scheme with an exponent of 0.897
and a linear scheme with an exponent of 0.955. Finally, an additional (minor)
improvement is obtained by analyzing a low-level optimization to the middle
slice that was suggested by [34] (see Sect. 3.4). This leads to Theorem 3.1.

3 The notation X stands for eXternal slices.
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3.2 Realizing Γbot and Γtop (Proof of Lemma 3.4)

We start by introducing a fact about combinatorial covering designs by Erdos
and Spenser:

Fact 3.7 ([25]). Let P be a set of size n. For every positive integers c ≤ a ≤ n,
there exists a family G = {Gi}L

i=1 of a-subsets of P , such that every c-
subset of P is contained in at least one member of G, and L = L(n, a, c) =
O((

(
n
c

)
log

(
a
c

)
)/

(
a
c

)
).

We next prove Lemma 3.4.

Proof (of Lemma 3.4). Let a = αn and c = (0.5−δ)n and let G = {Gi}i∈[L] be the
family of a-subsets of P = {P1, . . . , Pn} promised by Fact 3.7. Using Fact 2.12,
the number of sets L satisfies log L ≤ n(h(0.5 − δ) − h((0.5 − δ)/α)α + o(1)).
Hence, to prove the lemma it suffices to realize Γbot and Γtop with share size of
L · 2Sαn+o(n). Towards this end, we decompose Γbot and Γtop according to G as
follows.

Γbot: Let T be the set of minimal authorized sets of Γbot. Recall that all these
sets are of size of at most c. For every i ∈ [L], let Ti = {T ∈ T : T ⊆ Gi}, and let
Γi be the access structure whose minimal authorized sets are the sets in Ti. By
Fact 3.7, T =

⋃
Ti and therefore Γbot =

⋃
i∈[L] Γi. Indeed, both in the RHS and

in the LHS, A is an authorized set iff there exists some T in T =
⋃

Ti such that
T ⊆ A. We further note that every minimal authorized set in Γi is a subset of
Gi and therefore Γi can be implemented as an access structure over αn parties
with share size of 2Sαn+o(n). To share a secret s according to Γbot =

⋃
i∈[L] Γi,

for every i ∈ [L] independently share s via the scheme of Γi. The share size of
the resulting scheme realizing Γbot is L · 2Sαn+o(n), as required.

Γtop: We use a dual construction for Γtop. Let T ′ be the set of maximal unau-
thorized sets of Γtop. Recall that all these sets are of size at least n − c. For
every i ∈ [L], let T ′

i = {T ∈ T ′ : Gi ⊆ T} = {T ∈ T ′ : T ⊆ Gi} and let Γ ′
i

be the access structure whose maximal unauthorized sets are the sets in Ti. By
Fact 3.7, T ′ =

⋃
T ′

i and therefore Γtop =
⋂

i∈[L] Γ
′
i . Indeed, both in the RHS

and in the LHS, A is an unauthorized set iff A ⊆ T for some T in T ′ =
⋃

T ′
i . We

further note that all minimal authorized sets of Γ ′
i are subsets of

⋂
T∈T ′

i
T ⊆ Gi,

and therefore Γi can be implemented as an access structure over αn parties with
share size of 2Sαn+o(n). To share a secret s according to Γtop, sample L random
elements s1, . . . , sL in the domain of s satisfying s = s1+. . .+sL, and share si via
the scheme for Γi. A set A can reconstruct the secret iff it can reconstruct each
si iff A ∈ Γ ′

i for every i iff A ∈
⋂

i∈[L] Γ
′
i = Γtop. Thus we can realize Γtop with

share size of L · 2(αS+o(1))n = 2(αS+h(0.5−δ)−h((0.5−δ)/α)α+o(1))n, as required. �


3.3 Analyzing the Recursion

In this section, we analyze the exponent achievable by repeated applications of
Theorem 3.5 by considering the following single-player game.
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The exponent game. The goal of the player is to minimize a positive num-
ber S. The value of S is initialized to the LV-exponent 0.994, and can be
updated by making an arbitrary number of moves. In each move the player
can choose δ ∈ (0, 1

2 ) and α ∈ ( 12 , 1), if S < max(X(S, δ, α),M(δ)), update S to
max(X(S, δ, α),M(δ)); otherwise, S remains unchanged.

Recall that the function X(S, δ, α) represents the exponent of the external
slices and the function M(δ) represents the exponent of middle slice. We denote
by opt the infimum of S over all finite sequences of (δi, αi). Our goal is to
determine opt. A (δ, α)-move improves S if and only if (1) X(S, δ, α) < S and
(2) M(δ) < S. If the first condition holds we say that S is X-improved by (δ, α).
We begin by showing that the question of whether a given S can be X-improved
by a (δ, α)-move depends only on δ and S (and is independent of α and n).

Lemma 3.8. Fix a parameter δ ∈ (0, 1
2 ) and let X′(δ) def= h(0.5 − δ) − (0.5 − δ) ·

log ((0.5 + δ)/(0.5 − δ)).

– If S ≤ X′(δ), then there does not exist any α for which S > X(S, δ, α).
– For every S′ > X′(δ) there exists an α < 1 such that X(S, δ, α) ≤ αS + (1 −

α)S′ for every S > X′(δ).

Proof. Fix some S. The exponent S is X-improved by (δ, α) if and only if

h(0.5 − δ) − h
(
0.5−δ

α

)
α

1 − α
< S. (1)

Denote the LHS by X′(δ, α). Clearly, S can be X-improved by (δ, α) if and only
if S is larger than infα(X′(δ, α)) (assuming that the infimum exists). We next
show that infα(X′(δ, α)) = X′(δ). Indeed, for any fixed δ, the function X′(δ, α) is
monotonically decreasing with α, and since α < 1, we get that infα(X′(δ, α)) =
limα→1

h(0.5−δ)−h((0.5−δ)/α)α
1−α , which by l’Hôpitals Rule, simplifies to X′(δ). The

first item of the claim follows.
For the second item, take any α ∈ (0, 1) such that

h(0.5−δ)−h( 0.5−δ
α )α

1−α ≤
S′ (by the definition of the limit and since S′ > X′(δ), such α exists). Thus,
X(S, δ, α) = αS +h(0.5− δ)−h ((0.5 − δ)/α) α ≤ αS +(1−α)S′. Note that the
choice of α is independent of S (as long as S > X′(δ)). �


Lemma 3.8 takes into account only the effect of the outer slices, Γtop and
Γbot. Recall, however, that the cost of the medium slice Γmid prevents us from
going below M(δ). Let δ� ∈ (0, 0.5) denote the positive value that satisfies
X′(δ�) = M(δ�). Let us denote by S� the value of X′(δ�) = M(δ�). The curves
of M(δ) and X(δ) are depicted in Fig. 1, and δ� ≈ 0.037, S� ≈ 0.897. The
following two claims show that the infimum of the game, opt, equals to S�.
Overall, we get that opt = S�, which is about 0.897, and Theorem3.11. The
proof of Claim 3.10 is deferred to [4].

Claim 3.9. For every constant S′′ > S� there exists an α < 1 and an integer
i (where α and i are independent of n) such that a sequence of i (δ, α)-moves
improve the exponent to S′′.
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Proof. Choose any constant S′ such that S� < S′ < S′′ and let α be a constant
guaranteed by Lemma 3.8 for δ� and S′, that is for every S > S′, the exponent S
can be improved to αS +(1−α)S′. Furthermore, let S0 = 0.994 be the exponent
of the secret-sharing scheme of [34] and define Sj = αSj−1 + (1 − α)S′ for every
j > 0. By Lemma 3.8, the exponent Sj can be achieved after j (δ, α)-moves. By
induction, Sj = αjS0 + (1 − αj)S′ < αjS0 + S′. Taking an integer i such that
αi ≤ (S′′ − S′)/S0 completes the proof. �


Claim 3.10. There is no (δ, α)-move that takes a value A > S� to a value
B < S�. Consequently, any finite number of steps ends in a value S > S� and
opt ≥ S�.

Theorem 3.11. Every access structure can be realized with share size
2(0.897+o(1))n.

Remark 3.12. We note that our analysis holds even if the function M(δ)
is replaced with a different function that represents the exponent of the
middle slice. That is, for any choice of M(δ) the value of opt equals to
infδ max(X′(δ),M(δ)) (assuming that the initial starting point is over the M(δ)
curve).

In particular, the following theorem is obtained by replacing M(δ) with the
exponent M�(δ) for a linear realization of the middle layer (from Lemma3.3).

Theorem 3.13. Every access structure can be linearly realized with share size
of 2(0.955+o(1))n.

3.4 Minor Improvement of Share Size for Γmid

In this section we give a tighter analysis for the constructions of M(δ) and M�(δ)
from [34]. These ideas were suggested in [34], but were not implemented.

Lemma 3.14. For every access structure Γ and every slice parameter δ ∈ (0, 1
2 ),

the access structure Γmid can be realized with an exponent of M(δ) = h(0.5−δ)+
0.2h(10δ)+2 log(26)δ−0.2 log(10), and can be linearly realized with an exponent
of M�(δ) = h(0.5 − δ) + 0.2h(10δ) + 2 log(26)δ − 0.1 log(10).

The above expressions slightly improves over the ones obtained in Lemma 3.3.
In particular, the third summand in both M(δ) and M�(δ) is reduced from 10δ
to 2 log(26)δ.

Proof. We assume familiarity with the construction of [34]. In the original analy-
sis of reduction 4 in [34, Section 3.4], the expression 10δ is added to the exponent
(of both M(δ) and M�(δ)) due to an enumeration over all possible subsets that
are taken from a universe of size 10δn. It is noted there that it actually suf-
fices to enumerate only over subsets T that satisfy the following condition. For
a given (fixed) partition of the universe to 2δn bins of size 5 each, the set T
must contain at least 2 elements from each bin. The number of such sets is
(25 −

(
5
0

)
−

(
5
1

)
)
2δn

= 22 log(26)δn, and so the lemma follows. �
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Fig. 1. A description of the functions M(δ) and X′(δ). The horizontal axis repre-
sents the value of δ and the vertical axis represents the resulting exponents. The solid
black curve corresponds to the exponent M(δ) of the middle slice Γmid, as defined in
Lemma 3.3 (the minor improvements of Sect. 3.4 do not appear here). The function
X′(δ) appears as the dashed blue line. For comparison, we plot in the dotted red line
the exponent that is achieved for Γtop and Γbot via the simple (non-recursive) con-
struction from [34]. Our exponent appears as the y-coordinate of the intersection of
the black and blue curves, and the exponent of [34] appears at the y-coordinate of the
intersection of the red and black curves. (Color figure online)

We can further improve the exponent of the linear scheme by reducing the last
summand as follows.

Lemma 3.15. For every access structure Γ and every slice parameter δ ∈ (0, 1
2 ),

the access structure Γmid can be linearly realized with an exponent of M�(δ) =
h(0.5 − δ) + 0.2h(10δ) + 2 log(26)δ − (0.1 + δ) log(10).

Proof. Again, we assume familiarity with the construction of [34]. The last reduc-
tion of [34, Section 3.5] utilizes a protocol for conditional disclosure of secrets

(CDS) with an input size of
(
n/k
a/k

)k
for a = 1

2−δ and k = n/5. As the authors note,

for this choice of parameters, the input size of the CDS is actually
(
n/k
a/k

)k−2δ
.

(In general, this holds whenever
(

n/k
�a/k	

)
=

(
n/k


a/k�
)
.) This improvement becomes

useful in the linear case (which employs linear CDS), and eventually it leads to
the improvement stated in the lemma. �


Proof (proof of Theorem 3.1). As stated in Remark 3.12, the analysis of the
recursive process holds when M(δ) is updated to some M′(δ), and the new
game becomes X′(δ�), where δ� satisfies X′(δ�) = M′(δ�). By using the bounds
obtained in Lemmas 3.14 and 3.15, we derive Theorem 3.1. �
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4 Secret-Sharing Schemes Realizing k-Uniform Access
Structures with Long Secrets

In this section, we present a construction of secret-sharing schemes for k-uniform
access structures on n parties using k2-party CDS protocols. Using the CDS
protocols of [2] with long secrets, we obtain secret-sharing schemes for long
secrets in which the share size of every party is only O(k2) times the secret size.

In [2], it was shown how to construct a secret-sharing scheme realizing any
k-uniform access structure Γ in which the share size of every party is O(ek)
times the message size, with big secrets. To construct this scheme, they used a
family of perfect hash functions from [n] to [k], where each such function defines
a k-uniform access structure, and use a k-party CDS protocol to realize every
such access structure. Since the number of perfect hash functions for sets of size
k and range of size k is bigger than ek, each share in the secret-sharing scheme of
[2] contains O(ek) messages of the CDS protocol. We improve their construction
by taking a family of perfect hash functions from [n] to [k2], and construct a
secret-sharing scheme using a k2-party CDS protocol for every function in this
family, such that the resulting scheme realizes Γ .

The definition of a family of perfect hash functions is presented next.

Definition 4.1 (Families of Perfect Hash Functions). A set of functions
Hn,k,t = {hi : [n] → [t] : i ∈ [�]} is a family of perfect hash functions if for every
set A ⊆ [n] such that |A| = k there exists at least one index i ∈ [�] such that
|hi(A)| = | {hi(a) : a ∈ A} | = k, i.e., hi restricted to A is one-to-one.

To construct a secret-sharing scheme that realizes the k-uniform access struc-
ture Γ , we construct a scheme, using a CDS protocol for the function f (defined
in Definition 4.2), that realizes the access structure Γh (defined in Definition 4.3),
for every function h among a family of perfect hash functions.

Definition 4.2 (The Function f). Let Γ be a k-uniform access structure with
n parties. The k2-input function f : {0, 1, . . . , n}k2

→ {0, 1} is the function that
satisfies f(x1, . . . , xk2) = 1 if and only if

{
Pxi

: i ∈ [k2], xi �= 0
}

∈ Γ .

For example, if k = 2, n = 5, and the authorized sets of size k = 2 are exactly
{P1, P2} , {P3, P5}, then f(1, 3, 4, 0) = f(1, 2, 0, 0) = f(0, 2, 0, 1) = f(3, 0, 0, 5) =
1 and f(0, 0, 0, 0) = f(0, 2, 0, 0) = f(0, 2, 3, 0) = f(2, 0, 0, 5) = 0.

Definition 4.3 (The Access Structure Γh). Let Γ be a k-uniform access
structure with n parties and let h : [n] → [k2] be a function. The k-uniform
access structure Γh is the access structure that contains all the subsets of parties
of size greater than k, and all authorized subsets from Γ of size k such that
h restricted to the indices of the parties of such subset is one-to-one. That is,
Γh = {A ⊆ P : |A| > k}∪{A ⊆ P : A ∈ Γ, |A| = k, and | {h(j) : Pj ∈ A} | = k}.

Using a simple probabilistic proof, we show that there exists a family of
perfect hash function Hn,k,k2 = {h1, . . . , h�} with � = Θ(k · log n) functions.
Moreover, if Hn,k,k2 is a family of perfect hash functions, then Γ = ∪h∈Hn,k,k2 Γh.
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Thus, constructing secret-sharing schemes realizing Γh for every h ∈ Hn,k,k2 , we
get a secret-sharing scheme realizing Γ .

We start with a scheme that realizes the k-uniform access structure Γh, as
defined in Definition 4.3; this scheme uses a CDS protocol for f , as defined in Def-
inition 4.2. The scheme is described in Fig. 2; we next give an informal descrip-
tion. For every j ∈ [n], we give the message of the h(j)th party in the CDS
protocol when holding the input j, and for every i ∈ [k2], we share the message
of the ith party in the CDS protocol when holding the input 0 using a k-out-of-k2

scheme among the parties Pj for which h(j) �= i.
Every authorized set A ∈ Γh can reconstruct the secret, since every Pj ∈ A

gets the message of the h(j)th party in the CDS protocol when holding the input
j, and the parties in A can reconstruct the messages of the other parties in the
CDS protocol from the k-out-of-k2 scheme, because | {h(j) : Pj ∈ A} | = k. Thus,
the parties in A can reconstruct the secret since they hold messages for a 1-input
of f .

Every unauthorized set A /∈ Γ that does not collides on h (that is, for every
two different parties Pj , Pj′ ∈ A it must hold that h(j) �= h(j′)), the parties in
A cannot learn any other messages except for the above mentioned messages.
Thus, if |A| = k then the parties in A hold messages for a 0-input of f , so by
the privacy of the CDS protocol for f they cannot learn any information about
the secret.

However, if A collides on h, then the parties in A hold two different messages
of the same party in the CDS protocol for f , and CDS protocols cannot ensure
any privacy in this scenario. To overcome this problem, we choose two random
elements s1, s2 from the domain of secrets such that s = s1 + s2. We share s1
using a k-out-of-k2 scheme and give the h(j)th share to party Pj , and apply the
above scheme using a CDS protocol for f with the secret s2. Now, if A collides
on h, the parties in A may learn information about s2, but they cannot learn
s1, so the privacy of the scheme holds.

Lemma 4.4. Let Γ be a k-uniform access structure with n parties, and let h :
[n] → [k2] be a function. Assume that for every k-input function f : [N ]k →
{0, 1} there is a k-party CDS protocol for f , for secrets of size t, in which the
message size is c(k,N, t). Then, the scheme Σh described in Fig. 2, is a secret-
sharing scheme for secrets of size t realizing Γh in which the share size of every
party is O(log n + k2 · c(k2, n + 1, t)).

Using a simple probabilistic argument, we show in Lemma 4.5 the existence
of a family of perfect hash functions with a small number of functions (satisfying
a stronger requirement than in Definition 4.1). The proofs of Lemmas 4.4 and 4.5
are deferred to the full version [4].

Lemma 4.5. There exists a family of perfect hash functions Hn,k,k2 ={
hi : [n] → [k2] : i ∈ [�]

}
, where � = Θ(k · log n), such that for every subset

A ⊆ [n] there are at least �/4 functions h ∈ Hn,k,k2 for which |h(A)| = k.

Using a family of perfect hash function Hn,k,k2 as in Lemma 4.5 and the
scheme of Lemma 4.4 for every function in Hn,k,k2 , we get the a scheme in which
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Fig. 2. A secret-sharing scheme Σh realizing the k-uniform access structure Γh.

the share size is O(k3 · log n) times the message size in the CDS protocol. Using
Stinson’s decomposition [40], we reduce the overhead.

Theorem 4.6. Let Γ be a k-uniform access structure with n parties. Assume
that for every k-input function f : [N ]k → {0, 1} there is a k-party CDS protocol
for f , for secrets of size t, in which the message size is c(k,N, t). Then, for every
t′ > log n, there is a secret-sharing scheme realizing Γ , for secrets of size t =
t′ ·Θ(k ·log n), in which the share size of every party is O(k3 ·log n·c(k2, n+1, t′)).

Proof. By Lemma 4.5, there exists a family of perfect hash functions Hn,k,k2 ={
hi : [n] → [k2] : i ∈ [�]

}
with � = Θ(k · log n) functions, such that for every

subset A ⊆ [n] there is at least �/4 functions h ∈ Hn,k,k2 for which |h(A)| = k.
By Lemma 4.4, for every i ∈ [�] there is a secret-sharing scheme Σhi

realizing
the k-uniform access structure Γhi

, for secrets of size t, in which the share size of
every party is O(k2 · c(k2, n + 1, t)). Also, by the definition of a family of perfect
hash functions it holds that Γ = ∪h∈Hn,k,k2 Γh.

To construct the desired secret-sharing scheme that realizes Γ , we use the
Stinson’s decomposition technique [40]. Let F be a finite field that contains at
least max {n, �} elements. By an abuse of notation, we will assume that F is
a prime field. Let s = (s1, . . . , s�/4) ∈ F

�/4 be the secret. We use a (0, �/4)-
ramp secret-sharing scheme (that is, a scheme in which every set of size �/4
can reconstruct the secret, while there are no requirements on smaller sets) to
generate shares s1, . . . , s� ∈ F of s (that is, we choose a polynomial Q of degree
�/4 − 1 such that Q(i) = si for every i ∈ [�/4] and define si = Q(i) for every
i ∈ {�/4 + 1, . . . , �}). Then, for every 1 ≤ i ≤ �, we independently generate
shares of si using the scheme Σhi

that realizes the k-uniform access structure
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Γhi
, and give the shares to the parties in P . Since every set A ⊆ P such that

|A| = k satisfies |hi(A)| = k for at least �/4 values of i ∈ [�], every authorized
set A ∈ Γ such that |A| = k can reconstruct at least �/4 values from s1, . . . , s�.
Thus, by the property of the ramp scheme, the parties in A can reconstruct
s = (s1, . . . , s�/4).

Finally, let t′ = log |F|. The combined scheme is a secret-sharing scheme
that realizes the access structure Γ , in which the share size of every party is
� · O(k2 · c(k2, n + 1, t′)) = O(k3 · log n · c(k2, n + 1, t′)). �


Remark 4.7. In the secret-sharing scheme of Theorem 4.6, if we start with a
linear or multi-linear CDS protocol, then we result with a multi-linear secret-
sharing scheme (i.e., a scheme in which the secret is a vector over a finite field F,
the random string is a vector over F chosen with uniform distribution, and each
share is a vector over F, where every element in the vector is a linear combination
of the secret and the random elements).

Using the multi-linear CDS protocol of [2] for long secrets, in which the
message size is O(t), for secrets of size t (for big enough t), we get the following
result.

Corollary 4.8. Let Γ be a k-uniform access structure with n parties. Then,
there is a multi-linear secret-sharing scheme realizing Γ , for secrets of size t =
Ω(k · log n · 2(n+1)k2

), in which the share size of every party is O(k2 · t).

Remark 4.9. We can apply the transformation of Theorem4.6 also to CDS pro-
tocols with short secrets. However, the best known k-party CDS protocol for
such secrets of [36] (for k-input functions f : [N ]k → {0, 1}) have message size
2Õ(

√
k log N), thus, using a k2-party CDS would result in an inefficient secret-

sharing scheme.

5 Optimal Linear Secret-Sharing Schemes Realizing
k-Uniform Access Structures

In this section, we show how to construct a linear secret-sharing scheme realizing
n-party k-uniform access structures in which the share size of every party is
O(n · 2h(k/n)n/2). Using a result of [9], we prove a matching lower bound, which
shows that our construction is optimal (up to a small polynomial factor).

We start by giving some high-level ideas of our linear secret-sharing scheme.
We are inspired by the linear CDS protocols of [13], where for every Boolean
n-input function they construct a linear CDS protocol with message size O(2n/2)
(a similar protocol with the same message size was independently constructed
in [36]). By a transformation of [12], this implies that for every uniform access
structure, there is a linear secret-sharing scheme with share size O(n · 2n/2). We
want to optimize this construction for k-uniform access structures for k < n/2.

As a first step, we define balanced k-uniform access structures, where a k-
uniform access structure is balanced if there exists a set of parties B of size
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n/2 such that every authorized set A of size k contains exactly k/2 parties in
B (that is, |A ∩ B| = k/2 and |A \ B| = k/2). We construct an optimized
secret-sharing scheme for balanced k-uniform access structures. We then show
(using a probabilistic argument) that every k-uniform access structure Γ is a
union of O(k1/2 ·n) balanced k-uniform access structures. Thus, to realize Γ , we
independently share the secret for each of the balanced access structures.

Definition 5.1 (The Access Structure ΓB). Let Γ be a k-uniform access
structure with n parties for some even k and let B ⊆ P be a subset of parties. The
k-uniform access structure ΓB is the access structure that contains all the subsets
of parties of size greater than k and all authorized subsets from Γ of size k that
contain exactly k/2 parties from the subset B. That is, ΓB = {A ⊆ P : |A| > k}∪
{A ⊆ P : A ∈ Γ, |A| = k, and |A ∩ B| = k/2}.

Next, we show in Lemma 5.2 our basic linear scheme, which realizes the access
structure ΓB . The proof is deferred to the full version [4].

Lemma 5.2. Let F be a finite field and Γ be a k-uniform access structure with
n parties for some even k and some even n, and let B be a subset of parties such
that |B| = n/2. Then, the scheme ΣB, described in Fig. 3, is a linear secret-

Fig. 3. A linear secret-sharing scheme ΣB realizing the k-uniform access structure ΓB .
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sharing scheme over F realizing ΓB in which the share size of every party is
O(k−1/2 · 2h(k/n)n/2 · log |F|).

In the following we show that a k-uniform access structure can be decomposed
to � = O(k1/2 ·n) balanced access structures. Its proof is also deferred to the full
version [4].

Lemma 5.3. Let P be a set of n parties for some even n, and let k be an even
integer. Then, there are � = Θ(k1/2 · n) subsets B1, . . . , B� ⊆ P , each of them of
size n/2, such that for every subset A ⊆ P of size k it holds that |A∩Bi| = k/2,
for at least one i ∈ [�].

Now, we are ready to present our final linear scheme, which realizes every
k-uniform access structure.

Theorem 5.4. Let Γ be a k-uniform access structure with n parties. Then, for
every finite field F, there is a linear secret-sharing scheme realizing Γ , for secrets
from F, in which the share size of every party is O(n · 2h(k/n)n/2 · log |F|).

Proof. Let s ∈ F be the secret. By adding dummy parties (which either belong
to all authorized sets or belong to none of them), we can assume without loss
of generality that k and n are even. By Lemma 5.3, there exist � = Θ(k1/2 · n)
subsets B1, . . . , B� ⊆ P , where |Bi| = n/2 for every i ∈ [�], such that for every
subset A ⊆ P of size k it holds that |A ∩ Bi| = k/2 for at least one i ∈ [�].
Thus, we get that Γ = ∪�

i=1ΓBi
. By Lemma 5.2, for every i ∈ [�] there is a linear

secret-sharing scheme ΣBi
realizing the k-uniform access structure ΓBi

, in which
the share size of every party is O(k−1/2 · 2h(k/n)n/2 · log |F|). We independently
realize every access structure ΓBi

using the linear scheme ΣBi
with secret s; the

combined scheme is a linear secret-sharing scheme realizing the access structure
Γ in which the share size of every party is � · O(k−1/2 · 2h(k/n)n/2 · log |F|) =
O(n · 2h(k/n)n/2 · log |F|). �


5.1 A Lower Bound for Linear Schemes Realizing k-Uniform Access
Structures

Using a result of [9] we prove a lower bound of Õ(2h(k/n)n/2) on the share size of
at least one party in every linear secret-sharing scheme that realizes k-uniform
access structures, for one-bit secrets. As we have shown above for one-bit secrets
(that is, F = {0, 1}), this bound is tight up to a poly(n) factor.

Theorem 5.5. For most k-uniform access structures Γ with n parties, the share
size of at least one party for sharing a one-bit secret in every linear secret-sharing
scheme realizing Γ is Ω(k−3/4 · n−1/2 · 2h(k/n)n/2).

Proof. If we share a one-bit secret using a linear secret-sharing scheme over F

in which the largest share contains s field elements, then the size of the share of
at least one party is s · log |F|. For the share size of every party to be less than
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k−3/4 · n−1/2 · 2h(k/n)n/2, it must be that |F| ≤ 2k−3/4·n−1/2·2h(k/n)n/2
(otherwise,

each share contains at least k−3/4 · n−1/2 · 2h(k/n)n/2 bits), and, obviously, s ·
log |F| ≤ k−3/4 · n−1/2 · 2h(k/n)n/2.

We say that the rank of an access structure Γ is r if the size of every minimal
authorized set in Γ is at most r, so the rank of k-uniform access structures is
k + 1. By [9], for every finite field F and integers s, r, n such that s > log n,
there are at most 22rns2·log |F| access structures Γ with n parties and rank r such
that there exists a linear secret-sharing scheme over F realizing Γ in which each
share contains at most s field elements. Let θ = s · log |F|. Thus, there are at
most 22(k+1)n(θ/ log |F|)2·log |F| < 22(k+1)nθ2

k-uniform access structures Γ with n
parties such that there exists a linear secret-sharing scheme over F realizing Γ
in which the share size of each party is at most θ.

Next, we count the number of linear schemes that realize k-uniform access
structures in which the share size of each party is at most θ < k−3/4 · n−1/2 ·
2h(k/n)n/2. Since we are counting linear schemes, we need to sum the number
of linear schemes that realizes k-uniform access structures for every possible
finite field (there are at most 2k−3/4·n−1/2·2h(k/n)n/2

such fields, because |F| ≤
2k−3/4·n−1/2·2h(k/n)n/2

). From all the above, the number of such linear schemes is
at most 2k−3/4·n−1/2·2h(k/n)n/2+2(k+1)nθ2

.
By Fact 2.12, the number of k-uniform access structures is 2(n

k) =
2Θ(k−1/2·2h(k/n)n). Thus, if half of the k-uniform access structures Γ with n
parties have linear secret-sharing schemes in which the share size of every
party is at most θ, then 2k−3/4·n−1/2·2h(k/n)n/2+2(k+1)nθ2 ≥ 1

2 · 2Θ(k−1/2·2h(k/n)n),
i.e., k−3/4 · n−1/2 · 2h(k/n)n/2 + 2(k + 1)nθ2 ≥ Θ(k−1/2 · 2h(k/n)n), so θ =
Ω(k−3/4 · n−1/2 · 2h(k/n)n/2). �


6 Transformation from CDS to Secret-Sharing and
Implications to Ad-Hoc PSM

In this section, we describe a new transformation from a k-party CDS proto-
col to a secret-sharing scheme for k-uniform access structure. This construction
improves the secret-sharing schemes for k-uniform access structures, for short
secrets, compared to the scheme implied by the construction of [34]. We also
show how to use the ideas of our transformation to construct a k-out-of-n ad-
hoc PSM protocol from k-party PSM protocol.

6.1 The Transformation for Uniform Access Structures

We show how to realize any k-uniform access structure Γ with n parties using a
k-party CDS protocol for the function g, defined in Definition 6.1.

Definition 6.1 (The Function g). Let Γ be a k-uniform access structure with
n parties. The k-input function g : [n]k → {0, 1} is the function that satisfies
g(x1, . . . , xk) = 1 if and only if x1 < · · · < xk and A = {Px1 , . . . , Pxk

} is an
authorized set, that is, A ∈ Γ .
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We say that a party Pxi
is the ith party in A if and only if there are i − 1

parties before it and there are k − i parties after it, when the indices of the
parties are sorted. The idea of our scheme is that if party Px is the ith party
in a set A of size k, then its share will contain the message of the ith party in
the CDS protocol for g (with the shared secret) when holding the input x. The
problem with this idea is that the dealer does not know which set of parties will
try to reconstruct the secret and it does not know if Px is the ith party. If the
dealer gives to two parties in the set the message of the ith party in the CDS
protocol, then these parties get two different messages of the same party in the
CDS protocol with different input, so we cannot ensure the privacy of the CDS
protocol. Hence, some unauthorized sets may learn information about the secret.
To solve this problem, the message of the ith party in the CDS protocol that
party Px gets will be masked by two random elements, such that only if Px is the
ith party in A, then the parties in A can learn this message. For this, the dealer
shares one of the above mentioned random elements using a (i−1)-out-of-(x−1)
secret-sharing scheme and gives the shares to all parties before Px, and shares
the second random element using a (k − i)-out-of-(n − x) secret-sharing scheme
and gives the shares to all parties after Px.

Theorem 6.2. Let Γ be a k-uniform access structure with n parties, and assume
that for every k-input function f : [N ]k → {0, 1} there is a k-party CDS protocol
for f for a one-bit secret, in which the message size is c(k,N, 1). Then, the
scheme Σg, described in Fig. 4, is a secret-sharing scheme realizing Γ , for a
one-bit secret, in which the share size of every party is O(k · n · c(k, n, 1)).

Proof. We prove that the secret-sharing scheme Σg is a scheme that realizes Γ
with share size as in the theorem. Let s ∈ {0, 1} be the secret and P be a k-party
CDS protocol for g : [n]k → {0, 1} (defined in Definition 6.1), for a one-bit secret,
in which the message size is c(k, n, 1). We prove that every subset of parties A of
size k can learn only the messages corresponding to the parties in A of the CDS
protocol for the function g (that is, party Pj ∈ A can learn only the message
mi,j , where Pj is the ith party in A), so A can reconstruct the secret using these
messages if and only if it is an authorized set. Additionally, we show that subsets
of parties of size less than k cannot learn any messages of the CDS protocol for
the function g, so such subsets cannot learn any information about the secret.

Correctness. An authorized set of size greater than k can reconstruct the
secret using the (k + 1)-out-of-n secret-sharing scheme.

Let A = {Px1 , . . . , Pxk
} be an authorized set of size k such that x1 < · · · < xk.

For every i ∈ [k], party Pxi
gets the string mi,xi

⊕ ri,xi
⊕ qi,xi

. Additionally, the
parties Px1 , . . . , Pxi−1 get i − 1 shares from the (i − 1)-out-of-(xi − 1) scheme
for the string qi,xi

, so they can reconstruct qi,xi
, and the parties Pxi+1 , . . . , Pxk

get k − i shares from the (k − i)-out-of-(n − xi) scheme for the string ri,xi
, so

they can reconstruct ri,xi
. Overall, for every i ∈ [k], the parties Px1 , . . . , Pxk

learn the strings mi,xi
⊕ ri,xi

⊕ qi,xi
, ri,xi

, and qi,xi
, so they can reconstruct the

message mi,xi
of the CDS protocol for g. Since g(x1, . . . , xk) = 1, and the parties
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Fig. 4. A secret-sharing scheme Σg realizing a k-uniform access structure Γ .

in A hold the messages m1,x1 , . . . ,mk,xk
, they can reconstructs the secret s from

those messages of the CDS protocol for g.

Privacy. Let A = {Px1 , . . . , Pxk
} be an unauthorized set of size k such that

x1 < · · · < xk. As claimed above, the parties in A can learn the messages
m1,x1 , . . . ,mk,xk

, but since g(x1, . . . , xk) = 0, the parties in A cannot learn the
secret from the CDS protocol for g (by the privacy of the CDS protocol).

We show that the parties in A cannot learn any other messages from the CDS
protocol for g. For x ∈ [n] such that Px /∈ A, the parties in A cannot learn mi,x

for every i ∈ [k], since they do not get this message (even masked by random
strings). Consider an x ∈ [n] such that Px ∈ A and x �= xi for some i ∈ [k].
If x < xi (that is, Px is smaller than the ith party in A) then the parties in
A cannot learn the string qi,x, since they hold less than i − 1 shares from the
(i − 1)-out-of-(x − 1) for the string qi,x, so the parties in A cannot learn the
message mi,x. Otherwise, if x > xi (that is, Px is bigger than the ith party in
A) then the parties in A cannot learn the string ri,x, since they hold less than
k − i shares from the (k − i)-out-of-(n − x) for the string ri,x, so the parties
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in A cannot learn the message mi,x. Thus, the parties in A cannot learn any
information about the secret s.

The last argument holds for unauthorized sets of size less than k, so such
sets cannot learn any messages from the CDS protocol for g, and cannot learn
any information about the secret s. The formal privacy proof is deferred to [4].

Share Size. The share size of every party in the scheme Σh is O(k ·n·c(k, n, 1)+
log n) = O(k · n · c(k, n, 1)). �


Using the CDS protocol of [36], in which the message size is
2O(

√
k log n log(k log n)), for a one-bit secret, we get the following result.

Corollary 6.3. Let Γ be a k-uniform access structure with n parties. Then,
there is a secret-sharing scheme realizing Γ , for a one-bit secret, in which the
share size of every party is k · n · 2O(

√
k log n log(k log n)).

6.2 The Transformation for Ad-Hoc PSM Protocols

We use the same ideas as in the above transformation to construct a k-out-
of-n ad-hoc PSM protocol for a function f : [N ]k → Y using a k-party
PSM protocol for f . Recall that some k parties Pi1 , . . . , Pik

, holding inputs
xi1 , . . . , xik

∈ [N ] respectively, participate in the protocol, and they want to
compute f(xi1 , . . . , xik

). However, the participating parties do not know which
k parties among the n parties participate in the protocol. In Fig. 5, we describe
our ad-hoc PSM protocol; in the protocol there is an offline stage, which contains
computation that only depends on the common string, and an online stage in
which each participating party sends its message.

Theorem 6.4. Let f : [N ]k → Y be a k-input function, for some integer k, and
assume that there is a k-party PSM protocol for f with message size cf (k,N).
Then, the protocol Pf , described in Fig. 5, is a k-out-of-n ad-hoc PSM protocol
for f with message size O(k · n · cf (k,N)).

Proof. The correctness of the protocol follows from the fact that given k parties
Pi1 , . . . , Pik

, the referee learns the messages m1,xi1
, . . . ,mk,xik

, as explained in
the proof of Theorem6.2, and thus, by the correctness of the PSM protocol for
f , the referee can learn f(xi1 , . . . , xik

). The privacy of the protocol follows from
the privacy of the PSM protocol and the fact that the referee learns only the
messages m1,xi1

, . . . ,mk,xik
, as proved in Theorem6.2. Note that for less than

k parties, the referee cannot learn any message of the PSM protocol, again like
in Theorem 6.2. �


By the PSM protocol of [12], in which the message size is O(k3 · Nk/2), we
get the following result.
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Fig. 5. A k-out-of-n ad-hoc PSM protocol Pf for a k-input function f : [N ]k → Y .

Corollary 6.5. Let f : [N ]k → Y be a k-input function, for some integer k.
Then, there is a k-out-of-n ad-hoc PSM protocol for f with message size O(k4 ·
n · Nk/2).

6.3 Improving the Ad-Hoc PSM Protocol for Symmetric Functions

We combine the protocol of Sect. 6.2 with the ideas of Sect. 4, and construct a
better k-out-of-n ad-hoc PSM protocol for symmetric functions f : [N ]k → Y ,
where a function f is symmetric if for a given input x = (x1, . . . , xk), the output
of f on the input x is the same as the output of f on any permutation on
the order of the xi’s, that is, for every x = (x1, . . . , xk) and every permutation
π : [k] → [k], it holds that f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)).

Our construction consists of two steps. First, we show that we can construct
a k-out-of-n ad-hoc PSM protocol for f using Θ(k · log n) invocations of a k-
out-of-k2 ad-hoc PSM protocol. Then, we use the protocol of Theorem6.4 with
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k2 parties, and get a k-out-of-n ad-hoc PSM protocol for f with message size
O(k4 · log n · cf (k,N)), where cf (k,N) is the message size of a k-party PSM
protocol for f .

For the first step, we show a general transformation from k-out-of-t ad-hoc
PSM protocols to k-out-of-n ad-hoc PSM protocols, for every k ≤ t ≤ n. This
transformation generalizes and improves the construction of [11], which only
works when t = k. As mentioned above, we use this transformation for t = k2.
For our transformation, we take a family of perfect hash functions Hn,k,t, and
construct a k-out-of-n ad-hoc PSM protocol for f using independent copies of a
k-out-of-t ad-hoc PSM protocol for f , one copy for each hash function h ∈ Hn,k,t.

In the k-out-of-t ad-hoc PSM protocol for h, denoted by Ph, party Pj simu-
lates the h(j)th party in Ph. If h is one-to-one on a set of k parties, that is, the
set does not collide on h, then the referee gets k messages of k different parties of
the protocol Ph, so it can compute the output of f on the inputs of the parties.

If a set collides on h, then the referee gets at least two messages of the same
party of the protocol Ph, so the privacy is not guaranteed. To solve this prob-
lem, every party encrypts its message of the protocol Ph using an information-
theoretic encryption system that is secure as long as the adversary sees at most
k encryptions. We also share the encryption key using a k-out-of-t secret-sharing
scheme, and party Pj sends to the referee the h(j)th share from this scheme.
For sets of size less than k and sets of size k that collide on h, the referee cannot
reconstruct the key and sees at most k encrypted messages, thus cannot learn
any information on the messages of the protocol Ph. For the encryption system,
we use a polynomial of degree k as the encryption key; to encrypt a message
each party masks it by a unique point of the polynomial.

Observe that the referee might learn the output of f from more than one
protocol, for several functions from Hn,k,t, so the requirement for symmetric
functions is necessary, since the order of the parties in a set of size k can change
according to the different hash functions.

Lemma 6.6. Let f : [N ]k → Y be a k-input symmetric function, for some
integer k, and assume that there is a k-out-of-t ad-hoc PSM protocol P for f
with message size cf (k, t,N), and that there is a family of perfect hash function
Hn,k,t = {hi : [n] → [t] : i ∈ [�]}. Then, there is a k-out-of-n ad-hoc PSM protocol
for f with message size O(� · k · max {cf (k, t,N), log n}).

The proof of Lemma 6.6 is deferred to the full version [4]. By taking t = k2

and using our ad-hoc PSM protocol from Theorem6.4 and the family of perfect
hash functions from Lemma4.5, we get the following result (Fig. 6).
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Fig. 6. A k-out-of-n ad-hoc PSM protocol Ph for a symmetric k-input function f :
[N ]k → Y .

Theorem 6.7. Let f : [N ]k → Y be a k-input symmetric function, for some
integer k, and assume that there is a k-party PSM protocol for f with message
size cf (k,N). Then, there is a k-out-of-n ad-hoc PSM protocol for f with message
size O(k5 · log n · cf (k,N)).

Proof. By Theorem 6.4, there is a k-out-of-k2 ad-hoc PSM protocol for f with
message size O(k · k2 · cf (k,N)) = O(k3 · cf (k,N)), and by Lemma 4.5, there is
a family of perfect hash functions Hn,k,k2 with � = Θ(k · log n) functions.

Thus, by Lemma 6.6, there is a k-out-of-n ad-hoc PSM protocol for f with
message size O(� · k · k3 · cf (k,N)) = O(k5 · log n · cf (k,N)). �


Finally, again by the PSM protocol of [12], we obtain the next result.

Corollary 6.8. Let f : [N ]k → Y be a k-input symmetric function, for some
integer k. Then, there is a k-out-of-n ad-hoc PSM protocol for f with message
size O(k8 · log n · Nk/2).
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Abstract. Robust secret sharing enables the reconstruction of a secret-
shared message in the presence of up to t (out of n) incorrect shares.
The most challenging case is when n = 2t + 1, which is the largest t for
which the task is still possible, up to a small error probability 2−κ and
with some overhead in the share size.

Recently, Bishop, Pastro, Rajaraman and Wichs [3] proposed a scheme

with an (almost) optimal overhead of ˜O(κ). This seems to answer the
open question posed by Cevallos et al. [6] who proposed a scheme with

overhead of ˜O(n+κ) and asked whether the linear dependency on n was
necessary or not. However, a subtle issue with Bishop et al.’s solution is
that it (implicitly) assumes a non-rushing adversary, and thus it satisfies
a weaker notion of security compared to the scheme by Cevallos et al. [6],
or to the classical scheme by Rabin and BenOr [13].

In this work, we almost close this gap. We propose a new robust secret
sharing scheme that offers full security against a rushing adversary, and
that has an overhead of O(κnε), where ε > 0 is arbitrary but fixed. This

nε-factor is obviously worse than the polylog(n)-factor hidden in the ˜O
notation of the scheme of Bishop et al. [3], but it greatly improves on the
linear dependency on n of the best known scheme that features security
against a rushing adversary (when κ is substantially smaller than n).

A small variation of our scheme has the same ˜O(κ) overhead as the
scheme of Bishop et al. and achieves security against a rushing adversary,
but suffers from a (slightly) superpolynomial reconstruction complexity.

1 Introduction

Background. Robust secret sharing is an extended version of secret sharing as
originally introduced by Shamir [14] and Blakley [4], where the reconstruction
is required to work even if some of the shares are incorrect (rather than missing,
as in the standard notion). Concretely, a robust secret sharing scheme needs to
satisfy t-privacy: any t shares reveal no information on the secret, as well as
t-robust-reconstructability: as long as no more than t shares are incorrect the
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secret can be reconstructed from the full set of n (partly correct, partly incor-
rect) shares. For t < n/3 this can easily be achieved by means of error correct
techniques, whereas for t ≥ n/2 the task is impossible. Thus, the interesting
region is n/3 ≤ t < n/2, respectively n = 2t + 1 if we want t maximal, where
robust secret sharing is possible but only up to a small error probability 2−κ

(which can be controlled by a statistical security parameter κ) and only with
some overhead in the share size (beyond the size of the “ordinary”, e.g., Shamir
share). There are many works [2,3,5–9,11,13] in this direction.1

The classical scheme proposed by Rabin and BenOr [13] has an overhead
in share size of O(κn), i.e., next to the actual share of the secret, each player
has to hold an additional O(κn) bits of information as part of his share. This
additional information is in the form of n − 1 authentication tags and keys.
Concretely, every player Pi holds n − 1 authentication keys keyi,j that allow
him to verify the (Shamir) shares sj of all parties Pj , plus n − 1 authentication
tags σi,j that allow the other parties to verify his share si by means of their
keys. By this way, the honest parties can recognize all incorrect shares—and, in
case the reconstructor is not a share holder, he would keep those shares that
are correctly verified by at least t + 1 other parties and dismiss the others (note
that a dishonest share holder may also lie about his authentication key, and thus
make look a correct share incorrect).

Cevallos, Fehr, Ostrovsky and Rabani [6] proposed an improvement, which
results in an overhead in share size of ˜O(n + κ) instead. The core insight is that
in the Rabin-BenOr scheme, one can reduce the size of the authentication keys
and tags (and thus weaken the security of the authentication) at the expense
of a slightly more involved reconstruction procedure—and a significantly more
involved analysis. Since the linear dependency of the overhead on κ is unavoid-
able, they posed the question of whether the linear dependency on n is necessary,
or whether an overhead of ˜O(κ) is possible.

Bishop, Pastro, Rajaraman and Wichs [3] gave a positive answer to this
question by proposing a scheme that indeed has an overhead in share size of
˜O(κ). At first glance, this seems to settle the case. However, a subtle issue is
that their scheme is proven secure only against a weaker attacker than what is
considered in the above works. Concretely, the security of their scheme relies on
the (implicit) assumption that the attacker is non-rushing, whereas the above
discussed schemes remain secure in the presence of a rushing attacker. As such,
the open question of Cevallos et al. [6] is not fully answered.

Recall that for the attacker to be rushing, it means that during the recon-
struction procedure, when the parties announce their shares, he can decide on the
incorrect shares of the corrupt parties depending on the shares that the honest
parties announce (rather than on the shares of the corrupt parties alone). This is
in particular meaningful and desirable if it is the parties themselves that do the
reconstruction—in this case there is little one can do to prevent the corrupt par-
ties from waiting and receiving the honest parties’s shares, and then “rush” and

1 In particular, [3,7,9,11] use partly similar tools than we do but achieve weaker or
incomparable results.
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announce their own shares before the end of the communication round. Even if
the shares (which may include authentication tags and keys etc.) are announced
gradually, in multiple rounds, in each round the attacker can still rush in that
sense.

To the best of our knowledge, it has not been pointed out before that the
scheme of Bishop et al. does not (necessarily) offer security against a rushing
attacker. It is also not explicitly discussed in [3], but becomes clear when inspect-
ing the considered security definition carefully.

The Scheme in [3]. We briefly discuss some of the features of the scheme by
Bishop, Pastro, Rajaraman and Wichs [3], and why it is not secure against a rush-
ing adversary. Like the schemes above, their scheme is also based on verification
of shares by means of pairwise authentication using a message authentication
code (MAC). However, in order to reduce the number of keys and tags so as to
obtain an overhead that is independent of n, every party can now verify only a
subset of the shares of the other parties, where the subset is randomly chosen
(during the sharing phase) and of constant size. However, this makes the recon-
struction procedure much more delicate, and Bishop et al. [3] need to pair this
basic idea with various additional clever tricks in order to get the reconstruction
working. One of these enhancements is that they need to avoid that a dishon-
est party can make an honest party look dishonest by announcing an incorrect
authentication key without being identified as a cheater by other honest parties.
This is done by authenticating not only the Shamir share of the party under
consideration, but also that party’s authentication keys. Concretely, if Pj is cho-
sen to be one of the parties that Pi can verify, then this verification is enabled
by means of an authentication tag σi,j that is computed as

σi,j = MACkeyi,j
(sj , keyj)

where keyi,j is Pi’s verification key, and keyj is the collection of keys that Pj

holds for verification of the shares (and keys) that he can verify.2

It is now not hard to see that this construction design is inherently insecure
against a rushing adversary. Even if the reconstruction is done in multiple rounds
where first the Shamir shares and authentication tags are announced and only
then the keys (which is what one has to do to make the Rabin-BenOr scheme and
the scheme by Cevallos et al. secure in the rushing setting), given that a rushing
adversary can choose an incorrect keyj depending on the authentication key
keyi,j , the MAC offers no security. Worse, this cannot be fixed by, say, enhancing
the MAC: either the adversary has some freedom in choosing incorrect keyj once
given keyi,j , or then it is uniquely determined by keyi,j and so Pi knows it—and
so it cannot serve the purpose of an authentication key.3

2 One might feel uncomfortable about that there seems to be some circularity there;
but it turns out that this is no issue.

3 The actual scheme is significantly more involved than the simplifies exposition given
here, e.g., the identities of the parties that Pj can verify are authenticated as well,
and the authentication tags are not stored “locally” but in a “robust and distributed”
manner, but the issue pointed out here remains.
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We emphasize that we do not claim an explicit rushing attack against the
scheme of Bishop et al. [3]. What the above shows is the existence of an attack
that prevents a certain property on the consistency graph to hold upon which
the reconstruction procedure appears to crucially rely—certainly the proof does.
Thus, our claim is that we see no reason why the scheme of Bishop et al. should
offer security against a rushing adversary.

Our Result. In this work, we propose a new robust secret sharing scheme. Our
new scheme is secure against a rushing adversary and close to optimal in terms of
overhead. By “close to optimal” we mean that our new scheme has an overhead
of O(κnε) and runs in polynomial time for any arbitrary fixed constant ε > 0.
This is obviously slightly worse than the scheme of Bishop et al. [3], which has
an overhead of O(κ · polylog(n)), but it greatly improves over the best known
scheme that features security against a rushing adversary when n is significantly
larger than κ.

Our approach recycles some of the ideas from Bishop et al. [3] (e.g. to use
“small random subsets” for the verifying parties, and to store the authentication
tags in a “robust and distributed” manner) but our scheme also differs in many
aspects. The crucial difference is that we do not require the authentication keys
to be authenticated; this is what enables us to obtain security against a rushing
adversary. Also, how the reconstruction actually works—and why it works—is
very different. In our approach, we mainly exploit the expander property of the
“verification graph” given by the randomly chosen set of neighbors for each Pi,
i.e., the set of parties whose share Pi can verify.

For instance, in a first step, our reconstruction procedure checks if the number
of incorrect Shamir shares is almost t (i.e., maximal) or whether there is a small
linear gap. It does so by checking if there are t+1 parties that accept sufficiently
more than half of the shares they verify. This works because by the random choice
of the neighbors, the local view of each honest party provides a good estimate of
the global picture (except with small probability). e.g., if almost half of all the
shares are incorrect, then for each honest party roughly half of his neighbors has
an incorrect share.

If the outcome is that there is a (small but positive) linear gap between the
number of incorrect shares and t then we can employ list-decoding to obtain a
poly-size list of possible candidates for the secret. In order to find the right secret
from the list we need to further inspect the “consistency graph”, given by who
accepts whom. Concretely, for every secret on the list (and the corresponding
error-corrected list of shares) it is checked if there exist t+1 parties whose shares
are deemed correct and who accept a party whose share is deemed incorrect. It is
clear that this cannot happen if the secret in question is the right one, because no
one of the t + 1 honest parties would accept an incorrect share. And, vice versa,
if the secret in question is incorrect then, because of the promised redundancy
in the correct shares, there must be a certain number of correct shares that are
deemed incorrect and, with the parameters suitably chosen, each honest party
has one of them as neighbor (except with small probability) and so will accept
that one.
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If, on the other hand, the outcome of the initial check is that there are almost t
incorrect shares, then the reconstruction procedure uses a very different approach
to find the correct shares. Explaining the strategy in detail is beyond the scope of
this high-level sketch, but the idea is to start with a set that consists of a single
party and then recursively pull those parties into the set that are accepted by the
current parties in the set. The hope is that when we start with an honest party
then we keep mostly including other honest parties. Of course, we cannot expect
to end up with honest parties only, because an honest party may pull a party into
the set that has announced a correct share (and thus looks honest) but which
is actually dishonest and accepts incorrect shares of other dishonest parties,
which then get pulled into the set as well. But note, given that we are in the
case of almost t incorrect shares, there are not many such “passively dishonest”
parties, and we can indeed control this and show that if we stop at the right
moment, the set will consist of mainly honest parties and only a few dishonest
parties with incorrect shares. By further inspection of the “consistency graph”,
trying to identify the missing honest parties and removing dishonest ones, we
are eventually able to obtain a set of parties that consists of all honest parties,
plus where the number of “actively dishonest” parties is at most half the number
of “passively dishonest” parties (except with small probability), so that we have
sufficient redundancy in the shares to recover the secret (using Reed-Solomon
error correction).

By choosing the out-degree of the “verification graph” (i.e., the number of
parties each party can verify) appropriately, so that the above informal reasoning
can be rigorously proven (to a large extent by exploiting the randomness of each
party’s neighborhood and applying the Chernoff-Hoeffding bound), we obtain
the claimed overhead O(κnε) for an arbitrary choice of ε > 0.

As a simple variation of our approach, by choosing the out-degree of the
“verification graph” to be polylog(n), we obtain the same (asymptotic) ˜O(κ)
overhead as Bishop et al. [6] and still have security against a rushing adversary,
but then the reconstruction becomes (slightly) superpolynomial (because the
size of the list produced by the list-decoder becomes superpolynomial).

2 Preliminaries

2.1 Graph Notation

Let G = (V,E) be a graph with vertex set V and edge set E. By convention,
(v, w) ∈ E is the edge directed from v to w. For S ⊆ V , we let G|S be the
restriction of G to S, i.e., G|S = (S,E|S) with E|S = {(u, v) ∈ E : u, v ∈ S}.
Furthermore, we introduce the following notation.

For v ∈ V , we set

Nout(v) = {w ∈ V : (v, w) ∈ E} and N in(v) = {w ∈ V : (w, v) ∈ E}.

We often write Ev as a short hand for Nout(v), and call it the neighborhood of v.
For S ⊆ V , we set

Nout
S (v) = Nout(v) ∩ S and N in

S (v) = Nout(v) ∩ S.
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We extend this notation to a labeled graph, i.e., when G comes with a function
L : E → {good, bad} that labels each edge. Namely, for v ∈ V we set

Nout(v, good) = {w ∈ Nout(v) : L(v, w) = good},

N in(v, good) = {w ∈ N in(v) : L(w, v) = good},

and similarly Nout(v, bad) and N in(v, bad). Also, Nout
S (v, good), N in

S (v, good),
Nout

S (v, bad) and N in
S (v, bad) are defined accordingly for S ⊆ V . Finally, we set

nout(v) = |Nout(v)| and nin
S (v, bad) = |N in

S (v, bad)|

and similarly for all other variations.
We refer to a graph G = (V,E) as a randomized graph if the edges E are

chosen in a randomized manner, i.e., if E is actually a random variable. We are
particularly interested in randomized graphs where (some or all of) the Ev’s
are uniformly random and independent subsets Ev ⊂ V \ {v} of a given size d.
For easier terminology, we refer to such neighborhoods Ev as being random and
independent.

2.2 Chernoff Bound

Like for [3], much of our analysis relies on the Chernoff-Hoeffding bound, and
its variation to “sampling without replacement”. Here and throughout, [n] is a
short hand for {1, 2, . . . , n}.

Definition 1 (Negative Correlation [1]). Let X1, . . . , Xn be binary random
variables. We say that they are negatively correlated if for all I ⊂ [n]:

Pr[Xi = 1 ∀ i ∈ I] ≤
∏

i∈I

Pr[Xi = 1], Pr[Xi = 0 ∀ i ∈ I] ≤
∏

i∈I

Pr[Xi = 0].

Theorem 1 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be random vari-
ables that are independent and in the range 0 ≤ Xi ≤ 1, or binary and negatively
correlated, and let u = E

[
∑n

i=1 Xi

]

. Then, for any 0 < δ < 1:

Pr

[

n
∑

i=1

Xi ≤ (1 − δ)u

]

≤ e−δ2u/2 and Pr[

[

n
∑

i=1

Xi ≥ (1 + δ)u

]

≤ e−δ2u/3.

As immediate consequence, we obtain the following two bounds. The first
follows from Chernoff-Hoeffding with independent random variables, and the
latter from Chernoff-Hoeffding with negatively correlated random variables. We
refer to [1] for more details, e.g., for showing that the random variables Xj = 1
if j ∈ Ev and 0 otherwise are negatively correlated for Ev as in Corollary 1.

Corollary 1. Let G be a randomized graph with the property that, for some fixed
v ∈ V , the neighborhood Ev is a random subset of V \ {v} of size d. Then, for
any fixed subset T ⊂ V , we have

Pr
[

nout
T (v) ≥ (1+ε) |T |d

|V |

]

≤ e−ε2
|T |d
2|V | and Pr

[

nout
T (v) ≤ (1−ε) |T |d

|V |

]

≤ e−ε2
|T |d
3|V | .
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Corollary 2. Let G be a randomized graph with the property that, for some fixed
T ⊂ V , the neighborhoods Ev for v ∈ T are random and independent of size d
(in the sense as explained in Sect. 2.1). Then, for any v 
∈ T , we have

Pr
[

nin
T (v) ≥ (1+ε) |T |d

|V |

]

≤ e−ε2
|T |d
2|V | and Pr

[

nin
T (v) ≤ (1−ε) |T |d

|V |

]

≤ e−ε2
|T |d
3|V | .

We emphasize than when we apply these corollaries, we consider a graph
G where a priori all Ev’s are random and independent. However, our reasoning
typically is applied a posteriori, given some additional information on G, like the
adversaries view. As such, we have to be careful each time that the considered
neighborhoods are still random conditioned on this additional information on G.

2.3 Robust Secret Sharing

A robust secret sharing scheme consists of two interactive protocols: the sharing
protocol Share and the reconstruction protocol Rec. The sharing protocol is
executed by a dealer D and n parties 1, . . . , n: the dealer takes as input a message
msg, and each party i ∈ {1, . . . , n} obtains as output a so-called share. Typically,
these shares are locally computed by the dealer and then individually sent to
the parties. The reconstruction protocol is executed by a receiver R and the n
parties: each party is supposed to use its share as input, and the goal is that
R obtains msg as output. Here, the protocol is typically so that the parties
send their shares to R (possibly “piece-wise”, distributed over multiple rounds
of communication), and R then performs some local computation.

Such a robust secret sharing should be “secure” in the presence of an adver-
sary that can adaptively corrupt up to t of the parties 1, . . . , n. Once a party
is corrupted, the adversary is able to see the share of this party, and he can
choose the next corruption based on the shares of the currently corrupt parties.
Furthermore, in the reconstruction protocol, the corrupt parties can arbitrarily
deviated from the protocol and, e.g., use incorrect shares. The following captures
the security of a robust secret sharing in the list of such an adversary.

Definition 2 (Robust Secret Sharing). Such a pair (Share,Rec) of pro-
tocols is called a (t, δ)-robust secret sharing scheme if it satisfies the following
properties hold for any distribution of msg (from a given domain).

– Privacy: Before Rec is started, the adversary has no more information on
the shared secret msg than he had before the execution of Share.

– Robust reconstructability: At the end of Rec, the reconstructor R output
msg′ = msg except with probability at most δ.

2.4 On the Power of Rushing

As defined above, there is still some ambiguity in the security notion, given
that we have not specified yet the adversary’s (dis)ability of eavesdropping on
the communication of the sharing and the reconstruction protocols. Obviously,
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for the privacy condition to make sense, it has to be assumed that during the
execution of the sharing protocol the adversary has no access to the communi-
cation between D and the uncorrupt parties. On the other hand, it is commonly
assumed that the adversary has access to the communication between the parties
and R during the execution of the reconstruction protocol. This in particular
means that the adversary can choose the incorrect shares, which the corrupt
parties send to R, depending on the honest parties’ (correct) shares.4 Such an
adversary is referred to as a rushing adversary. In contrast, if it is assumed that
the adversary has to choose the incorrect shares depending on the shares of the
corrupt parties only, one speaks of a non-rushing adversary. Thus, Definition 2
above comes in two flavors, depending on whether one considers a rushing or a
non-rushing adversary. Obviously, considering a rushing adversary gives rise to a
stronger notion of security. In order to deal with a rushing adversary, it is useful
to reveal the shares “in one go” but piece-by-piece, so as to limit the dependence
between incorrect and correct shares.

In this work, in order to be in-par with [13] and [6], we require security
against a rushing adversary. On the other hand, the scheme by Bishop, Pastro,
Rajaraman and Wichs [3] offers security against a non-rushing adversary only—
and, as explained in the introduction, there are inherent reasons why it cannot
handle a rushing adversary.

3 Overview of Scheme

Our Approach. As in [3], the sharing phase is set up in such a manner that
every party i can verify (by means of a MAC) the Shamir shares of the parties
j of a randomly sampled subset Ei ⊂ [n]\{i} of parties. However, in contrast to
[3], in our scheme only the Shamir share is authenticated; in particular, we do
not authenticate the authentication keys (nor the set Ej).

If the reconstruction is then set up in such a way that first the Shamir shares
are announced, and only afterwards the authentication keys, it is ensured (even
in the presence of a rushing adversary) that the consistency graph, which labels
an edge from i to j ∈ Ei as “good” if and only if i correctly verifies j’s Shamir
share, satisfies the following:

– All edges from honest parties to passive or honest parties are labeled good.
– All edges form honest parties to active parties are labeled bad.

Here, and in the remainder, a corrupt party is called active if it announced
an incorrect Shamir share in the reconstruction, and it is called passive if it

4 This may look artificial at first glance, but one motivation comes from the fact that in
some applications one might want to do the reconstruction among the parties, where
then each party individually plays the role of R (and performs the local computation
that the reconstruction protocol prescribes). In this case, every party sends his share
to every other party, and thus the corrupt parties unavoidably get to see the shares
of the honest parties and can decide on the incorrect shares depending on those.
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announced a correct Shamir share, but may still lie about other parts, like the
authentication keys. This is a significant difference to [3], where it is also ensured
that corrupt parties that lie about their authentication keys are recognized as
well.

Divide the Discussion. Similarly to [3], the reconstructor first tries to distin-
guish between the (non-exclusive) cases |P | ≤ εn and |P | ≥ εn

4 , where P denotes
the set of passive parties (as defined above). In order to do so, we observe that
the honest party is expected to have (|P | + |H|) d

n good outgoing edges, where
H is the set of honest parties. Thus, if there exist t + 1 parties with more than
(1 + ε)d/2 good outgoing edges, we are likely to be in the case |P | ≥ εn

4 , and
otherwise |P | ≤ εn.

Based on this distinction, the reconstructor will then refer to either of the
following two algorithms to recover the secret.

Code Based Algorithm. This algorithm is used to handle the case |P | ≥ εn
4 .

Here, one can use the redundancy provided by the correct shares of the parties
in P to do list-decoding. This works given that the Shamir sharing is done by
means of a folded Reed-Solomon code. Since those are maximum distance sep-
arable (MDS) codes, the corresponding secret sharing scheme is still threshold;
moreover, it enjoys the nice feature that we can apply list decoding to correct
up to t − εn/4 corruptions for any small constant ε. Finding the right entry in
the list can then be done by a further inspection of the consistency graph.

Graph Algorithm. This graph algorithm is used in case |P | ≤ εn. The basic
algorithm starts off with a particular party, and produces the correct secret
(with high probability) if that party happens to be honest. Hence, applying
this algorithm to all choices for that party and taking a majority enables to
reconstruct the secret.

The algorithm consists of three steps.

– The first step is to find a big subset V that contains many honest parties
and very small proportion of dishonest parties. We do so by starting off with
V = {i} for a particular party i (which we assume to be honest for the
discussion) and recursively include all parties into V that are correctly verified
by the parties in V . A simple argument shows that in each step, we expect
to include d/2 honest parties and at most εd passive parties.
By the expander property of the consistency graph restricted to the honest
parties ensures that the set V will soon be expanded to a set containing many
honest parties. On the other hand, we can limit the “damage” done by passive
parties by only including parties that have at most d

2 (1 + 3ε) good outgoing
edges. Given that there are only very few passive parties and that we limit
the number of active parties they can pull into V , we can show that V can
be expanded to a set of size Ω(εn) such that at most a O(

√
ε)-fraction of the

parties in V are corrupt.
– The next step is to rely on the authentication of parties in V to include all

honest parties and few dishonest parties where the majority is passive. We
first expand V to contain all honest parties and at most O(

√
εn) dishonest
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parties. Then, we remove all active parties from V (but possibly also some
honest and passive ones). Let W be the set of all parties removed from V .
We show that the resulting set V still contains almost all honest parties and
few passive parties, and W is of size O(

√
εn) and contains the rest of honest

parties.
A subtle issue now is that the sets V and W above depend on the Ei’s of the
honest parties; this then means that now given these two sets, we cannot rely
anymore on the randomness of the Ei’s. In order to circumvent this, we resort
to another layer of authentication that is done in parallel to the former, with
fresh E′

i’s, and by means of this, we can then eventually identify a subset
S ⊆ [n] that contains all t + 1 honest parties, as well as some number h of
passive parties and at most h

2 active parties (with high probability).
– Given that we have “sufficiently more redundancy that errors”, the secret can

now be recovered by means of Reed-Solomon error correction (noting that a
codeword of a folded Reed-Solomon code is also a codeword of some classic
Reed-Solomon code).

4 Building Blocks

We present three building blocks here which are used in our construction.

4.1 Shamir Secret Sharing with List Decoding

It is well known that the share-vector in Shamir’s secret sharing scheme is noth-
ing else than a codeword of a Reed-Solomon code. Thus, Reed-Solomon decoding
techniques can be applied when we are in the regime of unique decoding. Fur-
thermore, if we use a folded Reed-Solomon code, then we still get a Shamir-like
threshold secret sharing scheme, but in addition we can employ list-decoding
when we are in a regime were decoding is not unique anymore.

In summary, we have the following (see AppendixA.1 and [12] for the details).

Proposition 1. Let γ be any small constant. There exists 2t+1-party threshold
secret sharing scheme over Fq with q = t

O( 1
γ2 ) such that:

– This scheme enjoys t-privacy and t + 1-reconstruction.
– There is a randomized list decoding algorithm that corrects up to t−γ(2t+1)

incorrect shares and outputs a list of candidates containing the correct secret
with probability at least 1− 2−Ω(t). The list size is λ = ( 1

γ )
1
γ log 1

γ and this list
decoding algorithm runs in time poly(t, λ).

– There exists an efficient decoding algorithm that reconstructs the secret from
any t + 1 + 2a shares of which at most a are incorrect.
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4.2 MAC Construction

Similarly to [3], our construction requires a message authentication code (MAC)
with some additional features. There is some overlap with the features needed
in [3], but also some differences.

Definition 3. A message authentication code (MAC) for a finite message space
M consists of a family of functions {MACkey : M × R → T }key∈K. This MAC
is said to be (
, ε)-secure if the following three conditions hold.

1. Authentication security: For all (m, r) 
= (m′, r′) ∈ M×R and all σ, σ′ ∈ T ,

Pr
key←K

[MACkey(m′, r′) = σ′|MACkey(m, r) = σ] ≤ ε.

2. Privacy over Randomness: For all m ∈ M and key1, . . . , key� ∈ K, the distri-
bution of 
 values σi = MACkeyi

(m, r) is independent of m over the choice
of random string r ∈ R, i.e.,

Pr
r←R

[(σ1, . . . , σ�) = c|m] = Pr
r←R

[(σ1, . . . , σ�) = c]

for any c ∈ T �.
3. Uniformity: For all (m, r) ∈ M × R, the distribution of σ = MACkey(m, r)

is uniform at random over the random element key ∈ K.

The above privacy condition will be necessary for the privacy of the robust
secret sharing scheme, since the Shamir shares will be authenticated by means of
such a MAC but the corresponding tags will not be hidden from the adversary.

The uniformity property will be crucial in a lazy sampling argument, were
we need to “simulate” certain tags before we know which messages they actually
authenticate. With the uniformity property, this can obviously be done by pick-
ing σ uniformly at random from T . When m and r become available, we can
then sample a uniformly random key key subject to MACkey(m, r) = σ. This
has the same distribution as when key is chosen uniformly at random and σ is
computed as σ = MACkey(m, r).

The following variation of the standard polynomial-evaluation MAC con-
struction meets all the requirements.

Theorem 2 (Polynomial Evaluation). Let F be a finite field. Let M = F
a,

R = F
� and T = F such that a+�

|F| ≤ ε. Define the family of MAC functions
{MAC(x,y) : Fa × F

� → F}(x,y)∈F2 such that

MAC(x,y)(m, r) =
a
∑

i=1

mix
i+� +

�
∑

i=1

rix
i + y

for all m = (m1, . . . ,ma) ∈ F
a, r = (r1, . . . , r�) ∈ F

� and (x, y) ∈ F
2. Then, this

family of MAC functions is (
, ε)-secure.
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4.3 Robust Distributed Storage

A robust distributed storage scheme is a robust secret sharing scheme as in Def-
inition 2 but without the privacy requirement. This was used in [3] in order to
ensure that dishonest parties cannot lie about the tags that authenticate their
shares (so as to, say, provoke disagreement among honest parties about the cor-
rectness of the share).5 Also our construction uses a robust distributed storage
scheme for storing the authentication tags. It does not play such a crucial role
here as in [3], but it makes certain things simpler.

A robust distributed storage scheme can easily be obtained by encoding the
message by means of a list-decodable code and distribute the components of
the code word among the parties, and to give each party additionally a random
key and the hash of the message under the party’s key (using almost-universal
hashing). In order to reconstruct, each party runs the list-decoding algorithm
and uses his key and hash to find the correct message in the list. The exact
parameters then follow from list-decoding parameters.

Therefore, each party i holds two components, the i-th share of list-decodable
code, pi, and a hash-key and the hash of the message, jointly referred to as qi.
While [3] did not consider a rushing adversary, it is easy to see that security
of this robust distributed storage scheme against a rushing adversary can be
obtained by having the parties reveal pi and qi in two different communication
rounds (so that the adversary has to decide on an incorrect pi before he knows
the keys that the honest parties will use). Therefore, the following result from [3],
which is obtained by using suitable parameters for the list decoding an hashing,
is also applicable in rushing-adversary model.

Theorem 3 ([3]). For any n = 2t + 1 and u ≥ log n, there exists a robust
distributed storage with messages of length m = Ω(nu) and shares of length O(u)
that can recover the message with probability 1 − O(n2

2u ) up to t corruptions.

In our application, the length of shares is O(u) = O(n
√

ε) and the length of
messages is m = Ω(nu). If we apply this theorem directly, the size of Fq in
their construction is 2u which is unnecessarily big. Instead, We pick Fq with
q = Ω(n5). Then, we obtain following.

Theorem 4. For any n = 2t + 1 and u = O(n
√

ε) for small constant ε, there
exists a robust distributed storage against rushing adversary with messages of
length m = Ω(nu), shares of length O(u) that can recover the message with
probability 1−O( 1

n2 ) up to t corruptions. In this robust distributed storage, party
i holds two components, pi and qi, revealed in two rounds.

5 On the other hand, this is why the additional privacy property of the MAC is
necessary, since the robust distributed storage does not offer privacy, and thus the
tags are (potentially) known.
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5 The Robust Secret Sharing Scheme

5.1 Sharing Protocol

Let t be an arbitrary positive integer and n = 2t + 1. Let ε > 0 be a small
constant and d = n

√
ε. Let (Sh,Lis) be the sharing and list decoding algorithm

of the threshold secret sharing scheme in Proposition 1 with γ = ε
4 . Also, we

use the MAC construction from Theorem 2 with 
 = 4d, and with the remaining
parameters to be determined later (but chosen so that a share produced by Sh
can be authenticated).

On input msg ∈ Fq, our sharing procedure Share(msg) proceeds as follows.

1. Let (s1, . . . , sn) ← Sh(msg) to be a non-robust secret sharing of msg.
2. For each i ∈ [n], sample MAC randomness ri ← T 4d and do the following

operation twice.
(a) For each i ∈ [n], choose a random set Ei ⊆ [n]\{i} of size d. If there exists

j ∈ [n] with in-degree more than 2d, do it again.6

(b) For each i ∈ [n], sample the d random MAC keys keyi,j ∈ T 2 for j ∈ Ei.
Define Ki = {keyi,j : j ∈ Ei} to be the collection of these d random keys.

(c) Compute the MAC

σi→j = MACkeyi,j
(sj , rj) ∈ T ∀j ∈ Ei.

Let Ei, keyi,j and σi→j be the output of the first round and E′
i, key′

i,j and
σ′

i→j be the output of the second round.
3. For each i ∈ [n], define tagi = {σi→j : j ∈ Ei} ∈ T d and tag′

i = {σ′
i→j : j ∈

E′
i} ∈ T d. Let tag = (tag1, tag

′
1, . . . , tagn, tag′

n) ∈ T 2nd. Use the robust
distributed storage scheme to store tag. Party i holds pi and qi.

4. For i ∈ [n], define si = (si, Ei, E
′
i,Ki,K′

i, ri, pi, qi) to be the share of party i.
Output (s1, . . . , sn).

5.2 Reconstruction Protocol

1. The first round: Every party i sends (si, ri, pi) to the reconstructor R.
2. The second round: Every party i sends (qi, Ei,Ki) to the reconstructor R.
3. The third round: Every party i sends (E′

i,K′
i) to the reconstructor R.

Remark 1. We emphasize that since the keys for the authentication tags are
announced after the Shamir shares, it is ensured that the MAC does its job also
in the case of a rushing adversary. Furthermore, it will be crucial that also the
Ei’s are revealed in the second round only, so as to ensure that once the (correct
and incorrect) Shamir shares are “one the table”, the Ei’s for the honest parties
are still random and independent. Similarly for the E′

i’s in the third round.

On receiving the shares of n parties, our reconstruction scheme
Rec(s1, . . . , sn) goes as follows:
6 This is for the privacy purpose.
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1. R collects the share of robust distributed storage: (pi, qi)i∈[n].
2. Reconstruct the tag = (tag1, tag

′
1, . . . , tagn, tag′

n) and parse tagi = {σi→j :
j ∈ Ei} and tag′

i = {σ′
i→j : j ∈ E′

i}.
3. Define two graphs G = ([n], E) and G′ = ([n], E′) such that E = {(i, j) : i ∈

[n], j ∈ Ei} and E′ = {(i, j) : i ∈ [n], j ∈ E′
i}.

4. Assign a label L(e) ∈ {good, bad} to each edge e = (i, j) ∈ E such that
L(e) = good if

σi→j = MACkeyi,j
(sj , rj)

and bad otherwise. Do the same thing to the edge e ∈ E′.
5. Run the Check(G,L, ε),

(a) If the output is Yes, Let s = (s1, . . . , sn) and c = List(G, s, ε/4).
(b) Otherwise, for each i ∈ [n], let ci = Graph(G,G′, ε, i). If there exists a

codeword ci repeating at least t + 1 times, let c = ci. Otherwise, c =⊥.
6. Output c.

Note that step 5 in the reconstruction refers to subroutines: Check, List and
Graph, which we specify only later.

5.3 The Privacy Property

Theorem 5. The scheme (Share, Rec) satisfies perfect privacy.

Proof. Let C ⊂ [n] be of size t. We let msg ∈ M be arbitrarily distributed and
consider Share(msg) = (s1, . . . , sn). Our goal is to show that the distribution of
(si)i∈C is independent of msg. Note that si = (si, ri, pi, qi, Ei, E

′
i,Ki,K′

i). Since
our threshold secret sharing scheme has t-privacy, the collection of shares si for
i ∈ C is independent of msg. By construction, ri, Ei, E

′
i,Ki,K′

i are indepen-
dently chosen as well. Since the (pi, qi)’s are computed from tag (using indepen-
dent randomness), it suffices to show that tag reveals no information on msg.
Recall that tag is used to verify the integrity of (sj , rj) for all j. For any j /∈ C,
there are at most 4d tags σi→j = MACkeyi,j

(sj , rj) corresponding to the total
degree of vertex i in two graphs. By the “privacy over randomness” of the MAC,
tag is independent of these shares sj , and hence the privacy of msg is ensured.

6 The Robustness Property

6.1 Preliminary Observations

From the security properties of the robust distributed storage and of the MAC,
we immediately obtain the following results.

Lemma 1. tag is correctly reconstructed expect with probability εtag = O(1/n2).
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This is not negligible; this will be dealt with later by parallel repetition.
Here and in the remainder of the analysis of the robustness property, H

denotes the set of honest parties, and C denotes the set of dishonest parties.
Furthermore, we decompose C into C = A ∪ P , where A is the set of dishonest
parties that announced an incorrect (si, ri) in the first communication round
and P denotes the (complementary) set of dishonest parties that announced a
correct (si, ri). The parties in A are called active parties, and the parties in P
are referred to as passive parties.

Proposition 2. If tag was correctly reconstructed then the labelling of the graph
G satisfies the following, except with probability εmac ≤ 4(t+4d)dt/|T |. For every
h ∈ H and for every edge e = (h, j) ∈ Eh = Nout(h), it holds that

L(e) =
{

bad if j ∈ A
good if j ∈ H ∪ P

.

I.e., all the edges from honest parties to active parties are labeled bad and all
edges from honest parties to honest parties or passive parties are labeled good.
The same holds for G′.

Proof. By the definition of passive parties and the construction of MAC, all edges
from honest parties to passive parties are labeled good. It remains to prove the
first half of the claim. Let us fix an active party i. According to the definition
of active party, he claims (s′

j , r
′
j) 
= (sj , rj) ∈ T a × T 4d. For any honest party i

with j ∈ Ei or j ∈ E′
i, the edge (i, j) is label good if σi→j = MACkeyi,j

(s′
j , r

′
j).

This event happens with

Pr
keyi,j←T 2

[σi→j = MACkeyi,j
(s′

j , r
′
j)] ≤ a + 4d

|T |

due to the authentication of MAC. Note that each vertex has at most 4d incoming
edges. Taking a union bound over all these edges and the active parties, the
desired result follows.

6.2 On the Randomness of the Graph

Much of our analysis relies on the randomness of the graph G (and G′). A subtle
point is that even though a priori all of the Ei are chosen to be random and
independent (in the sense as explained in Sect. 2.1), we have to be careful about
the a posteriori randomness of the Ei given the adversary’s view. In particular,
since the adversary can corrupt parties adaptively (i.e., depending on what he
has seen so far), if we consider a particular dishonest party j then the mere fact
that this party is dishonest may affect the a posteriori distribution of G.

However, and this is what will be crucial for us is that, conditioned on
the adversary’s view, the Ei’s of the honest parties i remain random and
independent.
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Proposition 3. Up to right before the second communication round of the
reconstruction protocol, conditioned on the adversary’s view of the protocol, the
graph G is such that the Ei for i ∈ H are random and independent.
The corresponding holds for G′ up to right before the third communication round.

Proof. The claim follows from a straightforward lazy-sampling argument. It fol-
lows by inspection of the protocol that one can delay the random choice of each
Ei (and E′

i) to the point where party i gets corrupted, or is announced in the cor-
responding round in the reconstruction protocol. The only subtle issue is that, at
first glance it seems that the computation of the tags σi→j = MACkeyi,j

(sj , rj)
for j ∈ Ei requires knowledge of Ei. However, by the uniformity property of
MAC, these tags can instead be “computed” by sampling d tags uniformly at
random from T , and once party i gets corrupted and Ei is sampled, one can
choose the keys keyi,j appropriately for j ∈ Ei.

Remark 2. In the sequel, when making probabilistic statements, they should be
understood as being conditioned on an arbitrary but fixed choice of the adver-
sary’s view. This in particular means that H, P and A are fixed sets then (since
they are determined by the view of the adversary), and we can quantify over,
say, all honest parties. The randomness in the statements then stems from the
randomness of the Ei’s (and E′

i’s) of the honest parties i ∈ H, as guaranteed by
Proposition 3 above.

Remark 3. The remaining analysis below is done under the implicit assumption
that tag is correctly reconstructed and that the labelling of G and of G′ is as
specified in Proposition 2. We will incorporate the respective error probabilities
then in the end.

6.3 The Check Subroutine

Roughly speaking, the following subroutine allows the reconstructor to find out
if |P |, the number of passive parties, is linear in n or not.

Check(G,L, ε)

– Input: G = ([n], E, L) and ε.
– If |{i ∈ [n] : nout(i, good) ≥ d

2 (1 + ε)}| ≥ t + 1, then output “Yes”.
– Otherwise, output “No”.

Theorem 6. Except with probability εcheck ≤ 2−Ω(εd), Check(G,L, ε) outputs
“Yes” if |P | ≥ εn and “No” if |P | ≤ εn/4 (and either of the two otherwise).

Proof. We only analyze the case that |P | ≤ εn
4 . The same kind of reasoning can

be applied to the case |P | ≥ εn. By Proposition 3 (and Remark 2), we know that
for given P and H, the Ei’s for i ∈ H are random and independent. It follows
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that nout(i, good) = nout
P∪H(i) is expected to be |P |+|H|

n ≤ d
2 (1 + ε

2 ), and thus, by
Corollary 1,

Pr
[

nout(i, good) ≥ d
2 (1 + ε)

]

≤ 2−Ω(εd).

Taking a union bound over all honest parties, we have

Pr
[

∃ i ∈ H : nout(i, good) ≥ d
2 (1 + ε)

]

≤ (t + 1)2−Ω(εd) = 2−Ω(εd).

Thus, except with probability (t + 1)2−Ω(εd), nout(i, good) ≥ d
2 (1 + ε) can only

hold for dishonest parties i, and in this case Check(G,L, ε) outputs “No”. The
desired result follows.

Remark 4. The subroutine Check(G,L, ε) allows us to find out if |P | ≥ εn
4 or

|P | ≤ εn. If Check(G,L, ε) tells us that |P | ≥ εn
4 (by outputting “Yes”) then

we use the redundancy provided by the shares of the parties in P to recover the
secret by means of the code based algorithm List(G, s, ε/4). If Check(G,L, ε)
tells us that |P | ≤ εn (by outputting “No”) then we run the graph algorithm
Graph(G,G′, ε, v) for every choice of party v. For honest v, it is ensure to output
the correct secret (with high probability), and so we can do a majority decision.
We leave the description and the analysis of the code based algorithm and the
graph algorithm to the respective next two sections.

6.4 Code Based Algorithm

Recall that γ = ε
4 . H is the set of honest parties, P is the set of passive parties and

A is the set of active parties. In this section, we present an algorithm List(G, s, γ)
based on the list decoding algorithm of secret sharing scheme in Proposition 1
up to t − γn errors.

Code Based Algorithm, List(G, s, γ)

– Input G = ([n], E, L), s, γ.
– Run the list decoding algorithm on s to correct up to t−γn errors and output

the list of candidates (c1, . . . , c�).
– Let Si (Ti) be the set of parties whose shares agree (do not agree) with ci.
– For 1 ≤ i ≤ 
, run Cand(G,Si, Ti). If the output is “succeed” then output ci.
– Output “fail”.

We proceed to the analysis of the algorithm. The input of the list decoding
algorithm is n shares of s. Since |P | ≥ γn, there are at most t − γn = n

2 (1 − 2γ)
shares that are corrupted. Thus, by Proposition 1, the output of this list decoding
algorithm will contain the correct codeword with probability at least 1−2−Ω(n).
Moreover, the list size of this algorithm is at most ( 1

γ )O(1/γ log 1/γ). We may
assume that this list only include codewords that are at most t − γn away from
the n shares. Let c1, . . . , c� be the candidates on this list. To find the correct one,
we resort to the labelled graph G = ([n], E, L). Note that ci for 1 ≤ i ≤ 
 are
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determined right after the first communication round. Thus, by Proposition 3,
conditioned on c1, . . . , c� (and the entire view of the adversary at this point), the
Ei’s for i ∈ H are random and independent. For each candidate ci, we run the
algorithm Cand(G,Si, Ti, γ) to check if it is the correct codeword. For the correct
codeword cr, we claim that this algorithm Cand(G,Sr, Tr, γ) will always output
succeed. To see this, we notice that Sr must contain the set of t+1 honest parties
H. Meanwhile, Tr is a subset of active parties A. By our assumption, there does
not exist good edge from H to Tr. The desired results follows as these t + 1
honest parties will remain in Sr after calling Cand(G,Sr, Tr, γ).

Verify the candidate, Cand(G,S, T )

– Input: G = ([n], E, L), S, T .
– Remove all i from S if nout

T (i, good) ≥ 1.
– If |S| ≥ t + 1, output “succeed”. Otherwise, output “fail”.

It remains to show that with high probability this algorithm will output fail
for all of the incorrect candidates.

Lemma 2. If ci is not a correct codeword then the algorithm Cand(G,Si, Ti)
will output fail except with probability at most 2−Ω(γd).

Proof. By the guarantee of the list decoding algorithm, it is ensured that |Ti| ≤
t−γn and thus |Si| ≥ t+1+γn. Let Wi be the set of passive and honest parties
in Ti. We observe that |Wi| ≥ γn; otherwise, ci and the correct codeword would
have t+1 shares in common, which would imply that they are the same codeword.
Furthermore, for every honest party j in Si, we have that

nout
T (j, good) ≥ nout

Wi
(j, good) = nout

Wi
(j)

and Corollary 1 ensures that this is 0 with probability at most 2−Ω(γd). Taking
union bound over all honest parties in Si, with probability at least 1 − 2−Ω(γd),
all the honest parties will be removed from Si. The desired result follows as Si

has size at most t when all honest parties are removed.

Taking a union bound over all these 
 candidates, we obtain the following.

Theorem 7. Assume |P | ≥ γn. With probability εcode at least 1 −
2−Ω(γd), the algorithm List(G, s, γ) will output the correct codeword in time
poly

(

m,n, ( 1ε ) ˜O( 1
ε )
)

.

6.5 Graph Algorithm

In this section, we assume that our graph algorithm Graph(G,G′, ε, v) starts
with an honest party v. Under this assumption and |P | ≤ εn, we show that this
algorithm will output the correct secret with high probability. Recall that the
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out-degree of vertices in G and G′ is d = n
√

ε for some small constant ε and
that by assumption (justified by Proposition 2) the edges from honest parties to
active parties are labeled bad, and the edges from honest parties to honest or
passive parties are labeled good.

We also recall that, by definition, whether a corrupt party i ∈ C is passive
or active, i.e., in P or in A, only depends on si and ri announced in the first
communication round in the reconstruction protocol; a passive party may well lie
about, say, his neighborhood Ei. Our reasoning only relies on the neighborhoods
of the honest parties, which are random and independent conditioned on the
adversary’s view, as explained in Proposition 3 and Remark 2.

The graph algorithm Graph(G,G′, ε, v) goes as follows. Note that n′ out
W refers

to nout
W but for the graph G′ rather than G, and similarly for n′ in

V .

The algorithm Graph(G,G′, ε, v)

i. Input G = ([n], E, L), G′ = ([n], E′, L′), d, ε and v ∈ [n].
ii. Expand set V = {v} to include more honest parties:

While |V | ≤ εt

d
do V := Expan(G,V, ε).

iii. Include all honest parties into V :

V := V ∪
{

v /∈ V : nin
V (v, good) ≥ d|V |

2n

}

.

iv. Remove all active parties from V (and maybe few honest parties as well):

W :=
{

v ∈ V : nin
V (v, bad) ≥ d

4

}

and V := V \ W.

v. 1. Bound the degree of parties in V :

V := V \
{

v ∈ V : n′ out
W (v) ≥ d

8

}

.

2. Include the honest parties from W (and perhaps few active parties):

V := V ∪
{

v ∈ W : n′ in
V (v, good) ≥ d

4

}

.

3. Error correction: run the unique decoding algorithm on the shares of
parties in V and output the result.

Remark 5. Each time we call Expan(G,V, ε), the size of V increases. After Step
ii, we hope that the V has size Ω(εn) instead of barely bigger than εt

d . To achieve
this, we require that the input V of the last loop to be of size Ω( εt

d ). It can be
achieved as follows. Assume that |V | > εt

d . Take out each party in V with same
probability such that the expectation of resulting V is less than εt

2d . Then, the
proportion of honest party and dishonest party stays almost the same but the
size of V is below the threshold εt

d with probability at least 1 − 2−Ω(εn/d). It
will not affect our randomness argument since we treat each party equally. We
skip this step for simplicity. In our following analysis, we assume that V has size
Ω(εn) at the end of Step ii.
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Graph expansion algorithm Expan(G,V, ε)

– Input: G = ([n], E, L), V and ε.
– Set V ′ = ∅. For each vertex v ∈ V do the following:

if nout(v, good) ≤ d
2 (1 + 3ε) then V ′ := V ′ ∪ Nout(v, good).

– Output V ′ ∪ V .

Theorem 8. Under the assumption in Remark 3, and assuming that the graph
algorithm takes an honest party v as input and that |P | ≤ εn, the following
holds. Except with failure probability εgraph ≤ 2−Ω(ε2d), the algorithm will output
a correct secret. Moreover, it runs in time poly(n,m, 1

ε ).

We will prove this theorem in the following subsections.

6.6 Graph Expansion

We start by analyzing the expansion property of G|H , the subgraph of G
restricted to the set of honest parties H.

Lemma 3 (Expansion property of G|H). If H ′ ⊂ H is so that |H ′| ≤ ε|H|
d

and the Ev’s for v ∈ H ′ are still random and independent in G when given H ′

and H, then

nout
H (H ′) :=

∣

∣

∣

∣

⋃

v∈H′
Nout

H (v)
∣

∣

∣

∣

≥ d

2
(1 − 2ε)|H ′|

except with probability 2−Ω(ε2d|H′|).

Informally, this ensures that, as long as H ′ is still reasonably small, including
all the honest “neighbours” increases the set essentially by a factor d/2, as is
to be expected: each party in H ′ is expected to pull in d/2 new honest parties.
The formal proof is almost the same as the proof for a random expander graph
except that we require a different parameter setting for our own purpose.

Proof. By assumption on the Ei’s and by Corollary 1, the probability for any
vertex v ∈ H ′ to have nout

H (v) < 1
2 (1−ε)d is at most ≤ e−ε2d/4 = 2−Ω(ε2d). Taking

the union bound, this hold for all v ∈ H ′. In the remainder of the proof, we may
thus assume that Nout

H (v) consist of d′ := 1
2 (1 − ε)d random outgoing edges.

Let N := |H|, N ′ := |H ′|, and let v1, . . . , vd′N ′ denote the list of neighbours
of all v ∈ H ′, with repetition. To prove the conclusion, it suffices to bound the
probability pf that more than d

2 εN ′ of these d′N ′ vertices are repeated.
The probability that a vertex vi is equal to one of v1, . . . , vi−1 is at most

i

N − 1
≤ d′N ′

N − 1
=

1
2
(1 − ε)d · ε|H|

d
· 1
N − 1

≤ ε

2
.
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Taking over all vertex sets of size d
2 εN ′ in these d′N ′ neighbours, the union

bound shows that pf is at most
(

d′N ′

d
2 εN ′

)

( ε

2

)
d
2 εN ′

≤ 2d′N ′H( ε
1−ε )+

d
2 εN ′(log ε−1)

≤ 2
d(1−ε)

2 N ′(− ε
1−ε log ε+ ε

ln 2+O(ε2))+ d
2 N ′ε(log ε−1)

≤ 2
d
2 N ′ε( 1

ln 2−1+O(ε))

≤ 2−Ω(dN ′ε)

The first inequality is due to that
(

n
k

)

≤ 2nH( k
n ) and the second due to

H
( ε

1 − ε

)

= − ε

1 − ε
log

ε

1 − ε
− 1 − 2ε

1 − ε
log

1 − 2ε

1 − ε

≤ − ε

1 − ε
log ε − log

(

1 − ε

1 − ε

)

= − ε

1 − ε
log ε +

1
ln 2

( ε

1 − ε
+ O(ε2)

)

≤ − ε

1 − ε
log ε +

ε

ln 2
+ O(ε2)

for small ε and the Taylor series ln(1 − x) =
∑

i≥1
xi

i .

