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Abstract. In privacy amplification, two mutually trusted parties aim
to amplify the secrecy of an initial shared secret X in order to establish
a shared private key K by exchanging messages over an insecure commu-
nication channel. If the channel is authenticated the task can be solved
in a single round of communication using a strong randomness extrac-
tor; choosing a quantum-proof extractor allows one to establish security
against quantum adversaries.

In the case that the channel is not authenticated, this simple solution
is no longer secure. Nevertheless, Dodis and Wichs (STOC’09) showed
that the problem can be solved in two rounds of communication using a
non-malleable extractor, a stronger pseudo-random construction than a
strong extractor.

We give the first construction of a non-malleable extractor that is
secure against quantum adversaries. The extractor is based on a construc-
tion by Li (FOCS’12), and is able to extract from source of min-entropy
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rates larger than 1/2. Combining this construction with a quantum-proof
variant of the reduction of Dodis and Wichs, due to Cohen and Vidick
(unpublished) we obtain the first privacy amplification protocol secure
against active quantum adversaries.

1 Introduction

Privacy amplification. We study the problem of privacy amplification [4,5,30,31]
(PA). In this problem, two parties, Alice and Bob, share a weak secret X (a
random variable with min-entropy at least k). Using X and an insecure commu-
nication channel, Alice and Bob would like to securely agree on a secret key R
that is ε-close to uniformly random even to an adversary Eve who may have full
control over their communication channel. This elegant problem has multiple
applications including biometric authentication, leakage-resilient cryptography,
and quantum cryptography.

If the adversary Eve is passive, i.e., she is only able to observe the communi-
cation but may not alter the messages exchanged, then there is a direct solution
based on the use of a strong seeded randomness extractor Ext [33]. This can be
done by Alice selecting a uniform seed Y for the extractor, and sending the seed
to Bob; Alice and Bob both compute the key R = Ext(X,Y ), which is close
to being uniformly random and independent of Y by the strong extractor prop-
erty. The use of a quantum-proof extractor suffices to protect against adversaries
holding quantum side information about the secret X.

Privacy amplification is substantially more challenging when the adversary is
active, i.e. Eve can not only read but also modify messages exchanged across the
communication channel. This problem has been studied extensively in several
works including [2,3,8,9,12,13,16,17,19,20,25–29,31,35], yielding constructions
that are optimal or near-optimal in any of the parameters involved in the prob-
lem, including the min-entropy k, the error ε, and the communication complexity
of the protocol.

Active adversaries with quantum side information. We consider the problem
of active attacks by quantum adversaries. This question arises naturally when
privacy amplification is used as a sub-protocol, e.g., as a post-processing step in
quantum key distribution (QKD), when it may not be safe to assume that the
classical communication channel is authenticated.1 To the best of our knowledge
the question was first raised in [7], whose primary focus is privacy amplification
with an additional property of source privacy. Although the authors of [7] initially
claimed that their construction is secure against quantum side information, they
later realized that there was an issue with their argument, and withdrew their
claim of quantum security. The only other work we are aware of approaching the
question of privacy amplification in the presence of active quantum adversaries

1 QKD relies on an authenticated channel at other stages of the protocol, and here we
only address the privacy amplification part: indeed, PA plays an important role in
multiple other cryptographic protocols, and it is a fundamental task that it is useful
to address first.
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is [14]. In this paper it is shown that a classical protocol for PA introduced
by Dodis and Wichs [19] remains secure against active quantum attacks when
the main tool used in the protocol, a non-malleable extractor, is secure against
quantum side information (a notion that is also formally introduced in that
paper, and to which we return shortly). Unfortunately, the final contribution
of [14], a construction of a quantum-proof non-malleable extractor, also had a
flaw in the proof, invalidating the construction. Thus, the problem of quantum-
secure active privacy amplification remained open.

It may be useful to discuss the difficulty faced by both these previous works,
as it informed our own construction. The issue is related to the modeling of
the side information held by the adversary Eve, and how that side information
evolves as messages are being exchanged, and possibly modified, throughout the
privacy amplification protocol. To explain this, consider the setting for a non-
malleable extractor, whose security property can be defined without referring
to the way the extractor is used for privacy amplification. Here, Alice initially
has a secret X (the source), while Eve holds side information E, a quantum
state, correlated with X. Alice selects a uniformly random seed Y and computes
Ext(X,Y ). However, in addition to receiving Y (as would already be the case
for a strong randomness extractor), Eve is also given the possibility to select
an arbitrary Y ′ �= Y and receive Ext(X,Y ′) as “advice” to help her break
the extractor—i.e., distinguish Ext(X,Y ) from uniform. Now, clearly in any
practical scenario the adversary may use her side information E in order to guide
her choice of Y ′; thus Y ′ should be considered as the outcome of a measurement
{My′

y }, depending on Y = y and performed on E, which returns an outcome
Y ′ = y′ and a post-measurement state E′. This means that the security of the
extractor should be considered with respect to the side information E′. But due
to the measurement, E′ may be correlated with both X and Y in a way that
cannot be addressed by standard techniques for the analysis of strong extractors.
Indeed, even if E′ is classical, so that we can condition on its value, X and Y may
not be independent after conditioning on E′ = e′; due to the lack of independence
it is unclear whether extraction works. (Classical proofs condition on E = e at
the outset, which does preserve independence.)

The issue seems particularly difficult to accommodate when analyzing extrac-
tors based on the technique of “alternate extraction”, as was attempted in [7,14].
In fact, in the original version of [7] the issue is overlooked, resulting in a flawed
security proof. In [14] the authors attempted to deal with the difficulty by using
the formalism of quantum Markov chains; unfortunately, there is a gap in the argu-
ment and it does not seem like the scenario can be modeled using the Markov chain
formalism. Note that in the classical setting the issue does not arise: having fixed
E = e we can consider Y ′ to be a fixed, deterministic function of Y —there is no
E′ to consider, and X is independent of both Y and Y ′ conditioned on E = e. In
this paper we do not address the issue, but instead focus on a specific construction
of non-malleable extractor whose security can be shown by algebraic techniques
sidestepping the difficulty; we explain our approach in more detail below.

Our results. We show that a non-malleable extractor introduced by Li [27] in
the classical setting is secure against quantum side information. Combining this
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construction with the protocol of Dodis and Wichs and its proof of security
from [14], we obtain the first protocol for privacy amplification that is secure
against active quantum adversaries.

Before describing our results in more detail we summarize Li’s construction
and its analysis for the case of classical side information. The construction is
based on the inner product function. Let p be a prime, Fp the finite field with
p elements, and 〈·, ·〉 the inner product over Fp. Consider the function Ext :
F

n
p × F

n
p → Fp given by Ext(X,Y ) := 〈X,Y 〉, where X ∈ F

n
p is a weak secret

with min-entropy (conditioned on the adversary’s side information) assumed to
be greater than (n log p)/2, and Y is a uniformly random and independent seed.
For this function to be a non-malleable extractor, it is required that Ext(X,Y ) is
close to uniform and independent of Ext(X, f(Y )), where f is any adversarially
chosen function such that f(Y ) �= Y for all Y . This is clearly not true, since
if f(Y ) = cY for some c ∈ Fp \ {1}, then Ext(X, f(Y )) = cExt(X,Y ), and
hence we don’t get the desired independence. Thus, for such a construction
to work, it is necessary to encode the source Y as Enc(Y ), for a well-chosen
function Enc, in such a way that 〈X,Enc(Y )〉 − c · 〈X,Enc(f(Y ))〉 is hard to
guess. The non-uniform XOR lemma [3,13,17] shows that it is sufficient to show
that 〈X,Enc(Y )〉 − c · 〈X,Enc(f(Y ))〉 = 〈X,Enc(Y ) − c · Enc(f(Y ))〉 is close to
uniform conditioned on Y and E. The encoding that we use in this paper (which
is almost the same as the encoding chosen by Li) is to take Y ∈ F

n/2
p , and encode

it as Y ‖Y 2, which we view as an n-character string over Fp, with the symbol
‖ denoting concatenation of strings and the square taken by first interpreting
Y as an element of Fpn/2 . Then it is not difficult to show that for any function
f such that f(Y ) �= Y and any c, we have that (Y ‖Y 2) − (c · f(Y )‖c · f(Y )2)
(taking the addition coordinatewise) has min-entropy almost (n log p)/2. Thus,
provided X has sufficiently high min-entropy and using the fact that X and
(Y ‖Y 2) − (c · f(Y )‖c · f(Y )2) are independent conditioned on E, the strong
extractor property of the inner product function gives the desired result.2

Our main technical result is a proof of security of Li’s extractor, against
quantum side information. We show the following (we refer to Definition 5 for
the formal definition of a quantum-proof non-malleable extractor):

Theorem 1. Let p �= 2 be a prime. Let n be an even integer. Then for any
ε > 0 the function nmExt(X,Y ) : Fn

p × F
n/2
p → Fp given by 〈X,Y ‖Y 2〉 is an

(
(

n
2 + 6

)
log p − 1 + 4 log 1

ε , ε) quantum-proof non-malleable extractor.

