LNCS 11478

Yuval Ishai
Vincent Rijmen (Eds.)

Advances in Cryptology -
EUROCRYPT 2019

38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part ll|

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA

11478

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Yuval Ishai - Vincent Rijmen (Eds.)

Advances in Cryptology —
EUROCRYPT 2019

38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques

Darmstadt, Germany, May 19-23, 2019
Proceedings, Part III

@ Springer

Editors

Yuval Ishai Vincent Rijmen
Technion COSIC Group
Haifa, Israel KU Leuven

Heverlee, Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-17658-7 ISBN 978-3-030-17659-4 (eBook)

https://doi.org/10.1007/978-3-030-17659-4
LNCS Sublibrary: SL4 — Security and Cryptology

© International Association for Cryptologic Research 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-17659-4

Preface

Eurocrypt 2019, the 38th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Darmstadt, Germany, during May
19-23, 2019. The conference was sponsored by the International Association for
Cryptologic Research (IACR). Marc Fischlin (Technische Universitdt Darmstadt,
Germany) was responsible for the local organization. He was supported by a local
organizing team consisting of Andrea Plichner, Felix Giinther, Christian Janson, and
the Cryptoplexity Group. We are deeply indebted to them for their support and smooth
collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. The invited
talks and the talks presenting the best paper/best young researcher spanned over both
tracks.

We received a total of 327 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 58 Program Committee
members. Committee members were allowed to submit at most one paper, or two if
both were co-authored. Submissions by committee members were held to a higher
standard than normal submissions. The reviewing process included a rebuttal round for
all submissions. After extensive deliberations the Program Committee accepted 76
papers. The revised versions of these papers are included in these three volume pro-
ceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the paper “Quantum
Lightning Never Strikes the Same State Twice” by Mark Zhandry. The runner-up was
the paper “Compact Adaptively Secure ABE for NC' from k Lin” by Lucas Kowalczyk
and Hoeteck Wee. The Best Young Researcher Award went to the paper “Efficient
Verifiable Delay Functions” by Benjamin Wesolowski. All three papers received
invitations for the Journal of Cryptology.

The program also included an TACR Distinguished Lecture by Cynthia Dwork,
titled “Differential Privacy and the People’s Data,” and invited talks by Daniele
Micciancio, titled “Fully Homomorphic Encryption from the Ground Up,” and
Francois-Xavier Standaert, titled “Toward an Open Approach to Secure Cryptographic
Implementations.”

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions can be very disappointing, especially rejections of very
good papers that did not find a slot in the sparse number of accepted papers. We
sincerely hope that these works eventually get the attention they deserve.

We are also indebted to the members of the Program Committee and all external
reviewers for their voluntary work. The committee’s work is quite a workload. It has
been an honor to work with everyone. The committee’s work was tremendously
simplified by Shai Halevi’s submission software and his support, including running the
service on IACR servers.

vi Preface

Finally, we thank everyone else—speakers, session chairs, and rump-session
chairs—for their contribution to the program of Eurocrypt 2019. We would also like to
thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2019 Yuval Ishai
Vincent Rijmen

Eurocrypt 2019

The 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research

General Chair

Marc Fischlin

Program Co-chairs

Yuval Ishai
Vincent Rijmen

Program Committee

Michel Abdalla

Adi Akavia

Martin Albrecht
Elena Andreeva
Paulo S. L. M. Barreto
Amos Beimel

Alex Biryukov

Nir Bitansky

Andrej Bogdanov
Christina Boura
Xavier Boyen

David Cash

Melissa Chase
Kai-Min Chung
Dana Dachman-Soled
Ivan Damgérd

Itai Dinur

Stefan Dziembowski
Serge Fehr

Juan A. Garay
Sanjam Garg

May 19-23, 2019
Darmstadt, Germany

Technische Universitdt Darmstadt, Germany

Technion, Israel
KU Leuven, Belgium and University of Bergen,
Norway

CNRS and ENS Paris, France

University of Haifa, Israel

Royal Holloway, UK

KU Leuven, Belgium

University of Washington Tacoma, USA

Ben-Gurion University, Israel

University of Luxembourg, Luxembourg

Tel Aviv University, Israel

Chinese University of Hong Kong, SAR China

University of Versailles and Inria, France

QUT, Australia

University of Chicago, USA

MSR Redmond, USA

Academia Sinica, Taiwan

University of Maryland, USA

Aarhus University, Denmark

Ben-Gurion University, Israel

University of Warsaw, Poland

Centrum Wiskunde & Informatica (CWI) and Leiden
University, The Netherlands

Texas A&M University, USA

UC Berkeley, USA

viii Eurocrypt 2019

Christina Garman
Siyao Guo

Iftach Haitner

Shai Halevi

Brett Hemenway
Justin Holmgren
Stanislaw Jarecki
Dakshita Khurana
Ilan Komargodski
Gregor Leander
Huijia Lin

Atul Luykx
Mohammad Mahmoody
Bart Mennink

Tal Moran

Svetla Nikova
Claudio Orlandi
Rafail Ostrovsky
Rafael Pass
Krzysztof Pietrzak
Bart Preneel
Christian Rechberger
Leonid Reyzin
Guy N. Rothblum
Amit Sahai
Christian Schaffner
Gil Segev

abhi shelat

Martijn Stam
Marc Stevens
Stefano Tessaro
Mehdi Tibouchi
Frederik Vercauteren
Brent Waters

Mor Weiss

David J. Wu
Vassilis Zikas

Additional Reviewers

Divesh Aggarwal
Shashank Agrawal
Gorjan Alagic
Abdelrahaman Aly
Andris Ambainis

Purdue University, USA

New York University Shanghai, China
Tel Aviv University, Israel

IBM Research, USA

University of Pennsylvania, USA
Princeton University, USA

UC Irvine, USA

Microsoft Research New England, USA
Cornell Tech, USA

Ruhr-Universitdt Bochum, Germany
UCSB, USA

Visa Research, USA

University of Virginia, USA

Radboud University, The Netherlands
IDC Herzliya, Israel

KU Leuven, Belgium

Aarhus University, Denmark

UCLA, USA

Cornell University and Cornell Tech, USA
IST Austria, Austria

KU Leuven, Belgium

TU Graz, Austria

Boston University, USA

Weizmann Institute, Israel

UCLA, USA

QuSoft and University of Amsterdam, The Netherlands
Hebrew University, Israel
Northeastern University, USA

Simula UiB, Norway

CWI Amsterdam, The Netherlands
UCSB, USA

NTT, Japan

KU Leuven, Belgium

UT Austin, USA

Northeastern University, USA
University of Virginia, USA
University of Edinburgh, UK

Prabhanjan Ananth Christian Badertscher

Gilad Asharov Saikrishna
Tomer Ashur Badrinarayanan
Arash Atashpendar Shi Bai

Benedikt Auerbach Josep Balasch

Marshall Ball

James Bartusek
Balthazar Bauer
Carsten Baum
Christof Beierle
Fabrice Benhamouda
Iddo Bentov

Mario Berta

Ward Beullens
Ritam Bhaumik
Jean-Francois Biasse
Koen de Boer

Dan Boneh

Xavier Bonnetain
Charlotte Bonte

Carl Bootland
Jonathan Bootle
Joppe Bos

Adam Bouland
Florian Bourse
Benedikt Biinz
Wouter Castryck
Siu On Chan
Nishanth Chandran
Eshan Chattopadhyay
Yi-Hsiu Chen

Yilei Chen

Yu Long Chen
Jung-Hee Cheon
Mahdi Cheraghchi
Celine Chevalier
Nai-Hui Chia

Ilaria Chillotti
Chongwon Cho
Wautichai Chongchitmate
Michele Ciampi
Ran Cohen

Sandro Coretti

Ana Costache

Jan Czajkowski
Yuanxi Dai
Deepesh Data
Bernardo David
Alex Davidson
Thomas Debris-Alazard
Thomas De Cnudde

Thomas Decru
Luca De Feo
Akshay Degwekar

Cyprien Delpech de Saint

Guilhem

Toannis Demertzis
Ronald de Wolf
Giovanni Di Crescenzo
Christoph Dobraunig
Jack Doerner
Javad Doliskani
Leo Ducas

Yfke Dulek

Nico Déttling
Aner Ben Efraim
Maria Eichlseder
Naomi Ephraim
Daniel Escudero
Saba Eskandarian
Thomas Espitau
Pooya Farshim
Prastudy Fauzi
Rex Fernando
Houda Ferradi
Dario Fiore

Ben Fisch
Mathias Fitzi
Cody Freitag
Georg Fuchsbauer
Benjamin Fuller
Tommaso Gagliardoni
Steven Galbraith
Nicolas Gama
Chaya Ganesh
Sumegha Garg
Romain Gay
Peter Gazi

Craig Gentry
Marios Georgiou
Benedikt Gierlichs
Huijing Gong
Rishab Goyal
Lorenzo Grassi
Hannes Gross
Jens Groth

Paul Grubbs

Eurocrypt 2019 ix

Divya Gupta

Felix Giinther
Helene Haagh
Bjorn Haase
Mohammad Hajiabadi
Carmit Hazay
Pavel Hubécek
Andreas Huelsing
[lia Iliashenko
Muhammad Ishaq
Joseph Jaeger

Eli Jaffe

Aayush Jain
Abhishek Jain
Stacey Jeffery
Zhengfeng Ji

Yael Kalai

Daniel Kales
Chethan Kamath
Nathan Keller
Eike Kiltz

Miran Kim

Sam Kim

Taechan Kim
Karen Klein

Yash Kondi
Venkata Koppula
Mukul Kulkarni
Ashutosh Kumar
Ranjit Kumaresan
Rio LaVigne
Virginie Lallemand
Esteban Landerreche
Brandon Langenberg
Douglass Lee
Eysa Lee

Francois Le Gall
Chaoyun Li
Wei-Kai Lin
Qipeng Liu
Tianren Liu

Alex Lombardi
Julian Loss

Yun Lu

Vadim Lyubashevsky
Fermi Ma

X Eurocrypt 2019

Saeed Mahloujifar
Christian Majenz
Rusydi Makarim
Nikolaos Makriyannis
Nathan Manohar
Antonio Marcedone
Daniel Masny
Alexander May
Noam Mazor

Willi Meier
Rebekah Mercer
David Mestel
Peihan Miao

Brice Minaud
Matthias Minihold
Konstantinos Mitropoulos
Tarik Moataz

Hart Montgomery
Andrew Morgan
Pratyay Mukherjee
Luka Music
Michael Naehrig
Gregory Neven
Phong Nguyen
Jesper Buus Nielsen
Ryo Nishimaki
Daniel Noble
Adam O’Neill
Maciej Obremski
Sabine Oechsner
Michele Orru
Emmanuela Orsini
Daniel Ospina
Giorgos Panagiotakos
Omer Paneth
Lorenz Panny

Anat Paskin-Cherniavsky
Alain Passelégue
Kenny Paterson
Chris Peikert
Geovandro Pereira
Léo Perrin

Edoardo Persichetti
Naty Peter

Rachel Player

Oxana Poburinnaya
Yuriy Polyakov
Antigoni Polychroniadou
Eamonn Postlethwaite
Willy Quach
Ahmadreza Rahimi
Sebastian Ramacher
Adrian Ranea

Peter Rasmussen
Shahram Rasoolzadeh
Ling Ren

Joao Ribeiro

Silas Richelson
Thomas Ricosset
Tom Ristenpart
Mike Rosulek
Dragos Rotaru

Yann Rotella

Lior Rotem

Yannis Rouselakis
Arnab Roy

Louis Salvail
Simona Samardziska
Or Sattath

Guillaume Scerri
John Schanck

Peter Scholl

André Schrottenloher
Sruthi Sekar

Srinath Setty

Brian Shaft

Ido Shahaf

Victor Shoup

Jad Silbak

Mark Simkin
Shashank Singh
Maciej Skorski
Caleb Smith

Fang Song

Pratik Soni

Katerina Sotiraki
Florian Speelman
Akshayaram Srinivasan

Uri Stemmer
Noah
Stephens-Davidowitz
Alan Szepieniec
Gelo Noel Tabia
Aishwarya
Thiruvengadam
Sergei Tikhomirov
Rotem Tsabary
Daniel Tschudy
Yiannis Tselekounis
Aleksei Udovenko
Dominique Unruh
Cédric Van Rompay
Prashant Vasudevan
Muthu
Venkitasubramaniam
Daniele Venturi
Benoit Viguier
Fernando Virdia
Ivan Visconti
Giuseppe Vitto
Petros Wallden
Alexandre Wallet
Qingju Wang
Bogdan Warinschi
Gaven Watson
Hoeteck Wee
Friedrich Wiemer
Tim Wood
Keita Xagawa
Sophia Yakoubov
Takashi Yamakawa
Arkady Yerukhimovich
Eylon Yogev
Nengkun Yu
Yu Yu
Aaram Yun
Thomas Zacharias
Greg Zaverucha
Liu Zeyu
Mark Zhandry
Chen-Da Liu Zhang

Abstracts of Invited Talks

Differential Privacy and the People’s Data

TACR DISTINGUISHED LECTURE

Cynthia Dwork’

Harvard University
dwork@seas.harvard.edu

Abstract. Differential Privacy will be the confidentiality protection method
of the 2020 US Decennial Census. We explore the technical and social chal-
lenges to be faced as the technology moves from the realm of information
specialists to the large community of consumers of census data.

Differential Privacy is a definition of privacy tailored to the statistical anal-
ysis of large datasets. Roughly speaking, differential privacy ensures that any-
thing learnable about an individual could be learned independent of whether the
individual opts in or opts out of the data set under analysis. The term has come
to denote a field of study, inspired by cryptography and guided by theoretical
lower bounds and impossibility results, comprising algorithms, complexity
results, sample complexity, definitional relaxations, and uses of differential
privacy when privacy is not itself a concern.

From its inception, a motivating scenario for differential privacy has been the
US Census: data of the people, analyzed for the benefit of the people, to allocate
the people’s resources (hundreds of billions of dollars), with a legal mandate for
privacy. Over the past 4-5 years, differential privacy has been adopted in a
number of industrial settings by Google, Microsoft, Uber, and, with the most
fanfare, by Apple. In 2020 it will be the confidentiality protection method for the
US Decennial Census.

Census data are used throughout government and in thousands of research
studies every year. This mainstreaming of differential privacy, the transition
from the realm of technically sophisticated information specialists and analysts
into much broader use, presents enormous technical and social challenges. The
Fundamental Theorem of Information Reconstruction tells us that overly
accurate estimates of too many statistics completely destroys privacy. Differ-
ential privacy provides a measure of privacy loss that permits the tracking and
control of cumulative privacy loss as data are analyzed and re-analyzed. But
provably no method can permit the data to be explored without bound. How will
the privacy loss “budget” be allocated? Who will enforce limits?

More pressing for the scientific community are questions of how the mul-
titudes of census data consumers will interact with the data moving forward. The
Decennial Census is simple, and the tabulations can be handled well with
existing technology. In contrast, the annual American Community Survey,
which covers only a few million households yearly, is rich in personal details on
subjects from internet access in the home to employment to ethnicity, rela-
tionships among persons in the home, and fertility. We are not (yet?) able to

! Supported in part by NSF Grant 1763665 and the Sloan Foundation.

X1v

C. Dwork

offer differentially private algorithms for every kind of analysis carried out on
these data. Historically, confidentiality has been handled by a combination of
data summaries, restricted use access to the raw data, and the release of
public-use microdata, a form of noisy individual records. Summary statistics are
the bread and butter of differential privacy, but giving even trusted and trust-
worthy researchers access to raw data is problematic, as their published findings
are a vector for privacy loss: think of the researcher as an arbitrary
non-differentially private algorithm that produces outputs in the form of pub-
lished findings. The very choice of statistic to be published is inherently not
privacy-preserving! At the same time, past microdata noising techniques can no
longer be considered to provide adequate privacy, but generating synthetic
public-use microdata while ensuring differential privacy is a computationally
hard problem. Nonetheless, combinations of exciting new techniques give
reason for optimism.

Towards an Open Approach to Secure
Cryptographic Implementations

Frangois-Xavier Standaert’

UCL Crypto Group, Université¢ Catholique de Louvain, Belgium

Abstract. In this talk, I will discuss how recent advances in side-channel
analysis and leakage-resilience could lead to both stronger security properties
and improved confidence in cryptographic implementations. For this purpose, |
will start by describing how side-channel attacks exploit physical leakages such
as an implementation’s power consumption or electromagnetic radiation. I will
then discuss the definitional challenges that these attacks raise, and argue why
heuristic hardware-level countermeasures are unlikely to solve the problem
convincingly. Based on these premises, and focusing on the symmetric setting,
securing cryptographic implementations can be viewed as a tradeoff between the
design of modes of operation, underlying primitives and countermeasures.

Regarding modes of operation, I will describe a general design strategy for
leakage-resilient authenticated encryption, propose models and assumptions on
which security proofs can be based, and show how this design strategy
encourages so-called leveled implementations, where only a part of the com-
putation needs strong (hence expensive) protections against side-channel
attacks.

Regarding underlying primitives and countermeasures, I will first emphasize
the formal and practically-relevant guarantees that can be obtained thanks to
masking (i.e., secret sharing at the circuit level), and how considering the
implementation of such countermeasures as an algorithmic design goal (e.g., for
block ciphers) can lead to improved performances. I will then describe how
limiting the leakage of the less protected parts in a leveled implementations can
be combined with excellent performances, for instance with respect to the
energy cost.

I will conclude by putting forward the importance of sound evaluation
practices in order to empirically validate (by lack of falsification) the assump-
tions needed both for leakage-resilient modes of operation and countermeasures
like masking, and motivate the need of an open approach for this purpose. That
is, by allowing adversaries and evaluators to know implementation details, we
can expect to enable a better understanding of the fundamentals of physical
security, therefore leading to improved security and efficiency in the long term.

! The author is a Senior Research Associate of the Belgian Fund for Scientific Research
(FNRS-F.R.S.). This work has been funded in part by the ERC Project 724725.

Fully Homomorphic Encryption
from the Ground Up

Daniele Micciancio

University of California, Mail Code 0404, La Jolla,
San Diego, CA, 92093, USA
daniele@cs.ucsd.edu

http://cseweb.ucsd.edu/ ~daniele/

Abstract. The development of fully homomorphic encryption (FHE), i.e.,
encryption schemes that allow to perform arbitrary computations on encrypted
data, has been one of the main achievements of theoretical cryptography of the
past 20 years, and probably the single application that brought most attention to
lattice cryptography. While lattice cryptography, and fully homomorphic
encryption in particular, are often regarded as a highly technical topic, essen-
tially all constructions of FHE proposed so far are based on a small number of
rather simple ideas. In this talk, I will try highlight the basic principles that make
FHE possible, using lattices to build a simple private key encryption scheme that
enjoys a small number of elementary, but very useful properties: a simple
decryption algorithm (requiring, essentially, just the computation of a linear
function), a basic form of circular security (i.e., the ability to securely encrypt its
own key), and a very weak form of linear homomorphism (supporting only a
bounded number of addition operations.)

All these properties are easily established using simple linear algebra and
the hardness of the Learning With Errors (LWE) problem or standard worst-case
complexity assumptions on lattices. Then, I will use this scheme (and its abstract
properties) to build in a modular way a tower of increasingly more powerful
encryption schemes supporting a wider range of operations: multiplication by
arbitrary constants, multiplication between ciphertexts, and finally the evalua-
tion of arithmetic circuits of arbitrary, but a-priory bounded depth. The final
result is a leveled' FHE scheme based on standard lattice problems, i.e., a
scheme supporting the evaluation of arbitrary circuits on encrypted data, as long
as the depth of the circuit is provided at key generation time. Remarkably,
lattices are used only in the construction (and security analysis) of the basic
scheme: all the remaining steps in the construction do not make any direct use of
lattices, and can be expressed in a simple, abstract way, and analyzed using
solely the weakly homomorphic properties of the basic scheme.

Keywords: Lattice-based cryptography - Fully homomorphic encryption -
Circular security - FHE bootstrapping

! The “leveled” restriction in the final FHE scheme can be lifted using “circular security” assumptions
that have become relatively standard in the FHE literature, but that are still not well understood.
Achieving (non-leveled) FHE from standard lattice assumptions is the main theoretical problem still
open in the area.

https://orcid.org/0000-0003-3323-9985

Contents — Part II1

Foundations I

On ELFs, Deterministic Encryption, and Correlated-Input Security 3
Mark Zhandry

New Techniques for Efficient Trapdoor Functions and Applications 33
Sanjam Garg, Romain Gay, and Mohammad Hajiabadi

Symbolic Encryption with Pseudorandom Keys 64
Daniele Micciancio

Efficient Secure Computation

Covert Security with Public Verifiability: Faster, Leaner, and Simpler. 97
Cheng Hong, Jonathan Katz, Vladimir Kolesnikov, Wen-jie Lu,
and Xiao Wang

Efficient Circuit-Based PSI with Linear Communication 122
Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko,
and Avishay Yanai

An Algebraic Approach to Maliciously Secure Private Set Intersection 154
Satrajit Ghosh and Tobias Nilges

Quantum II

On Finding Quantum Multi-collisions 189
Qipeng Liu and Mark Zhandry

On Quantum Advantage in Information Theoretic Single-Server PIR. 219
Dorit Aharonov, Zvika Brakerski, Kai-Min Chung, Ayal Green,
Ching-Yi Lai, and Or Sattath

Verifier-on-a-Leash: New Schemes for Verifiable Delegated Quantum
Computation, with Quasilinear Resources. 247
Andrea Coladangelo, Alex B. Grilo, Stacey Jeffery, and Thomas Vidick

Xviil Contents — Part III

Signatures I

Ring Signatures: Logarithmic-Size, No Setup—from

Standard Assumptions 281
Michael Backes, Nico Doéttling, Lucjan Hanzlik, Kamil Kluczniak,
and Jonas Schneider

Group Signatures Without NIZK: From Lattices in the Standard Model. 312
Shuichi Katsumata and Shota Yamada

A Modular Treatment of Blind Signatures from Identification Schemes 345
Eduard Hauck, Eike Kiltz, and Julian Loss

Best Paper Awards

Efficient Verifiable Delay Functions 379
Benjamin Wesolowski

Quantum Lightning Never Strikes the Same State Twice 408
Mark Zhandry

Information-Theoretic Cryptography

Secret-Sharing Schemes for General and Uniform Access Structures 441
Benny Applebaum, Amos Beimel, Oriol Farras, Oded Nir,
and Naty Peter

Towards Optimal Robust Secret Sharing with Security Against
a Rushing Adversary. 472
Serge Fehr and Chen Yuan

Simple Schemes in the Bounded Storage Model 500
Jiaxin Guan and Mark Zhandary

Cryptanalysis

From Collisions to Chosen-Prefix Collisions Application to Full SHA-1 527
Gaétan Leurent and Thomas Peyrin

Preimage Attacks on Round-Reduced Keccak-224/256 via
an Allocating Approach. L 556
Ting Li and Yao Sun

BISON Instantiating the Whitened Swap-Or-Not Construction. 585
Anne Canteaut, Virginie Lallemand, Gregor Leander, Patrick Neumann,
and Friedrich Wiemer

Contents — Part III

Foundations II

Worst-Case Hardness for LPN and Cryptographic Hashing

via Code Smoothing

Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan,
and Daniel Wichs

New Techniques for Obfuscating Conjunctions.

James Bartusek, Tancréde Lepoint, Fermi Ma, and Mark Zhandry

Distributional Collision Resistance Beyond One-Way Functions

Nir Bitansky, Iftach Haitner, Illan Komargodski, and Eylon Yogev

Signatures 11

Multi-target Attacks on the Picnic Signature Scheme

and Related Protocols e

Itai Dinur and Niv Nadler

Durandal: A Rank Metric Based Signature Scheme

Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville,
and Gilles Zémor

SeaSign: Compact Isogeny Signatures from Class Group Actions

Luca De Feo and Steven D. Galbraith

Author Index e

Xix

759

Foundations I

®

Check for
updates

On ELFs, Deterministic Encryption,
and Correlated-Input Security

Mark Zhandry®

Princeton University, Princeton, USA
mzhandry@princeton.edu

Abstract. We construct deterministic public key encryption secure for
any constant number of arbitrarily correlated computationally unpre-
dictable messages. Prior works required either random oracles or non-
standard knowledge assumptions. In contrast, our constructions are
based on the exponential hardness of DDH, which is plausible in elliptic
curve groups. Our central tool is a new trapdoored extremely lossy func-
tion, which modifies extremely lossy functions by adding a trapdoor.

1 Introduction

The Random Oracle Model [7] is a useful model whereby one models a hash
function as a truly random function. Random oracles have many useful prop-
erties, such as collision resistance, pseudorandomness, correlation intractability,
extractability, and more. Unfortunately, random oracles do not exist in the real
world, and some random oracle properties are uninstantiable by concrete hash
functions [11]. This has lead to a concerted effort in the community toward con-
structing hash functions with various strong security properties from standard,
well-studied, and widely-accepted assumptions.

Correlated Input Security. In this work, we focus on one particular property
satisfied by random oracles, namely correlated input security. Here, the adversary
is given y; = f(x;) for inputs z1,...,x; which may come from highly non-
uniform and highly correlated distributions. At the simplest level, we ask that
the adversary cannot guess any of the x;, though stronger requirements such
as the pseudorandomness of the y; are possible. Correlated input security has
applications to password hashing and searching on encrypted data [16] and is
closely related to related-key security [4]. It is also a crucial security requirement
for deterministic public key encryption [3], which is essentially a hash function
with a trapdoor.

Correlated input secure functions follow trivially in the random oracle model,
and standard-model constructions for specific classes of functions such as low-
degree polynomials [16] or “block sources” [5,8,9,14,19] are known. However,
there has been little progress toward attaining security for arbitrary correlations
from standard assumptions, even in the case of just two correlated inputs.

© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 3-32, 2019.
https://doi.org/10.1007/978-3-030-17659-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17659-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-17659-4_1

4 M. Zhandry

This Work. In this work, we construct hash functions and deterministic public
key encryption (DPKE) with security for any constant number of arbitrarily
correlated sources. In addition, we only require computational unpredictability
for our sources, and our DPKE scheme even achieves CCA security. Our main
new technical tool is a new construction of extremely lossy functions (ELFs) [22]
that admit a trapdoor. Our construction is secure, assuming that DDH (or more
generally k-Lin) is exponentially hard to solve. Such an assumption is plausible
on elliptic curves.

1.1 Details

We now give an overview of our results and our approach. We start with
correlated-input security for one-way functions, and gradually build up to our
ultimate goal of deterministic public key encryption.

Correlated Input Secure OWFs. First, we observe that Zhandry’s Extremely
Lossy Functions (ELFs) [22] already give correlated-input secure one-way func-
tions for any constant number of inputs. Recall that an ELF is a variant of a lossy
trapdoor function (LTDF), which were introduced by Peikert and Waters [18].
LTDFs are functions with two modes, an injective mode that contains a secret
trapdoor for inversion, and a lossy mode that is information-theoretically un-
invertible. The security requirement is that these modes are computationally
indistinguishable, if you do not know the trapdoor. LTDFs have many applica-
tions, including CCA-secure public key encryption [18], deterministic public key
encryption [8], and more.

Similarly, and ELF also has two modes, injective and lossy similar to above.
However the key difference is that in the lossy mode, the image size is so small
that it is actually polynomial. Clearly, such a lossy mode can be distinguished
from injective by an adversary whose running time is a slightly larger polynomial.
So ELFs actually have a spectrum of lossy modes of differing polynomial image
sizes, and the exact image size is chosen based on the adversary just large enough
to fool it. The other main difference between ELFs and LTDFs is that, due to
the particulars of Zhandry’s construction, the injective mode for ELF's does not
contain a trapdoor. Zhandry constructs ELFs based on the exponential hardness
of the DDH assumption, or more generally exponential k-Lin.

Let f be an injective mode ELF. Consider a source S of d correlated inputs
T1,...,2q as well as auxiliary information aux. Our goal is to show that, given
aux and f(z1),..., f(zq), it is computationally infeasible to find any of the z;.
A necessary condition on S is that each z; are computationally unpredictable
given aux alone. Note that we will allow sources for which x; is predictable given
some of the other x;. Note that such a source captures the setting where, say,
XTo = X1 + 1, etc.

We now prove that f is one-way for any such computationally unpredictable
source. To prove security, we first switch f to be a lossy mode with polynomial
image size p. Since d is assumed to be constant, the number of possible value for
the vector f(x1),..., f(zq) is p?, also a polynomial. Therefore, this value can be

On ELFs, Deterministic Encryption, and Correlated-Input Security 5

guessed by the adversary with inverse polynomial probability. As such, if x; can
be guessed given aux and f(x1),..., f(xq) with non-negligible probability e, it
can also be guessed given just aux with probability at least e/p?, contradicting
the unpredictability of S.

Correlated Input Secure PRGs. Next, we turn to the much harder task of con-
structing a PRG G for a constant number of correlated inputs. Here, the adver-
sary is given aux,yi,...,yq where either (1) y;, = G(x;) for all i or (2) y; is
chosen at random in the domain of G. The adversary tries to distinguish the two
cases. In order for security to be possible at all, we need to place some minimal
restrictions on the source S:

— As in the case of one-wayness, we must require that S is computationally
unpredictable

— All the z; must be distinct, with high probability. Otherwise, the adversary
identify the y; = G(x;) case by simply testing the equality of the y;.

In this paper, in order to match notation from Zhandry [22], we will call a func-
tion G satisfying indistinguishability a hardcore function for computationally
unpredictable sources on d inputs.

ELFs are not alone guaranteed to be such hardcore functions, as the outputs
are not guaranteed to be random. Instead we build G by starting from Zhandry’s
hardcore function, which works in the case d = 1; that is, for single computa-
tionally unpredictable sources. Zhandry’s construction is built from ELFs, but
requires more machinery to prove pseudorandomness.

The core idea of Zhandry’s hardcore function G is the following: first extract
many Goldreich-Leving hardcore bits, far too many to be simultaneously hard-
core. These cannot be output in the clear, as they would allow for trivial inver-
sion. Instead, the bits are scrambled by feeding them through an ELF-based
circuit. Zhandry shows (1) that the GL bits can be replaced with random with-
out detection, and (2) if the GL bits are replaced with random, then the output
of the circuit is random.

Unfortunately, for correlated sources, the GL bits for different inputs will be
correlated: for example if the two inputs differ in a single bit, then if the parity
function computing the GL bit is 0 in that position, the two GL bits will be
identical. Therefore, the inputs to step (2) in Zhandry’s proof may be highly
correlated, and his circuit does not guarantee security against correlated inputs.

To mitigate this issue, we carefully modify Zhandry’s function G. The idea
is, rather than having fixed GL parities, we generate the GL parities as func-
tions of the input itself. Different inputs will hopefully map to independent
parities, leading to independent GL bits. We have to be careful, however, in
order to avoid any circularities in the analysis, since we need the GL parities to
be (pseudo)random and independent (in order to apply the GL theorem), but
generating such random independent parities already seems to require extracting
pseudorandom strings for arbitrarily correlated sources, leaving us back where
we started.

6 M. Zhandry

Our construction works as follows: we have another ELF instance, which
is applied to the input z, resulting in an value w. Then we apply a d-wise
independent function R to w to generate the actual parities. Zhandry shows
that this composition of an ELF and a d-wise independent function is collision-
resistant for d > 2, meaning the d different x; will indeed map to distinct parities,
and in fact distinct w;. Next, in the lossy mode for the ELF, there are only
a polynomial number of w; since d is constant, there are also a polynomial
number of possible d-tuples of (wy,...,wy). Therefore, we can actually guess
the (wq,...,wq) vector that will result from applying the ELF to the x; with
inverse-polynomial probability. Next, since R is d-wise independent, we can take
d independent sets of GL parities and program R to output these parities on
the corresponding d values of w. This is not quite enough to show that the
GL parities are themselves pseudorandom for correlated sources (since we only
successfully program with inverse-polynomial probability), but with a careful
proof we show that it is sufficient to prove the pseudorandomness of the overall
construction.

Deterministic Public Key FEncryption. Next, we turn to constructing determin-
istic public key encryption (DPKE). A DPKE protocol consists of 3 algorithms,
(DPKE.Gen, DPKE.Enc, DPKE.Dec). DPKE.Gen creates a secret/public key pair
sk, pk. DPKE.Enc is a deterministic procedure that uses the public key pk to
scramble a message m, arriving at a ciphertext c. DPKE.Dec is also determinis-
tic, and maps the ciphertext ¢ back to m.

We first consider security in the single-input setting; we note that it was
previously open to construction DPKE for even a single arbitrary computa-
tionally unpredictable source. The canonical way to build DPKE [3] is to use
an ordinary randomized public key encryption scheme with CPA security. The
idea is to hash the message m using a hash function H, and use H(m) as the
randomness r: DPKE.Enc(pk, m) = DPKE.Enc(pk, m; H(r)) where DPKE.Enc is
the randomized PKE encryption algorithm. In the random oracle model for H,
Bellare, Boldyreva and O’Neill [3] show that this scheme obtains the strongest
possible notion of security. One may hope that some ELF-based hash function
H might be sufficient.

Unfortunately, Brzuska, Farshim and Mittelbach [10] give strong evidence
that this scheme cannot be proven secure in the standard model, even under very
strong assumptions. In particular, they devise a public key encryption scheme
PKE.Enc such that, for any concrete hash function H, DPKE.Enc will be inse-
cure. Their construction uses indistinguishability obfuscation [2] (iO), which is
currently one of the more speculative tools used in cryptography. Nonetheless, in
order to give a standard model construction of DPKE, one must either deviate
from the scheme above, or else prove conclusively that iO does not exist.

On the other hand, lossy trapdoor functions have proven useful for building
DPKE in the standard model (e.g. [8,9]). One limitation of these techniques,
however, is that since the image size of a LTDF is always at least sub-exponential,
constructions based on LTDFs tend to require high min-entropy/computational
unpredictability requirements.

On ELFs, Deterministic Encryption, and Correlated-Input Security 7

Our First Construction. We start by abstracting the constructions of Braker-
ski and Segev [9]. They construct DPKE for sub-exponentially unpredictable
sources by essentially analyzing specific constructions of Lossy Trapdoor Func-
tions (LTDFs), and showing that they satisfy the desired security experiment.

Our first construction abstracts their construction to work with arbitrary
LTDFs. Our construction is the following, based on a semantically secure public
key encryption scheme PKE.Enc, a special kind of pseudorandom generator G,
and a LTDF f generated in the injective mode:

DPKE.Enc(pk, m) = PKE.Enc(pk, f(m); G(m))

To prove security, we first switch to f being in the lossy mode. Now, notice
that if m can be predicted with probability p, then it can still be predicted with
probability p/r even given f(m), by simply guessing the value of f(m), which
will be correct with probability 1/r. In particular, if p is sub-exponentially small
and 7 is sub-exponential, then p/r is also sub-exponential. Any LTDF can be set
to have a sub-exponential-sized lossy mode by adjusting the security parameter
accordingly.

Next, we observe that if G is hardcore for sub-exponentially unpredictable
sources, then G(m) will be pseudorandom given f(m). Such a G can be built by
extracting a sufficiently small polynomial-number of Goldreich-Levin [15] bits,
and then expanding using a standard PRG.

At this point, we can replace G(m) with a random bitstring, and then rely
on the semantic security of PKE.Enc to show security, completing the security
proof.

But what about arbitrary computationally unpredictable sources, which may
not be sub-exponentially secure? Intuitively, all we need is that (1) r can be
taken to be an arbitrarily small super-polynomial, and (2) that G is secure
for arbitrary unpredictable sources, instead of just sub-exponential sources. We
then recall that Zhandry’s [22] construction of G already satisfies (2), and that
ELF’s themselves almost satisfy (1). Unfortunately, the resulting scheme is not
an encryption scheme: Zhandry’s ELFs do not have a trapdoor in the injective
mode, meaning there is no way to decrypt.

Therefore, we propose the notion of a trapdoor ELFs, which combines the
functionality of ELFs and LTDFs by allowing for both a polynomial image
size and a trapdoor. Using a trapdoor ELF, the above construction becomes
a secure DPKE scheme for any computationally unpredictable source. For now
we will simply assume such trapdoor ELFs; we discuss constructing such func-
tions below.

CCA Security. Next we turn to achieving CCA security for DPKE. CCA security
has received comparatively less attention in the deterministic setting, though
some standard-model constructions are known [8,17,19]. In particular, we are
not aware of any constructions for computationally unpredictable sources, sub-
exponentially hard or otherwise.

We observe that by combining techniques for building CCA-secure encryption
from LTDFs [8,18] with our abstraction of Brakerski and Segev [9], we can
achieve CCA security for sub-exponentially hard sources. The idea is to use

8 M. Zhandry

all-but-one LTDFs, a generalization of LTDFs where the function f has many
branches. In the injective mode, each branch is injective. In the lossy mode, a
single branch is lossy, and the inverse function works for all other modes. The
adversary cannot tell injective from lossy, even if it knowns the branch b*. Peikert
and Waters [18] show how to generically construct such ABO LTDFs from any
LTDF.

First, we modify the definition to require that indistinguishability from injec-
tive and lossy holds even if the adversary can make inversion queries on all
branches other than b*. The generic construction from standard LTDFs satisfies
this stronger notion.

Then, our CCA-secure construction can be seen as combining our con-
struction above with the construction of [8]. We encrypt using the algorithm
DPKE.Enc(pk,m) = (b = Go(m), PKE.Enc(pk, f(b,m); G1(m))) where Gy, G4
are strong pseudorandom generators, and f(b,m) is the ABO LTDF evaluation
on branch b. Here, we require PKE.Enc to be a CCA-secure PKE scheme.

Intuitively, Gy determines the branch, and if it is injective, then each message
has its own branch. Once the branch is fixed, the rest of the scheme basically
becomes our basic scheme from above. The challenge ciphertext will be set to be
the lossy branch, which can be proven to hide the message following the same
proof as our basic scheme. We will need to simulate CCA queries, which can
be handled by using the CCA-security of PKE.Enc and the security of f under
inversion queries.

Using standard LTDFs, we thus get the first CCA-secure scheme for sub-
exponentially hard computationally unpredictable sources.

Turning to the setting of arbitrary unpredictable sources, we need to replace
the ABO LTDF with an ABO trapdoor ELF, which works. Unfortunately, as
discussed below, the generic construction of ABO LTDF in [18] does not apply to
trapdoor ELF's, so we need a different approach to construct an ABO trapdoor
ELF. Our approach is outlined below when we discuss our ELF constructions.

Correlated Inputs. Next, we turn to constructing DPKE for correlated inputs.
Here, we require essentially the same security notion as for hardcore functions;
the only difference is in functionality, since there is a trapdoor for inversion.

In the case of CPA security, security trivially follows if we replace G with our
hardcore function for correlated inputs. We therefore easily get the first DPKE
scheme secure for a constant number of correlated sources. We also note that
if the source is sub-exponentially unpredictable, our scheme can be based on
standard LDTFs.

We can similarly extend this idea to get CCA security. Except here, we
will need a trapdoor ELF with several lossy branches, one for each challenge
ciphertext.

Constructing Trapdoor ELF's. Finally, we turn to actually constructing trapdoor
ELFs. Our trapdoor ELFs will be based on Zhandry’s ELFs, which are in turn
based on constructions of LTDFs [13]. But unfortunately, Zhandry’s ELFs lose
the trapdoor from the LTDFs. Here, we show how to resurrect the trapdoor.

On ELFs, Deterministic Encryption, and Correlated-Input Security 9

Zhandry’s construction basically iterates Freeman et al.’s [13] LTDF at many
security levels. Freeman et al.’s construction expands the inputs by a modest
factor. Thus, Zhandry needs to compress the outputs of each iteration in order
for the size to not grow exponentially. Unfortunately, this compression results in
the trapdoor being lost, since it is un-invertible.

Instead, we opt to avoid compression by more carefully choosing the security
parameters being iterated. Zhandry chooses powers of 2 from 2 up to the global
security parameter. Instead, we choose double exponentials 22°. We still cannot
go all the way to the global security parameter, but we show that we can go high
enough in order to capture any polynomial. Thus, we obtain ELF's that admit a
trapdoor.

For our application to CCA-security, we need to introduce branches into
our trapdoor ELFs. Unfortunately, the approach of Peikert and Waters [18] is
insufficient for our purposes. In particular, they introduce branching by apply-
ing many different LTDF's in parallel to the same input, outputting all images.
The overall image size is then roughly the product of the image sizes of each
underlying LTDF. The branch specifies which subsets of LTDFs are applied; the
LTDFs corresponding to the lossy branch are all set to be lossy. In this way, the
lossy branch will indeed be lossy. On the other hand, any other branch will have
at least one LTDF which is injective, meaning the overall function is injective.
Unfortunately for us, this approach results in an exponential blowup in the size
of the image space for the lossy branch, even if the original image size was poly-
nomial. Hence, applying this transformation to an ELF would not result in an
ABO ELF.

Instead, we opt for a direct construction though still based on Freeman et
al.’s scheme. Recall Freeman et al.’s scheme: the function f~! is specified by an
n X n matrix A over Z,, and the function f is specified by A, but encoded in
the exponent of a cryptographic group over order ¢: g. The function f takes
an input x € {0,1}", and maps it to ¢g* by carrying out appropriate group
operations on g. The inverse function f~! uses A~! to recover ¢g* from g,
and then solves for x, which is efficient since x is 0/1.

In the lossy mode, A is set to be a matrix of rank 1. By DDH, this is
indistinguishable from full rank when just given g*. On the other hand, now the
image size of f is only ¢. By setting 2™ >> ¢, this function will now be lossy.

We now give a direct construction of an ABO trapdoor ELF. Our idea is to
make the matrices tall, say 2n rows and n columns. Note that any left inverse
of A will work for inverting the function, and there are many.

Our actual construction is the following. For branches in {0,1}%, f~! will be
specified by 2a+1 matrices B, A, ; for i € [a],t € {0, 1}. The description of f will
simply be the corresponding encoded values of B, A; ;. The branch b € {0,1}°
corresponds to the matrix Ay =B +) . A, ..

For a lossy mode with branch b, we set A; to be rank 1. Then we choose A ;
at random and set B = Ay — > . A, ..

We would now like to prove security. For a given branch b*, suppose an
adversary can distinguish the injective mode from the mode where b* is lossy.

10 M. Zhandry

We now show how to use such an adversary to distinguish g€ for a full-rank
n X n C from a random rank-1 C.

First, we will set Ay« to be the matrix C, except with n more rows appended,
all of which are zero. We can easily construct ¢+* from g€ without knowing C.
Then we choose random A; ;. Finally, we set B = Ay —>". A, ;,. We can easily
construct gB given g€, again without knowing C.

Now notice that for each branch b, we know the bottom n rows of A;, and
moreover for b # b* they are full rank. Therefore, we can invert on any branch
other than b*, allowing us to simulate the adversary’s queries.

Unfortunately, the distribution simulated is not indistinguishable from the
correct distribution. After all, Ay« is all zeros on the bottom n rows, which is eas-
ily detectable by the adversary. In order to simulate the correct distribution, we
actually left-multiply all the matrices B, A;; by a random matrix R € ZZ"*?",
This can easily be done in the exponent. Moreover, now in the case where C is
random, the matrices B, A;; are actually random. On the other hand if C is
rank 1, we correctly simulate the case where b* is lossy.

Our construction above can easily be extended to multiple lossy branches by
iterating the construction several times, one for each branch that needs to be
lossy. Then, we notice that we actually achieve a polynomial image size by setting
q to be a polynomial, and then relying on the exponential hardness of DDH to
prove indistinguishability. Thus, we achieve trapdoor ELF's with multiple lossy
branches, as needed for our construction.

1.2 Discussion

Of course, one way to achieve a hash function with security for correlated
inputs—or more generally any security property—is to simply make the “tauto-
logical” assumption that a given hash function such as SHA has the property.
Assuming the hash function is well designed, such an assumption may seem
plausible. In fact, for practical reasons this is may be the preferred approach.

However, in light of the impossibility of instantiating random oracles in gen-
eral [11], it is a priori unclear which hash function properties are achievable in
the standard model. It could be, for example, that certain correlations amongst
inputs will always be trivially insecure, even for the best-designed hash functions.
The only way to gain confidence that a particular hash function property is plau-
sible at all is to give a construction provably satisfying the property under well-
studied and widely accepted computational assumptions. Our correlated-input
secure PRG G does exactly this.

On Ezponential Hardness. Our constructions rely on the exponential hardness
of DDH, which is plausible in elliptic curve groups based on the current state
of knowledge. Elliptic curves have been studied for some time, and to date no
attack has been found that violates the exponential hardness in general elliptic
curves.

In fact, exponential hardness is exactly what makes elliptic curves desirable
for practical cryptographic applications today. DDH over finite fields is solv-

On ELFs, Deterministic Encryption, and Correlated-Input Security 11

able in subexponential time, meaning parameters must be set much larger to
block attacks. This leads to much less efficient schemes. Some of the most effi-
cient protocols in use today rely on elliptic curves, precisely because we can set
parameters aggressively and still remain secure. Thus, the exponential hardness
of DDH in elliptic curve groups is widely assumed for real-world schemes.

We also remark that, as explained by Zhandry [22], polynomial-time and even
sub-exponential-time hardness are insufficient for one-way functions secure for
arbitrary min-entropy sources, which in particular are implied by our correlated-
input secure constructions. Therefore, some sort of extremely strong hardness is
inherent in our applications.

Concretely, security for arbitrary min-entropy sources implies the following:
for any super-logarithmic function ¢(n), there is a problem in NP that (1) only
requires t(n) bits of non-determinism, but (2) is still not contained in P. Put
another way, the problem can be brute-forced in very slightly super-polynomial
time, but is not solvable by any algorithm in polynomial time, showing that
brute-force is essentially optimal. This can be seen as a scaled-down version of
the exponential time hypothesis. Thus, while exponential hardness may not be
required for the applications, a scaled-down version of exponential hardness is
required.

Common Random String. Our constructions are based on Zhandry’s ELFs,
which require a common random string (crs); this crs is just the description
of the injective-mode function. Thus our hardcore functions require a crs, and
moreover, we only obtain security if the crs is sampled independently of the
inputs. A natural question is whether this is required. Indeed, the following
simple argument shows that pseudorandomness for even a single information-
theoretically unpredictable source is impossible without a crs. After all, for a fixed
function G, let S sample a random input = conditioned on the first bit of G(x)
being 0. Then the first bit of G(z) will always be zero, whereas the first bit of a
random string will only be zero half the time. This argument also easily extends
to the setting of a crs, but where the sampler depends on a crs. It also extends
for security for DPKE schemes where the messages depend on the public key, as
noted in [19].

Even if we restrict to inputs that are statistically close to uniform, but allow
two inputs to be slightly correlated, a crs is still required for pseudorandom-
ness. Indeed, for a function G that outputs n-bit strings, consider the following
sampler: choose two inputs zg,x; at random, conditioned on the first bit of
G(z0) @ G(z1) being 0.

In the case of one-wayness, the above does not quite apply (since G(x) may
still hide x), but we can show that one-wayness without a crs is impossible for any
super-constant number of correlated inputs. Basically, for d inputs, the sampler
S will choose a random (d — 1) log A-bit string x;, which has super-logarithmic
min-entropy since d is super-constant. Then it will divide z into d — 1 blocks of
log A bits z9,...,24. It will then sample random zo,...,z4 such that the first
log A bits of G(z;) are equal to z; (which requires O(\) evaluations of G). Finally,
it outputs x1,...,x4. Given the outputs yi,...,yq, it is easy to reconstruct x;.

12 M. Zhandry

Of course, we only achieve security for a constant number of correlated inputs
with a crs, so this leaves open the interesting problem of constructing a one-way
function for a constant number of correlated inputs without using a crs.

Barriers to Correlated-Input Security. Even with a crs, correlated-input security
has been difficult to achieve. The following informal argument from Wichs [21]
gives some indication why this is the case. Let P, P> be two functions. Consider
correlated x1,zo sampled as 1 = Pi(r),xza = Py(r), for the same choice of
random r. Now, a reduction showing correlated-input security would need to
transform an attacker A for the correlated inputs into an algorithm B for some
presumably hard problem. But it seems that B needs to some how feed into A a
valid input G(x1), G(x2), and then use A’s attack in order to solve it’s problem.
But the only obvious way to generate a valid input for general Py, P is to choose
a random r and set 21 = Py(r),x2 = Py(r). But then B already knows what A
would do, making A’s attack useless.

The standard way (e.g. [1]) to get around this argument is to use G that are
lossy, and this is the approach we use, exploiting the two modes of the ELF.
Our results show that it is possible to attain security for a constant number of
inputs.

What about larger numbers of correlated inputs? Wichs [21] shows that
proofs relative to polynomial-time falsifiable assumptions that make black-boz
use of the adversary are impossible for any super-logarithmic number of corre-
lated messages. Note that the impossibility does not apply to our results for
three reasons:

— Our reduction requires knowing the adversary’s success probability and run-
ning time, and is therefore very slightly non-black box. In the language of [12],
our reduction is “non-uniform”

— We require exponential hardness, not polynomial-time hardness

— We only achieve a constant number of correlated messages.

Nonetheless, Wichs impossibility represents a barrier to significantly improv-
ing our results.

Deterministic Public Key Encryption. Deterministic public key encryption can
be thought of as an injective hash function that also has a trapdoor. As a
result, the definitions of security for DPKE are related to strong security notions
for hash functions such as correlated-input security. We note that [6] construct
correlated-input secure DPKE for an arbitrary number of correlated min-entropy
sources. Their underlying building blocks are LTDFs and wuniversal computa-
tional extractors (UCE’s). Note that UCE’s are a strong “uber” type assump-
tion on hash functions that includes many different security properties, including
correlated-input security. Therefore, the main difficulty in their work is showing
how to take a hash function that already attains the security notion they want
(and then some) and then building from it a function that also has a trapdoor.

Our correlated-input secure hash function is likely not a UCE. In particular,
in light of Wich’s impossibility results discussed above, we don’t expect to be able

On ELFs, Deterministic Encryption, and Correlated-Input Security 13

to prove that our construction is correlated-input secure for a large number of
inputs. More we do not expect to be able to prove all UCE security properties for
our assumption. Therefore, we cannot simply plug our hash function construction
into [6] to get a DPKE scheme.

2 Preliminaries

Definition 1. Consider a distribution D on pairs (z,aux), indexed by the secu-
rity parameter A. We say that D is computationally unpredictable if, for any
probabilistic polynomial time adversary A, there is a megligible function € such
that

Pr[A(aux) = z : (x,aux) <« D(N)] < €(N)

In other words, A cannot efficient guess x given aux.

Lemma 1. Let D be a source of tuples (z,aux, z) such that (x,aux) is computa-
tionally unpredictable. Let F be a distribution over functions f with the following
property. f(aux,x,z) is function such that, for any aux, f(aux,-,z) has polyno-
mial image size, and that it is possible to efficiently compute the polynomial-sized
image. Then D’ which samples (x,aux’ = (aux, f, f(aux,z, 2))) is computation-
ally unpredictable.

Proof. If there is an A adversary for D’, we can simply make a random guess for
the value of f(aux,x,z), which will be right with inverse polynomial probability.
In this case, we correctly simulate the view of A, meaning A outputs x with
non-negligible probability. Overall, we break the computational unpredictability
of x with inverse polynomial probability. a

We will also consider a notion of computationally unpredictable sources on
multiple correlated inputs:

Definition 2. Consider a distribution D on tuples (x1 ..., xq,aux), indezed by
the security parameter \. We say that D is computationally unpredictable if the
following hold:

— For any i # j, Prlz; = x;] is negligible.
— For any probabilistic polynomial time adversary A, there is a negligible func-
tion € such that

Pr[A(aux) € {z1,..., 24} : (x1,...,24,aux) — D(A)] < e(N)
In other words, each distribution (x;,aux) is computationally unpredictable.

Notice we do not require x; to be unpredictable given z;,j # 4. As such,
distributions such as x,z + 1,z + 2, aux = () are considered unpredictable.
We now consider hardcore functions:

14 M. Zhandry

Definition 3. Let G be a sampling procedure for deterministic functions G on
n = n(A) bits with m = m(\) bit outputs. We say that G is hardcore for any
computationally unpredictable source if for any computationally unpredictable
source D for x € {0,1}"™, and any adversary A, there is a negligible function €
such that:

| Pr[A(G, G(x), aux) = 1] — Pr[A(G, R, aux)]| < €(\)

where G «— G, (z,aux) < D(A) and R is random in {0,1}™. In other words,
G(z) is pseudorandom even given aux.

Definition 4. Let G be a sampling procedure for deterministic functions G on
n = n(A) bits with m = m(X\) bit outputs. We say that G is hardcore for any
computationally unpredictable source over d-inputs if for any computationally
unpredictable source D for d inputs x1 ...,xzq € {0,1}", and any adversary A,
there is a negligible function € such that:

|Pr[A(G,G(z1),...,G(x4),aux) = 1] — Pr[A(G, Ry, ..., R4, aux)]| < €(N)

where G — G, (21,...,24,aux) < D(X) and Ry ..., R4 are random in {0,1}™.
In other words, G(x) is pseudorandom even given aux and the correlated inputs.

2.1 Deterministic Public Key Encryption

A deterministic public key encryption scheme is a tuple of efficient algorithms
(DPKE.Gen, DPKE.Enc, DPKE.Dec), where DPKE.Enc, DPKE.Dec are determin-
istic maps between messages and ciphertexts, and DPKE.Gen is randomized pro-
cedure for producing secret and public key pairs.

For security, we consider several possible notions. Security for arbitrary
computational sources means that (pk,c¢* = DPKE.Enc(pk,m),aux) is com-
putationally indistinguishable from (pk,c¢* = DPKE.Enc(pk, R),aux), where
(m,aux) is sampled from an arbitrary computationally unpredictable source
and R is uniformly random, and (sk,pk) < DPKE.Gen(A). CCA security
means the same holds even if the adversary can later ask for decryption
queries on ciphertexts other that c¢*. Security for arbitrary correlated sources
means that (pk, DPKE.Enc(pk,m1),. .., DPKE.Enc(pk,m1), aux) is indistinguish-
able from (pk, DPKE.Enc(pk, Ry1), ..., DPKE.Enc(pk, Ry4),aux) for arbitrary com-
putationally unpredictable sources on d inputs.

2.2 ELFs

We recall the basic definition of Extremely Lossy Functions (ELFs) from
Zhandry. We slightly change notation, but the definition is equivalent.

A Lossy Trapdoor Function, or LTDF [18], is a function family with two
modes: an injective mode where the function is injective and there is a trap-
door for inversion, and a lossy mode where the image size of the function is

On ELFs, Deterministic Encryption, and Correlated-Input Security 15

much smaller than the domain. The security requirement is that no polynomial-
time adversary can distinguish the two modes. An Extremely Lossy Function,
or ELF [22], is a related notion without a trapdoor in the injective mode, but
with a more powerful lossy mode. In particular, in the lossy mode the image size
can be taken to be a polynomial 7. One fixed polynomial r is insufficient (since
then the lossy mode could easily be distinguished from injective), but instead,
the polynomial r is tuned based on the adversary in question to be just large
enough to fool the adversary.

Definition 5 (Zhandry [22]). An ELF consists of two algorithms ELF.Genlnj
and ELF.GenLossy, as well as a function N = N(M) such that log N is polyno-
maal in log M. ELF.Genlnj takes as input an integer M, and outputs the descrip-
tion of a function f : [M] — [N] such that:

— f is computable in time polynomial in the bit-length of their input, namely
log M.
— With overwhelming probability (in log M), f is injective.

ELF.GenLossy on the other hand takes as input integers M and r € [M]. It
outputs the description of a function f : [M] — [N] such that:

— For all v € [M], |f([M])] < r with overwhelming probability. That is, the
function f has image size at most r.

— For any polynomial p and inverse polynomial function ¢ (in log M), there is
a polynomial q such that: for any adversary A running in time at most p,
and any r € [¢(log M), M|, we have that

|Pr[A(f) = 1: f « ELF.Genlnj(M)]
—Pr[A(f) =1: f < ELF.GenlLossy(M,r)| < o

In other words, no polynomial-time adversary A can distinguish an injective
f from an f with polynomial image size.

3 Correlated-Input Hardcore Functions

In this section, we build our correlated-input hardcore function. First, we recall
Zhandry’s [22] construction of hardcore functions for arbitrarily uncorrelated
sources. The following description is taken essentially verbatim from Zhandry.

Construction 1. Let g be the input length and m be the output length. Let X be
a security parameter. We will consider inputs x as q-dimensional vectors x € Fi.
Let ELF be an ELF. Let M = 2™t 1 and let n be the bit-length of the ELF
on input m~+ 1. Set N = 2". Let ¢ be some polynomial in m, A to be determined
later. First, we will construct a function H' as follows.

Choose random fi,..., fo < ELF.Genlnj(M) where f; : [M] — [N], and let
hi,....,he_1 : [N] — [M/2] = [2™F*] and hy : [N] — [2™] be sampled from
pairwise independent and uniform function families. Define £ = {f1,..., f¢} and
h = {hy,...,he}. Define H, : {0,1}* — [M/2] (and H} : {0,1}* — [2™]) as
follows:

16 M. Zhandry

CH) = 1€ 27

~ Hi(bj1,i_1,bi) : compute y; = H] j(bp-1)), 2z < fi(yillbi), and output
Yir1 < hi(z;).
Then we set H' = Hy. Then to define H, choose a random matriz R € FE<e.

The description of H consists of £, h,R. Then set H(x) = H'(R-x). A diagram
of H is given in Fig. 1.

nGatDrly

by by bs

Fig.1. An example taken from Zhandry [22] for £ = 3. Notice that each iteration is
identical, except for the final iteration, where hy has a smaller output.

Our Construction. We will modify Zhandry’s construction as follows. Sample
f,h as in Construction 1. Then define the function Hg(x) to be the function H
using Goldreich-Levin parities R.

Our modification will be to generate R as a function of x, and then apply
Hgr(x). In particular, we will set R = wu(v(x)) where v «— ELF.Genlnj(M)
and u is a d-wise independent function. Actually, we need a stronger property
of u: that each row of R is specified by an independent d-wise independent
function u;.

Theorem 2. If ELF is a secure ELF, then H,yx))(x) = H'(u(v(x)) - x) is a
hardcore function for computationally unpredictable sources on d inputs, for any
constant d.

Proof. First, we recall some basic facts proved by Zhandry:

Claim. If £ > m + X, and if b is drawn uniformly at random, then (H’', H' (b))
is statistically close to (H', R) where R is uniformly random in [2].

Therefore, given a source D which samples messages myq, ..., mg and auxil-
iary information aux, it is sufficient to prove the following are indistinguishable:

On ELFs, Deterministic Encryption, and Correlated-Input Security 17

(f,h,u, v, aux, { H (u(v(x;)) - x;)}:) and (£, h,u, v, aux, {H'(b;)};) for uniformly
random b;.

Our proof will follow the same high-level idea as in Zhandry, but make adjust-
ments along the way in order to prove security for correlated sources. Let A be
an adversary with non-negligible advantage e in distinguishing the two cases. We
will assume it always checks that the images v(x;) are all distinct and rejects if
they are; by the property of the source D and the injectivity of v, this check will
never trigger if sampled as above. Nonetheless, if the check triggers, we assume
A outputs a random bit and aborts.

Let R; = u(v(x;)). Define bgj) so that the first j bits of bz(-j) are equal to the
first j bits of R;-x;, and the last /—1 bits are uniformly random and independent
of x1,...,Xq.

We now define a sequence of hybrids. In Hybrid j, A is given the distribution
(f,h, u,v,aux, {H'(bY)};). Then A distinguishes Hybrid 0 from Hybrid ¢
with probability e. Now we choose an j at random from [¢]. The adversary
distinguishes Hybrid j — 1 from Hybrid j with expected advantage at least
e/L. Next, observe that since bits j + 1 through ¢ are random in either case,
they can be simulated independently of the challenge. Moreover, H'(b) can be
computed given H_,(by;_1)), the bit b; (be it random or equal to R - x), and
the random b;41,...,b,. Also, the d-wise independent functions wj41,...,u, are
never evaluated on the x;, so they can be simulated as well. Let uf;(x) denote
the output (uq(z),...,u;(x)).

Thus, we can construct an adversary A’ that distinguishes the following dis-
tributions:

(j7 fa ha Upy ... ,U]‘7’U, aux, {Hjl’fl(u[jfl] (U(Xi)) ' XO,Uj(’U(XZ')) : Xl}’b) and
(jv f,hu, ... y Uj, U, AUX, {Hgl'—l(u[j—l] (U(Xz)) ’ xl)7bl}l)

with advantage €/¢, where j is chosen randomly in [¢], where b; are random bits.

Next, notice that €/5¢ is non-negligible, meaning there is an inverse polyno-
mial § such that €/5¢ > § infinitely often. Then, there is a polynomial r such A’
cannot distinguish f; generated as ELF.GenLossy(M,) from the honest f; gen-
erated from ELF.Genlnj(M), except with probability at most ¢. Similarly we’ll
generate v by ELF.GenLossy (M, r).

This means, if we generate f;, v < ELF.GenLossy(M,), we have that A’ still
distinguishes the distributions

(4,f, b, uq,.. ., uj,v,aux, {Hjlel(u[jfll (v(x:)) - x4),uj(v(x;)) - x; }4) and
(jv f; ha Uy ..., U5, V,aUX, {Hjl'fl(u[j—l] (U(Xl)) ! Xl)7bl}l)

with advantage €’ = €/¢ — 4.
Next, we define new hybrids Jy, ..., Jg, where Ji is the distribution:

(G, £, u, . ug, v, aux, {Hy g (upj_qg(0(x)) - X4), i ta)

where ¢; = u;(v(x;)) - x; for i < k and ¢; is uniformly random for i > k.
Notice that Jy and Jy are the two distributions distinguished with probability €.

18 M. Zhandry

Therefore, for a random & € [d], the expected distinguishing advantage between
Ji—1 and J; is € /d. Thus, A’ can be used to construct an adversary A" that
distinguishes the two distributions:

(j,k £, h, {u;};,v,aux,) and
{H 1(% 1(v(x:)) - Xi) bieqay, {us (v(xi) - Xibick, uj(v(xk)) - X

(j,k;fh{ul i, U, aux,)
{H 1(“[3 1 (v(x4)) 'Xi)}ie[d]a{uj(v(xi)) “Xitick, bi

with advantage €'/4. Next, we devise an adversary A" which distinguishes

g,k £, {u; b, v, aux,

({v<xi>, H{_y (ugj 1) (v(x:)) - %3) Yoo {xi - Xiicn T ~xk> and

(j,k,f,h, {u; }i,v,aux,)
{v(x), Hi 1 (ugj—1y(v(xs)) - Xi) b, {rs - Xibi<r, br

We recall that our adversary aborts if v(x;) are not distinct. In the case where
they are distinct, given one of the samples in the preceding equations, A" sam-
ples u; such that u;(v(x;)) = r; and that u; is sampled uniformly according
to the d-wise independent sampling procedure. Then A"’ simulates the samples
expected by A”. The result is A"’ distinguishes the two cases with probability
€/d.

Now fix f,h,uy,...,uj_1,v, which fixes H]_;. Let yl(j) H_ (ugg—q(v(x4)) -
x;). Notice that since f,h,us,...,u;_1,v are fixed and Hj_; has image size

at most 7, there are at most r¢ possible values for the vector (y%j). ,yl(ij)),

and recall that r is a polynomial. If d is constant, then r¢ is still polynomial.
Moreover, there are at most 7% values for the vector (v(x1),...,v(xq)).

Now, we use Lemma 1. Since xj,aux is computationally unpredictable and
since there are only a polynomial number of images of v and H_,, we have

(ka (ja k£, hyug, ... y Uj—1,U,aux, {U(Xi)a H‘;fl(u[j—l] (U(Xi)) ’ Xl)}l))

is computationally unpredictable as well. Even more, it must be that

(x I (j,k,f,h,{ui i, U, auXx,))
w g {U(Xi)»H§—1(UU71] (v(xi)) - xi) bio {Tis vi - X3 Fick
is computationally unpredictable, since there are only 2¢ possible values to guess
for r; - x;.

Therefore, by Goldreich-Levin, we have that (auxg, rg,rr X)) is computation-
ally indistinguishable from (auxg, ry, bx) for random by. Putting this together in
a simple hybrid argument, we have that the following are indistinguishable:

j,k,f,h,ul,...,uj_l,v,aux, and
{v(xs), Hi_y (upj—1y(v(xs)) - Xi) b, {ri - Xibich, Th - X

(jak7f7h7ula"'7ujlav7aux7 >
{o(xi), Hi_q (upj—(v(xi)) - xi) b, {Ti - Xibick, bi

On ELFs, Deterministic Encryption, and Correlated-Input Security 19

But these are exactly the distributions distinguished by .A”’. Therefore, we
must have €' /d, and hence €, is negligible. But since ¢’ = ¢/¢ — 46 and 6 < ¢/5¢,
we have that €' is lower bounded by 6/5/¢ infinitely often, a contradiction. This
completes the proof. O

4 Trapdoor ELFs

Here, we define and construct ELFs with a trapdoor, combining the features of
LDTFs and ELFs.

Definition 6. An Trapdoor ELF consists of two algorithms TELF.Genlnj and
TELF.GenLossy, as well as a function N = N(M) such that log N is polynomial
in log M. TELF.Genlnj takes as input an integer M, and outputs the description
of two functions f : [M] — [N] and f=1 : [N] — [M]U{L} such that:

— f,f~' are computable in time polynomial in the bit-length of their input,
namely log M .

— With overwhelming probability (in log M), f=1(f(z)) = = for all z € [M]. In
particular f is injective.

TELF.GenlLossy on the other hand takes as input integers M and r € [M]. It
outputs the description of a function f : [M] — [N] such that:

— For all v € [M], |f([M])] < r with overwhelming probability. That is, the
function f has image size at most r.

— For any polynomial p and inverse polynomial function ¢ (in log M), there is
a polynomial q such that: for any adversary A running in time at most p,
and any r € [¢(log M), M|, we have that

IPr[A(f) = 1: (f, f}) « TELF.Genlnj(M)]
—Pr[A(f) =1: f « TELF.GenLossy(M,r)| < §

In other words, no polynomial-time adversary A can distinguish an injective
f from an f with polynomial image size, in the case that A does not get the
trapdoor for f.

We also consider all-but-some Trapdoor ELFs, which contain many branches,
some of which are lossy:

Definition 7. An All-but-one Trapdoor ELF consists of algorithms TELF.Genlnj
and TELF.GenLossy, as well as a function B = B(M),N = N(M) such that
log B,log N are polynomial in log M. TELF.Genlnj takes as input an integer M,
and outputs the description of two functions f : [B] x [M] — [N] and f~! :
[B] x [N] — [M]U{L} such that:

— £, f~' are computable in time polynomial in the bit-length of their input,
namely log M .

20 M. Zhandry

— With overwhelming probability (in log M), for all branches b € [B], we have
that f=1(b, f(b,z)) = = for all x € [M]. In particular f(b,-) is injective.

TELF.GenlLossy on the other hand takes as input integers M and r € [M],
and a branch b* € [B]. It outputs the description of functions f : [B] x [M] — [N]
and f=1:[B] x [N] — [M]U{L} such that:

— For all v € [M], |f(b,[M))| < r with overwhelming probability. That is, the
function f(b*,-) has image size at most r.
— With overwhelming probability (in log M), for all branches b € [B]\ {b*},
F7Lb, f(b,x)) =z for all x € [M].
~ For any polynomial p and inverse polynomial function § (in log M), there is
a polynomial q such that: for any adversary A running in time at most p and
playing the following game, it’s advantage is at most §:
e First, A chooses a branch b*, which is sends to the challenger.
e The challenger then either runs (f, f~') « TELF.Genlnj(M) or runs
(f, f~% « TELF.GenLossy(M,b*,r), and sends f to A.
o A can make queries to f~1 on all branches other than b*.
o A outputs a guess b for which f it was given
A’s advantage is defined to be the difference

|Pr[A(f) =1:(f, f~') « TELF.Genlnj(M)]
—Pr[A(f) =1:(f, f ') « TELF.GenLossy(M, b*,)]

In other words, no polynomial-time adversary A can distinguish an injective
f from an f where branch b* has polynomial image size, in the case that A
does not get the trapdoor for f.

An all-but-some Trapdoor ELF generalizes the above to allow the lossy mode
to contain multiple lossy branches. We omit the details of the definition.

4.1 Constructing Trapdoor ELF's

Here, we construct Trapdoor ELFs from exponentially-hard DDH, which is
plausible on certain elliptic curve groups. Our construction will follow mostly
Zhandry’s [22] construction of ELFs, with some modifications to obtain a
trapdoor.