6.7 Analysis of Step ii

The following shows that after Step ii, at most an O(
√

ε)-fraction of the parties
in V is dishonest. This is pretty much a consequence of Lemma 3.

Proposition 4. At the end of Step ii, with probability at least 1 − 2−Ω(ε2d), V
is a set of size Ω(εn) with |H ∩ V | ≥ (1 − O(

√
ε))|V | and |C ∩ V | ≤ O(

√
ε)|V |.

Proof. Let Vi be the set V after Expan has been called i times, i.e., V0 = {v},
V1 = Expan(G,V0, ε) etc., and let H0 = {v} and H1 = Expan(G,H0, ε) ∩ H,
H2 = Expan(G,H2, ε) ∩ H etc. be the corresponding sets when we include only
honest parties into the sets.

Using a similar lazy-sampling argument as for Proposition 3, it follows that
conditioned on H0,H1, . . . , Hi, the Ej ’s for j ∈ Hi \ Hi−1 are random and
independent for any i.7 Therefore, we can apply Lemma 3 to H ′

i = Hi \ Hi−1 to
obtain that |Hi+1| ≥ |H ′

i|d
2 (1 − 2ε). It follows8 that |Hi| ≥ (d

2 (1 − 2ε))i except
with probability 2−Ω(ε2d). According to Remark 5, our algorithm jumps out of
Step ii when V is of size Ω(εn). We bound the number of rounds in this step.
For i = 2√

ε
, noting that d = n

√
ε, it thus follows that

|Vi| ≥ |Hi| ≥
(d

2
(1 − 2ε)

)i

=
n2

2
2√
ε

(1 − 2ε)
2√
ε ≥ Ω(n2).

7 The crucial point here is that Hi is determined by the Ej ’s with j ∈ Hi−1 only.
8 The size of Hi−1 is negligible compared to Hi; indeed, |Hi| = Ω(d|Hi−1|) and thus

|Hi \ Hi−1| = (1 − o(1))|Hi|. So, we may ignore the difference between Hi and H ′
i.
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That means Expan(G,V, ε) is called r ≤ 2√
ε

times assuming n is large enough.
On the other hand, we trivially have |Vr| ≤ (d

2 (1 + 3ε))r by specification of
Expan. Thus,

|Vr| − |Hr| ≤
(d

2
(1 + 3ε)

)r

−
(d

2
(1 − 2ε)

)r

=
5εd

2

(

r−1
∑

i=0

(d

2
(1 + 3ε)

)i(d

2
(1 − 2ε)

)r−1−i

)

≤ 5εd

2
r
(d

2
(1 + 3ε)

)r−1

≤ 5rε
(d

2
(1 + 3ε)

)r

≤ 10
√

ε|Vr|.

The first equality is due to an − bn = (a − b)(
∑n−1

i=0 aibn−1−i) and the last one
is due to r ≤ 2√

ε
.

This upper bound implies that there are at least |Vr|(1−10
√

ε) honest parties
in Vr while the number of dishonest parties is at most 10

√
ε|Vr|.

6.8 Analysis of Step iii

The intuition for the next observation is simply that because V consists almost
entirely of honest parties, every honest party v not yet in V will get sufficient
support in Step iii from the parties in V to be included as well; indeed, any such
v is expected have close to d

n |V | good incoming edges from the parties in V .

Proposition 5. At the end of Step iii, with probability at least 1 − 2−Ω(εd), V
contains all honest parties and O(

√
εn) dishonest parties.

Proof. Recall the notation from the proof in the previous section, and the obser-
vation that conditioned on Hr, the Ei’s for i ∈ Hr \ Hr−1 are random and
independent.

Setting H̃ := Hr \ Hr−1 and d1 := |V |d
n = Ω(εd), and using Corollary 2 for

the final bound, it follows that for a given honest party v /∈ H̃,

Pr
[

nin
V (v, good) <

d1
2

]

≤ Pr
[

nin
H̃

(v, good) <
d1
2

]

= Pr
[

nin
H̃

(v) <
d1
2

]

≤ 2−Ω(εd).

By union bound over all honest parties outside H̃, all these honest parties are
added to V with probability at least 1 − 2−Ω(εd).

On the other hand, any active party w outside V needs at least d1
2 good

incoming edges to be admitted. These edges must come from dishonest parties
in V . Since there are at most O(

√
ε)|V | of them in V and each of them contributes

to at most d good incoming edges, the number of active parties admitted to V

is at most O(
√

ε)|V |d
d1/2 = O(

√
εn).



494 S. Fehr and C. Yuan

6.9 Analysis of Step iv

By construction, after Step iv, V and W together obviously still contain all
honest parties. Furthermore, as we show below, there is now no active party left
in V and only few honest parties ended up in V . The idea here is that the active
parties in V will be recognized as being dishonest by many honest parties in V .

Proposition 6. At the end of Step iv, with probability at least 1 − 2−Ω(εd), V
consists of t + 1 − O(

√
εn) honest parties and no active parties, and W consists

of the rest of honest parties and O(
√

εn) dishonest parties.

Proof. Observe that |H|d
n ≥ d

2 . It follows, again using Corollary 2, that for an
active party w in V , we have

Pr
[

nin
V (w, bad) <

d

4

]

≤ Pr
[

nin
H(w, bad) <

d

4

]

= Pr
[

nin
H(w) <

d

4

]

≤ 2−Ω(d).

By union bound over all active parties in V , all of them are removed from V
with probability at least 1 − t2−Ω(d) = 1 − 2−Ω(d).

On the other hand, if the honest party v is removed from V , he must receive
at least d

4 bad incoming edges from dishonest parties in V . Since the number
of dishonest parties is at most a := O(

√
εn), there are at most ad

d/4 = O(
√

εn)
honest parties removed from V in Step 2.

In order to analyze the last step (see next section), we introduce the following
notation. We partition V into the set of honest parties VH and the set of passive
parties VP . We also partition W into the set of honest parties WH and the set of
dishonest parties WC . From above, we know that |W | = |WH |+|WC | = O(

√
εn),

VH ∪ WH = H and |VH | = t + 1 − O(
√

εn).

6.10 Analysis of Step v

Proposition 7. Except with probability 2−Ω(d), after Step v the set V will con-
tain all honest parties and at least twice as many passive parties as active ones.
Therefore, Step v will output the correct secret with probability at least 1−2−Ω(d).

Note that, given the adversary’s strategy, all the previous steps of the graph
algorithm are determined by the graph G. Therefore, by Proposition 3, at this
point in the algorithm the E′

i’s for i ∈ H are still random and independent given
VH , VP ,WC ,WH .

Proof. Step v.1. For any i ∈ VH , n′ out
W (i) is expected to be |W |d

n = O(
√

εd). By
Corollary 1 we thus have

Pr
[

n′ out
W (i) ≥ d

8

]

≤ 2−Ω(d).

Hence, by union bound, all honest parties in V remain in V except with proba-
bility 2−Ω(d).
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Let V ′
P be the set of passive parties left in V after this step, and set p := |V ′

P |.
Note that nout

W (v) ≤ d/8 for every v ∈ V .
Step v.2. Observe that d|VH |

n = (12 − O(
√

ε))d. It follows from Corollary 2
that for any honest party i ∈ WH ,

Pr
[

n′ in
V (i, good) ≤ d

4

]

≤ Pr
[

n′ in
VH

(i, good) ≤ d

4

]

= Pr
[

n′ in
VH

(i) ≤ d

4

]

≤ 2−Ω(d).

Thus, all honest parties in W are added to V , except with probability 2−Ω(d).
On the other hand, the active parties only receive good incoming edges from

passive parties in V ′
P . Observe that each party in V is allowed to have at most

d
8 outgoing neighbours in W . This implies there are at most pd/8

d/4 = p
2 active

parties admitted to V in this step, proving the first part of the statement.
Step v.3. Observe that the shares of the parties in S form a code with length

|V | and dimension (t+1). Since the fraction of errors is at most p
2|V | < (|V |−t−1)

2|V | ,
by Proposition 1, the unique decoding algorithm will output a correct secret.

7 Parameters of Construction and Parallel Repetition

We first determine the parameters in our algorithm and then show how to reach
the security parameter κ by parallel repeating this algorithm for O(κ) times. This
parallel repetition idea comes from [3]. Assume that there are n parties and m-
bit secret msg to share among these n parties. Note that we have already set
d = n

√
ε with ε a small constant. Let log q = O(m+log n

ε2 ). We choose log |T | =
log m + 5 log n and then the random string ri has length 4d log |T |. The key
keyi,j is defined over T 2 and thus has length 2 log |T |. It follows that |Ki| =
|K′

i| = 2d log |T | and tag has length 4nd log |T |. By Theorem 4, (pi, qi) has length
˜O(d). By Theorem 2 and plug a = O(m+log n

ε2 ), the error probability of the MAC
εmac is at most 4(a+4d)dt

|T | = O( mnd
ε2mn5 ) ≤ O( 1

n3 ). The failure probability of our
reconstruction scheme consists of the error probability εmac = O(1/n3) of the
MAC authentication, error probability εtag = O(1/n2) of reconstructing tag,
error probability εcheck = 2−O(εd) of determining the situation whether |P | ≥
εn/4 or |P | ≤ εn, error probability εcode = 2−Ω(εd) of code based algorithm
and error probability εgraph = 2−Ω(ε2d) of graph algorithm. The total error
probability of our algorithm is

δ = εmac + εtag + εcheck + (t + 1)εgraph + εcode = O(
1
n2

).

We summarize our result as follows.

Theorem 9. The scheme (Share, Rec) is a 2t+1-party (t, O( 1
n2 ))-robust secret

sharing scheme with running time poly
(

m,n, ( 1ε ) ˜O( 1
ε )
)

and share size ˜O(m+n
√

ε).

Next, we describe how to achieve the security parameter δ = 2−κ based
on this “weakly-robust” secret sharing scheme (Share, Rec) with δ = O( 1

n2 ).
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Given a secret msg, we run Share(msg) q = O(κ) times to produce q robust
sharings msg, except that the first step of Share(msg) is executed only once,
i.e., only one set of non-robust shares (s1, . . . , sn) ← Sh(msg) is produced, and
then re-used in the otherwise independent q executions of Share(msg). This is
exactly the same idea as that in [3]. The resulting share size is then ˜O(m+κn

√
ε).

The analysis is almost the same as that in [3], so we omit it here.

Theorem 10. The scheme (Share′, Rec′) is a 2t+1-party (t, 2−κ)-robust secret
sharing scheme against rushing adversary with share size ˜O(m + κn

√
ε) and

running time poly
(

κ,m, n, (1ε ) ˜O( 1
ε )
)

.

8 Further Improvement and Existence Result

If we do not consider the efficiency of our algorithm, by setting proper parame-
ters, our algorithm can also achieve the optimal ˜O(m + κ) share size. The algo-
rithm is exactly the same as we described above except that we set ε = 1

log2 n
,

d = Ω(log5 n) and γ = ε
4 = O( 1

log2 n
). This parameter setting will affect the effi-

ciency and error probability of our algorithm. We briefly review this improvement
by pointing out the differences. Since d = Ω(log5 n), we use the tag construction
in Theorem 3 with u = Ω(log5 n). The error probability εtag of reconstructing
tags now becomes 2−Ω(u) = 2−Ω(log5 n). The error probability εCheck becomes
2−Ω(εd) = 2−Ω(log3 n). In the code based algorithm, the list size ( 1

γ )
˜O( 1

γ ) now

becomes 2 ˜O(log2 n).9 By taking union bound over candidates on this new list, we
get

εcode = 2 ˜O(log2 n)2−Ω(γd) = 2 ˜O(log2 n)2−Ω(log4 n) = 2−Ω(log4 n).

In the graph algorithm, we bound the size of Vr and Hr. First, we notice that

dlog n = nlog log n. This implies that r < log n =
√

1
ε . In worst case scenario, we

assume that |Vr| = (d
2 (1 + 3ε))r and |Hr| = (d

2 (1 − 2ε))r. It follows that the
number of dishonest parties is at most

|Vr| − |Hr| =
(d

2
(1 + 3ε)

)r

−
(d

2
(1 − 2ε)

)r

=
5εd

2

(

r−1
∑

i=0

(d

2
(1 + 3ε)

)i(d

2
(1 − 2ε)

)r−1−i

)

≤ 5rε
(d

2
(1 + 3ε)

)r

≤ 5
√

ε|Vr|.

The rest of the algorithm are the same. Therefore, the error probability of our
graph algorithm now becomes εgraph = 2−Ω(ε2d) = 2−Ω(log n). It follows that the
total error probability of our algorithm is 2−Ω(log n). The overhead of share size
is O(d) = O(log5 n). By the parallel repetition technique, we can reduce it to
2−κ. The share size then becomes ˜O(m + κ). As a trade-off, the running time of
our algorithm now becomes 2 ˜O(log2 n) which is super-polynomial in n.

9 Here, we hide the poly(log log n) in ˜O(·).



Towards Optimal Robust Secret Sharing with Security 497

Theorem 11. There exists 2t + 1-party (t, 2−κ)-robust secret sharing scheme
against rushing adversary with share size ˜O(m + κ) and running time 2 ˜O(log2 n).
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(ALGSTRONGCRYPTO) and the National Research Foundation, Prime Minister’s
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A Appendix

A.1 Folded Reed-Solomon Codes

Instead of using the Reed-Solomon codes to share our secret, our robust secret
sharing scheme is encoded by the folded Reed-Solomon codes. Since the folded
Reed-Solomon code is a class of MDS codes, it is an eligible candidate for thresh-
old secret sharing scheme. Moreover, the folded Reed-Solomon codes first intro-
duced by Guruswami and Rudra [10] can be list decoded up to 1−R−γ fraction
of errors for any constant γ. This extra nice property allows us to divide our
reconstruction scheme into two scenarios, one with small number of passive par-
ties and another with big one. Let us first introduce the formal definition of fold
Reed-Solomon codes.

Let q be a prime power, n+1 ≤ q−1
s and β be a primitive element of Fq. The

folded Reed-Solomon code FRSq,s(n+1, d) is a code over Fs
q. To every polynomial

P (X) ∈ Fq[X] of degree at most d, the encoding algorithm goes as follows:

P (X) �→ cP =

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

P (β)
P (β2)

...
P (βs−1)

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎣

P (βs)
P (βs+1)

...
P (β2s−1)

⎤

⎥

⎥

⎥

⎦

, · · · ,

⎡

⎢

⎢

⎢

⎣

P (βns)
P (βns+1)

...
P (β(n+1)s−1)

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

.

It is easy to verify that FRSq,s(n+1, d) is an Fq-linear code with code length
n + 1, rate d+1

(n+1)s and distance at least (n + 1) − �d
s �. The folded Reed-Solomon

code is a class of MDS code when d + 1 is divisible by s. In our robust secret
sharing scheme, we set n = 2t + 1 and d + 1 = (t + 1)s. For every secret
s ∈ F

s
q, we find the P (X) of degree at most d uniform at random such that

s = (P (β), P (β2), . . . , P (βs−1)). The party i receives the i + 1-th component of
cP . It is easy to verify that this scheme is a threshold secret sharing scheme with
t-privacy and t + 1-reconstruction. Moreover, if we write the n shares as

(P (βs), P (βs+1), . . . , P (β(n+1)s−1)) ∈ F
ns
q .

Then, it becomes a classic Reed-Solomon codes with length ns, dimension (t+1)s
and distance (n− (t+1))s+1. We will use this fact in our robust secret sharing
scheme.

Besides the MDS property, the folded Reed-Solomon codes enjoy a large list
decoding radius up to the Singleton bound while the list size is bounded by a



498 S. Fehr and C. Yuan

polynomial in q. There are many works aimed at reducing the list size of the
folded Reed-Solomon codes. Recently, Kopparty et al. [12] proved that the list
size of the folded Reed-Solomon codes is at most a constant in γ.

Theorem 12 (Theorem 3.1 [12]). Let γ > 0 such that 16
γ2 ≤ s. The folded

Reed-Solomon code FRSq,s(n, d) can be list decoded up to 1 − d
sn − γ with list

size at most ( 1
γ )

1
γ log 1

γ . Moreover, there exists a randomized algorithm that list

decodes this code with above parameters in time poly(log q, s, d, n, ( 1
γ )

1
γ log 1

γ ).

Remark 6. By running this polynomial list decoding algorithm n times and tak-
ing the union of all its output, with probability at least 1 − 2−Ω(n), we will find
all the codewords within distance 1 − d

sn − γ to the corrupted vector. This error
probability is good enough for our robust secret sharing scheme. Compared with
the approach in [10], the new algorithm runs faster and ensures a significantly
small list of candidates.

A.2 Proof of Theorem 2

Proof. We need to verify three conditions in Definition 3.

Privacy over Randomness: It suffices to consider that all the 
 keys are
distinct. Otherwise, we keep one key for each value and apply the argument
to these distinct keys. Let (x1, y1), . . . , (x�, y�) ∈ F

2 be the 
 distinct keys. Let
σi = MAC(xi,yi)(m, r). For any m ∈ F

a, we will show that (σ1, . . . , σ�) ∈ F
� are

distributed uniformly at random. To see this, we write

MACx,y(m, r) = fm(x) + gr(x) + y

where fm(x) =
∑a

i=1 mix
i+� and gr(x) =

∑�
i=1 rix

i. For any 
-tuple (σ1, . . . , σ�)
∈ F

�, we obtain the evaluation of gr(x) at 
 points, i.e., gr(xi) = σi −fm(xi)−yi.
Since gr is a polynomial of degree 
 − 1, the polynomial interpolation yields an
unique gr(x). This implies that for any m ∈ F

a, the distribution of (σ1, . . . , σ�)
is uniform at random over r ∈ F

�.

Authentication: For (m, r) 
= (m′, r′) ∈ F
a × F

�, MAC(x,y)(m, r)-
MAC(x,y)(m′, r′) is a nonzero polynomial in x of degree at most t + 
 over
F. Thus, for any b ∈ F, the equation

MAC(x,y)(m, r) − MAC(x,y)(m′, r′) = b

has at most (a + 
)|F| pairs (x, y) as its solutions. The desired result follows as
(a+�)(|F|)

|F|2 ≤ ε.

Uniformity: We need to show that given any (m, r) ∈ F
a × F

�, the tag σ =
MAC(x,y)(m, r) is uniform at random over the random key (x, y) ∈ F

2. Let us
fix (m, r). By the definition of MAC, we have

σ = MAC(x,y)(m, r) = fm(x) + gr(x) + y.
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For each σ ∈ F, there exists exactly q distinct keys (x, y) to satisfy this MAC.
Thus, the tag σ is uniform at random over the random key. The desired result
follows.

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics. World Scientific,
Singapore (2011)

2. Bishop, A., Pastro, V.: Robust secret sharing schemes against local adversaries. In:
Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS,
vol. 9615, pp. 327–356. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49387-8 13

3. Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal robust secret
sharing with maximal corruptions. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 58–86. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 3

4. Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on
Managing Requirements Knowledge, AFIPS, pp. 313–317, November 1979

5. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of
cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
48285-7 10

6. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust
secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 13

7. Cheraghchi, M.: Nearly optimal robust secret sharing. In: 2016 IEEE International
Symposium on Information Theory, ISIT, pp. 2509–2513, July 2016

8. Cramer, R., Damg̊ard, I., Fehr, S.: On the cost of reconstructing a secret, or VSS
with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 503–523. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 30
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Abstract. The bounded storage model promises unconditional security
proofs against computationally unbounded adversaries, so long as the
adversary’s space is bounded. In this work, we develop simple new con-
structions of two-party key agreement, bit commitment, and oblivious
transfer in this model. In addition to simplicity, our constructions have
several advantages over prior work, including an improved number of
rounds and enhanced correctness. Our schemes are based on Raz’s lower
bound for learning parities.

1 Introduction

For the vast majority of cryptographic applications, security relies on the
assumed hardness of certain computational problems, such as factoring large
integers or inverting certain hash functions. Unfortunately, with the current state
of complexity theory the hardness of these problems can only be conjectured.
This means that the security of such schemes is always conditional on such
conjectures being true.

Maurer proposes the Bounded Storage Model [Mau92] as an alternate model
for constraining the adversary; here, instead of constraining the adversary’s time,
the adversary’s memory is bounded. Amazingly, it is actually possible to give
unconditional proofs of security for schemes in this model. The core idea is
that the honest parties exchange so much information that the adversary cannot
possibly store it all. Then, schemes are cleverly devised to exploit the adversary’s
lack of knowledge about the scheme.

Moreover, the space bounds are only necessary when the protocol is run,
and even if the adversary later gains more space the protocol remains secure.
This means schemes only need to be designed with current storage capacities in
mind. This is fundamentally different than the usual approach of time-bounding
adversaries, where an adversary can later break the protocol if its computa-
tional abilities increase. Hence, traditional schemes must be designed with future
computational abilities in mind. This is especially important in light of recent
developments in quantum computing, as Grover’s algorithm [Gro96] and Shor’s
algorithm [Sho94] can speed up attacks on many current cryptographic proto-
cols. Hence, much of the communication taking place today will be revealed once
quantum computers become reality.
c© International Association for Cryptologic Research 2019
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This Work. In this work, we devise very simple round-optimal protocols for bit-
commitment and oblivious transfer (namely, 1 round and 2 rounds, respectively)
in the Bounded Storage Model, improving 5 rounds needed in prior works. We
additionally develop a new key agreement protocol with several advantages over
prior works. Our results rely on Raz’s recent space lower bound for learning par-
ities [Raz17], and in particular the simple encryption scheme based on this lower
bound. Our key observation is that Raz’s encryption scheme has several useful
properties—including additive homomorphism and leakage resilience—that can
be useful for building higher-level protocols. Our core technical contribution is
a new “encrypt zero” protocol for Raz’s encryption scheme, which may be of
independent interest.

Our schemes are based on entirely different techniques than most of the prior
literature—most of which is based on the birthday paradox—and we believe our
work will therefore be a useful starting point for future work in the bounded
storage model.

1.1 Prior Work in the Bounded Storage Model

Prior work in the Bounded Storage Model [Mau92,CM97,CCM98,Lu02,AR99,
Din01,DHRS04] typically uses something akin to the birthday paradox to achieve
security against space-bounded adversaries.

In slightly more detail, the key agreement scheme of Maurer [Mau92] works
as follows. One party sends a stream of roughly n2 random bits to the other
party1. Each party records a random secret subset of n bits of the stream. By
the birthday paradox, the two parties will have recorded one bit position in
common with constant probability. They therefore share the bit positions they
recorded with each other, and set their secret key to be the bit of the stream at
the shared position.

An eavesdropper first sees n2 random bits. If the eavesdropper’s storage is
somewhat lower than n2, he cannot possibly remember the entire sequence of
random bits. In particular, it can be shown that the adversary has little informa-
tion about the bit shared by the two honest parties. This remains true even after
the parties share their bit positions. Notice that the honest parties require space
n, and security holds even for adversaries with space Cn2 for some constant C.
Therefore, by tuning n so that n storage is feasible, but Cn2 is not, one obtains
the desired security.

Much of the literature on the Bounded Storage Model relies on this sort of
birthday attack property. Unfortunately, this leads to several difficulties:

– The two honest parties only achieve success with constant probability. In
order to achieve success with high probability, the protocol either needs to
be repeated many times (thus requiring more than n2 communication) or
requires the honest users to store more than n positions (thus requiring more

1 In most works in the Bounded Storage Model, the random bit stream is assumed to
come from a trusted third party. In this work we will insist on there being no trusted
third party, and instead the bit stream comes from the parties themselves.
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than n space, and making the gap between the honest users and adversaries
less than quadratic).

– Remembering n random positions out of n2 requires O(n log n) space just to
record the indices. To compress the space requirements of the honest par-
ties, the positions are actually chosen by a pairwise independent function,
complicating the scheme slightly.

– The adversary has a 1/n2 chance of guessing the bit position shared by the
two users. As such, the adversary has a non-negligible advantage in guessing
the bit. To get statistical security, a randomness extraction step is applied,
adding slightly to the complexity of the protocol.

– More importantly, there is very little structure to exploit with the birthday
approach. For more advanced applications such as oblivious transfer or bit
commitment, the protocols end up being somewhat complicated and require
several rounds.

1.2 Space Lower Bounds for Learning Parities

In this work, we exploit recent space lower bounds due to Raz [Raz17]. Raz
considers a setting where one party holds a secret key k ∈ {0, 1}n, and streams
random tuples (ri, ri · k), where ri is random in {0, 1}n and the inner product
is taken mod 2. Raz asks: given these random tuples, and only limited storage
(namely Cn2 for some constant C), how hard is it to recover k? Clearly, if
C ≈ 1, then one can store n tuples, and then recover k using linear algebra. But
if C � 1, then the adversary has no hope of storing enough tuples to perform
linear algebra.

Raz proves that, for some constant C (roughly 1/20), then either the adver-
sary needs an exponential (in n) number of samples, or the adversary’s proba-
bility of correctly guessing k is exponentially small.

Raz observes that his lower bound easily leads to a secret key encryption
scheme in the bounded storage model. The key will be an n-bit string k. To
encrypt a message bit b, choose a random r, and produce the ciphertext (r, r ·
k ⊕ b). Raz’s lower bound shows that after seeing fewer than exponentially
many encrypted messages, an adversary with Cn2 space has an exponentially
small probability of guessing k. This means k always has some min-entropy
conditioned on the adversaries’ view. Then using the fact that the inner product
is a good extractor, we have that for any new ciphertext r ·k is statistically close
to random, and hence masks the message b.

1.3 This Work

In this work, we use Raz’s scheme in order to develop simple new constructions
in the Bounded Storage Model that have several advantages over prior work.

Our main observation is that Raz’s encryption scheme has several attractive
properties. First, it is leakage resilient: since inner products are strong extractors,
the scheme remains secure even if the adversary has partial knowledge of the key,
as long as the conditional min-entropy of the key is large.
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Next, we note that Raz’s scheme is additively homomorphic: given encryp-
tions (r0, r0 · k ⊕ m0) and (r1, r1 · k ⊕ m1) of m0,m1, we can compute an
encryption of m0 ⊕ m1 by simply taking the componentwise XOR of the two
ciphertexts, yielding (r0 ⊕ r1, (r0 ⊕ r1) · k ⊕ (m0 ⊕ m1)). This additive homo-
morphism will prove very useful. We can also toggle the bit being encrypted by
toggling the last bit of a ciphertext.

For example, Rothblum [Rot11] shows that any additively homomorphic
secret key encryption scheme can be converted into a public key (additively
homomorphic) encryption scheme. The rough idea is that the public key con-
sists of many encryptions of zero. Then, to devise an encryption of a bit m,
simply add a random subset sum of the public key ciphertexts to get a “fresh”
encryption of zero, and then toggle the encrypted bit as necessary to achieve an
encryption of m.

Key Agreement. In the case of Raz’s scheme, the public key will end up contain-
ing O(n) ciphertexts, meaning the public key is too large for the honest users to
even write down. However, we can re-interpret this protocol as a key-agreement
protocol. Here, the public key is streamed from user A to user B, who applies the
additive homomorphism to construct the fresh encryption on the fly. Now one
party knows the secret key, and the other has a fresh ciphertext with a known
plaintext. So the second party just sends the ciphertext back to the first party,
who decrypts. The shared key is the plaintext value.

Bit Commitment. Next, we observe that the public key encryption scheme
obtained above is committing : for any public key there is a unique secret key.
Therefore, we can use the scheme to get a bit commitment scheme as follows: to
commit to a bit b, the Committer simply chooses a random secret key, streams
the public key to the receiver, and then sends an encryption of b. To open the
commitment, the Committer simply sends the secret decryption key. The Veri-
fier, on the other hand, constructs several fresh encryptions of 0 by reading the
Committer’s stream, as user B did in our key agreement protocol. Upon receiv-
ing a supposed secret key, the Verifier checks that all the encryptions do in fact
decrypt to 0. If so, then it decrypts the commitment to get the committed value.

Oblivious Transfer. We can also turn this commitment scheme into an obliv-
ious transfer protocol: the Receiver, on input b, commits to the bit b. Then
the Sender, on input x0, x1, using the homomorphic properties of the encryp-
tion scheme, turns the encryption of b in the commitment into encryptions of
(1 − b)x0 and bx1. To maintain privacy of x1−b, the Sender will re-randomize
the encryptions, again using the homomorphic properties. To re-randomize, the
Sender will construct some fresh encryptions of zero, again just as user B did in
our key agreement protocol. The Receiver can then decrypt these ciphertexts,
which yield 0 and xb.

Malicious Security. The commitment scheme and the oblivious transfer protocol
are secure as long as the public key is generated correctly. This occurs, for
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example, if the randomness for the encryptions of 0 is generated and streamed
by a trusted third party. This is the setting considered in much of the prior work
in the bounded storage model.

On the other hand, if we do not wish to rely on a trusted third party to
generate the encryption randomness, a malicious Committer can choose a pub-
lic key with bad randomness, which will allow him to break the commitment,
as explained below. This also would let the Receiver break the security of the
oblivious transfer protocol. We therefore additionally show how to modify the
constructions above to obtain security for malicious parties without relying on
a trusted third party. The result is round-optimal protocols for bit-commitment
and oblivious transfer without a trusted third party.

1.4 Additional Technical Details

The Encrypt Zero Protocol. Notice that all of our schemes have a common
feature: one user has a secret key, and the other user obtains encryptions of 0.
Importantly for security, these encryptions of 0 should be independent of the
view of the first user.

In order to unify our schemes, we abstract the common features required
with an Encrypt Zero protocol for Raz’s encryption scheme. The goal of the
protocol is to give one party, the Keeper, a random key s, and another party,
the Recorder, λ random encryptions {c1, . . . , cλ} of 0. Here, λ is a parameter that
will be chosen based on application. Recorder security dictates that the Keeper
learns nothing about the λ encryptions stored by the Recorder (aside from the
fact that they encrypt 0). Keeper security requires that the min-entropy of the
key s conditioned on the Recorder’s view is Ω(n). We additionally require that
the Keeper’s space is O(n) (which is optimal since the Keeper must store a secret
key of O(n) bits), and the Recorder’s space is O(λn) (which is also optimal, since
the Recorder must store λ encryptions of O(n) bits each).

Our basic protocol for Raz’s scheme works as follows:

– The Keeper chooses a random key k ∈ {0, 1}n. Let m = O(n) be a parameter.
The Recorder chooses a secret matrix Σ ∈ {0, 1}λ×m.

– The Keeper streams m encryptions (ri, ai = ri · k + 0) to the Recorder, for
random ri ∈ {0, 1}n and i = 1, 2, . . . ,m. From now on, we use the convention
that “+” and “·” are carried out mod 2.

– The Recorder maintains matrix Ψ ∈ {0, 1}λ×n and column vector κ ∈ {0, 1}λ.
Each row of (Ψ |κ) will be a random subset-sum of the encryptions sent by
the Keeper, with each subset-sum chosen according to Σ. The matrices will
be computed on the fly. So when (ri, ai) comes in, the Recorder will map
Ψ → Ψ + σi · ri, κ → κ + σiai. Here, σi is the i-th column of Σ, and ri is
interpreted as a row vector.

– At the end of the protocol, the Keeper outputs its key s = k, and the Recorder
outputs (Ψ |κ), whose rows are the ciphertexts c1, . . . , cλ.
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Let R be the matrix whose rows are the ri’s, and let a be the column vector
of the ai’s. Then we have that a = R · k, Ψ = Σ · R, and κ = Σ · a = Ψ · k.
Hence, the rows of (Ψ |κ) are encryptions of zero, as desired.

For Keeper security, Raz’s theorem directly shows that k has min-entropy
relative to the Recorder’s view. For Recorder security, notice that Σ is indepen-
dent of the Keeper’s view. Therefore, if the Keeper follows the protocol and m
is slightly larger than n so that R is full rank with high probability, then Ψ is a
random matrix independent of the adversary’s view. Therefore the ciphertexts
ci are actually random encryptions of 0. Thus we get security for honest-but-
curious Keepers.

Key Agreement. This protocol gives a simple key-agreement scheme. Basically,
one party acts as the Keeper, and one as the Recorder. We set λ = 1. The result
of the Encrypt Zero protocol is that the Recorder contains a uniformly random
encryption of 0. The Recorder simply flips the bit encrypted with probability
1/2 to get a random encryption of a random bit b, and sends the resulting
ciphertext to the Keeper. The Keeper decrypts, and the shared secret key is just
the resulting plaintext b.

Security of the protocol follows from the fact that after the Encrypt Zero
protocol, the Keeper’s key has min-entropy relative to any eavesdropper (since
the eavesdropper learns no more than the Recorder). Moreover, the Keeper acts
honestly, so the final ciphertext is always a fresh encryption. Finally, the encryp-
tion scheme is leakage resilient so it hides the bit b even though the adversary
may have some knowledge of the key.

Notice that this scheme has perfect correctness, in that the two parties always
arrive at a secret key. This is in contrast to the existing schemes based on the
birthday paradox, where security is only statistical, and moreover this holds only
if the adversary’s space bounds are asymptotically smaller than n2. In contrast,
we get perfect correctness and statistical security for adversarial space bounds
that are O(n2). The honest users only require O(n) space.

Bit Commitment. We now describe a simple bit-commitment protocol using the
above Encrypt Zero protocol. Recall that in a bit-commitment scheme, there
are two phases: a commit phase where the Committer commits to a bit b, and
a reveal or de-commit phase where the Committer reveals b and proves that b
was the value committed to. After the commit phase, we want that the bit b is
hidden. On the other hand, we want the commit phase to be binding, in that
the Committer cannot later change the committed bit to something else.

The Committer and the Verifier will run the Encrypt Zero protocol, with
Committer playing the role of Keeper and Verifier the role of Recorder. The
protocol works as follows:

– Run the Encrypt Zero protocol, giving the Committer a random key s and
the Verifier λ random encryptions ci of 0.

– The Committer then sends an encryption of b relative to the key s.
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– To open the commitment, the Committer sends s. The Verifier checks that s
correctly decrypts all the ci to 0. If so, it decrypts the final ciphertext to get
b.

The security of the Encrypt Zero protocol and the leakage resilience of the
encryption scheme show that this scheme is hiding. For binding, we note that
an honest Committer will have no idea what encryptions ci the Verifier has.
As such, if the Committer later tries to change its committed bit by sending a
malicious key s′, s′ will cause each ciphertext ci to decrypt to 1 with probability
1/2. Therefore, the Committer will get caught with probability 1 − 2−λ.

Already, this gives a very simple protocol for bit commitment that is non-
interactive; in contrast, the prior work of Ding et al. [DHRS04] required five
rounds. One limitation is that we require the Committer to behave honestly
during the commit phase. For example, if the Committer chooses R to be low
rank, then the encryptions obtained by the Verifier will not be independent of
the Committer’s view, and hence the Committer may be able to cheat during
the de-commit phase.

To get around this, we tweak the Encrypt Zero protocol slightly to get secu-
rity even against malicious Keepers. Our Enhanced Encrypt Zero protocol is as
follows:

– The Keeper chooses a random key k ∈ {0, 1}n and an independent random
secret s ∈ {0, 1}m. We will let m = 2n. The Recorder chooses a secret matrix
Σ ∈ {0, 1}λ×m.

– The Keeper streams random encryptions of the bits of si. We will write this
in matrix form as (R,a = R · k + s).

– The Recorder computes Ψ = Σ · R and κ = Σ · a.
– The Keeper then sends its key k in the clear.
– The Keeper outputs its secret s as the key, and the Recorder outputs (Σ,κ−

Ψ · k).

Notice that κ − Ψ · k = Σ · s, a list of λ encryptions of 0 relative to the
key s, as desired. Moreover, these encryptions are random encryptions, even if
R is chosen adversarially by the Keeper, since the Keeper has no knowledge or
control over Σ.

To prove the min-entropy of s relative to a malicious Recorder, we note that
the real-or-random CPA security of the encryption scheme shows that just prior
to receiving k, the Recorder has essentially no information about s. Then, since
k is n bits, revealing it can only reveal n bits of s. But s is a uniformly random
m = 2n bit string, meaning it has roughly n bits of min-entropy remaining, as
desired. Thus we get both our security properties, even for malicious parties.

Our Enhanced Encrypt Zero protocol roughly doubles the communication,
but otherwise maintains all the attractive properties of the original scheme: it is
non-interactive and has perfect correctness.
Putting it all together, our bit commitment protocol is the following:

– To commit to a bit b, the Committer streams R, a = R · k + s followed by
k,γ, c = γ · s + b for random R,k, s,γ.
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– The Verifier records Σ,Ψ = Σ · R,κ = Σ · a for a random choice of Σ, and
then once k comes in it computes φ = κ − Ψ · k = Σ · s.

– To reveal the bit b, the Committer just sends x = s.
– The Verifier checks that φ = Σ · x. If so, it computes b′ = c − γ · x.

Oblivious Transfer. We now turn to constructing an oblivious transfer (OT)
protocol. In an OT protocol, one party, the Sender, has two input bits x0, x1.
Another party, the Receiver, has a bit b. The Receiver would like to learn xb

without revealing b, and the Sender would like to ensure that the Receiver learns
nothing about x1−b.

In our protocol, the Receiver will play the role of Committer in our com-
mitment scheme, committing to its input b. The Sender will play the role of
Recorder in the Encrypt Zero protocol, setting λ = 2. The hiding property of
the commitment scheme ensures that the space-bounded Sender learns nothing
about the Receiver’s bit b.

At the end of the Receiver’s message, the Sender has an encryption (γ, c∗ =
γ · s + b) of b with secret key s. Additionally, it also has two encryptions of
0, namely (σ0, c0 = σ0 · s) and (σ1, c1 = σ1 · s) for random vectors σ0,σ1.
Importantly, σ0,σ1 are independent of the Receiver’s view, as they were chosen
by the Sender.

The Sender will now exploit the additive homomorphism of the encryption
scheme once more. In particular, it will compute encryptions of (1 − b)x0 and
bx1, which it will then send back to the Receiver. To compute an encryption of
bx1, it simply multiplies the ciphertext (γ, c∗) by x1. Similarly, to compute an
encryption of (1 − b)x0, it toggles c∗ (to get an encryption of 1 − b) and then
multiplies the entire ciphertext by x0.

Now clearly these two ciphertexts reveal both x0 and x1, so the Sender cannot
send them directly to the Receiver. Instead, it will re-randomize them by adding
the two encryptions of 0. Now it obtains fresh encryptions of (1 − b)x0 and bx1:

σ0 + x0γ, c0 + x0(1 − c∗) = (σ0 + x0γ) · s +
(
(1 − b)x0

)

σ1 + x1γ, c1 + x1c
∗ = (σ1 + x1γ) · s +

(
bx1

)

It sends these ciphertexts to the Receiver, who then decrypts. All the Receiver
learns then is (1 − b)x0 and bx1. One of these plaintexts will be xb as desired,
and the other will be 0. Thus, the Receiver learns nothing about x1−b.

Our protocol is round-optimal, since it involves only a single message in each
direction. This improves on the best prior work of Ding et al. [DHRS04] requiring
5 rounds. Additionally, our protocol is much simpler than the prior work.

1.5 Discussion

Just as homomorphic encryption has been an extremely useful tool in traditional
cryptography, our work demonstrates that the homomorphic properties of Raz’s
encryption scheme are also fruitful for the Bounded Storage model. We believe
our work will be a useful starting point for much future work in this area.
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1.6 Other Related Work

A recent work by Ball et al. [BDKM18] shows another application of Raz’s
encryption scheme, where they use it to construct unconditional non-malleable
codes against streaming, space-bounded tempering.

2 Preliminaries

Here, we recall some basic cryptographic notions, translated into the setting of
the bounded storage model. In the following definitions, n will be a security
parameter.

A symmetric encryption scheme is a pair of algorithms Π = (Enc, Dec) with
an associated key space Kn, message space M, and ciphertext space Cn. Notice
that the key space and ciphertext space depend on n; the message space will not
depend on n. We require that:

– Enc : Kn × M → Cn is a probabilistic polynomial time (PPT) algorithm
– Dec : Kn × Cn → M is a deterministic polynomial time algorithm.
– Correctness: for any k ∈ Kn and any message m ∈ M,

Pr[Dec(k, Enc(k,m)) = m] = 1.

Additionally, we will require a security notion. In this work, we will focus on
the following notion.

Definition 1 (Real-or-Random-Ciphertext (RoRC) Security). Let A be
an adversary. A plays the following game RoRCA,Π,b(n, q):

– The challenger’s input is a bit b ∈ {0, 1}.
– The challenger chooses a random key k ∈ Kn.
– A makes q adaptive queries on messages m1, . . . , mq ∈ M.
– In response to each query, the challenger does the following:

• If b = 0, the challenger responds with ci ← Enc(k,mi).
• If b = 1, the challenger responds with a random ciphertext ci ∈ Cn.

– Finally, A outputs a guess b′ for b.

We say that Π is (S(n), Q(n), ε)-secure if for all adversaries that use at most
S(n) memory bits and Q(n) queries (i.e. q ≤ Q(n)),

|Pr[RoRCA,Π,0(n, q) = 1] − Pr[RoRCA,Π,1(n, q) = 1]| ≤ ε.

In this work, a lot of the proofs are based on the Leftover Hash Lemma for
Conditional Min-Entropy due to Impagliazzo, Levin, and Luby [ILL89].

For random distributions X and Y , let H∞(X|Y ) denote the min-entropy
of X conditioned on Y . Let X ≈ε Y denote that the two distributions are ε-
close, i.e. the statistical distance between these two distributions Δ(X,Y ) ≤ ε.
Furthermore, let Um denote a uniformly distributed random variable of m bits
for some positive integer m.
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Lemma 1 (Leftover Hash Lemma for Conditional Min-Entropy
[ILL89]). Let X, E be a joint distribution. If H∞(X|E) ≥ k, and m =
k − 2 log(1/ε), then

(H(X),H,E) ≈ε/2 (Um, Ud, E),

where m is the output length of a universal hash function H, and d is the length
of the description of H.

3 Raz’s Encryption Scheme

Our constructions of the commitment scheme and the oblivious transfer scheme
are largely based on the bit encryption scheme from parity learning proposed by
Raz [Raz17]. Raz sketches how his lower bound for learning implies the security
of his encryption scheme. Below we reproduce the construction of the encryption
scheme, and formalize the security proof.

Construction 1 (Bit Encryption Scheme from Parity Learning). For a
given security parameter n, the encryption scheme consists of a message space
M = {0, 1}, a ciphertext space Cn = {0, 1}n × {0, 1}, a key space Kn = {0, 1}n,
and a pair of algorithms Π = (Enc, Dec) as specified below:

– Enc(k,m ∈ M): Samples a random row vector r ← {0, 1}n, computes a =
r · k + m, and outputs the ciphertext c = (r, a) as a pair.

– Dec(k, c = (r, a) ∈ Cn): Computes and outputs m′ = r · k + a.

To prove Real-or-Random-Ciphertext security of the above scheme, we rely
on a result from Raz [Raz17], reproduced below.

Lemma 2 ([Raz17]). For any C < 1
20 , there exists α > 0, such that: for

uniform k ∈ {0, 1}n, m ≤ 2αn, and algorithm A that takes a stream of (x1, y1),
(x2, y2), . . . , (xm, ym), where xi is a uniform distribution over {0, 1}n and yi =
xi ·k for every i, under the condition that A uses at most Cn2 memory bits and
outputs k̃ ∈ {0, 1}n, then Pr[k̃ = k] ≤ O(2−αn).

We also rely on the Goldreich-Levin Algorithm, reproduced below.

Lemma 3 (Goldreich-Levin Algorithm [GL89]). Assume that there exists
a function f : {0, 1}n → {0, 1} s.t. for some unknown x ∈ {0, 1}n, we have

Pr
r∈{0,1}n

[f(r) = 〈x, r〉] ≥ 1
2

+ ε

for ε > 0.
Then there exists an algorithm GL that runs in time O(n2ε−4 log n), makes

O(nε−4 log n) oracle queries into f , and outputs x with probability Ω(ε2).
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Instead of directly proving RoRC security of the encryption scheme, we
prove Modified Real-or-Random-Ciphertext (RoRC’) security, which differs from
RoRC security in that for all but the last query, the challenger always responds
with the valid encryption of the message; for the last query, the challenger
responds either with a valid encryption or a random ciphertext, each with prob-
ability 1/2. A detailed definition is given below.

Definition 2 (Modified Real-or-Random-Ciphertext (RoRC’) Secu-
rity). Let A be an adversary. A plays the following game RoRC′A,Π,b(n, q):

– The challenger’s input is a bit b ∈ {0, 1}.
– The challenger chooses a random key k ∈ Kn.
– A makes q adaptive queries on messages m1, . . . , mq ∈ M.
– In response to query mi with 1 ≤ i ≤ q − 1, the challenger responds with

ci ← Enc(k,mi).
– In response to query mq, the challenger does the following:

• If b = 0, the challenger responds with cq ← Enc(k,mq).
• If b = 1, the challenger responds with a random ciphertext cq ∈ Cn.

– Finally, A outputs a guess b′ for b.

We say that Π is (S(n), Q(n), ε)-secure if for all adversaries that use at most
S(n) memory bits and Q(n) queries (i.e. q ≤ Q(n)),

|Pr[RoRC′A,Π,0(n, q) = 1] − Pr[RoRC′A,Π,1(n, q) = 1]| ≤ ε.

We now show that RoRC’ security implies RoRC security.

Lemma 4. An encryption scheme that is (S(n), Q(n), ε)-secure under the
RoRC’ setting is (S(n), Q(n), Q(n)ε)-secure under the RoRC setting.

Proof. We prove this using a hybrid argument. For any q ≤ Q(n), consider the
hybrid security games H0, H1, . . . , Hq, where Hj describes the following hybrid
game:

– The challenger chooses a random key k ∈ Kn.
– A makes q adaptive queries on messages m1, . . . , mq ∈ M.
– In response to query mi with 1 ≤ i ≤ j, the challenger responds with ci ←
Enc(k,mi).

– In response to query mi with j + 1 ≤ i ≤ q, the challenger responds with a
random ciphertext ci ∈ Cn.

Particularly, notice that H0 corresponds to a game where the challenger
always responds with random ciphertexts, and that Hq corresponds to a game
where the challenger always responds with valid encryptions of the messages. In
that way, the RoRCA,Π,b(n, q) game is equivalent to distinguishing Hq from H0.

To put this formally, let D be an arbitrary distinguisher, and h ← Hj denote
a randomly sampled instance of the game Hj , we have

|Pr[RoRCA,Π,0(n, q) = 1] − Pr[RoRCA,Π,1(n, q) = 1]|

=
∣
∣
∣
∣ Pr
h←Hq

[D(h) = 1] − Pr
h←H0

[D(h) = 1]
∣
∣
∣
∣ .
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By the hybrid argument, there exists j, s.t. 0 ≤ j < q and

∣
∣
∣
∣ Pr
h←Hq

[D(h) = 1] − Pr
h←H0

[D(h) = 1]
∣
∣
∣
∣ ≤ q

∣
∣
∣
∣ Pr
h←Hj+1

[D(h) = 1] − Pr
h←Hj

[D(h) = 1]
∣
∣
∣
∣ .

To distinguish between Hj+1 and Hj , consider the following security game
DistA,Π,b(n, q, j):

– The challenger’s input is a bit b ∈ {0, 1}.
– The challenger chooses a random key k ∈ Kn.
– A makes q adaptive queries on messages m1, . . . , mq ∈ M.
– In response to query mi with 1 ≤ i ≤ j, the challenger responds with ci ←

Enc(k,mi).
– In response to query mj+1, the challenger does the following:

• If b = 0, the challenger responds with cj+1 ← Enc(k,mj+1).
• If b = 1, the challenger responds with a random ciphertext cj+1 ∈ Cn.

– In response to query mi with j + 1 < i ≤ q, the challenger responds with a
random ciphertext ci ∈ Cn.

– Finally, A outputs a guess b′ for b.

This directly gives us

∣
∣
∣
∣ Pr
h←Hj+1

[D(h) = 1] − Pr
h←Hj

[D(h) = 1]
∣
∣
∣
∣

= |Pr[DistA,Π,0(n, q, j) = 1] − Pr[DistA,Π,1(n, q, j) = 1]| .

Next, we show that we can use an adversary A for the DistA,Π,b(n, q, j)
game to construct an adversary A′ for the RoRC′A′,Π,b(n, j + 1) game. Notice
that the only difference between RoRC′A′,Π,b(n, j + 1) and DistA,Π,b(n, q, j) is
that DistA,Π,b(n, q, j) has (q − j − 1) extra queries at the end. An adversary
A′ for RoRC′A′,Π,b(n, j + 1) can simulate DistA,Π,b(n, q, j) for adversary A by
forwarding each of A’s first (j+1) queries to the challenger in RoRC′A′,Π,b(n, j+
1), and similarly forward the responses from the challenger back to A. For the
additional (q − j − 1) queries in the end, A′ can simply respond by drawing
random ciphertexts from Cn. A′ will output whatever is output by A.

Notice that adversary A′ does not require any additional memory space
besides the space used by adversary A. All that A′ needs to do is to forward A’s
queries and the challenger’s responses, and to sample random ciphertexts from
Cn. These operations do not require A′ to store any persistent states.

Therefore, we have

|Pr[DistA,Π,0(n, q, j) = 1] − Pr[DistA,Π,1(n, q, j) = 1]|
≤ |Pr[RoRC′A,Π,0(n, j + 1) = 1] − Pr[RoRC′A,Π,1(n, j + 1) = 1]| .
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Bringing all these parts together, assuming that the encryption scheme Π is
(S(n), Q(n), ε)-secure yields

|Pr[RoRCA,Π,0(n, q) = 1] − Pr[RoRCA,Π,1(n, q) = 1]|

=
∣
∣
∣
∣ Pr
h←Hq

[D(h) = 1] − Pr
h←H0

[D(h) = 1]
∣
∣
∣
∣

≤q

∣
∣
∣
∣ Pr
h←Hj+1

[D(h) = 1] − Pr
h←Hj

[D(h) = 1]
∣
∣
∣
∣

=q |Pr[DistA,Π,0(n, q, j) = 1] − Pr[DistA,Π,1(n, q, j) = 1]|
≤q |Pr[RoRC′A,Π,0(n, j + 1) = 1] − Pr[RoRC′A,Π,1(n, j + 1) = 1]|
≤qε ≤ Q(n)ε.

Therefore, Π is (S(n)), Q(n), Q(n)ε)-secure under the RoRC setting. �

Theorem 1. For any C < 1

20 , there exists α > 0, s.t. the bit encryption scheme
from parity learning is (Cn2, 2αn, O(2−αn/2))-secure under the RoRC’ setting.

Proof. We prove this result by reducing a parity learning game to an RoRC’
game.

To start off, we consider a weaker variant of the parity learning game
described in Lemma 2, denoted as PLA,b(n, q):

– The challenger’s input is a bit b ∈ {0, 1}.
– The challenger chooses a random k ∈ {0, 1}n.
– The challenger streams (x1, y1), (x2, y2), . . . , (xq−1, yq−1), where xi is uni-

formly distributed over {0, 1}n and yi = xi · k for all i.
– The challenger sends (xq, yq), where xq is uniformly distributed over {0, 1}n

and:
• If b = 0, yq = xq · k.
• If b = 1, yq is a random bit.

– Finally, A outputs a guess b′ for b.

We now show how we can use an adversary A for RoRC′A,Π,b(n, q) to build
an adversary A′ for PLA′,b(n, q). The adversary A′ works as follows:

– Simulate for A an RoRC′A,Π,b(n, q) game.
– For every query mi submitted by A, respond with (xi, yi + mi) where xi and

yi come from the i-th pair of the PLA′,b(n, q) game.
– If the adversary A outputs 0, output 0. Otherwise, output 1.

This should be easily verifiable. First, notice that A′ faithfully simulates
RoRC′A,Π,b(n, q). For 1 ≤ i ≤ q − 1, A receives (xi, yi + mi) = (xi,xi · k + mi),
which is a valid encryption of mi. Also, for the last query mq, A receives either
(xq, yq + mq) = (xq,xq · k + mq), i.e. a valid encryption, or (xq, yq + mq) for a
random bit yq, i.e. a random ciphertext. Secondly, if A outputs 0, that implies
(xq, yq + mq) = Enc(k,mq) = (xq,xq · k + mq), and hence yq = xq · k and A′
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should output 0. Lastly, if A outputs 1, we have yq + mq being a random bit.
Since mq is fixed, we have yq a random bit and hence A′ should output 1.

This yields

|Pr[RoRC′A,Π,0(n, q) = 1] − Pr[RoRC′A,Π,1(n, q) = 1]|
≤ |Pr[PLA,0(n, q) = 1] − Pr[PLA,1(n, q) = 1]| .

Let β = |Pr[PLA,0(n, q) = 1] − Pr[PLA,1(n, q) = 1]|. Then we have an algo-
rithm that distinguishes between (xq, yq = xq · k) and (xq, yq ← {0, 1}) with
probability (1 + β)/2, i.e. it outputs 0 if yq is a valid inner product and 1 if it
is random. This can be easily converted into an algorithm that given xq, out-
puts xq · k with probability (1 + β)/2 (simply XOR the output of the previous
algorithm with yq). Let f be the function computed by this algorithm. Then
for given xq ∈ {0, 1}n and unknown k ∈ {0, 1}n, f(xq) = 〈k,xq〉 with proba-
bility (1 + β)/2. By applying Lemma 3, there is an algorithm that runs in time
O(n2β−4 log n) and outputs k with probability at least Ω(β2).

Recall from Lemma 2 that for any C < 1/20, there is a positive α such
that any potentially computationally unbounded algorithm that uses up to Cn2

memory bits and has access to at most 2αn (xi, yi) pairs can output k with
probability at most O(2−αn). Therefore, for adversaries that are space-bounded
by Cn2 bits and submit at most 2αn queries, Ω(β2) ≤ O(2−αn). And hence
β = O(2−αn/2).

Therefore, for any C < 1/20, there is a positive α such that for all adversaries
that use at most Cn2 memory bits and at most 2αn queries (q ≤ 2αn), we have

|Pr[RoRC′A,Π,0(n, q) = 1] − Pr[RoRC′A,Π,1(n, q) = 1]| ≤ β = O(2−αn/2),

i.e. the scheme is (Cn2, 2αn, O(2−αn/2))-secure under the RoRC’ setting as
desired. �

Corollary 1 (RoRC Security of the Bit Encryption Scheme from Par-
ity Learning). For any C < 1

20 , there exists α > 0, s.t. the bit encryption
scheme from parity learning is (Cn2, 2αn/4, O(2−αn/2))-secure under the RoRC’
setting (here we further bound the number of queries to αn/4 instead of αn).
By Lemma 4, this scheme is also (Cn2, 2αn/4, 2αn/4 · O(2−αn/2) = O(2−αn/4))-
secure under the RoRC setting. Put another way, for any C < 1

20 , there
exists α′(= α/4) > 0, s.t. the bit encryption scheme from parity learning is
(Cn2, 2α′n, O(2−α′n))-secure under the RoRC setting.

4 Encrypt Zero Protocols

In this section, we introduce two constructions of the Encrypt Zero Protocol.
They both have the same goal: to give one party, the Keeper, a random key s,
and the other party, known as the Recorder, several encryptions of 0 under the
key s. They differ in that the simple construction is only secure against honest-
but-curious Keepers, while the enhanced construction is secure even against
malicious Keepers.
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Before we jump into the constructions, we first define an Encrypt Zero Pro-
tocol and its security properties.

An Encrypt Zero Protocol Π involves two parties, a Keeper K and a Recorder
R. The protocol takes three parameters n,m = O(n) and λ, and produces
(s, {c1, c2, . . . , cλ}, trans), where s is a random key output by K, {c1, c2, . . . , cλ}
is a set of ciphertexts output by R, and trans is the transcript of their commu-
nication.

The correctness of an Encrypt Zero Protocol requires that the set of cipher-
texts output by R are encryptions of zero under the key s output by K. Put
formally, we require that Dec(s, ci) = 0 for all i.

Now, we define two desired security properties for the Encrypt Zero Protocol,
namely Keeper security and Recorder security.

The security of the Keeper ensures that the Keeper’s key s has enough min-
entropy conditioned on the Recorder’s view viewR.

Definition 3 (Keeper Security). Let the view of the Recorder be viewR, we
say that a protocol Π is (S(n), h)-secure for the Keeper if for all Recorders R
that use up to S(n) memory bits,

H∞(s|viewR) ≥ h.

The security of the Recorder ensures that the Keeper learns nothing about
c1, c2, . . . , cλ (except that they are encryptions of zero).

For an honest-but-curious Keeper K, this means that given all the Keeper’s
randomness and the transcript produced by the protocol, it is hard to distin-
guish the output ciphertexts (c1, c2, . . . , cλ) from some random ciphertexts that
encrypt zero.

Definition 4 (Recorder Security with Honest-but-Curious Keeper).
Let C = {c1, c2, . . . , cλ} be the ciphertexts output by R at the end of the protocol,
and C ′ = {c′

1, c
′
2, . . . , c

′
λ} where c′

i ← Enc(s, 0) be fresh encryptions of zero under
the key s. Let stateK consist of all the random coins used by K together with
trans. Given the Keeper’s state stateK, the key s, the protocol Π is ε-secure for
the Recorder if for any distinguisher D,

∣
∣
∣ Pr
c←C

[DstateK,s(c) = 1] − Pr
c←C′

[DstateK,s(c) = 1]
∣
∣
∣ ≤ ε.

In the case of a malicious Keeper K∗ who can have arbitrary behavior, we
let stateK∗ be the state of K∗ at the end of the protocol. Notice that regardless
of the possible behaviors that K∗ could have, it is constrained to the state that
it has stored at the end of the protocol. It has no additional information besides
what it has stored in stateK∗ .

Definition 5 (Recorder Security with Malicious Keeper). Let C =
{c1, c2, . . . , cλ} be the ciphertexts output by R at the end of the protocol, and
C ′ = {c′

1, c
′
2, . . . , c

′
λ} where c′

i ← Enc(s, 0) be fresh encryptions of zero under the
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key s. Given the malicious Keeper’s state stateK∗ , the key s, the protocol Π is
ε-secure for the Recorder if for any distinguisher D,

∣
∣
∣ Pr
c←C

[DstateK∗ ,s(c) = 1] − Pr
c←C′

[DstateK∗ ,s(c) = 1]
∣
∣
∣ ≤ ε.

4.1 Simple Encrypt Zero Protocol

Here we present the Simple Encrypt Zero Protocol, which achieves Keeper Secu-
rity and Recorder security against honest-but-curious Keeper. The main idea
here is simple: the Keeper will stream a sequence of ciphertexts which are encryp-
tions of zero, and Recorder will obtain fresh encryptions of zero by taking random
subset-sums of the ciphertexts received.

Construction 2 (Simple Encrypt Zero Protocol). A Simple Encrypt Zero
Protocol instance EZ(n,m, λ) for the Keeper K and the Recorder R proceeds as
follows:

– K chooses a random key k ∈ {0, 1}n, and R chooses a random secret matrix
Σ ∈ {0, 1}λ×m.

– K streams encryptions (ri, ai = ri ·k+0) to R, for i = 1, 2, . . . ,m and random
ri ∈ {0, 1}n.

– R maintains matrix Ψ ∈ {0, 1}λ×n and column vector κ ∈ {0, 1}λ. Each row
of (Ψ |κ) will be a random subset-sum of the encryptions sent by K, with
each subset-sum chosen according to Σ. Ψ and κ will be computed on the
fly. Specifically, when encryption (ri, ai) comes in, R will update Ψ to be
Ψ + σi · ri and κ to be κ + σiai. Here, σi is the i-th column of Σ, and ri is
interpreted as a row vector.

– At the end of the protocol, K outputs its key s = k, and R outputs (Ψ |κ),
whose rows are the ciphertexts c1, c2, . . . , cλ.

Remark 1. For the ease of analysis, we combine all the encryptions sent together,

and denote R =

⎡

⎢
⎢
⎣

r1
r2
· · ·
rm

⎤

⎥
⎥
⎦ ∈ {0, 1}m×n, and a =

⎡

⎢
⎢
⎣

a1

a2

· · ·
am

⎤

⎥
⎥
⎦ ∈ {0, 1}m. This gives us

a = R · k.

Correspondingly, notice that R is essentially recording Σ, Ψ = Σ · R and
κ = Σ · a = Σ · R · k = Ψ · k.

It is easy to verify that the rows of (Ψ |κ) are encryptions of 0 under the
key s = k, as they are simply sums of encryptions of 0 under s and by the
additive homomorphism of Raz’s encryption scheme they also must encrypt 0.
Therefore, this construction meets the correctness requirement for an Encrypt
Zero Protocol.

Next, we show that this construction achieves Keeper security and Recorder
security against honest-but-curious Keepers.
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Theorem 2 (Keeper Security of EZ). The Simple Encrypt Zero Protocol is
(Cn2, Ω(αn))-secure for the Keeper, for some C < 1

20 and α dependent on C.

Proof. This follows directly from Lemma 2. Here viewR essentially contains m
pairs of (ri, ai), where ai = ri · s for i = 1, 2, . . . ,m and random ri ← {0, 1}n.
For adversaries space-bounded to Cn2 memory bits for some C < 1

20 and α
dependent on C, by applying Lemma2, we get that the probability of an adver-
sary outputting s is no more than O(2−αn). Hence, the average min-entropy of
s conditioned on viewR is Ω(αn). �

Theorem 3 (Recorder Security of EZ). The Simple Encrypt Zero Protocol
with parameter m = 2n and an honest-but-curious Keeper is O(2−n)-secure for
the Recorder.

Proof. Since the Keeper is honest and follows the protocol, R is a random m×n
matrix. For m = 2n, we have R being a random 2n × n matrix, which is full
rank with probability 1 − O(2−n). Notice that if R is full rank, given that Σ is
a random matrix conditioned on the Keeper’s state stateK and s, Ψ = Σ · R is
also a random matrix conditioned on stateK and s.

In this way, conditioned on stateK and s, (Ψ |κ) contains random encryp-
tions of 0. Therefore, by definition, these encryptions {c1, . . . , cλ} cannot be
distinguished from {c′

1, . . . , c
′
λ} where c′

i is a random encryption of 0. Hence, the
probability of distinguishing C from C ′ is bounded by the probability that R is
not full rank, which is O(2−n). Thus we have

∣
∣
∣ Pr
c←C

[Dtrans,s(c) = 1] − Pr
c←C′

[Dtrans,s(c) = 1]
∣
∣
∣ ≤ 2O(2−n) = O(2−n)

as desired. �

Kindly notice that this simple construction of an Encrypt Zero protocol is

only secure for the Recorder if the Keeper is honest. For malicious Keepers, they
could, for example, generate the matrix R with bad randomness so that it is
very likely to be low rank.

One way to tackle this is to have the random matrix R generated and
streamed by a trusted third party, which is a common practice in much of the
prior work in the bounded storage model. However, if we do not wish to rely
on a trusted third party (notice that the model without a trusted third party is
stronger than one with a trusted third party), we show in the following subsec-
tion how we can tweak our simple construction to have Recorder security even
against malicious Keepers.

4.2 Enhanced Encrypt Zero Protocol

In the Enhanced Encrypt Zero Protocol construction, we tweak the simple con-
struction slightly to account for malicious Keepers.
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Construction 3 (Enhanced Encrypt Zero Protocol). An Enhanced
Encrypt Zero Protocol instance EZ+(n,m, λ) with the Keeper K and the
Recorder R proceeds as follows:

– K chooses a random key k ∈ {0, 1}n and an independent random secret
s ∈ {0, 1}m. R chooses a random secret matrix Σ ∈ {0, 1}λ×m.

– K streams random encryptions of the bits in s. Namely, in matrix form, K
sends (R,a = R · k + s) for random R ∈ {0, 1}m×n.

– R maintains matrix Ψ = Σ · R and column vector κ = Σ · a.
– K sends its key k in the clear, and R uses that to compute φ = κ − Ψ · k.
– K outputs s as its key, and R outputs (Σ|φ), whose rows are the ciphertexts

c1, c2, . . . , cλ.

Notice that φ = κ − Ψ · k = Σ · s, and hence the rows of (Σ|φ) are indeed
encryptions of 0 using key s, as desired in the correctness property.

Theorem 4 (Keeper Security of EZ+). The Simple Encrypt Zero Protocol is
(Cn2, Ω(n))-secure for the Keeper, for some C < 1

20 and α dependent on C.

Proof. First, notice that before the Keeper sends over k, the two distributions
(s,R,R · k + s) and (s,R,R · k + s′) for random s′ ∈ {0, 1}m are statistically
indistinguishable, due to the RoRC security of Raz’s encryption scheme.

Now, notice that in the second distribution, the probability the Recorder can
guess s is 2−m. In this case, if it later receives k, the probability it guesses s is
still at most 2n−m, which is 2−n.

Now, we use the following simple fact: suppose two distributions X,Y are
ε-close. Then there is a procedure P which first samples x ← X, and then based
which x it samples, it may replace x with a different sample x′. P satisfies the
property that (1) its output distribution is identical to Y , and (2) the probability
it re-samples is ε.

We use this simple fact by assigning X to (s,R,R · k + s′) for random
s′ ∈ {0, 1}m and Y to (s,R,R · k + s).

Now consider the probability of guessing s. In the case X, we know it is 2−n.
So if we consider Y sampled from P , we know that the probability of guessing
s in the non-replacing case is 2−n. But the replacing case only happens with
probability ε, meaning overall the probability of outputting s is at most ε+2−n.
�

Theorem 5 (Recorder Security of EZ+). The Enhanced Encrypt Zero Pro-
tocol with parameter m = 2n and any possibly malicious Keeper K∗ is perfectly
secure for the Recorder.

Proof. Notice that regardless of the Keeper’s state stateK∗ (even if one of a
malicious Keeper), Σ is always random conditioned on stateK∗ and s, since it is
solely sampled by the Recorder. Therefore, (Σ|φ) is already random encryptions
of 0 conditioned on stateK∗ and s. Hence, to distinguish it from other random
encryptions of 0, one can do no better than a random guess. Thus, the advantage
that any distinguisher D could have in distinguishing C and C ′ is 0 as desired. �
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5 Two-Party Key-Agreement Protocol

Consider a pair of interactive PPT algorithms Π = (A,B). Each of A,B take
n as input. We will let (a, b, trans) ← Π(n) denote the result of running the
protocol on input n. Here, a is the output of A, b the output of B, and trans is
the transcript of their communication.

A two-party key-agreement protocol is a protocol Π = (A,B) with the cor-
rectness property that Pr[a = b] = 1. In this case, we will define k̂ = a = b and
write (k̂, trans) ← Π(n). Additionally, we will require eavesdropping security:

Definition 6 (Eavesdropping Security of Two-Party Key-Agreement
Protocol). We say that Π is (S(n), ε)-secure if for all adversaries A that use
at most S(n) memory bits,

|Pr[A(k̂, trans) = 1 : (k̂, trans) ← Π(n)]
−Pr[A(k′, trans) = 1 : k′ ← Kn, (k, trans) ← Π(n)]| ≤ ε.

In this section we demonstrate how we can use the Simple Encrypt Zero
Protocol to implement a two-party key-agreement protocol. For simplicity, we
consider a key space of one single bit.

Construction 4 (Two-Party Key-Agreement Protocol). For two parties
P and Q trying to derive a shared key k̂ ∈ {0, 1}, they will first run a Simple
Encrypt Zero Protocol EZ(n,m, λ = 1) with P as the Keeper and Q as the
Recorder. At the end of the EZ protocol, P gets a key s, and Q gets an encryption
of 0 using s, namely (Ψ |κ) (notice that κ is of dimension λ × 1, and hence is a
single bit here). To derive a shared key, Q sends Ψ to P. The shared key is thus
κ, which is known to Q, and is computable by P as κ = Ψ · s.
Remark 2. For key spaces {0, 1}d, we can simply tune the protocol to use λ = d,
and that will yield a shared key k̂ ∈ {0, 1}d.

Theorem 6. The two-party key-agreement protocol presented above is
(Cn2, O(2−αn/2))-secure against eavesdropping adversaries.

Proof. First, by the Keeper security of the EZ protocol, for adversaries with
up to Cn2 memory bits for some C < 1

20 , H∞(s|viewR) ≥ Ω(αn). Subsequently,
H∞(Ψ , s|viewR) ≥ Ω(αn). Let H : {0, 1}n × {0, 1}n → {0, 1} compute the inner
product. Using the fact that the inner product is a universal hash function and
applying Lemma 1, we have

(H(Ψ , s),H, viewR) ≈ε/2 (U1, Ud, viewR),

where 1 + 2 log(1/ε) = Ω(αn). Solving for ε yields that ε = O(2−αn/2), i.e. an
adversary has advantage at most O(2−αn/2) in distinguishing H(Ψ , s) and U1.
Recall that in the eavesdropping security game for Two-Party Key-Agreement
Protocols, the adversary need to distinguish between actual derived keys
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k̂ = Ψ · s from random k′ sampled directly from the key space {0, 1}. Observe
that H(Ψ , s) = Ψ · s = k̂, and k′ is drawn from U1. Therefore, we have

|Pr[A(k̂, trans) = 1 : (k̂, trans) ← Π(n)]

− Pr[A(k′, trans) = 1 : k′ ← Kn, (k, trans) ← Π(n)]| ≤ ε = O(2−αn/2)

as desired. �


6 Bit Commitment Scheme

Let n and λ be security parameters. A bit commitment scheme Π consists of a
tuple of algorithm (Commit, Reveal, Verify) for a committer C and a verifier V.

– The Commit algorithm is run by the committer, and it takes as input the
security parameter n and a bit b to be committed to. A transcript of the com-
munication, a committer state, and a verifier state (trans, stateC , stateV) ←
Commit(n, λ, b) is output by the Commit algorithm.

– The Reveal algorithm is also run by the committer, and it takes as input
a committer state stateC and a bit b′. It outputs a revealing, denoted as x,
together with the committed bit b′.

– The Verify algorithm is run by the Verifier and takes input a verifier state
stateV and outputs of a Reveal algorithm, (x, b′). It outputs a bit u.

There are two desired security properties for a bit commitment scheme, namely
hiding and binding. We will give out formal definitions below.

The hiding property of a bit commitment scheme essentially states that the
committed bit b should be hidden from the Verifier given the Verifier’s view after
the Commit algorithm. Notice that the Verifier’s view after the Commit algorithm
consists of exactly trans and stateV . Put formally:

Definition 7 (Hiding Property of a Bit Commitment Scheme). For
some given security parameters n, λ and a bit b, let (trans, stateC , stateV) ←
Commit(n, λ, b), we say that the bit commitment scheme is (S(n), ε)-hiding if for
all Verifiers V with up to S(n) memory bits,

(b, trans, stateV) ≈ε (r, trans, stateV)

for random r uniformly sampled from {0, 1}.
The binding property of a bit commitment scheme essentially requires that

a committer is not able to open a commitment to both 0 and 1. Notice that this
applies to all committers, who can be potentially malicious. A malicious commit-
ter A can run an arbitrary Commit∗ procedure, which has no guarantees except
that it produces some (trans, stateA, stateV). Note that this Commit∗ procedure
does not necessarily commit to a bit b, so it does not take b as a parameter.
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Definition 8 (Binding Property of a Bit Commitment Scheme). Let A
be an adversary. A plays the following game BindingA,Π(n, λ) for some given
security parameters n and λ:

– The adversary A runs an arbitrary commit procedure (potentially malicious)
Commit∗(n, λ) with an honest Verifier V and produces (trans, stateA, stateV).

– The adversary produces (x0, 0) and (x1, 1).
– The game outputs 1 if both Verify(stateV , (x0, 0)) and Verify(stateV , (x1, 1))

output 1, and 0 otherwise.

We say that Π is ε-binding if for all adversary A

Pr[BindingA,Π(n, λ) = 1] ≤ ε.

Now we present the construction for a bit commitment scheme using the
Enhanced Encrypt Zero Protocol.

Construction 5 (Bit Commitment Scheme from Parity Learning). For
security parameters n, λ and committer input bit b, we construct the bit com-
mitment scheme by specifying each of the (Commit, Reveal, Verify) algorithms.

– Commit(n, b): Runs the Enhanced Encrypt Zero Protocol EZ+(n, 2n, λ) with
C as the Keeper and V as the Recorder. Set trans to be the transcript of
the EZ+ protocol, stateC to be the output of C after the EZ+ protocol, i.e. a
secret key s, and stateV to be the output of V after the EZ+ protocol, namely
(Σ|φ), which contains multiple encryptions of 0 under the key s. Additionally,
samples random γ ∈ {0, 1}2n, and sends (γ, c = γ ·s+b) to the Verifier (notice
that this also gets appended to trans).

– Reveal(stateC , b′): Outputs (x, b′) = (s, b′).
– Verify(stateV ,x, b′): Checks that φ = Σ ·x, and that c = γ ·x+ b′. If any of

the checks fail, output 0; otherwise, output 1.

Theorem 7. The bit commitment construction above is (Cn2, O(2−n/2))-hiding
for some C < 1/20.

Proof. First, by the Keeper security of the EZ+ protocol, for adversaries with
up to Cn2 memory bits for some C < 1

20 , H∞(s|viewV) ≥ Ω(n). Recall that
viewV is exactly (trans, stateV). Subsequently, H∞(γ, s|trans, stateV) ≥ Ω(n).
Let H : {0, 1}n × {0, 1}n → {0, 1} compute the inner product. Using the fact
that the inner product is a universal hash function and applying Lemma1, we
have

(H(γ, s),H, trans, stateV) ≈ε/2 (U1, Ud, trans, stateV),

where 1 + 2 log(1/ε) = Ω(n). Furthermore, we have

(H(γ, s) + c,H, trans, stateV) ≈ε/2 (U1 + c, Ud, trans, stateV),

Solving for ε yields that ε = O(2−n/2), i.e. an adversary has advantage at
most O(2−n/2) in distinguishing H(γ, s)+c and U1+c. Notice that H(γ, s)+c =
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γ · s + c = b, and that U1 + c is yet another uniformly random bit r ← {0, 1}.
Therefore, we have

(b,H, trans, stateV) ≈ε/2 (r, Ud, trans, stateV)

for ε = O(2−n/2) and r a uniformly random bit. Thus, by

(b, trans, stateV) ≈ε′ (r, trans, stateV)

for ε′ = 1
2O(2−n/2) = O(2−n/2) and r a uniformly random bit, we have shown

that the bit commitment scheme presented above is (Cn2, O(2−n/2))-hiding as
desired. �

Theorem 8. The bit commitment scheme presented above is (2−λ)-binding.

Proof. We show that the scheme is statistically binding by arguing that the
probability that an adversary can win the Binding game is no more than 1

2λ .
Notice that in order for the adversary to win the game, the adversary need

to output (x0, 0) and (x1, 1) that both pass the Verify algorithm. Recall that the
Verify Algorithm checks for two things:

– c = γ ·x0 +0 and c = γ ·x1 +1 where c and γ are part of the transcript trans
and are stored in the Verifier’s state stateV . This leads to that γ · x0 �= γ · x1

and hence x0 �= x1.
– φ = Σ ·x0 = Σ ·x1 where Σ and φ are sampled and computed by the Verifier

and stored in stateV . Notice this leads to Σ · (x0 − x1) = 0.

Now let x′ = x0 − x1. From x0 �= x1, we know that x′ �= 0. Therefore, we
need to find a non-trivial root for the equation Σ · x′ = 0. Recall that by the
Recorder’s perfect security of the EZ+ protocol, the matrix Σ stored in stateV is
random conditioned on the Committer’s view. For each row of Σ, denoted as Σi

for the i-th row, the probability that Σi ·x′ = 0 is no more than a random guess,
i.e. 1

2 . Since to pass the Verify algorithm requires Σ ·x′ = 0, i.e. Σi ·x′ = 0 for
all i = 1, 2, . . . , λ, and recall that the rows of Σ are independent, the probability
that the adversary can find such a x′ is no more than (12 )λ = 1

2λ . �


7 Oblivious Transfer Protocol

In an oblivious transfer (OT) protocol, one party, the Sender S, has two input
bits x0, x1, and the other party, known as the Receiver R′ (not to be confused
with the Recorder R in the Encrypt Zero Protocols), has an input bit b. After
some communication between the two parties, R′ outputs xb. The OT protocol
requires two security properties, namely Sender security and Receiver security.
Sender security dictates that R′ should have no information about x1−b, and
Receiver security requires that S has no information about b.

Before we proceed to our construction of an OT protocol, we first formally
define these two security properties.

The security of the Sender ensures that an adversarial Receiver can learn
about at most one of x0 and x1. In other words, there always exists a b′ s.t. the
Receiver has no information about xb′ . Put formally:
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Definition 9 (Sender Security). An OT protocol is said to be ε-secure for the
Sender if there exists some b′ s.t. for any arbitrary distinguisher D and Receiver’s
view viewR′ ,

∣
∣Pr[DviewR′ (xb′) = 1] − Pr[DviewR′ (r) = 1]

∣
∣ ≤ ε

for a uniformly random bit r.

The security of the Receiver requires that the sender S has no information
about b. In other words, given the view of the Sender, one should not be able to
distinguish between b and a random bit r. Put formally:

Definition 10 (Receiver Security). Let viewS denote the view of the sender,
the OT protocol Π is said to be (S(n), ε)-secure for the Receiver if for all possible
Senders that use up to S(n) memory bits,

(b, viewS) ≈ε (r, viewS),

where r is a uniformly random bit.

Now we give out our construction of the OT protocol.
The key idea is that the Receiver will send a commitment of its bit b to

the Sender. And the Sender therefore uses the additive homomorphism of Raz’s
encryption scheme to compute the encryptions of (1− b)x0 and bx1. The Sender
further re-randomizes these two ciphertexts by adding fresh encryptions of zero
before sending them to the Receiver. The Receiver decrypts these two ciphertexts
and obtains 0 and xb as desired.

Construction 6 (Oblivious Transfer Protocol from Parity Learning).
For given security parameter n, a Sender S and a receiver R′:

– Run an Enhanced Encrypt Zero Protocol EZ+(n, 2n, λ = 2) with R′ as the
Keeper and S as the Recorder. At the end of the protocol, R′ has as output
a secret key s, and S has output (Σ|φ), which consists of two encryptions of
0 under the key s. Additionally, R′ samples random γ ∈ {0, 1}2n, and sends
(γ, c = γ · s + b) to the Sender. Kindly notice that in this step the Receiver
R′ is actually just executing Commit(n, b).

– For Sender S, let σ0, σ1 be the first and second row of Σ, and φ0, φ1 be the
two elements in φ. Notice that φ0 = σ0 · s and φ1 = σ1 · s. The Sender then
sends to the Receiver two ciphertexts:

σ0 + x0γ, φ0 + x0(1 − c) = (σ0 + x0γ) · s +
(
(1 − b)x0

)

σ1 + x1γ, φ1 + x1c = (σ1 + x1γ) · s +
(
bx1

)
.

– R′ decrypts both ciphertexts that it has received using the key s, and learns
(1 − b)x0 and bx1. Notice that one of these two values will be xb as desired
and gets output by R′.
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We then proceed to prove desired security properties for the above construc-
tion of the OT protocol.

Theorem 9. The OT protocol described above is perfectly secure for the Sender.

Proof. We show that right after the first part of the protocol where R′ executes
Commit(n, b), there is a fixed b′ = c+γ ·s+1 such that the Receiver will have no
information about xb′ . Notice that this does not break Receiver security, since
although b′ is fixed, S has no way to compute b′ as s is only known to the
Receiver R′.

If b′ = c + γ · s + 1 = 0, we show that the Receiver has no information about
x0, i.e. x0 is random given the Receiver’s view. Notice that we have 1− c = γ · s.
And hence the two ciphertext that the Receiver receives are

σ0 + x0γ, φ0 + x0(1 − c) = (σ0 + x0γ) · s
σ1 + x1γ, φ1 + x1c = (σ1 + x1γ) · s + x1.

The only source that the Receiver might be able to gather information about
x0 is from the first ciphertext. However, since σ0 is uniformly random given the
Receiver’s view, σ0 + x0γ is also uniformly random given the Receiver’s view,
i.e., it does not give any additional information to the Receiver. The Receiver
also gets no information from (σ0+x0γ) ·s, as this value can be easily simulated
by the Receiver since it knows both σ0 + x0γ and s. Therefore, x0 is random
given the Receiver’s view.

If b′ = c + γ · s + 1 = 1, by a similar argument, we have that x1 is random
given the Receiver’s view. Bringing these parts together, we have shown that for
b′ = c + γ · s + 1, xb′ is random conditioned on the Receiver’s view, i.e.

∣
∣Pr[DviewR′ (xb′) = 1] − Pr[DviewR′ (r) = 1]

∣
∣ = 0.

Thus, the OT protocol above is perfectly secure for the Sender as desired. �

Theorem 10. The OT protocol described above is (Cn2, O(2−n/2))-secure for
the Receiver, for some C < 1

20 .

Proof. The proof for this is extremely straightforward. As observed above, the
receiver R′ is exactly executing Commit(n, b), i.e. it is committing the bit b to
the Sender, who is playing the role of the Verifier in the commitment scheme.
Hence, by the (Cn2, O(2−n/2))-hiding property of the commitment scheme, we
have that for all possible Sender S that uses at most Cn2 memory bits,

(b, trans, stateS) ≈ε (r, trans, stateS)

for ε = O(2−n/2)) and a uniformly random bit r. Notice that viewS is actually
just (trans, stateS). Therefore, the above equation can be rewritten as

(b, viewS) ≈ε (r, viewS).

This is the exact definition for (Cn2, ε)-Receiver-security. Therefore, the OT
protocol above is (Cn2, O(2−n/2))-secure for the Receiver as desired. �
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Gaëtan Leurent1(B) and Thomas Peyrin2,3(B)

1 Inria, Paris, France
gaetan.leurent@inria.fr

2 Nanyang Technological University, Singapore, Singapore
thomas.peyrin@ntu.edu.sg

3 Temasek Laboratories, Singapore, Singapore

Abstract. A chosen-prefix collision attack is a stronger variant of a col-
lision attack, where an arbitrary pair of challenge prefixes are turned
into a collision. Chosen-prefix collisions are usually significantly harder
to produce than (identical-prefix) collisions, but the practical impact of
such an attack is much larger. While many cryptographic constructions
rely on collision-resistance for their security proofs, collision attacks are
hard to turn into break of concrete protocols, because the adversary has
a limited control over the colliding messages. On the other hand, chosen-
prefix collisions have been shown to break certificates (by creating a
rogue CA) and many internet protocols (TLS, SSH, IPsec).

In this article, we propose new techniques to turn collision attacks into
chosen-prefix collision attacks. Our strategy is composed of two phases:
first a birthday search that aims at taking the random chaining variable
difference (due to the chosen-prefix model) to a set of pre-defined target
differences. Then, using a multi-block approach, carefully analysing the
clustering effect, we map this new chaining variable difference to a col-
liding pair of states using techniques developed for collision attacks.

We apply those techniques to MD5 and SHA-1, and obtain improved
attacks. In particular, we have a chosen-prefix collision attack against
SHA-1 with complexity between 266.9 and 269.4 (depending on assump-
tions about the cost of finding near-collision blocks), while the best-
known attack has complexity 277.1. This is within a small factor of the
complexity of the classical collision attack on SHA-1 (estimated as 264.7).
This represents yet another warning that industries and users have to
move away from using SHA-1 as soon as possible.

Keywords: Hash function · Cryptanalysis · Chosen-prefix collision ·
SHA-1 · MD5

1 Introduction

Cryptographic hash functions are crucial components in many information secu-
rity systems, used for various purposes such as building digital signature schemes,
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message authentication codes or password hashing functions. Informally, a cryp-
tographic hash function H is a function that maps an arbitrarily long message M
to a fixed-length hash value of size n bits. Hash functions are classically defined
as an iterative process, such as the Merkle-Damg̊ard design strategy [7,16]. The
message M is first divided into blocks mi of fixed size (after appropriate padding)
that will successively update an internal state (also named chaining variable),
initialised with a public initial value (IV), using a so-called compression func-
tion h. The security of the hash function is closely related to the security of the
compression function.

The main security property expected from such functions is collision resis-
tance: it should be hard for an adversary to compute two distinct messages M
and M ′ that map to the same hash value H(M) = H(M ′), where “hard” means
not faster than the generic birthday attack that can find a collision for any
hash function with about 2n/2 computations. A stronger variant of the collision
attack, the so-called chosen-prefix collision attack is particularly important. The
attacker is first challenged with two message prefixes P and P ′, and its goal is
to compute two messages M and M ′ such that H(P‖M) = H(P ′‖M ′), where
‖ denotes concatenation. Such collisions are much more dangerous than sim-
ple collisions in practice, as they indicate the ability of an attacker to obtain
a collision even though random differences (thus potentially some meaningful
information) were inserted as message prefix. In particular, this is an important
threat in the key application of digital signatures: chosen-prefix collisions for
MD5 were demonstrated in [28], eventually leading to the creation of colliding
X.509 certificates, and later of a rogue certificate authority [29]. Chosen-prefix
collisions have also been shown to break important internet protocols, including
TLS, IKE, and SSH [1], because they allow forgeries of the handshake messages.

SHA-1 is one the most famous cryptographic hash functions in the world,
having been the NIST and de-facto worldwide hash function standard for nearly
two decades until very recently. Largely inspired by MD4 [22] and then MD5 [23],
the American National Security Agency (NSA) first designed a 160-bit hash
function SHA-0 [17] in 1993, but very slightly tweaked one part of the design
two years later to create a corrected version SHA-1 [18]. It remained a standard
until its deprecation by the NIST in 2011 (and disallowed to be used for digital
signatures at the end of 2013). Meanwhile, hash functions with larger output
sizes were standardized as SHA-2 [19] and due to impressive advances in hash
function cryptanalysis in 2004, in particular against hash functions of the MD-
SHA family [31–34], the NIST decided to launch a hash design competition that
eventually led to the standardization in 2015 of SHA-3 [20].

There has been a lot of cryptanalysis done on SHA-1. After several first
advances on SHA-0 and SHA-1 [3,5], researchers managed to find for the first
time in 2004 a theoretical collision attack on the whole hash function, with an
estimated cost of 269 hash function calls [32]. This attack was extremely complex
and involved many details, so the community worked on better evaluating and
further improving the actual cost of finding a collision on SHA-1 with these new
techniques. Collisions on reduced-step versions of SHA-1 were computed [8,11],
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or even collisions on the whole SHA-1 compression function [27], which eventually
led to the announcement in 2017 of the first SHA-1 collision [26].

Even though SHA-1 has been broken in 2004, it is still deployed in many
security systems, because collision attacks do not seem to directly threaten most
protocols, and migration is expensive. Web browsers have recently started to
reject certificates with SHA-1 signatures, but there are still many users with
older browsers, and many protocols and softwares that allow SHA-1 signatures.
Concretely, it is still possible to buy a SHA-1 certificate from a trusted CA,
and many email clients accept a SHA-1 certificate when opening a TLS connec-
tion. SHA-1 is also widely supported to authenticate TLS and IKE handshake
messages.

Main SHA-1 cryptanalysis techniques. Attacks against SHA-1 are based on
differential cryptanalysis, where an attacker manages to somewhat control the
output of the compression function. Several important ideas were used to turn
differential cryptanalysis into an effective tool against hash functions:

Linearization [5]. In order to build differential trails with high probability, a
linearized version of the step function is used. Differential trails with a low-
weight output difference δO can be used to find near-collisions in the com-
pression function (i.e. two outputs that are close to a collision, the distance
metric being for example the Hamming distance).

Message modification [2,32]. In a differential attack against a hash function,
the attacker can choose messages that directly satisfy some of the constraints
of the path, because there is no secret key. While the conditions in the first
steps are easy to satisfy, more advanced techniques have been introduced to
extend the usage of these degree of freedom to later rounds in order to speed-
up collision search: neutral bits (firstly introduced for cryptanalysis SHA-0
[2,3]), message modifications [32] and boomerangs/tunnels [10,12].

Non-linear trails [32]. In order to get more flexibility on the differential trails,
the first few steps can use non-linearity instead of following the constraints of
the linearized step function. This does not affect the complexity of the search
for conforming messages (thanks to messages modification techniques), but
it allows to build trails from an arbitrary input difference to a good fixed
output difference δO (or its opposite).

Multi-block technique [5,32]. The multi-block technique takes advantage of
the Davies-Meyer construction used inside the compression function. Indeed,
it can be written as h(x,m) = x + Em(x) where E is a block cipher, and
+ denotes some group operation. Because of this feed-forward, an attacker
can use several differential trails in E, and several near-collisions blocks, to
iteratively affect the internal state. In particular, using non-linearity in the
first steps, he can derive two related trails 0 δM� δO and δO

−δM� −δO in E
from a single linear trail, by swapping the message pair. When conforming
messages are found for each block, this leads to a collision because the internal
state differences cancel out (see Fig. 1).

Birthday phase for chosen-prefix collisions [28]. Differential techniques
have also been used for chosen-prefix collision attacks. An attacker can relax
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the last steps of the differential trail to allow a set D of output differences
rather than a single δO. He can also use several differential trails, and use the
union of the corresponding sets. Starting from two different prefixes P, P ′,
the chosen-prefix collision attack has two stages (see Fig. 2):

– In the birthday stage, the attacker uses a generic collision search with
message blocks m0,m

′
0 to reach a difference δ = H(P ′‖m′

0) − H(P‖m0)
in D with complexity roughly

√
π · 2n/|D|.

– In the near-collision stage, he builds a differential trail δ � −δ using non-
linearity in the first steps, and searches a conforming message to build
the chosen-prefix collision.

Multi-block for chosen-prefix collisions [28]. If a collection of differential
trails affecting separate parts of the internal state is available, chosen-prefix
collision attacks can be greatly improved. In particular, if an arbitrary input
difference δR can be decomposed as δR = −(

δ
(1)
O + δ

(2)
O +· · · + δ

(r)
O

)
, where each

δ
(i)
O can be reached as the output of a differential trail, the attacker just has to

find near-collision blocks with output differences δ
(1)
O , . . . , δ

(r)
O (see Fig. 3).

Alternatively, if this only covers a subset of input differences, the multi-block
technique is combined with a birthday stage.

Our contributions. In this work, we describe new chosen-prefix collision
attacks against the MD-SHA family, using several improvements to reduce the
complexity.

1. The main improvement comes from the use of several near-collision blocks,
while Stevens uses a single near-collision block [25]. For instance, using two
blocks we can start from any difference in the set S := {δ1 + δ2 | δ1, δ2 ∈ D},
and cancel it iteratively with a first block following a trail δ1 + δ2 � −δ1 and
a second block following a trail δ2 � −δ2 (see Fig. 4). The set S grows with
the number of blocks: this reduces the cost of the birthday search in exchange
for a more expensive near-collision stage.
While there are previous chosen-prefix collision attacks using several near-
collision blocks [13,15,21,28,29], these attacks use a collection of differential
trails to impact different parts of the state (each block uses a different trail).
On the opposite, our technique can be used with a single differential trail,
or a collection of trails without any special property. In particular, previous
chosen-prefix collision attacks based on a single trail (against SHA-1 [25] and
MD5 [29, Sect. 6]) used only one near-collision block.

