
Founding Secure Computation
on Blockchains

Arka Rai Choudhuri1(B) , Vipul Goyal2, and Abhishek Jain1

1 Johns Hopkins University, Baltimore, USA
{achoud,abhishek}@cs.jhu.edu

2 Carnegie Mellon University, Pittsburgh, USA
goyal@cs.cmu.edu

Abstract. We study the foundations of secure computation in the
blockchain-hybrid model, where a blockchain – modeled as a global func-
tionality – is available as an Oracle to all the participants of a cryp-
tographic protocol. We demonstrate both destructive and constructive
applications of blockchains:

– We show that classical rewinding-based simulation techniques used
in many security proofs fail against blockchain-active adversaries that
have read and post access to a global blockchain. In particular, we
show that zero-knowledge (ZK) proofs with black-box simulation are
impossible against blockchain-active adversaries.

– Nevertheless, we show that achieving security against blockchain-
active adversaries is possible if the honest parties are also blockchain
active. We construct an ω(1)-round ZK protocol with black-box sim-
ulation. We show that this result is tight by proving the impossibility
of constant-round ZK with black-box simulation.

– Finally, we demonstrate a novel application of blockchains to over-
come the known impossibility results for concurrent secure com-
putation in the plain model. We construct a concurrent self-
composable secure computation protocol for general functionalities
in the blockchain-hybrid model based on standard cryptographic
assumptions.

We develop a suite of techniques for constructing secure protocols in the
blockchain-hybrid model that we hope will find applications to future
research in this area.

1 Introduction

Blockchain is an exciting new technology which is having a profound impact on
the world of cryptography. Blockchains provide both: new applications of exist-
ing cryptographic primitives (such as hash function, or zero-knowledge proofs),
as well as, novel foundations on which new cryptographic primitives can be real-
ized (such as fair-secure computation [2,10,24], or, one-time programs [36]). In
this work, we seek to examine the foundations of secure computation proto-
cols in the context of blockchains. More concretely, we study what we call the

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11477, pp. 351–380, 2019.
https://doi.org/10.1007/978-3-030-17656-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17656-3_13&domain=pdf
http://orcid.org/0000-0003-0452-3426
https://doi.org/10.1007/978-3-030-17656-3_13

352 A. R. Choudhuri et al.

blockchain-hybrid model and examine constructions of zero-knowledge and secure
computation in this model.

The Blockchain-Hybrid Model. In order to facilitate the use of blockchains in
secure computation, we study the blockchain-hybrid model, where the blockchain
– modeled as a global ledger functionality – is available to all the participants of
a cryptographic protocol. The parties can access the blockchain by posting and
reading content, but no single party has any control over the blockchain. Our
modeling follows previous elegant works on formalizing the blockchain function-
ality [3,4,47]. In particular, our model is based on the global blockchain ledger
model from Badertscher et al. [4].

We study simulation-based security in the blockchain-hybrid model. In our
model, the simulator does not have any control over the blockchain, and simply
treats it as an oracle just like protocol participants. Thus, unlike traditional
trusted setup models such as common reference string, the blockchain-hybrid
model does not provide any new “power” to the simulator. In particular, the
simulator is restricted to its plain model capabilities such as resetting the adver-
sary or using knowledge of its code. Thus, in our model, the blockchain can
be global, in that it can be used by multiple different protocols at the same
time. This is reminiscent of simulation in the global UC framework [15,18,43].
A related model is the global Random Oracle model [18] where the simulator
can only observe the queries made by the adversary to the random oracle, but
cannot program the random oracle (since it is global and therefore shared across
many protocols).

Secure Computation based on Blockchains. We study the foundations
of secure computation in the presence of the global blockchain functionality.
Interestingly, we demonstrate both destructive and constructive applications of
blockchains to cryptography. Primitives which were earlier possible to realize now
become impossible. At the same, working in this model allows us to overcome pre-
viously established deep impossibility results in cryptography. Interestingly, we
also utilize mining delays – typically viewed as a negative feature of blockchains
– for constructive purposes in this work. Our main results as discussed next.

1.1 Our Results

Simulation Failure in the Presence of Blockchains. We consider a new
class of adversaries that we refer to as blockchain-active adversaries. These adver-
saries are similar to usual cryptographic adversaries, except that they have user
access to a blockchain, i.e., they can post on the blockchain and read its state
at any point.

We observe that such adversaries can foil many existing simulation tech-
niques that are used for proving security of standard cryptographic schemes. To
illustrate the main idea, let us consider rewinding-based black-box simulation
techniques that are used, e.g., in zero-knowledge (ZK) proofs [35], secure multi-
party computation [34,59], and signature schemes in the random oracle model

Founding Secure Computation on Blockchains 353

constructed via the Fiat-Shamir heuristic [29]. A crucial requirement for the suc-
cess of rewinding-based simulation is that the adversary should be oblivious to
the rewinding. Usually, this requirement can be easily met since the simulator
can simply “reset” the code of the adversary, which prevents it from keeping
state across the rewindings.

A blockchain-active adversary, however, can periodically post on the
blockchain and use it to maintain state across rewindings, and therefore detect
that it is being rewound. In this case, the adversary can simply abort and there-
fore fail the simulation process.1 It is not too difficult to turn the above idea into
a formal impossibility result for ZK proofs against blockchain-active adversaries,
when the simulation is required to be black-box.

Theorem 1 (Informal). There does not exist an interactive argument in
the plain model which is zero-knowledge w.r.t. black-box simulation against
blockchain-active adversaries.

The above impossibility result extends to secure multiparty computation and
other natural cryptographic primitives whose security is proven via a rewinding
simulator.

Constructing Zero-Knowledge Protocols. To overcome the above problems
posed by blockchains, we look towards blockchains for a solution as well. Our
idea is to make the protocol blockchain active as well. That is, in addition to the
adversary, the honest parties would have access to the blockchain as well.

Our first positive result is an ω(1)-round ZK proof system in the blockchain-
hybrid model whose security is proven w.r.t. black-box simulation.

Theorem 2 (Informal). Assuming collision-resistant hash functions, there
exists an ω(1)-round ZK proof system in the blockchain-hybrid model w.r.t. black-
box simulation.

Interestingly, in our construction, the honest parties do not post any message
on the blockchains. Instead, they only keep a “tab” on the current state of the
blockchain in order to decide whether or not to continue the protocol.

We also show that the above result is tight. Namely, we show that using
black-box simulation, constant-round ZK is impossible in the blockchain-hybrid
model.

Theorem 3 (Informal). Assuming one-way functions, there does not exist
an O(1)-round ZK argument system in the blockchain-hybrid model w.r.t. a
(expected probabilistic polynomial time) black-box simulator.

1 This is reminiscent to the problems that arise in the context of UC security, where
the adversary cannot be rewound since it can communicate with an external envi-
ronment, leading to broad impossibility results for zero-knowledge and secure com-
putation [14,16,19].

354 A. R. Choudhuri et al.

This is in sharp contrast to the plain model where there are a number of
classical constant round zero-knowledge protocols that are proven secure w.r.t.
a black-box simulator [9,28,33].

Concurrent Secure Computation using Blockchains. Classical secure
computation protocols such as [34,59] only achieve “stand-alone” security, and
fail in the setting of concurrent self-composition, where multiple copies of a pro-
tocol may be executed concurrently, under the control of an adversary. In fact,
achieving concurrent secure computation in the plain model has been shown
to be impossible [1,8,13,32,37,50–52]. The above impossibility results are far
reaching and rule out secure computation for a large class of functionalities in a
variety of settings.

Interestingly, we show that concurrent self-composition is possible in the
blockchain-hybrid model w.r.t. standard real/ideal model notion of security with
a PPT simulator. Thus, our results (put together) show that designing crypto-
graphic primitives in the blockchain-hybrid model is, in some sense, harder and
easier at the same time.

Theorem 4 (Informal). Assuming collision-resistant hash functions and
oblivious transfer, there exists a concurrent self-composable secure computation
protocol for all polynomial-time functionalities in the blockchain-hybrid model.

In our protocol, each party is required to post an initial message (which
corresponds to a commitment to its input and randomness) on the blockchain.
However, an honest party can simply perform this posting in an “offline” phase
prior to the start of the protocol. In particular, once the protocol starts, an
honest party is not required to post any additional message on the blockchain.

A number of prior beautiful works have constructed concurrent (and uni-
versally composable) secure computation in various setup models such as the
trusted common reference string model [21], the registered public-key model
[6], the tamper-proof hardware model [22,39,45], and the physically unclone-
able functions model [5,12,25]. We believe that the blockchain model provides
an appealing decentralized alternative to these models since there are no phys-
ical assumptions or centralized trusted parties involved. Moreover, it allows for
basing concurrent security on an already existing and widely used infrastruc-
ture. Further, it is possible to obtain strong guarantees of the following form:
an adversary who can break our construction can also break the security of the
underlying blockchain (potentially allowing it to gain large amounts of cryp-
tocurrency), or the underlying cryptographic assumptions (oblivious transfer
and collision-resistant hash functions in our case).

Impossibility of UC Security. While Theorem 4 establishes the feasibility of
concurrent self-composition, we show that universal composition security [14] is
impossible in the blockchain-hybrid model:

Theorem 5 (Informal). Universally composable commitments are impossible
in the blockchain-hybrid model.