Zhandry’s scheme works as follows: first, he considers a bounded adversary
ELF, which is secure against only adversaries of an a priori bounded running
time. This scheme more or less follows from lossy trapdoor functions in the
literature, just pushed into extreme parameter regimes. Then, he iterates the
scheme many times, for many different bounds on the adversaries running time.
ELF security follows by invoking security for the bounded adversary ELF that
is just large enough to fool the given adversary.

We will adopt the same approach. In particular, we will construct a bounded
adversary Trapdoor ELF following the LTDFs from the literature. We will triv-
ially inherit the trapdoors from these schemes. Then, we will iterate the con-
struction. Zhandry’s construction, in order to remain efficient, must compress

On ELFs, Deterministic Encryption, and Correlated-Input Security 21

the image every after every iteration. This unfortunately means Zhandry’s con-
struction does not have a functioning trapdoor. We therefore devise a way to
avoid compressing the input, allowing the trapdoor to remain intact.

Bounded Adversary Trapdoor ELFs. Here, we define a bounded adver-
sary Trapdoor ELF, which is a Trapdoor ELF where security is guaranteed only
against a prior bounded adversaries. The definition follows almost immediately
from adapting Zhandry’s bounded adversary ELF definition by adding a trap-
door.

Informally, in an ordinary Trapdoor ELF, r can be chosen based on the
adversary to be just high enough to fool it. In contrast, in a bounded adversary
Orf, » must be chosen independent of the adversary, and then security only
applies to adversaries with running time sufficiently smaller than r. Moreover,
the adversary gets to learn r.

Definition 8. An bounded adversary Trapdoor ELF consists of two algorithms
TELF.Genlnj’ and TELF.GenLossy’, and a function N = N(M,r). TELF.Genlnj
takes as input an integer M and integer r € [M] and outputs the description of
two functions f : [M] — [N] and f=1: [N] — [M]U{L} such that:

— f,f~' are computable in time polynomial in the bit-length of their input,
namely log M .

— With overwhelming probability (in log M), f~1(f(x)) = = for all x € [M]. In
particular f is injective.

TELF.GenLossy’ also takes as input integers M and v € [M]. It outputs the
description of a function f : [M] — [N] such that:

— For all r € [M], |f([M])] < r with overwhelming probability. That is, the
function f has image size at most r.

~ For any polynomial p and inverse polynomial function § (in log M), there is
a polynomial q such that: for any adversary A running in time at most p,
and any r € [q(log M), M], we have that

|Pr[A(r, f) = 1: (f, f~') « TELF.Genlnj' (M)]
—Pr[A(r, f) = 1: f « TELF.GenLossy' (M, r)| < §

In other words, no polynomial-time adversary A can distinguish an injective
f from an f with polynomial image size, in the case that A does not get
the trapdoor for f. Unlike an ordinary Trapdoor ELF, this holds even if the
adversary knows r.

Constructing Bounded Adversary Trapdoor ELFs. Our construction of
bounded adversary Trapdoor ELFs, like Zhandry’s ELF's, is based on the DDH-
based lossy trapdoor functions of Peikert and Waters [18] and Freeman et al. [13].
In fact, since Zhandry did not need the trapdoor of prior constructions, the

22 M. Zhandry

construction for ELFs was very slightly simplified. In contrast, our construction
almost verbatim matches the construction Freeman et al., except that the group
size is set to be much smaller, in particular polynomial. In order to maintain
security in this regime, we must rely on the exponential hardness of the group.

Cryptographic Groups. The following definitions and notation are almost verba-
tim from Zhandry [22].

Definition 9. A cryptographic group consists of an algorithm Group.Gen which
takes in a security parameter X, and produces a (description of a) cyclic group
G of prime order p € [2*,2 x 2*), and a generator g for G such that:

~ The group operation x : G — G is polynomial-time computable in \.
— FEzxponentiation by elements in Z, is polynomial-time computable in \.
— The representation of a group element h has size polynomial in X.

For some notation: given a matrix A € Z;"*", we write g™ € G™*™ to be the
m xn matrix of group elements g+7. Analogously define g% for a vector w € Ly,

Given a matrix A € G™*" of group elements and a vector v € Z, write A-v

to mean W € G™ where w; = [[}_, AfJ] Using this notation, (g%)-v = g&"V.

Therefore, the map g®,v — g2V is efficiently computable.

Definition 10. The exponential decisional k-linear assumption (k-eLin) on a
cryptographic group specified by Group.Gen holds if there is a polynomial q(--)
such that the following is true. For any time bound t and probability €, let A =
log q(t,1/€). Then for any adversary A running in time at most t, the following
two distributions are indistinguishable, except with advantage at most €:

a an ¢ —arbi . axbiy . (G g:p) < Group.Gen(})
(G7g7g 7"'7g 7g 7g) g)'anbZ’CHZp)a’nd

k
ak 21 bi_gaibi
)

akbk) . (G, g,p) < Group.Gen(\)

G,g,9™,. ..,
(G99 g 0 bi — 7,

y 9 9 g
k =1 corresponds to the eDDH assumption above.

As a special case, k = 1 corresponds to the exponential DDH assumption. A
plausible candidate for a cryptographic group supporting the eDDH assumption
or k-linear assumption are groups based on elliptic curves. Despite over a decade
or research, the best attacks on many elliptic curves are generic attacks which
require exponential time. Therefore, the eDDH assumption on these groups

appears to be a very reasonable assumption.

Construction. Our construction is as follows, and will be parameterized by k.
TELF.Genlnj, (M,) does the following.

— Let A be the largest integer such that (2 x 2*)* < 7. Run (G,g,p) «
Group.Gen(\).

On ELFs, Deterministic Encryption, and Correlated-Input Security 23

— Let m be the smallest integer such that 2™ > M. Let R be an efficiently

invertible function from [M] into {0, 1}™.

Let n > m (e.g. m = 2n) be chosen such that a random matrix sampled from

Zy*™ has rank m with overwhelming probability. Note that a random square

matrix will be singular with probability 1/p, and in our case, p is polynomial.

Hence we require m somewhat larger than n.

— Choose a random matrix n x m matrix A of elements in Z;*™. Set A=A

— Output functions f, f~1. f is defined as f(z) = A - (R(z)). The description
of f will consist of (G,p7A, R,m,n).
f~!is defined as follows. Let B € Zy*™ such that B- A is the identity. Given
a vector v € G", compute w = B - v. Then, try to compute the discrete
log of each component by testing if the component is g° or g'. If any of the
discrete log computations fail, then output L. Otherwise, let y be the vector
of exponents obtained. Invert R on y to obtain z. If inversion fails, output L.
Otherwise, output x. The description of f~! will consist of (G, p, B, R, m,n).
TELF.GenLossy), (M, r) is identical to TELF.Genlnj, (M, r), except the matrix
A is chosen to be random of rank k, rather than full rank. In this case, there
is no B and hence no function f~!.

Theorem 3. If Group.Gen is a group where the k-eLin assumption holds for
some constant k, then (TELF.Genlnj,, TELF.GenLossy},) is a bounded adversary
Trapdoor ELF.

Proof. For correctness, notice that w computed by f~! is equal to B - v =
B-A- R(z) = gBA 1@ = gR@) Therefore, when f~! is given a valid output
of f, it will recover ¢©i®) and the discrete log computations will yield R(z) and
the final inversion of R will yield z, as desired.

Security follows from an almost identical argument to the security of bounded
adversary ELFs in Zhandry [22], and we only sketch the details here. All that
needs to be shown is that g® for a random matrix is indistinguishable from ¢ for
a random rank-k matrix. This follows by standard hybrid arguments (e.g. [20])
and the assumed k-linear assumption. a

Constructing Ordinary Trapdoor ELFs. We now turn to using bounded
adversary Trapdoor ELF's to construct ordinary Trapdoor ELFs. Here, we depart
slightly from Zhandry [22]. Zhandry’s idea is to iterate many bounded adversary
functions as r ranges over the powers of 2. The injective mode just sets all the
bounded adversary functions to be injective. For the lossy mode, a single function
is set to be lossy, namely the function that is big enough to fool the adversary
in question.

One issue that immediately becomes apparent in the above approach is that
the bounded adversary functions are expanding. As such, the overall domain
will grow exponentially with the number of iterations, leading to an inefficient
scheme. Zhandry gets around this by applying a pairwise independent function
between each bounded adversary function to compress the output and keep it

24 M. Zhandry

polynomial in size. Unfortunately, this compression destroys any trapdoor in the
bounded adversary function.

Instead, our approach is to not compress the outputs, but be very careful
about which r we choose for our bounded adversary Trapdoor ELFs. In partic-
ular, notice that our bounded adversary Trapdoor ELFs expand the input by a
factor of Cy x logr, for some constant C' that depends on k. Therefore, if our
construction uses a sequence 71, . .., 7 of 7’s, the overall expansion is C}, [] log r;.
We need this expansion factor to be polynomial in size.

Notice that the powers of 2, namely r; = 2¢, used by Zhandry do not work, as
the overall expansion will be Cft!. We need 7 = 2 to be larger than any polyno-
mial in our security parameter log M (so that we can set r based on any adver-
sary), meaning the overall expansion factor will be at least C;°% "¢ ™ (log log M)!.
Notice that (loglog M)! is super-polynomial in log M, leading to an inefficient
scheme. ‘

Instead, we choose r; = 22°, and let ¢ go from 1 to t = \/Ioglog M. We see
that the overall expansion factor is:

t ¢
Cr H logr; = CyYlostoe M H 2!
i=1 i=1

t t
< CllcoglogM HZi — (IOgM)long HQi
i=1 i=1

= (log M8 Cx2%iw1 7 <= (log M)1°8 C2!" = (log M)1F18 Ok

We also note that r, = 22 R g larger than any polynomial in log M.
This means that for any polynomial p, we can always choose i so that r; will be
at most approximately p2. This is exactly what we need to argue security.

In more detail, our construction does the following. Assume for the bounded
adversary Trapdoor ELF that N = N(M,r) satisfies log N < C(log M)(logr)

for some universal constant C, as in our bounded adversary construction. Then
TELF.Genlnj(M) does the following:

Let ¢ be the smallest integer such that 22752 > M.

~ Let M, = M. ‘

— Fori=1,...,t, Run (fl-,fi_l) « TELF.Genlnj' (M;, ;) for r; = 22", Let N; be
the output space of f;, and set M; 1 = N;.

— Let f : [M] — [N;] be fyofiqy0---0f1. Let f~! attempt to compute

fito...f7 ! and output L if any of the inversions fail.

— Output (f, f71).

TELF.GenlLossy(M,r) is the same as TELF.Genlnj, except that it lets i* be
the largest integer such that r;» < r and ¢* < t. It then computes fi« «—
TELF.GenLossy’(M;-, ;) instead of using TELF.Genlnj’. It lets f be defined as
above, and outputs f (but no f*).

On ELFs, Deterministic Encryption, and Correlated-Input Security 25

Theorem 4. If (TELF.Genlnj’, TELF.GenLossy’) is a bounded-adversary Trap-
door ELF satisfying log N < C(log M)(logr) for some constant C, then we have
that (TELF.Genlnj, TELF.GenLossy) is an ordinary Trapdoor ELF.

Proof. The image size in the lossy mode is guaranteed by how we chose ¢*.
Namely, the image size on input 7 is at most r;« which is at most r.

It remains to prove security. Let p be a polynomial and ¢ be an inverse
polynomial in log M. Let p’ be p plus the running time of TELF.Genlnj. Let ¢ be
the polynomial guaranteed by (TELF.Genlnj’, TELF.GenLossy’) for p’ and o.

Notice that ¢ will be a polynomial in the log M;, the domain for the functions
(TELF.Genlnj’, TELF.GenLossy’), and not in log M. Nonetheless, we can redefine
q to be a polynomial in log M since log M; is polynomial in log M.

Consider any adversary A for (TELF.Genlnj, TELF.GenLossy) running in time
at most p. Let » = r(M) be a computable function of M such that r €
(¢(log M), M]. Our goal is to show that A distinguishes f from TELF.GenlInj(M)
from TELF.GenLossy(M,r) with advantage less than 4.

Toward that goal, let ¢* be the largest integer such that r;x = 92" <r and
i* < t. We construct an adversary A’ for (TELF.Genlnj’, TELF.GenLossy’) with
r = ri«. Let f;= be the f that A’ receives, where f;- is either TELF.Genlnj' (M, r;+)
or TELF.GenLossy’ (M, ;). Then A’ simulates the rest of f for itself, setting
(fi, f; ') « TELF.Genlnj' (M;, ;) for i # i*. A’ then runs A on the simulated f.
Notice that A’ runs in time at most p’. Thus by the bounded-adversary secu-
rity of (TELF.Genlnj’, TELF.GenLossy’), A’ cannot distinguish injective or lossy
mode, except with advantage o. Moreover, if f;« « TELF.Genlnj (M, ;-), then
this corresponds to TELF.Genlnj, and if f; « TELF.GenLossy’'(M,7;-), then
this corresponds to TELF.GenLossy(M,). Thus, A’ and A have the same dis-
tinguishing advantage, and therefore A cannot distinguish the two cases except
with probability less than o. O

4.2 Constructing All-but-some Trapdoor ELF's

We now turn to constructing All-but-some Trapdoor ELFs. It is sufficient to
construct a bounded adversary version of All-but-some Trapdoor ELFs, which
can then be converted into full All-but-some Trapdoor ELF's using the conversion
in the preceding section. Here, we describe how to do this. We focus on the all-
but-one case, the all-but-some being a simple generalization.

Construction. Our construction is as follows, and will be parameterized by
k. The branch set B will be interpreted as {0,1}* for some polynomial a.
TELF.Genlnj, (M, b,r) does the following.

— Let A be the largest integer such that (2 x 2*)* < r. Run (G,g,p) «
Group.Gen(A).

— Let m be the smallest integer such that 2™ > M. Let R be an efficiently
invertible function from [M] into {0,1}™.

26 M. Zhandry

— Let n > m be chosen such that a random matrix sampled from Z;*"™ has rank
m with overwhelming probability. Note that a random square matrix will be
singular with probability 1/p, and in our case, p is polynomial. Therefore, we
need to choose an n somewhat larger than m. It suffices to set n = 2m.

— Choose 2a + 1 random 2n x m matrices B, A;; in ZE"XW, and let Ai’t =
gAi,t , B — gB.

Define Ay =B+ >, Ajp,.

— Output functions f, f~!. f is defined as f(b,x) = A, - (R(x)). Note that
A, can be computed from Ai,t,]%. The description of f will consist of
(vaa Bv {Ai,t}a Ra m, n)
f71(b,v) is defined as follows. Let A;" € Z*" such that A, - Ay is the
identity. Given a vector v € G", compute w = A;l -v. Then, try to compute
the discrete log of each component by testing if the component is g% or g'.
If any of the discrete log computations fail, then output L. Otherwise, let y
be the vector of exponents obtained. Invert R on y to obtain z. If inversion
fails, output L. Otherwise, output 2. The description of f~! will consist of
(G7pa Bv {Ai,t}7 Ra m, ﬂ)

TELF.GenlLossy),(M,b,r) is identical to TELF.Genlnj) (M, b,r), except the
matrix Ay is chosen to be random of rank k, rather than full rank. Then
B is set to Ay — >, Ay,

Theorem 5. If Group.Gen is a group where the k-eLin assumption holds for
some constant k, then (TELF.Genlnj,, TELF.GenLossy},) is a bounded adversary
all-but-one Trapdoor ELF.

Proof. We just need to show, given a branch b*, how to embed a challenge g€
into the description of f so that:

— If C is full rank, B, A; ; is distributed as in the injective mode, namely uni-
formly random.

— If C has rank k, then B, A, is distributed as in the lossy mode for branch
b*, namely Ay« is random of rank k.

— We can simulate inversion queries on all other branches.

To do so, we exploit the fact that we have some extra rows to work with.
We will assume the challenge g€ is n x m. We will choose a uniformly random
matrix S € Zg”xzn. We will set Aj. to be the block matrix with C on top, and
027%™ on bottom. Then we will set Ay =S - Al,.

We will choose A;t as random 2n x m matrices, and then set A;; =S A;J.

Finally, we will set B = Aj- — 3, Asy = S+ (Af. = X, AL,).

We can now compute g+t using our knowledge of A, and gB using our
knowledge of A;;, S, and ¢€.

It is straightforward to show that if C is a uniformly random matrix, then
so are all the matrices B, A; ;. Moreover, if C is random of rank £, is is straight-
forward that the matrices are random, subject to Ay« being rank k, as desired.

On ELFs, Deterministic Encryption, and Correlated-Input Security 27

It remains to prove that we can answer inversion queries. Here, we simply
use the fact that we know the bottom n x m matrices in the clear, meaning we
can perform the inversion operation as in standard Trapdoor ELFs. As the last
step, we just verify our inversion by evaluating the Trapdoor ELF on the derived
pre-image, ensuring that it matches the provided image point. a

We can easily use the above techniques to extend to £ lossy branches in several
ways. One way is to simply evaluate ¢ different Trapdoor ELFs in sequence; to
set the ¢ different branches, simply assign one branch to each of the Trapdoor
ELFs.

5 DPKE for Computationally Unpredictable Sources

In this section, we show our basic DPKE construction, a deterministic public
key encryption scheme (DPKE) for arbitrary computational sources.

The Construction. The message space for our scheme is [M]. We will use a hard-
core function G with domain [M], a PKE scheme (PKE.Gen, PKE.Enc, PKE.Dec),
and a trapdoor ELF (TELF.Genlnj, TELF.GenLossy).

— DPKE.Gen runs (sk’,pk’) <+ PKE.Gen()), (f, f~!) « TELF.Genlnj(M), and
G — G. It outputs sk = (sk’, f~1) and pk = (pk’, f, G).

— DPKE.Enc(pk, m) runs PKE.Enc(pk’, f(m); G(m)). That is, it encrypts f(m)
under the semantically secure encryption scheme, using random coins G(m)

— DPKE.Dec(sk, ¢): run y « PKE.Dec(sk’, ¢). If y = | output L. Otherwise run
m «— f~1(y) and output m.

Correctness of the scheme is immediate. For security, we have the following
theorem:

Theorem 6. For any constant d, if G is hardcore for arbitrary computation-
ally unpredictable sources on d inputs, (PKE.Gen, PKE.Enc, PKE.Dec) is seman-
tically secure, and (TELF.Genlnj, TELF.GenLossy) is a secure Trapdoor ELF, then
(DPKE.Gen, DPKE.Enc, DPKE.Dec) is a secure deterministic public key encryp-
tion scheme for arbitrary single computationally unpredictable sources on d
inputs. If (PKE.Gen, PKE.Enc, PKE.Dec) has pseudorandom ciphertexts, then so
does (DPKE.Gen, DPKE.Enc, DPKE.Dec).

Proof. Consider an arbitrary computationally unpredictable source D, sam-
pling messages myq,...,mg and auxiliary information aux. We will prove the
pseudorandom ciphertext case, the other case being analogous. We need to
prove that (pk, DPKE.Enc(pk,m1),..., DPKE.Enc(pk,mg),aux) is computation-
ally indistinguishable from (pk, C1, ..., Cy, aux), where (sk, pk) < DPKE.Gen()),
(my,...,mg,aux) « D, and C; are chosen uniformly random from the ciphertext
space.

Suppose toward contradiction that we have an adversary A which distin-
guishes the two distributions with advantage €. Let p be a polynomial such that
1/p > € infinitely often. We prove security through a sequence of hybrids:

28 M. Zhandry

~ Hp. In this hybrid, the adversary is given (pk,ci,...,cq,aux) where pk =
(pk', f,G), (sk’,pk’) « PKE.Gen()\), (f, f~') < TELF.Genlnj(M), G « G,
and ¢; = DPKE.Enc(pk, m;) = PKE.Enc(pk’, f(m;); G(m;)).

— Hj. In this hybrid, we change f to be lossy. That is we choose r so that A
cannot distinguish f « TELF.GenLossy(M,r) from f, except with probability
1/3p. We then replace f with f < TELF.GenLossy(M,r).

~ Hs. In this hybrid, we change ¢; = PKE.Enc(pk’, f(m;);G(m;)) to ¢; =
PKE.Enc(pk’, f(m;); R;). That is, we replace G(m;) with R;. We now claim
that A distinguishes H; from Hs with negligible probability.

To prove this, notice that by Lemma 1l and the fact that d is constant, we
have that (my,...,mq, (aux,f, f(m1),...,f(mgq))) is also computationally
unpredictable. Then by the hardcore-ness of G, we have that

(G(ml)’ R G(md)’ (aux, G7 f7 f(ml)a LR f(md)))

is indistinguishable from

(Ri,...,Rq, (aux,G, f, f(m1),..., f(ma)))
Finally by post-processing with PKE.Enc, we have that

({PKE.Enc(pk, f(m;); G(m;))},aux, G, f,{f(m;)}, pk)

is indistinguishable from

({PKE.Enc(pk, f(m;); R;)},aux, G, f,{f(m;)}, pk)

The first case is H1, and the second is Hs, proving their indistinguishability.
— Hs. Now we just change each ¢; to be a uniformly random ciphertext C;. The
indistinguishability from Hs follows from the pseudorandomness of PKE.Enc.
— Hy. Finally, we change f back to the injective mode, generating (f, f=1) «
TELF.Genlnj(M) By analagous arguments, A distinguishes Hy from Hjz with
advantage 1/3p. The result is that the adversary now sees (pk, C,aux).

Putting it all together, A distinguishes Hy from H, with advantage at most
2/3p — negl < 1/p < ¢, a contradiction. a

6 Achieving CCA Security

In this section, we turn to building CCA-secure DPKE for computationally
unpredictable sources.

We will loosely follow Peikert and Waters [18], who build CCA-secure pub-
lic key encryption from lossy trapdoor functions (LTDFs). The main difficulty
is that we want to switch to lossy mode in order to prove the security of the
challenge ciphertext, but need to maintain the ability to decrypt all other cipher-
texts. Their core idea is to devise a LTDF with many “branches”, each ciphertext
using a different branch. The challenge ciphertext is set to be encrypted using a
lossy, and all others are injective.

We will use this idea, but the technical implementation will be somewhat
different, and of course we will use a Trapdoor ELF with branches instead of an
LTDF. The details are below.

On ELFs, Deterministic Encryption, and Correlated-Input Security 29

6.1 Our Construction

Our building blocks will be a pseudorandom generator G, a CCA-secure public
key encryption scheme (PKE.Gen, PKE.Enc, PKE.Dec), and an all-but-one Trap-
door ELF (TELF.Genlnj’, TELF.GenLossy’).

— DPKE.Gen runs (sk’, pk’) « PKE.Gen(\), (f, f~!) « TELF.Genlnj'(M), and
Go,G1 — G. Tt outputs sk = (sk’, 1) and pk = (pk’, f, Go, G1).

— DPKE.Enc(pk,m) runs b « Go(m) to select a branch. Then it applied
our scheme from Sect.5, using the branch b. Namely, it computes d «
PKE.Enc(pk’, f(b,m); G1(m)). The output is the ciphertext ¢ = (b, d).

— DPKE.Dec(sk,c): run y « PKE.Dec(sk’,¢’). If y = L output L. Oth-
erwise, it runs m <« f71(b,y). Finally, it checks that the ciphertext is
well-formed by re-encrypting m. Namely, it verifies that b = Gy(m) and
d = PKE.Enc(pk, f(b,m); G1(m)). If the checks fail, it outputs L. Otherwise,

it outputs m.
The completeness of the scheme is immediate. Next, we prove security.

Theorem 7. For any constant d, if G is an injective hardcore function for
any computationally unpredictable sources on d inputs, (PKE.Gen, PKE.Enc,
PKE.Dec) is CCA-secure, (TELF.Genlnj, TELF.GenLossy) is a secure all-but-d
Trapdoor ELF, then (DPKE.Gen, DPKE.Enc, DPKE.Dec) is a CCA-secure deter-
ministic public key encryption scheme for arbitrary computationally unpre-
dictable sources on d inputs. If (PKE.Gen, PKE.Enc, PKE.Dec) has pseudorandom
ciphertezts, then so does (DPKE.Gen, DPKE.Enc, DPKE.Dec).

Proof. For simplicity, we prove the case d = 1, the more general case being
a straightforward adaptation. Consider an arbitrary computationally unpre-
dictable source D, sampling messages m and auxiliary information aux. We will
prove the pseudorandom ciphertext case, the other case being analogous. We
need to prove that (pk, DPKE.Enc(pk,m), aux) is computationally indistinguish-
able from (pk, C,aux), where (sk, pk) < DPKE.Gen(}), (m,aux) <« D, and C is
chosen uniformly random from the ciphertext space. This must hold even if an
adversary can make decryption queries on any ciphertext except the challenge.

Suppose toward contradiction that we have an adversary A which distin-
guishes the two distributions with advantage €. Let p be a polynomial such that
1/p > e infinitely often. We prove security through a sequence of hybrids:

— Hy. Here, we give the adversary (pk,c*,aux) where pk = (pk’, f,Go,G1),
(sk’, pk’) « PKE.Gen()), and (f, f~1) « TELF.Genlnj(M), and Gy, G « G.
Also, we set ¢* = DPKE.Enc(pk,m) = (b*,d*) where b* = Go(m) and d* =
PKE.Enc(pk’, f(b*,m); G1(m)).

— H;. In this hybrid, we change f to be lossy on the branch b*. That is,
(f, f~1) « TELF.Genlnj(M,b*,r), where 7 is chosen so that A cannot dis-
tinguish this change except with advantage 1/3p.

We need to make sure that we can still answer CCA queries. For this, we just
need that Gg is injective, so that any other valid ciphertext will correspond
to a different branch.

30

M. Zhandry

Hs. In this hybrid, we replace G1(m) with random. We now claim that this
change is indistinguishable to the adversary.

Toward that end, first observe that since Gy is hardcore, we have that
(Go, Go(m), aux) is indistinguishable from (Gy, S, aux) for a uniformly random
S. This means that (m, (aux, Gy, Go(m))) is computationally unpredictable.
But then by Lemma 1, we also have that (m, (aux, Go,b*, f, f~1, f(b*,m))) is
computationally unpredictable, where (f, f~!) « TELF.GenLossy(M,b*,7)
for b* = Go(m). Finally, by the hardcore property of G1, we have that
the distribution (G4, G1(m),aux, G, b*, f, f~1, f(b*,m)) is indistinguishable
from (G4, R,aux, G, b*, f, f~1, f(b*,m)) for a random R.

Now notice that an adversary given (Gi, R,aux,Go,b*, f, f=1, f(b*,m)) for
R = G1(m) (resp. random) can easily simulate the view of A in H; (resp.
Hs) by using f~! to answer decryption queries. Therefore, if A distinguishes
the two hybrids, we can easily create a distinguisher for these two distribution,
arriving at a contradiction.

Hj. Now we just change c to be a uniformly random ciphertext C. The indis-
tinguishability from Hy follows from the CCA-secure pseudorandomness of
PKE.Enc.

Now notice that the d* portion of the adversary’s view is completely inde-
pendent of m.

H,. Now we invoke the hardcore-ness of Gy one more time to replace Go(m)
with a random b*.

Hj. Finally, we change f back to the injective mode, generating (f, f=1) «
TELF.Genlnj(M) By analagous arguments, A distinguishes Hy from H4 with
advantage 1/3p. The result is that the adversary now sees (pk, C,aux).

Putting it all together, A distinguishes Hy from Hy with advantage at most

2/3p — negl < 1/p < ¢, a contradiction. O
References
1. Alwen, J., Dodis, Y., Wichs, D.: Survey: leakage resilience and the bounded

retrieval model. In: Kurosawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 1-18.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14496-7_1

Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1-18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8_1

Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535-552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_30

. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks

and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486-503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0-26

Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360-378. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5_20

https://doi.org/10.1007/978-3-642-14496-7_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-540-85174-5_20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

On ELFs, Deterministic Encryption, and Correlated-Input Security 31

Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 627-656. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_21

Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62-73. ACM Press,
November 1993

Boldyreva, A.,; Fehr, S., O’Neill, A.: On notions of security for deterministic
encryption, and efficient constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335-359. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5_19

Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 543-560. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9_31

Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEsS: the case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188-205. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_11

Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209-218. ACM Press, May 1998
Chung, K.-M., Lin, H., Mahmoody, M., Pass, R.: On the power of nonuniformity
in proofs of security. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 389-400. ACM,
January 2013

Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279-295. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7_17

Fuller, B., O'Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 582-599. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28914-9_33

Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC, pp. 25-32. ACM Press, May 1989

Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182-200. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19571-6_12

Matsuda, T., Hanaoka, G.: Chosen ciphertext security via UCE. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 56—76. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54631-0_4

Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187-196. ACM Press, May 2008
Raghunathan, A., Segev, G., Vadhan, S.P.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93-110. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38348-9_6

Villar, J.L.: Optimal reductions of some decisional problems to the rank problem.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 80-97.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_7

https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-642-22792-9_31
https://doi.org/10.1007/978-3-642-22792-9_31
https://doi.org/10.1007/978-3-662-44371-2_11
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-642-28914-9_33
https://doi.org/10.1007/978-3-642-28914-9_33
https://doi.org/10.1007/978-3-642-19571-6_12
https://doi.org/10.1007/978-3-642-54631-0_4
https://doi.org/10.1007/978-3-642-54631-0_4
https://doi.org/10.1007/978-3-642-38348-9_6
https://doi.org/10.1007/978-3-642-34961-4_7

32 M. Zhandry

21. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
Kleinberg, R.D. (ed.) ITCS 2013, pp. 111-126. ACM, January 2013
22. Zhandry, M.: The magic of ELFs. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,

Part I. LNCS, vol. 9814, pp. 479-508. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53018-4_18

https://doi.org/10.1007/978-3-662-53018-4_18
https://doi.org/10.1007/978-3-662-53018-4_18

®

Check for
updates

New Techniques for Efficient Trapdoor
Functions and Applications

Sanjam Garg!®™), Romain Gay??, and Mohammad Hajiabadi'*

1 University of California, Berkeley, USA
{sanjamg,mdhajiabadi}@berkeley.edu
2 Département informatique de PENS, Ecole normale supérieure, CNRS,
PSL University, 75005 Paris, France
romain.gayQ@ens.fr
3 INRIA, Paris, France
4 University of Virginia, Charlottesville, USA

Abstract. We develop techniques for constructing trapdoor functions
(TDFs) with short image size and advanced security properties. Our app-
roach builds on the recent framework of Garg and Hajiabadi [CRYPTO
2018]. As applications of our techniques, we obtain

— The first construction of deterministic-encryption schemes for block-
source inputs (both for the CPA and CCA cases) based on the Com-
putational Diffie-Hellman (CDH) assumption. Moreover, by applying
our efficiency-enhancing techniques, we obtain CDH-based schemes
with ciphertext size linear in plaintext size.

— The first construction of lossy TDFs based on the Decisional Diffie-
Hellman (DDH) assumption with image size linear in input size,
while retaining the lossiness rate of [Peikert-Waters STOC 2008].

Prior to our work, all constructions of deterministic encryption based
even on the stronger DDH assumption incurred a quadratic gap between
the ciphertext and plaintext sizes. Moreover, all DDH-based construc-
tions of lossy TDF's had image size quadratic in the input size.

At a high level, we break the previous quadratic barriers by introduc-
ing a novel technique for encoding input bits via hardcore output bits
with the use of erasure-resilient codes. All previous schemes used group
elements for encoding input bits, resulting in quadratic expansions.

1 Introduction

Trapdoor functions (TDF's) are a fundamental primitive in cryptography and are
typically used as a fundamental building block in the construction of advanced
primitives such as CCA2-secure public-key encryption (PKE). Introduced in
the 70s [DH76,RSA78], TDF's are a family of functions, where each individual
function in the family is easy to compute, and also easy to invert if one posses an
additional trapdoor key. The basic security requirement is that of one-wayness,
requiring that a randomly chosen function from the family be one-way.

The usefulness of TDFs stems from the fact that the inversion algorithm
recovers the entire input. This stands in sharp contrast to PKE, wherein the

© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 33-63, 2019.
https://doi.org/10.1007/978-3-030-17659-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17659-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-17659-4_2

34 S. Garg et al.

decryption algorithm may not recover the underlying randomness. This input
recovery feature of TDFs is what makes them a useful tool, especially in appli-
cations where proofs of well-formedness are required.

On the other hand, building TDFs turns out to be much more difficult than
building PKE, mostly due to the requirement of recovering the entire input,
which in turn is the reason behind the lack of black-box transformations from
PKE to TDFs [GMRO1]. Specifically, in groups with discrete-log based hardness
assumptions, this restricts the use of operations such as exponentiation, for which
we do not have a generic trapdoor. Furthermore, in some applications we need
TDFs to be robust, providing enhanced security properties rather than mere
one-wayness (e.g., [BBO07,PW08,PW11,PVW08,BFOR08,RS09)]).

Recently, Garg and Hajiabadi [GH18] introduced a new approach for build-
ing TDF's, obtaining the first construction of TDFs from the Computational
Diffie-Hellman (CDH) assumption. Although their approach gives new feasi-
bility results, their constructed TDFs are limited in certain ways: (a) Their
TDFs are not robust enough—for example, it is not clear how to go beyond one-
wayness, obtaining more advanced properties such as those required by deter-
ministic encryption [BBO07,BFOR08, BFO08] or CCA2 security; and (b) The
length of their TDF images grows (at least) quadratically with the length of the
input.

We stress that Point (b) is not just an artifact of the construction of [GH18].
In fact, we do not know of any TDF constructions (even based on the stronger
decisional Diffie-Hellman (DDH) assumption) with advanced properties, such as
deterministic-encryption security, with images growing linearly in their inputs.’
Since TDF's are typically used as building blocks in more advanced primitives,
designing more efficient TDFs translates into the same features in target applica-
tions. For example, lossy TDFs [PW08,PW11] are an extremely versatile prim-
itive with a long list of applications; e.g., [BFOR08,BHY09, BBN+09,MY10,
BCPT13].

1.1 Our Results

We develop techniques for constructing efficient and robust TDFs. As concrete
applications of our new techniques, we obtain the first construction of deter-
ministic encryption for block sources (in the sense of [BFOO08]) under the CDH
assumption. We give both CPA and CCA2 versions of our constructions. We
stress that prior to our work we knew how to build (even) CPA-secure deter-
ministic encryption only from decisional assumptions, including DDH, QR, DCR
and LWE [BFO08, Weel2]. Thus, in addition, we also obtain instantiations under
the hardness of factoring assumption.
Furthermore, we show how to use our efficiency techniques to obtain:

1 'We note that building a TDF providing mere one-wayness with linear-size images is
simple: if TDF.F(ik,-) maps n-bit inputs to n°-bit outputs, define TDF.F’(ik, x||x’),
where |x| = n and |x'| = n°, as TDF.F(ik,x)||x’. Although this transformation results
in TDFs with linear-image size, it destroy more advanced properties such as CCA2
security, deterministic-encryption security and the lossiness rate.

New Techniques for Efficient Trapdoor Functions and Applications 35

1. The first CDH-based deterministic encryption schemes with ciphertext size
linear in plaintext size. Additionally, our CDH-based deterministic-encryption
schemes beat all the previous DDH-based schemes in terms of ciphertext size.
The sizes of other parameters (e.g., the secret key and public key) remain the
same. See Table1 for a comparison.

2. The first construction of lossy TDFs ([PW08,PW11]) from DDH with image
size linear in input size. Our DDH-based lossy TDFs achieve the same lossi-
ness rate as in [PWO08,PW11]. All previous DDH-based lossy TDF construc-
tions (achieving non-trivial lossiness rates) resulted in images quadratically
large in their inputs.

Table 1. Bit complexity: p is the order of the group and n is the bit size of the TDF
input. Here (n, k)-LTDF means lossy TDFs where in lossy mode the image-space size
is at most 2¥. We call 1 — k/n the lossiness rate.

work assumption | primitive index key |trapdoor key | image

ours CDH CCA2 DE O(n*logp) | O(n*logp) |logp+O(n)
[BFO08] |DDH CCA2 DE O(n?logp) | O(n*logp) | O(nlogp)
ours DDH (n,1log p)-LTDF | ©(n?logp) O(n’logp) |logp+ O(n)
[PWOS, DDH (n,logp)-LTDF | ©(n?logp) | ©(n?logp) | O(nlogp)
PW11,

FGK+10]

1.2 Technical Overview

In this section we give an overview of our techniques for constructing robust
and efficient TDFs. We will build TDF's with several abstract properties, and we
will apply these techniques to the setting of deterministic encryption and lossy
TDF's as concrete applications.

Our constructions rely on the same primitive of recyclable one-way function
with encryption (OWFE) used by [GH18], so we first review this notion. An
OWFE consists of a one-way function f(pp,-): {0,1}" — {0,1}, where pp is
a public parameter, along with encapsulation/decapsulation algorithms (E, D).
Specifically, E takes as input pp, an image y € {0,1}" of f(pp,), a target index
i € [n] and a target bit b € {0,1}, and produces an encapsulated ciphertext ct
and a corresponding key bit e € {0,1}. The algorithm D allows us to retrieve e
from ct using any pre-image x of y, if x; = b. For security, letting y := f(pp, x), we

require that if (ct, e) & E(pp,y, (,1—x;)), then even knowing both x and ct, one
cannot distinguish e from a truly random bit. Finally, letting E; and Es refer to
the first and second output pars of E, the recyclability requirement says that the
output of E; does not depend on y, namely, we have: ct = E;(pp, (¢,b)) and e =
Ex(pp,y, (4,0)). (See Definition 4.) The work of [GH18] gives CDH instantiations
of this notion.

36 S. Garg et al.

Approach of [GH18]. A property implied by recyclable OWFE is the follow-
ing: given x € {0,1}" and two fresh encapsulated ciphertexts (ctg,ct;) made
w.r.t. y := f(pp,x) and an arbitrary target index ¢ and target bits 0 and 1
(respectively), one cannot distinguish the values of the corresponding two key
bits (eg, e1) from a pair in which we replace e;_, with a random bit. Exploiting
this property, [GH18] set their index key to contain encapsulated ciphertexts
ct;, made w.r.t. each value of ¢ € [n] and b € {0,1}—they put all the corre-
sponding randomness values [r; 3] in the trapdoor key. The input to their TDF
contains x € {0, 1}" and the output u consists of y := f(pp,x) as well as a 2 x n
matrix M of bits (€;5)ic[n],be{0,1}, Where for all i, they set e;, := D(pp, x, ct;,)
and set e; 14, to be a random bit. Since TDF's are not allowed to make use of
randomness, they draw e; 1, for all 7 from an additional part of their input
which they call the blinding part. For inverting u := (y, M), the inverter may
make use of its knowledge of all the randomness values underlying ct; ;’s to form
the corresponding key bits w.r.t. y. Then the inverter may check each column
of the resulting matrix, M’, against the corresponding column of the matrix
M. and look for a matched coordinate. This would enable recovering half of the
input bits (on average). The one-wayness of their scheme follows by the property
alluded to above. Namely, for any ¢ € [n], we may switch e;_,, from uniformly
random to Ea(pp,y, (¢,1 — x;);75.1-x;). Consequently, the image of the trapdoor
function becomes: (y, (€;)ip), Where ;5 := Ea(pp,y, (¢,b);7:4) for all i € [n]
and b € {0,1}. In other words, the entire view of a TDF adversary may be
computed from y alone. At this point, the one-wayness of the TDF follows from
the one-wayness of the underlying OWFE. Finally, [GH18] boosts correctness by
repeating the above process in parallel. For future reference, we call the above
initial TDF (which enables the recovery of half of the bits) TDF gadget.

Lack of perfect correctness in [GH18]. The TDF of [GH18] only achieves
a weak form of correctness, under which the inversion algorithm may fail
w.r.t. any index/trapdoor keys for a negligible fraction of the inputs. This
severely restricts the applicability of CCA2-enhancing techniques, such as
those of [RS09,KMO10], for obtaining CCA2 secure primitives. Even for the
CPA case, the lack of perfect correctness hindered the construction of CPA-
secure deterministic encryption schemes. Deterministic public-key encryption
schemes [BBOO07] are TDFs which hide information about plaintexts drawn
from high min-entropy sources. There are various forms of this definition,
e.g., [BBO07,BFO08, BFOR08,BS11, MPRS12]. Strong versions of this notion
have so far been realized in the random oracle model [BBOO07] and are subject
to impossibility results [Wicl3]. Boldyreva, Fehr and O’Neill [BFOO08] formu-
lated a relaxation of this notion (called block-source security), and showed how
to realize this relaxed notion under standard assumptions such as DDH and
LWE. Informally, block-source security requires that the (deterministic) encryp-
tions of any two sources with high min entropy (more than a threshold k) remain

New Techniques for Efficient Trapdoor Functions and Applications 37

computationally indistinguishable.? Ideally, we want k << n, where n is plain-
text size.

The TDF of [GH18] does not achieve block-source security for the same
reason that degraded their correctness property: The TDF input contains a
blinding part, which in turn is copied in the clear in the output (but in hidden
spots). To see how this breaks security, consider two sources, where the first one
fixes the blinding part to all zeros, and the second one fixes it to all ones. Then
it would be easy to distinguish between the outputs of the TDF w.r.t. these two
sources, even though they may have high min entropy.

Enhancing to perfect correctness. We fix the imperfect correctness of [GH18] via
a mirroring technique. Recall that the bits of the blinding input were previously
used to form the values of e; 1_,. Now, instead of having a blinding part in
the input for making up the values of e; 1_y,, we set e; 1_«, := a; — €; x,, where
a:= (a,...,a,) € {0,1}" is a random vector that comes from the index key.
This way we get rid of inclusion of blinders as part of the input—the input
now solely consists of a string x € {0,1}". We show that this method improves
correctness: Our TDF is now perfectly correct for all but a negligible fraction of
index/trapdoor keys; see Remark 1.

Lossy-like properties of our TDF toward obtaining deterministic encryption. So
far, we showed how to fix the imperfect-correctness problem of [GH18], but this
by itself does not guarantee deterministic-encryption security. Toward this goal,
we show that the mirroring technique allows us to establish a lossy-like property
for our TDFs, which in turn gives us block-source security.? Specifically, let y
be an image point of f(pp,-) of the OWFE scheme, and let S be the set of all
pre-images of y (which can be of exponential size under our CDH instantiation).
We can now set the index key as iky, where (a) ik, loses information w.r.t. all
pre-images of y: for all x,x’ € S we have TDF.F(iky,x) = TDF.F(iky,x’) and (b) ik,
is computationally indistinguishable from an honestly generated ik. We exploit
this property to prove block-source security for our TDFs.

Having achieved block-source CPA security, we may boost this scheme into a
CCA2-secure deterministic-encryption scheme using the techniques of [RS09,
KMO10].* Specifically, we show how to use our lossiness property to prove
k-repetition security (introduced by [RS09]) for our TDF. Intuitively, k-
repetition security requires one-wayness to hold even if the given input is evalu-

2 This is the indistinguishability-based, single-message version of their notion,
which as they show, is equivalent to the multiple-message version both for the
indistinguishability- and simulation-based definitions.

3 We note that this lossiness property is weaker than the one of [PW08,PW11], but it
can be realized under CDH. We will later show efficient DDH-based instantiations
of lossiness in the sense of [PW08,PW11].

* We mention that the transformation of [RS09] results in CCA-secure PKE schemes
which use randomness, but this can be avoided by using the techniques of [KMO10]
to get CCA2-secure TDF's.

38 S. Garg et al.

ated under k-randomly chosen functions. The scheme of [GH18] fails to achieve
k-repetition security, exactly because of the presence of blinders.

Finally, we mention that based on CDH we do not get lossiness in the sense
of [PW08,PW11] as the amount of information we lose is negligible over the
entire input space. Nevertheless, our weak lossiness property which can be real-
ized under CDH suffices for our deterministic-encryption application, and may
find other applications later.

Efficiency of our TDFs so far: quadratically large images. Under CDH instantia-
tions of the above approach, for plaintexts of n bits, the bit-size of the ciphertext
is ©(n?) in the CPA case, and ©(n%w(logn)) in the CCA case. In contrast, the
DDH-based constructions of [BFO08] give ciphertext size ©(n?) both for the
CPA and CCA cases.

Sources of inefficiency. Recall our TDF gadget has image size @(n). This TDF
gadget may fail to recover any given bit of the input with probability 1/2. Thus,
we ran many TDF gadgets in parallel, resulting in ©(n?) image size. We refer to
this as correctness repetition. For the CCA2 case, since we relied on techniques
of [RS09,KMO10] we needed to perform yet another repetition, which we call
CCA2 repetition. This justifies the further blowup in CCA2 image size.

We develop techniques for avoiding both these repetitions, sketched below.

Erasure-resilient codes to the rescue: linear-image TDFs. We give techniques
involving the use of erasure-resilient codes for making the size of our TDF images
linear, while preserving other properties. Recall that under our TDF gadget, for
a randomly chosen input x € {0,1}" and for any index ¢ € [n], the inversion
algorithm either recovers x; correctly, or outputs L for this bit position (with
probability 1/2). Notice that the inversion process has a local property, in the
sense that each bit individually may be recovered or not with probability 1/2.

Now instead of performing parallel repetition which results in a quadratic-size
blowup, we boost correctness through the use of erasure-resilient codes. Suppose
(Encode, Decode) is an erasure-resilient code, where Encode: {0,1}™ — {0,1}™
(for m = en € O(n)), and where Decode only needs ¢;n (noise-free) bits of a
codeword Encode(x)—for ¢; sufficiently smaller than ¢—in order to recover x.
Such codes may be built from Reed-Solomon codes by adapting them to bit
strings; see Definition 8.

The starting point of our technique is the following: On input x € {0,1}",
apply the TDF gadget on the encoded input z := Encode(x). To invert, we
no longer need to recover all the m bits of z; recovering c¢;n of them will do.
Unfortunately, for codes over binary alphabets, the value of ¢; /¢ is much greater
than 1/2 and our TDF gadget may be incapable of recovering that many bits.
We get around this issue by doing repetition but for a constant number of times:
Instead of applying the TDF gadget to z := z; ...z, apply it to the t-repetition
copy of z where we repeat each bit of z ¢t times. By choosing the underlying
constants appropriately and using the mirroring idea, we can ensure perfect
correctness for all but a negligible fraction of index/trapdoor keys. This way,

New Techniques for Efficient Trapdoor Functions and Applications 39

images will grow linearly. The proof of CPA block-source security follows almost
similarly as before.

Concretely, under CDH instantiations, CPA ciphertexts (for plaintexts of n
bits) consist of one group element and a constant number of bits.® This substan-
tially improves the ciphertext size of previous DDH-based schemes under which
a ciphertext consists of n group elements.

Keeping image size linear in CCA-like applications. So far, we showed how
to build linear-image TDFs with additional properties (e.g., block-source CPA
security). Typically, TDFs with enhanced properties (such as k-repetition secu-
rity [RS09] or lossy properties [PWO08,PW11]) can be boosted into CCA2 prim-
itives, but this requires “parallel repetition” of the base object, increasing the
sizes. Our linear-image TDF turns out to be k-repetition secure, but we cannot
afford to use previous techniques for getting CCA2 security, because we would
like to keep image size linear. Here is where our other techniques come into play:
We develop a half-simulation method for proving CCA2 security for our same
TDF scheme without any further modifications. For this, we just need to choose
the constant ¢ in m = ¢n big enough. Our CCA techniques are different from
those of [PW08,PW11,RS09], which implicitly or explicitly relied on repetition.

As an application, we will get a CDH-based block-source CCA-secure deter-
ministic encryption, beating the ciphertext size of DDH-based schemes. We now
sketch our techniques.

Let (Encode, Decode) be a code obtained by repeating the output bit of
a codeword (which in turn is obtained based on a linear-size-output error-
correcting code) t times for a constant t. See Definition8 and the two para-
graphs afterward. A codeword z may be thought of as a string of m/t blocks,
each consisting of entirely either ¢ zeros or ¢ ones.

Recall that a trapdoor key tk consists of all randomness values r; ;’s used to
form ct; ;’s (which are in turn fixed in the index key ik). On input x € {0,1}"
we form z := Encode(x) € {0,1}™ and return u := (y,M := (&%em?)),
where y := f(pp,z), ¢;,, = D(pp,z,ct;,,) and e;1_,, = a; — €; 5,, where a :=
(ag,...,am) € {0,1}™ is sampled in ik. The inversion algorithm will recover the
ith bit of z iff €;1_,, =1 — Ea(pp,y, (4,1 — 2;);75.1—7,). Say the ith column of M
is hung if e; 1_,, = Ea(pp, Y, (i, 1 —2;); 7 15,)—if this happens, then the inverter
cannot decide on the ith bit of z.

Let us argue CCA2 security w.r.t. two sources Sy and Sp: The adversary
should distinguish (ik, TDF.F(ik, xq)) from (ik, TDF.F(ik,x1)), where x; & Sp. For
deterministic encryption we may assume all CCA queries happen after seeing the
index key and challenge ciphertext (Definition 2).

Our CCA2 simulation is based on a half-trapdoor simulation technique
under which we forget one randomness value from each pair (r;,7;,1) in the
trapdoor. Specifically, letting x* be the challenge plaintext, imagine a half-
trapdoor key obtained based on x* from tk as tkyq . = (rl,z;,...,rm,z,*),

m

where z* = Encode(x*). We perform half-trapdoor inversion of a given point

5 We have not yet optimized nor tried to get some upper bounds on the constants.

40 S. Garg et al.

U= (y, (Z}QZ,;;?)) w.r.t. tkyq+ as follows: Build (potentially) a noisy code-
word z as follows: in order to recover the bits of the jth block, if at least for one
index i in this block we have e; ;- =1 — Ea(pp,y, (4,2});7i2:), set all the bits of
z in this block to 1 — zJ; otherwise, set all those bits to the corresponding bit
values of z* in those coordinates. Once z is formed, decode it to get a string and
check if the re-encryption of that string gives back u. If so, return the string.

Letting x* be the challenge plaintext (and recalling that all CCA queries
are post-challenge), we first show we may use tk,q,« (instead of the full key
tk) to reply to the CCA queries, without the adversary noticing any difference,
using the following two facts. First, for a queried point u, if u is not a valid
image (i.e., it does not have a pre-image), then both (full and half) inversions
return L. This is because at the end of either inversion we re-encrypt the result
to see whether we get the given image point back. So suppose for the queried
ui=(y,M:= (&'7em?)) we have u := TDF.F(ik, x) for some x € {0, 1}™\ {x*}.
(If x = x*, then u will be the challenge ciphertext itself and hence not a permitted
query.) Let S C [m/t] contain the indices of those blocks on which z and z* differ,
where z := Encode(x). Note the half-trapdoor inversion w.r.t. tkyq ,+ will correctly
recover all the bits of z that correspond to the blocks which are not in S.

For the blocks in S, we show that by choosing the constants appropriately,
then for sufficiently-many indices j € S, the jth block of M is not hung; namely,
for at least one index 4 in this block we have e;1_,, = 1 — Ea(pp,y, (4,1 —
Z;);Ti1—z). For any index j € S such that the above holds, the half-inversion
process (w.r.t. tkyq ,+) will recover the jth block of z (by definition). We will use
these facts to argue we will have enough correctly generated bits in order to able
to do error correction.

Once we solely use tk;q,~ to reply to decryption queries, letting u* :=

(y*, (Zi’o’m’:f“o)) be the corresponding challenge ciphertext, we may replace
1,100

1

*
each el _,

: with Ea(pp,y*, (4,1 —2}); 7,12), and simultaneously set the ith bit
of the vector a of the index key as a; := E2(pp,y*, (4,2}); 722) + E2(pp, y*, (i, 1 —
Z7);7i1-2:). This change goes unnoticed by the security of the OWFE. At this
point the challenge ciphertext and index key only depend on y* and we only use
z* to decide which randomness value from each pair of tk to forget. We will now
switch back to using the full trapdoor, with analysis similar to before. At this
point, the entire view of the adversary may be simulated using y* := f(pp, z*),
and thus we have block-source security in this hybrid similar to the CPA case.

Lossy TDFs. Recall that a TDF is lossy [PW08,PW11] if one may generate index
keys in a lossy way which is (1) indistinguishable from honestly generated index
keys and (2) which results in statistical loss of information if used during the
evaluation algorithm. We show we can adapt the trapdoor functions of [PWO08,
PW11] using our erasure-resilient code based technique for encoding input bits
via hardcore output bits. This allows us to obtain lossy TDF's based on DDH with
image size linear in input size. All previous DDH-based constructions of lossy
TDFs incur a quadratic blowup in image size [PW08,PW11,FGK+10, Weel2].

New Techniques for Efficient Trapdoor Functions and Applications 41

We defer the reader to Sect. 6 for details. We leave open the exciting problem of
constructing lossy trapdoor functions from CDH.

Other related work. OWFE is a relaxation of the notion of (chameleon) hash
encryption and its variants, which in turn imply strong primitives such as
laconic oblivious transfer and identity-based encryption (IBE) in a non-black-box
way [CDG+17,DG17b,DG17a,BLSV18, DGHM18§].

Freeman et al. [FGK+10] give additional constructions and simplifications to
the TDF construction of [PW08,PW11]. Further constructions of (lossy) TDFs
from various assumptions are given in [Weel2,HO12,HO13]. As for efficient
TDFs, Boyen and Waters show that in the bilinear setting one may drastically
shorten the index-key size of the Peikert-Waters lossy-TDF construction from a
quadratic number of group elements to linear [BW10].

Concurrent Work. In an exciting independent and concurrent work, Koppula
and Waters [KW18] show that TDF techniques can be used to upgrade any
attribute-based encryption or predicate encryption scheme to its CCA secure
variant. Similarly to this work, Koppula and Waters build on the ideas from
the CDH-based TDF construction of Garg and Hajiabadi [GH18]. In particular,
Koppula and Waters [KW18] independently came up with a similar version of
the mirroring technique along the way, which we also developed in this paper.
However, the focus of our work is very different from that of Koppula and Waters.
In particular, we develop efficient techniques for applications such as TDFs,
deterministic encryption and lossy trapdoor functions.

Paper organization. We give standard definitions and lemmas in Sect.2 and
OWFE-related definitions in Sect.3. We give our (inefficient) construction of
TDFs with deterministic-encryption security in Sect.4 and give our efficient
construction in Sect. 5. Finally, we give our DDH-based lossy TDF construction
with linear image size in Sect. 6.

2 Preliminaries

[lo

Notation. We use A for the security parameter. We use = to denote com-
putational indistinguishability between two distributions and use = to denote
two distributions are identical. For any € > 0, we write ~. to denote that two
distributions are statistically close, within statistical distance ¢, and use = for

statistical indistinguishability. For a distribution S we use x & S to mean = is
sampled according to S and use y € S to mean y € sup(S), where sup denotes

the support of a distribution. For a set S we overload the notation to use x Es
to indicate that x is chosen uniformly at random from S. If A(zy,...,2z,) is a
randomized algorithm, then A(ay,...,a,), for deterministic inputs ay, ..., an,
denotes the random variable obtained by sampling random coins r uniformly at
random and returning A(aq, ..., an;7).

42 S. Garg et al.

The min-entropy of a distribution S is defined as Hu(S) £ —log
(max, Pr[S = x]|). We call a distribution S a (k,n)-source if Hy(S) > k and
sup(8) € {0, 1},

2.1 Standard Definitions

Definition 1 (Trapdoor functions (TDFs)). Let n = n(X) be a polynomial.
A family of trapdoor functions TDF with domain {0,1}"™ consists of three PPT
algorithms TDF.KG, TDF.F and TDF.F~! with the following syntaz and security
properties.

TDF.KG(1*"): Takes the security parameter 1 and outputs a pair (ik,tk) of
index/trapdoor keys.

TDF.F(ik,x): Takes an indezx key ik and a domain element x € {0,1}"™ and
deterministically outputs an image element u.

TDF.F~1(tk,u): Takes a trapdoor key tk and an image element u and outputs
a value x € {0,1}" U {L}.

We require the following properties.

Correctness:

(_frk)[ax € {0,1}" s.t. TDF.F~(tk, TDF.F(ik,x)) # x] = negl(\), (1)
ik,t

where the probability is taken over (ik, tk) & TDF.KG(1%).
One-wayness: For any PPT adversary A, we have Pr[A(ik,u) = x] =

negl(\), where (ik, tk) < TDF.KG(1}), x < {0,1}" and u := TDF.F(ik,).

Remark 1. The work of Garg and Hajiabadi [GH18] builds a TDF with a
weaker correctness guarantee, under which for any choice of (ik,tk), we are

allowed to have a negligible inversion error (over the choice of x & {0,1}™).
Although the correctness condition of [GH18] implies that for a randomly chosen
(ik, tk) and a randomly chosen x, the probability of an inversion error is negligi-
ble, it falls short in certain applications, such as CCA2 constructions, for which
a stronger correctness condition, as that given in Definition 1, is needed.

We will now define a single-message-based notion of indistinguishability
for deterministic encryption of block sources, which as proved in [BFOO08], is
equivalent to both the simulation-based and indistinguishability-based multiple-
message notions.

Definition 2 (Deterministic-encryption security [BFOO08]). Let TDF =
(TDF.KG, TDF.F, TDF.F~1) be as in Definition 1. We say that TDF is (k,n)-
CPA-indistinguishable if for any two (k,n)-sources S; and S we have

(ik, TDF.F(ik, S1)) = (ik, TDF.F(ik, S2)), where (ik, *) < TDF.KG(1*).

New Techniques for Efficient Trapdoor Functions and Applications 43

We say that TDF is (k,n)-CCA2-indistinguishable if for any two (k,n)-
sources Sg and S1, and any PPT adversary A the following probability is negli-
gible:

prlp = . (k. tk) & TDE.KG(1Y), b <& {0,1},x" <& S, u" := TDF.F(ik,x") | _ 1

T b — AP (ik, u*) 2
where on input u, the decryption oracle Opec returns TDF.F~1(tk,u) if u # u*,
and L otherwise.

We remark that considering only CCA2 queries (as opposed to both CCA1
and CCA2 queries) in the CCA2-indistinguishability definition for deterministic
encryption is without loss of generality, since the plaintexts are not chosen by
the adversary. See [BFOO0S] for further explanation.

Definition 3 (Computational Diffie-Hellman (CDH) assumption). Let
G be a group-generator scheme, which on input 1 outputs (G,p,g), where G
is the description of a group, p is the order of the group which is always a
prime number and g is a generator of the group. We say that G is CDH-hard
if for any PPT adversary A: Pr[A(G,p,g, g, g") = g**2] = negl(\), where

(Gapag) i G(lA) and ai, az i Zp
2.2 Standard Lemmas

Lemma 1 (Chernoff inequality). Let Xi,..., X, be independent Boolean
variables each of expected value at least p. Then, for all € > 0:

1 m
—E X, <p—¢
m “

=1

)
<625m'

Pr

Lemma 2 (Leftover hash lemma [ILL89]). Let X be a random variable over
X and h : S x X =Y be a 2-universal hash function, where |Y| < 2™ for some
m > 0. If m < Ho(X) — 2log (L), then (h(S,X),S) =~ U,S), where S is
uniform over S and U is uniform over Y.

3 Smooth Recyclable OWFE

We recall the definition of recyclable one-way function with encryption
from [GH18|. We adapt the definition to a setting in which the underlying input
distribution is not necessarily uniform. We will also define a smoothness notion,
which generalizes the one-wayness notion.

Definition 4 (Recyclable one-way function with encryption (OWFE)).
A recyclable (k,n)-OWFE scheme consists of the PPT algorithms K, f, E;, Ea
and D with the following syntaz.

44 S. Garg et al.

~ K(1*): Takes the security parameter 1* and outputs a public parameter pp (by
tossing coins) for a function f(pp,-) from n bits to v bits.

- f(pp,x): Takes a public parameter pp and a preimage x € {0,1}™, and deter-
ministically outputsy € {0,1}".

— E1(pp, (4,b); p): Takes a public parameter pp, an index i € [n], a bitb € {0,1}
and randomness p, and outputs a ciphertext ct.5

- Ea(pp,y, (i,b); p): Takes a public parameter pp, a value y, an index i € [n], a
bit b € {0,1} and randomness p, and outputs a bit e. Notice that unlike Eq,
which does not takey as input, the algorithm Eo does take y as input.

— D(pp, ct,x): Takes a public parameter pp, a ciphertext ct and a preimage x €
{0,1}", and deterministically outputs a bit e.

We require the following properties.

- Correctness. For any choice of pp € K(1*), any index i € [n], any preim-
age x € {0,1}" and any randomness value p, the following holds: letting
y := f(pp,x), b:=x; and ct := Ei(pp, (4,%); p), we have Ex(pp,y, (i,%:); p) =

D(pp, ct,x).
- (k,n)-One-wayness: For any (k,n) source S and any PPT adversary A:

Prf(pp, A(pp,y)) = y| = negl(}),

where pp & K(1), x & S and y := f(pp, x).
— Security for encryption: For any i € [n] and x € {0,1}":

C
(X’ pp? Ct? e) = (X’ pp? Ct’ el)

where pp S K(1Y), p & {0,1}*, ct = Ei(pp,(i,1 — x;);p), € =
Eg(pp,f(pp,x),(i,l —xi);p) and & & {0,1}.

Whenever we say an OWFE scheme (without specifying the parameters), we
mean k = n.

Notation 2. We define E(pp,y, (i,); p) = (E1(pp, (i,); p), E2(pp, Y, (4, b); p)).

We will now define the notion of smoothness which extends the one-wayness
property to an indistinguishability-based property.
Definition 5 (Smoothness). Let (K,f,E, D) be as in Definition 4. We say that
(K,f,E,D) is (k,n)-smooth if for any two (k,n)-sources 81 and Sy we have
c $ 3 $
(PP, f(pp,x1)) = (pp, f(pP, x2)), where pp = K(1*), x1 < 81 and xz < .
In the full version of this paper, we show that the recyclable OWFE

from [GH18] based on CDH is (k,n)-smooth, for any k > logp+w(log \), where
p is the order of the underlying CDH-hard group.

6 ct is assumed to contain (i,b).

New Techniques for Efficient Trapdoor Functions and Applications 45

4 Strong TDFs from Smooth Recyclable OWFE

In this section we show that recyclable OWFE implies the existence of TDF's
with almost-perfect correctness in the sense of Definition 1. This improves the
correctness property of [GH18]; see Remark 1. Moreover, we show that if the
base recyclable OWFE scheme is smooth (Definition 5), then the resulting TDF
satisfies the notions of security for deterministic encryption (Definition2). We
will then use this statement along with the CDH-based OWFE from [GH18] to
obtain the first deterministic-encryption scheme based on CDH. In particular,
the existence of deterministic encryption (even) with CPA security from CDH
has been open until now.

A central new tool developed in this work is a mirroring technique, which we
will describe below. As notation, for a matrix M € ZEX" | we define RSum(M) =
M; + -+ My, € Z3, where M; for ¢ € [k] denotes the ith row of M.

Definition 6. (The mirror Function Mir) Let (K,f,E1,E2,D) be a recyclable
OWFE scheme. For a public parameter pp, a value x € {0,1}", a matriz

CT = (2&‘;3;?3:?) of ciphertexts outputted by Ei, and a vector a €
{0,1}", the function Mir(pp,x,CT,a) outputs a matriz M € Z2%", where
M = (E?Ejfznf) is formed deterministically and uniquely according to

the following two rules:

1. for alli € [n]: b;x, = D(pp, ct;«;, x); and
2. RSum(M) = a.

Note that the above computation is deterministic and can be done efficiently.

Construction 3 (TDF construction). We now present our TDF construction.

Base primitive. A recyclable OWFE scheme £ = (K,f,E,D). Let Rand be the
randomness space of the algorithm E.

Construction. The construction is parameterized over two parameters n =
n(\) and r = r(X), where n is the input length to the function f(pp,-), and r will
be instantiated in the correctness proof. The input space of the TDF is {0,1}".

~ TDF.KG(1Y):
1. Sample pp «— K(1*).
2. For each h € [r]:

RORRO POAN
Ph — 1,00 F2,0» U S Rand2><n’ (2)
() (h) (h)
P115P2,15---5Pn,1
cT, — [Erleps (L,) P10, Ex(pp, (2,005 957), -, Ea (PP, (1, 0): piyg)
- h
Ex(pp, (1,1); 24")), Ex(pp, (2,1): p8), . .. Ex(pp, (n,1); ")

46 S. Garg et al.

3. For h € [r] sample ay, & {0,1}".
4. Form the index key ik and the trapdoor key tk as follows:

ik := (pp,CT4,...,CT,,ay,...,a,), (4)
tk = (pp7P17"'7PT)' (5)

— TDF.F(ik,x): Parse ik as in Eq. 4. Sety := f(pp,x). Return
u:i= (ya Mir(pp,x, CTla al)a cey Mir(pp,x, CTM ar)) . (6)

~ TDF.F~(tk, u):
1. Parse tk := (pp, P1,...,P,) and parse Py, for h € [r] as in Eq. 2.
2. Parse u:= (y,My,...,M,), where for all h € [r], My, € Z5"".
3. Reconstruct x := x1 -+ X, € {0,1}" bit-by-bit as follows. To recover the
ith bit of x:
(a) If for some h € [r], My[i] = (Ea(opy. (.00) set x; = 0. Here
’ 1—Ex(pp.y, (i,1)5p{")))’ '
My [i] denotes the ith column of My,.

_ i . (ﬁ)
(b) Else, if for some h € [r], My][i] = (1 2 (pp.(,0),p1¥0))7 set x; = 1.

E2(pp.y.(i,1):p!"})
(c) Otherwise, halt and return L.
4. Return x.

Lemma 3 (TDF correctness). We have

on
(_E’rk)[ﬂx € {0,1}" s.t. TDF.F~}(tk, (TDF.F(ik,x))) # x] < ”2—
1k, t

(7)
where the probability is taken over (ik, tk) & TDF.KG(1%). For instance, setting:
r=n+w(log\) gives a negligible inversion error.

Lemma 4 (TDF one-wayness and CPA-indistinguishability security).
Assuming & is an OWFE scheme (i.e., an (n,n)-OWFE scheme), the TDF
(TDF.KG, TDF.F, TDF.F~1) given in Construction 3 is one-way. That is, for any
PPT adversary A

Pr[A(ik, TDF.F(ik, x)) = x] = negl()\), 8)

where (ik, tk) & TDF.KG(1*) and x & {0,1}™. Moreover, if £ is (k,n)-smooth
(Definition 5), the constructed TDF is (k,n)-CPA-indistinguishable (Defini-
tion 2).

We may now combine the CDH-based OWFE from [GH18], Lemmas 3 and 4
to get the first CPA-secure deterministic encryption scheme from CDH.

Corollary 1 (CDH implies deterministic encryption). Let G be a CDH-
hard group scheme. For any k > logp + w(log\) and any n > k (where p is
the order of the underlying group), there exists a (k,n)-CPA-indistinguishable
deterministic encryption scheme with plaintext size n (in bits) and ciphertext
size ©(n?).

New Techniques for Efficient Trapdoor Functions and Applications 47

4.1 Proof of Correctness: Lemma 3

Proof. We will use notation given in Construction 3. Note that for a given x €
{0, 1}", the inversion succeeds unless there exists an index ¢ € [n] for which the
following bad event happens.

- Bady: for all h € [r], aufi] = Ex(pp.y. (1.0 pi[g) + Ea(pp., (i, 1); o) € Zo,
where aj[i] denotes the i’th coordinate of aj, € {0,1}".

Since the bits ap[i] for all h € [r] are chosen uniformly at random (indepen-
dently of pp and p; 3’s), we have: Pr[Bady;] = 27". Doing a union bound over
all column i € [n] gives the probability n - 27" of an inversion error for a given
x. We conclude using a union bound over all x € {0,1}". O

4.2 Proof of One-Wayness and CPA Security: Lemma 4

To prove Lemma 4 we first give a simulated way of sampling an index key together
with an image point for a target input value.

Definition 7 (Simulated distribution Sim). Let £ = (K,f,E,D) be the
underlying recyclable OWFE scheme. Fiz x € {0,1}"™ and let y := f(pp,x). We
define a simulator Sim(pp,n,y), which samples a simulated index key ikgim with
a corresponding simulated TDF image ugim for x, as follows. For h € [r] sample

rﬁb & {0,1}* for all (3,b) € [n] x {0,1}, and set

$ El(pp,(l,O),Tf)s - E1(pp, (1, 0); Z)
(CTh’Mh)(—(El(pp,(l,l),rf), Ex(pp, (n, 1); 7))
(E2(PP7Ya(1»0)»7’iL,0) E2(pp7y7 (n7)7TZO)> (9)
E2(pp,y, (1,1);77 1), -+, Ea(ppyy, (0, 1)5700 1))

Let

iksim := (pp, CT1,...,CT,,RSum(My),...,RSum(M,.))
Usim ‘= (Ya My, ..., Mr)

Equipped with the above definition, we now give of the proof of Lemma4.