We give the main ideas behind our proof of security for this construction,
highlighting the points of departure from the classical analysis. Subsequently,
we explain the application to privacy amplification.

Proof ideas. We begin by generalizing the first step of Li’s argument, the reduc-
tion provided by the non-uniform XOR lemma, to the quantum case. An XOR

2 This description is a little different from Li’s description since he was working with
a field of size 2n, but we find it more convenient to work with a prime field.
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lemma with quantum side information is already shown in [22], where the lemma
is used to show security of the inner product function as a two-source extractor
against quantum side information. This version is not sufficient for our purposes,
and we establish the following generalization, which may be of independent inter-
est (we refer to Sect. 3 for relevant definitions):

Lemma 1. Let p be a prime power and t an integer. Let ρX0XE be a ccq state
with X0 ∈ Fp and X = (X1, . . . , Xt) ∈ F

t
p. For all a = (a1, . . . , at) ∈ F

t
p, define

a random variable Z = X0 + 〈a,X〉 = X0 +
∑t

i=1 aiXi. Let ε ≥ 0 be such that
for all a, 1

2 ‖ρa
ZE − UZ ⊗ ρE‖1 ≤ ε. Then

1
2

∥
∥ρX0XE − UX0 ⊗ ρXE

∥
∥

1
≤ p

t+1
2

√
ε

2
. (1.1)

XOR lemmas are typically proved via Fourier-based techniques (including
the one in [22]). Here we instead rely on a collision probability-based argument
inspired from [3]. We prove Lemma 1 by observing that such arguments general-
ize to the quantum setting, as in the proof of the quantum leftover hash lemma
in [36].

Based on the XOR lemma (used with t = 1), following Li’s arguments it
remains to show that the random variable 〈X, g(Y, Y ′)〉 ∈ Fp, where g(Y, Y ′) =
Y ‖Y 2 − c(Y ′‖Y ′2) ∈ F

n
p , is close to uniformly distributed from the adversary’s

point of view, specified by side information E′, for every c �= 0 ∈ Fp. As already
mentioned earlier, this cannot be shown by a reduction to the security proof of
the inner product function as a two-source extractor against side information,
as X and g(Y, Y ′) are not independent (not even conditioned on the value of E′

when E′ is classical).
Instead, we are led to a more direct analysis which proceeds by formulat-

ing the problem as a communication task.3 We relate the task of breaking our
construction—distinguishing 〈X, g(Y, Y ′)〉 from uniform—to success in the fol-
lowing task. Alice is given access to a random variable X, and Bob is given a
uniformly random Y . Alice is allowed to send a quantum message E, correlated
with X, to Bob. Bob then selects a Y ′ �= Y and returns a value b ∈ Fp. The play-
ers win if b = 〈X, g(Y, Y ′)〉. Based on our previous reductions it suffices to show
that no strategy can succeed with probability substantially higher than random
in this game, unless Alice’s initial message to Bob contains a large amount of
information about X; more precisely, unless the min-entropy of X, conditioned
on E, is less than half the length of X.

Note that the problem as we formulated it does not fall in standard frameworks
for communication complexity. In particular, it is a relation problem, as Bob is
allowed to choose the value Y ′ to which his prediction b applies. This seems to
prevent us from using any prior results on the communication complexity of the
inner product function, and we develop an ad-hoc proof which may be of inde-
pendent interest. We approach the problem using the “reconstruction paradigm”
3 The correspondence between security of quantum-proof strong extractors and com-

munication problems has been used repeatedly before, see e.g. [21,22].
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(used in e.g. [15]), which amounts to showing that from any successful strategy of
the players one may construct a measurement for Bob which completely “recon-
structs” X, given E; if this can be achieved with high enough probability it will
contradict the min-entropy assumption on X, via its dual formulation as a guess-
ing probability [23]. We show this by running Bob’s strategy “in superposition”,
and applying a Fourier transform to recover a guess for X. This argument is sim-
ilar to one introduced in [11,32]. We refer to Sect. 4.1 for more detail.

Application to privacy amplification. Finally we discuss the application of our
quantum-proof non-malleable extractor to the problem of privacy amplification
against active quantum attacks, which is our original motivation. The application
is based on a breakthrough result by Dodis and Wichs [19], who were first to
show the existence of a two-round PA protocol with optimal (up to constant
factors) entropy loss L = Θ(log(1/ε)), for any initial min-entropy k. This was
achieved by defining and showing the existence of non-malleable extractors with
very good parameters.

The protocol from [19] is recalled in Sect. 5. The protocol proceeds as follows.
Alice sends a uniformly random seed Y to Bob over the communication channel,
which is controlled by Eve. Bob receives a possibly modified seed Y ′. Then Alice
computes a key K = nmExt(X,Y ), and Bob computes K ′ = nmExt(X,Y ′).
In the second round, Bob generates another uniformly random seed W ′, and
sends W ′ together with T ′ = MACK′(W ′) to Alice, where MAC is a one-time
message authentication code. Alice receives a possibly modified T,W and checks
whether T = MACK(W ). If yes, then the shared secret between Alice and Bob
is Ext(X,W ) = Ext(X,W ′) with overwhelming probability, where Ext is any
strong seeded extractor.

The security of this protocol intuitively follows from the following simple
observation. If the adversary does not modify Y , then K ′ = K, and so W ′ must be
equal to W by the security of the MAC. If Y ′ �= Y , then by the non-malleability
property of nmExt, K is uniform and independent of K ′, and so it is impossible
for the adversary to predict MACK(W ) for any W even given K ′ and W ′.

Since [19] could not construct an explicit non-malleable extractor, they
instead defined and constructed a so called a look-ahead extractor, which can
be seen as a weakening of the non-malleability requirement of a non-malleable
extractor. This was done by using the alternating extraction protocol by Dziem-
bowski and Pietrzak [18].

In [14], Dodis and Wichs’ reduction is extended to the case of quantum
side information, provided that the non-malleable Extractor nmExt used in the
protocol satisfies the appropriate definition of quantum non-malleability, and Ext
is a strong quantum-proof extractor. Based on our construction of a quantum-
proof non-malleable extractor (Theorem 1) we immediately obtain a PA protocol
that is secure as long as the initial secret X has a min-entropy rate of (slightly
more than) half. The result is formalized as Corollary 1 in Sect. 5.

In Sect. 5.2 we additionally prove security of a one-round protocol due to
Dodis et al. [16] against active quantum attacks. The protocol has the advantage
of being single-round, but it induces a significantly higher entropy loss, (n/2) +
log(1/ε), than the Dodis-Wichs protocol, for which the loss is independent of n.
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Future work. There have been a series of works in the classical setting [3,9,12,13,
17,20,25,27–29] that have given privacy amplification protocols (via constructing
non-malleable extractors or otherwise) that achieve near-optimal parameters. In
particular, Li [29] constructed a non-malleable extractor that works for min-
entropy k = Ω(log n + log(1/ε) log log(1/ε)), where ε is the error probability.

Our quantum-proof non-malleable extractor requires the min-entropy rate of
the initial weak secret to be larger than 1/2. We leave it as an open question
whether one of the above-mentioned protocols that work for min-entropy rate
smaller than 1/2 in the classical setting can be shown secure against quantum
side information.

2 Preliminaries

2.1 Notation

For p a prime power we let Fp denote the finite field with p elements. For any
positive integer n, there is a natural bijection φ : Fn

p �→ Fpn that preserves group
addition and scalar multiplication, i.e., the following hold:

– For all c ∈ Fp, and for all x ∈ F
n
p , φ(c · x) = c · φ(x).

– For all x1, x2 ∈ F
n
p , φ(x1) + φ(x2) = φ(x1 + x2).