2. In addition, we use a clustering technique to optimize the near-collision stage,
taking advantage of multiple ways to cancel a given difference. For instance,
let’s assume that we have to cancel a difference δ in the internal state that can
be written in two different ways: δ = δ1 + δ2 = δ′

1 + δ′
2, with δ1, δ

′
1, δ2, δ

′
2 ∈ D,

knowing trails δ � −δ1 and δ � −δ′
1 with the same message constraints.

Then, an attacker can target simultaneously −δ1 and −δ′
1 for the first near-

collision block (and use either a trail δ2 � −δ2 or δ′
2 � −δ′

2 for the second
block, depending on the first block found). This can reduce the cost of finding
the first block by a factor two.
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Fig. 1. 2-block collision attack using a linear trail δI
δM� δO and two non-linear trails

0 � δI and δO � −δI . Green values between bracket represent differences in the state.
(Color figure online)
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Fig. 2. Single-block chosen-prefix collision attack with a birthday stage. The linear
trail δI � δO is relaxed to reach a set S of feasible differences.
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Fig. 3. Multi-block chosen-prefix collision attack. We assume that an arbitrary differ-

ence δR can be decomposed as δR = −
(
δ
(1)
O + δ

(2)
O + · · · + δ

(r)
O

)
, where each δ

(i)
O can

be reached as the output of a differential trail.

This technique can be seen as a generalization of an optimisation used for
collision attacks with two blocks, where the first is less constrained and several
output differences are allowed (for instance the SHA-1 collision attack of [25]
allows 6 output differences, so that the first block is 6 times less expensive
than the second).

Using these techniques, we obtain significant improvements to chosen-prefix
collision attacks against MD5 and SHA-1.
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Application to MD5. We use multiple near-collision blocks to improve the com-
plexity of the chosen-prefix collision attack with a single near-collision block
given in [29, Sect. 6]. We start with the same differential trail, and a set D of size
225.2, built in the same way. Using two near-collision blocks, we can target the
set S := {δ1 + δ2 | δ1, δ2 ∈ D} which contains 237.1 elements. This leads to an
attack with complexity roughly

√
π · 2128/237.1 ≈ 246.3, while the best previous

attack with two blocks or less required 253.2 MD5 computations. However, the
best chosen-prefix collision attack against MD5 is still the attack from [29] with
complexity 239.1 using 9 near-collision blocks.

Application to SHA-1. For SHA-1, we start with the attack of Stevens [25], and
after using several improvements we obtain a chosen-prefix collision attack with
estimated complexity between 266.9 and 269.4 SHA-1 computations. This is within
a small factor of the complexity of a plain collision attack, estimated at 264.7

on average [26,32], and orders of magnitude better than the 277.1 computations
cost of the currently best known chosen-prefix collision attack [25] on SHA-1.
We have conducted tests to check that our assumptions are indeed verified in
practice.

First, we use a more relaxed version of the differential trail than used in [25],
so that we have a set S of size 8768 rather than 192. This directly reduce the
attack cost by a factor 6.75, down to 274.3. Next, we use the multi-block technique
to build a large set S and to reduce further the cost of the birthday stage. Using
a set S of size 229.4 with a near-collision cost at most 12× 264.7, this reduces the
cost of the attack down to 268.6 (with an optimistic estimate). Finally, we use
the clustering technique to reduce the near-collision cost. After optimization, we
have a set S of 232.67 differences that can be reached with a maximum cost of
3.5×264.7 (with an optimistic estimate), leading to a full attack with complexity
266.9—about five time more expensive than the collision attack (Table 1).

Our result is surprising since we show that the cost to find a chosen-prefix
collision for SHA-1 is not much more than a simple collision search. Moreover
our work has a strong impact in practice as chosen-prefix collision attacks are
much more dangerous than simple collisions (see for example the case of MD5
[29]). This is yet another warning that SHA-1 should be totally removed from
any security product as soon as possible. The thinking “a collision attack is not
directly exploitable, thus we are fine” is clearly wrong for SHA-1, and we give a
proof here.

Our method is in essence quite generic, even though a lot of details have to
be taken care of in order to make it work. Since most collision attacks on mem-
bers of the MD-SHA family are built on the same principles as SHA-1 attacks, we
believe similar ideas would apply and a collision attack can probably be trans-
formed into a chosen-prefix collision attack for a reasonable extra cost factor.
We do not foresee any reason why this technique would not apply to non MD-SHA
hash functions as well (except wide-pipe hash functions which would make the
birthday part too costly).
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Table 1. Comparison of previous and new cryptanalysis results on MD5 and SHA-1. A
free-start collision is a collision or the compression function only, where the attacker
has full control on all the primitive’s inputs. Complexities in the table are given in
terms of SHA-1 equivalents on a GTX-970 GPU (when possible)

Function Collision type Complexity Ref.

SHA-1 free-start collision 257.5 [28]
collision 269 [33]

264.7 [27]
chosen-prefix collision 277.1 [26]

266.9 — 269.4 New

MD5 collision 240 [34]
216 [30]

chosen-prefix collision (9 blocks) 239.1 [30]
(3 blocks) 249 [30]
(1 block) 253.2 [30]
(2 blocks) 246.3 New

Outline. We first consider the impact of this result and give some recommen-
dations in Sect. 2. Then, we describe SHA-1 and previous cryptanalysis works
on this hash function in Sect. 3. The generic high-level description of our attack
is given in Sect. 4, while the details regarding its application to MD5 and SHA-1
are provided in Sects. 5 and 6, respectively. Eventually, we conclude and propose
future works in Sect. 7.

2 Implications and Recommendations

Our work shows that finding a chosen-prefix collision is much easier than previ-
ously expected, and potentially not much harder than a normal collision search
for SHA-1. As a real collision has already been computed for this hash func-
tion, one can now assume that chosen-prefix collisions are reachable even by
medium funded organisations. Since a chosen-prefix collision attack can break
many widely used protocols, we strongly urge users to migrate to SHA-2 or SHA-3,
and to disable SHA-1 to avoid downgrade attacks.

Cost Estimation. We use the same estimation process as in [26]. With an opti-
mistic spot-price scenario on g2.8xlarge instances of Amazon EC2, the authors
estimated that the workload spent to find the SHA-1 collision was equivalent to
a cost of about US$ 110 K, with 263.4 SHA-1 equivalent calls on GTX-970 GPUs.
We recall that they found the collision with less computations than expected.
Using expected computational cost, the average workload required to find a
SHA-1 collision is equivalent to a cost of about US$ 275 K, or 264.7 SHA-1 calls.
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An optimistic analysis of our attack leads to a complexity of 266.9 SHA-1 equiva-
lent calls on GTX-970 GPUs, corresponding to a cost of US$ 1.2M, while a more
conservative analysis yields a complexity of 269.4, or a cost of US$ 7M.

Hardware will improve as well as cryptanalysis and we can expect that colli-
sion together with chosen-prefix collision attacks will get cheaper over the years.
Migration from SHA-1 to the secure SHA-2 or SHA-3 hash algorithms should now
be done as soon as possible, if not already.

Impact of Chosen-prefix Collisions. Chosen-prefix collision attacks have
been demonstrated already for MD5, and they are much more dangerous that
identical-prefix collision attacks, with a strong impact in practice. For example,
they have been shown to break important internet protocols, including TLS,
IKE, and SSH by allowing the forgery of handshake messages. The SLOTH
attacks [1] can break various security properties of these protocols using MD5
chosen-prefix collisions, such as client impersonation in TLS 1.2. It was also
shown [28] that one can generate colliding X.509 certificates and later a rogue
certificate authority [29] from a chosen-prefix collision attack on MD5, undermin-
ing the security of websites. MD5 has been removed from most security applica-
tions, but the very same threats are now a reality for SHA-1.

The SLOTH attacks with SHA-1 chosen-prefix collisions allow client imper-
sonation in TLS 1.2 and peer impersonation in IKEv2. In particular, IKEv2 can
be broken with an offline chosen-prefix collision, which is now practical for a
powerful adversary. On the other hand, the creation of a rogue CA requires to
predict in advance all the fields of the signed certificate. Hopefully, this is not
possible with current certificate authorities, because they should randomize the
serial number field.

Usage of SHA-1. Even if practically broken only very recently, SHA-1 has been
theoretically broken since 2004. It is therefore surprising that SHA-1 remains
deployed in many security systems. In particular, as long as SHA-1 is allowed,
even if it is not used in normal operation, an attacker can use weaknesses in
SHA-1 to forge a signature, and the signature will be accepted.

First, SHA-1 is still widely used to authenticate handshake messages in secure
protocols such as TLS, SSH or IKE. As shown with the SLOTH attack [1], this
allows various attacks using chosen-prefix collision, such as breaking authenti-
cation. These protocols have removed support for MD5 after the SLOTH attack,
but SHA-1 is still widely supported. Actually, more than1 5% of the web servers
from Alexa’s top 1M (including skype.com) prefer to use SHA-1 to authenticate
TLS handshake messages.

An important effort is underway to remove SHA-1 certificates from the Web,
and major browsers are now refusing to connect to servers still using SHA-1-based
certificates. Yet SHA-1-based certificates remains present: according to scans of
the top 1 million websites from Alexa by censys.io, there are still about 35

1 https://censys.io/domain?q=tags:https+and+443.https.tls.signature.hash algorithm:
sha1.

https://skype.com
https://censys.io/domain?q=tags:https+and+443.https.tls.signature.hash_algorithm:sha1
https://censys.io/domain?q=tags:https+and+443.https.tls.signature.hash_algorithm:sha1
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thousand2 servers with SHA-1 certificates out of 1.2 million servers with HTTPS
support. SHA-1-based certificates are also used with other protocols: for instance
700 thousand3 out of 4.4 million mail servers (with IMAPS) use a SHA-1 certifi-
cate. Actually, it is still possible to buy a SHA-1 certificate from a trusted root4!
Even though recent web browsers reject those certificates, they are accepted by
older browsers and by many clients for other protocols. For instance, the “Mail”
application included in Windows 10 still accepts SHA-1 certificates without warn-
ings when opening an IMAPS connection.

Unfortunately, many industry players did not consider moving away from
SHA-1 a priority, due to important costs and possible compatibility and bug
issues induced by this move. An often-heard argument is that a simple collision
attacks against a hash function is not very useful for an attacker, because he
doesn’t have much control over the colliding messages. Therefore, there seemed
to be a long way to go before really useful collision attacks would be found for
SHA-1, if ever. Indeed, the current best chosen-prefix collision attack against
SHA-1 requires 277.1 hash calls [25], thus orders of magnitude harder than the
cost of finding a simple collision. Similarly, in the case of MD5, the cost goes
from 216 to 239 for the currently best known collision and chosen-prefix collision
attacks. However, this is a dangerous game to play as the history showed that
cryptanalysis only keep improving, and attackers will eventually come up with
ways to further improve their cryptanalysis techniques. For example, in the case
of MD5, collisions for the compression function were found [9] in 1993, collisions
for the whole hash function were found [33] in 2004, colliding X.509 MD5-based
certificates were computed [28] in 2007, and rogue Certificate Authority certifi-
cate [29] was eventually created in 2009.

3 Preliminaries

3.1 Description of SHA-1

We describe here the SHA-1 hash function, but we refer to [18] for all the complete
details.

SHA-1 is a 160-bit hash function based on the well-known Merkle-Damg̊ard
paradigm [6,16]. The message input is first padded (with message length
encoded) to a multiple of 512 bits, and divided into blocks mi of 512 bits each.
Then, each block is processed via the SHA-1 compression function h to update
a 160-bit chaining variable cvi that is initialised to a constant and public initial
value (IV): cv0 = IV . More precisely, we have cvi+1 = h(cvi,mi+1). When all
blocks have been processed, the hash output is the last chaining variable.

2 https://censys.io/domain?q=tags:https+and+443.https.tls.certificate.parsed.
signature algorithm.name:SHA1*.

3 https://censys.io/ipv4?q=tags:imaps+and+993.imaps.tls.tls.certificate.parsed.
signature algorithm.name:SHA1*.

4 https://www.secure128.com/online-security-solutions/products/ssl-certificate/
symantec/sha-1-private-ssl/.

https://censys.io/domain?q=tags:https+and+443.https.tls.certificate.parsed.signature_algorithm.name:SHA1*
https://censys.io/domain?q=tags:https+and+443.https.tls.certificate.parsed.signature_algorithm.name:SHA1*
https://censys.io/ipv4?q=tags:imaps+and+993.imaps.tls.tls.certificate.parsed.signature_algorithm.name:SHA1*
https://censys.io/ipv4?q=tags:imaps+and+993.imaps.tls.tls.certificate.parsed.signature_algorithm.name:SHA1*
https://www.secure128.com/online-security-solutions/products/ssl-certificate/symantec/sha-1-private-ssl/
https://www.secure128.com/online-security-solutions/products/ssl-certificate/symantec/sha-1-private-ssl/
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The compression function is similar to other members of the MD-SHA family of
hash functions. It is based on the Davies-Meyer construction, that turns a block
cipher E into a compression function: cvi+1 = Emi+1(cvi) + cvi, where Ek(y) is
the encryption of the plaintext y with the key k, and + is a word-wise modular
addition.

The internal block cipher is composed of 80 steps (4 rounds of 20 steps each)
processing a generalised Feistel network. More precisely, the state is divided
into five registers (Ai, Bi, Ci,Di, Ei) of 32-bit each. At each step, an extended
message word Wi updates the registers as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ai+1 = (Ai ≪ 5) + fi(Bi, Ci,Di) + Ei + Ki + Wi

Bi+1 = Ai

Ci+1 = Bi ≫ 2
Di+1 = Ci

Ei+1 = Di

where Ki are predetermined constants and fi are boolean functions (in short:
IF function for the first round, XOR for the second and fourth round, MAJ
for the third round, see Table 2). Since only a single register value is updated
(Ai+1), the other registers being only rotated copies, we can express the SHA-1
step function using a single variable:

Ai+1 = (Ai ≪ 5) + fi(Ai−1, Ai−2 ≫ 2, Ai−3 ≫ 2)
+ (Ai−4 ≫ 2) + Ki + Wi.

For this reason, the differential trails figures in this article will only represent
Ai, the other register values at a certain point of time can be deduced directly.

Table 2. Boolean functions and constants of SHA-1

Step i fi(B, C, D) Ki

0 ≤ i < 20 fIF = (B ∧ C) ⊕ (B ∧ D) 0x5a827999

20 ≤ i < 40 fXOR = B ⊕ C ⊕ D 0x6ed6eba1

40 ≤ i < 60 fMAJ = (B ∧ C) ⊕ (B ∧ D) ⊕ (C ∧ D) 0x8fabbcdc

60 ≤ i < 80 fXOR = B ⊕ C ⊕ D 0xca62c1d6

The extended message words Wi are computed linearly from the incoming
512-bit message block m, the process being called message extension. One first
splits m into 16 32-bit words M0, . . . ,M15, and then the Wi’s are computed as
follows:

Wi =

{
Mi, for 0 ≤ i ≤ 15
(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) ≪ 1, for 16 ≤ i ≤ 79
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3.2 Previous Works

Collision attacks on SHA-1. We quickly present here without details the pre-
vious advances on SHA-1 collision search. First results on SHA-0 and SHA-1 were
obtained by linearizing the compression function and constructing differential
trails based on the probabilistic event that difference spreads will indeed hap-
pen linearly. These linear trails are generated with a succession of so-called local
collisions (small message disturbances whose influence is corrected with other
message differences inserted in the subsequent SHA-1 steps) that follows the
SHA-1 message expansion. However, with this linear construction, impossibili-
ties might appear in the first 20 steps of SHA-1 (for example due to the fIF

boolean function that never behaves linearly in some specific situations) and the
cheapest linear trail candidates might not be the ones that start and end with
the same difference (which is a property required to obtain a collision after the
compression function feed-forward). Thus, since [32], collision attacks on SHA-1
are performed using two blocks containing differences. The idea is to simply
pick the cheapest linear trail from roughly step 20 to 80, without paying any
attention to the fIF constraints or to the input/output differences. Then, the
attacker will generate a non-linear differential trail for the first 20 steps in order
to connect the actual incoming input difference to the linear part difference at
step 20. With two successive blocks using the same linear trail (just ensuring
that the output difference of the two blocks have opposite signs), one can see in
Fig. 1 that a collision is obtained at the end of the second block.

Once the differential trail is set, the attacker can concentrate on finding a pair
of messages that follows it for each successive block. For this, he will construct
a large number of messages that follow the trail up to some predetermined step,
and compute the remaining steps to test whether the output difference is the
required one. The computational cost is minimized by using a simple early-abort
strategy for the 16 first steps, but also more advanced amortization methods such
as neutral bits [3], boomerangs [10] or message modification [32] for a few more
steps. Usually, the first 20 or so steps do not contribute the complexity of the
attack.

Chosen-prefix collision attacks. The first concrete application of a chosen-
prefix collision attack was proposed in [28] for MD5. This work was also the
first to introduce a birthday search phase in order to find such collisions. The
idea is to process random message blocks after the challenged prefixes, until
the chaining variable difference δ belongs to a large predetermined set S. Since
the message blocks after each prefix are chosen independently, this can be done
with birthday complexity

√
π · 2n/|S|. Then, from that difference δ, the authors

eventually manage to reach a collision by slowly erasing the unwanted difference
bits by successfully applying some near-collision blocks. We note that the starting
difference set S during the birthday phase must not be too small, otherwise
this phase would be too costly. Moreover, the near-collisions blocks must not
be too expensive either, and this will of course depend on the cryptanalysis
advancements of the compression function being studied.
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Finally, using also this two-phase strategy, in [25] is described a chosen-prefix
collision attack against the full SHA-1, for a cost of 277.1 hash calls. The improve-
ment compared to the generic 280 attack is not very large, due to the difficulty
for an attacker to generate enough allowable differences that can later be erased
efficiently with a near-collisions block. Indeed, the compression function of SHA-1
being much stronger than that of MD5, few potential candidates are found. Actu-
ally, Stevens only considers one type of near collision block, following the best
differential trail used for the collision attack. By varying the signs of the mes-
sage and output differences, and by letting some uncontrolled differences spread
during the very last steps of the compression function, a set S of 192 allowable
differences is obtained. However, having such a small set makes the birthday
part by far the most expensive phase of the attack.

In this article, we will use essentially the same strategy: a birthday phase
to reach a set S of allowable differences and a near-collision phase to remove
the remaining differences. We improve over previous works on several points.
First, we further generalise for SHA-1 the set of possible differences that can
be obtained for a cheap cost with a single message block. Secondly, we propose
a multi-block strategy for SHA-1 that allows to greatly increase the size of the
set S. Finally, we study the clustering effect that appears when using a multi-
block strategy. This can be utilised by the attacker to select dynamically the
allowable differences at the output of each successive blocks, to further reduce
the attack complexity. Notably, and in contrary to previous works, our set S is
not the direct sum of independent subspaces corresponding to distinct trails. On
the opposite, our applications use the same core differential trail for all the near-
collision blocks. Overall, we improve substantially previous attack [25] from 277.1

SHA-1 calls to only 266.9. Surprisingly, our attack is very close to some sort of
optimal since its cost is not much greater than that of finding a simple collision.
Our attack being rather generic, we believe that this might be the case for many
hash functions, which contradicts the idea that chosen-prefix collisions are much
harder to obtain than simple collisions.

One can mention other parallel researches conducted on finding chosen-prefix
collision attacks for various hash functions. For example, in [21], the author
explains how to compute collisions with random incoming differences in the inter-
nal state for the GRINDAHL hash function, the strategy being to slowly remove
these differences thanks to the many degrees of freedom available every step.
Such a divide-and-conquer technique is not applicable at all to SHA-1 as the
degrees of freedom are much fewer and only available at the beginning of the
compression function. In [15], inspired by the second-preimage attack against
SMASH [13], the authors proposed a chosen-prefix collision attack on a reduced
version of the GROSTL hash function. However, this attack strongly relies on the
ability of the attacker to perform a rebound attack, which seems really hard to
achieve in the case of SHA-1.
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4 From Collision to Chosen-Prefix Collision

4.1 The Chosen-Prefix Collision Attack

We assume that the hash function considered is an n-bit narrow pipe primitive,
based on a Merkle-Damg̊ard-like operating mode. In addition, we assume that
the compression function is built upon a block cipher in a Davies-Meyer mode.

Preparing the attack. The attacker first builds a set S and a graph G; S cor-
responds to a set of differences that can be cancelled with near-collision blocks,
and G is used to find the sequence of blocks needed to cancel a difference in S.
We first explain how to execute the attack when S and G are given, and we will
explain how to build them in Sect. 4.2.

The prefixes (stage 1 of Fig. 4). The attacker receives the two challenge
prefixes and pads them to two prefixes of the same length, to avoid differences
in the final length padding. After processing the two padded prefixes starting
from the IV, he reaches states cv/cv′, and we denote the corresponding difference
as δR.

The birthday search (stage 2 of Fig. 4). The goal of the attacker is now
to find one message block pair (u, u′) to reach a chaining variable pair with a
difference δ that belongs to S, the set of acceptable chaining variable differences.

For this stage, we use the parallel collision search algorithm of van Oorschot
and Wiener [30]. When a memory M � C is available, this algorithm can find C
collisions in a function f : {0, 1}k → {0, 1}k with complexity

√
π/2 · 2k · C, and

is efficiently parallelizable. It computes chains of iterates of the function f , and
stops when the end point is a distinguished point, i.e. it satisfies some easy to
detect property. In practice, we stop a chain when x < 2k · θ, with θ � √

C/2k,
and we store on average the starting points and end points of θ · √

π/2 · 2k · C
chains (the expected length of a chain is 1/θ). When colliding end points are
detected, we restart the corresponding chains to locate the collision point, with
an expected cost of 2C/θ, which is small compared to the total complexity if
θ � √

C/2k.
In our case, we are looking for message blocks (u, u′) such that h(cv, u) −

h(cv′, u′) ∈ S. Therefore, we need a function f such that a collision in f corre-
sponds to good (u, u′) with high probability. First, we consider a truncation func-
tion τ : {0, 1}n → {0, 1}k, so that pairs (x, x′) with x−x′ ∈ S have τ(x) = τ(x′)
with high probability:

p = Pr
x,x′

[τ(x) = τ(x′) | x − x′ ∈ S] ≈ 1.

For functions of the MD-SHA family, the group operation + is a word-wise modular
addition, and we build τ by removing bits that are directly affected when adding
a value in S, and bits that are affected by a carry with a relatively high proba-
bility. This typically leads to p close to one (as seen in previous attacks [25,29],
and the new attacks in this paper). Then, we build f as:
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f(u) :=

{
τ(h(cv ,pad(u))) if u[0] = 1;
τ(h(cv′,pad(u))) else.

The probability that a collision in f corresponds to a pair (u, u′) with h(cv, u)−
h(cv′, u′) ∈ S can be estimated as:

pf =
1
2

· Pr
x,x′

[x − x′ ∈ S | τ(x) = τ(x′)] =
p

2
· |S|/2n

2−k

Finally, we need 1/pf collisions in f , and the total complexity of the birthday
stage is on average:

√
π

2
· 2k

pf
=

√
π · 2n

p · |S| ≈
√

π · 2n

|S| .

The multi-block collision search (stage 3 of Fig. 4). The attacker now
uses the graph G to build a sequence of near-collision blocks that ends up with
a collision. Each node of the graph represents one chaining variable difference
in the set S. To each node i of the graph is associated a cost value wi that
represents the cost an attacker will expect to pay from this particular chaining
variable difference i in order to reach a colliding state (with one or multiple
message blocks). Of course, a null cost will be associated with the zero difference
(w0 = 0). A directed edge from node i to node j represents a way for an attacker
to reach chaining variable difference j from difference i with a single message
block. Note that the graph is acyclic, as we will ensure that the edges will always
go to strictly lower costs (i.e. an edge from i to j is only possible if wj < wi). To
each edge is attached the details of the differential trail and message difference
to use for that transition to happen. However, a very important point is that
all edges going out of a node i will share the same core differential trail (by
core differential trail, we mean the entire differential trail except the last steps
for which one can usually accept a few divergences in the propagation of the
differences). For example, during the attack, from a chaining difference i, an
attacker can potentially reach difference j or difference k using the same core
differential trail (and thus without having to commit in advance which of the two
differences he would like to reach). Thus, in essence, the details of the differential
trail and message difference to use can be directly attached to the source node.

Once the attacker hits a starting difference δ ∈ S in the birthday phase, he
will pick the corresponding node in G, and use the differential trail and message
difference attached to this node. He will use this differential trail until he reaches
one of the target nodes (which has necessarily a lower expected cost attached
to it). As explained in the next section, targeting several nodes simultaneously
reduces the cost of the attack, because it is easier to hit one node out of many
than a fixed one. We call this the clustering effect, because we use a cluster of
paths in the graph. When a new node is reached, the attacker repeats this process
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until he eventually reaches the colliding state (i.e. null difference). Overall, the
expected computational cost for this phase is the cost attached to the node δ (in
practice, when actually computing one collision, he might pay a slightly lower
or higher computational cost as the wi’s are expected values).

We note that any suffix message blocks that do not contain differences can of
course be added after this colliding state, as the Merkle-Damg̊ard-like mode will
maintain the collision throughout the subsequent compression function calls.

4.2 Building the Set S and the Graph G
We now describe how the set S and the graph G can be built during the prepara-
tion of the attack. For that, we first need to describe what an adversary can do
when he tries to attack the compression function. We consider that the attacker
knows some good core differential trails for the internal block cipher E, that is
differential trails that go from early steps to late steps of E. For each core dif-
ferential trail CDTi there are several possible output differences δi

j for E. This is
typically what happens in the chosen-prefix collision attack on SHA-1 [25] where
some differences in the very last steps can be allowed to spread differently than
planned, thus generating new output differences. We denote the set of all possible
output differences as D (in particular, we have 0 ∈ D, and δ ∈ D ⇐⇒ −δ ∈ D
because of symmetries).

We finally assume that any input difference for E can be mapped to any of
the core differential trails inside the primitive. In the case of a SHA-1 attack,
this is achieved with the non-linear part of the trail in the first steps of the
function. As shown in previous works, it allows to map any input difference to
any internal difference. The non-linear part has a low probability, but during the
near-collision search this is solved using the many degrees of freedom available
in the first steps of the function.

Building the graph G′. The attacker will first build a graph G′ and filter
it later to create G. The graph G′ is similar to the graph G: each node will
represent a chaining variable difference. A directed edge from node i to node
j represents again a way for an attacker to reach chaining variable difference
j from difference i with a single message block, stored with the details of the
differential trail attached to it, and the cost to find the corresponding block. The
differences with G are that (see Figs. 5 and 6):

– G′ can potentially be cyclic, as we do not ensure that an edge goes from a
higher to a strictly smaller cost;

– all outgoing edges from a node i will not necessarily share the same core
differential trail;

– there can be several edges from i to j, with different core differential trails.

In order to build the graph G′, starting from the colliding state δ = 0, we
will simply proceed backward. We go through all possible core differential trails
for E and their possible output differences δi

j . Due to the feed-forward of the
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each node. In particular, note that use
of clustering reduces the cost of node
4α from 4 to 64/27 ≈ 2.37 (Color figure
online)

Davies-Meyer construction, all these differences can be used to reach the colliding
state by simply forcing their respective opposite −δi

j as input difference of the
cipher (since we assumed that any input difference for E can be mapped to any
of the core differential trails inside the primitive, this is always possible). Thus,
for each such difference δi

j coming from a core differential trail CDTi, we will
add a node −δi

j in the graph G′, and an edge going from this new node to the
colliding state. If a node with that difference already exists in the graph, we add
the edge between this node and the colliding state. This means that nodes can
have several incoming and outgoing edges.

We iteratively repeat this process again with all the newly created nodes
as starting points (instead of the collision state). This will create a bigger and
bigger graph as we keep iterating, and the attacker can simply stop when he
believes that he has enough nodes in the graph (alternatively, he can set an
upper limit on the cost of the nodes to consider, or on the depth of the search,
which will naturally limit the size of the graph).

The clustering effect. A simple way to build a graph G for the attack is to
keep only the minimal cost paths in the graph G′ (the corresponding edges form
a tree), and to set the cost of the nodes to cost of the minimal path. However,
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the attack cost can be greatly improved with the clustering effect : during the
last phase of the attack, when the attacker is currently located at a node N ,
he does not necessarily need to choose in advance which outgoing edge of N he
will try to follow. Indeed, the only commitment he needs to make at this point
is which core differential trail he will use to go to the next node. Thus, he can
simultaneously target several output differences corresponding to the same core
differential trail, and the cost to reach one difference out of many is significantly
lower than the cost of reaching any given output difference. For instance, when
computing the first block of a SHA-1 collision, Stevens [25] allows six output
differences with a similar cost, so that the cost to reach one of them is one sixth
of the cost to reach a predetermined one.

For a given node, we call bundle of a core differential trail CDTi the grouping
of all outgoing edges of that node that use CDTi (see Fig. 5). Let BN stand for
the set of all bundles of a node N , where each bundle β ∈ BN corresponds to
a distinct core differential trail CDTi. Then, for each node of G′, we compute its
assigned cost as follows5:

wN = min
β∈BN

⎧
⎪⎪⎨

⎪⎪⎩

1 +
∑

(N,j)∈β|wj<wN

(
wj/cβ

j

)

∑

(N,j)∈β|wj<wN

(
1/cβ

j

)

⎫
⎪⎪⎬

⎪⎪⎭
, (1)

where for an edge (N, j) of the bundle β, cβ
j represents the cost to find a con-

forming message pair with difference output j − N for E, and wj is the cost
assigned to the node j.

We initialize the costs of the nodes in G′ using the shortest path in the
graph, and update them iteratively until we can’t find any more opportunity for
improvement.

Building S and G. The graph G is obtained from G′ by only keeping the edges
that goes from a higher to a strictly lower cost (in order to render the graph
acyclic), and by only keeping for each node the outgoing edges for the bundle
that minimizes the cost wN in (1).

5 In order to explain this formula, we consider that when the adversary uses a bundle
β, he has to perform Cβ operations to find a pair conforming to the core differential
trail up to some intermediate step, and those pairs lead to an output difference j−N
(i.e. to node j) with probability pβ

j (with pβ
j = Cβ/cβ

j ). If none of the predetermined
output differences is reached (or if the target node reached has a cost wj ≥ wN ),
then he stays at node N and will have to still pay wN to reach the colliding state.
Thus, we have that:

wN = Cβ +
∑

j∈β|wj<wN

(
pβ

j · wj

)
+

⎛
⎝1 −

∑
j∈β|wj<wN

pβ
j

⎞
⎠ · wN

which leads to (1) with cβ
j = Cβ/pβ

j .
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The set S is then finally deduced by harnessing all the differences corre-
sponding to every node in G (one node in G will correspond to one differ-
ence in S). In particular, if G′ includes all nodes at depth at most r, then
S = {δ1 + δ2 + · · · + δr | δ1, δ2, . . . , δr ∈ D}.

5 Application to MD5

Our techniques can easily be applied to MD5, to build an alternative chosen-
prefix collision attack. We can’t reach an attack complexity as low as 239 (the
best attack from [29]), because this would require to build a set S and graph G
of size roughly 250, which is impractical. However, when the number of blocks
available for the chosen-prefix collision is limited, the complexity of the best-
known attack grows; for instance, the chosen-prefix collision used to create a
rogue certificate was limited to 3 blocks, and this increased the complexity to
249. In this scenario we can improve the currently best-known attack with our
multi-block technique using a single differential trail.

We start from the single-block chosen-prefix collision attack given in [29,
Sect. 6]: this attack uses a high probability trail for MD5 collisions, where the last
steps are relaxed to allow a set D of size 223.3. Therefore the birthday stage has
complexity roughly

√
π · 2128/223.3 ≈ 253.2, and the near-collision block is found

with a complexity of 240.8. In our analysis, we recomputed the set D used by
Stevens et al., but we actually found a set of size 224.2 using the same trail, with
a maximum cost of 226 · 214.8 (following [29], we only consider output differences
with δa = −25, δd = −25+225, δc = −25 mod 220). Then, we extend D by adding
the zero value and the opposite of each value, to generate D′ := D ∪ −D ∪ {0}.
Finally, we build the set S and the graph G′ corresponding to an attack with
at most 2 blocks, with S := {δ1 + δ2 | δ1, δ2 ∈ D′}. Since the cost of the near-
collision stage is negligible (at most 2 · 240.8), we do not need to use clustering,
and we can just use the minimal cost paths of G′ as the graph G.

We find that the set S contains 237.1 elements, so that the birthday stage
has a complexity of roughly

√
π · 2128/237.1 ≈ 246.3. Therefore, we have a sim-

ple chosen-prefix collision attack with two near-collision blocks with complexity
246.3, while the best previous attack with two blocks or less requires 253.2 MD5
computations, and even the best attack with three blocks requires 249 MD5
computations.

6 Application to SHA-1

For the attack on SHA-1, we directly recycle the details of the collision attack
from [26]: we will use the same linear part for our successive near-collision blocks
(even though the very last steps might behave slightly differently as we will
explain in this section). We assume that the attacker can generate non-linear
parts on the fly and can apply amortization methods just like in [26]. In order
to validate this assumption, we have tried to generate a non-linear part with
several random input differences from S and random input chaining values.
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In our experiments, we have successfully generated such non-linear part, and
we could even make it limited to the very first SHA-1 steps. We discuss this
assumption and our experiments in more details in Sect. 6.3.

We now explain how to apply the framework of Sect. 4 to a chosen-prefix
collision against SHA-1. As mentioned, our attack uses the best core trail known
for attacks against SHA-1, as used in previous attacks [24–26]. This allows us to
have a relatively good complexity estimation for the attack, because this trail has
been well studied, and a full collision attack with this trail was recently imple-
mented. In the following we denote the complexity to find a block conforming to
the trail (with an optimal output difference) as Cblock. In the case of the recent
collision attack, this cost was estimated as Cblock = 264.7 SHA-1 evaluations on a
GTX-970 GPU [26, Sect. 5.7]. In this work, we consider several hypothesis for the
cost of finding near-collision blocks: an optimistic hypothesis with Cblock = 264.7

(following [26]) and a conservative hypothesis with Cblock = 267.7. This parame-
ter depends on the difficulty of linking an arbitrary input difference to the core
trail, and will be discussed in more detail below.

As in the previous chosen-prefix collision attack on SHA-1 [25], we consider
several variants of the core trail by changing some of the message constraints in
the last steps (in particular, we flip the sign of some message bits), and we relax
the last steps to reach a larger set of output difference. However, we do this more
exhaustively than Stevens: he only describes a set D of size 192 with cost at most
1.15 ·Cblock, but we found a set of size 8768 with cost at most 8 ·Cblock, including
576 values with cost at most 1.15 · Cblock. In particular, this directly leads to an
improvement of the single-block chosen-prefix collision from [25], with complexity
roughly

√
π · 2160/8768 ≈ 274.3, rather than

√
π · 2160/192 ≈ 277 (ignoring some

technical details of the birthday step).
More precisely, we allow the signs of the message differences to not necessarily

follow local collision patterns in the last steps. Instead, we consider variants of the
trail where each of those constraints is either followed or not. In addition, we fix
the sign of some additional state bits to reduce the cost to reach a given output
difference. Table 3 compares our message constraints with those used for the
second-block of the attack from [26]. This leads to 288 differences with optimal
probability (2−19.17 in steps 61 to 79), and 288 with almost optimal probability
(2−19.36 in steps 61 to 79), as listed in Table 4. Moreover, we consider output
differences whose cost is higher than the optimal cost Cblock, up to roughly
8 · Cblock (we allow a probability up to 2−22 in steps 61 to 79).

Instead of building the corresponding set of output differences and their prob-
ability analytically, we used a heuristic approach. For each choice of the message
constraints zi in Table 3 (up to some symmetries), we generated 230 interme-
diate states at step 60, and we computed the corresponding output differences
in order to identify high probability ones. We also keep track of the differences
reached with the same constraints, to build the corresponding bundles of differ-
ences. Next, we used symmetries in the set of differences to verify the consistency
of the results, and to increase the precision of the heuristic probabilities. This
strategy leads to a set of 8768 possible output differences, grouped in 2304 bun-
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Table 3. Message constraints in the final steps. The zi are fixed to 0 or 1 to define
variant of the trail with distinct output differences. We use three more constraints
than [26].

Stevens et al. constraints [27] Our constraints

W
[5]
68 = W

[0]
67 ⊕ 1 W

[5]
68 = W

[0]
67 ⊕ 1

W
[30]
72 = W

[0]
67 ⊕ 1 W

[30]
72 = W

[0]
67 ⊕ 1

W
[6]
71 = W

[1]
70 ⊕ 1 W

[6]
71 = W

[1]
70 ⊕ 1

W
[5]
72 = W

[0]
71 ⊕ 1 W

[5]
72 = W

[0]
71 ⊕ 1

W
[30]
76 = W

[0]
71 ⊕ 1 W

[30]
76 = W

[0]
71 ⊕ 1

W
[7]
74 = W

[2]
73 ⊕ 1 W

[7]
74 = W

[2]
73 ⊕ 1, W

[2]
73 = z1

W
[6]
75 = W

[1]
74 ⊕ 1 W

[6]
75 = W

[1]
74 ⊕ 1

W
[6]
76 = W

[1]
75 ⊕ 1 W

[6]
76 = W

[1]
75 ⊕ 1

W
[1]
76 = W

[0]
76 ⊕ 1 W

[1]
76 = z2, W

[0]
76 = z3

W
[1]
77 = W

[0]
77 ⊕ z1 W

[1]
77 = z4, W

[0]
77 = z5

W
[2]
77 = W

[1]
77 ⊕ 1 W

[2]
77 = z6

W
[8]
77 = W

[3]
76 ⊕ 1, W

[3]
76 = z2 W

[3]
76 = z7, W

[8]
77 = z8

W
[0]
78 = W

[7]
74 W

[0]
78 = z9

W
[3]
78 = z3 W

[3]
78 = z10

W
[7]
78 = z4 W

[7]
78 = z11

W
[2]
79 = z5 W

[2]
79 = z12

W
[4]
79 = z6 W

[4]
79 = z13

dles. We list the output differences with (almost) optimal probability that we
have identified in Table 4, with the corresponding bundles (we do not give the
set with all considered differences due its large size).

Next, we build the set S of acceptable differences, and the graph G that
indicates the sequences of near-collision blocks to use to cancel the differences in
S. We first build the graph G′ as explained in Sect. 4.2. We use a limit on the cost
of the nodes added to graph: we only consider nodes that have a path with cost
at most 18 · Cblock in the graph G′ (where this cost is computed with a single
path, without using clustering). This yield a set of 233.78 unique differences.
After optimizing the cost with clustering, most of the nodes have a cost at most
4.5 · Cblock, and we use a subset of the graph by bounding the cost of the near-
collision stage. We describe various trade-offs in Table 5: a larger set reduces the
cost of the birthday stage, but increase the cost of the near-collision stage.

We note that the memory requirements of our attack are rather limited: one
just has to store the graph, and the chains for the birthday phase. With the
parameters we propose, this represents less than 1 TB.
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Table 4. Bundles of trails with (near) optimal cost and the corresponding probability
for steps 61–79. For each bundle Bi in the table, there are 32 related bundles where we
flip some of the messages bits, that can be constructed as:
B0 = {Bi}
B1 =

{{β + (25, 0, 0, 0, 0) | β ∈ B} ∣∣ B ∈ B0

} ∪ B0

B2 =
{{β + (23, 0, 0, 0, 0) | β ∈ B} ∣∣ B ∈ B1

} ∪ B1

B3 =
{{β + (213, 28, 0, 0, 0) | β ∈ B} ∣∣ B ∈ B2

} ∪ B2

B4 =
{{β + (29, 24, 0, 0, 0) | β ∈ B} ∣∣ B ∈ B3

} ∪ B3

B5 =
{{β + (26, 2, 0, 0, 0) | β ∈ B} ∣∣ B ∈ B4

} ∪ B4.
The set used in [25] corresponds to bundles B1 to B4, with extension rules B1 to B4.
Note that most output differences appears in several bundles.

Bundle Output difference Proba (− log)

B1 0xffffedea 0xffffff70 0x00000000 0x00000002 0x80000000 19.17

0xffffedee 0xffffff70 0x00000000 0x00000002 0x80000000 19.17

0xffffefea 0xffffff80 0x00000000 0x00000002 0x80000000 19.17

0xffffefee 0xffffff80 0x00000000 0x00000002 0x80000000 19.17

0xffffe5ec 0xffffff30 0x80000000 0x00000002 0x80000000 19.36

0xffffe7ec 0xffffff40 0x80000000 0x00000002 0x80000000 19.36

B2 0xffffedea 0xffffff70 0x00000000 0xfffffffe 0x80000000 19.17

0xffffedee 0xffffff70 0x00000000 0xfffffffe 0x80000000 19.17

0xffffefea 0xffffff80 0x00000000 0xfffffffe 0x80000000 19.17

0xffffefee 0xffffff80 0x00000000 0xfffffffe 0x80000000 19.17

0xffffe5ec 0xffffff30 0x80000000 0xfffffffe 0x80000000 19.36

0xffffe7ec 0xffffff40 0x80000000 0xfffffffe 0x80000000 19.36

B3 0xffffedea 0xffffff70 0x00000000 0x00000002 0x80000000 19.17

0xffffedee 0xffffff70 0x00000000 0x00000002 0x80000000 19.17

0xffffefea 0xffffff80 0x00000000 0x00000002 0x80000000 19.17

0xffffefee 0xffffff80 0x00000000 0x00000002 0x80000000 19.17

0xfffff5ec 0xffffffb0 0x80000000 0x00000002 0x80000000 19.36

0xfffff7ec 0xffffffc0 0x80000000 0x00000002 0x80000000 19.36

B4 0xffffedea 0xffffff70 0x00000000 0xfffffffe 0x80000000 19.17

0xffffedee 0xffffff70 0x00000000 0xfffffffe 0x80000000 19.17

0xffffefea 0xffffff80 0x00000000 0xfffffffe 0x80000000 19.17

0xffffefee 0xffffff80 0x00000000 0xfffffffe 0x80000000 19.17

0xfffff5ec 0xffffffb0 0x80000000 0xfffffffe 0x80000000 19.36

0xfffff7ec 0xffffffc0 0x80000000 0xfffffffe 0x80000000 19.36

B5 0xffffedaa 0xffffff6e 0x00000000 0x00000002 0x80000000 19.17

0xffffedae 0xffffff6e 0x00000000 0x00000002 0x80000000 19.17

0xffffefaa 0xffffff7e 0x00000000 0x00000002 0x80000000 19.17

0xffffefae 0xffffff7e 0x00000000 0x00000002 0x80000000 19.17

0xffffe5ac 0xffffff2e 0x80000000 0x00000002 0x80000000 19.36

0xffffe7ac 0xffffff3e 0x80000000 0x00000002 0x80000000 19.36

B6 0xffffedaa 0xffffff6e 0x00000000 0xfffffffe 0x80000000 19.17

0xffffedae 0xffffff6e 0x00000000 0xfffffffe 0x80000000 19.17

0xffffefaa 0xffffff7e 0x00000000 0xfffffffe 0x80000000 19.17

0xffffefae 0xffffff7e 0x00000000 0xfffffffe 0x80000000 19.17

0xffffe5ac 0xffffff2e 0x80000000 0xfffffffe 0x80000000 19.36

0xffffe7ac 0xffffff3e 0x80000000 0xfffffffe 0x80000000 19.36

B7 0xffffedaa 0xffffff6e 0x00000000 0x00000002 0x80000000 19.17

0xffffedae 0xffffff6e 0x00000000 0x00000002 0x80000000 19.17

0xffffefaa 0xffffff7e 0x00000000 0x00000002 0x80000000 19.17

0xffffefae 0xffffff7e 0x00000000 0x00000002 0x80000000 19.17

0xfffff5ac 0xffffffae 0x80000000 0x00000002 0x80000000 19.36

0xfffff7ac 0xffffffbe 0x80000000 0x00000002 0x80000000 19.36

B8 0xffffedaa 0xffffff6e 0x00000000 0xfffffffe 0x80000000 19.17

0xffffedae 0xffffff6e 0x00000000 0xfffffffe 0x80000000 19.17

0xffffefaa 0xffffff7e 0x00000000 0xfffffffe 0x80000000 19.17

0xffffefae 0xffffff7e 0x00000000 0xfffffffe 0x80000000 19.17

0xfffff5ac 0xffffffae 0x80000000 0xfffffffe 0x80000000 19.36

0xfffff7ac 0xffffffbe 0x80000000 0xfffffffe 0x80000000 19.36
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6.1 Limiting the Number of Near-Collision Blocks

The attack above is optimized to minimize the time complexity of the attack,
but this can result in long paths in the graph. For instance, when starting from
a random difference with cost at most 3.0 ·Cblock, a random path has on average
15.7 near-collision blocks, but the maximal length is 26 near-collision blocks. This
might be impractical for some applications of chosen-prefix collision attacks, and
the work needed to generate all the differential trails for the near-collision blocks
might also be an issue.

Therefore, we propose an alternative attack where we limit the length of the
paths in the graph G. This result in a slightly higher complexity, but might be
better in practice. More precisely, we first construct a graph with only paths
of length 1, and we iteratively build graphs by increasing the length of allowed
paths. Note that a given difference can often be reached by many paths of varying
length, and the cost of a node decreases when allowing longer paths.

We have constructed exactly the graph with all paths of length at most
4, and all paths of length at most 8 and cost at most 3.5 · Cblock; for larger
parameters, we cannot build the full graph, but we can build an approximation
by limiting the set of values as in the previous construction. We give the size
of the corresponding sub-graphs in Table 6. As we can see, with 8 near-collision
blocks we already have a set S almost as large as the set corresponding to the
previous attack (cf. Table 5), so that limiting the attack to 8 blocks has a small
impact on the complexity. We can even find chosen-prefix collisions with just 4
near-collision blocks with a small cost increase, using a larger threshold on the
maximum cost per block. We evaluate the complexity of such attacks in detail
in Table 7.

We can also study the sparseness of the values in S to better understand the
difficulty of building the differential trails for the near collision blocks. Using the
set of size 229.71 with a limit of 8 near-collision blocks and a maximum cost of
3.0 ·Cblock, the maximum weight in the differences is 26, and the average is 15.4
(using the non-adjacent form—NAF).

6.2 Birthday Stage

For the birthday stage of the attack, we follow the approach given in [25]: we con-
sider a truncation of the SHA-1 state by keeping bits which are likely to contain a
difference, and we use the distinguished points technique of [30]. Parameters for
the birthday step with various choice of G are given in Table 5; we now explain
in detail the case where the maximum cost of the near-collision stage is set to
3.0 · Cblock. First, we truncate the state to 98 bits6 so that for a random pair
of values with their difference in S, there is a probability 0.78 that the values
collide on 98 bits (this probability has been computed with the tools from [14]).
Reciprocally, if two truncated SHA-1 outputs are equal, then their difference is

6 Given by mask 0x7f800000, 0xfffc0001, 0x7ffff800, 0x7fffff80, 0x7fffffff.
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in the set S with probability 2−31.97. Therefore, the birthday stage will require
on average 2 · 231.97 collisions in the following function:

f(r) :=

{
τ(h(cv ,pad(u))) if u[0] = 1;
τ(h(cv′,pad(u))) else.

In order to keep the cost of rerunning the trail low, we use chains of average
length 231 (i.e. a point u is distinguished when u < 298−31). Therefore, the
expected complexity of the birthday stage is7:

T =
√

π/2 · 298 · 232.97 ≈ 265.81 SHA-1 computations

M = 265.81/231 · 19 bytes ≈ 570GB,

and the cost to re-run the chains to locate collisions is only 232.97 ·2 ·231 ≈ 264.97.
Finally, we can evaluate the complexity of the full attacks as: 265.81 + 264.97 +
3.0 · Cblock.

Table 5. Trade-offs between the cost of birthday phase and the near-collision phase.

Set S Birthday parameters

Max cost Size Mask Proba # coll. Chain len. # chain Attack cost

2.0 · Cblock 224.66 106 bits 0.71 230.83 234 234.74 268.74 + 265.83 + 2.0 · Cblock

2.5 · Cblock 228.59 102 bits 0.65 231.03 232 234.84 266.84 + 264.03 + 2.5 · Cblock

3.0 · Cblock 230.95 98 bits 0.76 232.44 231 234.55 265.55 + 264.44 + 3.0 · Cblock

3.5 · Cblock 232.70 98 bits 0.76 230.70 230 234.68 264.68 + 261.70 + 3.5 · Cblock

4.0 · Cblock 233.48 98 bits 0.74 229.95 230 234.30 264.30 + 260.95 + 4.0 · Cblock

4.5 · Cblock 233.66 98 bits 0.74 229.77 230 234.21 264.21 + 260.77 + 4.5 · Cblock

6.3 Near-Collision Stage

An important parameter to evaluate the cost of the attack is Cblock, the com-
plexity to find near-collision blocks. An optimistic hypothesis is that we can
find them with same complexity as in the attack of [26], i.e. Cblock = 264.7. As
mentioned earlier, we have conducted tests to verify that one can easily find
short non-linear differential paths, regardless of the input chaining difference
and value, to allow for a good use of neutral bits (one path example is given in
Table 8).

We note that our trails are somewhat more constrained than the trails used
in the collision attack, because we have denser chaining value differences and we
have a few more conditions in the last round, as seen in Table 3. This could lead
to fewer degrees of freedom than in the collision attack of Stevens et al., and
increase the cost of finding a conforming block. In particular, this can affect the
7 To store a chain, we use 40 bits for the starting point, 40 bits for the length, and

98 − 31 = 67 bits for the output, i.e. 19 bytes in total.
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Table 6. Size of the set S with various limits on the maximum cost and on the number
of near-collision blocks. We give a lower bound when we couldn’t compute the full set.

Max Cost 1 bl. 2 bl. 3 bl. 4 bl. 5 bl. 6 bl. 7 bl. 8 bl.

2.0 · Cblock 29.17 216.30 219.92 222.05 223.13 223.95 224.44 224.55

2.5 · Cblock 210.17 216.62 221.04 223.76 225.50 226.58 227.38 227.92

3.0 · Cblock 210.17 217.10 221.76 224.66 226.58 227.95 228.96 229.71

3.5 · Cblock 212.53 217.89 222.47 225.62 227.70 229.18 230.29 231.22

4.0 · Cblock 212.53 218.60 222.97 226.34 ≥ 228.68 ≥ 230.35 ≥ 231.55 ≥ 232.15

5.0 · Cblock 212.53 219.65 224.18 227.44 ≥ 229.83 ≥ 231.64 ≥ 232.95 ≥ 233.04

6.0 · Cblock 212.53 219.79 224.81 228.26 ≥ 230.74 ≥ 232.55 ≥ 233.59 ≥ 233.59

7.0 · Cblock 213.09 220.37 225.30 228.82 ≥ 231.33 ≥ 232.93 ≥ 233.77 ≥ 233.77

8.0 · Cblock 213.09 220.62 225.72 229.27 ≥ 231.72 ≥ 233.09 ≥ 233.81 ≥ 233.81

Table 7. Trade-offs between the cost of birthday phase and the near-collision phase
with a limited number of near-collision blocks (4 or 8).

Set S Birthday parameters

Max bl. Max cost Size Mask Proba # coll. Chain len. # chain Attack cost

4 4.0 · Cblock 226.34 106 bits 0.48 229.70 233 235.18 268.18 + 263.70 + 4.0 · Cblock

4 5.0 · Cblock 227.44 102 bits 0.67 232.14 232 235.40 267.40 + 265.14 + 5.0 · Cblock

4 6.0 · Cblock 228.26 102 bits 0.65 231.35 232 235.00 267.00 + 264.35 + 6.0 · Cblock

4 7.0 · Cblock 228.82 102 bits 0.64 230.82 232 234.74 266.74 + 263.82 + 7.0 · Cblock

4 8.0 · Cblock 229.26 102 bits 0.63 230.39 232 234.52 266.52 + 263.39 + 8.0 · Cblock

8 2.0 · Cblock 224.55 106 bits 0.71 230.94 234 234.80 268.80 + 265.94 + 2.0 · Cblock

8 2.5 · Cblock 227.92 102 bits 0.63 231.75 232 235.20 267.20 + 264.75 + 2.5 · Cblock

8 3.0 · Cblock 229.71 98 bits 0.73 233.73 231 235.19 266.19 + 265.73 + 3.0 · Cblock

8 3.5 · Cblock 231.22 98 bits 0.72 232.23 230 235.44 265.44 + 263.23 + 3.5 · Cblock

use of accelerating techniques such as neutral bits and boomerangs; boomerangs
are the most powerful technique, but they require significant degrees of freedom
in the path construction. Therefore, we also consider a conservative complexity
estimate, where we assume that boomerangs are no longer available. Since there
are three boomerangs in the trail of [26], this would give Cblock = 267.7.

Our experiments show that that those assumptions are reasonable. The path
given in Table 8 is about as constrained as the path used for the second block of
the collision attack [26] in the first round. In particular, most condition are
in the first 6 steps, and don’t affect the use of neutral bits, and the same
three boomerang are available. In general we expect similar results with a few
boomerangs, but this might of course vary depending on the exact chaining input
difference/value.

Finally, with the optimistic hypothesis, the best trade-off is to use a limit of
3.5 · Cblock, for a total complexity of

264.68 + 261.70 + 3.5 · Cblock ≈ 266.9 (using Cblock = 264.7)
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Table 8. Example of a SHA-1 non-linear differential path generated for one of the
differences in S. Notations follow [8]. δ = [−217 − 215 + 210 − 28 + 25 + 26 − 22 +
20, −213 + 211 + 210 + 25 − 23, −25 + 20, −24 − 20, 0], with cost 2.954 · Cblock.

i Ai Wi

−4: 10110011001011000101111011010101

−3: 110110001100001000100111un01un01

−2: 001010100011010111011unnn1011n11

−1: 00101010111000011un1nn0010n0u111

00: 1010111000111un1u0110n1u0nn0un1n 1011un01010001010101111110-10-u0

01: 10100u101u0u10101n1nu0111n-u1-1u nu1110011101100011110-00-00n0110

02: 1u1u0nn010nuunnu11011uuuu0001uu1 u1nn0u000100010001010111---unn00

03: u1un01uunn1u1010u0u101101nu11uu1 00uuun1111010111100111010000-u1-

04: n0110unnnnnnnnnnnnnn11nu1000u1n1 n0nunu00----001----0---1000uu0u1

05: un0n011100--11001--111-1u1uu1u11 10u-1--101110-000-1100-0110n-00-

06: 1101-0-101101011110101-10nun01uu --u--u1----------------0101uun--

07: 0nuu-00----------------0100100uu xun-nu------------1-1----11u0u--

08: ---u01----------------0--0n010-u ----un------------------------u0

09: 0n--------------------0--1-1--0u xn----------------------0--n-0--

10: 1--1-1------------------0---1--- x-nx-x-------------1-------uxx--

11: -1n-----------------------0----- --u0nn-------------------1-1-u--

12: ----0---------------------1----- n-nxxu---------------------un---

13: n---1--------------------------- x-uu-0---------------------u----

14: --n----------------------------- --------------------------1-un--

15: u-1-1--------------------------- x-nxn----------------------n----

16: un0-0--------------------------- ----u----------------------nu---

With the conservative hypothesis, the best trade-off is to set the limit at 2.5 ·
Cblock, for a total complexity of

266.84 + 264.03 + 2.5 · Cblock ≈ 269.35 (using Cblock = 267.7)

There are other trade-offs possible between the various parameters of attack.
For instance, we discussed attacks with a limited number of near-collision blocks
in Sect. 6.1; we can now evaluate the complexity of the resulting attacks. If we
limit the attack to 8 near-collision blocks, the best trade-offs give the following
complexities for the optimistic and conservative hypothesis respectively:

265.44 + 263.23 + 3.5 · Cblock ≈ 267.2 (using Cblock = 264.7)

267.20 + 264.75 + 2.5 · Cblock ≈ 269.5 (using Cblock = 267.7)
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Even with a limit of only 4 near-collision blocks, we have a relatively small
increase of the complexity, with the following trade-offs:

266.74 + 263.82 + 7.0 · Cblock ≈ 268.3 (using Cblock = 264.7)

268.18 + 263.70 + 4.0 · Cblock ≈ 270.2 (using Cblock = 267.7)

7 Conclusion and Future Works

This work puts another nail in the SHA-1 coffin, with almost practical chosen-
prefix collisions, between five and twenty-six times more expensive than the
identical-prefix collisions recently demonstrated. This shows that continued
usage of SHA-1 for certificates or for authentication of handshake messages in
TLS, SSH or IKE is dangerous, and could already be abused today by a well-
motivated adversary. SHA-1 has been broken since 2004, but it is still used in
many security systems; we strongly advise users to remove SHA-1 support to
avoid downgrade attacks.

More generally, our results show that, for some hash functions, chosen-prefix
collision attacks are much easier than previously expected, and potentially not
much harder than a normal collision search.

Our research opens several new directions. Obviously, future work will have
to implement this attack to demonstrate a real chosen-prefix collision for SHA-1.
While the computation cost of our attack is somewhat practical, SHA-1 attacks
still require a huge computation power (thousands of GPUs in order to obtain the
chosen-prefix collision in a reasonable time) and a large implementation effort.
For a concrete demonstration, a good target would be to break a protocol such
as TLS or IKE, or to build a rogue certificate authority.

Another research direction is to study how one can improve SHA-1 collision
attacks, not only for minimising the cost of finding a simple collision, but to
improve our chosen-prefix collision search complexity. In particular, our attack
requires the ability to reach many distinct output differences for the compression
function. In this paper, to simplify our analysis, we only considered the differ-
ential trail from [26] because a real collision was found with this trail, and a
precise complexity evaluation was conducted. However, it should be possible to
increase the pool of available differences, and further reduce the total complexity,
by using other (slightly more costly) differential trails.

Finally, a last direction is to evaluate how our strategy actually applies to
other hash functions, such as RIPEMD, (reduced-round) SHA-2, or even others.
Again, this will require a deep knowledge of the functions studied, as many
details might impact the overall complexity. We can however expect that our
attack strategy will be applicable mostly on classical Davies-Meier constructions
inside a single-pipe Merkle-Damg̊ard operating mode.

In order to make our easier to verify, we are publishing some additional data
and code online at: https://github.com/Cryptosaurus/sha1-cp.
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Abstract. We present new preimage attacks on standard Keccak-224
and Keccak-256 that are reduced to 3 and 4 rounds. An allocating
approach is used in the attacks, and the whole complexity is allocated to
two stages, such that fewer constraints are considered and the complexity
is lowered in each stage. Specifically, we are trying to find a 2-block
preimage, instead of a 1-block one, for a given hash value, and the first
and second message blocks are found in two stages, respectively. Both
the message blocks are constrained by a set of newly proposed conditions
on the middle state, which are weaker than those brought by the initial
values and the hash values. Thus, the complexities in the two stages are
both lower than that of finding a 1-block preimage directly. Together with
the basic allocating approach, an improved method is given to balance
the complexities of two stages, and hence, obtains the optimal attacks.
As a result, we present the best theoretical preimage attacks on Keccak-
224 and Keccak-256 that are reduced to 3 and 4 rounds. Moreover, we
practically found a (second) preimage for 3-round Keccak-224 with a
complexity of 239.39.

Keywords: Cryptanalysis · Keccak · SHA-3 · Preimage attack

1 Introduction

The Keccak sponge function family [3], which was designed by Bertoni et al.,
became a candidate for the SHA-3 competition in 2008 [20]. It won this com-
petition in 2012, and the U.S. National Institute of Standards and Technology
(NIST) standardized Keccak as Secure Hash Algorithm-3 (SHA-3) in 2015 [26].
Keccak has received numerous security analysis since it was publicly available
in 2008.
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On practical collision attacks, Dinur et al. presented the first actual colli-
sion attack on 3-round Keccak-384 based on a generalized internal differential
attack [8]. Besides, they obtained practical complexities up to 4 out of 24 rounds
of Keccak-224/256 [7,9]. Then, Qiao et al. extended Dinur et al.’s framework
and achieved the first practical collision attack against 5-round SHAKE128 [22].
By improving Qiao et al.’s method, Song et al. proposed a practical collision
attack on Keccak-224 reduced to 5 rounds in 2017 [23]. Most of these collision
attacks depend on the differential trails. Daemen et al. analyzed the differential
propagation of Keccak in 2012 [6]. After that, Kölbl et al. went a step further
to study the differential properties of Keccak-f [800] and Keccak-f [1600], and
presented collision attacks with practical complexity on Keccak when the per-
mutation is reduced to 4 rounds [14].

For preimage attacks, Naya-Plasencia et al. [19] and Morawiecki et al. [18]
presented practical attacks up to 2 rounds. Guo et al. developed the technique of
linear structures, and presented a practical attack on 3-round SHAKE128 [12].
Besides, the analysis of theoretical preimage attacking results on 3-round and 4-
round instances of Keccak are also given in their paper. Li et al. constructed a
new kind of structures, called cross-linear structures, and improved the theoreti-
cal preimage complexities on 3-round Keccak-256/SHA3-256/SHAKE256 [15].
Theoretical preimage attacks up to 7/8/9 rounds on Keccak-224/256/512 are
considered in [2,5,17]. In addition, Aumasson and Meier presented a new type of
distinguisher and applied it to reduced versions of the Keccak-f permutation
in 2009 [1].

The Keccak permutation is also used for authenticated encryption, and
many researches have been made in this field. In 2014, Dinur et al. gave the
first cube attacks on round-reduced Keccak sponge function and applied it to
attack MAC and stream cipher mode [11]. Then they analyzed the problems
of key recovery, MAC forgery and other types of attacks on the keyed mode of
Keccak as well as the security margin of Keyak—a Keccak-based authenti-
cated encryption scheme [10]. After that, Huang et al. developed the conditional
cube tester to analyze Keccak in keyed modes and improved the previous dis-
tinguishing attacks in 2017 [13]. Since then, the keyed modes of Keccak have
attracted more intensive cryptanalysis [4,16,24].

In this paper, we present an allocating approach to make preimage attacks on
Keccak-224 and Keccak-256 that are reduced to 3 and 4 rounds. Generally,
to find a 1-block preimage for a given hash value, a system is constructed by this
hash value and hash algorithm. This system contains two kinds of constraints.
The first kind comes from the initial value. For example, the last 224 × 2 = 448
bits in the initial state of Keccak-224 must be 0’s and these bits will not
XOR messages. Constraints of the second kind are produced by the hash value.
That is, the first l output bits of the hash algorithm must equal the given l-
bit hash value. The unknowns of the system are usually the bit values of the
messages. Constrained by these two kinds of constraints, the system is often
with high nonlinearity and hard to be solved. The motivation of the allocating
approach is to allocate these two kinds of constraints to two different sets of
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unknowns. Specifically, we prefer to find a 2-block preimage instead of a 1-block
one. The unknowns from the first message block are constrained by the first
kind of constraints, while those from the second message block should make
the second kind of constraints hold. Thus, the whole attacking complexity is
allocated to two stages, and we expect the complexity of each stage to be lower
than that of finding a 1-block preimage. Our motivation is shown in Fig. 1.

C
1C 2C

Fig. 1. The motivation of the allocating approach. The volume of water in a flask
stands for the complexity of solving a system. Let C̄ be the complexity of finding a 1-
block preimage, C1 and C2 be the complexities of the two stages used to find a 2-block
preimage by the allocating approach. We expect C̄ > C1 + C2.

The key step of applying this allocating approach is to find suitable con-
straints on the middle state, i.e. the output state of the first block as well as the
initial state of the second block. Since more constraints usually cost more oper-
ations for solving the systems, to make the complexities of the two stages both
lower than that of finding a 1-block preimage, the constraints on the middle state
must be weaker than both kinds of constraints mentioned in the last paragraph.
We improve the structure proposed by Li et al. [15], and obtain a set of suitable
constraints on the middle state. For example, the number of constraints on the
middle state of Keccak-224 is 129, which is smaller than 448 (the number of
constraints from the initial value) and 224 (the number of constraints from the
hash value). For Keccak-256, the number of constraints on the middle state is
193, which is also good enough to improve the preimage attacks on Keccak-256.

The contributions of this paper are summarized in three aspects.

1. We present an allocating approach for preimage attacks on round-reduced
Keccak. This approach allocates the whole attack complexity to two stages,
called Precomputation Stage and Online Stage for convenience. The complex-
ity of each stage is lower than that of finding a 1-block preimage directly. To
the best of our knowledge, this is the first two-block attack on standard Kec-
cak, although multi-block methods have been successfully applied to MD5
[27] and SHA-1 [25].
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Table 1. Summary of preimage attacks on 3/4-round Keccak-224/256

Rounds Digest length Instances Complexity Reference

3 224 Keccak-224 297 [12]

238 Sect. 4.2

SHA3-224 241 Sect. 4.2

256 Keccak-256 2192 [12]

2150 [15]

281 Sect. 4.2

SHA3-256 2151 [15]

284 Sect. 4.2

SHAKE256 2153 [15]

286 Sect. 4.2

4 224 Keccak-224 2213 [12]

2207 Sect. 4.3

SHA3-224 2207 Sect. 4.3

256 Keccak-256 2251 [12]

2239 Sect. 4.3

SHA3-256 2239 Sect. 4.3

SHAKE256 2239 Sect. 4.3

2. We propose a new set of constraints on the middle state by improving Li
et al.’s structure [15]. The improved structure could linearize the generated
system at a low cost, such that we obtain more degrees of freedom to solve
for the second message block.

3. We improve theoretical complexities of preimage attacks on 3/4-round
Keccak-224 and Keccak-256, as well as SHA3-224/256 and SHAKE256.
Particularly, we give the first practical preimage attack on 3-round Keccak-
224 with about 239.39 operations. The theoretical results of preimage attacks
in this paper, as well as the previous best ones, are summarized in Table 1.
Detailed theoretical complexities of the two stages of attacking 3/4-round
Keccak-224/256 are given in Table 2.

This paper is organized as follows. Some preliminaries and notations are given
in Sect. 2. The allocating approach is proposed in Sect. 3. Theoretical analyses
are presented in Sect. 4, and a practical preimage attack on 3-round Keccak-224
comes in Sect. 5. At last, we conclude this paper in Sect. 6.
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Table 2. Detailed theoretical complexities of the two stages. C1 and C2 represent the
complexities of Precomputation Stage and Online Stage. Basic and improved allocating
approaches are used in Sects. 4.1 and 4.2, respectively.

Rounds Instances C1 (Pre. Stage) C2 (Onl. Stage) Overall Complexity Reference

3 Keccak-224 266 231 266 Sect. 4.1

235.62 238 238 Sect. 4.2

Keccak-256 2162 262 2162 Sect. 4.1

280.06 281 281 Sect. 4.2

4 Keccak-224 2129 2207 2207 Sect. 4.3

Keccak-256 2193 2239 2239 Sect. 4.3

2 Preliminaries

2.1 The Sponge Construction

The sponge construction is used in Keccak algorithm. As shown in Fig. 2, it
processes messages in two phases—absorbing phase and squeezing phase. With
these two phases, a sponge construction receives an input stream of any length
and produces an output bit stream of any desired length.

Fig. 2. The sponge construction.

At the beginning, the internal state of b-bits is initialized to be all 0’s, which
is the initial value (IV). The message is padded and split into blocks of r-
bits. In the absorbing phase, the first r bits of b-bits state are XORed with the
message block, followed by the application of permutation f . This procedure is
repeated until all the message blocks are processed. Then in the squeezing phase,
the first l bits are output. With an additional application of f , another l output
bits are obtained. The algorithm iterates this step until the required length of a
digest is reached.
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Fig. 3. The Keccak state.

2.2 The Keccak-f Permutations

According to the Keccak reference [3], there are 7 Keccak-f permutations,
indicated by Keccak-f [b], where b ∈ {25, 50, 100, 200, 400, 800, 1600}. We call b
the width of the permutation. In this paper, we only focus on the case b = 1600,
since Keccak-f [1600] is used widely in practice, which can be described as a
5 × 5 64-bits lanes as depicted in Fig. 3. In this paper, we use L to denote
the number of bits in a lane. In Keccak-f [1600], we have L = 64. Each bit is
denoted as Ax,y,z. The integer triples (x, y, z) are the indices of bits, where x, y
come from the set {0, 1, 2, 3, 4} and 0 ≤ z ≤ L − 1. The values of x and y are
taken modulo 5 and we take z’s values modulo L in the rest of this paper. The
axis z is omitted sometimes for simplification.

The function Keccak-f [1600] consists of 24 rounds permutation R. Each
round R consists of five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ,

where

θ : Ax,y,z = Ax,y,z ⊕
4⊕

j=0

(Ax−1,j,z ⊕ Ax+1,j,z−1),

ρ : Ax,y,z = Ax,y,(z+rx,y),

π : Ay,2x+3y,z = Ax,y,z,

χ : Ax,y,z = Ax,y,z ⊕ (Ax+1,y,z ⊕ 1) · Ax+2,y,z,

ι : A0,0,z = A0,0,z ⊕ RCz.

In the above definitions, bit-wise XOR is denoted by “⊕” and bit-wise logic AND
by “·”. Besides, “rx,y” refers to a lane-dependent rotation constant which equals
the corresponding value in Table 3 taken modulo the lane length L. And “RCz”
is a round-dependent constant. The details about RC are omitted since they do
not affect our attacks. For further details about Keccak, please refer to [3].
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Table 3. The offsets of ρ.

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 153 231 3 10 171

y = 1 55 276 36 300 6

y = 0 28 91 0 1 190

y = 4 120 78 210 66 253

y = 3 21 136 105 45 15

2.3 Instances of Keccak

The hash function Keccak [r, c, l] means an instance of Keccak sponge
function family with capacity c, bitrate r, and output length l. The offi-
cial versions of Keccak-l have r = 1600 − c and c = 2 · l, where l ∈
{128, 224, 256, 384, 512}. Their padding rules are identical. The message is
padded by appending a bit string of “10*1”, where “0*” means the shortest
string of 0’s such that the padded message is of multiple of r bits.

The digests of the standard SHA-3 have lengths of 224, 256, 384, and 512
bits. SHA-3 is similar to Keccak except for the padding rule. SHA-3 pads the
message with another two bits “01” before applying the Keccak padding rule,
i.e., the padded string becomes “0110*1”.

The SHA-3 family also includes two SHAKE instances (SHAKE128 and
SHAKE256), which are called extendable-output functions (XOF’s). Specifically,
SHAKE128(M, l) and SHAKE256(M, l) are defined as Keccak [r = 1344, c =
256] and Keccak [r = 1088, c = 512]. And the message M is padded with a
suffix “1111”.

In this paper, our attacks on instances of Keccak, SHA-3 and SHAKE use
the same parameters, and we focus on the instances with l = 224/256.

2.4 Notations

To find preimages for given hash values, we need to construct algebraic systems
during the attacks. Some bits of the internal state will be set as unknowns
and some are set as constants, where the unknowns are the bits that we need to
solve. When some bits are set as unknowns in some state, bits in the consequent
states can be represented as polynomials of these unknowns. For convenience,
if a bit is represented as a linear polynomial of unknowns, we say this bit is
linear; similarly, we say a bit is quadratic if it is represented as a quadratic
polynomial. Please note that the polynomial representation of a bit is unique in
our attacks. Similarly, each column of a specific state contains 5 bits. We say a
column is linear if all bits in this column are linear bits or constants.

We also give names to some states for sake of convenience. As the message is
split into several message blocks, there are many hash blocks in the absorbing
phase. We call the starting state of each hash block the initial state of this
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block, while the ending state of each block is called the output state or out-
puts of this block. Note that bits in the initial state of the first block are all 0’s,
and the output state of the i-th block is just the initial state of the (i + 1)-th
block. Particularly, the output state of the first block is also called the middle
state in our attacks, since there are only two blocks in consideration. We call
the state after XORing the initial state with the message the messaged state,
and the state after the operation θ is called the θ-diffused state.

For notations, x, y, z refer to the axises of bits in states, and ax,y,z, dx,y,z,
and ex,y,z are always used to represent bits in the messaged state, θ-diffused
state, and output state of a hash block, respectively. We use ij and oj to denote
input and output bits of the operation χ. The notation sx,y is used to represent
the sum of a column in some state.

3 The Allocating Approach

With the motivation introduced in Sect. 1, we present the constraints on the
middle state firstly by improving Li et al.’s structure [15]. Next, we show the
details of the allocating approach.

3.1 Constraints on the Middle State

In [15], Li et al. proposed a structure by setting some bits of the messaged
state as unknowns and constants, such that the output bits after 2 forward
rounds are almost all linear. However, there are still some nonlinear bits due
to the constraints brought by the initial value. In this section, we improve this
structure, and make all output bits linear after 2 forward rounds.

We start by studying the properties of the only nonlinear operator χ of each
forward permutation. The operator χ can be regarded as a small S-box with 5
input and output bits, and the algebraic normal form of χ is

oj = ij ⊕ (ij+1 ⊕ 1) · ij+2, j = 0, 1, 2, 3, 4,

where ij and oj are the j-th input and output bits. When building the algebraic
systems, the input and output bits of χ are all represented as polynomials of
unknowns and constants. Our goal is to find an input pattern such that: (1) the
inputs contain as many linear bits as possible, i.e. the degrees of freedom need
to be high; (2) the outputs contain as few non-constant bits as possible, i.e. the
unknowns are not diffused much; (3) the outputs do not contain nonlinear bits.
By the requirement (1) and (3), we known that there are at most 2 linear bits in
the inputs and these two linear bits must not be consecutive as well. Let x and c
stand for the linear bit and constant bit, respectively. Then the input pattern is
‘xcxcc’, while other patterns satisfying (1) and (3) are all rotations of this one.
Since each constant c could be 1 or 0, there are 8 possible cases of this input
pattern. We list them and their corresponding outputs in Table 4.
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Table 4. Input and output bits of χ for the ‘xcxcc’ input pattern.

inputs x0x01 x0x00 x0x11 x1x01 x0x10 x1x00 x1x11 x1x10

outputs x0x01 x0xx0 xxx11 x1x0x xxxx0 x1xxx xxx1x xxxxx

#(linear output bits) 2 3 3 3 4 4 4 5

As shown in Table 4, only the input pattern ‘x0x01’ meets the requirement (2).
Based on the above study, we improve Li et al.’s structure in Lemma 1.

(a) (b) (c) (d)
Row 0
Row 1

3,0,za 4,0,za1,0,za 2,0,za0,0,za

3 2 za 4 2 za1 2 za 2 2 za0 2 za

Row 3

Row 4

3,2,z 4,2,z1,2,z 2,2,z0,2,z

= 0 = const

= linear= 1

(e) (f) (g)

Row 2

Fig. 4. The improved linear structure. Only one slice is shown, while the structures of
other slices are the same.

Lemma 1. Let the messaged state be (a) in Fig. 4, i.e. bits in Row 0, 2 are
unknowns, bits in Row 1, 3 are 0’s, and bits in Row 4 are 1’s. Then the Keccak-
f [1600] permutation can be linearized up to 2 rounds with 194 degrees of freedom
left.

Proof. To avoid the propagation of unknowns after the θ operation, we assume
that the bitewise sum of two columns is 0, i.e.,

⊕4
j=0 Ax−1,j,z +

⊕4
j=0 Ax+1,j,z−1

= 0 in state (a). In this way, after the operation θ, constant bits in state (a)
are unchanged in state (b), but the linear bits in state (b) may be different
from those in state (a) by some constants. Initially, there are 10 × 64 = 640
unknowns, say ax,0,z and ax,2,z. The sum assumption generates 5 × 64 = 320
linear constraints:

ax−1,0,z ⊕ ax−1,2,z ⊕ ax+1,0,z−1 ⊕ ax+1,2,z−1 = 0, where 0 ≤ x < 5, and 0 ≤ z < 64.

And there is 1 constraint linear dependent on the other 320−1 = 319 constraints.
To show the linear dependence, we denote px,z := ax−1,0,z⊕ax−1,2,z⊕ax+1,0,z−1⊕
ax+1,2,z−1. Then we have
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⊕

x,z

px,z =
⊕

x,z

ax−1,0,z ⊕
⊕

x,z

ax−1,2,z ⊕
⊕

x,z

ax+1,0,z−1 ⊕
⊕

x,z

ax+1,2,z−1.

Since
⊕

x,z ax−1,0,z =
⊕

x,z ax+1,0,z−1 and
⊕

x,z ax−1,2,z =
⊕

x,z ax+1,2,z−1, we
have

⊕
x,z px,z = 0, which means each px,z equals the sum of the others. So after

θ, there are 640 − 319 = 321 degrees of freedom left. After ρ and π, each row of
the state (c) has the pattern ‘x0x01’, and it is just the optimal case we studied
above. So nonlinear bits are not generated and the unknowns are not diffused
after the χ operation.

To keep the outputs of the second forward round linear, we also need to
assume the sums of bits in Column 0 and 2 are constants in state (d), which
produces 2 × 64 = 128 linear constraints and 1 of them is linear dependent
on the other 128 − 1 = 127 as well, while the proof is similar. Then there are
321−127 = 194 degrees of freedom left. The consequent operations will not cost
degrees of freedom, and all the bits in state (g) are linear.

In general, the layout of state (a) in Fig. 4 is hard to meet, as it has rigid
requirements on the values of constants. So we consider a more general case in
Theorem 1.

(a’)

= 0 or = const

(a) (b)

0,1,za
Row 0
Row 1

= linear= 1
0,4,za
0,3,zaRow 3

Row 2

Row 4

Slice

Fig. 5. Transforming state (a) to a more general case (a’).

Theorem 1. Let the messaged state be (a’) in Fig. 5, i.e. bits in Row 0, 2 are
unknowns, and bits in Row 1, 3, 4 are constants such that

(i) ax,1,z = ax,3,z = ax,4,z ⊕ 1, and
(ii)

⊕
x,z ax,4,z = 0,

where ax,y,z stands for the linear or constant bit at the position (x, y, z), 0 ≤
x, y < 5, and 0 ≤ z < 64. Then there exist constants sx,z’s with 0 ≤ x < 5
and 0 ≤ z < 64, such that if assuming

⊕4
j=0 ax,j,z = sx,z, then the state (b) in

Fig. 5 can be obtained by operating θ on (a’). And hence, the Keccak-f [1600]
permutation can be linearized up to 2 rounds with 194 degrees of freedom left.

Proof. As introduced in Sect. 2.2, the operation θ is defined as:

θ : dx,y,z = ax,y,z⊕
4⊕

j=0

(ax−1,j,z⊕ax+1,j,z−1)=ax,y,z⊕
4⊕

j=0

ax−1,j,z⊕
4⊕

j=0

ax+1,j,z−1,
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where dx,y,z is a bit in the state (b) that is diffused from ax,y,z’s. Let sx,z :=⊕4
j=0 ax,j,z. Then we have

dx,y,z = ax,y,z ⊕ sx−1,z ⊕ sx+1,z−1. (1)

To ensure that the state (b) can be obtained after the operation θ, i.e. dx,0,z
and dx,2,z are linear, dx,1,z = dx,3,z = 0, and dx,4,z = 1, we only need to make
the following equations hold by the condition ax,1,z = ax,3,z = ax,4,z ⊕ 1:

ax,4,z ⊕ sx−1,z ⊕ sx+1,z−1 = 1, where 0 ≤ x < 5, 0 ≤ z < 64. (2)

There are 5×64 = 320 equations in Eq. (2). All ax,4,z are constants. Regarding
sx,z as symbols, the reduced Gröbner basis of the ideal 〈ax,4,z⊕sx−1,z⊕sx+1,z−1⊕
1 | 0 ≤ x < 5, 0 ≤ z < 64〉 over (GF (2)[ax,4,z])[sx,z] w.r.t. some lexicographic
ordering on {sx,z} contains 320 polynomials. Among these polynomials, the only
one that does not involve {sx,z} is

⊕
x,z ax,4,z. By the properties of Gröbner

bases, Eq. (2) have solutions for {sx,z}, if and only if
⊕

x,z ax,4,z = 0. This is
just the condition (ii), and the theorem is proved.

In fact, the above proof implies that the condition (i) and (ii) in Theorem 1
are also necessary conditions for the existence of sx,z’s, if the messaged state is
set as (a’).

3.2 Preimage Attacks with the Allocating Approach

For an instance of Keccak-f [1600], the number of bits in its internal state is
1600, which consists of two parts with r and c bits respectively. All 1600 bits are
set as 0 initially. The first r bits need to XOR the message, and the last c bits
remain 0’s. The number c is the capacity of this instance.

By Theorem 1, if the capacity c of an instance of Keccak-f [1600] is smaller
than 5×64 = 320, e.g. SHAKE128 whose capacity is 256, we can set the messaged
state like (a’) in Fig. 5 by choosing the message carefully. Unfortunately, the
capacities of most Keccak instances are bigger than 320. This means the results
in Sect. 3.1 cannot be used directly, because the number of 0’s in the tail of the
messaged state is more than 320 and the condition (i) does not hold.

Fortunately, the state (a’) could serve as a good internal state in the allocating
approach, where 2-block messages are considered. The outputs of the first block
are not all 0’s generally. We can adjust the values of the first r bits by choosing
the second message block carefully. To make the messaged state of the second
block meet the conditions in Theorem 1, we also need some constraints on the
last c bits in the output state of the first block.

Specifically, as shown in Fig. 6, we consider the initial state (A) and messaged
state (B) of the second block. The state (A) is the middle state in our attack,
and it is also the output state of the first block.

For Keccak-224, its capacity is 448, which means the last 7 lanes of bits
can not be changed after the second message block being XORed. So the last 7
lanes in the state (A) and (B) are identical. Since the values of the first 18 lanes
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The 2nd

message block

3,3a 4,3a1,3a 2,3a0,3a

3,1a 4,1a1,1a 2,1a0,1a

3,3e 4,3e1,3e 2,3e

3,4e 4,4e

(A) (B)

1,4e 2,4e0,4e

t li

3,4a 4,4a1,4a 2,4a0,4a

or = const = linear

Fig. 6. The initial and messaged states of the second block of Keccak-224/256. The
axis z is omitted for simplification.

in state (B) can be adjusted by the second message block1, to make bits in the
state (B) meet condition (i) and (ii) in Theorem 1, it suffices to ensure

e3,3,z ⊕ 1 = e3,4,z, e4,3,z ⊕ 1 = e4,4,z, and
⊕

x,z

ex,4,z = 0, (3)

which consists of 64 + 64 + 1 = 129 equations.
The case for Keccak-256 is similar, except that the last 8 lanes in the state

(A) and (B) are identical. To make bits in the state (B) meet conditions in
Theorem 1, we need the following 64 + 64 + 64 + 1 = 193 equations hold:

e2,3,z ⊕ 1 = e2,4,z, e3,3,z ⊕ 1 = e3,4,z, e4,3,z ⊕ 1 = e4,4,z, and
⊕

x,z

ex,4,z = 0. (4)

So in all, attacks on Keccak-224/256 via the allocating approach consist of
two stages:

1. Precomputation Stage: Find a first message block, such that Eqs. (3) or (4)
hold for the output bits of the first block. Let C1 be the complexity of finding
this message block.

2. Online Stage: Construct an algebraic system using the structure in Theorem
1 for a given hash value, and solve this system for a second message block.
The complexity of this stage is denoted as C2.

We call the first stage “Precomputation Stage”, because it does not need to
be re-executed for different hash values, if a good first message block has been
found.

Consequently, the complexity of the whole preimage attack is C1 + C2.
Let C̄ denote the complexity of finding a 1-block preimage, then we have

1 The paddings will be dealt with sooner.
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max{C1, C2} < C̄. On one hand, since the numbers of equations in Eqs. (3)
and (4) are 129 and 193, they are smaller than 224 and 256, which are the
lengths of the hash values, respectively. Thus, we have C1 < C̄. On the other
hand, if the last c bits in the initial state are set 0’s, there is no way to lin-
earize the first two rounds of Keccak-f [1600] permutation of with 194 degrees
of freedom left. So we can expect C2 < C̄.

The basic preimage attack via the allocating approach will be described in
Sect. 4.1. Particularly, for the case C1 > C2, the complexity of the whole preim-
age attack can be made even lower. Because finding a first message block such
that all equations in Eqs. (3) or (4) hold is usually harder than that if we allow
some equations in Eqs. (3) or (4) not to hold. This means we can decrease the
complexity of Precomputation Stage at the cost of increasing the complexity of
Online Stage. Thus, the balanced complexity will be smaller than max{C1, C2}.
This balanced method will be given in Sect. 4.2, and it also leads to a practical
preimage attack on 3-round Keccak-224 in Sect. 5.

4 Theoretical Results on Round-Reduced
Keccak-224/256

In this section, we use the allocating approach to attack Keccak-224/256 that
are reduced to 3 and 4 rounds. Theoretical complexities of these instances, as well
as instances of SHA-3 and SHAKE, are given. The complexity is measured by
the number of times for solving systems of linear equations, i.e., the complexity
of solving a linear system is assumed to be a constant, which is the same as done
in [12].

4.1 Attacks on 3-Round Keccak-224/256

In this section, we give detailed preimage attacks on 3-round Keccak-224.
Attacks on 3-round Keccak-256 and instances of SHA-3 and SHAKE are
similar.

Attacks on 3-round Keccak-224. The attack consists of three parts. First,
we find a first message block such that Eq. (3) holds in Precomputation Stage.
Second, we find a second message block such that the state (B) meets conditions
in Theorem 1 and the outputs of the second block equal the given hash value in
Online Stage. At last, we show how to deal with the paddings.

Part 1: finding a first message block
To find the first message block satisfying Eq. (3), we use the structure presented
by Guo et al. [12] in Fig. 7, which keeps 2.5 rounds linear with 128 degrees of
freedom left.

In the messaged state of the first round, bits of 8 lanes are set as unknowns
(shown in yellow boxes), which means there are 8 × 64 = 512 unknowns. White
boxes and dark gray boxes in this state mean constant 0’s and 1’s. In the state
(c) of the 3rd round, all bits are linear, and all of them become quadratic after
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Fig. 7. The 3 forward rounds of the first block of Keccak-224. The axis z is omitted
for simplification. (Color figure online)

the operation χ. During this procedure, to avoid the propagation by θ in the
first and second rounds, 2 × 64 + 4 × 64 = 384 linear constraints are added
to the system by assuming sums of linear columns as constants. Here, a linear
column refers to a column whose bits are linear or constant. By Eq. (3), we
obtain another 2 × 64 + 1 = 129 quadratic equations.

In all, we construct a system with 384 + 129 = 513 equations in 512
unknowns. Although 384 equations are linear, this system is still not easy to
solve in general. Fortunately, after noticing that there is only one quadratic
term in each polynomial representation of ei,j , we can enumerate 2 values of
linear polynomials and obtain 4 linear equations like done in [15].

Specifically, let pi,j be the (linear) polynomial representation of bits in the
state (c) of the 3rd round in Fig. 7. By the χ operation, we have:

e3,4 = p3,4 ⊕ (p4,4 ⊕ 1) · p0,4, e4,4 = p4,4 ⊕ (p0,4 ⊕ 1) · p1,4,

e3,3 = p3,3 ⊕ (p4,3 ⊕ 1) · p0,3, e4,3 = p4,3 ⊕ (p0,3 ⊕ 1) · p1,3,

where the axis z is omitted for simplification. By Eq. (3), we have the following
equations:

p3,4 ⊕ (p4,4 ⊕ 1) · p0,4 ⊕ p3,3 ⊕ (p4,3 ⊕ 1) · p0,3 = 1, (5)

p4,4 ⊕ (p0,4 ⊕ 1) · p1,4 ⊕ p4,3 ⊕ (p0,3 ⊕ 1) · p1,3 = 1. (6)

If the values of the pair (p0,3, p0,4) are enumerated, then both Eqs. (5) and (6)
are linearized in each slice. Together with equations from the enumeration, we
obtain 4 linear equations totally.
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Consequently, we enumerate the values of the pair (p0,3, p0,4) in 32 slices, and
obtain 128 linear equations. The system consists of 384 + (129 − 2 × 32) + 128 =
577 equations in 512 unknowns, and 384 + 128 = 512 of them are linear. With
the same assumptions in [12], a solution to this system can be found in constant
time.

Note that the original system consists of 513 equations in 512 unknowns, so
the probability of the existence of a solution is regarded as 1/2. In case there is
no solution to this system, we can vary the values of column sums in the state
(a) of the 2nd round, and construct new systems. Besides, through the above
procedure, we need to enumerate the values of 2 × 32 = 64 linear polynomials
to solve the system. Therefore, the whole complexity of finding the first message
block consists of two parts, the complexity 21 of ensuring the system has a
solution, and the complexity 264 of solving the system. The whole complexity of
is 21+64 = 265.

Part 2: finding a second message block
By part 1, we obtain an initial state of the second block satisfying Eq. (3). After
setting bits in the second message block carefully, the messaged state, depicted
in (a) of the 1st round in Fig. 8, meets the conditions in Theorem 1. So there
are 194 degrees of freedom left in the end of the 2nd round.

Bits in the initial state of the 3rd round are all linear, and after the linear
operation θ, π, and ρ, bits in the state (c) of the 3rd round remain linear. On
the other hand, Keccak-224 generates a 224-bit hash value, which is supposed
to be known for preimage attacks. Next, we construct relations between the bits
before and after the operation χ. The relations are first studied in [12], and the
operation ι is omitted here for simplification.

Let ij and oj be the input and output bit of χ. We have

oj = ij ⊕ (ij+1 ⊕ 1) · ij+2, j = 0, 1, 2, 3, 4,

by definition. Next, we can deduce

oj = ij ⊕ ((oj+1 ⊕ (ij+2 ⊕ 1) · ij+3) ⊕ 1) · ij+2

= ij ⊕ (oj+1 ⊕ 1) · ij+2 ⊕ (ij+2 ⊕ 1) · ij+3 · ij+2

= ij ⊕ (oj+1 ⊕ 1) · ij+2.
(7)

Assume the ij ’s are linear. If the values of 4 consecutive output bits are known,
e. g. o0, . . . , o3 are constants, then we have 3 linear equations

o0 = i0 ⊕ (o1 ⊕ 1) · i2, o1 = i1 ⊕ (o2 ⊕ 1) · i3, o2 = i2 ⊕ (o3 ⊕ 1) · i4,

and 1 quadratic equation

o3 = i3 ⊕ (i4 ⊕ 1) · i0. (8)

Fortunately, Eq. (8) can be simplified to linear as below.

i0 = o0 ⊕ (o1 ⊕ 1) · i2 = o0 ⊕ (o1 ⊕ 1) · (o2 ⊕ (o3 ⊕ 1) · i4) = A ⊕ B · i4,
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Fig. 8. The forward 3 rounds of the second block of Keccak-224. The axis z is omitted
for simplification.

where A = o0 ⊕ (o1 ⊕ 1) · o2 and B = (o1 ⊕ 1) · (o3 ⊕ 1). Thus,

o3 = i3 ⊕ (i4 ⊕ 1) · i0 = i3 ⊕ (i4 ⊕ 1) · (A ⊕ B · i4) = i3 ⊕ (i4 ⊕ 1) · A.

Similarly, if the values of 3 consecutive output bits are known, say o0, o1, o2, then
we get 2 linear equations o0 = i0 ⊕ (o1 ⊕ 1) · i2, o1 = i1 ⊕ (o2 ⊕ 1) · i3, and a
quadratic one

o2 = i2 ⊕ (i3 ⊕ 1) · i4. (9)

But this quadratic equation cannot be simplified.
In a digest of Keccak-224, we have 4 consecutive bits in 32 slices, and 3

consecutive bits in the other 32 slices. Since the bits in the state (c) of the
3rd round are linear, we can set up (4 + 2) × 32 = 192 linear equations, and
1 × 32 = 32 quadratic ones.