Proof of Lemma 4. For any distribution S over {0,1}", we show that the sole
security-for-encryption requirement of the recyclable OWFE implies that

(x, ik, TDF.F(ik,x)) = (x, Sim(pp, n,y)), (10)

where x & S, pp S K(1%), (ik, *) & TDF.KG(1*) and y := f(pp, x).

We first show how to use Eq.10 to derive the one-wayness and indistin-
guishability security of the resulting TDF from the corresponding one-wayness
and smoothness of the underlying OWFE scheme, and will then prove Eq. 10.

For one-wayness, if there exists an inverter 4 that with non-negligible prob-

ability can compute x from (ik, TDF.F(ik, x)—where (ik,) & TDF.KG(1*) and

48 S. Garg et al.

x & {0, 1}"—then Eq. 10 implies that with non-negligible probability the adver-
sary A can compute x from Sim(pp, n,y), where y := f(pp, x). However, this latter
violates the one-wayness of f, because the computation of Sim(pp,n,y) may be
done efficiently with knowledge of pp, n and y.

For indistinguishability security (Definition2) let Sy and S; be two (k,n)
sources and assume that the recyclable OWFE scheme is k-smooth (Definition 5).

Letting (ik,) & TDF.KG(1%), xo S So, X1 S S1, Yo := f(pp,xo) and y; :=
f(pp,x1), by Eq. 10 we have

C

(ik, TDF.F(ik, x0)) = Sim(pp,n,yo) = Sim(pp, n,y1) = (ik, TDF.F(ik,x1)),

where the second indistinguishability follows from the k-smoothness of the recy-
clable OWFE scheme, which states (pp,yo) = (pp y1).

We are left to prove Eq. 10. Fix the distribution S for which we want to prove
Eq. 10. To this end, we change the simulator Sim given in Definition 7 to define
a new simulator Sim” which on input Sim’(pp,x) samples a pair (ikl;,u’,) as
follows. Let y := f(pp, x). For all h € [r], let CT}, be sampled as in Sim(pp,n,y),
but with the following modification to My:

RO NN
— Letting My, := ((1,10) ’eg‘h?) be formed as in Sim(pp, y), for any ¢ € [n] change

9€n1
h
e(-)

i.1—x, to arandom bit (fresh for each index).

Having defined how CT}, and M, are sampled for h € [r] during Sim’(pp, x),
form (ikl;,,,u’,,) exactly as how (iksim, Usim) is formed during Sim(pp,n,y).
The security-for-encryption requirement of the OWFE scheme implies that

(x7iksimausim) é (X 'k;mp sm’x) Where X ﬁ '57 y = f(pp,X), (iksimyusim) ‘i
Sim(pp, n,y) and (ik};

sim» blm
/
(x, ik

sims Uiy) 1S identically distributed to (x, ik, TDF.F(ik,x)), where (ik, tk) «
TDF.KG(1%). The proof is now complete. O

) S Sim’(pp, x). Moreover, it is easy to verify that

The TDF given in Construction3 is CPA secure (in a deterministic-
encryption sense), but it is not hard to show that the construction is not CCA2
secure. However, we show in the full version of this paper that using techniques
of [RS09,KMO10] one may use the TDF of Construction3 to build another
TDF which is CCA2 secure. This upgrading further increases the ciphertext
size, resulting in ciphertext size ©(n?) (for the CDH-based instantiation), where
n is the plaintext size.

5 Efficient Strong TDFs from Smooth OWFE

The TDF and deterministic encryption presented in Sect. 4 have the drawback
that the output size grows at least quadratically with the input size. The reason
behind this blowup is that we had to do “repetitions,” resulting in ©(n/2) out-
put bits for every single bit of the input. In this section we show how to do away

New Techniques for Efficient Trapdoor Functions and Applications 49

with excessive use of repetition, and to obtain TDFs (and deterministic encryp-
tion) whose image/ciphertext size grows linearly with input size. Our main idea
involves the use of error-correcting codes, taking advantage of the local inver-
sion property of our basic TDF. As a result, we will obtain the first CPA-secure
deterministic encryption scheme with linear ciphertext size based on CDH. We
stress that, even relying on DDH, previous DDH-based deterministic-encryption
and TDF schemes resulted in quadratically large ciphertexts.

Definition 8 ((m,n,d)s-Codes). We recall the notion of (m,n,d)s error-
correcting codes. Such a code is given by efficiently computable functions
(Encode, Decode), where Encode : {0,1}" — {0,1}™, and where

1. Distance. For any two distinct x1,x2 € {0,1}" we have Hqs(Encode(xy),
Encode(xz)) > d, where Hast denotes the Hamming distance.

2. Erasure correction. For any x € {0,1}", letting z := Encode(x), given any
string 27 € {0,1, L}™, which has at most d — 1 L symbols, and whose all
non-L symbols agree with z, we have Decode(z') = x.

3. Error correction. For any x € {0,1}", letting z := Encode(x), given any
z/ € {0,1}™ such that Hast(z,2') < d/2, we have Decode(z) = x.

We are interested in binary codes with constant rate, constant relative dis-
tance, that is: m = ¢n, and d = ¢yn. Such codes can be obtained by concatenating
codes with constant rate and constant relative distance over large fields—such as
Reed-Solomon codes—with codes with constant rate and binary alphabet. See
for instance binary Justesen codes [Jus72].

Definition 9 (rECC code). We define a code that suites our purposes,
which is the concatenation of an ECC code with a repetition code. Specifi-
cally, for a repetition constant t, a t-rECC code (Encode, Decode) consists of
Encode: {0,1}" — {0,1}"™, which is obtained by first applying a (cn,n,cin)s
code and then repeating each bit of the cn bit codeword t times. Thus, m = tcn.
Note that this code is now a (ten,n,tein)a-code.

Looking ahead, we remark that the use of these repetition codes makes decod-
ing later easier. Specifically, with this repetition, an m bit codeword can be
viewed as having cn blocks of t bits each. Furthermore, for decoding it is enough
to recover one bit per block for at least cn — ¢yn + 1 blocks.

In our constructions, it is instructive to think of ¢ = 200, ¢; =20 and t =9
for convenience in proofs.”

Block index versus bit inder. Having codes given as above based on repetition,
for a codeword z € {0,1}™ we talk about a jth block of z for j € [m/t] to refer
to the collections of the bits with indices {(j — 1)t + 1,...,jt}.

" The choices of the constants were made as above so to have slackness in proofs—they
have not been optimized for efficiency.

50 S. Garg et al.

Construction 4 (TDF construction). We now describe our TDF construction.

Base primitive. A t-rECC code (Encode, Decode), where Encode: {0,1}" —
{0,1}™, and a recyclable OWFE scheme £ = (K, f,E,D), where f’s input space
is {0,1}™. We will instantiate the value of constant t in the correctness proof.
Let Rand be the randomness space of the encapsulation algorithm E.

Construction.
- TDF.KG(lA):
1. Sample pp «— K(1*) and
P. = <P1,07P2,0,...,Pm,0> i Rand2xm, (11)
P1,15P2,15- -5 Pm,1
L Ctl’o, Ctg’o, e ,Ctm70
CT = (ctl,l,ctg,l,...,ctm’l) ’ (12)

where for all i € [m] and b € {0,1}, ct;p := E1(pp, (4,0); pip)-

2. Sample a & {0,1}™.
3. Form the index key ik and the trapdoor key tk as follows:

ik := (pp,a,CT) tk := (pp,a, P). (13)

— TDF.F(ik,x): Parse ik := (pp,a,CT). Let z := Encode(x) and y := f(pp,z).
Return
u:= (y,Mir(pp, z,CT, a)). (14)

~ TDF.F(tk, u):
1. Parsetk := (pp,a, P) and parse P as in Equation (11). Parse u := (y, M),
where M € Z3*™. If RSum(M) # a, then return L.
2. Construct 2/ := 2} -- -z, bit-by-bit as follows. To recover the ith bit of 7':

(a) If M[i] = (152(2;)(;;,5,51‘(,?)1;5;?)1))7 set z; = 0. Here M[i] denotes the ith

column of M.

; ; 1-E 3Y5(2,0);04,
(b) Else if Mi] = (Ez(zp(:z’:}zi(xlﬁl:,)l)[)))’ setz; = 1.
(c) FElse, setz, = 1.
3. Letting x := Decode(Z’), if TDF.F(ik,x) = u, then return x. Otherwise,

return L.

We will now give the correctness and security statements about our TDF,
and will prove them in the subsequent subsections.

Lemma 5 (Correctness). Using a t-rECC code (Encode, Decode) with param-
eters (ten,m,tein)s (Definition 9), we have

(2tcq—c)2n

(_E’rk)[ﬂx € {0,1}" s.t. TDF.F7(tk, (TDF.F(ik,x))) # x] < 2"-e” 22T . (15)
1Kk,t

In particular, by choosing the repetition constant t based on ¢ and ¢y in such a

way that 2tc; > ¢ and that % > 0.7, we will have a negligible error.

New Techniques for Efficient Trapdoor Functions and Applications 51

Lemma 6 (TDF one-wayness and CPA-indistinguishability security).
Assuming € is an (n,m)-OWFE scheme, the TDF (TDF.KG, TDF.F, TDF.F~1)
given in Construction 3 is one-way. That is, for any PPT adversary A

Pr[A(ik, TDF.F(ik,x)) = x] = negl()\), (16)

where (ik, tk) & TDF.KG(1*) and x & {0,1}™. Moreover, assuming that the
underlying OWFE scheme is (k,m)-smooth (Definition 5), the constructed TDF
is (k,n)-indistinguishable (Definition 2).

Theorem 5 (CCAZ2-indistinguishability security). Assuming that the
underlying OWFE scheme is (k,m)-smooth and by appropriately choosing the
parameters (in particular we will have t,c,c; € O(1)), the constructed TDF is
(k,n)-CCA2-indistinguishable.

We may now combine the CDH-based OWFE from [GH18], 5 with Theorem 5
to get the following corollary.

Corollary 2 (CDH implies efficient deterministic encryption). Let G be
a CDH-hard group scheme. For any k > logp—+w(logA) and any n > k (where p
is the order of the underlying group), there exists a (k,n)-CCA2-indistinguishable
deterministic encryption scheme with plaintext size n (in bits) and ciphertext size
logp + O(n).

We prove Lemmas5 and 6 in the full version of this paper.

5.1 Proof of CCA2 Security: Theorem 5

We give the proof of Theorem 5 via a series of lemmas. We first start with the
following notation.

Notation 6. Foran OWFE scheme (K, f,Eq, Es, D), letting P:= (ppllolppzzol’;,mol)
we define

ppa()) pl,l)a"'7E1(pp7(m71 5 s)
<E2(ppv Y, ())a pl,O)v sy EQ(PP»Y» (mv 0)7 ,O)))
E2(PP7Ya(171)§P1,1)7~-~7E2(vay7 (m71>7 ,1)
Half-trapdoor keys. In the proof of Theorem 5 we will make use of an alternative
way of inversion which works with respect to knowledge of half of all the random-
ness values that were fixed in the trapdoor key. We refer to such trapdoor keys

as half trapdoor keys (or simulated trapdoor keys). Recall that a real trapdoor
key is of the form

E(pp7 Y, P) 2 (El(pp’ ()) pl,O), RN El(pp7 (m7 Og; va(l))) ,

m
Pm
Pm

(pp7a’(pl70apl71)a"'7(pm707pm71>)- (17)

A half-trapdoor key is a reduced version of a full trapdoor key in that we forget
one randomness value from each pair, while remembering whether we chose

52 S. Garg et al.

to keep the first or the second coordinate of that pair. Formally, given a full
trapdoor key as in Equation (17), a half trapdoor key is obtained based on
a string s € {0,1}™ as tkyq := (pp,a,s,(p1,...,pm)), where p; = p;s,. (The
subscript rd stands for “reduced.”)

We will now define how to perform inversion w.r.t. half-trapdoor keys.

Definition 10 (Half-trapdoor inversion TDF.F_}'). For an image u :=
(y,M) of our constructed TDF and a half-trapdoor key tk.q := (pp,a,s,
(p1,---,pm)) we define TDF.F_ ' (tkya, u) as follows:

1. If RSum(M) # a € Z%*, then return L.

2. Construct z/ € {0,1}™ bit by bit as follows. For all i € [m], we denote by
M[i] = (:"1)) the i’th column of M. If e;s, = 1 — Ea(pp, Y, (i,5:); pi), then set
7, =1—s;; otherwise set Z, = L.

3. For allj € [en], if 3i* € {(j — 1)t + 1,...,jt} such that z,. # L then for all
te{(j—-Dt+1,...,5t} setz =zl.; else set z/ =s;

4. Letting x := Decode(z”), if TDF.F(ik,x) = u, return x. Otherwise, return L.

As terminology, we say that TDF.F]r_d1 (tkea, u) is able to open the ith column of
M ZfZ; 7é 1 (i'e'! Z.fei,si =1- E2(ppaya (Zasl)apl))

We first fix some notation and will then prove a useful property about half-
inversion simulation, which in turn will be used in the CCA2 proof.

Notation 7 (Half trapdoor keys). For a given tk := (pp,a, (p1,0,01,1)s---;
(Pm.0s pm1)) and z € {0,1}™ we define tk/z = (pp,a,z, P12, 5 -+ Pz,)-

We now give the following lemma about the effectiveness of the half-trapdoor
inversion procedure.

Lemma 7 (Half-trapdoor inversion). Fiz x € {0,1}" and let z :=
Encode(x). Using code (Encode,Decode) and setting t such that 1 — 27¢ >
2

lya_ 2
5T 56— o, we have

(e1—9)3%n

Pr [€ {0,1}"\{x} s.t. TDF.F~*(tk,u’) # TDF.F, ! (tkyq,u’)] = 2"~ 2=

(ik; tk)

where (ik, tk) & TDF.KG(1"), u’ := TDF.F(ik,x) and tk,q := tk/z. Thus, by
appropriately choosing ¢1 and ¢ (and t based on these two values) the above
probability will be negligible.

Proof. Fix x € {0,1}"™ and let z := Encode(x). For a sampled (ik, tk) we define
the event Bad as

Bad := 3x’ € ({0,1}™\ {x}) s.t. TDF.F~*(tk,u’) # TDF.F, ! (tkya, '),

where u’ := TDF.F(ik,x’) and tk,q := tk/z.

New Techniques for Efficient Trapdoor Functions and Applications 53

First, note that if TDF.F_I(tk,TDF.F(ik,x’)) = 1, then TDF.Fr_dl(tkrd,
TDF.F(ik,x’)) = 1, and if TDF. F_ (tkrd,TDF F(ik,x)) # L1, then
TDF.F~1(tk, TDF.F(ik,x)) = x' = TDFF (tkrd,TDF F(ik,x")). This follows
from the descriptions of TDF.Frd1 and TDF. F 1 and from the correctness prop-
erty of TDF.F~1

Thus, defining

Bad': 3 € ({0,1}" \ {x}) s.t. (TDF.F;;!(tka, (TDF(ik,X))) = 1),

we have Pr[Bad] < Pr[Bad’]. In what follows, for any fixed x' € {0,1}" we will
show
_(e1—4)2n
Pr[Bady] <e 2=
where we define Bad,s := TDF.F;d:l (tkea, (TDF(ik,x"))) = L. This will complete
the proof.

For the fixed x’ € {0,1}", let u’ := TDF.F(ik,x") and z’ := Encode(x’). Parse

= (y,M").

In order to argue about the correctness of the output of TDF.F;d1 (tkya, u’),
let z* denote the string that is constructed bit-by-bit during the execution of
TDF. Frd (tkra, u’). We will show that the fractional distance %Z/) < g, and
thus by the error-correction property of the underlying code (Item 3 of Defini-
tion 8) we will have TDF.F_}! (tkeq, u’) = X/, as desired.

Let S C [en] be the set of block indices on which z and 2z’ are different. (Recall
the notion of block index from the paragraphs after Definition 8.) Suppose |S| = v
and let S := {u,...,u,}. Note that v > ¢;n. We have

1. For any block index j € [cn]\'S, all those ¢ bits of 2’ which come from its jth
block will be equal to those of z*. Namely, foralli € {(j — 1)t + 1,...,jt} we
have z, = z.

2. For any block index j € S, if the jth block of z’ is different from that of
z*, then all the columns of the jth block of M’ are hung; Namely, for all
i€ {(j—1t+1,...,5t}, M'[{] is hung. This fact follows easily by inspection.

With the above intuition in mind, for j € [v] let W; be a Boolean random variable
where W; = 0 if the entire u;’th block of M’ is hung (i.e., all the corresponding
t columns are hung), and W; = 1, otherwise. Note that for all j: Pr[W; = 1] =
1 — 27 this follows from the random choice of the vector a Which is fixed in ik.
Thus, by the bounds fixed in the lemma we have Pr(W; =1] > £ + & — % Let

p:=1-2"% We have

2 o(l_2y2,

Pr[Bady] < Pr[- ZW ZW <p-— *_7)] SO
Se_Q(%_i)zcm:e_W:e_%v

(18)

where the probability marked with * follows from the Chernoff bounds. The
proof is now complete. a

54 S. Garg et al.

Our CCA2 hybrids will also make use of a simulated way of producing
index/trapdoor keys. This procedure is described below.

Definition 11 (Simulated TDF key generation). We define a simu-
lated key-generation algorithm for the TDF given in Construction4. Let
(K,f,E1,E2,D) be the underlying OWFE scheme. The simulated key genera-
tion algorithm TDF.KGgm(pp,y) takes pp and an image y of the function f

as input, and outputs (ik,tk) formed as follows. Sample P & Rand™ and
set (CT,M) := E(pp,y, P). (See Notation6.) Set ik := (pp, RSum(M),CT) and
tk := (pp, RSum(M), P).

We will now describe the hybrids for proving CCA2 security of the determin-
istic encryption scheme. We define the hybrids with respect to a distribution D
and will then instantiate the distribution in the subsequent lemmas.

Hybrid Ho[D]: real game.

— Index/trapdoor keys. Sample (ik, tk) & TDF.KG(1H).
— Challenge ciphertext. Set u := TDF.F(ik,x), where x < D.

— CCA2 inversion queries. Reply to each inversion query u’ # u with
TDF.F~1(tk,u’).

Hybrid H1[D]: half-trapdoor inversion. Same as Hy except we reply to inversion
queries using a half trapdoor and by using the algorithm TDF.F;dl.

— Index/trapdoor keys. Sample (ik, tk) & TDF.KG(1%). Set the index key to
be ik and form the trapdoor key as follows: sample x < D, let z := Encode(x)
and set the trapdoor key to be tk,q := tk/z (Notation 7).

— Challenge ciphertext. Return u := TDF.F(ik,x), where recall that x was
sampled in the previous step.

— CCA2 inversion queries. Reply to each inversion query u’ # u with
TDF.F . (tka, u’).

Hybrid H[D]: half-trapdoor inversion with a simulated index key. Same as Hy[D]
except that we sample the index key and the challenge ciphertext jointly in a
simulated way.

— Index/trapdoor keys:
1. Sample x < D, and let z := Encode(x). Set y := f(pp, z).
2. Sample (ik, tk) < TDF.KGam(pp, y).
3. Set the index key to be ik and the trapdoor key to be tk;q := tk/z.
— Challenge ciphertext. Return u := TDF.F(ik,x), where recall that x was
sampled above.

— CCA2 inversion queries. Reply to each inversion query u’ # u with
TDF.F . (tkya,u’).

New Techniques for Efficient Trapdoor Functions and Applications 55

Hybrid H3[D]: Full trapdoor inversion with a simulated index key. Same as Ha[D]
except we use tk as the trapdoor key (instead of tk,q) and will reply to each CCA2
inversion query u’ # u with TDF.F~1(tk, u’). That is:

— Index/trapdoor keys:

1. Sample x < D, and let z := Encode(x). Set y := f(pp, z).

2. Let the index/trapdoor key be (ik, tk) & TDF.KGgim (pp, y)-
— Challenge ciphertext. Return u := TDF.F(ik, x).

— CCA2 inversion queries. Reply to each inversion query u’ # u with
D(tk, u’).

The above concludes the description of the hybrids. We now define some
notation and will then prove some lemmas.

Notation. For i € {0,1,2,3} we use out;[D] to denote the output bit of an
underlying adversary in hybrid H;[D]. For i, j € {0,1, 2,3} and two distributions
Sp and Sy, we write H;[So] = H,[S1] to mean that for all PPT adversaries A we
have | Prlout;[So] = 1] — Prfout;[S1] = 1]| = negl(\).

The proof of Theorem 5 follows from the following lemmas.

Lemma 8 (Indistinguishability of Hybrids Hy and H;). By appropriately
choosing the parameters for ¢, ¢1 and t, for any PPT adversary A we have
| Prloutg[D] = 1] — Prfout; [D] = 1]| = negl(A).

Lemma 9 (Indistinguishability of Hybrids H; and Hs). If the OWFE sat-
1sfies the security-for-encryption property, then for any distribution D and any
PPT adversary A, we have | Prlout; [D] = 1] — Proutz[D] = 1]| = negl()).

Lemma 10 (Indistinguishability of Hybrids Hs and H3). If the OWFE
satisfies the security-for-encryption property and by choosing the parameters
appropriately, then for any distribution D and any PPT adversary A, we have
| Prlouts[D] = 1] — Prfout3[D] = 1]| = negl(}).

Lemma 11 (CCA2 Security in H3). If the OWFE is (k,m)-smooth, then
for any two (k,n) sources Sy and S and any PPT adversary A, we have
| Priouts[Sp] = 1] — Prlouts[S1] = 1]| = negl()).

Proof of Theorem 5. By applying the above lemmas, for any (k,n)-sources Sy
and 87, we have:

Ho[So] = H1[So] = Ha[So] = H3[So] = H3[S1] = Ha[S1] = Hi[S1] = Ho[Su).

We prove these lemmas in the full version of the paper.

56 S. Garg et al.

6 Lossy TDFs with Linear-Image Size

In this section, using our erasure-resilient code techniques, we show how to adapt
a variant of the TDFs from [PW08,PW11] to obtain the first lossy trapdoor func-
tions with images growing linearly in their inputs, based on the DDH assump-
tion. This improves upon the lossy TDFs from [PW08,PW11], whose output
size is quadratic in the input size. We first recall the definition of lossy TDF
from [PWO08,PW11].

Definition 12 (Lossy TDFs [PWO08,PW11]). An (n,k)-lossy TDF ((n,k)-
LTDF) is given by four PPT algorithms TDF.KG, TDF.KGy,, TDF.F, TDF.F~1,
where TDF.KGys(1*) only outputs a single key (as opposed to a pair of keys), and
where the following properties hold:

— Correctness in real mode. The TDF (TDF.KG, TDF.F, TDF.F~1) satisfies
correctness in the sense of Definition 1.

— k-Lossiness. For all but negligible probability over the choice of ik &
TDF.KG(1*), we have |TDF.F(iks,{0,1}")| < 2%, where we use
TDF.F(ikis, {0,1}™) to denote the set of all images of TDF.F(ikys, -).

— Indistinguishability of real and lossy modes. We have ik = ikis, where
(ik,) < TDF.KG(1*) and ikis < TDF.KGys(1).

Lossiness rate. In the definition above, we refer to the fraction 1 — k/n as
the lossiness rate, describing the fraction of the bits lost. Ideally, we want this
fraction to be as close to 1 as possible, e.g., 1 — o(1).

Our LTDF construction makes use of a balanced predicate, defined below.

6.1 Lossy TDF from DDH

Our LTDF construction makes use of the following notation.

Notation. Letting x € {0,1}" and M := (J'07720779"9) we define x © M =

91,1,92,15---:9n,1

H gix,- For i € [n], b € {0,1} and M as above, we define the matrix M’ :=
j€ln]

(M ﬁ g') to be the same as M except that instead of g;, we put ¢’ in M'.
ib ’

If M is matrix of group elements, then M" denotes entry-wise exponentiation to
the power of r.

Overview of the construction and techniques. Let us first demonstrate the idea
for retrieving the first bit of the input. Imagine two 2 x n matrices M and M’,
where M := (197799) is chosen at random and where M’ := (M”" m g1),
where 7 <& Zp, b & {0,1} and ¢ & G. That is, M’ is a perturbed rth power
of M, in that we replace one of the two elements of the first column of the
exponentiated matrix with a random group element.

New Techniques for Efficient Trapdoor Functions and Applications 57

Think of (M, M’) as the index key. Suppose an evaluator TDF.F with input
x € {0,1}" wants to use (M, M’) to communicate her first bit x; to an inverter
who has knowledge of b, g1 and r. A first attempt for TDF.F would be to output
two group elements (g,g7) = (x ® M,x ® M’). Given (g, g}), if g| = ", then
x1 = 1 — b; otherwise, x; = b—hence allowing TDF.F~! to recover x;.

The above method is in fact what used (implicitly) in all previous
approaches [PW08,FGK+10,PW11]. However, the cost paid is high: for commu-
nicating one bit of information we need to output (at least) one group element.

We will now illustrate our main idea. Let BL : G — {0,1} be a balanced
predicate, meaning that BL(g*) on a randomly generated g* is a completely
random bit. (We will show how to build this object unconditionally.) Returning
to the above idea, instead of sending (g, ¢;) we will send (g, BL(g})) € (G, {0, 1}).
Before arguing correctness and security, note that this method yields linear image
size for the whole input, because the group element § can be re-used across all
indices.

To argue correctness, let us see how TDF.F~1—given b, r and ¢g;—may invert
an encoding (g,b’) of the first bit of x. To this end, note the following two facts:

L Ifx; =1 —b, then v’ = BL(g").
2. If x = b, then b’ = BL(Z.2).
1,b

Thus, if BL(g") # BL(*‘Z;Q;), then we can determine the value of x;. This is
1,b
because in this case we either have

— ¥ =BL(§") and V' # BL(L): which implies x; = 1 — b;
1,
— b #BL(§") and i = BL(L2

r
91,6

Q
= o

1

): which implies x; = b.

Summing up the above discussion, we are unable to determine the value of
x1 only when BL(g") = BL(gg}i1). This happens with probability 1/2 because the
predicate BL is balanced. For any constant ¢, we may reduce this probability to
(1/2)¢ via repetition for ¢ times. Thus, by choosing the constant ¢ appropriately,
and doing the above procedure for every index, we will be able to retrieve a
good fraction of all the bits of x, which will make the rest retrievable using error
correction.

For security, we will show that this method admits a simple lossy way of
generating public keys.

We now formally define the notion of balanced predicates, which will be used
in our LTDF construction.

Definition 13 (Balanced predicates). We say a randomized predicate P :

Sx {0,1}* — {0,1} is balanced over set S if Pr[P(z;r) = 0] = 1/2, where Es
$ *

and r — {0,1}*.

8 For simplicity assume g; # 91 », hence we will not have a hung situation.

58 S. Garg et al.

In the above definition, if S = {0,1}", then we have a trivial predicate, one
which returns, say, the first bit of its input. For our LTDF construction, we
require the existence of a predicate for the underlying group G. Assuming any
1-1 mapping G — {0,1}"™ (which may not be surjective), we may define the
predicate P as the inner product function over Fy: i.e., P(z,r) = (z,7).

Construction 8 (Linear-image lossy TDF). Let G be a group scheme and let
(Encode, Decode) be an erasure code, where Encode: {0,1}" — {0,1}"™ (Defini-
tion 8). Also, let BL be a balanced predicate for the underlying group (Defini-
tion 13).

We define our LTDF construction (TDF.KG, TDF.KGys, TDF.F, TDF.F~1) as
follows.

~ TDF.KG(1*):
1. Sample (G, p,g) & G(1%), and

M = <9170792,07 cee 7gm,0) i G2><m. (19)
91,1,92,15---,9m,1

2. For all i € [m], sample g; S G, p; & Z, and b; S {0,1}.
3. Sample random coins r for the underlying function BL.
4. Set the index and trapdoor keys as

ik := (M, (M** o (MPm m), 20
I (M, (mgm (mg),7) (20)

tk = (Ma(plablvgl)v'"a(pm7bm7gm)7r)' (21)
~ TDF.KGi(1*): Return ikys := (M,M** ... M*™ 1), where M and p; fori €

[m] and r are sampled as above.
— TDF.F(ik,x € {0,1}™): Parse ik := (M,My,...,M,,, 7). Set z := Encode(x)
and return

u:=(zoOM,BL(z® My;r),...,BL(z® M,,; 1)), (22)

~ TDF.F~(tk, u):
1. Parse tk := (M, (p1,b1,61), -+ (Pmy bm, gm),7) and u := (g¢, b, ..., 0.,).
Parse M as in Eq. 19.
2. Construct z' .=z} --- 2z}, € {0,1, L}"™ as follows. For i € [m]:
(a) Set g. =g and g/ = ggp# - g;. Then

i,b;
i. If BL(g,;r) = BL(g/;7), setz, = L;
ii. Else, if b, = BL(g};7), set z; =1 —b;. Else (i.e., b, = BL(g};7)),
setz; = b;.
3. Return Decode(z’).

The following theorem gives the lossiness property of the scheme.

New Techniques for Efficient Trapdoor Functions and Applications 59

Theorem 9 (Linear-image LTDF from DDH). Using code (Encode,
t t 2

Decode) such that 4*c; > 3tc and if % > 0.7, the LTDF of Construc-

tion 8 is (n,log p)-lossy with image size log p+cn € O(n). By setting n € w(logp)

we obtain 1 — o(1) lossiness rate.

We prove all the required properties below.

Lemma 12 (log p-Lossiness). For any ik;, € TDF.KGi(1*) we have
|TDF.F(ikis, {0,1}")| < p,
where recall that p is the order of the underlying group.

Proof. Parse ikis := (M, My,...,M,,). It is easy to verify that for any two mes-
sages x,x" € {0,1}" we have

TDF.F(ikis, x) # TDF.F(ikys,x') <= x ® M # x' @ M. (23)

The statement of the lemma now follows, since {x @ M | x € {0,1}"} C G, and
thus we have [{x © M | x € {0,1}"}| < p. O

Lemma 13 (Indistinguishability of real and lossy modes). We have ik =
ik, where (ik, %) < TDF.KG(1*) and ikis < TDF.KGy(1*).

Proof. Immediate by the DDH assumption using standard techniques. a

Lemma 14 (Correctness in real mode). Using code (Encode, Decode), we
have
_@ler—o)?

(_Frk)[ax € {0,1}" s.t. TDF.F~1(tk, (TDF.F(ik,x))) # x] < 2"-e~ 22=1c ", (24)
IK,t

In particular, by choosing the repetition constant t such that 2tc; > c¢ and that
t., _ \2

% > 0.7, the probability in Equation (24) will be negligible.

Proof. Fix x € {0,1}™ and let z := Encode(x). All probabilities below are taken

over the random choice of (ik, tk). Parse

th = (M — (91,0592,07...,gm,0> 7(,017()1791)7...,(pm,bm,gm)m) .
91,1,92,15 -+ -5 9m,1

For input x € {0,1}", let Fail, be the event that TDF.F~1(tk, TDF.F(ik,x)) #
x. Fix x € {0,1}" and let z := Encode(x) € {0,1}™. Also, let u:= TDF(ik,x) :=
(ger By BL).

Recall that z consists of c¢n blocks, where each block consists of ¢ identical
bits (Definition9). For each block index j € [cn] we define an event Bad;, which
corresponds to the event that the inversion algorithm fails to recover the bit that
corresponds to the jth block. That is, Bad; occurs if all the ¢ repetitions inside
block j leads to failure during inversion. More formally:

60 S. Garg et al.

— Bad;: The event that for all i € {(j — 1)t +1,...,jt}: BL(gj;r) = BL(g{’;7),

where g, := gf and g/ := g - i

Pi

9ib;

Note that all Bad; are i.i.d. events and we have Pr[Bad;] = (1/2)". The reason
for this is that all of (g1, ..., gn) are sampled uniformly at random independently
of all other values, and thus the two group elements g, and g}’ are uniform and
independent.

Let Good; = Bad; and note that Pr[Good;] = 1 — (1/2)*. We now have

cn

Pr[Faily] < Pr Z Good; < cn —cin] Z Good; <1 — —]
j=1
1 - 1 C1 1 _2¢cn 2 L1 C)2 _(2t’ct1:0)2n
:Pr[az::GOOdjgl_?_(?—g)}é e (Se 22t—1. R
(25)

where the inequality marked with * follows from the Chernoff inequality (The-
orem1 with p = 1 —1/2" and € = ¢1/c — 1/2'. Note that since we must have
€ > 0, we should have 2'¢; > ¢.)

We conclude using a union bound over all x € {0,1}". O

Acknowledgements. We thank Xiao Liang for suggesting a simplification to Con-
struction 3. We are also grateful to the anonymous reviewers for their comments.
Research supported in part from DARPA/ARL SAFEWARE Award W911NF15C0210,
AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA and SPAWAR under
contract N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foun-
dation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley), and
a Google PhD fellowship. The views expressed are those of the authors and do not
reflect the official policy or position of the funding agencies.

References

[BBN+09] Bellare, M., et al.: Hedged public-key encryption: how to protect against
bad randomness. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912,
pp- 232-249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7_14

[BBOO7] Bellare, M., Boldyreva, A., O’'Neill, A.: Deterministic and efficiently search-
able encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp- 535-552. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74143-5_30

[BCPT13] Birrell, E., Chung, K.-M., Pass, R., Telang, S.: Randomness-dependent
message security. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
700-720. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36594-2_39

https://doi.org/10.1007/978-3-642-10366-7_14
https://doi.org/10.1007/978-3-642-10366-7_14
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-642-36594-2_39
https://doi.org/10.1007/978-3-642-36594-2_39

[BFOO0S]

[BFORO0S]

[BHY09]

[BLSV18]

[BS11]

[BW10]

[CDG+17]

[DG17a]

[DG17b)

[DGHM138]

[DHT6]

[FGK+10]

New Techniques for Efficient Trapdoor Functions and Applications 61

Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for determin-
istic encryption, and efficient constructions without random oracles. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335-359. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_19

Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic
encryption: definitional equivalences and constructions without random
oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
360-378. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5_20

Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1-35. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9_1

Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 535-564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9_20

Brakerski, Z., Segev, G.: Better security for deterministic public-key
encryption: the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 543-560. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22792-9_31

Boyen, X., Waters, B.: Shrinking the keys of discrete-log-type lossy trap-
door functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol.
6123, pp. 35-52. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13708-2_3

Cho, C., Déttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou,
A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 33-65. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0_2

Doéttling, N., Garg, S.: From selective IBE to Full IBE and selective HIBE.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372-408.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_13
Dottling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 537-569. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63688-7_18

Dottling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of
identity-based and key-dependent message secure encryption schemes. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 3-31.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_1
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644-654 (1976)

Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More
constructions of lossy and correlation-secure trapdoor functions. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
279-295. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13013-7_17

https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-642-22792-9_31
https://doi.org/10.1007/978-3-642-22792-9_31
https://doi.org/10.1007/978-3-642-13708-2_3
https://doi.org/10.1007/978-3-642-13708-2_3
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-642-13013-7_17

62 S. Garg et al.

[GH18]

[GMRO1]

[HO12]

[HO13)]

[TLL89)

[Jus72]

[KMO10]

[KW18]

[MPRS12]

[MY10]

[PVWO0S]

[PW0S]

[PW11]

[RS09]

[RSATS]

Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-
Hellman assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 362-391. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0_13

Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trap-
door functions on trapdoor predicates. In: 42nd FOCS, Las Vegas, NV,
USA, 14-17 October 2001, pp. 126-135. IEEE Computer Society Press
(2001)

Hemenway, B., Ostrovsky, R.: Extended-DDH and lossy trapdoor func-
tions. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 627-643. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30057-8_37

Hemenway, B., Ostrovsky, R.: Building lossy trapdoor functions from lossy
encryption. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013. LNCS, vol.
8270, pp. 241-260. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-42045-0_13

Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from
one-way functions (extended abstracts). In: 21st ACM STOC, Seattle, WA,
USA, 15-17 May 1989, pp. 12-24. ACM Press (1989)

Justesen, J.: Class of constructive asymptotically good algebraic codes.
IEEE Trans. Inf. Theory 18(5), 652-656 (1972)

Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and
chosen-ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 673-692. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13190-5_34

Koppula, V., Waters, B.: Realizing chosen ciphertext security generically
in attribute-based encryption and predicate encryption. Cryptology ePrint
Archive, Report 2018/847 (2018). https://eprint.iacr.org/2018/847
Mironov, 1., Pandey, O., Reingold, O., Segev, G.: Incremental determinis-
tic public-key encryption. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 628-644. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4_37

Mol, P.; Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor
functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol.
6056, pp. 296-311. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13013-7_18

Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554-571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5_31

Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In:
40th ACM STOC, Victoria, British Columbia, Canada, 17-20 May 2008,
pp. 187-196. ACM Press (2008)

Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
SIAM J. Comput. 40(6), 1803-1844 (2011)

Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419-436. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_25

Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signature and public-key cryptosystems. Commun. Assoc. Comput. Mach.
21(2), 120-126 (1978)

https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-642-30057-8_37
https://doi.org/10.1007/978-3-642-30057-8_37
https://doi.org/10.1007/978-3-642-42045-0_13
https://doi.org/10.1007/978-3-642-42045-0_13
https://doi.org/10.1007/978-3-642-13190-5_34
https://doi.org/10.1007/978-3-642-13190-5_34
https://eprint.iacr.org/2018/847
https://doi.org/10.1007/978-3-642-29011-4_37
https://doi.org/10.1007/978-3-642-13013-7_18
https://doi.org/10.1007/978-3-642-13013-7_18
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-642-00457-5_25

New Techniques for Efficient Trapdoor Functions and Applications 63

[Weel2] Wee, H.: Dual projective hashing and its applications—lossy trapdoor func-
tions and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 246—-262. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4_16

[Wicl3] Wichs, D.: Barriers in cryptography with weak, correlated and leaky
sources. In: ITCS 2013, Berkeley, CA, USA, 9-12 January 2013, pp. 111—
126. ACM (2013)

https://doi.org/10.1007/978-3-642-29011-4_16
https://doi.org/10.1007/978-3-642-29011-4_16

l‘)

Check for
updates

Symbolic Encryption
with Pseudorandom Keys

Daniele Micciancio™)
University of California, San Diego, Mail Code 0404, La Jolla, CA 92093, USA
daniele@cs.ucsd.edu
http://cseweb.ucsd.edu/ daniele/

Abstract. We give an efficient decision procedure that, on input two
(acyclic) expressions making arbitrary use of common cryptographic
primitives (namely, encryption and pseudorandom generators), deter-
mines (in polynomial time) if the two expressions produce computation-
ally indistinguishable distributions for any cryptographic instantiation
satisfying the standard security notions of pseudorandomness and indis-
tinguishability under chosen plaintext attack. The procedure works by
mapping each expression to a symbolic pattern that captures, in a fully
abstract way, the information revealed by the expression to a computa-
tionally bounded observer. Our main result shows that if two expressions
are mapped to different symbolic patterns, then there are secure pseu-
dorandom generators and encryption schemes for which the two distri-
butions can be distinguished with overwhelming advantage. At the same
time if any two (acyclic) expressions are mapped to the same pattern,
then the associated distributions are indistinguishable.

Keywords: Symbolic security - Greatest fixed points -
Computational soundness - Completeness + Pseudorandom generators -
Information leakage

1 Introduction

Formal methods for security analysis (e.g., [1,9,13,21,33,34]) typically adopt
an all-or-nothing approach to modeling adversarial knowledge. For example, the
adversary either knows a secret key or does not have any partial information
about it. Similarly, either the message underlying a given ciphertext can be
recovered, or it is completely hidden. In the computational setting, commonly
used in modern cryptography for its strong security guarantees, the situation is
much different: cryptographic primitives usually leak partial information about
their inputs, and in many cases this cannot be avoided. Moreover, it is well known
that computational cryptographic primitives, if not used properly, can easily

Research supported in part by NSF under grant CNS-1528068. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author
and do not necessarily reflect the views of the National Science Foundation.

© International Association for Cryptologic Research 2019

Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 64-93, 2019.
https://doi.org/10.1007/978-3-030-17659-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17659-4_3&domain=pdf
http://orcid.org/0000-0003-3323-9985
https://doi.org/10.1007/978-3-030-17659-4_3

Symbolic Encryption with Pseudorandom Keys 65

lead to situations where individually harmless pieces of partial information can
be combined to recover a secret in full. This is often the case when, for example,
the same key or randomness is used within different cryptographic primitives.

Starting with the seminal work of Abadi and Rogaway [3], there has been
considerable progress in combining the symbolic and computational approaches
to security protocol design and analysis, with the goal of developing methods
that are both easy to apply (e.g., through the use of automatic verification tools)
and provide strong security guarantees, as offered by the computational secu-
rity definitions. Still, most work in this area applies to scenarios where the use
of cryptography is sufficiently restricted that the partial information leakage of
computational cryptographic primitives is inconsequential. For example, [3] stud-
ies expressions that use a single encryption scheme as their only cryptographic
primitive. In this setting, the partial information about a key k revealed by a
ciphertext {m}, is of no use to an adversary (except, possibly, for identifying
when two different ciphertexts are encrypted under the same, unknown, key),
so one can treat k as if it were completely hidden. Other works [4,28] combine
encryption with other cryptographic primitives (like pseudorandom generation
and secret sharing,) but bypass the problem of partial information leakage sim-
ply by assuming that all protocols satisfy sufficiently strong syntactic restrictions
to guarantee that different cryptographic primitives do not interfere with each
other.

1.1 Owur Results

In this paper we consider cryptographic expressions that make arbitrary (nested)
use of encryption and pseudorandom generation, without imposing any syntactic
restrictions on the messages transmitted by the protocols. In particular, following
[3], we consider cryptographic expressions like ({m},, {{k}, },.), representing
a pair of ciphertexts: the encryption of a message m under a session key k,
and a double (nested) encryption of the session key k under two other keys
k', k"”. But, while in [3] key symbols represent independent randomly chosen keys,
here we allow for derived keys obtained using a length doubling pseudorandom
generator k — Go(k); G1(k) that on input a single key k outputs a pair of
(statistically correlated, but computationally indistinguishable) keys Go(k) and
G1(k). The output of the pseudorandom generator can be used anywhere a
key is allowed. In particular, pseudorandom keys Go(k), G1(k) can be used to
encrypt messages, or as messages themselves (possibly encrypted under other
random or pseudorandom keys), or as input to the pseudorandom generator. So,
for example, one can iterate the application of the pseudorandom generator to
produce an arbitrary long sequence of keys G1(r), G1(Go (7)), G1(Go(Go(7))), - - -

We remark that key expansion using pseudorandom generators occurs quite
often in real world cryptography. In fact, the usefulness of pseudorandom gen-
erators is not limited to reducing the amount of randomness needed by crypto-
graphic algorithms, and pseudorandom generators are often used as an essen-
tial tool in secure protocol design. For example, they are used in the design of
forward-secure cryptographic functions to refresh a user private key [7,25], they

66 D. Micciancio

are used in the best known (in fact, optimal [30]) multicast key distribution
protocols [10] to compactly communicate (using a seed) a long sequence of pseu-
dorandom keys, and they play an important role in Yao’s classic garbled circuit
construction for secure two-party computation to mask and selectively open part
of a hidden circuit evaluation [24,35].

Pseudorandom generators (like any deterministic cryptographic primitive)
inevitably leak partial information about their input key.! Similarly, a ciphertext
{e},, may leak partial information about £ if, for example, decryption succeeds
(with high probability) only when the right key is used for decryption. As we
consider the unrestricted use of encryption and pseudorandom generation, we
need to model the possibility that given different pieces of partial information
about a key, an adversary may be able to recover that key completely. Our main
result shows how to do all this within a fairly simple symbolic model of computa-
tion, and still obtain strong computational soundness guarantees. Our treatment
of partial information is extremely simple and in line with the spirit of formal
methods and symbolic security analysis: we postulate that, given any two dis-
tinct pieces of partial information about a key, an adversary can recover the key
in full. Perhaps not surprisingly, we demonstrate (Theorem 3) that the result-
ing symbolic semantics for cryptographic expressions is computationally sound,
in the sense that if two (acyclic?) expressions are symbolically equivalent, then
for any (length regular) semantically secure encryption scheme and (length dou-
bling) pseudorandom generator the probability distributions naturally associated
to the two expressions are computationally indistinguishable. More interestingly,
we justify our symbolic model by proving a corresponding completeness theorem
(Theorem 2), showing that if two cryptographic expressions are not symbolically
equivalent (according to our definition), then there is an instantiation of the cryp-
tographic primitives (satisfying the standard security notion of indistinguishabil-
ity) such that the probability distributions corresponding to the two expressions
can be efficiently distinguished with almost perfect advantage. In other words, if
we want the symbolic semantics to be computationally sound with respect to any
standard implementation of the cryptographic primitives, then our computation-
ally sound symbolic semantics is essentially optimal. Moreover, our completeness
theorem concretely shows what could go wrong when encrypting messages under
related keys, even under a simple eavesdropping (passive) attack.

1.2 Techniques

A key technical contribution of our paper is a syntactic characterization of
independent keys that exactly matches its computational counterpart, and a

! For example, Go(k) gives partial information about k because it allows to distinguish
k from any other key k' chosen independently at random: all that the distinguisher
has to do is to compute Go(k') and compare the result to Go(k).

2 For cyclic expressions, i.e., expressions containing encryption cycles, our soundness
theorem still holds, but with respect to a slightly stronger “co-inductive” adversarial
model based on greatest fixed point computations [26].

Symbolic Encryption with Pseudorandom Keys 67

corresponding notion of computationally sound key renaming (Corollary1).
Our syntactic definition of independence is simple and intuitive: a set of keys
ki,...,ky is symbolically independent if no key k; can be obtained from another
k; via the syntactic application of the pseudorandom generator. We show that
this simple definition perfectly captures the intuition behind the computational
notion of pseudorandomness: we prove (Theorem 1) that our definition is both
computationally sound and complete, in the sense that the keys k4, ..., k, are
symbolically independent if and only if the associated probability distribution is
indistinguishable from a sequence of truly independent uniformly random keys.
For example, although the probability distributions associated to pseudoran-
dom keys Go(k) and G (k) are not independent in a strict information theoretic
sense, the dependency between these distributions cannot be efficiently recog-
nized when k is not known because the joint distribution associated to the pair
(Go(k),G1(k)) is indistinguishable from a pair of independent random values.
A key component of our completeness theorem is a technical construction
of a secure pseudorandom generator G and encryption scheme {-}, satisfying
some very special properties (Lemma4) that may be of independent interest.
The properties are best described in terms of pseudorandom functions. Let fy,
be the pseudorandom function obtained from the length-doubling pseudorandom
generator G using the classic construction of [17]. We give an algorithm that on
input any string w and two ciphertexts co = {mol, and e; = {mi}, (for
arbitrarily chosen, and unknown messages mg, m1) determines if k; = fi, (w),
and, if so, completely recovers the value of the keys kg and k; with overwhelming
probability. Building on this lemma, we define the symbolic semantics by means
of an abstract adversary that is granted the ability to recover the keys kg, kq
whenever it observes two ciphertext encrypted under them. Our completeness
theorem offers a precise technical justification for such strong symbolic adversary.

1.3 Active Attacks and Other Cryptographic Primitives

Our work focuses on security definitions with respect to passive attacks for
two reasons. First, indistinguishability is essentially® the only notion of security
applicable to primitives as simple as pseudorandom generators. Second, using
passive security definitions only makes our main result (Theorem 2) stronger:
our completeness theorem shows that if two expressions map to different sym-
bolic patterns, then security can be completely subverted even under a simple
eavesdropping attack. Still, we remark that our definitions and techniques could
be useful also for the analysis of security under more realistic attacks in the
presence of active adversaries, e.g., if combined together with other soundness
results [5,6,11,19,32]. Also, our results immediately extend to other crypto-
graphic primitives (e.g., non-interactive commitment schemes) which can be

3 Active attacks against pseudorandom generators may be considered in the context
of leakage resilient cryptography, fault injection analysis, and other side-channel
attacks, which are certainly interesting, but also much more specialized models than
those considered in this paper.

68 D. Micciancio

modeled as a weakening of public key encryption. Possible extension to other
cryptographic primitives, e.g., using the notion of deduction soundness [8,12] is
also an interesting possibility. However, such extensions are outside the scope of
this paper, and they are left to future work.

1.4 Related Work

Cryptographic expressions with pseudorandom keys, as those considered in this
paper, are used in the symbolic analysis of various cryptographic protocols,
including multicast key distribution [28-30], cryptographically controlled access
to XML documents [4], and (very recently) the symbolic analysis of Yao’s gar-
bled circuit construction for secure two party computation [24]. However, these
works (with the exception of [24], which builds on the results from a preliminary
version of our paper [27]) use ad-hoc methods to deal with pseudorandom keys by
imposing syntactic restrictions on the way the keys are used. Even more general
(so called “composed”) encryption keys are considered in [23], but only under
the random oracle heuristics. We remark that the use of such general composed
keys is unjustified in the standard model of computation, and the significance of
the results of [23] outside the random oracle model is unclear. In fact, our com-
pleteness results clearly show that modeling key expansion as new random keys
is not sound with respect to computationally secure pseudorandom generators
in the standard model.

The problem of defining a computationally sound and complete symbolic
semantics for cryptographic expressions has already been studied in several
papers before, e.g., [3,14,31]. However, to the best of our knowledge, our is
the first paper to prove soundness and completeness results with respect to the
standard notion of computationally secure encryption [18]. In the pioneering
work [3], Abadi and Rogaway proved the first soundness theorem for basic cryp-
tographic expressions. Although in their work they mention various notions of
security, they focus on a (somehow unrealistic) variant of the standard security
definition that requires the encryption scheme to completely hide both the key
and the message being encrypted, including its length. This is the notion of
security used in many other works, including [22]. The issue of completeness was
first raised by Micciancio and Warinschi [31] who proved that the logic of Abadi
and Rogaway is both sound and complete if one assumes the encryption scheme
satisfies a stronger security property called confusion freeness (independently
defined also in [2], and subsequently weakened in [14]). We remark that most
symbolic models are trivially complete for trace properties. However, the same
is not true for indistinguishability security properties.

The notion of completeness used in [2,14,31] is different from the one stud-
ied in this paper. The works [2,14,31] consider restricted classes of encryption
schemes (satisfying stronger security properties) such that the computational
equivalence relation induced on expressions is the same for all encryption schemes
in the class. In other words, if two expressions can be proved not equivalent
within the logic framework, then the probability distributions associated to the
two expressions by evaluating them according to any encryption scheme (from

Symbolic Encryption with Pseudorandom Keys 69

the given class) are computationally distinguishable. It can be shown that no
such notion of completeness can be achieved by the standard security defini-
tion of indistinguishability under chosen plaintext attack, as considered in this
paper, i.e., different encryption schemes (all satisfying this standard notion of
security) can define different equivalence relations. In this paper we use a dif-
ferent approach: instead of strengthening the computational security definitions
to match the symbolic model of [3], we relax the symbolic model in order to
match the standard computational security definition of [18]. Our relaxed sym-
bolic model is still complete, in the sense that if two expressions evaluate to
computationally equivalent distributions for any encryption scheme satisfying
the standard security definition, then the equality between the two expressions
can be proved within the logic. In other words, if two expressions are not equiva-
lent in our symbolic model, then the associated probability distributions are not
computationally equivalent for some (but not necessarily all) encryption scheme
satisfying the standard computational security notion.

1.5 Organization

The rest of the paper is organized as follows. In Sect. 2 we review basic notions
from symbolic and computational cryptography as used in this paper. In Sect. 3
we present our basic results on the computational soundness of pseudorandom
keys, and introduce an appropriate notion of key renaming. In Sect. 4 we present
our symbolic semantics for cryptographic expressions with pseudorandom keys.
In Sect. 5, we present our main result: a completeness theorem which justifies
the definitional choices made in Sect.4. A corresponding soundness theorem is
given in Sect. 6. Section 7 concludes the paper with some closing remarks.

2 Preliminaries

In this section we review standard notions and notation from symbolic and com-
putational cryptography used in the rest of the paper. The reader is referred to
[3,26] for more background on the symbolic model, and [15,16,20] (or any other
modern cryptography textbook) for more information about the computational
model, cryptographic primitives and their security definitions.

We write {0,1}* to denote the set of all binary strings, {0,1}" for the set
of all strings of length n, |z| for the bitlength of a string x, e for the empty
string, and “;” (or simple juxtaposition) for the string concatenation operation
mapping = € {0,1}" and y € {0,1}™ to z;y € {0,1}**™. We also write z < y
if x is a suffiz of y, i.e., y = zx for some z € {0,1}*. Asusual, z < yisz <X y
and x # y. The powerset of a set A is denoted p(A).

As a general convention, we use bold uppercase names (Exp, Pat, etc.) for
standard sets of symbolic expressions, bold lowercase names (keys, parts) for
functions that return sets of symbolic expressions, and regular (non-bold) names
(shape, norm) for functions returning a single symbolic expression. We also use
uppercase letters (e.g., A, S) for set-valued variables, and lowercase letters (z,y)

70 D. Micciancio

for other variables. Calligraphic letters (A, G, &, etc.) are reserved for probability
distributions and algorithms in the computational setting.

2.1 Symbolic Cryptography

In the symbolic setting, messages are described by abstract terms. For any given
sets of key and data terms Keys, Data, define Exp as the set of cryptographic
expressions generated by the grammar

Exp ::= Data | Keys | (Exp, Exp) | {Exp}geys: (1)

where (e, e2) denotes the ordered pair of subexpressions e; and ez, and {e},
denotes the encryption of e under k. We write Exp[Keys, Data] (and, simi-
larly, for patterns Pat[Keys, Data] later on) to emphasize that the definition
of Exp depends on the underlying sets Keys and Data. As a notational con-
vention, we assume that the pairing operation is right associative, and omit
unnecessary parentheses. E.g., we write {d1, d2,d3}, instead of {(di, (d2,d3))}-
All ciphertexts in our symbolic expressions represent independent encryptions
(each using fresh randomness in the computational setting), even when carrying
the same message. This is so that an adversary cannot distinguish between, say,
({0}, {0}) and ({0}, {1},). Sometimes (e.g., when adding an equality predi-
cate “Exp = Exp” to the language of expressions) it is desirable for equality of
symbolic terms to correspond to equality of their computational interpretations.
This can be easily achieved by decorating symbolic ciphertexts with a “random-
ness” tag, so that identical expressions {m}, = {m}} correspond to identical
ciphertexts, while independent encryptions (of possibly identical messages) are

represented by different symbolic expressions {ml}) # {[m]}}: An alternative (and
syntactically cleaner) method to represent identical ciphertexts is to extend the
symbolic syntax with a variable assignment operation, like

let c:= {[Exp]}Keys in Exp/,

where the bound variable ¢ may appear (multiple times) in the second expres-
sion Exp’. Here, each “let” expression implicitly encrypts using independent
randomness, and identical ciphertexts are represented using bound variables.
All our definitions and results are easily adapted to these extended expressions
with explicit randomness tags or bound variables.

In [3,26], Keys = {k1,...,kn} and Data = {dy,...,d,} are two flat sets
of atomic keys and data blocks. In this paper, we consider pseudorandom keys,
defined according to the grammar

Keys ::= Rand | Gyo(Keys) | G;(Keys), (2)

where Rand = {ry,7q,...} is a set of atomic key symbols (modeling truly ran-
dom and independent keys), and Gy, Gy represent the left and right half of a

Symbolic Encryption with Pseudorandom Keys 71

length doubling pseudorandom generator k — Go(k); G1(k). Notice that gram-
mar (2) allows for the iterated application of the pseudorandom generator, so
that from any key r € Rand, one can obtain keys of the form

G, (Goy (- (Go,, (r)) -)

for any n > 0, which we abbreviate as Gp,p,..5, (r). (As a special case, for n = 0,
Ge(r) = r.) For any set of keys S C Keys, we write G*(S) and G*(S) to denote
the sets

G*(S) = {Gyu (k) | k € S,w € {0,1}*}
GH(S) = {Gyu(k) | k € S,w e {0,1}*,w # €}

of keys which can be obtained from S through the repeated application of the
pseudorandom generator functions Gy and Gy, zero, one or more times. Using
this notation, the set of keys generated by the grammar (2) can be written as
Keys = G*(Rand). It is also convenient to define the set

G (S)={k| G (k)nS#0} = |J (k¥ € G (k)}.

k'eS

Notice that, for any two keys k, k', we have k € G~ (k') if and only if ¥’ € G (k),
i.e., G~ corresponds to the inverse relation of G™.

The shape of an expression is obtained by replacing elements from Data and
Keys with special symbols [and o. Formally, shapes are defined as expressions
over these dummy key/data symbols:

Shapes = Exp[{c}, {O0}].

For notational simplicity, we omit the encryption keys o in shapes and write {s}
instead of {s],. Shapes are used to model partial information (e.g., message size)
that may be leaked by ciphertexts, even when the encrypting key is not known.
(See Lemma 5 for a computational justification.)

The symbolic semantics of cryptographic expressions is defined by mapping
them to patterns, which are expressions containing subterms of the form {s},,
where s € Shapes and k € Keys, representing undecryptable ciphertexts. For-
mally, the set of patterns Pat[Keys, Data] is defined as

Pat ::= Data | Keys | (Pat, Pat) | {Pat}gqys | {Shapesfyieys. (3)

Since expressions are also patterns, and patterns can be regarded as expres-
sions over the extended sets Keys U {o}, Data U {0}, we use the letter e
to denote expressions and patterns alike. We define a subterm relation C on
Pat[Keys, Data] as the smallest reflexive transitive binary relation such that

e1 C (er,e2), es C (e1,e2), and e C {e}, (4)

for alle, e1, e5 € Pat[Keys, Data] and k € Keys. The parts of a pattern e € Pat
are all of its subterms:

parts(e) = {¢/ € Pat | ¢/ C ¢}. (5)

72 D. Micciancio

The keys and shape of a pattern are defined by structural induction according
to the obvious rules

keys(d) = () shape(d) =

keys(k) = {k} shape(k) = o
keys(e1,e2) = keys(e1) Ukeys(ez) shape(ep,ez) = (shape(e;), shape(es))
keys({e},) = {k} Ukeys(e) shape({e},) = {shape(e)}

where d € Data, k € Keys, e, e1,es € Pat[Keys,Data], and shape(s) = s
for all shapes s € Shapes. Notice that, according to these definitions, keys(e)
includes both the keys appearing in e as a message, and those appearing as an
encryption key. On the other hand, parts(e) only includes the keys that are used
as a message. As an abbreviation, we write

pkeys(e) = parts(e) Nkeys(e)

for the set of keys that appear in e as a message. So, for example, if e =
(k, {0}/, {k"},) then keys(e) = {k,k’,k"}, but pkeys(e) = {k,k”}. This is
an important distinction to model the fact that an expression e only provides
partial information about the keys in keys(e) \ parts(e) = {k'}.

2.2 Computational Model

We assume that all algorithms and constructions take as an implicit input a (pos-
itive integer) security parameter £, which we may think as fixed at the outset.
We use calligraphic letters, A, B, etc., to denote randomized algorithms or the
probability distributions defined by their output. We write = < A for the oper-
ation of drawing x from a probability distribution A, or running a probabilistic
algorithm A4 with fresh randomness and output . The uniform probability dis-
tribution over a finite set S is denoted by U(S), and we write x «— S as an abbre-
viation for x < U(S). Technically, since algorithms are implicitly parameterized
by the security parameter ¢, each A represents a distribution ensemble, i.e., a
sequence of probability distributions {A(¢)}¢>¢ indexed by £. For brevity, we will
informally refer to probability ensembles A simply as probability distributions,
thinking of the security parameter £ as fixed. We use standard asymptotic nota-
tion O(f), w(f), etc., and write f ~ g if the function €(¢) = f(£)—g(¢) = £~ is
negligible. Two probability distributions Ay and A; are computationally indis-
tinguishable (written Ay ~ A;) if for any efficiently computable predicate D,
Pr{D(z): x — Ao} =~ Pr{D(z): x — A1}

Cryptographic Primitives. In the computational setting, cryptographic expres-
sions evaluate to probability distributions over binary strings, and two expres-
sions are equivalent if the associated distributions are computationally indistin-
guishable. We consider cryptographic expressions that make use of two standard
cryptographic primitives: pseudorandom generators, and (public or private key)
encryption schemes.

Symbolic Encryption with Pseudorandom Keys 73

A pseudorandom generator is an efficient algorithm G that on input a string
x € {0,1}* (the seed, of length equal to the security parameter £) outputs a string
G(x) of length bigger than ¢, e.g., 2¢. We write Go(x) and Gy () for the first and
second half of the output of a (length doubling) pseudorandom generator, i.e.,
G(x) = Go(x); G1(x) with |Go(z)| = |G1(z)| = |z| = £. A pseudorandom generator
G is computationally secure if the output distribution {G(z): z « {0,1}*} is
computationally indistinguishable from the uniform distribution ¢({0,1}2¢) =
{y:y —{0,1}*}.

A (private key) encryption scheme is a pair of efficient (randomized) algo-
rithms & (for encryption) and D (for decryption) such that D(k,E(k,m)) = m
for any message m and key k € {0,1}*. The encryption scheme is secure if
it satisfies the following definition of indistinguishability under chosen plaintext
attack. More technically, for any probabilistic polynomial time adversary A, the
following must hold. Choose a bit b € {0,1} and a key k € {0, 1}¢ uniformly at
random, and let Oy(m) be an encryption oracle that on input a message m out-
puts E(k,m) if b = 1, or £(k,0/™!) if b = 0, where 0™l is a sequence of 0s of the
same length as m. The adversary A is given oracle access to Oy(-), and attempts
to guess the bit b. The encryption scheme is secure if Pr{ A () = b} ~ 1/2. For
notational convenience, the encryption £(k, m) of a message m under a key k is
often written as & (m). Public key encryption is defined similarly. All our results
hold for private and public key encryption algorithms, with hardly any difference
in the proofs. So, for simplicity, we will focus the presentation on private key
encryption, but we observe that adapting the results to public key encryption is
straightforward.

In some of our proofs, it is convenient to use a seemingly stronger (but
equivalent) security definition for encryption, where the adversary is given access
to several encryption oracles, each encrypting under an independently chosen
random key. More formally, the adversary A in the security definition is given
access to a (stateful) oracle Oy(i,m) that takes as input both a message m
and a key index i. The first time .4 makes a query with a certain index i, the
encryption oracle chooses a key k; « {0,1} uniformly at random. The query
Oyp(i,m) is answered using key k; as in the previous definition: if b = 1 then
Oy(i,m) = E(k;,m), while if b = 0 then Oy (i, m) = £(k;, 0™).

Computational evaluation. In order to map a cryptographic expression from Exp
to a probability distribution, we need to pick a length doubling pseudorandom
generator G, a (private key) encryption scheme &, a string representation 4 for
every data block d € Data, and a binary operation? 7 used to encode pairs of
strings.

4 We do not assume any specific property about 7, other than invertibility and effi-
ciency, i.e., (w1, ws2) should be computable in polynomial (typically linear) time,
and the substrings w; and ws can be uniquely recovered from m(wi,w2), also in
polynomial time. In particular, 7(w1,w2) is not just the string concatenation oper-
ation wi; w2 (which is not invertible), and the strings 7 (w1, w2) and 7(w2, w1) may
have different length. For example, 7(w1,w2) could be the string concatenation of a
prefix-free encoding of w;, followed by wa.

74 D. Micciancio

Since encryption schemes do not hide the length of the message being
encrypted, it is natural to require that all functions operating on messages are
length-regular, i.e., the length of their output depends only on the length of their
input. For example, G is length regular by definition, as it always maps strings
of length ¢ to strings of length 2¢. Throughout the paper we assume that all keys
have length ¢ equal to the security parameter, and the functions d — ~4, m and
& are length regular, i.e., |y4| is the same for all d € Data, |7 (z1,z2)| depends
only on |z1| and |x2|, and |E(k, x)| depends only on ¢ and |z|.

Definition 1. A computational interpretation is a tuple (G, E,~,) consisting of
a length-doubling pseudorandom generator G, a length regular encryption scheme
&, and length regular functions vq4 and w(x1,22). If G is a secure pseudorandom
generator, and & is a secure encryption scheme (satisfying indistinguishability
under chosen plaintext attacks, as defined in the previous paragraphs), then we
say that (G,E,~,7) is a secure computational interpretation.

Computational interpretations are used to map symbolic expressions in Exp
to probability distributions in the obvious way. We first define the evaluation o[e]
of an expression e € Exp[Keys, Data] with respect to a fixed key assignment
o: Keys — {0, 1}*. The value o[e] is defined by induction on the structure of the
expression e by the rules o[[d] = vq4, o[k] = o(k), o[(e1,e2)] = w(o]e1], o[ez]),
and o[{e},] = E(o(k),o[e]). All ciphertexts in a symbolic expressions are eval-
uated using fresh independent encryption randomness. The computational eval-
uation [e] of an expression e is defined as the probability distribution obtained
by first choosing a random key assignment o (as explained below) and then
computing o[e]. When Keys = G*(Rand) is a set of pseudorandom keys, o
is selected by first choosing the values o(r) € {0,1}* (for r € Rand) indepen-
dently and uniformly at random, and then extending o to pseudorandom keys
in GT(Rand) using a length doubling pseudorandom generator G according to
the rule

G(o (k) = 0(Go(k)); (G (k).

It is easy to see that any two expressions e,e’ € Exp with the same shape
s = shape(e) = shape(e’) always map to strings of exactly the same length,
denoted |[s]| = |o[e]]| = |¢’[€']]. The computational evaluation function ofe] is
extended to patterns by defining o[s] = 0/IsIl for all shapes s € Shapes. Again,
we have |o[e]| = |[shape(e)]| for all patterns e € Pat, i.e., all patterns with the
same shape evaluate to strings of the same length.

Notice that each expression e defines a probability ensemble [e], indexed
by the security parameter ¢ defining the key length of G and £. Two symbolic
expressions (or patterns) e, e’ are computationally equivalent (with respect to
a given computational interpretation (G, &, v,)) if the corresponding probabil-
ity ensembles [e] and [[e’] are computationally indistinguishable. An equivalence
relation R on symbolic expressions is computationally sound if for any two equiv-
alent expressions (e,e’) € R and any secure computational interpretation, the
distributions [e]] and [e'] are computationally indistinguishable. Conversely, we

Symbolic Encryption with Pseudorandom Keys 75

say that a relation R is complete if for any two unrelated expressions (e,e’) ¢ R,
there is a secure computational interpretation such that [e] and [e’] can be
efficiently distinguished.

3 Symbolic Model for Pseudorandom Keys

In this section we develop a symbolic framework for the treatment of pseudoran-
dom keys, and prove that it is computationally sound and complete. Specifically,
we give a symbolic criterion for a set of keys which is satisfied if and only if the
joint distribution associated to the set of keys is computationally indistinguish-
able from the uniform distribution. Before getting into the technical details we
provide some intuition.

Symbolic keys are usually regarded as bound names, up to renaming. In the
computational setting, this corresponds to the fact that changing the names of
the keys does not alter the probability distribution associated to them. When
pseudorandom keys are present, some care has to be exercised in defining an
appropriate notion of key renaming. For example, swapping r and Go(r) should
not be considered a valid key renaming because the probability distributions
associated to (1,Go(r)) and (Go(r),r) can be easily distinguished.® A conserva-
tive approach would require a key renaming p to act simply as a permutation over
the set of atomic keys Rand. However, this is overly restrictive. For example,
renaming (Go(r), G1(r)) to (ro,r1) should be allowed because (Go(r), G1(r)) rep-
resents a pseudorandom string, which is computationally indistinguishable from
the truly random string given by (r¢,r1). The goal of this section is to precisely
characterize which key renamings can be allowed, and which cannot, to preserve
computational indistinguishability.

The rest of the section is organized as follows. First, in Sect.3.1, we intro-
duce a symbolic notion of independence for pseudorandom keys. Informally, two
(symbolic) keys are independent if neither of them can be derived from the
other through the application of the pseudorandom generator. We give a com-
putational justification for this notion by showing (see Theorem 1) that the stan-
dard (joint) probability distribution associated to a sequence of symbolic keys
ki,...,k, € Keys in the computational model is pseudorandom precisely when
the keys k1, ..., k, are symbolically independent. Then, in Sect. 3.2, we use this
definition of symbolic independence to define a computationally sound notion
of key renaming. Intuitively, in order to be computationally sound and achieve
other desirable properties, key renamings should map independent sets to inde-
pendent sets. In Corollary 1 we prove that, under such restriction, applying a
renaming to cryptographic expressions yields computationally indistinguishable
distributions. This should be contrasted with the standard notion of key renam-
ing used in the absence of pseudorandom keys, where equivalent expressions
evaluate to identical probability distributions.

