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Preface

Eurocrypt 2019, the 38th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Darmstadt, Germany, during May
19–23, 2019. The conference was sponsored by the International Association for
Cryptologic Research (IACR). Marc Fischlin (Technische Universität Darmstadt,
Germany) was responsible for the local organization. He was supported by a local
organizing team consisting of Andrea Püchner, Felix Günther, Christian Janson, and
the Cryptoplexity Group. We are deeply indebted to them for their support and smooth
collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. The invited
talks and the talks presenting the best paper/best young researcher spanned over both
tracks.

We received a total of 327 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 58 Program Committee
members. Committee members were allowed to submit at most one paper, or two if
both were co-authored. Submissions by committee members were held to a higher
standard than normal submissions. The reviewing process included a rebuttal round for
all submissions. After extensive deliberations the Program Committee accepted 76
papers. The revised versions of these papers are included in these three volume pro-
ceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the paper “Quantum
Lightning Never Strikes the Same State Twice” by Mark Zhandry. The runner-up was
the paper “Compact Adaptively Secure ABE for NC1 from k Lin” by Lucas Kowalczyk
and Hoeteck Wee. The Best Young Researcher Award went to the paper “Efficient
Verifiable Delay Functions” by Benjamin Wesolowski. All three papers received
invitations for the Journal of Cryptology.

The program also included an IACR Distinguished Lecture by Cynthia Dwork,
titled “Differential Privacy and the People’s Data,” and invited talks by Daniele
Micciancio, titled “Fully Homomorphic Encryption from the Ground Up,” and
François-Xavier Standaert, titled “Toward an Open Approach to Secure Cryptographic
Implementations.”

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions can be very disappointing, especially rejections of very
good papers that did not find a slot in the sparse number of accepted papers. We
sincerely hope that these works eventually get the attention they deserve.

We are also indebted to the members of the Program Committee and all external
reviewers for their voluntary work. The committee’s work is quite a workload. It has
been an honor to work with everyone. The committee’s work was tremendously
simplified by Shai Halevi’s submission software and his support, including running the
service on IACR servers.



Finally, we thank everyone else—speakers, session chairs, and rump-session
chairs—for their contribution to the program of Eurocrypt 2019. We would also like to
thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2019 Yuval Ishai
Vincent Rijmen

vi Preface



Eurocrypt 2019

The 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research

May 19–23, 2019
Darmstadt, Germany

General Chair

Marc Fischlin Technische Universität Darmstadt, Germany

Program Co-chairs

Yuval Ishai Technion, Israel
Vincent Rijmen KU Leuven, Belgium and University of Bergen,

Norway

Program Committee

Michel Abdalla CNRS and ENS Paris, France
Adi Akavia University of Haifa, Israel
Martin Albrecht Royal Holloway, UK
Elena Andreeva KU Leuven, Belgium
Paulo S. L. M. Barreto University of Washington Tacoma, USA
Amos Beimel Ben-Gurion University, Israel
Alex Biryukov University of Luxembourg, Luxembourg
Nir Bitansky Tel Aviv University, Israel
Andrej Bogdanov Chinese University of Hong Kong, SAR China
Christina Boura University of Versailles and Inria, France
Xavier Boyen QUT, Australia
David Cash University of Chicago, USA
Melissa Chase MSR Redmond, USA
Kai-Min Chung Academia Sinica, Taiwan
Dana Dachman-Soled University of Maryland, USA
Ivan Damgård Aarhus University, Denmark
Itai Dinur Ben-Gurion University, Israel
Stefan Dziembowski University of Warsaw, Poland
Serge Fehr Centrum Wiskunde & Informatica (CWI) and Leiden

University, The Netherlands
Juan A. Garay Texas A&M University, USA
Sanjam Garg UC Berkeley, USA