Founding Secure Computation on Blockchains 355

We prove the above result via a simple adaptation of the impossibility result
of [16] to the blockchain-hybrid model. The main intuition behind this result is
that a simulator in the blockchain-hybrid model has the same capabilities as in
the plain model, namely, the ability to rewind the adversary or using knowledge
of its code. Crucially, (unlike the non-programmable random oracle model [18])
the ability to see the queries made to the blockchain do not constitute a new
capability for the simulator since everyone can see those queries.

1.2 Technical Overview

We start with the observation that if an adversary is blockchain-active, it can
“detect” that it is being rewound by posting the transcript of the interaction so
far on the blockchain. In more detail, upon getting an incoming message, the
adversary concatenates the entire transcript with a session ID and submits it
to the blockchain Oracle. Before giving a response, the adversary waits for the
next block to be mined and checks the following: the transcript it posted on the
blockchain has indeed appeared, and, no such transcript (for the same session
and the same round) appeared on any of the prior blocks. If the check passes
(which is guaranteed in the real execution), the adversary proceeds honestly
with computing and sending the next protocol message. We show that it would
be impossible for any polynomial-time simulator to rewind this adversary which
forms the basis of our black-box impossibility result for zero-knowledge.

Constructing Black-Box Zero-Knowledge Protocols. To overcome the
above problems posed by blockchains, we look towards blockchains for a solution
as well. Our idea is to make the protocol blockchain active as well. Specifically,
we let the honest prover keep track of the blockchain state, and, if the number
of new blocks mined since the beginning of the protocol exceed a fixed number
k, abort. Thus, the honest parties use the blockchain to implement a time-out
mechanism. We emphasize, however, that we do not require the honest parties to
have synchronized clocks. The only requirement placed is that the protocol must
be finished in an a priori bounded amount of time, as measured by the progress
of the blockchain. For example, while using Bitcoin, if k is set to 20, this gives
the parties nearly 3.5 h to finish the zero-knowledge protocol before a time-out
occurs (since a block is mined roughly every 10 min in Bitcoin). For simplicity,
we will treat the parameter k as a constant (even though our constructions can
handle an arbitrary value of k by scaling the round complexity of the protocol
appropriately).

We devise a construction for black-box zero-knowledge proofs where the num-
ber of “slots” (or rewinding opportunities) in the protocol is higher than k. While
the adversary can send any information to the blockchain Oracle at any point of
time, there can be at most k points in the protocol execution where the adver-
sary actually receives from the Oracle a new (unforgeable) mined block. However
by our construction, this would still leave several slots in the protocol where the
simulator is free to rewind (without having to forge the blockchain state).

A potentially complication in the design of the simulator arises from the fact
that, apart from the newly mined blocks, the adversary can also “listen in” on the

356 A. R. Choudhuri et al.

network communication in real time. This could consist of various (honest party)
transactions currently outstanding on the network and waiting to be included in
the next block. This is formalized by buffer reads in the model of Badertscher
et al. [4]. We handle this problem by having the simulator simply replay the
honest-party outstanding transactions since they could not have changed from
the main thread to the look-ahead thread. The adversarial outstanding trans-
actions (which might change from thread to thread) in the current thread are
already known to the simulator since the simulator can read all outgoing mes-
sages from the adversary. The above ideas form the basis of our first positive
result modulo the issue of simulation time which is discussed next.

The Issue of Simulation Time. Interestingly, the fact that blockchains can
be used to implement a global unforgeable clock presents a novel challenge in
proving security against blockchain-active adversaries, that to the best of our
knowledge, does not arise elsewhere in cryptography. Typically in cryptography,
the running time of the simulator is larger than the running time of the adver-
sary. This means that the number of blocks mined during a simulated execution
may be higher than the number of blocks mined during a real execution. Then,
the number of mined blocks can be used as “side-channel” information to distin-
guish real and simulated executions, if the adversary and the distinguisher are
blockchain-active! Such a difficulty does not arise in the plain model since the
simulator is assumed to have complete control over the clock of the adversary
(including the ability to freeze it).

To address this issue, we seek to construct a simulator whose running time is
the same as the real protocol execution. Towards that end, we build upon tech-
niques from the notion of precise zero-knowledge [53]. To start with, it would
seem that we need to construct a simulator with precision exactly 1, some-
thing that is currently not known to be possible. To resolve this problem, our
key observation is that there is a crucial difference between the time that the
simulator takes to finish and the number of computation steps it executes. In
particular, if the simulator can execute a number of computations in parallel, it
could potentially perform more computations than the prover in the real execu-
tion, and yet, finish in the same amount of time. Our rewinding strategy would
run several threads of execution in parallel (e.g., by making several copies of the
adversary code) and ensure that by the time the main2 thread finishes, all the
rewound execution threads have finished as well. To ensure that the simulation
succeeds, our simulator is necessarily required to have a super-constant number
of rewinding opportunities (which can be pursued in parallel). Such a simula-
tor would give a guarantee of the following form: any information learnt by an
adversarial verifier in the protocol could also be produced from scratch by an
algorithm which is capable of running sufficient (polynomial) number of compu-
tations in parallel. For example, a quad core processor is capable of running 4
parallel computations.

We believe that the issue of simulation time is one of independent interest.
In particular, developing an understanding of the time required by the simulator
2 The thread output by the simulator is referred to as the main thread.

Founding Secure Computation on Blockchains 357

(as opposed to the number of computation steps) could shed additional light on
the knowledge complexity of cryptographic constructions as well as motivate the
study of strong notions of security.

Lower Bound on Round Complexity of Black-Box Zero-Knowledge.
We prove that constant round ZK arguments are impossible w.r.t black-box
simulation in the blockchain-hybrid model. Our impossibility result holds even
for expected polynomial-time simulators.

Consider an adversarial verifier that waits for a fixed constant time c before
responding to any message from the prover. Our proof works in two steps:

1. Recall that black-box simulators can only query the adversarial verifier as an
Oracle. However, the simulator may choose to make these queries in parallel
rather than sequentially by making several copies of the adversary state (and
hence, increasing the number of available Oracles).
In the first step, we assume that the simulator is memory bounded. This
means that at any given time, the simulator may only have a bounded (strict
polynomial) number of copies (say) q(·) of the adversary. Furthermore, since
the verifier takes time c to answer each query, the total number of queries the
simulator may make to the adversary in a given time t can be bounded by
q·t
c (an a priori bounded strict polynomial). Now we observe the following:
– The simulator must terminate within roughly t steps where t is the time

an honest prover takes to complete the proof. To see this, let r be an upper
bound on the number of blocks that can created in the time taken by the
honest prover to complete the proof. We consider a blockchain active
adversary that observes the state of the blockchain when the protocol
starts, and posts a transcript on the completion of the proof. If it notices
that more than r blocks have been created since the protocol started, it
concludes that it is interacting with the simulator.

– Thus, the overall number of queries (and hence) the running time of the
simulator is a strict polynomial. Now, we can directly invoke the result of
Barak and Lindell [7] that rules out constant-round ZK arguments with
strict polynomial-time black-box simulation.

2. The above only rules out a simulator with “a priori bounded parallelism”.
However what if, e.g., the number of parallel queries the simulator may make
to the verifier cannot be a priori bounded (and instead we only require that
the simulator finish in a priori bounded number of computational steps)? In
particular, the simulator may see the responses to the queries made so far,
and, adaptively decide to increase the number of parallel queries (i.e., the
number of copies of the adversary)? This case is more tricky and as such, the
ideas from the work of [7] don’t apply.
To resolve this issue, we crucially rely upon the fact that by carefully choosing
the delay parameter c and an aborting probability for the adversary, the
number of such “adaptive steps” can be bounded by a constant. Thereafter,
we argue that in each adaptive step, if the simulator increases the number of
parallel copies by more than an a priori bounded polynomial factor, it runs
the risks of blowing the number of computation steps to beyond expected

358 A. R. Choudhuri et al.

polynomial. On the other hand if the number of parallel copies blow up by
at most a fixed polynomial factor, since the number of adaptive steps is a
constant, the simulator is still using “bounded parallelism” (a case already
covered by our previous step). The full proof is delicate and can be found in
the full version.

Concurrent Secure computation. We now proceed to describe the main ideas
behind our positive result for concurrent self-composable secure computation.
We start by recalling the intuition behind the impossibility of concurrent secure
computation w.r.t. black-box simulation in the plain model.

A primary task of a simulator for a secure computation protocol is to extract
the adversary’s input. A black-box simulator extracts the input of the adversary
by rewinding. However, in the concurrent setting, extracting the input of the
adversary in each session is a non-trivial task. In particular, given an adversarial
scheduling of the messages of concurrent sessions, it may happen that in order
to extract the input of the adversary in a given session s, the simulator rewinds
past the beginning of another session s′ that is interleaved inside the protocol
messages of session s. When this happens, the adversary may change its input in
session s′. Thus, the simulator would be forced to query the ideal functionality
more than once for the session s′.

Indeed, as shown in [51], this intuition can be formalized to obtain a black-box
impossibility result for concurrent self-composition w.r.t. the standard definition
of secure computation, where only one query per session is allowed. While Lin-
dell’s impossibility result is only w.r.t. black-box simulation, subsequent works
have shown impossibility of concurrent secure computation even w.r.t. non-black-
box simulation [1,8,32,37].