5 All that the distinguisher has to do, on input a pair of keys (00,01), is to compute
Go(o1) and check if the result equals oo.

76 D. Micciancio

3.1 Independence

In this section we define a notion of independence for symbolic keys, and show
that it is closely related to the computational notion of pseudorandomness.

Definition 2. For any two keys k1, ke € Keys, we say that kq yields ko (written
ki = ko) if ko € G*(k1), i.e., ko can be obtained by repeated application of
Go and Gy to k1. Two keys ki, ks are independent (written ki L ko) if neither
k1 = ko nor ke =X k1. We say that the keys k1, ..., ky, are independent if k; L k;

for all i # j.

Notice that any two keys satisfy G, (10) = Gy, if and only if o = r; and
wy = wi. As an example, they keys Go(r) L Goi(r) are independent, but the
keys Go(r) =< Gio(r) are not. As usual, we write k; < ko as an abbreviation for
(k1 = k2) A (k1 # k2). Notice that (Keys, <) is a partial order, i.e., the relation
= is reflexive, antisymmetric and transitive. Pictorially a set of keys S C Keys
can be represented by the Hasse diagram® of the induced partial order (S, <).
(See Fig. 1 for an example.) Notice that this diagram is always a forest, i.e., the
union of disjoint trees with roots roots(S) = S\ G*(S). S is an independent set
if and only if S = roots(95), i.e., each tree in the forest associated to S consists
of a single node, namely its root.

GO(TQ) Go1 (7"2)

[Gio(r1) I G1(r1) J [Goo(r2)]:Gow(Tz)]: G110(rs) J

VAR

(Goir) | Gui(r))

Fig. 1. Hasse diagram associated to the set of keys S = {r1, Gio(r1), G1(r1), Goi(r1),
G11(r1), Go(r2), Goo(r2), Go1o(r2), G110(r2), Goi(r2)}. For any two keys, k1 < ko if
there is a directed path from k1 to k2. The keys {Go(r2), Go1(r2)} form an independent
set because neither Go(rz) = Goi(rz2), nor Goi1(r2) =< Go(r2). The Hasse diagram of
S is a forest consisting of 3 trees with roots roots(S) = {r1,Go(r2), Go1(r2)}.

We consider the question of determining, symbolically, when (the compu-
tational evaluation of) a sequence of pseudorandom keys k1, ..., k, is pseudo-
random, i.e., it is computationally indistinguishable from n truly random inde-
pendently chosen keys. The following lemma shows that our symbolic notion
of independence corresponds exactly to the standard cryptographic notion of
computational pseudorandomness. We remark that the correspondence proved
in the lemma is ezxact, in the sense that the symbolic condition is both necessary

5 The Hasse diagram of a partial order relation < is the graph associated to the
transitive reduction of <, i.e., the smallest relation R such that < is the symmetric
transitive closure of R.

Symbolic Encryption with Pseudorandom Keys 7

and sufficient for symbolic equivalence. This should be contrasted with typical
computational soundness results [3], that only provide sufficient conditions for
computational equivalence, and require additional work/assumptions to estab-
lish the completeness of the symbolic criterion [14,31].

Theorem 1. Let ky,...,k, € Keys = G*(Rand) be a sequence of symbolic
keys. Then, for any secure (length doubling) pseudorandom generator G, the
probability distributions [k1,...,k,] and [r1,...,rs] (where ri,...,r, € Rand
are distinct atomic keys) are computationally indistinguishable if and only if the
keys k1,. .., ky are (symbolically) independent, i.e., k; Lk; for all i # j.

Proof. We first prove the “only if” direction of the equivalence, i.e., indepen-
dence is a necessary condition for the indistinguishability of [rq,...,r,] and
[k1,...,kn]. Assume the keys in (k1,...,k,) are not independent, i.e., k; < k;
for some ¢ # j. By definition, k; = G, (k;) for some w € {0,1}*. This allows
to deterministically compute [k;] = Gy ([ki]) from [k;] using the pseudoran-

dom generator. The distinguisher between [ry,...,r,] and [ki,...,k,] works
in the obvious way: given a sample (o1, ...,0,), compute G, (o;) and compare
the result to o;. If the sample comes from [ki,...,k,], then the test is satis-

fied with probability 1. If the sample comes from [ry,...,r,], then the test is
satisfied with exponentially small probability because o; = [r;] is chosen at ran-
dom independently from o; = [r;]. This concludes the proof for the “only if”
direction.

Let us now move to the “if” direction, i.e., prove that independence is a
sufficient condition for the indistinguishability of [ri,...,r,] and [k1,..., k]
Assume the keys in (kq,...,k,) are independent, and let m be the number of
applications of Gg and G, required to obtain (kq, ..., ky,) from the basic keys in
Rand. We define m + 1 tuples K = (k%,... k) of independent keys such that

— KO = (ky, ... k)

- K™ =(ry,...,ry), and ‘ ‘

— for all 4, the distributions [K*] and [K*'] are computationally indistinguish-
able.

It follows by transitivity that [K°] = [k1,..., k] is computationally indistin-
guishable from [K™] = [ry,...,7rs]]. More precisely, any adversary that dis-
tinguishes [k1,...,k,] from [ry,...,r,] with advantage J, can be efficiently
transformed into an adversary that breaks the pseudorandom generator G with
advantage at least 6/m. Each tuple K**! is defined from the previous one K*
as follows. If all the keys in K* = {k%,... k} are random (i.e., k; € Rand for
all j = 1,...,n), then we are done and we can set K‘*! = K% Otherwise, let
k% = G,(r) € Keys\ Rand be a pseudorandom key in K*, with r € Rand and
w # €. Since the keys in K are independent, we have r ¢ K*. Let r’,7” € Rand
be two new fresh key symbols, and define K*+' = {ki™!, ... ki+1} as follows:

_ Gs(r') if ki = Gs(Go(r)) for some s € {0,1}*
kit =S Gs(r") if kb = G4(Gq(r)) for some s € {0,1}*
K otherwise

78 D. Micciancio

It remains to prove that any distinguisher D between [K‘] and [K"!] can be
used to break (with the same success probability) the pseudorandom generator
G. The distinguisher D’ for the pseudorandom generator G is given as input a
pair of strings (o/, ¢”’) chosen either uniformly (and independently) at random or
running the pseudorandom generator (0/,¢”) = G(0) on a randomly chosen seed
o.D'(0’,0") computes n strings (o1, .. .,0,) by evaluating (ki k3Tt .. kit!)
according to an assignment that maps r’ to o', "’ to ¢”, and all other base keys
r € Rand to independent uniformly chosen values. The output of D’'(o’,0")
is D(o1,...,0,). Notice that if ¢’ and ¢” are chosen uniformly and indepen-
dently at random, then (o1, ...,0,) is distributed according to [K**1], while if
(0',0") = G(o), then (o1,...,0,) is distributed according to [K?]. Therefore
the success probability of D’ in breaking G is exactly the same as the success
probability of D in distinguishing [K*] from [K**1]. 0

3.2 Renaming Pseudorandom Keys

We will show that key renamings are compatible with computational indistin-
guishability as long as they preserve the action of the pseudorandom generator,
in the sense specified by the following definition.

Definition 3 (pseudo-renaming). For any set of keys S C Keys, a renaming
w: S — Keys is compatible with the pseudorandom generator G if for all ki, ke €
S and w € {0,1}*,

k1 = Gy (k2) if and only if w(ki) = Gy (u(ks)).
For brevity, we refer to renamings satisfying this property as pseudo-renamings.

Notice that the above definition does not require the domain of y to be the
set of all keys Keys, or even include all keys in Rand. So, for example, the
function mapping (Go(ro), G1(ro)) to (ro, Geo1(r1)) is a valid pseudo-renaming,
and it does not act as a permutation over Rand. The following lemmas show
that Definition 3 is closely related to the notion of symbolic independence.

Lemma 1. Let p be a pseudo-renaming with domain S C Keys. Then p is a
bijection from S to u(S). Moreover, S is an independent set if and only if 1(S)
18 an independent set.

Proof. Let u: S — Keys be a pseudo-renaming. Then p is necessarily injective,
because for all k1, ke € S such that u(k1) = pu(ks), we have p(ky) = p(ke) =
Ge(p(k2)). By definition of pseudo-renaming, this implies k1 = G(ka) = ko.
This proves that u is a bijection from S to u(S).

Now assume S is not an independent set, i.e., k; = Gy, (ko) for some k1, ks € S
and w # e. By definition of pseudo-renaming, we also have p(ky) = Gy, (u(k2)).
So, u(S) is not an independent set either. Similarly, if 1(.S) is not an independent
set, then there exists keys p(ki1), u(k2) € wp(S) (with ki,k2 € S) such that
w(k1) = Gy (u(ke)) for some w # e. Again, by definition of pseudo-renaming,
k1 = Gy(k2), and S is not an independent set. O

Symbolic Encryption with Pseudorandom Keys 79

In fact, pseudo-renamings can be equivalently defined as the natural exten-
sion of bijections between two independent sets of keys.

Lemma 2. Any pseudo-renaming u with domain S can be uniquely extended to
a pseudo-renaming fi with domain G*(S). In particular, any pseudo-renaming
can be (uniquely) specified as the extension fi of a bijection p: A — B between
two independent sets A = roots(S) and B = u(A).

Proof. Let p: S — Keys be a pseudo-renaming. For any w € {0,1}* and k €
S, define fi(Gy(k)) = Gy(u(k)). This definition is well given because p is a
pseudo-renaming, and therefore for any two representations of the same key
Guw(k) = Gy (k') € G*(S) with k, k" € S, we have G, (u(k)) = u(Gy(k)) =
w(Geny (k') = Gy ((k')). Moreover, it is easy to check that i is a pseudo-
renaming, and any pseudo-renaming that extends p must agree with . We now
show that pseudo-renamings can be uniquely specified as bijections between two
independent sets of keys. Specifically, for any pseudo-renaming p with domain .S,
consider the restriction pg of 1 to A = roots(.S). By Lemma 1, y is a bijection
between independent sets A and B = pg(A). Consider the extensions of p and pg
to G*(S) = G*(roots(S)) = G*(A). Since p and o agree on A = roots(S), both
I and [ig are extensions of pg. By uniqueness of this extension, we get fig = fi.
Restricting both functions to .S, we get that the original pseudo-renaming p can
be expressed as the restriction of fig to S. In other words, p can be expressed
as the extension to S of a bijection py between two independent sets of keys
A =roots(S) and B = u(A). O

We remark that a pseudo-renaming p: S — Keys cannot, in general, be
extended to one over the set Keys = G*(Rand) of all keys. For example,
w: Go(rg) — 71 is a valid pseudo-renaming, but it cannot be extended to include
ro in its domain.

The next lemma gives one more useful property of pseudo-renamings: they
preserve the root keys.

Lemma 3. For any pseudo-renaming p: A — Keys, we have p(roots(A)) =
roots(u(A)).

Proof. By Lemmal, p is injective. Therefore, u(roots(A4)) equals p(A4 \
G*(A)) = u(A) \ n(G*(A)). From the defining property of pseudo-renamings
we also easily get that u(GT(A)) = G (u(A)). Therefore, p(roots(A)) =
W(A)\ G*(u(4)) = roots(u(A)). 0

Using Lemma 2, throughout the paper we specify pseudo-renamings as bijec-
tions between two independent sets of keys. Of course, in order to apply
pu: S — p(S) to an expression e, the key set keys(e) must be contained in
G*(S). Whenever we apply a pseudo-renaming p: S — Keys to an expres-
sion or pattern e, we implicitly assume that keys(e) C G*(S). (Typically,
S = roots(keys(e)), so that keys(e) C G*(roots(keys(e))) = G*(5) is always

80 D. Micciancio

satisfied.) Formally, the result of applying a pseudo-renaming p to an expression
or pattern e € Pat(Keys, Data) is defined as

p(d) =d n({el) = {nle)l
(k) = (k) uls) = 5
M(ela 82) = (M(el)v /1,(62))

for all d € Data, k € Keys, ¢,e1,es € Pat(Keys, Data) and s € Shapes. We
can now define an appropriate notion of symbolic equivalence up to renaming.

Definition 4. Two expressions or patterns e;,eo € Pat(Keys,Data) are

~

equivalent up to pseudo-renaming (written e; = e3), if there is a pseudo-

renaming p such that fi(e1) = ea. Equivalently, by Lemma 2, e1 = ey if there
is a bijection p: roots(keys(e1)) — roots(keys(ez)) such that fi(e;) = es.

It easily follows from the definitions and Theorem 1 that = is an equiva-
lence relation, and expressions that are equivalent up to pseudo-renaming are
computationally equivalent.

~

Corollary 1. The equivalence relation =) is computationally sound, i.e., for
any two patterns ey, es € Pat(Keys, Data) such that e; = eq, the distributions
[e1] and [e2] are computationally indistinguishable.

~

Proof. Assume e; 2 eq, i.e., there exists a bijection p : roots(keys(e1)) —
roots(keys(ez)) such that fi(e;) = es. Let n be the size of A; = roots(keys(ey))
and A; = roots(keys(ez)) = uu(A1). We show that any distinguisher D between
[e1] and [es] = [f(e1)] can be efficiently transformed into a distinguisher A
between [A;] and [Az] with the same advantage as D. Since A; and A, are
independent sets of size n, by Theorem 1 the probability distributions [A4;] and
[Az] are indistinguishable from [ry,...,7r,]. So, [41] and [A3] must be indis-
tinguishable from each other, and A’s advantage must be negligible. We now
show how to build A from D. The distinguisher A takes as input a sample o
coming from either [A;] or [A2]. A evaluates e; according to the key assignment
Ay — o, and outputs D(o[e1]). By construction, ofe;] is distributed according
to [e1] when o = [A;], while it is distributed according to [es] = [f(e1)] when
o = [Az2] = [1(A1)]. Tt follows that A has exactly the same advantage as D. O

Based on the previous corollary, it is convenient to define a notion of “normal
pattern”, where the keys have been renamed in some standard way.

Definition 5. The normalization of e € Pat is the pattern norm(e) = u(e)
obtained by applying the pseudo-renaming u(k;) = r;, where K = {k1,...,k,} =
roots(keys(e)) and rq,...,r, € Rand.

~

It immediately follows from the definition that norm(e) & e, and that any
two patterns eg,e; are equivalent up to renaming (eg = eq1) if and only if their
normalizations norm(ep) = norm(e;) are identical.

Symbolic Encryption with Pseudorandom Keys 81

4 Symbolic Semantics

Following [3,26], the symbolic semantics of an expression e € Exp is defined
by specifying the set of keys S C keys(e) recoverable from e by an adversary,
and a corresponding pattern proj(e, S), which, informally, represents the adver-
sary’s view of e when given the ability to decrypt only under the keys in S.
Informally, proj(e,S) can be thought as the projection of e onto the subset of
expressions that use only keys in S for encryption. More specifically, proj(e, S)
is obtained from e by replacing all undecryptable subexpression {e’}}, C e (where
k ¢ S) with a pattern {shape(e’)}, that reveals only the shape of the encrypted
message. The formal definition of proj is given in Fig. 2.

We remark that the definition of proj is identical to previous work [3,26],
as it treats pseudo-random keys Keys = G*(Rand) just as regular keys, disre-
garding their internal structure. (Relations between pseudorandom keys will be
taken into account when defining the set of keys S known to the adversary.) In
particular, as shown in [3,26], this function satisfies the following properties”

proj(e,Keys) = e (6)
proj(proj(e, S),T) = proj(e,SNT). (7)

In order to define S, we need to specify the set of keys rec(e) C keys(e)
that an adversary may (potentially) extract from all the parts of an expression
(or pattern) e. In the standard setting, where keys are atomic symbols, and
encryption is the only cryptographic primitive, rec(e) can be simply defined
as the set of keys appearing in e as a message. This is because the partial
information about a key k revealed by a ciphertext {m}, is of no use to an
adversary, except possibly for telling when two ciphertexts are encrypted under
the same key. When dealing with expressions that make use of possibly related
pseudorandom keys and multiple cryptographic primitives, one needs to take
into account the possibility that an adversary may combine different pieces of
partial information about the keys in mounting an attack. To this end, we define
rec(e) to include all keys k such that either

1. e contains k as a message (directly revealing the value of k), or

2. e contains both a message encrypted under k (providing partial information
about k) and some other related key &’ (providing an additional piece of
information about k).

In other words, our definition postulates that the symbolic adversary can fully
recover a key k whenever it is given two distinct pieces of partial information
about it. In addition, rec(e) contains all other keys that can be derived using
the pseudorandom generator G.

" Notice that by (7), the functions proj(-,S) and proj(-,T) commute, i.e.,

proj(proj(e, S),T) = proj(proj(e,T),S) for any expression e. Indeed, for

example, if S = {ki}, T = {k2} and e = {{m}, }, , then proj(e {ki}) =
2

{Bhh,, projle{kz}) = {{Bh,},,, and proj(projle, {ki}), {k2}) =

proj(proj(e, {k2}), {k1}) = proj(e,0) = {{T}},, -

82 D. Micciancio

Definition 6. For any pattern e, let rec(e) = keys(e) N G*(K) where
K = keys(e) N (parts(e) UG~ (keys(e)))
= pkeys(e) U (keys(e) NG~ (keys(e))).

The expression keys(e) N G*(K) simply extends the set of known keys K using
the pseudorandom generator. The interesting part of Definition 6 is the set K,
which captures the key recovery capabilities of the adversary: pkeys(e) are all
the keys that appear in e as a message, and keys(e) NG~ (keys(e)) are the keys
for which the adversary can obtain some additional partial information.® OQur
definition may seem overly conservative, as it postulates, for example, that a
key k can be completely recovered simply given two ciphertexts {{}, and {O},,
where k' = Gyo1(k) is derived form k using the (one-way) functions Go, G1. In
Sect. 5 we justify our definition by showing that there are encryption schemes
and pseudorandom generators for which this is indeed possible, and proving
a completeness theorem for the symbolic sematics associated to Definition 6.
Specifically, if our definition enables a symbolic attacker to distinguish between
two expressions e and ¢/, then there is also an efficient computational adversary
that distinguishes between the corresponding probability distributions for some
valid computational interpretation of the cryptographic primitives.

The functions proj and rec are used to associate to each expression e a
corresponding key recovery map F, which, on input a set of keys S, outputs the
set of keys F.(S) potentially recoverable from e when using the keys in S for
decryption.

F.: keys(e) — keys(e) where F.(S) = rec(proj(e, 9)). (8)

A symbolic adversary that intercepts the expression e, and whose initial knowl-
edge is the empty set of keys Sy = (), can obtain more and more keys S; = F.(Sy),
Sy = Fe(S1), .-y Siy1 = Fe(S;) = FiH1(0), and ultimately recover all the keys

in the set?
fix(F) = | J Sn = |J Fr(0). 9)

n>0 n>0
In summary, the symbolic semantics of an expression e can be defined as follows.

Definition 7. The (least fized point) symbolic semantics of a cryptographic
expression e is the pattern

pattern(e) = norm(proj(e, fiz(F.)))
where fiz(Fe) = U, > Fe(0).

8 By symmetry, and the final application of G in the definition of rec, keys recoverable
from partial information of type keys(e) NG™ (keys(e)) are also captured implicitly
by the this definition, simply by swapping the role of the two keys.

® As we will see, the key recovery map F. is monotone, i.c., if S C §’, then F.(S) C
F.(S"), for any two sets of keys S, S’. Therefore, F. defines a monotonically increasing
sequence of known sets of keys So C S1 C S2 C ...S, = Sh+1 and the set of keys
recoverable by the adversary S, = fix(F.) is precisely the least fixed point of F, i.e.,
the smallest set S such that F.(S) = S.

Symbolic Encryption with Pseudorandom Keys 83

proj(d, S) =d proj((el,eg),S) = (proj(elvs)vproj (6275))

proj(h) =k proi(ieh) = | 1R, LGS

Fig. 2. The pattern function proj: Pat[Keys, Data] x p(Keys) — Pat[Keys, Data]
where k € Keys, d € Data, and (e1,e2),{e}, € Pat[Keys, Datal. Intuitively,
proj(e, S) is the observable pattern of e, when using the keys in S for decryption.

In the above definition, S = fix(FF.) is the set of all keys recoverable by an
adversary that intercepts e, proj(e, S) is (the symbolic representation of) what
part of e can be decrypted by the adversary, and the final application of norm
takes care of key renamings.

We conclude this section by observing that the function rec satisfies the
fundamental property

rec(proj(e,S)) C rec(e) (10)

which, informally, says that projecting an expression (or pattern) e does not
increase the amount of information recoverable from it. In fact, for any pat-
tern e, the set rec(e) depends only on the sets keys(e) and pkeys(e). More-
over, this dependence is monotone. Since we have keys(proj(e,.S)) C keys(e)
and pkeys(proj(e, S)) C pkeys(e), by monotonicity we get rec(proj(e,S)) C
rec(e).

As an application, [26, Theorem 1] shows that for any functions proj,rec
satisfying properties (6), (7) and (10), the function F.(S) = rec(proj(e,S)) is
monotone, i.e., if S C T, then F.(S) CF.(T).

5 Completeness

In this section we prove that the symbolic semantics defined in Sect. 4 is com-
plete, i.e., if two cryptographic expressions map to different symbolic patterns
(as specified in Definition 7), then the corresponding probability distributions
can be efficiently distinguished. More specifically, we show that for any two such
symbolic expressions eq, €1, there is a secure computational interpretation [-]
(satisfying the standard computational notions of security for pseudorandom
generators and encryption schemes) and an efficiently computable predicate D
such that Pr{D([eo]))} =~ 0 and Pr{D([e1])} ~ 1.

The core of our completeness theorem is the following lemma, which shows
that computationally secure encryption schemes and pseudorandom generators
can leak enough partial information about their keys, so to make the keys com-
pletely recoverable whenever two keys satisfying a nontrivial relation are used to
encrypt. The key recovery algorithm A4 described in Lemma4 provides a tight
computational justification for the symbolic key recovery function rec described
in Definition 6.

84 D. Micciancio

Lemma 4. If pseudorandom generators and encryption schemes exist at all,
then there is a secure computational interpretation (G,E,v,m) and a determinis-
tic polynomial time key recovery algorithm A such that the following holds. For
any (symbolic) keys ko, k1 € Keys, messages mg, m1, and binary string w # e,

— if k1 = Gy (ko), then A(Eq ko) (M0); Ex(ky) (M), w) = o (ko) for any key assign-
ment o; and

—if k1 # Gu(ko), then A(Eq(ky)(1M0); Ex(ry)(m1),w) = L outputs a special
symbol L denoting failure, except with negligible probability over the random
choice of the key assignment o.

Proof. We show how to modify any (length doubling) pseudorandom genera-
tor G’ and encryption scheme £’ to satisfy the properties in the lemma. Before
describing the actual construction, we provide some intuition. The idea is to use
an encryption scheme that splits the key k = (k[0]; k[1]), uses half of the key
(say, k[1]) and leaks the first half k[0] as part of the ciphertext. Notice that this
is already enough to tell if two ciphertexts are encrypted under the same key, as
exposed by patterns like ({d},, {d},). But, still, this does not leak any infor-
mation about the messages, which are well protected by the undisclosed portion
of the keys. In order to prove the lemma, we need an appropriate pseudoran-
dom generator which, when combined with the encryption scheme, leads to a key
recovery attack. Similarly to the encryption scheme, the pseudorandom generator
uses only k[0] (which is expanded by a factor 4, to obtain a string twice as long as
the original k), and uses the result to “mask” the second part k[1]. Specifically,
each half of the output G,(k) equals (G, (k[0]), G, (k[0]) @ E[1]). Now, given an
encryption under k (which leaks k[0]), and a one-way function G, (k) (for any bit
b) of the key, one can recover k[1] as follows: expand k[0] to (G, (k[0]), G, (k[0]))
and use the result to unmask Gy(k), to reveal (0,k[1]). The same argument is
easily adapted to work for any one-way function G,, (k) corresponding to an arbi-
trary sequence of applications w of the pseudorandom generator. The problem
with this intuitive construction is that it requires to see the full output of G (k).
If, instead, we are given only two ciphertexts (encrypted under k and Gy(k)) one
gets to learn only the first half G,(k), which is not enough to recover k[1]. An
easy fix to this specific problem is to let G,(k) to mask (k[1], k[1]) instead of
(0, k[1]). But this would not allow the attack to carry over to longer applications
Gw (k) of the pseudorandom generator. So, the actual construction required to
prove the lemma is a bit more complex, and splits the key into three parts.
The new £ and G use keys that are three times as long as those of £ and G'.
Specifically, each new key o (k) consists of three equal length blocks which we
denote as o(k)[0],o(k)[1] and o(k)[2], where each block can be used as a seed
or encryption key for the original G’ and £’. Alternatively, we may think of k as
consisting of three atomic symbolic keys k& = (k[0], k[1], k[2]), each corresponding
to £ bits of o(k). For notational simplicity, in the rest of the proof, we fix a
random key assignment o, and, with slight abuse of notation, we identify the
symbolic keys k[i] with the corresponding ¢-bit strings o(k)[i]. So, for example,
we will write k and k[i] instead of o(k) and o(k)[i]. Whether each k[i] should be

Symbolic Encryption with Pseudorandom Keys 85

interpreted as a symbolic expression or as a bitstring will always be clear from
the context.

The new encryption scheme £(k, m) = k[0]; k[1]; £’ (k[2], m) simply leaks the
first two blocks of the key, and uses the third block to perform the actual encryp-
tion. It is easy to see that if £ is secure against chosen plaintext attacks, then
£’ is also secure. Moreover, £ can be made length regular simply by padding the
output of £ to its maximum length.

For the pseudo-random generator, assume without loss of generality that G’
is length doubling, mapping strings of length ¢ to strings of length 2¢. We need
to define a new G mapping strings of length 3¢ to strings of length 6£. On input
k = k[0]; k[1]; k[2], the new G stretches k[0] to a string of length 6¢ corresponding
to the symbolic expression

(Goo(K[0]), Go1o(k[0]), G110 (K[0]), Gor (K[0]), Goa (K[0]), Gaua (K[0])) (11

and outputs the exclusive-or of this string with (0;k[2]; k[2]; 0; k[2]; k[2]). The
expression (11) is evaluated using G’. Since G’ is a secure length doubling pseu-
dorandom generator, and the keys in (11) are symbolically independent, by The-
orem 1 expression (11) is mapped to a pseudorandom string of length 6¢. Finally,
since taking the exclusive-or with any fixed string (0; k[2]; k[2]; 0; k[2]; k[2]) maps
the uniform distribution to itself, the output of G is also computationally indis-
tinguishable from a uniformly random string of length 6¢. This proves that G
is a secure length doubling pseudorandom generator as required. It will be con-
venient to refer to the first and second halves of this pseudorandom generator
G(k) = Go(k); G1(k). Using the definition of G, we see that for any bit b € {0, 1},
the corresponding half of the output consists of the following three blocks:

Go(k)[0] = [Gon(K[0])] (12)
Go(k)[1] = [Gorp(K[0])] & K[2] (13)
Go(k)[2] = [Gi1p(K[0])] & K[2]. (14)

Next, we describe the key recovery algorithm A. This algorithm takes as input
two ciphertexts Ex,(mo), £k, (m1) and a binary string w. The two ciphertexts
are only used for the purpose of recovering the partial information about the
keys ko[0], ko[1], k1[0], k1[1] leaked by E. So, we assume A is given ko[0], ko[1]
and k1[0], k1[1] to start with. Let w = wy, ...w; be any bitstring of length n, and
define the sequence of keys k' = (k%[0], k*[1], k¢[2]) by induction as

ko = k07 kiJrl = gTUi+1 (kl)

for i = 0,...,n — 1. Notice that, if kg and k; are symbolically related by k1 =
G (ko), then the last key in this sequence equals k™ = k; as a string in {0, 1}3.
Using (12), the first block of these keys can be expressed symbolically as

k0] =[G, (ko[0])] where u; = 0w;0w;_1 ... O0w;.

So, Algorithm A(ko[0], ko[1], k1[0], k1[1], w) begins by computing the value of all
k0] = [Gy, (ko[0])] (for @ = 0,...,n) starting from the input value ko[0] and

86 D. Micciancio

applying the pseudorandom generator G’ as directed by u;. At this point, A may
compare k™[0] with its input k;[0], and expect these two values to be equal.
If the values differ, 4 immediately terminates with output 1. We will prove
later on that if k1 # Gy (ko), then k™[0] # k1[0] with high probability, and
A correctly outputs L. But for now, let us assume that k; = G,,(ko), so that
k1 = [Gyw(ko)] = k™ and the condition k™[0] = k1]0] is satisfied. In this case, A
needs to recover and output the key ko. Since algorithm A is already given k0]
and kg[1] as part of its input, all we need to do is to recover the last block ko[2]
of the key. To this end, A first uses (13) to compute k" ~1[2] as

k1[1] & Go(G1 (G, (K" 10]))) = £"[1] @ [Gorw, (K™ [0])]

1]
=k"[1] & (Gu, (k"1 & k"7(2))
= k"] & (k"[1] & k"~'[2]) = k" [2].
Similarly, starting from k"~1[2], A uses (14) to compute k%[2] for i =n —2,n —

3,...,0as
k2] @ G1(G1 (Guny (KF[0])))

K2 @ [Graw,,, (KT[0D]
2] @ (Guy (K1)(2) © K7(2])
K2 e (

°[2

T2 @ (K 2] @ k' [2]) = K'[2].

At this point, A can output (ko[0], ko[1], k°[2]) = (ko[0], ko[1], ko[2]) = k2. This
completes the analysis for the case k1 = Gy, (ko).

We need to show that if k1 # G, (ko), then the probability that £™[0] = k1[0]
is negligible, so that A correctly outputs L. Since we are interested only in the
first blocks k™[0], k1[0] of the keys, we introduce some notation. For any bitstring
V=101 ...Um, let 0jv = 0v10vs . .. 0v,, be the result of shuffling v with a string of
zeros of equal length. If we express k™ [0] = Gy, (ko[0]) in terms of ko[0], the goal
becomes to prove that G, (ko[0]) and k1[0] evaluate to different strings with
overwhelming probability. The proof proceeds by cases, depending on whether
ko L k1, ko < k1, or k1 = kg, and makes use of the symbolic characterization of
computational independence from Sect. 3.

Case 1. If ko L ky, then kg = Gy, (r0) and k1 = Gy, (1) for some rg,r1,vg, v1
such that either ro # r1, or vg,v; are not one a suffix of the other. It follows
that ko[0] = Gojy,(r0) and k1[0] = Gy, (1) are also symbolically independent
because either rg # 71, or (0|vg), (Ov1) are not one a suffix of the other. In this
case, also k™[0] = G|y (ko[0]) and k;[0] are symbolically independent. It fol-
lows, from Theorem 1, that the distribution [Goj.,(ko[0]), k1[0]] is computation-
ally indistinguishable from the evaluation [rg,r1] of two independent uniformly
random keys. In particular, since ry and r; evaluate to the same bitstring with
exponentially small probability 27, the probability that k"[0] = G|y, (ko[0]) and
k1[0] evaluate to the same string is also negligible.

Case 2. If k1 < ko, then ky = G, (k1) for some string v # €, and ko[0] =
Goju(k1[0]). Then, the pair of keys (k"[0], £1[0]) where

k" [0] = Goju (ko [0]) = Goju (Goju (k1[0])) = Gojuww (k1(0])

Symbolic Encryption with Pseudorandom Keys 87

is symbolically equivalent to (G, (r),r) for some u = (0Jwv) # €. So, by Theo-
rem 1, we can equivalently bound the probability § (over the random choice of
o) that [G,(r)], evaluates to [r],. The trivial (identity) algorithm Z(y) = y
inverts the function defined by G, with probability at least 4. Since u # €, G,
defines a one-way function, and § must be negligible.

Case 3. Finally, if kg < ki, then ky = G, (ko) for some string v # w, and
k1[0] = Go| (ko[0]). This time, we are given a pair of keys

(kn[0]7 k1 [O]) = (G0|w<k0[0]), G0|v(k0[0D)

which are symbolically equivalent to (G|, (7), Goj,(r)). As before, by Theorem 1,
it is enough to evaluate the probability ¢ that Ggj,(r) and Gg,(r) evaluate to
the same bitstring. If v is a (strict) suffix of w or w is a (strict) suffix of v, then
0 must be negligible by the same argument used in Case 2. Finally, if v and
w are not one a suffix of the other, then Gy, (r) and Gg|,(r) are symbolically
independent, and § must be negligible by the same argument used in Case 1.

We have shown that in all three cases, the probability § that G, (ko[0]) and
k1[0] evaluate to the same bitstring is negligible. So, the test performed by A
fails (expect with negligible probability) and A outputs L as required by the
lemma. ad

We use Lemma4 to distinguish between expressions that have the same
shape. Expressions with different shapes can be distinguished more easily sim-
ply by looking at their bitsize. Recall that for any (length regular) instantiation
of the cryptographic primitives, the length of all strings in the computational
interpretation of a pattern [e]] (denoted |[e]|) depends only on shape(e). In other
words, for any two patterns ey, e1, if shape(eg) = shape(eq), then |[eo]] = |[e1]]-
The next lemma provides a converse of this property, showing that whenever two
patterns have different shape, they may evaluate to strings of different length.
So, secure computational interpretations are not guaranteed to protect any piece
of partial information about the shape of symbolic expressions.

Lemma 5. If pseudorandom generators and encryption schemes exist at all,
then for any two expressions ey and e; with shape(eg) # shape(eq), there exists
a secure computational interpretation (G,E,v,m) such that |[eo]| # |[e1]]-

Proof. We show how to modify any secure computational interpretation simply
by padding the output length, so that the lemma is satisfied. More specifically,
we provide a computational interpretation such that the length of [eq] is different
from the length of any expression with different shape. Let S = {shape(e) | e €
parts(eg)} be the set of all shapes of subexpressions of eg, and let n = |S| + 1.
Associate to each shape s € S a unique number ¢(s) € {1,...,n — 1}, and
define ¢(s) = 0 for all shapes s ¢ S. Data blocks and keys are padded to
bit-strings of length congruent to ¢(0) and (o) modulo n, respectively. The
encryption function first applies an arbitrary encryption scheme, and then pads
the ciphertext £(m) so that its length modulo n equals ¢({s}), for some shape
s such that |m| = ¢(s). The pairing function 7 is defined similarly: if the two

88 D. Micciancio

strings being combined in a pair have length |mg| = ¢(so) (mod n) and |mq| =
©(s1) (mod n), then the string encoding the pair (mg,m;) is padded so that
its length equals ¢(sg, s1) modulo n. It is easy to check that all patterns e are
evaluated to strings of length |[e]| = ¢(shape(e)) (mod n). Since shape(eg) € S
and shape(e;) ¢ S, we get |[eo]| # 0 (mod n) and |[e;]|] = 0 (mod n). In
particular, |[eo]| # [[ex]]- O

We are now ready to prove our completeness theorem, and establish the
optimality of our symbolic semantics.

Theorem 2. For any two expressions ey and e, if pattern(ep) # pattern(ey),
then there exists a secure computational interpretation (G,&,~y,) and a polyno-
mial time computable predicate D such that Pr{D([eo])} =~ 0 and Pr{D([e1])} =~
1, i.e., the distributions [eq] and [e1] can be distinguished with negligible proba-
bility of error.

Proof. We consider two cases, depending on the shapes of the expressions. If
shape(eg) # shape(ey), then let [-] be the computational interpretation defined
in Lemma 5. Given a sample « from one of the two distributions, the distinguisher
D simply checks if || = |[shape(e;)]|. If they are equal, it accepts. Otherwise
it rejects. It immediately follows from Lemma 5 that this distinguisher is always
correct, accepting all samples « from [e;], and rejecting all samples « from [eg].

The more interesting case is when shape(eg) = shape(e;). This time the
difference between the two expressions is not in their shape, but in the value
of the keys and data. This time we use the computational interpretation [-]
defined in Lemma4, and show how to distinguish between samples from [eg]
and samples from [e;], provided pattern(egp) # pattern(ey).

Let Sj = F.,(0) be the sequence of sets of keys defined by e,. We know
that 0 = SS - Sl} - SE C ... C Sp = fix(F.,) for some integer n. Let
el = Pat(ep, Si) be the sequence of patterns defined by the sets S;i. Since
pattern(ep) # pattern(e;), we have e % e}. Let ¢ the smallest index such
that ef % e}. We will give a procedure that iteratively recovers all the keys in
the sets Sl?, Sl}, ceey Sg_l, and then distinguishes between samples coming from
the two distributions associated to ey and e;.

The simplest case is when i = 0, i.e., ¢ % €. In this case S = 0 = SY,
and we do not need to recover any keys. Since ey and e; have the same shape,
D can unambiguously parse o as a concatenation of data blocks d, keys k and
ciphertexts of type {s},, without knowing if a comes from [eg] or [e;]. If the
two patterns eJ, eJ differ in one of the data blocks, then D can immediately tell
if a comes from e or) by looking at the value of that piece of data. So, assume
all data blocks are identical, and e} and e{ differ only in the values of the keys.
Consider the set P of all key positions in e (or, equivalently, in €), and for
every position p € P, let k be the key in ey at position p. (Positions include
both plain keys kj and ciphertexts {ISP]}’kg') For any two positions p,p’, define

the relation r,(p,p’) between the keys kj and k,’;/ to be

Symbolic Encryption with Pseudorandom Keys 89

Fwif k7 =G, ky) for some w € {0,1}+
r(pp) = Y if k) = Gu/j(kf) for some w € {0,1}F
’ 0 ifkP =K

1 otherwise.

Notice that if ro(p,p’) = ri(p,p’) for all positions p,p’ € P, then the map
w(kB) = k¥ is a valid pseudo-renaming. Since u(el) = €?, this would show
that e = €Y, a contradiction. So, there must be two positions p,p’ such that
ro(p,p’) # 71(p,p'), i.e., the keys at positions p and p’ in the two expressions e

and €Y satisfy different relations. At this point we distinguish two cases:

— If two keys are identical (ry(p,p’) = 0) and the other two keys are unrelated
(r1i—p(p,p’) = L), then we can determine the value of b simply by checking
if the corresponding keys recovered from the sample « are identical or not.
Notice that even if the subexpression at position p (or p’) is a ciphertext, the
encryption scheme defined in Lemma 4 still allows to recover the first 2¢ bits
of the keys, and this is enough to tell if two keys are identical or independent
with overwhelming probability.

— Otherwise, it must be the case that one of the two relations is r,(p,p’) = tw
for some string w. By possibly swapping p and p’, and ey and e;, we
may assume that ro(p,p’) = +w while 7 (p,p’) # +w. In other words,
kg/ = Gy (kf), while k;f/ # Gy (kf). We may also assume that the subex-
pressions at position p and p’ are ciphertexts. (If the subexpression at one
of these positions is a key, we can simply use it to encrypt a fixed message
m, and obtain a corresponding ciphertext.) Let ag,af be the ciphertexts
extracted from « corresponding to positions p and p’. We invoke the algo-
rithm A(ao, g, w) from Lemma4 and check if it outputs a key or the special
failure symbol L. The distinguisher accepts if and only if A(ag, af, w) = L.
By Lemma 4, if o was sampled from [eg], then A(ayg, afy, w) will recover the
corresponding key with probability 1, and D rejects the sample a. On the
other hand, if o was sampled from [e1], then A(ap, af, w) = L with over-
whelming probability, and D accepts the sample a.

This completes the description of the decision procedure D when ¢ = 0. When
i > 1, we first use Lemma4 to recover the keys in S}. Then we use these keys
to decrypt the corresponding subexpressions in «, and use Lemma4 again to
recover all the keys in S7. We proceed in a similar fashion all the way up to
S;~!. Notice that since all the corresponding patterns e} = el (for j < i) are
equivalent up to renaming, all the keys at similar positions p, p’ satisfy the same
relations 7o(p,p’) = r1(p,p’), and we can apply Lemma4 identically, whether
the sample a comes from [eg] or [e;]. This allows to recover the keys in S}, at
which point we can parse (and decrypt) « to recover all the data blocks, keys
and ciphertexts appearing in e!. Finally, using the fact that e}, % e}, we proceed
as in the case i = 0 to determine the value of b. O

90 D. Micciancio

6 Computational Soundness

Computational soundness results for symbolic cryptography usually forbid
encryption cycles, e.g., collections of ciphertexts where k; is encrypted under
kirq fori=1,...,n—1, and k, is encrypted under k;. Here we follow an alter-
native approach, put forward in [26], which defines the adversarial knowledge
as the greatest fized point of F,, i.e., the largest set S such that F.(S) = S.
Interestingly, [26] shows that under this “co-inductive” definition of the set of
known keys, soundness can be proved in the presence of encryption cycles, offer-
ing a tight connection between symbolic and computational semantics. At the
same time, [26, Theorem 2] also shows that if e has no encryption cycles, then
F. has a unique fixed point, and therefore fix(F.) = FIX(F,). So, computational
soundness under the standard “least fixed point” semantics for acyclic expres-
sions follows as a corollary. We remark that F. may have a unique fixed point
even if e contains encryption cycles. So, based on [26, Theorem 2|, we generalize
the definition of acyclic expressions to include all expressions e such that F. has
a unique fixed point fix(F.) = FIX.(F.).

In this section we extend the results of [26] to expressions with pseudorandom
keys. But, before doing that, we explain the intuition behind the co-inductive
(greatest fixed point) semantics. Informally, using the greatest fixed point cor-
responds to working by induction on the set of keys that are hidden from the
adversary, starting from the empty set (i.e., assuming that no key is hidden a-
priori), and showing that more and more keys are provably secure. Formulating
this process in terms of the complementary set of potentially known keys, one
starts from the set of all keys K = keys(e), and repeatedly applies F, to it. By
monotonicity of F, the result is a sequence of smaller and smaller sets

KDOF (K)DF*K)D>F}(K)D---
of potentially known keys, which converges to the greatest fixed point

FIX(F.) = [|F (keys(e)).

n

We emphasize FIX(F,) should be interpreted as the set of keys that are only
potentially recoverable by an adversary. Depending on the details of the encryp-
tion scheme (e.g., if it provides some form of key dependent message security),
an adversary may or may not be able to recover all the keys in FIX(F,). On the
other hand, all keys in the complementary set Keys(e) \ FIX(F,.) are provably
secret, for any encryption scheme providing the minimal security level of indis-
tinguishability under chosen message attack. Using the greatest fixed point, one
can define an alternative symbolic semantics for cryptographic expressions,

PATTERN(e) = norm(proj(e, FIX(F,))). (15)

In general, fix(F.) can be a strict subset of FIX(F,), so (15) may be different from
the patterns defined in Sect. 4. However, if e is acyclic, then FIX(F,) = fix.(F.),
and therefore PATTERN(e) = pattern(e).

Symbolic Encryption with Pseudorandom Keys 91

Theorem 3. For any secure computational interpretation (G,&,~,m) and any
expression e, the distributions [e] and [PATTERN(e)] are computationally indis-
tinguishable. In particular, if PATTERN(eg) = PATTERN(ey), then [eo] = [e1], i.e.,
the equivalence relation induced by PATTERN is computationally sound.

Corollary 2. Ifeg,e; are acyclic expressions, and pattern(ey) = pattern(e;),
then [eo] and [e1] are computationally indistinguishable.

The proof of the soundness theorem is pretty standard, and similar to pre-
vious work, and can be found in the full version of the paper [27].

7 Conclusion

We presented a generalization of the computational soundness result of Abadi
and Rogaway [3] (or, more precisely, its co-inductive variant put forward in [26])
to expressions that mix encryption with a pseudo-random generator. Differently
from previous work in the area of multicast key distribution protocols [28-30],
we considered unrestricted use of both cryptographic primitives, which raises
new issues related partial information leakage that had so far been dealt with
using ad-hoc methods. We showed that partial information can be adequately
taken into account in a simple symbolic adversarial model where the attacker
can fully recover a key from any two pieces of partial information. While, at
first, this attack model may seem unrealistically strong, we proved, as our main
result, a completeness theorem showing that the model is essentially optimal.

A slight extension of our results (to include the random permutation of
ciphertexts) has recently been used in [24], which provides a computationally
sound symbolic analysis of Yao’s garbled circuit construction for secure two
party computation. The work of [24] illustrates the usefulness of the methods
developed in this paper to the analysis of moderately complex protocols, and
also provides an implementation showing that our symbolic semantics can be
evaluated extremely fast even on fairly large expressions, e.g., those describing
garbled circuits with thousands of gates. Our results can be usefully generalized
even further, to include richer collections of cryptographic primitives, e.g., dif-
ferent types of (private and public key) encryption, secret sharing schemes (as
used in [4]), and more. Extensions to settings involving active attacks are also
possible [19,32], but probably more challenging.

Acknowledgments. The author thanks the anonymous Eurocrypt 2019 referees for
their useful comments.

References

1. Abadi, M., Gordon, A.: A calculus for cryptogaphic protocols: the spi calculus. Inf.
Comput. 148(1), 1-70 (1999). https://doi.org/10.1006 /inco.1998.2740

2. Abadi, M., Jiirjens, J.: Formal eavesdropping and its computational interpretation.
In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 82-94.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45500-0_4

https://doi.org/10.1006/inco.1998.2740
https://doi.org/10.1007/3-540-45500-0_4

92

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

D. Micciancio

Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). J. Cryptol. 15(2), 103-127 (2002). https://doi.
org/10.1007/s00145-007-0203-0

Abadi, M., Warinschi, B.: Security analysis of cryptographycally controlledaccess
to XML documents. J. ACM 55(2), 1-29 (2008). https://doi.org/10.1145/1346330.
1346331. Prelim. version in PODS’05

Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style
cryptographic library. In: CSFW 2004, pp. 204-218. IEEE (2004). https://doi.org/
10.1109/CSFW.2004.20

Backes, M., Pfitzmann, B., Waidner, M.: Symmetric authentication in a simulat-
able Dolev-Yao-style cryptographic library. Int. J. Inf. Secur. 4(3), 135-154 (2005).
https://doi.org/10.1007/310207-004-0056-6

Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431-448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_28

Bohl, F., Cortier, V., Warinschi, B.: Deduction soundness: prove one, get five for
free. In: CCS 2013, pp. 1261-1272. ACM (2013). https://doi.org/10.1145/2508859.
2516711

Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18-36 (1990). https://doi.org/10.1145/77648.77649

Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: a taxonomy and some efficient constructions. In: INFOCOM 1999, pp.
708-716 (1999). https://doi.org/10.1109/INFCOM.1999.751457

Comon-Lundh, H., Cortier, V.: Computational soundness of observational equiva-
lence. In: CCS 2008, pp. 109-118. ACM (2008). https://doi.org/10.1145/1455770.
1455786

Cortier, V., Warinschi, B.: A composable computational soundness notion. In: CCS
2011, pp. 63-74. ACM (2011). https://doi.org/10.1145/2046707.2046717

Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198-208 (1983). https://doi.org/10.1109/TIT.1983.1056650

Horvitz, O., Gligor, V.: Weak key authenticity and the computational completeness
of formal encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 530—
547. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_31
Goldreich, O.: Foundations of Cryptography, Volume I - Basic Tools. Cambridge
Unievrsity Press, Cambridge (2001)

Goldreich, O.: Foundation of Cryptography, Volume II - Basic Applications. Cam-
bridge Unievrsity Press, Cambridge (2004)

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792-807 (1986). https://doi.org/10.1145/6490.6503

Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Si. 28(2),
270-299 (1984). https://doi.org/10.1016,/0022-0000(84)90070-9

Hajiabadi, M., Kapron, B.M.: Computational soundness of coinductive symbolic
security under active attacks. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
539-558. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-
230

Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Cryptography and
Network Security Series). Chapman & Hall/CRC, Boca Raton (2007)

Kemmerer, R.A., Meadows, C.A., Millen, J.K.: Three system for cryptographic
protocol analysis. J. Cryptology 7(2), 79-130 (1994). https://doi.org/10.1007/
BF00197942

https://doi.org/10.1007/s00145-007-0203-0
https://doi.org/10.1007/s00145-007-0203-0
https://doi.org/10.1145/1346330.1346331
https://doi.org/10.1145/1346330.1346331
https://doi.org/10.1109/CSFW.2004.20
https://doi.org/10.1109/CSFW.2004.20
https://doi.org/10.1007/s10207-004-0056-6
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1145/2508859.2516711
https://doi.org/10.1145/2508859.2516711
https://doi.org/10.1145/77648.77649
https://doi.org/10.1109/INFCOM.1999.751457
https://doi.org/10.1145/1455770.1455786
https://doi.org/10.1145/1455770.1455786
https://doi.org/10.1145/2046707.2046717
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/978-3-540-45146-4_31
https://doi.org/10.1145/6490.6503
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1007/978-3-642-36594-2_30
https://doi.org/10.1007/978-3-642-36594-2_30
https://doi.org/10.1007/BF00197942
https://doi.org/10.1007/BF00197942

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Symbolic Encryption with Pseudorandom Keys 93

Laud, P.: Encryption cycles and two views of cryptography. In: NORDSEC 2002,
pp- 85-100. No. 2002:31 in Karlstad University Studies (2002)

Laud, P., Corin, R.: Sound computational interpretation of formal encryption with
composed keys. In: Lim, J.-1., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp.
55-66. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6_5
Li, B., Micciancio, D.: Symbolic security of garbled circuits. In: Computer Security
Foundations Symposium - CSF 2018, pp. 147-161. IEEE (2018). https://doi.org/
10.1109/CSF.2018.00018

Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400-417. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7_27

Micciancio, D.: Computational soundness, co-induction, and encryption cycles. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 362-380. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_19

Micciancio, D.: Symbolic encryption with pseudorandom keys. Report
2009/249, TACR ePrint archive (2018). https://eprint.iacr.org/2009/249. version
201800223:160820

Micciancio, D., Panjwani, S.: Adaptive security of symbolic encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 169-187. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30576-7_10

Micciancio, D., Panjwani, S.: Corrupting one vs. corrupting many: the case of
broadcast and multicast encryption. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, 1. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 70-82. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006_7

Micciancio, D., Panjwani, S.: Optimal communication complexity of generic multi-
cast key distribution. IEEE/ACM Trans. Network. 16(4), 803813 (2008). https://
doi.org/10.1109/TNET.2007.905593

Micciancio, D., Warinschi, B.: Completeness theorems for the Abadi-Rogaway logic
of encrypted expressions. J. Comput. Secur. 12(1), 99-129 (2004). https://doi.org/
10.3233/JCS-2004-12105

Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133-151.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_8

Millen, J.K., Clark, S.C., Freedman, S.B.: The Interrogator: protocol security anal-
ysis. IEEE Trans. Softw. Eng. SE—13(2), 274288 (1987). https://doi.org/10.1109/
TSE.1987.233151

Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J.
Comput. Secur. 6(1-2), 85-128 (1998). https://doi.org/10.3233/JCS-1998-61-205
Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS 1982,
pp. 160-164 (1982). https://doi.org/10.1109/SFCS.1982.38

https://doi.org/10.1007/978-3-540-24691-6_5
https://doi.org/10.1109/CSF.2018.00018
https://doi.org/10.1109/CSF.2018.00018
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/978-3-642-13190-5_19
https://eprint.iacr.org/2009/249
https://doi.org/10.1007/978-3-540-30576-7_10
https://doi.org/10.1007/11787006_7
https://doi.org/10.1109/TNET.2007.905593
https://doi.org/10.1109/TNET.2007.905593
https://doi.org/10.3233/JCS-2004-12105
https://doi.org/10.3233/JCS-2004-12105
https://doi.org/10.1007/978-3-540-24638-1_8
https://doi.org/10.1109/TSE.1987.233151
https://doi.org/10.1109/TSE.1987.233151
https://doi.org/10.3233/JCS-1998-61-205
https://doi.org/10.1109/SFCS.1982.38

Efficient Secure Computation

Covert Security with Public Verifiability:
Faster, Leaner, and Simpler

Cheng Hong', Jonathan Katz?, Vladimir Kolesnikov®, Wen-jie Lu?,
and Xiao Wang®6(®)

1 Alibaba, Hangzhou, China
vince.hc@alibaba-inc.com
2 University of Maryland, College Park, USA
jkatz@cs.umd.edu
3 Georgia Tech, Atlanta, USA
kolesnikov@gatech.edu
4 University of Tsukuba, Tsukuba, Japan
riku@mdl.cs.tsukuba.ac. jp
5 MIT, Cambridge, USA
wangxiao@northwestern.edu
6 BU, Boston, USA

Abstract. The notion of covert security for secure two-party com-
putation serves as a compromise between the traditional semi-honest
and malicious security definitions. Roughly, covert security ensures that
cheating behavior is detected by the honest party with reasonable prob-
ability (say, 1/2). It provides more realistic guarantees than semi-honest
security with significantly less overhead than is required by malicious
security.

The rationale for covert security is that it dissuades cheating by parties
that care about their reputation and do not want to risk being caught.
But a much stronger disincentive is obtained if the honest party can
generate a publicly verifiable certificate when cheating is detected. While
the corresponding notion of publicly verifiable covert (PVC) security has
been explored, existing PVC protocols are complex and less efficient than
the best covert protocols, and have impractically large certificates.

We propose a novel PVC protocol that significantly improves on prior
work. Our protocol uses only “off-the-shelf” primitives (in particular,
it avoids signed oblivious transfer) and, for deterrence factor 1/2, has
only 20-40% overhead compared to state-of-the-art semi-honest proto-
cols. Our protocol also has, for the first time, constant-size certificates
of cheating (e.g., 354 bytes long at the 128-bit security level).

As our protocol offers strong security guarantees with low overhead,

J. Katz—Work supported in part by a grant from Alibaba.

®

Check for
updates

V. Kolesnikov—Work supported in part by Sandia National Laboratories, a multi-
mission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energys National Nuclear Security Administration under

contract DE-NA-0003525.

© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 97-121, 2019.
https://doi.org/10.1007/978-3-030-17659-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17659-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-17659-4_4

98 C. Hong et al.

we suggest that it is the best choice for many practical applications of
secure two-party computation.

1 Introduction

Secure two-party computation allows two mutually distrusting parties Pa and
Pg to evaluate a function of their inputs without requiring either party to reveal
their input to the other. Traditionally, two security notions have been consid-
ered [7]. Protocols with semi-honest security can be quite efficient, but only
protect against passive attackers who do not deviate from the prescribed pro-
tocol. Malicious security, in contrast, categorically prevents an attacker from
gaining any advantage by deviating from the protocol; unfortunately, despite
many advances over the past few years, protocols achieving malicious security
are still noticeably less efficient than protocols with semi-honest security.

The notion of covert security [3] was proposed as a compromise between
semi-honest and malicious security. Roughly, covert security ensures that while
a cheating attacker may be successful with some small probability, the attempted
cheating will fail and be detected by the other party with the remaining proba-
bility. The rationale for covert security is that it dissuades cheating by parties
that care about their reputation and do not want to risk being caught. Covert
security thus provides stronger guarantees than semi-honest security; it can also
be achieved with better efficiency than malicious security [3,6,9,17].

Nevertheless, the guarantee of covert security is not fully satisfactory. Covert
security only ensures that when cheating is unsuccessful, the honest party detects
the fact that cheating took place—but it provides no mechanism for the honest
party to prove this fact to anyone else (e.g., a judge or the public) and, indeed,
existing covert protocols do not provide any such mechanism. Thus, a cheating
attacker only risks harming its reputation with one other party; even if the honest
party publicly announces that it caught the other party cheating, the cheating
party can simply counter that it is being falsely accused.

Motivated by this limitation of covert security, Asharov and Orlandi [2] pro-
posed the stronger notion of publicly verifiable covert (PVC) security. As in the
covert model, any attempted cheating is detected with some probability; now,
however, when cheating is detected the honest party can generate a publicly ver-
ifiable certificate of that fact. This small change would have a significant impact
in practice, as a cheating attacker now risks having its reputation publicly and
permanently damaged if it is caught. Alternatively (or additionally), the cheat-
ing party can be brought to court and fined for its misbehavior; the parties may
even sign a contract in advance that describes the penalties to be paid if either
party is caught. Going further, the parties could execute a “smart contract” in
advance of the protocol execution that would automatically pay out if a valid
certificate of cheating is posted on a blockchain. All these consequences are infea-
sible in the original covert model and, overall, the PVC model seems to come
closer to the original goal of covert security.

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 99

Asharov and Orlandi [2] mainly focus on feasibility; although their protocol is
implementable, it is not competitive with state-of-the-art semi-honest protocols
since, in particular, it requires a stronger variant of oblivious transfer (OT) called
signed OT and thus is not directly compatible with OT extension. Subsequent
work by Kolesnikov and Malozemoff [13] shows various efficiency improvements
to the Asharov-Orlandi protocol, with the primary gain resulting from a new,
dedicated protocol for signed-OT extension. (Importantly, signed-OT extension
does not follow generically from standard OT extension, and so cannot take
advantage of the most-efficient recent constructions of the latter.)

Unfortunately, existing PVC protocols [2,13] seem not to have attracted
much attention; for example, to the best of our knowledge, they have never
been implemented. We suggest this is due to a number of considerations:

— High overhead. State-of-the-art PVC protocols still incur a significant over-
head compared to known semi-honest protocols, and even existing covert pro-
tocols. (See Sect. 6.)

— Large certificates. Existing PVC protocols have certificates of size at least
k - |C| bits, where & is the (computational) security parameter and |C| is the
circuit size.! Certificates this large are prohibitively expensive to propagate
and are incompatible with some of the applications mentioned above (e.g.,
posting a certificate on a blockchain).

— Complexity. Existing PVC protocols rely on signed OT, a non-standard
primitive that is less efficient than standard OT, is not available in existing
secure-computation libraries, and is somewhat complicated to realize (espe-
cially for signed-OT extension).

1.1 Our Contributions

In this work we put forward a new PVC protocol in the random oracle model
that addresses the issues mentioned above. Specifically:

— Low overhead. We improve on the efficiency of prior work by roughly a
factor of 3x for deterrence factor 1/2, and even more for larger deterrence.
(An exact comparison depends on a number of factors; we refer to Sect. 6 for
a detailed discussion.) Strikingly, our PVC protocol (with deterrence factor
1/2) incurs only 20—-40% overhead compared to state-of-the-art semi-honest
protocols based on garbled circuits.

— Small certificates. We achieve, for the first time, constant-size certificates
(i.e., independent of the circuit size or the lengths of the parties’ inputs).
Concretely, our certificates are small: at the 128-bit security level, they are
only 354 bytes long.

— Simplicity. Our protocol avoids entirely the need for signed OT, and relies
only on standard building blocks such as (standard) OT and circuit garbling.

! We observe that the certificate size in [13] can be improved to O(k - n) bits (where
n is the parties’ input lengths) by carefully applying ideas from the literature. In
many cases, this is still unacceptably large.

100 C. Hong et al.

We also dispense with the XOR-tree technique for preventing selective-failure
attacks; this allows us to avoid increasing the number of effective OT inputs.
This reduction in complexity allowed us to produce a simple and efficient
(and, to our knowledge, the first) implementation of a PVC protocol.

Overview of the paper. In Sect.2 we provide an overview of prior PVC pro-
tocols and explain the intuition behind the construction of our protocol. After
some background in Sect. 3, we present the description of our protocol in Sect. 4
and prove security in Sect. 5. Section 6 gives an experimental evaluation of our
protocol and a comparison to prior work.

2 Technical Overview

We begin by providing an overview of the approach taken in prior work designing
PVC protocols. Then we discuss the intuition behind our improved protocol.

2.1 Overview of Prior Work

At a high level, both previous works constructing PVC protocols [2,13] rely
on the standard cut-and-choose paradigm [18] using a small number of garbled
circuits, with some additional complications to achieve public verifiability. Both
works rely crucially on a primitive called signed OT this is a functionality similar
to OT but where the receiver additionally learns the sender’s signatures on all
the values it obtains. Roughly, prior protocols proceed as follows:

1. Let A\ be a parameter that determines the deterrence factor (i.e., the prob-
ability of detecting misbehavior). Pa picks random seeds {seed j}5\=1 and Pg
chooses a random index j € {1,...,A} that will serve as the “evaluation
index” while the j # 7 will be “check indices.” The parties run signed OT
using these inputs, which allows Pg to learn {seed;};+; along with signatures
of Pa on all those values.

2. Pa generates A garbled circuits, and then sends signed commitments to those
garbled circuits (along with the input-wire labels corresponding to Pa’s input
wires). Importantly, seed; is used to derive the (pseudo)randomness for the
jth garbling as well as the jth commitment.

The parties also use signed OT so that Pg can obtain the input-wire labels
for its inputs across all the circuits.

3. For all j # j, party Pg checks that the commitment to the jth garbled circuit
is computed correctly based on seed; and that the input-wire labels it received
are correct; if this is not the case, then Pg can generate a certificate of cheating
that consists of the inconsistent values plus their signatures.

4. Assuming no cheating was detected, Pg reveals j to Pa, who then sends the
7th garbled circuit and the input-wire labels corresponding to its own inputs
for that circuit. Pg can then evaluate the garbled circuit as usual.

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 101

Informally, we refer to the jth garbled circuit and commitment as the jth instance
of the protocol. If Pp cheats in the jth instance of the protocol, then it is caught
with probability at least 1 — % (i.e., if j is a check index). Moreover, if Pp is
caught, then Pg has a signed seed (which defines what P was supposed to do in
the jth instance) and also a signed commitment to an incorrect garbled circuit or
incorrect input-wire labels. These values allow Pg to generate a publicly verifiable
certificate that Pa cheated.

As described, the protocol still allows Pa to carry out a selective-failure
attack when transferring garbled labels for Pg’s input wires. Specifically, it may
happen that a malicious Pa corrupts a single input-wire label (used as input to
the OT protocol) for the jth garbled circuit—say, the label corresponding to a
‘1’ input on some wire. If Pg aborts, then P learns that Pg’s input on that wire
was equal to 1. Such selective-failure attacks can be prevented using the XOR-
tree approach [18].2 This approach introduces significant overhead because it
increases the number of effective inputs, which in turn requires additional signed
OTs. The analysis in prior work [2,3,13] shows that to achieve deterrence factor
(i.e., probability of being caught cheating) 1/2, a replication factor of A = 3 with
v = 3 is needed. More generally, the deterrence factor as a function of A and the
XOR-tree expansion factor v is (1 — 5) - (1 —27T1).

Practical performance. Several aspects of the above protocol are relatively
inefficient. First, the dependence of the deterrence factor on the replication fac-
tor A is not optimal due to the XOR tree, e.g., to achieve deterrence factor 1/2
at least A = 3 garbled circuits are needed (unless v is impractically large); the
issue becomes even more significant when a larger deterrence factor is desired.
In addition, the XOR-tree approach used in prior work increases the effective
input length by at least a factor of 3, which necessitates 3x more signed OTs;
recall these are relatively expensive since signed-OT extension is. Finally, prior
protocols have large certificates. This seems inherent in the more efficient pro-
tocol of [13] due to the way they do signed-OT extension. (Avoiding signed-OT
extension would result in a much less efficient protocol overall.)

2.2 Our Solution

The reliance of prior protocols on signed OT and their approach to preventing
selective-failure attacks affect both their efficiency as well as the size of their
certificates. We address both these issues in the protocol we design.

As in prior work, we use the cut-and-choose approach and have Pg evaluate
one garbled circuit while checking the rest, and we realize this by having Pa
choose seeds for each of A executions and then allowing Pg to obliviously learn
all-but-one of those seeds. One key difference in our protocol is that we utilize the
seeds chosen by Pa not only to “derandomize” the garbled-circuit generation and
commitments, but also to derandomize the entire remainder of Pa’s execution,

2 For reasonable values of the parameters, the XOR-tree approach will be more efficient
than a coding-theoretic approach [18].

102 C. Hong et al.

and in particular its execution of the OT protocol used to transfer Pg’s input-
wire labels to Pg. This means that after Pg obliviously learns all-but-one of the
seeds of Pa, the rest of Pa’s execution is entirely deterministic; thus, Pg can verify
correct execution of Pa during the entire rest of the protocol for all-but-one of
the seeds. Not only does this eliminate the need for signed OT for the input-wire
labels, but it also defends against the selective-failure attack described earlier
without the need to increase the effective input length at all.

As described, the above allows Pg to detect cheating by Pa but does not
yet achieve public verifiability. For this, we additionally require Pa to sign its
protocol messages; if Pa cheats, Pg can generate a certificate of cheating from
the seed and the corresponding signed inconsistent transcript.

Thus far we have focused on the case where P, is malicious. We must also
consider the case of a malicious Pg attempting to frame an honest Pp. We
address this by also having Pg commit in advance to its randomness® for each
of the A protocol instances. The resulting commitments will be included in Pa’s
signature, and will ensure that a certificate will be rejected if it corresponds to
an instance in which Pg deviated from the protocol.

Having Pg commit to its randomness also allows us to avoid the need for
signed OT in the first step, when Pg learns all-but-one of Pa’s seeds. This is
because those seeds can be reconstructed from Pg’s view of the protocol, i.e.,
from the transcript of the (standard) OT protocol used to transfer those seeds
plus Pg’s randomness. Having Pa sign the transcripts of those OT executions
serves as publicly verifiable evidence of the seeds used by Pa.

We refer to Sect.4 for further intuition behind our protocol, as well as its
formal specification.

3 Covert Security with Public Verifiability

Before defining the notion of PVC security, we review the (plain) covert model [3]
it extends. We focus on the strongest formulation of covert security, namely the
strong explicit cheat formulation. This notion is formalized via an ideal function-
ality that explicitly allows an adversary to specify an attempt at cheating; in
that case, the ideal functionality allows the attacker to successfully cheat with
probability 1—e, but the attacker is caught by the other party with probability ¢;
see Fig. 1. (As in [2], we also allow an attacker to “blatantly cheat,” which guar-
antees that it will be caught.) For simplicity, we adapt the functionality such
that only Pa has this option (since this is what is achieved by our protocol). For
conciseness, we refer to a protocol realizing this functionality (against malicious
adversaries) as having covert security with deterrence e.

The PVC model extends the above to consider a setting wherein, before
execution of the protocol, Pa has generated keys (pk, sk) for a digital-signature
scheme, with the public key pk known to Pg. We do not require that (pk, sk) is

3 As an optimization, we have Pg commit to seeds, just like Pa, and then use those
seeds to generate the (pseudo)randomness to use in each instance. (This optimization
is critical for realizing constant-size certificates.).

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 103

Functionality F
Pa sends z € {0,1}™ U {L, blatantCheat, cheat} and Pg sends y € {0,1}"2.

If x € {0,1}"* then compute f(z,y) and send it to Pg.
If z =1 then send L to both parties.
If x = blatantCheat, then send corrupted to both parties.
If x = cheat then:
— With probability €, send corrupted to both parties.
— With probability 1 — ¢, send (undetected, y) to Pa. Then wait to receive
z € {0,1}"® from P4, and send z to Pg.

e

Fig. 1. Functionality F for covert security with deterrence € for two-party computation
of a function f.

honestly generated, or that Pa gives any proof of knowledge of the secret key
sk corresponding to the public key pk. In addition, the protocol is augmented
with two additional algorithms, Blame and Judge. The Blame algorithm is run
by Pg when it outputs corrupted. This algorithm takes as input Pg’s view of
the protocol execution thus far, and outputs a certificate cert which is then sent
to Pa. The Judge algorithm takes as input Pa’s public key pk, (a description of)
the circuit C being evaluated, and a certificate cert, and outputs 0 or 1.

A protocol IT along with algorithms Blame, Judge is said to be publicly veri-
fiable covert with deterrence € for computing a circuit C if the following hold:

Covert security: The protocol IT has covert security with deterrence e. (Since
the protocol includes the step of possibly sending cert to Pa if Pg outputs
corrupted, this ensures that cert itself does not violate privacy of Pg.)

Public verifiability: If the honest Pg outputs cert in an execution of the pro-
tocol, then we know Judge(pk,C, cert) = 1, except with negligible probability.

Defamation freeness: If P is honest, then the probability that a malicious
Pg generates a certificate cert for which Judge(pk,C, cert) = 1 is negligible.*

As in prior work on the PVC model, we assume the Judge algorithm learns
the circuit C through some “out-of-band” mechanism; in particular, we do not
include C as part of the certificate. In some applications (such as the smart-
contract example), it may indeed be the case that the party running the Judge
algorithm is aware of the circuit being computed in advance. When this is not the
case, a description of C must be included as part of the certificate. However, we
stress that the description of a circuit may be much shorter than the full circuit;
for example, specifying a circuit for computing the Hamming distance between
two 109-bit vectors requires only a few lines of high-level code in modern secure-
computation platforms even though the circuit itself may have millions of gates.