To sum up, bits of 10 lanes in the messaged state are unknowns. The number
of unknowns is 10 × 64 = 640. To avoid the propagation by θ in the first and
second rounds, 5×64+2×64 = 448 linear constraints are added to the system by
assuming that the bitewise sums of two linear columns are constants. Please note
that there are 2 linear equations linear dependent on others, and the reason is
shown in the proof of Lemma 1. We should also pay attention to that the values
of these bitewise sums in the state (a) of the 1st round in Fig. 8 must equal the
values of sx,z’s which are obtained from the proof of Theorem 1. But the sums
of linear columns in the state (a) of the 2nd round could be set randomly.

Together with equations constructed by the hash value, the system has 448−
2 + 192 + 32 = 670 equations in 640 unknowns, and among these equations,
448 − 2 + 192 = 638 are linear and linear independent on each other. To ensure
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this system has a solution, we need to enumerate 2670−640 = 230 sum values of
linear columns in the state (a) of the 2nd round. To solve the system, we only
need to enumerate the values of a single bit i3 in Eq. (9), such that we can obtain
2 linear equations i3 = c and o2 = i2 ⊕ (c ⊕ 1) · i4, where c is the enumerated
value of i3. Then we get 638 + 2 = 640 linear equations and the system can be
solved within constant time. In all, the complexity that ensures the system has
a solution is 230, and the complexity of solving the system is 21. The overall
complexity is 230+1 = 231.

Part 3: dealing with paddings
For Keccak-224, the last bit of the second message block must be 1 due to the
padding rule. So to ensure that the messaged state of the second block meets
the conditions in Theorem 1, we require e2,3,63 ⊕ 1 = e2,4,63 ⊕ 1, or equivalently

e2,3,63 = e2,4,63. (10)

This equation should be included in the system for finding the first message
block. That is, we have 514 equations in 512 unknowns, and the probability of
the existence of a solution is 1/4. The complexity for solving the first message
block becomes 266.

The overall complexities of attacking 3-round Keccak-224/SHA3-224
Summing up the analyses in the above three parts, the theoretical preimage
attack on 3-round Keccak-224 costs about 266 operations. With similar analy-
ses, the complexity of attacking 3-round SHA3-224 is 269.

Attacks on 3-round Keccak-256. To find a first message block for 3-round
Keccak-256, the messaged state is set as (a) in Fig. 9. And Eq. (4) are consid-
ered. Following a similar procedure, bits in the output of the 2nd round have
algebraic degree 1 at most.

To solve a first message block, we set 2 × 64 + 3 × 64 = 320 linear equations
by assuming the sums of linear columns in the state (a) and (d) are constants.
Besides, there are 3×64+1 = 193 quadratic equations in Eq. (4). The number of
unknowns is 6×64 = 384. So this system consists of 320+193 = 513 equations in
384 unknowns, and the probability of the existence of a solution is 1/2513−384 =
1/2129. That is, we need to enumerate 2129 sum values of linear columns in the
state (d) to ensure the system has a solution. To solve this system, similar to the
case of Keccak-224, we need to enumerate the values of the pair (p0,3, p0,4) in
16 slices, and obtain 64 linear equations. Then we obtain 320 + 64 = 384 linear
equations, and the system can be solved with a constant time complexity. Thus,
the complexity of finding a first message block is 2129+32 = 2161.

To solve a second message block, the procedure is the same as that of
Keccak-224, except that we obtain 4 × 64 = 256 linear equations from the
hash value. The system of this stage consists of 5 × 64 + 2 × 64 − 2 + 256 = 702
linear equations in 640 knowns. We need to try 2702−640 = 262 sum values of the
linear columns in the state (a) of the 2nd round, to ensure there is a solution to
this system. So the complexity of this stage is 262.
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Fig. 9. The first message block of 3-round Keccak-256. The axis z is omitted for
simplification.

The overall complexities of attacking 3-round Keccak-256/SHA3-
256/SHAKE256
After dealing with paddings for the instances of Keccak-256, SHA3-256, and
SHAKE256, their attack complexities are 2162, 2165, and 2167, respectively. Note
that these results are not as good as those in [15].

4.2 Improved Attacks on 3-Round Keccak-224/256

In the attacks of Sect. 4.1, the complexity of Precomputation Stage is much
higher than that of Online Stage. One reason is that we require the state (B)
in Fig. 6 meets all conditions in Theorem 1. In fact, to obtain better attacks on
Keccak-224/256, we can give up some constraints in Eqs. (3) or (4). In such a
way, the complexity of finding the first message block will decrease at the cost
of increasing the difficulty of finding the second message block. Then the com-
plexities of the two stages will be balanced, and hence, the overall complexities
of attacks will be improved.

Improved attacks on 3-round Keccak-224. The improved attack contains
two parts.

Part 1: finding a first message block
As discussed in Sect. 4.1, it costs 266 operations to find a first message block such
that all the 129 + 1 equations in (3) and (10) hold. Consequently, the messaged
state (B) in Fig. 6 meets all conditions in Theorem 1, and hence, we can obtain
the best complexity 231 for the second block. Note that the complexity in the
second stage is much lower than that in the first one. To improve the overall
complexity of attacking Keccak-224, we can balance the complexities of the
two stages by allowing the messaged state (B) to not meet all conditions in
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Theorem 1. This means, not all equations in (3) and (10) must hold, which leads
to a more efficient way of finding the first message block.

Since the 130 equations in (3) and (10) reflect the linear relations of the
output bits of the first block, and the outputs of the first block can be regarded
as random values, this means each of the 130 equations holds at the probability
1/2 in general. Thus, our strategy is that, we only include some of the equations
in the system for solving, and expect the others to hold as many as possible.

Specifically, we divide the 130 equations into three sets. Set 1 contains the
equations {e3,3,z ⊕ 1 = e3,4,z, e4,3,z ⊕ 1 = e4,4,z} for 32 slices, and the equations
that come from the other 32 slices together with Eq. (10) are contained in Set
2. The equation {⊕

x,z ex,4,z = 0} is regarded as Set 3. Then the 2 × 32 = 64
equations in Set 1 are included in the system for solving the first message block.
We expect the 2 × 32 + 1 = 65 equations in Set 2 to hold as many as possible.
And we do not care about whether the equation in Set 3 holds or not, because
it does not affect the complexity of Online Stage.

Next, we estimate the complexity of finding a first message block. First, we
have 2 × 64 + 4 × 64 = 384 linear constraints by assigning the values of sums
of linear columns. Second, we have 2 × 32 = 64 quadratic equations from Set
1. So there are 384 + 64 = 448 equations in 8 × 64 = 512 unknowns. We have
512 − 448 = 64 degrees of freedom left to solve this system. For the equations
from Set 1, they are selected from 32 slices. Similar as discussed in Sect. 4.1, we
can obtain 32 linear equations by guessing the values of 16 pairs (p0,3, p0,4), and
get another 32 linear equations after the linearization of Eqs. (5) and (6). Then
we get 384 + 64 + 64 = 512 linear equations in 512 unknowns, which means we
can obtain a solution to this system with a constant complexity. Note that when
the values of p0,3 and p0,4 varies, solutions to the system change as well.

At last, we estimate how many operations are necessary to make as many
equations in Set 2 hold as possible. In theoretical aspects, since each equation
holds with a probability 1/2, for any first message block, it makes n of the 65
equations hold with probability Cn

65
265 . So the theoretical complexity of making

n equations hold is 265

Cn
65

, and the complexities for different n’s are shown in
Table 5. In experimental aspects, we can obtain a lot of solutions of the systems
by varying the values of p0,3 and p0,4. Then the number of messages that make
n equations hold can be counted, and the practical probabilities are obtained as
well. Complexities of practical attacks are reported in Sect. 5.1.

Part 2: finding a second message block
From Part 1, equations in Set 1 always hold, but some in Set 2 are not. Besides,
we do not care about whether

⊕
x,z ex,4,z = 0 holds or not. In this section, we

deal with the troubles brought by these unsatisfied equations.
There are two types of unsatisfied equations for the first message block found

in Part 1:

I. e2,3,63 = e2,4,63, ex,3,z ⊕ 1 = ex,4,z where x = 3 or 4 for some z,
II.

⊕
x,z ex,4,z = 0.
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Our strategy is as follows. First, we construct an adjusted state by flipping the
values of some bits in the unsatisfied equations and keeping others unchanged,
such that all equations hold for the bits in the adjusted state. Second, like what
we have done in the proof of Theorem 1, we can solve for the values of sx,z’s such
that the adjusted state transforms to the state (b) in Fig. 5 after the operation
θ. At last, we apply θ to the real outputs of the first block by assuming that
the sums of columns are sx,z’s. The obtained state will be different from the
state (b) in Fig. 5 only in a few bits, and hence, we only need to deal with these
different bits afterwards.

Constructing the adjusted state and solving for sx,z’s. Assume there are nI unsat-
isfied equations of Type I and nII ∈ {0, 1} unsatisfied one of Type II. We do not
consider the case nI = 0 since it does not happen in general cases. Our adjusting
method only needs to flip nI values of bits from the unsatisfied equations of Type
I. Note that in each equation of Type I, there is one bit in Row 3 and one in
Row 4. We totally flip nII bit in Row 4 to ensure the sum of all bits in Row 4 of
the adjusted state is 0, and flip the other nI −nII bits in Row 3. Specifically, let
e′
x,4,z := ex,4,z ⊕ 1 for nII equation out of the nI unsatisfied Type I equations,

and let e′
x,3,z := ex,3,z ⊕ 1 from the other nI − nII unsatisfied equations of Type

I. Other bits are unchanged.
We illustrate the above method using a toy example with nI = 3 and nII = 1.

Let ex,y,z’s be the bits output by the first block for a given first message block,
and we assume the 3 unsatisfied equations of Type I and the unsatisfied one of
Type II are

e2,3,63 = e2,4,63 ⊕ 1, e3,3,0 = e3,4,0, e4,3,1 = e4,4,1, and
⊕

x,z

ex,4,z = 1.

Since nII = 1, we let e′
3,4,0 := e3,4,0 ⊕ 1. For the other nI − nII = 2 bits,

we set e′
2,3,63 := e2,3,63 ⊕ 1, e′

4,3,1 := e4,3,1 ⊕ 1. For the rest of bits, we have
e′
x,y,z := ex,y,z. In this way, the bits e′

x,y,z’s construct the adjusted state and the
equations in (3) and (10) all hold for e′

x,y,z’s. Then Eq. (2) has solutions to sx,z’s
by the proof of Theorem 1. Thus, we find the desired values of sx,z’s.

Dealing with the different bits in the θ-defused states. For the original state
consisting of ex,y,z’s, let us see what happens to the state after the operation θ
by assuming that the sums of columns equal the precomputed sx,z’s. Let dx,y,z’s
be the bits in the state after the operation θ. By Eq. (1), we have dx,y,z =
ex,y,z ⊕ sx−1,z ⊕ sx+1,z−1. Since sx,z’s are precomputed constants, the value of
dx,y,z is determined by ex,y,z. Note that there are only nI ex,y,z’s different from
e′
x,y,z’s, so only nI bits of the θ-defused states of the original and adjusted states

are not identical, and the differences only lie in Row 3 or Row 4. Based on the
row that the different bit appears, we consider two cases as shown in Fig. 10.
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Slice z Slice z Slice z’ Slice z’

' '

Slice z Slice z
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4,3e

Slice z’ Slice z’
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(i) (ii)

= const = 0 = 1 = linear

Fig. 10. The top row shows the adjusted states before and after the operation θ, and
the bottom row shows the original states before and after θ. The state (i) and (ii) show
two types of troubles.

Figure 11 shows how the trouble generated by the state (i) in Fig. 10 is han-
dled. The bit at (Row 3, Column 4, Slice z) of the θ-diffused state is 1 instead
of 0, and it will produce two quadratic bits after two rounds. The method of
eliminating this effect is that, we can enumerate the values of the bit in the
orange box in the end of the first round, such that this bit becomes a constant
and no quadratic bits are generated after two forward rounds. This enumeration
costs 1 degree of freedom. Similarly, we can also handle the state (ii) at the cost
of 1 degree of freedom in Fig. 12.

To sum up, if nI equations of Type I do not hold, the complexity of finding
a second message block is 231+nI .

Slice z Slice z Slice [z+8] Slice [z+8]

Sli [ 8] Sli [ 8] Sli [ 8]Slice [z+8] Slice [z+8] Slice [z+8]= 0

= 1

= linear

= const

= linear produced by 1

= quadra c

Fig. 11. The effects caused by the state (i) of Fig. 10.
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Slice z Slice z Slice [z+55] Slice [z+55]

Sli [ 55] Sli [ 55] Sli [ 55]Slice [z+55] Slice [z+55] Slice [z+55]= 0

= 1

= linear

= const

= linear produced by 0

= quadra c

Fig. 12. The effects caused by the state (ii) of Fig. 10.

The overall complexity of the improved preimage attacks on Keccak
-224/SHA3-224
With the improved attacks, we estimate the theoretical complexities in Table 5
for the cases that n = 56, . . . , 60 equations from Set 2 hold. In this table, nI =
65−n is the number of equations that do not hold. C1 and C2 are the complexities
of finding the first and second message blocks. The overall complexity is C =
C1+C2. Please note that C1 is estimated by probability, so its values are rounded.
In Online Stage, the complexity C2 is obtained by calculating degrees of freedom,
so the values of C2 are accurate integers.

Table 5. Theoretical complexities of preimage attacks with n = 56, . . . , 60, where n is
the number of holding equations in Set 2.

n nI C1 C2 C = C1 + C2

56 9 230.10 240 240

57 8 232.77 239 239

58 7 235.62 238 238

59 6 238.70 237 238.70

60 5 242.02 236 242.02

Table 5 shows that we can obtain the best theoretical attack on 3-round
Keccak-224 with complexity 238 when n = 58. Since this complexity is low
enough, we perform a practical attack on 3-round Keccak-224 in Sect. 5.

Similarly, the complexity of attacking SHA3-224 is at most 241 considering
padding bits.

Improved attacks on 3-round Keccak-256. The improved preimage attack
works on 3-round Keccak-256 as well. There are 193 equations in Eq. (4). The
last 1 equation is in Set 3 and is not considered, so we hope 192 of these equations
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to hold, and we also need to consider 1 equation from the padding. Based on the
theoretical probability, we can expect a first block message satisfying 174 out
of 193 equations with complexity 280.06. Note that among these 174 equations,
32 of them are included in the system for solving, i.e. in Set 1, and the other
142 equations hold with the probability 2−80.06. The complexity of Online Stage
also increases to 262+19 = 281 in order to eliminate the impact of 193−174 = 19
unsatisfied equations. Thus, the overall theoretical complexity of the preimage
attack on 3-round Keccak-256 is 281, while the previous best result is 2150 [15].

For SHA3-256 and SHAKE256, the differences lie in the padding rules. So
extra computations are needed to find first message blocks. Using the same app-
roach, the complexities of attacking 3-round SHA3-256/SHAKE256 are 284/286.

4.3 Attacks on 4-Round Keccak-224/256

Attacks on 4-round Keccak-224. The first message block for Keccak-224
can be found by probability. Since a hash function outputs bits in a ‘random’
manner, the probability of finding a preimage by the random preimage attack
is 1/2l, where l is the number of bits in digests [21]. The reason is that each
output bit could be 0 or 1 with probability 1/2. The first message block are
constrained by Eq. (3). For the pair (e3,3,z, e3,4,z) in each slice, it has four possible
values, and two of them make the equation e3,3,z ⊕ e3,4,z ⊕ 1 = 0 hold, which
means this equation holds with a probability 1/2. The case is similar for the pair
(e4,3,z, e4,4,z). As the value of ex,4,z is supposed to be random, the probability
that

⊕
x,z ex,4,z = 0 holds is also 1/2. Thus, the complexity of finding the desired

first message block by random preimage attack is 264+64+1 = 2129.
For the second block, as the messaged state meets conditions in Theorem 1,

there are (5 + 2) × 64 − 2 = 446 linear constraints in 10 × 64 = 640 unknowns
after two forward rounds. The bits in the output state of the 3rd round are all
quadratic and remain quadratic before the χ operation in the 4th round. Simi-
larly to the analysis in Sect. 4.1, 224-bit digest leads to 192 quadratic equations
and 32 quartic equations. Note that 160 out of the 192 quadratic equations are
constructed by Eq. (7). That is, oj = ij⊕(oj+1⊕1)·ij+2. So if one bit oj+1 of the
hash value is 1, then the quadratic equation becomes oj = ij which has at most
11 quadratic terms as well. These equations are hard to solve, so the following
analysis follows from the attacks on 4-round Keccak-224 in [12]. By Guo et al.’s
study, this quadratic equation can be linearized by guessing 10 values of linear
polynomials. Figure 13 illustrates how to linearize this quadratic equation.

For any quadratic bit in the state before the χ operation, it corresponds to
a bit in the θ-defused state of the same round, since ρ and π are both per-
mutations. Next, taking one quadratic bit Q1,1,z in the θ-defused state in the
4th round for example, we explain how to linearize Q1,1,z by guessing the val-
ues of 10 linear polynomials. By the definition of θ, we have Q1,1,z = q1,1,z ⊕⊕4

j=0(q0,j,z ⊕ q2,j,z−1), where qx,y,z represents the output bit of the 3rd round
and it is quadratic. Next, let us study how qx,y,z is generated by linear bits. From
the states in Fig. 8, the bits in the state before χ in the 3rd round are all linear,
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Fig. 13. Linearizing a quadratic bit by guessing the values of 10 linear polynomials.
(Color figure online)

and we donate them as lx,y,z’s. So we have qx,y,z = lx,y,z ⊕ (lx+1,y,z ⊕1) · lx+2,y,z.
Note that qx,y,z consists of only 1 quadratic term which is produced by two
linear polynomials, lx+1,y,z and lx+2,y,z. By guessing the values of either one,
qx,y,z can be linearized. Another observation in Fig. 13 is that, q0,1,z and q1,1,z
share a common linear factor l2,1,z. Thus, we can guess the values of 10 bits in
the state (a), i.e. the light green bits, to linearize 11 blue quadratic bits in the
state (b). Since Q1,1,z is represented by these blue bits, Q1,1,z is linearized as
well. Consequently, we obtain 11 linear equations by enumerating the values of
10 linear polynomials.

As the values of bits in the digest can be regarded as random values, half of
the 224 bits are supposed to be 1’s. This means, we can expect 80 out of the 160
quadratic equations to have at most 11 quadratic terms. Next, we only consider
� 640−446

11 	 = 17 quadratic equations from the above 80 ones, and leave the other
224 − 17 = 207 equations hold by probabilities. By enumerating the values of
17×10 = 170 linear polynomials, we obtain 17× (10+1) = 187 linear equations.
To solve the system, we guess the values of another 640 − 446 − 187 = 7 linear
polynomials. Thus, the system consists of 446 + 187 + 7 = 640 linear equations
with 640 unknowns, so it has a solution and we can find it within constant time.
Such a solution makes all the other 224−17 = 207 equations hold at a probability
2−207. So the complexity of the second block is 2207.

Compared to Guo et al.’s attacks on 4-round Keccak-224, our improvement
is that, we obtain 640−446 = 194 degrees of freedom after two forward rounds by
using the allocating approach, while Guo et al. only get 127 degrees of freedom
after the same rounds. So they only match � 127

11 	 = 11 hash bits, and they need
2224−11 = 2213 operations to ensure all the other 224 − 11 = 213 equations hold.
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The paddings of Keccak-224 and SHA3-224 only affect the complexity of the
first block. So the complexities of attacking 4-round Keccak-224 and SHA3-224
are both 2207.

Attacks on 4-round Keccak-256. The attacks on 4-round Keccak-256 are
quite similar. For the first message block, constraints become Eq. (4). With
the random preimage attack, the complexity of finding a first message block is
23×64+1 = 2193. And we need 2256−� 640−446

11 � = 2239 operations to find a second
message block. So the complexities of attacking 4-round Keccak-256, SHA3-256
and SHAKE256 are all 2239.

5 Experiments

In this section, we give a practical preimage attack on 3-round Keccak-224.
Related codes, including those for verifying the found messages and for solving
the systems on GPU, are available at https://github.com/ysun0102/keccak224.

5.1 Results of Precomputation Stage

We found about 243.41 solutions with more than 10 NVIDIA GTX 1080 Ti
cards in weeks. The numbers of solutions #(sol.) that make n = 50, . . . , 60
equations hold are reported in Table 6, together with the practical and theoretical
probabilities.

Table 6. Comparisons of practical and theoretical probabilities

n #(sol.) Practical probability Theoretical probability

50 65 469 825 2−17.44 2−17.44

51 19 262 179 2−19.21 2−19.21

52 5 185 994 2−21.10 2−21.10

53 1 271 108 2−23.13 2−23.13

54 281 252 2−25.30 2−25.30

55 56 771 2−27.61 2−27.62

56 9 986 2−30.12 2−30.10

57 1 591 2−32.77 2−32.77

58 227 2−35.58 2−35.63

59 26 2−38.70 2−38.70

60 2 2−42.41 2−42.02

From the table, we can see that the theoretical and practical probabilities
match very well when the number of solutions is large enough, and there is only a
bit of difference between the theoretical and practical probabilities of n = 58, 60.

https://github.com/ysun0102/keccak224
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This is mainly because the samples are not adequate. The results in hexadecimal
format are given below.
First message block with n = 58:
|3867ED3B88A48506|FFFFFFFFFFFFFFFF|DD2D9BE5549AE517|FFFFFFFFFFFFFFFF|

|0000000000000000|97CBA3B4524267F6|0000000000000000|F607605E0D17724B|

|0000000000000000|0000000000000000|59E591785BB04788|0000000000000000|

|87A44FB877A61A6E|0000000000000000|0000000000000000|F649DFF78156A578|

|0000000000000000|AC8EB4032E2B8D32|

First message block with n = 59:
|35EF68DC35F1E5EB|FFFFFFFFFFFFFFFF|A1D249A40996BB5F|FFFFFFFFFFFFFFFF|

|0000000000000000|42F30B16705F6ECA|0000000000000000|26A9E432AE324F66|

|0000000000000000|0000000000000000|BBB37F56A6F28967|0000000000000000|

|A9590D7698444C80|0000000000000000|0000000000000000|CCAF1C9CE35C0246|

|0000000000000000|2E22A0E03FE0B8B9|

First message block with n = 60:
|CBB53657E0A66871|FFFFFFFFFFFFFFFF|7537C0597B751AA7|FFFFFFFFFFFFFFFF|

|0000000000000000|A27C4639BB60DFF0|0000000000000000|561C6D11D6A8DE58|

|0000000000000000|0000000000000000|22DF18C837CF65DB|0000000000000000|

|37C8309A24DD20E7|0000000000000000|0000000000000000|4B1668A66C09D25A|

|0000000000000000|14E39DD28900E418|

5.2 Results of Preimage Attacks on 3-Round Keccak-224

Example 1. Let the hash algorithm be 3-round Keccak-224. Find a second
preimage for the message ‘1’ with length = 1.

The padded message M and its digest H are given below.
M(length = 1152):
|0000000000000003|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|8000000000000000|

H(length = 224):
|F4FE7CCEA5D8B144|60F6C316572983A8|A2564CA289E5F897| CA30DB85|

Using the methods in Sect. 4.2, we find three second preimages M58, M59, M60

of H based on the first message blocks computed in the last subsection. When
n = 58, finding the second message block takes a week on 6 GPU cards with
approximate 239.39 operations, while the second message block of M59 costs 3
days on 6 GPU cards by solving about 238.20 linear systems. The second message
block of M60 is obtained in 2 days using 4 GPU cards. Note that these practical
complexities of Online Stage are all larger than those estimated in Table 5. We
think this is because we only calculate one second message block for each of
them. Interested readers can generate more preimages with the published codes,
and we believe the complexities will be reasonable then.
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From Table 6, the averaged complexities of Precomputation Stage for finding
the first message blocks of n = 58, 59, 60 are 235.58, 238.70, and 242.41, respectively.
So the overall practical complexities of finding M58, M59, and M60, are 239.39,
239.47, and 242.41. However, since the first message blocks need to be computed
only once, we suggest using the first message block of n = 60, if we want to
produce more preimages of H or other digests. The values of M58, M59, M60 are
listed below.

– M58(length = 2301):
|3867ED3B88A48506|FFFFFFFFFFFFFFFF|DD2D9BE5549AE517|FFFFFFFFFFFFFFFF|

|0000000000000000|97CBA3B4524267F6|0000000000000000|F607605E0D17724B|

|0000000000000000|0000000000000000|59E591785BB04788|0000000000000000|

|87A44FB877A61A6E|0000000000000000|0000000000000000|F649DFF78156A578|

|0000000000000000|AC8EB4032E2B8D32|

|C84C8045515BF0C7|61FD4B2BBE00140E|00B252887E479E1D|4CA8454ECB4032EC|

|0980778FEAFC137D|1B4109C0E732BD96|820D1264F56CED03|E3A15B12575B72A2|

|1A068D85C2B37FE0|5DCA726A8F294970|D41129BE08A68BD4|301DD29F5E9BE657|

|98A7904810694A48|B3E8566CE50EA6AA|48C3E4DEB3ADD02B|853EF9C96DC6F02D|

|A72B40AD1F31A630|AAD47114F4750BFC|

– M59(length = 2302):
|35EF68DC35F1E5EB|FFFFFFFFFFFFFFFF|A1D249A40996BB5F|FFFFFFFFFFFFFFFF|

|0000000000000000|42F30B16705F6ECA|0000000000000000|26A9E432AE324F66|

|0000000000000000|0000000000000000|BBB37F56A6F28967|0000000000000000|

|A9590D7698444C80|0000000000000000|0000000000000000|CCAF1C9CE35C0246|

|0000000000000000|2E22A0E03FE0B8B9|

|CCADB05484618913|CB72585A10CF1D24|5142B6082D69F648|55FF802052E9AFA7|

|5002434225118309|4673F9FF53CF4651|422091CBEE6ED26C|2CED676FB523B95D|

|AF5FD173FA98BE32|1BB7489625D2A58A|1B58D9FB91AD563D|D2F304B902CD182E|

|9F519823A0C16E4D|A54F438AFE22755C|8C39E80475FCDBB0|B908F9B8CD448A94|

|63EF7F66EA21A245|D0A64F63C7333027|

– M60(length = 2302):
|CBB53657E0A66871|FFFFFFFFFFFFFFFF|7537C0597B751AA7|FFFFFFFFFFFFFFFF|

|0000000000000000|A27C4639BB60DFF0|0000000000000000|561C6D11D6A8DE58|

|0000000000000000|0000000000000000|22DF18C837CF65DB|0000000000000000|

|37C8309A24DD20E7|0000000000000000|0000000000000000|4B1668A66C09D25A|

|0000000000000000|14E39DD28900E418|

|B5B27127B16157CE|1D9CDF75F80E635D|D2024BC09980F06E|43E0D61A974E2162|

|D3E8E4C133283C19|291ADC10C38952D3|0D79C02584D59EB5|5B6EDBF95FBBD637|

|FDF01822DC1C43A3|516EB953B657C03F|8C83A4CFE46AFA61|8EF91ECCAD2D5731|

|3510F4267D8A4D55|13A2BACDCE43348D|0A22C2B955093C72|8836257614188A4E|

|AFBB582F7829B0EB|6CF33EA53BEC3299|

6 Conclusion

In this paper, we propose preimage attacks with an allocating approach. We
improved the attacks on Keccak-224/SHA3-224 and Keccak-256/SHA3-256
/SHAKE256 that are reduced to 3 and 4 rounds. The main idea is to divide the
attacking procedure into two stages and to find a 2-block preimage, such that the
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complexity of each stage is lower than that of finding a 1-block preimage directly.
The key step is that, the conditions in Theorem 1 have fewer constraints on the
middle state, such that we obtain more degrees of freedom to solve for the first
and second message blocks. This is why we obtain better results, compared with
previous attacks.
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1 Introduction

Block ciphers are among the most important cryptographic primitives as they
are at the core responsible for a large fraction of all our data that is encrypted.
Depending on the mode of operation (or used construction), a block cipher can
be turned into an encryption function, a hash-function, a message authentication
code or an authenticated encryption function.

Due to their importance, it is not surprising that block ciphers are also among
the best understood primitives. In particular the Advanced Encryption Stan-
dard (AES) [2] has been scrutinized by cryptanalysts ever since its development
in 1998 [19] without any significant security threat discovered for the full cipher
(see e.g. [6,7,23,26–29]).

The overall structure of AES, being built on several (round)-permutations
interleaved with a (binary) addition of round keys is often referred to as key-
alternating cipher and is depicted in Fig. 1.

The first cipher following this approach was, to the best of our knowledge,
the cipher MMB [17], while the name key-alternating cipher first appears in [20]
and in the book describing the design of the AES [21]. Nowadays many secure
ciphers follow this construction.
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Interestingly, besides its overwhelming use in practice and the intense crypt-
analytic efforts spent to understand its practical security, the generic (or ide-
alized) security of key-alternating ciphers has not been investigated until 2012.
Here, generic or idealized security refers to the setting where the round func-
tions Ri are modeled as random permutations. An (computational unbounded)
attacker is given access to those round functions via oracle queries and additional
oracle access to either the block cipher or a random permutation. The goal of the
attacker is to tell apart those two cases. As any attack in this setting is obviously
independent of any particular structure of the round function, those attacks are
generic for all key-alternating ciphers. In this setting, the construction behind
key-alternating ciphers is referred to as the iterated Even-Mansour construction.
Indeed, the Even-Mansour cipher [25] can be seen as a one-round version of the
key-alternating cipher where the round function is a random permutation.

The first result on the iterated Even-Mansour construction (basically focusing
on the two-round version) was given in [10]. Since then, quite a lot of follow-up
papers, e.g. [3,30,32,38], managed to improve and generalize this initial result
significantly. In particular, [15] managed to give a tight security bound for any
number of rounds. Informally, for breaking the r-round Even-Mansour construc-
tion, any attacker needs to make roughly 2

r
r+1n oracle queries.

While this bound can be proven tight for the iterated Even-Mansour con-
struction, it is unsatisfactory for two reasons. First, one might hope to get better
security bounds with different constructions and second one might hope to lower
the requirement of relying on r random permutations.

Motivated by this theoretical defect and the importance of encrypting small
domains with full security (see e.g. [42]), researchers started to investigate alter-
native ways to construct block ciphers with the highest possible security level
under minimal assumptions in ideal models. The most interesting result along
those lines is the construction by Tessaro [48]. His construction is based on the
Swap-or-Not construction by [31], which was designed for the setting where the
component functions are secret. Instead of being based on random permutations,
this construction requires only a set of random (Boolean) functions. Tessaro’s
construction, coined Whitened Swap-Or-Not (WSN for short), requires only two
public random (Boolean) functions fi with n-bit input, and can be proven to
achieve full security, see Sect. 2 for more details.

However, and this is the main motivation for our work, no instance of this
construction is known. This situation is in sharp contrast to the case of the

m R1
. . . Rr c

k0 k1 kr−1 kr

Fig. 1. Key-alternating construction for r rounds, using unkeyed round permutations
R1 to Rr. In practical instantiations, the round keys ki are typically derived from a
master key by some key schedule.



bison Instantiating the Whitened Swap-Or-Not Construction 587

iterated Even-Mansour construction, where many secure instances are known
for a long time already, as discussed above.

Without such a concrete instance, the framework of [48] remains of no avail.
As soon as one wants to use the framework in any way, one fundamentally has to
instantiate the Boolean functions modeled as ideal functionalities by efficiently
computable functions. Clearly, the above mentioned bound in the ideal model
does not say anything about any concrete instance. Tessaro phrases this situation
as follows:

Heuristically, however, one hopes for even more: Namely, that under a care-
ful implementation of the underlying component, the construction retains
the promised security level [48].

There has actually been one instance of the previous construction [31], but
this has been broken almost instantaneously and completely, as parts of the
encryption function were actually linear, see [52]. This failure to securely instan-
tiate the construction points to an important hurdle. Namely, proving the generic
bounds and analyzing the security of an instance are technically very different
tasks. The security of any block cipher is, with the current state of knowledge,
always the security against known attacks. In particular, when designing any
concrete block cipher, one has to argue why linear and differential attacks do
not threaten the construction.

Our Contribution

Consequently, in this paper we investigate the important, but so far overlooked,
aspect of instantiating the WSN construction with a practical secure instance.
Practical secure meaning, just like in the case of AES, that the block cipher
resists all known attacks. We denote this instance as bison (for Bent whItened
Swap Or Not). Our insights presented here are twofold.

First, we derive some inherent restrictions on the choice of the round function
fi. In a nutshell, we show that fi has to be rather strong, in the sense that its
output bit has to basically depend on all input bits. Moreover, we show that using
less than n rounds will always result in an insecure construction. Those, from a
cryptanalytic perspective rather obvious, results are presented in Sect. 3. Again,
but from a different angle, this situation is in sharp contrast to key-alternating
ciphers. In the case of key-alternating ciphers, even with a rather small number
of rounds (e.g. ten in the case of AES-128) and rather weak round functions (in
case of the AES round function any output bit depends on 32 input bits only
and the whole round function decomposes into four parallel functions on 32 bits
each) we get ciphers that provide, to the best of our knowledge today and after
a significant amount of cryptanalysis, full security.

Second, despite those restrictions of the WSN construction, that have signif-
icant impact on the performance of any instance, there are very positive aspects
of the WSN construction as well. In Sect. 4, we first define a family of WSN
instances which fulfill our initial restrictions.
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As we will show in detail, this allows to argue very convincingly that our
instance is secure against differential attacks. Indeed, under standard assump-
tions, we can show that the probability of any (non-trivial) differential is upper
bounded by 2−n+1 where n is the block size, a value that is close to the ideal case.
This significantly improves upon what is the state of the art for key-alternating
ciphers. Deriving useful bounds on differentials is notoriously hard and normally
one therefore has to restrict to bounding the probability of differential charac-
teristics only. Our results for differential cryptanalysis can be of independent
interest in the analysis of maximally unbalanced Feistel networks or nonlinear
feedback shift registers.

We specify our concrete instance as a family of block ciphers for varying
input length in Sect. 5. In our instance, we attach importance to simplicity and
mathematical clarity. It is making use of bent functions, i.e. maximally non-linear
Boolean functions, for instantiating f and linear feedback shift registers (lfsrs)
for generating the round keys. Another advantage of bison is that it defines a
whole family of block ciphers, one for any odd block size. In particular it allows
the straightforward definition of small scale variants to be used for experiments.

Finally we discuss various other attacks and argue why they do not pose a
threat for bison in Sect. 6. Particularly the discussion on algebraic attacks might
be of independent interest. For this we analyse the growth of the algebraic degree
over the rounds. In contrast to what we intuitively expect – an exponential
growth (until a certain threshold) as in the case for SPNs [11] – the degree of
the WSN construction grows linearly in the degree of the round function fi.
This result can also be applied in the analysis of maximally unbalanced Feistel
networks or nonlinear feedback shift registers.

Related Work

The first cipher, a Feistel structure, that allowed similarly strong arguments
against differential attacks was presented by Nyberg and Knudsen [45], see
also [44] for a nice survey on the topic. This cipher was named CRADIC, as
Cipher Resistant Against DIfferential Cryptanalysis but is often simply refer-
enced as the KN cipher. However, the cipher has been broken quickly afterwards,
with the invention of interpolation attacks [34]. Another, technically very differ-
ent approach to get strong results on resistance against attacks we would like to
mention is the decorrelation theory [51]. Interestingly, both previous approaches
rely rather on one strong component, i.e. round function, to ensure security,
while the WSN approach, and in particular bison, gains its resistance against
differential attacks step by step.

Regarding the analysis of differentials, extensive efforts have been expended
to evaluate the MEDP/MELP of SPN ciphers, and in particular of the AES.
Some remarkable results were published by [46] and then subsequently improved
by [35] with a sophisticated pruning algorithm. Interestingly, further work by [22]
and later by [13] revealed that such bounds are not invariant under affine trans-
formations – an equivalence notion often exploited for classification of S-boxes
when studying their strength against differential cryptanalysis. All these works



bison Instantiating the Whitened Swap-Or-Not Construction 589
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Fig. 2. Schematic view of the WSN construction.

stress out how difficult it is to evaluate the MEDP/MELP of SPNs, even for a
small number of rounds. On the contrary, and as we are going to elaborate in
the remaining of this paper, computing the MEDP of bison is rather straight-
forward and independent of the exact details of the components. This can be
compared to the wide trail strategy that, making use of the branch number and
the superbox argument, allows bounding the probability of any differential char-
acteristic for a large class of SPNs. Our arguments allow to bound the differential
probability for a large class of WSN instances.

2 Preliminaries

We briefly recall the Whitened Swap-or-Not construction, recapitulate properties
of Boolean functions and shortly cover differential and linear cryptanalysis. We
denote by F2 the finite field with two elements and by F

n
2 the n-dimensional

vector space over F2, i.e. the set of all n-bit vectors with a bitwise xor as the
addition.

2.1 Whitened Swap-or-Not

The WSN is defined as follows. Given two round keys ki, wi, the ith round Rki,wi

computes

Rki,wi
: F

n
2 → F

n
2

Rki,wi
(x) := x + fb(i)(wi +max {x, x + ki}) · ki

where f0,1 : F
n
2 → F2 are modeled as two ideal random functions, the max

function returns the lexicographic biggest value in the input set, and + denotes
the addition in F2 (the bitwise xor). The index b(i) equals zero for the first half
of the rounds and one for the second half (see Fig. 2 for a graphical overview of
the encryption process).

In the remainder of the paper, we denote by Er
k,w(x) the application of r

rounds of the construction to the input x with round keys ki and wi derived
from the master key (k,w). Every round is involutory, thus for decryption one
only has to reverse the order of the round keys.
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Note that the usage of the maximum function is not decisive but that it can
be replaced by any function Φk that returns a unique representative of the set
{x, x + k}, see [48]. In other words it can be replaced by any function such that
Φk(x) = Φk(y) if and only if y ∈ {x, x + k}.

The main result given by Tessaro on the security of the WSN is the following:

Proposition 1 (Security of the WSN (Informal) [48]). The WSN construc-
tion is (2n−O(log n), 2n−O(1))-secure for O(n) rounds.

Thus, any adversary trying to distinguish the WSN construction from a ran-
dom permutation and making at most 2n−O(log n) queries to the block cipher
and 2n−O(1) queries to the underlying function has negligible advantage. Here,
the round keys are modeled as independent and uniformly distributed random
variables.

2.2 Boolean Functions

A Boolean function is defined as a function f mapping n bits to one bit. Any
Boolean function

f : F
n
2 → F2

can be uniquely expressed by its algebraic normal form (ANF), i.e. as a (reduced)
multivariate polynomial with n variables x0, . . . , xn−1. For u ∈ F

n
2 we denote

xu =
n−1∏

i=0

xui
i .

The ANF of f can be expressed as

f(x) =
∑

u∈F
n
2

λuxu

for suitable choices of λu ∈ F2. The degree of f , denoted by deg(f) is defined as
the maximal weight of a monomial present in the ANF of f . That is

deg(f) = max{wt(u) | u ∈ F
n
2 such that λu �= 0}.

In the context of symmetric cryptography, the differential and linear behavior
of a Boolean function play an important role.

The derivative of a function f in direction α is defined as Δα(f)(x) :=
f(x) + f(x + α). Informally, studying the behavior of this derivative is at the
core of differential cryptanalysis. If we generalize to the derivative of a vectorial
Boolean function F : F

n
2 → F

n
2 , we can additionally specify an output differ-

ence β. The differential distribution table (ddt) captures the distribution of all
possible derivatives; its entries are

ddtF [α, β] := |{x ∈ F
n
2 | Δα(F )(x) = β}|,
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where we leave out the subscript, if it is clear from the context. Note that α is
usually referred to as the input difference and β as the output difference.

In a similar way, we can approach the linear behavior of a Boolean function,
that is its similarity to any linear function. The Fourier coefficient of a function
f : F

n
2 → F2, which is defined as

f̂(α) :=
∑

x∈F
n
2

(−1)〈α,x〉+f(x)
,

is a very useful way to measure this similarity. Here, the notation 〈a, b〉 denotes
the inner product, defined as 〈a, b〉 := ∑n

i=1 aibi. Recall that any affine Boolean
function can be written as x �→ 〈α, x〉 + c for some fixed α ∈ F

n
2 and a con-

stant c ∈ F2. In particular, it follows that any such affine function has one
Fourier coefficient equal to ±2n. More generally, the nonlinearity of f , defined
as NL(f) := 2n −maxα |f̂(α)|, measures the minimal Hamming-distance of f to
the set of all affine functions.

Analogously to the ddt, for a vectorial Boolean function F : F
n
2 → F

n
2 , we

define
F̂ (α, β) =

∑

x∈F
n
2

(−1)〈α,x〉+〈β,F (x)〉
,

and the linear approximation table (lat) contains the Fourier coefficients

latF [α, β] := F̂ (α, β).

Again we leave out the subscript, if it is clear from the context. Here α is usually
referred to as the input mask and β as the output mask. Another representation
that is sometimes preferred is the correlation matrix that in a similar way con-
tains the correlation values for all possible linear approximations, see [18]. The
correlation values are simply scaled versions of the Fourier coefficients, i.e.

Pr [〈α, x〉 + 〈β, F (x)〉 = 0] =
1
2
+

corF (α, β)
2

=
1
2
+

F̂ (α, β)
2n+1

.

The advantage of the correlation matrix notation is that the correlation matrix
of a composition of functions is nothing but the product of the corresponding
matrices. For the linear approximation table, additional scaling is required.

Bent Functions. As they will play an important role in our design of bison,
we recall the basic facts of bent functions. Boolean functions on an even number
n of input bits that achieve the highest possible nonlinearity of 2n − 2

n
2 are

called bent. Bent functions have been introduced by Rothaus [47] and studied
ever since, see also [14, Section 8.6]. Even so bent functions achieve the highest
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possible nonlinearity, their direct use in symmetric cryptography is so far very
limited. This is mainly due to the fact that bent functions are not balanced, i.e.
the distribution of zeros and ones is (slightly) biased.

Using Parseval’s equality, it is easy to see that a function is bent if and only
if all its Fourier coefficients are ±2

n
2 . Moreover, an alternative classification that

will be of importance for bison, is that a function is bent if and only if all
(non-trivial) derivatives Δα(f) are balanced Boolean functions [41].

While there are many different primary and secondary constructions1 of bent
functions known, for simplicity and for the sake of ease of implementation, we
decided to focus on the simplest known bent functions which we recall next, see
also [14, Section 6.2].

Lemma 1 ([24]). Let n = 2m be an even integer. The function

f : F
m
2 × F

m
2 → F2

f(x, y) := 〈x, y〉

is a quadratic bent function. Moreover, any quadratic bent function is affine
equivalent to f .

2.3 Differential and Linear Cryptanalysis

The two most important attacks on symmetric primitives are differential and
linear cryptanalysis, respectively developed by Biham and Shamir [5] and by
Matsui [40] for the analysis of the Data Encryption Standard. The general idea
for both is to find a non-random characteristic in the differential, resp/linear,
behavior of the scheme under inspection. Such a property can then be used as a
distinguisher between the cipher and a random permutation and in many cases
leads to key-recovery attacks.

It is inherently hard to compute these properties for the whole function, thus
one typically exploits the special structure of the cipher. For round-based block
ciphers one usually makes use of linear and differential characteristics that specify
not only the input and output masks (resp/differences) but also all intermediate
masks after the single rounds.

In the case of differential cryptanalysis, an r-round characteristic δ is defined
by (r + 1) differences

δ = (δ0, . . . , δr) ∈ F
(r+1)n
2 .

For so-called Markov ciphers and assuming the independence of round keys,
we can compute the probability of a characteristic averaged over all round-key
sequences:

EP(δ) =
r−1∏

i=0

Pr [F (x) + F (x + δi) = δi+1] =
r−1∏

i=0

ddtF [δi, δi+1]
2n

,

1 Primary constructions give bent functions from scratch, while secondary construc-
tions build new bent functions from previously defined ones.
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where the encryption iterates the round function F for r rounds. Moreover
we usually assume the hypothesis of stochastic equivalence introduced by Lai
et al. [37], stating that the actual probability for any fixed round key equals the
average.

In contrast to the normal characteristic that defines the exact differences
before and after each round, a differential takes every possible intermediate
differences into account and fixes only the overall input and output differences
(which are the two values an attacker can typically control).

However, while bounding the average probability of a differential characteris-
tic is easily possible for many ciphers (using in particular the wide-trail strategy
introduced in [16]), bounding the average probability of a differential, which
is denoted as the expected differential probability (EDP), is not. Nevertheless,
some effort was spent to prove bounds on the maximum EDP (MEDP) for two
rounds of some key-alternating ciphers [13,21,33,46].

Similarly, for linear cryptanalysis, an r-round characteristic (also called trail
or path) for a round function F is defined by (r + 1) masks

θ = (θ0, . . . , θr) ∈ F
(r+1)n
2

and its correlation is defined as

corF (θ) :=
r−1∏

i=0

corF (θi, θi+1) =
r−1∏

i=0

F̂ (θi, θi+1)
2n

and it can be shown that the correlation of a composition can be computed as
the sum over the trail correlations. More precisely,

corEr
k
(α, β) =

∑

θ
θ0=α,θr=β

corF (θ), (1)

where the encryption Er
k iterates the round function F for r rounds.

This is referred to as the linear hull (see [43]). While not visible in order
to simplify notation, the terms in Eq. (1) are actually key dependent and thus
for some keys they either could cancel out or amplify the overall correlation.
For more background, we refer to e.g. [9] and [36]. For a key-alternating cipher
with independent round keys, the average over all round-key sequences of the
correlation corEr

k
(α, β) is zero for any pair of nonzero masks (α, β) (see e.g. [21,

Section 7.9]). Then, the most relevant parameter of the distribution is its vari-
ance, which corresponds to the average square correlation, and is called the
expected linear potential. Again, bounding the ELP is out of reach for virtually
any practical cipher, while for bounding the correlation of a single trail, one can
again use the wide-trail strategy mentioned above. Upper bounds for the MELP
of two rounds of AES are also given in [13,33,46].

Finally we would like to note that the round keys in an actual block cipher
instance are basically never independent and identically distributed over the full
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key space, but instead derived from a key schedule, rendering the above assump-
tion plain wrong. While the influence of key schedules is a crucially understudied
topic and for specific instances strange effects can occur, see [1,36], the above
assumption are seen as valid heuristics for most block ciphers.

3 Inherent Restrictions

In this section we point out two inherent restrictions on any practical secure
instance, i.e. generic for the WSN construction. Those restrictions result in gen-
eral conditions on both the minimal number of rounds to be used and general
properties of the round functions fb(i). In particular, those insights are taken
into account for bison. While these restrictions are rather obvious from a crypt-
analytic point of view, they have a severe impact on the performance of any
concrete instance. We discuss performance in more detail in the full version [12,
Section 7].

3.1 Number of Rounds

As in every round of the cipher, we simply add (or not) the current round key
ki, the ciphertext can always be expressed as the addition of the plaintext and
a (message dependent) linear combination of all round keys ki. The simple but
important observation to be made here is that, as long as the round keys do not
span the full space, the block cipher is easily attackable.

Phrased in terms of linear cryptanalysis we start with the following lemma.

Lemma 2. For any number of rounds r < n there exists an element u ∈ F
n
2 \{0}

such that
Êr

k,w(u, u) = 2n,

that is the equation
〈u, x〉 = 〈

u,Er
k,w(x)

〉

holds for all x ∈ F
n
2 .

Proof. Let k1, . . . , kr be the round keys derived from k and denote by

U = span {k1, . . . , kr}⊥

the dual space of the space spanned by the round keys, i.e.

∀u ∈ U,∀1 � i � r it holds that 〈u, ki〉 = 0.

As r < n by assumption, the dimension of span {k1, . . . , kr} is smaller than n
and thus U �= {0}. Therefore, U contains a non-zero element

u ∈ span {k1, . . . , kr}⊥
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and it holds that

〈
u,Er

k,w(x)
〉
= 〈u, x +

r∑

i=1

λiki〉 = 〈u, x〉 + 〈u,
r∑

i=1

λiki〉 = 〈u, x〉. (2)

Even more importantly, this observation leads directly to a known plaintext
attack with very low data-complexity. Given a set of t plaintext/ciphertext (pi, ci)
pairs, an attacker simply computes

V = span {pi + ci | 1 � i � t} ⊆ span {kj | 1 � j � r}.

Given t > r slightly more pairs than rounds, and assuming that pi + ci is
uniformly distributed in span {kj} (otherwise the attack only gets even stronger)2
implies that

V = span {kj}

with high probability and V can be efficiently computed. Furthermore, as above
dim(span {kj}) is at most r, we have V ⊥ �= {0}. Given any u �= 0 in V ⊥ allows
to compute one bit of information on the plaintext given only the ciphertext
and particularly distinguish the cipher from a random permutation in a chosen-
plaintext setting efficiently.

A similar argument shows the following:

Lemma 3. For any number of rounds r smaller than 2n−3 there exist nonzero
α and β, such that

Êr
k,w(α, β) = 0

Proof. We restrict to the case r � n as otherwise the statement follows directly
from the lemma above. Indeed, from Parseval equality, the fact that Êr

k,w(α, α) =

2n implies that Êr
k,w(α, β) = 0 for all β �= α. Let k1, . . . , kr be the round keys

derived from k and choose non-zero elements α �= β such that

α ∈ span {k1, . . . , kn−2}⊥ and β ∈ span {kn−1, . . . , kr}⊥
.

Note that, as r ≤ 2n − 3 by assumption such elements always exist. Next, we
split the encryption function in two parts, the first n − 2 rounds E1 and the
remaining r − (n − 2) < n rounds E2, i.e.

Er
k,w = E2 ◦ E1.

2 E.g. if, with high probability, the pi + ci do not depend on one or more kj ’s, the
described attack can be extended to one or more rounds with high probability.
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We can compute the Fourier coefficient of Er
k,w as

Êr
k,w(α, β) =

∑

γ∈F
n
2

Ê1(α, γ)
2n

· Ê2(γ, β)
2n

.

Now, the above lemma and the choices of α and β imply that Ê1(α, γ) = 0
for γ �= α and Ê2(γ, β) = 0 for γ �= β. Recalling that α �= β by construction
concludes the proof.

However, as the masks α and β depend on the key, and unlike above there
does not seem to be an efficient way to compute those, we do not see a direct
way to use this observation for an attack.

Summarizing the observations above, we get the following conclusion:

Rationale 1. Any practical instance must iterate at least n rounds. Further-
more, it is beneficial if any set of n consecutive round keys are linearly
independent.3

After having derived basic bounds on the number of rounds for any secure
instance, we move on to criteria on the round function itself.

3.2 Round Function

Here, we investigate a very basic criterion on the round function, namely depen-
dency on all input bits. Given the Boolean functions fb(i) : F

n
2 → F2 used in

the round function of Er
k,w, an important question is, if it is necessary that the

output bit of fb(i) has to depend on all input bits. It turns out that this is indeed
strictly necessary for any secure instance, as summarized in the next rational.

Rationale 2. For a practical instance, the functions fb(i) has to depend on all
bits. Even more, for any δ ∈ F

n
2 the probability of

fb(i)(x) = fb(i)(x + δ)

should be close to 1
2 .

Due to page constraints, we refer to [12, Lemma 4] for more details. It is
worth noticing that the analysis leading to Rationale 2 applies to the original
round function. However, as pointed out in [49, Section 3.1], in the definition of
the round function, we can replace the function

x �→ max {x, x + k}

3 If (some) round keys are linearly dependent, Lemma 3 can easily be extended to
more rounds.
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by any function Φk such that Φk(x) = Φk(x + k) for all x. While the following
sections will focus on the case when Φk is linear, we will prove that Rationale 2
is also valid in this other setting.

Again, this should be compared to key-alternating ciphers, where usually
not all output bits of a single round function depend on all input bits. For
example for AES any output bit after one round depends only on 32 input bits
and for Present any output bit only depends on 4 input bits. However, while
for key-alternating ciphers this does not seem to be problematic, and indeed
allows rather weak round functions to result in a secure scheme, for the WSN
construction the situation is very different.

Before specifying our exact instance, we want to discuss differential crypt-
analysis of a broader family of instances.

4 Differential Cryptanalysis of bison-Like Instances

We coin an instance of the WSN construction “bison-like”, if it iterates at least
n rounds with linearly independent round keys k1, . . . , kn and applies Boolean
functions fb(i). As explained in [49, Section 3.1], in order to enable decryption it
is required that the Boolean functions fb(i) return the same result for both x and
x + k. In the original proposition by Tessaro, this is achieved by using the max
function in the definition of the round function. Using this technique reduces the
number of possible inputs for the fb(i) to 2n−1. To simplify the analysis and to
ease notation, we replace the max function with a linear function Φk : F

n
2 → F

n−1
2

with ker(Φk) = {0, k}. From now on, we assume that any bison-like instance
uses such a Φk instead of the max function. The corresponding round function
has then the following form

Rki,wi
(x) := x + fb(i)(wi + Φki

(x))ki. (3)

With the above conditions, any bison-like instance of the WSN construction
is resistant to differential cryptanalysis, as we show in the remainder of this
section.

For our analysis, we make two standard assumptions in symmetric cryptanal-
ysis as mentioned above: the independence of whitening round keys wi and the
hypothesis of stochastic equivalence with respect to these round keys. That is, we
assume round keys wi to be independently uniformly drawn and the resulting
EDP to equal the differential probabilities averaged over all w. Thus, the keys
wi act very much like the round key for a key-alternating cipher with respect to
the probabilities of characteristics. We further back up this intuition by practical
experiments (see Sect. 6.3 and [12, Appendix B]). For the round keys ki we do
not have to make such assumptions.

We first discuss the simple case of differential behaviour for one round only
and then move up to an arbitrary number of rounds and devise the number of
possible output differences and their probabilities.
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4.1 From One-Round Differential Characteristics

Looking only at one round, we can compute the ddt explicitly:

Proposition 2. Let Rki,wi
: F

n
2 → F

n
2 be the WSN round function as in Eq. (3).

Then its ddt consists of the entries

ddtR[α, β] =

⎧
⎪⎪⎨

⎪⎪⎩

2n−1 + ̂ΔΦk(α)(f)(0) if β = α

2n−1 − ̂ΔΦk(α)(f)(0) if β = α + k

0 otherwise.

. (4)

Most notably, if f is bent, we have

ddtR[α, β] =

⎧
⎪⎨

⎪⎩

2n if α = β = k or α = β = 0
2n−1 if β ∈ {α, α + k} and α �∈ {0, k}
0 otherwise.

.

Proof. We have to count the number of solutions of R(x) + R(x + α) = β:

ddtR[α, β] = |{x ∈ F
n
2 | R(x) + R(x + α) = β}|

= |{x ∈ F
n
2 | α + [f(w + Φk(x)) + f(w + Φk(x + α))] · k = β}|

Since f takes its values in F2, the only output differences β such that ddtR[α, β]
may differ from 0 are β = α and β = α + k. When β = α, we have

ddtR[α, α] = |{x ∈ F
n
2 | f(w + Φk(x)) + f(w + Φk(x + α)) = 0}|

= |{x ∈ F
n
2 | f(w + Φk(x)) + f(w + Φk(x) + Φk(α)) = 0}|

= 2 · ∣∣{x′ ∈ F
n−1
2

∣∣ f(x′) + f(x′ + Φk(α)) = 0
}∣∣

= 2
(
2n−2 +

1
2

̂ΔΦk(α)(f)(0)
)

.

Similarly,

ddtR[α, α + k] = |{x ∈ F
n
2 | f(w + Φk(x)) + f(w + Φk(x + α)) = 1}|

= 2
(
2n−2 − 1

2
̂ΔΦk(α)(f)(0)

)
.

Most notably, when α ∈ {0, k}, ̂ΔΦk(α)(f)(0) = 2n−1. Moreover, when f is bent,
̂ΔΦk(α)(f)(0) = 2n−2 for all other values of α.
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4.2 To Differentials over More Rounds

As previously explained, it is possible to estimate the probability of a differential
characteristic over several rounds, averaged over the round keys, when the cipher
is a Markov cipher. We now show that this assumption holds for any bison-like
instance of the WSN construction.

Lemma 4. Let Rk,w : F
n
2 → F

n
2 be the WSN round function as in Eq. (3). For

any fixed k ∈ F
n
2 and any differential (α, β) ∈ F

n
2 × F

n
2 , we have that

Prw [Rk,w(x + α) + Rk,w(x) = β]

is independent of x. More precisely

Prw [Rk,w(x + α) + Rk,w(x) = β] = Prx [Rk,w(x + α) + Rk,w(x) = β] .

Proof. We have
{
w ∈ F

n−1
2

∣∣ Δα(Rk,w)(x) = β
}

=
{
w ∈ F

n−1
2

∣∣ (
ΔΦk(α)(f)(w + Φk(x))

) · k = α + β
}

=

⎧
⎪⎨

⎪⎩

∅ if β �∈ {α, α + k}
Φk(x) + Supp

(
ΔΦk(α)(f)

)
if β = α + k

Φk(x) +
(
F

n−1
2 \ Supp

(
ΔΦk(α)(f)

))
if β = α,

where Supp(g) denotes the support of a Boolean function g, i.e., the values x
for which g(x) = 1. Clearly, the cardinality of this set does not depend on x.
Moreover, this cardinality, divided by 2n−1, corresponds to the value of

Prx [Rk,w(x + α) + Rk,w(x) = β]

computed in the previous proposition.

By induction on the number of rounds, we then directly deduce that any
bison-like instance of the WSN construction is a Markov cipher in the sense of
the following corollary.

Corollary 1. Let Ei
k,w denote i rounds of a bison-like instance of the WSN

construction with round function Rki,wi
. For any number of rounds r and any

round keys (k1, . . . , kr), the probability of an r-round characteristic δ satisfies

Prw
[
Ei

k,w(x) + Ei
k,w(x + δ0) = δi,∀1 � i � r

]
=

r∏

i=1

Prx [Rki,wi
(x) + Rki,wi

(x + δi−1) = δi].

For many ciphers several differential characteristics can cluster in a differ-
ential over more rounds. This is the main reason why bounding the probability
of differentials is usually very difficult if possible at all. For bison-like instances
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the situation is much nicer; we can actually compute the EDP, i.e., the probabil-
ities of the differentials averaged over all whitening key sequences (w1, . . . , wr).
This comes from the fact that any differential for less than n rounds contains
at most one differential characteristic with non-zero probability. To understand
this behavior, let us start by analyzing the EDP (averaged over the wi) and by
determining the number of possible output differences.

In the following, we assume that the input difference α is fixed, and we
calculate the number of possible output differences. We show that this quantity
depends on the relation between α and the ki.

Lemma 5. Let us consider r rounds of a bison-like instance of the WSN con-
struction with round function involving Boolean functions fb(i) having no (non-
trivial) constant derivative. Assume that the first n round keys k1, . . . , kn are
linearly independent, and that kn+1 = k1 +

∑n
i=2 γiki for γi ∈ F2. For any non-

zero input difference α, the number of possible output differences β such that

Prw,x

[
Er

k,w(x + α) + Er
k,w(x) = β

] �= 0

is
⎧
⎪⎨

⎪⎩

2r if α /∈ span {ki} and r < n,

2r − 2r−� if α = k� +
∑�−1

i=1 λα
i ki and r � n,

2n − 1 if r > n.

Proof. By combining Corollary 1 and Proposition 2, we obtain that the average
probability of a characteristic (δ0, δ1, . . . , δr−1, δr) can be non-zero only if δi ∈
{δi−1, δi−1 + ki} for all 1 � i � r. Therefore, the output difference δr must be of
the form δr = δ0 +

∑r
i=1 λiki with λi ∈ F2. Moreover, for those characteristics,

the average probability is non-zero unless there exists 1 � i < r such that
| ̂ΔΦki

(δi)(fb(i))(0)| = 2n−1, i.e. ΔΦki
(δi)(fb(i)) is constant. By hypothesis, this

only occurs when δi ∈ {0, ki}, and the impossible characteristics correspond to
the case when either δi = 0 or δi+1 = 0. It follows that the valid characteristics
are exactly the characteristics of the form

δi = δ0 +
i∑

j=1

λjkj

where none of the δi vanishes.

– When the input difference α �∈ span {ki}, for any given output difference
β = α +

∑r
i=1 λiki, the r-round characteristic

(α, α + λ1k1, α + λ1k1 + λ2k2, . . . , α +
r∑

i=1

λiki)

is valid since none of the intermediate differences vanishes.
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– When r � n and α = k� +
∑�−1

i=1 λα
i ki, the only possible characteristic from

α to β = α +
∑r

i=1 λiki satisfies

δj =

{∑j
i=1(λi + λα

i )ki +
∑�

i=j+1 λα
i ki if j � 


∑�
i=1(λi + λα

i )ki +
∑j

i=�+1 λiki if j > 
 .

Since the involved round keys are linearly independent, we deduce that δj = 0
only when j = 
 and λi = λα

i for all 1 � i � 
. It then follows that there
exists a valid characteristic from α to β unless λi = λα

i for all 1 � i � 
. The
number of possible outputs β is then

(2� − 1)2r−� = 2r − 2r−�.

– If we increase the number of rounds to more than n, we have α = k� +∑�−1
i=1 λα

i ki for some 
 � n. If β = α +
∑n

i=1 λiki with
∑�

i=1 λiki �= α, then
we can obviously extend the previous n-round characteristic to

(α, α + λ1k1, . . . , α +
n−1∑

i=1

λiki, β, β, . . . , β).

If
∑�

i=1 λiki = α, β cannot be the output difference of an n-round character-
istic. However, the following (n+1)-round characteristic starting from δ0 = α
is valid:

δj =

⎧
⎪⎪⎨

⎪⎪⎩

k1 +
∑j

i=2 γiki +
∑�

i=j+1 λα
i ki if j � 


k1 +
∑j

i=2 γiki +
∑j

i=�+1 λiki if 
 < j � n

β if j = n + 1

Indeed, δn = β+kn implying that the last transition is valid. Moreover, it can
be easily checked that none of these δj vanishes, unless β = 0. This implies
that all non-zero output differences β are valid.

The last case in the above lemma is remarkable, as it states any output
difference is possible after n + 1 rounds. To highlight this, we restate it as the
following corollary.

Corollary 2. For bison-like instances with more than n rounds whose round
keys k1, . . . , kn+1 satisfy the hypothesis of Lemma5, and for any non-zero input
difference, every non-zero output difference is possible.

We now focus on a reduced version of the cipher limited to exactly n rounds
and look at the probabilities for every possible output difference. Most notably,
we exhibit in the following lemma an upper-bound on the MEDP which is mini-
mized when n is odd and the involved Boolean functions fb(i) are bent. In other
words, Rationale 2 which was initially motivated by the analysis in Sect. 3 for
the original round function based on x �→ max(x, x + k) [48] is also valid when
a linear function Φk is used.
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Lemma 6. Let us consider n rounds of a bison-like instance of the WSN con-
struction with round function involving Boolean functions fb(i). Let k1, . . . , kn be
any linearly independent round keys. Then, for any input difference α �= 0 and
any β, we have

EDP(α, β) = Prw,x [Ek,w(x + α) + Ek,w(x) = β]

�
(
1
2
+ 2−n max

1�i�n
max
δ �=0

∣∣∣ ̂Δδ(fb(i))(0)
∣∣∣
)n−1

.

More precisely, if all fb(i) are bent,

EDP(α, β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if β =
n∑

i=�+1

λiki, (5)

2−n+1 if β = k� +
n∑

i=�+1

λiki, (6)

2−n otherwise, (7)

where 
 denotes as previously the latest round key that appears in the decompo-
sition of α into the basis (k1, . . . , kn), that is α = k� +

∑�−1
i=1 λiki.

α

α

α
α

α + k3

α + k2

α + k2

α + k2 + k3

α + k1

α + k1

α + k1

α + k1 + k3

α + k1 + k2

α + k1 + k2

α + k1 + k2 + k3

1
2

1
2 1

0
Eq. (5)

Eq. (6)

Eq. (7)

Fig. 3. Probabilities of output differences for three rounds and the cases of the input
difference α = k1 + k2, thus � = 2. Dotted transitions are impossible.

The case of bent functions is visualized in Fig. 3, where we give an example
of the three possibilities for three rounds.

Proof. As proved in Lemma 5, (α, β) is an impossible differential if and only if
β =

∑n
i=�+1 λiki. For all other values of β = α +

∑n
i=1 λiki, we have

EDP(α, β) =
n∏

i=1

(
1
2
+ (−1)λi2−n ̂ΔΦki

(δi)(fb(i))(0)
)
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where δi = α +
∑i

j=1 λjkj . The i-th term in the product is upper-bounded by

1
2
+ 2−n max

1�i�n
max
δ �=0

∣∣∣ ̂Δδ(fb(i))(0)
∣∣∣

except if Φki
(δi) = 0, i.e., δi ∈ {0, ki}. As seen in Lemma 5, the case δi = 0

cannot occur in a valid characteristic. The case δi = ki occurs if and only if
i = 
 and β = k� +

∑n
j=�+1 λjkj . In this situation, the 
-th term in the product

equals 1. In the tree of differences this is visible as the collapsing of the two
branches from two possible succeeding differences into only one, which then of
course occurs with probability one, see upper branch of Fig. 3.

Most notably, all fb(i) are bent if and only if

max
1�i�n

max
δ �=0

∣∣∣ ̂Δδ(fb(i))(0)
∣∣∣ = 0,

leading to the result.
This can be seen on Fig. 3: the 2n−� possible differences coming from the

collapsed branch have a transition of probability one in that round, resulting in
an overall probability of 2−n+1, see Eq. (6). For the lower part of Fig. 3, all the
other differences are not affected by this effect and have a probability of 2−n,
see Eq. (7).

Because they allow us to minimize the MEDP, we now concentrate on the
case of bent functions for the sake of simplicity, which implies that the block size
is odd. However, if an even block size is more appropriate for implementation
reasons, we could also define bison-like instances based on maximally nonlinear
functions.

It would be convenient to assume in differential cryptanalysis that the EDP
of a differential does not increase when adding more rounds, while this does not
hold in general. However, this argument can easily be justified for bison-like
instances using bent functions, when averaging over the whitening keys w.

Proposition 3. Let us consider r � n rounds of a bison-like instance of the
WSN construction with bent functions fb(i). Let k1, . . . , kn be any linearly inde-
pendent round keys. Then the probability of any non-trivial differential, averaged
over all whitening key sequences w is upper bounded by 2−n+1.

In other words, the MEDP of bison-like instances with bent fb(i) for r � n
rounds is 2−n+1.

Proof. By induction over r. The base case for r = n rounds comes from Lemma 6.
In the induction step, we first consider the case when the output difference β
after r rounds differs from kr. Then the output difference δr = β can be reached
if and only if the output difference after (r−1) rounds δr−1 belongs to {β, β+kr}.
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Then,

EDPr(α, β) = Prwr
[Rkr,wr

(xr) + Rkr,wr
(xr + β) = β]EDPr−1(α, β)

+Prwr
[Rkr,wr

(xr) + Rkr,wr
(xr + β + kr) = β]EDPr−1(α, β + kr)

=
1
2
(
EDPr−1(α, β) + EDPr−1(α, β + kr)

)
� 2−n+1 .

When the output difference β after r rounds equals kr, it results from δr−1 = kr

with probability 1. In this case

EDPr(α, β) = EDPr−1(α, β) � 2−n+1 .

This bound is close to the ideal case, in which each differential has probability
1/(2n − 1).

We now give a detailed description of our instance bison.

5 Specification of bison

As bison-like instances should obviously generalise bison, this concrete instance
inherits the already specified parts. Thus bison uses two bent functions fb(i),
replaces the max function by Φk, and uses a key schedule that generates round
keys, where all n consecutive round keys are linearly independent. The resulting
instance for n bits iterates the WSN round function as defined below over 3 ·
n rounds. The chosen number of rounds mainly stems from the analysis of the
algebraic degree that we discuss in Sect. 6.

Security Claim. We claim n-bit security for bison in the single-key model.
We emphasize that we do not claim any security in the related-key, chosen-key
or known-key model.

5.1 Round Function

For any nonzero round key k, we define Φk : F
n
2 → F

n−1
2 as

Φk(x) := (xi(k) · k + x)[1, . . . , i(k) − 1, i(k) + 1, . . . , n], (8)

where i(k) denotes the index of the lowest bit set to 1 in k, and the notation
x[1, . . . , j − 1, j + 1, . . . , n] returns the (n − 1)-bit vector, consisting of the bits
of x except the jth bit.

Lemma 7. The function Φk : F
n
2 → F

n−1
2 is linear and satisfies

ker(Φk) = {0, k}.
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The proof can be done by simply computing both outputs for x and x + k.
For the preimage of y ∈ F

n−1
2 and j = i(k) we have

Φ−1
k (y) ∈

{
(y[1 : j − 1], 0, y[j :n − 1]) + k[1 :n],
(y[1 : j − 1], 0, y[j :n − 1])

}
. (9)

Due to the requirement for the fb(i) being bent, we are limited to functions
taking an even number of bits as input. The simplest example of a bent function
is the inner product.

Eventually we end up with the following instance of the WSN round.

bison’s Round Function

For round keys ki ∈ F
n
2 and wi ∈ F

n−1
2 the round function computes

Rki,wi
(x) := x + fb(i)(wi + Φki

(x))ki. (10)

where

– Φki
is defined as in Eq. (8),

– fb(i) is defined as

fb(i) : F
n−1
2 → F2

fb(i)(x) := 〈x[1 : (n − 1)/2], x[(n + 1)/2 : n]〉 + b(i),

– and b(i) is 0 if i � r
2 and 1 otherwise.

5.2 Key Schedule

In the ith round, the key schedule has to compute two round keys: ki ∈ F
n
2 and

wi ∈ F
n−1
2 . We compute those round keys as the states of lfsrs after i clocks,

where the initial states are given by a master key K. The master key consists of
two parts of n and n − 1 bits, i.e.

K = (k,w) ∈ F
n
2 × F

n−1
2 .

As the all-zero state is a fixed point for any lfsr, we exclude the zero key for
both k and w. In particular k = 0 is obviously a weak key that would result in
a ciphertext equal to the plaintext p = Er

0,w(p) for all p, independently of w or
of the number of rounds r.

It is well-known that choosing a feedback polynomial of an lfsr to be primi-
tive results in an lfsr of maximal period. Clocking the lfsr then corresponds to
multiplication of its state with the companion matrix of this polynomial. Inter-
preted as elements from the finite field, this is the same as multiplying with a
primitive element.
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In order to avoid structural attacks, e.g. invariant attacks [28,39,50], as well
as the propagation of low-weight inputs, we add round constants ci to the round
key wi.

These round constants are also derived from the state of an lfsr with the
same feedback polynomial as the wi lfsr, initialized to the unit vector with the
least significant bit set. To avoid synchronization with the wi lfsr, the ci lfsr
clocks backwards.

bison’s Key Schedule

For two primitive polynomials pw(x), pk(x) ∈ F2[x] with degrees
deg(pw) = n − 1 and deg(pk) = n and the master key K = (k,w) ∈
F

n
2 × F

n−1
2 , k,w �= 0 the key schedule computes the ith round keys as

KSi : F
n
2 × F

n−1
2 → F

n
2 × F

n−1
2

KSi(k,w) := (C(pk)
i
k,C(pw)

−i
e1 + C(pw)

i
w) = (ki, ci + wi)

where C(·) is the companion matrix of the corresponding polynomial,
and 0 � i < r.
In [12, Appendix A] we give concrete polynomials for 5 � n � 129-bit
block sizes.

As discussed above, this key schedule has the following property, see also
Rationale 1.

Lemma 8. For bison’s key schedule, the following property holds: Any set of
n consecutive round keys ki are linearly independent. Moreover there exist coef-
ficients λi such that

kn+i = ki +
n+i−1∑

j=i+1

λjkj .

Proof. To prove this, we start by showing that the above holds for the first
n round keys, the general case then follows from a similar argumentation. We
need to show that there exists no non-trivial ci ∈ F2 so that

∑n
i=1 ciC(pk)

i
k = 0,

which is equivalent to showing that there exists no non-trivial ci ∈ F2 so that∑n−1
i=0 ciC(pk)

i
k = 0. In this regard, we recall the notion of minimal polynomial

of k with respect to C(pk), defined as the monic polynomial of smallest degree
QL(k)(x) =

∑d
i=0 qix

i ∈ F2[x] such that
∑d

i=0 qiC(pk)
i
k = 0. Referring to a

discussion that has been done for instance in [4], we know that the minimal
polynomial of k is a divisor of the minimal polynomial of C(pk). Since in our
case our construction has been made so that this later is equal to pk which is
a primitive polynomial, we deduce that the minimal polynomial of k �= 0 is pk

itself. Since the degree of pk is equal to n, this prove that the first n keys are
linearly independent.

The equation holds, since pk(0) = 1.
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6 Security Analysis

As we have already seen, bison is resistant to differential cryptanalysis. In this
section, we argue why bison is also resistant to other known attacks.

6.1 Linear Cryptanalysis

For linear cryptanalysis, given the fact that bison is based on a bent function,
i.e. a maximally non-linear function, arguing that no linear characteristic with
high correlation exist is rather easy. Again, we start by looking at the Fourier
coefficients for one round.

From One Round. Using the properties of f being bent, we get the following.

Proposition 4. Let Rk,w : F
n
2 → F

n
2 be the round function as defined in Eq. (10).

Then, its lat consists of the entries

R̂k,w(α, β) =

⎧
⎪⎨

⎪⎩

2n if α = β and 〈β, k〉 = 0

±2
n+1
2 if 〈α, k〉 = 1 and 〈β, k〉 = 1

0 if 〈α + β, k〉 = 1 or (α �= β and 〈β, k〉 = 0)

. (11)

We prove the proposition in [12, Section 6.1.1, Proposition 4].

To More Rounds. When we look at more than one round, we try to approxi-
mate the linear hull by looking at the strongest linear trail. As already discussed
in Lemma 2, for r < n there are trails with probability one. We now show that
any trail’s correlation for r � n rounds is actually upper bounded by 2− n+1

2 :

Proposition 5. For r � n rounds, the correlation of any non-trivial linear trail
for bison is upper bounded by 2− n+1

2 .

Proof. It is enough to show the above for any n-round trail. By contradiction,
assume there exists a non-trivial trail θ = (θ0, . . . , θn) with correlation one.
Following Proposition 4, for every round i the intermediate mask θi has to fulfill
〈θi, ki〉 = 0. Further θi = θi+1 for 0 � i < n. Because all n round keys are
linearly independent, this implies that θi = 0, which contradicts our assumption.
Thus, in at least one round the second or third case of Eq. (11) has to apply.

It would be nice to be able to say more about the linear hull, analogously to
the differential case. However, for the linear cryptanalysis this looks much harder,
due to the denser lat. In our opinion developing a framework where bounding
linear hulls is similarly easy as it is for bison with respect to differentials is a
fruitful future research topic.
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6.2 Higher-Order Differentials and Algebraic Attacks

High-order differential attacks, cube attacks, algebraic attacks and integral
attacks all make use of non-random behaviour of the ANF of parts of the encryp-
tion function. In all these attacks the algebraic degree of (parts of) the encryption
function is of particular interest. In this section, we argue that those attacks do
not pose a threat to bison.

We next elaborate in more detail on the algebraic degree of the WSN con-
struction. In particular, we are going to show that the algebraic degree increases
at most linearly with the number of rounds. More precisely, if the round function
is of degree d, the algebraic degree after r rounds is upper bounded by r(d−1)+1.

Actually, we are going to consider a slight generalization of the WSN con-
struction and prove the above statement for this generalization.

General Setting. Consider an initial state of n bits given as x = (x0, . . . , xn−1)
and a sequence of Boolean functions

fi : F
n+i
2 → F2

for 0 � i < r. We define a sequence of values yi by setting y0 = f0(x) and

yi = fi(x0, . . . , xn−1, y0, . . . , yi−1),

for 1 � i < r. Independently of the exact choice of fi the degree of any y�, as a
function of x can be upper bounded as stated in the next proposition.

Proposition 6. Let fi be a sequence of functions as defined above, such that
deg(fi) � d. The degree of y� at step 
 seen as a function of the bits of the initial
state x0, . . . , xn−1 satisfies

deg(y�) � (d − 1)(
 + 1) + 1.

Moreover, for any I ⊆ {0, . . . , 
},

deg(
∏

i∈I

yi) � (d − 1)(
 + 1) + |I|.

Proof. The first assertion is of course a special case of the second one, but we
add it for the sake of clarity. We prove the second, more general, statement by
induction on 
.

Starting with 
 = 0, we have to prove that deg(y0) � d, which is obvious, as

y0 = f0(x0, . . . , xn−1)

and deg(f0) ≤ d.
Now, we consider some I ⊆ {0, . . . , 
} and show that

deg(
∏

i∈I

yi) � (d − 1)(
 + 1) + |I|.
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We assume that 
 ∈ I, otherwise the result directly follows the induction hypoth-
esis.

Since f� depends both on y0, . . . , y�−1 and x, we decompose it as follows:

y� = f�(y0, . . . , y�−1, x) =
∑

J ⊆ {0, . . . , � − 1}
0 � |J| � min(d, �)

⎛

⎝
∏

j∈J

yj

⎞

⎠ gJ(x)

with deg(gJ) � d − |J | for all J since deg(f�) � d.
Then, for I = {
} ∪ I ′, we look at

y�

(
∏

i∈I′
yi

)
=

∑

J ⊆ {0, . . . , � − 1}
0 � |J| � min(d, �)

⎛

⎝
∏

j∈J∪I′
yj

⎞

⎠ gJ(x) .

From the induction hypothesis, the term of index J in the sum has degree at
most

(d − 1)
 + |J ∪ I ′| + deg(gJ) = (d − 1)
 + |J ∪ I ′| + d − |J |
� (d − 1)(
 + 1) + |J ∪ I ′| − |J | + 1
� (d − 1)(
 + 1) + |J | + |I ′| − |J | + 1
� (d − 1)(
 + 1) + |I| .

Special Case of bison. In the case of bison, we make use of quadratic func-
tions, and thus Proposition 6 implies that after r rounds the degree is upper
bounded by r+1 only. Thus, it will take at least n − 2 rounds before the degree
reaches the maximal possible degree of n − 1. Moreover, due to the construction
of WSN, if all component functions of Er

k,w are of degree at most d, there will be
at least one component function of Er+n−1

k,w of degree at most d. That is, there
exist a vector β ∈ F

n
2 such that

〈β,Er+n−1
k,w (x)〉

has degree at most d. Namely, for

β ∈ span {kr, . . . , kr+s}⊥

it holds that

deg
(
〈β,Er+s

k,w (x)〉
)
= deg

(
〈β,Er

k,w(x)〉 +
r+s∑

i=r

λi〈β, ki〉
)

= deg
(〈β,Er

k,w(x)〉
)
.

We conclude there exists a component function of Er+s
k,w of non-maximal degree,

as long as 0 � r � n − 2 and 0 � s � n − 1. Thus for bison there will be at
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least one component function of degree less than n−1 for any number of rounds
0 � r � 2n − 3. However, similarly to the case of zero-correlation properties as
described in Lemma 3, the vector β is key dependent and thus this property does
not directly lead to an attack.

Finally, so far we only discussed upper bounds on the degree, while for argu-
ing security, lower bounds on the degree are more relevant. As it seems very hard
(just like for any cipher) to prove such lower bounds, we investigated experimen-
tally how the degree increases in concrete cases. As can be seen in [12, Figure 4]
the maximum degree is reached for almost any instance for n + 5 rounds. Most
importantly, the fraction of instances where it takes more than n + 2 rounds
decreases with increasing block length n. Moreover, the round function in bison
experimentally behaves with this respect as a random function, as can be seen
in [12, Figure 5]. Thus, as the number of rounds is 3n, we are confident that
attacks exploiting the algebraic degree do not pose a threat for bison.

Besides the WSN construction, a special case of the above proposition worth
mentioning is a non linear feedback generator (NLFSR).

Degree of NLFSRs. One well-known special case of the above general setting
is an NLFSR or, equivalently a maximally unbalanced Feistel cipher, depicted
below.

fi �

Proposition 6 implies that the degree of any NLFSR increases linearly with the
number of rounds. To the best of our knowledge, this is the first time this have
been observed in this generality. We like to add that this is in sharp contrast to
how the degree increases for SPN ciphers. For SPN ciphers the degree usually
increases exponentially until a certain threshold is reached [11].

6.3 Other Attacks

We briefly discuss other cryptanalytic attacks.

Impossible Differentials. In Lemma 5 and Corollary 2, we discuss that every
output difference is possible after more than n rounds. Consequently, there are
no impossible differentials for bison.

Truncated Differentials. Due to our strong bounds on differentials it seems
very unlikely that any strong truncated differential exists.

Zero Correlation Linear Cryptanalysis. In Lemma 3 we already discussed
generic zero correlation linear hulls for the WSN construction. Depending on the
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actual key used, this technique may be used to construct a one-round-longer zero-
correlation trail. For this, we need two distinct elements α ∈ 〈k1, . . . , kn−1〉⊥,
β ∈ 〈kn, . . . , k2n−2〉⊥, and construct the trail analogously to Lemma3 (which
may not exist, due to the key dependency).

Invariant Attacks. For an invariant attack, we need a Boolean function g,
s.t. g(x) + g(Er

k,w(x)) is constant for all x and some weak keys (k,w). As the
encryption of any message is basically this message with some of the round keys
added, key addition is the only operation which is performed. It has been shown
in [4, Proposition 1] that any g which is invariant for a linear layer followed
by the addition of the round key ki as well as for the same up to addition of
a different kj , has a linear space containing ki + kj . In the case of the linear
layer being the identity, the linear space actually contains also the ki and kj (by
definition).

Thus, the linear space of any invariant for our construction has to contain
span {k1, . . . , k3n} which is obviously the full space F

n
2 . Following the results

of [4], there are thus no invariant subspace or nonlinear invariant attack on
bison.

Related-Key Attacks. In generic related-key attacks, the attacker is also
allowed to exploit encryptions under a related, that is k′ = f(k), key – in the
following, we restrict our analysis to the case where f is the addition with a
constant. That is, the attacker cannot only request Ek,w(x), and Ek,w(x + α),
but also Ek+β,w+β′(x) or Ek+β,w+β′(x + α), for α (difference in the input x),
β (difference in the key k) and β′ (difference in the key w) of her choice. As
β = β′ = 0 would result in the standard differential scenario, we exclude it for
the remainder of this discussion. Similar, β = k results in Φk+β = Φ0, which we
did not define, thus we also skip this case and refer to the fact that if an attacker
chooses β = k, she basically already has guessed the secret key correctly.

For bison, the following proposition holds.

Proposition 7. For r rounds, the probability of any related-key differential char-
acteristic for bison, averaged over all whieting key sequences (w1, . . . , wr), is
upper bounded by

(
3
4

)r.

For more details and a proof of the proposition, see [12, Section 6.3.5, Propo-
sition 7].

Further Observations. During the design process, we observed the following
interesting point: For sparse master keys k and w and message m, e.g. k = w =
m = 1, in the first few rounds, nothing happens. This is mainly due to the choice
of sparse key schedule polynomials pw and pk and the fact that f0 outputs 0 if
only one bit in its input is set (as 〈0, x〉 = 0 for any x).

To the best of our knowledge, this observation cannot be exploited in an
attack.
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Experimental Results. We conducted experiments on small-scale versions of
bison with n = 5. The ddts and lats, depicted using the “Jackson Pollock
representation” [8], for one to ten rounds are listed in [12, Appendix B]. In [12,
Appendix B.1] one can see that the two cases of averaging over all possible wi

and choosing a fixed wi results in very similar differential behaviors. Additionally,
after 5 = n rounds, the plots do not change much.

The results in the linear case, see [12, Appendix B.2], are quite similar. The
major difference here, is the comparable bigger entries for a fixed wi. Nonetheless,
most important is that there are no high entries in the average lat which would
imply a strong linear approximation for many keys. Additionally one also expects
for a random permutation not too small lat entries. Note that one can well
observe the probability-one approximation for 4 = n − 1 rounds (lower right
corner of the corresponding plot).

7 Conclusion

Efficiency of symmetric ciphers have been significantly improved further and
further, in particular within the trend of lightweight cryptography. However,
when it comes to arguing about the security of ciphers, the progress is rather
limited and the arguments basically did not get easier nor stronger since the
development of the AES. In our opinion it might be worth shifting the focus
to improving security arguments for new designs rather than (incrementally)
improving efficiency. We see bison as a first step in this direction.

With our instance for the WSN construction and its strong resistance to
differential cryptanalysis, this framework emerges as an interesting possibility to
design block ciphers. Unfortunately, we are not able to give better then normal
arguments for the resistance to linear cryptanalysis. It is thus an interesting
question, if one can find a similar instance of the WSN construction for which
comparable strong arguments for the later type of cryptanalysis exist.

Alternative designs might also be worth looking at. For example many con-
structions for bent functions are known and could thus be examined as alterna-
tives for the scalar product used in bison. One might also look for a less algebraic
design – but we do not yet see how this would improve or ease the analysis or
implementation of an instance.

Finally, for an initial discussion of implementation figures, see [12, Section 7].
Another line of future work in this direction is the in-depth analysis of imple-
mentation optimizations and side channel-resistance of bison.
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Abstract. We present a worst case decoding problem whose hardness
reduces to that of solving the Learning Parity with Noise (LPN) prob-
lem, in some parameter regime. Prior to this work, no worst case hardness
result was known for LPN (as opposed to syntactically similar problems
such as Learning with Errors). The caveat is that this worst case prob-
lem is only mildly hard and in particular admits a quasi-polynomial
time algorithm, whereas the LPN variant used in the reduction requires
extremely high noise rate of 1/2 − 1/poly(n). Thus we can only show
that “very hard” LPN is harder than some “very mildly hard” worst
case problem. We note that LPN with noise 1/2 − 1/poly(n) already
implies symmetric cryptography.

Specifically, we consider the (n, m, w)-nearest codeword problem
((n, m, w)-NCP) which takes as input a generating matrix for a binary
linear code in m dimensions and rank n, and a target vector which is
very close to the code (Hamming distance at most w), and asks to find
the codeword nearest to the target vector. We show that for balanced
(unbiased) codes and for relative error w/m ≈ log2 n/n, (n, m, w)-NCP
can be solved given oracle access to an LPN distinguisher with noise
ratio 1/2 − 1/poly(n).

Our proof relies on a smoothing lemma for codes which we show to
have further implications: We show that (n, m, w)-NCP with the afore-
mentioned parameters lies in the complexity class Search-BPPSZK (i.e.
reducible to a problem that has a statistical zero knowledge protocol)
implying that it is unlikely to be NP-hard. We then show that the hard-
ness of LPN with very low noise rate log2(n)/n implies the existence of
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collision resistant hash functions (our aforementioned result implies that
in this parameter regime LPN is also in BPPSZK).

1 Introduction

The hardness of noisy learning problems such as learning parity with noise
(LPN) [BFKL93,BKW03] and learning with errors (LWE) [Reg05] have proved
to be a goldmine in modern cryptography. The hardness of LWE has been instru-
mental in solving long-standing problems such as fully homomorphic encryp-
tion [Gen09,BV11]. Both LPN and LWE have given us efficient and plausi-
bly quantum-proof cryptographic constructions [KPC+11,BCD+16,ADPS16].
However, while we know several structural results about LWE, relatively little
is known about the 25-year old LPN problem.

Before we proceed, let us define the LPN and LWE problems. In the (search
version of the) LPN problem, the algorithm is given access to an oracle that
produces samples (ai, sTai +ei) where s ∈ Z

n
2 is the “secret” vector, ai ∈ Z

n
2 are

uniformly distributed and ei ∈ Z2 come from the Bernoulli distribution (that
is, it is 1 with probability ε and 0 otherwise). The goal is to recover s. The
(search version of the) LWE problem is the same but for two key changes: first,
the vectors ai ∈ Z

n
q are uniformly random with entries from some large enough

finite field Zq and second, each error term ei is chosen from the discrete Gaussian
distribution over the integers. The exact choice of the error distribution does
not matter much: what is important is that in LWE, each sample has an error
with bounded absolute value (at least with high probability). These seemingly
minor differences seem to matter a great deal: we know worst-case to average-
case reductions for LWE [Reg05,Pei09,BLP+13] while no such result is known
for LPN;1 we know that (a decisional version of) LWE is in the complexity class
SZK [MV03] (statistical zero-knowledge) while no such result is known for LPN;
and we can build a dizzying array of cryptographic primitives assuming the
hardness of LWE (e.g. attribute based encryption and homomorphic encryption
to name the more exotic examples) while the repertoire of LPN is essentially
limited to one-way functions and public-key encryption (and primitives that
can be constructed generically from it). In particular, we do not know how to
construct even simple, seemingly “unstructured”, primitives such as a collision-
resistant hash function from the hardness of LPN, even with extreme parameter
choices. Can we bridge this puzzling gap between LWE and LPN?

In a nutshell, the goal of this paper is to solve all three of these problems. Our
main tool is a smoothing lemma for binary linear codes. We proceed to describe
our results and techniques in more detail.

1.1 Overview of Our Results and Techniques

Worst-Case to Average-Case Reduction. We consider the promise nearest
codeword problem (NCP), a worst-case analog of the learning parity with noise
1 Feldman et al. [FGKP09] showed a worst-case to average-case reduction with respect

to the noise distribution, but not with respect to the samples themselves.
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problem. Roughly speaking, in the search version of the (n,m,w)-promise nearest
codeword problem, one is given the generator matrix C ∈ Z

n×m
2 of a linear code,

along with a vector t ∈ Z
m
2 such that t = sTC + xT for some s ∈ Z

n
2 and

x ∈ Z
m
2 with the promise that wt(x) = w. The problem is to find s. The non-

promise version of this problem (which is commonly called the nearest codeword
problem) is known to be NP-hard, even to approximately solve [ABSS93] and
the promise problem is similarly NP-hard in the large-error regime (that is,
when the Hamming weight of x exceeds (1/2 + ε)d where d is the minimum
distance of the code and ε > 0 is an arbitrarily small constant) [DMS99].

In terms of algorithms, Berman and Karpinski [BK02] show how to find
an O(n/ log n)-approximate nearest codeword in polynomial time. In particular,
this means that if the Hamming weight of x in the promise version is at most
O(d · log n/n), their algorithm finds the unique nearest codeword’s s efficiently.
To the best of our knowledge, this result is the current limit of polynomial-
time solvability of the promise nearest codeword problem. Alon, Panigrahy and
Yekhanin [APY09] show a deterministic nearly-polynomial time algorithm with
the same parameters. In this work, we consider the promise NCP for balanced
codes, where all nonzero codewords have Hamming weight between (1/2 − β)m
and (1/2+β)m for some balance parameter β > 0. We are not aware of improved
NCP algorithms that apply to balanced codes.

Our first result (in Sect. 4) shows a reduction from the worst-case promise
NCP for balanced codes where w/m ≈ log2 n

n to the average-case hardness of
LPNn

ε with very high error-rate ε = 1/2 − 1/O(n4). We note that a random
linear code is β-balanced with overwhelming probability when β ≥ 3

√
n/m so

for a sufficiently large m the restriction on β is satisfied by most codes. Thus,
qualitatively speaking, our result shows that solving LPN with very high error
on the average implies solving NCP with very low error for most codes. While
the parameters we achieve are extreme, we emphasize that no worst-case to
average-case reduction for LPN was known prior to our work.