Christina Garman Purdue University, USA
Siyao Guo New York University Shanghai, China
Iftach Haitner Tel Aviv University, Israel
Shai Halevi IBM Research, USA
Brett Hemenway University of Pennsylvania, USA
Justin Holmgren Princeton University, USA
Stanislaw Jarecki UC Irvine, USA
Dakshita Khurana Microsoft Research New England, USA
Ilan Komargodski Cornell Tech, USA
Gregor Leander Ruhr-Universität Bochum, Germany
Huijia Lin UCSB, USA
Atul Luykx Visa Research, USA
Mohammad Mahmoody University of Virginia, USA
Bart Mennink Radboud University, The Netherlands
Tal Moran IDC Herzliya, Israel
Svetla Nikova KU Leuven, Belgium
Claudio Orlandi Aarhus University, Denmark
Rafail Ostrovsky UCLA, USA
Rafael Pass Cornell University and Cornell Tech, USA
Krzysztof Pietrzak IST Austria, Austria
Bart Preneel KU Leuven, Belgium
Christian Rechberger TU Graz, Austria
Leonid Reyzin Boston University, USA
Guy N. Rothblum Weizmann Institute, Israel
Amit Sahai UCLA, USA
Christian Schaffner QuSoft and University of Amsterdam, The Netherlands
Gil Segev Hebrew University, Israel
abhi shelat Northeastern University, USA
Martijn Stam Simula UiB, Norway
Marc Stevens CWI Amsterdam, The Netherlands
Stefano Tessaro UCSB, USA
Mehdi Tibouchi NTT, Japan
Frederik Vercauteren KU Leuven, Belgium
Brent Waters UT Austin, USA
Mor Weiss Northeastern University, USA
David J. Wu University of Virginia, USA
Vassilis Zikas University of Edinburgh, UK

Additional Reviewers

Divesh Aggarwal
Shashank Agrawal
Gorjan Alagic
Abdelrahaman Aly
Andris Ambainis

Prabhanjan Ananth
Gilad Asharov
Tomer Ashur
Arash Atashpendar
Benedikt Auerbach

Christian Badertscher
Saikrishna

Badrinarayanan
Shi Bai
Josep Balasch

viii Eurocrypt 2019



Marshall Ball
James Bartusek
Balthazar Bauer
Carsten Baum
Christof Beierle
Fabrice Benhamouda
Iddo Bentov
Mario Berta
Ward Beullens
Ritam Bhaumik
Jean-François Biasse
Koen de Boer
Dan Boneh
Xavier Bonnetain
Charlotte Bonte
Carl Bootland
Jonathan Bootle
Joppe Bos
Adam Bouland
Florian Bourse
Benedikt Bünz
Wouter Castryck
Siu On Chan
Nishanth Chandran
Eshan Chattopadhyay
Yi-Hsiu Chen
Yilei Chen
Yu Long Chen
Jung-Hee Cheon
Mahdi Cheraghchi
Celine Chevalier
Nai-Hui Chia
Ilaria Chillotti
Chongwon Cho
Wutichai Chongchitmate
Michele Ciampi
Ran Cohen
Sandro Coretti
Ana Costache
Jan Czajkowski
Yuanxi Dai
Deepesh Data
Bernardo David
Alex Davidson
Thomas Debris-Alazard
Thomas De Cnudde

Thomas Decru
Luca De Feo
Akshay Degwekar
Cyprien Delpech de Saint
Guilhem
Ioannis Demertzis
Ronald de Wolf
Giovanni Di Crescenzo
Christoph Dobraunig
Jack Doerner
Javad Doliskani
Leo Ducas
Yfke Dulek
Nico Döttling
Aner Ben Efraim
Maria Eichlseder
Naomi Ephraim
Daniel Escudero
Saba Eskandarian
Thomas Espitau
Pooya Farshim
Prastudy Fauzi
Rex Fernando
Houda Ferradi
Dario Fiore
Ben Fisch
Mathias Fitzi
Cody Freitag
Georg Fuchsbauer
Benjamin Fuller
Tommaso Gagliardoni
Steven Galbraith
Nicolas Gama
Chaya Ganesh
Sumegha Garg
Romain Gay
Peter Gazi
Craig Gentry
Marios Georgiou
Benedikt Gierlichs
Huijing Gong
Rishab Goyal
Lorenzo Grassi
Hannes Gross
Jens Groth
Paul Grubbs