4 Note that defamation freeness implies that the protocol is also non-halting detection
accurate [3].

104 C. Hong et al.

Alternately, there may be a small set of commonly used “reference circuits” that
can be identified by ID number rather than by their complete wiring diagram.

4 Our PVC Protocol

4.1 Preliminaries

We let [n] = {1,...,n}. We use for the (computational) security parameter,
but for compactness in the protocol description we let k be an implicit input to
our algorithms. For a boolean string y, we let y[i] denote the ith bit of y.

We let Com denote a commitment scheme. We assume for simplicity that it is
non-interactive, but this restriction can easily be removed. The decommitment
decom is simply the random coins used during commitment. H is a hash function
with 2k-bit output length.

We say a party “uses randomness derived from seed” to mean that the party
uses a pseudorandom function (with seed as the key) in CTR mode to obtain
sufficiently many pseudorandom values that it then uses as its random coins. If
mi,ma,... is a transcript of an execution of a two-party protocol (where the
parties alternate sending the messages), the transcript hash of the execution is
defined to be H = (H(m1), H(ma),...).

We let Ilot be an OT protocol realizing a parallel version of the OT func-
tionality, as in Fig. 2.

Functionality Fort

Private inputs: Pa has input {(B;,0, Bi,1)};2; and Pg has input y € {0,1}"2.

1. Upon receiving {(Bi,o, Bi,1)}i2, from Pa and y from Pg, send {B; 11},
to PB.

Fig. 2. Functionality Fot for parallel oblivious transfer.

Garbling. Our protocol relies on a (circuit) garbling scheme. For our purposes, a
garbling scheme is defined by algorithms (Gb, Eval) having the following syntax:

— Gb takes as input the security parameter 1% and a circuit C with n = nj 4+ nq
input wires and ng output wires. It outputs input-wire labels {X; 0, Xi1}1 1,
a garbled circuit GC, and output-wire labels {Z; 0, Z;i1}12,.

— Eval is a deterministic algorithm that takes as input a set of input-wire labels
{X;}~; and a garbled circuit GC. It outputs a set of output-wire labels

{272,

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 105

Correctness is defined as follows: For any circuit C as above and any input
w € {0,1}", consider the experiment in which we first run ({X; 0, Xi1}%,, GC,
{Zio, Zin}i2y) < Gb(1%,C) followed by {Z;} := Eval({Xj [}, GC). Then,
except with negligible probability, it holds that Z; = Z; ;) and Z; # Z; 1y
for all i, where y = C(w).

A garbling scheme can be used by (honest) parties Pa and Pg to compute C
in the following way: first, Pa computes ({X; 0, X;1}71,GC,{Zi0,Z;1}72,) «—
Gb(1%,C) and sends GC,{Z;,Z;1};2, to Pg. Next, Pg learns the input-wire
labels { X; (5} corresponding to some input w. (In a secure-computation proto-
col, Pa would send Pg the input-wire labels corresponding to its own portion of
the input, while the parties would use OT to enable Pg to learn the input-
wire labels corresponding to Pg’s portion of the input.) Then Pg computes
{Z;} = Bval({X; w}}, GC). Finally, Pg sets yl[i], for all 7, to be the (unique)
bit for which Z; = Z; ,(;; the output is y.

We assume the garbling scheme satisfies the standard security definition [10,
15]. That is, we assume there is a simulator Sg, such that for all C,w, the

distribution {SGb(l"‘,C ,C (w))} is computationally indistinguishable from

{({Xi,07Xi,1}?:1,GC,{Zi,O7Zi,1}:'l:31) - Gb(lK,C) : ({Xi,w[i]}7GC’{Z%Oin,l}?il)}.

As this is the “minimal” security notion for garbling, it is satisfied by garbling
schemes including all state-of-the-art optimizations [4,14,20].

4.2 Owur Scheme

We give a high-level description of our protocol below; a formal definition of the
protocol is provided in Fig.3. The Blame algorithm is included as part of the
protocol description (cf. Step 6) for simplicity. The Judge algorithm is specified
in Fig. 5.

We use a signature scheme (Gen, Sign, Vrfy). Before executing the protocol,
Pa runs Gen to obtain public key pk and private key sk; we assume that Pg
knows pk before running the protocol. As noted earlier, if P5 is malicious then
it may choose pk arbitrarily.

The main idea of the protocol is to run A\ parallel instances of a “basic”
garbled-circuit protocol that is secure against a semi-honest Pp and a mali-
cious Pg. Of these instances, A — 1 will be checked by Pg, while a random one
(the jth) will be evaluated by Pg to learn its output. To give Pg the ability to
verify honest behavior in the check instances, we make all the executions deter-
ministic by having Pa use (pseudo)randomness derived from corresponding seeds
{seedf}jem. That is, Pa will uniformly sample each seed seed}-4 and use it to
generate (pseudo)randomness for its jth instance. Then Pa and Pg run an OT
protocol ITot (with malicious security) that allows Pg to learn A — 1 of those
seeds. Since Pa’s behavior in those A — 1 instances is completely determined by
Pg’s messages and those seeds, it is possible for Pg to check Pa’s behavior in
those instances.

106 C. Hong et al.

Protocol Il

Private inputs: Pa has input z € {0,1}"' and keys (pk, sk) for a signature
scheme. Pg has input y € {0,1}"? and knows pk.
Public inputs: Both parties also agree on a circuit C and parameters s, A.

Protocol:

1. Pg chooses uniform r-bit strings {seed”},c(y), sets h; < Com(seed}) for all j,
and sends {h;};ecpy to Pa.

2. Pa chooses uniform r-bit strings {seed?', witness; } ¢y, while Pg chooses uni-

form j € [A] and sets b; := 1 and b; := 0 for j # j.
Pa and Pg run A\ executions of Ilot, where in the jth execution Pa uses
(seedf,witnessj) as input, and Pg uses b; as input and randomness derived
from seedJB. Upon completion, Pg obtains {seedf}j# and witness;. Let trans;
be the transcript of the jth execution of I1ot.

3. For each j € [A], Pa garbles C using randomness derived from seedf.
Denote the jth garbled circuit by GC;, the input-wire labels of Pa by
{Ajib}iem)befo,1}, the input-wire labels of Pg by {Bj,is}ic[no],befo,1}, and
the output-wire labels by {Z; it }icing]beq0,1} -

Pa and Pg then run A executions of IIoT, where in the jth execution Pa uses
{(Bj,i,0, Bj,i,1)}i2, as input, and Pg uses y as input if j = j and 02 otherwise.

The parties use seedf and seed;‘B , respectively, to derive all their randomness
in the jth execution. In this way, Pg obtains {B;; (i }ic[no]- We let H; denote
the transcript hash for the jth execution of IToT.

4. Pa computes commitments hﬁi,b — Com(A;jib) for
all j,%,b, and then computes the commitments ¢; —
Com GCJ‘, {hﬁi,b}ie[nl],be{o,l} s {Zj,i,b}ie[n3],be{0,l} for all j, where each
pair (hﬁi,m hfi,l) is randomly permuted. All randomness in the jth instance
is derived from seed'. Finally, Pa sends {c;};e[» to Ps.

5. For each j € [A], Pa computes o; < Sign,, (C, j, h;, trans;, H;, c;) and sends o
to Pg. Then Pg checks that o; is a valid signature for all j, and aborts with
output L if not.

6. For each j # j, Pg uses seed;-4 and the messages it sent to simulate Pa’s compu-
tation in steps 3 and 4, and in particular computes 7:[9-, ¢;. It then checks that
(Hj,&;) = (Hj, c;). If the check fails for some j # j, then Pg chooses a uniform
such j, outputs corrupted, sends cert := (3, trans;, H;, ¢;, 05, seed}B, decomf) to
Pa, and halts.

Fig. 3. Full description of our PVC protocol (part I).

The above idea allows Pg to catch a cheating Pa, but not to generate a
publicly verifiable certificate that Pa has cheated. To add this feature, we have
Pa sign the transcripts of each instance, including the transcript of the execution
of the OT protocol by which Pg learned the corresponding seed. If Pa cheats
in, say, the jth instance (j # j) and is caught, then Pg can output a certificate
that includes Pg’s view (including its randomness) in the execution of the jth
OT protocol (from which seed;-1 can be recomputed) and the transcript of the

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 107

Protocol Il

7. Pg sends (j, {seed?'};.;, witness;) to Pa, who checks that {seed?'},.;, witness;
are all correct and aborts if not.

8. Pa sends GCj, {Aj 2i) bicini) {hﬁi,b}ie[nl],be{o,l} (in the same permuted or-
der as before), and {Zj i }icing],pefo,13 to Ps, along with decommitments
decom; and {decom? [} If Com(GCy, {h3) {Z500}; decom;) # ¢ or

7,8,x
A) € {hﬁi,b}bE{O,l} for some 7, then Pg aborts with

Com(A;; »[:); decom

Jriyz[i
output L.
Otherwise, Pg evaluates GCj; using {A;; 2i) bicin,) and {Bj,i g }ieng) to ob-
tain output-wire labels {Z; };c[n,]- For each i € [n3], if Z; = Z; i 0, set z[i] := 0;

if Z; = Zj1, set z[i) := 1. (If Z; & {Z;,:,0, Z;,i,1} for some %, then abort with
output L.) Output z.

Fig. 4. Full description of our PVC protocol (part II).

jth instance, along with Pa’s signature on the transcripts. Note that, given the
randomness of both Pa and Pg, the entire transcript of the instance can be
recomputed and anyone can then check whether it is consistent with seedf. We
remark that nothing about Pg’s inputs is revealed by a certificate since Pg uses
a dummy input in all the check instances.

There still remains the potential issue of defamation. Indeed, an honest Pa’s
messages might be deemed inconsistent if Pg includes in the certificate fake
messages different from those sent by Pg in the real execution. We prevent
this by having Pg commit to its randomness for each instance at the beginning
of the protocol, and having Pa sign those commitments. Consistency of Pg’s
randomness and the given transcript can then be checked as part of verification
of the certificate.

As described, the above would result in a certificate that is linear in the
length of Pg’s inputs, since there are that many OT executions (in each instance)
for which Pg must generate randomness. We compress this to a constant-size
certificate by having Pg also generate its (pseudo)randomness from a short seed.

The above description conveys the main ideas of the protocol, though various
other modifications are needed for the proof of security. We refer the reader to
Figs.3 and 5 for the details.

4.3 Optimizations

Our main protocol is already quite efficient, but we briefly discuss some addi-
tional optimizations that can be applied.

Commitments in the random-oracle model. When standard garbling
schemes are used, all the values committed during the course of the protocol have
high entropy; thus, commitment to a string r can be done by simply computing

108 C. Hong et al.

Algorithm Judge

Inputs: A public key pk, a circuit C, and a certificate cert.

1. Parse cert as (j,trans;, H;,c;,0;, seedf,decomf). Compute h; =
Com(seed?; decom?).

2. If Vrfy,, ((C, j, hy, trans;, H;, c;), 0;) = 0, output 0.

3. Simulate an execution of Ilot by Pg, where Pg’s input is 0, its randomness is
derived from seedj-3 , and Pa’s messages are those included in trans;. Check that
all of Pg’s messages generated in this simulation are consistent with trans;;
terminate with output 0 if not. Otherwise, let seed;-‘ denote the output of Pg
from the simulated execution of IToT.

4. Use seedf and seed}B to simulate an honest execution of steps 3 and 4 of the
protocol, and in particular compute 'Flj, ;.

5. Do:

(a) If (H;,&;) = (H;,c;) then output 0.

(b) If ¢; # c; then output 1.

(c) Find the first message for which ; # H,. If this corresponds to a message
sent by Pa, output 1; otherwise, output 0.

Fig. 5. The Judge algorithm.

H(r) (if H is modeled as a random oracle) and decommitment requires only
sending 7.

Using correlated oblivious transfer. One optimization introduced by
Asharov et al.[1] is using correlated OT for transferring Pg’s input-wire labels
when garbling is done using the free-XOR approach [14]. This optimization is
compatible with our protocol in a straightforward manner.

Avoiding committing to the input-wire labels. In our protocol, we have Pp
commit to its input-wire labels (along with the rest of the garbled circuit). This
is done to prevent Pa from sending incorrect input-wire labels in the final step.
We observe that this is unnecessary if the garbling scheme has the additional
property that it is infeasible to generate a garbled circuit along with incorrect
input-wire labels that result in a valid output when evaluated. (We omit a formal
definition.) Many standard garbling schemes have this property.

5 Proof of Security

The remainder of this section is devoted to a proof of the following result:

Theorem 1. Assume Com is computationally hiding/binding, H is collision-
resistant, the garbling scheme is secure, Ilot realizes Fot, and the signature
scheme is existentially unforgeable under a chosen-message attack. Then protocol
Iy along with Blame as in step 6 and Judge as in Fig. 5 is publicly verifiable
covert with deterrence e =1 — %

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 109

Proof. We separately prove covert security with e-deterrence (handling the cases
where either Pa or Pg is corrupted), public verifiability, and defamation freeness.

Covert Security—Malicious Py

Let A be an adversary corrupting Pa. We construct the following simulator &
that holds pk and runs A as a subroutine, while playing the role of Pa in the
ideal world interacting with F:

1.

Choose uniform k-bit strings {seed§3 Yiepys set hj — Com(seedj3) for all j,
and send {h;};c[y to A.

For all j € [A], run Ilot with A, using input 0 and randomness derived from
seedf. In this way, S obtains {seedf}jep\]. Let trans; denote the transcript
of the jth execution.

For j € [A], run an execution of ITot with A, using input 0”2 and randomness
derived from seedf . Let 'H; denote the transcript hash of the jth execution.
Receive {c;} ey from A.

Receive {o;} from A. If any of the signatures are invalid, send L to F and
halt.

For all j € [)\], use seed}4 and the messages sent previously to simulate the
computation of an honest Pa in steps 3 and 4, and in particular compute
H;,¢;. Let J be the set of indices for which (F;,¢;) # (Hj,c;).

There are now three cases:

— If |J] > 2 then send blatantCheat to F, send cert := (j, trans;, H;, ¢, 0,
seedf,decomf) to A (for uniform j € J), and halt.

— If|J| = 1 then send cheat to F. If F returns corrupted then set caught :=
true; if F returns (undetected,y), set caught := false. In either case,
continue below.

— If |J| = 0 then set caught :=_L and continue below.

0. Rewind A and run steps 1'-6' below until® |J’| = |J| and caught’ =
caught.

1. Choose uniform j € [A]. For j # j, choose uniform k-bit strings {seedf }
and set h; — Com(seedf). Set hj < Com(0%). Send {h;};ec to A.

2'. For all j # j, run Ilot with A, using input 0 and randomness derived
from seedf. In this way, S obtains {seedf}j#. For the jth execution,
use the simulator Sgt for protocol IlpT, thus extracting both seed? and
witness;. Let trans; denote the transcript of the jth execution.

3. For all j # j, run IIoT with A, using input 0™2 and randomness derived
from seedJB . For j = 3, use the simulator Sot for protocol IlpT, thus
extracting {Bj,i b }ie[n,],bef0,1} - Let H; denote the transcript hash of the
jth execution.

4’. Receive {c;};e from A.

5. Receive {0} from A. If any of the signatures are invalid, then return to
step 1'.

5 We use standard techniques [8,16] to ensure that S runs in expected polynomial

time; details are omitted for the sake of the exposition.

110 C. Hong et al.

7.

6'. For all j € [A], use seedA and the messages sent previously to simulate
the computation of an honest Pa in steps 3’ and 4/, and in particular
compute H;,&;. Let J' be the set of indices for which (HJ, ¢) # (Hj,¢).
If |J/| =1 and 7 € J’ then set caught’ := true. If [J'| = 1 and j € J' then
set caught’ := false. If |.J’| = 0 then set caught’ :=

If |J/| =1 and caught’ = true, then send cert := (j,transj,Hj,cj,aj,seedf)

to A (where j is the unique index in J’) and halt.

Otherwise, send (7, {seedf}#j,witnessj) to A.

Receive GC, {A4;}icin,]s {hf}b}ie[nl],be{o,l}a {Zi v }iens) bet0,1y, and the corre-

sponding decommitments from A. If any of the decommitments are incorrect,

send L to F and halt.

Otherwise, there are two possibilities:

— If |J'] = 1 and caught’ = false, then use {Bj,ib}icna],beqo,1} and the value
y received from F to compute an output z exactly as an honest Pg would.
Send z to F and halt.

— If |J’| = 0, then compute an effective input z € {0,1}"" using seed}4 and
the input-wire labels {A;};c[n,)- Send 2 to F and halt.

We now show that the joint distribution of the view of A and the output of Pg

in the ideal world is computationally indistinguishable from the joint distribution
of the view of A and the output of Pg in a real protocol execution. We prove this
by considering a sequence of experiments, where the output of each is defined to
be the view of A and the output of Pg, and showing that the output of each is
computationally indistinguishable from the output of the next one.

Expt,. This is the ideal-world execution between S (as described above) and
the honest Pg holding some input y, both interacting with functionality F.

By inlining the actions of S, F, and Pg, we may rewrite the experiment as

follows:

1.

Choose uniform x-bit strings {seedf}je[/\], set h; — Com(seedf) for all j,
and send {h;} e[y to A.
For all j € [A], run ITot with A, using input 0 and randomness derived from
seed§3 . Obtain {seedf}je[,\] as the outputs. Let trans; denote the transcript
of the jth execution.
For j € [A], run an execution of IToT with A, using input 02 and randomness
derived from seedf . Let 'H; denote the transcript hash of the jth execution.
Receive {c;} ey from A.
Receive {o;} from A. If any of the signatures are invalid, then Pg outputs L
and the experiment halts.
For all j € [)\], use seed;4 and the messages sent previously to A to simulate
the computation of an honest Pa in steps 3 and 4, and in particular compute
H;,¢;. Let J be the set of indices for which (;,¢;) # (Hj,c;).
There are now three cases:

— If |J| > 2, send cert := (j,transj,Hj,cj,aj,seedf) to A (for uniform

j € J). Then Pg outputs corrupted and the experiment halts.

1.

2.

3.

4.
. Receive {0} from A. If any of the signatures are invalid, then return to

6'.

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 111

If |J| = 1 then with probability € set caught := true and with the remain-
ing probability set caught := false. If caught = true then Pg outputs
corrupted (but the experiment continues below in either case).

If |J| = 0 then set caught :=1 and continue below.

. Rewind A and run steps 1’6’ below until |J/| = |J| and caught’ =

caught (using standard techniques [8,16] to ensure the experiment runs
in expected polynomial time).

Choose uniform j € [A]. For j # j, choose uniform k-bit strings {seedf }
and set h; — Com(seedf). Set hj <« Com(0%). Send {h;};c\ to A.

For all j # j, run Ilot with A, using input 0 and randomness derived from
seedf. Obtain {seed;‘}j# as the outputs of these executions. For the jth
execution, use the simulator Sot for protocol IlpT, thus extracting both
seed}f‘ and witness;. Let trans; denote the transcript of the jth execution.
For j # j, run an execution of ITo7t with A using input 0™ and random-
ness derived from seedf . For j = j, use the simulator Sgt for protocol
IloT, thus extracting {Bj b }icin.]befo,1}- Let H; denote the transcript
hash of the jth execution.

Receive {c;};ep from A.

step 1'.

For all j € [)\], use seed}4 and the messages sent previously to simulate
the computation of an honest P in steps 3’ and 4’, and in particular
compute H;,&;. Let J' be the set of indices for which (H;,&;) # (H;,¢;)-
If |J/| =1 and 7 € J’ then set caught’ := true. If |J'| = 1 and 7 € J' then
set caught’ := false. If |J’| = 0 then set caught’ :=1.

7. If |J'| = 1 and caught’ = true, then send cert := (j,transj,Hj,cj,oj,seedf)
to A (where j is the unique index in J') and halt.
Otherwise, send (J, {seedf}j#,witnessj) to A.

8. Receive GC, {A;}icn,), {h{}b}’ie[nl],be{O,l% {Ziv}icms) pefo,1}, and the corre-
sponding decommitments from A. If any of the decommitments are incorrect,
then Pg outputs L and the experiment halts.

Otherwise, there are two possibilities:

If [J'| = 1 and caught’ = false then use {Bj;}icin)pe{o,1} and y to
compute z exactly as in the protocol. Pg outputs z and the experiment
halts.

If [J] = |J| = 0, compute an effective input = € {0,1}"" using seed’'
and the input-wire labels {A;};c[,)- Then Pg outputs f(z,y) and the
experiment halts.

Expt,. Here we modify the previous experiment in the following way: Choose a
uniform j € [A] at the outset of the experiment. Then in step 6:

— If |J] > 2 then send cert := (7, transj,Hj,cj,aj,seedf) to A for uniform
j € J\ {j}. Then Pg outputs corrupted and the experiment halts.
— if |J| = 1 set caught := true if 7 € J and set caught := false if j € .J.

112 C. Hong et al.

Since j ¢ J with probability e when |.J| = 1, the outputs of Expt; and Expt,
are identically distributed.

Expt,. The previous experiment is modified as follows: In step 1, do not choose
seedf. Instead, in step 1 set h; <« Com(0%), and in steps 2 and 4 use true
randomness in the jth execution of IloT.

It is immediate that the distribution of the output of Expt, is computation-
ally indistinguishable from the distribution of the output of Expt;.

Expt;. We change the previous experiment in the following way: In steps 2 and
4, use ST to run the jth instances of IToT. In doing so, extract all of A’s inputs
in those executions.

It follows from security of I1oT that the distribution of the output of Expt; is
computationally indistinguishable from the distribution of the output of Expt,.

Expts,. Because steps 1'-4’ in Expt; are identical to steps 1-4, we can “col-
lapse” the rewinding and thus obtain the following experiment Expt,, that is
statistically indistinguishable from Expt, (with the only difference occurring in
case of an aborted rewinding in the latter):

1. Choose uniform j € [A]. For j # j, choose uniform k-bit strings {seedf } and
set h; Com(seedf). Set hj < Com(0%). Send {h;} ;e to A.

2. For all j # 7, run Ilgt with A, using input 0 and randomness derived from
seedf. Obtain {seedf}j# as the outputs of these executions. For the jth

execution, use the simulator Sgt for protocol I1pT, thus extracting both seedf
and witness;. Let trans; denote the transcript of the jth execution.

3. For all j # 7, run IIgt with A using input 0™ and randomness derived from
seed;3 . For j = 7, use the simulator Sgt for protocol IIgT, thus extracting
{Bj,ib}iemnsa),pefo,1}- Let H; denote the transcript hash of the jth execution.

4. Receive {c;};e(from A.

5. Receive {o;} from A. If any of the signatures are invalid, then Pg outputs L
and the experiment halts.

6. For all j € [\], use seed‘j4 and the messages sent previously to A to simulate
the computation of an honest P4 in steps 3 and 4, and in particular compute
H;,&;. Let J be the set of indices for which (H;,¢;) # (Hj,c;).

There are now two cases:

—If|J| > 2,0rif |J| =1 and j &€ J, then choose uniform j € J\ {j} and
send cert := (j, trans;, H;, cj,aj,seedf) to A. Then Pg outputs corrupted
and the experiment halts.

—If|J]=1and j€ J,orif |[J| =0, then continue below.

7. Send (7, {seed;‘}j#,witnessj) to A.

8. Receive GC, {A;}icn,), {hf}b}ie[nl],be{o,l}a {Zi v }ie[ns) bef0,1y >, and the corre-
sponding decommitments from A. If any of the decommitments are incorrect,
then Pg outputs L and the experiment halts.

Otherwise, there are two possibilities:

— If |[J| = 1 then Pg uses {Bjb}icins],be{0,1} and y to compute z exactly

as in the protocol. Pg outputs z and the experiment halts.

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 113

— If |J| = 0, then compute an effective input x € {0,1}"" using seed?
and the input-wire labels {A;};c[,). Then Pg outputs f(z,y) and the
experiment halts.

Expt,. We modify the previous experiment as follows: In step 8, if |J| = 0 (and
Pg has not already output L in that step), use y to compute z exactly as in the
protocol. Then Pg outputs z and the experiment halts.

Since |J| = 0, we know that c; is a commitment to a correctly computed gar-
bled circuit along with commitments to (correctly permuted) input-wire labels
{A4; s} and output-wire labels. Thus—unless A has managed to violate the com-
mitment property of Com—if Pg does not output L in this step it must be the
case that the values GC, {A;}ic[n,], {hfb}ie[nl],be{o,l}v and {Z; b }ic[ng)be{0,1}
sent by A in step 8 are correct. Moreover, since |J| = 0 the execution of IToT in
step 4 was run honestly by A using correct input-wire labels {B;; ;}. Thus, eval-
uating GC using {A4;}ic[n,] and {Bj; 451} yields a result that is equal to f(x,y)
as computed in Expt,.

Since Com is computationally binding, this means that the distribution of
the output of Expt, is computationally indistinguishable from the distribution
of the output of Expts,.

Expt;. Here we change the previous experiment in the following way: The com-
putation in step 6 is done only for j € [A]\ {j}; let J C [A]\ {j} be the set of
indices for which (H;,¢;) # (H;,c;j). Then:

— If J # 0 choose uniform j € J and send cert := (4, trans;, Hj,cj, 05, seedf) to
A. Then Pg outputs corrupted and the experiment halts.
— If J = () then run steps 7 and 8 as in Expt,.

Letting J be defined as in Expt,, note that
[J|>20r |J|=1; j¢J <= J#0
and
|[J|=1,7€Jor|J]=0<J=0.

Thus, the outputs of Expt, and Expty are identically distributed.

Exptgs. We now modify the previous experiment by running the jth instances of
IIoT honestly in steps 2 and 4, using input 1 in step 2 and input y in step 4.

It follows from security of I1oT that the distribution of the output of Exptg is
computationally indistinguishable from the distribution of the output of Expts.

Expt,. Finally, we modify the previous experiment so the jth instance of IloT
in steps 2 and 4 uses pseudorandomness derived from a uniform seed seed§3 , and
we compute hj «— Com(seedf).

It is immediate that the distribution of the output of Expt, is computation-
ally indistinguishable from the distribution of the output of Exptg.

114 C. Hong et al.

Since Expt; corresponds to a real-world execution of the protocol between
A and Pg holding input y, this completes the proof.

Covert Security—Malicious Pg

Let A be an adversary corrupting Pg. We construct the following simulator S
that runs A as a subroutine while playing the role of Pg in the ideal world
interacting with F:

0. Run Gen to generate keys (pk, sk), and send pk to A.

1. Receive {h;};e[x from A.

2. Use the simulator Sot for protocol IIot to interact with A. In this way,
S extracts A’s inputs {b;},cn; let J := {j : b; = 1}. As part of the
simulation, return uniform k-bit strings {seedf}jéJ and {witness;};cs as
output to A.

3. For each j ¢ J, run this step exactly as an honest P5 would. For each j € J
do:

— If |J]| = 1 then let 7 be the unique index in J. Use Sot to interact with A
in the jth execution of IToT. In this way, S extracts A’s input y for that
execution. Send y to F, and receive in return a value z. Compute

({45, 4By,i} GCh,{Zjip}) < Seb(17,C, 2),

where we let {A;;} correspond to input wires of P and {Bj;;} correspond
to input wires of Pg. Return {Bj;;} as output to A from this execution
of HOT-
— If |J] > 1 then act as an honest Pa would but using true randomness.
4. For each j ¢ J, compute c; exactly as an honest Pa would. For each j € J
do:
— If |J] = 1 then compute hﬁi,O — Com(A4;,;) and let h£¢,1 be a commitment
to the O-string. Compute c¢; «— Com(GC;, {hﬁi)b},{Zj,i,b}), where each
pair (h}f,‘z',o, hﬁi,l} is in random permuted order.
— If |J| > 1 then compute c; exactly as an honest Pao would but using true
randomness.
Send {c;};eqx to A.
5-6. Compute signatures {o;} as an honest Pa would, and send them to A.
7. If |J| # 1 then abort. Otherwise, receive (J, {seed;};.;, witness;) from A
and verify these as an honest Pa would. (If verification fails, then abort.)
8. Send GC;, {4;;}, {hﬁLb} (in the same permuted order as before), and
{Z;:} to A, along with the corresponding decommitments. Then halt.

We show that the distribution of the view of A in the ideal world is com-
putationally indistinguishable from its view in a real protocol execution. (Note
that Pa has no output.) Let Expt, be the ideal-world execution between S (as
described above) and the honest Pa holding some input z, both interacting with
functionality F.

Expt;. Here we modify the previous experiment when |J| = 1 as follows. In step
3, compute

({A5i0}:{Bjin}, GC5,{Z5,i0}) < Gb(17,C),

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 115
and return the values {B;; ,;1} as output to A from the simulated execution
of ITot in that step. In steps 4 and 8, the values A; ; ,(; are used in place of A; ;.

It follows from security of the garbling scheme that the view of A in Expt,
is computationally indistinguishable from its view in Expt,.

Expt,. Now we change the previous experiment when |J| = 1 as follows: In step
3, compute hlgng — Com(4;,;) for all ¢,b. It follows from the hiding property
of the commitment scheme that the view of A in Expt, is computationally
indistinguishable from its view in Expt;.

Expt;. This time, the previous experiment is modified by executing protocol
ot with A when |J| = 1 in step 3. Security of IToT implies that the view of A
in Expt, is computationally indistinguishable from its view in Expt,.

Expt,. The previous experiment is now modified in the following way. In step 2,
also choose uniform {seedf}je 7 and {Witnessf}jg 7, and use pseudorandomness
derived from {seed}4 }jes in steps 3 and 4 in place of true randomness. Also, in
step 7 continue to run the protocol as an honest Po would even in the case that
T # 1.

It is not hard to show that when |J| # 1 then Pa aborts in Expt, with
all but negligible probability. Computational indistinguishability of A’s view in
Expt, and Expt; follows.

Expt;. Finally, we change the last experiment by executing protocol IloT in
step 2. It follows from the security of IIot that the view of A in Expty is
computationally indistinguishable from its view in Expt,.

Since Expt; corresponds to a real-world execution of the protocol, this com-
pletes the proof.

Public Verifiability and Defamation Freeness

It is easy to check (by inspecting the protocol) that whenever an honest Pg
outputs corrupted then it also outputs a valid certificate. Thus our protocol
satisfies public verifiability. It is similarly easy to verify defamation freeness
under the assumptions of the theorem.

6 Implementation and Evaluation

We implemented our PVC protocol using the optimizations from Sect.4.3 and
state-of-the-art techniques for garbling [4,20], oblivious transfer [5], and OT
extension [12]. Our implementation uses SHA-256 for the hash function (mod-
eled as a random oracle) and the standard ECDSA implementation provided by
openss| as the signature scheme. We target x = 128 in our implementation.

We evaluate our protocol in both LAN and WAN settings. In the LAN setting,
the network bandwidth is 1 Gbps and the latency is less than 1ms; in the WAN
setting, the bandwidth is 200 Mbps and the latency is 75 ms. In either setting, the
machines running the protocol have 32 cores, each running at 3.0 GHz. Due to
pipelining, we never observe any issues with memory usage. All reported timing
results are computed as the average of 10 executions.

116 C. Hong et al.

6.1 Certificate Size

The size of the certificate in our protocol is independent of the circuit size or the
lengths of the parties’ inputs. The following figure gives a graphical decomposi-
tion of the certificate. (Note that since we instantiate Com by a random oracle
as discussed in Sect. 4.3, we do not need to include an extra decommitment in
the certificate.) In total, a certificate requires 354 bytes.

1B 105 B 32%4 B 32B 72B 16B

| L LT[]| | |

B
J trans; H, c; 0; seed;

‘H; contains 4 hash values, corresponding to a 4-round OT protocol obtained
by piggybacking a 2-round OT-extension protocol with a 3-round base-OT pro-
tocol. The signature size varies from 70-72 bytes; we allocate 72 bytes for the
signature so the total length of a certificate is fixed.

6.2 Comparison to Prior PVC Protocols

Because it enables signed-OT extension, the PVC protocol by Kolesnikov and
Malozemoff [13] (the KM15 protocol) would be strictly more efficient than the
original PVC protocol by Asharov and Orlandi [2]. We therefore focus our atten-
tion on the KM15 protocol. We compare our protocol to theirs in three respects.

Parameters. We briefly discuss the overhead needed to achieve deterrence fac-
tors larger than % for each protocol. Recall that in the KM15 protocol the overall
deterrence factor € depends on both the garbled-circuit replication factor A and
the XOR-tree expansion factor v as € = (1 — %) - (1 — 27¥T1). For deterrence
ex~1— 2%, setting A\ = 2F*1 1 = k 4 2 gives the best efficiency. In contrast, our
protocol achieves this deterrence with A = 2%, v = 1, which means garbling half
as many circuits and avoiding the XOR-tree approach altogether. For example,
to achieve deterrence € = 7/8, our protocol garbles 8 circuits, whereas prior work
would need to garble 16 circuits. Additionally, prior work would need to execute
5x as many OTs. (Plus, in prior work each OT is actually a signed OT, which
is more expensive than standard OT; see next.)

Signed OT vs. standard OT. Signed OT induces higher costs than standard
OT in terms of both communication and computation. As an illustration, fix
the deterrence factor to 1/2. In that case our protocol runs OT extension twice,
where each is used for ny OTs on k-bit strings. Compared to this, the KM15
protocol needs to run 3ny OTs on 2k-bit strings. The total communication com-
plexity of the OT step (for the input-wire labels) is 4kng bits in our protocol,
while in the KM15 protocol it is 3 * 2 % 3xng + 3 * 2.6kno = 25.8kn4 bits, more
than 6x higher.
Moreover, signed OT also has a very high computational overhead:

— Signed-OT extension needs to use a wider matrix (by a factor of roughly
2.6x) compared to standard OT extension. Besides the direct penalty this

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 117

Table 1. Circuits used in our evaluation. The parties’ input lengths are n; and na,
and the output length is ns. The number of AND gates in the circuit is denoted by |C|.

Circuit n1 ng ns IC|
AES-128 128 128 128 6800
SHA-128 256 256 160 37300
SHA-256 256 256 256 90825

Sorting 131072 131072 131072 10223K
Integer mult. 2048 2048 2048 4192K
Hamming dist. 1048K 1048K 22 2097K

incurs, a wider matrix means that the correlation-robust hash H cannot be
based on fixed-key AES but must instead be based on a hash function like
SHA-256. This impacts performance significantly.

— As part of signed-OT extension, Pg needs to reveal x random columns in
the matrix. Even with AVX operations, this incurs significant computational
overhead.

Signed-OT extension [13] is complex, and we did not implement it in its entirety.
However, we modified an existing (standard) OT-extension protocol to match
the matrix width required by signed-OT extension; this can be used to give a
conservative lower bound on the performance of signed-OT extension. Our results
indicate that signed-OT extension requires roughly 5x more computation than
state-of-the-art OT extension.

Certificate size. In the KM15 protocol, the certificate size is at least 2k-no bits.
Even for AES (with only 128-bit input length), this gives a certificate roughly
10x larger than ours.

6.3 Comparing to Semi-Honest and Malicious Protocols

We believe our PVC protocol provides an excellent performance/security tradeoff
that makes it the best choice for many applications of secure computation.

Performance. Our protocol is not much less efficient that the best known semi-
honest protocols, and is significantly faster than the best known malicious
protocols.

Security. The PVC model provides much more meaningful guarantees than the
notion of semi-honest security, and may be appropriate for many (even if
not all) applications of secure computation where full malicious security is
overkill.

To support the first point, we compare the performance of our PVC proto-
col against state-of-the-art two-party computation protocols. The semi-honest
protocol we compare against is a garbled-circuit protocol including all existing
optimizations; for the malicious protocol we use the recent implementation of
Wang et al. [19]. Our comparison uses the circuits listed in Table 1.

118 C. Hong et al.

Table 2. Comparing the running times of our protocol and a semi-honest protocol in
the LAN and WAN settings.

LAN setting WAN setting
Our PVC Semi-honest Slowdown Our PVC Semi-honest Slowdown

AES-128 25 ms 15 ms 1.60x 960 ms 821 ms 1.17x
SHA-128 34 ms 25 ms 1.36% 1146 ms 977 ms 1.17x
SHA-256 48 ms 38 ms 1.27x 1252 ms 1080 ms 1.16x
Sort. 3468 ms 2715 ms 1.28% 13130 ms 12270 ms 1.07x
Mult. 1285 ms 1110 ms 1.16 % 5707 ms 5462 ms 1.04x
Hamming 2585 ms 1550 ms 1.67x 11850 ms 6317 ms 1.69x

Circuit

Running time. In Table 2 we compare the running time of our protocol to that
of a semi-honest protocol. From the table, we see that over a LAN our protocol
adds at most 36% overhead except in two cases: AES and Hamming-distance
computation. For AES, the reason is that the circuit is small and so the overall
time is dominated by the base OTs. For Hamming distance, the total input
size is equal to the number of AND gates in the circuit; therefore, the cost of
processing the inputs becomes more significant.

In the WAN setting, our PVC protocol incurs only 17% overhead except for
the Hamming-distance example (for a similar reason as above).

The comparison between our PVC protocol and the malicious protocol is
shown in Table 3. As expected, our PVC protocol achieves much better perfor-
mance, by a factor of 4-18x.

Table 3. Comparing the running times of our protocol and a malicious protocol in the
LAN and WAN settings.

N LAN setting WAN setting

Circuit
Our PVC Malicious [19] Speedup ~ Our PVC Malicious [19] Speedup

AES-128 25 ms 157 ms 6.41x 960 ms 11170 ms 11.6x
SHA-128 34 ms 319 ms 9.47x 1146 ms 13860 ms 12.1x
SHA-256 48 ms 612 ms 12.6x 1252 ms 17300 ms 13.8%

Sort. 3468 ms 45130 ms 13.0x 13130 ms 197900 ms 15.1x

Mult. 1285 ms 17860 ms 13.9x% 5707 ms 99930 ms 17.5%

Hamming 2586ms 11380 ms 4.40x 11850 ms 76280 ms 6.44x

Table 4. Communication complexity in MB of our protocol with A = 2 and other
protocols.

AES-128 SHA-128 SHA-256 Sort. Mult. Hamming

Semi-honest 0.2218 1.165 2.800 313.1 128.0 96.01
Malicious [11] 3.545 17.69 42.95 2953 1228 662.7

Our PVC 0.2427 1.205 2.844 325.1 128.2 144.2

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 119

Communication complexity. We also compare the communication complex-
ity of our protocol to other protocols in a similar way; see Table4. In this
comparison we use the same semi-honest protocol as above, but use the more
communication-efficient protocol by Katz et al. [11] as the malicious protocol.
We see that, with the exception of the Hamming-distance example, the commu-
nication of our protocol is very close to the semi-honest case.

6.4 Higher Deterrence Factors

Another important aspect of our protocol is how the performance is affected
by the deterrence factor. Recall that the deterrence factor e is the probability
that a cheating party is caught, and in our protocol ¢ = 1 — % where A is the
garbled-circuit replication factor. The performance of our protocol as a function
of € is shown in Table 5. We see that when doubling the value of A, the running
time of the protocol increases by only ~20% unless the circuit is very small (in
which case the cost of the base OTs dominates the total running time). The
running time when € = 3/4 (i.e., A = 4) is still less than twice the running time
of a semi-honest protocol.

Table 5. Running time in milliseconds of our protocol for different A\. e =1 — %

AES-128 SHA-128 SHA-256 Sort. Mult. Hamming

A=2 25 34 49 3468 1285 2586
LAN A= 36 46 59 3554 1308 3156
A=8 47 57 71 3954 1396 4856
A=16 101 127 152 6238 2355 7143
A=32 175 228 229 7649 2995 12984
A=2 960 1146 1252 13130 5707 11850
WAN A= 1112 1375 1700 14400 5952 12899
A=38 1424 1912 2436 16130 6167 19840
A=16 1920 2094 2191 19087 7801 36270
A =32 3228 3434 3535 25197 9229 64468

6.5 Scalability

Our protocol scales linearly in all parameters, and so can easily handle large
circuits. To demonstrate this, we benchmarked our protocol with different input
lengths, output lengths, and circuit sizes. Initially, the input and output lengths
are all 128 bits, and the circuit size is 1024 AND gates. We then gradually
increase one of the input/output lengths or circuit size (while holding everything
else constant) and record the running time. Since the dependence is linear in all
cases, we report only the marginal cost (i.e., the slope), summarized in Table 6.

120

C. Hong et al.

Table 6. Scalability of our protocol.

ny (pus/bit) no (us/bit) naz (us/bit) |C| (us/gate)
LAN 0.20 0.88 0.23 0.29
WAN 0.61 3.13 0.62 1.10

References

1.

10.

11.

12.

13.

Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious trans-
fer and extensions for faster secure computation. In: 20th ACM Conference on
Computer and Communications Security (CCS), pp. 535-548. ACM Press (2013)
Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public veri-
fiability. In: Wang, X., Sako, K. (eds.) ASTACRYPT 2012. LNCS, vol. 7658, pp.
681-698. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4.41

Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. J. Cryptol. 23(2), 281-343 (2010)

. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a

fixed-key blockcipher. In: 2013 IEEE Symposium on Security & Privacy, pp. 478—
492. TEEE (2013)

Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K.,
Rodriguez-Henriquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40-58.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_3

Damgard, 1., Geisler, M., Nielsen, J.B.: From passive to covert security at low
cost. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 128-145. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_9

Goldreich, O.: Foundations of Cryptography, Volume 2: Basic Applications. Cam-
bridge University Press, Cambridge (2004)

Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptol. 9(3), 167-190 (1996)

Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation
against covert adversaries. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 289-306. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3_17

Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335-354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8_21

Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated garbling
for faster secure two-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 365-391. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0_13

Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
724-741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6-35

Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model (almost)
for free. In: Iwata, T., Cheon, J.H. (eds.) ASTACRYPT 2015. LNCS, vol. 9453, pp.
210-235. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
39

https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-642-11799-2_9
https://doi.org/10.1007/978-3-540-78967-3_17
https://doi.org/10.1007/978-3-540-78967-3_17
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-662-48800-3_9

14.

15.

16.

17.

18.

19.

20.

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 121

Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damgard, I., Goldberg, L.A., Halldérsson, M.M.,
Ingdlfsdéttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486—498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40
Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161-188 (2009)

Lindell, Y.: A note on constant-round zero-knowledge proofs of knowledge. J. Cryp-
tol. 26(4), 638-654 (2013)

Lindell, Y.: Fast cut-and-choose-based protocols for malicious and covert adver-
saries. J. Cryptol. 29(2), 456-490 (2016)

Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52-78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4_4

Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: 24th ACM Conference on Computer and Com-
munications Security (CCS), pp. 21-37. ACM Press (2017)

Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 220-250. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6_8

https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-662-46803-6_8

q

Check for
updates

Efficient Circuit-Based PSI
with Linear Communication

Benny Pinkas'®) Thomas Schneider?, Oleksandr Tkachenko?,
and Avishay Yanai!

! Bar-Tlan University, Ramat Gan, Israel
benny@pinkas.net, ay.yanayQgmail.com
2 TU Darmstadt, Darmstadt, Germany
{schneider,tkachenko}@encrypto.cs.tu-darmstadt.de

Abstract. We present a new protocol for computing a circuit which
implements the private set intersection functionality (PSI). Using cir-
cuits for this task is advantageous over the usage of specific protocols for
PSI, since many applications of PSI do not need to compute the inter-
section itself but rather functions based on the items in the intersection.

Our protocol is the first circuit-based PSI protocol to achieve linear
communication complexity. It is also concretely more efficient than all
previous circuit-based PSI protocols. For example, for sets of size 2%° it
improves the communication of the recent work of Pinkas et al. (EURO-
CRYPT’18) by more than 10 times, and improves the run time by a
factor of 2.8x in the LAN setting, and by a factor of 5.8x in the WAN
setting.

Our protocol is based on the usage of a protocol for computing oblivi-
ous programmable pseudo-random functions (OPPRF), and more specif-
ically on our technique to amortize the cost of batching together multiple
invocations of OPPRF.

Keywords: Private Set Intersection + Secure computation

1 Introduction

The functionality of Private Set Intersection (PSI) enables two parties, P; and
P5, with respective input sets X and Y to compute the intersection XNY without
revealing any information about the items which are not in the intersection.
There exist multiple constructions of secure protocols for computing PSI, which
can be split into two categories: (i) constructions that output the intersection
itself and (ii) constructions that output the result of a function f computed on
the intersection. In this work, we concentrate on the second type of constructions
(see Sect. 1.2 for motivation). These constructions keep the intersection X N'Y
secret from both parties and allow the function f to be securely computed on top
of it, namely, yielding only f(X NY"). Formally, denote by Fps s the functionality
(X,Y) ~ (F(X NY), [(XNY)).

© International Association for Cryptologic Research 2019

Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 122-153, 2019.
https://doi.org/10.1007/978-3-030-17659-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17659-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-17659-4_5

Efficient Circuit-Based PSI with Linear Communication 123

A functionality for computing f(X NY) can be naively implemented using
generic MPC protocols by expressing the functionality as a circuit. However,
naive protocols for computing f(X NY) have high communication complexity,
which is of paramount importance for real-world applications. The difficulty in
designing a circuit for computing the intersection is in deciding which pairs of
items of the two parties need to be compared. We refer here to the number of
comparisons computed by the circuit as the major indicator of the overhead,
since it directly affects the amount of communication in the protocol (which
is proportional to the number of comparisons, times the length of the repre-
sentation of the items, times the security parameter). Since the latter factors
(input length and security parameter) are typically given, and since the circuit
computation mostly involves symmetric key operations, the goal is to minimize
the communication overhead as a function of the input size. We typically state
this goal as minimizing the number of comparisons computed in the circuit. The
protocol presented in this paper is the first to achieve linear communication
overhead, which is optimal.

Suppose that each party has an input set of n items. A naive circuit for this
task compares all pairs and computes O(n?) comparisons. More efficient cir-
cuits are possible, assuming that the parties first order their respective inputs in
specific ways. For example, if each party has sorted its input set then the inter-
section can be computed using a circuit which first computes, using a merge-sort
network, a sorted list of the union of the two sets, and then compares adjacent
items [HEK12]. This circuit computes only O(nlogn) comparisons. The proto-
col of [PSSZ15] (denoted “Circuit-Phasing”) has P, map its items to a table
using Cuckoo hashing, and P, maps its items using simple hashing. The inter-
section is computed on top of these tables by a circuit with O(nlogn/loglogn)
comparisons. This protocol is the starting point of our work.

A recent circuit-based PSI construction [PSWW18] is based on a new hashing
algorithm, denoted “two-dimensional Cuckoo hashing”, which uses a table of size
O(n) and a stash of size w(1). Each party inserts its inputs to a separate table,
and the hashing scheme assures that each value in the intersection is mapped
by both parties to exactly one mutual bin. Hence, a circuit which compares the
items that the two parties mapped to each bin, and also compares all stash
items to all items of the other party, computes the intersection in only w(n)
comparisons (namely, the overhead is slightly more than linear, although it can
be made arbitrarily close to being linear).

Our work is based on the usage of an oblivious programmable pseudo-random
function (OPPRF), which is a new primitive that was introduced in [KMP+17].
An OPRF—oblivious pseudo-random function (note, this is different than an
OPPRF)—is a two-party protocol where one party has a key to a PRF F and
the other party can privately query F at specific locations. An OPPRF is an
extension of the protocol which lets the key owner “program” F so that it has
specific outputs for some specific input values (and is pseudo-random on all other
values). The other party which evaluates the OPPRF does not learn whether it
learns a “programmed” output of F' or just a pseudo-random value.

124 B. Pinkas et al.

1.1 Overview of Our Protocol

The starting point for our protocols is the Circuit-Phasing PSI protocol
of [PSSZ15], in which O(n) bins are considered and the circuit computes
O(nlogn/loglogn) comparisons. Party P; uses Cuckoo hashing to map at most
one item to each bin, whereas party P> maps its items to the bins using simple
hashing (two times, once with each of the two functions used in the Cuckoo
hashing of the first party). Thus, P, maps up to S = O(logn/loglogn) items to
each bin. Since the parties have to hide the number of items that are mapped
to each bin, they pad the bins with “dummy” items to the maximum bin size.
That is, P; pads all bins so they all contain exactly one item and P, pads all
bins so they all contain S items.

Both parties use the same hash functions, and therefore for each input ele-
ment x that is owned by both parties there is exactly one bin to which x is
mapped by both parties. Thus, it is only needed to check whether the item that
P; places in a bin is among the items that are placed in this bin by P,. This is
essentially a private set membership (PSM) problem: As input, P; has a single
item = and P, has a set ¥ with || items, where S = |X|. As for the output,
if z € X then both parties learn the same random output, otherwise they learn
independent random outputs. These outputs can then be fed to a circuit, which
computes the intersection. The Circuit-Phasing protocol [PSSZ15] essentially
computes the PSM functionality using a sub-circuit of the overall circuit that it
computes. Namely, let S = O(log n/ loglogn) be an upper bound on the number
of items mapped by P> to a single bin. For each bin the sub-circuit receives one
input from P; and S inputs from P, computes S comparisons, and feeds the
result to the main part of the circuit which computes the intersection itself (and
possibly some function on top of the intersection). Therefore the communication
overhead is O(nS) = O(nlogn/loglogn). A very recent work in [CO18] uses the
same hashing method and computes the PSM using a specific protocol whose out-
put is fed to the circuit. The circuit there computes only w(n) comparisons but
the PSM protocol itself incurs a communication overhead of O(logn/loglogn)
and is run O(n) times. Therefore, the communication overhead of [CO18] is also
O(nlogn/loglogn).

We diverge from the protocol of [PSSZ15] in the method for comparing the
items mapped to each bin. In our protocol, the parties run an oblivious pro-
grammable PRF (OPPRF) protocol for each bin 4, such that party P» chooses
the PRF key and the programmed values, and the first party learns the out-
put. The function is “programmed” to give the same output (; for each of the
O(logn/loglogn) items that P> mapped to this bin. Therefore, if there is any
match in this bin then P; learns the same value ;. Then, the parties evaluate
a circuit, where for each bin ¢ party P; inputs its output in the corresponding
OPPRF protocol, and P, inputs ;. This circuit therefore needs to compute only
a single comparison per bin.

The communication overhead of an OPPRF is linear in the number of pro-
grammed values. Thus, a stand alone invocation of an OPPRF for every bin
incurs an overall overhead of O(nlogn/loglogn). We achieve linear overhead

Efficient Circuit-Based PSI with Linear Communication 125

for comparing the items in all bins, by observing that although each bin is of
maximal size O(logn/loglogn) (and therefore naively requires to program this
number of values in the OPPRF), the total number of items that need to be
programmed in all bins is O(n). We can amortize communication so that the
total communication of computing all O(n) OPPRFs is the same as the total
number of items, which is O(n).

In addition to comparing the items that are mapped to the hash tables, the
protocol must also compare items that are mapped to the stash of the Cuckoo
hashing scheme. Fixing a stash size s = O(1), the probability that the stash does
not overflow is O(n~=(*t1) [KMWO09]. It was shown in [GM11] that a stash of
size O(log n) ensures a negligible failure probability (namely, a probability that is
asymptotically smaller than any polynomial function). Each item that P; places
in the stash must be compared to all items of P,, and therefore a straightforward
implementation of this step requires the circuit to compute w(n) comparisons.
However, we show an advanced variant of our protocol that computes all com-
parisons (including elements in the stash) with only O(n) comparisons.

In addition to designing a generic O(n) circuit-based PSI protocol, we also
investigate an important and commonly used variant of the problem where each
item is associated with some value (“payload”), and it is required to compute a
function of the payloads of the items in the intersection. (For example, compute
the sum of financial transactions associated with these items). The challenge is
that each of the S items that the second party maps to a bin has a different
payload and therefore it is hard to represent them using a single value. (The
work in [PSSZ15,CO18], for example, did not consider payloads). We describe
a variant of our PSI protocol which injects the correct payloads to the circuit
while keeping the O(n) overhead.

Overall, the work in this paper improves the state of the art in two dimen-
sions:

— With regards to asymptotic performance, we show a protocol for circuit-
based PSI which has only O(n) communication. This cost is asymptotically
smaller than that of all known circuit-based constructions of PSI, and matches
the obvious lower bound on the number of comparisons that must be com-
puted.

— With regards to concrete overhead, our most efficient protocols improve
communication by a factor of 2.6x to 12.8x, and run faster by factor 2.8x to
5.8x compared to the previous best circuit-based PSI protocol of [PSWW18].
We demonstrate this both analytically and experimentally.

1.2 Motivation for Circuit-Based PSI

Most research on computing PSI focused on computing the intersection itself
(see Sect.1.4). On the other hand, many applications of PSI are based
on computing arbitrary functions of the intersection. For example, Google
reported a PSI-based application for measuring the revenues from online ad
viewers who later perform a related offfine transaction (namely, ad conversion

126 B. Pinkas et al.

rates) [Yunlb,Krel7]. This computation compares the set of people who were
shown an ad with the set of people who have completed a transaction. These sets
are held by the advertiser, and by merchants, respectively. A typical use case is
where the merchant inputs pairs of the customer-identity and the value of the
transactions made by this customer, and the computation calculates the total
revenue from customers who have seen an ad, namely customers in the intersec-
tion of the sets known to the advertiser and the merchant. Google reported imple-
menting this computation using a Diffie-Hellman-based PSI cardinality protocol
(for computing the cardinality of the intersection) and Paillier encryption (for
computing the total revenues) [[KN+17,Krel8]. In fact, it was recently reported
that Google is using such a “double-blind encryption” protocol in a beta version
of their ads tool.! However, their protocol reveals the size of the intersection, and
has substantially higher runtimes than our protocol as it uses public key opera-
tions, rather than efficient symmetric cryptographic operations (cf. Sect. 7.4).

Another motivation for running circuit-based PSI is adaptability. A proto-
col that is specific for computing the intersection, or a specific function such as
the cardinality of the intersection, cannot be easily changed to compute another
function of the intersection (say, the cardinality plus some noise to preserve dif-
ferential privacy). Any change to a specialized protocol will require considerable
cryptographic know-how, and might not even be possible. On the other hand,
the task of writing a new circuit component which computes a different function
of the intersection is rather trivial.

Circuit-based protocols also benefit from the existing code base for generic
secure computation. Users only need to design the circuit to be computed,
and can use available libraries of optimized code for secure computation, such
as [HEKM11,EFLL12,DSZ15, LWN+15].

1.3 Computing Symmetric Functions

We focus in this work on constructing a circuit which computes the intersection.
On top of that circuit it is possible to compose a circuit for computing any
function that is based on the intersection. In order to preserve privacy, that
function must be a symmetric function of the items in the intersection. Namely,
the output of the function must not depend on the order of its inputs.

If the function that needs to be computed is non-symmetric, then the circuit
for computing the intersection must shuffle its output, in order to place each
item of the intersection in a location which is independent of the other values.
The result is used as the input to the function. The size of this “shuffle” step
is O(nlogn), as is described in [HEK12], and it dominates the O(n) size of the
intersection circuit. We therefore focus on the symmetric case.?

! https://www.bloomberg.com /news/articles/2018-08-30/google-and-mastercard-
cut-a-secret-ad-deal-to-track-retail-sales.

2 Note that outputting the intersection is a non-symmetric function. Therefore in
that case the order of the elements must be shuffled. However, it is unclear why a
circuit-based protocol should be used for computing the intersection, since there are
specialized protocols for this which are much more efficient, e.g. [KKRT16,PSZ18].

https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales
https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales

Efficient Circuit-Based PSI with Linear Communication 127

Most interesting functions of the intersection (except for the intersection
itself) are symmetric. Examples of symmetric functions include:

— The size of the intersection, i.e., PSI cardinality (PSI-CA).

— A threshold function that is based on the size of the intersection. For example
identifying whether the size of the intersection is greater than some threshold
(PSI-CAT). An extension of PSI-CAT, where the intersection is revealed only
if the size of the intersection is greater than a threshold, can be used for
privacy-preserving ridesharing [HOS17]. Other public-key based protocols for
this functionality appear in [ZC17,ZC18].

— A differentially private [Dwo06] value of the size of the intersection, which is
computed by adding some noise to the exact count.

— The sum of values associated with the items in the intersection. This is used
for measuring ad-generated revenues (cf. Sect. 1.2).

The circuits for computing all these functions are of size O(n). Therefore, with
our new construction the total size of the circuits for applying these functions
to the intersection is O(n).

1.4 Related Work

We classify previous works into dedicated protocols for PSI, generic protocols
for circuit-based PSI, and dedicated protocols for PSI cardinality.

PSI. The first PSI protocols were based on public-key cryptography, e.g., on
the Diffie Hellman function (e.g. [Mea86], with an earlier mention in [Sha80]),
oblivious polynomial evaluation [FNP04], or blind RSA [DT10]. More recent pro-
tocols are based on oblivious transfer (OT) which can be efficiently instantiated
using symmetric key cryptography [IKNP03, ALSZ13]: these protocols use either
Bloom filters [FNP04] or hashing to bins [PSZ14,PSSZ15,KKRT16,PSZ18].
All these PSI protocols have super-linear complexity and many of them were
compared experimentally in [PSZ18]. PSI protocols have also been evaluated
on mobile devices, e.g., in [HCE11,ADN+13,CADT14,KLS+17]. PSI protocols
with input sets of different sizes were studied in [KLS+17,PSZ18,RA18].

Circuit-based PSI. These protocols use secure evaluation of circuits for PSI.
A trivial circuit for PSI computes O(n?) comparisons which result in O(on?)
gates, where o is the bit-length of the elements.

The sort-compare-shuffle (SCS) PSI circuit of [HEK12] computes O(nlogn)
comparisons and is of size O(on logn) gates (even without the final shuffle layer).

The Circuit-Phasing PSI circuit of [PSSZ15] uses Cuckoo hashing to O(n)
bins by one party and simple hashing by the other party which maps at most
O(logn/loglogn) elements per bin. Therefore, the Circuit-Phasing circuit has
a size of O(onlogn/loglogn) gates.

The recent circuit-based PSI protocol of [CO18] applies a protocol based on
OT extension to compute private set membership in each bin. The outputs of
the invocations of this protocol are input to a comparison circuit. The circuit

128 B. Pinkas et al.

itself computes a linear number of comparisons, but the total communication
complexity of the private set membership protocols is of the same order as that
of the Circuit-Phasing circuit [PSSZ15] with O(onlogn/loglogn) gates.

Another recent circuit-based PSI protocol of [FNO18, Sect. 8] has communi-
cation complexity O(onloglogn). It uses hashing to O(n) bins where each bin
has multiple buckets and then runs the SCS circuit of [HEK12] to compute the
intersection of the elements in the respective bins.

The two-dimensional Cuckoo hashing circuit of [PSWW 18] uses a new variant
of Cuckoo hashing in two dimensions and has an almost linear complexity of
w(on) gates.

In this work, we present the first circuit-based PSI protocol with a true linear
complexity of O(on) gates.

PSI Cardinality. Several protocols for securely computing the cardinality of
the intersection, i.e., | X NY|, were proposed in the literature. These protocols
have linear complexity and are based on public-key cryptography, namely Diffie-
Hellman [DGT12], the Goldwasser-Micali cryptosystem [DD15], or additively
homomorphic encryption [DC17]. However, these protocols reveal the cardinality
of the intersection to one of the parties. In contrast, circuit-based PSI protocols
can easily be adapted to efficiently compute the cardinality and even functions
of it using mostly symmetric cryptography.

1.5 Owur Contributions
In summary, in this paper we present the following contributions:

— The first circuit-based PSI protocol with linear asymptotic communication
overhead. We remark that achieving a linear overhead is technically hard
since hashing to a table of linear size requires a stash of super-linear size in
order to guarantee a negligible failure probability. It is hard to achieve linear
overhead with objects of super-linear size.

— A circuit-based PSI protocol with small constants and an improved concrete
overhead over the state of the art. As a special case, we consider a very
common variant of PSI, namely threshold PSI, in which the intersection is
revealed only if it is bigger/smaller than some threshold. Surprisingly, our
protocol is 1-2 orders of magnitude more efficient than the state-of-the-art
[ZC18] and has the same asymptotic communication complexity of O(n),
despite the fact that the protocol in [ZC18] is a special purpose protocol for
threshold-PSI.

— Our protocol supports associating data (“payload”) with each input (from
both parties), and compute a function that depends on the data associated
with the items in the intersection. This property was not supported by the
Phasing circuit-based protocol in [PSSZ15]. It is important for applications
that compute some function of data associated with the items in the inter-
section, e.g., aggregate revenues from common users (cf. Sect. 1.2).

Efficient Circuit-Based PSI with Linear Communication 129

— On a technical level, we present a new paradigm for handling w(1) stash sizes
and obtaining an overall overhead that is linear. This is achieved by running
an extremely simple dual-execution variant of the protocol.

— Finally, with regards to concrete efficiency, we introduce a circuit-based PSI
protocol with linear complexity. This is achieved by using Cuckoo hashing
with K = 3 instead of K = 2 hash functions, and no stash. This protocol
substantially reduces communication (by a factor of 2.6x to 12.8x) and run-
time (by a factor of 2.8x to 5.8x) compared to the best previous circuit-based
PSI protocol of [PSWW18].

2 Preliminaries

2.1 Setting

There are two parties, which we denote as P; (the “receiver”) and P, (the
“sender”). They have input sets, X and Y, respectively, each of which contains
n items of bitlength A\. We assume that both parties agree on a function f
and wish to securely compute f(X NY'). They also agree on a circuit C' that
receives the items in the intersection as input and computes f. That is, C' has
O(nA) input wires if we consider a computation on the elements themselves or
O(n(A+ p)) if we consider a computation on the elements and their associated
payloads where the associated payload of each item has bitlength p. We denote
the computational and statistical security parameters by « and o, respectively.
Denote the set 1,. .., ¢ by [c]. We use the notation X () to denote the i-th element
in the set X.

2.2 Security Model

This work, similar to most protocols for private set intersection, operates in
the semi-honest model, where adversaries may try to learn as much informa-
tion as possible from a given protocol execution but are not able to deviate
from the protocol steps. This is in contrast to malicious adversaries which are
able to deviate arbitrarily from the protocol. PSI protocols for the malicious
setting exist, but they are less efficient than protocols for the semi-honest set-
ting, e.g., [FNP04, DSMRY09, HN10,DKT10,FHNP16, RR17a,RR17b]. The only
circuit-based PSI protocol that can be easily secured against malicious adver-
saries is the Sort-Compare-Shuffle protocol of [HEK12]: here a circuit of size O(n)
can be used to check that the inputs are sorted, resulting in an overall complex-
ity of O(nlogn). For the recent circuit-based PSI protocols that rely on Cuckoo
hashing, ensuring that the hashing was done correctly remains the challenge.The
semi-honest adversary model is appropriate for scenarios where execution of the
intended software is guaranteed via software attestation or business restrictions,
and yet an untrusted third party is able to obtain the transcript of the protocol
after its execution, by stealing it or by legally enforcing its disclosure.

130 B. Pinkas et al.

FUNCTIONALITY 1 (Two-Party Computation)

Parameters. The Boolean circuit C' to be computed, with 11, I inputs and
01, O2 outputs associated with P; and P» resp.

Inputs. P; inputs bits z1,...,z;, and P> inputs bits y1,...,yr,-

Outputs. The functionality computes the circuit C' on the parties’ inputs and
returns the outputs to the parties.

2.3 Secure Two-Party Computation

There are two main approaches for generic secure two-party computation of
Boolean circuits with security against semi-honest adversaries: (1) Yao’s garbled
circuit protocol [Yao86] has a constant round complexity and with today’s most
efficient optimizations provides free XOR gates [KS08], whereas securely eval-
uating an AND gate requires sending two ciphertexts [ZRE15]. (2) The GMW
protocol [GMW&T] also provides free XOR gates and also sends two ciphertexts
per AND gate using OT extension [ALSZ13].

The main advantage of the GMW protocol is that all symmetric crypto-
graphic operations can be pre-computed in a constant number of rounds in a
setup phase, whereas the online phase is very efficient, but requires interaction
for each layer of AND gates. In more detail, the setup phase is independent of the
actual inputs and precomputes multiplication triples for each AND gate using
OT extension in a constant number of rounds. The online phase begins when
the inputs are provided and involves a communication round for each layer of
AND gates. See [SZ13] for a detailed description and comparison between Yao
and GMW.

In our protocol we make use of Functionality 1.

2.4 Cuckoo Hashing

Cuckoo hashing [PRO1] uses two hash functions hg,h; to map n elements to
two tables Ty, T} which each contain (1 4 €)n bins. (It is also possible to use a
single table T with 2(1 4 ¢)n bins. The two versions are essentially equivalent).
Each bin accommodates at most a single element. The scheme avoids collisions
by relocating elements when a collision is found using the following procedure:
Let b € {0,1}. An element z is inserted into a bin hy(x) in table Tp. If a prior
item y exists in that bin, it is evicted to bin h1_p(y) in Ty _p. The pointer b is
then assigned the value 1 — b. The procedure is repeated until no more evictions
are necessary, or until a threshold number of relocations has been reached. In the
latter case, the last element is put in a special stash. It was shown in [KMW09]
that for a stash of constant size s the probability that the stash overflows is
at most O(n~ (). It was also shown in [GM11] that this failure probablity is
negligilble when the stash is of size O(logn). An observation in [KM18] shows
that this is also the case when s = O(w(1) - —2£"_). After insertion, each item

’ loglogn
can be found in one of two locations or in the stash.

Efficient Circuit-Based PSI with Linear Communication 131

2.5 PSI Based on Hashing

Existing constructions for circuit-based PSI require the parties to reorder their
inputs before inputting them to the circuit. In the sorting network-based circuit
of [HEK12], the parties sort their inputs. In the hashing-based construction
of [PSSZ15], the parties map their items to bins using a hashing scheme.

It was observed as early as [FNP04] that if the two parties agree on the same
hash function and use it to assign their respective input to bins, then the items
that one party maps to a specific bin only need to be compared to the items
that the other party maps to the same bin. However, the parties must be careful
not to reveal to each other the number of items that they mapped to each bin,
since this leaks information about their input sets. Therefore, the parties agree
beforehand on an upper bound m for the maximum number of items that can
be mapped to a bin (such upper bounds are well known for common hashing
algorithms, and can also be substantiated using simulation), and pad each bin
with random dummy values until it has exactly m items in it. If both parties use
the same hash algorithm, then this approach considerably reduces the overhead
of the computation from O(n?) to O(3 - m?) where 3 is the number of bins.

When using a random hash function h to map n items to n bins such that x
is mapped to bin h(x), the most occupied bin has at most m = lrllrl‘fn(l +0o(1))
items with high probability [Gon81]. For instance, for n = 22 and a desired
error probability of 2740, a careful analysis shows that m = 20. Cuckoo hashing
is much more promising, since it maps n items to 2n(1+¢) bins, where each bin
stores at most m = 1 items.

It is tempting to let both parties, P; and P», map their items to bins using
Cuckoo hashing, and then only compare the item that P; maps to a bin with
the item that P, maps to the same bin. The problem is that P; might map z
to ho(x) whereas P, might map it to hy(z). Unfortunately, they cannot use a
protocol where P;’s value in bin hg(x) is compared to the two bins ho(z), b1 (z)
in P,’s input, since this reveals that P; has an item which is mapped to these two
locations. The solution used in [FHNP16,PSZ14,PSSZ15] is to let P; map its
items to bins using Cuckoo hashing, and P map its items using simple hashing.
Namely, each item of P» is mapped to both bins ho(z), hi(z). Therefore, P,
needs to pad its bins to have exactly m = O(logn/loglogn) items in each bin,
and the total number of comparisons is O(nlogn/loglogn).

3 OPPRF — Oblivious Programmable PRF

Our protocol builds on a (batched) oblivious programmable pseudorandom func-
tion (OPPRF). In this section we gradually present the properties required by
that kind of a primitive, by first describing simpler primitives, namely, Pro-
grammable PRF (and its batched version) and Oblivious PRF.

3.1 Oblivious PRF

An oblivious PRF (OPRF) [FIPRO05] is a two-party protocol implementing
a functionality between a sender and a receiver. Let F' be a pseudo-random

132 B. Pinkas et al.

function (PRF) such that F : {0,1}" x {0,1}* — {0,1}*. The sender inputs
a key k to F and the receiver inputs g¢i...,q.. The functionality outputs
F(k,q1),...,F(k,q.) to the receiver and nothing to the sender. In another vari-
ant of oblivious PRF the sender is given a fresh random key k as an output
from the functionality rather than choosing it on its own. In our protocol we will
make use of a “one-time” OPRF functionality in which the receiver can query a
single query, namely, the sender inputs nothing and the receiver inputs a query
q; the functionality outputs to the sender a key k£ and to the receiver the result
Fy(q). Let us denote that functionality by Fopgrr.