We use this bijection to define the square of an element in F
n
p , e.g. for y ∈ F

n
p

y2 = φ−1
(
(φ(y))2

)
. (2.1)

We write 〈·, ·〉 for the inner product over F
n
p . log denotes the logarithm with

base 2.
We write H for an arbitrary finite-dimensional Hilbert space, L(H) for the

linear operators on H, Pos(H) for positive semidefinite operators, and D(H) ⊂
Pos(H) for positive semidefinite operators of trace 1 (density matrices). A linear
map T : L(H) → L(H′) is CPTP if it is completely positive, i.e. T ⊗ Id(A) ≥ 0
for any d ≥ 0 and A ∈ Pos(H ⊗ C

d), and trace-preserving.
We use capital letters A,B,E,X, Y, Z, . . . to denote quantum or classical ran-

dom variables. Generally, the letters near the beginning of the alphabet, such as
A,B,E, represent quantum variables (density matrices on a finite-dimensional
Hilbert space), while the letters near the end, such as X,Y,Z represent classi-
cal variables (ranging over a finite alphabet). We sometimes represent classical
random variables as density matrices diagonal in the computational basis, and
write e.g. (A,B, . . . , E)ρ for the density matrix ρA,B,...,E . For a quantum ran-
dom variable A, we denote HA the Hilbert space on which the associated density
matrix ρA is supported, and dA its dimension. If X is classical we loosely identify
its range {0, . . . , dX − 1} with the space HX spanned by {|0〉X , . . . , |dX − 1〉X}.
We denote IA the identity operator on HA. When an identity operator is tensor
producted with another matrix, we sometimes omit the identity operator for
brevity, e.g. writing IA ⊗ B as B. When a density matrix specifies the states of
two random variables, one of which is classical and the other is quantum, we call
it a classical-quantum(cq)-state. A cq state (X,E)ρ takes the form
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ρXE =
∑

x

|x〉〈x|X ⊗ ρx
E ,

where the summation is over all x in the range of X and {ρx
E} are positive

semidefinite matrices with Tr ρx
E = px, where px is the probability of getting

the outcome x when measuring the X register. Similarly, a ccq state (X,Y,E)σ

is a density matrix over two classical variables and one quantum variable, e.g.
σXY E =

∑
x,y |x〉〈x|X ⊗ |y〉〈y|Y ⊗ σxy

E . We will sometimes add or remove ran-
dom variables from an already-specified density matrix. When we omit a ran-
dom variable, we mean the reduced density matrix, e.g. (Y,E)σ = TrX(σXY E).
When we introduce a classical variable, we mean that the classical variable is
computed into another classical register. For example, for a function F (·, ·) on
variables X,Y ,

(F (X,Y ),X, Y,E)σ =
∑

f,x,y

δ(f, F (x, y))|f〉〈f | ⊗ |x〉〈x| ⊗ |y〉〈y| ⊗ σxy
E ,

where δ(·, ·) is the Kronecker delta function, and the summation over f is taken
over the range of F . When F is a random function, the density matrix is averaged
over the appropriate probability distribution.

We use UΣ to denote the uniform distribution over a set Σ. For m-bit string
{0, 1}m, we abbreviate U{0,1}m as Um. For a classical random variable X, UX

denote the uniform distribution over the range of X.
For p ≥ 1 we write ‖·‖p for the Schatten p-norm (this is the p-norm of the

vector of singular values). We write ‖·‖ for the operator norm.
Wewrite≈ε todenote that twodensitymatrices are ε-close to eachother in trace

distance. For example, (X,E)ρ ≈ε (UX , E)ρ means 1
2 ‖ρXE − UX ⊗ ρE‖1 ≤ ε.

Note that in case both X and E are classical random variables, this reduces to the
statistical distance.

2.2 Quantum Information

The min-entropy of a classical random variable X conditioned on quantum side
information E is defined as follows.

Definition 1 (Min-entropy). Let ρXE ∈ D(HX ⊗ HE) be a cq state. The
min-entropy of X conditioned on E is defined as

Hmin(X|E)ρ = max{λ ≥ 0 : ∃σE ∈ Pos(HE), Tr (σE) ≤ 1, s.t. 2−λIX ⊗ σE ≥ ρXE}.

When the state ρ with respect to which the entropy is measured is clear from
context we simply write Hmin(X|E) for Hmin(X|E)ρ.

Definition 2 ((n, k) -source). A cq state ρXE is an (n, k)-source if n = log dX

and Hmin(X|E))ρ ≥ k.

Rather than using Definition 1, we will most often rely on an operational
expression for the min-entropy stated in the following lemma from [23].
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Lemma 2 (Min-entropy and guessing probability). For a cq state ρXE ∈
D(HX ⊗ HE), the guessing probability is defined as the probability to correctly
guess X with the optimal strategy to measure E, i.e.

pguess(X|E)ρ = sup
{Mx}

∑

x

px Tr (Mxρx
E) , (2.2)

where {Mx} is a positive operator-valued measure (POVM) on HE. Then the
guessing probability is related to the min-entropy by

pguess(X|E)ρ = 2−Hmin(X|E)ρ . (2.3)

2.3 Extractors

We first give the definition of a strong quantum-proof extractor. Recall the nota-
tion (X,E)ρ ≈ε (X ′, E′)ρ for 1

2‖ρXE−ρX′E′‖1 ≤ ε, and Um for a random variable
uniformly distributed over m-bit strings.

Definition 3. Let k be an integer and ε ≥ 0. A function Ext : HX ×HY → HZ

is a strong (k, ε) quantum-proof extractor if for all cq states ρXE ∈ D(HX ⊗HE)
with Hmin(X|E) ≥ k, and for a classical uniform Y ∈ HY independent of ρXE,

(Ext(X,Y ), Y, E)ρ ≈ε (UZ , Y, E)ρ .

There are known explicit constructions of strong quantum-proof extractors.

Theorem 2 ([36]). For any integers dX , k and for any ε > 0 there exists an
explicit strong (k, ε) quantum-proof extractor Ext: {0, . . . , dX −1}×{0, . . . , dY −
1} → {0, . . . , dZ − 1} with log dY = O(log dX) and log dz = k − O(log(1/ε)) −
O(1).

We use the same definition of non-malleable extractor against quantum side
information that was introduced in the work [14]. The definition is a direct gen-
eralization of the classical notion of non-malleable extractor introduced in [19].
The first step is to extend the notion that the adversary may query the extractor
on any different seed Y ′ than the seed Y actually used to the case where Y ′ may
be generated from Y as well as quantum side information held by the adversary.

Definition 4 (Map with no fixed points). Let HY , HE and HE′ be finite-
dimensional Hilbert spaces. We say that a CPTP map T : L(HY ⊗ HE) →
L(HY ⊗ HE′) has no fixed points if for all ρE ∈ D(HE) and all computational
basis states |y〉 ∈ HY it holds that

〈y|Y TrHE′
(
T

(|y〉〈y|Y ⊗ ρE

)) |y〉Y = 0 .

The following definition is given in [14]:

Definition 5 (Non-malleable extractor). Let HX , HY , HZ be finite-
dimensional Hilbert spaces, of respective dimension dX , dY , and dZ . Let k ≤
log dX and ε > 0. A function

nmExt : {0, . . . , dX − 1} × {0, . . . , dY − 1} → {0, . . . , dZ − 1}
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is a (k, ε) quantum-proof non-malleable extractor if for every cq-state (X,E)ρ on
HX ⊗HE such that Hmin(X|E)ρ ≥ k and any CPTP map Adv : L(HY ⊗HE) →
L(HY ⊗ HE′) with no fixed points,

∥
∥σnmExt(X,Y )nmExt(X,Y ′)Y Y ′E′ − UZ ⊗ σnmExt(X,Y ′)Y Y ′E′

)∥∥
1

≤ ε ,

where
σY Y ′XE′ =

1
dY

∑

y

|y〉〈y|Y ⊗ (IX ⊗ Adv)(|y〉〈y|Y ⊗ ρXE) (2.4)

and σnmExt(X,Y )nmExt(X,Y ′)Y Y ′E′ is obtained from σY Y ′XE′ by (classically) com-
puting nmExt(X,Y ) and nmExt(X,Y ′) in ancilla registers and tracing out X.

2.4 Hölder’s Inequality

We use the following Hölder’s inequality for matrices. For a proof, see e.g. [6].

Lemma 3 (Hölder’s inequality). For any n×n matrices A, B, C with com-
plex entries, and real numbers r, s, t > 0 satisfying 1

r + 1
s + 1

t = 1,

‖ABC‖1 ≤ ‖|A|r‖1/r
1 ‖|B|s‖1/s

1

∥
∥|C|t∥∥1/t

1
. (2.5)

3 Quantum XOR Lemma

In this section we prove two XOR lemmas with quantum side information. We
prove a non-uniform version, Lemma 1, in Sect. 3.1. In the full version of the
paper [1], we also prove a more standard XOR lemma with quantum side infor-
mation for completeness.4 Since XOR lemmas often play a fundamental role,
they might be of independent interest. Our proofs are based on quantum collision
probability techniques5 from [36] to transform a classical collision probability-
based proof into one that also allows for quantum side information. The idea of
non-uniform XOR lemma is natural in the context of non-malleable extractors,
and has been explored in [3,13,27]. Our non-uniform XOR lemma generalizes a
restricted version of Lemma 3.15 of [27] to Fp with quantum side information.6

The quantum collision probability is defined as follows.