The worst-case to average-case reduction is a simple consequence of a smooth-
ing lemma for codes that we define and prove in Sect. 3. In a nutshell, our
smoothing lemma shows a simple randomized procedure that maps a worst-case
linear code C and a vector t to a random linear code C′ and a vector t′ such
that if t is super-close to C, then t′ is somewhat close to C′. Our worst-case to
average-case reduction then follows simply by applying the smoothing lemma to
the worst-case code and vector. We show a simple Fourier-analytic proof of the
smoothing lemma, in a way that is conceptually similar to analogous statements
in the context of lattices [MR04] (see more details in the end of Sect. 3). Similar
statements have been shown before in the list-decoding high-error regime [KS10],
whereas our setting for NCP is in the unique decoding (low error) regime.

Statistical Zero-Knowledge. Another consequence of our smoothing lemma
is a statistical zero-knowledge proof for the NCP problem for balanced codes
with low noise, namely where w/m ≈ log2 n

n . In particular, we show that the
search problem is in BPPSZK. Membership in BPPSZK should be viewed as
an easiness result: a consequence of this result and a theorem of Mahmoody
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and Xiao [MX10] is that NCP with low noise cannot be NP-hard unless the
polynomial hierarchy collapses. Our result is the first non-NP-hardness result
we know for NCP, complementing the NP-hardness result of Dumer, Micciancio
and Sudan [DMS99] for noise slightly larger than half the minimum distance,
namely where w/m ≈ 1/2 (but leaves a large gap in between). This is the
LPN/codes analog of a result for LWE/lattices that we have known for over a
decade [MV03]. We refer the reader to Sect. 5 for this result.

Collision-Resistant Hashing. Finally, we show a new cryptographic conse-
quence of the hardness of LPN with low noise, namely a construction of a
collision-resistant hash (CRH) function. Again, collision-resistant hashing from
LWE/lattices has been known for over two decades [Ajt96,GGH96] and we
view this result as an LPN/codes analog. The construction is extremely sim-
ple: the family of hash functions is parameterized by a matrix A ∈ Z

n×n1+c

2 for
some c > 0, its domain is the set of vectors x ∈ Z

n1+c

2 with Hamming weight
2n/(c log n) and the output is simply Ax (mod 2). This is similar to a CRH
construction from the recent work of Applebaum et al. [AHI+17] modulo the
setting of parameters; what is new in our work is a reduction from the LPN
problem with error rate O(log2 n/n) to breaking this CRH function.

Related Work. Our LPN-based collision-resistant hash function was used in
[BLSV17] as a basis for constructing an identity based encryption scheme based
on LPN with very low noise. Concurrently with, and independently from, our
work, Yu et al. [YZW+17] constructed a family of collision-resistant hash func-
tions based on the hardness of LPN using the same main idea as in Sect. 6 of
the present work. While the core ideas of the construction in the two works
is identical, [YZW+17] further discusses different parameter settings and some
heuristics upon whose reliance one can obtain a tighter connection between the
hardness of the CRH and the LPN problem.

2 Preliminaries

2.1 Notation

Throughout the paper, we will be working with elements in the additive group
Z2 with the usual addition operation. We will denote by bold lower-case letters
vectors over Zn

2 for n > 1, and by bold upper-case letters matrices over Zm×n
2 for

m,n > 1. We will make the assumption that all vectors are column vectors and
write aT to denote the row vector which is the transpose of a. The Hamming
weight of a ∈ Z

n
2 , written as wt(a), denotes the number of 1’s in a. For a set S,

we write s ← S to denote that s is chosen uniformly at random from S. When D
is some probability distribution, then s ← D means that s is chosen according
to D.

The Berε distribution over Z2 is the Bernoulli distribution that outputs 1
with probability ε and 0 with probability 1 − ε. Let Sm

k be the set of all the
elements s ∈ Z

m
2 such that wt(s) = k.
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A negligible function negl(n) is any function that grows slower than inverse
polynomial in n. In particular, for every polynomial p there is an n0 ∈ N such
that for every n > n0, negl(n) < 1/p(n).

2.2 The Learning Parity with Noise (LPN) Problem

For an s ∈ Z
n
2 , and an ε ∈ [0, .5] let On

s,ε be an algorithm that, when invoked,
chooses a random a ← Z

n
2 and e ← Berε and outputs (a, sTa+ e). An algorithm

A is said to solve the search LPNn
ε problem with probability δ if

Pr[AOn
s,ε ⇒ s ; s ← Z

n
2 ] ≥ δ.

Let Un be an algorithm that, when invoked, chooses random a ← Z
n
2 and b ← Z2

and outputs (a, b). We say that an algorithm A has advantage δ in solving the
decisional LPNn

ε problem if
∣∣∣Pr[AOn

s,ε ⇒ 0; s ← Z
n
2 ] − Pr[AUn ⇒ 0]

∣∣∣ ≥ δ.

The LPN problem has a search to decision reduction (c.f. [KS06]). Namely,
if there is an algorithm that runs in time t and has advantage δ in solving the
decisional LPNn

ε problem, then there is an algorithm that runs in time O(nt/δ)
that solves the search LPNn

ε problem with probability ≈ 1.
The following fact is known in some contexts as The Piling-Up Lemma

[Mat93].

Lemma 2.1. For all ε ∈ [0, 1
2 ] it holds that Pr[e1 + . . . + ek = 0; ei ← Berε] =

1
2 + 1

2 · (1 − 2ε)k.

2.3 The Nearest Codeword Problem

An (binary) (n,m, d)-code C is a subset of {0, 1}m such that |C| = 2n and for any
two codewords x,y ∈ C, wt(x⊕y) ≤ d. The code is linear (denoted [n,m, d]-code)
if C is the row span of some matrix C ∈ {0, 1}n×m.

Definition 2.1 (Nearest Codeword Problem (NCP)). The nearest code-
word problem NCPn,m,w is characterized by n,m,w ∈ Z and is defined as follows.
The input consists of a matrix C ∈ Z

n×m which is the generator of a code, along
with a vector t ∈ Z

m such that t = sTC + xT for some s ∈ Z
n
2 ,x ∈ Z

m
2 with

wt(x) = w. The problem is to find s.

Note that our definition requires wt(x) = w, as opposed to the more relaxed
requirement wt(x) ≤ w. However since w comes from a polynomial domain
{0, . . . , m} the difference is not very substantial (in particular, to solve the
relaxed version one can go over all polynomially-many relevant values of w and
try solving the exact version).

In this work, we consider a variant of the problem which is restricted to
balanced codes, which are codes where all non-zero codewords have hamming
weight close to 1/2. We start by defining balanced codes and then present bal-
anced NCP.
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Definition 2.2. A code C ⊆ {0, 1}m is β-balanced if its minimum distance is at
least 1

2 (1 − β)m and maximum distance is at most 1
2 (1 + β)m.

Definition 2.3 (balanced NCP (balNCP)). The balanced nearest codeword
problem balNCPn,m,w,β is characterized by n,m,w ∈ Z and β ∈ (0, 1), and is
defined as follows. The input consists of a matrix C ∈ Z

n×m which is the gener-
ator of a β-balanced code, along with a vector t ∈ Z

m such that tT = sTC + xT

for some s ∈ Z
n
2 ,x ∈ Z

m
2 with wt(x) = w. The problem is to find s.

The balNCPn,m,w,β problem has a unique solution when w ≤ 1
4 (1 − β)m.

Standard decoding algorithms allow to solve NCP in polynomial time with
success probability (1− w

m )n [BK02] or even deterministically in time (1− w
m )−n ·

poly(n,m) [APY09]. We are not aware of improved methods that apply to bal-
anced codes.

To conclude this section we show via a straightforward probabilistic argument
that most sparse linear codes are indeed balanced (this is essentially the Gilbert-
Varshamov Bound). This is to serve as sanity check that the definition is not
vacuous and will also be useful when we apply our SZK results to the LPNn

ε

problem which naturally induces random codes.

Lemma 2.2. A random linear code C ⊆ Z
m
2 of dimension n is β-balanced with

probability at least 1 − 2n−β2m/4+1. In particular, when β ≥ 3
√

n/m a random
linear code is β-balanced with probability 1 − negl(n).

Proof. Let C ← Z
n×m
2 be a randomly chosen generator matrix. Then the asso-

ciated code C fails to be β-balanced if and only if there exists some s 
= 0 ∈ Z
n
2

such that |wt(sTC)− m
2 | > β

2m. For any fixed s 
= 0 the vector sTC is uniformly
random in Z

m
2 and therefore by the Chernoff bound:

Pr
[∣∣
∣ wt(sTC) − m

2

∣∣
∣ > βm

2

]
≤ 2 exp

(
−β2m

4

)

By the union bound, the probability that the code is not β-balanced is at most

2n+1 exp
(

−β2m

4

)
≤ 2n− β2m

4 +1.

This is negligible in n when β ≥ 3
√

n/m.

2.4 Statistical Zero Knowledge

Statistical zero-knowledge (SZK) is the class of all problems that admit a zero-
knowledge proof [GMR89] with a statistically sound simulation. Sahai and Vad-
han [SV03] showed that the following problem is complete for SZK.

Definition 2.4. The promise problem Statistical Distance (SD) is defined by
the following YES and NO instances. For a circuit C : {0, 1}n → {0, 1}m, we let
C(Un) denote the probability distribution on m-bit strings obtained by running C
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on a uniformly random input. Let SD(D0,D1) denote the statistical (variation)
distance between the distributions D0 and D1.

ΠY ES := {(C0, C1) : C0, C1 : {0, 1}n → {0, 1}m and SD(C0(Un), C1(Un)) ≥ 2/3}
ΠNO := {(C0, C1) : C0, C1 : {0, 1}n → {0, 1}m and SD(C0(Un), C1(Un)) ≤ 1/3}

By BPPSZK, we mean decision problems that can be reduced to the sta-
tistical distance problem using randomized reductions. While in general such
reduction could query the SD oracle on inputs that violate the promise (namely,
a pair of circuits/distributions whose statistical distance lies strictly between 1/3
and 2/3), the reductions we present in this paper will respect the SD promise.
Search-BPPSZK is defined analogously.

3 A Smoothing Lemma for Noisy Codewords

Let C ⊆ Z
m
2 be a binary linear code with generating matrix C ∈ Z

n×m
2 . We say

that a distribution R over Z
m
2 smooths C if the random variable Cr for r ← R

is statistically close to uniform over Z
n
2 . We say that R also smooths noisy

codewords if for every vector x of sufficiently low Hamming weight, it holds that
(Cr,xT r) is statistically close to the distribution UZ

n
2

× Berε for some ε.
The notion of smoothing will play an important role in our reductions in

this work. In particular, we would like to characterize families of codes that are
smoothed by distributions supported over low Hamming weight vectors. To this
end, we show that for balanced codes, there exist such smoothing distributions.
(Similar statements have been shown before in the high-error regime, e.g., by
Kopparty and Saraf [KS10].)

We note that while our proof uses harmonic analysis, it is also possible to
prove it using the Vazirani XOR Lemma [Vaz86,Gol95]. However, we find that
our method of using harmonic analysis demonstrates more straightforwardly
the analogy of our lemma to smoothing in the lattice world (which is most
often proved using harmonic analysis), see comparison in the end of this section.
Furthermore, this suggests an approach if one wants to analyze the non-binary
setting.

We start by defining our family of smoothing distributions Rd,m.

Definition 3.1. Let d,m ∈ N. The distribution Rd,m over Z
m
2 is defined as

follows. Sample (with replacement) d elements t1, . . . , td uniformly and indepen-
dently from [m]. Output x = ⊕d

i=1uti
, where uj is the j-th standard basis vector.

One can easily verify that Rd,m is supported only over vectors of Hamming weight
at most d.

We can now state and prove our smoothing lemma for noisy codewords.

Lemma 3.1. Let β ∈ (0, 1) and let C ∈ Z
n×m
2 be a generating matrix for a

β-balanced binary linear code C ⊆ Z
m
2 . Let c ∈ Z

m
2 be a word of distance w from

C. Let s,x be s.t. cT = sTC + xT and wt(x) = w.
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Consider the distribution (a, b) generated as follows. Sample r ← Rd,m and
set a = Cr, b = cT r. Then it holds that the joint distribution of (a, b − sTa) is
within statistical distance δ from the product distribution UZ

n
2

× Berε, where

δ ≤ 2(n+1)/2 · (β + 2w
m )d and

ε = 1
2 − 1

2 (1 − 2w
m )d.

Proof. Let e denote the value b − sTa. We bound the distance of [ ae ] =
[

C
xT

]
r

from U{0,1}n × Berε using simple harmonic analysis. Let f be the probability
density function of [ ae ], and consider its (binary) Fourier Transform:

f̂(y, z) = E
a,e

[(−1)y
T a+ze] = E

r
[(−1)(y

T C+zxT )r], (1)

It immediately follows that f̂(0, 0) = 1. Moreover

f̂(0, 1) = E
r
[(−1)x

T r]. (2)

Recalling that r = ⊕d
i=1uti

we have

E
r
[(−1)x

T r] =
d∏

i=1

E
ti

[(−1)x
T uti ] = (1 − 2w

m )d,

since each ti is sampled uniformly and independently in [m] and thus has a w
m

probability to hit a coordinate where x is one. Recalling the definition of ε, we
have f̂(0, 1) = 1 − 2ε.

Now let us consider the setting where y 
= 0. In that case, let us denote
v = yTC, a nonzero codeword in C. Since C is balanced it follows that wt(v) ∈
[12 (1−β)m, 1

2 (1+β)m]. Let us further denote (v′)T = yTC+zxT , since wt(x) ≤ w
it follows that wt(v′) ∈ 1

2 (1 ± β′)m for β′ = β + 2w
m . For y 
= 0 we thus get

f̂(y, z) = E
r
[(−1)(v

′)T r] =
d∏

i=1

E
ti

[(−1)(v
′)T uti ]. (3)

Since each ti is sampled uniformly from [m], it follows that v′uti
(mod 2) = 0

with probability εi ∈ 1
2 (1 ± β′). Therefore for all i ∈ [d] it holds that

∣
∣∣∣Eti

[(−1)v
′uti ]

∣
∣∣∣ = |1 − 2εi| ≤ β′. (4)

We conclude that ∣
∣∣f̂(y, z)

∣
∣∣ ≤ (β′)d. (5)

Now we are ready to compare with UZ
n
2
×Berε. Let g be the probability density

function of UZ
n
2

× Berε, and let ĝ be its Fourier Transform. Then ĝ(0, 0) = 1,
ĝ(0, 1) = 1 − 2ε and ĝ(y, z) = 0 for all y 
= 0. Therefore

∥∥∥f̂ − ĝ
∥∥∥
2

2
=

∑

y,z

∣∣∣f̂(y) − ĝ(y)
∣∣∣
2

≤
∑

y∈Z
n
2 \{0}

z∈Z2

(β′)2d ≤ 2n+1(β′)2d. (6)
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By Parseval’s theorem, we have that

‖f − g‖22 =
1

2n+1

∥∥∥f̂ − ĝ
∥∥∥
2

2
≤ (β′)2d, (7)

and going to �1 norm we have

‖f − g‖1 ≤ 2(n+1)/2 ·
∥∥∥f̂ − ĝ

∥∥∥
2

≤ 2(n+1)/2 · (β′)d, (8)

which completes the proof. 
�

Relation to Lattice Smoothing. To conclude this section, let us briefly
explain the analogy to smoothing lemmas for lattices [MR04]. Our explanation
is intended mostly for readers who are familiar with lattice smoothing and the
notion of q-ary lattices, and wish to better understand the connection to our
notion of smoothing. Other readers may safely skip this paragraph. We recall
that the goal of smoothing in the lattice world is to find a distribution D (a
Gaussian in the lattice case), such that reducing it modulo a lattice L results in
an almost uniform distribution over the cosets of the lattice. Let us restrict our
attention to integer lattices, integer distributions and integer cosets. Formally,
D (mod L) is uniform over Z/L. Now let C be a generating matrix for a binary
code, and consider the so called “perp lattice” L = Λ⊥

2 (C) = {x ∈ Z
m : Cx = 0

(mod 2)} = C⊥ + 2Zm. That is, the lattice corresponding to the dual code of
C plus all even vectors. Each integer cosets of the lattice L corresponds to a
vector y where the respective coset is Ly = {x ∈ Z

m : Cx = y (mod 2)}. Thus
a smoothing distribution D is one where drawing r from D and computing Cr
(mod 2) is close to uniform. Therefore, our smoothing lemma above shows that
for 2-ary lattices one can devise non-trivial (and useful) smoothing distributions,
and these distributions are not discrete Gaussians as usually considered in the
lattice literature. Finally, the fact that we can smooth the code together with a
noisy codeword is somewhat analogous to Gaussian leftover hash lemmas in the
context of lattices.

4 A Worst Case Balanced NCP to Average Case LPN
Reduction

Theorem 4.1. Assume there is an algorithm that solves the search LPNn
ε prob-

lem with success probability α in the average case by running in time T and
making q queries. Then, for every d ≤ m ∈ Z there is an algorithm that solves
search balNCPn,m,w,β in the worst case in time T · poly(n,m) with success prob-
ability at least α − q · δ where

δ ≤ 2(n+1)/2 · (β + 2w
m )d

ε = 1
2 − 1

2 (1 − 2w
m )d.

Proof. Assume A is an algorithm for the LPN problem as in the theorem. Define
B as follows:
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– Input: C ∈ Z
n×m
2 , t ∈ {0, 1}m. By assumption C is the generator of a β-

balanced code and tT = sTC+ xT for some s ∈ Z
n
2 ,x ∈ Z

m
2 with wt(x) ≤ w.

1. Sample s′ ← Z
n
2 and set cT = tT + (s′)TC = (s + s′)TC + xT .

2. Run the algorithm A. Every time A request a new LPN sample, choose r ←
Rd,m and set a = Cr, b = cT r and give a, b to A.

3. If at some point A outputs s∗ ∈ Z
n
2 then output s∗ − s′.

By Lemma 3.1 each of the values (a, b) given to A during step 2 is δ-close to
a fresh sample from On

s∗,ε where s∗ = s + s′ is uniformly random over Z
n
2 .

By assumption, if A were actually given samples from On
s∗,ε is step 2 it would

output s∗ in step 3 with probability α. Therefore if A makes q queries in step
2, the probability that it outputs s∗ in step 3 is at least α − qδ. This proves the
theorem. 
�
Corollary 4.1. Let m = nc for some constant c > 1, β = 1√

n
, w = �m log2 n

n �.
Assume that search balNCPn,m,w,β is hard in the worst case, meaning that for
every polynomial time algorithm its success probability on the worst case instance
is at most negl(n). Then for some ε < 1

2 − 1
O(n4) search LPNn

ε is hard in the aver-
age case, meaning that for every polynomial time algorithm its success probability
on a random instance is at most negl(n).

Proof. Follows directly from the theorem by setting d = �2n/ log n� and noting
that:

δ ≤ 2(n+1)/2 · (β + 2w
m )d ≤ 2(n+1)/2−(d/2) log n+O(1) ≤ 2−n/2+O(1) = negl(n)

ε = 1
2 − 1

2 (1 − 2w
m )d ≤ 1

2
− 2−(4 w

m d+1) ≤ 1
2

− 1/O(n4)


�
The above says that the wost-case hardness of balNCP with very low error-

rate w/m ≈ log2 n
n implies the average-case hardness of LPNn

ε with very high
error-rate ε = 1/2−1/O(n4). Note that a random linear code is β-balanced with
overwhelming probability when β ≥ 3

√
n/m so for a sufficiently large m the

restriction on β is satisfied by most codes.
Other choices of parameters may also be interesting. For example, we can

set the error-rate to be w/m ≈ 1/
√

n and d = 2n/ log n while keeping m =
nc for some c > 1, β = 1/

√
n the same as before. Then if we assume that

balNCPn,m,w,β is (T (n), δ(n)) hard in the worst case (meaning that for every
T (n) time algorithm the success probability on the worst case instance is at
most δ(n)) this implies LPNn

ε is (T ′(n), δ′(n)) hard in the average where ε(n) =
1/2 − 2−√

n/ log n, T ′(n) = T (n)/poly(n) and δ′(n) = δ(n) + T ′(n)2−(n−1)/2.
Note that, as far as we know, the balNCPn,m,w,β with noise rate w/m = 1

√
n

may be (T (n), δ(n)) hard for some T (n) = 2Ω(
√

n), δ(n) = 2−Ω(
√

n), which
would imply the same asymptotic hardness for LPNn

ε . Although the error-rate
ε = 1/2 − 2−√

n/ log n is extremely high, it is not high enough for the conclusion
to hold statistically and therefore this connection may also be of interest.
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5 Statistical Zero Knowledge for Balanced NCP and
LPN

In this section, we show that for certain parameter regimes, balNCP ∈
Search-BPPSZK and is thus unlikely to be NP-hard [MX10]. Towards this end,
we use a decision to search reduction analogous to the canonical one known
for the LPN problem. We consider the following randomized samplers (with an
additional implicit parameter d):

– Randomized sampler Samp0(C, t) takes as input a matrix C ∈ {0, 1}n×m and
a word t ∈ {0, 1}m. It samples r $← Rd,m and outputs (Cr, tT r).

– Randomized sampler Sampi,σ(C, t) is parameterized by i ∈ [n], σ ∈ {0, 1},
takes as input a matrix C ∈ {0, 1}n×m and a word t ∈ {0, 1}m. It samples
r $← Rd,m and ρ ∈ {0, 1} and outputs (Cr + ρui, tT r + ρσ).

Lemma 5.1. Consider a generating matrix C ∈ {0, 1}n×m for a β-balanced
code, and let t = sTC+xT for some s ∈ {0, 1}n and x with hamming weight w.
Then the following hold:

1. The sampler Samp0(C, t) samples from a distribution that is δ-close to
U{0,1}n × Berε.

2. If si = σ then Sampi,σ(C, t) samples from a distribution that is δ-close to
U{0,1}n × Berε.

3. If si 
= σ then Sampi,σ(C, t) samples from a distribution that is δ-close to
U{0,1}n × U{0,1}.

Here, ε = 1
2 − 1

2 (1 − 2w
m )d, δ = 2(n+1)/2 · (β + 2w

m )d.

Proof. Assertion 1 follows directly from Lemma 3.1.
For Assertion 2 we note that if si = σ then

(Cr + ρui, tT r + ρσ) = (Cr, tT r) + ρ(ui, σ) = (Cr, tT r) + (ρui, sT (ρui)).

By Lemma 3.1 this distribution is within δ statistical distance to

(a, sTa + e) + (ρui, sT (ρui)),

with (a, e) distributed U{0,1}n × Berε. Finally, we can write

(a, sTa + e) + (ρui, sT (ρui)) = ((a + ρui), sT (a + ρui) + e),

and since a′ = a + ρui is also uniformly distributed, the assertion follows.
For Assertion 3 we note that when si 
= σ, i.e. σ = si + 1 then

(Cr+ρui, tT r+ρσ) = (Cr, tT r)+ρ(ui, σ) = (Cr, tT r)+(ρui, sT (ρui))+(0, ρ).

As above, by Lemma 3.1, this distribution is within δ statistical distance to

(a, sT a+ e) + (ρui, s
T (ρui)) = ((a+ ρui)

︸ ︷︷ ︸

a′

, sT (a+ ρui) + e) + (0, ρ) = (a′, sT a′ + e + ρ),
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with (a, e) distributed U{0,1}n × Berε, and thus also (a′, e) distributed U{0,1}n ×
Berε and independent of ρ. Since ρ is uniform and independent of (a′, e) it follows
that (a′, sTa′ + e + ρ) is distributed U{0,1}n × U{0,1}. 
�

The following is an immediate corollary of Lemma 5.1.

Corollary 5.1. If si = σ then the distributions generated by Sampi,σ(C, t) and
Samp0(C, t) are within statistical distance at most 2δ.

If si 
= σ then the distributions generated by Sampi,σ(C, t) and Samp0(C, t)
are within statistical distance at least (1 − 2ε) − 2δ.

Proof. A direct calculation shows that the statistical distance between Berε and
U{0,1} is 1 − 2ε. Plugging in Lemma5.1, the result follows. 
�

We define the notion of a direct product sampler. This is just a sampler that
outputs multiple samplers.

Definition 5.1. Let D be a distribution and let k ∈ N, then D(k) is the distri-
bution defined by k independent samples from D.

Lemma 5.2. Consider distributions D1,D2 and values 0 ≤ δ1 ≤ δ2 ≤ 1 s.t.
dist(D1,D2) ∈ (δ1, δ2). Let k ∈ N then dist(D(k)

1 ,D(k)
2 ) ∈ (1−c1e

−c2δ2
1k, kδ2). For

some positive constants c1, c2.

Proof. The upper bound follows by union bound and the lower bound from the
Chernoff bound. 
�
Theorem 5.1. There exists a Search-BPPSZK algorithm for solving balNCP
on instances of the following form. Letting C ∈ {0, 1}n×m, t ∈ {0, 1}m, w ∈ [m]
denote the balNCP input, we require that the code generated by C is β-balanced
and that n,m,w, β are such that there exist d ∈ [m] and k ≤ poly(n,m) for
which

2δk < 1/3 (9)

for δ = 2(n+1)/2 · (β + 2w
m )d, and

c1e
−c2(1−2ε−2δ)2k < 1/3 (10)

for δ as above, ε = 1
2 − 1

2 (1− 2w
m )d, and c1, c2 are the constants from Lemma 5.2.

Proof. We recall the problem Statistical Distance (SD) which is in SZK. This
problem takes as input two sampler circuits and outputs 0 if the inputs sample
distributions that are within statistical distance < 1/3 and 1 if the distributions
are within statistical distance > 2/3. We will show how to solve balNCP for the
above parameters using an oracle to SD.

Specifically, for all i = 1, . . . , n and σ ∈ {0, 1}, the algorithm will call the SD

oracle on input (Samp
(k)
0 (C, t),Samp

(k)
i,σ (C, t)), where Samp

(k)
(·) is the algorithm

that runs the respective Samp k times and outputs all k generated samples.
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Let αi,σ denote the oracle response on the (i, σ) call. Then if for any i it
holds that αi,0 = αi,1, then return ⊥. Otherwise set si to the value σ for which
αi,σ = 0. Return s.

By definition of our samplers, they run in polynomial time, so if k is poly-
nomial then our inputs to SD are indeed valid. Combining Corollary 5.1 and
Lemma 5.2, it holds that αi,σ = 0 if and only if s∗

i = σ, where s∗ is the vector
for which tT = (s∗)TC + xT and wt(x) = w. The correctness of the algorithm
follows. 
�
Corollary 5.2. Let m = nc for some constant c > 1, β = 1√

n
, w = �m log2 n

n �.
Then search balNCPn,m,w,β ∈ Search-BPPSZK.

Proof. In Theorem 5.1 set d = �2n/ log n� and k = n9. By the same calculation
as in Corollary 4.1 we have δ = negl(n) and ε ≤ 1

2 −1/O(n4). Therefore for large
enough n we have 2δk < 1/3 and c1e

−c2(1−2ε−2δ)2k = e−Ω(n) < 1/3 as required
by the theorem. 
�

On Statistical Zero Knowledge and LPN. We notice that since sparse
random codes are balanced with overwhelming probability (Lemma2.2), our
results in this section also imply that the LPN problem is in Search-BPPSZK

for error value log2 n
n . We note that even though in LPN the weight of the noise

vector (the distance from the code) is not fixed as in our definition of balNCP,
the domain of possible weights is polynomial and thus the exact weight can be
guessed with polynomial success probability. Once a successful guess had been
made, it can be verified once a solution had been found.

6 Collision-Resistant Hashing

In this section, we describe a collision-resistant hash function family whose secu-
rity is based on the hardness of the (decisional) LPNn

O(log2 n/n) problem. For any

positive constant c ∈ R
+ and a matrix A ∈ Z

n×n1+c

2 , define the function

hA : Sn1+c

2n/(c log n) → Z
n
2 as hA(r) := Ar. (11)

Notice that because

∣
∣∣Sn1+c

2n/(c log n)

∣
∣∣ =

(
n1+c

2n/(c log n)

)
>

(
n1+c

2n/(c log n)

)2n/(c log n)

> 22n

and the size of Zn
2 is exactly 2n, the function hA is compressing.

We now relate the hardness of finding collisions in the function hA, for a
random A, to the hardness of the decisional LPNn

ε problem.

Theorem 6.1. For any constant c > 0, if there exists an algorithm A1 running
in time t such that

Pr
[

A1(hA) ⇒ (r1, r2) ∈ Sn1+c

2n/(c logn) s.t. r1 �= r2 and hA(r1) = hA(r2); A ← Z
n×n1+c

2

]

≥ δ,
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then there exists an algorithm A2 that runs in time ≈ t and solves the decisional
LPNn

ε problem for any ε ≤ 1
4 with advantage at least δ · 2−16nε/(c log n)−1.

In particular, for ε = O(log2 n/n) and any δ = 1/poly(n), the advantage is
1/poly(n).

Proof. The algorithm A2 has access to an oracle that is either On
s,ε or Un. He

calls the oracle n1+c times to obtain samples of the form (ai, bi). He arranges
the ai and bi into a matrix A and vector b as

A =
[
a1 | · · · | an1+c

] ∈ Z
n×n1+c

2 , b =

⎡

⎣
b1
· · ·

bn1+c

⎤

⎦ ∈ Z
n1+c

2

and sends A to A1. If A1 fails to return a valid answer, then A2 outputs ans ←
{0, 1}. If A1 does return valid distinct r1 and r2 such that hA(r1) = hA(r2),
then A2 returns ans = bT (r1 − r2).

We first look at the distribution of ans when the oracle that A2 has access to
is Un. In this case it’s easy to see that regardless of whether A1 returns a valid
answer, we’ll have Pr[ans = 0] = 1

2 because b is completely uniform in Z
n1+c

2 .
On the other hand, if the oracle is On

s,ε, then we know that for all i, bi =
sTai + ei, where ei ← Berε. This can be rewritten as sTA + eT = bT where

e =

⎡

⎣
e1
· · ·

en1+c

⎤

⎦. Therefore

bT (r1 − r2) = A(r1 − r2) + eT (r1 − r2) = eT (r1 − r2).

Since wt(ri) = 2n/(c log n), we know that wt(r1 − r2) ≤ 4n/(c log n). Since
the A that is sent to A1 is independent of e, we have that

Pr[eT ·(r1−r2) = 0 ; ei ← Berε] ≥ 1
2
+

1
2
(1−2ε)4n/(c log n) ≥ 1

2
+2−16nε/(c log n)−1,

(12)
where the first inequality follows from Lemma 2.1 and the second inequality is
due to the assumption that ε ≤ 1

4 and the fact that 1 − x ≥ 2−2x for x ≤ 1/2.
Thus when the oracle is On

s,ε, we have

Pr[ans = 0] ≥ 1
2

· (1 − δ) +
(

1
2

+ 2−16nε/(c log n)−1

)
· δ =

1
2

+ δ · 2−16nε/(c log n)−1.


�

6.1 Observations and Other Parameter Regimes

As far as we know, the best attack against the hash function in (11) with c = 1
requires 2Ω(n) time, whereas the LPNn

log2 n/n problem, from which we can show a

polynomial-time reduction, can be solved in time 2O(log2 n). Thus there is possi-
bly a noticeable loss in the reduction for this parameter setting. It was observed
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in [YZW+17, Theorem 2, Theorem 3] that there are other ways to set the param-
eters in Theorem 6.1 which achieve different connections between the hash func-
tion and the underlying LPN problem. For example, defining n = log2 m and
c = log m/ log log m − 1 implies that there exists a hash function defined by the
matrix A ∈ Z

log2 m×2m
2 such that succeeding with probability δ in finding colli-

sions in this hash function is at least as hard as solving LPNlog2 m
ε problem with

advantage δ · m−O(κε) for a constant κ. This is exactly the parameter setting in
[YZW+17, Theorem 3].2

Based on the state of the art of today’s algorithms, it’s clear that using a
hash function defined by an n × n2 matrix A is more secure than one defined
by a log2 n × 2n matrix (since one can trivially find collisions in the latter in
time 2O(log2 n)). There is, however, no connection that we’re aware of between
the LPN problems on which they are based via Theorem6.1. In particular, we
do not know of any polynomial-time (in n) reductions that relate the hardness
of the LPNn

log2 n/n problem to the LPNlog2 n
ε problem for a constant ε.
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Abstract. A conjunction is a function f(x1, . . . , xn) =
∧

i∈S li where
S ⊆ [n] and each li is xi or ¬xi. Bishop et al. (CRYPTO 2018) recently
proposed obfuscating conjunctions by embedding them in the error posi-
tions of a noisy Reed-Solomon codeword and placing the codeword in
a group exponent. They prove distributional virtual black box (VBB)
security in the generic group model for random conjunctions where
|S| ≥ 0.226n. While conjunction obfuscation is known from LWE [31,47],
these constructions rely on substantial technical machinery.

In this work, we conduct an extensive study of simple conjunction
obfuscation techniques.

– We abstract the Bishop et al. scheme to obtain an equivalent yet
more efficient “dual” scheme that can handle conjunctions over expo-
nential size alphabets. This scheme admits a straightforward proof
of generic group security, which we combine with a novel combina-
torial argument to obtain distributional VBB security for |S| of any
size.

– If we replace the Reed-Solomon code with a random binary linear
code, we can prove security from standard LPN and avoid encoding
in a group. This addresses an open problem posed by Bishop et al. to
prove security of this simple approach in the standard model.

– We give a new construction that achieves information theoretic dis-
tributional VBB security and weak functionality preservation for
|S| ≥ n − nδ and δ < 1. Assuming discrete log and δ < 1/2, we sat-
isfy a stronger notion of functionality preservation for computation-
ally bounded adversaries while still achieving information theoretic
security.

1 Introduction

Program obfuscation [7] scrambles a program in order to hide its imple-
mentation details, while still preserving its functionality. Much of the recent
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attention on obfuscation focuses on obfuscating general programs. Such obfus-
cation is naturally the most useful [15,43], but currently the only known
constructions are extremely inefficient and rely on new uncertain complexity
assumptions about cryptographic multilinear maps [23,27,29]. Despite recent
advances [1,2,8,13,28,35–37,39], obfuscating general programs remains out of
reach.

For some specific functionalities, it is possible to avoid multilinear maps.
A series of works have shown how to obfuscate point functions (i.e., boolean
functions that output 1 on a single input) and hyperplanes [10,21,24,38,46,
48]. Brakerski, Vaikuntanathan, Wee, and Wichs [19] showed how to obfuscate
conjunctions under a variant of the Learning with Errors (LWE) assumption.
More recently it has been shown how to obfuscate a very general class of evasive
functions including conjunctions under LWE [31,47].

1.1 This Work: Conjunction Obfuscation

In this work, we primarily consider obfuscating conjunctions. This class of pro-
grams has also been called pattern matching with wildcards [12], and in related
contexts is known as bit-fixing [14].

A conjunction is any boolean function f(x1, . . . , xn) =
∧

i∈S li for some S ⊆
[n], where each literal li is either xi or ¬xi. This functionality can be viewed as
pattern-matching for a pattern pat ∈ {0, 1, *}n, where the * character denotes
a wildcard. An input string x ∈ {0, 1}n matches a pattern pat if and only if x
matches pat at all non-wildcard positions. So for example x = 0100 matches
pat = *10* but not pat = 1**0.

We are interested in obfuscating the boolean functions fpat : {0, 1}n → {0, 1}
which output 1 if and only if x matches pat. We additionally give obfusca-
tion constructions for two generalizations of the pattern matching functionality:
multi-bit conjunction programs fpat,m which output a secret message m ∈ {0, 1}�

on an accepting input, and conjunctions over arbitrary size alphabets.1

In particular, we consider the notion of distributional virtual black-box obfus-
cation (VBB), which guarantees that the obfuscation of a pattern drawn from
some distribution can be simulated efficiently, given only oracle access to the
truth table of the function defined by the pattern. We consider this notion of
obfuscation in the evasive setting, where given oracle access to a pattern drawn
from the distribution, the polynomial time simulator cannot find an accepting
input except with negligible probability. Thus our goal will be to produce obfus-
cations that are easily simulatable without any information about the sampled
pattern other than its distribution.

Recently, Bishop, Kowalczyk, Malkin, Pastro, Raykova, and Shi [12] gave a
simple and elegant obfuscation scheme for conjunctions, which they prove secure

1 Conjunctions over boolean/binary inputs naturally generalize to alphabets [�] for
� ≥ 2. In this setting, each xi ∈ [�], and �i specifies the setting on the ith character.
Positions not fixed by the �i are the wildcards.



638 J. Bartusek et al.

in the generic group model [44]. Unfortunately, they did not prove security rela-
tive to any concrete (efficiently falsifiable [30,41]) assumption on cryptographic
groups. Before their work, obfuscation for conjunctions was already known from
LWE as a consequence of lockable obfuscation (also known as obfuscation for
compute-and-compare programs) [31,47]. However, for the restricted setting of
conjunctions, the Bishop et al. [12] construction is significantly simpler and more
efficient.

Our Results. In this work, we show how to alter the Bishop et al. construction
in various ways, obtaining the following results.

– A New Generic Group Construction. We give a new group-based construc-
tion that can be viewed as “dual” to the construction of Bishop et al. [12].
Our construction offers significant efficiency improvements by removing the
dependence on alphabet size from the construction.
We also improve upon the generic group security analysis of Bishop et al. [12]
by simplifying the proof steps and extending the argument to handle a larger
class of distributions.

– Security from LPN. We show that a few modifications to the group-based
construction allows us to remove groups from the scheme entirely. We prove
security of the resulting construction under the (constant-rate) Learning Par-
ity with Noise (LPN) assumption. Along the way, we give a reduction from
standard LPN to a specific, structured-error version of LPN, which we believe
may be of independent interest.

– Information-Theoretic Security. Finally, we show how to extend our tech-
niques to the information-theoretic setting if the number of wildcards is sub-
linear. We stress that this requires considering a weaker notion of functionality
preservation. We also give an alternative information theoretic scheme that
achieves an intermediate “computational” notion of functionality preservation
assuming discrete log.

In Table 1, we compare our results with prior works on conjunction obfusca-
tion achieving distributional-VBB security (we omit the [19] and [17] construc-
tions from entropic-ring-LWE and multilinear maps).

1.2 Technical Overview

Review of the Bishop et al. Construction [12]. We first recall the Bishop
et al. scheme for obfuscating a pattern pat ∈ {0, 1, *}n. Begin by fixing a prime q
exponential in n. Then sample uniformly random s1, . . . , sn−1 ← Zq and define
the polynomial s(t) :=

∑n−1
k=1 sktk ∈ Zq[t]. Note that s(t) is a uniformly random

degree n − 1 polynomial conditioned on s(0) = 0.
Now visualize a 2 × n grid with columns indexed as i = 1, . . . , n and rows

indexed as j = 0, 1. To obfuscate pat ∈ {0, 1, *}n, for each (i, j) such that pati ∈
{j, *}, we place s(2i + j) in grid cell (i, j) and otherwise, we place r2i+j ← Zq.
For example, if the pattern is pat = 11*0, we write
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Table 1. A comparison between our constructions and prior work. Let Un,w be the
uniform distribution over all patterns in {0, 1, *}n with exactly w wildcards. For any
pattern pat ∈ {0, 1, *}n, define pat−1(*) := {j | patj = *} the positions of the wild-

cards and let b ∈ {0, 1}n−w denote the fixed bits of pat. When we say the alphabet
is exponential, we mean any alphabet with size at most exponential in the security
parameter. FP refers to functionality preservation.

Assumption Alphabet Distribution FP

[31,47] LWE Exponential H∞(b|pat−1(*)) ≥ log(n) Strong

Bishop et al. GGM Binary Uw,n for w < .774n Strong

This work GGM Exponential Uw,n for w < n − ω(log(n))a Strong

This work LPN Binary Uw,n for w = cn, c < 1 Weak

This work None Binary H∞(b|pat−1(*)) ≥ n1−γb
Weak

aIn a concurrent work [11], Beullens and Wee achieved the same improvement in param-
eters and show how to base security on a new knowledge assumption secure in the
generic group model. In the full version [9], we also obtain security for more general
distributions that satisfy a certain min-entropy requirement.
bFor patterns with nδ wildcards, and γ < 1 − δ.

r2 r4 s(6) s(8)

s(3) s(5) s(7) r9

Bishop et al. [12] observe that these 2n field elements are essentially a noisy
Reed-Solomon codeword with the white grid cells representing error positions.
If the number of error positions is small enough, an attacker can run any Reed-
Solomon error correction algorithm to recover s(t) and learn pat. However, all
known error-correction algorithms for Reed-Solomon codes are non-linear. Thus,
the final step is to place the 2n field elements in the exponent of a group G =
〈g〉 of order q. The crucial observation in [12] is that we can perform honest
evaluation on an input x ∈ {0, 1}n with linear operations in the exponent. For
example, to evaluate on input x = 1110, we generate Lagrange reconstruction
coefficients L3, L5, L7, L8 for the cells corresponding to x and reconstruct

gL3s(3)+L5s(5)+L7s(7)+L8s(8) = gs(0) = g0.

Evaluation accepts if and only if the result is g0. Notice that if a single element
from a white cell is included in the reconstruction, the evaluator fails to recover
g0 with overwhelming probability (q−1)/q. For security, they prove the following:

Theorem ([12]). Let Un,w be the uniform distribution over all patterns in
{0, 1, *}n with exactly w wildcards. For any w < 0.774n, this construction attains
distributional virtual black box security in the generic group model.
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Bishop et al. [12] do not address whether the scheme becomes insecure for
0.774n < w < n − ω(log n), or if the bound is a limitation of their analysis.2

This Work. We provide several new interpretations of the [12] scheme. Through
these interpretations, we are able to obtain improved security, efficiency, and
generality, as well as novel constructions secure under standard cryptographic
assumptions. We summarize the properties of these new constructions in Table 1.

Interpretation 1: The Primal. Our first observation is that the 2n field
elements generated by the [12] construction can be rewritten as a product of a
transposed Vandermonde matrix A and a random vector s, plus a certain “error
vector” e. So if the pattern is pat = 11*0, instead of writing the elements in grid
form as above, we can stack them in a column as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r2
s(3)
r4

s(5)
s(6)
s(7)
s(8)
r9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

21 22 23

31 32 33

41 42 43

51 52 53

61 62 63

71 72 73

81 82 83

91 92 93

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·
⎛

⎝
s1
s2
s3

⎞

⎠ +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r′
2

0
r′
4

0
0
0
0
r′
9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

So far, nothing has changed—the Bishop et al. [12] obfuscation scheme is
precisely gA·s+e. But if we revisit the evaluation procedure in the A · s + e
format, a possible improvement to the construction becomes apparent. Recall
that evaluation is simply polynomial interpolation: on input x ∈ {0, 1}n, the
evaluator generates a vector v ∈ Z

2n
q where v2i+xi−1 = 0 for all i ∈ [n], and

the n non-zero elements of v are Lagrange coefficients. For any input x (even
ones not corresponding to accepting inputs), the Lagrange coefficients ensure v
satisfies v� · A = 0 ∈ Z

2n
q and the corresponding scalar equation v� · A · s = 0.

This means an input x is only accepted if v� · (A · s + e) = v� · e = 0. Indeed,
we can verify that if there exists a position i ∈ [n] where xi �= pati (note that if
pati = * we take this to mean xi = pati), this corresponds to an entry where v is
non-zero and e is uniformly random, making v� · e non-zero with overwhelming
probability.

Interpretation 2: The Dual. Observe that evaluation only required the A
matrix and e vector. The random degree n − 1 polynomial s(t) generated in
the [12] scheme, whose coefficients form the random s vector, does not play a role
in functionality. This suggests performing the following “dual” transformation
to the A · s + e scheme. Let B be an (n + 1) × 2n dimensional matrix whose
2 If w = n − O(log n), the distributional virtual black box security notion is vacuous

since an attacker can guess an accepting input and recover pat entirely.
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rows span the left kernel of A. Since B · A = 0 ∈ Z
(n+1)×(n−1)
q , multiplying

B · (A · s + e) yields the n + 1 dimensional vector B · e. We claim this dual gB·e

scheme captures all the information needed for secure generic group obfuscation,
but with n + 1 group elements rather than 2n.

Evaluation in the Dual. A similar evaluation procedure works for the dual
scheme. On input x, the evaluator solves for a vector k ∈ F

n+1
q so that the

2n-dimensional vector k� · B is 0 at position 2i + xi − 1 for each i ∈ [n]. Note
that such a k exists since we only place n constraints on n + 1 variables. k� · B
will play exactly the same role as the v� vector from the A · s + e evaluation.
On accepting input, k� · B will be 0 in all the positions where e is non-zero, so
k� · B · e = 0. On rejecting inputs, (k� · B) will have a non-zero entry where the
corresponding entry of e is uniformly random, so k� ·B ·e �= 0 with overwhelming
probability.

Proving Generic Group Security. The Bishop et al. [12] proof of distributional
VBB security uses over 10 pages of generic group and combinatorial analysis.
They derive their bound of 0.774n on the number of wildcards by numerically
solving a non-linear equation arising from their analysis of a certain combinato-
rial problem.

Our first contribution is to show that by analyzing our dual scheme, we can
give a short and extremely intuitive proof of generic group model security from a
linear independence argument (Sect. 3). Part of the simplification arises from the
fact that our dual scheme completely removes the random polynomial from the
construction. Our generic model proof steps end with the same combinatorial
problem Bishop et al. [12] consider, but instead of deferring to their analysis, we
give a simple combinatorial argument from a Chernoff bound. This allows us to
improve their 0.774n wildcard bound to n−ω(log n). This bound is optimal; for
n−O(log n) wildcards, a polynomial time adversary can guess an accepting input
and learn the pattern entirely. We remark that our new combinatorial analysis
implies the original Bishop et al. [12] scheme is also secure up to n − ω(log n)
wildcards. In the full version [9], we show how to generalize this analysis to
certain distributions with sufficient entropy.

Conjunctions over Large Alphabets. If we go beyond binary alphabets, the dual
scheme actually reduces the obfuscation size by far more than a factor of 2.
Suppose the alphabet is [�] for some integer �, so a conjunction is specified by
a length n pattern pat ∈ {[�] ∪ {*}}n. fpat(x) = 1 only if xi = pati on all
non-wildcard positions.

We can give a natural generalization of the A ·s+e/Bishop et al. [12] scheme
to handle larger alphabets. For an alphabet of size �, we use an error vector
e ∈ Z

n�
q , which we imagine partitioning into n blocks of length �. The ith block

of e corresponds with the ith pattern position. As in the binary case, if pati = *,
we set every entry of e in the ith block to 0. If pati = j for j ∈ [�], we set
the jth position in the ith block of e to a uniformly random value in Fq, and
set the remaining � − 1 entries in the ith block to 0. A is now a transposed
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Vandermonde matrix of dimension n� × n� − n − 1, and s is drawn as a random
vector from Z

n�−n−1
p . To evaluate on x ∈ [�]n, we solve for v� · A = 0 where v

is restricted to be zero only at v(i−1)�+xi
for each i ∈ [n].3 However, this scheme

is fundamentally stuck at polynomial-size alphabets, since A · s + e contains n�
elements.

If we switch to the dual view, this same scheme can be implemented as gB·e

where B ∈ Z
(n+1)×n�
q , e ∈ Z

n�
q . But the number of group elements in gB·e is

simply n + 1, which has no dependence on the alphabet size. Of course B will
have dimension (n + 1) × n�, but if we choose B to be a Vandermonde matrix,
we can demonstrate that neither the evaluator nor the obfuscator ever have to
store B or e in their entirety, since e is sparse for large �. In particular, we set
the (i, j)th entry of B to ji. We simply need q to grow with log � to ensure this
implicit B satisfies the certain linear independence conditions that arise from
our security analysis.

Moving Out of the Exponent. Returning to the A · s+ e view of the scheme
for a moment, we see that its form begs an interesting question:

Can the (transposed) Vandermonde matrix A be replaced with other
matrices?

In [12], the transposed Vandermonde matrix A plays at least two crucial roles: it
allows for evaluation by polynomial interpolation and at the same time is vital for
their security analysis. However, the structure of the transposed Vandermonde
matrix is what leads to Reed-Solomon decoding attacks on the plain scheme,
necessitating encoding the values in a cryptographic group. Furthermore, observe
that our abstract evaluation procedure described for our primal interpretation
made no reference to the specific structure of A; in particular, it works for any
public matrix A. In the case of the transposed Vandermonde matrix, applying
this abstract procedure results in the Lagrange coefficients used in [12], but we
can easily perform evaluation for other matrices.

Furthermore, the matrix form of the scheme is strongly reminiscent of the
Learning Parity with Noise (LPN) problem and in particular its extension to Fq,
known as the Random Linear Codes (RLC) problem [33].

We recall the form of the RLC problem over Fq for noise rate ρ and nc

samples. Here, we have a uniformly random matrix A ← F
nc×n
q , a uniformly

random column vector s ∈ F
n
q , and an error vector e ∈ F

nc

q generated as follows.
For each i ∈ [nc], set ei = 0 with independent probability 1 − ρ, and otherwise
draw ei ← Fq uniformly at random. The search version of this problem is to
recover the secret vector s given (A,A · s + e), and the decision version is to
is to distinguish (A,A · s + e) from (A, v) for uniformly random v ← F

nc

q . The
standard search RLC and decisional RLC assumptions are that these problems
are intractable for any computationally bounded adversary for constant noise
rate 0 < ρ < 1.
3 We note that if we set � = 2, this generalization flips the role of 0 and 1, but is

functionally equivalent.
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This suggests the following approach to obtaining a secure obfuscation
scheme from the original scheme: simply replace A with a random matrix over
Fq. A would be publicly output along with A · s+ e. The hope would be that we
could invoke the RLC assumption to show that even given A, the obfuscation
A · s + e is computationally indistinguishable from a vector v of 2n random ele-
ments. This would allow us to simultaneously avoid encoding in a group exponent
and obtain security under a standard assumption.

Structured Error Distributions. However, we cannot invoke security of RLC right
away. The main problem lies in the fact that the error vector in our setting is
structured : for any pair of positions e2i−1, e2i for i ∈ [n], the construction ensures
that at least one of e2i−1 or e2i is 0. Recall that if the ith bit of the pattern is
b, then e2i−b = 0 while e2i−(1−b) is drawn randomly from Fq. If the ith bit of
the pattern is *, then e2i−1 = e2i = 0. But if both e2i−1 and e2i are random
elements from Fq, this corresponds to a position where the input string can be
neither 0 nor 1, which can never arise in the obfuscation construction.

To the best of our knowledge, the only work that considers this particular
structured error distribution is the work of Arora and Ge [5], which shows that
this problem is actually insecure in the binary case (corresponding to a struc-
tured error version of LPN). Their attack uses re-linearization and it is easy to
see that it extends to break the problem we would like to assume hard as long
as A has Ω(n2) rows.

This leaves some hope for security, as our construction only requires that A
have 2n rows. Thus, we give a reduction that proves hardness of the structured
error RLC assumption with 2n samples assuming the hardness of the standard
RLC assumption for polynomially many samples. We note that our reductions
handle both the search and decision variants, and both LPN and RLC. We give
a high-level overview of our reduction below.

The Reduction to Structured Error. For our reduction, we return to the B·e
view of the scheme and consider the equivalent “dual” version of the decisional
RLC problem,4 where the goal is to distinguish (B,B · e) from (B, u) for B ←
F
(nc−n)×nc

q , u ← F
nc−n
q , and e as drawn previously. The advantage of considering

the dual version is that the resulting technical steps of the reduction are slightly
easier to see, and we stress that our proof implies the hardness of structured
error RLC in its primal A · s + e form.

Note that the problem of distinguishing between (B,B · e) and (B, u) for
nc − n samples and error vector e of dimension nc is equivalent to the setting
where the number of samples is n − n1/c and the error vector is of dimension n.
Since the standard RLC problem is conjectured hard for any constant c, we set
ε = 1/c and assume hardness for any 0 < ε < 1.

We show how to turn an instance of this problem into a structured error RLC
instance, where the challenge is to distinguish between (B,B · e) and (B, u) for
4 In the context of LWE this duality/transformation has been observed a number of

times, see e.g. [40]. For RLC, this is essentially syndrome decoding.
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uniformly random B ← F
(n+1)×2n
q , a structured error vector e ∈ F

2n
q with noise

rate ρ, and uniformly random u ∈ F
n+1
q .

To perform this transformation, we need to somehow inject the necessary
structure into the standard RLC error vector e, which means introducing a
zero element in each pair. The most natural way to do this given the regular
RLC instance (B,B · e) is to draw n new uniformly random columns and insert
them into B in random locations to produce the structured matrix B′. Now
B · e = B′ · e′, where e′ is a structured error vector with a 0 element in every
(2i−1, 2i) index pair. This immediately gives us a structured error RLC instance
with a matrix B′ of dimension (n − nε) × 2n. However, we require B to have
n+1 rows to enable evaluation of the corresponding obfuscation. We would like to
simply extend the (n−nε)×2n-dimensional B′ to an (n+1)×2n-dimensional B′′

by appending nε + 1 newly generated uniformly random rows, but this appears
impossible since we will be unable to fill in the nε +1 additional entries of B′′ ·e′

without knowledge of e′.
As a first attempt, we can try to extend B′ to B′′ by appending random

linear combinations of the n − nε rows of B′. This would allow us to properly
generate B′′ · e′ by extending B′ · e′ with the corresponding linear combinations.
Unfortunately, this is not quite sufficient since the matrix B′′ is distinguishable
from random, since its bottom nε +1 rows are in the row span of the first n−nε.

We now appeal to the fact that the reduction algorithm itself chose the
locations of the newly generated columns in B′, and thus it knows the location
of n elements of e′ set to 0. The reduction can therefore introduce randomness
into the last nε +1 rows of B′′ by modifying only the entries in these n columns,
since any changes it makes will not affect the dot product with e′. After this
process, the last nε + 1 rows of B′′ are no longer restricted to being in the row
span of the top n−nε rows. By appealing to leftover hash lemma arguments, we
can prove the resulting (n + 1) × 2n dimensional B′′ matrix is statistically close
uniform and that B′′ · e′ is correctly distributed.

A Note on Functionality Preservation. Some previous works on conjunction
obfuscation [12,17] explicitly prove a weak notion of functionality preservation,
where on any given input the obfuscation is required to be correct with over-
whelming probability. This is in contrast to strong functionality preservation,
which requires simultaneous correctness on all inputs with overwhelming prob-
ability. Both [12] and [17] remark that if desired, their constructions can be
boosted to achieve the stronger notion by scaling parameters until the error
probability on any given input can be union bounded over all inputs.5

A notable weakness of our analysis is that the above argument used for
proving the B′′ matrix is statistically close to uniform does not work for q as
large as 2n. Further complications arise when we attempt to equip a search-to-
decision reduction with a predicate (for more detail, see Sect. 4), and thus we
limit q = 2 for our formal obfuscation construction.6 Our reduction allows us to

5 This holds for our generic group model constructions as well.
6 RLC for field size q = 2 is equivalent to LPN.
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add slightly more than nε + 1 additional rows, and it turns out these rows can
be used to boost correctness—to a point. On any input, our final construction
has an error probability of 1/2nδ (for any δ < 1/2), and therefore settles for weak
functionality preservation.

Information Theoretic Security. Our third and final contribution is a new
statistically secure conjunction obfuscator. As a starting point, we recall a sim-
ple proposal for distributional VBB secure point obfuscation informally discussed
by Bishop et al. [12]. The idea of their proposal (modified slightly for our set-
ting) is roughly the following. To obfuscate a point p ∈ {0, 1}n, output n uni-
formly random elements a(1), . . . , a(n) from Fq conditioned on

∑
i|pi=1 a(i) = 0.

Equality checking on an input x ∈ {0, 1}n would be done by checking whether∑
i|xi=1 a(i) = 0.7

While this idea seems like a plausible starting point for point obfuscation,
there is no room to support conjunctions. Any wildcard element must be set to
0 to preserve functionality, and thus the obfuscation trivially leaks information
on the underlying pattern. This barrier appears inherent if we are limited to
summing a set of elements in Fq and checking if the result is 0. But what if
we use matrices in Fq instead of scalar elements? Evaluation could now involve
checking the rank of the resulting matrix sum.

We prove security of this scheme by applying the leftover hash lemma (LHL),
which shows that as long as the non-wildcard bits of pat have sufficient min-
entropy, the matrix F is statistically close to a uniformly random matrix. Then
the rank deficient matrix B is statistically hidden from view, so if there are fewer
than k wildcards, all of the A(i) matrices are distributed as uniformly random
k × k rank 1 matrices. The number of wildcards this scheme can handle is k − 1,
but we cannot make the matrices arbitrarily large. The limitation arises from
our statistical security arguments which only work for k as large as nδ (for any
δ < 1), so we obtain statistical distributional VBB security for patterns with a
sublinear number of wildcards.

Computational Functionality Preservation. Although we obtain weak
functionality preservation with the above construction, it necessarily falls short
of strong functionality preservation. Without relaxing correctness, statistical
VBB security is impossible since a computationally unbounded adversary can
recover pat from the truth table of the obfuscated function.

A Motivating Scenario from [47]. A natural question to ask is when weak func-
tionality preservation is “good enough.” To shed light on this, we take a step back
and recall a motivating example for general evasive circuit obfuscation. Even this
might not be immediately obvious: what good is an obfuscated circuit if a user
7 To the best of our knowledge, this scheme had not appeared in the literature

before [12]. However, most prior work on point obfuscation considers stronger cor-
rectness, security, and functionality requirements (such as multi-bit output) that this
scheme falls short of, which may preclude its use in certain settings.
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can never find an accepting input? Wichs and Zirdelis [47] address precisely this
question with the following scenario. Suppose we have a set of users where a sub-
set of them has access to additional privileged information. If we publicly give
out an obfuscated circuit containing this privileged information, then security
assures us that the un-privileged users cannot find accepting inputs. For them,
functionality preservation is unimportant since the circuit may as well be the all
0’s circuit.8 However, it does matter for the privileged users who may actually
find accepting inputs (for these users, security does not hold).

In this example, a secure obfuscation that only achieves weak functional-
ity preservation is good enough to ensure the un-privileged users never learn
anything about the hidden circuit. However, it might not be enough for certain
applications. Weak functionality preservation does not explicitly rule out the pos-
sibility that a user with privileged information can detect that the obfuscated
circuit functionality differs from the intended circuit functionality. In addition, it
does not rule out the possibility that a user (privileged or not) can find an input
that causes the obfuscated circuit to wrongly accept. For example, in many cases
the hash of a password can be viewed as an “obfuscation” of a point function for
that password; simply accept if the input hashes to the stored hash [38]. Even
if we guarantee that a computationally unbounded adversary cannot learn any
information about the original password just given the hash, this does not rule
out the possibility that an attacker can find a different string that causes the
obfuscated password checker to accept.

An Intermediate Definition. To address this gap, we use a notion (between
weak and strong) we refer to as computational functionality preservation. In the
context of point obfuscation, this notion is essentially equivalent to the correct-
ness definition for oracle hashing9 considered by Canetti [21] (also achieved by
Canetti, Micciancio, and Reingold [22] and Dodis and Smith [25]), as observed
by Wee [46]. It is also roughly the same definition considered by Brakerski and
Vaikuntanathan [18] for constrained PRFs. For us, computational functionality
preservation guarantees that even a user who knows the real circuit (in this work,
“real circuit” means the obfuscated pattern) cannot find a point x on which the
obfuscated circuit and the real circuit differ, provided they are computationally
bounded.

In Sect. 5.3, we describe a simple modification to our basic sum-of-matrices
scheme that allows us to achieve computational functionality preservation from
discrete log. We note that the resulting construction is still information theo-
retically secure. Mapping this to the above example, this means even computa-
tionally unbounded un-privileged users cannot learn any predicate on the hidden
pattern. This is only possible because our obfuscated circuit computes the wrong
output on exponentially many inputs. Despite this, a computationally bounded
user (who might even know the hidden pattern) cannot even find one of these
incorrect inputs, assuming discrete log.

8 This is slightly informal, since it requires a notion of input-hiding obfuscation [6].
9 This was re-named to “perfectly one-way functions” in [22].
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1.3 Related Work

Conjunction Obfuscation. Previously, Brakerski and Rothblum had shown how
to obfuscate conjunctions using multilinear maps [16]. This was followed by a
work of Brakerski et al. which showed how to obfuscate conjunctions under
entropic ring LWE [19]. More recently, Wichs and Zirdelis showed how to obfus-
cate compute-and-compare programs under LWE [47]. Goyal, Koppula, and
Waters concurrently and independently introduced lockable obfuscation and
proved security under LWE [31]. Both of these works easily imply secure obfus-
cation of conjunctions under LWE, though with a complicated construction that
encodes branching programs in a manner reminiscent of the GGH15 multilinear
map [29]. The main contribution of [12] then was the simplicity and efficiency of
their conjunction obfuscation scheme. In this work, we provide constructions and
proofs that maintain these strengths while addressing the major weaknesses of
the [12] construction—lack of generality (to more wildcards, more distributions,
and more alphabet sizes) and lack of security based on a falsifiable assumption.

2 Preliminaries

Notation. Let Z,N be the set of integers and positive integers. For n ∈ N, we
let [n] denote the set {1, . . . , n}. For q ∈ N, denote Z/qZ by Zq, and denote the
finite field of order q by Fq. A vector v in Fq (represented in column form by
default) is written as a lower-case letter and its coefficients vi ∈ Fq are indexed
by i; a matrix A is written as a capital letter and its columns (A)j are indexed
by j. We denote by 0n×m the (n,m)-dimensional matrix filled with zeros. For
any matrix M , let colspan(M) denote the column span of M .

We use the usual Landau notations. A function f(n) is said to be negligible
if it is n−ω(1) and we denote it by f(n) := negl(n). A probability p(n) is said to
be overwhelming if it is 1 − n−ω(1).

If D is a distribution, we denote Supp(D) = {x : D(x) �= 0} its support.
For a set S of finite weight, we let U(S) denote the uniform distribution on S.
The statistical distance between two distributions D1 and D2 over a countable
support S is Δ(D1,D2) := 1

2

∑
x∈S |D1(x) − D2(x)|. We naturally extend those

definitions to random variables. Let ε > 0. We say that two distributions D1

and D2 are ε-statistically close if Δ(D1,D2) ≤ ε. We say that D1 and D2 are
statistically close, and denote D1 ≈s D2, if there exists a negligible function ε
such that D1 and D2 are ε(n)-statistically close.

The distinguishing advantage of an algorithm A between two distributions
D0 and D1 is defined as AdvA(D0,D1) := |Prx←D0 [A(x) = 1]−Prx←D1 [A(x) =
1]|, where the probabilities are taken over the randomness of the input x and
the internal randomness of A. We say that D1 and D2 are computationally
indistinguishable, and denote D1 ≈c D2, if for any non-uniform probabilistic
polynomial-time (PPT) algorithm A, there exists a negligible function ε such
that AdvA = ε(n).
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Finally, we let x ← X denote drawing x uniformly at random from the space
X, and define Un,w to be the uniform distribution over {0, 1, *}n with a fixed w
number of * (wildcard) characters.

The min-entropy of a random variable X is H∞(X) := − log(maxx Pr[X =
x]). The (average) conditional min-entropy of a random variable X conditioned
on a correlated variable Y , denoted as H∞(X|Y ), is defined by

H∞(X|Y ) := − log
(

Ey←Y

[

max
x

Pr[X = x|Y = y]
])

.

We recall the leftover hash lemma below.

Lemma 1 (Leftover hash lemma). Let H = {h : X → Y} be a 2-universal
hash function family. For any random variable X ∈ X and Z, for ε > 0 such that
log(|Y|) ≤ H∞(X|Z)−2 log(1/ε), the distributions (h, h(X), Z) and (h,U(Y), Z)
are ε-statistically close.

2.1 Security Notions for Evasive Circuit Obfuscation

We recall the definition of a distributional virtual black-box (VBB) obfuscator.
We roughly follow the definition of Brakerski and Rothblum [16], but we include
a computational functionality preservation definition.

Definition 1 (Distributional VBB Obfuscation). Let C = {Cn}n∈N be a
family of polynomial-size circuits, where Cn is a set of boolean circuits operating
on inputs of length n, and let Obf be a PPT algorithm which takes as input an
input length n ∈ N and a circuit C ∈ Cn and outputs a boolean circuit Obf(C)
(not necessarily in C). Let D = {Dn}n∈N be an ensemble of distribution families
Dn where each D ∈ Dn is a distribution over Cn.

Obf is a distributional VBB obfuscator for the distribution class D over the
circuit family C if it has the following properties:

1. Functionality Preservation: We give three variants:
– (Weak) Functionality Preservation: For every n ∈ N, C ∈ Cn, and x ∈

{0, 1}n, there exists a negligible function μ such that

Pr[Obf(C, 1n)(x) = C(x)] = 1 − μ(n).

– (Computational) Functionality Preservation: For every PPT adversary
A, n ∈ N, and C ∈ Cn, there exists a negligible function μ such that

Pr[x ← A(C,Obf(C, 1n)) : C(x) �= Obf(C, 1n)(x)] = μ(n).

– (Strong) Functionality Preservation: For every n ∈ N, C ∈ Cn, there
exists a negligible function μ such that

Pr[Obf(C, 1n)(x) = C(x) ∀x ∈ {0, 1}n] = 1 − μ(n).
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2. Polynomial Slowdown: For every n ∈ N and C ∈ Cn, the evaluation of
Obf(C, 1n) can be performed in time poly(|C|, n).

3. Distributional Virtual Black-Box: For every PPT adversary A, there exists a
(non-uniform) polynomial size simulator S such that for every n ∈ N, every
distribution D ∈ Dn (a distribution over Cn), and every predicate P : Cn →
{0, 1}, there exists a negligible function μ such that

∣
∣
∣
∣ Pr
C←Dn

[A(Obf(C, 1n)) = P(C)] − Pr
C←Dn

[SC(1|C|, 1n) = P(C)]
∣
∣
∣
∣ = μ(n).

We note that computational functionality preservation has appeared before
in the obfuscation literature [25,46], and our definition is also the same as the
functionality preservation notion considered in Definition 3.1 of [18] in the con-
text of constrained PRFs. We motivate and discuss this definition in Sect. 1.2,
and demonstrate an obfuscation scheme achieving it in Sect. 5.3.

We now extend the above definition to give the notion of statistical security
in the context of average-case obfuscation.

Definition 2 (ε(n)-Statistical Distributional VBB Obfuscation). Let C,
Obf, and D, be as in Definition 1. Obf is a ε(n)-statistical distributional VBB
obfuscator if it satisfies the notions of Functionality Preservation and Polynomial
Slowdown and a modified notion of Distributional Virtual Black-Box where for
any unbounded adversary A, the distinguishing advantage is bounded by ε(n).

We recall the definition of perfect-circuit hiding, introduced by Barak, Bitan-
sky, Canetti, Kalai, Paneth, and Sahai [6].

Definition 3 (Perfect Circuit-Hiding [6]). Let C be a collection of circuits.
An obfuscator Obf for a circuit collection C is perfect circuit-hiding if for every
PPT adversary A there exists a negligible function μ such that for every balanced
predicate P, every n ∈ N and every auxiliary input z ∈ {0, 1}poly(n) to A:

Pr
C←Cn

[A(z,Obf(C)) = P(C)] ≤ 1
2

+ μ(n),

where the probability is also over the randomness of Obf.

Barak et al. [6] prove that perfect-circuit hiding security is equivalent to dis-
tributional virtual black-box security, i.e. property 3 in Definition 1 is equivalent
to Definition 3. We rely on this equivalence to simplify the proof of Theorem3.

2.2 The Generic Group Model

Part of our analysis occurs in the generic group model [44], which assumes that
an adversary interacts with group elements in a generic way. To model this, it
is common to associate each group element with an independent and uniformly
random string (drawn from a sufficiently large space) with we refer to as a
“handle.” The adversary has access to a generic group oracle which maintains
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the mapping between group elements and handles. The adversary is initialized
with the handles corresponding to the group elements that comprise the scheme
in question. It can query its generic group oracle with two handles, after which
the oracle performs the group operation on the associated group elements and
returns the handle associated with the resulting group element.

It will be convenient to associate each of these group operation queries per-
formed by the adversary to a linear combination over the initial handles that
it receives. The adversary can also request a “ZeroTest” operation on a handle,
to which the oracle replies with a bit indicating whether or not that handle is
associated with the identity element of the group.

There is a natural extension of the notion of distributional VBB security to
the generic group model. In Definition 1, we simply give the obfuscation Obf and
adversary A access to the generic group oracle G. We refer to this definition as
Distributional VBB Obfuscation in the Generic Group Model.

2.3 Learning Parity with Noise

We give the precise definition of the Learning Parity with Noise (LPN) problem
in its dual formulation. Let ρ ∈ (0, 1) and m be an integer. Let Bm

ρ denote the
distribution on F

m
2 for which each component of the output independently takes

the value 1 with probability ρ and 0 with probability 1 − ρ.

Definition 4. Let n,m be integers and ρ ∈ (0, 1). The Decisional Learning Par-
ity with Noise (DLPN) problem with parameters n,m, ρ, denoted DLPN(n,m, ρ),
is hard if for every probabilistic polynomial-time (in n) algorithm A, there exists
a negligible function μ such that

∣
∣
∣
∣Pr
B,e

[A(B,B · e) = 1] − Pr
B,u

[A(B,B · u) = 1
∣
∣
∣
∣ ≤ μ(n),

where B ← F
(m−n)×m
2 , e ← Bm

ρ , and u ← F
m−n
2 .

Remark 1. The primal version of the above problem is, for A ← F
m×n
2 , s ←

F
n
2 , e ← Bm

ρ , and v ← F
m
2 , to distinguish between (A,As + e) and (A, v). These

problems are equivalent for any error distribution when m = n + ω(log n), as
discussed for example in [40, Sect. 4.2].

3 Obfuscating Conjunctions in the Generic Group Model

In this section, we present our generalized dual scheme for obfuscating conjunc-
tions in the generic group model. We then show a simple proof of security that
applies to the uniform distribution over binary patterns with any fixed number
of wildcards. In particular, our distributional VBB security result holds for up to
n−ω(log n) wildcards, but distributional VBB security is vacuously satisfied for
w > n−O(log n) wildcards. This extends the generic model analysis of [12] that
proved security up to w < .774n. We note that the combinatorial argument we
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give can be used to show that the original [12] construction achieves security for
all values of w as well.

In the full version [9], we show how to extend these generic group model
results in a number of ways. In particular, we prove security for general distri-
butions with sufficient min-entropy (over a fixed number of wildcards). We then
give a formal description of how to extend our construction to large alphabets,
though we stress the construction is essentially the one sketched in Sect. 1.2. We
also prove that our min-entropy results extend to the large alphabet setting.

Here and throughout the remainder of paper, the length n of the pattern will
double as the security parameter.

3.1 Generic Group Construction

Throughout this section, we will refer to a fixed matrix B.

Definition 5. Let Bn+1,k,q ∈ Z
(n+1)×k
q be the matrix whose (i, j)th entry is ji:

Bn+1,k,q =

⎛

⎜
⎜
⎜
⎝

1 2 . . . k
1 22 . . . k2

...
...

...
...

1 2n+1 . . . kn+1

⎞

⎟
⎟
⎟
⎠

.

Construction.

– Setup(n). Let G be a group of prime order q > 2n with generator g. We let
B := Bn+1,2n,q where Bn+1,2n,q is as in Definition 5.

– Obf(pat ∈ {0, 1, *}n). Set e ∈ Z
2n×1
q as follows. For each i ∈ [n]:

• If pati = *, set e2i−1 = e2i = 0.
• If pati = b, sample e2i−b ← Zq and set e2i−(1−b) = 0.

Output
gB·e ∈ G

n+1.

– Eval(v ∈ G
n+1, x ∈ {0, 1}n). Define Bx to be the (n + 1) × n matrix where

column j is set as (Bx)j := (B)2j−xj
. Solve10 tBx = 0 for a non-zero t ∈

Z
1×(n+1)
q . Compute

n+1∏

i=1

vti
i

and accept if and only if the result is g0.
Alternative Setup. For concreteness (and efficiency), we define Obf and Eval
to use the matrix Bn+1,2n,q. However, Setup can be modified to output any
B ∈ Z

(n+1)×2n
q with the property that any n + 1 columns of B form a full rank

matrix (with overwhelming probability), and Obf and Eval will work as above
with the matrix B. We note that if B is viewed as the generator matrix for a
linear code (of length 2n and rank n+1), then this property is equivalent to the
code having distance n. This requirement on B is sufficient to prove Theorem 1
below.
10 See the full version [9] for a description of how to do this in O(n log2(n)) time.
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Functionality Preservation. We first state a useful lemma.

Lemma 2. If k < q, any set of n + 1 columns of Bn+1,k,q are linearly indepen-
dent over Zq.

Proof. This follows from inspecting the form of the determinant of the Vander-
monde matrix, and noting that none of the factors of the determinant will divide
q as long as k < q. 
�

Fix an x which matches pat and let t be the row vector computed in the Eval
procedure. By construction, the vector tB is zero in all of the positions for which
e is non-zero and thus

n+1∏

i=1

vti
i = gtBe = g0.

On the other hand, for an x which does not match pat, by construction there
is at least one index i ∈ [2n] such that (B)i is not part of Bx and ei is a uniformly
random field element. Then appealing to Lemma 2, t(B)i �= 0 since otherwise
the n + 1 columns Bx and (B)i would be linearly dependent. Then the product
t(B)iei is distributed as a uniformly random field element, which means that
tBe is as well. Thus x is only accepted with probability 1/q = negl(n).11

Security. We prove the distributional VBB security of our construction.

Theorem 1. Fix any function w(n) ≤ n. The above construction is a distribu-
tional VBB obfuscator in the generic group model for the distribution Un,w(n)

over strings {0, 1, *}n.

Proof. First we consider the case where w(n) = n − ω(log(n)). Let c(n) =
n − w(n) = ω(log(n)). Let H be the space of handles used in the generic group
instantiation of the obfuscation and let |H| > 2n so that two uniformly drawn
handles collide with negligible probability. For any adversary A, we consider
the simulator S that acts as the generic group model oracle and initializes A
with n + 1 uniformly random handles. On a group operation query by A, S
responds with a uniformly random handle unless A had previously requested
the same linear combination of initial elements, in which case S responds with
the same handle as before. S can easily implement this with a lookup table. We
assume without loss of generality that A only submits linear combinations over
initial elements that are not identically zero. On any ZeroTest query by A, S
will return “not zero”. Finally, S will output whatever A outputs after it has
finished interacting with the generic group model simulation.

We show that with all but negligible probability, A’s view of the generic group
model oracle that is honestly implementing the obfuscation is identical to its view
of the simulated oracle, which completes the proof of security. Observe that the
only way that A’s view diverges is if when interacting with the honest oracle,

11 As noted in [12], we can boost this to strong functionality preservation by setting
q > 22n.
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A either gets a successful ZeroTest, or receives the same handle on two group
operation queries corresponding to different linear combinations of the initial
handles. If we subtract these two linear combinations, we see that in both cases
A has formed a non-trivial linear combination of the initial n+1 group elements
that evaluates to zero. Consider the first time that this occurs and denote the
vector of coefficients as k = (k1, . . . , kn+1) ∈ Z

1×(n+1)
q . Let e ∈ Z

2n×1
q be the

vector drawn in the Obf procedure on input a pattern pat drawn from Un,n−c(n),
so the resulting evaluation is equal to kBe. We show that the probability that
kBe = 0 over the randomness of the pattern and of the obfuscation is negligible.

Since the coefficients of k are specified by A before its view has diverged
from the simulated view, we can treat k as completely independent of e. Now by
Lemma 2, any n + 1 columns of B form a full rank matrix, so the vector kB ∈
Z
1×2n
q is 0 in at most n positions. Now if there exists i ∈ [2n] for which (kB)i

is non-zero and ei is uniformly random, then with overwhelming probability
kBe �= 0 over the randomness of the obfuscation.

Partition e into the n pairs {e2j−1, e2j}j∈[n]. Sampling pat from Un,n−c(n)

corresponds to uniformly randomly picking c(n) of the pairs to have one uni-
formly random e component, and then within each of these c(n) sets, picking
either e2j−1 or e2j with probability 1/2 to be the uniformly random component.

Let S ⊂ [2n] be any fixed set of n indices. At least n/2 of these pairs must
contain at least one ei such that i ∈ S, and among them, an expected c(n)/2
number of them have a uniformly random e component. This random variable
is an instance of a hypergeometric random variable, and in Lemma3 we use a
Chernoff bound to show that it is greater than c(n)/8 except with negligible
probability. Now for each of these n/2 pairs that contains a uniformly random
component ei, we have that i ∈ S with probability 1/2. Then the probability
that there does not exist any i ∈ S such that ei is uniformly random is at most
(1/2)c(n)/8 + negl(n) which is negl(n) for c(n) = ω(log n).

Now we handle the case where w(n) = n − O(log(n)). In this parameter
regime, distributional VBB security is a vacuous security notion since a random
input will satisfy the pattern with 1/poly(n) probability. Thus a polynomial time
simulator S can find an accepting input with overwhelming probability. Then
it simply varies the accepting input one bit at a time in queries to the function
oracle, and recovers the pattern in full. At this point it can run the obfuscation
itself and simulate A on the honest obfuscation. 
�

We now state Lemma 3. While tail bounds are known for hypergeometric
random variables, we were unable to find bounds strong enough for our param-
eter settings. In particular, plugging in the bounds summarized by Skala [45]
into the proof of Theorem 1 imply security when c(n) is as small as 1/nε for
ε < 1/2. Using Lemma 3, we obtain c(n) = ω(log n). We note that our bound
is specifically tailored for our application and should not be misinterpreted as a
strengthening of known bounds on hypergeometric random variables.
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Lemma 3. A bag initially contains n balls, of which c(n) are black and n−c(n)
are white. If n/2 balls are randomly drawn without replacement, then

Pr
[
#black balls drawn ≥ c(n)

8

]
≥ 1 − e−c(n)/12.

This claim follows from Chernoff bounds; a detailed proof is given in the full
version [9].

4 Obfuscating Conjunctions from Constant-Noise LPN

In this section, we present our second obfuscation construction. As described
in Sect. 1.2, this is our “dual” construction instantiated with a random matrix
B over F2 and taken out of the group exponent. Security will be based on the
standard constant-noise LPN assumption.

LPN vs. RLC. We note that under the Random Linear Codes (RLC) assumption
(i.e., a generalization of LPN to Fq for q ≥ 2—see the full version [9] or [33]),
we could use the techniques from this section to prove that our construction
over large fields is indistinguishable from random. However, indistinguishability
from random does not imply distributional VBB security.12 The problem arises
from the fact that distributional VBB security requires indistinguishability from
a simulated obfuscation even if the adversary knows a one bit predicate on the
circuit (the pattern in our case). This requires us to prove that the decisional
“structured error” LPN/RLC problem is indistinguishable from random even if
the adversary knows a predicate on the positions of the non-zero error vector
entries, which encode the pattern, which can be accomplished by modifying an
appropriate search-to-decision reduction. Unfortunately, no search-to-decision
reductions are known for RLC with super-polynomial modulus q, preventing our
approach from extending beyond polynomial size q [3]. Since no (asymptotic)
improvements to our construction result from considering polynomial size q, we
restrict to q = 2 for concreteness and prove security from LPN.

In Sect. 4.1, we define the relevant LPN variants we consider for our con-
struction, which we formally describe in Sect. 4.2. We then observe in Sect. 4.3
that prior work implies hardness of our structured error LPN notion still holds
even if an arbitrary predicate on the error vector is known.

In the full version [9], we give a core technical reduction from standard RLC
to structured error RLC that works for q up to size 2nγ

. Plugging in q = 2
suffices for our constructions, but we state our result for maximal generality as
the reduction may be of independent interest.
12 Consider for example the distributional point obfuscator that simply outputs the

single accepting point in the clear as the “obfuscation.” To evaluate, we simply
compare the input point with the accepting point. Notice this trivially insecure
obfuscation is perfectly indistinguishable from random for point functions drawn
from the uniform distribution. However, we note that in the generic group model,
indistinguishability from random does imply distributional VBB.
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Strong Functionality Preservation. We note that simply plugging our reduction
into our obfuscation scheme only gives us weak functionality preservation (Def-
inition 1). Other works such as [12] address this issue by increasing the size of
the field, but this will not work here since LPN restricts us to q = 2. We can still
boost our scheme and satisfy strong functionality preservation by making use
of additional regular (as opposed to structured) LPN samples (as we describe
in the full version [9]). However, this modification has one caveat: the evalua-
tion is polynomial-time in expectation, requiring a relaxation of the polynomial
slowdown requirement in Definition 1.

Multi-bit Output. As a consequence of the reduction from constant noise LPN,
our scheme can handle random conjunctions where a constant fraction ρ of the
bits are wildcards, but it cannot handle a sub-constant fraction of wildcards. This
is surprising, since obfuscation for evasive functionalies should intuitively get
easier as we reduce the number of accepting inputs. However, our construction
is completely broken if there are no wildcards, and in fact there is an easy brute
force attack on our scheme for any ρ = 1 − O(log n/n).

In the full version [9], we show how to adapt our construction to support
multi-bit output. In this setting, the obfuscator can embed a fixed message into
the obfuscation, which an evaluator recovers upon finding an accepting input.
This allows us to handle conjunctions with a sub-constant (or even zero) fraction
of wildcards. The idea is to set some of the non-wildcard bits to be wildcards,
and then use the multi-bit output to specify the true settings of those bits.

4.1 Exact Structured Learning Parity with Noise

We begin by recalling the decisional Exact Learning Parity with Noise (DxLPN)
problem considered by Jain et al. [34]. The word “exact” modifies the standard
decisional Learning Parity with Noise (DLPN) problem by changing the sampling
procedure for the error vector. Instead of setting each component of e ∈ F

m
q to

be 1 with independent probability ρ, we sample e uniformly from the set of
error vectors with exactly �ρm� entries set to 1 (we refer to these as vectors of
weight �ρm�). DLPN is polynomially equivalent to the exact version following
the search to decision reduction given in [4], as noted in [26,34]. We give the
precise definition in its dual formulation.

Let ρ ∈ [0, 1] and m > 0 be an integer. Let χm
ρ denote the distribution on

F
m
2 which outputs uniformly random vectors in F

m
2 of weight �ρm�.

Definition 6 (Exact Learning Parity with Noise). Let n,m be integers
and ρ ∈ (0, 1). The (dual) Decisional Exact Learning Parity with Noise (DxLPN)
problem with parameters n,m, ρ, denoted DxLPN(n,m, ρ), is hard if, for every
probabilistic polynomial-time (in n) algorithm A, there exists a negligible func-
tion μ such that

∣
∣
∣
∣Pr
B,e

[A(B,B · e) = 1] − Pr
B,u

[A(B, u) = 1]
∣
∣
∣
∣ ≤ μ(n)
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where B ← F
(m−n)×m
2 , e ← χm

ρ , and u ← F
m−n
2 .

Exact Structured LPN. We now introduce a modification of the Exact Learn-
ing Parity with Noise (DxLPN) problem where we enforce that the error vector is
structured. Concretely, the error vector e is now 2m-dimensional, and we enforce
that in any of the pairs (2i − 1, 2i) for i ∈ [m], at least one of e2i−1 and e2i is
0. As we are considering the exact version of the problem, we enforce that �ρm�
components of e are non-zero. Note that while the error vector has doubled in
size, the number of non-zero components is unchanged.

We first introduce some notation. For a distribution D on F
m
2 , we define

σ(D) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝

s1
...

s2m

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣

x ← {0, 1}m

e′ ← D
for all i ∈ [m],

{
s2i−xi

= e′
i

s2i−(1−xi) = 0

⎫
⎪⎪⎬

⎪⎪⎭

.

Definition 7 (Exact Structured LPN). Let n,m be integers and ρ ∈ (0, 1).
The (dual) Decisional Exact Structured Learning Parity with Noise (DxSLPN)
problem with parameters n, 2m, ρ, denoted DxSLPN(n, 2m, ρ), is hard if, for every
probabilistic polynomial-time (in n) algorithm A, there exists a negligible func-
tion μ such that

∣
∣
∣
∣Pr
B,e

[A(B,B · e) = 1] − Pr
B,u

[A(B, u) = 1]
∣
∣
∣
∣ ≤ μ(n)

where B ← F
(2m−n)×2m
2 , e ← σ(χm

ρ ), and u ← F
2m−n
2 .

In other words, the error vector e ∈ F
2m
2 in the DxSLPN problem can be

derived from the error vector e′ ∈ F
m
2 of the DxLPN problem; for each i ∈ [m],

randomly set one of e2i−1 or e2i to e′
i and the other to 0.

We prove the following theorem in the full version [9].

Theorem 2. Fix constants ε, δ,∈ [0, 1/2) and constant ρ ∈ (0, 1). If
DxLPN(nε, n, ρ) is hard, then DxSLPN(n − nδ, 2n, ρ) is hard.

4.2 Construction

The following is parameterized by a pattern length n and a constant δ ∈ [0, 1/2).

– Obf(pat ∈ {0, 1, *}n): Draw B ← F
(n+nδ)×2n
2 and e ∈ F

2n
2 as follows. For each

i ∈ [n]
• If pati = *, e2i−1 = e2i = 0
• If pati = b, e2i−b = 1, e2i−(1−b) = 0

Output (B,Be).
– Eval((B, v), x): Define Bx to be the (n+nδ)×n matrix where column j is set

as (Bx)j := (B)2j−xj
. Solve for a full rank matrix T ∈ F

nδ×(n+nδ)
2 such that

T · Bx = 0. Compute T · v and if the result is 0nδ×1 output 1 and otherwise
output 0.
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Weak Functionality Preservation. We show that for all pat ∈ {0, 1, *}n and
x ∈ {0, 1}n, it holds that

Pr[Eval(Obf(pat), x) = fpat(x)] = 1 − negl(n),

over the randomness of the Obf procedure. Let B, e be drawn as in the Obf
procedure. Let T,Bx be as defined in the Eval procedure and Bx be the n columns
of B not in Bx. Let ex be defined analogously. First, if fpat(x) = 1, then ex = 0 by
construction. Then T ·v = T ·B ·e = (T ·Bx)·ex = 0. Hence, Eval(Obf(pat), x) = 1
with probability 1. Now if fpat(x) = 0, then ex �= 0 by construction. Since T ·Bx

is a uniformly random rank nδ matrix independent of ex, it holds that

Pr[T · v = 0] =
1

2nδ = negl(n).

4.3 Security

Lemma 4. Fix any predicate P : {0, 1, *}n → {0, 1}. Assuming the hardness of
DxSLPN(n, 2m, ρ) implies that for all probabilistic polynomial-time A,

∣
∣
∣
∣Pr
B,e

[A(B,Be,P(e)) = 1] − Pr
B,u

[A(B, u,P(e)) = 1]
∣
∣
∣
∣ = negl(n)

where B ← F
(2m−n)×2m
2 , e ← σ(χm

ρ ), and u ← F
2m−n
2 .

Proof. The hardness of DxSLPN(n, 2m, ρ) immediately implies that for all prob-
abilistic polynomial-time A′,

Pr
B,e

[A′(B,Be,P(e)) = e] = negl(n),

where B, e are drawn as in the lemma statement. This follows since the reduction
can simply guess the value of P(e) and be correct with probability at least 1/2.
Thus we just need to show a search to decision reduction for structured LPN with
a one bit predicate. This follows from the proof of Lemma 5 in [26] (equivalence
of search and decision “leaky LPN”), which is a slight tweak of the search-to-
decision reduction presented in [4]. We can easily adapt the proof to our case
by letting the underlying problem be structured LPN rather than regular LPN
and considering the special case of leakage functions corresponding to one bit
predicates. This proof is presented for the As + e version of LPN, but the same
technique works for the dual Be version, as shown for example in the proof of
Lemma 2.3 in [32]. 
�
Theorem 3. Fix any constant ρ ∈ (0, 1). Assuming the hardness of
DLPN(nε, n, ρ) for some ε < 1/2, the above obfuscation with parameters (n, δ)
for δ < 1/2 is Distributional-VBB secure for patterns pat ← Un,n−ρn.
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Proof. We show that the above obfuscator satisfies the definition of Perfect
Circuit-Hiding (Definition 3), which implies Distributional VBB security [6]. We
want to show that for any probabilistic polynomial-time adversary A and any
balanced predicate P : {0, 1, *}n → {0, 1} (that is, P takes the values 0 and 1
with probability 1/2 over the randomness of pat ← Un,n−ρn),

Pr
pat←Un,n−ρn

[A(Obf(pat)) = P(pat)] =
1
2

+ negl(n).

We know by assumption and from Theorem2 and Lemma 4 that, for any
predicate P : {0, 1, *} → {0, 1} and for all probabilistic polynomial-time B,

∣
∣Pr[B(Obf(pat),P(pat)) = 1] − Pr[B((B, u),P(pat)) = 1]

∣
∣ = negl(n),

where pat ← Un,n−ρn, B ← F
(n+nδ)×2n
2 , and u ← F

n+nδ

2 .
Now assume that there exists a balanced predicate P such that there exists

a probabilistic polynomial-time adversary A with non-negligible advantage μ(n)
in the above Perfect Circuit-Hiding definition. Consider an adversary B that
receives ((B, u),P(pat)), runs A on (B, u) and outputs 1 if A(B, u) = P(pat)
and 0 otherwise. If (B, u) was an honest obfuscation, then B outputs 1 with
probability 1

2 + μ(n). If (B, u) was uniformly random, then A(B, u) is indepen-
dent of P(pat), so since P is balanced, B outputs 1 with probability exactly 1/2.
Thus, B’s distinguishing advantage is μ(n), which is non-negligible. 
�

5 Information-Theoretic Security

In this section, we consider a third construction, which relies on subset sums of
random rank one matrices. We prove this construction attains a notion of statis-
tistical distributional VBB security, as well as weak functionality preservation.
In order to achieve statistical security, however, we must limit the number of
wildcards to at most nδ for any δ < 1. In Sect. 5.3, we show how to modify this
base construction to achieve an intermediate notion of computational function-
ality preservation, assuming the discrete log assumption. The resulting scheme
has the curious property of being distributional-VBB secure against computa-
tionally unbounded adversaries, but functionality preserving in the view of any
computationally bounded adversary (even those who know pat).

5.1 Construction

We begin by drawing a k×k matrix B by choosing its first k−1 rows at random,
and then picking its last row to be in the row span of the first k − 1. We could
also have drawn B as a uniformly random rank k−1 matrix; however, “pushing”
the rank deficiency to the last row of B will simplify both the security analysis
and the modified construction in Sect. 5.3.
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Notation. We will frequently write a matrix M as
(

M
M

)

where M is the sub-

matrix of M consisting of every row but the last, and M denotes the last row.

Construction. The following is parameterized by a pattern length n and field
size q = 2nγ

for a γ > 0. We let Fq denote a field of size q.

– Obf(pat ∈ {0, 1, *}n). Partition [n] into S0∪S1∪S* so that S0 = {i | pati = 0},
S1 = {i | pati = 1}, and S∗ = {i | pati = ∗}, and let k = |S*| + 1.

• Draw B ← F
(k−1)×k
q , r ← F

1×(k−1)
q and let B :=

(
B

r · B

)

• For all i ∈ S0 ∪ S1, sample a uniformly random rank 1 A(i) ∈ F
k×k
q .

• For all i ∈ S*, sample a uniformly random rank 1 A
(i) ∈ F

(k−1)×k
q . Let

A(i) :=

(
A

(i)

r · A
(i)

)

.

• Define F := B − ∑
i∈S1

A(i), and output (F,A(1), . . . , A(n)).