3.2 (One-Time) Programmable PRF (PPRF)

A programmable PRF (PPRF) is similar to a PRF, with the additional prop-
erty that on a certain “programmed” set of inputs the function outputs “pro-
grammed” values. Namely, for an arbitrary set X and a “target” multi-set T,
where |X| = |T| and each t € T is uniformly distributed?, it is guaranteed
that on input X (¢) the function outputs T'(i). Let 7 be a distribution of such
multi-sets, which may be public to both parties.

The restriction of the PPRF to be only one-time comes from the fact that we
allow the elements in T' to be correlated. If the elements are indeed correlated
then by querying it two times (on the correlated positions) it would be easy to
distinguish it from a random function.

We capture the above notion by the following formal definition:

Definition 1. An (-bits PPRF is a pair of algorithms F' = (Hint, F') as follows:

- Hint(k,X,T) — hinty, x 7: Given a uniformly random key k € {0,1}*, the
set X where | X (i)| = € for alli € [|X|] and a target multi-set T with |T| = | X|
and all elements in T are uniformly distributed (but may be correlated), output
the hint hinty x 7 € {0, 1} X1,

— F(k, hint,z) — y*. Given a key k € {0,1}*, a hint hint € {0,1}*1X| and an
input x € {0, 1}, output y* € {0,1}.

We consider two properties of a PPRF, correctness and security:

— Correctness. For every k,T and X, and for every i € [|X|] we have:
F (k, hint, X (7)) = T(3).

— Security. We say that an interactive machine M is a PPRF oracle over F if,
when interacting with a “caller” A, it works as follows:
1. M is given a set X from A.
2. M samples a uniformly random k € {0,1}* and T from T, invokes
hint < Hint(k, X,T) and hands hint to A.

3 We require that each element in T is uniformly random but the elements may be
correlated.

Efficient Circuit-Based PSI with Linear Communication 133

CONSTRUCTION 2 (PPRF)

Let F': {0,1}* x {0,1}* — {0,1}* be a PRF.
— Hint(k, X,T). Interpolate a polynomial p over the points
{(X() , Fi(X(@)® T(i))}ie[\x\]' Return p as the hint.
— F(k,hint,z). Interpret hint as a polynomial, denoted p. Return Fj,(x) &
().

3. M is given an input x € {0,1}¢ from A and responds with F(k, hint, x).
4. M halts (any subsequent queries will be ignored).
The scheme F is said to be secure if, for every X input by A (i.e. the caller),
the interaction of A with M is computationally indistinguishable from the
interaction with the PPRF oracle S, where S outputs a uniformly random
“hint” {0,1}*1X and a “PRF result” from {0,1}.

The definition is reminiscent of a semantically secure encryption scheme.

Informally, semantic security means that whatever is efficiently computable
about the cleartext given the ciphertext, is also efficiently computable with-
out the ciphertext. Also here, whatever can be efficiently computable given X
is also efficiently computable given only |X|. That implicitely means that the
interaction with a PPRF oracle M over (KeyGen, F') does not leak the elements
in X.

Our security definition diverges from that of [KMP+17] in two aspects:

. In [KMP+17], A has many queries to M in Step 3 of the interaction, whereas
our definition allows only a single query. In the (n,t)-security definition
in [KMP+17] this corresponds to setting ¢ = 1. Our definition is weaker
in this sense, but this is sufficient for our protocol as we invoke multiple
instances of the one-time PPRF.

. The definition in [KMP+17] compensates for the fact that .4 has many
queries, by requiring that the function F' outputs an independent target value
for every x € X. Our definition is stronger as it allows having correlated
target elements in 7. In the most extreme form of correlation all values in
T are equal, which makes the task of the adversary “easier”. We require the
security property to hold even in this case.

We present in Construction 2 a polynomial-based PPRF scheme that is based

on the construction in [KMP+17].

Theorem 3. Construction 2 is a PPRF.

Proof. Tt is easy to see that this construction is correct. For every k, X and T,
let p = Hint(k, X, T), then for all i € | X]| it holds that

F(k,p, X (i) = F'(k, X (1)) @ p(X (7))
=F'(k, X)) ® F'(k, X (i) ® T()
=T(i)

134 B. Pinkas et al.

as required.We now reduce the security of the scheme to the security of a PRF
(i.e., to the standard PRF definition, with many oracle accesses). Let M be a
PPRF oracle over E of Construction 2. Assume there exists a distinguisher D and
a caller A such that D distinguishes between the output of M after interacting
with A, when A chooses X and x as its inputs, and the output of S(1%,|X])
(where § is the simulator described in Definition 1) with probability pu.

We present a distinguisher D’ that has an oracle access to either a truly
random function R(-) or a PRF F(k,-). The distinguisher D’ runs as follows:

Given an oracle O to either R(:) or F(k,-), D' samples T from T, then, for
every i € [|X|] it queries the oracle on X (i) and obtains O(X (¢)). It interpolates
the polynomial p using the points {(X (i), O(X(i)) ® T'(i))}ic|x| and provides
p’s coefficients to D. For the query x, D’ hands D the value O(x) @ p(z) and
outputs whatever D outputs.

Observe that if O is truly random, then the values {R(X (7)) © T'(i)) }ie x|
are uniformly random and thus the polynomial p is uniformly random and inde-
pendent of T. If z ¢ X then the value R(z)@p(x) is obviously random since R(z)
is independent of p. In addition, if z = X (i) for some i, then the value R(z)®p(x)
equals T'(7) for some ¢ € [|X|], which is uniformly random since 7T is sampled from
7T and every t € T is distributed uniformly. Therefore, the pair (p, R(x) @ p(z))
is distributed identically to the output of S. On the other hand, if O is a pseu-
dorandom function, then the values {F(X (7)) @ T'(¢))}sepx) from which the
polynomial p is interpolated, along with the second output Fy(z) @ p(x), are dis-
tributed identically to the output of M upon an interaction with A. This leads
to the same distinguishing success probability u, for both D and D’, which must
be negligible. a

3.3 Batch PPRF

Note that the size of the hint generated by algorithm KeyGen is x - | X| (i.e.,
the polynomial is represented by |X| coeflicients, each of size x bits). In
our setting we use an independent PPRF per bin, where each bin contains
at most O(logn/loglogn) values. Therefore the hint for one bin is of size
O(k-logn/loglogn), and the size of all hints is O(k-n-logn/loglogn). However,
we know that the total number of values in all P»’s bins is 2n, since each value is
stored in (at most) two locations of the table*. We next show that it is possible
to combine the hints of all bins to a single hint of length 2n, thus reducing the
total communication for all hints to O(n).
We first present a formal definition of the notion of batch PPRF.

Definition 2. An {¢-bits, 5-bins PPRF (or (¢, 3)-PPRF) is a pair of algorithms

F' = (KeyGen, F) as follows:

* In the actual implementation we use a more general variant of Cuckoo hashing with
a parameter K € {2,3} where each item is stored in K locations in the table. The
size of the hint will be K - n.

Efficient Circuit-Based PSI with Linear Communication 135

CONSTRUCTION 4 (Batched PPRF)

Let F': {0,1}* x {0,1}* — {0,1}* be a PRF.
— Hint(k, X, T).

Given the keys k = ki,...,kg, the sets X = X1,..., X3 and the tar-
get multi-sets T = T1,...,Tg, interpolate the polynomial p using
the points {(X;(3), F'(kj, X, (i) ® T;(2))} |- Return p as the
hint.

— F(k,hint, x).

Interpret hint as a polynomial, denoted p. Return F’(k, z) ® p(x). (Same

as in Construction 2.)

JEBE[| X ;]

— Hint(k, X,T) — hinty x 7. Given a set of uniformly random and independent
keys k = ki,...,kg € {0,1}", the sets X = X1,..., X where |X;(i)] = £
for all j € [8] and i € [|X]|] and a target multi-sets T =Ty, ..., Tz where for
every j € [8] it holds that |Tj| = | X;| and all elements inT; are uniformly dis-
tributed (but, again, may be correlated), output the hint hint, x r € {0,1}%N
where N = Zle 1.

~ F(k, hint,x) — y*. Given a key k € {0,1}*, a hint hint € {0,1}*N and an
input x € {0, 1}, output y* € {0,1}*.

As before, we want a batched PPRF to have the following properties:

— Correctness. For every k =k1,..., kg, T =1T1,...,T3 and X = X1,..., Xg
as above, we have
F(kj, hint, X;(i)) = T} (i)

for every j €[] and i € [| X;]].
— Security. We say that an interactive machine M is a batched PPRF oracle
over F' if, when interacting with a “caller” A, it works as follows:
1. M is given X = Xq,...,Xg from A.
2. M samples uniformly random keys k = ki, ..., kg and target multi-sets
T =1T,...,1g from T, and invokes hint «— Hint(k,X,T) hands hint to
A.
3. M is given 3 queries x1,...,xg from A and responds with y3, ..., yj5
where y¥ = F(kj, hint, ;).
4. M halts.
The scheme F is said to be secure if for every disjoint sets X1, ..., Xg (where
N = Zje[ﬂ] |X;|) input by a PPT machine A, the output of M is computa-
tionally indistinguishable from the output of S(1%, N), such that S outputs a
uniformly random hint € {0,1}*~ and a set of B uniformly random values
from {0,1}*.

Construction 4 is a batched version of Construction 2.

Theorem 5. Construction 4 is a secure (¢, 3)-PPRF.

136 B. Pinkas et al.

Proof. For correctness, note that for every j € [5] and i € [|X,|] it holds that

F(kj,p, X;(1)) = F'(kj, X; (1)) ® p(X; (7))
= F'(ki, X;(2)) @ F'(ki, X;(1)) ® Ty (2)
= T;(0)-

The security of the scheme is reduced to the security of a batch PRF F.
Informally, a batch PRF works as follows: Sample uniform keys k;,...,kg €
{0,1}* and for a query (j, z) respond with F(k;,x). One can easily show that a
batch PRF is indistinguishable from a set of 3 truly random functions R, ..., Rg
where on query (j,z) the output is R;(z).

Let M be a batched PPRF oracle over F' of Construction 4. Assume there
exists a distinguisher D and a caller A4 such that D distinguishes between the
output of M after interacting with A, when A chooses X1,..., Xgand z1,...,2g
as its inputs, and the outputs of S(1%, N), where S is the simulator described in
Definition 2.

We present a distinguisher D’ that has an oracle access O, to either a batch
PRF F(kj,-) or aset of truly random functions R;(-) (where j € [3]). The distin-
guisher D’ works as follows: sample T7, ..., T from 7T, interpolate a polynomial
p with the points {(X; (i), O(j, X;(i)) © T;(i))}je(s);ie(x,) and hand p’s coeffi-
cients to D as the hint. Then, for query z; of D, respond with y; = O(z;)®p(z;).
Finally, D’ outputs whatever D outputs.

First note that if O is a set of truly random functions then the polynomial p is
uniformly random and independent of y7, . .. ,yg because all interpolation points
are uniformly random. Now, if x; ¢ X; then the result is obviously uniformly
random. Otherwise, if x; = X, (¢) for some i then note that the result is T} (¢)
which is uniformly random as well, since the other elements in T} are unknown.
Thus, this is distributed identically to the output of S(1%,N). On the other
hand, if O is a batch PRF then the interpolation points {(X; (i), O(j, X;(i)) ®
T5(1)) }je(srsielx,) along with y7, ..., yj are distributed identically to the output
of M upon an interaction with 4. This leads to the same distinguishing success
probability for both D and D’, which must be negligible. a

3.4 Batch Oblivious Programmable Pseudorandom Functions

In this section we define a two-party functionality for batched oblivious pro-
grammable pseudorandom function (Functionality 6), which is the main building
block in our PSI protocols. The functionality is parametrised by a (¢, 3)-PPRF
F = (Hint, F') and interacts with a sender, who programs F with 0 sets, and
a receiver who queries F with 8 queries. The functionality guarantees that the
sender does not learn what are the receiver’s queries and the receiver does not
learn what are the programmed points.

Given a protocol that realizes Fopre and a secure (¢, 3)-PPRF, the realization
of Functionality 6 is simple and described in Protocol 7.

Theorem 8. Given an (¢,3)-PPRF, Protocol 7 securely realizes Functionality
6 in the Fopre-hybrid model.

Efficient Circuit-Based PSI with Linear Communication 137

FUNCTIONALITY 6 (Batch Oblivious PPRF)

Parameters. A (£, 3)-PPRF F = (Hint, F).
Sender’s inputs. These are the following values:
~ Disjoint sets X = X1,..., X5 where | X;(i)| € {0, 1} for every j € [3] and
i € [|X;]. Let the total number of elements in all sets be N = |X;|.
— The sets T =T1,...,Ts sampled independently from 7.
Receiver’s inputs. The queries z1,...,23 € {0, 1}4.

The functionality works as follows:
1. Sample uniformly random and independent keys k = ki, ..., kga.
2. Invoke Hint(k, X, T) — hint.
3. Output hint to Py (P> can compute it on its own from k, X, T).
4. For every j € [B] output F(k;, hint,z;) to the receiver.

PROTOCOL 7 (Batch Oblivious PPRF)

The protocol is defined in the Foprr-hybrid model and receives an (¢, 3)-PPRF
= (Hint, F') as a parameter. The underlying PRF in both Foprr and Fis
the same and denoted F’. The protocol proceeds as follows:
1. The parties invoke 3 instances of Foprr. In the j € [§] instance, P> inputs
nothing and receives the key k;, and Py inputs z; and receives F’(k;, ;).
2. Party P, invokes p < Hint(k, X, T) and sends p to P;.
3. For every j € 0], party P outputs F'(k;,z;) & p(z;).

Proof. Note that party P, receives nothing in the functionality but receives
k1,...,kg in the real execution as output from Foprr. Therefore, P»’s view can
be easily simulated with the simulator of Fopgr.

As for the view of Py, from the security of the PPRF it follows that it is
indistinguishable from the output of S(1%, N) where S is the simulator from
Definition 2. O

4 A Super-Linear Communication Protocol

4.1 The Basic Construction

Let C,p be a Boolean circuit that has 2-a - (b+ A) input wires, divided to a
sections of 2b + A inputs wires each. For each section, the first (resp. second)
(G input wires are associated with P; (resp. P3). The last A input wires are
associated with P; as well. Denote the first (resp. second) 3 bits input to the i-
th section by u; 1 (resp. v; 2) and the last A bits by z;. The circuit first compares
u;1 10 v; 2 for every i € [a] and produces w; = 1 if u; 1 = v; 2 and 0 otherwise.

138 B. Pinkas et al.

PROTOCOL 9 (Private Set Intersection)

Inputs. P; has X = {x1,...,2n} and P> has Y = {y1,...,yn}-

Protocol. The protocol proceeds in 3 steps as follows:

1. Hashing. The parties agree on hash functions Hi, Hy : {0,1}£ — 4],
which are used as follows:

e P uses Hi, H2 in a Cuckoo hashing construction that maps x1,...,zn
to a table Table; of 8 = 2(1 + €)n entries, where input z; is mapped to
either entry Table;[H;(z;)] or Table;[Hz(x;)] or the stash Stash (which
is of size s)?. Since B > n, P; fills the empty entries in Table; with a
uniformly random value.

e P, maps yi,...,Yn to Tables of 3 entries using both H; and Hs. That
is, y; is placed in both Tables[H1(y;)] and Tablex[H2(y;)]. (Obviously,
some bins will have multiple items mapped to them. This is not an issue,
and there is even no need to use a probabilistic upper bound on the
occupancy of the bin.)

2. Computing batch OPPRF. P, samples uniformly random and inde-
pendent target values ¢1,...,tg € {0,1}". The parties invoke an (), 3)-
OPPRF (Functionality 6; recall that A is the bit-length of the items).
P, inputs Y1,...,Ys and T1,...,Ts where Y; = Tablea[j] = {yllj | y €
Y ANj € {Hi(y),Hz2(y)}} and T; has |Y;| elements, all equal to t¢;. If,
j = Hi(y) = Hz(y) for some y € Y then P» adds a uniformly random ele-

ment to Tablez[j]. P1 inputs Table1[1],. .., Table; [3] and receives y7,. .., y5.
According to the definition of the OPPRF, if Table;[j] € Tablez[j] then
y; =t;.

3. Computing the circuit. The parties use a two-party computation (Func-
tionality 1) with the circuit Cgis.n4." For section j € [3] of the circuit,
party P1 inputs the first v bits of y; and Table;[j], and P, inputs the first
~ bits ¢;; for the 8 + j-th section P; inputs Stash[[j/n] + 1] and P> inputs
Table[(j mod n) + 1].

% We discuss the value of s in Sect. 4.2 and the value of € in Sect. 7.1.
b We discuss the value of in Sect. 4.2.

Then, the circuit computes and outputs f(Z) where Z = {z; | w; = 1};¢[q and
f is the function required to be computed in the Fps s functionality.

Correctness. If z € X NY then z is mapped to both Tables[H;(z)] and
Tableg[H3(z)] by Pa. There are two cases: (1) z is mapped to Table;[Hy(2)]
by P for b € {1,2}. (2) z is mapped to Stash by P;. In the first case the match
is found in section Hy(z) of the circuit; in the second case the match is certainly
found since every item in the Stash is compared to every item in Y.

Two items ¢ € X and y € Y where x # y will not be matched, since by the
properties of the PPRF P, receives a pseudorandom output. Since the parties
only input the first v bits of the PPRF results, those values will be matched with
probability 277. See Sect. 4.2 for a discussion on limiting the failure probability.

Efficient Circuit-Based PSI with Linear Communication 139

Security. The security of the protocol follows immediately from the security of
the OPPRF and the two-party computation functionalities.

4.2 Limiting the Failure Probability
Protocol 9 might fail due to two reasons:

— Stash size. For an actual implementation, one needs to fix s and € so that the
stash failure probability will be smaller than 277. If the stash is overflowed
(i.e., more than s items are mapped to it) then the protocol fails.” As dis-
cussed in Sect. 2, setting s = O(logn/loglogn) makes the failure probability
negligible.

~ Input encoding. The circuit compares the first v bits of y; of Py to the first
«y bits of ¢; of P». Thus, the false positive error probability in each comparison
equals 277 (due to F(z), for x ¢ Y, being equal to the programmed output),
and therefore the overall probability of a false positive is at most §- 277 =
2(14+¢e)n-277.

4.3 Reducing Computation

A major computation task of the protocol is interpolating the polynomial which
encodes the hint. If we use Cuckoo hashing with K = O(1) hash functions
then the polynomial encodes O(n) items and is of degree O(n). This section
describes how to reduce the asymptotic overhead of computing the polynomial
and therefore we will use asymptotic notation. The concrete overhead is discussed
in Sect. 7.2.

The overhead of interpolating a polynomial of degree O(n) over arbitrary
points is O(n?) operations using Lagrange interpolation, or O(nlog®n) opera-
tions using FFT. The overhead can be reduced by dividing the polynomial to
several lower-degree polynomials. In particular, let us divide the § = O(n) bins
to B “mega-bins”, each encompassing 3/B bins. Suppose that we have an upper
bound such that the number of items in a mega-bin is at most m, except with
negligible probability. Then the protocol can invoke a batch OPPRF for each
mega-bin, using a different hint polynomial. Each such polynomial is of degree
m. Therefore the computation overhead is O(B - mlog? m). Ideally, the upper
bound on the number of items in a mega-bin, m, is of the same order as the
expected number of items in a mega-bin, O(n/B). In this case the computation
overhead is O(n/B - B - log*(n/B)) = O(nlog?(n/B)) and will be minimized
when the number of mega-bins B is maximal.

It is known that when mapping O(n) items to B = n/logn (mega-)bins,
then with high probability the most occupied bin has less than m = O(n/B) =
O(logn) items. When interested in concrete efficiency we can use the analysis

5 In that case either not all items are stored in the stash — resulting in the protocol
ignoring part of the input and potentially computing the wrong output, or P; needs
to inform P» that it uses a stash larger than s — resulting in a privacy breach.

140 B. Pinkas et al.

in [PSZ18] to find the exact number of mega-bins to make the failure prob-
ability sufficiently small (see Sect.7.2). When interested in asymptotic analy-
sis, it is easy to deduce from the analysis in [PSZ18] that with B = n/logn
mega-bins, the probability of having more than w(logn) items in a mega-
bin is negligible. Therefore when using this number of mega-bins, the com-
putation overhead is only w((n/logn) - log?(n)) = w(nlogn) using Lagrange
interpolation. Using FFT interpolation, the asymptotic overhead is reduced to
w((n/logn)logn(loglogn)?) = w(n - (loglogn)?). But since we map relatively
few items to each mega-bin the gain in practice of using FFT is marginal.

5 A Linear Communication Protocol

We describe here a protocol in which the circuit computes only O(n) compar-
isons. This protocol outperforms the protocols in Sect. 4.1 or in [PSWW18, CO18]
which have a circuit that computes w(n) comparisons. A careful analysis reveals
that those protocols require O(n) comparisons to process all items that were
mapped to the Cuckoo hash table, and an additional s-n comparisons to process
the s = w(1) items that were mapped to the stash. We note that the concurrent
and independent work of [FNO18] proposes to use a PSI protocol for unbal-
anced set sizes, such as in the work of [KLS+17], to reduce the complexity of
handling the stash from w(n) to O(n) in PSI protocols. However, their idea can
only be applied when the output is the intersection itself. When the output is a
function of the intersection then their protocol has communication complexity
O(nloglogn), cf. Sect.1.4). In contrast, we achieve O(n) communication even
when the output is a function of the intersection.

We present two different techniques to achieve a linear communication pro-
tocol with failure probability that is negligible in the statistical security param-
eter 0. The first technique (see Sect.5.1) is implied by a mathematical analysis
of the failure probability (as argued in Sect.1.4). The second technique (see
Sect. 5.2) is implied by the empirical analysis presented in [PSZ18].

5.1 Linear Communication via Dual Execution

We overcome the difficulty of handling the stash by running a modified version
of the protocol in three phases. The first phase is similar to the basic protocol,
but ignores the items that P; maps to the stash. Therefore this phase inputs to
the circuit the O(n) results of comparing P;’s input items (except those mapped
to the stash) with all of P»’s items. The second phase reverses the roles of the
parties, and in addition now P; inputs only the items that it previously mapped
to the stash. In this phase P, uses Cuckoo hashing and might map some items
to the stash. The last phase only compares the items that P; mapped to the
stash in the first phase, to the items that P, mapped to the stash in the second
phase, and therefore only needs to handle very few items. Below, we describe
our protocol in more detail: In Protocol 10, we describe our protocol in more
detail.

Efficient Circuit-Based PSI with Linear Communication 141

PROTOCOL 10 (PSI with Linear Communication)

Inputs. P; has X = {x1,...,2n} and P> has Y = {y1,...,yn}-
Protocol. The protocol proceeds in 3 phases as follows:

1. Run steps 1-2 of Protocol 9. Denote the items mapped to P;’s table by Xr
(i.e., excluding the items mapped to the stash). In the end of this phase,
for every j € [], P1 holds the OPPRF result y; and P holds the target
value t;.

2. Reverse the roles of P; and P» and run steps 1-2 of Protocol 9 again, where
Py inputs Xg = X\ X7 (i.e., only the items that were previously mapped
to the stash) and P> inputs Y. Since the roles are reversed then Pi maps
Xs using simple hashing and P> maps Y using Cuckoo hashing. Denote
the items mapped to the table and stash of P> by Yr and Y, respectively.
In the end of this phase, for every j € [3], Pi has the target value ; and
P, has the OPPRF result 7.

3. The parties use secure two-party computation (Functionality 1) with the
circuit Cyp4 42, (Where s is the stash size). For section j € [f] of the
circuit, Py and P input the first v bits of y; and t; resp. For section
j€{B+1,...,28} of the circuit P, and P, input the first ~ bits of #; and
7, respectively. Finally, for the rest s? sections of the circuit, the parties
input every combination of Xs x Ys (padded with uniformly random items
so that | Xg| = |Ys| = s).

Correctness & Efficiency. The protocol compares every pair in X x Y and
therefore every item in the intersection is input to the circuit exactly once:
Sections 1,..., 3 of the circuit cover all pairs in X7 x Y, sections 8+ 1,...,20
cover all pairs in Xg x Y7 and sections 23 + 1,...,23 + s covers all pairs in
Xg x Yg. This implies that the result of the three-phase construction is exactly
the intersection X NY. The communication complexity in the first two steps of
the protocol is O(n - k) as they involve the execution of a OPPRF with at most
O(n) items to the parties. The communication complexity of the third step is
O(n - 7) since it involves 2n + s comparisons of 7-bit elements. Since the stash
size is s = O(logn), overall there are O(n) comparisons.

Security. As in the basic protocol (see Sect.4.1), the security of this protocol
is implied by the security of the OPPRF and secure two-party computation.

5.2 Linear Communication via Stash-Less Cuckoo Hashing

The largest communication cost factor in our protocols is the secure evaluation of
the circuit. The asymptotically efficient Protocol 10 requires computing at least
two copies of the basic circuit (for Phases 1 and 2), and it is therefore preferable
to implement a protocol which has better concrete efficiency. We design a pro-
tocol that requires no stash (while achieving a small failure probability of less
than 2749), and hence uses no dual execution.

142 B. Pinkas et al.

In order to be able to not use the stash, hashing is done with K > 2 hash
functions. We take into account the results of [PSZ18], which ran an empirical
evaluation for the failure probability of Cuckoo hashing (failure is defined as the
event where an item cannot be stored in the table and must be stored in the
stash). They run experiments for a failure probability of 2730 with K = 3,4 and
5 hash functions, and extrapolated the results to yield the minimum number of
bins for achieving a failure probability of less than 2740, The results showed that
0 =1.27n,1.09n, and 1.05n bins are required for K = 3,4, and 5, respectively.

The main obstacle in using more than two hash functions in previous works
on PSI was that the communication was still linear in O(maxy, - 3), where max;
is the maximal number of elements in a bin of the simple hash table. The value
of max; increases with K since each item is stored K times in the simple hash
table. In our protocol the communication for the circuit is independent of maxy,
as it only depends on the number of bins 8. The communication for sending the
polynomials, whose size is O(K - n - k), is just a small fraction of the overall
communication and was in our experiments always smaller than 3%. In this
paper, we therefore use K = 3 hash functions for our stash-less protocol.

6 PSI with Associated Payload

In many cases, each input item of the parties has some “payload” data associated
with it. For example, an input item might include an id which is a credit card
number, and a payload which is a transaction that was paid using this credit card.
The parties might wish to compute some function of the payloads of the items
in the intersection (for example, the sum of the financial transactions associated
with these items). However, a straightforward application of our techniques does
not seem to support this type of computation: Recall that P> might map multiple
items to each bin. The OPPRF associates a single output § to all these items,
and this value is compared in the circuit with the output « of P;. But if P
inserts a single item to the circuit, it seems that this item cannot encode the
payloads of all items mapped to this bin.

The 2D Cuckoo hashing circuit-based PSI protocol of [PSWW18] handles
payloads well, since each comparison involves only a single item from each party.
While our basic protocol cannot handle payloads, we show here how it can be
adapted to efficiently encode payloads in the input to the circuit.

Let Table; and Stash be P;’s table and stash after mapping its items using
Cuckoo hashing and let Tabley be P,’s table after mapping its items using simple
hashing. In addition, denote by U(z) and V(y) the payloads associated with
z € X and y € Y respectively and assume that all payloads have the same
length §. The parties invoke two instances of batch OPPRF as follows:

1. A batch OPPRF where P; inputs Table[1],..., Table;[3] and P, inputs
Tables[1],..., Tables[] and Ti,...,T3 where T; has |Tabley[j]| elements, all
equal to a uniformly random and independent value t; € {0, 1}*. This is the
same invocation of a batch OPPRF as in Protocol 9. At the end, P; has the
OPPRF results y7, ...,y and P has the target values ¢1,...,1;.

Efficient Circuit-Based PSI with Linear Communication 143

2. In the second batch OPPRF, P, chooses the target values such that
the elements in the set 7; are not equal. Specifically, P; inputs
Table;[1],..., Table;[3] and P, samples f1,...,t3 uniformly, and inputs
Tables[1], ..., Tabley[] and Ti,...,Ts where T;(i) = t; & V(Tablex[j](i)).
Denote the OPPRF results that Py obtains by g7, ..., yj5.

Then, the circuit operates in the following way: For the j-th section, P; inputs
Tabley [j],y}, 5} and U(Table;[j]), and P, inputs ¢; and t;. The circuit compares
yj to t;. If they are equal then it forwards to the sub-circuit that computes
[the item Table;[;] itself, Pi’s payload U(Table:[j]) and P’s payload g @ t;.
This holds since if Table;[j] is the i-th item in Py’s table, namely, Tables[j](4),
then the value g% received by Py is §; = t; ® V(Tablez[j](i)). Thus, g5 © t; =
V(Tables[](7)) as required.

Efficiency. The resulting protocol has the same asymptotic complexity as our
initial protocols without payloads. The number of comparisons in the circuit is
the same as in the basic circuit.

Table 1. The results of [PSZ18] for the required stash sizes s for K = 2 hash functions
and 8 = 2.4n bins, and the minimum OPPRF output bitlength v to achieve failure
probability < 27%° when mapping n elements into 8 bins with Cuckoo hashing. For
K > 2 hash functions we choose a large enough number of bins 8 to achieve stash
failure probability < 2740,

' # Elements n 98 | 212 | 916 | 920 | 924
' Stash size s for K = 2 126 (4 (3 2
‘ OPPREF output length v | K =2, § =2.4n 5054 |58 |62 |66
| K=33=12Tn,s=049 53 |57 |61 65
| K=4,3=109,s=0 49 53 57 |61 65
| K=53=105n,s=049 53 |57 |61 65

7 Concrete Costs

In this section we evaluate the concrete costs of our protocol for concrete values
of the security parameters. We set the computational security parameter to
r = 128, and the statistical security parameter to o = 40.

7.1 Parameter Choices for Sufficiently Small Failure Probability

For K = 2 hash functions, following previous works on PSI (e.g., [PSSZ15,
PSWW18]), we set the table size parameter for Cuckoo hashing to e = 0.2, and
use a Cuckoo table with 3 = 2n(1 + €) = 2.4n bins. The resulting stash sizes for
mapping n elements into § = 2.4n bins, as determined by the experiments in

144 B. Pinkas et al.

[PSZ18], are summarized in Table 1. Note that we use here concrete values for
the stash size, and are aiming for a failure probability smaller than 2740, This
can either be achieved using the basic protocol of Sect. 4.1 with the right choice
of the stash size, or by running the three rounds O(n) complexity protocol of
Sect. 5.

Another option is described in Sect. 5.2, where we use more than two hash
functions (specifically, use K = 3,4, or 5 functions), with the hash table being of
size B = 1.27n,1.09n, or 1.05n, respectively. These parameters achieve a failure
probability smaller than 2740 according to the experimental analysis in [PSZ18].

As described in Sect. 4.2, even if there are no stash failures, the scheme can
fail due to collisions in the output of the PRF, with probability 5277, where ~y
is the output bitlength of the OPPRF. To make this failure probability smaller
than the statistical security parameter (which we set to 40), the output bitlength
of the OPPRF must be v = 40 + log, [bits.

7.2 Computing Polynomial Interpolation

We implemented interpolation of polynomials of degree d using an O(d?) algo-
rithm based on Lagrange interpolation in a prime field where the prime is the
Mersenne prime 2%' — 1. The runtime for interpolating a polynomial of degree
d = 1024 was 7 ms, measured on an Intel Core i7-4770K CPU with a sin-
gle thread. The runtimefor different values of d behaved (very accurately) as a
quadratic function of d. The actual algorithmsare those implemented in NTL
v10.0 with field arithmetics replaced with our customized arithmetic opera-
tionsover the Mersenne prime 26! — 1. Most importantly, this field enables an
order of magnitude faster multiplication of field elements: multiplying x - y with
||, ly| < 61 is implemented by multiplying = and y over Z to obtain z = xy with
|z] < 122. Then the result is the sum of the element represented by the lower 61
bits of z with the element represented by the higher 61 bits of z (and therefore
no expensive modular reduction is required). The Mersenne prime 26! — 1 allows
the use of at least 40-bit statistical security for up to n = 22° elements for all our
algorithms using permutation-based hashing (cf. [PSSZ15]). To use larger sets,
we see two possible solutions: (i) using a larger Mersenne prime or (ii) reducing
the statistical security parameter o (e.g., using o = 38 for achieving less than 277
failure probability for n = 222 elements, K = 3 hash functions, and 8 = 1.27n
bins). The required minimum bit-length of the elements using permutation-based
hashing with failure probability 277 is computed as ¢ = o + 2logy n — log, 3.
The OPPRF output is also < 61 bits in most cases as shown in Table 1.

For reducing the computation complexity of our protocol, we use the app-
roach described in Sect. 4.3, where instead of interpolating a polynomial of degree
K -n, where K is the number of hash functions and n is the number of elements
for PSI, we interpolate multiple smaller polynomials of degree at most d = 1024.
We therefore have to determine the minimum number of mega-bins B such that
when mapping N = K - n elements to B bins, the probability of having a bin
with more than max;, = 1024 elements is smaller than 274°. As in the analysis
for simple hashing in [PSZ18], we use the formula from [MR95]:

Efficient Circuit-Based PSI with Linear Communication 145

-

P(“3 bin with > max; elements”) < P(“bin i has > max; elements”)

i=1

EORORCH

1=maxy

We depict the corresponding numbers in Table2. With these numbers and
our experiments for polynomial interpolation described above, the estimated
runtimes for the polynomial interpolation are B -7 ms. The hints (polynomials)
that need to be sent have size B - max;, -y bits which is only slightly larger than
the ideal communication of K - n - v bits when using one large polynomial as
shown in Table 2.

Note that in contrast to many PSI solutions whose main run-time bottleneck
is already network bandwidth (which cannot be easily improved in many settings
such as over the Internet), the run-time of our protocols can be improved by using
multiple threads instead of one thread. Since the interpolation of polynomials for
different mega-bins is independent of each other, the computation scales linearly
in the number of physical cores and thus can be efficiently parallelized.

Table 2. Parameters for mapping N = K - n elements to B mega-bins s.t. each mega-
bin has at most max, < 1024 elements with probability smaller than 274°. The lower
half of the table contains the expected costs for the polynomial interpolations.

hash functions K=2 K=3

Set size n:212‘n:216‘ n=2%n=212 p=21% n=2%
mega-bins B 11 165 2663 16 248 4002
Maximum number of 944 1021 1024 975 1021 1024
elements maxy

Polynomial interpola- 126 1815 29293 183 2809 45335

tion [in milliseconds]

Size of hints [in bits] 560736/9770970{169068544 || 826800|14432856|249980928

Ideal size of hints for|| 436330|7505580|128477895|| 651264|11206656/191889408
one polynomial [in
bits]

7.3 Communication and Depth Comparison

We first compute the communication complexity of our basic construction
from Sect.4.1. The communication is composed of (a) the OPRF evaluations
for each of the B bins, (b) the hints consisting of the polynomials, (¢) the circuit
for comparing the outputs of the OPPRFs in each bin, and (d) the circuit for
comparing the s elements on the stash with the n elements of P;.

With regards to (a), the OPRF protocol of [KKRT16], which was also used
in [KMP+17], has an amortized communication of at most 450 bits per OPRF

146 B. Pinkas et al.

evaluation for set sizes up to n = 224 elements (cf. [KKRT16, Table1]). This
amounts to B - 450 bits of communication.

With regards to (b), for the size of the hints in the OPPRF construction
we use the values given in Table 2. These numbers represent the communication
when using mega-bins, and are slightly larger than the ideal communication of
K - n coefficients of size «y bits each, that would have been achieved by using a
single polynomial for all values. However, it is preferable to use mega-bins since
their usage substantially improves the computation complexity as described in
Sect. 4.3, while the total communication for the hints is at most 3% of the total
communication. (This also shows that any improvements of the size of the hints
will have only a negligible effect on the total communication).

With regards to (¢), the circuit compares B elements of bitlength ~, and hence
requires B - (v — 1) AND gates. With 256 bits per AND gate [ALSZ13,ZRE15]
this yields B - (y — 1) - 256 bits of communication.

With regards to (d), the final circuit consists of s - n comparisons of
bitlength o. This requires sn(c — 1) - 256 bits of communication.

We now analyze the communication complexity of our O(n) protocol
described in Sect.5. The main difference compared to the basic protocol ana-
lyzed above is that a different method is used for comparing the elements of
the stash, i.e., replacing step (d) above. The new method replaces this step by
letting P5 use Cuckoo hashing of its n elements into B bins and then evaluating
OPREF for each of these bins. This requires B -450 bits of communication plus B
comparisons of v bit values. Overall, this amounts to B - (450+ (y— 1) - 256) bits
of communication. For simplicity, we omit the communication for comparing the
elements for phase 3 which compares the elements on the two stashes, as it is
negligible.

Comparison to Previous Work. In Table 3, we compare the resulting com-
munication of our protocols to those of previous circuit-based PSI protocols of
[HEK12,PSSZ15,PSWW18,FNO18]. As can be seen from this table, our pro-
tocols improve communication by an integer factor, where the main advantage
of our protocols is that their communication complexity is independent of the
bitlength of the input elements. Namely, for arbitrary input bitlengths, our no-
stash protocol improves the communication over the previous best protocol of
[PSWW18] by a factor of 12.8x for n = 2'2 to a factor of 10.1z for n = 229, For
fixed bitlength of ¢ = 32 bits, our no-stash protocol improves communication
over [PSWW18] by a factor of 5.7z for n = 2'2 to a factor of 2.6x for n = 22°.

Circuit Depth. For some secure circuit evaluation protocols like GMW
[GMW38T] the round complexity depends on the depth of the circuit. In Table 4,
we depict the circuit depths for concrete parameters of our protocols and previ-
ous work, and show that our circuits have about the same low depth as the
best previous works [PSSZ15,PSWW18]. In more detail, the Sort-Compare-
Shuffle (SCS) circuit of [HEK12] has depth log, o - log, n when using depth-
optimized comparison circuits. The protocols of [PSSZ15,PSWW18] have depth

Efficient Circuit-Based PSI with Linear Communication 147

Table 3. Communication in MB for circuit-based PSI on n elements of fixed bitlength
o = 32 (left) and arbitrary bitlength hashed to o = 40 + 2log,(n) — 1 bits (right).
The numbers for previous protocols are based on the circuit sizes given in [PSWW18,
Table 3] with 256 bit communication per AND gate. The best values are marked in
bold.

o =32 Arbitrary o
Protocol n = 212 ‘ 216 ‘ 220 212 216 220
SCS [HEK12] 104 2174 42976 205 4826 106 144
Circuit-Phasing [PSSZ15] 130 1683 21004 320 5552 97708
Hashing 4+ SCS [FNO18] - 1537 21207 - 3998 72140
2D CH [PSWW18] 51 612 6582 115 1751 25532
[Ours Basic Sect. 4.1 Il 41 550 8123 65| 870| 12731|
|Ours Advanced Sect. 5 l 35 604 10277 || 35| 604 10277
Ours No-Stash Sect. 5.2 9 149 2540 9 149 2540
Breakdown:
OPRF 0.3 3%)| 5 (3%)| 72 (3%)|[0.3 (3%)| 5 (3%)| 72 (3%)
Sending polynomials 0.1 (1%)| 2 (1%)| 30 (1%)|/0.1 (1%)| 2 (1%)| 30 (1%)
Circuit 9 (96%)|142 (96%)|2438 (96%)|| 9 (96%) 142 (96%)|2438 (96%)
Improvement factor 5.7x 4.1x 2.6x 12.8x 11.8x 10.1x

log, 0. A depth-optimized SCS circuit for the construction in [FNO18] has depth
logy (0 —logy(n/b)) -logy((140)b), where concrete parameters for n, d, b are given
in [FNO18, Table 1]. Our protocols consist of circuits for comparing the elements
on the stash of bitlength ¢ and the outputs of the OPPRFs of length v and there-
fore have depth max(logo,log~y) = max(log o,log,(40 4+ 21log,(n) — 1)).

Table 4. Circuit depth for circuit-based PSI on n elements of fixed bitlength ¢ =
32 (left) and arbitrary bitlength hashed to o = 40 + 2log,(n) — 1 bits (right).

o =32 ||Arbitrary o
Protocol n= 212 ‘216 ‘ 920 [[o12 ‘216‘ 920
SCS [HEK12] 60| 80/100| 72| 98| 126
Circuit-Phasing [PSSZ15]|| 5| 5| 5| 6| 7| 7
Hashing + SCS [FNO18§] -1 42| 36| -| 54| 51
2D CH [PSWW1§] 5 5| 5| 6/ 7| 7
Our Protocols 6/ 6/ 6| 6/ 7 7

7.4 Runtime Comparison

In this section we compare the runtimes of different PSI protocols. In Sect. 7.2
we conducted experiments for polynomial interpolation, the main new part of
our protocol, and we show below that this step takes only a small fraction of the
total runtime. We also implemented our most efficient protocol (see Sect. 5.2).5
In addition, we estimate the runtime of our less efficient basic protocol (see

5 Our implementation is available at https://github.com/encryptogroup/OPPRF-PSI.

https://github.com/encryptogroup/OPPRF-PSI

148 B. Pinkas et al.

Sect.4.1) and the protocol with linear communication overhead (see Sect.5)
based on the experiments of the interpolation procedure and rigorous estimations
from previous works.

Previous Work. As we have seen in the analysis of the communication over-
head in Sect. 7.3, our protocols provide better improvements to performance in
the case of arbitrary bitlengths. The previous work of [PSWW18] gave runtimes
only for fixed bitlength of 32 bits in [PSWW18, Table 4]. Therefore, we extrap-
olate the runtimes of the previous protocols from fixed bitlength to arbitrary
bitlength based on the circuit sizes given in [PSWW18, Table 3]. The estimated
runtimes are given in Table 5. The LAN setting is a 1 Gbit/s network with round-
trip time of 1 ms and the WAN setting is a 100 Mbit/s network with round-trip
time of 100 ms. Runtimes were not presented in [FNO18], but since their circuit
sizes and depths are substantially larger than those of [PSWW18] (cf. Tables 3
and 4), their runtimes will also be substantially higher than those of [PSWW18].

Our Implementation. We implemented and benchmarked our most efficient
no-stash OPPRF-based PSI protocol (see Sect.5.2) on two commodity PCs
with an Intel Core i7-4770K CPU. We instantiated our protocol with secu-
rity parameter x = 128 bits, K = 3 hash functions, B = 1.27n bins, and no
stash (see Sect.5.2). Our OPPRF implementation is based on the OPRF pro-
tocol of [PSZ18].” For the secure circuit evaluation, we used the ABY frame-
work [DSZ15]. The run-times are averaged over 50 executions. The results are
described in Table 5.

Comparison with PSI Protocols. As a baseline, we compare our perfor-
mance with specific protocols for computing the intersection itself. (However, as
is detailed in Sect. 1.2, our protocol is circuit-based and therefore has multiple
advantages compared to specific PSI protocols). Our best protocol is slower by a
factor of 41x than today’s fastest PSI protocol of [KKRT16] for n = 22° elements
in the WAN setting (cf. Table5).

Comparison with Public Key-Based PSI Variant Protocols. Our circuit-
based protocol is substantially faster than previous public key-based protocols
for computing variants of PSI, although they have similar asymptotic linear com-
plexity. As an example, consider comparing whether the size of the intersection
is greater than a threshold (PSI-CAT). In our protocol, we can compute the
PSI-CAT functionality by extending the PSI circuit of Table5 with a Hamming
distance circuit (which, using the size-optimal construction of [BP06], adds less
than n AND gates). The final comparison with the threshold adds another log, n

" This OPRF protocol has communication that is higher by 10% to 15% than the
communication of the OPRF protocol of [KKRT16]. But since OPRF requires less
than 3% of the total communication, this additional cost is negligible in our protocol.

Efficient Circuit-Based PSI with Linear Communication 149

Table 5. Total run-times in ms for PSI variant protocols on n elements of arbitrary
bitlength using GMW [GMW387] for secure circuit evaluation and one thread. Numbers
for all but our protocols are based on [PSWW18]. The best values for generic circuit-
based PSI protocols are marked in bold.

Network| LAN WAN
Protocol n=| 212 | 216 [920 212 216 220
Special-purpose PSI protocols (as baseline)
DH/ECC PSI 3296 49010 7904054 4082 51866 8008771
[Sha80, Mea86, DGT12]
BaRK-OPRF [KKRT16] 113 295 3882 540| 1247 14604
Generic circuit-based PSI protocols
Circuit-Phasing [PSSZ15] 7825 67292 1126848 37380 327976 4850571
2D CH [PSWW18] 5031 25960 336134 22796 129436 1512505
Ours Basic Sect. 4.1 (estimated) 2908 13767 182204 12934 63861 752695
Ours Advanced Sect. 5 (estimated) 1674 9763 148436 7372 43675 597885
Ours No-Stash Sect. 5.2, Total 1199 8 486 120731 5910 22134 261 481
Breakdown:
OPRF 724 (60%)1097 (13%)| 5844 (5%)| 2867 (49%)| 4164 (19%)| 26121 (10%)
Polynomial interpolation 183 (15%)2809 (33%)45335 (38%)|| 183 (3%)| 2809 (13%) 45335 (17%)
Polynomial transmission 16 (1%)| 145 (2%)| 667 (0%)| 816 (13%) 1079 (5%) 4012 (2%)
Polynomial evaluation 58 (5%)[1344 (16%)21768 (18%) 58 (1%)| 1344 (6%) 21768 (8%)
Circuit 218 (18%)3091 (36%)47117 (39%)| 1986 (34%) /12738 (57%)[164245 (63%)
Improvement over [PSWW18] 4.2x] 3.1x 2.8x| 3.9x] 5.8x] 5.8x

AND gates [BPP00] which are negligible as well. For the PSI-CAT functionality,
[ZC17] report runtimes of 779s for n = 2! elements, [HOS17] report runtimes
of 728s for n = 2! elements, and [ZC18] report runtimes of at least 138s for
n = 100 elements, whereas our protocol requires 0.52s for n = 2! elements and
0.34s for n = 100 elements. Hence, we improve over [ZC17] by a factor of 1 498x,
over [HOS17] by a factor of 1 400x, and over [ZC18] by a factor of 405x. As an
example for computing PSI-CAT with larger set sizes, our protocol requires 124 s
for n = 220 elements.

The protocol described by Google for computing ad revenues [Yunl5,Krel7]
(see Sect. 1.2) is based on the DH-based PSI protocol which is already 65x slower
than our protocol for n = 220 elements over a LAN (cf. Table5) and leaks the
intersection cardinality as an intermediate result. Here, too, our circuit would
be only slightly larger than the PSI circuit of Table 5.

Comparison with Circuit-Based PSI Protocols. As can be seen from
Table 5, our no-stash protocol from Sect. 5.2 is substantially more efficient than
our basic protocol and our linear asymptotic overhead protocol from Sect. 4.1
and Sect. 5, respectively. It improves over the best previous circuit-based PSI
protocol from [PSWW18] by factors of 4.2x to 2.8x in the LAN setting, and
by factors of 5.8x to 3.9x in the WAN setting. From the micro-benchmarks in
Table 5, we also observe that the runtimes for the polynomial interpolation are
a significant fraction of the total runtimes of our protocols (3% to 33% for the
interpolation and 1% to 18% for the evaluation). Since polynomials are indepen-
dent of each other, the interpolation and evaluation can be trivially parallelized

150 B. Pinkas et al.

for running with multiple threads, which would give this part of the computation
a speed-up that is linear in the number of physical cores of the processor.

Acknowledgements. We thank Ben Riva and Udi Wieder for valuable discussions
about this work. This work has been co-funded by the DFG within project E4 of
the CRC CROSSING and by the BMBF and the HMWK within CRISP, by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction with
the Israel National Cyber Bureau in the Prime Ministers Office, and by a grant from
the Israel Science Foundation.

References

[ADN+13]

[ALSZ13]

[BP06]

[BPPOO]

[CADT14]

[CO18]

[DC17]

[DD15]

[DGT12]

[DKT10]

Asokan, N.; et al.: CrowdShare: secure mobile resource sharing. In: Jacob-
son, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 432-440. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38980-1_27

Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivi-
ous transfer and extensions for faster secure computation. In: CCS (2013)
Boyar, J., Peralta, R.: Concrete multiplicative complexity of symmetric
functions. In: Kralovi¢, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol.
4162, pp. 179-189. Springer, Heidelberg (2006). https://doi.org/10.1007/
11821069-16

Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of
Boolean functions over the basis (A, @, 1). TCS 235(1), 43-57 (2000)

H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor. For your phone only:
custom protocols for efficient secure functionevaluation on mobile devices.
Secur. Commun. Netw. 7(7) (2014)

Ciampi, M., Orlandi, C.: Combining private set-intersection with secure
two-party computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018.
LNCS, vol. 11035, pp. 464-482. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98113-0_25

Davidson, A., Cid, C.: An efficient toolkit for computing private set oper-
ations. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343,
pp. 261-278. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59870-3-15

Debnath, S.K., Dutta, R.: Secure and efficient private set intersection
cardinality using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC
2015. LNCS, vol. 9290, pp. 209-226. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-23318-5_12

De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of
cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R.,
Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218-231. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5_17

De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set
intersection protocols secure in malicious model. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 213-231. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_13

https://doi.org/10.1007/978-3-642-38980-1_27
https://doi.org/10.1007/978-3-642-38980-1_27
https://doi.org/10.1007/11821069_16
https://doi.org/10.1007/11821069_16
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-59870-3_15
https://doi.org/10.1007/978-3-319-59870-3_15
https://doi.org/10.1007/978-3-319-23318-5_12
https://doi.org/10.1007/978-3-319-23318-5_12
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-17373-8_13

[DSMRY09)]

[DSZ15]

[DT10]

[Dwo06]
[EFLL12]

[FHNP16]

[FIPRO5]

[FNO18]

[FNP04]

[GM11]

[GMW87]

[GonS1]
[HCE11]
[HEK12]

[HEKM11]

[HN10]

[HOS17]

[TKN+17]

Efficient Circuit-Based PSI with Linear Communication 151

Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust
private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125-142. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_8
Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient
mixed-protocol secure two-party computation. In: NDSS (2015)

De Cristofaro, E., Tsudik, G.: Practical private set intersection proto-
cols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052,
pp. 143-159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14577-3-13

Dwork, C.: Differential privacy. In: ICALP (2006)

Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: SCAPI: the
secure computation application programming interface. Cryptology ePrint
Archive, Report 2012/629 (2012)

Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersec-
tion with simulation-based security. J. Cryptol. 29(1), 115-155 (2016)
Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and
oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 303-324. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30576-7_17

Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with lin-
ear communication from general assumptions. Cryptology ePrint Archive,
Report 2018/238 (2018)

Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set
intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 1-19. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3_1

Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 576-587. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_46
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: STOC
(1987)

Gonnet, G.H.: Expected length of the longest probe sequence in hash code
searching. J. ACM 28(2), 289-304 (1981)

Huang, Y., Chapman, P., Evans, D.: Privacy-preserving applications on
smartphones. In: Hot Topics in Security (HotSec) (2011)

Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled cir-
cuits better than custom protocols? In: NDSS (2012)

Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party com-
putation using garbled circuits. In: USENIX Security (2011)

Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious
adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 312-331. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7_19

Hallgren, P., Orlandi, C., Sabelfeld, A.: PrivatePool: privacy-preserving
ridesharing. In: Computer Security Foundations Symposium (CSF') (2017)
Ton, M., et al.: Private intersection-sum protocol with applications to
attributing aggregate ad conversions. Cryptology ePrint Archive, Report
2017/738 (2017)

https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-13013-7_19

152 B. Pinkas et al.

[TKNPO3]

[KKRT16]

[KLS+17]

[KM18]

[KMP+17]

[KMW09)

[Krel7]
[Krel8]

[KS08]

[LWN-+15]
[Mea86]
[MR95]

[PROL]

[PSSZ15]

[PSWW18]

[PSZ14]

[PSZ18]

[RA1S]

[RR17a]

[RR17b]

Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 145-161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45146-4-9

Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched
oblivious PRF with applications to private set intersection. In: CCS (2016)
Kiss, A., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set inter-
section for unequal set sizes with mobile applications. PoPETs 2017(4),
177-197 (2017)

Kushilevitz, E., Mour, T.: Sub-logarithmic distributed oblivious RAM
with small block size. CoRR, abs/1802.05145 (2018)

Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical
multi-party private set intersection from symmetric-key techniques. In:
CCS (2017)

Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo
hashing with a stash. SIAM J. Comput. 39(4), 1543-1561 (2009)
Kreuter, B.: Secure multiparty computation at Google. In: RWC (2017)
Kreuter, B.: Techniques for Scalable Secure Computation Systems. Ph.D.
thesis, Northeastern University (2018)

Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damgard, 1., Goldberg, L.A., Halldérsson,
M.M., Ingdlfsdéttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol.
5126, pp. 486-498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3_40

Liu, C., Wang, X. S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a program-
ming framework for secure computation. In: S&P (2015)

Meadows, C.: A more efficient cryptographic matchmaking protocol for
use in the absence of a continuously available third party. In: S&P (1986)
Motwani, R., Raghavan, P.: Randomized Algorithms (1995)

Pagh, R., Rodler, F.F.: Cuckoo hashing. In: auf der Heide, F.M. (ed.)
ESA 2001. LNCS, vol. 2161, pp. 121-133. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44676-1_10

Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private
set intersection using permutation-based hashing. In: USENIX Security
(2015)

Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based
PSI via cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10822, pp. 125-157. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7_5

Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based
on OT extension. In: USENIX Security (2014)

Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection
based on OT extension. TOPS 21(2), 7 (2018)

Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersec-
tion. In: FC (2018)

Rindal, P.; Rosulek, M.: Improved private set intersection against mali-
cious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 235-259. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56620-7_9

Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual
execution. In: CCS (2017)

https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-319-56620-7_9

[Shag0]

[SZ13]

[Yao86]
[Yunl5]

[ZC17]
[ZC18]

[ZRE15]

Efficient Circuit-Based PSI with Linear Communication 153

Shamir, A.: On the power of commutativity in cryptography. In: de
Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582—
595. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-
2_100

Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party com-
putation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS,
vol. 7859, pp. 275-292. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39884-1_23

Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)
Yung, M.: From mental poker to core business: why and how to deploy
secure computation protocols? In: CCS (2015)

Zhao, Y., Chow, S.S.M.: Are you the one to share? Secret transfer with
access structure. PoOPETs 2017(1), 149-169 (2017)

Zhao, Y., Chow, S.S.M.: Can you find the one for me? Privacy-preserving
matchmaking via threshold PSI. In: WPES (2018)

Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole: reducing
data transfer in garbled circuits using half gates. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220-250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8

https://doi.org/10.1007/3-540-10003-2_100
https://doi.org/10.1007/3-540-10003-2_100
https://doi.org/10.1007/978-3-642-39884-1_23
https://doi.org/10.1007/978-3-642-39884-1_23
https://doi.org/10.1007/978-3-662-46803-6_8

q

Check for
updates

An Algebraic Approach to Maliciously
Secure Private Set Intersection

Satrajit Ghosh!®™) and Tobias Nilges?

! Department of Computer Science, Aarhus University, Aarhus, Denmark
satrajit@cs.au.dk
2 ITK Engineering GmbH, Riilzheim, Germany

Abstract. Private set intersection (PSI) is an important area of research
and has been the focus of many works over the past decades. It describes
the problem of finding an intersection between the input sets of at least
two parties without revealing anything about the input sets apart from
their intersection.

In this paper, we present a new approach to compute the intersection
between sets based on a primitive called Oblivious Linear Function Eval-
uation (OLE). On an abstract level, we use this primitive to efficiently
add two polynomials in a randomized way while preserving the roots of
the added polynomials. Setting the roots of the input polynomials to be
the elements of the input sets, this directly yields an intersection pro-
tocol with optimal asymptotic communication complexity O(mk). We
highlight that the protocol is information-theoretically secure against a
malicious adversary assuming OLE.

We also present a natural generalization of the 2-party protocol for
the fully malicious multi-party case. Our protocol does away with expen-
sive (homomorphic) threshold encryption and zero-knowledge proofs.
Instead, we use simple combinatorial techniques to ensure the security. As
a result we get a UC-secure protocol with asymptotically optimal com-
munication complexity O((n*+mnm)k), where n is the number of parties,
m is the set size and k is the security parameter. Apart from yielding
an asymptotic improvement over previous works, our protocols are also
conceptually simple and require only simple field arithmetic. Along the
way we develop techniques that might be of independent interest.

1 Introduction

Private set intersection (PSI) has been the focus of research for decades and
describes the following basic problem. Two parties, Alice and Bob, each have a

S. Ghosh—Supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement #669255 (MPCPRO), the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement #731583 (SODA)
and the Independent Research Fund Denmark project BETHE.

T. Nilges—Part of the research leading to these results was done while the author was
at Aarhus University. Supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement #669255 (MPCPRO).

© International Association for Cryptologic Research 2019

Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 154-185, 2019.
https://doi.org/10.1007/978-3-030-17659-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17659-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-17659-4_6

An Algebraic Approach to Maliciously Secure Private Set Intersection 155

set Sa and Sg, respectively, and want to find the intersection Sn = Sa N Sg of
their sets. This problem is non-trivial if both parties must not learn anything
but the intersection. There are numerous applications for PSI from auctions [29]
over advertising [32] to proximity testing [30].

Over the years several techniques for two-party PSI have been proposed,
which can be roughly placed in four categories: constructions built from specific
number-theoretic assumptions [8,9,21,23,28,38], using garbled circuits [20,32],
based on oblivious transfer (OT) [10,26,31,33-36] and based on oblivious polyno-
mial evaluation (OPE) [7,12,13,17,18]. There also exists efficient PSI protocols
in server-aided model [24].

Some of these techniques translate to the multi-party setting. The first
(passively secure) multi-party PSI (MPSI) protocol was proposed by Freed-
man et al. [13] based on OPE and later improved in a series of works [5,25,37]
to achieve full malicious security. Recently, Hazay and Venkitasubramaniam [19]
proposed new protocols secure against semi-honest and fully malicious adver-
saries. They improve upon the communication efficiency of previous works by
designating a central party that runs a version of the protocol of [13] with all
other parties and aggregates the results.

Given the state of the art, it remains an open problem to construct a protocol
with asymptotically optimal communication complexity in the fully malicious
multi-party setting. The main reason for this is the use of zero-knowledge proofs
and expensive checks in previous works, which incur an asymptotic overhead
over passively secure solutions.

In a concurrent and independent work, Kolesnikov et al. [27] presented a new
paradigm for solving the problem of MPSI from oblivious programmable pseu-
dorandom functions (OPPRF). Their approach yields very efficient protocols for
multi-party PSI, but the construction achieves only passive security against n—1
corruptions. However, their approach to aggregate the intermediate results uses
ideas similar to our masking scheme in the multi-party case.

1.1 Our Contribution

We propose a new approach to (multi-party) private set intersection based on
oblivious linear function evaluation (OLE). OLE allows two mutually distrusting
parties to evaluate a linear function ax + b, where the sender knows a and b,
and the receiver knows x. Nothing apart from the result az + b is learned by
the receiver, and the sender learns nothing about . OLE can be instantiated in
the OT-hybrid model from a wide range of assumptions with varying communi-
cation efficiency, like LPN [1], Quadratic/Composite Residuosity [22] and Noisy
Encodings [14,22], or even unconditionally [22].

Our techniques differ significantly from previous works and follow a new
paradigm which leads to conceptually simple and very efficient protocols. Our
approach is particularly efficient if all input sets are of similar size. To showcase
the benefits of our overall approach, we also describe how our MPSI protocol
can be modified into a threshold MPSI protocol.

156 S. Ghosh and T. Nilges

Concretely, we achieve the following:

— Two-party PSI with communication complexity O(mx) and computational
cost of O(mlogm) multiplications. The protocol is information theoretically
secure against a malicious adversary in the OLE-hybrid model.

— UC-secure Multi-party PSI in fully malicious setting with communication
complexity O((n? + nm)r) and computational complexity dominated by
O(nmlogm) multiplications for the central party and O(mlogm) multipli-
cations for other parties.

— A simple extension of the multi-party PSI protocol to threshold PSI, with
the same complexity. To the best of our knowledge, this is the first actively
secure threshold multi-party PSI protocol.!

In comparison to previous works which rely heavily on exponentiations in
fields or groups, our protocols require only field addition and multiplication
(and OWF in the case of MPSI).

If we compare our result with the asymptotically optimal 2-party PSI pro-
tocols by [8,23], which have linear communication and computation, our first
observation is that although they only have a linear number of modular expo-
nentiations, the number of field operations is not linear but rather in the order
of O(mk), and further they need a ZK proof in the ROM for each exponenti-
ation, which is also expensive. Additionally, their result is achieved with spe-
cific number-theoretic assumptions, so the parameter sizes are probably not
favourable compared to our protocol, and the construction is not black-box.
We provide a detailed comparison of the concrete efficiency of our result with
the recent protocol by Rindal and Rosulek [36], which has very good concrete
efficiency.

In the setting of MPSI, our techniques result in asymptotic efficiency improve-
ments over previous works in both communication and computational complexity
(cf. Table1).

We want to emphasize that our efficiency claims hold including the com-
munication and computation cost for the OLE, if the recent instantiation by
Ghosh et al. [14] is used, which is based on noisy Reed-Solomon codes. This
OLE protocol has a constant communication overhead per OLE if instantiated
with an efficient OT-extension protocol like [31] and therefore does not influence
the asymptotic efficiency of our result.

Our results may seem surprising in light of the information-theoretic lower
bound of O(n?mk) in the communication complexity for multi-party PSI in the
fully malicious UC setting. We circumvent this lower bound by considering a
slightly modified ideal functionality, resulting in a UC-secure solution for multi-
party PSI with asymptotically optimal communication overhead. By asymptoti-
cally optimal, we mean that our construction matches the optimal bounds in the
plain model for m > n, even for passive security, where n is the number of par-
ties, m is the size of the sets and « is the security parameter. All of our protocols
work over fields F that are exponential in the size of the security parameter k.

! Please see the full version of the paper [15].

An Algebraic Approach to Maliciously Secure Private Set Intersection 157

Table 1. Comparison of multi-party PSI protocols, where n is the number of parties,
m the size of the input set and k a security parameter. Here, THE denotes a threshold
homomorphic encryption scheme, CRS a common reference string and OPPRF an
oblivious programmable PRF. The computational cost is measured in terms of number
of multiplications. Some of the protocols perform better if the sizes of the input sets
differ significantly, or particular domains for inputs are used. The overhead described
here assumes sets of similar size, with x bit elements.

Protocol Tools Communication Computation Corruptions|Security
[27] OPPRF |O(nmk) O(nk?) n—1 semi-honest
[19] THE O(nmk) O(nmlogmk) |n—1 semi-honest
[25] THE, ZK |O(n’m?k) O(n’m +nm?k)n — 1 malicious
[5] THE, ZK |O(n?mx) O(n?m +nmk) |t <n/2 malicious
[19] CRS, THE|O((n? + nmlog m)k)|O(m?2k) n—1 malicious

Ours+ [14]||OLE O((n? + nm)k) O(nmlogm) n—1 malicious®

2Qur protocol is UC-secure in the fully malicious setting.

We believe that our approach provides an interesting alternative to existing
solutions and that the techniques which we developed can find application in
other settings as well.

1.2 Technical Overview

Abstractly, we let both parties encode their input set as a polynomial, such
that the roots of the polynomials correspond to the inputs. This is a standard
technique, but usually the parties then use OPE to obliviously evaluate the
polynomials or some form of homomorphic encryption. Instead, we devise an
OLE-based construction to add the two polynomials in an oblivious way, which
results in an intersection polynomial. Kissner and Song [25] also create an inter-
section polynomial similar to ours, but encrypted under a layer of homomorphic
encryption, whereas our technique results in a plain intersection polynomial.
Since the intersection polynomial already hides everything but the intersection,
one could argue that the layer of encryption in [25] incurs additional overhead
in terms of expensive computations and complex checks.

In our case, both parties simply evaluate the intersection polynomial on
their input sets and check if it evaluates to 0. This construction is information-
theoretically secure in the OLE-hybrid model and requires only simple field
operations. Conceptually, we compute the complete intersection in one step. In
comparison to the naive OPE-based approach?, our solution directly yields an
asymptotic communication improvement in the input size. Another advantage
is that our approach generalizes to the multi-party setting.

We start with a detailed overview of our constructions and technical chal-
lenges.

2 Here we mean an OPE is used for each element of the receiver’s input set. This can
be circumvented by clever hashing strategies, e.g. [13,19].

158 S. Ghosh and T. Nilges

Oblivious polynomial addition from OLE. Intuitively, OLE is the general-
ization of OT to larger fields, i.e. it allows a sender and a receiver to compute
a linear function c¢(x) = ax + b, where the sender holds a,b and the receiver
inputs x and obtains c¢. OLE guarantees that the receiver learns nothing about
a, b except for the result ¢, while the sender learns nothing about z.

Based on this primitive, we define and realize a functionality OPA that allows
to add two polynomials in such a way that the receiver cannot learn the sender’s
input polynomial, while the sender learns nothing about the receiver’s polyno-
mial or the output. We first describe a passively secure protocol. Concretely,
assume that the sender has an input polynomial a of degree 2d, and the receiver
has a polynomial b of degree d. The sender additionally draws a uniformly ran-
dom polynomial r of degree d. Both parties point-wise add and multiply their
polynomials, i.e. they evaluate their polynomials over a set of 2d + 1 distinct
points «g,...,as4+1, resulting in a; = a(wa;),b; = b(ey;) and r; = r(q;) for
i € [2d 4+ 1]. Then, for each of 2d + 1 OLEs, the sender inputs r;, a;, while the
receiver inputs b; and thereby obtains ¢; = r;b; +a;. The receiver interpolates the
polynomial ¢ from the 2d+1 («;, ¢;) and outputs it. Since we assume semi-honest
behaviour, the functionality is realized by this protocol.

The biggest hurdle in achieving active security for the above protocol lies in
ensuring a non-zero b and r as input. Otherwise, e.g. if b = 0, the receiver could
learn a. One might think that it is sufficient to perform a coin-toss and verify
that the output satisfies the supposed relation, i.e. pick a random z, compute
a(z),b(z),r(z) and c(z) and everyone checks if b(z)r(x) + a(z) = ¢(z) and if
b(z),r(z) are non-zero®. For r(z) # 0, the check is actually sufficient, because r
must have degree at most d, otherwise the reconstruction fails, and only d points
of r can be zero (r = 0 would require 2d+1 zero inputs). For b # 0, however, just
checking for b(z) # 0 is not sufficient, because at this point, even if the input
b # 0, the receiver can input d zeroes in the OLE, which in combination with the
check is sufficient to learn a completely. We resolve this issue by constructing an
enhanced OLE functionality which ensures that the receiver input is non-zero.
We believe that this primitive is of independent interest and describe it in more
detail later in this section.

Two-party PSI from OLE. Let us first describe a straightforward two-party
PSI protocol with one-sided output from the above primitive. Let Sa and Sg
denote the inputs for Alice and Bob, respectively, where |Sp| = m. Assuming
that Bob is supposed to get the intersection, they pick random pa and pg with
the restriction that pp(y) = 0 for v € Sp. As they will use OPA, deg pa = 2m,
while deg pg = m. Further, Alice picks a uniformly random polynomial ra of
degree m and inputs pa,ra into OPA. Bob inputs pg, obtains pn = pa + Psra
and outputs all v; € Sg for which pn(v;) = 0. Obviously, ra does not remove
any of the roots of pg, and therefore all points v where pg(y) = 0 = pa(y)
remain in pn.

3 Since this check leaks some information about the inputs, we have to perform the
check in a secure manner.

An Algebraic Approach to Maliciously Secure Private Set Intersection 159

However, as a stepping stone for multi-party PSI, we are more interested
in protocols that provide output to both parties. If we were to use the above
protocol and simply announce pn to Alice, then Alice could learn Bob’s input.
Therefore we have to take a slightly different approach. Let ua be an additional
random polynomial chosen by Alice. Instead of using her own input in the OPA,
Alice uses ra,ua, which gives sg = up + pgra to Bob. Then they run another
OPA in the other direction, i.e. Bob inputs rg,ug and Alice pa. Now, both
Alice and Bob have a randomized “share” of the intersection, namely s and
sg, respectively. Adding sa and sg yields a masked but correct intersection. We
still run into the problem that sending either sg to Alice or sa to Bob allows the
respective party to learn the other party’s input. We also have to use additional
randomization polynomials rj,, rg to ensure privacy of the final result.