In order to overcome the impossibility results, our starting idea is the follow-
ing: prior to the start of a protocol, each party must commit to its input and
randomness on the blockchain. It must then wait for its commitment string to
be posted on the blockchain before sending any further message in the protocol.
Similar to our ZK protocols (with stand-alone security), we use a time-out mech-
anism to place an upper bound on the number of blocks that can be mined during
a session. Then, by using sufficiently many rewinding “slots,” we can ensure that
there exist some slots in each session where the adversary is guaranteed to not
see new block (and hence no new interleaved sessions), making them “safe” for
rewinding. Note, however, that this mechanism does not bound the overall num-
ber of concurrent sessions since an adversary can start any polynomial number
of sessions in parallel.

Once we have the above protocol template, the key technical challenge is to
perform concurrent extraction of the adversary’s inputs in all of the sessions.
Since there are multiple “unsafe” rewinding slots in every session (wherever a
new block is mined), we need to extract adversary’s inputs in all of the sessions
under the constraint that only the safe slots are rewound. Unfortunately, com-
monly known rewinding strategies in the concurrent setting [49,57,58] rewind
all parts of the protocol transcripts (potentially multiple times). Therefore, they
immediately fail in our setting.

Founding Secure Computation on Blockchains 359

In order to solve this problem, we develop a new concurrent rewinding strat-
egy. The starting idea towards developing this rewinding strategy is the observa-
tion that our particular setting has some similarities to the work of Goyal et al.
[41] who were interested in a seemingly unrelated problem: designing commit-
ment schemes that are secure w.r.t. chosen commitment attacks [20]. Goyal et al.
introduced what they call the “robust extraction lemma” that guarantees con-
current extraction even if a constant number of “breakpoints” – that cannot be
rewound – are interspersed throughout the overall transcript of the concurrent
sessions. These breakpoints are analogous to the unsafe points in our setting.

While this serves as a useful starting point, robust extraction is not directly
applicable to our setting since overall, the number of external blocks seen by the
adversary (the equivalent of breakpoints in [41]) cannot be bounded. Indeed, if
the number of sessions is T , the number of blocks can only be upper bounded
by T · k (if e.g., all the sessions are sequential).

Our main observation is that the concurrent adversary can only choose one
of the following: either too much concurrency, or too many newly mined blocks,
but not both. This allows us to come up with a new variant and analysis of
the robust extraction lemma which we believe could be of independent interest.
In particular, our new variant uses twice as many slots as the one used by the
robust extraction lemma. We refer the reader to the technical sections for more
details.

1.3 Related Work

Blockchains and Cryptography. In a recent work, [36] used blockchains
to construct non-interactive zero-knowledge (NIZK) arguments and selectively-
secure one-time programs. Their model, however, is fundamentally different from
ours in that they rely on a much stronger notion of simulation where the simula-
tor controls all the honest miners in the blockchain. Intuitively, this is somewhat
similar to the honest majority model used to design (universally composable)
secure multiparty computation protocols. Due to the power given to the sim-
ulator, their model necessitates the blockchain to be “local” (i.e., private) to
the protocol. In contrast, our model allows for the blockchain to be a “global”
setup since the simulator has no extra power over the blockchain compared to
the adversary. This is similar to the difference between universal composability
framework [14] and global universal composability framework [15], where in the
former model, a setup (such as a common reference string) cannot be reused by
different protocols, whereas in the latter model, a common setup can be used
across multiple protocols. Indeed, since the simulator has no additional power
except the ability to reset the adversary or use knowledge of its code, NIZKs are
impossible in our model, similar to the plain model. Unlike our work, [36] do not
consider interactive ZK proofs or any notion of secure multiparty computation.

In another recent work, [24] study the problem of fair multiparty computation
in a “bulletin-board” model that can be implemented with blockchains. Similar
to [36], however, their model provides the simulator the ability to control the

360 A. R. Choudhuri et al.

blockchain. Prior to their work, multiple works [2,10] studied the problem of
fairness with penalties using cryptocurrencies.

Several elegant works have conducted a formal study of various properties
of blockchains [4,30,31,46,56]. Most relevant to our work is that of Badertscher
et al. [4] whose modeling of the blockchain ideal functionality we closely follow.

Concurrent Security. The study of concurrent security for cryptographic pro-
tocols was initiated by Dwork et al. [27] who also introduced a timing model
for constructing concurrent ZK. In this model, the parties have synchronized
clocks and are required to insert “delays” at appropriate points in the protocol.
A refined version of their model was later considered in [44] for the problem of
concurrent secure computation. We note that while our approach to concurrent
secure computation in the blockchain-hybrid model appears to bear some simi-
larity to the timing model, there are fundamental differences that separate these
models. For example, the simulator can fully control the clock of the adversary
in the timing model, while this is not possible in our setting since the blockchains
provide an unforgeable clock to the adversary. More importantly, in the timing
model, there are no “unsafe” points, and the simulator can rewind anywhere.
For this reason, the timing model does not require developing new concurrent
extraction techniques, and instead standard rewinding techniques for the stand-
alone setting are applicable there. Finally, in the timing model, honest parties
insert artificial delays in the protocol based on their clocks, while in our con-
structions, an honest party responds immediately to messages received from the
other (possibly adversarial) party.

1.4 Organization

We start with our model of the blockchain in Sect. 2, and all subsequent results
are in this model. In Sect. 4 we describe a ω(1) round black-box zero-knowledge
protocol. We describe our concurrently extractable commitment scheme in
Sect. 5 and use our constructed commitment scheme to achieve a concurrently
secure two-party computation protocol described in Sect. 5.2.

1.5 Full Version

Due to space constraints, our impossibility results and the security proofs are
omitted from this manuscript, and appear in the full version of this paper [23].

2 Blockchain Model

Blockchains. In a blockchain protocol, the goal of all parties is to maintain
a global ordered set of records that are referred to as blocks. New blocks can
only be added using a special mining procedure that simulates a puzzle-solving
race between participants and can be run by any party (called miner) executing

Founding Secure Computation on Blockchains 361

the blockchain protocol. Presently, two broad categories of puzzles are used:
Proof-of-Work (PoW) and Proof-of-Stake (PoS).

Following the works of [3,4,47], we model the blockchain as a global ledger
Gledger that internally keeps a state state which is the sequence of all the blocks
in the ledger. Parties interact with the ledger by making one of many queries
described by the functionality.

We reproduce here the ledger functionality described in [4] with a few minor
modifications to be described subsequent to the description.

The ledger maintains a central and unique permanent state denoted by state.
When data/transactions are sent to Gledger, they are validated using a Validate
predicate and added to a buffer buffer. The buffer is meant to indicate those
transactions that are not sufficiently deep to become permanent. The Blockify
function creates a block including some transactions from buffer and extends
state. The decision of when the state is extended is left to the adversary. The
adversary proposes a next block candidate NxtBC containing the transactions
from the buffer it wants included in the state. An empty NxtBC is used to
indicate that the adversary does not want the state to be updated at the current
clock tick. To restrict the behavior of the adversary, there is a ledger algorithm
ExtendPolicy that enforces a state-update policy restriction. Further discussion
on the ExtendPolicy can be found in the full version.

Each registered party can see the state, but is guaranteed only a sufficiently
long prefix of it. This is implemented by monotonically increasing pointers pti,
defining the prefix state|pti , for each party that the adversary can manipulate
with some restrictions. This can be viewed as a sliding window over the state,
wherein the adversary can only set pointers to be within this window starting
from the head of state. The size of the sliding window is denoted by windowSize.
It should be noted that the prefix view guarantees that the value at position k
will appear in position i in every party’s state.

A party is said to be desynchronized if the party recently registered or
recently got de-registered from the clock. At this point, due to network delays,
the adversary can make the parties believe in any value of the state up until
the party gets messages from the network. This time period is denoted by the
parameter Delay, wherein the desynchronized parties are practically under the
control of the adversary. A timed honest input sequence

−→I T
H , is a vector of the

form ((x1, P1, τ1), · · · , (xm, Pm, τm)), used to denote the inputs received by the
parties from the environment, where Pi is the player that received the input and
τi was the time of the clock when the environment handed the input to Pi. The
ledger uses the function predict-time to ensure that the ideal world execution
advances with the same pace (relative to the clock) as the protocol does. −→τ state

denotes the block-insertion times vector, which lists the times each block was
inserted into state.

362 A. R. Choudhuri et al.

Functionality Gledger

Gledger is parameterized by found algorithms, Validate, ExtendPolicy, Blockify,
and predict-time: windowSize, Delay∈ N. The functionality manages variables
state, NxtBCbuffer, τL, and −→τ state as described above. The variables are initial-
ized as follows: state := −→τ state := NxtBC := ε, buffer := ∅, τL = 0.

The functionality maintains the set of registered parties P, the subset of honest
parties H ⊆ P and the subset of de-synchronized honest parties PDS ⊂ H. The
sets P, H, PDS are all initially set to ∅. When a new honest party is registered
at the ledger, if it is registered with the clock already then it added to the party
sets H and P and the current time of registration is also recorded if the current
time τL > 0, it is also added to PDS . Similarly, when a party is deregistered, it is
removed from both P (and therefore also from PDS or H). The ledger maintains
the invariant that it is registered (as a functionality) to the clock whenever H �= ∅.