– Eval((F,A(1), . . . , A(n)), x ∈ {0, 1}n). Output 1 if det
(

F +
∑

i|xi=1 A(i)

)

= 0

and 0 otherwise.

Weak Functionality Preservation. By construction, for an x that matches pat,
we have that

colspan
(

F +
∑

i|xi=1

A(i)

)

= colspan
(

B +
∑

i|xi=1∧pati=∗
A(i)

)

⊆ colspan(B).

It then follows that det(F +
∑

i|xi=1 A(i)) = 0 since B has rank at most k − 1.
For an x that does not match pat, consider the matrix

F +
∑

i|xi=1

A(i) = B +
∑

i|xi=1∧pati=∗
A(i)

︸ ︷︷ ︸
B′

+
∑

i|xi=1∧pati=0

A(i) −
∑

i|xi=0∧pati=1

A(i)

︸ ︷︷ ︸
A′

.

Since the first k − 1 rows of B are all uniformly random, the same is true of first
k − 1 rows of B′, denoted as B

′
. Furthermore, we know by construction that

there exists at least one i such that pati �= xi and pati ∈ {0, 1}, so A′ contains at
least one of these A(i) matrices. Note that the last row of A(i) (and hence A′) is
uniformly random and independent of B

′
. Thus F +

∑
i|xi=1 A(i) is distributed

as a uniformly random matrix, so its determinant is non-zero with overwhelming
probability 1 − k/q = 1 − negl(n) by the Schwartz–Zippel lemma.
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5.2 Security

We prove our construction attains statistical distributional VBB security, defined
in Definition 1.

For any pattern pat ∈ {0, 1, *}n, define pat−1(*) := {j | patj = *} the
positions of the wildcards and let b ∈ {0, 1}n−w denote the fixed bits of pat.

Theorem 4. The above construction with field size q is a ε(n)-Statistical Distri-
butional VBB obfuscator for any distribution over patterns with w ≤ n wildcards
such that H∞(b|pat−1(*)) ≥ (w + 1) log(q) + 2 log(1/ε(n)) + 1.

Corollary 1. Fix any δ ∈ [0, 1). The above construction can be used to satisfy
ε(n)-Statistical Distributional VBB security for a negligible function ε(n), for any
distribution over patterns with w = nδ wildcards such that H∞(b|pat−1(*)) ≥
n1−γ for some γ < 1 − δ.

The proof of Theorem 4 follows from standard applications of the leftover
hash lemma. We show that as long as there is sufficient entropy on the fixed
bits, the leftover hash lemma will imply the matrix F is statistically close to
a uniformly random matrix. Then the low rank matrix B is hidden from view,
and the k − 1 random wildcard matrices A(i) drawn from the column space of B
are distributed as uniformly random rank 1 matrices, just like all the other A(i)

matrices. The formal proof is done in the full version [9].

5.3 Computational Functionality Preservation

We now consider the notion of computational functionality preservation from
Definition 1, which is strictly weaker than strong functionality preservation, and
strictly stronger than weak functionality preservation.13 Refer to Sect. 1.2 for
general discussion motivating this definition.

Remark 2. For the setting of conjunction obfuscation, computational function-
ality preservation combined with distributional VBB security imply that a com-
putationally bounded adversary can never find an accepting input to the obfus-
cated program.14 If the adversary can find an accepting input to the program
that actually matches the hidden pattern pat, the adversary can learn a predi-
cate on pat, violating distributional VBB. If they find an accepting input to the
program that does not match the hidden pattern, they violate computational
functionality preservation.
13 To see this informally, consider any obfuscation scheme for an evasive functional-

ity given by (Obf,Eval) that achieves weak functionality preservation. Now define
(Obf′,Eval′) where Obf′(C) samples a random y from the input space and then
outputs Obf(C), y. Then Eval(Obf′, x) returns Eval(Obf, x) if x �= y, but returns 1
if x = y. It is not hard to see that this scheme still satisfies weak functionality
preservation, but now an adversary can easily tell that functionality preservation is
violated at y, so computational functionality preservation is violated.

14 This is reminiscent of the notion of input-hiding obfuscation [6], but different in
that we require that the adversary cannot find an accepting input for the obfuscated
circuit rather than the original circuit.
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We show that the following simple tweaks to our scheme allow us to base
computational functionality preservation on the hardness of solving discrete log.

– Modification 1: All of the matrices F,A(1), . . . , A(n) have their last row
encoded in the exponent of the group.

– Modification 2: On evaluation, we first check if rank(F +
∑

i|xi=1 A
(i)

) =
k − 1, and if not, immediately reject.

Our functionality proof will use a reduction from the representation problem,
introduced by Brands [20], which we denote as FIND-REP following [42].

Instance: A group G of order q, and random gs1 , . . . , gsn ← G.

Problem: Find non-trivial d1, . . . , dn ∈ Zq such that g
∑n

i=1 disi = g0.

Brands [20] proves that solving FIND-REP in G is as hard as solving discrete
log in G. Now we prove a theorem similar to Theorem 4, but with different
parameters than Corollary 1.

Theorem 5. Fix any δ ∈ [0, 1
2 ). Assuming discrete log, this construction satis-

fies computational functionality preservation for any distribution over patterns
with w = nδ wildcards such that H∞(b|pat−1(*)) ≥ n1−ε for some ε < 1 − 2δ.

Proof. We prove that a PPT adversary that can find some point x for which
fpat(x) �= Obf(fpat)(x), even given Obf(fpat), can solve discrete log in G. We
break up the analysis into two cases: we denote inputs x for which fpat(x) = 1
and Obf(fpat)(x) = 0 as false negatives, and denote inputs for which fpat(x) = 0
and Obf(fpat)(x) = 1 as false positives.

For δ ∈ [0, 1/2), pick δ′ > δ and set the field size q to 2nδ′
.

Lemma 5. For q = 2nδ′
and w = nδ where δ′ > δ, with overwhelming probabil-

ity our construction has no false negatives.

Proof. For any x where fpat(x) = 1, Obf(fpat)(x) can only evaluate to 0 if

rank

(

B +
∑

i|xi=1,pati=∗
A

(i)

)

< k − 1.

Recall from the construcion that B is sampled as a uniformly random matrix,
and for i where pati = *, A

(i)
is sampled as a uniformly random rank 1 matrix.

Thus, each of the 2nδ

possible (k−1)×k subset sums is distributed as a uniformly
random (k − 1) × k matrix, and is thus rank deficient with probability at most
k−1
q2 . Since we set q to be at least 2nδ′

for δ′ > δ, the probability that any of

these subset sum matrices is rank deficient is at most (k−1)·2nδ

q2 = negl(n). 
�
Thus with overwhelming probability, an adversary that finds an x where

fpat(x) �= Obf(fpat)(x) must return a false positive. We show that finding a false
positive is as hard as solving FIND-REP.
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Lemma 6. If there exists an algorithm A that finds a false positive with non-
negligible probability, there exists an algorithm A′ that solves FIND-REP with
non-negligible probability.

Proof. On input gs1 , . . . , gsn , A′ constructs an obfuscation for a pattern pat with
w = nδ wildcards drawn from an arbitrary distribution. Given pat, define the
same sets S0, S1, and S∗ and as before, let k = w + 1. Note that throughout
this proof, when we add/subtract matrices that include group elements, we mul-
tiply/divide the group element components of the matrices. Likewise, when we
multiply a vector of group elements by a scalar, we actually raise each group
element to the appropriate power. A constructs the obfuscation as follows.

– Let r ∈ G
1×(k−1) = [. . . gsj . . . ] for j ∈ S∗, draw B ← Z

(k−1)×k
q , and let

B :=
(

B
r · B

)

– For each i ∈ S0 ∪ S1, sample a uniformly random rank 1 matrix A
(i) ∈

F
(k−1)×k
q , and let A(i) :=

(
A

(i)

gsi · A
(i)

1

)

– For each i ∈ S∗, sample ci ← F
k−1
q and di ← F

1×k
q , and let A(i) :=

(
ci

r · ci

)

·di.

– Define F := B − ∑
i∈S1

A(i) and output (F,A(1), . . . , A(n)).

Then A′ sends (F,A(1), . . . , A(n), pat) to A and if A is successful, A′ receives
back a set T with the following properties:

– det(F +
∑

i∈T A(i)) = 0;

– det(F +
∑

i∈T A
(i)

) �= 0;
– T \ S∗ �= S1.

The determinant polynomial reduces to a linear combination of the elements
in the last row of F +

∑
i∈T A(i). By the second property above, this linear

combination is not identically zero. Now A′ will plug in the random values
it chose in constructing the obfuscation to recover a linear combination over
s1, . . . , sn that evaluates to zero, by the first property above. It then submits
this linear combination to the FIND-REP challenger.

So it just remains to show that this final linear combination is not identi-
cally zero. As in our weak functionality preservation proof, we can re-write the
summation as

F +
∑

i∈T

A(i) = B +
∑

i∈T∩S∗

A(i)

︸ ︷︷ ︸
B′

+
∑

i∈T∩S0

A(i) −
∑

i∈([n]\T )∩S1

A(i)

︸ ︷︷ ︸
A′

.

By the third property above, there exists some i such that A′ includes the
matrix A(i). We show that with overwhelming probability, this implies that there
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is some setting of s1, . . . , sn that produces a non-zero evaluation, which shows
that the final linear combination must not be identically zero.

We condition on the fact that with overwhelming probability, for each of
the 2nδ

possible sets T ∩ S∗, and each i /∈ S∗, the row span of A(i) is outside
of the row span of B

′
. Indeed, this fails to happen with probability at most

n2nδ

/q = negl(n).
Thus since we can assume B

′
has rank k−1 for each T ∩S∗ (by the arguments

from the proof of Lemma 5), and since A′ must include a row from some A(i),
we conclude that the row B′ + A′ could be anything in the entire k dimensional
space, depending on the values of s1, . . . , sn. In particular it could be outside of
the k − 1 dimensional space spanned by A

′
+ B

′
, in which case the determinant

polynomial would evaluate to non-zero. 
�
Together, Lemmas 5 and 6 imply that any adversary that breaks computa-

tional functionality preservation can solve discrete log in G. 
�
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Abstract. Distributional collision resistance is a relaxation of collision
resistance that only requires that it is hard to sample a collision (x, y)
where x is uniformly random and y is uniformly random conditioned
on colliding with x. The notion lies between one-wayness and collision
resistance, but its exact power is still not well-understood. On one hand,
distributional collision resistant hash functions cannot be built from one-
way functions in a black-box way, which may suggest that they are
stronger. On the other hand, so far, they have not yielded any appli-
cations beyond one-way functions.

Assuming distributional collision resistant hash functions, we con-
struct constant-round statistically hiding commitment scheme. Such
commitments are not known based on one-way functions, and are impos-
sible to obtain from one-way functions in a black-box way. Our con-
struction relies on the reduction from inaccessible entropy generators to
statistically hiding commitments by Haitner et al. (STOC ’09). In the
converse direction, we show that two-message statistically hiding com-
mitments imply distributional collision resistance, thereby establishing a
loose equivalence between the two notions.

A corollary of the first result is that constant-round statistically hid-
ing commitments are implied by average-case hardness in the class SZK
(which is known to imply distributional collision resistance). This impli-
cation seems to be folklore, but to the best of our knowledge has not
been proven explicitly. We provide yet another proof of this implication,
which is arguably more direct than the one going through distributional
collision resistance.

1 Introduction

Distributional collision resistant hashing (dCRH), introduced by Dubrov and
Ishai [9], is a relaxation of the notion of collision resistance. In (plain) collision
resistance, it is guaranteed that no efficient adversary can find any collision given
a random hash function in the family. In dCRH, it is only guaranteed that no
efficient adversary can sample a random collision given a random hash function
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 667–695, 2019.
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in the family. More precisely, given a random hash function h from the family,
it is computationally hard to sample a pair (x, y) such that x is uniform and
y is uniform in the preimage set h−1(x) = {z : h(x) = h(z)}. This hardness is
captured by requiring that the adversary cannot get statistically-close to this
distribution over collisions.1

The power of dCRH. Intuitively, the notion of dCRH seems quite weak. The
adversary may even be able to sample collisions from the set of all collisions, but
only from a skewed distribution, far from the random one. Komargodski and
Yogev [26] show that dCRH can be constructed assuming average-case hard-
ness in the complexity class statistical zero-knowledge (SZK), whereas a similar
implication is not known for multi-collision resistance.2 (let alone plain collision
resistance). This can be seen as evidence suggesting that dCRH may be weaker
than collision resistance, or even multi-collision resistance [4,6,24,25].

Furthermore, dCRH has not led to the same cryptographic applications as
collision resistance, or even multi-collision resistance. In fact, dCRH has no
known applications beyond those implied by one-way functions.

At the same time, dCRH is not known to follow from one-way functions, and
actually, cannot follow based on black-box reductions [34]. In fact, it can even
be separated from indistinguishability obfuscation (and one-way functions) [2].
Overall, we are left with a significant gap in our understanding of the power of
dCRH:

Does the power of dCRH go beyond one-way functions?

1.1 Our Results

We present the first application of dCRH that is not known from one-way func-
tions and is provably unachievable from one-way functions in a black-box way.

Theorem 1. dCRH implies constant-round statistically hiding commitment
scheme.

Such commitment schemes cannot be constructed from one-way functions (or
even permutations) in a black-box way due to a result of Haitner, Hoch, Reingold
and Segev [15]. They show that the number of rounds in such commitments must
grow quasi-linearly in the security parameter.

The heart of Theorem 1 is a construction of an inaccessible-entropy genera-
tor [17,18] from dCRH.

1 There are some subtleties in defining this precisely. The definition we use differs from
previous ones [9,21,26]. We elaborate on the exact definition and the difference in
the technical overview below and in Sect. 3.4.

2 Multi-collision resistance is another relaxation of collision resistance, where it is
only hard to find multiple elements that all map to the same image. Multi-collision
resistance does not imply dCRH in a black-box way [25], but Komargodski and
Yogev [26] give a non-black-box construction.
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An implication of the above result is that constant-round statistically hiding
commitments can be constructed from average-case hardness in SZK. Indeed, it
is known that such hardness implies the existence of a dCRH [26].

Corollary 1. A Hard-on-average problem in SZK implies a constant-round sta-
tistically hiding commitment scheme.

The statement of Corollary 1 has been treated as known in several previous
works (c.f. [5,10,18]), but a proof of this statement has so far not been published
or (to the best of our knowledge) been publicly available. We also provide an
alternative proof of this statement (and in particular, a different commitment
scheme) that does not go through a construction of a dCRH, and is arguably
more direct.

A limit on the power of dCRH. We also show a converse connection between
dCRH and statistically hiding commitments. Specifically, we show that any two-
message statistically hiding commitment implies a dCRH function family.

Theorem 2. Any two-message statistically hiding commitment scheme implies
dCRH.

This establishes a loose equivalence between dCRH and statistically hiding
commitments. Indeed, the commitments we construct from dCRH require more
than two messages. Interestingly, we can even show that such commitments imply
a stronger notion of dCRH where the adversary’s output distribution is not only
noticeably far from the random collision distribution, but is (1 − negl(n))-far.

1.2 Related Work on Statistically Hiding Commitments

Commitment schemes, the digital analog of sealed envelopes, are central to cryp-
tography. More precisely, a commitment scheme is a two-stage interactive proto-
col between a sender S and a receiver R. After the commit stage, S is bound to
(at most) one value, which stays hidden from R, and in the reveal stage R learns
this value. The immediate question arising is what it means to be “bound to”
and to be “hidden”. Each of these security properties can come in two main fla-
vors, either computational security, where a polynomial-time adversary cannot
violate the property except with negligible probability, or the stronger notion
of statistical security, where even an unbounded adversary cannot violate the
property except with negligible probability. However, it is known that there do
not exist commitment schemes that are simultaneously statistically hiding and
statistically binding.

There exists a one-message (i.e., non-interactive) statistically binding com-
mitment schemes assuming one-way permutations (Blum [7]). From one-way
functions, such commitments can be achieved by a two-message protocol
(Naor [28] and H̊astad, Impagliazzo, Levin and Luby [22]).

Statistically hiding commitments schemes have proven to be somewhat more
difficult to construct. Naor, Ostrovsky, Venkatesan and Yung [29] gave a sta-
tistically hiding commitment scheme protocol based on one-way permutations,
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whose linear number of rounds matched the lower bound of [15] mentioned above.
After many years, this result was improved by Haitner, Nguyen, Ong, Reingold
and Vadhan [16] constructing such commitment based on the minimal hardness
assumption that one-way functions exist. The reduction of [16] was later simpli-
fied and made more efficient by Haitner, Reingold, Vadhan and Wee [17,18] to
match, in some settings, the round complexity lower bound of [15]. Constant-
round statistically hiding commitment protocols are known to exist based on
families of collision resistant hash functions [8,20,30]. Recently, Berman, Deg-
wekar, Rothblum and Vasudevan [4] and Komargodski, Naor and Yogev [25]
constructed constant-round statistically hiding commitment protocols assuming
the existence of multi -collision resistant hash functions.

Constant-round statistically hiding commitments are a basic building block
in many fundamental applications. Two prominent examples are constructions
of constant-round zero-knowledge proofs for all NP (Goldreich and Kahan [12])
and constant-round public-coin statistical zero-knowledge arguments for NP
(Barak [3], Pass and Rosen [33]).

Statistically hiding commitment are also known to be tightly related to the
hardness of the class of problems that posses a statistical zero-knowledge pro-
tocol, i.e., the class SZK. Ong and Vadhan [31] showed that a language in NP
has a zero-knowledge protocol if and only if the language has an “instance-
dependent” commitment scheme. An instance-dependent commitment scheme
for a given language is a commitment scheme that can depend on an instance of
the language, and where the hiding and binding properties are required to hold
only on the YES and NO instances of the language, respectively.

1.3 Directions for Future Work

The security notions of variants of collision resistance, including plain colli-
sion resistance and multi-collision resistance, can be phrased in the language of
entropy. For example, plain collision resistance requires that once a hash value
y is fixed the (max) entropy of preimages that any efficient adversary can find is
zero. In multi-collision resistance, it may be larger than zero, even for every y,
but still bounded by the size of allowed multi collisions. In distributional collision
resistance, the (Shannon) entropy is close to maximal.

Yet, the range of applications of collision resistance (or even multi-collision
resistance) is significantly larger than those of distributional collision resistance.
Perhaps the most basic such application is succinct commitment protocols which
are known from plain/multi-collision resistance but not from distributional col-
lision resistance (by succinct we mean that the total communication is shorter
than the string being committed to). Thus, with the above entropy perspec-
tive in mind, a natural question is to characterize the full range or parameters
between distributional and plain collision resistance and understand for each of
them what are the applications implied. A more concrete question is to find the
minimal notion of security for collision resistance that implies succinct commit-
ments.
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A different line of questions concerns understanding better the notion of
distributional collision resistance and constructing it from more assumptions.
Komargodski and Yogev constructed it from multi-collision resistance and from
the average-case hardness of SZK. Can we construct it, for example, from the
multivariate quadratic (MQ) assumption [27] or can we show an attack for ran-
dom degree 2 mappings? Indeed, we know that random degree 2 mappings cannot
be used for plain collision resistant hashing [1, Theorem 5.3].

2 Technical Overview

In this section, we give an overview of our techniques. We start with a more
precise statement of the definition of dCRH and a comparison with previous
versions of its definition.

A dCRH is a family of functions Hn = {h : {0, 1}n → {0, 1}m}. (The func-
tions are not necessarily compressing.) The security guarantee is that there exists
a universal polynomial p(·) such that for every efficient adversary A it holds that

Δ ((h,A(1n, h)), (h,Col(h))) ≥ 1
p(n)

,

where Δ denotes statistical distance, h ← Hn is chosen uniformly at random,
and Col is a random variable that is sampled in the following way: Given h,
first sample x1 ← {0, 1}n uniformly at random and then sample x2 uniformly
at random from the set of all preimages of x1 relative to h (namely, from the
set {x : h(x) = h(x1)}). Note that Col may not be efficiently samplable and
intuitively, the hardness of dCRH says that there is no efficient way to sample
from Col, even approximately.

Our definition is stronger than previous definitions of dCRH [9,21,26] by
that we require the existence of a universal polynomial p(·), whereas previous
definitions allow a different polynomial per adversary. Our modification seems
necessary to get non-trivial applications of dCRH, as the previous definitions are
not known to imply one-way functions. In contrast, our notion of dCRH implies
distributional one-way functions which, in turn, imply one-way functions [23]
(indeed, the definition of distributional one-way functions requires a universal
polynomial rather than one per adversary).3 We note that previous constructions
of dCRH (from multi-collision resistance and SZK-hardness) [26] apply to our
stronger notion as well.

2.1 Commitments from dCRH and Back

We now describe our construction of constant-round statistically hiding com-
mitments from dCRH. To understand the difficulty, let us recall the standard

3 The previous definition is known to imply a weaker notion of distributional one-way
functions (with a different polynomial bound per each adversary) [21], which is not
known to imply one-way functions.
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approach to constructing statistically hiding commitments from (fully) collision
resistant hash functions [8,20,30]. Here to commit to a bit b, we hash a random
string x, and output (h(x), s, b⊕Exts(x)), where s is a seed for a strong random-
ness extractor Ext and b is padded with a (close to) random bit extracted from
x. When h is collision resistant, x is computationally fixed and thus so is the bit
b. However, for a dCRH h, this is far from being the case: for any y, the sender
might potentially be able to sample preimages from the set of all preimages.

The hash h(x), however, does yield a weak binding guarantee. For simplicity
of exposition, let us assume that any y ∈ {0, 1}m has exactly 2k preimages under
h in {0, 1}n. Then, for a noticeable fraction of commitments y, the adversary
cannot open y to a uniform x in the preimage set h−1(y). In particular, the
adversary must choose between two types of entropy losses: it either outputs a
commitment y of entropy m′ noticeably smaller than m, or after the commit-
ment, it can only open to a value x of entropy k′ noticeably smaller than k. One
way or the other, in total m′ + k′ must be noticeably smaller than n = m + k.
This naturally leads us to the notion of inaccessible entropy defined by Haitner,
Reingold, Vadhan and Wee [17,18].

Let us briefly recall what inaccessible entropy is (see Sect. 4.1 for a precise
definition). The entropy of a random variable X is a measure of “the amount
of randomness” that X contains. The notion of (in)accessible entropy measures
the feasibility of sampling high-entropy strings that are consistent with a given
random process. Consider the two-block generator (algorithm) G that samples
x ← {0, 1}n, and then outputs y = h(x) and x. The real entropy of G is defined
as the entropy of the generator’s (total) output in a random execution, and is
clearly equal to n, the length of x. The accessible entropy of G measures the
entropy of these output blocks from the point of view of an efficient G-consistent
generator, which might act arbitrarily, but still outputs a value in the support
of G.

Assume for instance that h had been (fully) collision resistant. Then from the
point of view of any efficient G-consistent generator ˜G, conditioned on its first
block y, and its internal randomness, its second output block is fixed (otherwise,
G can be used for finding a collision). In other words, while the value of x given
y may have entropy k = n − m, this entropy is completely inaccessible for an
efficient G-consistent generator. (Note that we do not measure here the entropy
of the output blocks of ˜G, which clearly can be as high as the real entropy of G
by taking ˜G = G. Rather, we measure the entropy of the block from ˜G’s point
of view, and in particular, the entropy of its second block given the randomness
used for generating the first block.) Haitner et al. show that any noticeable
gap between the real entropy and the inaccessible entropy of such an efficient
generator can be leveraged for constructing statistically hiding commitments,
with a number of rounds that is linear in the number of blocks.

Going back to dCRH, we have already argued that in the simple case that
h is regular and onto {0, 1}m, we get a noticeable gap between the real entropy
n = m + k and the accessible entropy m′ + k′ ≤ m + k − 1/poly(n). We prove
that this is, in fact, true for any dCRH:
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Lemma 1. dCRH implies a two-block inaccessible entropy generator.

The block generator itself is the simple generator described above:

output h(x) and then x, for x ← {0, 1}n.

The proof, however, is more involved than in the case of collision resistance. In
particular, it is sensitive to the exact notion of entropy used. Collision resistant
hash functions satisfy a very clean and simple guarantee—the maximum entropy,
capturing the support size, is always at most m < n. In contrast, for dCRH
(compressing or not), the maximum entropy could be as large as n, which goes
back to the fact that the adversary may be able to sample from the set of all
collisions (albeit from a skewed distribution). Still, we show a gap with respect
to average (a.k.a Shannon) accessible entropy, which suffices for constructing
statistically hiding commitments [17].

From commitments back to dCRH. We show that any two-message statistically
hiding commitment implies a dCRH function family. Let (S,R) be the sender
and receiver of a statistically hiding bit commitment. The first message sent by
the receiver is the description of the hash function: h ← R(1n). The sender’s
commitment to a bit b, using randomness r, is the hash of x = (b, r). That is,
h(x) = S(h, b; r).

To argue that this is a dCRH, we show that any attacker that can sample col-
lisions that are close to the random collision distribution Col can also break the
binding of the commitment scheme. For this, it suffices to show that a collision
(b, r), (b′, r′) sampled from Col, translates to equivocation—the corresponding
commitment can be opened to two distinct bits b �= b′. Roughly speaking, this
is because statistical hiding implies that a random collision to a random bit b
(corresponding to a random hash value) is statistically independent of the under-
lying committed bit. In particular, a random preimage of such a commitment will
consist of a different bit b′ with probability roughly 1/2. See details in Sect. 4.3.

2.2 Commitments from SZK Hardness

We now give an overview of our construction of statistically hiding commitments
directly from average-case hardness in SZK. Our starting point is a result of Ong
and Vadhan [31] showing that any promise problem in SZK has an instance-
dependent commitment. These are commitments that are also parameterized by
an instance x, such that if x is a yes instance, they are statistically hiding and if
x is a no instance, they are statistically binding. We construct statistically hid-
ing commitments from instance-dependent commitments for a hard-on-average
problem Π = (ΠN ,ΠY ) in SZK.
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A first attempt: using zero-knowledge proofs. To convey the basic idea behind
the construction, let us first assume that Π satisfies a strong form of average-case
hardness where we can efficiently sample no-instances from ΠN and yes-instances
from ΠY so that the two distributions are computationally indistinguishable.
Then a natural protocol for committing to a message m is the following: The
receiver R would sample a yes-instance x ← ΠY , and send it to the sender S
along with zero-knowledge proof [14] that x is indeed a yes-instance. The sender
S would then commit to m using an x-dependent commitment.

To see that the scheme is statistically hiding, we rely on the soundness of
the proof which guarantees that x is indeed a yes-instance, and then on the
hiding of the instance-dependent scheme. To prove (computational) binding,
we rely on zero knowledge property and the hardness of Π. Specifically, by
zero knowledge, instead of sampling x from ΠY , we can sample it from any
computationally indistinguishable distribution, without changing the probability
that an efficient malicious sender breaks binding. In particular, by the assumed
hardness of Π, we can sample x from ΠN . Now, however, the instance-dependent
commitment guarantees binding, implying that the malicious sender will not be
able to equivocate.

The main problem with this construction is that constant-round zero-
knowledge proofs (with a negligible soundness error) are only known assuming
constant-round statistically hiding commitments [12], which is exactly what we
are trying to construct.

A second attempt: using witness-indistinguishable proofs. Instead of relying on
zero-knowledge proofs, we rely on the weaker notion of witness-indistinguishable
proofs and use the independent-witnesses paradigm of Feige and Shamir [11].
(Indeed such proofs are known for all of NP, based average-case hardness in
SZK [13,28,32], see Sect. 5 for details.) We change the previous scheme as follows:
the receiver R will now sample two instances x0 and x1 and provide a witness-
indistinguishable proof that at least one of them is a yes-instance. The sender,
will secret share the message m into two random messages m0,m1 such that
m = m0 ⊕ m1, and return two instance-dependent commitments to m0 and m1

relative to x0 and x1, respectively.
Statistical hiding follows quite similarly to the previous protocol—by the

soundness of the proof one of the instances xb is a yes-instance, and by the
hiding of the xb-dependent commitment, the corresponding share mb is statisti-
cally hidden, and thus so is m. To prove binding, we first note that by witness
indistinguishability, to prove its statement, the receiver could use xb for either
b ∈ {0, 1}. Then, relying on the hardness of Π, we can sample x1−b to be a no-
instance instead of a yes-instance. If b is chosen at random, the sender cannot
predict b better than guessing. At the same time, in order to break binding, the
sender must equivocate with respect to at least one of the instance-dependent
commitments, and since it cannot equivocate with respect to the no-instance
x1−b, it cannot break binding unless it can get an advantage in predicting b.
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Our actual scheme. The only gap remaining between the scheme just described
and our actual scheme is our assumption regarding the strong form of average-
case hardness of Π. In contrast, the standard form of average-case hardness only
implies a single samplable distribution D, such that given a sample x from D it
is hard to tell whether x is a yes-instance or a no-instance better than guessing.

This requires the following changes to the protocol. First, lacking a samplable
distribution on yes-instances, we consider instead the product distribution Dn,
as a way to sample weak yes instances—n-tuples of instances where at least
one is a yes-instance in ΠY . Unlike before, where everything in the support
of the yes-instance sampler was guaranteed to be a yes-instance, now we are
only guaranteed that a random tuple is a weak yes instance with overwhelming
probability. To deal with this weak guarantee, we add a coin-tossing into the well
phase [13], where the randomness for sampling an instance from Dn is chosen
together by the receiver and sender. We refer the reader to Sect. 5 for more
details.

3 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For a distribu-
tion D we denote by x ← D an element chosen from D uniformly at random.
For an integer n ∈ N we denote by [n] the set {1, . . . , n}. We denote by Un the
uniform distribution over n-bit strings. We denote by ◦ the string concatenation
operation. A function negl : N → R

+ is negligible if for every constant c > 0,
there exists an integer Nc such that negl(n) < n−c for all n > Nc.

3.1 Cryptographic Primitives

A function f , with input length m1(n) and outputs length m2(n), specifies for
every n ∈ N a function fn : {0, 1}m1(n) → {0, 1}m2(n). We only consider functions
with polynomial input lengths (in n) and occasionally abuse notation and write
f(x) rather than fn(x) for simplicity. The function f is computable in polynomial
time (efficiently computable) if there exists a probabilistic machine that for any
x ∈ {0, 1}m1(n) outputs fn(x) and runs in time polynomial in n.

A function family ensemble is an infinite set of function families, whose ele-
ments (families) are indexed by the set of integers. Let F = {Fn : Dn → Rn}n∈N

stand for an ensemble of function families, where each f ∈ Fn has domain Dn

and range Rn. An efficient function family ensemble is one that has an efficient
sampling and evaluation algorithms.

Definition 1 (Efficient function family ensemble). A function family
ensemble F = {Fn : Dn → Rn}n∈N is efficient if:

– F is samplable in polynomial time: there exists a probabilistic polynomial-time
machine that given 1n, outputs (the description of) a uniform element in Fn.

– There exists a deterministic algorithm that given x ∈ Dn and (a description
of) f ∈ Fn, runs in time poly(n, |x|) and outputs f(x).
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3.2 Distance and Entropy Measures

Definition 2 (Statistical distance). The statistical distance between two ran-
dom variables X,Y over a finite domain Ω, is defined by

Δ(X,Y ) � 1
2

·
∑

x∈Ω

|Pr[X = x] − Pr[Y = x]| .

We say that X and Y are δ-close (resp. -far) if Δ(X,Y ) ≤ δ (resp.
Δ(X,Y ) ≥ δ).

Entropy. Let X be a random variable. For any x ∈ supp(X), the sample-entropy
of x with respect to X is

HX(x) = log
(

1
Pr[X = x]

)

.

The Shannon entropy of X is defined as:

H(X) = E
x←X

[HX(x)] .

Conditional entropy. Let (X,Y ) be a jointly distributed random variable.

– For any (x, y) ∈ supp(X,Y ), the conditional sample-entropy to be

HX|Y (x | y) = log
(

1
Pr[X = x | Y = y]

)

.

– The conditional Shannon entropy is

H(X | Y ) = E
(x,y)←(X,Y )

[

HX|Y (x | y)
]

= E
y←Y

[H(X|Y =y)] = H(X,Y ) − H(Y ).

Relative entropy. We also use basic facts about relative entropy (also known as,
Kullback-Leibler divergence).

Definition 3 (Relative entropy). Let X and Y be two random variables over
a finite domain Ω. The relative entropy is

DKL(X‖Y ) =
∑

x∈Ω

Pr[X = x] · log
(

Pr[X = x]
Pr[Y = x]

)

.

Proposition 1 (Chain rule). Let (X1,X2) and (Y1, Y2) be random variables.
It holds that

DKL((X1,X2)‖(Y1, Y2)) = DKL(X1‖Y1) + E
x←X1

[DKL(X2|X1=x‖Y2|Y1=x)] .

A well-known relation between statistical distance and relative entropy is
given by Pinsker’s inequality.
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Proposition 2 (Pinsker’s inequality). For any two random variables X and
Y over a finite domain it holds that

Δ(X,Y ) ≤
√

ln 2
2

· DKL(X‖Y ).

Another useful inequality is Jensen’s inequality.

Proposition 3 (Jensen’s inequality). If X is a random variable and f is
concave, then

E[f(X)] ≤ f(E[X]).

3.3 Commitment Schemes

A commitment scheme is a two-stage interactive protocol between a sender S
and a receiver R. The goal of such a scheme is that after the first stage of
the protocol, called the commit protocol, the sender is bound to at most one
value. In the second stage, called the opening protocol, the sender opens its
committed value to the receiver. Here, we are interested in statistically hiding
and computationally binding commitments. Also, for simplicity, we restrict our
attention to protocols that can be used to commit to bits (i.e., strings of length 1).

In more detail, a commitment scheme is defined via a pair of probabilistic
polynomial-time algorithms (S,R,V) such that:

– The commit protocol: S receives as input the security parameter 1n and a
bit b ∈ {0, 1}. R receives as input the security parameter 1n. At the end of
this stage, S outputs decom (the decommitment) and R outputs com (the
commitment).

– The verification: V receives as input the security parameter 1n, a commitment
com, a decommitment decom, and outputs either a bit b or ⊥.

A commitment scheme is public coin if all messages sent by the receiver are
independent random coins.

Denote by (decom, com) ← 〈S(1n, b),R〉 the experiment in which S and R
interact with the given inputs and uniformly random coins, and eventually S
outputs a decommitment string and R outputs a commitment. The complete-
ness of the protocol says that for all n ∈ N, every b ∈ {0, 1}, and every tuple
(decom, com) in the support of 〈S(1n, b),R〉, it holds that V(decom, com) = b.
Unless otherwise stated, V is the canonical verifier that receives the sender’s coins
as part of the decommitment and checks their consistency with the transcript.

Below we define two security properties one can require from a commitment
scheme. The properties we list are statistical-hiding and computational-binding.
These roughly say that after the commit stage, the sender is bound to a specific
value but the receiver cannot know this value.
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Definition 4 (binding). A commitment scheme (S,R,V) is binding if for
every probabilistic polynomial-time adversary S∗ there exits a negligible func-
tion negl(n) such that

Pr
[V(decom, com) = 0 and

V(decom′, com) = 1
: (decom, decom′, com) ← 〈S∗(1n),R〉

]

≤ negl(n)

for all n ∈ N, where the probability is taken over the random coins of both S∗

and R.

Given a commitment scheme (S,R,V) and an adversary R∗, we denote
by view〈S(b),R∗〉(n) the distribution on the view of R∗ when interacting with
S(1n, b). The view consists of R∗’s random coins and the sequence of messages
it received from S. The distribution is taken over the random coins of both S and
R. Without loss of generality, whenever R∗ has no computational restrictions,
we can assume it is deterministic.

Definition 5 (hiding). A commitment scheme (S,R,V) is statistically hiding
if there exists a negligible function negl(n) such that for every (deterministic)
adversary R∗ it holds that

Δ
({view〈S(0),R∗〉(n)}, {view〈S(1),R∗〉(n)}) ≤ negl(n)

for all n ∈ N.

3.4 Distributional Collision Resistant Hash Functions

Roughly speaking, a distributional collision resistant hash function [9] guarantees
that no efficient adversary can sample a uniformly random collision. We start
by defining more precisely what we mean by a random collision throughout the
paper, and then move to the actual definition.

Definition 6 (Ideal collision finder). Let Col be the random function that
given a (description) of a function h : {0, 1}n → {0, 1}m as input, returns a
collision (x1, x2) with respect to h as follows: it samples a uniformly random
element, x1 ← {0, 1}n, and then samples a uniformly random element that col-
lides with x1 under h, x2 ← {x ∈ {0, 1}n : h(x) = h(x1)}. (Note that possibly,
x1 = x2).

Definition 7 (Distributional collision resistant hashing). Let H = {Hn :
{0, 1}n → {0, 1}m(n)}n∈N be an efficient function family ensemble. We say that
H is a secure distributional collision resistant hash (dCRH) function family
if there exists a polynomial p(·) such that for any probabilistic polynomial-time
algorithm A, it holds that

Δ ((h,A(1n, h)), (h,Col(h))) ≥ 1
p(n)

,

for h ← Hn and large enough n ∈ N.
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Comparison with the previous definition. Our definition deviates from the pre-
vious definition of distributional collision resistance considered in [9,21,26]. The
definition in the above-mentioned works is equivalent to requiring that for any
efficient adversary A, there exists a polynomial pA, such that the collision out-
put by A is 1

pA(n)
-far from a random collision on average (over h). Our definition

switches the order of quantifiers, requiring that there is one such polynomial p(·)
for all adversaries A.

We note that the previous definition is, in fact, not even known to imply
one-way functions. In contrast, the definition presented here strengthens that of
distributional one-way functions, which in turn implies one-way functions [23].
Additionally, note that both constructions of distributional collision resistance
in [26] (from multi-collision resistance and from SZK hardness) satisfy our
stronger notion of security (with a similar proof).

On compression. As opposed to classical notions of collision resistance (such as
plain collision resistance or multi-collision resistance), it makes sense to require
distributional collision resistance even for non-compressing functions. So we do
not put a restriction on the order between n and m(n). As a matter of fact, by
padding, the input, arbitrary polynomial compression can be assumed without
loss of generality.

4 From dCRH to Statistically Hiding Commitments and
Back

We show distributional collision resistant hash functions imply constant-round
statistically hiding commitments.

Theorem 3. Assume the existence of a distributional collision resistant hash
function family. Then, there exists a constant-round statistically hiding and com-
putationally binding commitment scheme.

Our proof relies on the transformation of Haitner et al. [17,18], translating
inaccessible-entropy generators to statistically hiding commitments. Concretely,
we construct appropriate inaccessible-entropy generators from distributional col-
lision resistant hash functions. In Sect. 4.1, we recall the necessary definitions and
the result of [17], and then in Sect. 4.2, we prove Theorem 3.

We complement the above result by showing a loose converse to Theorem 3,
namely that two message statistically hiding commitments (with possibly large
communication) imply the existence of distributional collision resistance hashing.

Theorem 4. Assume the existence of a binding and statistically hiding two-
message commitment scheme. Then, there exists a dCRH function family.

This proof of Theorem 4 appears in Sect. 4.3.
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4.1 Preliminaries on Inaccessible Entropy Generators

The following definitions of real and accessible entropy of protocols are taken
from [17].

Definition 8 (Block generators). Let n be a security parameter, and let c =
c(n), s = s(n) and m = m(n). An m-block generator is a function G : {0, 1}c ×
{0, 1}s �→ ({0, 1}∗)m. It is efficient if its running time on input of length c(n) +
s(n) is polynomial in n.

We call parameter n the security parameter, c the public parameter length, s the
seed length, m the number of blocks, and �(n) = max(z,x)∈{0,1}c(n)×{0,1}s(n),i∈[m(n)]

|G(z, x)i| the maximal block length of G.

Definition 9 (Real sample-entropy). Let G be an m-block generator over
{0, 1}c×{0, 1}s, let n ∈ N, let Zn and Xn be uniformly distributed over {0, 1}c(n)

and {0, 1}s(n), respectively, and let Yn = (Y1, . . . , Ym) = G(Zn,Xn). For n ∈ N

and i ∈ [m(n)], define the real sample-entropy of y ∈ Supp(Y1, . . . , Yi) given
z ∈ Supp(Zn) as

RealHG,n(y|z) =
i

∑

j=1

HYj |Zn,Y<j
(yj |z,y<j).

We omit the security parameter from the above notation when clear from the
context.

Definition 10 (Real entropy). Let G be an m-block generator, and let Zn

and Yn be as in Definition 9. Generator G has real entropy at least k = k(n), if

E
(z,y)←(Zn,Yn)

[RealHG,n(y|z)] ≥ k(n)

for every n ∈ N.
The generator G has real min-entropy at least k(n) in its i’th block for some

i = i(n) ∈ [m(n)], if

Pr
(z,y)←(Zn,Yn)

[

HYi|Zn,Y<i
(yi|z,y<i) < k(n)

]

= negl(n).

We say the above bounds are invariant to the public parameter if they hold for
any fixing of the public parameter Zn.4

It is known that the real Shannon entropy amounts to measuring the standard
conditional Shannon entropy of G’s output blocks.

Lemma 2 ([17, Lemma 3.4]). Let G, Zn and Yn be as in Definition 9 for some
n ∈ N, then

E
(z,y)←(Zn,Yn)

[RealHG,n(y|z)] = H(Yn|Zn).

4 In particular, this is the case when there is no public parameter, i.e., c = 0.
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Toward the definition of inaccessible entropy, we first define online block-
generators which are a special type of block generators that toss fresh random
coins before outputting each new block.

Definition 11 (Online block generator). Let n be a security parameter,
and let c = c(n) and m = m(n). An m-block online generator is a function
˜G : {0, 1}c×({0, 1}v)m �→ ({0, 1}∗)m for some v = v(n), such that the i’th output
block of ˜G is a function of (only) its first i input blocks. We denote the transcript

of ˜G over random input by T
˜G(1n) = (Z,R1, Y1, . . . , Rm, Ym), for Z ← {0, 1}c,

(R1, . . . , Rm) ← ({0, 1}v)m and (Y1, . . . , Ym) = ˜G(Z,R1, . . . , Ri).

That is, an online block generator is a special type of block generator that
tosses fresh random coins before outputting each new block. In the following, we
let ˜G(z, r1, . . . , ri)i stand for ˜G(z, r1, . . . , ri, x

∗)i for arbitrary x∗ ∈ ({0, 1}v)m−i

(note that the choice of x∗ has no effect on the value of ˜G(z, r1, . . . , ri, x
∗)i).

Definition 12 (Accessible sample-entropy). Let n be a security parameter,
and let ˜G be an online m = m(n)-block online generator. The accessible sample-
entropy of t = (z, r1, y1, . . . , rm, ym) ∈ Supp(Z,R1, Y1 . . . , Rm, Ym) = T

˜G(1n) is
defined by

AccH
˜G,n(t) =

m
∑

i=1

HYi|Z,R<i
(yi|z, r<i).

Again, we omit the security parameter from the above notation when clear from
the context.

As in the case of real entropy, the expected accessible entropy of a ran-
dom transcript can be expressed in terms of the standard conditional Shannon
entropy.

Lemma 3 ([17, Lemma 3.7]). Let ˜G be an online m-block generator and let
(Z,R1, Y1, . . . , Rm, Ym) = T

˜G(1n) be its transcript. Then,

E
t←T

˜G(Z,1n)

[

AccH
˜G(t)

]

=
∑

i∈[m]

H(Yi|Z,R<i).

We focus on efficient generators that are consistent with respect to G. That
is, the support of their output is contained in that of G.

Definition 13 (Consistent generators). Let G be a block generator
over {0, 1}c(n) × {0, 1}s(n). A block (possibly online) generator G′ over
{0, 1}c(n) × {0, 1}s′(n) is G consistent if, for every n ∈ N, it holds that
Supp(G′(Uc(n), Us′(n))) ⊆ Supp(G(Uc(n), Us(n))).

Definition 14 (Accessible entropy). A block generator G has accessible

entropy at most k = k(n) if, for every efficient G-consistent, online generator ˜G
and all large enough n,

E
t←T

˜G(1n)

[

AccH
˜G(t)

] ≤ k.
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We call a generator whose real entropy is noticeably higher than it accessible
entropy an inaccessible entropy generator.

We use the following reduction from inaccessible entropy generators to con-
stant round statistically hiding commitment.

Theorem 5 ([17, Theorem 6.24]). Let G be an efficient block generator with
constant number of blocks. Assume G’s real Shannon entropy is at least k(n) for
some efficiently computable function k, and that its accessible entropy is bounded
by k(n) − 1/p(n) for some p ∈ poly. Then there exists a constant-round statis-
tically hiding and computationally binding commitment scheme. Furthermore,
if the bound on the real entropy is invariant to the public parameter, then the
commitment is receiver public-coin.

Remark 1 (Inaccessible max/average entropy). Our result relies on the reduc-
tion from inaccessible Shannon entropy generators to statistically hiding com-
mitments, given in [17]. The proof of this reduction follows closely the proof in
previous versions [18,19], where the reduction was from inaccessible max entropy
generators. The extension to Shannon entropy generators is essential for our
result.

4.2 From dCRH to Inaccessible Entropy Generators – Proof of
Theorem 3

In this section we show that there is a block generator with two blocks in which
there is a gap between the real entropy and the accessible entropy. Let H = {Hn :
{0, 1}n → {0, 1}m}n∈N be a dCRH for m = m(n) and assume that each h ∈ Hn

requires c = c(n) bits to describe. By Definition 7, there exists a polynomial p(·)
such that for any probabilistic polynomial-time algorithm A, it holds that

Δ ((h,A(1n, h)), (h,Col(h))) = E
h←Hn

[Δ (A(1n, h),Col(h))] ≥ 1
p(n)

for large enough n ∈ N, where h ← Hn.
The generator G : {0, 1}c × {0, 1}n → {0, 1}m × {0, 1}n is defined by

G(h, x) = (h(x), x).

The public parameter length is c (this is the description size of h), the gen-
erator consists of two blocks, and the maximal block length is max{n,m}. Since
the random coins of G define x and x is completely revealed, the real Shannon
entropy of G is n. That is,

E
y←G(Uc,Un)

[RealHG(y)] = n.

Our goal in the remaining of this section is to show a non-trivial upper bound
on the accessible entropy of G. We prove the following lemma.
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Lemma 4. There exists a polynomial q(·) such that for every G-consistent
online generator ˜G, it holds that

E
t←T

˜G(Z,1n)

[

AccH
˜G(t)

] ≤ n − 1
q(n)

for all large enough n ∈ N.

Proof. Fix a G-consistent online generator ˜G. Let us denote by Y a random
variable that corresponds to the first part of G’s output (i.e., the first m bits)
and by X the second part (i.e., the last n bits). Denote by R the randomness used
by the adversary to sample Y . Denote by Z the random variable that corresponds
to the description of the hash function h. Fix q(n) � 4 · p(n)2 Assume towards
contradiction that for infinitely many n’s it holds that

E
t←T

˜G(Z,1n)

[

AccH
˜G(t)

]

> n − 1
q(n)

.

By Lemma 3, this means that

H(Y | Z) + H(X | Y,Z,R) > n − 1
q(n)

(1)

We show how to construct an adversary A that can break the security of the
dCRH. The algorithm A, given a hash function h ← H, does the following:

1. Sample r and let y = ˜G(h, r)1
2. Sample r1, r2 and output x1 = ˜G(h, r, r1)2 and x2 = ˜G(h, r, r2)2.

In other words, A tries to create a collision by running G to get the first
block, y, and then running it twice (by rewinding) to get two inputs x1, x2 that
are mapped to y. Indeed, A runs in polynomial-time and if ˜G is G-consistent,
then x1 and x2 collide relative to h. Denote by Y A, XA

1 , and XA
2 be random

variables that correspond to the output of the emulated ˜G. Furthermore, denote
by (XCol

1 ,XCol
2 ) a random collision that Col(h) samples. To finish the proof it

remains to show that

E
h←Hn

[

Δ((XA
1 ,XA

2 ), (XCol
1 ,XCol

2 ))
] ≤ 1

p(n)

which is a contradiction.
By Pinsker’s inequality (Proposition 2) and the chain rule from Proposition 1,

it holds that

Δ
((

XA
1 ,XA

2

)

,
(

XCol
1 ,XCol

2

)) ≤
√

ln(2)
2

· DKL(XA
1 ,XA

2 ‖XCol
1 ,XCol

2 )

=

√

DKL

(

XA
1 ‖XCol

1

)

+ E
x1←XA

1

[

DKL(XA
2 |XA

1=x1
‖XCol

2 |XCol
1 =x1

)
]

≤
√

DKL

(

XA
1 ‖XCol

1

)

+

√

E
x1←XA

1

[

DKL(XA
2 |XA

1=x1
‖XCol

2 |XCol
1 =x1

)
]

.
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Hence, by Jensen’s inequality (Proposition 3), it holds that

E
h←Hn

[

Δ((XA
1 ,XA

2 ), (XCol
1 ,XCol

2 ))
] ≤

√

E
h←Hn

[

DKL(XA
1 ‖XCol

1 )
]

+

√

√

√

√

E
h←Hn

x1←XA
1

[

DKL(XA
2 |XA

1=x1
‖XCol

2 |XCol
1 =x1

)
]

.

We complete the proof using the following claims.

Claim 1. It holds that

E
h←Hn

[

DKL(XA
1 ‖XCol

1 )
] ≤ 1

p(n)2
.

Claim 2. It holds that

E
h←Hn

x1←XA
1

[

DKL(XA
2 |XA

1=x1
‖XCol

2 |XCol
1 =x1

)
]

≤ 1
p(n)2

.

Proof (Proof of Claim 1). Recall that XCol
1 is the uniform distribution over the

inputs of the hash function and thus

DKL(XA
1 ‖XCol

1 ) =
∑

x

Pr
[

XA
1 = x

] · log
Pr

[

XA
1 = x

]

2−n
= n − H(XA

1 ).

To sample XA
1 , the algorithm A first runs ˜G(r)1 to get y and then runs

G(r, r1) to get x1. Thus, by Eq. (1), it holds that

E
h←Hn

[
H(XA

1 )
]

= E
h←Hn

[H(X)] = H(X, Y | Z) = H(Y | Z) + H(X | Y, Z, R) ≥ n − 1

q(n)
,

where the second equality follows since ˜G is G-consistent and thus X fully deter-
mines Y . This implies that

E
h←Hn

[

DKL(XA
1 ‖XCol

1 )
] ≤ 1

q(n)
=

1
p(n)2

,

as required.

Proof (Proof of Claim 2).
For x1 ∈ supp(XA

1 ), it holds that

DKL(XA
2 |XA

1=x1
‖XCol

2 |XCol
1 =x1

) =
∑

x

Pr
[

XA
2 = x|XA

1=x1

]

· log
Pr

[

XA
2 = x|XA

1=x1

]

|h−1(h(x1))|−1

= log |h−1(h(x1))| − H(XA
2 |XA

1=x1
).
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Hence,

E
h←Hn

x1←XA
1

[
DKL(X

A
2 |XA

1=x1
‖XCol

2 |XCol
1 =x1

)
]

= E
h←Hn

x1←XA
1

[
log |h−1(h(x1))| − H(XA

2 |XA
1=x1

)
]
.

Notice that the distribution of XA
2 only depends on y = h(x1), that is,

XA
2 |XA

1=x1
is distributed exactly as XA

2 |XA
1=x′

1
for every x1 and x′

1 that such
that y = h(x1) = h(x′

1). Thus, we have that XA
2 |XA

1=x1
is distributed exactly as

X|Y =y and the distribution of h(X1) is distributed as Y . Namely,

E
h←Hn

x1←XA
1

[
DKL(X

A
2 |XA

1=x1
‖XCol

2 |XCol
1 =x1

)
]

= E
h←Hn

x1←XA
1

[
log |h−1(y)|] − E

h←Hn

[H(X | Y, R)]

= E
h←Hn

x1←XA
1

[
log |h−1(y)|] − H(X | Y, Z, R)

≤ E
h←Hn

x1←XA
1

[
log |h−1(y)|] + H(Y | Z) − n +

1

q(n)

=
1

q(n)
,

where the first inequality follows by Eq. (1) and the second follows since

E
h←Hn
y←Y

[

log |h−1(y)|] + H(Y | Z) = E
h←Hn
y←Y

[

log |h−1(y)| + HY (y)
]

= E
h←Hn
y←Y

[

log
|h−1(y)|

Pr[Y = y]

]

≤ log E
h←Hn
y←Y

[ |h−1(y)|
Pr[Y = y]

]

= n,

where the inequality is by Jensen’s inequality (Proposition 3). Thus, overall

E
h←Hn

x1←XA
1

[

DKL(XA
2 |XA

1=x1
‖XCol

2 |XCol
1 =x1

)
]

≤ 1
q(n)

=
1

p(n)2
,

as required.

4.3 From Statistically Hiding Commitments to dCRH– Proof of
Theorem 4

Let π = (S,R,V) be a binding and statistically hiding two-message commitment
scheme. We show that there exists a dCRH family H.

To sample a hash function in the family with security parameter n, we use
the receiver’s first message of the protocol. Namely, we set the hash function as
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h ← R(1n). Then, to evaluate h on input x we first parse x as x = (b, r), where b
is a bit, and output a commitment to the bit b using randomness r, with respect
to the receiver message h. That is, we set

h(x) = S(h, b; r).

Since π is efficient, then sampling and evaluating h are polynomial-time pro-
cedures. This concludes the definition of our family H of hash functions. (Note
that the functions in the family are not necessarily compressing).

We next argue security. Suppose toward contradiction that H is not a dCRH
according to Definition 7. Then, for any δ(n) = n−O(1) there exists an adversary
A, such that

Δ ((h,A(1n, h)), (h,Col(h))) ≤ δ, (2)

for infinitely many n’s. From hereon, we fix δ to be any function such that
n−O(1) < δ < 1

2 − n−O(1).
We show how to use A to break the binding property of the commitment

scheme. Our cheating receiver R∗ is defined as follows: On input h, R∗ runs
A(h) to get x and x′, interprets x = (b, r) and x′ = (b′, r′) and outputs b and
b′ along with their openings r and r′, respectively. Our goal is to show that
x = (b, r) and x′ = (b′, r′) are two valid distinct openings to the commitment
scheme.

By Eq. (2), it suffices to analyze the success probability when the pair (x, x′)
is sampled according to the distribution Colh, and show that it is at least
1/2 − negl(n). From the definition of Colh, we have that h(x) = h(x′) and thus
S(h, b; r) = S(h, b′; r′) := y. In other words, the second message of the protocol
for b with randomness r and b′ with randomness r′ are the same, and thus both
pass as valid openings in the reveal stage of the protocol: V(h, y, b, r) = 1 and
V(h, y, b′, r′) = 1.

We are left to show that these are two distinct openings for the commitment,
namely, b �= b′. To show this, we use the statistically hiding property of the
commitment scheme. The following claim concludes the proof.

Claim. Fix any h. Then for ((b, r), (b′, r′)) ← Col(h) it holds that Pr[b �= b′] ≥
1/2 − negl(n).

Proof. Let B be the uniform distribution on bits and R the uniform distribution
on commitment randomness. For every commitment c, let Bc be the distribution
on bits given by sampling (b, r) ← (B,R) conditioned on S(h, b; r) = c. Let C
be the distribution on random commitments to a random bit.

By the statistical hiding property of the commitment scheme,

Δ((S(h,B,R), B), (S(h,B′, R), B)) ≤ ε,

where B′ is an independent copy of B, and ε = negl(n) is a negligible function.
Furthermore,

Δ((S(h,B,R), B), (S(h,B′, R), B)) = Δ((C,BC), (C,B)) = E
c←C

[Δ(Bc, B)] .
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By Markov’s inequality, it holds that

Pr
c←C

[

Δ(Bc, B) ≥ √
ε
] ≤ √

ε.

To conclude the proof note that

Pr[b = b′ : (b, r), (b′, r′) ← Colh] = Pr

⎡

⎣b = b′ :
(b, r) ← (B,R)
c = S(h, b; r)
b′ ← Bc

⎤

⎦ ≤

Pr

⎡

⎢

⎢

⎣

b = b′ :

(b, r) ← (B,R)
c = S(h, b; r)
b′ ← Bc

Δ(Bc, B) ≤ √
ε

⎤

⎥

⎥

⎦

+ Pr
c←C

[

Δ(Bc, B) ≥ √
ε
] ≤

(

1
2

+
√

ε

)

+
√

ε =
1
2

+ negl(n).

Overall, the success probability of A is at least 1/2 − negl(n) − δ ≥ n−O(1).

Using string commitments. The above proof constructs dCRH from statisti-
cally hiding bit commitment schemes. For schemes that support commitments
to strings, following the above proof gives a stronger notion of dCRH, where
the adversary’s output distribution is (1 − negl(n))-far from a random collision
distribution.

Technically, the change in the proof is to interpret b in x = (b, r) as a string of
length n, rather than as a single bit. The proof remains the same except that the
probability that b = b′ is (negligibly close to) 2−n instead of 1/2. Thus, overall
the success probability of A is at least 1 − negl(n) − δ. To ensure a polynomial
success probability we can allow any δ = 1 − n−O(1).

5 From SZK-Hardness to Statistically Hiding
Commitments

In this section, we give a direct construction of a constant-round statistically
hiding commitment from average-case hardness in SZK. This gives an alternative
proof to Corollary 1.

5.1 Hard on Average Promise Problems

Definition 15. A promise problem (ΠY ,ΠN ) consists of two disjoint sets of
yes instances ΠY and no instances ΠN .

Definition 16. A promise problem (ΠY ,ΠN ) is hard on average if there exists
a probabilistic polynomial-time sampler Π with support ΠY ∪ ΠN , such that for
any probabilistic polynomial-time decider D, there exists a negligible function
negl(n), such that

Pr
r←{0,1}n

[

x ∈ ΠD(x) | x ← Π(r)
] ≤ 1

2
+ negl(n).
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5.2 Instance-Dependent Commitments

Definition 17 ([31]). An instance-dependent commitment scheme IDC for a
promise problem (ΠY ,ΠN ) is a commitment scheme where all algorithms get
as auxiliary input an instance x ∈ {0, 1}∗. The induced family of schemes
{IDCx}x∈{0,1}∗ is

– statistically binding when x ∈ ΠN ,
– statistically hiding when x ∈ ΠY .

Theorem 6 ([31]). Any promise problem (ΠY ,ΠN ) ∈ SZK has a constant-
round instance-dependent commitment.

5.3 Witness-Indistinguishable Proofs

Definition 18. A proof system WI for an NP relation R is witness indistin-
guishable if for any x,w0, w1 such that (x,w0), (x,w1) ∈ R, the verifier’s view
given a proof using w0 is computationally indistinguishable from its view given
a proof using w1.

Constant-round WI proofs systems are known from any constant-round
statistically-binding commitments [13]. Statistically-binding commitments can
be constructed from one-way functions [28], and thus can also be obtained from
average-case hardness in SZK [32].

Theorem 7 ([13,28,32]). Assuming hard-on-average problems in SZK, there
exist constant-round witness-indistinguishable proof systems.

5.4 The Commitment Protocol

Here, we give the details of our protocol. Our protocol uses the following ingre-
dients and notation:

– A WI proof for NP.
– A hard-on average SZK problem (ΠY ,ΠN ) with sampler Π.
– An instance-dependent commitment scheme IDC for Π.

We describe the commitment scheme in Fig. 1.

5.5 Analysis

Proposition 4. Protocol 1 is computationally binding.

Proof. Let S∗ be any probabilistic polynomial-time sender that breaks binding in
Protocol 1 with probability ε. We use S∗ to construct a probabilistic polynomial-
time decider D for the SZK problem Π with advantage ε/4n − negl(n).
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Protocol 1

Sender input: a bit m ∈ {0, 1}.
Common input: security parameter 1n.

Coin tossing into the well

– R samples 2n independent random strings ρi,b ← {0, 1}n, for i ∈ [n], b ∈ {0, 1}.
– The parties then execute (in parallel) 2n statistically-binding commitment

protocols SBC in which R commits to each of the strings ρi,b. We denote the
transcript of each such commitment by Ci,b.

– S samples 2n independent random strings σi,b ← {0, 1}n, and sends them to
R.

– R sets ri,b = ρi,b ⊕ σi,b.

Generating hard instances

– R generates 2n instances xi,b ← Π(ri,b), using the strings ri,b as randomness,
and sends the instances to S.

– The parties then execute a WI protocol in which R proves to S that there
exists a b ∈ {0, 1} such that for all i ∈ [n], xi,b was generated consistently.
That is, there exist strings {ρi,b}i∈[n] that are consistent with the receiver’s
commitments {Ci,b}i∈[n], and xi,b = Π(ρi,b ⊕ σi,b).
As the witness, R uses b = 0 and the strings {ρi,0}i∈[n] sampled earlier in the
protocol.

Instance-binding commitment

– The sender samples 2n random bits mi,b subject to m =
⊕

i,b mi,b.
– The parties then execute (in parallel) 2n instance-dependent commitment pro-

tocols IDCxi,b in which S commits to each bit mi,b using the instance xi,b.

Fig. 1. A constant round statistically hiding commitment from SZK hardness.

Given an instance x ← Π, the decider D proceeds as follows:

– It samples at random i∗ ∈ [n] and b∗ ∈ {0, 1}.
– It executes the protocol (S∗,R) with the following exceptions:

• The instance xi∗,b∗ , generated by R, is replaced with the instance x, given
to D as input.

• In the WI protocol, as the witness we use 1 ⊕ b∗ and the strings
{ρi,1⊕b∗}i∈[n] (instead of 0 and the strings {ρi,0}i∈[n]).

– Then, at the opening phase, if S∗ equivocally opens the (i∗, b∗)-th instance-
dependent commitment, D declares that x ∈ ΠY . Otherwise, it declares that
x ∈ Πβ for a random β ∈ {Y,N}.

Analyzing D’s advantage. Denote by E the event that in the above experiment
S∗ equivocally opens the (i∗, b∗)-th instance-dependent commitment. We first
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observe that the advantage of D in deciding Π is at least as large as the proba-
bility that E occurs.

Claim 3. Pr
[

x ∈ ΠD(x)

] ≥ 1+Pr[E]
2 − negl(n).

Proof. By the definition of D,

Pr
[
x ∈ ΠD(x) | E

]
= Pr[x ∈ ΠY | E] = 1 − Pr[x ∈ ΠN | E] ≥ 1 − Pr[E | x ∈ ΠN ]

Pr[E]
,

Pr
[
x ∈ ΠD(x) | E

]
=

1

2
.

Furthermore, if x ∈ ΠN (namely, it is a no instance), then IDCx is binding, and
thus

Pr[E | x ∈ ΠN ] = negl(n).

Claim 3 now follows by the law of total probability.

From hereon, we focus on showing that E occurs with high probability.

Claim 4. Pr[E] ≥ ε
2n − negl(n).

Proof. To prove the claim, we consider hybrid experiments H0, . . . ,H4, and show
that the view of the sender S∗ changes in a computationally indistinguishable
manner throughout the hybrids. We then bound the probability that E occurs
in the last hybrid experiment.

H0: In this experiment, we consider an execution of D(x) as specified above.
H1: Here x is not sampled ahead of time, but rather first the value σi∗,b∗ is

obtained from S∗, then a random value ρ′ ← {0, 1}n is sampled, and x is
sampled using randomness ri∗,b∗ = σi∗,b∗ ⊕ ρ′. Since ρ′ is sampled indepen-
dently of the rest of the experiment, the sender’s view in H1 is identically
distributed to its view in H0.

H2: Here the (i∗, b∗)-th commitment to ρi∗,b∗ is replaced with a commitment
to ρ′. By the (computational) hiding of the commitment SBC, the sender’s
view in H2 is computationally indistinguishable from its view in H1.

H3: Here, in the WI protocol, instead of using as the witness 1 ⊕ b∗ and the
strings {ρi,1⊕b∗}i, we use 0 and the strings {ρi,0}i. By the (computational)
witness-indistinguishability of the protocol, the sender’s view in H3 is com-
putationally indistinguishable from its view in H2.

H4: In this experiment, we consider a standard execution of the protocol between
S∗ and R (without any exceptions). The sender’s view in this hybrid is
identical to its view in H3 (by renaming ρ′ = ρi∗,b∗ and x = xi∗,b∗).

It is left to bound from below the probability that E occurs in H4. That is, when
we consider a standard execution of (S∗,R) and sample (i∗, b∗) independently
at random.
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Indeed, note that since the plaintext bit m is uniquely determined by the
bits {mi,b}i,b. Whenever S∗ equivocally opens the commitment to two distinct
bits, there exists (at least one) (i, b) such that S∗ equivocally opens the (i, b)-th
instance-dependent commitment. Since in a standard execution S∗ equivocally
opens the commitment with probability at least ε, and (i∗, b∗) is sampled inde-
pendently, E occurs in this experiment with probability at least ε

2n .
Claim 4 follows.

This completes the proof that the scheme is binding.

Proposition 5. Protocol 1 is statistically hiding.

Proof. Let R∗ be any (computationally unbounded) receiver. We show that the
view of R∗ given a commitment to m = 0 is statistically indistinguishable from
its view given a commitment to m = 1.

For this purpose, consider the view of the receiver R∗ after the coin tossing
and instance-generation phase (and before the instance-dependent commitment
phase). We shall refer to this as the preamble view. We say that the preamble
view is admissible, if either of the following occurs:

– Let {xi,b}i,b be the instances sent by R∗. Then there exists i∗, b∗ such that
xi∗,b∗ ∈ ΠY .

– The sender S rejects the WI proof that {xi,b}i,b were properly generated.

To complete the proof, we show that the preamble view is admissible with over-
whelming probability, and that conditioned on any admissible preamble view,
the view of R∗ given a commitment to m = 0 is statistically indistinguishable
from its view given a commitment to m = 1. Since the preamble view is com-
pletely independent of m, the above two conditions are sufficient to establish
statistical indistinguishability of the total views.

Claim 5. The probability that the preamble view is not admissible is negligible.

Proof. Let A be the event that the WI proof is accepted and let Y be the event
that for some (i, b), xi,b is a yes instance. To show that the preamble view is not
admissible with negligible probability, we would like to prove that

Pr
[

A ∧ Y
] ≤ negl(n).

Let T be the event that the statement proven by R∗ in the WI protocol
is true. Namely, there exists b ∈ {0, 1} such that all {xi,b}i are generated con-
sistently with the coin-tossing phase (and in particular where the coin-tossing
phase consists of valid commitments {Ci,b}i).

First, note that by the soundness of the WI system, the probability that
the preamble is admissible, and in particular the proof is accepted, when the
statement is false, is negligible:

Pr
[

A ∧ T
] ≤ negl(n).
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We now show:
Pr

[

Y ∧ T
] ≤ negl(n).

For this purpose, fix any SBC commitments {Ci,b}i,b. Let F = F [{Ci,b}i,b]
be the event, over the sender randomness {σi,b}i,b, that there exists β ∈ {0, 1}
such that {Ci,β}i are valid commitments to strings {ρi,β}i and for all i, Π(ρi,β ⊕
σi,β) = xi,β ∈ ΠN . We show

Pr[F ] ≤ 2−Ω(n).

This is sufficient since

Pr
[

Y ∧ T
] ≤ max

C1,0...Cn,0
C1,1...Cn,1

Pr[F ] ≤ 2−Ω(n).

To bound the probability that F occurs, fix any β and commitments {Ci,β}i

to strings {ρi,β}i. Then the strings ρi,β ⊕ σi,β are distributed uniformly and
independently at random. Since Π ∈ ΠY with probability at least 0.49, and
taking a union bound over both β ∈ {0, 1}, the bound follows.

This concludes the proof of Claim 5.

Claim 6. Fix any admissible preamble view V . Then, conditioned on V the view
of R∗ when given a commitment to m = 0 is statistically indistinguishable from
its view when given a commitment to m = 1.

Proof. If V is such that the WI proof is rejected then S aborts and the view of
R∗ remains independent of m. Thus, from hereon, we assume that the instances
corresponding to V include an instance xi∗,b∗ ∈ ΠY . In particular, the corre-
sponding instance-dependent commitment IDCxi∗,b∗ is statistically hiding.

It is left to note that in any execution (S,R∗), with either m ∈ {0, 1}, the
bits M−i := {mi,b}(i,b) 
=(i∗,b∗) are distributed uniformly and independently at
random. Conditioned on V and M−i, only the bit

mi∗,b∗ = m
⊕

m′∈M−i

m′

depends on m. By the statistical hiding of IDCxi∗,b∗ a commitment
to 0

⊕

m′∈M−i
m′ is statistically indistinguishable from a commitment to

1
⊕

m′∈M−i
m′.

This concludes the proof of Claim 6.
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Abstract. Picnic is a signature scheme that was presented at ACM CCS
2017 by Chase et al. and submitted to NIST’s post-quantum standard-
ization project. Among all submissions to NIST’s project, Picnic is one
of the most innovative, making use of recent progress in construction of
practically efficient zero-knowledge (ZK) protocols for general circuits.

In this paper, we devise multi-target attacks on Picnic and its under-
lying ZK protocol, ZKB++. Given access to S signatures, produced by
a single or by several users, our attack can (information theoretically)
recover the κ-bit signing key of a user in complexity of about 2κ−7/S.
This is faster than Picnic’s claimed 2κ security against classical (non-
quantum) attacks by a factor of 27 · S (as each signature contains about
27 attack targets).

Whereas in most multi-target attacks, the attacker can easily sort and
match the available targets, this is not the case in our attack on Picnic, as
different bits of information are available for each target. Consequently,
it is challenging to reach the information theoretic complexity in a com-
putational model, and we had to perform cryptanalytic optimizations by
carefully analyzing ZKB++ and its underlying circuit. Our best attack
for κ = 128 has time complexity of T = 277 for S = 264. Alternatively, we
can reach the information theoretic complexity of T = 264 for S = 257,
given that all signatures are produced with the same signing key.

Our attack exploits a weakness in the way that the Picnic signing
algorithm uses a pseudo-random generator. The weakness is fixed in the
recent Picnic 2.0 version.

In addition to our attack on Picnic, we show that a recently pro-
posed improvement of the ZKB++ protocol (due to Katz, Kolesnikov
and Wang) is vulnerable to a similar multi-target attack.

Keywords: Cryptanalysis · Multi-target attack · Picnic ·
Signature scheme · Zero-knowledge protocol · ZKB++ · MPC ·
Block cipher · LowMC

1 Introduction

Multi-target attacks are among the most basic attacks against cryptosystems
that are built using symmetric-key primitives. In a typical example, the attacker
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first obtains G possible targets, which correspond to outputs of the cryptosystem,
evaluated with different secret keys (or secret inputs, in general). Then, the
attacker guesses a key, evaluates the cryptosystem, and compares the result
with all targets. Based on a standard birthday paradox argument, the expected
workload of the attacker for hitting one of the targets is reduced by a factor of
(at least1) G, compared to the workload of hitting a single target.2

In our multi-target attack model, we deal with a cryptosystem with U users,
each with a long-term key. For each user i ∈ [1, U ], the attacker obtains Di data
points created by this user and we denote D =

∑U
i=1 Di. Each data point may

be additionally associated with a short-term key. The goal of the attacker is to
recover one of the keys for the cryptosystem (either a short or a long-term key).
For example, in a signature scheme, each user has a long-term signing key, a data
point may be a signature and a short-term key is (secret) randomness used in
creating the signature. We note that in many cases the recovery of a short-term
key allows recovering the corresponding user’s long-term key, but this possibility
is not directly captured by our simple model.

We distinguish between three types of multi-target attacks according to the
number of targets G they present to an attacker.3

1. Multi-user single-target attack : G is determined by the number of users U ,
i.e., G = U . Typically, this occurs if the long-term user keys are vulnerable
to a multi-target attack.

2. Single-user multi-target attack : G is determined separately for each user as
Gi = Di. Hence, the best attack uses G = argmaxi{Di}. In this case, the
short-term keys of each user are vulnerable to a multi-target attack.

3. Multi-user multi-target attack (or generic multi-target attack): G is deter-
mined by the total number of available data points D, i.e., G = D. Here, all
short-term keys are vulnerable to a multi-target attack. In principle, this is
the most powerful type of multi-target attack, as all data points can simul-
taneously be used by the attacker as targets.

A standard way to mitigate multi-target attacks is to add a public random
input to the cryptosystem (i.e., a salt), thus creating a different tweaked variant
of it per salt. Since one has to choose a particular salt in order to evaluate the
cryptosystem with a secret key, salting forces the attacker to focus on only one
target per secret key guess.

In this paper, we are mainly interested in public key cryptosystems that are
based on symmetric-key primitives. These cryptosystems have received signif-
icant attention recently due to their alleged post-quantum security. The most
well-known category within this class consists of hash-based signatures, which
originate from Lamport’s one-time signatures [15]. In recent years, these sig-
natures have been subject to many optimizations and improvements until the

1 If the keys are not generated uniformly, the workload of the attack could be lower.
2 Throughout this paper, we focus on attacks run on classical computers, but our

analysis can be extended to deal with attacks on quantum computers.
3 Our model is related to the one of [12], but our classification is at a higher level.
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recent development of practical stateless hash-based signatures [3]. As all cryp-
tosystems built with symmetric-key primitives, hash-based signature are poten-
tially vulnerable to multi-target attacks and substantial effort has been put into
their efficient mitigation (cf. [12]).

Another public key cryptosystem that is based on symmetric-key components
is the Picnic signature scheme. It was presented at ACM CCS 2017 [6] by Chase
et al. and submitted [5] to NIST’s post-quantum standardization project [20].4

Picnic’s design is solely based on symmetric-key primitives, yet is completely
different from the design of hash-based signatures. Our main goal in this paper
is to investigate the resistance of Picnic against multi-target attacks. As we
demonstrate, this requires dedicated analysis due to Picnic’s novel design. We
note that our description of Picnic and its analysis applies to Picnic 1.0 and not
to the recent Picnic 2.0 version [5].

Picnic. The Picnic signature scheme uses the ZKB++ zero-knowledge (ZK)
protocol (that improves upon the original ZKBoo protocol [11] in terms of effi-
ciency), which allows to non-interactively prove knowledge of a preimage x to a
public value y under a one-way function f . In Picnic, y is part of the public key,
whereas x is the secret signing key. In order to sign a message, the signer uses
ZKB++ to prove knowledge of x, where the message is embedded in the signing
process to generate (pseudo) random bits.

The ZKB++ protocol employs the “MPC-in-the-head” paradigm due to Ishai
et al. [13]. In order to prove knowledge of x, the prover (signer), simulates a multi-
party computation (MPC) protocol between several players (whose number is 3
in ZKB++) that receive shares of x and compute f(x) = y. The prover then
commits to the different internal states (views) of each of the players, and the
verifier challenges the prover by asking to open the commitments of a subset of
the players, revealing their views.

The correctness of the MPC protocol guarantees that if the prover does not
know x and tries to cheat, then the joint views of some of the players are incon-
sistent. Hence, the verifier can catch a cheating prover with some probability,
which is amplified by repeating the process. The privacy guarantee of the MPC
protocol ensures that opening the views of a (sufficiently small) subset of play-
ers does not reveal any information about x, hence the secret signing key is not
leaked. The proof is made non-interactive using the Fiat-Shamir transform [10].
More specifically, the prover computes the challenge by hashing the commit-
ments, where in Picnic, the message to be signed is hashed as well (making the
signature depend on the message).

4 The ACM CCS 2017 paper [6] introduced two signature scheme variants: Fish (which
uses the Fiat-Shamir transform [10]), with claimed security against classical com-
puter attacks, and Picnic (which uses Unruh’s transform [22]), with claimed security
against quantum computer attacks. In the NIST submission [5], these variants were
renamed to Picnic-FS and Picnic-UR, respectively. Our analysis applies to both
variants, but we focus on Picnic-FS for simplicity.
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A Picnic signature thus comprises of partial transcripts of several indepen-
dent runs of the MPC protocol, where for each run, the views of two out of three
participating (virtual) players are opened. As noted above, a view contains the
player’s internal states computed during the MPC protocol. The signature also
includes the player’s sampled random bits, so that the view’s consistency can be
checked by a verifier of the signature. However, having the signature include all
the random bits sampled by the “opened players” blows up its size. Hence, Pic-
nic uses a standard optimization, where each player only samples a short seed of
size κ bits (where κ is the security level against classical attacks), and produces
the random bits required by the protocol using a deterministic pseudo-random
generator (PRG), initialized with the seed. Thus, the short seeds of the opened
players are included in the signature for each run and the verifier uses them
to compute the required pseudo-random bits. Obviously, the random seed (and
view) of the remaining “unopened player” in each run must not be included in
the signature, as it may expose the secret key x.

Multi-target Attacks on Picnic. Our main result is a multi-target attack
on Picnic. The first step of the attack involves collecting signatures (produced
by one or several users) containing (partial) transcripts of various runs of the
MPC protocol. Then, by independently guessing a value of the κ-bit seed and
evaluating the PRG, the attacker can match and detect that the seed is used by
the unopened player in a particular run. Once the seed of the unopened player
in a run is revealed, the secret signing key of the corresponding user can be
computed easily. Thus, given a total of D runs, the attacker needs to test an
average of 2κ/D seeds until a match with a run is detected. The attack is thus a
generic multi-target attack (i.e., a multi-user multi-target attack) and it violates
Picnic’s claims of κ-bit security (against attacks by classical computers).

A crucial detail missing from the attack’s outline above is how to detect a
match between a guessed seed and the seed used by an unopened player in an
available run. In fact, this may seem impossible, as the privacy of the MPC pro-
tocol should presumably prevent the pseudo-random bits used by the unopened
player from leaking. This issue is related to a subtlety about MPC protocols:
their privacy guarantees apply to the input of each player and not (necessarily)
to the (pseudo) random bits that each player uses. In other words, MPC proto-
cols are allowed to (and mostly do) expose some (pseudo) random bits used by
each player and still remain private, i.e., protect the players’ inputs. On the other
hand, it is generally important that not all of a player’s randomness is exposed,
as this leaks the player’s input. In the context of Picnic, in each run, some out-
put bits of the PRG used by the unopened player can be easily computed by
the attacker, which makes it possible to detect that the unopened player uses a
certain seed once it is correctly guessed (and then compute the secret key).

We note that the Picnic designers attempted to protect it against multi-
target attacks. For example, the public key of each owner i defines a different
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one-way function fi,5 rather than having all owners prove knowledge of a preim-
age under the same function f . Indeed, a global choice of f allows the attacker to
mount a multi-user single-target attack by computing a preimage to one out of
many images available in the different public keys. Yet, Picnic was not protected
against our generic (and more powerful) multi-user multi-target attack against
the seeds, presumably because it is not obvious that such an attack is possible
(as previously mentioned). Internally, the security proof of Picnic (published in
its design document [5]) simply does not consider attacker queries with arbitrary
seed values to the PRG and hence does not cover our attack.

Randomness Extraction. According to the birthday paradox, the expected
complexity of our attack is T = 2κ/D (for D ≤ 2κ/2). However, this information
theoretic analysis assumes that the attacker wins once the PRG is evaluated
with a seed that is used by the unopened player in one of the available runs (as
enough information is available to recover the key). In practice, achieving the
information theoretic complexity is challenging, since the PRG output bits of
the unopened player that can be computed in each run, vary according to the
run. Therefore, a standard matching algorithm which sorts the runs according
to the available PRG output bits does not work, while its naive extension has
very high complexity (e.g., at least 2102 for κ = 128). Consequently, we carefully
analyze Picnic (and its underlying block cipher LowMC that implements f [1])
in order to extract the maximal amount of PRG output data from each run. We
then utilize this data by devising a dedicated attack algorithm that recovers the
signing key and outperforms the naive algorithm by a factor of up to 225 for
κ = 128 and by more than 230 for larger κ values.

The techniques we use for extracting the maximal amount of PRG output
data mainly involve exploiting dependencies among private values computed by
a player and masked with PRG output bits. As a simple example, assume that
a player outputs 3 bits z1, z2, z3 such that z1 = v1 · v2 ⊕ r1, z2 = v2 · v3 ⊕ r2
and z3 = v1 · v3 ⊕ r3 where v1, v2, v3 are internal private bit values and r1, r2, r3
are PRG output bits. Observe that the triplet v1 · v2, v2 · v3, v1 · v3 can only
attain 5 values (as the values 011, 101, 110 as impossible). Hence, given z1, z2, z3,
the triplet of bits r1, r2, r3 can only attain 5 out of 8 possible values, revealing
information about them.

Although our techniques are tailored to Picnic, they can be easily adapted
and applied to other MPC protocol implementations in order to extract infor-
mation about the random bits that are used by the players. Such extraction
techniques may be relevant to attackers is scenarios that extend beyond multi-
target attacks. For example, the attacker’s ability to exploit a weak PRG in a
cryptographic protocol (e.g., by predicting its output) may depend on the num-
ber of PRG output bits available. This was demonstrated in [7] by Checkoway

5 Internally, Picnic uses a block cipher encryption fi(x) = Encx(p(i)), where a different
plaintext p = p(i) is used for each public key owner (defining a different encryption
function).
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et al.6 which investigated the exploitability of the backdoored Dual EC PRG
in TLS implementations. Additionally, in case protocol implementations gen-
erate seeds with low entropy, extraction techniques may allow an attacker to
efficiently detect that two protocol executions use the same seed and to violate
their security.

Concrete Complexity of the Main Attack. In terms of concrete com-
plexity, we are interested in attacks that utilize at most 264 signatures. This
is the limit set in NIST’s Call for Proposals document [20] on the number
of signatures produced per signing key.7 For Picnic, each signature contains
R ∈ {219, 324, 438} runs depending on the desired security level against clas-
sical attacks, κ ∈ {128, 192, 256}, respectively. The complexities of our main
attack for each desired security level are summarized below.

– For κ = 128, we can reach the information theoretic complexity of T = 2κ/D
up to D = 242 (using about 235 signatures), and obtain T ≈ 2128−42 = 286.
When 264 signatures are available, we can recover a secret signing key with
complexity of about 277.

– For κ = 192, we achieve the information theoretic complexity T = 2κ/D for
almost all D ≤ 324 · 264 ≈ 272. The best complexity is T = 2124, obtained for
D = 272.

– For κ = 256, we achieve the information theoretic complexity T = 2κ/D for
all D ≤ 438 · 264.

Seed Collision Attack. Interestingly, for κ = 128, we can reach the informa-
tion theoretic complexity for the specific case of D = 264 (i.e. utilizing about
257 signatures) using another attack, given that all the available signatures are
produced with the same signing key.8 While the attack resembles a single-user
multi-target attack, it is not a classical multi-target attack in the sense that
the attacker does not guess any key material (such as PRG seeds). Instead, the
attacker waits for a specific seed collision event (in which two different runs use
the same PRG seed for the unopened player) to occur on the observed data. Once
the event is detected, the user’s signing key can be efficiently recovered using
the known PRG output bits of the unopened player in both runs. The attack
can be extended (with a limited range of parameters) to recover the signing key
of one out of many users, e.g., if the attacker collects 264 signatures (D ≈ 271),
produced with up to 214 private keys.

6 We thank an anonymous reviewer for pointing out the link between [7] and our
paper.

7 As the attacker may acquire signatures produced with various signing keys, our
model is somewhat more restrictive than NIST’s.

8 The attack can also be applied to κ ∈ {192, 256}, but it requires significantly more
than 264 signatures.
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Multi-target Attacks on Additional Cryptosystems. Our multi-target
attack is, in fact, an attack on the ZKB++ protocol, as well as the previous
ZKBoo protocol. Therefore, the attack also carries over to additional cryptosys-
tems that were built using these protocols. This includes the ring-signature and
additional constructions of [4,8], whose implementations are based in ZKB++.

We further analyze in this paper a recently proposed protocol due to Katz,
Kolesnikov and Wang [14] (KKW), which was presented at ACM CCS 2018.
The KKW protocol describes a new way to instantiate the MPC-in-the-head
approach, yielding shorter proofs compared to ZKB++. Interestingly, the KKW
protocol is vulnerable to a multi-target attack which is similar to our main attack
on Picnic (and ZKB++).

In the penultimate section of the paper, we describe multi-target attacks on
additional cryptosystems, which are made possible due to several design opti-
mizations (mostly for MPC protocols). Unlike the case of Picnic, these multi-
target attacks are standard and their descriptions only requires a very high-level
understanding of the cryptosystems. Yet, the aim of this section is to show that
some common optimizations do not come without a cost, which needs to be
considered in cryptosystems that are designed for practical use.

Picnic 2.0. We notified the Picnic designers about the attack and they con-
firmed our findings. The weakness is addressed in the Picnic 2.0 version [5] by
appending an additional salt to each signature. The salt is carefully used in gen-
erating the pseudo-random bits of each player in each run, such that multi-target
attacks are mitigated. We further note that Picnic 2.0 added additional instances
that use the KKW protocol, while in this paper we describe and analyze Picnic
1.0 which only uses ZKB++.

Paper Organization. The rest of this paper is organized as follows. In Sect. 2
we describe Picnic and its building blocks, while in Sect. 3 we partially summarize
the KKW protocol. Next, in Sect. 4, we outline the main steps of our multi-target
attacks on Picnic and the KKW protocol. In Sect. 5, we elaborate on our main
multi-target attack on Picnic, while our seed collision attack is described in
Sect. 6. Finally, we describe multi-target attacks on additional cryptosystems in
Sect. 7 and conclude in Sect. 8.

2 ZKBoo, ZKB++ and Picnic

ZKBoo is a ZK protocol described in [11]. An optimized variant of ZKBoo (called
ZKB++) was later described in [6], which used it to construct the Picnic signa-
ture scheme. In this section, we give a brief overview of these constructions.

2.1 Overview of ZKBoo

The goal ZKBoo is to prove knowledge of a witness for a relation Re :=
{(x, y), f(x) = y}, where y is public and x is kept private. For example, given a
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256-bit string y, we aim to prove knowledge of a preimage of y under SHA-256,
namely, a string x such that y = SHA-256(x).

ZKBoo employs the MPC-in-the-head paradigm of Ishai et al. [13], that we
now outline very briefly. It uses some MPC protocol that implements f on input
shares of the secret witness x. The prover simulates the MPC protocol “in the
head” and commits to the state and transcripts of all players. The verifier then
“corrupts” a random subset of the simulated players by requesting to see their
complete states. The verifier checks that the computation was done correctly
from the perspective of the corrupted players, obtaining some assurance that
the output is correct and the prover knows x. Iterating this procedure many
times gives the verifier high assurance.

ZKBoo improves upon the practical efficiency of the MPC-in-the-head app-
roach by replacing the MPC with a circuit decomposition, which does not neces-
sarily need to satisfy classical MPC protocol properties. The circuit decomposi-
tions in ZKBoo involves 3 players. Given a circuit φ that computes f , it defines
the following functions.

– Share: splits the input x into 3 shares.
– Outputi∈{1,2,3}: takes as input all of the input shares and some randomness

and produces an output share for each of the players.
– Reconstruct: takes as input the three output shares and reconstructs the

circuit’s final output.

The circuit decomposition should satisfy the correctness property which means
that its execution on input x must yield f(x). It must further satisfy the 2-
privacy property which requires that revealing the views (i.e., the values of the
intermediate computation states) of any two players does not leak information
about the witness x.

Given a circuit decomposition for φ, the ZKBoo protocol is a Σ-protocol for
languages of the form L := {y | ∃x : y = φ(x)}. As outlined below, it gives a non-
interactive ZK proof of knowledge system for the relation using the Fiat-Shamir
transform [10].

The computation φ(x) using the decomposition is a randomized algorithm
called a run. As indicated above, in each run, each player Pi∈{1,2,3} uses some
(pseudo) random bits, generated by random seeds k1, k2, k3, respectively. For a
parameter R that determines the total number of runs, a proof is constructed
as below.

1. For each run i ∈ [1, R]:
(a) Sample k

(i)
1 , k

(i)
2 , k

(i)
3 and compute run i using the circuit decompo-

sition outlined above.
(b) For each player P

(i)
1 , P

(i)
2 , P

(i)
3 , compute a commitment to its view

during the run. The commitment for each player is computed by
applying a hash function (modeled as a random oracle) to the player’s
view and additional randomness.
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2. Using the Fiat-Shamir transform, send the 3R commitments and output
shares of each player in all runs to a random oracle (implemented as a
hash function).

3. Interpret the output of the random oracle as a challenge {e(i)}R
i=1. For

each run i ∈ [1, R], the challenge element e(i) ∈ {1, 2, 3} specifies to open
the views of the two players P

(i)

e(i) , P
(i)

e(i)+1
(where 3 + 1 = 1).

4. The proof contains for each run i ∈ [1, R]:
– The commitments and output shares of all 3 players.
– The two views and commitment openings (i.e., additional random-

ness) of the players P
(i)

e(i) , P
(i)

e(i)+1
, indicated by the challenge.

– The values k
(i)

e(i) , k
(i)

e(i)+1
. Namely, the random seeds used by the two

players whose views are opened.

Due to the 2-privacy property, opening two views for each run does not leak
information about the witness. The number of runs, R, is chosen to achieve
negligible soundness error, i.e., it should be infeasible for the prover to cheat
without getting caught in at least one of the runs. More specifically, in order to
achieve soundness error of 2−κ, we set R = �κ(log2 3 − 1)−1�.

The verifier checks that: (1) for each run, the output shares of the three views
reconstruct to y, (2) for each run, each of the two open views was computed
correctly and their commitment openings are valid, and (3) the challenge was
computed correctly,

In the following, we describe Step 1(a) in the above ZKBoo protocol in more
detail.

2.2 (2, 3)-Function Decomposition

ZKBoo uses the following circuit decomposition.

Definition 1. Let f be a function that is computed by an N -gate circuit φ
such that f(x) = φ(x) = y, and let κ be the security parameter. Let k1, k2, k3
be seeds chosen uniformly at random from {0, 1}κ, corresponding to players
P1, P2, P3, respectively. A (2, 3)-decomposition of φ is a tuple of algorithms
D = (Share,Update,Output,Reconstruct):

– (view(0)
1 , view(0)

2 , view(0)
3 ) ← Share(x, k1, k2, k3)

On input of the secret value x and random seeds, outputs the initial views for
each player containing the secret share xi of x.

– view(j+1)
i ← Update(view(j)

i , view(j)
i+1, ki, ki+1)

On input of the views view(j)
i , view(j)

i+1 and random seeds ki, ki+1, computes
wire values for the next gate and returns the updated view view(j+1)

i .
– yi ← Output(view(N)

i )
On input of the final view view(N)

i , returns the output share yi.
– y ← Reconstruct(y1, y2, y3)

On input of output shares yi, reconstructs and returns y.
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In order to compute a run for the computation φ(x) using the decomposition
D defined above, the prover executes the steps detailed below.

1. Choose the seeds k1, k2, k3 uniformly at random from {0, 1}κ.
2. (view(0)

1 , view(0)
2 , view(0)

3 ) ← Share(x, k1, k2, k3)
3. For each of the three views, call the Update function successively for

every gate in the circuit:

view(j+1)
i ← Update(view(j)

i , view(j)
i+1, ki, ki+1),

for i ∈ {1, 2, 3}, j ∈ [1, N ].
4. From the final views, compute the output share of each view:

yi ← Output(view(N)
i ),

for i ∈ {1, 2, 3}.
5. y ← Reconstruct(y1, y2, y3)

The correctness property requires that the output y above satisfies y = φ(x). The
2-privacy property requires that revealing the views of any two players reveals
nothing about x.