Our solution is to simply use the masks u to enforce the addition of the two
shares. Let us fix Alice as the party that combines the result. Bob computes s =
sg — ug + perg and sends it to Alice. Alice computes pn = Sg + Sa — Ua + PAT).
This way, the only chance to get rid of the blinding polynomial ug is to add both
values. But since each input is additionally randomized via the r polynomials,
Alice cannot subtract her own input from the sum. Since the same also holds
for Bob, Alice simply sends the result to Bob.

The last step is to check if the values that are sent and the intersection
polynomial are consistent. We do this via a simple coin-toss for a random x,
and the parties evaluate their inputs on x and can abort if the relation pn =
pe(ra +rg) + pa(ry + rg) does not hold, i.e. pn is computed incorrectly. This
type of check enforces semi-honest behaviour, and was used previously e.g. in [2].

A note on the MPSI functionality. We show that by slightly modifying
the ideal functionality for multi-party PSI we get better communication effi-
ciency, without compromising the security at all. A formal definition is given
in Sect. 6.1. Typically, it is necessary for the simulator to extract all inputs from
the malicious parties, input them into the ideal functionality, and then continue
the simulation with the obtained ideal intersection. In a fully malicious setting,
however, this requires every party to communicate in O(mk) with every other
party—otherwise the input is information-theoretically undetermined and can-
not be extracted—which results in O(n?mx) communication complexity.

The crucial observation here is that in the setting of multi-party PSI, an
intermediate intersection between a single malicious party and all honest parties
is sufficient for simulation. This is due to the fact that inputs by additional
malicious parties can only reduce the size of the intersection, and as long as
we observe the additional inputs at some point, we can correctly reduce the
intersection in the ideal setting before outputting it. On a technical level, we
no longer need to extract all malicious inputs right away to provide a correct
simulation of the intersection. Therefore, it is not necessary for every party to
communicate in O(mk) with every other party. Intuitively, the intermediate
intersection corresponds to the case where all malicious parties have the same

160 S. Ghosh and T. Nilges

input. We therefore argue that the security of this modified setting is identical
to standard MPSI up to input substitution of the adversary.*

Multi-party PSI. The multi-party protocol is a direct generalization of the
two-party protocol, with some small adjustments. We consider a network with
a star topology, similar to the recent result of [19]. One party is set to be the
central party, and all other parties (mainly) interact with this central party to
compute the result. The main idea here is to delegate most of the work to the
central party, which in turn allows to reduce the communication complexity.
Since no party is supposed to get any intermediate intersections, we let each
party create an additive sharing of their intersection with the central party.

First, consider the following (incorrect) toy example. Let each party P; exe-
cute the two-party PSI as described above with Py, up to the point where both
parties have shares S}U,S’Pi. All parties P; send their shares s’Pi to Py, who
adds all polynomials and broadcasts the output. By design of the protocols and
the inputs, this yields the intersection of all parties. Further, the communica-
tion complexity is in O(nmk), which is optimal. However, this protocol also
allows Pj to learn all intermediate intersections with the other parties, which
is not allowed. Previously, all maliciously secure multi-party PSI protocols used
threshold encryption to solve this problem, and indeed it might be possible to use
a similar approach to ensure active security for the above protocol. For exam-
ple, a homomorphic threshold encryption would allow to add all these shares
homomorphically, without leaking the intermediate intersections. But thresh-
old encryption incurs a significant computational overhead (and increases the
complexity of the protocol and its analysis) which we are unwilling to pay.

Instead, we propose a new solution which is conceptually very simple. We add
another layer of masking on the shares sp,, which forces P to add all intermedi-
ate shares—at least those of the honest parties. For this we have to ensure that
the communication complexity does not increase, so all parties exchange seeds
(instead of sending random polynomials directly), which are used in a PRG to
mask the intermediate intersections. This technique is somewhat reminiscent of
the pseudorandom secret-sharing technique by Cramer et al. [6]. We emphasize
that we do not need any public key operations.

Concretely, all parties exchange a random seed and use it to compute a
random polynomial in such a way that every pair of parties P;, P; holds two
polynomials v;;, vj; with v;; +v;; = 0. Then, instead of sending s’Pi, each party
P; computes s}, = s’ + > v;; and sends this value. If Py obtains this value, it
has to add the values S'F’,i of all parties to remove the masks, otherwise s}’,i will
be uniformly random.

Finally, to ensure that the central party actually computed the aggregation,
we add a check similar to two-party PSI, where the relation, i.e. computing the
sum, is verified by evaluating the inputs on a random value x which is obtained
by a multi-party coin-toss.

4 Our multi-party PSI functionality uses similar idea as augmented semi-honest multi-
party PSI as in previous works [27].

An Algebraic Approach to Maliciously Secure Private Set Intersection 161

Threshold (M)PSI. We defer the threshold extensions to the full version of
this paper [15] and only give a very brief technical overview.

First of all, we clarify the term threshold PSI. We consider the setting where
all parties have m elements as their input, and the output is only revealed if the
intersection of the inputs among all parties is bigger than a certain threshold
¢. In [16] Hallgren et al. defined this notion for two party setting, and finds
application whenever two entities are supposed to be matched once a certain
threshold is reached, e.g. for dating websites or ride sharing.

We naturally extend the idea of threshold PSI from [16] to the multi-party
setting and propose the first actively secure threshold multi-party PSI protocol.
On a high level, our solution uses a similar idea to [16], but we use completely
different techniques and achieve stronger security and better efficiency. The main
idea is to use a robust secret sharing scheme, and the execution of the protocol
basically transfers a subset of these shares to the other parties, one share for
each element in the intersection. If the intersection is large enough, the parties
can reconstruct the shared value.

Specifically, the trick is to modify the input polynomials of each party P; for
the MPSI protocol and add an additional check. Instead of simply setting p;
such that p;(y;) = 0 for all v; € S;, we set p;(7;) = 1. Further, for each of the
random polynomials T;, ¥, we set T;(v;) = p; and ¥j(v;) = pj, where p1,..., pn,
o4, .., pl, are the shares of two robust (¢, n)-secret sharings of random values s?
and s}, respectively. Now, by computing the modified intersection polynomial
Pn as before, each party obtains exactly mn = |Sn| shares, one for each v; € S;.

Now if mn > ¢ then each party can reconstruct rn = > i, (s + s}). Other-
wise the intersection remains hidden completely. We omitted some of the details
due to the space constraints and refer to the full version [15].

A New Flavour of OLE. One of the main technical challenges in constructing
our protocols is to ensure a non-zero input into the OLE functionality by the
receiver. Recall that an OLE computes a linear function az + b. We define an
enhanced OLE functionality (cf. Sect.3) which ensures that x # 0, otherwise
the output is uniformly random. Our protocol which realises this functionality
makes two black-box calls to a normal OLE and is otherwise purely algebraic.

Before we describe the solution, let us start with a simple observation. If the
receiver inputs x = 0, an OLE returns the value b. Therefore, it is critical that
the receiver cannot force the protocol to output b. One way to achieve this is
by forcing the receiver to multiply b with some correlated value via an OLE,
let’s call it . Concretely, we can use an OLE where the receiver inputs and
a random s, while the sender inputs b and obtains &b + s. Now if the sender
uses a + bx + 5,0 as input for another OLE, where the receiver inputs z, the
receiver obtains azx + bix + sz. Which means that if & = ! then the receiver
can extract the correct output. This looks like a step in the right direction, since
for x = 0 or & = 0, the output would not be b. On the other hand, the receiver
can now force the OLE to output a by choosing & = 0 and = = 1, so maybe we
only shifted the problem.

162 S. Ghosh and T. Nilges

The final trick lies in masking the output such that it is uniform for incon-
sistent inputs z,Z. We do this by splitting b into two shares that only add
to b if x - & = 1. The complete protocol looks like this: the receiver plays
the sender for one OLE with input 2~!, s, and the sender inputs a random
u to obtain t = x 'u 4+ s. Then the sender plays the sender for the sec-
ond OLE and inputs ¢ + a,b — u, while the receiver inputs = and obtains
d={t+a)r+b—u=ur"tz+sr+axr+b—u=ar+b+ sz, from which the
receiver can subtract sx to get the result. A cheating receiver with inconsistent
input z*, 2* will get ax + b + u(xz*z* — 1) as an output, which is uniform over
the choice of w.

2 Preliminaries

We assume |F| € 0(2%), where k is a statistical security parameter. Typically,
x € F denotes a field element, while p € F[X] denotes a polynomial. Let Mg(p)
denote the zero-set for p € F[X], i.e. Vo € My(p),p(z) = 0.

In the proofs, & denotes an element either extracted or simulated by the
simulator, while z* denotes an element sent by the adversary.

We slightly abuse notation and denote by v = PRG,(s) the deterministic
pseudorandom polynomial of degree d derived from evaluating PRG on seed s.

2.1 Security Model

We prove our protocol in the Universal Composability (UC) framework [4]. In
the framework, security of a protocol is shown by comparing a real protocol 7
in the real world with an ideal functionality F in the ideal world. F is supposed
to accurately describe the security requirements of the protocol and is secure
per definition. An environment Z is plugged either to the real protocol or the
ideal protocol and has to distinguish the two cases. For this, the environment
can corrupt parties. To ensure security, there has to exist a simulator in the
ideal world that produces a protocol transcript indistinguishable from the real
protocol, even if the environment corrupts a party. We say m UC-realises F if for
all adversaries A in the real world there exists a simulator S in the ideal world
such that all environments Z cannot distinguish the transcripts of the parties’
outputs.

Oblivious Linear Function Evaluation. Oblivious Linear Function Evalua-
tion (OLE) is the generalized version of OT over larger fields. The sender has
as input two values a,b € F that determine a linear function f(z) =a-z+0b
over F, and the receiver gets to obliviously evaluate the linear function on input
2 € F. The receiver will learn only f(z), and the sender learns nothing at all.
The ideal functionality is shown in Fig. 1.

2.2 Technical Lemmas

We state several lemmas which are used to show the correctness of our PSI
protocols later on.

An Algebraic Approach to Maliciously Secure Private Set Intersection 163

Lemma 2.1. Let p,q € F[X] be non-trivial polynomials. Then,
Mo(p) N Mo(p + q) = Mo(p) N Mo(q) = Mo(q) N Mo(p + q).

This lemma shows that the sum of two polynomials contains the intersection
with respect to the zero-sets of both polynomials.

Functionality]:OLE

1. Upon receiving a message (inputS, (a,b)) from the sender with a,b € F, verify
that there is no stored tuple, else ignore that message. Store a and b and send a
message (input) to A.

2. Upon receiving a message (inputR,z) from the receiver with x € F, verify that
there is no stored tuple, else ignore that message. Store z and send a message
(input) to A.

3. Upon receiving a message (deliver,S) from A, check if both (a,b) and z are
stored, else ignore that message. Send (delivered) to the sender.

4. Upon receiving a message (deliver,R) from A, check if both (a,b) and x are
stored, else ignore that message. Set y = a - x + b and send (output,y) to the
receiver.

Fig. 1. Ideal functionality for oblivious linear function evaluation.

Proof. Let Mn = Mo(p) N Mo(q).

“D7:Vx € Mn: p(z) = q(z) = 0. But p(z) + q(z) =0, so 2 € My(p + q).

“ C 7: Tt remains to show that there is no x such that x € My(p)NMo(p+q)
but x ¢ Mn, i.e. Mo(p) N (Mo(p+q)\ Mn) = 0. Similarly, Mo(q) N (Mo(p +
q) \ Mpn) = 0.

Assume for the sake of contradiction that Mo(p) N (Mo(p +q) \ Mn) # 0.
Let x € My(p) N (Mo(p + @) \ Mp). Then, p(z) = 0, but q(z) # 0, otherwise
x € Mp. But this means that p(x) + q(z) # 0, ie. x ¢ My(p + q). This
contradicts our assumption, and we get that Mo(p) N (Mo(p +q) \ Mn) = 0.

Symmetrically, we get that Mo(q) N (Mo(p + q) \ Mn) = 0. The claim
follows. O

Lemma 2.2. Let d € poly(log|F|). Let p € F[X], deg(p) = d be a non-trivial
random polynomial with Prlz € My(p)] < negl(|F|) for all . Then, for all
di,---,q € F[X] with deg(q;) < d,

l l
Pr((Mo(p) N Mo(3_ ai +p)) # (Mo(p) N () Mo(a:))] < negl(|F).

=1 i=1

This lemma is basically an extension of Lemma 2.1 and shows that the sum of
several polynomials does not create new elements in the intersection unless the
supposedly unknown zero-set of p can be guessed with non-negligible probability.

164 S. Ghosh and T. Nilges

Proof. “C”: We first observe that ﬂizl Mo(ai) C MQ(Zi:I q;): it holds that
for all z € ﬂézl Mo(a;), qi(z) = 0 for i € [I]. Tt follows that Zézl q;(z) =0,
ie x € Mo(Zizl qi)-

“D”: Assume for the sake of contradiction that

l 1
(Mo(p) N MO(Z q;) +p) # (Mo(p) N ﬂ Mo(ai))
i=1 i=1

with non-negligible probability e. Let M = Mo(3'_; @i + p) \ =, Mo(a).

Then with probability at least €, the set M is not empty. Further, we can
bound | M| < d. Pick a random = € M. It now holds that Pr[z € My(p)] > €/d,
which directly contradicts our assumption that for an unknown p the probability
of guessing x € My(p) is negligible over choice of p. The claim follows. O

Lemma 2.3. Let d,d’ € poly(log|F|). Let r € F[X], deg(r) = d be a uniformly
random polynomial. For all non-trivial p € F[X], deg(p) = d’,
Pr [(Mo(r) N Mo(p)) # 0] < negl(|FF]).

ref[X]

This lemma establishes that the intersection of a random polynomial with
another polynomial is empty except with negligible probability.

Proof. This follows from the fundamental theorem of algebra, which states that
a polynomial of degree d evaluates to 0 in a random point only with probability

Since r (and therefore all z € Mg(r)) is uniformly random and | My (r)| = d,
while |[My(p)| = d’, we get that

Pr[(Mo(r) N Mo(p)) # 0] < dd'/|F|.
O

Lemma 2.4. Let d € poly(log |F|). Let p € F[X], deg(p) = d be a fized but
unknown non-trivial polynomial. Further let v € F[X], deg(r) = d be a uniformly
random polynomial. For all non-trivial q,s € F[X] with deg(q) < d and deg(s) <
d,

Pr_[(Mo(p) N Mo(ps +rq)) # (Mo(p) N Mo(q))] < negl(|F|).

ref[X]

This lemma shows that the multiplication of (possibly maliciously chosen)
polynomials does not affect the intersection except with negligible probability,
if one random polynomial is used.

Proof.
Mo(p) N Mo(ps +rq) "2 > Mo(p) N (Mo(ps) N Mo(ar))

Mo(p) N ((Mo(p) U Mo(s)) N (Mo(q) UMo(r)))
Mo(p) N ((Mo(p) N Mo(q)) U (Mo(p) N Mo(r))
—_—— ———

T
U (Mo(s) N Mo(q)) U (Mo(s) N Mo(r)))

CMo(a) T2

An Algebraic Approach to Maliciously Secure Private Set Intersection 165

From Lemma 2.3 it follows that Pr[7; # 0] < d?/|F|, and also Pr[Tz # 0] <
d?/|F|. Since

Mo(p) N ((Mo(p) N Mo(q)) UMo(q)) = Mo(p) N Mo(q),

we get

Pr_[(Mo(p) N Mo(ps + rq)) # (Mo(p) N Mo(q))] < 2d°/|F|.

ref[X]

3 Enhanced Oblivious Linear Function Evaluation F, ..
In this section we present an enhanced version of the OLE functionality. The
standard OLE functionality allows the sender to input a,b, while the receiver
inputs x and obtains ax + b. For our applications, we do not want the receiver
to be able to learn b, i.e. it has to hold that x # 0. Our approach is therefore
to modify the OLE functionality in such a way that it outputs a random field
element upon receiving an input z = 0 (cf. Fig. 2). A different approach might be
to output a special abort symbol or 0, but crucially the output must not satisfy
the relation ax + b. This is a particularly useful feature, as we will show in the
next section.

Foret

1. Upon receiving a message (input$, (a,b)) from the sender with a,b € F, verify
that there is no stored tuple, else ignore that message. Otherwise, store (a,b) and
send (input) to A.

2. Upon receiving a message (inputR,z) from the receiver with x € F, verify that
there is no stored value, else ignore that message. Otherwise, store x and send
(input) to A.

3. Upon receiving a message (deliver) from A, check if both (a, b) and x are stored,
else ignore that message. If x # 0, set ¢ = ax + b, otherwise pick a uniformly
random ¢ € F and send (output, ¢) to the receiver. Ignore all further messages.

Fig. 2. Ideal functionality for the enhanced oblivious linear function evaluation.

While it might be possible to modify existing OLE protocols in such a way
that a non-zero input is guaranteed, we instead opt to build a protocol black-box
from the standard OLE functionality Fq; .

We refer to the introduction for an abstract overview and a description of
the ideas of our construction. The formal description of the protocol is given
in Fig. 3.

Lemma 3.1. HOLE+ unconditionally UC-realizes Forp+ in the Forg-hybrid
model.

166 S. Ghosh and T. Nilges

Proof. The simulator against a corrupted sender simulates both instances of
FoLg- Let a1 be the sender’s input in the first OLE, and (aq, a3) be the inputs
into the second OLE. The simulator sets b = a1+ a3 and a = ag — f, where
t is chosen as the uniformly random output to As of the first OLE. The sim-
ulator simply inputs (input$, (a, 5)) into F), .. Let us briefly argue that this
simulation is indistinguishable from a real protocol run. The value ¢ is indis-
tinguishable from a valid ¢, since the receiver basically uses a one-time-pad s
to mask the multiplication. Therefore, the sender can only change his inputs
into the OLEs. Since his inputs uniquely determine both a and 13, the extraction
by the simulator is correct and the simulation is indistinguishable from a real
protocol run.

o g+

1. Receiver (Input z € F): Pick s € F and send (inputS, (™', 5)) to the first Fop .

2. Sender (Input a,b € F): Pick v € F uniformly at random and send (inputR,u) to
the first Forp to learn t = uz~ ' + s. Send (inputS, (t + a,b — u)) to the second
Fore-

3. Receiver: Send (inputR, z) to the second Forp and obtain ¢ = ax+b+sz. Output
¢ — sz.

Fig. 3. Protocol that realizes 7, . in the Fopp-hybrid model.

Against a corrupted receiver, the simulator simulates the two instance of
FoLg and obtains the receiver’s inputs (£;,£3) and &. If & - & = 1, the simula-
tor sets & = &, sends (inputR, &) to Fj . and receives (output, c). It forwards
¢ = c+&& to Ar. If & - & # 1, the simulator sends (inputR,0) to F .+
and forwards the output c¢ to the receiver. It remains to argue that this simula-
tion is indistinguishable from the real protocol. From A’s view, the output c is
determined as

c=ubbo+als +b—u+ &l =ala + b+ u(&é — 1) + £28s.

We can ignore the last term, since it is known to A. If £&1& # 1, then u(&1&2 — 1)
does not vanish and the result will be uniform over the choice of uw. Thus, by
using & as the correct input otherwise, we extract the correct value and the
simulation is indistinguishable from the real protocol. O

4 Randomized Polynomial Addition from OLE

Concretely, we have two parties, the sender with a polynomial of degree 2d
as input and the receiver with a polynomial of degree d as input. The goal is
that the receiver obtains the sum of these two polynomials such that it cannot
learn the sender’s polynomial fully. We want to achieve this privacy property by

An Algebraic Approach to Maliciously Secure Private Set Intersection 167

using a randomization polynomial that prevents the receiving party from simply
subtracting its input from the result. This functionality is defined in Fig. 4.

Notice that we have some additional requirements regarding the inputs of the
parties. First, the degree of the inputs has to be checked, but the functionality
also makes sure that the receiver does not input a 0 polynomial, because oth-
erwise he might learn the input of the sender. Also note that the functionality
leaks some information about the sender’s polynomial. Looking ahead in the PSI
protocol, where the input of the sender is always a uniformly random 2d degree
polynomial, this leakage of the ideal functionality will not leak any non-trivial
information in the PSI protocol.

Fopa
Implicitly parameterized by d signifying the maximal input degree.

1. Upon receiving a message (inputS,(a,r)) from the sender where a,r € F[X],

check whether

—r#0

— deg(r) < d and deg(a) = 2d OR deg(r) = d and deg(a) < 2d
and ignore that message if not. Store (a,r) and send (input) to A.

2. Upon receiving a message (inputR, b) from the receiver where b € F[X], check
whether deg(b) < d and b # 0. If not, ignore that message. Otherwise, retrieve
a,r, compute s = r - b + a and send (res,s) to the receiver. Ignore all further
messages.

Fig. 4. Ideal functionality that allows to obliviously compute an addition of polynomi-
als.

It is instructive to first consider a passively secure protocol. In the semi-
honest case, both sender and receiver evaluate their input polynomials on a
set of distinct points P = {a1,..., 2441}, where d is the degree of the input
polynomials. The sender additionally picks a random polynomial r € F[X] of
degree d and also evaluates it on P.

Instead of using OLE in the “traditional” sense, i.e. instead of computing
ab + r where r blinds the multiplication of the polynomials, we basically com-
pute rb + a. This means that the sender randomizes the polynomial of the
receiver, and then adds his own polynomial. This prevents the receiver from
simply subtracting his input polynomial and learning a. In a little more detail,
sender and receiver use 2d + 1 OLEs to add the polynomials as follows: for each
i € [2d + 1], the sender inputs (r;, a;) in OLE 4, while the receiver inputs b; and
obtains s; = r;b; + a;. He then interpolates the resulting polynomial s of degree
2d using the 2d + 1 values s;.

In going from passive to active security, we have to ensure that the inputs
of the parties are correct. Here, the main difficulty obviously lies in checking
for b = 0. In fact, since Fyp, does not even leak a single point a; we have to

make sure that all b; # 0. However, this can easily be achieved by using F OLE+

168 S. Ghosh and T. Nilges

instead of F; . We also have to verify that the inputs are well-formed via a
simple polynomial check. For a more detailed overview we refer the reader to
the introduction.

The complete actively secure protocol is shown in Fig.5. Here, we use two
instances of Fp that implement a commitment and a check. We named the
first OLE that is used for a commitment to a blinding value v F&}. The check
is performed by comparing the blinded reconstructed polynomial s evaluated in
s with the inputs in this location using the second OLE denoted by .7-'CheCk 5

IIopa

Let P = {ay,...,as441},; € F be a set of distinct points and let Fore, Forg be

instances of Fopg-

1. Sender (Input a,r € F[X], deg(a) < 2d deg(r) = d): Evaluate a, r on P to obtain
(a;,7;),1 € [2d + 1]. Input (r;, a;) into F oLEt
2. Receiver (Input b € F[X], deg(b) < d): Evaluate b on P and obtain b;,7 €
[2d + 1]. Input b; into .7-'((;) . and receive s; = a; +b; - ;. Reconstruct s from the
s; and check if deg(s) < 2d, otherwise abort.
3. Consistency check: Sender picks a random z, € F and send it to the receiver.
— Receiver: Pick random u,v € F and input them into For. Further input
(bz,), —s(z,) + u) into FoeL
— Sender: Pick a random ¢ € F and input it into Fo1 5 and obtain ¢ = ut + v.
Input r(x,) into Fors and obtain r(z,)b(xs) —s(z,) + u+a(z,) = u’. Send
u’ to the receiver.
— Receiver: If v’ # u abort, otherwise send v to the sender.
— Sender: If u't + v # ¢ abort.
4. Receiver picks x, € F and runs similar consistency check with the sender.

Fig. 5. Protocol that realizes Fopa in the (F o+, Forg)-hybrid model.

Lemma 4.1. II,p, unconditionally UC-realizes Fopa in the Forg+-hybrid
model.

Proof (Sketch). Corrupted Sender. The simulator Ss against a corrupted
sender proceeds as follows. It simulates F giE + and thereby obtains (r},a}) for
all ¢ € [2d 4 1]. From these values, the simulator reconstructs & and a. It aborts
in Step 3 if deg(t) > d or deg(a) > 2d. It also aborts if & or t are zero, and
otherwise sends (input$, (&,1)) to Fopy-

The extraction of the corrupted sender’s inputs is correct if his inputs r*
corresponds to a polynomial of degree d and a* corresponds to a polynomial of
degree 2d. Thus, the only possibility for an environment to distinguish between

5 The commitment we implicitly use has been used previously in [11], as has the check
sub-protocol.

An Algebraic Approach to Maliciously Secure Private Set Intersection 169

the simulation and the real protocol is by succeeding in answering the check while
using a malformed input, i.e. a polynomial of incorrect degree or 0-polynomials.
If the polynomials have degree greater than d and 2d, respectively, the resulting
polynomial s has degree 2d + 1 instead of 2d, i.e. the receiver cannot reconstruct
the result from 2d+1 points. Since the sender learns nothing about the receiver’s
inputs, the thus incorrectly reconstructed polynomial will be uniformly random
from his point of view and the probability that his response to the challenge is
correct is 1/|F|. Also, both & and ¥ have to be non-zero, because in each case
the polynomials are evaluated in 2d + 1 points, and it requires 2d + 1 zeros as
a;,; to get a 0 polynomial. But since both a,r have degree at most 2d, there
are at most 2d roots of these polynomials. Therefore, in order to pass the check,
a(z) and b(x) would need to be 0, which is also checked for.

Corrupted Receiver. The simulator Sg against a corrupted receiver simulates
f(oliEJr and obtains b} for all ¢ € [2d + 1]. It reconstructs b and aborts the

check in Step 3 if deg(b) > d. The simulator sends (inputR,b) to Fyp, and
receives (res,$). It evaluates § on P and returns s; for the corresponding OLEs.
Sgr simulates the rest according to the protocol.

Clearly, if the corrupted receiver Agr inputs a degree d polynomial, the simu-
lator will extract the correct polynomial. In order to distinguish the simulation
from the real protocol, the adversary can either input 0 in an OLE or has to
input a polynomial of higher degree, while still passing the check. In the first
case, assume w.l.o.g. that Ag cheats in fSiE* for some j. This means Ag receives

a value §;, which is uniformly random. This means that only with probability
1/|F| will 8; satisfy the relation rb + a and the check will fail, i.e. he can lie
about u, but the commitment to u cannot be opened without knowing ¢. In
the second case, the resulting polynomial would be of degree 2d + 1, while the
receiver only gets 2d + 1 points of the polynomial. Therefore the real polynomial
is underdetermined and A can only guess the correct value §(z), i.e. the check
will fail with overwhelming probability. a

5 Maliciously Secure Two-Party PSI

In this section we provide a maliciously secure two-party PSI protocol with
output for both parties, i.e. we realize Fpg; as described in Fig. 6.

Fpst

1. Upon receiving a message (input, P, Sp) from party P € {A,B}, store the set
Sp. Once all inputs are given, set S = Sx N S and send (output, Sn) to A.

2. Upon receiving a message (deliver) from A, send (output,Sn) to the honest
party.

Fig. 6. Ideal functionality Fpg; for two-party PSI.

170 S. Ghosh and T. Nilges

HQPSI

Let m = max; |S;| + 1.

Computation of Intersection

1. Alice (Input Sa): Pick a random polynomial p, of degree m such that pa(y;) =0
for all 7; € Sa. Generate two random polynomials ra,ra of degree m and a
random polynomial u, of degree 2m.

— Input ra, ua into fgg,A.
— Input pa into féQF),A and obtain sy = parg + ug.
— Set sp = sp — up + para and send it to Bob.

2. Pg (Input Sg): Pick a random polynomial pg of degree m such that pg(7y;) =0
for all v; € Sg. Generate two random polynomials rg,rg of degree m and a
random polynomial ug of degree 2m.

— Input rg, ug into .7-"(()212/_\.
— Input pg into félF),A and obtain sg = pgra + ua.
— Upon receiving sy, compute pn = sp + sg + pgrs — ug and send it to Alice.

Output Verification

3. Alice: Pick a random za € F and send it to Bob.

4. Bob: Set ag = pg(za), Oz = rg(za) and dg = rg(xa). Pick a random zg € F and
send (g, ag, Og, dg) to Alice.

5. Alice: Check if pa(za)(8g +ra(za)) +ag(ra(za)+0g) = pPn(za), otherwise abort.
For each v; € Sa: If pn(v;) =0, add v; to Sh. Send ap = pa(zg), Ba = ra(zs)
and dp = ra(zg) to Bob. Output S-.

6. Bob: Check if aa(rg(zg) 4 0a) + Pe(2s)(Ba +ri(zs)) = pn(zg), otherwise abort.
For each v; € Sg: If pr(7;) =0, add 7, to SH. Output Sp.

Fig. 7. Protocol IIypg; UC-realises Fpgy in the Fopa-hybrid model.

We briefly sketch the protocol in the following; a more detailed overview
can be found in the introduction. First, Alice and Bob simply transform their
input sets into polynomials. Then, both compute a randomized share of the
intersection via our previously defined OPA in such a way that Alice can send
her share to Bob without him being able to learn her input. This can be achieved
by adding a simple mask to the intermediate share. Bob adds both shares and
sends the output to Alice. The protocol only requires two OPA and a simple
check which ensures semi-honest behaviour, and no computational primitives. A
formal description is given in Fig. 7.

Theorem 5.1. The protocol Il,pg; UC-realises Fpgp in the Fopa-hybrid model
with communication complexity O(mk).

Proof. Let us argue that pn = pa(ry + rg) + pe(ra + ry) actually hides the
inputs. The main observation here is that rp + rp is uniformly random as
long as one party is honest. Since pa + pg validly encodes the intersection

An Algebraic Approach to Maliciously Secure Private Set Intersection 171

Simulator Sy

Extract the inputs pa,Ta, Ga by simulating Fopa.-

Find the roots 41, ..., 4m of Pa and thereby the set Sy = {15+ s9m}-

Send (input, A, Sp) to Fpsi.

Upon receiving (output, S'm) from Fpg, pick a random degree m polynomial pg

such that pg(y) = 0 for all v € 5.

5. Use pg as input for simulating the Fopa together with random polynomials rg
and U, i.e. keep Sg = Pg - F'p + Gp and send §5 = pa - g + g to A.

6. Simulate the rest according to Ilypgr, but abort in Step 6, if after setting

=L

o = (sa + Gp — Gg — Pals)/Pa,

an # Palx), Ba # talx) or 6p # #a(x), even though the check in Step 6 would
pass.

Fig. 8. Simulator Sp against a corrupted Alice.

(see Lemma2.1), pn is uniformly random over the choice of the randomization
polynomials ra,), rg and rg, except for the roots denoting the intersection.

Corrupted Alice. We show the indistinguishability of the simulation of Sa
(cf. Fig.8). The simulator extracts Alice’s inputs and then checks for any devi-
ating behaviour. If such behaviour is detected, it aborts, even if the protocol
would succeed. Proving indistinguishability of the simulation shows that the
check in the protocol basically enforces semi-honest behaviour by Alice, up to
input substitution.

Consider the following series of hybrid games.

Hybrid 0: Realﬁ’;PSI

Hybrid 1: Identical to Hybrid 0, except that S; simulates Fyp,, learns all
inputs and aborts if af # pa(x) or 8x # fa(x), but the check is passed.
Let ai = aa + e be Aa’s check value. Then the check in Step 6 will fail
with overwhelming probability. Let o denote the outcome of the check. If Aa
behaves honestly, then

o = ap(re(z) + a) + pe(2)(Ba + ra(2)) — pn(z) = 0.
Using ay = aa + e, however, we get
o' = (an+e)(ra(2)+03)+Pe () (Br+Th () —Pr(z) = e-(ra(x)+34) # const.

This means that the outcome of the check is uniformly random from Ap’s
view over the choice of rg (or pg for Sx # ra(z)). Therefore, the check will
fail except with probability 2/|F| and Hybrids 0 and 1 are statistically close.

172 S. Ghosh and T. Nilges

Hybrid 2: Identical to Hybrid 1, except that Ss aborts according to Step 6
in Fig. 8.
An environment distinguishing Hybrids 1 and 2 must manage to send s such
that

Sa +up — Up # Pa - (FB + T))
while passing the check in Step 6 with non-negligible probability.
Let f = sif +0a — Gg — Pa - (g + Iy). We already know that f(z) = 0,
otherwise we have aj = aa + f(z) # aa (or an invalid §), and the check
fails. But since z is uniformly random, the case that f(z) = 0 happens only
with probability m/|F|, which is negligible. Therefore, Hybrid 1 and Hybrid 2
are statistically close.
Hybrid 3: Identical to Hybrid 2, except that S3 generates the inputs Sa, Sg
according to Step 5 in Fig.8 and adjusts the output. This corresponds to
Ideal$
The previous hybrids established that the inputs pa,fa are extracted cor-
rectly. Therefore, by definition, Sp = Mo(Pa). It remains to argue that
the simulated outputs are indistinguishable. First, note that the received
intersection Sn = Mo(ps) defines pg. From Lemma 2.4 it follows that
Mo(pr) = Mo(pa) N Mo(ps) = Sn w.r.t. Mo(Ps), even for a maliciously
chosen ta, i.e. the Ap cannot increase the intersection even by a single ele-
ment except with negligible probability.
Further, note that §a = pa - I's + Up is uniformly distributed over the choice
of g, and Pn is uniform over the choice of fg, .
Finally, since tg, g are uniformly random and the degree of pg is m, i.e.
max; |S;| + 1, the values dg, ﬁB and 0 are uniformly distributed as well. In
conclusion, the Hybrids 2 and 3 are statistically close.

As a result we get that for all environments Z,

An ~ Sa
ReaIH2PSI(Z) R IdeaIfPSI(Z).

Corrupted Bob. The simulator against a corrupted Bob is essentially the same
as the one against a corrupted Alice, except for a different way to check his
inputs.For the full proof we refer the reader to the full version [15] of the paper.

Efficiency. The protocol makes two calls to OPA, which in turn is based on
OLE. Overall, 2m calls to OLE are necessary in OPA. Given the recent constant
overhead OLE of Ghosh et al. [14], the communication complexity of IT,pg; lies
in O(mk).

The computational cost of the protocol is dominated by multi-point evalua-
tion of polynomials of degree m, which requires O(m log m) multiplications using
fast modular transform [3]. Note that this cost includes computational cost of
the OLE instantiation from [14]. This concludes the proof. O

An Algebraic Approach to Maliciously Secure Private Set Intersection 173

6 Maliciously Secure Multi-party PSI

6.1 Ideal Functionality

The ideal functionality for multi-party private set intersection]—";/IPSI simply
takes the inputs from all parties and computes the intersection of these inputs.
Our functionality fK/IPSI in Fig. 9 additionally allows an adversary to learn the
intersection and then possibly update the result to be only a subset of the original
result.

"
Fupst
Let A denote the set of malicious parties, and H the set of honest parties.

1. Upon receiving a message (input, P;, S;) from party P;, store the set S;. Once
all inputs ¢ € [n] are input, set S, = (7, S; and send (output, S) to A.

2. Upon receiving a message (deliver, Sr/j) from A, check if Sy C Sn. If not, set
S, = L. Send (output, Sf,) to H.

Fig. 9. Ideal functionality .7-';“:.51 for multi-party PSI.

Let us briefly elaborate on why we chose to use this modified functionality. In
the UC setting, in order to extract the inputs of all malicious parties, any hon-
est party has to communicate with all malicious parties. In particular, since the
simulator has to extract the complete input, this requires at least O(nm) commu-
nication per party for the classical MPSI functionality. In turn, for the complete
protocol, this means that the communication complexity lies in O(n?m).

Instead, we want to take an approach similar to the recent work of
Hazay et al. [19], i.e. we have one central party, and some of the work is dele-
gated to this party. This removes the need for the other parties to extensively
communicate with each other and potentially allows communication complexity
O(mn), which is asymptotically optimal in any setting. However, if we assume
that the central party and at least one additional party are corrupted, the hon-
est party does not (extensively) interact with this additional party and does not
learn its inputs; it can only learn the input of the central party. If the input set
of the other malicious party is the same as the one of the central party, the out-
put remains the same. If this input is different, however, the actual intersection
might be smaller. One might argue that this case simply corresponds to input
substitution by the malicious party, but for any type of UC simulation this poses
a problem, since the output of the honest party in the protocol might be different
from the intersection in the ideal world. Thus, Fy;pe allows a malicious party
to modify the output. Crucially, the updated intersection can only be smaller
and may not changed arbitrarily by the adversary. We believe that this weaker
multiparty PSI functionality is sufficient for most scenarios.

174 S. Ghosh and T. Nilges

6.2 Multi-party PSI from OLE

Our multi-party PSI protocol uses the same techniques that we previously
employed to achieve two-party PSI. This is similar in spirit to the approach
taken in [19], who employ techniques from the two-party PSI of [13] and apply
them in the multi-party setting. We also adopt the idea of a designated central
party that performs a two-party PSI with the remaining parties, because this
allows to delegate most of the computation to this party and saves communi-
cation. Apart from that, our techniques differ completely from [19]. Abstractly,
they run the two-party PSI with each party and then use threshold encryption
and zero-knowledge proofs to ensure the correctness of the computation. These
tools inflict a significant communication and computation penalty.

In our protocol (cf. Fig.10) we run our two-party PSI between the central
party and every other party, but we ensure privacy of the aggregation not via
threshold encryption and zero-knowledge proofs, but instead by a simple masking
of the intermediate values and a polynomial check. This masking is created in a
setup phase, where every pair of parties exchanges a random seed that is used
to create two random blinding polynomials which cancel out when added.

Once the central party receives all shares of the computation, it simply add
these shares, thereby removing the random masks. The central party broadcasts
the result to all parties. Then, all parties engage in a multi-party coin-toss and
obtain a random value z. Since all operations in the protocol are linear oper-
ations on polynomials, the parties evaluate their input polynomials on = and
broadcast the result. This allows every party to locally verify the relation and
as a consequence also the result. Here we have to ensure that a rushing adver-
sary cannot cheat by waiting for all answers before providing its own answer.
We solve this issue by simply committing to the values first, and the unveiling
them in the next step. This leads to malleability problems, i.e. we have to use
non-malleable commitments®.

Theorem 6.1. The protocol Ilypgr computationally UC-realises Fpgyp in the
Fopra-hybrid model with communication complexity in O((n? + nm)k).

Proof. We have to distinguish between the case where the central party is mali-
cious and the case where it is honest. We show UC-security of II;pg; by defining
a simulator S for each case which produces an indistinguishable simulation of
the protocol to any environment Z trying to distinguish the ideal world from
the real world. The approach of the simulation is straightforward: the simulator
extracts the input polynomials into Fnp, and thus obtains an intersection of
the adversary’s inputs.

In the case of an honest central party, all parties communicate with this
party, i.e. the simulator can extract all inputs of all malicious parties. In the
case where Py is malicious, however, the simulator can at most learn the central
party’s input at the beginning. He inputs this result into the ideal functionality

5 In order to achieve our claimed efficiency we actually use UC commitments, but
non-malleable commitments are sufficient for the security of the protocol.

An Algebraic Approach to Maliciously Secure Private Set Intersection 175

HMPSI

Let m = max; {|S;|} + 1 and NMCOM be a bounded-concurrent non-malleable com-
mitment scheme against synchronized adversaries. fc()liig denotes the jth instance for
parties Py and P;.

Setup

1. All parties P; and P; for 4,5 € {1,...,n — 1} exchange a random polynomial as
follows. For all j # 14, if v;; = 1, P, picks seed,; uniformly at random and sets
v;; = PRGy,, (seed;;). It sends seed,;; to P;, who sets v;; = —PRG,,, (seed, ;).

Share Computation

2. P, (Input Sp): Compute a polynomial py of degree m s.t. po(7y;) = 0 for all ; €
Sy. Generate n random polynomials rf € F(X],ie€{1,...,n— 1} and ry € F[X]
of degree m each and n — 1 random polynomials uy € F[X],i € {1,...,n— 1} of
degree 2m. For i € [n — 1]

— Input r),u} into]:(Oii,lll for each i € {1,...,n —1}.
— Input pg into fgifg and obtain sé =pg-Tr; +u;.

3. P, (Input S;): Compute a polynomial p; of degree m s.t. p;(y;) = 0 for all
v; € S;. Additionally, pick r;,r; € F[X] uniformly of degree m and u; € F[X]
uniformly of degree 2m. . ,

— Input p, into }'S’Pl/i and obtain s; = p; - Ty + ug.
— Input r;, u; into Fgﬁg.
— Set s; =s; —u; +p,;r; + Z#j v;; and send it to F.

Output Aggregation and Verification

4. Py: Compute pn = 22:11 (st + sy — up + pory) and broadcast pn.
5. All parties:

— Run a multiparty coin-toss protocol It to obtain a random z € F.

— Evaluate a; = p;(z), 8; = r;(x), §; = r;(z) and compute (com;,unv;) =
NMCOM.Commit(c, B, d;). Broadcast com;.

— Once all commitments are received, broadcast unv; and
(@iy Biy0;). Abort if >Jag-(8i+d0) + ;- (Bo+0;) # Pnlz) or
NMCOM.Open(com;, unv,, (e, B4, 9;)) # 1.

— For each v; € S; : if pn(7;) =0, add ~; to Sn. Output Sn.

Fig. 10. Protocol ITyps; UC-realises Frypg; in the Fopa-hybrid model.

and uses the intermediate result for the simulation. The malicious central party
can later “simulate” the other malicious parties and thereby possibly change
the intersection for the honest parties. We show that A can only reduce the
intersection unless it already knows z € .S; for at least one j € H, i.e. we assume
that A cannot predict a single element of the set of an honest party except with
negligible probability. This reduced intersection can be passed by the simulator
to the ideal functionality.

176 S. Ghosh and T. Nilges

Simulator Sp,

Let A = {i|P; is malicious} denote the index set of corrupted parties, where |A| =
t < mn — 1. Further let H denote the index set of honest parties.

1. Slmulate the setup and obtain all vj; for i € A and j € H. Pick uniformly random
V;; € F[X] of degree 2m for j,1 € H and set V;; = —V;;.

2. Extract the inputs (pj), 3, 0) of Py for all j € H by simulating Fopa.

3. Abort in Step 5 of ITypgr if the p) are not all identical. Set py = P} for a
random j € H, and find the roots 4, ...,%,, of pa and thereby the set SA =
{&17 s 7;}/2m}'

4. Send (input, P;, S’A) to .7:;11351 for all parties i € A.

5. Upon receiving (output, S”m) from]—'KWSI, pick n—t random degree m polynomials
p; such that p;(v) = 0 for all v € S, j € H.

6. Use the p; as input for each instance of Fopa together with random polynomlals
t; and 0; for j € H, i.e. sendso_p0 F; 4+ 10, to A and keep §; = p; - &) +).

7. Slmulate the re§t according to HMPSI, but abort in Step 5, if the extracted
Pa(x) # aq or) (1’) # 3} for any j € H, even if the check passes otherwise.

8. Upon receiving pn from A, if the check in Step 5 of IIyips; passes, test for all
se Sy if pn(s) = 0. If yes, set Sl =8/ Us. Send (deliver, Sm) to }'MPSI

Fig. 11. Simulator Sp, for Py € A.

Py is malicious: Consider the simulator in Fig. 11.

We show the indistinguishability of the simulation and the real protocol
through the following hybrid games. In the following, let A denote the dummy
adversary controlled by Z.

Hybrid 0: Realfs

Hybrid 1: Identlcaf to Hybrid 0, except that S; simulates Fp, and learns
all inputs.

Hybrid 2: Identical to Hybrid 1, except that Se aborts according to Step 7
in Fig. 11.

Hybrid 3: Identical to Hybrid 2, except that S3 aborts if the extracted pg
are not identical, but the check is passed.

Hybrid 4: Identical to Hybrid 3, except that Ss replaces the v; between
honest parties 7,1 by uniformly random polynomials. ‘
Hybrid 5: Identical to Hybrid 4, except that S5 generates the inputs §),$;
according to Step 6 in Fig. 11 and adjusts the output. This corresponds to

Sp
Ideal .°
ea fNIPSI
Hybrids 0 and 1 are trivially indistinguishable. We show that Hybrid 1
and Hybrid 2 are computationally indistinguishable in Lemma6.1.1. This step
ensures that the correct py was extracted, and that all the intermediate values of

An Algebraic Approach to Maliciously Secure Private Set Intersection 177

the honest parties are added up. Hybrids 2 and 3 are indistinguishable due to the
security of the coin-toss. This is formalized in Lemma6.1.2. As an intermediate
step to complete the full simulation, we replace all pseudorandom polynomi-
als v;; between honest parties j,! by uniformly random ones. Computational
indistinguishability of Hybrid 3 and Hybrid 4 follows from a straightforward
reduction to the pseudorandomness of PRG. We establish the statistical indis-
tinguishability of Hybrids 4 and 5 in Lemma6.1.3. As a result we get that for
all PPT environments Z,

A SP()
Realy; (Z) ~c Ideal

‘7:MPSI

(2).

Lemma 6.1.1. Assume that NMCOM is a bounded-concurrent non-malleable
commitment scheme against synchronizing adversaries. Then Hybrid 1 and
Hybrid 2 are computationally indistinguishable.

Proof. The only difference between Hybrid 1 and Hybrid 2 lies in the fact that
S, aborts if the extracted pa evaluated on x does not match the check value
g, but the check is still passed. Therefore, in order for Z to distinguish both
hybrids, it has to be able to produce a value of # pa(z) and pass the check
with non-negligible probability e. W.l.o.g. it is sufficient that «f is incorrect for
only one pg. We show that such a Z breaks the non-malleability property of
NMCOM.

Let o denote the outcome of the check. If A is honest, i.e. oy = Po(x) and

By = 4 (x), then

= 3" (c0(B: + do) + (B + 8:)) — palx) = 0, (1)

=0

Pr= D (si+sp) + Y (85 +5p).

ieA jeH

where

We first observe that 3,y (s; + s)) = > jeH p; () + f;) + f)o(r% +1;) is uni-
form over the choice of the f‘j,f‘;. Therefore, if A uses p¥ without adding
> jen (85 + s)), the check will fail with overwhelming probability.

Since A controls the inputs of the malicious parties ¢ € A, in order to pass
the check it is sufficient for A to satisfy the following simplification of Eq. (1).

o' = Z (a0 (B + o) + aj(ﬂg +45)) — Z (sj(z) + s} (x)) = const
J€eH jeH

Here const is a fixed constant known to A (0 if A is honest) determined by setting
the inputs «;, §; for ¢ € A accordingly. But if o # po(x), i.e. af = o + e, then
we get that

178 S. Ghosh and T. Nilges

o' = (a0 +€)(B; +00) +a; (5 +6;)) = Y _ (si(2) +53(2))

jeH jEH
= (0(B; + do) + 5 (B +6;)) = Y (s(x) +s)(x)) + e Y _ (B; + o)
jeH jEH jeH
=e) (8 +do) # const
j€eH

Similarly for ﬂé #* f‘é(x) for any j € H. Thus, except for the case of aof =
ao +e/ Y cn Bj, the check will fail for af # Po(z). But since we assumed that
A passes the check with non-negligible probability, and NMCOM is statistically
binding, A has to produce a valid commitment to ao = a0 +e/ >,y (B; + do)
with the same probability.

Note, that A interacts in both the left and right session of NMCOM with the
same party (actually all parties simultaneously, since everything is broadcast).
But this means that A cannot let the left session finish before starting the right
session, i.e. A is a synchronizing adversary against NMCOM. Concretely, in the
left session, So commits to (p;(z),t;(z),t}(x)) = (ay, B5,9;) for j € H, while A
commits in the right session to (ap, {ﬂé}ie[n],éo) and («;, 8;,9;) for 7 € A to Sa.
Further, the number of sessions that A can start is bounded in advance at n — 1,
i.e. it is sufficient to consider bounded-concurrency.

Consider the two views

Real = {8;,{com;}};en, Rand = {s;, {com;}};en,

where com; «— NMCOM.Commit(«;, 3;) and com; < NMCOM.Commit(0). Real
corresponds to a real protocol view of A before committing itself”.

Obviously, Real ~. Rand if NMCOM is non-malleable. However, we will argue
that A cannot output a valid commitment on &g except with negligible proba-
bility, i.e.

Pr[(comg, unvg, (ao, {Bé}ie[n], d0) — A(Rand) A valid] < negl(k),

where valid is the event that NMCOM. Open(como,unvo,(ao,{ﬂo}le ,00) =
1. We first observe that p; and r; for j € H cannot be obtalned
by A via §; = P; - f'% — 1u;. The polynomial §; itself is uniformly
random over the choice of 10, and the only equation that A has is
Pr = Dica (8i+80) + X jen (85 +80) = e (Po - (B +) + Pi - (8 + 1)) +
> jen (Po - (B +10) + P - (&) + t)). Note, that the honest ;, t; have degree d
and therefore hide p;. Further, the commitments com; contain the value 0 and
are therefore independent of p; and ;. Thus, the probability that .4 obtains a
commitment on &g is negligible.

" For ease of notation, here we assume that the commitments are completely sent
before A commits himself. The very same argument also holds if A only received
synchronized messages of com; and has to start committing concurrently.

An Algebraic Approach to Maliciously Secure Private Set Intersection 179

But since Real ~, Rand, we also get that
Pr[(comg, unvg, (&o, {Bé}ie[n], d0) — A(Real) A valid] < negl(k),

which contradicts our assumption that 4 produces the commitment with non-
negligible probability e.

In conclusion, Hybrid 1 and Hybrid 2 are computationally indistinguish-
able. O

Lemma 6.1.2. Assume that Iy provides a uniformly random x with compu-
tational security. Then Hybrid 2 and Hybrid 8 are computationally indistinguish-
able.

Proof. Assume that there exists an environment Z that distinguishes Hybrids 2
and 3 with non-negligible probability e. In order to distinguish Hybrid 2 and
Hybrid 3 Z has to provide two distinct polynomials for a malicious Fy and still
pass the check in the protocol. Then we can construct from Z an adversary B
that predicts the outcome of Il with non-negligible probability.

Let A input w.l.o.g. two polynomials pj # p2. The check with the random
challenge = allows A to send only one value af, but from Lemma6.1.1 we know
that it has to hold that af = p{(z) = p3(x), or the check will fail. First note
that two polynomials of degree m agree in a random point z over F only with
probability m/|F|, which is negligible in our case.

Our adversary B proceeds as follows. It simulates the protocol for Z according
to 81 up to the point where S; learns the polynomials p§ # pz. B sets f = p} —p3
and computes the roots 71, ...,V of £. One of these roots has to be the random
point z, otherwise p§(z) — p3(x) # 0 and the check in ITy;pg; fails (since there
is only one of). B picks a random index ! € [m] and predicts the output of
the coin-flip as «;. Thus, B predicts the outcome of the coin-toss correctly with
probability e/m, which is non-negligible. This contradicts the security of ITp.

This establishes the indistinguishability of Hybrid 2 and Hybrid 3. O

Lemma 6.1.3. Hybrid 4 and Hybrid 5 are statistically close.

Proof. A malicious environment Z can distinguish Hybrid 4 and Hybrid 5 if
(a) the extracted inputs are incorrect or if (b) the simulated messages can be
distinguished from real ones.

Concerning (a), if the inputs were not correctly extracted, Z would receive
different outputs in the two hybrids. We already established that the extracted
polynomial pg is correct. Similarly, the extracted 1) are also correct. By impli-
cation this also ensures that the intermediate intersection is computed correctly.

We argue that the correction of the intersection is also correct, i.e. the set
S!, is computed correctly and in particular it holds that (Mo(pp) N Mo(P;)) €
Sn. First of all, we have to show that the intermediate intersection polynomial
Dint actually provides the intersection for all parties. For all P; it holds with
overwhelming probability:

180 S. Ghosh and T. Nilges

Mo(B) N Mo(Bim) = Mo(By) N1 Mo(Y (Po- (&5 + £6) + B; - (£ + 7))
jeH
Lemma 2.2)+,
Mo (P ﬂ Mo((Po - (Fj+10) + ;- (F fo+1;)))
J€EH
Lemma 24M0 ﬂ MO po) nMO(pJ))
J€eH
= 5(‘]

Once the intermediate intersection is computed, the adversary can only add
an update polynomial pypt to get the final intersection polynomial pf. It remains
to show that this final intersection does not include any points that were not
already in the intermediate intersection for any of the parties’ polynomials p;.

For this, we consider the intersection of every honest party’s (unknown) input
p; with the intersection. It has to hold that 5}’7 C Sn for all P; except with
negligible probability. Here we require that Prjz € Mo(p;)] < negl(|F|) for all
x, i.e. the adversary can only guess an element of P;’s input set.

Mo(Bs) DV Mo(pR) = Mo(B) () (Mo(Bin + Bure))
Lemnéa 2.2 MO(IS]) o) (Mo(ﬁint) N Mo(f)upt))
= Mo(pj) N (gm N Mo(Pupt))
€ Mo(p;)NSn=5nH

Therefore, S’g C S‘m, and the output in both hybrids is identical.

Regarding (b), we make the following observations. Since S; sends é; =
8j —uj + 3, Vij, the value 8} is uniformly random over the choice of u; (and
over) vij, if t < n—2). Therefore, the simulation of 8’ is identically distributed
to Hybrid 4.

Similarly, we have:

S8 =D (o (b +)+ by ®+5) [+ D i)

JeH Jj€EH i€A,jeH

We can ignore the v;; values, since these are known to A. The sum is uniform over
the choice of the 1, f‘} apart from the points v € Sn (since Fyp, guarantees that
Po # 0) and therefore identically distributed to Hybrid 5, since the extraction in
correct.

O

P, is honest: The proof itself is very similar to the proof of a corrupted
Py. It is actually easier to simulate in the sense that Sp, observes the inputs
of all malicious parties. In this sense, Il ;pg; actually realises Fypgy if P is
honest, since no adjustment of the output is necessary. We refer to the full
version [15] of the paper for the proof.

An Algebraic Approach to Maliciously Secure Private Set Intersection 181

Efficiency. The setup, i.e. the distribution of seeds, has communication com-
plexity O(n?k). The oblivious addition of the polynomials has communication
overhead of O(nmk). The check phase first requires a multi-party coin-toss.

In the full version of this paper [15], we sketch a coin-tossing protocol in com-
bination with an OLE-based commitment scheme (replacing the non-malleable
commitment for better efficiency) that results in an asymptotic communication
overhead of O(n?k) for the check and the coin-toss phase. Combining this with
the above observations, IT;pg; has communication complexity O((n? + nm)x)
in the Fo; g-hybrid model.

For concrete instantiations of Fq; , the OLE protocol of Ghosh et al. [14]
has a constant communication overhead per OLE. In summary, the complete
protocol has communication complexity O((n?+mnm)k), which is asymptotically
optimal for m > n.

Similar to the two-party case, the computational cost is dominated by the cost
of polynomial interpolation. In particular, the central party has to run the two-
party protocol n times, which leads to a computational overhead of O(nmlogm)
multiplications. The other parties basically have the same computational over-
head as in the two-party case. O

7 Performance Analysis

In this section, we give an estimation of the communication efficiency with con-
crete parameters and provide a comparison with existing results. For this, we
simply count the number of field elements that have to be sent for the protocols.
We first look at the communication overhead of the OLE primitive. Instanti-
ated with the result by Ghosh et al. [14], each OLE has an overhead of 64 field
elements including OT extension (32 without), which translates to 256 field ele-
ments per item per OPA. The factor 4 stems from the fact that OPA needs 2d
OLE to compute a degree d output, and OLE+ requires two OLE per instance.

Table 2. Comparison of two-party PSI protocols from [36] for input-size m =
{2%6,2%%} where k denotes statistical security parameter, o denotes size of each item
in bits, SM denotes standard model, ROM denotes random oracle model.

Protocol Communication cost
m = 216 m = 220
[36] (EC-ROM) 79 MB (k =40) | 1.32 GB (k = 40)
[36] (DE-ROM) 61 MB (k =40) |1.07 GB (x = 40)
[36] (SM, o = 40) | 451 MB (k =40) | >7.7 GB (k = 40)
(

36] (SM, o = 64) | 1.29 GB (k = 40) | 22.18 GB (k = 40)
Ours (o = 40) 80 MB (k = 40) |1.25 GB (k = 40)
Ours (o = 64) 128 MB (k = 64) |2 GB (k = 64)

182 S. Ghosh and T. Nilges

2-party PSI. To get a feeling for the concrete communication efficiency of
our two-party protocol, we compare it with the recent maliciously UC-secure
protocols from [36]. These protocols give only one-sided output, whereas our
protocol gives two-sided output. However, OPA is sufficient for one-sided PSI,
consequently a one-sided PSI would cost 256 field elements per item in our case.

Table 2 clearly shows that the communication overhead of our protocol is
significantly less than the standard model (SM) protocol from [36]. Note that
our instantiation is also secure in SM, given O(k) base OTs. Like [36] we use the
OT-extension protocol from [31] for the instantiation. Even if we compare our
result to the ROM approach of [36], we achieve fairly competitive communication
efficiency.

One should consider that in the ROM there exist other PSI protocols with
linear communication complexity [8,23]. The concrete bandwidth of those pro-
tocols are much less than our specific instantiation, for example for sets of 220
elements the total communication cost of [8] is about 213 MB®. Further [23] has
lower bandwidth than [8]. However, in both the cases communication efficiency
comes at the cost of huge computational expenses due to lots of public key oper-
ations. We believe that the simple field arithmetic of our protocols (including
the cost of the OLE of [14]) does not incur such a drawback in practice.

Table 3. Comparison of communication overhead per party of MPSI protocol with [27]
for 22° elements with 40 bit statistical security, without the cost for OT extension.

Protocol Parties | Corr. || Comm. 2%° elements
[27] (passive) |n n—1|(n—1)- 467 MB
Ours (active) |n n—1|~25GB

Ours (passive) | n n—1|~1.25GB

Multi-party PSI. To the best of our knowledge, there are currently no mali-
ciously secure MPSI implementations with which we could compare our result.
A direct comparison with the passively secure MPSI from [27], however, directly
shows the difference in asymptotic behaviour to our result. Their communication
costs per party increase with the number of parties, whereas it remains constant
in our case (except for the central party). If we average over all parties, the cen-
tral party’s overhead can be distributed over all parties, which at most doubles
the average communication cost per party (cf. Table 3). We can upper bound the
communication cost per party by 2.5 GB for 220 elements (excluding the cost
for OT extension in order to get comparable results to [27]). From the table we
can deduce that with only 6 parties, our actively secure protocol is more efficient
than their passive one. Replacing the actively secure OPA in our MPSI protocol
with the passively secure one yields a passively secure MPSI protocol. We gain

8 For reference see Figure 8 of [36].

An Algebraic Approach to Maliciously Secure Private Set Intersection 183

another factor of 2 in communication efficiency and our construction is more
efficient than [27] starting from 4 parties.

References

10.

11.

12.

13.

Applebaum, B., Damgard, 1., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223-254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7_8

Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663-680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_39

Borodin, A., Moenck, R.: Fast modular transforms. J. Comput. Syst. Sci. 8(3),
366-386 (1974). http://dx.doi.org/10.1016/S0022-0000(74)80029-2

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136-145. IEEE Computer Society Press, October
2001

Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection
with quasi-linear complexity. IEICE Trans. 95—A(8), 1366-1378 (2012)

Cramer, R., Damgard, 1., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342-362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7-19

Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 125-142. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9_8

De Cristofaro, E.,; Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS,
vol. 6477, pp. 213-231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8_13

De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143-159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_13

Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 789-800. ACM Press, November 2013

Déttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient
actively secure two-party computation from oblivious linear function evaluation.
In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017,
pp. 2263-2276. ACM Press, October/November 2017

Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with
simulation-based security. J. Cryptol. 29(1), 115-155 (2016)

Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1-19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3_1

https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-642-32009-5_39
http://dx.doi.org/10.1016/S0022-0000(74)80029-2
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1

184

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

S. Ghosh and T. Nilges

Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT
2017. LNCS, vol. 10624, pp. 629-659. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8_22

Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. Cryptology ePrint Archive, Report 2017/1064 (2017). https://eprint.
iacr.org/2017/1064

Hallgren, P.A., Orlandi, C., Sabelfeld, A.: Privatepool: privacy-preserving rideshar-
ing. In: 30th IEEE Computer Security Foundations Symposium, CSF 2017, 21-25
August 2017, Santa Barbara, CA, USA, pp. 276-291 (2017)

Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
90-120. Springer, Heidelberg (2015). https://doi.org/10.1007 /978-3-662-46497-7_4
Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. J. Cryptol. 25(3), 383-433 (2012)

Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175-203. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8_8

Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS 2012. The Internet Society, February 2012
Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: Proceedings of the 1st ACM Conference on Electronic Commerce,
EC 1999, pp. 78-86 (1999)

Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294-314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18
Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418-435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4_26

Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195-215. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5_13

Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241-257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218_15

Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818-829. ACM
Press, October 2016

Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1257-1272. ACM
Press, October/November 2017

Meadows, C., Mutchler, D.: Matching secrets in the absence of a continuously
available trusted authority. IEEE Trans. Softw. Eng. SE-13(2), 289-292 (1987)
Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: EC, pp. 129-139 (1999)

Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Loca-
tion privacy via private proximity testing. In: NDSS 2011. The Internet Society,
February 2011

https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://eprint.iacr.org/2017/1064
https://eprint.iacr.org/2017/1064
https://doi.org/10.1007/978-3-662-46497-7_4
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/11535218_15

31.

32.

33.

34.

35.

36.

37.

38.

An Algebraic Approach to Maliciously Secure Private Set Intersection 185

Orru, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with
application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 381-396. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4_22

Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: 24th USENIX Security Symposium, USENIX
Security 2015, 12-14 August 2015, Washington, D.C., USA, pp. 515-530 (2015)
Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Proceedings of the 23rd USENIX Security Symposium, 2022 August
2014, San Diego, CA, USA, pp. 797-812 (2014)

Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur. 21(2), 7:1-7:35 (2018)

Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235-259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_9
Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 1229-1242. ACM Press, October/November 2017

Sang, Y., Shen, H.: Privacy preserving set intersection based on bilinear groups.
In: Proceedings of the Thirty-First Australasian Conference on Computer Science,
ACSC 2008, vol. 74. pp. 47-54 (2008)

Shamir, A.: On the power of commutativity in cryptography. In: de Bakker, J., van
Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582-595. Springer, Heidelberg
(1980). https://doi.org/10.1007/3-540-10003-2_100

https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/3-540-10003-2_100

Quantum II

®

Check for
updates

On Finding Quantum Multi-collisions

Qipeng Liu®™) and Mark Zhandry

Princeton University, Princeton, NJ 08544, USA
qipengl@princeton.edu

Abstract. A k-collision for a compressing hash function H is a set of k
distinct inputs that all map to the same output. In this work, we show

)

11 1
that for any constant k, @ Nz quantum queries are both

necessary and sufficient to achieve a k-collision with constant probabil-
ity. This improves on both the best prior upper bound (Hosoyamada et
al., ASTACRYPT 2017) and provides the first non-trivial lower bound,
completely resolving the problem.

1 Introduction

Collision resistance is one of the central concepts in cryptography. A collision
for a hash function H : {0,1}™ — {0,1}" is a pair of distinct inputs x1 #
that map to the same output: H(z1) = H(z2).

Multi-collisions. Though receiving comparatively less attention in the literature,
multi-collision resistance is nonetheless an important problem. A k-collision for
H is a set of k distinct inputs {x1,..., 25} such that x; # x; for i # j where
H(z;) = H(x;) for all ¢, 3.

Multi-collisions frequently surface in the analysis of hash functions
and other primitives. Examples include MicroMint [RS97], RMAC [JJV02],
chopMD [CNO0§], Leamnta-LW [HIK+11], PHOTON and Parazoa [NO14],
Keyed-Sponge [JLM14], all of which assume the multi-collision resistance of
a certain function. Multi-collisions algorithms have also been used in attacks,
such as MDC-2 [KMRT09], HMAC [NSWY13], Even-Mansour [DDKS14], and
LED [NWW14]. Multi-collision resistance for polynomial k has also recently
emerged as a theoretical way to avoid keyed hash functions [BKP18,BDRV1§],
or as a useful cryptographic primitives, for example, to build statistically hiding
commitment schemes with succinct interaction [KNY18].

Quantum. Quantum computing stands to fundamentally change the field of cryp-
tography. Importantly for our work, Grover’s algorithm [Gro96] can speed up
brute force searching by a quadratic factor, greatly increasing the speed of pre-
image attacks on hash functions. In turn, Grover’s algorithm can be used to find
ordinary collisions (k = 2) in time O(2"/3), speeding up the classical “birthday”

© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 189-218, 2019.
https://doi.org/10.1007/978-3-030-17659-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17659-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-17659-4_7

190 Q. Liu and M. Zhandry

attack which requires O(2"/2) time. It is also known that, in some sense (dis-
cussed below), these speedups are optimal [AS04,Zhal5a]. These attacks require
updated symmetric primitives with longer keys in order to make such attacks
intractable.

1.1 This Work: Quantum Query Complexity of Multi-collision
Resistance

In this work, we consider quantum multi-collision resistance. Unfortunately, little
is known of the difficulty of finding multi-collisions for k > 3 in the quantum
setting. The only prior work on this topic is that of Hosoyamada et al. [HSX17],
who give a O(2%"/9) algorithm for 3-collisions, as well as algorithms for general
constant k. On the lower bounds side, the 9(2"/3) from the k = 2 case applies
as well for higher k, and this is all that is known.

We completely resolve this question, giving tight upper and lower bounds
for any constant k. In particular, we consider the quantum query complexity of
multi-collisions. We will model the hash function H as a random oracle. This
means, rather than getting concrete code for a hash function H, the adversary is
given black box access to a function H chosen uniformly at random from the set
of all functions from {0,1}" into {0, 1}". Since we are in the quantum setting,
black box access means the adversary can make quantum queries to H. Each
query will cost the adversary 1 time step. The adversary’s goal is to solve some
problem—in our case find a k-collision—with the minimal cost. Our results are
summarized in Table 1. Both our upper bounds and lower bounds improve upon
the prior work for k£ > 3; for example, for £ = 3, we show that the quantum
query complexity is ©(23%/7).

Table 1. Quantum query complexity results for k-collisions. k is taken to be a constant,
and all Big O and (2 notations hide constants that depend on k. In parenthesis are
the main restrictions for the lower bounds provided. We note that in the case of 2-to-1
functions, m < n + 1, so implicitly these bounds only apply in this regime. In these
cases, m characterizes the query complexity. On the other hand, for random or arbitrary
functions, n is the more appropriate way to measure query complexity. We also note
that for arbitrary functions, when m < n + log(k — 1), it is possible that H contains
no k-collisions, so the problem becomes impossible. Hence, m > n + log k is essentially
tight. For random functions, there will be no collisions w.h.p unless m > (1 — %)n, SO
algorithms on random functions must always operate in this regime.

Upper Bound (Algorithm) Lower Bound

[BHT98] 0@2m/3) for k = 2 (2-to-1)
[AS04] 02(2m/3) for k = 2 (2-to-1)
[Zhalba] O(2"/3) for k = 2 (Random, m > n/2) | £2(2"/3) for k = 2 (Random)

1 1
msxi7] o (220 sET ’") (m > n + logk)

1 _ 1 1 _1
This Work | O (22(1 2“*”“) (m>n+logk) | © (22(1 2“*1)") (Random)

On Finding Quantum Multi-collisions 191

1.2 Motivation

Typically, the parameters of a hash function are set to make finding collisions
intractable. One particularly important parameter is the output length of the
hash function, since the output length in turn affects storage requirements and
the efficiency of other parts of a cryptographic protocol.

Certain attacks, called generic attacks, apply regardless of the implementa-
tion details of the hash function H, and simply work by evaluating H on several
inputs. For example, the birthday attack shows that it is possible to find a col-
lision in time approximately 2"/2 by a classical computer. Generalizations show
that k-collisions can be found in time @(2(1=1/F)n)1,

These are also known to be optimal among classical generic attacks. This is
demonstrated by modeling H as an oracle, and counting the number of queries
needed to find (k-)collisions in an arbitrary hash function H. In cryptographic
settings, it is common to model H as a random function, giving stronger average
case lower bounds.

Understanding the effect of generic attacks is critical. First, they cannot be
avoided, since they apply no matter how H is designed. Second, other parameters
of the function, such as the number of iterations of an internal round function,
can often be tuned so that the best known attacks are in fact generic. Therefore,
for many hash functions, the complexity of generic attacks accurately represents
the actual cost of breaking them.