Divya Gupta
Felix Günther
Helene Haagh
Björn Haase
Mohammad Hajiabadi
Carmit Hazay
Pavel Hubáček
Andreas Huelsing
Ilia Iliashenko
Muhammad Ishaq
Joseph Jaeger
Eli Jaffe
Aayush Jain
Abhishek Jain
Stacey Jeffery
Zhengfeng Ji
Yael Kalai
Daniel Kales
Chethan Kamath
Nathan Keller
Eike Kiltz
Miran Kim
Sam Kim
Taechan Kim
Karen Klein
Yash Kondi
Venkata Koppula
Mukul Kulkarni
Ashutosh Kumar
Ranjit Kumaresan
Rio LaVigne
Virginie Lallemand
Esteban Landerreche
Brandon Langenberg
Douglass Lee
Eysa Lee
François Le Gall
Chaoyun Li
Wei-Kai Lin
Qipeng Liu
Tianren Liu
Alex Lombardi
Julian Loss
Yun Lu
Vadim Lyubashevsky
Fermi Ma

Eurocrypt 2019 ix



Saeed Mahloujifar
Christian Majenz
Rusydi Makarim
Nikolaos Makriyannis
Nathan Manohar
Antonio Marcedone
Daniel Masny
Alexander May
Noam Mazor
Willi Meier
Rebekah Mercer
David Mestel
Peihan Miao
Brice Minaud
Matthias Minihold
Konstantinos Mitropoulos
Tarik Moataz
Hart Montgomery
Andrew Morgan
Pratyay Mukherjee
Luka Music
Michael Naehrig
Gregory Neven
Phong Nguyen
Jesper Buus Nielsen
Ryo Nishimaki
Daniel Noble
Adam O’Neill
Maciej Obremski
Sabine Oechsner
Michele Orrù
Emmanuela Orsini
Daniel Ospina
Giorgos Panagiotakos
Omer Paneth
Lorenz Panny
Anat Paskin-Cherniavsky
Alain Passelègue
Kenny Paterson
Chris Peikert
Geovandro Pereira
Léo Perrin
Edoardo Persichetti
Naty Peter

Rachel Player
Oxana Poburinnaya
Yuriy Polyakov
Antigoni Polychroniadou
Eamonn Postlethwaite
Willy Quach
Ahmadreza Rahimi
Sebastian Ramacher
Adrián Ranea
Peter Rasmussen
Shahram Rasoolzadeh
Ling Ren
Joao Ribeiro
Silas Richelson
Thomas Ricosset
Tom Ristenpart
Mike Rosulek
Dragos Rotaru
Yann Rotella
Lior Rotem
Yannis Rouselakis
Arnab Roy
Louis Salvail
Simona Samardziska
Or Sattath
Guillaume Scerri
John Schanck
Peter Scholl
André Schrottenloher
Sruthi Sekar
Srinath Setty
Brian Shaft
Ido Shahaf
Victor Shoup
Jad Silbak
Mark Simkin
Shashank Singh
Maciej Skórski
Caleb Smith
Fang Song
Pratik Soni
Katerina Sotiraki
Florian Speelman
Akshayaram Srinivasan

Uri Stemmer
Noah

Stephens-Davidowitz
Alan Szepieniec
Gelo Noel Tabia
Aishwarya

Thiruvengadam
Sergei Tikhomirov
Rotem Tsabary
Daniel Tschudy
Yiannis Tselekounis
Aleksei Udovenko
Dominique Unruh
Cédric Van Rompay
Prashant Vasudevan
Muthu

Venkitasubramaniam
Daniele Venturi
Benoît Viguier
Fernando Virdia
Ivan Visconti
Giuseppe Vitto
Petros Wallden
Alexandre Wallet
Qingju Wang
Bogdan Warinschi
Gaven Watson
Hoeteck Wee
Friedrich Wiemer
Tim Wood
Keita Xagawa
Sophia Yakoubov
Takashi Yamakawa
Arkady Yerukhimovich
Eylon Yogev
Nengkun Yu
Yu Yu
Aaram Yun
Thomas Zacharias
Greg Zaverucha
Liu Zeyu
Mark Zhandry
Chen-Da Liu Zhang

x Eurocrypt 2019



Abstracts of Invited Talks



Differential Privacy and the People’s Data

IACR DISTINGUISHED LECTURE

Cynthia Dwork1

Harvard University
dwork@seas.harvard.edu

Abstract. Differential Privacy will be the confidentiality protection method
of the 2020 US Decennial Census. We explore the technical and social chal-
lenges to be faced as the technology moves from the realm of information
specialists to the large community of consumers of census data.