2.3 The ZKBoo (2, 3)-Function Decomposition

The ZKBoo protocol works over some finite ring R. Let f : Rm → R
� be a func-

tion and φ an arithmetic circuit realizing f with N gates that include addition by
constant, multiplication by constant, binary addition and binary multiplication
gates. The (2, 3)-decomposition of φ in ZKBoo is a linear decomposition: denote
by wk the value of the k’th wire of φ. Then, each party Pi has a corresponding
wire value w

(i)
k . The linear decomposition maintains the invariant that for all

wires, wk = w
(1)
k + w

(2)
k + w

(3)
k . In detail, the (2, 3)-decomposition is defined

using the following tuple of algorithms:

– Share(x, k1, k2, k3): Samples uniform x1, x2 ∈ R
m and computes x3 such that

x1 + x2 + x3 = x (or x3 = x − x1 − x2). Returns views containing x1, x2, x3.
– Update(view(j)

i , view(j)
i+1, ki, ki+1): Computes Pi’s view of the output wire of

gate gj and appends it to the view. For the k’th wire wk (where w
(i)
k denotes

Pi’s view for the wire), the update operation is defined as follows:
Addition by constant: (wb = wa + d): w

(i)
b = w

(i)
a + d if i = 1 and w

(i)
b =

w
(i)
a , otherwise.

Multiplication by constant: (wb = wa · d): w
(i)
b = w

(i)
a · d.

Binary addition: (wc = wa + wb): w
(i)
c = w

(i)
a + w

(i)
b .

Binary multiplication: (wc = wa · wb):

w(i)
c = (w(i)

a · w
(i)
b ) + (w(i+1)

a · w
(i)
b ) + (w(i)

a · w
(i+1)
b ) + Ri(c) − Ri+1(c),
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where Ri(c) is the c’th output of a pseudorandom generator (PRG) seeded
with ki.

– Output(view(N)
i ): Returns the output wires of view, view(N)

i .
– Reconstruct(y1, y2, y3): Returns y = y1 + y2 + y3.

It is easy to verify that the decomposition maintains the invariant wk = w
(1)
k +

w
(2)
k + w

(3)
k for all wires, which implies that it is correct. Note that Pi can

compute all gate types locally with the exception of binary multiplication gates
which require inputs from Pi+1.

Serializing the Views. It is sufficient for the prover to include in the proof
only the wire values of the gates that require non-local computations (namely,
the binary multiplication gates). The verifier can recompute these omitted parts
of the view by local computations (i.e., they do not need to be serialized). In
ZKBoo, a serialized view includes: (1) the input share, (2) output wire values
for binary multiplication gates, and (3) the output share.

2.4 ZKB++

ZKB++ is an improved version of ZKBoo, obtained using several optimizations
which reduce the proof size to less than a half. In general, these optimizations
mainly show that some values included in the ZKBoo proof (as outlined above)
can be directly computed by the verifier and hence can be omitted in the proof
of ZKB++. In our context, most of these optimization are not very relevant as
the attacker (verifier) has access to all data included in the original ZKBoo proof
(since it is either directly included in the shorter ZKB++ proof, or can be easily
computed from it).

The only optimization that is directly exploited in our attack involves the
Share function: instead of uniformly sampling the input shares x1, x2, the Share
function of ZKB++ uses pseudo-random shares for the first 2 players, generated
by PRG invocations seeded with the corresponding player’s random seed (k1 or
k2). Since the random seeds of two players are revealed in the proof, the verifier
can compute some of the shares (the ones of the first two players whose seeds
are revealed) using the known seeds and they do not have to be included in the
proof.

2.5 The Picnic Signature Scheme

The Picnic signature scheme is based on the ZKB++ protocol, where the input
to the hash function that computes the challenge also includes the message m to
be signed (in addition to the 3R commitments and output shares of each player,
which are input to the hash function in ZKB++).9

In order to define the statement to be proved by the signer, Picnic uses a
block cipher, Enc. In the classical setting (on which we focus in this paper),
9 In the NIST submission, the public key is hashed as well.
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the block size of the block cipher and its key size in bits are both equal to the
security parameter κ.

During key generation, the signer chooses a plaintext p and a key x for the
block cipher uniformly at random from {0, 1}κ, encrypts the plaintext using
the key and obtains the ciphertext y (of length κ bits). The public key is the
plaintext-ciphertext pair (p, y) and the private signing key is the pair (x, p) (i.e.,
the chosen block cipher key and plaintext).

During signing, the signer proves knowledge of the key x, which encrypts p
to y. Namely, Picnic uses ZKB++ in order to prove knowledge of a witness for
the relation Re := {((p, y), x),Encx(p) = y}, where Encx(p) is the block cipher
encryption of plaintext p with of the key x.

The specific block cipher used by Picnic is LowMC [1], implemented using
a Boolean circuit. LowMC is an iterative block cipher that employs a certain
number of encryption rounds to its input. The most relevant components of
LowMC for this paper are its identical 3 × 3 Sboxes (all the other operations
are linear over GF (2)). Each LowMC round applies a certain number of Sboxes
in parallel to the encryption state. In all LowMC variants used in Picnic, 10
parallel Sboxes are applied in a round. The algebraic normal form of an Sbox is
given as

S(wa1 , wa2 , wa3) =
(
wa1 ⊕ (wa2 · wa3), wa1 ⊕ wa2 ⊕ (wa1 · wa3), wa1 ⊕ wa2 ⊕ wa3 ⊕ (wa1 · wa2)

)
.

(1)

In particular, the Sbox employs 3 non-linear AND operations

wa2 · wa3 , wa1 · wa3 , wa1 · wa2

in computing the 3 output bits, respectively.
Picnic defines a total of 6 instances depending on a desired security level

and on whether they are intended to resist attacks by quantum computers. We
focus on the instances that are deemed secure (only) against attacks by classical
computers, whose parameters are given in Table 1. However, our attacks are
applicable to all instances. Note that all LowMC instances have at least 200
Sboxes, where each Sbox employs 3 AND operations. Since evaluating an AND
operation in Picnic requires a PRG output bit from each player, then each player
computes at least 200 · 3 = 600 PRG output bits during a run.

Table 1. Picnic instances (for classical security)

Instance κ LowMC rounds Sboxes\round PRG R

picnic-L1-FS 128 20 10 SHAKE128 219

picnic-L3-FS 192 30 10 SHAKE256 324

picnic-L5-FS 256 38 10 SHAKE256 438
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3 The KKW Protocol [14]

In this section we give a very brief overview of the KKW protocol [14], focusing
on details relevant for the paper.

The KKW protocol describes a new way to instantiate the MPC-in-the-head
approach which leads to shorter proofs compared to ZKB++. The main idea is to
instantiate the MPC protocol in the preprocessing model, which makes it possible
to use protocols designed for a large number of players with small communication
complexity (which translates to small proofs in the ZK proof protocol) and
low soundness error per protocol execution (i.e., run). In the following, we only
partially summarize the details of KKW’s MPC protocol and refer the reader to
the original paper [14] for more details about the full protocol.

The KKW MPC protocol involves n players that compute a Boolean circuit
on the secret input x. The privacy property of the protocol assures that revealing
the states and randomness of n − 1 (all-but-one) players reveals nothing about
the secret input x. The protocol maintains the invariant that, for each wire
in the circuit α, the players hold an n-out-of-n XOR-based secret sharing of a
random mask λα, denoted by [λα], along with the public masked value of the
wire ẑα = zα ⊕ λα on the input x.

During the preprocessing phase, shares are distributed among the players as
follows. For each wire α that is either an input wire of the circuit or the output
wire of an AND gate, the players are given [λα], where λα ∈ {0, 1} is uniform.
For an XOR gate with input wires α, β and output wire γ, let λγ = λα ⊕λβ (the
players can compute [λγ ] locally). Finally, for each AND gate with input wires
α, β, the players are given [λa,b], where λα,β = λα · λβ .

The uniform shares of {λα} are generated by each player Pi by applying a
PRG to its short input seed ki ∈ {0, 1}κ (where κ is the claimed security level).
Then, each {λα} is defined implicitly by these shares. The shares of each {λa,b}
are also generated this way, but the final shares of Pn are constrained by the
values of {λα}. Therefore, Pn is given additional |C| “correction bits” (where
|C| is the number of AND gates in the circuit) that determine its share of {λα}
for each AND gate.

In the online phase, the players are given a masked value ẑα for each input
wire α. The players inductively compute ẑα for all wires in the circuit. The full
details of the online protocol are given in [14]. We remark that when used to
instantiate MPC-in-the-head, an unopened player i ∈ [1, n] is selected, while the
views of the remaining n − 1 players are opened. For each player this involves
revealing its secret seed, while for Pn this additionally involves revealing the
auxiliary |C| correction bits.

4 Multi-target Attacks on Zero-Knowledge Protocols

4.1 Outline of the Attacks

In this section we give a general overview of our multi-target attacks on the KKW
protocol and Picnic. We assume that the attacker has access to D = 2d runs of
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the underlying MPC-in-the-head protocol (generated by a single of by multiple
users). In each run, the views of all-but-one player are opened, along with their
randomness. We refer to the player whose view is not opened as the unopened
player. The randomness used by each player is generated by a PRG initialized
with a seed of length κ bits, where κ is the claimed security level against classical
attack algorithms. A crucial assumption required for the multi-target attacks is
that for each run, the attacker can extract a string of bits output by the PRG
of the unopened player.

Below, we provide a very rough outline of the steps of the multi-user multi-
target attack and its analysis in the setting described above.

1. For each run r ∈ [1, 2d], extract a string of bits br that are output by the
PRG of the unopened player, and store br along with run r.

2. For each PRG seed k ∈ [1, 2κ−d],a derive a corresponding PRG output
string b′

k using the seed k, and compare with the 2d stored strings br.
3. For each matching pair r, k such that br = b′

k, compute and output the
corresponding secret witness x.

a The seed values can be selected arbitrarily.

After trying 2κ−d random seeds to Step 2, according to the birthday paradox,
the attacker will test a seed used in one of the 2d runs with high probability
(assuming that the players’ seeds are selected uniformly at random). Given that
in Step 1 the attacker can extract sufficiently many PRG output bits from each
run,10 then the expected number of matches will be (a small) constant. Finally,
assuming that Step 3 can indeed be performed, the attacker will recover the
secret witness for the corresponding run. In the information theoretic model
assumed in the security analysis of Picnic and KKW, the complexity of the
attack is 2κ−d invocations of the PRG (as long as d ≤ κ/2). However, in practice
the computational complexity could be higher, depending on how efficiently the
matching in Step 2 is performed.

Next, we describe each one of these steps for the KKW protocol. The dedi-
cated attack on Picnic (detailed in Sect. 5) uses a variant of the attack above in
order to optimize its complexity. In particular, for a range of parameter values,
it filters out some of the 2d runs in the first step and keeps only those that satisfy
a certain condition which allows more efficient matching in the second step.

4.2 A Multi-target Attack on the KKW Protocol

We describe the step details of the multi-target attack on the KKW protocol. In
contrast to our analysis of Picnic, we will not calculate the concrete (computa-
tional) complexity of the attack. In particular, we will reduce the second step of
the attack to a known problem, but will not analyze the known algorithms for
this problem in order to determine the best one for a given set of parameters.
10 In general, κ bits are sufficient to uniquely determine the key on average. However,

even if several candidate keys are recovered, they can be filtered against the public
key.
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Step 1: Deriving PRG Output of the Unopened Player. We focus on
the additive secret sharing of λa,b = λa ·λb. We assume that the view of Pi is
unopened for i �= n, hence the attacker has all shares of λa,b, except for the
i’th share that is computed using a PRG applied to the seed of unopened Pi.
Observe that λa,b = λa ·λb is not uniform, as it is equal to 0 with probability
3/4. Consequently, the attacker can compute a guess for Pi’s share of λa,b,
which is correct with probability 3/4 by XORing together all the known n−1
shares. Hence, in this case, the attacker does not obtain direct outputs of Pi’s
pseudo-random bits, but rather noisy bits with a noise of 1/4.
Step 2: Matching a Run and a PRG Seed. According to the previ-
ous step, finding a match between the 2d runs and 2κ−d PRG seeds reduces
to finding a pair of highly correlated strings (with expected correlation of
3/4) among two groups of strings (which, other than the matching pair, are
assumed to be independent and uniform). This is known as the nearest neigh-
bor search problem. The trivial algorithm for this problem simply exhausts
all string pairs and runs in time 2κ−d · 2d = 2κ. However, there are more
efficient algorithms for this well-studied problem (cf. [18,23]).
Step 3: Recovering the Secret Witness. Given a run and a seed for the
unopened player, we can compute all random bits used by this player in the
run.
In the KKW protocol, for each wire in the circuit, the players holds an n-
out-of-n secret sharing of a random mask along with masked value of the
wire, which is public (and given to the players in the online execution of the
protocol). In particular, this applies to the input wires, whose value encodes
the bits of the secret witness x. The randomness of the unopened player allows
the attacker to compute the missing share for each wire α of x, and thus
compute the random mask λα for this wire by summing together (XORing)
all the n shares for the mask [λα]. Finally, the attacker XORs the mask λα

with the public masked value of the wire ẑα = zα ⊕ λα, which gives the value
of the corresponding bit of x, zα.

5 The Multi-target Attack on Picnic

The attack on Picnic is a variant of the general attack of Sect. 4.1. In this section,
we describe it in more detail and start with an overview below.

5.1 Overview of the Attack

Given D = 2d runs, our goal is to devise a concrete attack on Picnic by matching
the PRG output of the unopened player in each run with output obtained by eval-
uating the PRG with arbitrary seeds (similarly to the generic attack described
in Sect. 4). If each run would contain values about the same PRG output bits, we
could sort these values and efficiently match each PRG evaluation with the runs.
However, as we will see later each run contains data about different bits of the
PRG output of the corresponding unopened player (and the number of known
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bits varies according to the run). Based on this fact, we describe below a more
specific (yet still incomplete) outline of the steps, parameterized by κ, d, d′, 	.

1. Out of 2d runs, filter out ones that contain less data (about the PRG
output of the unopened player) than some threshold.

2. For of each remaining run, r ∈ [1, 2d′
]: extract a prefix of 	 bits that are

output by the PRG of the unopened player (including possible unknown
bits). Enumerate over all possible guesses for the unknown bits in the
prefix, and store all the generated fully specified 	-bit expanded strings
in a hash table (with a pointer to run r).

3. For each PRG seed k ∈ [1, 2κ−d′
]: derive an 	-bit PRG output string

using the seed k, and search for it in the hash table. For each match:
obtain the corresponding run r and compare the additional PRG output
bits computed from this run with the PRG output. In case of equality,
compute and output the corresponding secret key x.

Analysis Sketch. We briefly analyze the attack for the specific case where we
wish to obtain the information theoretic complexity of 2κ−d (assuming d ≤ κ/2).
In this case, we must have d = d′, i.e., we cannot use any filtering in Step 1.

We introduce another parameter 0 < τ ≤ 1, which quantifies the fraction
of bits that we can extract from each run about the 	-bit prefix of the PRG
output of the unopened player. Namely, we assume that for an 	-bit prefix, we
can determine τ	 bits, while (1 − τ)	 are unknown.11 Hence, for each run, we
obtain 2(1−τ)� expanded strings in Step 2 and the hash table contains a total
of 2d+(1−τ)� strings of 	 bits. We refer to τ as the information rate that we can
achieve.

Given a random 	-bit PRG output in Step 3, the expected number of matches
with the hash table is 2−� ·2d+(1−τ)� = 2d−τ�, hence the total number of matches
tested in the attack (before the key is recovered) is 2κ−d · 2d−τ� = 2κ−τ�.

Taking into account all the steps, the expected complexity of the attack is
max(2κ−d, 2d+(1−τ)�, 2κ−τ�). We balance the first and third terms by setting τ	 =
d, or 	 = d/τ . Then, the complexity becomes max(2κ−d, 2d/τ ), which implies
that information theoretic complexity can be obtained as long as d/τ ≤ κ − d,
or d ≤ κ · (τ/(1 + τ)). The optimal complexity in this case is 2κ−d = 2κ(1/(1+τ)).
When d > κ·(τ/(1+τ)), the information theoretic complexity cannot be reached,
and we will apply filtering to optimize the complexity.

Optimizations and Parameters for the Attack. Clearly, the complexity of
the attack depends in a strong way on the information rate τ , namely, on the
ability to extract as much information as possible from each run about the PRG
output of the unopened player. The first part of the concrete analysis below
(which is the most technical one) involves deriving methods that maximize the

11 We assume here for that sake of simplicity that τ is constant and does not depend
on the analyzed run (although as we will see later, this does not necessarily hold).
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information rate. We first show that a naive method achieves τ = 1/4, giving
(optimal) complexity of 2κ(1/(1+τ)) = 24κ/5 ≈ 2102 for κ = 128. We then utilize
the design of Picnic (and the underlying LowMC circuit) in order to maximize the
information rate. In particular, we obtain τ = 1/2, which significantly improves
the complexity to 22κ/3 ≈ 285 for κ = 128. Finally, by applying filtering, we
reduce the optimal complexity to about 277.

As a concrete example of the parameters, we note that our optimized attack
has τ ≥ 1/2, hence we need to match 	 = d/τ < 2d PRG output bits. In this
paper, we only consider data complexity of d < 64+9 = 73, hence 	 < 2·73 = 146.
These PRG output bits are used in the evaluation of �146/3� = 49 Sboxes,
whereas all LowMC variants in Picnic have at least 200 Sboxes.

5.2 Deriving PRG Output of the Unopened Player

We start by describing a preliminary method to extract PRG output of the
unopened player. We then present two optimized methods, exploiting the specific
Sbox design of LowMC. In the extended version of this paper [9] we describe
an additional method which is not directly used in our attack, but is interesting
nevertheless.

Preliminary Extraction Method. We consider a binary multiplication gate
(wc = wa · wb). Recall that in ZKBoo (and ZKB++),

w(i)
c = (w(i)

a · w
(i)
b ) + (w(i+1)

a · w
(i)
b ) + (w(i)

a · w
(i+1)
b ) + Ri(c) − Ri+1(c). (2)

Let us assume that the views and random seeds of players 2, 3 are revealed.
Consider i = 3, for which the equation above reduces to:

w(3)
c = (w(3)

a · w
(3)
b ) + (w(1)

a · w
(3)
b ) + (w(3)

a · w
(1)
b ) + R3(c) − R1(c).

Moreover, we assume that

w(3)
a = w

(3)
b = 0. (3)

Note that since view 3 is revealed, the attacker knows when this event occurs.
Conditioned on this event, the equation simplifies to w

(3)
c = R3(c) − R1(c), or

R1(c) = R3(c) − w(3)
c .

Since R3(c) and w
(3)
c are known from random seed and view of player 3 (respec-

tively), then the attacker can compute R1(c) with probability 1, conditioned
on (3).

In Boolean circuits (as in Picnic), we expect (generalized) condition (3) to
hold for 1/4 of the AND gates (the probability is over the randomness of the
view of Pe+1). Consequently, the attacker knows about τ = 1/4 of the output
bits produced by the PRG (not including the ones used in the initial Share
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function). Note that the locations of these known output bits depend on w
(e+1)
a

and w
(e+1)
b , which are different for each run.

Below, we exploit the specific structure of the Picnic circuit in order to opti-
mize the information rate.

Extraction Method 1. Recall that the AND operations performed by a
LowMC Sbox are

S′(wa1 , wa2 , wa3) = (wa2 · wa3 , wa1 · wa3 , wa1 · wa2),

where S′ denotes the function obtained from S by only considering AND oper-
ations. Denote the output wires of these 3 AND operations by wc1 , wc2 , wc3 ,
respectively, and write the basic equation of (2) with i = 3 for the 3 AND gates:

w(3)
c1 = (w(3)

a2
· w(3)

a3
) ⊕ (w(1)

a2
· w(3)

a3
) ⊕ (w(3)

a2
· w(1)

a3
) ⊕ R3(c1) ⊕ R1(c1),

w(3)
c2 = (w(3)

a1
· w(3)

a3
) ⊕ (w(1)

a1
· w(3)

a3
) ⊕ (w(3)

a1
· w(1)

a3
) ⊕ R3(c2) ⊕ R1(c2),

w(3)
c3 = (w(3)

a1
· w(3)

a2
) ⊕ (w(1)

a1
· w(3)

a2
) ⊕ (w(3)

a1
· w(1)

a2
) ⊕ R3(c3) ⊕ R1(c3).

(4)

Assuming the views of players 2, 3 are revealed, the unknown values in these 3
equations are the view and randomness variables of player 1:

R1(c1), R1(c2), R1(c3), w(1)
a1

, w(1)
a2

, w(1)
a3

.

Observe that for every value of the 3 known bits w
(3)
a1 , w

(3)
a2 , w

(3)
a3 , we obtain a

linear equation system with 3 equations. Our goal is to perform Gaussian elimi-
nation on this system in order to eliminate the unknown variables w

(1)
a1 , w

(1)
a2 , w

(1)
a3

and remain with linear relations in the 3 randomness variables of player 1,
R1(c1), R1(c2), R1(c3). We are thus interested in the rank of the equation system
in w

(1)
a1 , w

(1)
a2 , w

(1)
a3 as a function of the known variables w

(3)
a1 , w

(3)
a2 , w

(3)
a3 .

Since the equation system is symmetric, the rank depends only on the Ham-
ming weight (HW) of w

(3)
a1 , w

(3)
a2 , w

(3)
a3 . It is easy to check that the following holds:

– If HW = 0 (i.e., w
(3)
a1 = w

(3)
a2 = w

(3)
a3 = 0), the rank is 0 and we obtain the 3

PRG output bits R1(c1), R1(c2), R1(c3).
– If HW > 0, the rank is 2 and we obtain 1 PRG output bit (or a linear

combination of output bits) according to the specific values of w
(3)
a1 , w

(3)
a2 , w

(3)
a3 .

The first case w
(3)
a1 = w

(3)
a2 = w

(3)
a3 = 0 occurs with probability 1/8 (over

the randomness of the view of P3). Note that the equation system is never
of full rank and we can always obtain at least 1 bit of information about
R1(c1), R1(c2), R1(c3).

Example 1. If w
(3)
a1 = w

(3)
a2 = w

(3)
a3 = 1, we XOR together the 3 equations to

eliminate w
(1)
a1 , w

(1)
a2 , w

(1)
a3 , and can compute the value of R1(c1)⊕R1(c2)⊕R1(c3).
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We performed the analysis assuming the views of P2, P3 were opened in
the run, but similar analysis applies (with appropriate indexing modifications)
regardless of which 2 views are opened. We summarize our findings below.

Proposition 1. Given access to the open views and randomness of Pe, Pe+1 in
Picnic, for any triplet of wires that are input to a LowMC Sbox and its cor-
responding triplet of output wires wc1 , wc2 , wc3 , with probability 1/8 (over the
randomness of the view of Pe+1), we can easily compute the corresponding PRG
output bits of Pe+2, namely, Re+2(c1), Re+2(c2), Re+2(c3). Otherwise (with prob-
ability 7/8) we can compute one of seven possible linear equations on these bits,
where each particular linear equation is obtained with probability 1/8 (over the
randomness of the view of Pe+1).

Hence, with high probability, for most runs we obtain 3 bits of information for
at least 1/8 of the Sboxes and 1 bit of information for the remaining Sboxes.
We therefore obtain at least 3/8 + 7 · 1/8 = 10/8 = 5/4 bits of information on
average per 3-bit Sbox, or τ1 = 5/12 bits of information per PRG output bit
(for most runs). This is significantly better than the ratio of 1/4 obtained in a
generic manner above.

Extraction Method 2. Assume that P2, P3 are opened and reconsider the
equation system of (4). If we guess the values of wa1 , wa2 , wa3 , we can easily
deduce the unknown PRG output bits R1(c1), R1(c2), R1(c3) by first comput-
ing w

(1)
a1 , w

(1)
a2 , w

(1)
a3 . On its own, this is a useless observation since we could

have directly guessed these 3 PRG output bits. However, let us assume that
the analyzed Sbox is located in the first LowMC Sbox layer. This implies that
each of wa1 , wa2 , wa3 is a linear function of the unknown LowMC secret key x
corresponding to the run (as there is no non-linear function applied to com-
pute these bits from the known plaintext). Therefore, the knowledge of the 3
bits wa1 , wa2 , wa3 input to the Sbox directly translates to knowledge of 3 linear
equations on the LowMC secret key. More specifically, we have wai

= lai
(x)

for i ∈ {1, 2, 3}, where lai
(x) is a linear equation on the secret key x. Recall

that the Share function outputs 3 shares that sum to the LowMC secret key
x = x1 ⊕ x2 ⊕ x3. Therefore, for i ∈ {1, 2, 3} we have

wai
= lai

(x) = lai
(x1) ⊕ lai

(x2) ⊕ lai
(x3), or

lai
(x1) = wai

⊕ lai
(x2) ⊕ lai

(x3). (5)

We (assume to) know wai
, lai

(x2), lai
(x3), and therefore, we can derive lai

(x1).
The 3 bits lai

(x1) are linear combinations of PRG output bits of P1 that are
output by the Share function, and we have shown that they are directly deduced
from the knowledge of wai

.
Altogether, we guess 3 bits and obtain 6 PRG output bits. Crucially for the

attack, that indices of the computed 6 PRG (linear combinations of) output bits
are fixed among all runs.
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Proposition 2. Given access to the open views and randomness of Pe, Pe+1 in
Picnic for e ∈ {2, 3}, for any triplet of wires that are input to a LowMC Sbox
in the first Sbox layer, a guess for the 3 bit values for these wires allows to
easily compute a guess for values of 6 (linear combinations of) PRG output bits
of Pe+2. The locations of these output bits depend only on the choice of Sbox.
Moreover, the same holds for any Sbox in the i’th Sbox layer, given that we have
a guess for the all the Sbox inputs in layers 1, 2, . . . , i − 1.

Note that the proposition only applies to e ∈ {2, 3}, as for e = 1, the key
share of Pe+2 = P3 (namely x3) is not computed using a PRG. The last part of
the proposition holds since each input wire to each Sbox in the i’th layer can
be expressed as a linear combination of the key bits and the output bits of the
Sboxes in previous layers. These output bits are (assumed to be) known.

Recall that in the previous extraction method we obtained an information
rate of τ1 = 5/12 for most runs. Here, we guess 3 bits and obtain 6 PRG output
bits, i.e. τ2 = 1/2 > τ1, and hence this method can be viewed as an improvement
over the previous one. On the other hand, for specific runs which deviate from
the average, the first method may yield a higher information rate, thus the
methods are not always directly comparable. Indeed, our attack will combine
these methods according to some parameter values.

5.3 Exploiting PRG Output of the Unopened Player

We focus on a single run that contains data about the PRG output of the
unopened player (Pe+2). We only exploit data for runs with e ∈ {2, 3} in the
attack.

We call the useful data extracted from a run a target string (TS). The target
string is indexed according to triplets of bits (corresponding to the Sboxes in
LowMC’s circuit), where the relevant information about each triplet consists of
the known view and randomness bits of Pe+1. For example, if e = 2 (i.e., players
2,3 are opened), then for each Sbox in LowMC’s circuit, the TS contains all
the known view and randomness bits of P3 that appear in the equation system
of (4). Recall from Proposition 1 that for each triplet, we may obtain all the 3
PRG output bits of the unopened player, and in this case, we call it a full triplet.
Otherwise, we obtain 1 bit of a linear equation on the 3 PRG output bits (the
linear equation itself depends on the view of Pe+1) and call the triplet a partial
triplet.

The triplet data in each target string is sorted according to the indices of
LowMC’s Sboxes. Importantly, Sboxes in each layer i appear together before
layer i + 1 (the order within each layer is chosen arbitrarily, but is consistent
among all target strings). Given a target string ts, we refer to the data of the
i’th triplet by ts[i], and to the data of the triplet sequence i, i+1, . . . , j as ts[i, j].

For the purpose of exploiting Proposition 2, we also need auxiliary informa-
tion from the Share function about the shares of Pe, Pe+1. We append this data
to each TS.
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Target String Expansion. We elaborate on Step 2 of the general attack of
Sect. 5.1 by defining the expansion of a target string ts. Essentially, it is a set of
strings that correspond to all possible PRG outputs of the unopened player (for
some specific triplets) that match the partial information in ts.

Given parameters t1, t2 ≥ 0, assume ts[t1 + 1, t1 + t2] contains t3 ≤ t2 full
triplets (and t2 − t3 partial triplets). We can expand the t2 triplets of ts[t1 +
1, t1 + t2] according to Proposition 1 into a set of 22(t2−t3) expanded strings,
each of length 3t2 bits. Similarly, we can expand triplets ts[1, t1] according to
Proposition 2 into a set of 23t1 expanded strings, each of length 6t1 bits.

Combining these two expansion methods into one expansion function
(denoted expand(ts)), we obtain a set of 23t1+2(t2−t3) strings. Each string is
of length 	 = 6t1 + 3t2 bits and represents possible values for certain 6t1 + 3t2
PRG output bits, which we call matching bits (mb). Given a PRG seed k, we
denote by PRGk[mb] the 6t1 + 3t2-bit PRG output value for the matching bits,
when evaluated with k. Given a TS, ts, generated with seed k, only one of the
23t1+2(t2−t3) strings in expand(ts) is equal to PRGk[mb]. We summarize below.

Proposition 3. Given a target string ts, parameters t1, t2 ≥ 0, and assuming
ts[t1 + 1, t1 + t2] contains t3 ≤ t2 full triplets, the expansion of ts with param-
eters t1, t2, t3 is a set denoted expand(ts) that contains 23t1+2(t2−t3) expanded
strings, each of length 6t1+3t2 bits. Each string in expand(ts) contains 6t1+3t2
possible values for the matching bits, derived from ts by a guess for the missing
information.

5.4 The Multi-target Attack

It is obvious that a run with a large number of full triplets in ts[t1 +1, t1 + t2] is
more useful for our purpose, as it contains more data about the PRG output of
the unopened player (equivalently, its expanded set according to Proposition 3
is relatively small). Hence, we filter the target data strings, keeping those with
a large value of t3. Each remaining target string is then expanded and the resul-
tant expanded strings are stored to be matched with data obtained from PRG
evaluations. Based on Proposition 1, we derive the following proposition.

Proposition 4. Given integer parameters t1 ≥ 0 and 0 ≤ t3 ≤ t2, the probabil-
ity (over the randomness of the view of Pe+1) that for an arbitrary target string
ts, the t2 triplets of ts[t1 + 1, t1 + t2] contain at least t3 full triplets is

Γ (t2, t3)
def==

t2∑

i=t3

(
t2
t3

) (
1
8

)i

·
(

7
8

)t2−i

.

We describe the attack below, using positive integer parameters
κ, r, r′, t1, t2, t3.
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1. For each of the 2d available runs: denote by ts the target string of the
current run. If e+2 = 3 (Pe+2 is the unopened player), or if ts[t1+1, t1+
t2] contains less than t3 full triplets, then discard the run.

2. For of each remaining 2d′
runs: compute expand(ts), and store each of

the 6t1 + 3t2-bit expanded strings s ∈ expand(ts) (along with a pointer
to ts) in a hash table L, indexed by s.

3. For each PRG seed k ∈ [1, 2κ−d′
]:

– Evaluate the PRG, derive PRGk[mb] and search for a match in L.
– For each match with an expanded string s, recover the corresponding

ts.
– Continue to compute the PRG output on k and compare with ts.
– If the PRG outputs match, we have guessed the correct seed k for

the unopened player in ts with high probability. Derive and output
the signing key x based on the Share function x = x1 ⊕ x2 ⊕ x3 by
computing the missing share using k.

Analysis. In order to analyze the attack, observe that on average, in 2/3 of the
runs P1 or P2 are unopened. Out of the remaining runs, a fraction of Γ (t2, t3)
contains at least t3 full triplets in ts[t1 + 1, t1 + t2] (according to Proposition 4).
Consequently, we expect

2d′
= 2/3 · Γ (t2, t3) · 2d. (6)

Next, according to Proposition 3, L is expected to contain at most
2d′+3t1+2(t2−t3) expanded strings, which gives the memory complexity of the
attack (and a lower bound on its time complexity).

Finally, the expected number of matches in Step 3 between a random 6t1+3t2-
bit string PRGk[mb] and one of the expanded 2d′+3t1+2(t2−t3) strings in L is
at most 2d′+3t1+2(t2−t3) · 2−6t1−3t2 = 2d′−3t1−t2−2t3 . Hence, the total expected
number of matches that we need to test in Step 3 is upper bounded by 2κ−d′ ·
2d′−3t1−t2−2t3 = 2κ−3t1−t2−2t3 .

Taking all steps into account, the total time complexity is upper bounded by
max(2d, 2κ−d′

, 2d′+3t1+2(t2−t3), 2κ−3t1−t2−2t3). Plugging in the value of d′ calcu-
lated in (6), we obtain

max(2d, 3/2·1/Γ (t2, t3)·2κ−d, 2/3·Γ (t2, t3)·2d+3t1+2(t2−t3), 2κ−3t1−t2−2t3). (7)

We balance the second and fourth terms by setting

23t1+t2+2t3 = 2/3 · Γ (t2, t3) · 2d, (8)

i.e., 2/3 · Γ (t2, t3) = 23t1+t2+2t3−d. Thus, the third term (which also represents
the memory complexity) becomes 26t1+3t2 and the time complexity upper bound
is calculated as

max(2d, 3/2 · 1/Γ (t2, t3) · 2κ−d, 26t1+3t2), (9)

under constraint (8). We now analyze the complexity of the attack for various
choice of the free parameters t1, t2, t3.
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Achieving the Information Theoretic Complexity. If we want a time
complexity close to the information theoretic complexity we apply a minimal
amount of filtering. Based on the conclusion of Sect. 5.1, it is best to use the
extraction method with has highest information rate. Thus, we use the second
extraction method (summarized in Proposition 2), which has τ2 = 1/2, by setting
t2 = t3 = 0 (and Γ (t2, t3) = 1). The analysis becomes similar to the one of
Sect. 5.1, with the exception of the filtering constant 2/3 and rounding factors.
We can come close to the information theoretic time complexity and obtain time
complexity of 3/2 · 2κ−d as long as 3/2 · 2κ−d ≥ 4/9 · 22d, or

d ≤ log 3/2 + κ/3

(the formula only holds for values of d that satisfy 2d = 3/2·23t1 for an integer t1).
For example, if κ = 128, we can only exploit up to 2d ≤ 3/2 · 242 data (by

setting t1 = 14). The optimal time complexity is therefore about 2128−42 = 286.
For κ = 192, we can reach the information theoretic time complexity for almost
the entire range of D ≤ 324 ·264, whereas for κ = 256, we obtain the information
theoretic time complexity for the full range D ≤ 438 · 264.

General Time Complexity Optimization. When more than 3/2 · 2κ/3 runs
are available and our goal is to optimize time complexity, we could not accurately
optimize the attack analytically as a function of the known parameters κ, d.
Instead, we optimized the most precise original attack complexity Eq. (7) for
several choices of κ, d by brute force. In particular, for κ = 128, if we restrict
ourselves to 264 signatures (r = log(219 · 264) ≈ 71), then we (approximately)
obtain T = 277 and M = 276 memory by setting t1 = 0, t2 = 25, t3 = 13. This
demonstrates the fact that when a large amount of data is available, we do not
exploit the second extraction method in the optimal attack, namely, we set t1 =
0. This is due to the fact that filtering a large amount of data results in a better
information rate using the first extraction method.

We can also obtain some time-memory tradeoffs by applying more filtering.
For example, we obtain T = 283,M = 257 by setting t1 = 0, t2 = 19, t3 = 13.

6 Seed Collision Attack on Picnic

In this section we describe our seed collision attack on Picnic. Unlike our main
multi-target attack, this attack (almost) reaches the information theoretic com-
plexity of 2κ = T · D for D = 2κ/2 (but only in the single-user setting for the
particular point of D = 2κ/2). The reason we can reach the information theoretic
complexity here is that the matching step is much easier compared to that of
our main multi-target attack.

Assume the attacker has access to two runs generated with the same private
key. For run i ∈ {1, 2}, denote by P

(i)

e(i)+2
the unopened player and assume

that in both runs the unopened player uses the same seed k
(1)

e(1)+2
= k

(2)

e(2)+2
.

Moreover, assume that e(i) ∈ {2, 3}. Then, in both runs, the pseudo-random bits
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generated by the PRG of the unopened players are identical, and in particular,
the outputs of their Share functions are identical, namely x

(1)

e(1)+2
= x

(2)

e(2)+2
.

Hence, x ⊕ x
(1)

e(1) ⊕ x
(1)

e(1)+1
= x ⊕ x

(2)

e(2) ⊕ x
(2)

e(2)+1
(since both runs are generated

with the same private key x). Therefore, the attacker can easily detect this event
by verifying the condition

x
(1)

e(1) ⊕ x
(1)

e(1)+1
= x

(2)

e(2) ⊕ x
(2)

e(2)+1
. (10)

The key recovery process (once again) has to use the available data about
the PRG outputs of the unopened players. Assuming that k

(1)

e(1)+2
= k

(2)

e(2)+2
, the

attacker can recover the secret key x by exploiting the fact that the remain-
ing PRG outputs of P

(1)

e(1)+2
and P

(2)

e(2)+2
are identical, assuming that the seeds

of P
(1)

e(1)+1
and P

(2)

e(2)+1
are different (i.e., k

(1)

e(1)+1
�= k

(2)

e(2)+1
), which occurs with

high probability. This is done by independently analyzing each Sbox, observing
the corresponding input triplets of bits in the two target strings for the runs.
Assuming that the 3-bit randomness values of P

(1)

e(1)+1
and P

(2)

e(2)+1
are different

for the Sbox (which occurs with probability 7/8), then the attacker can always
obtain two linear equations on the secret inputs to the Sbox.

Example 2. Examine again the equation system (4), assuming for simplicity that
player 1 is unopened in both runs, namely, e(1) + 2 = e(2) + 2 = 1. Moreover,
assume that in the first run, the 3 relevant view bits of player 3 are equal to
zero, i.e., w

(3)
a1 = w

(3)
a2 = w

(3)
a3 = 0. Then, we can compute the common random

bits of unopened player 1, namely, R1(c1), R1(c2), R1(c3). Furthermore, assume
that for the second run, the 3 relevant view bits of player 3 satisfy u

(3)
a1 = u

(3)
a2 =

0, u
(3)
a3 = 1 (we index these bits with u, as they are different across the runs).

Then, since the randomness of player 1 is known, we can deduce the share values
u
(1)
a1 , u

(1)
a2 in the second run, which reveal the wire values wa1 , wa2 .

Linearizing the Circuit. After analyzing all the Sboxes, the attacker knows
2 out of 3 (linear combinations of) input bits to a fraction of about 7/8 of
the Sboxes. This makes the 3 output bits of each such Sbox linear functions of
the inputs. We call these Sboxes linearized Sboxes. From the viewpoint of the
attacker, the only non-linear operations that remain in the circuit involve the
non-linearized Sboxes (whose expected fraction is 1/8). Based on this observa-
tion, we set up a linear equation system where the variables are the values of
the κ key bits in addition to the 3 unknown output values of each non-linearized
Sbox. Note that the value of every wire in the circuit can be expressed as a
linear combination of these variables. Assuming that the circuit has K Sboxes,
the expected number of variables is κ + 3 · K/8.

In order to get the values of linear equations in the variables, we deduce
values of specific wires (or linear combination of wires) in the circuit. First, note
that the output of the circuit is known and gives rise to κ linear equations.
We obtain additional equations based on the 2 known input bits of linearized



Multi-target Attacks on the Picnic Signature Scheme and Related Protocols 723

Sboxes. Hence, the expected number of equations is κ + 2 · 7K/8 = κ + 14K/8.
For Picnic, we expect to obtain many more equations than variables to the
system, whose solution gives the secret signing key. For example, if κ = 128, then
K = 200, implying that the expected number of variables is 203 and the number
of equations is 478. A simple Chernoff bound shows that the numbers of variables
and equations are close to their mean with high probability. For example, for
κ = 128,K = 200, with probability (more than) 0.9999 the attacker knows 2 out
of 3 input bits for at least 7/8 · 200 − 25 = 150 Sboxes. This implies that with
probability 0.9999, the number of variables is at most κ + 3 · (200/8 + 25) = 278
and the number of equations is at least κ + 2 · 150 = 428.

In case the attacker is unlucky and still has to spend considerable effort in key
recovery, it is possible to exploit several collisions for this purpose at the price of
increased data complexity. As in typical collision attacks, the expected number
of collisions grows quadratically as a function of the data. In particular, after
obtaining 4 collisions (requiring about twice the amount of data), the expected
fraction of Sboxes with 3 unknown input bits is (1/8)4 = 1/4096. Since the
LowMC instances only have a few hundreds of Sboxes, the system becomes
completely linear in the key bits and the attacker directly solves for the key.

Details of the Attack. The seed collision attack is described below.

1. Store each of the ≈ 2/3 · 2d available runs (generated with the same
private key) for which e(i) ∈ {2, 3} in a hash table L, with the value
x
(i)

e(i) ⊕ x
(i)

e(i)+1
as the index.

2. For each collision x
(i)

e(i) ⊕ x
(i)

e(i)+1
= x

(j)

e(j) ⊕ x
(j)

e(j)+1
between runs i, j in L:

– If k
(i)

e(i)+1
= k

(j)

e(j)+1
, discard the collision.

– Otherwise, if the known PRG output bits of runs i, j do not match,
discard the collision.

– Otherwise, recover and output the secret key by solving a system of
linear equations.

Analysis. Since the seeds are of a length κ bits, we need about d = 1 + κ/2
to have two runs i, j for which k

(i)

e(i)+2
= k

(j)

e(j)+2
with probability larger than

1/2 (for these runs k
(i)

e(i)+1
�= k

(j)

e(j)+1
with probability 1 − 2−κ ≈ 1). On the

other hand, x
(i)

e(i) ⊕ x
(i)

e(i)+1
= x

(j)

e(j) ⊕ x
(j)

e(j)+1
is a κ-bit condition that occurs for

an arbitrary pair of runs with probability 2−κ. Hence, summing over all pairs
of runs, the expected total number of collisions that we need to test in Step 2
is about 1/4 · 22d−κ = 1 and the complexity of the attack is 2d = 2 · 2κ/2. As
the linear system of equations considered in the final step has several hundreds
of variables, the complexity of solving it can be bounded by 230 bit operations
using Gaussian elimination, and this complexity can be neglected.
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The Multiple User Setting. In the multiple user setting we independently
run the attack on the data of each user. Assume that we have 2u users with 2d

distinct runs available per user. Then, the success probability per user (assuming
d ≤ 1 + κ/2) is about 1/4 · 22d−κ, and the success probability across all users
is roughly 1/4 · 2u+2d−κ, implying that we need d ≈ 1 + (κ − u)/2 in order to
recover the key of one of the users with high (constant) probability. Therefore,
we require a total of 2 · 2u+d = 2 · 2(κ+u)/2 runs. More generally, if the number
of available runs varies among the different users, i.e., we have 2di available runs
for user i, then the success probability is proportional to

1/4 · 2−κ ·
2u∑

i=1

22di .

The expression is minimized when all di’s are equal, implying that a skewed
distribution of data helps the attacker.

7 Multi-target Attacks on Additional Cryptosystems

In this section we give two examples of optimizations used in MPC protocols
that weaken their resistance to multi-target attacks. We further give an example
of a general public key scheme that is vulnerable to a multi-user single-target
attack. For each example, we reference at least one vulnerable scheme that was
proposed recently. We note that all of the described attacks can be prevented
by appropriate use of salting. This results in some performance overhead, which
depends on the underlying scheme.

We assume throughout this section that the desired security level is κ bits.

7.1 Hash-Based Commitments Optimization

We consider the widely used hash-based commitment scheme, which utilizes a
hash function H : {0, 1}∗ → {0, 1}2κ. In order to commit to a string W , one
selects a sufficiently long random string rand, and the commitment is defined
as H(rand,W ). The commitment is opened by revealing rand,W . Several MPC
protocols such as [14,17] optimize this scheme by omitting rand and defining
the commitment as H(W ), given that W has sufficient min-entropy of at least
κ bits. This way, only W has to be sent when opening the commitment, thus
saving communication. However, the optimization clearly exposes the protocol
to multi-user multi-target attacks, as the attacker may try to derive a preimage
to one out of many available commitments.

7.2 Seed Tree Optimization

We analyze an MPC protocol optimization that is used in the KKW protocol [14].
In the unoptimized protocol, the seeds of all n players are (essentially) indepen-
dent and opening n−1 players out of n requires κ ·(n−1) bits of communication.
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As shown in Sect. 4.2, the unoptimized protocol is already vulnerable to multi-
user multi-target attacks. We now consider an optimized version of the protocol
described in [14], which further weakens its security against such attacks.

The optimization involves building a seed tree construction (cf. [19]) which
generates seeds for the n players that participate in the MPC protocol in a way
that reduces the communication required to reveal n − 1 seeds. The seed tree
is a binary tree, where each node has a label of κ bits. The label of the root
is a randomly generated master seed of κ bits, and the two κ-bit labels of the
2 children of each node are defined recursively by running a PRG on the label
of the parent and outputting 2κ bits. The tree is of depth log n and the seeds
of the n players are defined as the labels of the n leaves. In order to reveal the
seeds of all players but player i, it is sufficient to reveal the labels of the siblings
of the path from the root to leaf i, which requires only κ · log n communication.

Observe that in the original protocol, the attacker had only a single target
per run, which was the seed of the unopened player. In contrast, in the optimized
protocol, each node on the path from the root to the unopened leaf i is a target,
as the attacker knows one of its κ-bit outputs from the log n revealed labels.
Hitting one of these targets allows the attacker to easily compute the label of
leaf i. The degradation in security is proportional to log n, which is not large,
but should still be noted.

7.3 Public Key Scheme Construction

Finally, we consider a public key scheme that uses a secret signing key x ∈ {0, 1}κ

and generates its public key as pk = g(x), where g is a deterministic function.
Typically, g involved invoking a PRF at least once on input x and additional
(deterministically generated) inputs. An example of such a scheme is the recently
proposed TACHYON signature algorithm [2] (which was presented at ACM CCS
2018). This described scheme is clearly vulnerable to a multi-user single-target
attack, where the attacker obtains access to several public keys that belong to
several users. The attacker attempts to recover the secret key of one (or several)
of the users by iteratively guessing a value for x′, computing pk′ = g(x′), and
comparing with the available public keys.

8 Conclusions

In this paper we described multi-target attacks on the Picnic signature scheme
and on the related KKW protocol. Our attacks have two features that stem from
Picnic’s novel design and distinguish them from standard multi-target attacks:

1. The vulnerability of the cryptosystem (Picnic) to multi-target attacks is not
evident, even when one carefully looks for it. As a result, it was missed by
the designers.

2. Internally, the multi-target attacks cannot apply a typical sort-and-match
algorithm, and efficient key recovery requires cryptanalytic effort.
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The attacks expose a design weakness in the way Picnic uses a PRG during
signing. Although our attacks are generally impractical, in some cases this design
weakness could be leveraged in combination with an additional implementation
weakness (such as generation of seeds with low entropy12) to mount a practical
attack. Such an attack would have been harder to carry out had the PRG been
appropriately salted.

Besides the short-term impact of our analysis on enhancing Picnic’s security,
we hope that it will contribute to the secure design of novel cryptosystems in
the future.
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Abstract. We describe a variation of the Schnorr-Lyubashevsky app-
roach to devising signature schemes that is adapted to rank based cryp-
tography. This new approach enables us to obtain a randomization of
the signature, which previously seemed difficult to derive for code-based
cryptography. We provide a detailed analysis of attacks and an EUF-
CMA proof for our scheme. Our scheme relies on the security of the Ideal
Rank Support Learning and the Ideal Rank Syndrome problems and a
newly introduced problem: Product Spaces Subspaces Indistinguishabil-
ity, for which we give a detailed analysis. Overall the parameters we
propose are efficient and comparable in terms of signature size to the
Dilithium lattice-based scheme, with a signature size of 4 kB for a public
key of size less than 20 kB.

1 Introduction

During the last few years and especially since the 2017 call for proposals of the
NIST for post-quantum cryptosystems, there has been a burst of activity in
post-quantum cryptography and notably in code-based cryptography.

As far as encryption schemes are concerned, code-based cryptography has
satisfactory solutions, in the form of cryptosystems whose security is reduced to
well known problems: decoding random structured matrices like ideal or quasi-
cyclic matrices [1,2,4]. However, the situation is very different for signature
schemes.

Essentially there exist two types of signature schemes: hash-and-sign schemes
and proof of knowledge based signatures.

For hash-and-sign schemes, signing consists in finding a small weight pre-
image of a random syndrome, with a non-negligible probability. For instance:
CFS in code based cryptography [7], GPV for lattices [19], Ranksign for rank
metric [15], NTRUSign for lattices [23], pqsigRM [24]. The main drawback of this
approach is that the system relies on hiding a trapdoor within the public key:
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typically the secret is a decoding (or approximate decoding) algorithm which
is hidden in the public matrix that describes the code. Whereas for lattices
this type of masking can be efficiently randomized because of properties of the
Euclidean distance [19], it has proved much more difficult for coding theory. In
practice there exist two published code-based signature schemes: CFS [7] and
RankSign [16] (see also SURF [8]), but for these schemes the public key can be
distinguished from a random matrix [9,10]. Overall, for signature, this approach
is similar to classical McEliece Encryption for which there is always a sword of
Damocles lying over its head, namely the possible existence of a structural attack
which recovers the hidden structure of and hence breaks the scheme. Relating the
distinguishing problem to another well known problem seems a difficult feature
to obtain. For the case of the RankSign scheme, a structural attack was recently
found in [9]; it is always possible to repair and counter such attacks, like it was
the case for all the sequels of NTRUSign [23], but this illustrates the difficulty
of relying on this approach, when the secret trapdoor is not randomized.

The second approach for devising a signature scheme consists in proving that
one knows a small weight vector associated to a given syndrome. It can done in
two ways.

A first way consists in considering a zero-knowledge authentication algorithm
and turning it into a signature scheme through the Fiat-Shamir transform. If the
probability of cheating (associated to soundness) is very small, this approach
can be efficient, but when the cheating probability is of order 1/2, it leads to
very large signature sizes, since the number of necessary rounds is very large.
It is typically the case for the Stern authentication protocol [31] for which the
cheating probability is 2/3 (it was decreased to 1/2 in [3] and adapted to the
rank metrix in [17]). Overall this approach is very interesting in terms of security
reductions since one is reduced to generic problems without any masking, but
rather inefficient in terms of signature size which can easily reach several hundred
thousand bits, which is questionable in practice.

A second approach was proposed in a sequence of papers initiated by Lyuba-
shevsky [26] in 2009. This approach is in the spirit of the Schnorr signature
scheme [30] but adapted to the lattice context. The idea works as follows: for
a public random matrix H, the secret is a matrix S of small weight vectors, to
which one associates a matrix of syndromes HST . The signature consists in a
proof of knowledge of the small weight matrix S from a sparse challenge c. The
signature has the form z = y + cS, for y a random vector of moderate weight,
typically of several orders of magnitude higher than the weights of cS. The idea
of the proof of knowledge is that through z the verifier is convinced that the
prover knows the secret matrix S because of the use of cS in the signature. At
the same time, the vector y guarantees the randomization of the signature since
its more noisy distribution enables it to absorb the less noisy distribution of cS.
The main appeal of this approach is that it enables one to avoid the repeti-
tion related to zero-knowledge protocols with high probability of cheating, for
instance the Dilithium [28] signature of NIST has a length of only 4 kB.
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This previous approach can be straightforwardly adapted globally to code-
based cryptography, but there is a problem is the randomization part: for the
Hamming metric the randomization has to be considered on the whole length
of the word, and not only on independent coordinates as when dealing with the
Euclidean metric. In practice it means that it seems difficult to randomize the
signature [11]: consequently, whenever a signature is produced, information leaks
from the secret, so that after only a few signatures it becomes possible to recover
the whole secret.

Overall, this second approach seems very promising but finding a good ran-
domization strategy is a challenge.

Our contribution. We build upon the Schnorr-Lyubashevsky approach in a
rank metric context and propose a way to efficiently randomize the signature.
The main idea consists in extending the number of small weight secret vectors
and adding another secret matrix S′, so that the signature has the form z =
y + cS + pS′ where p serves the purpose of providing extra randomization. In
this way, the prover benefits from relaxed conditions that he uses to derive
a randomization of the signature. We give a proof in the EUF-CMA security
model, reducing the security of the scheme to the Rank Support Learning (RSL),
the (ideal) Rank Syndrome Decoding (RSD) problem and a newly introduced
problem, the Product Spaces Subspaces Indistinguishability (PSSI) problem for
which we give a detailed analysis of a distinguisher. Our approach is developed
for the rank metric and does not have an obvious Hamming metric counterpart.
Overall our scheme is efficient in terms of signature sizes (a few kB) and of key
sizes (of order 20 kB), with a security reduction to the ideal-RSD problem (a
generalization of the quasi-cyclic RSD problem).

Roadmap. The paper is organized as follows: Sect. 2 recalls the required mate-
rial from rank based cryptography, Sect. 3 gives a general overview and a precise
description of the scheme, Sect. 4 is concerned with the security of the scheme.
Finally, Sects. 5 and 6 describe the main practical attacks and examples of param-
eters for our scheme.

2 Presentation of Rank Metric Codes

Notation. In what follows, q denotes a power of a prime p. The finite field with
q elements is denoted by Fq and for any positive integer m the finite field with qm

elements is denoted by Fqm . We will frequently view Fqm as an m-dimensional
vector space over Fq. The Grassmannian Gr(k,Fqm) represents the set of all
subspaces of Fqm of dimension k.

We use bold lowercase and capital letters to denote vectors and matrices
respectively.

2.1 General Definitions

Definition 1 (Rank metric over F
n
qm). Let x = (x1, . . . , xn) ∈ F

n
qm and

(β1, . . . , βm) ∈ F
m
qm be a basis of Fqm viewed as an m-dimensional vector space
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over Fq. Each coordinate xj is associated to a vector of Fm
q in this basis: xj =∑m

i=1 mijβi. The m×n matrix associated to x is given by M(x) = (mij)1�i�m
1�j�n

.

The rank weight ‖x‖ of x is defined as

‖x‖ def
= RankM(x).

The associated distance d(x,y) between elements x and y in F
n
qm is defined by

d(x,y) = ‖x − y‖.
Definition 2 (Fqm-linear code). An Fqm-linear code C of dimension k and
length n is a subspace of dimension k of F

n
qm embedded with the rank metric.

In this case we speak of an [n, k]qm code. A code C can be represented in two
equivalent ways:

– by a generator matrix G ∈ F
k×n
qm . Each row of G is an element of a basis

of C,
C = {xG,x ∈ F

k
qm}

– by a parity-check matrix H ∈ F
(n−k)×n
qm . Each row of H determines a parity-

check equation satisfied by the elements of C:

C = {x ∈ F
n
qm : HxT = 0}

We say that G (respectively H) is in systematic form if it is of the form (Ik|A)
(respectively (In−k|B)).

As in the Hamming metric case, the notion of the support of a word is crucial
to the rank metric. This notion appears very often in rank metric code-based
cryptography, notably to compute the complexity of some algorithms.

Definition 3 (Support of a word). Let x = (x1, . . . , xn) ∈ F
n
qm . The sup-

port E of x, denoted Supp(x), is the Fq-subspace of Fqm generated by the coor-
dinates of x:

E = 〈x1, . . . , xn〉Fq

This definition is coherent with the definition of the rank weight since we have
dim E = ‖x‖.

The number of supports of dimension w of Fqm is denoted by the Gaussian
coefficient [

m
w

]

q

=
w−1∏

i=0

qm − qi

qw − qi
= Θ(qw(m−w))

We also need to define homogeneous matrices.

Definition 4 (Homogeneous matrices). Let M ∈ F
k×n
qm be a matrix over

Fqm . The matrix M = (mij) is said to be homogeneous of support E if the Fq-
subspace of Fqm spanned by its coefficients mij is equal to E. If d = dim E, then
M is also said to be homogeneous of weight d.
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2.2 Double Circulant and Ideal Codes

To describe an [n, k]qm linear code, we can give its systematic generator matrix
or its systematic parity-check matrix. In both cases, the number of bits needed
to represent such a matrix is k(n − k)m �log2 q�. To reduce the size of the rep-
resentation of a code, we introduce double circulant codes.

First we need to define circulant matrices.

Definition 5 (Circulant matrix). A square n × n matrix M is said to be
circulant if it is of the form

M =

⎛

⎜
⎜
⎜
⎜
⎝

m0 m1 . . . mn−1

mn−1 m0
. . . mn−2

...
. . . . . .

...
m1 m2 . . . m0

⎞

⎟
⎟
⎟
⎟
⎠

We denote Mn(Fqm) the set of circulant matrices of size n × n over Fqm .

The following proposition states an important property of circulant matrices.

Proposition 1. Mn(Fqm) is an Fqm-algebra isomorphic to Fqm [X]/(Xn − 1).
The canonical isomorphism is given by

ϕ : Fqm [X]/(Xn − 1) −→ Mn(Fqm)

n−1∑

i=0

miX
i 	−→

⎛

⎜
⎜
⎜
⎜
⎝

m0 m1 . . . mn−1

mn−1 m0
. . . mn−2

...
. . . . . .

...
m1 m2 . . . m0

⎞

⎟
⎟
⎟
⎟
⎠

In the following, in order to simplify notation, we will identify the polynomial
G(X) =

∑n−1
i=0 giX

i ∈ Fqm [X] with the vector g = (g0, . . . , gn−1) ∈ F
n
qm . We

will denote ug mod P the vector of the coefficients of the polynomial
⎛

⎝
n−1∑

j=0

ujX
j

⎞

⎠

(
n−1∑

i=0

giX
i

)

mod P

or simply ug if there is no ambiguity in the choice of the polynomial P .

Definition 6 (Double circulant codes). A [2n, n]qm linear code C is said to
be double circulant if it has a generator matrix G of the form G = (A|B) where
A and B are two circulant matrices of size n.

With the previous notation, we have C = {(xa,xb),x ∈ F
n
qm}. If a is invert-

ible in Fqm [X]/(Xn − 1), then C = {(x,xg),x ∈ F
n
qm} where g = a−1b. In

this case we say that C is generated by g (mod Xn − 1). Thus we only need
nm �log2 q� bits to describe a [2n, n]qm double circulant code.

We can generalize double circulant codes by choosing another polynomial P ,
rather than Xn − 1, to define the quotient-ring Fqm [X]/(P ). These codes are
called ideal codes.
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Definition 7 (Ideal codes). Let P (X) ∈ Fq[X] be a polynomial of degree n

and g1, g2 ∈ F
n
qm . Let G1(X) =

∑n−1
i=0 g1iX

i and G2(X) =
∑n−1

j=0 g1jX
j be the

polynomials associated respectively to g1 and g2.
The [2n, n]qm ideal code C with generator (g1, g2) is the code with generator

matrix

G =

⎛

⎜
⎜
⎜
⎝

G1(X) mod P G2(X) mod P
XG1(X) mod P XG2(X) mod P

...
...

Xn−1G1(X) mod P Xn−1G2(X) mod P

⎞

⎟
⎟
⎟
⎠

More concisely, we have C = {(xg1 mod P,xg2 mod P ),x ∈ F
n
qm}. We will

often omit mentioning the polynomial P if there is no ambiguity. If g1 is invert-
ible, we may express the code in systematic form, C = {(x,xg),x ∈ F

n
qm} with

g = g−1
1 g2 mod P .

The advantage of ideal codes over double circulant codes is that they are
resistant to the folding attack of [22]. Such codes have been used for NIST
propositions LAKE and LOCKER.

2.3 Difficult Problems in Rank Metric

In order to design rank metric code-based cryptosystems, we need to define
difficult problems in rank metric. The first problem corresponds to the classical
problem of syndrome decoding, adapted to the rank metric.

Problem 1. Rank Support Decoding (RSD). Let H be an (n − k) × n
parity-check matrix of an [n, k] Fqm-linear code, s ∈ F

n−k
qm and r an integer.

The RSDq,m,n,k,r problem is to find e such that ‖e‖ = r and HeT = sT .

This problem is probabilistically reduced to the well-known NP-complete
Syndrome Decoding problem in the Hamming metric [18].

The following problem was introduced in [12]. It is similar to the RSD prob-
lem, the difference is that instead of having one syndrome, we are given several
syndromes of errors of same support and the goal is to find this support.

Problem 2. Rank Support Learning (RSL) [12]. Let H be a random full-
rank (n − k) × n matrix over Fqm . Let O be an oracle which, given H, gives
samples of the form HsT

1 ,HsT
2 , . . . ,HsT

N , with the vectors si randomly chosen
from a space En, where E is a random subspace of Fqm of dimension r. The
RSLq,m,n,k,r problem is to recover E given only access to the oracle.

We denote RSLq,m,n,k,r,N the RSLq,m,n,k,r problem where we are allowed to
make exactly N calls to the oracle, meaning we are given exactly N syndrome
values HsT

i . By an instance of the RSL problem, we shall mean a sequence

(H,HsT
1 ,HsT

2 , . . . ,HsT
N )

that we can also view as a pair of matrices (H,T ), where T is the matrix whose
columns are the HsT

i .
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The last problem we need before introducing our scheme is a variant of the
RSD problem. Instead of searching for the error associated to a syndrome, this
problem consists in finding an error associated to a syndrome which belongs to
a given Fq-affine subspace of Fn−k

qm . Formally:

Problem 3. Affine Rank Syndrome Decoding (ARSD). Let H be an (n −
k)×n parity-check matrix of an [n, k] Fqm-linear code, H ′ an (n−k)×n′ random
matrix over Fqm , F an Fq-subspace of Fqm of dimension r′, s ∈ F

n−k
qm and r an

integer. The ARSDq,m,n,k,r,n′,F problem is to find e ∈ F
n
qm and e′ ∈ F

n′
qm such

that ⎧
⎨

⎩

HeT + H ′e′T = s
‖e‖ = r
Supp(e′) ⊆ F

Remark: This problem can seen as that of finding a vector x of weight r such
that HxT = s′ with s′ ∈ {s − H ′x′T : Supp(x′) ⊆ F}. This set is an Fq-affine
subspace of Fn−k

qm , which explains the name of the problem.

The following proposition shows that the ARSD problem in the worst case
is as hard as the RSD problem for large values of m.

Proposition 2. Let A be an algorithm which can solve the ARSDq,m,n,k,r,n′,F

problem with m � r(n−r)+n′ dimF
n−k−r . Then A can be used to solve the RSDq,m,n,k,r

problem with non negligible probability.

Proof. Let H ∈ F
(n−k)×n
qm , s ∈ F

n−k
qm such that s = HeT with ‖e‖ = r be an

instance of the RSDq,m,n,k,r problem. First we need to transform this instance
into an instance of the ARSD problem. Let H ′ ∈ F

(n−k)×n′
qm and let F be a

subspace of Fqm of dimension r′ such that m � r(n−r)+n′ dimF
n−k−r . Let s′ = s +

H ′e′T with Supp(e′) = F .
(H, s′, r,H ′, F ) is an instance of the ARSDq,m,n,k,r,n′,F problem. Let (x,x′)

be a solution of this instance given by algorithm A. Now we will prove that this
solution is unique with a non negligible probability.

Let us consider the application f defined by

f : SF
n
qm

(r) × Fn′ → F
n−k
qm

(x,x′) 	→ HxT + H ′x′T

where SF
n
qm

(r) is the set of words of Fn
qm of rank r. By definition of the ARSD

problem, we have (x,x′) ∈ f−1({s′}).
Let S(Fn

qm , r) denote the cardinality of SF
n
qm

(r). By definition of the rank
metric, S(Fn

qm , r) is equal to the number of matrices of Fm×n
q of rank r and we

have

S(Fn
qm , r) =

r−1∏

i=0

(qm − qi)(qn − qi)
qr − qi

= Θ
(
qr(m+n−r)

)
.
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Thus the cardinality of the codomain of f is in Θ(qr(n+n−r)+n′r′
) and the car-

dinality of its domain is equal to qm(n−k). We have m � r(n−r)+n′r′

n−k−r which
implies m(n − k) � r(m + n − r) + n′r′, hence s′ has only one preimage with
a non negligible probability. Thus HxT + H ′x′T = s′ = HeT + He′T implies
(x,x′) = (e,e′) so x is a solution of the instance of the RSDq,m,n,k,r problem. ��
Remark: All these problems are defined for random codes but can straightfor-
wardly be specialized to the families of double circulant codes or of ideal random
codes. In this case, these problems are denoted I − RSD, I − ARSD and I − RSL
respectively. The reductions are unchanged, the only difference being that the
I − RSD problem is reduced to the Syndrome Decoding problem for ideal codes,
which has not been proven NP-complete. However this problem is considered
hard by the community since the best attacks stay exponential.

2.4 Bounds on Rank Metric Codes

One can define bounds on the size or the minimum distance of rank metric
codes that are similar to well-known bounds for Hamming metric codes. The
rank Gilbert-Varshamov bound (or rank Gilbert-Varshamov distance, denoted
dRGV ) gives the maximum rank-weight for which the RSD problem has typically
a unique solution.

Definition 8 (Rank Gilbert-Varshamov (RGV) bound). Let B(Fn
qm , t)

be the size of the ball of radius t in rank rank metric. The quantity dRGV is
defined as the smallest t such that B(Fn

qm , t) � qm(n−k).
Asymptotically we have

dRGV (m,n, k) ∼ m + n −√(m − n)2 + 4km

2

dRGV (n, n, k) ∼ n

(

1 −
√

k

n

)

when m = n. (1)

The quantity qm(n−k) corresponds to the number of syndromes s ∈ F
n−k
qm and

by definition,

B(Fn
qm , t) =

t∑

i=0

S(Fn
qm , i)

where S(Fn
qm , i) is the size of the sphere of radius i, which correspond to the

number of matrices of size m×n and of rank i over Fq. This quantity is equal to
∏i−1

j=0
(qm−qj)(qn−qj)

qi−qj = Θ
(
qi(m+n−i)

)
. The asymptotic expressions are obtained

by solving for t the equation t(m + n − t) = m(n − k) [25].

The rank Singleton bound gives the weight above which the RSD problem
becomes polynomial.
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Definition 9 (Rank Singleton bound). The rank Singleton bound for an
Fqm-linear [n, k] code is defined as the quantity

dRS(m,n, k) =
m(n − k)
max(m,n)

.

We can obtain this equality by counting the number of equations and unknowns
over Fq of the RSD problem. Indeed, given a random support E of dimension r,
we can express the error e in a basis of E with nr unknowns over Fq (r unknowns
per coordinate). The parity-check equations gives us (n−k) equations over Fqm ,
meaning m(n − k) equations over Fq. If nr � m(n − k) then this instance of the
RSD problem has a solution e of support E with a non-negligible probability.
Such a solution can easily be found by solving a linear system. Therefore, the
RSD problem becomes polynomial if r �

⌈
m(n−k)

n

⌉
.

3 A New Signature Scheme Based on the RSL Problem

3.1 General Overview

Our scheme consists of adapting to the rank metric the idea proposed in [27].
This idea can be viewed as a framework for an authentication scheme and can be
loosely described as follows. Two matrices, over some fixed finite field, H and T ,
are public, and a Prover wishes to prove that she is in possession of secret matrix
S with “small” entries such that T = HST . She chooses a random vector y of
small norm (to be defined appropriately) according to some distribution Dy. She
computes the syndrome x = HyT of y and sends it to the verifier. The verifier
chooses a random vector c of the appropriate length and of small norm according
to some distribution Dc and sends it as a challenge to the Prover. The Prover
computes z = y + cS and sends it to the Verifier. The verifier checks that z is
of small norm, and that

HzT − TcT = x.

This scheme is described on Fig. 1.

Prover Verifier

y
$← Dy

z = y + cS

x=HyT

−−−−−−−−−−→

c←−−−−−

z−−−−−−→

c
$← Dc

‖z‖ � ‖y‖ + ‖c‖‖S‖
Check HzT TcT = x

Fig. 1. Overview of the authentication framework from [27]
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The general idea is that cheating is difficult for the Prover because it requires
finding a vector z of small norm such that HzT equals a prescribed value, and
this is an instance of the decoding problem for a random code. Also, the vector
z sent by the legitimate Prover should yield no useful information on the secret
S, because the noisy random vector y drowns out the sensitive quantity cS.

If we instantiate this scheme in the rank metric, H would be a random
matrix over Fqm , and for S to be a matrix of small norm would mean it to be
homogeneous matrix of some small rank r. Requiring that the vectors y and c
are also small will mean that they are taken in random subspaces of Fqm of fixed
dimensions respectively w and d.

The problem with this approach in the rank metric is that adding y to cS
does not hide cS properly. Indeed, the verifier, or any witness to the protocol of
Fig. 1, can recover the support of the secret matrix S even after a single instance
of the protocol, using techniques from the decoding of LRPC codes [13]: since
the verifier has c he can choose a basis f1, . . . , fd of Supp(c) and then with high
probability it will occur that:

d⋂

i=1

f−1
i Supp(z) = Supp(S)

and with the support of S the verifier can compute S explicitely from the linear
equations HST = T . A less efficient version of this attack, requiring multiple
signatures, was described in [29].

To tackle this problem, we will modify the protocol of Fig. 1 by adding an
other term to z.

3.2 An Authentication Scheme

We will first describe our scheme as an authentication scheme. It calls upon the
notion of product of Fq-linear subspaces of Fqm .

Definition 10. If E and F are two Fq-linear subspaces of Fqm , their product,
denoted EF , is defined as the Fq-subspace consisting of the Fq-linear span of the
set of vectors

{ef, e ∈ E, f ∈ F}
where ef stands for the product of e by f in the field Fqm . The product of E with
itself will be denoted E〈2〉, so as not to confuse it with the cartesian product.

The public key consists of a random (n − k) × n matrix H over Fqm and
two matrices T and T ′, of size (n − k) × lk and (n − k) × l′k respectively, and
such that (H,T |T ′) is an instance of the RSL problem, where | denotes matrix
concatenation. The private key consist of two homogeneous matrices S and S′ of
weight r such that HST = T and HS′T = T ′. Accordingly, S and S′ are lk×n
and l′k × n matrices respectively. We denote by E the vector space spanned by
the coordinates of S and S′.
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In the commitment step, we sample uniformly at random two vector spaces:
W ∈ Gr(w,Fqm) and F ∈ Gr(d,Fqm). We then randomly choose y ∈ (W +
EF )n. This vector will be used to mask the secret information in answer to the
challenge. The commitment consists of x = HyT together with the subspace F .

The verifier then chooses a challenge c ∈ F l′k.
To answer the challenge, the prover first computes y + cS′. Since the entries

of the vector c are in F and the entries of the matrix S′ are in E, we have that cS′

has its entries in the product space EF , and the vector y + cS′ has its entries in
the space W+EF , like the vector y. The linear span of the coordinates of y + cS′

is typically equal, or very close to W +EF , and this yields too much information
on the secret space E to be given to the verifier. To counter this, we add a vector
pS. Coordinates of p are chosen in F , so that the coordinates of pS fall in the
product space EF , and through linear algebra the prover chooses p such that
the linear span of the coordinates of the sum z = y + cS′ + pS is restricted to
a smaller subspace: namely a subspace W + U for U some subspace of EF of
codimension λ inside EF . In other words, z = y+cS′ +pS is computed so as to
be of rank at most w + rd−λ. The vector z is then sent to the verifier, together
with the vector p. This operation is at the heart of the present protocol and
the derived signature scheme. More details are given about this in the following
section and in Sect. 4.1.

The verifier accepts if ‖z‖ � rd + w − λ and HzT − T ′cT + TpT = x. An
overview of this protocol is given in Fig. 2.

Prover Verifier

W
$← Gr(w,Fqm), F

$← Gr(d,Fqm)

y
$← (W + EF )n

z = y + cS′ + pS

x=HyT , F−−−−−−−−−−−−→

c←−−−−−

z,p−−−−−−−→

c
$← F l′k

‖z‖ � w + rd − λ
Check HzT T ′cT + TpT = x

Fig. 2. Overview as an authentication scheme

Using the Fiat-Shamir heuristic, we turn this authentication scheme into a
signature scheme.

3.3 Signature Scheme

Key generation

– Randomly choose an (n − k) × n ideal double circulant matrix H as in Defi-
nition 7 for an irreducible polynomial P , in practice we consider k = n

2
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– Choose a random subspace E of dimension r of Fqm and sample l vectors si

and l′ vectors s′
i of length n from the same support E of dimension r

– Set ti = HsT
i and t′

i = Hs′T
i

– Output (H, t1, . . . , tl, t
′
1, . . . , t

′
l′) as public key, and (s1, . . . , sl, s

′
1, . . . , s

′
l′)

as secret key

Note that, since H has an ideal structure, each relation of the form HsT
i = ti

can be shifted mod P to generate k syndrome relations. We denote S (respec-
tively S′) the matrix consisting of all si (respectively s′

i) and their ideal shifts.
Let T = HST and T ′ = HS′T : the public key consists of (H,T ,T ′). T and T ′

are n
2 × lk and n

2 × l′k matrices respectively, but can be described using only the
vectors (t1, . . . , tl) and (t′

1, . . . , t
′
l′). The secret key consists of the homogeneous

matrices S and S′ of rank r such that HST = T and HS′T = T ′.
Figure 3 describes the key pair.

n − k

n

H . . .t1 tl . . .t′
1 t′′

l

. . .s1 sl . . .s′
1 s′′

l

Fig. 3. Overview of public and secret key

Signature of a message μ

– Randomly choose W , a subspace of Fqm of dimension w.
– Randomly choose F , a subspace of Fqm of dimension d.
– Sample y ∈ (W + EF )n and set x = HyT .
– For some hash function H, set c = H(x, F, μ), c ∈ F l′k. This is done by using

the output of H as the coordinates of c in a basis of F .
– Choose U , a subspace of the product space EF , of dimension rd−λ, and such

that U contains no non-zero elements of the form ef , for e ∈ E and f ∈ F .
More details on this process are given in Subsect. 3.4.

– Solve z = y + cS′ + pS with p ∈ F lk as unknown, such that Supp(z) ⊂
W + U : as mentioned in the previous section, p is computed through linear
algebra. Specifically, we write p = (p1, . . . , plk), and each coordinate pi ∈ F
of p is decomposed as
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pi =
d∑

�=1

pi�f�

where f1, . . . , fd is a basis of F that will be used to describe the space F . The
j-th coordinate of the vector cS is therefore equal to

(cS)j =
lk∑

i=1

d∑

�=1

pi�f�Sij . (2)

Recall that f�Sij is in FE because S has support E. Choose a basis of EF
of the form u1, . . . , urd−λ, v1, . . . , vλ, where u1, . . . , urd−λ is a basis of U (the
typical dimension of EF is rd). Let π1, . . . , πλ be the projections of elements
of EF on the last λ coordinates of the above basis. For h = 1 . . . λ, applying
πh to all n coordinates of the vector y + cS′ + pS and declaring the result
to equal 0, we will obtain a linear system of λn equations in the variables pij

by using linearity in (2) to express πh[(cS)j ] as

lk∑

i=1

d∑

�=1

pi�πh(f�Sij). (3)

Parameters are chosen so that this system has more variables than equations
and typically has a solution. If it doesn’t, another space U is sampled.

– Output (z, F, c,p) as signature.

The signature consists therefore of the challenge c, computed through a hash
function, together with the answer to this challenge.

Verification of a signature (μ,z, F, c,p)

– Check that ‖zv‖ � rd + w − λ,
– Verify that H(HzT − T ′cT + TpT , F, μ) = c.

To verify the signature, we have to check the rank weight of z and the equality
H(x, F, μ) = c. The vector x is recomputed using the answer to the challenge.
The complete signature scheme is summarized on Fig. 4.

3.4 Filtering Vector Spaces

The goal of filtering U during the signature step is to ensure to there is no non-
zero element of the form ef in the support of z, for e ∈ E and f ∈ F . This
is to prevent an attack that would recover E through techniques for decoding
LRPC codes [13]. Indeed, if there is an element of the form ef in Supp(z), then
e ∈ E ∩ f−1 Supp(z) which allows an attack against the secret key (moreover
elements of this form can be used to distinguish between signatures and randomly
generated vectors, as explained in Sect. 4.1). To achieve that, we need to find a
pair (U,F ) such that:
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Key generation: E
$← Gr(r,Fqm)

Signing key: S $← En×lk, S′ $← En×l′k

Verification key: H $← ideal Mn
2 ×n, T = HST ,T ′ = HS′T

Sign(μ,S,S′):

1. W
$← Gr(w,Fqm),

F
$← Gr(d,Fqm)

2. y
$← (W + EF )n, x = HyT

3. c = H(x, F, μ), c ∈ F l′k

4. U
$← filtered subspace of EF of di-

mension rd − λ
5. z = y + cS′ + pS, z ∈ W + U
6. Output (z, F, c,p)

Verify(μ, z, F, c,p,H,T ,T ′):

1. Accept if and only if :
‖z‖ � w + rd − λ and
H(HzT − T ′cT + TpT , F, μ) = c

Fig. 4. The Durandal Signature scheme

– U is a subspace of EF of dimension rd − λ
– For every non-zero x = ef with e ∈ E and f ∈ F , we have that x /∈ U .

We argue that, for a given F , finding the required space U is quite manage-
able. We use the following obvious proposition to check the second condition:

Proposition 3. Let U be a subspace of EF of dimension rd−λ. Let E/Fq be a
set of representatives of the equivalence relation x ≡ y ⇐⇒ ∃α ∈ F

∗
q such that

x = αy. We have the following equivalence:
{
ef : e ∈ E, f ∈ F

} ∩ U = {0} ⇐⇒ ∀e ∈ E/Fq, eF ∩ U = {0}.

Hence, the cost of this verification is (qr − 1)/(q − 1) intersections of subspaces
of dimension d and rd − λ, that is to say qr−1

q−1 (d + rd − λ)2m operations in Fq.
We now briefly estimate the probability that a random U contains no element

x = ef . For simplicity, we only deal with a typical practical case, namely q = 2
and d = r.

The subspace U is chosen randomly and uniformly of codimension λ inside the
vector space EF : we study the probability that U contains no non-zero product
ef . Let x = ef be such a non-zero product. Let Ux be the event {x ∈ U}. We
are interested in 1 − P (U) where

U =
⋃

x=ef, x �=0

Ux.
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Clearly, P (Ux) = 2−λ. Our goal is to evaluate P (U) through inclusion-exclusion,
i.e.

P (U) =
∑

x

P (Ux) −
∑

x,y

P (Ux ∩ Uy) + · · · + (−1)i
∑

X∈Π,|X|=i

P

(
⋂

x∈X

Ux

)

+ · · · (4)

where Π denotes the set of non-zero elements of EF of the form x = ef . We
have |Π| = (2r − 1)2. Note that whenever X is made up of linearly independent
elements, then the events Ux, x ∈ X are independent in the sense of probability,
so that

P

(
⋂

x∈X

Ux

)

= 2−λ|X|.

More generally, since any linear combination of vectors that are in U is also in
U , we have

P

(
⋂

x∈X

Ux

)

= 2−λrk(X)

where rk(X) denotes the rank of X.
For λ = 2r − 1, tedious computations show that the contribution of the non

full-rank subsets X for a growing (with r) set of first terms of (4) is negligible,
so that we have

P (U) ≈ 2 − 4
2!

+
8
3!

+ · · · ≈ 1 − e−2

Giving 1 − P (U) ≈ e−2.

3.5 Value of λ

In order to find U that contains no element x = ef , we need to take the highest
value possible for λ. We denote z1 = y + cS′. When z1 is written as a rd × n
matrix over Fq by rewriting each of its coordinates in a basis of EF of the
form {u1, . . . , urd−λ, v1, . . . vλ} such that U = {u1, . . . , urd−λ}, we want pS to
be equal to z1 on the last λ lines, corresponding to {v1, . . . vλ}. This gives λn
equations in the base field, and the system has dlk unknowns (the coordinates
of p in a basis of F ). This gives the following condition on λ:

λn < dlk ⇔ λ <
dlk

n
.

Since we want to maximize the value of λ, we take λ = �dlk
n �.

3.6 Computational Cost

Key generation. The most costly operation of the key generation step is the
multiplication of H and the syndromes si. Each matrix-vector multiplication
costs n2 multiplications in Fqm , hence a total cost of (l + l′)n2 multiplications.
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Signature of a message μ. The signature step splits naturally into two phases:
an offline phase during which the signature support is computed (this is the most
costly part) and an online phase to compute the actual signature. The two phases
are as follows:

1. Offline phase
– Choose the vector spaces W and F .
– Sample y ∈ (W + EF )n and set x = HyT .
– Choose U , a random subspace of EF of dimension rd − λ. If U contains

non-zero elements of the form ef , e ∈ E and f ∈ F , choose another U .
– Write the Fqm-coordinates of the vector pS in a basis of EF of the form

{u1, . . . , urd−λ, v1, . . . , vλ} where U = 〈u1, . . . , urd−λ〉 to obtain linear
expressions in the variables pij of the form (3). Compute a λn×λn matrix
D that inverts this linear mapping of the pij . This will allow to compute p
such that z ∈ U in the online phase with a matrix multiplication instead
of an inversion. If the linear map cannot be inverted to produce the matrix
D, choose another random subspace U of EF .

2. Online phase
– Set c = H(x, F, μ), c ∈ F l′k

– Solve z = y + cS′ + pS with p ∈ F lk, using the matrix D computed
during the offline phase

– Output (z, F, c,p) as signature.

The most costly step in the offline phase is the computation of the matrix
D, which requires inverting a linear system over Fq with λn equations, hence
the cost is (λn)3 multiplications in Fq.

The online phase consists in the computation of p which costs (λn)2 multi-
plications in Fq as well as the computation of z = y + cS′ + pS which costs
(l′k)2 + (lk)2 multiplications in Fqm for computing the matrix/vector products.

Verification of a signature. The most costly step during the verification phase
is the computation of HzT − T ′cT + TpT , which costs n2 + (l′k)2 + (lk)2 mul-
tiplications in Fqm .

4 Security of the Scheme

4.1 Product Spaces Subspaces Indistinguishability (PSSI)

The PSSI problem is a new problem which appears naturally when we try to
prove the indistinguishability of the signatures.

Problem 4. Product Spaces Subspaces Indistinguishability. Let E be a
fixed Fq-subspace of Fqm of dimension r. Let Fi, Ui and Wi be subspaces defined
as follows:

– Fi
$← Gr(d,Fqm)

– Ui
$← Gr(rd − λ,EFi) such that {ef, e ∈ E, f ∈ F} ∩ Ui = {0}
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– Wi
$← Gr(w,Fqm)

The PSSIr,d,λ,w,Fqm
problem consists in distinguishing samples of the form

(zi, Fi) where zi is a random vector of Fn
qm of support Wi + Ui from samples of

the form (z′
i, Fi) where z′

i is a random vector of Fn
qm of weight w + rd − λ.

In order to study the complexity of this problem, we first reduce it to the case
where the samples are of the form (Zi, Fi) with Zi = Supp(zi). Let us suppose
we have a distinguisher D for this last case. Then given N samples of the PSSI
problem, it is easy to compute the supports Zi of the vectors zi and to use D
to distinguish if Zi is a random subspace of dimension w + rd − λ or if it is of
the form Wi + Ui with Ui a subspace of the product space EFi.

Conversely, let us suppose we have a distinguisher D′ for the PSSI problem.
We are given N samples of the form (Zi, Fi). For each sample, we can compute a
random vector zi of support Zi and use D′ to distinguish whether zi is a random
vector of weight w + rd − λ or whether its support is of the form Wi + Ui.

Thus we can consider the case when the samples are only couples of subspaces
of Fqm .

This problem is related to the decoding of LRPC codes [13]. Indeed we can
consider a subspace Z = U +W as the noisy support of a syndrome for an LRPC
code, the noise corresponding to W . Consequently, it is natural to try and apply
techniques used for decoding LRPC codes in order to solve the PSSI problem.
The first idea is to use the basic decoding algorithm (see [13]). It consists in
computing intersections I of the form f−1Z ∩ f ′−1Z with (f, f ′) ∈ F 2. If Z is
of the form U + W then the probability that dim I �= 0 is much higher than if
Z were truly random. However, this technique cannot be used because we filter
the subspace U .

The decoding algorithm for LRPC codes has been improved in [5]. The idea
is to consider product spaces of the form ZFi where Fi is a subspace of F of
dimension 2. The probability that dimZFi = 2(w + rd−λ) depends on whether
Z is random or not. We study in detail the advantage of this distinguisher in
the following paragraphs.

Consider the product subspace EF inside Fqm with dimF = dim E = r.
Suppose E is unknown, the typical dimension of the product EF is then r2,
if we assume r2 � m. We now suppose we are given a subspace Q of Fqm of
dimension r2 that is either a product space EF or a randomly chosen one, and
we wish to distinguish between the two events. One easy way to do so, if the
dimension m of the ambient space Fqm is large enough, is to multiply Q by F . If
Q is random, we will get the typical product dimension dimFQ = r dim Q = r3.
Whereas if Q = EF , we will get dim FQ ≤ (

r+1
2

)
r < r3. In fact, to distinguish

the two cases it is enough to multiply Q by any subspace A of F of dimension
2, since we will have dim AQ ≤ 2r2 − r when Q = EF and dim AQ = 2r2 in the
typical random Q case.

To make our two cases difficult to distinguish, our query space Q is actually
chosen to be constructed in one of two ways, making up a distinguishing problem:
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Distinguishing problem. Distinguish whether Q is of the form (i) or (ii) below:

(i) Q = U + W where U is a subspace of EF of codimension λ. The space E
is chosen randomly of dimension r as before. The subspace U is chosen in
such a way so that, for any subspace A of F dimension 2, we have dim AU =
2dim U . The space W is chosen randomly of dimension w, so that dimQ =
r2 − λ + w.

(ii) Q is a random subspace of dimension r2 − λ + w. Equivalently we may
think of Q of the form Q = V + W where both V and W are random (and
independent) of dimensions r2 − λ and w respectively.

The purpose of choosing such a subspace U of EF is to make the dimension
of AU equal to that of AV for a random V . Adding the random space W to
U should keep the probability distributions of dim(AQ) equal for both ways of
constructing Q. The purpose of W is to make the dimension of Q sufficiently
large with respect to the dimension m of the ambient space, so that multiplying
Q by a space of dimension more than 2 will typically fill up the whole space Fqm

anyway. In this manner, the two ways of constructing Q will be indistinguishable
by measuring dimensions of the product of Q by a subspace.

First, we give a criterion for a subspace U of EF to have the property that
dim(AU) = 2 dim U for any subspace A of dimension 2 of F .

Let E,F be two subspaces of Fqm , both of dimension r over Fq. Let us
make the remark that the maximum possible dimension of F 〈2〉 is

(
r+1
2

)
, and the

maximum possible dimension of F 〈2〉E is therefore r
(
r+1
2

)
.

Let f1, f2, . . . , fr be a basis of F . Denote by F2 the subspace of F generated
by f1, f2, by F3 the subspace of F generated by f1, f2, f3, and so on.

Lemma 1. Suppose dim F 〈2〉E = r
(
r+1
2

)
. Then f1FE ∩ f2FE = f1f2E.

Proof. We have F2FE = f1FE + f2FE, and f1FE ∩ f2FE ⊃ f1f2E, therefore

dim(F2FE) ≥ 2 dim(EF ) − dim F (5)

by using the formula dim(A + B) = dim A + dim B − dim(A ∩ B). Similarly,
Fi+1FE = FiFE +fi+1FE and FiFE ∩fi+1FE ⊃ fjfi+1E for all j = 1, 2, . . . i.
From which we have

dim(Fi+1FE) ≥ dim(FiFE) + dim(FE) − idim E.

Now dim F 〈2〉E = r
(
r+1
2

)
only occurs when we have equality in all the above

inequalities, in particular we have equality in (5) which implies that the inclusion
f1f2E ⊂ f1FE ∩ f2FE is also an equality. ��
Lemma 2. Let U be a subspace of EF . If we suppose dim(F 〈2〉E) = r

(
r+1
2

)
, we

have that there exists a subspace A ⊂ F of dimension 2 such that,

dim(AU) < 2 dim U

if and only if U contains two non-zero elements of the form fe and f ′e f, f ′ ∈ F ,
e ∈ E where f and f ′ are two linearly independent elements of F .
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Proof. Let A be a subspace of F of dimension 2 generated by f1, f2. We have
AS = f1U + f2U so that dim(AU) < 2 dim U if and only if f1U ∩ f2U �= {0}.
But we have

f1U ∩ f2U ⊂ f1FE ∩ f2FE

and under the hypothesis dim(F 〈2〉E) = r
(
r+1
2

)
we have that dim(AFE) =

2r2 − r and f1FE ∩ f2FE = f1f2E. Therefore f1U ∩ f2U contains a non-zero
element if and only if U contains an element of the form f2e and an element of
the form f1e, for e ∈ E, e �= 0. ��
Corollary 1. Suppose dim(F 〈2〉E) = r

(
r+1
2

)
, and that U is a subspace of FE

such that for any two non-zero elements f ∈ F and e ∈ E, ef �∈ U . Then we
have, for any subspace A ⊂ F of dimension 2,

dim(AU) = 2 dim U.

Next, we study the probability distribution of the dimension of the product
space A(U + W ), where W is random of dimension w, and U is either con-
structed as above or uniform random. We only focus on the binary extension
field case q = 2, and from the previous discussion we only keep the property
that dim(AU) is maximal. In other words, for the purpose of the following anal-
ysis, U is a fixed subspace of F2m with dim U = u, A is a fixed subspace of F2m

of dimension dim A = 2 and we suppose that we have dim(AU) = 2u. Let W
be a random subspace of dimension dim W = w of F2m . The space W is chosen
by choosing x1, x2, . . . , xw random independent (in the sense of probability) ele-
ments of F2m and W is taken to be the subspace generated by the xi. Strictly
speaking, x1, . . . , xw may turn out not to be linearly independent and not gen-
erate a space of dimension w. However, w will be taken to be much smaller than
m, so that this event happens with negligible probability.

Our goal is to study the probability that A(U +W ) does not have dimension
2(u + w) and see how it may vary for two different spaces U1 and U2.

Consider the mapping:

Aw Φ−→ F2m

(a1, a2, . . . , aw) 	→ a1x1 + a2x2 + · · · + awxw.

The product space A(U+W ) does not have maximal dimension, namely 2(u+w),
if and only if there is a non-zero a = (a1, a2, . . . , aw) in Aw such that Φ(a) ∈ AU .
This event E , over all choices of x = (x1, . . . , xw), can therefore be written as:

E =
⋃

a∈Aw

a �=0

Ea

where Ea denotes the event Φ(a) ∈ AU . Since P (Ea) = 4u

2m , the union bound
gives us

P (E) ≤ (4w − 1)
4u

2m
. (6)
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We now study the lower bound

P (E) ≥
∑

a∈Aw

a �=0

P (Ea) −
∑

a,b

P (Ea ∩ Eb) (7)

where the second sum runs over all unordered pairs of distinct w-tuples a and b.
To evaluate this second sum we split the pairs a,b into two disjoint sets:

1. linearly independent pairs a,b. In which case the two random variables ax
and bx are independent, and we have

P (Ea ∩ Eb) = P (Ea)P (Eb) =
(

4u

2m

)2

.

2. linearly dependent pairs a, λa, for some λ ∈ F2m , λ �= 1, such that λa ∈ Aw.
In this case, we have

P (Ea ∩ Eb) = |AU ∩ λAU | 1
2m

≤ 4u

2m
.