Definition 6 (Quantum collision probability). Let ρAB ∈ D(HA⊗HB) and
σB ∈ D(HB). The collision probability of ρAB, conditioned on σB, is defined as

Γc(ρAB |σB) ≡ Tr
(
ρAB(IA ⊗ σ

−1/2
B )

)2

, (3.1)

where σB ∈ D(HB).
4 When restricted to F2, our standard XOR lemma is very similar to Lemma 10 of [22],

although the result from [22] provides a tighter bound in this case. [22] provides a
bound of p2tε2, while ours scales as ptε, a quadratic loss. However our result applies
to Fp, while it is unclear whether the proof of [22] generalizes to p > 2. [22] obtains
the result by Fourier analysis.

5 The term “quantum collision probability” is ours.
6 Compared to [27, Lemma 3.15], we have m = 1 and n = t.
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A careful reader might notice that Γc ≤ 1 is not generally true, so calling Γc

collision probability seems misleading. We give a general definition which allows
arbitrary states ρAB and σB to match the existing literature, but here we always
consider cq states ρAB and take σB = ρB . We prove in the full version [1] that
Γc ≤ 1 in such cases. Γc(ρAB |σB) also reduces to the classical collision probability
when both of A,B are classical and σB = ρB .

We will often use the following relation, also taken from [36], valid for any
ρAB ∈ D(HA ⊗ HB):

Tr
(
(ρAB − UA ⊗ ρB)(IA ⊗ ρ

−1/2
B )

)2

= Γc

(
ρAB |ρB

) − 1
dA

, (3.2)

which can be verified by expanding the square:

Tr
(
(ρAB − UA ⊗ ρB)(IA ⊗ ρ

−1/2
B )

)2

= Tr
(
ρAB ρ

−1/2
B

)2

− 2Tr
(
ρAB ρ

−1/2
B (UAρB)ρ−1/2

B

)
+ Tr

(
(UAρB)ρ−1/2

B

)2

= Γc(ρAB |ρB) − 1
dA

.

3.1 Non-uniform XOR Lemma

Our non-uniform XOR lemma bounds the distance to uniform of a ccq state, a
state with two classical registers and one quantum register. Roughly speaking,
the lemma states that given two random variables X0 ∈ Fp and X ∈ F

t
p, if

X0 + 〈a,X〉 is close to uniform, then X0 is close to uniform given X.

Lemma 1 (restated). Let p be a prime power, t an integer and ε ≥ 0. Let ρX0XE

be a ccq state with X0 ∈ Fp and X = (X1, . . . , Xt) ∈ F
t
p. For all a = (a1, . . . , at) ∈

F
t
p, define a random variable Z = X0 + 〈a,X〉 = X0 +

∑t
i=1 aiXi. If for all a,

1
2 ‖ρa

ZE − UZ ⊗ ρE‖1 ≤ ε, then

1
2

∥
∥ρX0XE − UX0 ⊗ ρXE

∥
∥

1
≤ p(t+1)/2

√
2

√
ε . (3.3)

The proof of the non-uniform XOR lemma has the following structure: we
bound the collision probability by the trace distance in Lemma5, then prove
the non-uniform XOR lemma based on that. First we establish that for any ccq
state ρXZE :

Tr
(
(ρXZE − UX ⊗ ρZE)(IXZ ⊗ ρ

−1/2
E )

)2

= Tr
(
ρXZE ρ

−1/2
E

)2

− 2 Tr
(
ρXZE ρ

−1/2
E (UXρZE)ρ

−1/2
E

)
+ Tr

(
(UXρZE)ρ

−1/2
E

)2

= Γc(ρXZE |ρE) − 1

dX
Γc(ρZE |ρE) . (3.4)

We need the following lemma to bound the collision probability by the trace
distance in Lemma 5.
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Lemma 4. Let ρXZE be a ccq state. Then

− 1

dX
IXZE ≤

(
IXZ ⊗ ρ

− 1
2

E

)
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

− 1
2

E

)
≤

(
1 − 1

dX

)
IXZE .

(3.5)

Proof. We bound the eigenvalues of the middle expression. Since ρXZE is a ccq
state, we know that the middle expression

(
IXZ ⊗ ρ

−1/2
E

)
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

−1/2
E

)

=
∑

x,z

|x〉〈x| ⊗ |z〉〈z| ⊗ ρ
−1/2
E

(
ρxz

E − 1
dX

ρz
E

)
ρ

−1/2
E (3.6)

is block diagonal, where ρz
E =

∑
x ρxz

E and ρE =
∑

x,z ρxz
E . For any state |φ〉 ∈

HE and x, z in the range of X,Z,

〈φ|ρ−1/2
E

(
ρxz

E − 1
dX

ρz
E

)
ρ

−1/2
E |φ〉 ≥ 〈φ|ρ−1/2

E

(
− 1

dX
ρz

E

)
ρ

−1/2
E |φ〉 ≥ − 1

dX
.

(3.7)

This proves the first inequality. We also have

〈φ|ρ−1/2
E

(
ρxz

E − 1
dX

ρz
E

)
ρ

−1/2
E |φ〉

= 〈φ|ρ−1/2
E

(

ρxz
E − 1

dX

∑

x′
ρx′z

E

)

ρ
−1/2
E |φ〉

=
(

1 − 1
dX

)
〈φ|ρ−1/2

E ρxz
E ρ

−1/2
E |φ〉 − 1

dX

∑

x′ �=x

〈φ|ρ−1/2
E ρxz

E ρ
−1/2
E |φ〉

≤
(

1 − 1
dX

)
. (3.8)

This proves the second inequality.

We then bound the collision probability by the trace distance.

Lemma 5 (Bounding collision probability with trace distance, non-
uniform). Let ρXZE be a ccq state. If

1
2

‖ρXZE − UXρZE‖1 = ε , (3.9)

then

4ε2

dXdZ
≤ Γc(ρXZE |ρE) − 1

dX
Γc(ρZE |ρE) ≤ 2ε

(
1 − 1

dX

)
. (3.10)
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Proof. For the first inequality, we use Hölder’s inequality (Lemma 3) with r =
t = 4, s = 2, A = C = IXZ ⊗ ρ

1/4
E , and B =

(
IXZ ⊗ ρ

−1/4
E

)
(ρXZE − UXρZE)

(
IXZ ⊗ ρ

−1/4
E

)
. This leads to

2ε = ‖ρXZE − UXρZE‖1

= ‖ABC‖1

≤ ∥
∥A4

∥
∥1/4

1

∥
∥B2

∥
∥1/2

1

∥
∥C4

∥
∥1/4

1

=

√

dXdZ Tr
(
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

−1/2
E

))2

=

√

dXdZ

(
Γc(ρXZE |ρE) − 1

dX
Γc(ρZE |ρE)

)
, (3.11)

where we used Eq. (3.4) in the last line. Squaring both sides and dividing by
dXdZ , we get the desired inequality. For the second inequality, we use Lemma4
to show that

− 1

dX
IXZE ≤

(
IXZ ⊗ ρ

− 1
2

E

)
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

− 1
2

E

)
≤

(
1 − 1

dX

)
IXZE

⇒
∣∣∣
(
IXZ ⊗ ρ

−1/2
E

)
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

−1/2
E

)∣∣∣ ≤
(

1 − 1

dX

)
IXZE .

(3.12)

Starting with Eq. (3.4), we have

Γc(ρXZE |ρE) − 1
dX

Γc(ρZE |ρE)

= Tr
(
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

−1/2
E

))2

≤ Tr
(
|ρXZE − UXρZE |

∣
∣
∣
(
IXZ ⊗ ρ

−1/2
E

)
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

−1/2
E

)∣
∣
∣
)

≤ Tr
(

|ρXZE − UXρZE |
(

1 − 1
dX

)
IXZE

)

= 2ε

(
1 − 1

dX

)
, (3.13)

where we used Eq. (3.12) on the fourth line. ��
Now we restate and prove the non-uniform XOR lemma. The proof idea is to

start from the trace distance of X0 given X to uniform, apply Lemma5 to get an
upper bound in terms of the collision probability of X0 given X, apply Eq. (3.4)
and expand the square to express the collision probability of X0 given X in terms
of the collision probability of X0 + 〈a,X〉, and finally apply Lemma5 again to get
an upper bound in terms of the trace distance of X0 + 〈a,X〉 to uniform.