Differential Privacy is a definition of privacy tailored to the statistical anal-
ysis of large datasets. Roughly speaking, differential privacy ensures that any-
thing learnable about an individual could be learned independent of whether the
individual opts in or opts out of the data set under analysis. The term has come
to denote a field of study, inspired by cryptography and guided by theoretical
lower bounds and impossibility results, comprising algorithms, complexity
results, sample complexity, definitional relaxations, and uses of differential
privacy when privacy is not itself a concern.

From its inception, a motivating scenario for differential privacy has been the
US Census: data of the people, analyzed for the benefit of the people, to allocate
the people’s resources (hundreds of billions of dollars), with a legal mandate for
privacy. Over the past 4–5 years, differential privacy has been adopted in a
number of industrial settings by Google, Microsoft, Uber, and, with the most
fanfare, by Apple. In 2020 it will be the confidentiality protection method for the
US Decennial Census.

Census data are used throughout government and in thousands of research
studies every year. This mainstreaming of differential privacy, the transition
from the realm of technically sophisticated information specialists and analysts
into much broader use, presents enormous technical and social challenges. The
Fundamental Theorem of Information Reconstruction tells us that overly
accurate estimates of too many statistics completely destroys privacy. Differ-
ential privacy provides a measure of privacy loss that permits the tracking and
control of cumulative privacy loss as data are analyzed and re-analyzed. But
provably no method can permit the data to be explored without bound. How will
the privacy loss “budget” be allocated? Who will enforce limits?

More pressing for the scientific community are questions of how the mul-
titudes of census data consumers will interact with the data moving forward. The
Decennial Census is simple, and the tabulations can be handled well with
existing technology. In contrast, the annual American Community Survey,
which covers only a few million households yearly, is rich in personal details on
subjects from internet access in the home to employment to ethnicity, rela-
tionships among persons in the home, and fertility. We are not (yet?) able to

1 Supported in part by NSF Grant 1763665 and the Sloan Foundation.



offer differentially private algorithms for every kind of analysis carried out on
these data. Historically, confidentiality has been handled by a combination of
data summaries, restricted use access to the raw data, and the release of
public-use microdata, a form of noisy individual records. Summary statistics are
the bread and butter of differential privacy, but giving even trusted and trust-
worthy researchers access to raw data is problematic, as their published findings
are a vector for privacy loss: think of the researcher as an arbitrary
non-differentially private algorithm that produces outputs in the form of pub-
lished findings. The very choice of statistic to be published is inherently not
privacy-preserving! At the same time, past microdata noising techniques can no
longer be considered to provide adequate privacy, but generating synthetic
public-use microdata while ensuring differential privacy is a computationally
hard problem. Nonetheless, combinations of exciting new techniques give
reason for optimism.

xiv C. Dwork



Towards an Open Approach to Secure
Cryptographic Implementations

François-Xavier Standaert1

UCL Crypto Group, Université Catholique de Louvain, Belgium

Abstract. In this talk, I will discuss how recent advances in side-channel
analysis and leakage-resilience could lead to both stronger security properties
and improved confidence in cryptographic implementations. For this purpose, I
will start by describing how side-channel attacks exploit physical leakages such
as an implementation’s power consumption or electromagnetic radiation. I will
then discuss the definitional challenges that these attacks raise, and argue why
heuristic hardware-level countermeasures are unlikely to solve the problem
convincingly. Based on these premises, and focusing on the symmetric setting,
securing cryptographic implementations can be viewed as a tradeoff between the
design of modes of operation, underlying primitives and countermeasures.

Regarding modes of operation, I will describe a general design strategy for
leakage-resilient authenticated encryption, propose models and assumptions on
which security proofs can be based, and show how this design strategy
encourages so-called leveled implementations, where only a part of the com-
putation needs strong (hence expensive) protections against side-channel
attacks.