We now estimate the number of such pairs a, λa.
Denote the non-zero elements of A by a1, a2, a3 = a1 + a2 (recall that A is a
vector space). Suppose we have λa1 = a2 and λa2 = a3 = a1 + a2 (λa2 = a2

would imply λ = 1 and λa2 = a1 would imply λ2 = 1 hence λ = 1 in a field
of characteristic 2). Then a2a

−1
1 = λ satisfies λ2 + λ + 1 which is not possible

for odd m and happens with negligible probability for even m. Assuming this
does not happen we have therefore that any a ∈ Aw such that λa ∈ Aw must
have all non-zero coefficients equal. Hence the number of such pairs a, λa is
at most 3.2w. Inequality (7) gives us therefore:

P (E) ≥ (4w − 1)
4u

2m
−
(

4w − 1
2

)
42u

22m
− 3.2w 4u

2m
. (8)

From which we get:

Proposition 4. If U and V are two spaces of dimension u such that dim(AU) =
dim(AV ) = 2u then

|P (dim[A(U + W )] < 2(u + w)) − P (dim[A(V + W )] < 2(u + w)) |

≤
(

4w − 1
2

)
42u

22m
+ 3.2w 4u

2m
.

Product space distinguisher. We go back to our distinguishing problem
defined above. As mentioned in the discussion leading up to the problem, it is
natural to try and distinguish between (i) and (ii) by computing the dimension of
some AQ for many instances of Q and basing the decision on the number of times
an abnormal (less than 2 dim Q) turns up. The consequence of Proposition 4 is
that to distinguish confidently with this method requires a very large number of
queries. Specifically, if the two probabilities of producing an abnormal dimension
are p and p(1 + ε), then the number of products AQ that one must produce is
of the order 1/pε2. Proposition 4 gives p ≈ 22u+2w−m and ε = 2log2 3−w.
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Proposition 5. By applying Proposition 4 to the PSSIr,d,λ,w,Fqm
problem, the

advantage with which one may distinguish the two distributions is of the order
of 2m−2(rd−λ).

Remark: One might also consider computing product spaces of the form ZE′

where E′ is a subspace of E of dimension larger than 2. However, we have
chosen our parameters such that 3(w + rd − λ) > m so this idea cannot work.

4.2 New Problem: Advanced Product Subspaces Indistinguishability
(PSSI+)

The PSSI+ problem is a generalization of the previous problem, with some extra
side information. We need to consider this problem for our security proof.

Problem 5. Advanced Product Spaces Subspaces Indistinguishability.
Let E be a fixed Fq-subspace of Fqm of dimension r. Let Fi, Ui and Wi be
subspaces defined as before:

– Fi
$← Gr(d,Fqm)

– Ui
$← Gr(rd − λ,EFi) such that {ef, e ∈ E, f ∈ F} ∩ Ui = {0}

– Wi
$← Gr(w,Fqm)

Let H be a randomly chosen (n − k) × n ideal double circulant matrix as in
Definition 7 for an irreducible polynomial P .

– Sample l vectors si and l′ vectors s′
i of length n from the same support E of

dimension r
– Set S (respectively S′) the matrix consisting of all si (respectively s′

i) and
their ideal shifts. Let T = HST and T ′ = HS′T .

The PSSI+(N)r,d,λ,w,Fqm
problem consists in distinguishing N samples of the

form (zi, Fi) where zi is a random vector of Fn
qm of support Wi+Ui from samples

of the form (z′
i, Fi) where z′

i is a random vector of Fn
qm of weight w + rd − λ

when additionally given H,T ,T ′.

The PSSI+ problem consists of an instance of the PSSI problem and an
instance of the RSL problem that share the same secret support E. The question
is to determine whether or not the instance of RSL can be used in order to reduce
the difficulty of PSSI.

In general, two difficult problems taken together do not necessarily make up
another hard problem. For example, two difficult instances of the factorization
of large integers n, n′ with n = pq and n′ = pq′ where p, q and q′ are prime is a
an easy problem.

In our case, the knowledge of an instance of RSL could be useful if it gives us
some information on the support E. But, for our parameters, the best attacks on
the RSL problem are based on the GRS+ algorithm [6,9,12] and this algorithm
recovers the whole support or nothing. Moreover, the main idea behind the



Durandal: A Rank Metric Based Signature Scheme 749

GRS+ algorithm (which consists of looking for a subspace E′ which contains E)
cannot be applied to the PSSI+ problem since E is “multiplied” by an Fi at each
sample. Thus it appears that the knowledge of an instance of RSL that shares
the same secret support E does not help to solve the PSSI problem and we will
consider that the PSSI+ problem is as hard to attack as the PSSI problem.

4.3 Security Model

One of the security models for signature schemes is existential unforgeability
under an adaptive chosen message attack (EUF-CMA). Basically, it means that
even if an adversary has access to a signature oracle, it cannot produce a valid
signature for a new message with a non negligible probability.

Expeuf
S,A(λ)

1. param ← Setup(1λ)
2. (vk, sk) ← KeyGen(param)
3. (μ∗, σ∗) ← A(vk,OSign(vk, ·))
4. b ← Verify(vk, μ∗, σ∗)
5. IF μ∗ ∈ SM RETURN 0
6. ELSE RETURN b

Existential Unforgeability under Cho-
sen Message Attacks [20] (EUF − CMA).
Even after querying N valid signatures
on chosen messages (μi), an adversary
should not be able to output a valid sig-
nature on a fresh message μ. To formal-
ize this notion, we define a signing oracle
OSign:

– OSign(vk, μ): This oracle outputs a
signature on μ valid under the verifi-
cation key vk. The requested message
is added to the signed messages set
SM.

The probability of success against this game is denoted by

SucceufS,A(λ) = P

(
Expeuf

S,A(λ) = 1
)

, SucceufS (λ, t) = max
A≤t

SucceufS,A(λ).

4.4 EUF − CMA Proof

To prove the EUF − CMA security of our scheme, we proceed in two steps. In
the first step, we show that an adversary with access to N valid signatures has
a negligible advantage over the same adversary with only access to the public
keys. In other words, we prove that signatures do not leak information on the
secret keys. In the second step, we show that if we only have access to the public
keys, a valid signature allows us to solve an instance of the I − ARSD problem.

We will use the following technical Lemma.

Lemma 3. Let F be a family of functions defined by

F =
{

fH : (W + EF )n → F
n−k
qm

y 	→ x = yHT

}
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Since H is chosen uniformly at random amongst the (n−k)×n ideal double
circulant matrices, F is a pairwise independent family of functions.
The number of choices for y depends on W and F and on the choice of the
coordinates of y. Overall, the entropy of y is equal to

Θ

([
m
w

]

q

[
m
d

]

q

q(w+rd)n

)

= 2(w(m−w)+d(m−d)+(w+rd)n) log q+O(1)

Since ‖y‖ > dRGV , any vector of Fn−k
qm can be reached, thus the entropy of x is

equal to 2(n−k)m log q. According to the Leftover Hash Lemma [21], we have

Δ(DG0 ,U) <
ε

2

where Δ(X,Y ) denotes the statistical distance between X and Y , DG0 denotes
the distribution of x in game G0, U denotes the uniform distribution over F

n−k
qm

(the distribution of x′ in game G1) and

ε = 2
((n−k)m−w(m−w)+d(m−d)+(w+rd)n) log q

2 +O(1).

Proofs. For the first step, we proceed in a sequence of games. We denote PGi

the probability that the adversary returns 1 in the end of the game Gi and
Adv(Gi) = |PGi

− 1
2 | the advantage of the adversary for the game Gi.

– G0: this is the real EUF − CMA game for S. The adversary has access to the
signature oracle OSign to obtain valid signatures.

PG0 = SucceufS,A(λ).

– G1: we replace z by a vector z′ of the same weight chosen uniformly at
random in the correct subspace U of W + EF , and sample c′,p′ uniformly
with support F .
Now set x′ = Hz′ − c′T ′ − p′T and use the Random Oracle to set c =
H(x′, F, μ).
In G0, x is the syndrome of the vector y of support of the form EF + W ,
while here x′ is not necessarily. Under Lemma 3 we conclude

Adv(G1) ≤ Adv(G0) + ε.

The parameters of the signature are chosen such that ε is lower than the
security parameter.

– G2: We now sample z at random in F
n
qm with the same weight, and proceed

as in G2.
This corresponds to an instance of the PSSI+(N) Problem 5. Since the adver-
sary can have access to at most N signatures, we have

|Adv(G2) − Adv(G1)| � Adv(PSSI+(N)).
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– G3: We now pick T ,T ′ at random and proceed as before. The difference
between G3 and G2 resides in the public key, specifically whether it was
sampled using vectors in a given subspace or not.

|Adv(G3) − Adv(G2)| � Adv(DRSL).

At this step, everything we send to the adversary is random, and independent
from any secret keys. Hence the security of our scheme is reduced to the case
where no signature is given to the attacker.

If he can compute a valid signature after game G3, then the challenger can
compute a solution of the I − ARSD problem. Indeed, the couple (z,p) is a solu-
tion of the instance (H,−T , F,x+T ′cT , w + rd−λ) of the I − ARSD problem.
According to Proposition 2, the I − ARSD problem is reduced to the I − RSD
problem.

Finally, we can now give our main theorem:

Theorem 1 (EUF-CMA security). Under the hypothesis of the hardness
of the PSSI+ Problem 4.1 and of the DRSL, I − RSD Problem 1, our signature
scheme is secure under the EUF-CMA model in the Random Oracle Model.

5 Attacks

5.1 Attacks on the RSL Problem

In this section we will study the hardness of recovering the secret matrices S and
S′ from H,T ,T ′. This is exactly an instance of the RSLq,m,n,k,w,N problem.

We will use the setting proposed in [12]. First, we recall how the problem
is reduced to searching for a codeword of weight w in a code containing qN

codewords of this form. We introduce the following Fq-linear code:

C = {x ∈ F
n
qm : Ax ∈ WT }

where WT is the Fq-linear subspace of Fn−k
qm generated by the linear combinations

of the elements of the public matrices T and T ′. As in Lemma 1 in [12], we define:

C ′ = {
∑

i

αisi, αi ∈ Fq}.

We have: – dimFq
C � km + N

– C ′ ⊂ C
– the elements of C ′ are of weight � w.

Combinatorial attack. In [12], the authors search for a codeword of rank
w in C by using information-set decoding techniques, using the fact that C ′

contains qN words of weight w. As this codeword will very likely be a linear



752 N. Aragon et al.

combinations of the vectors si, it will reveal the secret support E with high
probability. Theorem 2 in [12] gives a complexity of qmin(e−,e+), where:

e− =
(

w −
⌊

N

n

⌋)(⌊
K

n

⌋

−
⌊

N

n

⌋)

e+ =
(

w −
⌊

N

n

⌋

− 1
)(⌊

K

n

⌋

−
⌊

N

n

⌋

− 1
)

+ n

(⌊
K

n

⌋

−
⌊

N

n

⌋

− 1
)

where K = km + N . See [12] for more details about this.

Algebraic attacks. We will now study how algebraic attacks can be used to
find codewords of weight w in C.

We are looking for X ∈ C such that X ∈ En. We can write X as:

X =

w∑

i=1

x
(i)
1 y

(i)
1 . . .

w∑

i=1

x
(i)
1 y

(i)
n

...
. . .

...
w∑

i=1

x
(i)
m y

(i)
1 . . .

w∑

i=1

x
(i)
m y

(i)
n

where (x(1), . . . , x(w)) represent a basis of E, and the (yj
i ), 1 � i � w, 1 � j � n

represent the coordinates of X written in this basis.
C has length nm and dimension N + km in Fq, which gives (n − k)m − N

parity check equations, and (n + m)w unknowns (the x
(j)
i and the (y(j)

i )).
To decrease the number of unknowns, we will first write the basis of E in an

echelon form, which removes w2 unknowns:

∀(i, j) ∈ [1, w]2, i �= j, x
(j)
i = 0

x
(i)
i = 1.

Then we will use the fact that for a fixed basis of E, the solution space has
dimension N , which allows us to set N of the (y(j)

i ) to specialize one solution,
as in [9]: for a random subset I ⊆ [1, n] × [1, w] of size N − 1:

∀(i, j) ∈ I, y
(j)
i = 0

y
(j0)
i0

= 1, (i0, j0) /∈ I

which removes N unknowns.

Proposition 6. Using this setting we obtain:

– (n − k)m − N equations
– (n + m)w − w2 − N unknowns.

We implemented this approach in Magma to try it on small examples, and the
combinatorial attacks become much more efficient than the algebraic approach
when the number of samples is around kr, whereas this attack is faster when
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the number of samples is higher. Another drawback of this attack is the high
memory cost, making parameters as small as n = m = 30, k = 15, r = 3 with kr
samples too big for a computer using 16 GB of RAM.

For concrete parameters (Sect. 6), we chose N , the number of samples for
the RSL problem, equal to either k(r − 1) or k(r − 2). Our experiments on
smaller parameters showed that combinatorial attacks should be way faster for
this number of samples. This also defeats the setting proposed in [9] since it
needs at least kr samples.

The parameter set I gives 2117 unknowns for 23836 equations and the param-
eter set II gives 2809 unknowns for 29154 equations. Based on our experiments
on smaller parameters this seems really hard to reach.

5.2 Attack on the ARSD Problem

As explained in the security proof in Sect. 4.4, a forgery attack consists in solving
an instance of the ARSD Problem 3. In order to choose the parameters of our
signature, we need to deal with the complexity of the attacks on this problem.
These attacks are adapted from those against the RSD problem [6,14] to which
ARSD is very similar.

The following proposition gives a bound beyond which the problem becomes
polynomial.

Proposition 7. Let (H,H ′, s, F ) be an instance of the ARSDq,m,n,k,r,n′,F
problem. If max(m,n)r + n′r′ � m(n − k) then the ARSD problem can be solved
in polynomial time with a probabilistic algorithm.

Proof. To prove this proposition, we will use the method used to compute the
Singleton bound.

Let us begin with the case n � m. Let E be a subspace of Fqm of dimension r
and suppose that there exists a solution (x,x′) of the ARSD problem such that
Supp(x) = E. Then, we can express the coordinate xj of x in a basis Ei of E:

∀j ∈ {1 . . . n}, xj =
r∑

i=1

λijEi

Likewise, we can express the coordinates x′
t of x′ in a basis of F :

∀t ∈ {1 . . . n′}, x′
t =

r′
∑

s=1

λ′
stFs

Let us write the linear system satisfied by the unknown (λij , λ
′
st):

HxT + H ′x′T = s

⇐⇒ ∀i ∈ {1 . . . n − k},

n∑

j=1

Hijxj +
n′
∑

t=1

H ′
itx

′
t = si

⇐⇒ ∀i ∈ {1 . . . n − k},

n∑

j=1

Hij

r∑

i=1

λijEi +
n′
∑

t=1

H ′
it

r′
∑

s=1

λ′
stFs = si (9)
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The (n − k) linear equations (9) over Fqm can be projected on Fq to obtain
m(n− k) linear equations over Fq. Since we have nr +n′r � m(n− k), there are
more unknowns than equations so the system admits at least a solution with a
non negligible probability.

In the case m > n, we need to consider the matrix M(x) associated to x (cf
Definition 1) and express its rows in a basis of a subspace E of dimension r of
F

n
q . Since the support of x′ is fixed, its coordinates still give us n′r′ unknowns

over Fq. This gives us mr + n′r′ unknowns over Fq in total. Then we transform
the equation HxT + H ′x′T = s into a linear system over Fq as previously.
This operation is not difficult but cumbersome and we do not give the explicit
equations. The resulting linear system has m(n − k) equations and mr + n′r′

unknowns over Fq. It has a solution with a non negligible probability since mr+
n′r′ � m(n − k).

In both cases, the solution of the system solves the ARSD problem. ��
In the case where max(m,n)r + n′r′ < m(n − k), we need to adapt the best

attacks against the RSD problem [14] to the ARSD case. The general idea is to
find a subspace E of dimension δ such that Supp(x) ⊂ E (in the case n � m).
Then we can express the coordinates of x if n � m or the rows of the matrix
M(x) if m > n in a basis of E exactly as in the previous proposition. We want
δ as large as possible to increase the probability that Supp(x) ⊂ E but we
have to take δ such that max(m,n)δ + n′r′ < m(n − k) in order to obtain an
over-constrained linear system. Hence δ =

⌊
m(n−k)−n′r′

max(m,n)

⌋
. The probability that

E ⊃ Supp(x) depends on m and n:

If n � m, then P(E ⊃ Supp(x)) =
[
δ
r

]

q

[
m
r

]

q

−1

= Θ(q−r(m−δ)).

If n < m, then P(E ⊃ Supp(x)) =
[
δ
r

]

q

[
n
r

]

q

−1

= Θ(q−r(n−δ)).

In order to respect the constraints of our signature, we have to insure that the
instance of the ARSD problem has several solutions. Thus, the average com-
plexity of this attack is equal to the inverse of the probability P(E ⊃ Supp(x))
divided by the number of solutions times the cost of the linear algebra. The num-
ber of solutions is in Θ

(
qr(m+n−r)+n′r′−m(n−k)

)
(see Proposition 2 for details).

Proposition 8. In the case max(m,n)r + n′r′ < m(n − k), the complexity of
the best attack against the ARSDq,m,n,k,r,n′,F problem is in

O
(

m3(n − k)3qr
⌈

km+n′r′
max(m,n)

⌉
−r(m+n−r)−n′r′+m(n−k)

)

.

Remark: We did not consider the improvement of the attack of the RSD problem
in [6] because this attack does not fit the case where there are several solutions
to the RSD problem.
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6 Parameters

6.1 Constraints

In this section we recap the different constraints on our parameters.

Choice of l, l′, r and d. First we need to choose l′ such that the entropy of c
is high enough. For our parameters, l′ = 1 is always enough since c ∈ F l′dk and
dk > 512. In practice using less than dk coordinates for c is a possibility to make
the parameters a little smaller.

We then need to choose r high enough so that the attacks on both the RSD
and RSL problems are hard. d and l must be chosen such that λ � r + d: d = r
and l = 4 is a way to meet this condition. In the sets of parameters given below,
this value of l leads to N = k(r − 1) and N = k(r − 2) respectively, which allows
us to be pretty conservative with respect to the attacks on the RSL problem.

Choice of m. In order to avoid the distinguisher attack for a security parameter
of 128, the relation m − 2u � 128 + 64 (we use Proposition 5, setting u =
rd−λ), must be verified to fit the security proof: we consider that the adversary
has access to 264 signatures, so the probability of distinguishing signatures and
random vectors must be lower than 2−192. We choose a prime m (so there is no
intermediate field between Fq and Fqm) such that m � 192 + 2u.

Choice of n, k and w. They must be chosen such that 3(u + w) > m to avoid
the distinguisher attack using subspaces of dimension 3, and (u+w) < (n−k)−λ
in order to keep the weight of the signature below the Singleton bound −λ (due
to ARSD). k is taken prime for having access to really sparse polynomials to
define the ideal codes.

6.2 Example of Parameters

The public key consists of:

– H which can be recovered from a seed (256 bits)
– l(n − k)m log(q) bits to describe the syndromes.

The signature consists of:

– (rd + w − λ)(n + m − rd − w + λ) log(q) bits to describe z. We give Supp(z)
in echelon form as well as the coordinates in this basis

– A seed to describe F (256 bits)
– 512 bits to describe c
– dlk log(q) bits to describe p.

The complexity of the key recovery attack is computed using the complexity of
the combinatorial attack given in Sect. 5.1.

For our parameters, the complexity of the forgery attack using the algorithm
against ARSD described in Sect. 5.2 is disproportionately large compared to the
key recovery attack. Parameter sets were chosen for a security of 128 bits.
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m n k l l’ d r w λ q Public Signature Key recovery Distinguisher Security

key size size attack

I 241 202 101 4 1 6 6 57 12 2 15.25 kB 4.06 kB 461 193 128

II 263 226 113 4 1 7 7 56 14 2 18.61 kB 5.02 kB 660 193 128

The implementation of our scheme on an Intel(R) Core(TM) i5-7440HQ CPU
running at 2.80 GHz gives the following computation times:

Parameter Keygen Online signature phase Verification

I 4ms 4ms 5 ms

II 5ms 5ms 6 ms

For the offline phase, the most costly step, the computation of the matrix D,
takes 350 ms for parameter I and 700 ms for parameter II.
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Abstract. We give a new signature scheme for isogenies that combines
the class group actions of CSIDH with the notion of Fiat-Shamir with
aborts. Our techniques allow to have signatures of size less than one
kilobyte at the 128-bit security level, even with tight security reduction
(to a non-standard problem) in the quantum random oracle model. Hence
our signatures are potentially shorter than lattice signatures, but signing
and verification are currently very expensive.

1 Introduction

Stolbunov [49] was the first to sketch a signature scheme based on isogeny prob-
lems. Stolbunov’s scheme is in the framework of class group actions. However the
scheme was not analysed in the post-quantum setting, and a naive implementa-
tion would leak the private key. Due to renewed interest in class group actions,
especially CSIDH [13] (due to Castryck, Lange, Martindale, Panny and Renes)
and the scheme by De Feo, Kieffer and Smith [22], it is of interest to develop a
secure signature scheme in this setting. Our main contribution is to use Lyuba-
shevsky’s “Fiat-Shamir with aborts” strategy [40] to obtain a secure signature
scheme. We also describe some methods to obtain much shorter signatures than
in Stolbunov’s original proposal.

Currently it is a major problem to get practical signatures from isogeny
problems. Yoo et al. (see Table 1 of [53]) state signatures of over 100 KiB and
signing/verification that take a few seconds on a PC. This can be reduced using
some optimisations. For example [28] state approximately 12 KiB for this sig-
nature scheme (for classical 128-bit security level) and approximately 11 KiB
for their main scheme. In contrast, in this paper we are able to get signatures
smaller than a kilobyte, which is better even than lattice signatures. Unfortu-
nately, signing and verification are very slow (the order of minutes), but we hope
that future work (see for example [23]) will lead to more efficient schemes.

We now briefly summarise the main findings in the paper (for more details see
Table 2). For the parameters (n,B) = (74, 5) as used in CSIDH [13] we propose
a signature scheme whose public key is 4 MiB, signature size is 978 bytes, and
c© International Association for Cryptologic Research 2019
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verification time is under 3 min (signing time is three times longer than this on
average, since rejection sampling requires repeating the signing algorithm). For
the same parameters we show that one can reduce the public key size to only
32 bytes, but this increases the signature size to around 3 KiB and does not add
any significant additional cost to signing or verification time. One can obtain
even shorter signatures by taking different choices of parameters, for example
taking (n,B) = (20, 3275) leads to signatures as small as 416 bytes, but we do
not have an estimate of the verification time for these parameters.

The paper is organised as follows. Section 3 gives the basic signature scheme
concept, that was proposed by Stolbunov, and our secure variant based on Fiat-
Shamir with aborts. Section 4 explains how to get shorter signatures, at the
expense of public key size, by using challenges that are more than just a single
bit. This optimisation also leads to faster signing and verification. Section 5 shows
how to retain the benefit of shorter signatures, while also having a short public
key, by using modified Merkle trees. Section 7 shows how to use our scheme in
the context of lossy keys, from which we obtain tight security in the quantum
random oracle model via the results of Kiltz, Lyubashevsky and Schaffner [36]
(and this security enhancement involves no increase in signature size, though
the primes are larger so computations will be somewhat slower). This is the first
time that lossy keys have been used in the isogeny setting. Section 8 explains
that, if a quantum computer is available during parameter generation, then a
much more practical signature scheme can be obtained by following the methods
in Stolbunov’s thesis.

The name “SeaSign” is a reference to the name CSIDH, which is pronounced
“sea-side”.

2 Background and Notation

We use the following notation: #X is the number of elements in a finite set
X; log denotes the logarithm in base 2; KiB and MiB denote kilobytes and
megabytes respectively; for B ∈ N we denote by [−B,B] the set of integers u
with −B ≤ u ≤ B.

2.1 Elliptic Curves, Isogenies, Ideal Class Groups

References for elliptic curves over finite fields and isogenies are Silverman [48],
Washington [52], Galbraith [26], Sutherland [50] and De Feo [20]. A good refer-
ence for ideal class groups and class group actions is Cox [19].

Let E be an elliptic curve over a field K and let P ∈ E(K) be a point of order
m. Then there is a unique (up to isomorphism) elliptic curve E′ and separable
isogeny φ : E → E′ such that ker(φ) = 〈P 〉. Vélu [51] gives an algorithm to
compute an equation for E′ and rational functions that enable to compute φ.
The complexity of this algorithm is linear in m and requires field operations in
K, so when K is a finite field it has cost O(m log(#K)2) bit operations using
standard arithmetic. In the worst case (i.e., when m is large) this algorithm
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is exponential-time. In practice this computation is only feasible when m is
relatively small (say m < 1000) and when the field K over which P is defined is
not too large (say, at most a few thousand bits) For an elliptic curve E over a
field K we define End(E) to be the ring of endomorphisms of E defined over the
algebraic closure of K, and EndK(E) to be the ring of endomorphisms defined
over K. Since we are mostly concerned with the CSIDH [13] approach, we will
be interested in supersingular elliptic curves E such that j(E) ∈ Fp, where p is
a large prime. In this case End(E) is a maximal order in a quaternion algebra,
while EndFp

(E) is an order in the imaginary quadratic field Q(
√−p). Indeed,

Z[
√−p] ⊆ EndFp

(E).
We will be concerned with the ideal class group of the order O = EndFp

(E).
This is the quotient of the group of fractional invertible ideals in O by the
subgroup of principal fractional invertible ideals. The principal ideal (1) = O
is the identity element of the ideal class group. Given two invertible O-ideals
a, b we write a ≡ b if a and b are equivalent (meaning that ab−1 is a principal
fractional O-ideal).

2.2 Class Group Actions and Computational Problems

Let p be a prime. Let E be an ordinary elliptic curve over Fp with End(E) ∼= O
or E a supersingular curve over Fp with EndFp

(E) ∼= O where O is an order in
an imaginary quadratic field. Let Cl(O) be the ideal class group of O. One can
define the action of an O-ideal a on the curve E as the image curve E′ under the
isogeny φ : E → E′ whose kernel is equal to the subgroup E[a] = {P ∈ E(Fp) :
α(P ) = 0 ∀α ∈ a}. We denote E′ by a ∗ E.

The set {j(E)} of isomorphism classes of elliptic curves with End(E) ∼= O
is a principal homogeneous space for Cl(O). Good references for the details are
Couveignes [18] and Stolbunov [49]. The key exchange protocol proposed by
Couveignes and Stolbunov is for Alice to send a ∗ E to Bob and Bob to send
b ∗ E to Alice; the shared key is (ab) ∗ E.

The difficulty is that if a ⊂ O is an arbitrary ideal then the subgroup E[a] is
typically defined over a very large field extension and the computation of a ∗ E
has exponential complexity. For efficient computation it is necessary to work
with ideals that are a product of powers of small prime ideals, so it is necessary
to find a “smooth” ideal in the ideal class of a. Techniques for smoothing an
ideal class in the context of isogeny computation were first proposed in [27] and
developed further in [8,12,34]. The state of the art is [8] which computes a ∗ E
for any ideal class in subexponential complexity in log(#Cl(O)).

Since subexponential complexity is not good enough for cryptographic appli-
cations it is necessary to choose ideals deliberately of the form a =

∏n
i=1 l

ei
i

where l1, . . . , ln are split prime O-ideals of small norm �i and where (e1, . . . , en)
is an appropriately chosen vector of exponents. Then, the action of a can be
computed as a composition of isogenies of degree �i. Throughout the paper we
assume that {l1, . . . , ln} is a set of non-principal prime ideals in O, generat-
ing Cl(O), of norm polynomial in the size of the class group. Theoretically we
have the bounds #Cl(O) = O(

√
p log(p)) and, assuming a generalised Riemann
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hypothesis, �i = O(log(p)2). In practice one usually takes �i = O(log(p)) for
efficiency reasons; heuristically, this is more than enough to generate the class
group.

The basic computational assumption is to invert the action of an ideal. Cou-
veignes called Problem 1 “vectorisation” and Stolbunov called it “Group Action
Inverse Problem (GAIP)”. The CSIDH paper speaks of hard homogeneous spaces
and calls the problem “Key recovery”.

Problem 1. Given two elliptic curves E and EA tover the same field with
End(E) = End(EA) = O. Find an ideal a such that j(EA) = j(a ∗ E).

The best classical algorithms for this problem in the general case have
exponential time (at least

√
#Cl(O) isogeny computations). Childs, Jao and

Soukharev [15] were the first to point out that this problem can be formu-
lated as a “hidden shift” problem, and so quantum algorithms for the hid-
den shift problem can be applied. Hence, there are subexponential-time quan-
tum algorithms for Problem1 based on the quantum algorithms of Kuper-
berg [38] and Regev [45]. It is still an active area of research to assess
the exact quantum hardness of these problems; see the recent papers by
Biasse-Iezzi-Jacobson [9], Bonnetain-Schrottenloher [11], Jao-LeGrow-Leonardi-
Ruiz-Lopez [33] and Bernstein-Lange-Martindale-Panny [7]. But at the very
least, Kuperberg’s algorithm requires at least Õ(2

√
log(p)/2) quantum gates,

thus taking
p > 22λ2

, (1)

where λ is the security parameter, should be sufficient to make Problem1 hard
for a quantum computer.

If the ideals a in Problem 1 are sampled uniformly at random then the prob-
lem admits a random self-reduction: given an instance (E,EA) one can choose
random ideal classes b1, b2 and construct the instance (E1, E2) = (b1 ∗ E, b2 ∗
EA), which is now uniformly distributed across the set of pairs of isomorphism
classes of curves in the isogeny class. If a′ is a solution to the instance (E1, E2)
then any ideal equivalent to the fractional ideal a′b1b−1

2 is a solution to the
original instance. This is a nice feature for security proofs that is not shared by
SIDH [32]1; we use this idea in Sect. 4.2.

As already mentioned, when instantiating the group action in practice, one
must choose parameters that make evaluating isogenies of degree �i as efficient as
possible. This is done both by choosing the primes �i to be as small as possible,
and also by arranging that the kernel subgroups E[�i] are defined over as small a
field extension as possible (so that Vélu’s formulas can be used). In the ordinary
case, the best technique currently available to select parameters is due to De Feo,
Kieffer and Smith [22]. Despite the optimisations described in [22], this technique
requires years of CPU time to construct a good curve. Like [22], CSIDH [13]
chooses a special prime of the form p + 1 = 4

∏n
i=1 �i, but, instead of ordinary

1 On the other hand, SIDH has the advantage that no subexponential-time algorithm
is known to break it.
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curves, it uses supersingular curves defined over Fp. This makes the search for
a suitable curve virtually instantaneous, and produces very efficient parameters;
indeed note that the formula for p+1 implies that each prime �i splits in Q(

√−p)
as a product (�i) = līli of distinct prime ideals. For key exchange, CSIDH sam-
ples the exponent vectors e = (e1, . . . , en) ∈ [−B,B]n ⊆ Z

n for a suitable
constant B.

This leads to a special case of Problem 1 where the ideals may not be uni-
formly distributed in the ideal class group. For further discussion see Definition 1
and the discussion that follows it. In this special case one can also consider a
straightforward meet-in-the-middle attack: Let E and a ∗ E be given, where
a =

∏n
i=1 l

ei
i over ei ∈ [−B,B]. We compute lists (assume n is even)

L1 =

⎧
⎨

⎩

(
n/2∏

i=1

lei
i

) ∗ E : ei ∈ [−B,B]

⎫
⎬

⎭
, L2 =

⎧
⎨

⎩

( n∏

i=n/2+1

lei
i

) ∗ EA : ei ∈ [−B,B]

⎫
⎬

⎭
.

If L1 ∩ L2 �= ∅ then we have solved the isogeny problem. This attack is faster
than general methods when the set of ideal classes generated is a small subset
of Cl(O). Hence for security we may require

(2B + 1)n > 22λ, (2)

where λ is the security parameter. Further, there is a quantum algorithm due
to Tani, which is straightforward to adapt to this problem (we refer to Sect. 5.2
of De Feo, Jao and Plût [21] for details). This means we might need to take
(2B + 1)n > 23λ to have post-quantum security. However, recent analyses [2,35]
question the pertinence of the complexity models of the meet-in-the-middle and
Tani algorithms, and advocate for more relaxed bounds.

Choosing the best values of B,n, p for large choices of λ (e.g., satisfying the
constraints of Eqs. (1) and (2)) is non-trivial, but will generally lead to sampling
in a very small subset of the whole ideal class group.

We remark that Kuperberg’s algorithm uses the entire class group, and there
seems to be no way to improve the algorithm for the case where the “hidden
shift” is sampled from a distribution far from the uniform distribution. We leave
the study of this question to future work.

By taking into account the best known attacks, the CSIDH authors propose
parameters for the three NIST categories [43], as summarised in Table 1. Note
that in all CSIDH instances the set of sampled ideal classes is (heuristically) likely
to cover the whole class group. Their implementation of the smallest parameter
size CSIDH-512 computes one class group action in 40 ms on a 3.5 GHz processor.

For our signature schemes we may work with more general primes than con-
sidered in CSIDH [13]. For example, CSIDH takes p+1 = 4

∏n
i=1 �i, whereas we

may be able to use fewer primes and just multiply by a random co-factor to get
a large enough p.
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Table 1. Proposed parameters for CSIDH [13]. Effective parameters p, n and B for
CSIDH-1024 and CSIDH-1792 were not given in the paper, and are produced here
following their methodology. Message size is the number of bytes to re present a j-
invariant, and private key size is the space required to store the exponent vector e ∈ Z

n.

n �log2 p� B NIST classical quantum message private

level security security size key size

CSIDH-512 74 510 5 1 127 bits 62 qbits 64B 37B

CSIDH-1024 130 1019 8 3 257 bits 94 qbits 127B 82B

CSIDH-1792 208 1786 10 5 449 bits 129 qbits 223B 130B

2.3 Public Key Signature Schemes

One can describe Fiat-Shamir-type signatures in various ways, including the
language of sigma protocols or identification schemes. In the main body of our
paper we mostly work with the language of signatures, and give proofs directly
in this formulation. In Sect. 7.1 we use the language of identification schemes,
and introduce the terminology fully there.

A canonical identification scheme consists of algorithms (KeyGen,P1,P2,V)
and a set ChSet. The randomised algorithm KeyGen(1λ) outputs a key pair
(pk, sk). The deterministic algorithm P1 takes sk and randomness r1 and com-
putes (W, st) = P1(sk, r1). Here st denotes state information to be passed to P2.
A challenge c is sampled uniformly from ChSet. The deterministic algorithm P2

then computes Z = P2(sk,W, c, st, r2) or ⊥, where r2 is the randomness. The
output ⊥ corresponds to an abort in the “Fiat-Shamir with aborts” paradigm.
We require that V(pk,W, c, Z) = 1 for a correctly formed transcript (W, c, Z).

A public key signature scheme consists of algorithms KeyGen,Sign,Verify.
The randomised algorithm KeyGen(1λ) outputs a pair (pk, sk), where λ is a
security parameter. The randomised algorithm Sign takes input the private key
sk and a message msg, and outputs σ = Sign(sk,msg). The verification algorithm
Verify(pk,msg, σ) returns 0 or 1. We require Verify(pk,msg,Sign(sk,msg)) = 1.

The Fiat-Shamir transform is a construction to turn a canonical identifica-
tion scheme into a public key signature scheme. The main idea is to make the
interactive identification scheme into a non-interactive scheme by replacing the
challenge c by a hash H(W,msg).

The standard notion of security is unforgeability against chosen-message
attack (UF-CMA). A UF-CMA adversary against the signature scheme is a ran-
domised polynomial-time algorithm A that plays the following game against
a challenger. The challenger runs KeyGen to get (pk, sk) and runs A(pk). The
adversary A sends messages msg to the challenger, and receives σ = Sign(sk,msg)
in return. The adversary outputs (msg∗, σ∗) and wins if Verify(pk,msg∗, σ∗) = 1
and if msg∗ was not one of the messages previously sent by the adversary to the
challenger. A signature scheme is UF-CMA secure if there is no polynomial-time
adversary that wins with non-negligible probability.
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3 Basic Signature Scheme

This section contains our main ideas and presents a basic signature scheme. We
focus in this section on classical adversaries and proofs in the random oracle
model. Hence our signature is based on the traditional Fiat-Shamir transform.
For schemes and analysis against a post-quantum adversary see Sect. 7.

For simplicity, we describe our schemes in the setting of a general class group
action on a set of j-invariants of elliptic curves. In Sect. 3.3 we explain one small
subtlety that arises when implementing the scheme in the setting of CSIDH.

3.1 Stolbunov’s Scheme

Section 2.B of Stolbunov’s PhD thesis [49] contains a sketch of a signature scheme
based on isogeny problems (though his description is not complete and he does
not give a proof of security). It is a Fiat-Shamir scheme based on an identification
protocol. Section 4 of Couveignes [18] also sketches the identification protocol,
but does not mention signature schemes.

The public key consists of E and EA = a ∗ E, where a =
∏n

i=1 l
ei
i is the

private key. To construct the private key one uniformly chooses an exponent
vector e = (e1, . . . , en) ∈ [−B,B]n ⊆ Z

n for some suitably chosen constant B.
Stolbunov assumes the relation lattice for the ideal class group is known, and
uses it in Sect. 2.6.1 to sample ideal classes uniformly at random. Section 2.6.2
of [49] suggests an approach to approximate the uniform distribution.

In the identification protocol the prover generates t random ideals bk =
∏n

i=1 l
fk,i

i for 1 ≤ k ≤ t and computes Ek = bk ∗ E. Here the exponent vectors
fk = (fk,1, . . . , fk,n) are uniformly and independently sampled in a region like
[−B,B]n (Stolbunov assumes these ideal classes are uniformly sampled). The
prover sends (j(Ek) : 1 ≤ k ≤ t) to the verifier. The verifier responds with t
uniformly chosen challenge bits b1, . . . , bt ∈ {0, 1}. If bk = 0 the prover responds
with fk = (fk,1, . . . , fk,n) and the verifier checks that j(Ek) = j((

∏n
i=1 l

fk,i

i )∗E).
If bk = 1 the prover responds with a representation of bka

−1. When bk = 1 the
verifier checks that j(Ek) = j((bka

−1) ∗ EA). A cheating prover (who does not
know the private key) can succeed with probability 1/2t.

The major problem with the above idea is how to represent the ideal class
of bka

−1 in a way that does not leak a. Stolbunov notes that sending the vector
fk − e = (fk,i − ei)1≤i≤n would not be secure as it would leak the private key.
Instead, Stolbunov (and also Couveignes) work in the setting where the relation
lattice in the ideal class group is known; we discuss this further in Sect. 8. A main
contribution of our paper is to give solutions to this problem (using Fiat-Shamir
with aborts) that do not require to know the relation lattice.

To obtain a signature scheme Stolbunov applies the Fiat-Shamir transform,
and hence obtains the challenge bits bk as the hash value H(j(E1), . . . , j(Et),msg)
where H is a cryptographic hash function with t-bit output and msg is the
message to be signed. The signature consists of the binary string b1 · · · bt and
the representations of the ideal classes bk when bk = 0 and bka

−1 when bk = 1.
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The verifier computes, for 1 ≤ k ≤ t, Ek = bk ∗ E when bk = 0 and Ek =
bka

−1 ∗ EA when bk = 1. The verifier then computes H(j(E1), . . . , j(Et),msg)
and checks whether this is equal to the binary string b1 · · · bt, and accepts the
signature if and only if the strings agree.

We stress that neither Couveignes nor Stolbunov give a secure post-quantum
signature scheme. Both authors assume that the relations in the ideal class group
have been computed (Stolbunov needs this to prevent leakage). However the cost
to compute the relations in the ideal class group on a classical computer is in
essentially the same asymptotic complexity class as the cost to break the scheme
on a quantum computer (using the Kuperberg or Regev algorithms). Hence it
may not make sense to require the Key Generation algorithm of the scheme to
compute the relations in the ideal class group. On the other hand, in the fully
post-quantum setting where quantum computers are readily available then the
relation lattice can be computed in polynomial time. We revisit this issue in
Sect. 8.

3.2 Using Rejection Sampling

To prevent signatures from leaking the private key, we use rejection sampling in
exactly the way proposed by Lyubashevsky [40] in the context of lattice signa-
tures.

Let B > 0 be a constant. When generating the private key we sample uni-
formly ei ∈ [−B,B] for 1 ≤ i ≤ n. Let e = (e1, . . . , en). The value B may
be chosen large enough that

∏n
i=1 l

ei
i covers most ideal classes and so that the

output distribution is close to uniformly distributed in Cl(O), but we avoid any
explicit requirement or assumption that this distribution is uniform. We refer to
Definition 1 for more discussion of this issue, and in Sect. 7 we consider a variant
where the ideals are definitely not distributed uniformly in Cl(O).

Exponents fk,i are sampled uniformly in [−(nt + 1)B, (nt + 1)B], where t
is the number of parallel rounds of the identification/signature protocol and n

is the number of primes. Let fk = (fk,1, . . . , fk,n), bk =
∏n

i=1 l
fk,i

i and define
Ek = bk ∗ E.

If the k-th challenge bit bk is zero then the prover responds with fk =
(fk,1, . . . , fk,n) and the verifier checks that j(Ek) = j((

∏n
i=1 l

fk,i

i ) ∗ E) as in
the basic scheme above.2 If bk = 1 then the prover is required to provide a
representation of bka

−1, the idea is to compute the vector zk = (zk,1, . . . , zk,n)
defined by zk,i = fk,i − ei for 1 ≤ i ≤ n. As already noted, outputting z directly
would potentially leak the secret. To prevent this leakage we only output zk if all
its entries satisfy |zk,i| ≤ ntB. We give the signature scheme in Fig. 1. It remains
to show that in the accepting case the vector leaks no information about the

2 In the scheme and analysis we apply rejection sampling to the case bk = 0 as well
as the case bk = 1. An alternative would be to only apply rejection sampling in the
case bk = 1. It doesn’t really matter one way or the other, since in both settings we
are able to simulate a signer in the random oracle model and so the security proof
works.
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Algorithm 1 KeyGen
Input: B, l1, . . . , ln, E
Output: sk = e and pk = EA

1: e ← [−B, B]n

2: EA = (
∏n

i=1 l
ei
i ) ∗ E

3: return sk = e, pk = EA

Algorithm 2 Sign
Input: msg, (E, EA), e
Output: (z1, . . . , zt, b1, . . . , bt)
1: for k = 1, . . . , t do
2: fk ← [−(nt + 1)B, (nt + 1)B]n

3: Ek = (
∏n

i=1 l
fk,i

i ) ∗ E
4: end for
5: b1‖ · · · ‖bt = H(j(E1), . . . , j(Et),msg)
6: for k = 1, . . . , t do
7: if bk = 0 then
8: zk = fk
9: else
10: zk = fk − e
11: end if
12: if zk �∈ [−ntB, ntB]n then
13: return ⊥
14: end if
15: end for
16: return σ = (z1, . . . , zt, b1, . . . , bt)

Algorithm 3 Verify
Input: msg, (E, EA), σ
Output: Valid/Invalid
1: Parse σ as (z1, . . . , zt, b1, . . . , bt)
2: for k = 1, . . . , t do
3: if bk = 0 then
4: Ek = (

∏n
i=1 l

zk,i

i ) ∗ E
5: else
6: Ek = (

∏n
i=1 l

zk,i

i ) ∗ EA

7: end if
8: end for
9: b′

1‖ · · · ‖b′
t = H(j(E1), . . . , j(Et),msg)

10: if (b′
1, . . . , b

′
t) = (b1, . . . , bt) then

11: return Valid
12: else
13: return Invalid
14: end if

Fig. 1. The basic signature scheme using rejection sampling.

private key, and that the rejecting case occurs with low probability. We do this
in the following two lemmas.

Lemma 1. The distribution of vectors zk output by the signing algorithm is the
uniform distribution and therefore is independent of the private key e.

Proof. Let U = [−(nt+1)B, (nt+1)B]. Then #U = 2(nt+1)B+1. If e ∈ [−B,B]
then

[−ntB, ntB] ⊆ U − e = {f − e : f ∈ U} ⊆ [−(nt + 2)B, (nt + 2)B].

Hence, when rejection sampling (only outputting values fk,i − ei in the range
[−ntB, ntB]) is applied then the output distribution of zk is the uniform distri-
bution on [−ntB, ntB]n. This argument does not depend on the choice of e, so
the output distribution is independent of e. ��

Lemma 2. The probability that the signing algorithm outputs a signature (i.e.,
does not output ⊥) is at least 1/e > 1/3.
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Proof. Let notation be as in the proof of Lemma 1. For fixed e ∈ [−B,B] and
uniformly sampled f ∈ U = [−(nt+1)B, (nt+1)B], the probability that a value
f − e lies in [−ntB, ntB] is

2ntB + 1
2(nt + 1)B + 1

= 1 − 2B

2(nt + 1)B + 1
≥ 1 − 1

nt + 1
.

Hence, the probability that all of the values zk,i over 1 ≤ k ≤ t, 1 ≤ i ≤ n lie in
[−ntB, ntB] is at least (1−1/(nt+1))nt. Using the inequality 1−1/(x+1) ≥ e−1/x

for x ≥ 1 it follows that the probability that all values are in the desired range
is at least (

e−1/nt
)nt

= e−1.

This completes the proof. ��
We can therefore get a rough idea of parameters and efficiency for the scheme.

Let λ be a security parameter (e.g., λ = 128 or λ = 256), for security we need
at least t = λ so that an attacker cannot guess the hash value or invert the
hash function (see also the proof of Theorem 1). We also need a large enough
set of private keys, so we need (2B + 1)n large enough. The signature contains
one hash value of t bits, plus t vectors fk or zk with entries of size bounded by
(nt + 1)B, for a total of λ + t�n log(2(nt + 1)B + 1)� bits (assuming each vector
is represented optimally). If we take t = λ = 128, and (n,B) = (74, 5) as in
CSIDH-512, we obtain signatures of around 20 KiB (see also Table 2).

To sign/verify one needs to evaluate the action of either of bk and bka
−1 for

every 1 ≤ k ≤ t, which means that for each k and each prime li one needs to
compute up to ntB isogenies of degree �i. Hence, the total number of isogeny
computations is upper bounded by (nt)2B. The quadratic dependence on nt is
a major inconvenience. For example, taking (n, t, B) = (74, 128, 5) gives around
228 isogeny computations in signature/verification. We can make t small using
the techniques in later sections, but one needs n large unless B is going to get
very large. So even going down to t = 8 still has signatures requiring around
220 isogeny computations. The acceptance probability estimate from Lemma 2 is
very close to the true value: for example, when (n, t, B) = (74, 128, 5) then the
true acceptance probability is approximately 0.36790, while e−1 ≈ 0.36788.

3.3 CSIDH Implementation

The above description represents the isomorphism class of a ∗ E using a j-
invariant. But, as explained in [13,24], in the case of supersingular curves over
Fp there are two isomorphism classes for each j-invariant and so the j-invariant
alone is not an adequate representation for a ∗ E. Castryck et al. [13] observe
that the Montgomery model for these curves provides an elegant solution to the
dilemma. Instead of representing a ∗ E with a j-invariant one uses the “A coef-
ficient” of the Montgomery equation. This works when choosing p ≡ 3 (mod 8)
and using curves whose endomorphism ring is on the “floor” of the 2-isogeny
volcano; we refer to Proposition 8 of [13] for the details.
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In short, when implementing our signature schemes using CSIDH one should
choose p ≡ 3 (mod 8) and replace the words “j-invariant” by “Montgomery
coefficient”. In terms of the security analysis, strictly speaking the security proofs
use variants of the computational problems expressed in terms of Montgomery
coefficients. It is a simple exercise to show that these problems are equivalent
to problems expressed using j-invariants. Hence the theorem statements in our
paper are all correct in the setting of CSIDH.

3.4 Security Proof

We now prove security of the basic scheme in the random oracle model against a
classical adversary. The proof technique is the standard approach that uses the
forking lemma. In this section we do not consider quantum adversaries, or give
a proof in the quantum random oracle model (QROM). A proof in the QROM
follows from the approach in Sect. 7.

First we need to discuss some subtleties about the distribution of ideal classes
coming from the key generation and signing algorithms.

Definition 1. Fix distinct ideals l1, . . . , ln. For B ∈ N, consider the ran-
dom variable a which is the ideal class of

∏n
i=1 l

ei
i over a uniformly random

e ∈ [−B,B]n. Define DB to be the distribution on Cl(O) corresponding to this
random variable. Define MB to be an upper bound on the probability, over a, b
sampled from DB, that a ≡ b.

In other words, DB is the output distribution of the public key generation
algorithm. Understanding the distribution DB is non-trivial in general.3 For
small B and n (so that (2B + 1)n � #Cl(O)) we expect DB to be the uniform
distribution on a subset of Cl(O) of size (2B +1)n. For fixed n and large enough
B it should be the case that DB is very close to the uniform distribution on
Cl(O). A full study of the distribution DB is beyond the scope of this paper,
but is a good problem for future work.

For the isogeny problem to be hard for public keys we certainly need
MB ≤ 1/2λ, where λ is the security parameter. In the proof we will need to
use MntB , since the concern is about the auxiliary curves generated during the
signing algorithm. We do not require these curves to be uniformly sampled, but
in practice we can certainly assume that MntB = O(1/

√
p). In any case, it is

negligible in the security parameter.

Problem 2. Let notation be as in the key generation protocol of the scheme.
Given (E,EA), where EA = a ∗ E for some ideal a =

∏n
i=1 l

ei
i and where the

exponent vector e = (e1, . . . , en) is uniformly sampled in [−B,B]n ⊆ Z
n, to

compute any ideal equivalent to a.

3 Even the analogous problem of understanding the distribution of
∏

i �eii (mod q),
where �i are small primes and q is some integer, is an open problem in general.
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Depending on how close to uniform is the distribution DB, this problem may
or may not be equivalent to Problem 1 and may or may not have a random
self-reduction. Nevertheless, we believe this is a plausible assumption.

We recall the forking lemma, in the formulation of Bellare and Neven [4].

Lemma 3 (Bellare and Neven [4]). Fix an integer Q ≥ 1. Let A be a ran-
domised algorithm that takes as input h1, . . . , hQ ∈ {0, 1}t and outputs (J, σ)
where 1 ≤ J ≤ Q with probability ℘. Consider the following experiment:
h1, . . . , hQ are chosen uniformly at random in {0, 1}t; A(h1, . . . , hQ) returns
(I, σ) such that I ≥ 1; h′

I , . . . , h
′
Q are chosen uniformly at random in {0, 1}t;

A(h1, . . . , hI−1, h
′
I , . . . , h

′
Q) returns (I ′, σ′). Then the probability that I ′ = I and

h′
I �= hI is at least ℘(℘/Q − 1/2t).

Theorem 1. In the random oracle model, the basic signature scheme of Fig. 1 is
unforgeable under a chosen message attack under the assumption that Problem 2
is hard.

Proof. Consider a polynomial-time adversary A against the signature scheme.
So A takes a public key, makes queries to the hash function H and the signing
oracle, and outputs a forgery of a signature with respect the public key.

Let (E,EA = a ∗ E) be an instance of Problem2. The simulator runs the
adversary A with public key (E,EA).

Suppose the adversary A makes at most Q (polynomial in the security param-
eter) queries in total to either the random oracle H or the signing oracle. We now
explain how the simulator responds to these queries. The simulator maintains a
list, initially empty, of pairs (x,H(x)) for each value of the random oracle that
has been defined.

Sign queries: To answer a Sign query on message msg the simulator chooses t
uniformly chosen bits b1, . . . , bt ∈ {0, 1}. When bk = 0 the simulator randomly
samples zk ← [−ntB, ntB]n and sets bk =

∏n
i=1 l

zk,i

i and computes Ek = bk ∗ E,
just like in the real signing algorithm. When bk = 1 the simulator chooses a
random ideal ck =

∏n
i=1 l

zk,i

i for zk,i ∈ [−ntB, ntB] and computes Ek = ck ∗ EA.
By Lemma 1, the values j(Ek) and zk are distributed exactly as in the real
signing algorithm. We program the random oracle (update the hash list) so that
H(j(E1), . . . , j(Et),msg) := b1 · · · bt, unless the random oracle has already been
defined on this input in which case the simulation fails and outputs ⊥. The
probability of failure is at most Q/M t

ntB , where MntB is defined in Definition 1
to be an upper bound on the probability of a collision in the sampling of ideal
classes. Note that Q/M t

ntB is negligible. Assuming the simulation does not fail,
the output is a valid signature and is indistinguishable from signatures output
by the real scheme in the random oracle model.

Hash queries: To answer a random oracle query on input x the simulator checks
if (x, y) already appears in the list, and if so returns y. Otherwise the simulator
chooses uniformly at random y ∈ {0, 1}t and sets H(x) := y and adds (x, y) to
the list.
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Eventually A outputs a forgery (msg, σ = (z1, . . . , zt, b1 · · · bt)) that passes
the verification equation. Define ck =

∏
i l

zk,i

i . The proof now invokes the Fork-
ing Lemma (see Bellare-Neven [4]). The adversary is replayed with the same
random tape and the exact same simulation, except that one of the hash queries
is answered with a different binary string. With non-negligible probability the
adversary outputs a forgery σ = (z′

1, . . . , z
′
t, b

′
1 · · · b′

t) for the same message msg
and the same input (j(E1), . . . , j(Et),msg) to H, but a different output string
b′
1 · · · b′

t. Let k be an index such that bk �= b′
k (without loss of generality bk = 0

and b′
k = 1). Then the ideal classes ck and c′k in the two signatures are such that

j(ck ∗ E) = j(c′k ∗ EA) and so c′kc
−1
k =

∏
i l

z′
k,i−zk,i

i is a solution to the problem
instance. ��

We make two observations about the use of the forking lemma. First, as
always, the proof is not tight since if the adversary succeeds with probability ε
then the simulator solves the computational problem with probability propor-
tional to ε2. Second, the hash output length t in Lemma 3 only appears in the
term 1/2t, so it suffices to take t = λ. There may be situations where a larger
hash output is needed; for more discussion about hash output sizes we refer to
Neven, Smart and Warinschi [44].

4 Smaller Signatures and Faster Signing/Verification

The signature size of the basic scheme is rather large (around 20 KiB), since
the sigma protocol that underlies the identification scheme only has single bit
challenges. In practice we need t ≥ 128, which means signatures are very large
(several megabytes). To get shorter signatures it is natural to try to increase
the size of the challenges. In this section we sketch an approach to obtain s-bit
challenge values for any small integer s ∈ N, by trading the challenge size with
the public key size. This optimisation also dramatically speeds up signing and
verification. In the next section we explain how to shorten the public keys again.

The basic idea is to have public keys (EA,0 = a0 ∗ E, . . . , EA,2s−1 =
a2s−1 ∗ E). For each 0 ≤ m < 2s we choose em ← [−B,B]n and set
EA,m = (

∏n
i=1 l

em,i

i ) ∗ E. The signing algorithm for user A chooses t ran-
dom ideals bk =

∏n
i=1 l

fk,i

i and computes Ek = bk ∗ E, as before. Now we have
s-bit challenges b1, . . . , bt ∈ {0, 1, . . . , 2s − 1}. For each 1 ≤ k ≤ t the signer
computes zk = fk −ebk , which corresponds to the ideal class ck = bka

−1
bk

and the
verifier can check that j(Ek) = j(ck ∗ EA,bk).

A signature consists of one hash value, plus t vectors zk with entries of size
bounded by ntB, i.e., a total of λ+t�n log(2ntB+1)� bits, similar to the previous
section. But now for security we only require ts ≥ λ. Taking, say, λ = 128 and
s = 16 can mean t as low as 8, and so only 8 vectors need to be transmitted
as part of the signature, giving signatures of well under 1 KiB (see Table 3). Of
course the public key now includes 216 j-invariants (elements of Fp) which would
be around 4 MiB, and key generation is also 216 times slower.

As far as we can tell, this idea cannot be applied to the schemes of Yoo
et al. [53] or Galbraith et al. [28].
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4.1 Security

A trivial modification to the proof of Theorem1 can be applied in this setting.
But note that the forking lemma produces two signatures such that bk �= b′

k

for some index k. Hence from a successful forger we derive two ideal classes
ck and c′k such that j(ck ∗ EA,bk) = j(c′k ∗ EA,b′

k
). It follows that (c′k)−1ck is an

ideal class corresponding to an isogeny EA,bk → EA,b′
k
. Hence the computational

assumption underlying the scheme is the following.

Problem 3. Let notation be as in the key generation protocol of the scheme.
Consider a set of 2s elliptic curves {EA,0, . . . , EA,2s−1}, all of the form EA,m =
am ∗ E for some ideal am =

∏n
i=1 l

em,i

i where the exponent vectors em are
uniformly sampled in [−B,B]n ⊆ Z

n. The problem is to compute an ideal cor-
responding to any isogeny EA,m → EA,m′ for some m �= m′.

We believe this problem is hard for classical and quantum computers. One
can easily obtain a non-tight reduction of this problem to Problem2. However, if
the ideals am are not sampled uniformly at random from Cl(O) then we do not
know how to obtain a random-self-reduction for this problem, which prevents us
from having a tight reduction to Problem2.

Theorem 2. In the random oracle model, the signature scheme of this section is
unforgeable under a chosen message attack under the assumption that Problem 3
is hard.

The proof of this theorem is almost identical to the proof of Theorem1 and
so is omitted.

4.2 Variant Based on a More Natural Problem

Problem 3 is a little un-natural. It would be more pleasing to prove security based
on Problem 1 or Problem 2. We now explain that one can prove security based
on Problem 1, under an assumption about uniform sampling of ideal classes.

Suppose in this section that the distribution DB of Definition 1 has negligible
statistical distance (Renyi divergence can also be used here) from the uniform
distribution. This assumption is reasonable for bounded n and very large B; but
we leave for future work to determine whether practical parameters for isogeny
based cryptography can be obtained under this constraint.

Lemma 4. Let parameters be such that the statistical distance between DB and
the uniform distribution on Cl(O) is negligible. Suppose that all the prime ideals
li have norm bounded as O(log(p)) Then given an algorithm that runs in time T
and solves Problem 3 with probability ε, there is an algorithm to solve Problem 1
with time T + O(2s log(p)5) and success probability ε/2.

Proof. Let A be an algorithm for Problem3, and let (E,EA = a ∗ E) be an
instance of Problem 1.



SeaSign: Compact Isogeny Signatures from Class Group Actions 773

Choose random ideal classes b0, . . . , b2s−1 (chosen as bm =
∏n

i=1 l
ui,m

i for
0 ≤ m < 2s and ui,m ∈ [−B,B]) and compute E′

A,m = bm ∗ E for 0 ≤ m < 2s−1

and E′
A,m = bm ∗ EA for 2s−1 ≤ m < 2s. Choose a random permutation π on

{0, 1, . . . , 2s −1} and construct the sequence EA,m = E′
A,π(m). This computation

takes O(2s log(p)5) bit operations, since n and B and the norm �i of li are all
O(log(p)). Note that these curves are all uniformly sampled in the isogeny class,
and so there is no way to distinguish whether any individual curve has been
generated from E or EA. This is where the subtlety about distributions appears:
it is crucial that the curves derived from the pair (E,EA) are indistinguishable
from the curves in Problem 3.

Now run the algorithm A on this input. Since the input is indistinguishable
from a real input, A runs in time T and succeeds with probability ε. In the case
of success, we have an ideal c corresponding to an isogeny EA,m → EA,m′ for
some m �= m′. With probability 1/2 we have that one of the curves, say EA,m, is
known to the simulator as b ∗ E and the other (i.e., EA,m′) is known as b′ ∗ EA.
If this event occurs then we have cb ∗ E = b′ ∗ EA (or vice versa) in which case
cb(b′)−1 is a solution to the original instance. ��

Note that this proof introduces an extra 1/2 factor in the success probability,
but this is not a serious issue since the security proof isn’t tight anyway.

Using this result, the following theorem is an immediate consequence of The-
orem 2.

Theorem 3. Let parameters be such that the statistical distance between DB

and the uniform distribution on Cl(O) is negligible. In the random oracle model,
the signature scheme of this section is unforgeable under a chosen message attack
under the assumption that Problem 1 is hard.

We have a tight proof in Sect. 7 based on a less standard assumption (see
Problem 4). It is an open problem to have a tight proof and also the security
based on Problem 1.

4.3 Reducing Storage for Private Keys

Rather than storing all the private keys am for 0 ≤ m < 2s one could have
generated them using a pseudorandom function as PRF(seed, i) where seed is a
seed and i is used to generate the i-th private key (which is an integer exponent
vector). The prover only needs to store seed and can then recompute the private
keys as needed. Of course, during key generation one needs to compute all the
public keys, but during signing one only needs to determine t ≈ 8 private keys
(although this adds a cost to the signing algorithm).

5 Smaller Public Keys

The approach of Sect. 4 gives signatures that are potentially quite small, but at
the expense of very large public keys. In some settings (e.g., software signing



774 L. De Feo and S. D. Galbraith

or licence checks) large public keys can be easily accommodated, while in other
settings (e.g., certificate chains) it makes no sense to shorten signatures at the
expense of public key size. In this section we explain how to use techniques from
hash-based signatures to compress the public key while also maintaining compact
signatures. The key idea is to use a Merkle tree [41] with leaves the public curves
EA,0, . . . , EA,2s−1, and use the tree root (a single hash value) as public key.
However, the security of plain Merkle trees depends on collision resistance of
the underlying hash function, thus requiring hashes of size at least twice the
security parameter. Instead, we use a modified Merkle tree, as introduced in the
hash-based signatures XMSS-T [31] and SPHINCS+ [5], whose security relies
on the second-preimage resistance of a keyed hash function.

Let λ be a security parameter, and let n,B, s, t, p be as in the previous sec-
tions; we assume that �log p� > 2λ, as this is the case in any secure instantiation.
Let the following (public) functions be given:

– PRFsecret : {0, 1}λ × {0, 1}s → [−B,B]n,
– PRFkey : {0, 1}λ × {0, 1}s+1 → {0, 1}λ,
– PRFmask : {0, 1}λ × {0, 1}s+1 → {0, 1}�log p� three pseudo-random functions,

and
– M : {0, 1}λ × {0, 1}�log p� → {0, 1}λ a keyed hash function (where we think

of the first λ bits as the key and the second �log p� bits as the input).

Finally, let PK.seed and SK.seed be two random seeds; as the names sug-
gest, PK.seed is part of the public key, while SK.seed is part of the secret key.
Like in Sect. 4.3, we define the secret ideals am =

∏n
i=1 l

em,i

i , where em =
PRFsecret(SK.seed,m), and the public curves EA,m = am ∗ E, for 0 ≤ m < 2s.

We set up a hash tree by defining hl,u for 0 ≤ l ≤ s and 0 ≤ u < 2s−l. First
we set

hs,u = M
(
PRFkey(PK.seed, 2s + u), j(EA,u) ⊕ PRFmask(PK.seed, 2s + u)

)

for 0 ≤ u < 2s, where ⊕ denotes bitwise XOR. Now, for any 0 ≤ l < s, the rows
of the hash tree are defined as

hl,u =M
(
PRFkey(PK.seed, 2l+u), (hl+1,2u‖hl+1,2u+1)⊕PRFmask(PK.seed, 2l+u)

)
.

Finally, the public key is set to the pair (PK.seed, h0,0).
To prove that a value EA,u is in the hash tree, we use its authentication path.

That is the list of the hash values hl,u′ , for 1 ≤ l ≤ s, occurring as siblings of the
nodes on the path from hs,u to the root. The proof in [31, Appendix B] shows
that having M output λ-bit hashes gives a (classical) security of approximately
2λ. See [5,31] for more details.

Typically, in hash-based signatures the secret key would only contain SK.seed,
since all secret and public values can be reconstructed from it at an acceptable
cost. However, in our case recomputing the leaves of the hash tree (2s class
group actions) is much more expensive than recomputing the internal nodes
(2s − 1 hash function evaluations), thus we set the secret key to the tuple
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(SK.seed, hs,0, . . . , hs,2s−1). This is a considerably large secret key, e.g., around
1 MiB when λ = 128 and s = 16, but it is offset by a more than tenfold gain
in signing time. Also note that the values hs,u can (and will) be leaked without
any loss in security, they are indeed part of the uncompressed public key, thus
they are more formally treated as auxiliary signer data, rather than as part of
the secret key.

To sign we proceed like in Sect. 4, but the signature now needs to con-
tain additional information. The signer computes the random ideals b1, . . . , bt

and the associated curves E1, . . . , Et to obtain the challenges b1, . . . , bt. Then,
using PRFsecret, they obtain the secrets ab1 , . . . , abt , recompute the public curves
EA,b1 , . . . , EA,bt , and the ideals ci = a−1

bi
bi. The signature is made of the ideals

c1, . . . , ct, the curves EA,b1 , . . . , EA,bt , and their authentication paths in the hash
tree. The verifier computes Ei as ci ∗EA,bi , obtains the challenges b1, . . . , bt, and
uses them to verify the authentication paths. Hence, the signature contains t
ideals represented as vectors in [−ntB, ntB]n, t curves represented by their j-
invariants, and t authentication paths of length s. The t authentication paths
eventually merge before the root, thus some hash values will be repeated. We
can save some space by only sending the hash values once, in some standardised
order: the worst case happening when no path merges before level log(t), no
more than t(s − log(t)) hash values need to be sent as part of the signature. In
total, a signature requires at most t�n log(2ntB + 1)� + t log(p) + tλ(s − log(t))
bits. For our parameters t = 8, s = 16 and λ = 128, this adds about 2 KiB to
the signature of Sect. 4. Note that this is still less than half the size of the best
stateless hash-based signature schemes (the NIST candidate SPHINCS+ [5,6]
has size-optimized signatures of 8080 bytes at the NIST security level 1), and
is comparable in size to stateful hash-based signatures (e.g., the IETF draft
XMSS [30, § 5.3.1]) and to the shortest known lattice-based signatures.

Concerning security, the proofs of the previous sections, and that of [31,
Appendix B] can be combined to prove the following theorem.

Theorem 4. The signature scheme of this section is unforgeable under a chosen
message attack under the following assumptions:

– Problem 3 is hard;
– The multi-function multi-target second-preimage resistance of the keyed hash

function M ;
– The pseudo-randomness of PRFsecret;

when the hash function H and the pseudo-random functions PRFkey and PRFmask

are modelled as random oracles (ideal random functions).

Like in the previous section, it is possible to replace Problem3 with Prob-
lem 1, modulo some additional assumptions. Both proofs are straightforward
adaptations, and we omit them for conciseness. As already noted, the proofs
are not tight, however the part concerned with the second-preimage resistance
of M is.
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6 Performance

Table 2 gives some estimates of cost for the schemes presented in Sects. 3, 4, 5.
The rows of the table are divided into three sections.

The first section of the table (under the heading “Exact”) reports the param-
eter sizes, as a number of bits, already computed in each section, where λ is the
security parameter, n,B and s are as described previously (in Sect. 3 we have
s = 1). To simplify the expressions we assume that all hash functions have λ-bit
outputs, and we set the parameter t = λ/s.

In all sections we give a rough lower bound for the performance of the keygen
and sign/verify algorithms, in terms of Fp-operations. The lower bound only
takes into account the number of operations needed to compute and evaluate
the isogeny path, and so the exact cost may be higher.

The operation count is based on the following estimates.

1. Based on [17,46], we estimate that computing/evaluating an isogeny of degree
�, when given a kernel point, costs O(�) operations.

2. By the prime number theorem
∑n

i=1 �i ∼ 1
2n2 ln(n), and the estimate is very

accurate already for n > 3.

Putting these estimates together, an ideal with exponent vector within [−C,C]n

can be evaluated in O(Cn2 log(n)) operations on average and in the worst case.
We note that the above estimate is not likely to be the dominant part in the
computation, especially asymptotically, as scalar multiplications of elliptic points
are likely to dominate. However, estimating this part of the algorithm is much
more complex and dependent on specific optimisations, we thus leave a more
precise analysis for future work.

The second section of rows in the table (under the heading “Asymptotic”)
gives asymptotic estimates in terms only of the security parameter λ, and the
parameter of s of Sect. 4. We now give a brief justification for the parameter
restrictions in terms of λ.

1. Kuperberg’s algorithm is believed to require at least 2
√

log(N) operations in
a group of size N . In our case N >

√
p. Taking log(p) > 2λ2 gives

√
log(N) >

√
1
2 log(p) >

√
1
22λ2 = λ.

So we choose log(p) ≈ 2λ2.
2. To resist a classical meet-in-the-middle attack we need (2B + 1)n > 22λ,

although the work of Adj et al. [2] suggests this may be too cautious. For
security against Tani’s quantum algorithm we may require (2B + 1)n > 23λ,
and so n log(B) ∼ 3λ, though again this may not be necessary [35]. In any
case, we have n log(B) = Ω(λ).

3. Assuming that one wants to optimise for (asymptotic) performance, the best
choice is then to take B = O(1) and n = Ω(λ), which means that the prime
ideals li have norm �i = Ω(n log(n)) = Ω(λ log(λ)). Note that this is com-
patible with the requirement log(p) > 2λ2, since

∑n
i=1 ln(�i) ∼ n ln(n) ∼

λ log(λ)2.
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4. Instead of measuring performance in terms of Fp-operations, here we measure
them in terms of bit-operations. After substituting B and n, this adds a factor
λ2 log(λ) in front of the lower bound if using fast (quasi-linear complexity)
modular arithmetic.

Note that our asymptotic choices forbid the key space from covering the
whole class group. If the conditions of Problem1 are wanted, different choices
must be made for n and B. In this case it is best to choose primes of the form
p + 1 = 4

∏n
i=1 �i, as in CSIDH [13]. Then, n log(n) ∼ log(p) ∼ 2λ2 and so we

have n ∼ λ2/ log(λ). To have a distribution of ideal classes close to uniform we
need (2B + 1)n � √

p and so log(B) > log(
√

p)/n ∼ log(λ). Hence B >
√

n,
making all asymptotic bounds considerably worse.

The third block of rows (under the heading “CSIDH”) gives concrete sizes
obtained by fixing λ = 128 and s = 16 and using the CSIDH-512 primitive,
i.e., (n,B, log(p)) = (74, 5, 510). We estimate these parameters to correspond to
the NIST-1 security level. Note that we are able to get smaller signatures at
similar cost, for example see the various options in Table 3 (and one can also
potentially consider s > 16, such as (s, t) = (21, 6)). However, for Table 2 we
choose the same parameters as [13] so that we are able to refer to their running-
time computations. We estimate real-world performance, using as baseline the
worst-case time for one isogeny action in CSIDH. In [13,42], for an exponent
vector in [−B,B]n, this time is reported to be around 30 ms. Accordingly, we
multiply this time by the size of the exponent vector to obtain our estimates.
Note that the estimates are very rough, as they purposely ignore other factors
such as hash tree computations. However the results in [5,31] show that hash
trees much larger than ours can be computed in a fraction of the time we need
to compute isogenies.

Table 3. Parameter choices for small signatures, with (s, t) = (16, 8), at around 128-bit
classical security level. Signature size is nt�log2(2ntB + 1)� + 128 bits.

n B �log2(2ntB + 1)� Signature size (bytes)

20 3275 20 416

28 293 17 492

33 124 16 544

37 55 15 571

46 22 14 660

7 Tight Security Reduction Based on Lossy Keys

We now explain how to implement lossy keys in our setting. This allows us to
use the methods of Kiltz, Lyubashevsky and Schaffner [36] (that build on work
of Abdalla, Fouque, Lyubashevsky and Tibouchi [1]) to obtain signatures from
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lossy identification schemes. This approach gives a tight reduction in the quantum
random oracle model.

Here’s the basic idea to get a lossy scheme, using uniform distributions for
simplicity (one can also use discrete Gaussians in this setting): Take a very large
prime p so that the ideal class group is very large, but use relatively small values
for n and B so that {a =

∏n
i=1 l

ei
i : |ei| ≤ B} is a very small subset of the class

group.4 The real key is (E,EA = a ∗ E) for such an a. The lossy key is (E,EA)
where EA is a uniformly random curve in the isogeny class. Further, choose
parameters so that the fk,i are also such that {b =

∏n
i=1 l

fk,i

i : |fk,i| ≤ (nt+1)B}
is a small subset of the ideal class group. In the case of a real key, the signatures
define ideals that correspond to “short” paths from E or EA to a curve E . In the
case of a lossy key, then such ideals do not exist, as for a curve E it is not the
case that there is a short path from E to E AND a short path from EA to E .

In the remainder of this section we develop these ideas.

7.1 Background Definitions

We closely follow Kiltz, Lyubashevsky and Schaffner [36]. A canonical identi-
fication scheme consists of algorithms (IGen,P1,P2,V) and a set ChSet. The
randomised algorithm IGen(1λ) outputs a key pair (pk, sk). The deterministic
algorithm P1 takes sk and randomness r1 and computes (W, st) = P1(sk, r1).
Here st denotes state information to be passed to P2. A challenge c is sam-
pled uniformly from ChSet. The deterministic algorithm P2 then computes
Z = P2(sk,W, c, st, r2) or ⊥, where r2 is the randomness. The output ⊥ cor-
responds to an abort in the “Fiat-Shamir with aborts” paradigm. We require
that V(pk,W, c, Z) = 1 for a correctly formed transcript (W, c, Z).

We assume, for each value of λ, there are well-defined sets W and Z, such
that W contains all W output by P1 and Z contains all Z output by P2. The
scheme is commitment recoverable if, given c and Z = P2(sk,W, c, st), there is
a unique W ∈ W such that V(pk,W, c, Z) = 1 and this W can be efficiently
computed from (pk, c, Z)

A canonical identification scheme is εzk-naHVZK non-abort honest verifier
zero knowledge if there is a simulator that given only pk outputs (W, c, Z) whose
distribution has statistical distance at most εzk from the output distribution of
the real protocol conditioned on P2(sk,W, c, st, r2) �=⊥.

A lossy identification scheme is a canonical identification scheme as above
together with a lossy key generation algorithm LossIGen, which is a randomised
algorithm that on input 1λ outputs pk. An adversary against a lossy identifica-
tion scheme is a randomised algorithm A that takes an input pk and returns 0
or 1. The advantage AdvLOSS(A) of an adversary against a lossy identification
scheme is defined to be

∣
∣Pr

(
A(pk) = 1 : pk ← LossIGen(1λ)

) − Pr
(
A(pk) = 1 : pk ← IGen(1λ)

)∣
∣ .

4 It might even be possible to consider working with subgroups, in the quantum algo-
rithm case where the class group structure is known. For example, private keys could
be sampled from a large subgroup and lossy keys from a non-trivial coset.
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The two security properties of a lossy identification scheme are:

1. There is no polynomial-time adversary that has non-negligible advantage
AdvLOSS in distinguishing real and lossy keys.

2. The probability, over (pk,W, c) where pk is an output of the lossy key gener-
ation algorithm LossIGen, W ← W and c ← ChSet, that there is some Z ∈ Z
with V(pk,W, c, Z) = 1, is negligible.
This will allow to show that no unbounded quantum adversary can pass
the identification protocol (or, once we have applied Fiat-Shamir, forge a
signature) with respect to a lossy public key, because with overwhelming
probability no such signature exists.

7.2 Scheme

We can re-write our scheme in this setting, see Fig. 2. Here we are assuming that
E is a supersingular elliptic curve with j(E) ∈ Fp where p satisfies the constraint

√
p > (4(nt + 1)B + 1)n2λ (3)

This bound is sufficient for the keys to be lossy.
We use the generic deterministic signature construction from Kiltz, Lyuba-

shevsky and Schaffner [36], and use the fact that signatures can be shortened
because the identification protocol is commitment recoverable. We refer to the
full version of the paper for details.

7.3 Proofs

We now explain that our identification scheme satisfies the required properties,
from which the security of the signature scheme will follow from Theorem 3.1
of [36].

We make some heuristic assumptions.

Heuristic 1: There are at least
√

p supersingular elliptic curves with j-invariant
in Fp.
This assumption, combined with the bound

√
p � (4(nt + 1)B)n of Eq. (3),

implies that the curves Ek constructed by algorithm P1 are a negligibly small
proportion of all such curves.

Heuristic 2: Each choice of fk ∈ [−(nt + 1)B, (nt + 1)B]n gives a unique value
for j(Ek).
This is extremely plausible given Eq. (3). It implies that the min-entropy of
the values W output by P1 is extremely high (more than sufficient for the
security proofs).

Under heuristic assumption 1, we now show that the keys are lossy. The
lossy key generator outputs a pair (E,EA) where E and EA are randomly sam-
pled supersingular elliptic curves with j(E), j(EA) ∈ Fp. To implement this one
constructs a supersingular curve with j-invariant in Fp and then runs long pseu-
dorandom walks in the isogeny graph until the uniform mixing bounds imply
that EA is uniformly distributed.
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Algorithm 4 IGen
Input: B, l1, . . . , ln, E
Output: sk = e and pk = EA

1: e ← [−B, B]n

2: EA = (
∏n

i=1 l
ei
i ) ∗ E

3: return sk = e, pk = EA

Algorithm 5 P1

Input: (E, EA), r1
Output: W = (j(E1), . . . , j(Et)), st =
(f1, . . . , ft)
1: for k = 1, . . . , t do
2: fk ← [−(nt + 1)B, (nt + 1)B]n

using PRF(r1)
3: Ek = (

∏n
i=1 l

fk,i

i ) ∗ E
4: end for
5: return (j(E1), . . . , j(Et)), (f1, . . . , ft)

Algorithm 6 P2

Input: (E, EA), e, W , c, st, r2
Output: Z = (z1, . . . , zt)
1: Parse c as b1‖ · · · ‖bt

2: for k = 1, . . . , t do
3: if bk = 0 then
4: zk = fk
5: else
6: zk = fk − e
7: end if
8: if zk �∈ [−ntB, ntB]n then
9: return ⊥
10: end if
11: end for
12: return σ = (z1, . . . , zt)

Algorithm 7 V
Input: (E, EA), (W, c, Z)
Output: Valid/Invalid
1: Parse W as (j1, . . . , jt)
2: Parse c as b1‖ · · · ‖bt

3: Parse Z as (z1, . . . , zt)
4: for k = 1, . . . , t do
5: if bk = 0 then
6: Ek = (

∏n
i=1 l

zk,i

i ) ∗ E
7: else
8: Ek = (

∏n
i=1 l

zk,i

i ) ∗ EA

9: end if
10: end for
11: if (j1, . . . , jt) = (j(E1), . . . , j(Et))

then
12: return Valid
13: else
14: return Invalid
15: end if

Fig. 2. The identification protocol. Note that P1 does not need sk, while P2 does not
use r2 (it really is deterministic) and does not use W . Also note that the scheme is
commitment recoverable.

Lemma 5. Let parameters satisfy the bound of Eq. (3) and suppose heuris-
tic 1 holds. Let (E,EA) be a key output by the lossy key generator. Then
with overwhelming probability there is no ideal a =

∏n
i=1 l

fi

i such that f ∈
[−2(nt + 1)B, 2(nt + 1)B]n and j(EA) = j(a ∗ E).

Proof. If fi ∈ [−2(nt + 1)B, 2(nt + 1)B] then there are 4(nt + 1)B + 1 choices
for each fi and so at most (4(nt + 1)B + 1)n choices for a. Given E it means
there are at most that many j(a ∗ E). Since EA is uniformly and independently
sampled from a set of size at least

√
p > (4(nt+1)B+1)n2λ, the probability that
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j(EA) lies in the set of all possible j(a ∗ E) is at most 1/2λ, which is negligible.
��

We consider the following decisional problem. It is an open challenge to give
a “search to decision” reduction in this context (showing that if one can solve
Problem 4 then one can solve Problem 2). This seems to be non-trivial.

Problem 4. Consider two distributions on pairs (E,EA) of supersingular elliptic
curves over Fp. Let D1 be the output distribution of the algorithm IGen. Let
D2 be the uniform distribution (i.e., output distribution of the lossy key gener-
ation algorithm). The decisional short isogeny problem is to distinguish the two
distributions when given one sample.

The next result shows the second part of the security property for lossy keys.

Lemma 6. Assume heuristic 1. Let pk be an output of the lossy key genera-
tion algorithm LossIGen. Let W ← W be an output of P1. Let c ← ChSet be a
uniformly chosen challenge. Then the probability that there is some Z ∈ Z with
V(pk,W, c, Z) = 1, is negligible.

Proof. Let pk = (E,EA) be an output of LossIGen(1λ). By Lemma 5 we have
that with overwhelming probability j(EA) �= j(a ∗ E) for all ideals a of the form
in Lemma 5. Let W = (j(E1), . . . , j(Et)) be an element of W, so that each Ek is
of the form ak ∗ E where ak =

∏
i l

fk,i

i for fk,i ∈ [−(nt + 1)B, (nt + 1)B].
Let c ← ChSet be a uniformly chosen challenge, which means that c �= 0 with

overwhelming probability. Then there is some k with ck �= 0 and so if Z was to
satisfy the verification algorithm V(pk,W, c, Z) = 1 then it would follow that zk

gives an ideal ck such that j(Ek) = j(ck ∗EA). From ak ∗E ∼= Ek
∼= ck ∗ EA it fol-

lows that EA
∼= (c−1

k ak) ∗ E. But c−1
k ak =

∏
i l

fk,i−zk,i

i , which violates the claim
about EA corresponding to Lemma 5. Hence with overwhelming probability Z
does not exist, and the result is proved. ��

Note that Heuristic 2 also shows that there are “unique responses” in the
sense of Definition 2.7 of [36] (not just computationally unique, but actually
unique). But we won’t need this for the result we state.

We now discuss no-abort honest verifier zero-knowledge (naHVZK). This
is simply the requirement that there is a simulator that produces transcripts
(W, c, Z) that are statistically close to real transcripts output by the protocol.

Lemma 7. The identification scheme (sigma protocol) of Fig. 2 has no-abort
honest verifier zero-knowledge.

Proof. This is simple to show in our setting (due to the rejection sampling):
Instead of choosing W = (j((

∏
i l

f1,i
i ) ∗ E), . . . , j((

∏
i l

fk,i

i ) ∗ E)), then c, and
then Z = (z1, . . . , zk) the simulator chooses Z first, then c, and then sets, for
1 ≤ k ≤ t, jk = j((

∏
i l

zk,i

i ) ∗ E) when ck = 0 and jk = j((
∏

i l
zk,i

i ) ∗ EA) when
ck = 1. Setting W = (j1, . . . , jk) it follows that (W, c, Z) is a transcript that
satisfies the verification algorithm. Further, the distribution of triples (W, c, Z)
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is identical to the distribution from the real protocol since, for any choice of the
private key, this choice of W would have arisen for some choice of the original
vectors fk. ��
Theorem 5. Assume Heuristic 1, and the hardness of Problem 2. Then the
deterministic signature scheme of Kiltz, Lyubashevsky and Schaffner applied to
Fig. 2 has UF-CMA security in the quantum random oracle model, with a tight
security reduction.

Proof. See Theorem 3.1 of [36]. In particular this theorem gives a precise state-
ment of the advantage. ��

One can then combine this proof with the optimisations of Sects. 4 and 5,
to get a compact signature scheme with tight post-quantum security based on a
merger of the assumptions corresponding to Problems 3 and 4.

8 Using the Relation Lattice

This section explains an alternative solution to the problem of representing an
ideal class without leaking the private key of the signature scheme. This vari-
ant can be considered if a quantum computer is available during system setup.
Essentially, this is the scheme from Stolbunov’s thesis (see Sect. 3.1), which can
be used securely once the relation lattice is known. Note that this section is about
signatures that involve sampling ideal classes uniformly and so the techniques
can’t be used in the lossy keys setting.

Let (l1, . . . , ln) be a sequence of O-ideals that generates Cl(O). Define

L =

{

(x1, . . . , xn) ∈ Z
n :

n∏

i=1

lxi
i ≡ (1)

}

.

Then L is a rank n lattice with volume equal to #Cl(O). Indeed, we have the
exact sequence of Abelian groups

0 → L → Z
n → Cl(O) → 1

where the map f : Z
n → Cl(O) is the group homomorphism (x1, . . . , xn) �→∏

i l
xi
i . We call L the relation lattice.
A basis for this lattice can be constructed in subexponential time using clas-

sical algorithms [8,29]. However, of interest to us is that a basis can be con-
structed in probabilistic polynomial time using quantum algorithms: the func-
tion f : Z

n → Cl(O) defined in the previous paragraph can be evaluated in
polynomial time [16,47], and finding a basis for L = ker f is an instance of the
Hidden Subgroup Problem for Z

n, which can be solved in polynomial time using
Kitaev’s generalisation of Shor’s algorithm [37]. The classical approach is not
very interesting since the underlying computational assumption is only subex-
ponentially hard for quantum computers, but it might make sense in a certain
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setting. The quantum case would make sense in a post-quantum world where a
quantum computer can be used to set up the system parameters for the system
and then is not required for further use. It might also be possible to construct
(E, p) such that computing the relation lattice is efficient (e.g., constructing E
so that Cl(End(E)) has smooth order), but we do not consider such approaches
in this paper.

For the remainder of this section we assume that the relation lattice is known.
Let {x1, . . . ,xn} be a basis for L. Let F = {∑n

i=1 : uixi : −1/2 ≤ ui < 1/2} be
the centred fundamental domain of the basis of L. Then there is a one-to-one
correspondence between F ∩Z

n and Cl(O) by (z1, . . . , zn) ∈ F ∩Z
n �→ ∏n

i=1 l
zi
i .

Returning to Stolbunov’s signature scheme, the solution to the problem is
then straightforward: Given a =

∏n
i=1 l

ei
i and bk =

∏n
i=1 l

fk,i

i , a representation
of bka

−1 is obtained by computing the vector z′ = fk − e and then using Babai
rounding to get the unique vector z in F ∩ (z′ + L). The vector z is sent as
the response to the k-th challenge. Since bk is a uniformly chosen ideal class,
the class bka

−1 is also uniformly distributed as an ideal class, and hence the
vector z ∈ F ∩ Z

n is uniformly distributed and carries no information about
the private key.

Lemma 8. If bk is a uniformly chosen ideal class then the vector z ∈ F ∩ Z
n

corresponding to fk − e is uniformly distributed.

Proof. For fixed e the vector z depends only on the ideal class of bk. But bk is
uniform and independent of e and not known to verifier. ��

The above discussion fixes a particular fundamental domain and uses Babai
rounding to compute an element in it, but this may not lead to the most efficient
signature scheme. One can consider different fundamental domains and different
“reduction” algorithms to compute z. Since the cost of signature verification
depends on the size of the entries in z, a natural computational problem is to
efficiently compute a short vector (z1, . . . , zn) corresponding to a given ideal
class; we discuss this problem in the next subsection.

8.1 Solving Close Vector Problems in the Relation Lattice

Let w = (w1, . . . , wn) ∈ Z
n be given and suppose we want to compute the

isogeny a ∗E where a =
∏n

i=1 l
wi
i . Since the computation of the isogeny depends

on the sizes of |wi| it is natural to first compute a short vector (z1, . . . , zn) that
represents the same element of Z

n/L. This can be done by solving a close vector
problem in the lattice L. Namely, if v ∈ L is such that ‖w − v‖ is short, then
z = w − v is a short vector that can be used to compute a ∗ E. Hence, the
problem of interest is the close vector problem in the relation lattice.

Note that most literature and algorithms for solving close lattice vector prob-
lems are with respect to the Euclidean norm, whereas for isogeny problems the
natural norms are the 1-norm ‖z‖1 =

∑n
i=1 |zi| or the ∞-norm ‖z‖∞ = maxi |zi|.

The choice of norm depends on how the isogeny is computed. The algorithm
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for computing a ∗ E given in [13] depends mostly on the ∞-norm, since the
Vélu formulae are used and a block of isogenies are handled together in each
iteration. However, the intuitive cost of the isogeny (and this is appropriate
when using modular polynomials to compute the isogenies) is given by the 1-
norm. If the entries zi are uniformly distributed in [−‖z‖∞, ‖z‖∞] then we have
‖z‖∞ ≈ √

3/n‖z‖2 and ‖z‖1 ≈ n
2 ‖z‖∞ ≈ √

3n/4‖z‖2.
There are many approaches to solving the close vector problem. All meth-

ods start with pre-processing the lattice using some basis reduction, and in our
case one can perform a major precomputation to produce a basis customised for
solving close vector problems. Once the instance w is provided one can perform
one of the following three approaches: the Babai nearest plane method (or an
iterative version of it, as done by Lindner and Peikert [39]); enumeration; reduc-
ing to SVP (the Kannan embedding technique) and running a basis reduction
algorithm. The choice of method depends on the quality of the original basis,
the amount of time available to spend on solving CVP (note that a reduction in
the sizes of the |zi| pays dividends in the time to compute a ∗ E, and so it may
be worth to devote more than a few cycles to this problem).

For this paper we focus on the Babai nearest plane algorithm. Let b1, . . . ,bn

be the (ordered) reduced lattice basis and b∗
1, . . . ,b

∗
n the Gram-Schmidt vectors.

Equation (4.3) of Babai [3] shows that the nearest plane algorithm on input w
outputs a vector v ∈ L with

‖w − v‖22 ≤ (‖b∗
1‖22 + ‖b∗

2‖22 + · · · + ‖b∗
n‖22)/4. (4)

Bounds on ‖b∗
i ‖ are regularly discussed in the literature. For example, much work

on the BKZ algorithm is devoted to understanding the sizes of these vectors; see
Gama-Nguyen and Chen-Nguyen [14].

Fukase and Kashiwabara [25] have discussed lattice reduction algorithms that
produce a basis that minimises the right hand size of Eq. (4) and hence are good
for solving CVP using the nearest-plane algorithm. Blömer [10] has given a
variant of the near-plane algorithm that efficiently solves CVP when given a
dual-HKZ-reduced basis.

For our calculations we simply consider a BKZ-reduced lattice basis and,
following Chen-Nguyen [14], assume that

‖b∗
i ‖2 ≈ ‖b1‖1−0.0263(i−1)

2 .

Some similar calculations are given in [11].

8.2 Optimal Signature Size

We now use an idea that is implicit in the work of Couveignes [18] and Stol-
bunov [49] that gives signatures of optimal size when the relation lattice is known.
Suppose the ideal class group is cyclic of order N and let g be a generator (whose
factorisation over (l1, . . . , ln) is known). Then one can choose the private key by
uniformly sampling an integer 0 ≤ x < N and letting a = gx in Cl(O). The
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public key is EA = a ∗ E as before (this computation requires “smoothing” the
ideal class using the relation lattice). When signing one chooses the t random
ideals bk by choosing uniform integers yk in [0, N) and computing bk = gyk . As
before Ek = bk ∗ E. Finally, in the scheme, when bk = 0 we return yk and when
bk = 1 we return yk − x (mod N). The verifier just sees a uniformly distributed
integer modulo N , and uses this to recompute Ek from either E or EA (again,
this requires reducing a vector modulo the relation lattice and then computing
the corresponding isogenies). This scheme is clearly optimal from the point of
view of signature size, since one cannot represent a random element of a group
of order N in fewer than log2(N) bits.

The method used to compute the isogenies during verification is left for the
verifier to decide. In practice all users will work with the same prime p (e.g.,
the 512-bit CSIDH prime) in which case the relation lattice can be precomputed
and optimised. The verifier then solves the CVP instances using their preferred
method and then computes the isogenies.

The full version of the paper contains a table of parameters for this scheme.

9 Conclusions

We have given a signature scheme suitable for the CSIDH isogeny setting. This
solves an unresolved problem in Stolbunov’s thesis. We have also shown how to
get shorter signatures by increasing the public key size. We do not know how
to obtain a similar trade-off between public key size and signature size for the
schemes of Yoo et al. [53] or Galbraith et al. [28] based on the SIDH setting.
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