Lemma 1 (restated). Let p be a prime power, t an integer and ε ≥ 0. Let ρX0XE be
a ccq state with X0 ∈ Fp and X = (X1, . . . , Xt) ∈ F

t
p. For all a = (a1, . . . , at) ∈ F

t
p,
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define a random variable Z = X0 + 〈a,X〉 = X0 +
∑t

i=1 aiXi. If for all a,
1
2 ‖ρa

ZE − UZ ⊗ ρE‖1 ≤ ε, then

1
2

∥
∥ρX0XE − UX0 ⊗ ρXE

∥
∥

1
≤ p(t+1)/2

√
2

√
ε . (3.14)

Proof. We start by relating the collision probability of Z and X0 + 〈a,X〉:

Γc(ρa
ZE |ρE) − 1

p

= Tr
[
(ρa

ZE − UZρE)IZ ⊗ ρ
−1/2
E

]2

= Tr

[
∑

z

|z〉〈z|
∑

x,x0

(
δ (z − x0 − 〈a, x〉, 0) − 1

p

)
ρx0x

E IZρ
−1/2
E

]2

=
∑

z

Tr

[
∑

x0x

(
δ (z − x0 − 〈a, x〉, 0) − 1

p

)
ρx0x

E ρ
−1/2
E

]2

=
∑

z,x0,x′
0,x,x′

[δ (z − x0 − 〈a, x〉, 0) δ (z − x′
0 − 〈a, x′〉, 0)

−2
p
δ (z − x0 − 〈a, x〉, 0) +

1
p2

]
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x′

E ρ
−1/2
E

)

=
∑

x0,x′
0,x,x′

[
δ (x0 − x′

0 + 〈a, x − x′〉, 0) − 1
p

]
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x′

E ρ
−1/2
E

)

=
∑

x0,x′
0,x

(
δ (x0 − x′

0, 0) − 1
p

)
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x

E ρ
−1/2
E

)

+
∑

x0,x′
0,x �=x′

[
δ (x0 − x′

0 + 〈a, x − x′〉, 0) − 1
p

]
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x′

E ρ
−1/2
E

)

=
∑

x0,x

Tr
(
ρx0x

E ρ
−1/2
E ρx0x

E ρ
−1/2
E

)
− 1

p

∑

x0,x′
0,x

Tr
(
ρx0x

E ρ
−1/2
E ρ

x′
0x

E ρ
−1/2
E

)

+
∑

x0,x′
0,x �=x′

[
δ (x0 − x′

0 + 〈a, x − x′〉, 0) − 1
p

]
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x′

E ρ
−1/2
E

)

= Γc(ρX0XE |ρE) − 1
p
Γc(ρXE |ρE)

+
∑

x0,x′
0,x �=x′

[
δ (x0 − x′

0 + 〈a, x − x′〉, 0) − 1
p

]
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x′

E ρ
−1/2
E

)
.

(3.15)

When we average over a, the last term vanishes,

Ea

(
Γc(ρa

ZE |ρE) − 1
p

)
= Γc(ρX0XE |ρE) − 1

p
Γc(ρXE |ρE) . (3.16)
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With the heavy work done, we put everything together and prove the lemma

‖ρX0XE − UX0ρXE‖2
1

pt+1
≤ Γc(ρX0XE |ρE) − 1

p
Γc(ρXE |ρE)

= Ea

(
Γc(ρa

ZE |ρE) − 1
p

)

≤ 2ε , (3.17)

where we used Lemma 5 one the first line, Eq. (3.16) on the second line, Lemma 5
and the assumption of the lemma on the third line. Multiplying both sides by
pt+1

2 and take a square root, we get the desired result:

1
2

‖ρX0XE − UX0ρXE‖1 ≤ p(t+1)/2

√
2

√
ε . (3.18)

��

4 Quantum-Proof Non-malleable Extractor

In this section we introduce our non-malleable extractor and prove its security.
The extractor was first considered by Li [27]. We use the symbol ‖ for concate-
nation of strings, and for a, b ∈ F

n
p write 〈a, b〉 for the standard inner product

over F
n
p .

Definition 7 (Inner product-based non-malleable extractor). Let p �= 2
be a prime. For any even integer n, define a function nmExt : Fn

p × F
n/2
p → Fp

by nmExt(X,Y ) = 〈X,Y ||Y 2〉, where Y 2 is defined as in Sect. 2.1.

Theorem 1. Let p �= 2 be a prime. Let n be an even integer. Then for any ε > 0
the function nmExt(X,Y ) = 〈X,Y ‖Y 2〉 is an (

(
n
2 + 6

)
log p − 1 + 4 log 1

ε , ε)
quantum-proof non-malleable extractor.

The proof of Theorem 1 is based on a reduction showing that any successful
attack for an adversary to nmExt leads to a good strategy for the players in a
certain communication game, that we introduce next.

4.1 A Communication Game

Let p �= 2 be a prime. Let n be an even integer, and g : Fn/2
p × F

n/2
p → F

n
p an

arbitrary function such that for any z ∈ F
n
p there are at most two possible pairs

(y, y′) such that y �= y′ and g(y, y′) = z. Consider the following communication
game, called guess(n, p, g), between two players Alice and Bob.

1. Bob receives y ∈ F
n/2
p from the referee.

2. Alice creates a cq state ρXE , where X ∈ F
n
p , and sends the quantum register

E to Bob.
3. Bob returns y′ ∈ F

n/2
p and b ∈ Fp.
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The players win if and only if b = 〈x, g(y, y′)〉 and y′ �= y.
Note that Alice does not receive anything from the referee and is completely

free in what state she wants to create, so it is easy for the players to win with
probability 1 by creating a trivial state, e.g. ρXE = |0〉〈0| ⊗ |0〉〈0|. Therefore we
benchmark the success probability of a strategy by the min-entropy of Alice’s
“input” X, conditioned on her message E to Bob. The following lemma bounds
the players’ maximum success probability in this game over uniformly random
input y and quantum measurements as a function of the min-entropy of Alice’s
input X, conditioned on her message E to Bob.

Lemma 6 (Success probability of the communication game). Suppose
there exists a communication protocol for Alice and Bob in guess(n, p, g) that
succeeds with probability at least 1

p + ε, on average over a uniformly random
choice of input y to Bob. Then Hmin(X|E)ρ ≤ n

2 log p + 1 + 2 log 1
ε .

Proof. Let ρXE =
∑

x |x〉〈x|X ⊗ρx
E be the cq state prepared by Alice. A strategy

for Bob is a family of POVM {My′,b
y }y′,b, indexed by y ∈ F

n/2
p and with outcomes

(y′, b) ∈ F
n/2
p ×Fp. We can assume that {My′,b

y }y′,b is projective, since Alice can
send ancilla qubits along with ρ and allow Bob to apply Naimark’s theorem to
his POVM in order to obtain a projective measurement; this will change neither
his success probability nor the min-entropy of Alice’s state. By definition, the
players’ success probability in guess(n, p, g) is

1
p

+ ε =
∑

x

p− n
2

∑

y

∑

y′

∑

b

δ(b, 〈x, g(y, y′)〉)Tr
(
My′,b

y ρx
E

)
. (4.1)

For each u ∈ Fp let Ay′
y,u =

∑
b ωubMy′,b

y , where ω = e
2iπ

p . By inversion, My′,b
y =

1
p

∑
u ω−ubAy′

y,u. Replacing this into (4.1) we obtain

1
p

+ ε =
1
p

∑

u

p− n
2

∑

y

∑

y′

∑

b

δ(b, 〈x, g(y, y′)〉)ω−ub Tr
(
Ay′

y,u ρx
E

)

≤ 1
p

+
(
1 − 1

p

)
max
u�=0

∣
∣
∣p− n

2

∑

y

∑

y′

∑

b

δ(b, 〈x, g(y, y′)〉)ω−ub Tr
(
Ay′

y,u ρx
E

)∣∣
∣ ,

(4.2)

where for the second line we used that
∑

y′ Ay′
y,0 =

∑
y′,b My′,b

y = IE .
Fix u �= 0 that achieves the maximum in (4.2). For fixed y, define the map

Ty,u on HE by

Ty,u : |ψ〉 �→
∑

y′
|y′〉Ay′

y,u|ψ〉 . (4.3)

Ty,u has norm at most 1, since

T †
y,uTy,u =

∑

y′
(Ay′

y,u)†Ay′
y,u =

∑

y′

∑

b

(
My′,b

y

)2

= IE .
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For the second equality we used that {My′,b
y }y′,b is projective. Therefore Ty,u is

a physical operation.
Consider the following guessing strategy for an adversary holding side infor-

mation ρx
E about x. The adversary first prepares a uniform superposition over

y. Conditioned on y, it applies the map Ty,u. It computes g(y, y′) in an ancilla
register, and erases (y, y′), except for one bit of information r(y, y′) ∈ {0, 1},
which specifies which pre-image (y, y′) is, given g(y, y′) (this is possible by the
2-to-1 assumption on g). The adversary applies a Fourier transform on the reg-
ister containing g(y, y′), using ωu = ω−u as primitive p-th root of unity (this is
possible since u �= 0 and p is prime). It measures the result and outputs it as a
guess for x. Formally, the transformation this implements is

|ψ〉 �→ p− n
4

∑

y

|y〉
∑

y′
|y′〉Ay′

y,u|ψ〉

�→ p− n
4

∑

y,y′
|g(y, y′)〉|r(y, y′)〉Ay′

y,u|ψ〉

�→
∑

v

|v〉
(
p− 3n

4

∑

y,y′
ω〈v,g(y,y′)〉

u |r(y, y′)〉Ay′
y,u

)
|ψ〉 .