Regarding underlying primitives and countermeasures, I will first emphasize
the formal and practically-relevant guarantees that can be obtained thanks to
masking (i.e., secret sharing at the circuit level), and how considering the
implementation of such countermeasures as an algorithmic design goal (e.g., for
block ciphers) can lead to improved performances. I will then describe how
limiting the leakage of the less protected parts in a leveled implementations can
be combined with excellent performances, for instance with respect to the
energy cost.

I will conclude by putting forward the importance of sound evaluation
practices in order to empirically validate (by lack of falsification) the assump-
tions needed both for leakage-resilient modes of operation and countermeasures
like masking, and motivate the need of an open approach for this purpose. That
is, by allowing adversaries and evaluators to know implementation details, we
can expect to enable a better understanding of the fundamentals of physical
security, therefore leading to improved security and efficiency in the long term.

1 The author is a Senior Research Associate of the Belgian Fund for Scientific Research
(FNRS-F.R.S.). This work has been funded in part by the ERC Project 724725.



Fully Homomorphic Encryption
from the Ground Up

Daniele Micciancio

University of California, Mail Code 0404, La Jolla,
San Diego, CA, 92093, USA
daniele@cs.ucsd.edu

http://cseweb.ucsd.edu/*daniele/

Abstract. The development of fully homomorphic encryption (FHE), i.e.,
encryption schemes that allow to perform arbitrary computations on encrypted
data, has been one of the main achievements of theoretical cryptography of the
past 20 years, and probably the single application that brought most attention to
lattice cryptography. While lattice cryptography, and fully homomorphic
encryption in particular, are often regarded as a highly technical topic, essen-
tially all constructions of FHE proposed so far are based on a small number of
rather simple ideas. In this talk, I will try highlight the basic principles that make
FHE possible, using lattices to build a simple private key encryption scheme that
enjoys a small number of elementary, but very useful properties: a simple
decryption algorithm (requiring, essentially, just the computation of a linear
function), a basic form of circular security (i.e., the ability to securely encrypt its
own key), and a very weak form of linear homomorphism (supporting only a
bounded number of addition operations.)

All these properties are easily established using simple linear algebra and
the hardness of the Learning With Errors (LWE) problem or standard worst-case
complexity assumptions on lattices. Then, I will use this scheme (and its abstract
properties) to build in a modular way a tower of increasingly more powerful
encryption schemes supporting a wider range of operations: multiplication by
arbitrary constants, multiplication between ciphertexts, and finally the evalua-
tion of arithmetic circuits of arbitrary, but a-priory bounded depth. The final
result is a leveled1 FHE scheme based on standard lattice problems, i.e., a
scheme supporting the evaluation of arbitrary circuits on encrypted data, as long
as the depth of the circuit is provided at key generation time. Remarkably,
lattices are used only in the construction (and security analysis) of the basic
scheme: all the remaining steps in the construction do not make any direct use of
lattices, and can be expressed in a simple, abstract way, and analyzed using
solely the weakly homomorphic properties of the basic scheme.

Keywords: Lattice-based cryptography � Fully homomorphic encryption �
Circular security � FHE bootstrapping

1 The “leveled” restriction in the final FHE scheme can be lifted using “circular security” assumptions
that have become relatively standard in the FHE literature, but that are still not well understood.
Achieving (non-leveled) FHE from standard lattice assumptions is the main theoretical problem still
open in the area.

https://orcid.org/0000-0003-3323-9985
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Homomorphic Secret Sharing
from Lattices Without FHE

Elette Boyle1(B), Lisa Kohl2, and Peter Scholl3

1 IDC Herzliya, Herzliya, Israel
Elette.Boyle@idc.ac.il

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
Lisa.Kohl@kit.edu

3 Aarhus University, Aarhus, Denmark
Peter.Scholl@cs.au.dk

Abstract. Homomorphic secret sharing (HSS) is an analog of
somewhat- or fully homomorphic encryption (S/FHE) to the setting of
secret sharing, with applications including succinct secure computation,
private manipulation of remote databases, and more. While HSS can
be viewed as a relaxation of S/FHE, the only constructions from lattice-
based assumptions to date build atop specific forms of threshold or multi-
key S/FHE. In this work, we present new techniques directly yielding effi-
cient 2-party HSS for polynomial-size branching programs from a range
of lattice-based encryption schemes, without S/FHE. More concretely,
we avoid the costly key-switching and modulus-reduction steps used in
S/FHE ciphertext multiplication, replacing them with a new distributed
decryption procedure for performing “restricted” multiplications of an
input with a partial computation value. Doing so requires new methods
for handling the blowup of “noise” in ciphertexts in a distributed set-
ting, and leverages several properties of lattice-based encryption schemes
together with new tricks in share conversion.