For each party Pi ∈ P the functionality maintains a pointer pti (initially set to
1) and a current-state view statei := ε (initially set to empty). The functionality

also keeps track of the timed honest-input sequence in a vector
−→I T

H (initially−→I T
H := ε)

Upon receiving any input I from any party or from the adver-
sary, send (CLOCK-READ, sidC) to Gclock and upon receiving the response
(CLOCK-READ, sidC , τ), set τL := τ and do the following:

1. Let ̂P ⊆ PDS denote the set of desynchronized honest parties that have been
registered continuously since time τ ′ < τL −Delay (to both ledger and clock).

Set PDS := PDS \ ̂P.

2. If I was received from an honest party Pi ∈ P:

(a) Set
−→I T

H :=
−→I T

H ||(I, Pi, τL);

(b) Compute
−→
N = (

−→
N 1, · · · ,

−→
N �) :=

ExtendPolicy
(−→I T

H , state, NxtBC, buffer, −→τ state

)

and if
−→
N �= ε set

state := state||Blockify(
−→
N 1)|| · · · ||Blockify(

−→
N �) and −→τ state := −→τ state||τ �

L

where τ �
L = τL|| · · · ||τL.

(c) If there exists Pj ∈ H \ PDS such that |state| − ptj > windowSize or
ptj < |statej |, then set ptk := |state| for all Pk ∈ H \ PDS .

(d) If
−→
N �= ε, send (state) to A; else send (I, Pi, τL) to A

3. Depending on the above input I and its sender’s ID, Gledger executes the
corresponding code from the following list:

– Submitting data:
If I = (SUBMIT, sid, x) and is received from a party Pi ∈ P or from A
(on behalf of corrupted party Pi) do the following
(a) Choose a unique identifier uid and set y := (x, uid, τL, Pi)

(b) buffer := buffer ∪ {y}.

Founding Secure Computation on Blockchains 363

(c) Send (SUBMIT, y) to A if not received from A.

– Reading the state:
If I = (READ, sid) is received from a party Pi ∈ P then set statei :=
state|min{pti,|state|} and return (READ, sid, statei) to the requestor. If the
the requestor is A then send (state, buffer).

– Maintain the ledger state:
If I = (MAINTAIN-LEDGER, sid) is received by an honest Pi ∈ P and

predict-time(
−→I T

H) = τ̃ > τL then send (CLOCK-UPDATE, sidC) to Gclock.
Else send I to A.

– The adversary proposing the next block:
If I = (NEXT-BLOCK, hflag, (uid1, · · · , uid�)) is sent from the adversary,
update NxtBC as follows:
(a) Set listOfUid ← ε

(b) For i ∈ [�], if there exists y := (x, uid, τL, Pi) ∈ buffer with ID uid =
uidi then set listOfUid := listOfUid||uidi.

(c) Finally, set NxtBC := NxtBC||(hflag, listOfUid).

– The adversary setting state-slackness:
If I = (SET-SLACK, (Pi1 , ̂pti1

), · · · , (Pi� , ̂pti�
)) with {Pi1 , · · · , Pi�} ⊆ H\

PDS is received from the adversary, do the following:
(a) If ∀j ∈ [�] : |state| − ̂ptij

≤ windowSize and ̂pti1
≥ |stateij |, set

ptij
:= ̂ptij

for every j ∈ [�].

(b) Otherwise set ptij
:= |state| for all j ∈ [�]

– The adversary setting the state for desynchronized parties:
If I = (DESYNC-STATE, (Pi1 , state′

i1), · · · , (Pi1 , state′
i�

)) with
{Pi1 , · · · , Pi�} ⊆ PDS is received from the adversary, set stateij

:= state′
ij

for every j ∈ [�].

The work of Badertscher et al. [4] show that under appropriate assumptions,
Bitcoin realizes the ledger functionality described enforcing the ExtendPolicy
described in the full version of our paper. For convenience we’ve made a few
syntactic changes to the Gledger functionality as described in [4]:

– Firstly, the Validate predicate is not relevant in our setting since parties will
use ledger to post data, and these should be trivially validated. Hence, we’ve
abstracted out the Validate predicate from the description of the model.

– We require that the adversary cannot invalidate data sent by other parties,
thereby denying data from ever making it on to the ledger. For transactions,
the adversary can invalidate honest transactions. This can be remedied using
a strong variant of Gledger described in [4].

– Every time that the size of the state increases, the adversary is notified of the
new state by Gledger.

364 A. R. Choudhuri et al.

The changed functionality the same properties of the ideal Gledger functionality
as described in [4].

Remarks. We point out a few properties of the Gledger functionality and its use
case in our setting.

– As described in [4], we can achieve a strong liveness guarantee by slightly
modifying the above ledger functionality which guarantees that posted infor-
mation will make it on to the view of other parties within Δ := 4 ·windowSize
number of blocks (relative to the view of the submitting party).

– There are occasions wherein we will run parallel executions of the adversary,
and one thread will be assigned to be the main execution thread while the
others will be denoted as “look-ahead” threads. In an effort to make the
adversary oblivious to rewinding, we cannot allow messages from these “look-
ahead” threads to make its way to Gledger. Drop messages sent by the adversary
to Gledger and will have to abort the thread if Gledger sends a state with an
increased size.

– We require that for a READ query, buffer is efficiently simulatable, while state
is not. This is a reasonable assumption to make given that the state indi-
cates the permanent component of the blockchain, and simulating this would
requiring forging the state. On the other hand, the buffer consists of outstand-
ing queries from both honest and adversarial parties. From the description
of Gledger, each time a SUBMIT query is made to Gledger, the information is
passed along to the adversary, and the adversary’s own outstanding queries
are known. Looking ahead, a READ query can be answered without mak-
ing a query to Gledger. The honest outstanding queries are replayed on each
thread since they could not have changed across threads, while the adversarial
queries local to that thread are known to the simulator.

– We wait for Delay time before the start of any protocol to ensure all parties
are synchronized. Moving ahead, for simplicity of exposition, the notion of
de-synchronised parties is ignored.

– While the works of [3,4,47] use Gclock functionality, we do not require parties
to have access to a clock and can consider this to be local to Gledger. In fact
our positive results do not rely on parties having access to a clock.

– Additionally, we require that a locally initialized Gledger is efficiently simu-
latable to any adversary that does not have additional access to the global
Gledger. These local Gledger will be useful in establishing certain properties of
our protocol.

Blockchain active (BCA) adversaries. Consider an adversary that has access
to Gledger, and thus can post to and access the state (the entire blockchain) at
any time. In fact its strategy in any protocol may be a function of the state. We
refer to any such adversary that actively uses the Gledger as a blockchain active
adversary (BCA).

Simulation in the Blockchain-hybrid model. Moving ahead, we inter-
changeably use blockchain-hybrid and Gledger-hybrid, while preferring the later

Founding Secure Computation on Blockchains 365

for our formal descriptions. A simulator has the same power as other parties
while accessing the global functionality Gledger. In addition, it acts as an inter-
face between the party and Gledger, and thus can choose what messages between
the party and the functionality it wants delivered. This is unlike the setting con-
sidered in [24,36] where the simulator has control of the blockchain, and thus
can “rewind” the blockchain by discarding and re-creating blocks. This is rem-
iniscent of the difference between simulation in Universal Composability (UC)
framework [14] and simulation in the global UC framework [15,18,43].

Our simulator can use arbitrary polynomial amount of parallelism. Although
arbitrary, the polynomial is fixed in advance. We will use this modeling to run
parallel invocations of the adversary by making copies.

At this point we would like to emphasize the need for considering this model
for the simulator. We start off by mentioning that any party can use the state
obtained from Gledger as the basis for its execution. Importantly, the adversary’s
view is now no longer determined solely by the message it receives from the
simulator since the Gledger state gives it an additional auxiliary input. In the
plain model, if we wanted to rewind the adversary back to a specific point in the
execution, we could restart the adversary and send the same messages up to the
specific point. And we were guaranteed that the adversary’s responses would be
identical. But now since the adversary has access to Gledger, its responses could
depend on the state of Gledger.

Let us consider such an adversary. Now when the simulator tries to restart the
adversary, suppose the state has expanded since. Even if the simulator provides
the same messages as a previous execution, the adversary’s behavior now may
be drastically different and of potentially no use to the simulator. The simulator
could ensure identical behavior by providing it the earlier truncated view of the
state, but moving forward with this execution would be problematic since any
message that the adversary wants to post will no longer appear on the state
within the promised time period, and thus the adversary will notice that the
Gledger no longer follows the model specified. Thus it is imperative that executions
are run in parallel to ensure that views across multiple threads are identical if
the same inputs are provided.

The above modeling is crucial for rewinding when we prove security of our
protocols. We will work with this modeling unless otherwise specified. Looking
ahead, our construction of the zero-knowledge proof in the non-black-box setting
will use a modified variant of this model.

Security. Since the distinguisher attempting to distinguish between views of the
adversary in the real and simulated setting has access to Gledger, the simulator
cannot create an isolated view of Gledger for the adversary. But as it turns out, the
ability to initialize a local Gledger is a useful property useful in certain situations
that we will leverage in our work.