The adversary’s success probability in guessing v = x on input ρx
E is therefore

ps =
∑

x

Tr
((

p− 3n
4

∑

y,y′
ω〈x,g(y,y′)〉

u |r(y, y′)〉 ⊗ Ay′
y,u

)
ρx

E

·
(
p− 3n

4

∑

y,y′
ω−〈x,g(y,y′)〉

u 〈r(y, y′)| ⊗ (Ay′
y,u)†

))

=
1

p
3n
2

∑

x

∑

r∈{0,1}
Tr

(( ∑

y,y′: r(y,y′)=r

ω〈x,g(y,y′)〉
u Ay′

y,u

)†

·
( ∑

y,y′: r(y,y′)=r

ω〈x,g(y,y′)〉
u Ay′

y,u

)
ρx

E

)

≥ 1
p

3n
2

∑

x

1
2

Tr
(( ∑

y,y′
ω〈x,g(y,y′)〉

u Ay′
y,u

)†( ∑

y,y′
ω〈x,g(y,y′)〉

u Ay′
y,u

)
ρx

E

)
, (4.4)

where for the last line we used Tr(A†Aρ)+Tr(B†Bρ) ≥ 1
2Tr((A+B)†(A+B)ρ)

if ρ is positive semidefinite. Now, recall from (4.2) and our choice of u that

ε ≤ p− n
2

∣
∣
∣

∑

x,y,y′
ω−u(〈x,g(y,y′)〉) Tr

(
Ay′

y,u ρx
E

)∣∣
∣

≤ p− n
2

( ∑

x

Tr(ρx
E)

)1/2

·
( ∑

x

Tr
(( ∑

y,y′
ω−u(〈x,g(y,y′)〉) Ay′

y,u

)
ρx

E

( ∑

y,y′
ω−u(〈x,g(y,y′)〉) Ay′

y,u

)†))1/2

,

(4.5)
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where the inequality is Cauchy-Schwarz. Comparing (4.4) and (4.5) gives

ps ≥ 1
2
p− n

2 ε2 .

We conclude using that by Lemma 2, Hmin(X|E) ≤ − log ps. ��

4.2 Proof of Theorem1

In this section we give the proof of Theorem 1. Towards this we first prove a
preliminary lemma showing that a certain function, based on the definition of
nmExt, has few collisions.

Lemma 7. Let p �= 2 be a prime and n an even integer. For a ∈ Fp define a
function ga : Fn/2

p × F
n/2
p → F

n
p by

ga(y, y′) = y + ay′‖y2 + ay′2 , (4.6)

where y2 is defined in Sect. 2.1. Then for any a ∈ Fp, a �= 0 and z ∈ F
n
p there

are at most 2 distinct pairs (y, y′) such that y′ �= y and ga(y, y′) = z.

Proof. We use the bijection defined in Sect. 2.1 to interpret y and y′ in Fpn/2 .
For a �= 0, we fix an image ga = (c, d), where c, d are interpreted as elements of
Fpn/2 , and solve for (y, y′) in Fpn/2 × Fpn/2 satisfying

y + ay′ = c , (4.7)

y2 + ay′2 = d . (4.8)

Using (4.7) to eliminate y we get

(c − ay′)2 + ay′2 = d

⇒ (a + a2)y′2 + (−2ca)y′ + (c2 − d) = 0 . (4.9)

Since (4.9) is a quadratic equation, there are at most two solutions unless all
coefficients are zero. Since p �= 2, −2 �= 0. If all coefficients are zero, −2 �= 0, and
a �= 0, then c = d = 0, a = −1, which implies y′ = y by (4.7) and contradicts
our assumption. So there are at most two different y′ that can be mapped to
(c, d). By (4.7) each y′ corresponds to a unique y, so there are at most two
pre-images. ��

We are ready to give the proof of Theorem 1. The proof depends on a simple
lemma relating trace distance and guessing measurements, Lemma 8, which is
stated and proved after the proof of the theorem.

Proof of Theorem 1. Let k =
(

n
2 + 6

)
log p − 1 + 4 log 1

ε and ρXE ∈ D(Cpn ⊗ HE)
an (n log p, k)-source. Fix a CPTP map Adv : L(Cpn/2 ⊗HE) → L(Cpn/2 ⊗HE′)
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with no fixed points, and define σnmExt(X,Y )nmExt(X,Y ′)Y Y ′E′ as in Definition 5.
Given the definition of nmExt, to prove the theorem we need to show that

(〈X,Y ‖Y 2〉, 〈X,Y ′‖Y ′2〉, Y ′, Y, E′)σ ≈ε (UFp
, 〈X,Y ′‖Y ′2〉, Y ′, Y, E′)σ . (4.10)

Applying the XOR lemma, Lemma1, with X0 = 〈X,Y ||Y 2〉, X = 〈X,Y ′||Y ′2〉,
E = (Y ′, Y, E′) and t = 1, (4.10) will follow once it is shown that

(〈X,Y ||Y 2〉 + a〈X,Y ′‖Y ′2〉, Y ′, Y, E′)σ ≈ 2ε2

p2
(UFp

, Y ′, Y, E′)σ , (4.11)

for all a ∈ Fp. For a = 0, (4.11) follows from the fact that inner product is a
quantum-proof two source extractor, which can be shown by the combination of
Theorem 5.3 of [10] and Lemma 1 in [24]. For non-zero a ∈ Fp, recall the function
ga : Fn/2

p × F
n/2
p → F

n
p defined in (4.6). Lemma 7 shows that for any a �= 0, the

restriction of ga to {(y, y′) : y �= y′} is at most 2-to-1, and y �= y′ is ensured
by the fact that Adv has no fixed points. We establish (4.11) by contradiction.
Assume thus that

(〈X, ga(Y, Y ′)〉, Y ′, Y, E′)σ ≈ 2ε2

p2
(UFp

, Y ′, Y, E′)σ (4.12)

does not hold, for some non-zero a ∈ Fp. Fix such an a and write ga for g. From
Lemma 8 it follows that there exists a POVM measurement {Mz}z∈Fp

on σY ′Y E′

such that

∑

z∈Fp

Tr
(
Mzσz

Y Y ′E
) ≥ 1

p
+

2ε2

p3
, (4.13)

where σz
Y Y ′E is the reduced density of σ on Y Y ′E conditioned on 〈X, g(Y, Y ′)〉=z.

To conclude the proof of the theorem we show that the adversary’s map Adv
and the POVM {Mz} can be combined to give a “successful” strategy for the
players in the communication game introduced in Sect. 4.1. To see this, consider
the state ρXE that is instantiated as the source for the extractor; by definition
Hmin(X|E)ρ = k =

(
n
2 + 6

)
log p − 1 + 4 log 1

ε . In the third step of the game,
Bob applies the map Adv to the registers Y and E containing his input Y and
the state sent by Alice, and measures to obtain an outcome Y ′. He then applies
the measurement {Mz} on his registers (Y, Y ′, E) to obtain a value b = z ∈ Fp

that he provides as his output in the game. By (4.13) it follows that this strat-
egy succeeds in the game with probability at least 1

p + 2ε2

p3 , which by Lemma 6

implies Hmin(X|E) ≤ n
2 log p + 1 + 2 log p3

2ε2 , contradicting our choice of k. This
proves (4.11) and thus the theorem. ��

The following lemma is used in the proof of the theorem.

Lemma 8. Let ρXE =
∑

x |x〉〈x| ⊗ ρx
E be such that

1
2
‖(X,E) − (U,E)‖1 =

1
2

∥
∥ρXE − UX ⊗ ρE

∥
∥

1
= ε ,
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where UX is the totally mixed state on X and ρE =
∑

x ρx
E. Then there exists a

POVM {Mx} on ρE such that

∑

x

Tr(Mxρx
E) =

1
dX

+
ε

dX
.