The resulting schemes support a superpolynomial-size plaintext space
and negligible correctness error, with share sizes comparable to SHE
ciphertexts, but cost of homomorphic multiplication roughly one order
of magnitude faster. Over certain rings, our HSS can further support
some level of packed SIMD homomorphic operations. We demonstrate
the practical efficiency of our schemes within two application settings,
where we compare favorably with current best approaches: 2-server pri-
vate database pattern-match queries, and secure 2-party computation of
low-degree polynomials.
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1 Introduction

Homomorphic secret sharing (HSS) [7] is a form of secret sharing that supports a
compact local evaluation on its shares. HSS can be viewed as the analog of fully
(or somewhat-) homomorphic encryption (S/FHE) [26,38] to the setting of secret
sharing: a relaxation where homomorphic evaluation can be distributed among
two parties who do not interact with each other. Over the past years, there has
been a wave of HSS constructions for rich function classes (e.g., [6,7,9,21,25]) as
well as an expanding range of corresponding applications. HSS suffices for many
scenarios in which S/FHE can be applied (and even some for which it cannot),
including low-communication secure computation [6,7,10], private manipulation
of remote databases [8,9,19,29,40], methods of succinctly generating correlated
randomness [5,6], and more.

One of the appealing features of HSS compared to FHE is that allowing
homomorphic evaluation to be distributed among two parties may constitute a
simpler target to achieve. Indeed, forms of HSS for branching programs have
been built from discrete logarithm type assumptions [7]; in contrast, obtaining
encryption schemes from these structures that support comparable homomor-
phism on ciphertexts seems well beyond reach of current techniques. In regard to
structures from which FHE does exist, the Learning With Errors (LWE) assump-
tion [37] (and in turn its Ring LWE (RLWE) variant [36]) is known to imply
strong versions of HSS [8,11,22].

However, in spite of its potential for comparative simplicity, all HSS construc-
tions based on LWE or RLWE to date remain at least as complex as S/FHE.
In particular, underlying each such HSS scheme is the common approach of
beginning with and building atop some existing construction of FHE—relying
on specific forms of threshold FHE, multi-key FHE, or even FHE-based “spooky
encryption” [2,8,11,22]. In this sense, current lattice-based HSS constructions
serve predominantly as statements of feasibility, and have not been explored as
a competitive alternative for use within applications.

Given the rapidly expanding set of HSS applications, together with the
demonstrated power and success of leveraging lattices as a tool for advanced
cryptography, a natural question is whether this situation can be improved. In
particular, can we construct HSS from LWE and RLWE without (in some sense)
S/FHE?

1.1 Our Results

In this work we consider precisely this question. We present and leverage new
approaches for directly obtaining 2-party HSS schemes from LWE and RLWE,
bypassing the intermediate step of fully (or even somewhat-) homomorphic
encryption (S/FHE).

More concretely, our techniques avoid the costly key-switching and repeated
modulus-reduction steps typically required for homomorphic multiplication of
ciphertexts in existing (R)LWE-based FHE schemes [14,27], and replace them
instead with a new distributed decryption procedure for multiplying an encrypted
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value by a value in secret shared form, resulting in secret shares of the product.
The cost of a homomorphic multiplication thus drops roughly to the cost of a
decryption operation per party. This operation requires a new toolkit of methods
for handling the blowup of “noise” from ciphertexts in a distributed setting, and
leverages properties of lattice-based encryption schemes (such as key-dependent
message security) in new ways.