Protocols in the plain model are a reference to any protocol that does not
require its participants to interact with Gledger in any form. These protocols are
proven secure without considering the presence of Gledger. Given such a protocol, a
blockchain active adversary may try to leverage access to this global functionality

366 A. R. Choudhuri et al.

Gledger to gain undue advantage over the setting where it did not have such access.
We are interested in such adversaries since we want to see how the security of
known protocols or primitives fare when the adversary has access to the Gledger.

3 Definitions and Preliminaries

Unless otherwise specified, we consider the adversaries that have access to the
global functionality Gledger, and thus the view includes messages received from
and sent to Gledger. Thus, when we denote that two distributions representing
the views of parties with access to Gledger are computationally indistinguishable
in the Gledger-hybrid model, we give distinguisher access to the global Gledger

functionality. An immediate consequence of this is that, any view generated
by a simulator using a privately initialized Gledger functionality will be trivially
distinguished from the real execution by the distinguisher that views the state
of the global Gledger.

3.1 Zero Knowledge in the Gledger-hybrid Model

Definition 1. An interactive protocol (P,V) for a language L is zero knowledge
in the Gledger-hybrid model if the following properties hold:

– Completeness. For every x ∈ L,

Pr
[
outV [P(x,w) ↔ V(x)] = 1

]
= 1

– Soundness. There exists a negligible function negl(·) s.t. ∀x /∈ L and for all
adversarial prover P∗.

Pr
[
outV [P∗(x) ↔ V(x)] = 1

]
≤ negl(n)

– Zero Knowledge. For every PPT adversary V ∗, there exists a PPT simu-
lator Sim such that the probability ensembles
–

{
viewV [P(x,w) ↔ V(x, z)]

}
x∈L,w∈RL(x),z∈{0,1}∗

–
{

Sim(x, z)
}

x∈L,w∈RL(x),z∈{0,1}∗

are computationally indistinguishable in the Gledger-model.

3.2 Concurrently Secure Computation in the Gledger-hybrid Model

In this work, we consider a malicious, static adversary that chooses whom to
corrupt before the execution of the protocol. The adversary controls the schedul-
ing of the concurrent executions. We only consider computational security and
therefore restrict our attention to adversaries running in probabilistic polyno-
mial time. We denote computational indistinguishability by ≈c, and the security
parameter by n. We do not require fairness and hence in the ideal model, we

Founding Secure Computation on Blockchains 367

allow a corrupt party to receive its output in a session and then optionally block
the output from being delivered to the honest party, in that session. Further,
we only consider “security with abort”. To formalize the above requirement and
define security, we follow the standard paradigm for defining secure computa-
tion (see also [52]). We define an ideal model of computation and a real model of
computation, and require that any adversary in the real model can be emulated
by an adversary in the ideal model. More details follow.

IDEAL MODEL. We first define the ideal world experiment, where there is a
trusted party for computing the desired two-party functionality F : {0, 1}r1 ×
{0, 1}r2 → {0, 1}s1 × {0, 1}s2 . Let P1 and P2 denote the two parties in a single
execution. In total. let there be k parties Q1, Q2, · · · , Qk, where each party may
be involved in multiple sessions with possibly interchangeable roles, i.e. Qi may
play the role of P1 in one session and P2 in some other session. Let the total
number of executions be m = m(n). For each � ∈ [m], we will denote by P �

1 , the
party playing the role of P1 in session �. P �

2 is defined analogously. The adversary
may corrupt any subset of the parties in Q1, . . . , Qk. The ideal world execution
proceeds as follows:

I Inputs: There is a PPT usage scenario which gives inputs to all the parties.
For each session � ∈ [m], it gives inputs x� ∈ X ⊆ {0, 1}r1 to P �

1 and
y� ∈ Y ⊆ {0, 1}r2 to P �

2 . The adversary is given auxiliary input z ∈ {0, 1}∗,
and chooses the subset of the parties to corrupt, say M . The adversary
receives the inputs of the corrupted parties.

II Session initiation: When the adversary wishes to initiate the session num-
ber �, it sends a (start-session, �) message to the trusted party. On receiving a
message of the form (start-session, �), the trusted party sends (start-session, �)
to both P �

1 and P �
2 .

III Honest parties send inputs to the trusted party: Upon receiving
(start-session, �) from the trusted party, an honest party P �

i sends its real
input along with the session identifier. More specifically, if P �

1 is honest, it
sends (�, x�) to the trusted party. Similarly, an honest P �

2 sends (�, y�) to the
trusted party.

IV Corrupted parties send inputs to the trusted party: At any point
during execution, a corrupted part P �

1 may send a message (�, x′
�) to the

trusted party, for any string x′
� (of appropriate length) of its choice. Similarly,

a corrupted party P �
2 sends (�, y′

�) to the trusted party, for any string y′
� (of

appropriate length) of its choice.
V Trusted party sends results to the adversary: For a session �, when

the trusted party has received messages from both P �
1 and P �

2 , it computes
the output for that session. Let x′

� and y′
� be the inputs received from P �

1

and P �
2 , respectively. It computes the output F(x′

�, y
′
�). If either P �

1 or P �
2 is

corrupted, it sends (�,F(x′
�, y

′
�)) to the adversary. If neither of the parties

is corrupted, then the trusted party sends the output message (�,F(x′
�, y

′
�))

to both P �
1 and P �

2 .
VI Adversary instructs the trusted party to answer honest players:

For a session �, where exactly one of the party is corrupted, the adversary,

368 A. R. Choudhuri et al.

depending on its view up to this point, may send the message (output, �) to
the trusted party. Then, the trusted party sends the output (�,F(x′

�, y
′
�)),

computed in the previous step, to the honest party in session �.
VII Outputs: An honest party always outputs the value that it received from

the trusted party. The adversary outputs an arbitrary (PPT computable)
function of its entire view (including the view of all corrupted parties)
throughout the execution of the protocol including messages exchanged with
the Gledger functionality.

The ideal execution of a function F with security parameter n, input vectors−→x ,−→y , auxiliary input z to Sim and the set of corrupted parties M , denoted by
IDEALF

M,Sim(n,−→x ,−→y , z), is defined as the output pair of the honest parties and
the ideal world adversary Sim from the above ideal execution.

REAL MODEL. We now consider the real model in which a real two-party
protocol is executed (and there exists no trusted third party). Let F ,−→x ,−→y , z be
as above and let Π be a two-party protocol for computing F . Let A denote a
non-uniform probabilistic polynomial time adversary that controls any subset M
of parties Q1, . . . , Qk. The parties run concurrent executions of the protocol Π,
where the honest parties follow the instructions of Π in all executions. The honest
party initiates a new session �, using the input provided whenever it receives a
start-session message from A. The scheduling of all messages throughout the
execution is controlled by the adversary. That is, the execution proceeds as
follows: the adversary sends a message of the form (�,msg) to the honest party.
The honest party then adds msg to its view of session � and replies according
to the instructions of Π and this view in that session. At the conclusion of the
protocol, an honest party computes its output as prescribed by the protocol.
Without loss of generality, we assume the adversary outputs exactly its entire
view in the execution of the protocol, which includes messages exchanged with
the Gledger functionality.

The real concurrent execution of Π with security parameter n, input vectors−→x ,−→y , auxiliary input z to A and the set of corrupted parties M , denoted by
REALF

M,A(n,−→x ,−→y , z), is defined as the output pair of the honest parties and the
real world adversary A from the above real world process.

Definition 2. Let F and Π be as above. Then protocol Π for computing F
is a concurrently secure computation protocol in the Gledger-hybrid model if for
every probabilistic polynomial time adversary A in the real model, there exists a
probabilistic polynomial time adversary Sim in the ideal model such that for every
polynomial m = m(n), every input vectors −→x ∈ Xm,−→y ∈ Y m, every z ∈ {0, 1}∗,
and every subset of corrupt parties M , the following

{
IDEALF

M,Sim(n,−→x ,−→y , z)
}

n∈N

≈c

{
REALF

M,A(n,−→x ,−→y , z)
}

n∈N

holds in the Gledger-hybrid model.

Founding Secure Computation on Blockchains 369

4 Black-Box Zero Knowledge

In this section we will describe a ω(1) round zero-knowledge protocol that can
be proven secure using a black-box simulator. We build our protocol atop the
protocol for graph hamiltonicity proof.

4.1 Our Protocol

The high level idea for our protocol is that the verifier commits to its challenge
via a multi-round extractable commitment, and reveals the challenge in place of
the second round of the Hamiltonicity proof system. Since we are constructing a
proof system where the prover has unbounded computational power, we require
the commitment by the verifier to be statistically hiding so that an unbounded
adversarial prover is not able to guess the challenge. We refer to the multi-round
extractable commitment as the preamble.

In the preamble, the challenge committed to by the verifier is retrieved by
rewinding the verifier in each of the slots. As long as the rewinding is success-
ful in one of the slots, the committed challenge can be extracted. But in the
presence of the blockchain (abstracted by the Gledger functionality) this becomes
difficult. Consider a verifier that sends the challenge received by the prover in a
given slot to Gledger, and waits for the state to expand to include the challenge
before responding to the challenge. It then checks in the state if there is another
challenge from the prover for the same slot. If this is the case, it knows that it
has been rewound, and will abort the protocol. Thus, in the simulated setting,
the verifier will abort with a disproportionate probability in comparison to the
real execution.