Therefore, for “good” hash functions where generic attacks are optimal, in
order to achieve security against classical adversaries n must be chosen so that
t = 2"/2 time steps are intractable. This often means setting t = 2128, so n = 256.
In contrast, generic classical attacks can find k-collisions in time ©(2(1=1/F)n),
For example, this means that n must be set to 192 to avoid 3-collisions, or 171
to avoid 4-collisions.

Once quantum computers enter the picture, we need to consider quantum
queries to H in order to model actual attacks that evaluate H in superposition.
This changes the query complexity, and makes proving bounds much more diffi-
cult. Just as understanding query complexity in the classical setting was crucial
to guide parameter choices, it will be critical in the quantum world as well.

We also believe that quantum query complexity is an important study
in its own right, as it helps illuminate the effects quantum computing will
have on various areas of computer science. It is especially important to cryp-
tography, as many of the questions have direct implications to the post-
quantum security of cryptosystems. Even more, the techniques involved are
often closely related to proof techniques in post-quantum cryptography. For
example, bounds for the quantum query complexity of finding collisions in ran-
dom functions [Zhalbal, as well as more general functions [EU17, BES17], were
developed from techniques for proving security in the quantum random oracle
model [BDF+11,Zhal2, TU16|. Similarly, the lower bounds in this work build on
techniques for proving quantum indifferentiability [Zhal8]. On the other hand,

! Here, the Big Theta notation hides a constant that depends on k.

192 Q. Liu and M. Zhandry

proving the security of MACs against superposition queries [BZ13] resulted in
new lower bounds for the quantum oracle interrogation problem [van98] and
generalizations [Zhal5b].

Lastly, multi-collision finding can be seen as a variant of k-distinctness, which
is essentially the problem of finding a k-collision in a function H : {0,1}" —
{0,1}", where the k-collision may be unique and all other points are distinct. The
quantum query complexity of k-distinctness is currently one of tlsle main open

problems in quantum query complexity. An upper bound of (2")474(2’“1 -1 was
shown by Belovs [Bel12]. The best known lower bound is £2((2")3~2r) [BKT18].
Interestingly, the dependence of the exponent on k is exponential for the upper
bound, but polynomial for the lower bound, suggesting a fundamental gap our
understanding of the problem.

Note that our results do not immediately apply in this setting, as our algo-
rithm operates only in a regime where there are many (< k-)collisions, whereas
k-distinctness applies even if the k-collision is unique and all other points are
distinct (in particular, no (k—1)-collisions). On the other hand, our lower bound
is always lower than 2/2, which is trivial for this problem. Nonetheless, both
problems are searching for the same thing—mnamely a k-collisions—just in dif-
ferent settings. We hope that future work may be able to extend our techniques
to solve the problem of k-distinctness.

1.3 The Reciprocal Plus 1 Rule

For many search problems over random functions, such as pre-image search,
collision finding, k-sum, quantum oracle interrogation, and more, a very simple
folklore rule of thumb translates the classical query complexity into quantum
query complexity.

In particular, let NV = 2™, all of these problems have a classical query com-
plexity O(N'/®) for some rational number a. Curiously, the quantum query
complexity of all these problems is always ©(N #1)

In slightly more detail, for all of these problems the best classical g-query
algorithm solves the problem with probability ©(¢¢/N?) for some constants c, d.
Then the classical query complexity is O(N d/ ¢). For this class of problems, the
success probability of the best ¢ query quantum algorithm is obtained simply by
increasing the power of ¢ by d. This results in a quantum query complexity of
O(N4/(c+d) Examples:

— Grover’s pre-image search [Gro96] improves success probability from ¢/N

to ¢?/N, which is known to be optimal [BBBV97]. The result is a query
complexity improvement from N = N'/1 to N1/2,
Similarly, finding, say, 2 pre-images has classical success probability ¢%/N?; it
is straightforward to adapt known techniques to prove that the best quantum
success probability is ¢*/N2. Again, the query complexity goes from N to
N'/2. Analogous statements hold for any constant number of pre-images.

— The BHT collision finding algorithm [BHT98] finds a collision with probabil-
ity ¢®/N, improving on the classical birthday attack ¢?/N. Both of these are

On Finding Quantum Multi-collisions 193

known to be optimal [AS04,Zhal5a]. Thus quantum algorithms improve the
query complexity from N/2 to N'/3,

Similarly, finding, say, 2 distinct collisions has classical success probability
q*/N?, whereas we show that the quantum success probability is ¢%/N2.
More generally, any constant number of distinct collisions conforms to the
Reciprocal Plus 1 Rule.

— k-sum asks to find a set of k£ inputs such that the sum of the outputs is 0.
This is a different generalization of collision finding than what we study in this
work. Classically, the best algorithm succeeds with probability ¢*/N. Quan-
tumly, the best algorithm succeeds with probability ¢**1/N [BS13,Zhal8].
Hence the query complexity goes from N'/* to N1/ (k+1),

Again, solving for any constant number of distinct k-sum solutions also con-
forms to the Reciprocal Plus 1 Rule.

— In the oracle interrogation problem, the goal is to compute g+ 1 input/output
pairs, using only ¢ queries. Classically, the best success probability is clearly
1/N. Meanwhile, Boneh and Zhandry [BZ13] give a quantum algorithm with
success probability roughly ¢/N, which is optimal.

Some readers may have noticed that Reciprocal Plus 1 (RP1) rule does not
immediately appear to apply the Element Distinctness. The Element Distinct-
ness problem asks to find a collision in H : [M] — [N] where the collision is
unique. Classically, the best algorithm succeeds with probability ©(q?/M?). On
the other hand, quantum algorithms can succeed with probability ©(¢®/M?),
which is optimal [Amb04,Zhal5a]. This does not seem to follow the prediction
of the RP1 rule, which would have predicted ¢*/M?2. However, we note that
unlike the settings above which make sense when N <« M, and where the com-
plexity is characterized by IV, the Element Distinctness problem requires M < N
and the complexity is really characterized by the domain size M. Interestingly,
we note that for a random expanding function, when N ~ M?2, there will with
constant probability be exactly one collision in H. Thus, in this regime the colli-
sion problem matches the Element Distinctness problem, and the RP1 rule gives
the right query complexity!

Similarly, the quantum complexity for k-sum is usually written as M*/ (k+1)
not NV/(5+1) But again, this is because most of the literature considers H for
which there is a unique k-sum and H is non-compressing, in which case the
complexity is better measured in terms of M. Notice that a random function
will contain a unique k collision when N ~ MP¥, in which case the bound we
state (which follows the RP1 rule) exactly matches the statement usually given.

On the other hand, the RP1 rule does not give the right answer for k-
distinctness for £ > 3, since the RP1 rule would predict the exponent to approach
1/2 for large k, whereas prior work shows that it approaches 3/4 for large k. That
RP1 does not apply perhaps makes sense, since there is no setting of N, M where
a random function will become an instance of k-distinctness: for any setting of
parameters where a random function has a k-collision, it will also most likely
have many (k — 1)-collisions.

194 Q. Liu and M. Zhandry

The takeaway is that the RP1 Rule seems to apply for natural search prob-
lems that make sense on random functions when N < M. Even for problems
that do not immediately fit this setting such as Element Distinctness, the rule
often still gives the right query complexity by choosing M, N so that a random
function is likely to give an instance of the desired problem.

Enter k-collisions. In the case of k-collisions, the classical best success probability
is ¢* /N =1 giving a query complexity of N(=1/k = N1=1/kGince the k-
collision problem is a generalization of collision finding, is similar in spirit to the
problems above, and applies to compressing random functions, one may expect
that the Reciprocal Plus 1 Rule applies. If true, this would give a quantum
success probability of ¢?*~'/N*~1 and a query complexity of N(*—1/(2k=1) —
N3U=gm=1)

Even more, for small enough g, it is straightforward to find a k-collision with
probability O(¢?*~1/N*~1) as desired. In particular, divide the ¢ queries into
k — 1 blocks. Using the first ¢/(k — 1) queries, find a 2-collision with probability
(q/(k —1))3/N = O(¢g®/N). Let y be the image of the collision. Then, for each
of the remaining (k — 2) blocks of queries, find a pre-image of y with probability
(q/(k—1))2/N = O(¢?/N) using Grover search. The result is k colliding inputs
with probability O(¢g*+2(F=2)/N*=1) = O(¢**~'/N*~1). Tt is also possible to
prove that this is a lower bound on the success probability (see lower bound
discussion below). Now, this algorithm works as long ¢ < N 1/3 since beyond this
range the 2-collision success probability is bounded by 1 < ¢3/N. Nonetheless, it
is asymptotically tight in the regime for which it applies. This seems to suggest
that the limitation to small ¢ might be an artifact of the algorithm, and that a
more clever algorithm could operate beyond the N'/3 barrier. In particular, this
strongly suggests k-collisions conforms to the Reciprocal Plus 1 Rule.

Note that the RP1 prediction gives an exponent that depends polynomially
on k, asymptotically approaching 1/2. In contrast, the prior work of [HSX17]
approaches 1/2 exponentially fast in k. Thus, prior to our work we see an expo-
nential vs polynomial gap for k-collisions, similar to the case of k-distinctness.

Perhaps surprisingly given the above discussion?, our work demonstrates that
the right answer is in fact exponential, refuting the RP1 rule for k-collisions.

As mentioned above, our results do not immediately give any indication for
the query complexity of k-distinctness. However, our results may hint that k-
distinctness also exhibits an exponential dependence on k. We hope that future
work, perhaps building on our techniques, will be able to resolve this question.

1.4 Technical Details

The Algorithm. At their heart, the algorithms for pre-image search, colli-
sion finding, k-sum, and the recent algorithm for k-collision, all rely on Grover’s
algorithm. Let f : {0,1}™ — {0,1} be a function with a fraction § of accept-
ing inputs. Grover’s algorithm finds the input with probability O(§¢?) using ¢

2 At least, the authors found it surprising).

On Finding Quantum Multi-collisions 195

quantum queries to f. Grover’s algorithm finds a pre-image of a point y in H
by setting f(z) to be 1 if and only if H(z) = y.

The BHT algorithm [BHT98] uses Grover’s to find a collision in H. First, it
queries H on ¢/2 = O(q) random points, assembling a database D. As long as
q < N2 all the images in D will be distinct. Now, it lets f(z) be the function
that equals 1 if and only if H(x) is found amongst the images in D, and z is not
among the pre-images. By finding an accepting input to f, one immediately finds
a collision. Notice that the fraction of accepting inputs is approximately ¢/N.

By running Grover’s for ¢/2 = O(q) steps, one obtains a such a pre-image,
and hence a collision, with probability O((q/N)q?) = O(¢®/N).

Hosoyamada et al. show how this idea can be recursively applied to find
multi-collisions. For k = 3, the first step is to find a database D> consisting of
distinct 2-collisions. By recursively applying the BHT algorithm, each 2-collision
takes time N'/3. Then, to find a 3 collision, set up f as before: f(x) = 1 if and
only if H(z) is amongst the images in D and z is not among the pre-images.
The fraction of accepting inputs is approximately r/N, so Grover’s algorithm
will find a 3-collision in time (N/r)'/2. Setting r to be N'/? optimizes the total
query count as N*/9. For k = 4, recursively build a table D5 of 3-collisions, and
set up f to find a collision with the database.

The result is an algorithm for Fk-collisions for any constant k&, using
1 1
O(N=1=5=1)) queries.

Our algorithm improves on Hosoyamada et al.’s, yielding a query complexity

of O(N %(lfﬁ)). Note that for Hosoyamada et al.’s algorithm, when construct-
ing Dy_1, many different Dy_o databases are being constructed, one for each
entry in Dp_;. Our key observation is that a single database can be re-used
for the different entries of Dj_1. This allows us to save on some of the queries
being made. These extra queries can then be used in other parts of the algorithm
to speed up the computation. By balancing the effort correctly, we obtain our
algorithm. Put another way, the cost of finding many (k-)collisions can be amor-
tized over many instances, and then recursively used for finding collisions with
higher k. Since the recursive steps involve solving many instances, this leads to
an improved computational cost.

In more detail, we iteratively construct databases Di, Do, ..., Dy. Each D;
will have r; i-collisions. We set r; = 1, indicating that we only need a single
k-collision. To construct database D1, simply query on 71 arbitrary points. To
construct database D;,i > 2, define the function f; that accepts inputs that col-
lide with D;_1 but are not contained in D;_;. The fraction of points accepted by
fi is approximately r;_1 /N. Therefore, Grover’s algorithm returns an accepting
input in time (N/r;_1)'/2. We simply run Grover’s algorithm r; times using the
same database D;_1 to construct D; in time ri(N/ri,l)l/Q.

Now we just optimize rq,...,rr_1 by setting the number of queries to con-
struct each database to be identical. Notice that r1 = O(g), so solving for r;
gives us

196 Q. Liu and M. Zhandry

21
2k—1
Nz

Setting 7, = 1 and solving for ¢ gives the desired result. In particular, in the
case k = 3, our algorithm finds a collision in time O(N?/7).

The Lower Bound. Notice that our algorithm fails to match the result one
would get by applying the “Reciprocal Plus 1 Rule”. Given the discussion above,
one may expect that our iterative algorithm could potentially be improved on
even more. To the contrary we prove that, in fact, our algorithm is asymptotically
optimal for any constant k.

Toward that end, we employ a recent technique developed by Zhandry [Zhal§]
for analyzing quantum queries to random functions. We use this technique to
show that our algorithm is tight for random functions, giving an average-case
lower bound.

Zhandry’s “Compressed Oracles.” Zhandry demonstrates that the information
an adversary knows about a random oracle H can be summarized by a database
D* of input/output pairs, which is updated according to some special rules. In
Zhandry’s terminology, D* is the “compressed standard/phase oracle”.

This D* is not a classical database, but technically a superposition of all
databases, meaning certain amplitudes are assigned to each possible database.
D* can be measured, obtaining an actual classical database D with probability
equal to its amplitude squared. In the following discussion, we will sometimes
pretend that D* is actually a classical database. While inaccurate, this will give
the intuition for the lower bound techniques we employ. In the Sect. 4 we take
care to correctly analyze D* as a superposition of databases.

Zhandry shows roughly the following:

— Consider any “pre-image problem”, whose goal is to find a set of pre-images
such that the images satisfy some property. For example, k-collision is the
problem of finding & pre-images such that the corresponding images are all
the same.

Then after ¢ queries, consider measuring D*. The adversary can only solve
the pre-image problem after g queries if the measured D* has a solution to
the pre-image problem.

Thus, we can always upper bound the adversary’s success probability by
upper bounding the probability D* contains a solution.

— D* starts off empty, and each query can only add one point to the database.

— For any image point y, consider the amplitude on databases containing y as
a function of ¢ (remember that amplitude is the square root of the proba-
bility). Zhandry shows that this amplitude can only increase by O(y/1/N)
from one query to the next. More generally, for a set S of r different images,
the amplitude on databases containing any point in S can only increase by

O(VISI/N).

On Finding Quantum Multi-collisions 197

The two results above immediately imply the optimality of Grover’s search.
In particular, the amplitude on databases containing y is at most O(g+/1/N)
after ¢ queries, so the probability of obtaining a solution is the square of this
amplitude, or O(¢?/N). This also readily gives a lower bound for the collision
problem. Namely, in order to introduce a collision to D*, the adversary must add
a point that collides with one of the existing points in D*. Since there are at most
q such points, the amplitude on such D* can only increase by O(;/q/N). This
means the overall amplitude after ¢ queries is at most O(g*/?/N'/?). Squaring
to get a probability gives the correct lower bound.

A First Attempt. Our core idea is to attempt a lower bound for k-collision by
applying these ideas recursively. The idea is that, in order to add, say, a 3-
collision to D*, there must be an existing 2-collision in the database. We can
then use the 2-collision lower bound to bound the increase in amplitude that
results from each query.

More precisely, for very small ¢, we can bound the amplitude on databases
containing ¢ distinct 2-collisions as O((¢®/2/N'/2)¢). If ¢ < N'/3, £ must be a
constant else this term is negligible. So we can assume for ¢ < N/ that £ is a
constant.

Then, we note that in order to introduce a 3-collision, the adversary’s new
point must collide with one of the existing 2-collisions. Since there are at most
¢, we know that the amplitude increases by at most O(v¢/N'/?) = O(1/N'/?)
since £ is a constant. This shows that the amplitude on databases with 3-collisions
is at most q/N'/2.

We can bound the amplitude increase even smaller by using not only the
fact that the database contains at most ¢ 2-collisions, but the fact that the
amplitude on databases containing even a single 2-collision is much less than 1.
In particular, it is O(¢*/2/N'/?) as demonstrated above. Intuitively, it turns out
we can actually just multiply the 1/N'/? amplitude increase in the case where
the database contains a 2-collision by the ¢3/2 /N 1/2 amplitude on databases
containing any 2-collision to get an overall amplitude increase of ¢*/2 /N.

Overall then, we upper bound the amplitude after ¢ < N'/3 queries by
O(q°/?/N), given an upper bound of O(¢°/N?) on the probability of finding
a 3-collision. This lower bound can be extended recursively to any constant
k-collisions, resulting in a bound that exactly matches the Reciprocal Plus 1
Rule, as well as the algorithm for small ¢! This again seems to suggest that our
algorithm is not optimal.

Our Full Proof. There are two problems with the argument above that, when
resolved, actually do show our algorithm is optimal. First, when ¢ > N'/3, the
O(¢*/? /N'/2) part of the amplitude bound becomes vacuous, as amplitudes can
never be more than 1. Second, the argument fails to consider algorithms that find
many 2-collisions, which is possible when ¢ > N'/3. Finding many 2-collisions
of course takes more queries, but then it makes extending to 3-collisions easier,
as there are more collisions in the database to match in each iteration.

198 Q. Liu and M. Zhandry

In our full proof, we examine the amplitude on the databases containing a
3-collision as well as r 2-collisions, after ¢ queries. We call this amplitude g, .
We show a careful recursive formula for bounding g using Zhandry’s techniques,
which we then solve.

More generally, for any constant k, we let gé@ s be the amplitude on databases
containing exactly r distinct (k — 1)-collisions and at least s distinct k-collisions
after ¢ queries. We develop a multiply-recursive formula for the ¢(*) in terms of
the ¢®) and ¢®*—1). We then recursively plug in our solution to g®*~1) so that the
recursion is just in terms of ¢(*), which we then solve using delicate arguments.

Interestingly, this recursive structure for our lower bound actually closely
matches our algorithm. Namely, our proof lower bounds the difficulty of adding
an i-collision to a database D* containing many 7 — 1 collisions, exactly the
problem our algorithm needs to solve. Our techniques essentially show that every

step of our algorithm is tight, resulting in a lower bound of € (Néu* 2“1—1)>,

exactly matching our algorithm. Thus, we solve the quantum query complexity
of k-collisions.

1.5 Other Related Work

Most of the related work has been mentioned earlier. Recently, in [HSTX1§],
Hosoyamada, Sasaki, Tani and Xagawa gave the same improvement. And they
also showed that, their algorithm can also find a multi-collision for a more general
setting where | X| > % - Y| for any positive value ¢y > 1 which is in O(Nﬁ)
and find a multiclaw for random functions with the same query complexity. They
also noted that our improved collision finding algorithm for the case | X| > [-|Y]
was reported in the Rump Session of AsiaCrypt 2017. They did not give an
accompanying lower bound.

2 Preliminaries

Here, we recall some basic facts about quantum computation, and review the
relevant literature on quantum search problems.

2.1 Quantum Computation

A quantum system @ is defined over a finite set B of classical states. In this
work we will consider B = {0,1}". A pure state over Q is a unit vector in C!Z!,
which assigns a complex number to each element in B. In other words, let |¢)
be a pure state in @, we can write |¢) as:

6) = > aule)

where Y- plag? =1 and {|z)},ep is called the “computational basis” of
CIBI. The computational basis forms an orthonormal basis of CI5!.

On Finding Quantum Multi-collisions 199

Given two quantum systems Q1 over By and ()2 over By, we can define a
product quantum system (1 ® Q2 over the set By x Bs. Given |¢1) € Q1 and
|p2) € Q2, we can define the product state |¢1) ® |p2) € Q1 ® Q2.

We say |¢) € Q1 ® Q2 is entangled if there does not exist |¢1) € Q1 and
|p2) € Q2 such that |¢) = |¢1) ® |¢2). For example, consider B; = By = {0,1}
and Q1 = Qo = C?, |¢) = % is entangled. Otherwise, we say |¢) is un-
entangled.

A pure state |¢p) € Q can be manipulated by a unitary transformation U.
The resulting state |¢’) = U|¢).

We can extract information from a state |¢) by performing a measure-
ment. A measurement specifies an orthonormal basis, typically the computa-
tional basis, and the probability of getting result z is [(x|¢)|?. After the mea-
surement, |@) “collapses” to the state |x) if the result is x.

For example, given the pure state |¢) = 2|0)+ 2|1) measured under {|0), [1)},
with probability 9/25 the result is 0 and |¢) collapses to |0); with probability
16/25 the result is 1 and |¢) collapses to |1).

We finally assume a quantum computer can implement any unitary trans-
formation (by using these basic gates, Hadamard, phase, CNOT and % gates),
especially the following two unitary transformations:

— Classical Computation: Given a function f : X — Y one can imple-
ment a unitary Uy over CXI'YI — CIXIYI such that for any |¢) =

erX,yEY am’y|‘r’ y>7

Ulo) = 3 anyle,y @ f(@))

rzeX,ycyY

Here, & is a commutative group operation defined over Y.

- Quantum Fourier Transform: Let N = 2". Given a quantum state |¢) =
Zz 0 5U1| i), by applying only O(n?) basic gates, one can compute [i)) =
Z?io y;|1) where the sequence {y; fia ! is the sequence achieved by applying

the classical Fourier transform QFT to the sequence {xz}fig L

1 2" —1
= — Tk
=N Z_O “n

where w, = e?™/N i is the imaginary unit.

One interesting property of QFT is that by preparing |0™) and applying QF T4
to each qubit, (QFT4[0))®" = \/% >_ze{o,13» [2) which is a uniform superpo-
sition over all possible x € {0,1}".

For convenience, we sometimes ignore the normalization of a pure state which
can be calculated from the context.

200 Q. Liu and M. Zhandry

2.2 Grover’s Algorithm and BHT Algorithm

Definition 1 (Database Search Problem). Suppose there is a func-
tion/database encoded as F : X — {0,1} and F~Y(1) is non-empty. The problem
is to find x* € X such that F(z*) = 1.

We will consider adversaries with quantum access to F', meaning they submit
queries as Y- c vy ef0,1} eyl®,y) and receive in return 35 v 6o 1y QaylT, YD
F(z)). Grover’s algorithm [Gro96] finds a pre-image using an optimal number
of queries:

Theorem 1 ([Gro96,BBHT98]). Let F be a function F : X — {0,1}. Let t =
|[F~1(1)| > 0 be the number of pre-images of 1. There is a quantum algorithm
that finds ©* € X such that F(x*) = 1 with an expected number of quantum

queries to F' at most O (I)t(> even without knowing t in advance.

We will normally think of the number of queries as being fixed, and con-
sider the probability of success given the number of queries. The algorithm from
Theorem 1, when runs for g queries, can be shown to have a success probability
min(1,0(¢?/(|X|/t))). For the rest of the paper, “Grover’s algorithm” will refer
to this algorithm.

Now let us look at another important problem: 2-collision finding problem
on 2-to-1 functions.

Definition 2 (Collision Finding on 2-to-1 Functions). Assume |X| =
21Y| = 2N. Consider a function F : X — Y such that for every y € Y,
|F~1(y)| = 2. In other words, every image has exactly two pre-images. The
problem is to find x # x’ such that F(x) = F(2').

Brassard, Hgyer and Tapp proposed a quantum algorithm [BHT98] that
solved the problem using only O(N'/?) quantum queries. The idea is the fol-
lowing:

— Prepare a list of input and output pairs, L = {(z;,y; = F(z;)},_; where x;
is drawn uniformly at random and ¢ = N'1/3;

— If there is a 2-collision in L, output that pair. Otherwise,

— Run Grover’s algorithm on the following function F’: F'(z) = 1 if and only
if there exists i € {1,2,--- ,t}, F(x) = y; = F(z;) and & # ;. Output the
solution x, as well as whatever x; it collides with.

This algorithm takes O(t + y/N/t) quantum queries and when t = @(N'/3), the
algorithm finds a 2-collision with O(N'/3) quantum queries.
2.3 Multi-collision Finding and [HSX17]

Hosoyamada, Sasaki and Xagawa proposed an algorithm for k-collision finding
on any function F': X — Y where | X| > k|Y| (k is a constant). They generalized

On Finding Quantum Multi-collisions 201

the idea of [BHT98] and gave the proof for even arbitrary functions. We now
briefly talk about their idea. For simplicity in this discussion, we assume F' is a
k-to-1 function.

The algorithm prepares t pairs of 2-collisions (z1,}), - , (z¢, 2}) by running
the BHT algorithm ¢ times. If two pairs of 2-collisions collide, there is at least
a 3-collision (possibly a 4-collision). Otherwise, it uses Grover’s algorithm to
find a «” # x;, 2 # 2} and f(2”) = f(z;) = f(«}). The number of queries is
O(tN'? 4+ /NJt). When t = O(N'/?), the query complexity is O(N*/?).

By induction, finding a (k — 1)-collision requires O(N 3" =D/(23*"))) quan-
tum queries. By preparing ¢ (k—1)-collisions and applying Grover’s algorithm to

it, it takes O(tN(Sk_l’l)/(z'?’k_l) + \/%) quantum queries to get one k-collision.

It turns out that t = O(NY/ 3k) and the complexity of finding k-collision is
O(NG"=D/(2:3%),

2.4 Compressed Fourier Oracles and Compressed Phase Oracles

In [Zhal8], Zhandry showed a new technique for analyzing cryptosystems in the
random oracle model. He also showed that his technique can be used to re-prove
several known quantum query lower bounds. In this work, we will extend his
technique in order to prove a new optimal lower bound for multi-collisions.

The basic idea of Zhandry’s technique is the following: assume A is making a
query to a random oracle H and the query is Ztuz Qg u,2|T, U, z) where x is the
query register, u is the response register and z is its private register. Instead of
only considering the adversary’s state >, , . Gz u,:|7,u+ H(2), z) for a random
oracle H, we can actually treat the whole system as

§ § Qg u,z

z,u,z H

z,u+ H(z),z) @ |H)

where |H) is the truth table of H. By looking at random oracles that way,
Zhandry showed that these five random oracle models/simulators are equivalent:

1. Standard Oracles:
StO D dpuzlr,u,2) @Y [H) = Y > asuzle,u+t H(x),2) @ |H)
T,z H T,z H
2. Phase Oracles:
PhO Z g,z | U, 2) @ Z |H) = Z Q2| T, 1, 2) @ wa(x)'u|H>

T,u,z H T,U,z H

where w,, = e2™/N and PhO = (I® QFTT ® I)-StO- (I ® QFT ® I). In other
words, it first applies the QFT to the u register, applies the standard query,
and then applies QFTT one more time.

202 Q. Liu and M. Zhandry

3. Fourier Oracles: We can view Y, |H) as QFT|0Y). In other words, if we
perform Fourier transform on a function that always outputs 0, we will get a
uniform superposition over all the possible functions), |H).

Moreover, > w7 @ | H) is equivalent to QFT|0Y & (z,u)). Here ® means
updating (xor) the z-th entry in the database with u.

So in this model, we start with 5 af , |z, u,z) ® QFT|Dy) where Dy is
an all-zero function. By making the i-th query, we have

PhO Z %uzD|$ u, 2)QQFT|D) = Z axuzD|:L‘ u, 2)QQFT|D® (2, u))

z,u,z,D z,u,z,D

The Fourier oracle incorporates QFT and operates directly on the D registers:

FourierO Z axuzD|xuz ® |D) = Z azuzD|:1:uz>®|D€B(a: u))

x,u,z,D x,u,z,D

4. Compressed Fourier Oracles: The idea is basically the same as Fourier
oracles. But when the algorithm only makes g queries, the database D with
non-zero weight contains at most ¢ non-zero entries.

So to describe D, we only need at most g different (z;, u;) pairs (u; # 0) which
says the database outputs u; on x; and 0 everywhere else. And D @ (z,u) is
doing the following: (1) if x is not in the list D and uw # 0, put (z,u) in D;
(2) if (z,u’) is in the list D and «’ # u, update v’ to v’ @ u in D; (3) if (z,u’)
is in the list and v’ = u, remove (z,v’) from D.

In the model, we start with 3, a) .|, u, z) ®| Do) where Dy is an empty
list. After making the i-th query, we have

CFourierO Z axuzD\:Uuz ®|D) = Z axuzD\xuz>®\D@(x u))

z,u,z,D z,u,z,D

5. Compressed Standard /Phase Oracles: These two models are essentially
equivalent up to an application of QFT applied to the query response register.
From now on we only consider compressed phase oracles.

By applying QFT on the u entries of the database registers of a compressed
Fourier oracle, we get a compressed phase oracle.

In this model, D contains all the pair (z;,u;) which means the oracle outputs
u; on x; and uniformly at random on other inputs. When making a query on
|z, u, z, D),)

— if (x,u’) is in the database D for some ', a phase w’* will be added to
the state; it corresponds to update w to w + u in the compressed Fourier
oracle model where w = D(z) in the compressed Fourier database.

— otherwise a superposition is appended to the state |z) ® >_ Wi s it
corresponds to put a new pair (z,u) in the list of the compressed Fourier
oracle model;

— also make sure that the list will never have an (z, 0) pair in the compressed
Fourier oracle model (in other words, it is [2) ® >, [y) in the compressed
phase oracle model); if there is one, delete that pair;

— All the ‘append’ and ‘delete’ operations above mean applying QFT.

On Finding Quantum Multi-collisions 203

3 Algorithm for Multi-collision Finding

In this section, we give an improved algorithm for k-collision finding. We use the
same idea from [HSX17] but carefully reorganize the algorithm to reduce the
number of queries.

As a warm-up, let us consider the case k = 3 and the case where F': X — Y
is a 3-to-1 function, |X| = 3|Y| = 3N. They gives an algorithm with O(N*/?)
quantum queries. Here is our algorithm with only O(N 3/ ™) quantum queries:

— Prepare a list L = {(x,y; = F(x;))}'L, where 2; are distinct and ¢; = N3/7.
This requires O(N 3/ ") classical queries on random points.
— Define the following function F’ on X:

F'(z) = {1, xz & {x1,22, -+ , 24, } and F(x) = y; for some j
0, otherwise

Run Grover’s algorithm on function F’. Wlog (by reordering L), we find
o) such that 2} # z; and F(z}) = F(z;) using O(y/N/N3/7) = O(N?/7)
quantum queries.
— Repeat the last step to = N7 times, we will have N/7 2-collisions L' =
{(@s, 2%, y;) }22,. This takes O(N/7./N/N3/7) = O(N3/7) quantum queries.
— If two elements in L’ collide, simply output a 3-collision. Otherwise, run
Grover’s on function G:

1, x&{wi, 20, - 24,0, , 24, } and F(x) = y; for some j

G(z) = .
0, otherwise

A 3-collision will be found when Grover’s algorithm finds a pre-image of 1 on
G. Tt takes O(y/N/N1/7) = O(N3/T) quantum queries.

Overall, the algorithm finds a 3-collision using O(N3/7) quantum queries.

The similar algorithm and analysis works for any constant & and any k-to-
1 function which only requires O(N®* ' =1/2"~1) quantum queries. Let t; =
]\/'(2’“’1—1)/(2’“—1)7t2 = N(2k72—1)/(2’“—1)7...’ t = N(2k’i—1)/(2’°—1)7... 1t =

k—1
N1V/(2"=1)_ The algorithm works as follows:

— Assume F: X — Y is a k-to-1 function and |X| = k|Y| = kN.

— Prepare a list Ly of input-output pairs of size ¢;. With overwhelming proba-
bility (1 — N_l/gk)7 L, does not contain a collision. By letting tg = NV, this
step makes t11/N/tg quantum queries.

— Define a function Fy(x) that returns 1 if the input z is not in Ly but the
image F'(x) collides with one of the images in L;, otherwise it returns 0. Run
Grover’s on Fy to times. Every time Grover’s algorithm outputs 2/, it gives
a 2-collision. With probability 1 — O(N*I/Qk) (explained below), all these o
collisions do not collide. So we have a list Ly of t5 different 2-collisions. This
step makes t24/N/t; quantum queries.

204 Q. Liu and M. Zhandry

— For 2 <i <k —1, define a function F;(z) that returns 1 if the input = is not
in L;_; but the image F(x) collides with one of the images of (i — 1)-collisions
in L;_1, otherwise it returns 0. Run Grover’s algorithm on F; t; times. Every
time Grover’s algorithm outputs 2/, it gives an i-collision. With probability
1—-O0F2/tis) =1~ O(N’1/2k), all these t; collisions do not collide. So we
have a list L; of ¢; different i-collisions. This step makes t;1/N/t;—1 quantum
queries.

— Finally given t;_1 (k — 1)-collisions, using Grover’s to find a single 2’ that
makes a k-collision with one of the (k — 1)-collision in Lg_;. This step makes

tk/N/ti—1 quantum queries by letting ¢, = 1 = NCETEI-D/@F -,
The number of quantum queries made by the algorithm is simply:

k—1

tz2+1
UM oIEE
1=0
k—1 2.(2k—<i+1>,1),(2kﬂ-,1)
:Z N-N 1
=0

— . N1/

So we have the following theorem:

Theorem 2. For any constant k, any k-to-1 function F : X — Y (|X]| =
kY| = kN), the algorithm above finds a k-collision using O(N(2k_1*1)/(2k’1))
quantum queries.

We now show the above conclusion holds for an arbitrary function F' : X — Y
as long as | X| > k|Y| = kN. To prove this, we use the following lemma:

Lemma 1. Let F : X — Y be a function and |X| = k|Y| = kEN. Let urp =
Pr, [|[F~Y(F(x))| > k] be the probability that if we choose x uniformly at random
and y = F(x), the number of pre-images of y is at least k. We have pp > %

Proof. We say an input or a collision is good if its image has at least k pre-images.
To make the probability as small as possible, we want that if y has less than
k pre-images, y should have exactly k& — 1 pre-images. So the probability is at

least
[{z|xis good}| . kN —(k—1)N 1

HE = > = -

| X kN k

O

Theorem 3. Let F : X — Y be a function and |X| > k|Y| = kN. The above
algorithm finds a k-collision using O(N(2k_1*1)/(2k’1)) quantum queries with
overwhelming probability.

On Finding Quantum Multi-collisions 205

Proof. We prove the case | X| = k|Y|. The case | X| > k|Y| follows readily by
choosing an arbitrary subset X’ C X such that |X’| = k|Y| and restrict the
algorithm to the domain X’.

As what we did in the previous algorithm, in the list L;, with overwhelming
probability, there are 0.999u g - t; good inputs by Chernoff bound because every
input is good with probability ppr. Then every 2-collision in Lo has probability
0.999.:r to be good. So by Chernoff bound, Ly contains at least 0.9992 11 pts good
2-collisions with overwhelming probability. By induction, in the final list Lj_1,
with overwhelming probability, there are 0.999* !y p-t;,_1 good (k—1)-collisions.
Finally, the algorithm outputs a k-collision with probability 1, by making at most
O(y/N/(0.99%1ppt;_1)) quantum queries.

Aslong as k is a constant, the coefficients before ¢; are all constants. The num-
ber of quantum queries is scaled by a constant and is still O(N(Qkfl_l)/(zk_l))
and the algorithm succeeds with overwhelming probability. O

4 Lower Bound for Multi-collision Finding

4.1 Idea in [Zhal8]

We will first show how Zhandry re-proved the lower bound of 2-collision finding
using compressed oracle technique. The idea is that when we are working under
compressed phase/standard oracle model, a query made by the adversary (x, u)
can be recorded in the compressed oracle database.
Suppose before making the next quantum query, the current joint state is
the following
0)= > twuzplru,z)@|D)

z,u,z,D

where z is the query register, u is the response register, z is the private storage
of the adversary and D is the database in the compressed phase oracle model.
Consider measuring D after running the algorithm. Because the algorithm only
has information about the points in the database D, the only way to have a non-
trivial probability of finding a collision is for the D that results from measurement
to have a collision. More formally, here is a lemma from [Zhal§].

Lemma 2 (Lemma 5 from [Zhal8)). Consider a quantum algorithm A making
queries to a random oracle H and outputting tuples (z1, - , Tk, Y1, , Yk, Z)-
Let R be a collection of such tuples. Suppose with probability p, A outputs a
tuple such that (1) the tuple is in R and (2) H(z;) = y; for alli. Now consider
running A with compressed standard/phase oracle, and suppose the database D
is measured after A produces its output. Let p' be the probability that (1) the
tuple is in R, and (2) D(x;) = y; for all i (and in particular D(x;) # L). Then

VP <P 4 VE/2m

As long as k is small, the difference is negligible. So we can focus on bounding
the probability p’.

206 Q. Liu and M. Zhandry

Let Py be a projection spanned by all the states with z, D containing at least
one collision in the compressed phase oracles. In other words, z contains x # '
such that D(z) # L, D(2') # L and D(z) = D(z’).

P = Z |z, u, z, D){x,u, z, D]
T,u,2
z,D:>1 collision

We care about the amplitude (square root of the probability) ‘151|q5> ’ As in the

above lemma, ’]51|¢))‘ = /p’ and k = 2. Moreover, we can bound the amplitude

of the following measurement.

P = Z |2, u, z, DY{x,u, 2, D|
U,z
D:>1 collision

Here “D :> 1 collision” meaning D as a compressed phase oracle, it has a
pair of z # 2’ such that D(z) = D(z'). It is easy to see |Py|@)| > |Py|@)|. So we
will focus on bounding | Py |¢)| in the rest of the paper.

For every |x,u,z, D), after making one quantum query, the size of D will
increase by at most 1. Let |¢;) be the state before making the (¢+1)-th quantum
query and |¢}) be the state after it. Let O be the unitary over the joint system
corresponding to an oracle query, in other words, |¢}) = O|¢;). By making ¢
queries, the computation looks like the following:

— At the beginning, it has |¢g);

— For 1 <4 < g, it makes a quantum query; the state |¢;,_1) becomes |¢;_;);
and it applies a unitary on its registers U’ ® id to get |¢;) where U’ is some
unitary defined over the registers x, u, z.

— Finally measure it using P;, the probability of finding a collision (in the
compressed phase oracle) is at most | Py |¢,)|

We have the following two lemmas:

Lemma 3. For any unitary U?,
[Pulgi_y)| = [Py~ (U' @id) - |¢7_1)| = [Pr])]

Proof. Intuitively, P; is a measurement on the oracle’s register and U? is a uni-
tary on the adversary’s registers, applying the unitary does not affect the mea-
surement P;.

Because U is a unitary defined over the registers x, u, z and P, is a projective
measurement defined over the database register D, we have

1P (UM ®id) - [¢)_1)| = |Pr- (U'®id) - > apuzple,u,z D)

sy

x,u,z,D

P - (U'®@id)-) |[vp) @ |D)

D

On Finding Quantum Multi-collisions 207

= Y. Ukp)= Y)P

D>1 collision D>1 collision

which is the same as |P1|¢;_)]|. O

Lemma 4. |Pi|¢})| < |Pi|¢:)| + 4.

Proof. We have

|P1|¢;)] = |P1O|¢i)|
= [P0 (P1|¢i) + (I = P1)|os))]
< [PLOP|¢i)| + |PAO(I — Pr)|é3)]
< |P1gi)| + [PLO(I — Py)|éi)]

|PLOP1|i)| < |P1|¢i)] is because Pi|¢;) contains only D with collisions. By
making one more query, the total magnitude will not increase.

So we only need to bound the second term |PyO(I — P1)|¢i)|. (I — P1)|o)
contains only states |z,u, z, D) that D has no collision. If after applying O to
a state |z, u, z, D), the size of D does not increase (stays the same or becomes
smaller), the new database still does not contain any collision. Otherwise, it
becomes 3, w™ |x,u, z, D ® (z,u’)). And only |D| < i out of N possible D @
(z,u") contain a collision.

|P10(I — P1)|¢7,>| = PlO Z Qg u,z,D 1’7U,Z,D>

z,u,z,D
D: no collision

1 /
=|P Z Nidi szu Qg u,zp|T,u, 2, D@ (x,u'))
u/

z,u,z,D
D: no collision

1/2

i 2
E N * Qg u,z,D <

z,u,z,D
D: no collision

IN

s

By combining Lemmas3 and 4, we have that |Pi|¢;)| < 23:11
O(i*/?/N'/?). So we re-prove the following theorem:

25
|

Theorem 4. For any quantum algorithm, given a random function f: X —Y
where |Y| = N, it needs to make Q2(N'/3) quantum queries to find a 2-collision
with constant probability.

208 Q. Liu and M. Zhandry

4.2 Intuition for Generalizations

Here is the intuition for £ = 3: as we have seen in the proof for k = 2, after
T, = O(N Y 3) quantum queries, the database has high probability to contain a
2-collision. Following the same formula, after making T5 queries, the amplitude
that it contains two 2-collisions is about

T -
(1
i VN N
And similarly after T; = O(i%/3N'/3), the database will contain i 2-collisions.
Now we just assume between the (T;_1 + 1)-th query and T;-th query, the
database contains exactly (¢ — 1) 2-collisions.

Every time a quantum query is made to a database with ¢ 2-collisions, with
probability at most i/N, the new database will contain a 3-collision. Similar to
the Lemma 4, when we make queries until the database contains m 2-collisions,
the amplitude that it contains a 3-collision in the database is at most

) = T, = 0(22/3N1/3)

1/6

\ﬁ " 7/6 /a7l

— (1; = 1; ~ ~ /6
E - \/TT (T; Tz—l) /1 N1/6 dr =~z /N
1=

which gives us that the number of 2-collisions is m = N'/7. And the total number
of quantum queries is T,,, = m?/3 . N1/3 = N3/7 which is what we expected.

In the following sections, we will show how to bound the probabil-
ity /amplitude of finding a k = 2, 3, 4-collision and any constant k-collision with
constant probability. All the proof ideas are explained step by step through the
proof for k = 2,3,4. The proof for any constant k is identical to the proof for
k = 4 but every parameter is replaced with functions of k.

4.3 Lower Bound for 2-Collisions

Let P ; be a projection spanned by all the states with D containing at least j
distinct 2-collisions in the compressed phase oracle model.

P2,j: Z |£C7U,Z,D><.’E,'LL,Z,D‘

T,u,z
D:>j 2-collisions

Let the current joint state be |¢) (after making ¢ quantum queries but before
the (i + 1)-th query), and |¢') be the state after making the (i + 1)-th quantum
query.

o) = Z Og,u,z,0 |2, u) @ |2, D)

zu,z,D
We have the relation following from Lemma 4:
Vi
VN
Vi
VN

|P21|¢")| < |Po1|d)] +

P20 < [Pa,j10)| + —=| P2 j-1]¢')] for all j >0

On Finding Quantum Multi-collisions 209

Let |¢o), |¢1),- -, |¢:) be the state after making 0,1,--- ,4 quantum queries
respectively. Let f; ; = |Pa j|¢;)|. We rewrite the relations using f; ;:

i3/2

PR Sk

O<l<z

le_fz 11“!‘ \/»

Vi—1
fi,j < fifl,j + Tfi*l,jfl

= O§<i\/\/%fll,j1
L

Oglj <lj,1<~--<l2<ll<z k=1

1
<5 X 1)
TO0<l L1, oyl <d k=1

; e-i3/2\’
S < (S)
jVN
We observe that when i = o(j2/3N'/3), f; i = o(1).

zb

Corollary 1. For any quantum algorithm, given a random function f: X —Y
where |Y| = N, by making i queries, the probability of finding constant j 2-

collisions is at most O ((N)J)

Theorem 5. For any quantum algorithm, given a random function f: X —Y
where |Y| = N, it needs to make 2(j2/3N'3) quantum queries to find j 2-
collisions with constant probability.

4.4 Lower Bound for 3-Collisions

Let Psj, be a projection spanned by all the states with D containing at least k
distinct 3-collisions in the compressed phase model. And let Ps ; , be a projection
spanned by all the states with D containing exactly j distinct 2-collisions and
at least k 3-collisions.

Let the current joint state be |¢) (after making ¢ quantum queries but before
the (i + 1)-th query), and |¢') be the state after making the (i + 1)-th quantum
query. We have the following relation similar to Lemma 4:

|Ps | ¢")| < |Psi|o)]

T, u,z \/N

D exactly 1 2-collisions
exactly k—1 3-collision

+ |Ps g Z Z 1 ng“/ “Qguzp|Tu, 2, D@ (x,u))
1>

210 Q. Liu and M. Zhandry

where the first term means D already contains at least k 3-collisions before the
query; and the second term is the case where a new 3-collision is added into the
database. Similar to Lemma4, only I out of N v’ will make D @& (z,u') contain
k 3-collisions. So we have,

l
|Psi|#")| < |Psilo)| + Z v Z a2 ... p

>0 T,U,Z
- D: exactly [2-collisions
exactly k—1 3-collision

l
<|Paglg)l + /Y ~ [Pak-10) 2

1>0

Let g;r be the amplitude |P3 x|¢;)| and g; ;& = |P3jk|¢i)]. It is easy to see
gi,0 < 1 for any 7 > 0 since it is an amplitude. We have the following:

l
9ik < gi-1,k + Z N RN
1>0

Let fi; = |P»,j|¢i)|. Define hs(i) = max{2e - %,10N1/S}. We have the
following lemma:

Lemma 5.

ha(i — 1

9ik < gi-1,k + T)gi—l,k—l + ficths(i-1)

Proof.

l
ik < gi—1,k + Z N '91‘27171,1%1

1>0
l

< gi—1k + Z N 9 k1t Z L g7 1k

0<i<hs(i—1) I>hs(i-1)

[hs(i —1)
S gi-ikt N 291'2—1,1,k—1 + Z 97 ik

1>0 I>hs(i—1)
hs(i—1

< gi—1k+ % “Gi-1,k—1 t fic1,hs(i—1)

Here, in the last line, we used the fact that), gi{l’l’kil represents the total
probability of the database having k — 1 distinct 3-collisions, and so is equal
to 91'2—1,k—1~ Similarly, we used that ths(i_l) 91'2—1,5,k—1 represents the total
probability of having at least & — 1 distinct 3-collisions and at least hg(i — 1)
distinct 2-collisions. This probability is bounded above by the probability of just
having at least hg(i — 1) distinct 2-collisions, which is i271,h3(i71)' O

On Finding Quantum Multi-collisions 211

Lemma 6. Define A; = ,_ 0 hd(l . Then g; 1 can be bounded as the follow-
mg:

A
Gik < =+ +27 Nt/ foralli < NV?1 <k < NV8

L
Proof. If we expand Lemma 5, we have
hs(i —1
9ik < Gi-1,k + %9%1,1@71 + ficihs(i-1)
i—1
[hs(l)
< Gi2k+ 122 (N Jik-1 + fihs 1)

i1
hs(l
< goxr+ E <\/ j\g)gz,kﬂ + fl,hg(l)>
1=0

where if k£ > 1, go = 0. Next,

hs(l
Gik < Z \/ j\(])gz,k—l-F Z Jihs)

0<i<i 0<i<i
1/8
hs(1) e (N
< \/ L4+ NV
aS Z N Ik 1+ 5
0<i<i
hs (1) —9.5N1/8
142
< Z N Jbk-1 T
0<I<i

_ 24).5N1/8

By recursively expanding the inequality, let C , we will get

hl
ik < Z \/ 3(ly) g, k-1 +C

o<1 <1

Z /h:s](\il) Z /hslz GopatC| O

<
0<l1<i 0<l2<ly
hs(ly) hs(l3)
<
<y R s R sl o) e
0<l1<i 0<ia<ly 0<13<12
k—1

> H(F) sy (")

0<lp<--<l1<ij=1 t=0 0<l;<--<l1<ij=1

Ak A
<ﬁ+ t"C
<A—k+e L9 BN

k!

212 Q. Liu and M. Zhandry

We then bound A; for all i < N'/2? (we can always assume i = o(N'/2),
because finding any constant-collision using O(N'/?) quantum queries is easy
by a quantum computer, just repeatedly applying Grover’s algorithm):

4 " V2e - 132 VION1/8
z’SZ Naa T Z N1/2

=1 l:hs(l)=10N1/8
<vEe o (v

Which implies 4; < 2e - N*/% (by letting i = v/N). So we complete the proof:

Ak _ 1/8
gi,k < F +e .9 9.5N
k
< ﬂ + 62e-N1/8 .279.51\71/8
- k!

a

Theorem 6. For any quantum algorithm, given a random function f: X —Y
where |Y| = N, it needs to make Q2(5*/"N3/7) quantum queries to find j 3-
collisions for any j < N8 with constant probability.

Proof. We have two cases:

— When j is a constant: If i* = o(N3/7), we have g;- ; < o(1) + O(N~1/48).
— When j is not a constant: For any j, let ¢* be the largest integer such that
A < 5+ j. In this case, i* = O (j4/7N3/7). So the probability of having at

least j 3—colhslons is bounded by 91'2*73' where g;+ ; < (eAi+/j) + 9~ N'E <
2=+ L 9=NY = (1),

4.5 Lower Bound for 4-Collisions

Here we show the proof for lower bound of finding 4-collisions. The proof for
arbitrary constant has the same structure but different parameters which is
shown in the next section. We prove the case of 4-collisions here to give the idea
before generalizing.

Let f;; be the amplitude of the database containing at least j 3-collisions
after making ¢ quantum queries, g; ;1 be the amplitude of the database contain-
ing exactly j 3-collisions and at least k 4-collisions after ¢ quantum queries, g;
be the amplitude of containing at least k 4-collisions after ¢ quantum queries.

As we have seen in the last proof, we have

l
G < giora+ W
1>0

On Finding Quantum Multi-collisions 213

7/4

Define hy(i) = max{(2e)®/? - i3 10N'/16}. Again, we can bound g; by
dividing the summation into two parts:

l
2 2
Gik < Gi-1k + Z NIi-1ik-1 T Z 1 gi1ik—1

I<ha(i—1) I>ha(i—1)
ha(i—1
<gi-1k+ %91—1,1@—1 + fic1,ha(i-1)

ha(l
<) \/ j\([)gz,k—rl- > i

0<i<i 0<i<i

The second term can be bounded as the following (and we can safely assume
i< NY/2)

AP® e
> fmn <Y ha (D)1 +2

0<I<i 0<I<i

eAl h4(l) 1 _anrl/8
< + N2 o7N
- Z <h4(l)>
1 10N1/16
<> <2+0(1)) + N2 g NYE

Let B = Yoz \/ 2. And similarly, for all i < N'/2,

15/8
B; < (2¢)%/4 :

NT/8 +O(N ")

The proof follows from the last proof for k£ = 3. A generalized version (for any
constant) can be found in the next section. And B; is bounded by B 4 which
is at most 2e - N1/16,

Finally we have the following closed form:

k Bl 9.5N1/16 Blk B _9.5N1/16 B N1/16
gm_k,+z $27 < e 2 < o2

So we can conclude the following theorem:

Theorem 7. For any quantum algorithm, given a random function f: X —Y
where N = |Y|, it needs to make 2(j3/ N7/1%) quantum queries to find j 4-
collisions for any j < N6 with constant probability.

214 Q. Liu and M. Zhandry

4.6 Lower Bound for Finding a Constant-Collision

In this section, we are going to show that the theorem can be generalized to
any constant-collision. Let f; ; be the amplitude of the database containing at
least j distinct s-collisions after ¢ quantum queries, g; ; 1 be the amplitude of the
database containing exactly j distinct s-collisions and at least k distinct (s+ 1)-
collisions after ¢ quantum queries. Also let g; be the amplitude of the database
with at least k distinct (s + 1)-collisions after i quantum queries.

We assume f; ; is only defined for i < v/N,1 < j < N'/2" and g; is only
defined for ¢ < \/N, 1<k< N/2"*' Tt holds for the base cases s = 4.

Define hs(¢) (for any s > 3) as the following:

o2y 4(2571=1)/2°72

hs (i) = maX{(Qe) 20 WJO'Nl/QS}

It holds for s = 3,4 where h3(i) = max{(2e) - 2»3/2/]\71/27 10N1/8} and (i) =
max{(2e)*/? - 7/ N*/4, 10N 1/16}

Define A4, s = ;;(1) hs(D) 14 ig easy to see A; and B; in the last proof are

N
LO(N-Y/@ @),

22721 s -1y 28t
Ai)g and Ai’4. AIld we haVe ALS S (26) 252 W

22721 L(28-1)/297 !

Lemma 7. ALS S (26) 28-2 N@-I_1n/z5-T + O(Nil/(2s(2572))) holds fOT all
constant s > 3.

The lemma is consistent with the cases where s = 3,4.

Proof.
i—1
hs (1)
Al’ s —
N
1=0
10N1/2° hs(1)
= > V—xt X N
L:hs(1)=10N1/2° Lihs (1)>10N1/2°

:I.(),ZV]'/2S il 05—2_1 1(25*1_1)/25—1
- Z — Tt 2(26) = . N"/?
l:hs(1)=10N1/2° N =0 N(2 1)/2

. 22721 (2s-1)/25 1
where the second summation is at most (2e) 252 NE=TohmT

summation is at most

Ll:he(1)=10N'1/2°

and the first

—3t3erT Prer ey
SO N 2T2sF1 . N4)

<0 (N T

which completes the proof. O

On Finding Quantum Multi-collisions 215

j L2
Finally, we assume f; ; < Aji!’s +0(2~N 2) which holds for both s = 3,4. We

s+1
are going to show it holds for (s+1), in other words, g; 1 < As €+1 +O(2 _N/2).
And by induction, it holds for all constant s.
As we have seen in the last proof, we have the following inequality:

l
ik < i1+ W
1>0

hsy1(i—1
< gi-1k+ % “Gi-1k—1 T fic1,hesi(i—1)

where as i < N'/2, for sufficient large N, the last term Jic1,hss1(i—1) can be
bounded as:

fim1hoia(i-1)

Afer =) e
<=2 102N
h‘g+1(Z — 1)' ()

1on1/2
25721 (i,l)@s—l)/f’

(2¢) =77 ST t OV —l/@ @2

os—1_71 . s_ s—1
i—1)(25—1)/2 st1
max{(Qe) 25—2 (NQS)AWJO'Nlm }

+ 0N

IN

e -

1 1on1/2°t 1j2s
(2 +o(1)> +0@2 V")

o9s+1

IN

< 279.8N1/

By expanding the inequality, we get

_ /2ot
gm<z\/ SO IPS

1 _ 1/25+1
S+ _ +2 9.5N

Az s+1 Az s+1 9.5N1/2°T
S T +§ 7

k
A1 s+1

9- 9.5N1/2°H!
<

+€ 1.s+1

Because i < VN, Aisi1 < 2eN1/2 Finally, we have

k
ik < Ai,s-{-l i 27N1/2S+1

i,k >
’ k!

which completes the induction. So we have the following theorem:

216 Q. Liu and M. Zhandry

Corollary 2. For any constant s > 2, let f; ; be the amplitude of the database
containing at least j s-collisions after i quantum queries. For all 1 < j < NY/?",

we have]
Ags _N1/2°
fij < j!7 +02 V)

where
b2, Z,(2s_1)/2571

Ais < (2) 777 Sy

+ O(N_l/(QS(QS_Q)))

Theorem 8. For any quantum algorithm, given a random function f : X —
Y where N = |Y|, it needs to make 2(;2° /@ ~DNE@ =D/ =D guantum
queries to find j s-collisions for any j < N2,

Moreover, for any quantum algorithm, given a random function f: X —Y
where N = |Y|, it needs to make Q(N@ ~V/2 =) quantum queries to find
one s-collision.

Acknowledgements. This work is supported in part by NSF. Opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of NSF.

References

[Amb04] Ambainis, A.: Quantum walk algorithm for element distinctness. In: 45th
FOCS, pp. 22-31. IEEE Computer Society Press, October 2004
[AS04] Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the
element distinctness problems. J. ACM 51(4), 595-605 (2004)
[BBBV97] Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and
weaknesses of quantum computing. STAM J. Comput. 26(5), 1510-1523
1997)
[BBHT9S|](30yer, M., Brassard, G., Hgyer, P., Tapp, A.: Tight bounds on quan-
tum searching. Fortschritte der Physik: Progress Phys. 46(4-5), 493-505
1998)
[BDF+11]](30neh7 D., Dagdelen, O., Fischlin, M., Lehmann, A., Schaffner, C.,
Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41-69. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
[BDRV18] Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-
collision resistant hash functions and their applications. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 133-161.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_5
[Bel12] Belovs, A.: Learning-graph-based quantum algorithm for k-distinctness.
In: 53rd FOCS, pp. 207-216. IEEE Computer Society Press, October 2012
[BES17] Balogh, M., Eaton, E., Song, F.: Quantum collision-finding in non-uniform
random functions. Cryptology ePrint Archive, Report 2017/688 (2017).
http://eprint.iacr.org/2017/688
[BHT98] Brassard, G., Hgyer, P., Tapp, A.: Quantum cryptanalysis of hash and
claw-free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998.
LNCS, vol. 1380, pp. 163-169. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0054319

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-319-78375-8_5
http://eprint.iacr.org/2017/688
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/BFb0054319

[BKP18]

[BKT18]

[BS13]

[BZ13]

[CNOS]

[DDKS14]

[EU17]

[Gro96]

[HIK+11]

[HSTX18]

[HSX17]

[JIV02]

[JLM14]

[KMRT09)

On Finding Quantum Multi-collisions 217

Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a
paradigm for keyless hash functions. In: Diakonikolas, I., Kempe, D., Hen-
zinger, M. (eds.) 50th ACM STOC, pp. 671-684. ACM Press, June 2018
Bun, M., Kothari, R., Thaler, J.: The polynomial method strikes back:
tight quantum query bounds via dual polynomials. In: Diakonikolas, I.,
Kempe, D., Henzinger, M. (eds.) 50th ACM STOC, pp. 297-310. ACM
Press, June 2018

Belovs, A., Spalek, R.: Adversary lower bound for the k-sum problem. In:
Kleinberg, R.D. (ed.) ITCS 2013, pp. 323-328. ACM, January 2013
Boneh, D., Zhandry, M.: Quantum-secure message authentication codes.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 592-608. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9_35

Chang, D., Nandi, M.: Improved indifferentiability security analysis of
chopMD hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 429-443. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-71039-4_27

Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Cryptanalysis of iterated
Even-Mansour schemes with two keys. In: Sarkar, P., Iwata, T. (eds.)
ASTACRYPT 2014. LNCS, vol. 8873, pp. 439-457. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45611-8_23

Ebrahimi, E., Unruh, D.: Quantum collision-resistance of non-uniformly
distributed functions: upper and lower bounds. Cryptology ePrint
Archive, Report 2017/575 (2017). http://eprint.iacr.org/2017/575
Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: 28th ACM STOC, pp. 212-219. ACM Press, May 1996

Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida,
H.: A lightweight 256-bit hash function for hardware and low-end devices:
Lesamnta-LW. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS,
vol. 6829, pp. 151-168. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24209-0_10

Hosoyamada, A., Sasaki, Y., Tani, S., Xagawa, K.: Improved quan-
tum multicollision-finding algorithm. Cryptology ePrint Archive, Report
2018/1122 (2018). https://eprint.iacr.org/2018,/1122

Hosoyamada, A., Sasaki, Y., Xagawa, K.: Quantum multicollision-finding
algorithm. In: Takagi, T, Peyrin, T. (eds.) ASTACRYPT 2017. LNCS, vol.
10625, pp. 179-210. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-70697-9.7

Jaulmes, E., Joux, A., Valette, F.: On the security of randomized CBC-
MAC beyond the birthday paradox limit a new construction. In: Daemen,
J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 237-251. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_19

Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2°/2 security in sponge-
based authenticated encryption modes. In: Sarkar, P., Iwata, T. (eds.)
ASTACRYPT 2014. LNCS, vol. 8873, pp. 85-104. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45611-8_5

Knudsen, L.R., Mendel, F., Rechberger, C., Thomsen, S.S.: Cryptanaly-
sis of MDC-2. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 106-120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01001-9_6

https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-540-71039-4_27
https://doi.org/10.1007/978-3-540-71039-4_27
https://doi.org/10.1007/978-3-662-45611-8_23
http://eprint.iacr.org/2017/575
https://doi.org/10.1007/978-3-642-24209-0_10
https://doi.org/10.1007/978-3-642-24209-0_10
https://eprint.iacr.org/2018/1122
https://doi.org/10.1007/978-3-319-70697-9_7
https://doi.org/10.1007/978-3-319-70697-9_7
https://doi.org/10.1007/3-540-45661-9_19
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-642-01001-9_6
https://doi.org/10.1007/978-3-642-01001-9_6

218 Q. Liu and M. Zhandry

[KNY18]

[NO14]

[NSWY13]

[NWW14]

[RS97]

[TU16]

[van98]

[Zhal2]

[Zhalbal]

[Zhal5b]

[Zhal8]

Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for para-
noids: dealing with multiple collisions. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 162—-194. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8_6

Naito, Y., Ohta, K.: Improved indifferentiable security analysis of PHOTON.
In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 340—
357. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-
720

Naito, Y., Sasaki, Y., Wang, L., Yasuda, K.: Generic state-recovery and
forgery attacks on ChopMD-MAC and on NMAC/HMAC. In: Sakiyama,
K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 83-98. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41383-4_6

Nikoli¢, 1., Wang, L., Wu, S.: Cryptanalysis of round-reduced LED. In:
Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 112-129. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43933-3_7

Rivest, R.L., Shamir, A.: PayWord and MicroMint: two simple micropay-
ment schemes. In: Lomas, M. (ed.) Security Protocols 1996. LNCS, vol.
1189, pp. 69-87. Springer, Heidelberg (1997). https://doi.org/10.1007/3-
540-62494-5_6

Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto
and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 192-216. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53644-5_8

van Dam, W.: Quantum oracle interrogation: getting all information for
almost half the price. In: 39th FOCS, pp. 362-367. IEEE Computer Soci-
ety Press, November 1998

Zhandry, M.: Secure identity-based encryption in the quantum random
oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 758-775. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32009-5_44

Zhandry, M.: A note on the quantum collision and set equality problems.
Quantum Inf. Comput. 15(7&8) (2015)

Zhandry, M.: Quantum oracle classification-the case of group structure.
arXiv preprint arXiv:1510.08352 (2015)

Zhandry, M.: How to record quantum queries, and applications to
quantum indifferentiability. Cryptology ePrint Archive, Report 2018/276
(2018). https://eprint.iacr.org/2018/276

https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/978-3-319-10879-7_20
https://doi.org/10.1007/978-3-319-10879-7_20
https://doi.org/10.1007/978-3-642-41383-4_6
https://doi.org/10.1007/978-3-662-43933-3_7
https://doi.org/10.1007/3-540-62494-5_6
https://doi.org/10.1007/3-540-62494-5_6
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
http://arxiv.org/abs/1510.08352
https://eprint.iacr.org/2018/276

1

On Quantum Advantage in Information
Theoretic Single-Server PIR

Dorit Aharonov!(®) Zvika Brakerski?, Kai-Min Chung®, Ayal Green!,

Ching-Yi Lai®, and Or Sattath*

! Hebrew University, Jerusalem, Israel
doria@cs.huji.ac.il
2 Weizmann Institute of Science, Rehovot, Israel
3 Academia Sinica, Taipei, Taiwan
4 Ben-Gurion University, Beersheba, Israel

Abstract. In (single-server) Private Information Retrieval (PIR), a
server holds a large database DB of size n, and a client holds an index
i € [n] and wishes to retrieve DB[i] without revealing ¢ to the server. It
is well known that information theoretic privacy even against an “hon-
est but curious” server requires 2(n) communication complexity. This is
true even if quantum communication is allowed and is due to the ability
of such an adversarial server to execute the protocol on a superposition of
databases instead of on a specific database (“input purification attack”).

Nevertheless, there have been some proposals of protocols that achieve
sub-linear communication and appear to provide some notion of privacy.
Most notably, a protocol due to Le Gall (ToC 2012) with communication
complexity O(y/n), and a protocol by Kerenidis et al. (QIC 2016) with
communication complexity O(log(n)), and O(n) shared entanglement.

We show that, in a sense, input purification is the only potent adver-
sarial strategy, and protocols such as the two protocols above are secure
in a restricted variant of the quantum honest but curious (a.k.a specious)
model. More explicitly, we propose a restricted privacy notion called
anchored privacy, where the adversary is forced to execute on a clas-
sical database (i.e. the execution is anchored to a classical database).
We show that for measurement-free protocols, anchored security against
honest adversarial servers implies anchored privacy even against specious
adversaries.

Finally, we prove that even with (unlimited) pre-shared entanglement
it is impossible to achieve security in the standard specious model with
sub-linear communication, thus further substantiating the necessity of
our relaxation. This lower bound may be of independent interest (in
particular recalling that PIR is a special case of Fully Homomorphic
Encryption).

Introduction

®

Check for
updates

Private Information Retrieval (PIR), introduced by Chor et al. [CGKS95], is
perhaps the most basic form of joint computation with privacy guarantee. PIR

© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11478, pp. 219-246, 2019.
https://doi.org/10.1007/978-3-030-17659-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17659-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-17659-4_8

220 D. Aharonov et al.

is concerned with privately retrieving an entry from a database, without reveal-
ing which entry has been accessed. Formally, a PIR protocol is a communication
protocol between two parties, a server holding a large database DB contain-
ing n binary entries!, and a client who wishes to retrieve the ith element of
the database but without revealing the index i. Privacy can be defined using
standard cryptographic notions such as indistinguishability or simulation (see
[Gol04]). The simplicity of this primitive is since there is no privacy require-
ment for the database (i.e. we allow sending more information than necessary)
and that the server is not required to produce any output in the end of the
interaction, so functionality and privacy are one sided.

Clearly PIR is achievable by sending all of DB to the client. This will have
communication complexity n and will be perfectly private under any plausible
definition since the client sends no information. The absolute optimal result one
could hope for is a protocol with logarithmic communication, matching the most
communication efficient protocol without privacy constraints, in which the client
sends the index 7 to the server and receives DB[i] in response.

Alas, [CGKS95] proved that linear (in n) communication complexity is nec-
essary for PIR, and that this is the case even in the presence of arbitrary setup
information.? Despite its pessimistic outlook, this lower-bound served (already in
[CGKS95] itself) as starting point to two extremely prolific and influential lines
of research, showing that the communication complexity can be vastly improved
if we place some restrictions on the server. The first considered multiple non-
interacting servers (see, e.g., [Efr12,DG15] and references therein), instead of
just a single server, and the second considered computationally bounded servers
and relying on cryptographic assumptions (see, e.g., [CMS99, Gen09,BV11]).

While our discussion so far referred to protocols executed by classical parties
over classical communication channels, the focus of this work is on the quantum
setting, where there is a quantum communication channel between the client
and server, and where the parties themselves are capable of performing quan-
tum operations. Importantly, we still only require functionality for a classical
database and a classical index.

One could hope that introducing quantum channels could allow an informa-
tion theoretic solution to a problem that classically can only be solved using
cryptographic assumptions, as has been the case for quantum key distribution
[BB84], quantum money [Wie83], quantum digital signatures [GC01], quantum
coin-flipping [Moc07,CK09, ACG+16] and more [BS16]. Indeed, the notion of
Quantum PIR (or QPIR) is quite a natural extension of its classical counterpart
and has also been extensively studied in the literature. Nayak’s famous result on
the impossibility of random access codes [Nay99] implies a linear lower bound

! Throughout this work we will focus on the setting of binary database. We do note
that there is vast literature concerned with optimizations for the case of larger alpha-
bet.

2 Setup refers to any information that is provided to the parties prior to the execution
of the protocol by a trusted entity, but crucially one that does not depend on the
parties’ inputs. Shared randomness or shared entanglement are common examples.

On Quantum Advantage in Information Theoretic Single-Server PIR 221

for non-interactive protocols (ones that consists of only a single message from
the server to the client), and implicitly, via extension of the same methods, also
for multi-round protocols. Formal variants of this lower bound were proven also
by Jain, Radhakrishnan and Sen [JRS09] (in terms of quantum mutual informa-
tion) and by Baumeler and Broadbent [BB15]. Indeed, one could trace back all of
these results to the notion of adversary purification which was used to show the
impossibility of various cryptographic tasks in the information-theoretic quan-
tum model starting as early as [Lo97,LC97,May97]. In the context of QPIR, it
can be shown that executing a QPIR pr