Proof. Since ρXE is a cq state, ‖ρXE − UX ⊗ ρE‖1 =
∑

x ‖ρx
E − 1

dX
ρE‖1. For

each x, let M ′
x be the projector onto the positive eigenvalues of ρx

E − 1
dX

ρE , so

∑

x

Tr(M ′
x(ρx

E − 1
dX

ρE)) =
1
2

∑

x

‖ρx
E − 1

dX
ρE‖1 . (4.14)

Let M ′ =
∑

x M ′
x and Mx = 1

dX
(M ′

x + (IE − 1
dX

M ′)). Then Mx ≥ 0 and
∑

x Mx = 1
dX

(M ′ + dXIE − M ′) = IE . Moreover,

∑

x

Tr(Mxρx
E) =

∑

x

Tr
[

1
dX

(M ′
x + (IE − 1

dX
M ′))ρx

E

]

=
1

dX

[
∑

x

(Tr(M ′
xρx

E)) + Tr
(

(IE − 1
dX

M ′)ρE

)]

=
1

dX
+

1
dX

∑

x

(
Tr(M ′

xρx
E) − 1

dX
Tr(M ′

xρE)
)

=
1

dX
+

1
dX

( ∑

x

Tr
(
M ′

x(ρx
E − 1

dX
ρE)

))

=
1

dX
+

1
2dX

∑

x

∥
∥
∥ρx

E − 1
dX

ρE

∥
∥
∥

1

by (4.14). ��

5 Privacy Amplification

Dodis and Wichs [19] introduced a framework for constructing a two-message
privacy amplification protocol from any non-malleable extractor. In [14] it is
shown that the same framework, when instantiated with a quantum-proof non-
malleable extractor nmExt as defined in Definition 5, leads to a protocol that
is secure against active quantum adversaries. In Sect. 5.1 we recall the Dodis-
Wichs protocol, and state the security guarantees that follow by plugging in our
non-malleable extractor construction. The guarantees follows from the quan-
tum extension of the Dodis-Wichs results in [14]; since that work has not
been published we include their results regarding the Dodis-Wichs protocol in
AppendixA.

In Sect. 5.2 we show that a different protocol for privacy amplification due to
Dodis et al. [16], whose main advantage is of being a one-round protocol, is also
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quantum-proof. The construction and analysis of the protocol of [16] is simple,
with the drawback of a large entropy loss.

We start with the definition of a quantum-secure privacy amplification pro-
tocol against active adversaries. A privacy amplification protocol (PA, PB) is
defined as follows. The protocol is executed by two parties Alice and Bob shar-
ing a secret X ∈ {0, 1}n, whose actions are described by PA, PB respectively.7

In addition there is an active, computationally unbounded adversary Eve, who
might have some quantum side information E correlated with X but satisfy-
ing Hmin(X|E)ρ ≥ k, where ρXE denotes the initial state at beginning of the
protocol.

Informally, the goal for the protocol is that whenever a party (Alice or Bob)
does not reject, the key R output by this party is random and statistically
independent of Eve’s view. Moreover, if both parties do not reject, they must
output the same keys RA = RB with overwhelming probability.

More formally, we assume that Eve is in full control of the communication
channel between Alice and Bob, and can arbitrarily insert, delete, reorder or
modify messages sent by Alice and Bob to each other. At the end of the pro-
tocol, Alice outputs a key RA ∈ {0, 1}m ∪ {⊥}, where ⊥ is a special symbol
indicating rejection. Similarly, Bob outputs a key RB ∈ {0, 1}m ∪ {⊥}. The
following definition generalizes the classical definition in [17].

Definition 8. Let k,m be integer and ε ≥ 0. A privacy amplification protocol
(PA, PB) is a (k,m, ε)-privacy amplification protocol secure against active quan-
tum adversaries if it satisfies the following properties for any initial state ρXE

such that Hmin(X|E)ρ ≥ k, and where σ be the joint state of Alice, Bob, and
Eve at the end of the protocol:

1. Correctness. If the adversary does not interfere with the protocol, then
Pr[RA = RB ∧ RA �=⊥ ∧ RB �=⊥] = 1.

2. Robustness. This property comes in two flavors. The first is pre-application
robustness, which states that even in the presence of an active adversary,
Pr[RA �= RB ∧ RA �=⊥ ∧ RB �=⊥] ≤ ε. The second is post-application
robustness, which is defined similarly, except the adversary is additionally
given the key RA that is the result of the interaction (PA, PE), and the key RB

that results from the interaction (PE , PB), where PE denotes the adversary’s
actions in its interaction with Alice and Bob.

3. Extraction. Given a string r ∈ {0, 1}m ∪ {⊥}, let purify(r) be a random vari-
able on m-bit strings that is deterministically equal to ⊥ if r =⊥, and is
otherwise uniformly distributed. Let V denotes the transcript of an execution
of the protocol execution, and ρE′ the final quantum state possessed by Eve.
Then the following should hold:

(RA, V, E′)σ ≈ε (purify(RA), V, E′)σ and (RB , V, E′)σ ≈ε (purify(RB), V, E′)σ .

7 It is not necessary for the definition to specify exactly how the protocols are for-
mulated; informally, each player’s actions is described by a sequence of efficient
algorithms that compute the player’s next message, given the past interaction.
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In other words, whenever a party does not reject, the party’s key is indistin-
guishable from a fresh random string to the adversary.

The quantity k − m is called the entropy loss.

5.1 Dodis-Wichs Protocol with Non-malleable Extractor

Here we first recall the Dodis-Wichs protocol for privacy amplification (hereafter
called Protocol DW ), which is summarized in Fig. 1, and the required security
definitions, taken from [14]. We then state the result obtained by instantiating
the protocol with the quantum-proof non-malleable extractor from Theorem1.

Fig. 1. The Dodis-Wichs privacy amplification protocol.

Aside from the use of a strong quantum-proof extractor (Definition 3) and
a quantum-proof non-malleable extractor (Definition 5), the protocol relies on
an information-theoretically secure one-time message authentication codes, or
MAC. This security notion is defined as follows.

Definition 9. A function MAC : {0, . . . , dZ −1}×{0, 1}d → {0, 1}t is an εMAC-
information-theoretically secure one-time message authentication code if for any
function A : {0, 1}d × {0, 1}t → {0, 1}d × {0, 1}t it holds that for all m ∈ {0, 1}d

Pr
k←UZ

[
(MAC(k,m′) = σ′) ∧ (m′ �= m) : (m′, σ′) ← A(m,MAC(k,m))

] ≤ εMAC.

Efficient constructions of MAC satisfying the conditions of Definition 9 are
known. The following proposition summarizes some parameters that are achiev-
able using a construction based on polynomial evaluation.
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Proposition 1 (Proposition 1 in [34]). For any εMAC > 0, integer d > 0,
dZ ≥ d2

ε2MAC
, there exists an efficient family of εMAC-information-theoretically

secure one-time message authentication codes

{MAC : {0, . . . , dZ − 1} × {0, 1}d → {0, 1}t}d∈N

with t ≤ log d + log(1/εMAC).

The correctness and security requirements for the protocol are natural exten-
sions of the classical case (see Definition 18 in [19]). Informally, the adversary
has the following control over the outcome of the protocol. First, it possess
initial quantum side information E about the weak secret X shared by Alice
and Bob. That is, it has a choice of a cq source ρXE , under the condition that
Hmin(X|E) is sufficiently large. Second, the adversary may intercept and mod-
ify any of the messages exchanged. In Protocol DW there are only two mes-
sages exchanged, YA from Alice to Bob and (YB , σ) from Bob to Alice. To each
of these messages the adversary may apply an arbitrary transformation, that
may depend on its side information E. We model the two possible attacks,
one for each message, as CPTP maps T1 : L(HY ⊗ HE) → L(HY ⊗ HE′) and
T2 : L(C2d2 ⊗ H2t ⊗ HE′) → L(C2d2 ⊗C

2t ⊗ HE′′), where H denotes the Hilbert
space associated with system E. Note that we may always assume that H is
large enough for the adversary to keep a local copy of the messages it sees, if it
so desires.

The following result on the security of protocol DW is shown in [14]. We
include the proof in AppendixA.

Theorem 3. Let k, t, dZ and εMAC, εExt, εnmExt be parameters of Protocol DW,
as specified in Fig. 1. Let nmExt be a (k, εnmExt) quantum-proof non-malleable
extractor, Ext a strong (k − log dZ − log(1/εExt), εExt) quantum-proof extractor,
and MAC an εMAC-information-theoretically secure one-time message authenti-
cation code. Then for any active attack (ρXE , T1, T2) such that Hmin(X|E)ρ ≥ k,
the DW privacy amplification protocol described in Fig. 1 is (k,m, ε)-secure as
defined in Definition 8 with ε = O(εExt + εnmExt + εMAC).

Combined with Theorem 1 stating the security of our construction of a
quantum-proof non-malleable extractor, Theorem 3 provides a means to obtain
privacy amplification protocol secure against active attacks for a range of param-
eters. Due to the limitations of our non-malleable extractor we are only able to
extract from sources whose entropy rate is at least 1

2 . This is a typical setting
in the case of quantum key distribution, where the initial min-entropy satisfies
Hmin(X|E) ≥ α log dX for some constant α which depends on the protocol and
the noise tolerance, but is generally larger than 3/4. Specifically, we obtain the
following:

Corollary 1. For any ε > 0, there exists a constant c > 0, such that the fol-
lowing holds. For any active attack (ρXE , T1, T2) such that Hmin(X|E)ρ = k ≥
1
2 log dX + c · log(1/ε), there is an O(ε)-secure DW protocol that outputs a key of
length m = k − O(log(1/ε)).
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Proof. Let p be a prime and n a positive integer such that log p = Θ(log(1/ε))
and dX = pn. Let dY = pn/2, and dZ = p. Also, let d2 = O(log dX), m = k −
O(log(1/ε)), and t = O(log(1/ε)). We instantiate Theorem3 with the following.