The trivial solution of not relaying messages from the verifier to Gledger on
the look ahead threads does not work because the verifier can refuse to respond
unless the state expands.

Thus, to overcome this issue, we design a protocol in the blockchain-hybrid
model, where the protocol requires all parties to access Gledger in order to
participate in the protocol. In our protocol, we just require that during the
preamble, the local state of each party increases by at most k. But since
parties may have different views of thus state, we must be careful when we
claim the state size increase for other parties. But since Gledger guarantees that
|stateP − stateV| ≤ windowSize, we are guaranteed that if the size of the state of
one party increases by k, the size of the state of any other party can increase by
at most windowSize + k (with maximum when both parties point to the head of
the state initially).

If we set the number of rounds of the preamble to be m > k+windowSize, we
are guaranteed to have at least m − (k + windowSize) slots where the state does
not expand during the slot. For simplicity we assume k to be a constant, but our
protocol can handle arbitrary k by scaling the number of rounds accordingly.
The high level idea then is to just rewind in the slots where the state has not
expanded, and thus the verifier does not expect the state to expand before it
responds, and thus messages to or from Gledger can be kept from the verifier on

370 A. R. Choudhuri et al.

the look ahead threads. Of course the exact number of rounds would depend
on the exact simulator strategy. In our protocol, the number of rounds in the
preamble is set to be m = ω(1). We should point out that k > windowSize to
avoid trivial aborts in an honest execution of the protocol since otherwise the
parties may start off with states that may then be k behind the head of the state,
and in one computation step catches up to the head, thereby increasing local
state size by k, and thus causing an abort. The complete protocol is presented
in Fig. 1.

Protocol BCA-ZK

Common Input: An instance x of a language L with witness relation RL, the security
parameter n, the time out parameter k and the round parameter m := m(n).

Auxiliary Input for Prover: a witness w, such that (x, w) ∈ RL, size of local state
from the ledger iP := |stateP|.
Auxiliary Input for Verifier: size of local state from the ledger iV := |stateV|.
Phase I: Prior to each message sent in this phase, the respective party checks if the
size of the state is such that |stateP| < iP + k (correspondingly |stateV| < iV + k for the
verifier). If not, the party aborts.

1. Prover uniformly select a first message for a two round statistically hiding commit-
ment scheme and send it to the verifier.

2. Verifier uniformly selects σ ∈ {0, 1}n, and mn pairs of n-bit strings (σ0
�,p, σ1

�,p) for
� ∈ [n], p ∈ [m] such that ∀�, p : σ0

�,p ⊕σ1
�,p = σ. It commits to all 2mn+1 selected

strings using the statistically hiding commitment scheme. The commitments are
denoted by α, {αb

�,p}b∈{0,1},�∈[n],p∈[m].
3. For p = 1 to m:

(a) Prover sends an n-bit challenge string rp = r1,p, . . . , rn,p to the verifier.
(b) Verifier decommits α

r1,p
1,p , . . . , α

rn,p
n,p to σ

r1,p
1,p , . . . , σ

rn,p
n,p .

4. The prover proceeds with the execution if and only if all the decommitments send
by the verifier are valid.

Phase II: The prover and verifier engage in n parallel executions of the Hamiltonicity
protocol as described below:

1. The prover sends the first message of the Hamiltonicity proof system.
2. The verifier decommits α to σ. And also reveals all mn commitments not decom-

mitted to in the earlier phase.
3. The prover checks if decommitted values σ, {σb

�,p}b∈{0,1},�∈[n],p∈[m] are valid de-
commitments. Additionally, check if ∀�, p : σ0

�,p ⊕ σ1
�,p = σ. If any of the checks

fail, abort. Else, send the third message of the Hamiltonicity proof system.
4. Verifier checks if all conditions of the Hamiltonicity proof system are met. It accepts

if and only if this is the case.

Fig. 1. Protocol for zero-knowledge proof in the blockchain aware setting.

Theorem 6. The protocol BCA-ZK is a Zero-Knowledge Proof with black-box
simulation in the Gledger-hybrid model.

Founding Secure Computation on Blockchains 371

5 Concurrent Self Composable Secure Computation

In this section, we will construct a two-party protocol that is secure under con-
current self composition. We follow the line of works [17,38,40] that rely on real-
izing an extractable commitment scheme that remains extractable even when
there are multiple concurrent copies of this scheme in execution. Thus we con-
struct our protocol in a two-step process. First, we describe a modified version
of the multi-round extractable commitment preamble in the blockchain-hybrid
model and show that we can extract from each session when multiple sessions are
executed concurrently. Next, we plug our constructed concurrently extractable
commitments into the compilers constructed in [17,38,40] to achieve a concur-
rently secure two-party computation protocol.

5.1 Concurrently Extractable Commitment

In this section we present our construction of the concurrently extractable com-
mitment scheme in the blockchain-hybrid model. We will refer to this as the
modified PRS preamble. The idea for the modified PRS preamble is quite sim-
ple. Prior to starting the preamble, the party needs to post the first message
to Gledger. It is guaranteed that it will appear in the view of every party within
the next Δ := 4 · windowSize blocks. Once the local state increase by Δ blocks,
it sends the same message to the receiver. Posting to Gledger gives the party an
“expiry period” of k-blocks after the Δ wait i.e., all slots of the preamble must be
completed before the size of the state increases by a total of Δ+k. As in the case
of zero-knowledge, if the size of the state of a party increases by Δ + k, for any
other party the size of the state can have increased by at most Δ+k+windowSize,
which is a constant when k is a constant. This needs to be taken into account
when choosing the parameters � and k. The formal description of the protocol
is given below.

Protocol 〈C,R〉BCA
Common Input: The security parameter n, the time-out parameter k,
and the round parameter 2 · � := �(n).

Input to the Committer: the value σ to be committed, size of local state
from the ledger iC := |stateC |.
Input to the Receiver: size of local state from the ledger iR := |stateR|.
Commitment:
1. Committer uniformly selects σ ∈ {0, 1}n, and 2 · � · n pairs of n-bit

strings (σ0
�,p, σ

1
�,p) for � ∈ [n], p ∈ [2 · �] such that ∀�, p : σ0

�,p ⊕ σ1
�,p = σ.

It generate commitments to all 2(2 · �) · n + 1 selected strings using the
statistically binding commitment scheme. The commitments are denoted

372 A. R. Choudhuri et al.

by α, {αb
�,p}b∈{0,1},�∈[n],p∈[2·�]. Send a SUBMIT query of these commit-

ments to Gledger. By our assumption, these will be guaranteed to appear
in every party’s state (at the same position) when |stateC | = iC +Δ. Let
it appear in index i of the state.

2. The committer sends to receiver the commitments along with the index
i of the state that it appears in. The receiver verifies if the commitments
were indeed in the designated index of the state.

3. Prior to each message subsequently sent, the respective party checks if
the size of the state is such that |stateR| < iR + k + Δ (correspondingly
|stateC | < iC + k + Δ for the committer). If not, the party aborts.
For p = 1 to m:
(a) Receiver sends an n-bit challenge string rp = r1,p, . . . , r1n,p to the

committer.
(b) Committer decommits α

r1,p

1,p , . . . , α
rn,p
n,p to σ

r1,p

1,p , . . . , σ
rn,p
n,p .

In the full version of our paper, we describe the simulation-extraction strat-
egy to extract values committed by an adversary in every session of multiple
concurrent executions of the modified preamble described above.

5.2 Protocol for Concurrent Self Composable Secure Computation

We now describe our concurrent secure computation protocol Π in the Gledger-
hybrid model for a general functionality F . Our protocol is, in fact, the same as
the one presented in [17,38,40], except that we use the concurrently extractable
commitment from Sect. 5.1. Indeed, the core ingredient of the compiler in [40]
(which is also used in [17,38]) is a concurrently extractable commitment, and in
particular, it follows from these works that if there exists a concurrent simulator
for the extractable commitment, then the resultant compiled protocol securely
evaluates the function F .

For completeness, we recall the protocol here. The proof of security for our
case follows in essentially an identical fashion to [40] with the main difference
being that our simulator only performs a single ideal world query per session
(while the simulator performs multiple ideal world queries per session in their
work). We discuss other minor differences below.

Building Blocks

Statistical Binding String Commitments. We will use a (2-round) statis-
tically binding string commitment scheme, e.g., a parallel version of Naor’s bit
commitment scheme [54] based on one-way functions. For simplicity of exposi-
tion, however, in the presentation of our results, we will use a non-interactive
perfectly binding string commitment. Let com(·) denote the commitment func-
tion of the string commitment scheme.

Statistical Witness Indistinguishable Arguments. We shall use a statis-
tically witness indistinguishable (SWI) argument 〈Pswi, Vswi〉 for proving mem-
bership in any NP language with perfect completeness and negligible soundness

Founding Secure Computation on Blockchains 373

error. Such a scheme can be constructed by using ω(log k) copies of Blum’s
Hamiltonicity protocol [11] in parallel, with the modification that the prover’s
commitments in the Hamiltonicity protocol are made using a statistically hiding
commitment scheme [42,55].

Semi-Honest Two Party Computation. We will also use a semi-honest two
party computation protocol 〈P sh

1 , P sh
2 〉 that emulates the ideal functionality F

in the stand-alone setting. The existence of such a protocol 〈P sh
1 , P sh

2 〉 follows
from [34,48,59].

Concurrent Non-Malleable Zero Knowledge Argument. Concurrent non-
malleable zero knowledge (CNMZK) considers the setting where a man-in-the-
middle adversary is interacting with several honest provers and honest verifiers
in a concurrent fashion: in the “left” interactions, the adversary acts as verifier
while interacting with honest provers; in the “right” interactions, the adversary
tries to prove some statements to honest verifiers. The goal is to ensure that
such an adversary cannot take “help” from the left interactions in order to
succeed in the right interactions. This intuition can be formalized by requiring
the existence of a machine called the simulator-extractor that generates the view
of the man-in-the-middle adversary and additionally also outputs a witness from
the adversary for each “valid” proof given to the verifiers in the right sessions.

Barak, Prabhakaran and Sahai [8] gave the first construction of a concurrent
non-malleable zero knowledge (CNMZK) argument for every language in NP
with perfect completeness and negligible soundness error. In our construction,
we will use a specific CNMZK protocol, denoted 〈P, V 〉, based on the CNMZK
protocol of Barak et al. [8] to guarantee non-malleability. Specifically, we will
make the following two changes to Barak et al’s protocol: (a) Instead of using
an ω(log n)-round extractable commitment scheme [57], we will use the N -round
extractable commitment scheme 〈C,R〉 (described in the full version). (b) Fur-
ther, we require that the non-malleable commitment scheme being used in the
protocol be public-coin w.r.t. receiver3. We now describe the protocol 〈P, V 〉.

Let P and V denote the prover and the verifier respectively. Let L be an
NP language with a witness relation R. The common input to P and V is a
statement x ∈ L. P additionally has a private input w (witness for x). Protocol
〈P, V 〉 consists of two main phases: (a) the preamble phase, where the verifier
commits to a random secret (say) σ via an execution of 〈C,R〉 with the prover,
and (b) the post-preamble phase, where the prover proves an NP statement. In
more detail, protocol 〈P, V 〉 proceeds as follows.

3 The original NMZK construction only required a public-coin extraction phase inside
the non-malleable commitment scheme. We, however, require that the entire commit-
ment protocol be public-coin. We note that the non-malleable commitment protocol
of [26] only consists of standard perfectly binding commitments and zero knowledge
proof of knowledge. Therefore, we can easily instantiate the DDN construction with
public-coin versions of these primitives such that the resultant protocol is public-
coin.

374 A. R. Choudhuri et al.

Preamble Phase.

1. P and V engage in execution of 〈C,R〉 where V commits to a random string σ.

Post-preamble Phase.

2. P commits to 0 using a statistically-hiding commitment scheme. Let c be
the commitment string. Additionally, P proves the knowledge of a valid
decommitment to c using a statistical zero-knowledge argument of knowledge
(SZKAOK).

3. V now reveals σ and sends the decommitment information relevant to 〈C,R〉
that was executed in step 1.

4. P commits to the witness w using a public-coin non-malleable commitment
scheme.

5. P now proves the following statement to V using SZKAOK:
(a) either the value committed to in step 4 is a valid witness to x (i.e.,

R(x,w) = 1, where w is the committed value), or
(b) the value committed to in step 2 is the trapdoor secret σ.

P uses the witness corresponding to the first part of the statement.

Modified Extractable Commitment Scheme. 〈C ′, R′〉 Due to technical rea-
sons, in our secure computation protocol, we will also use a minor variant,
denoted 〈C ′, R′〉BCA, of the extractable commitment scheme presented in 5.1.
Protocol 〈C ′, R′〉BCA is the same as 〈C,R〉BCA, except that for a given receiver
challenge string, the committer does not “open” the commitments, but instead
simply reveals the appropriate committed values (without revealing the ran-
domness used to create the corresponding commitments). More specifically, in
protocol 〈C ′, R′〉BCA, on receiving a challenge string vj = v1,j , . . . , v�,j from the
receiver, the committer uses the following strategy: for every i ∈ [�], if vi,j = 0,
C ′ sends α0

i,j , otherwise it sends α1
i,j to R′. Note that C ′ does not reveal the

decommitment values associated with the revealed shares.
When we use 〈C ′, R′〉BCA in our main construction, we will require the com-

mitter C ′ to prove the “correctness” of the values (i.e., the secret shares) it
reveals in the last step of the commitment protocol. In fact, due to technical
reasons, we will also require the committer to prove that the commitments that
it sent in the first step are “well-formed”.

We remark that the extraction proof for the simulation-extraction procedure
also holds for the 〈C ′, R′〉BCA commitment scheme.

Protocol Description Notation. Let com(·) denote the commitment function
of a non-interactive perfectly binding commitment scheme. Let 〈C,R〉BCA denote
the N -round extractable commitment scheme and 〈C ′, R′〉BCA be its modified
version as described above. For the description, we drop the subscript and refer to
them as 〈C,R〉 and 〈C ′, R′〉 respectively. Let 〈P, V 〉 denote the modified version
of the CNMZK argument of Barak et al. [8]. Further, let 〈Pswi, Vswi〉 denote a
SWI argument and let 〈P sh

1 , P sh
2 〉 denote a semi-honest two party computation

Founding Secure Computation on Blockchains 375

protocol 〈P sh
1 , P sh

2 〉 that securely computes F in the stand-alone setting as per
the standard definition of secure computation.

Let P1 and P2 be two parties with inputs x1 and x2. Let n be the security
parameter. The protocol proceeds as follows.

Protocol BCA-CONC

I. Trapdoor Creation Phase.
1. P1 ⇒ P2 : P1 creates a commitment Com1 = com(0) to bit 0 and sends

Com1 to P2. P1 and P2 now engage in the execution of 〈P, V 〉 where P1

proves that Com1 is a commitment to 0.
2. P2 ⇒ P1 : P2 now acts symmetrically. That is, it creates a commitment

Com2 = com(0) to bit 0 and sends Com2 to P1. P2 and P1 now engage
in the execution of 〈P, V 〉 where P2 proves that Com2 is a commitment
to 0.

Informally speaking, the purpose of this phase is to aid the simulator in
obtaining a “trapdoor” to be used during the simulation of the protocol.

II. Input Commitment Phase.In this phase, the parties commit to their
inputs and random coins (to be used in the next phase) via the commitment
protocol 〈C ′, R′〉.
1. P1 ⇒ P2 : P1 first samples a random string r1 (of appropriate length, to

be used as P1’s randomness in the execution of 〈P sh
1 , P sh

2 〉 in Phase III)
and engages in an execution of 〈C ′, R′〉 (denoted as 〈C ′, R′〉1→2) with
P2, where P1 commits to x1‖r1. Next, P1 and P2 engage in an execution
of 〈Pswi, Vswi〉 where P1 proves the following statement to P2: (a) either
there exist values x̂1, r̂1 such that the commitment protocol 〈C ′, R′〉1→2

is valid with respect to the value x̂1‖r̂1, or (b) Com1 is a commitment
to bit 1.

2. P2 ⇒ P1 : P2 now acts symmetrically. Let r2 (analogous to r1 chosen by
P1) be the random string chosen by P2 (to be used in the next phase).

Informally speaking, the purpose of this phase is aid the simulator in
extracting the adversary’s input and randomness.

III. Secure Computation Phase.In this phase, P1 and P2 engage in an
execution of 〈P sh

1 , P sh
2 〉 where P1 plays the role of P sh

1 , while P2 plays the role
of P sh

2 . Since 〈P sh
1 , P sh

2 〉 is secure only against semi-honest adversaries, we
first enforce that the coins of each party are truly random, and then execute
〈P sh

1 , P sh
2 〉, where with every protocol message, a party gives a proof using

〈Pswi, Vswi〉 of its honest behavior “so far” in the protocol. We now describe
the steps in this phase.

1. P1 ↔ P2 : P1 samples a random string r′
2 (of appropriate length) and

sends it to P2. Similarly, P2 samples a random string r′
1 and sends it to

P1. Let r′′
1 = r1 ⊕ r′

1 and r′′
2 = r2 ⊕ r′

2. Now, r′′
1 and r′′

2 are the random
coins that P1 and P2 will use during the execution of 〈P sh

1 , P sh
2 〉.

376 A. R. Choudhuri et al.

2. Let t be the number of rounds in 〈P sh
1 , P sh

2 〉, where one round consists
of a message from P sh

1 followed by a reply from P sh
2 . Let transcript T1,j

(resp., T2,j) be defined to contain all the messages exchanged between
P sh
1 and P sh

2 before the point P sh
1 (resp., P sh

2) is supposed to send a
message in round j. For j = 1, . . . , t:
(a) P1 ⇒ P2 : Compute β1,j = P sh

1 (T1,j , x1, r
′′
1) and send it to P2. P1

and P2 now engage in an execution of 〈Pswi, Vswi〉, where P1 proves
the following statement:
i. either there exist values x̂1, r̂1 such that (a) the commitment

protocol 〈C ′, R′〉1→2 is valid with respect to the value x̂1‖r̂1,
and (b) β1,j = P sh

1 (T1,j , x̂1, r̂1 ⊕ r′
1)

ii. or, Com1 is a commitment to bit 1.
(b) P2 ⇒ P1 : P2 now acts symmetrically.