– Let Ext : {0, . . . , dX − 1} × {0, 1}d2 → {0, 1}m be the (k − O(log(1/ε)), ε)
strong quantum-proof extractor from Theorem2.

– Let nmExt : {0, . . . , dX − 1} × {0, , . . . , dY − 1} → {0, . . . , dZ − 1} be the
(1
2 · log dX + O(log(1/ε)), ε) non-malleable extractor from Theorem 1.

– Let MAC : {0, . . . , dZ −1}×{0, 1}d2 → {0, 1}t be the one-time ε-information-
theoretically secure message authentication code from Proposition 1.

The result follows. ��

5.2 One-Round Privacy Amplification Protocol

In this section we show that the one-round protocol of Dodis et al. [16]
is also quantum-proof. This protocol has significantly higher entropy loss,
(n/2) + log(1/ε), than the DW protocol we presented in the previous section.

Fig. 2. The one-round privacy amplification protocol from [16].

Theorem 4. For any integer n and k > n/2, and any ε > 0, the protocol in
Fig. 2 is a one-round (k,m, ε)-quantum secure privacy amplification protocol with
post-application robustness and entropy loss k − m = (n/2) + log(1/ε).

Proof. Correctness and extraction follow as in the classical proof by observing
that Ext(X,Y ) = Y X1 + X2 is a quantum-proof extractor since hY (X1,X2) =
Y X1+X2 is a family of universal hash function, which is shown to be a quantum-
proof strong extractor in [36]. For robustness, the classical proof does not gen-
eralize directly. We prove post-application robustness as follows.

We proceed by contradiction. Suppose post-application robustness is vio-
lated, i.e. Pr[RA �= RB ∧ RA �=⊥ ∧ RB �=⊥] > ε. Then there is an initial state
ρXE with Hmin(X|E)ρ ≥ k and a CPTP map T : L(HY ⊗ HW ⊗ HRA

⊗ HE) →
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L(HY ⊗ HW ⊗ HE′) that can be applied by an adversary Eve to produce a
modified message that is accepted by Bob with probability greater than ε.
Note that T has RA as input since we consider post-application robustness.
Let (Y ′,W ′, E′) = T (Y,W,RA, E). If post-application robustness is violated,
then Pr[W ′ = [Y ′X1 + X2]v1] > ε.

Consider the following communication game: Alice has access to a cq-state
ρXE . Alice samples a uniformly random Y , computes W = [Y X1 + X2]v1,
RA = [Y X1 + X2]

n/2
v+1, and sends E, Y , W , and RA to Bob. They win if Bob

guesses X correctly from E, Y , W , and RA. Using the map T introduced above,
Bob can execute the following strategy. First, apply T on Alice’s message to
generate a guess (Y ′,W ′). Second, guess a uniformly random R′

B. Third, use
Y, Y ′, (W,RA) = Y X1 + X2, and (W ′, R′

B) = Y ′X1 + X2 to solve for a unique
X = (X1,X2). Note that Bob succeeds if the guesses (Y ′,W ′) and R′

B in the
first two steps are both correct (i.e., (W ′, R′

B) = Y ′X1 + X2), which has prob-
ability greater than ε · 2−((n/2)−v). On the other hand, we can upper bound the
winning probability of the communication game using the min entropy assump-
tion H(X|E)ρ ≥ k. Since Y is independent of X and the length of (W,RA) is
n/2, Hmin(X|E, Y,W )ρ ≥ k − (n/2). Thus the winning probability is less than
2−(k−(n/2)). Putting the two calculations together we have

ε · 2−((n/2)−v) ≤ Pr[ Bob wins ] ≤ 2−(k−(n/2)),

which implies v < n − k − log(1/ε), a contradiction. ��

A The Dodis-Wichs Protocol

In this appendix we reproduce the proof of Theorem3, taken from [14].

Proof of Theorem 3. Let an active attack on Protocol DW be specified by

– A cq state ρXE ∈ D(HX ⊗ HE) such that Hmin(X|E)ρ ≥ k;
– A CPTP map T1 : L(HY ⊗ HE) → L(HY ⊗ HE′) whose output on the first

registered is systematically decohered in the computational basis; formally,
for any ρY E , T1(ρY E) =

∑
y(|y〉〈y|Y ⊗ IdE)T1(ρY E)(|y〉〈y|Y

⊗ IdE);
– A CPTP map T2 : L(C2d2 ⊗ C

2t ⊗ HE′) → L(C2d2 ⊗ C
2t ⊗ HE′′).

Given an active attack (ρXE , T1, T2) we instantiate random variables
YA, Z, Y ′

A, YB , Z ′, σ, Y ′
B , σ′ and RA, RB in the obvious way, as defined in the

protocol and taking into account the maps T1 and T2, applied successively to
determine Y ′

A and (Y ′
B , σ′).

The correctness of the protocol is clear.
To show robustness, let σY ′

AYAXE′ denote the joint state of Y ′
A, YA (which

represents a local copy of YA kept by Alice), X, and Eve’s registers after her
first map T1 has been applied. Further decompose ρ as a sum of sub-normalized
densities σ=

Y ′
AYAXE′ , corresponding to conditioning on Y ′

A = YA, and σ⊥
Y ′

AYAXE′ ,
corresponding to conditioning on Y ′

A �= YA.
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Conditioned on Y ′
A = YA, by definition of a MAC the probability that

(Y ′
B ,W ′) �= (YB ,W ) and Alice reaches the KeyConfirmed state is at most

εMAC. If (Y ′
B ,W ′) = (YB ,W ) then RA = RB, so that in this case robustness

holds with error at most εMAC.
Now suppose Y ′

A �= YA. Consider a modified adversary Adv′ that keeps a
copy of YA, applies the map T1, and if Y ′

A = YA replaces Y ′
A with a uniformly

random string that is distinct from YA. This adversary implements a CPTP map
T ′

1 that has no fixed point. By the assumption that nmExt is a quantum-proof
non-malleable extractor,

σ′
nmExt(X,YA)nmExt(X,Y ′

A)YAY ′
AE′ ≈εnmExt Um ⊗ σ′

nmExt(X,Y ′
A)YAY ′

AE′ , (A.1)

where here Y ′
AE′ is defined as the output system of the map T ′

1 implemented by
Adv′. Conditioned on YA �= Y ′

A the maps T1 and T ′
1 are identical, thus it follows

from (A.1) and the definition of ρ⊥ that

σ⊥
nmExt(X,YA)nmExt(X,Y ′

A)YAY ′
AE′ ≈εnmExt Um ⊗ σ⊥

nmExt(X,Y ′
A)YAY ′

AE′ ,

where now the states are sub-normalized. Since Z ′ = nmExt(X,Y ′
A) this means

that the key used by Alice to verify the signature in Step 3. of Protocol DW is
(up to statistical distance εnmExt) uniform and independent of the key used by
Bob to make the MAC. By the security of MAC, the probability for Alice to
reach the KeyConfirmed state in this case is at most εnmExt + εMAC. Adding
both parts together, Pr(RA /∈ {RB ,⊥}) ≤ εnmExt +2εMAC. Since RB is never ⊥,
this implies the robustness property.

For the extraction property, it is sufficient to show that (RB , V, E) ≈ε

(Um, V, E) since then key extraction property follows from the robustness and
the fact that RB is never ⊥. We have that RB = Ext(X,YB) is close to uni-
form given V = YAYBW and E′, and we need to establish two properties: first,
independence between X and YB given YAZ ′E′ and second, that the source has
enough entropy conditioned on YAZ ′E′. Regarding the first property, observe
that conditioned on YAZ ′, X and YB are independent given E′. Regarding the
source entropy, by the chain rule for the (smooth) min-entropy [37], it follows
that HεExt

min (X|YAZ ′E′) ≥ k− log dZ −c log(1/εExt) for some constant c > 0. Note
that
∥∥(RB , V, E′)σ − (Um, V, E′)σ

∥∥
1

≤ ∥∥(RB , YA, YB , Z′, E′)σ − (Um, YA, YB , Z′, E′)σ

∥∥
1
,

which follows since W is a deterministic function YB and Z ′. Using that Ext is
a strong quantum-proof extractor, we conclude that (RB , V, E) ≈ε (Um, V, E),
as long as ε is such that ε > εExt. ��
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