Proof of Security. Our proof of security follows in almost an identical fashion
to [17,38,40]. The main difference is that due to the property of our concurrent
extractor (discussed in the full version), our simulator only needs to make one
ideal world query per session (as opposed to multiple ideal world queries). Indeed,
this is why we achieve standard concurrent security, while [17,38,40] achieve
security in the so-called multiple-ideal-query model.

Our indistinguishability hybrids also follow in the same manner as in [17,38,
40]. There is one minor difference that we highlight. The hybrids of [17,38,40]
maintain a “soundness invariant”, where roughly speaking, it is guaranteed that
whenever an honest party changes its input in any sub-protocol used within
the secure computation protocol, the value committed by the adversary in the
non-malleable commitment (inside the CNMZK) does not change, except with
negligible probability. In some hybrids, this property is argued via extraction
from the non-malleable commitment.

In our setting, we have to be careful with such an extraction since a
blockchain-active adversary may try to keep state using Gledger. However, the
key point is that for such a soundness argument, the reduction can use a locally
initialized Gledger that it controls (and can therefore modify arbitrarily). This
follows from the fact that we do not care about the view of an adversary in such
a reduction to be indistinguishable to a distinguisher that has access to Gledger.
In fact, it will trivially be distinguishable. But since a locally initialized Gledger

is indistinguishable to the adversary that is simply allowed to interact using the
given interface (i.e. efficiently simulatable), the adversary’s behavior does not
change. Using this idea, we can perform extraction as in the plain model.

Acknowledgments. The second author’s research was supported in part by a grant
from Northrop Grumman, a gift from DOS Networks, and, a Cylab seed funding award.
The first and third authors’ research was supported in part by a DARPA/ARL Safeware
Grant W911NF-15-C-0213, and a subaward from NSF CNS-1414023.

Founding Secure Computation on Blockchains 377

References

1. Agrawal, S., Goyal, V., Jain, A., Prabhakaran, M., Sahai, A.: New impossibility
results for concurrent composition and a non-interactive completeness theorem for
secure computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 443–460. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 26

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, 18–21 May, pp. 443–458 (2014)

3. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros gene-
sis: composable proof-of-stake blockchains with dynamic availability. Cryptology
ePrint Archive, Report 2018/378 (2018). https://eprint.iacr.org/2018/378

4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 11

5. Badrinarayanan, S., Khurana, D., Ostrovsky, R., Visconti, I.: Unconditional UC-
secure computation with (stronger-malicious) PUFs. In: Coron, J.-S., Nielsen, J.B.
(eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 382–411. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 14

6. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th FOCS, 17–19 October, pp. 186–195.
IEEE Computer Society Press, Rome (2004)

7. Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction. In:
34th ACM STOC, 19–21 May, pp. 484–493. ACM Press, Montréal (2002)

8. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: 47th FOCS, 21–24 October, pp. 345–354. IEEE Computer Society Press, Berke-
ley (2006)

9. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments
based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 280–305. Springer, Heidelberg (1997). https://doi.org/10.1007/3-
540-69053-0 20

10. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

11. Blum, M.: How to prove a theorem so no one else can claim it. In: International
Congress of Mathematicians, pp. 1444–1451 (1987)

12. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable
functions in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 51–70. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 4

13. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptol. 19(2),
135–167 (2006)

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, 14–17 October, pp. 136–145. IEEE Computer Society
Press, Las Vegas (2001)

15. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

https://doi.org/10.1007/978-3-642-32009-5_26
https://doi.org/10.1007/978-3-642-32009-5_26
https://eprint.iacr.org/2018/378
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-56620-7_14
https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/978-3-540-70936-7_4

378 A. R. Choudhuri et al.

16. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

17. Canetti, R., Goyal, V., Jain, A.: Concurrent secure computation with optimal
query complexity. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part
II. LNCS, vol. 9216, pp. 43–62. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 3

18. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 14, 3–7 November, pp.
597–608. ACM Press, Scottsdale (2014)

19. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-39200-9 5

20. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: 51st FOCS, 23–26 October, pp. 541–
550. IEEE Computer Society Press, Las Vegas (2010)

21. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, 19–21 May, pp.
494–503. ACM Press, Montréal (2002)

22. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78967-3 31

23. Choudhuri, A.R., Goyal, V., Jain, A.: Founding secure computation on blockchains.
Cryptology ePrint Archive, Report 2019/253 (2019). https://eprint.iacr.org/2019/
253

24. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair
world: fair multiparty computation from public bulletin boards. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17, October 31–2 November,
pp. 719–728. ACM Press, Dallas (2017)

25. Dachman-Soled, D., Fleischhacker, N., Katz, J., Lysyanskaya, A., Schröder, D.:
Feasibility and infeasibility of secure computation with malicious PUFs. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 405–420.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 23

26. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, 6–8 May, pp. 542–552. ACM Press, New Orleans (1991)

27. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC,
23–26 May, pp. 409–418. ACM Press, Dallas (1998)

28. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd ACM STOC, 14–16 May, pp. 416–426. ACM Press, Baltimore (1990)

29. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

30. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-662-48000-7_3
https://doi.org/10.1007/978-3-662-48000-7_3
https://doi.org/10.1007/3-540-39200-9_5
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-540-78967-3_31
https://eprint.iacr.org/2019/253
https://eprint.iacr.org/2019/253
https://doi.org/10.1007/978-3-662-44381-1_23
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

Founding Secure Computation on Blockchains 379

31. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of
variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 10

32. Garg, S., Kumarasubramanian, A., Ostrovsky, R., Visconti, I.: Impossibility results
for static input secure computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 424–442. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 25

33. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996)

34. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, 25–27 May, pp. 218–229. ACM Press, New York City (1987)

35. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Proceedings of the 17th Annual ACM Sym-
posium on Theory of Computing, 6–8 May 1985, Providence, Rhode Island, USA,
pp. 291–304 (1985)

36. Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using
blockchains. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677,
pp. 529–561. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-
2 18

37. Goyal, V.: Positive results for concurrently secure computation in the plain model.
In: 53rd FOCS, 20–23 October, pp. 41–50. IEEE Computer Society Press, New
Brunswick (2012)

38. Goyal, V., Gupta, D., Jain, A.: What information is leaked under concurrent com-
position? In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 220–238. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40084-1 13

39. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 19

40. Goyal, V., Jain, A., Ostrovsky, R.: Password-authenticated session-key generation
on the internet in the plain model. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 277–294. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 15

41. Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently
composable secure computation via a robust extraction lemma. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 260–289. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 12

42. Haitner, I., Horvitz, O., Katz, J., Koo, C.-Y., Morselli, R., Shaltiel, R.: Reducing
complexity assumptions for statistically-hiding commitment. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 58–77. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 4

43. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in
the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith,
A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53641-4 15

44. Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent general composition of
secure protocols in the timing model. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM
STOC, 22–24 May, pp. 644–653. ACM Press, Baltimore (2005)

https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-642-32009-5_25
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-642-40084-1_13
https://doi.org/10.1007/978-3-642-40084-1_13
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-14623-7_15
https://doi.org/10.1007/978-3-642-14623-7_15
https://doi.org/10.1007/978-3-662-46494-6_12
https://doi.org/10.1007/11426639_4
https://doi.org/10.1007/978-3-662-53641-4_15

380 A. R. Choudhuri et al.

45. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 7

46. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 12

47. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 25

48. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, 2–4
May, pp. 20–31. ACM Press, Chicago (1988)

49. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: STOC, pp. 560–569 (2001)

50. Lindell, Y.: General composition and universal composability in secure multi-party
computation. In: FOCS, pp. 394–403 (2003)

51. Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 12

52. Lindell, Y.: Lower bounds and impossibility results for concurrent self composition.
J. Cryptol. 21(2), 200–249 (2008)

53. Micali, S., Pass, R.: Local zero knowledge. In: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May 2006,
pp. 306–315 (2006). https://doi.org/10.1145/1132516.1132561

54. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991)

55. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge argu-
ments for NP using any one-way permutation. J. Cryptol. 11(2), 87–108 (1998)

56. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
II. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 22

57. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with loga-
rithmic round-complexity. In: 43rd FOCS, 16–19 November, pp. 366–375. IEEE
Computer Society Press, Vancouver (2002)

58. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 29

59. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, 27–29 October, pp. 162–167, IEEE Computer Society Press, Toronto (1986)

https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-540-24638-1_12
https://doi.org/10.1007/978-3-540-24638-1_12
https://doi.org/10.1145/1132516.1132561
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/3-540-48910-X_29

	Founding Secure Computation on Blockchains
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work
	1.4 Organization
	1.5 Full Version

	2 Blockchain Model
	3 Definitions and Preliminaries
	3.1 Zero Knowledge in the Gledger-hybrid Model
	3.2 Concurrently Secure Computation in the Gledger-hybrid Model

	4 Black-Box Zero Knowledge
	4.1 Our Protocol

	5 Concurrent Self Composable Secure Computation
	5.1 Concurrently Extractable Commitment
	5.2 Protocol for Concurrent Self Composable Secure Computation

	References