Our construction takes inspiration from the HSS framework of [7], and
yields a similar result: namely, HSS for the class of polynomial-size branching
programs (capturing NC1 and logspace computations). However, as discussed
below, our construction offers several strong advantages over existing DDH-based
schemes [6,7,10,21], including negligible correctness error and superpolynomial-
size plaintext space, as well as over S/FHE-based solutions for the same program
class [2,22], including cheaper multiplication, simpler setup, and no noise growth.
We showcase these advantages via two sample applications: (1) Generating corre-
lated randomness for secure 2-party computation in the prepocessing model, and
(2) 2-server Private Information Retrieval for various private database queries
such as conjunctive keyword search and pattern matching.

We now proceed to describe our main results.

HSS from Nearly Linear Decryption. Our core approach leverages the
“nearly linear” structure of ciphertext decryption common to a range of lattice-
based encryption schemes:

Definition 1 (Informal - Nearly Linear Decryption). Let R = Z[X]/
(XN +1) for N a power of 2. Let p, q ∈ N be moduli with p|q and 1 � p � q. We
say that an encryption scheme supports nearly linear decryption for messages
m ∈ Rp := R/pR if the secret key is s ∈ Rd

q , and for any ciphertext c ∈ Rd
q

encrypting m,
〈s, c〉 = (q/p) · m + e mod q

for some “small” noise e ∈ R.

This captures, for example, the LWE-based schemes of Regev [37] and
Applebaum et al. [1] (with N = 1, i.e. R = Z, d = poly(λ)), RLWE-based
schemes of Lyubashevsky-Peikert-Regev [36] and Brakerski-Vaikutanathan [15]
(with N = poly(λ), d = 2), as well as various schemes based on Learning With
Rounding [3] and Module-LWE [34]. For simplicity, we restrict ourselves to the
decryption structure and polynomial rings R of the form specified above; how-
ever, our techniques extend to more general polynomial rings, as well as to
encryption schemes which encode messages in low-order symbols (i.e., for which
〈s, c〉 = p · e + m mod q).

We demonstrate how to exploit the near-linearity of decryption to support
sequences of homomorphic additions over R, as well as homomorphic “restricted”
multiplications over R of an evaluated value with an input. Ultimately, our
scheme supports any sequence of these two homomorphic operations over Rr

(for r ∈ N of choice) with negligible correctness error, subject to the require-
ment that the magnitude of computation values remain bounded by some chosen
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value B with r ≤ B � p (where the required size of p, and thus q, must grow with
this bound). We remark that taking magnitude bound B = 2 suffices already to
evaluate the class of polynomial-size branching programs with polynomial over-
head [7]. Since efficiency is the primary focus of this work, however, we state
our results as a function of these two operations directly, and applications can
further exploit the ability to support large message spaces.

We achieve the stronger “public-key” variant of HSS [7], where the secret-
sharing process can be split into a one-time setup phase (resulting in a public key
pk and evaluation shares (ek0, ek1)) together with a separate “input encryption”
phase, wherein any user can use pk to load his input xi into secret-shared form
(and where homomorphic evaluation can take place across parties’ inputs). This
variant of HSS facilitates applications of secure multi-party computation.

Theorem 1 (Informal - Main HSS Construction). Given any encryption
scheme with nearly linear decryption (as above) over ring R with parameters
p, q, d ∈ N, as well as magnitude bound B ∈ N for which B � p � q/B, and
output modulus r ≤ B, there exists 2-party public-key HSS for inputs in Rr with
size:

– Public key pk = pk of the encryption scheme, Evaluation keys ekb ∈ Rd−1
q

– HSS shares of each input xi ∈ Rr consist of d ciphertexts.

supporting any polynomial number of the following homomorphic operations over
Rr (subject to the �∞ magnitude bound ‖y‖∞ ≤ B (in R) for all partial compu-
tation values y), with negligible correctness error, and the specified complexities:

– Loading an input into memory (yi ← xi): d decryptions
– Addition of memory values (yk ← yi + yj): 1 addition over Rd

q

– Multiplication of input with memory value (yk ← xi · yj): d decryptions
“Terminal” multiplication (s.t. yk appears in no future mult): 1 decryption

where “decryption” is essentially one inner product over Rd
q .

Asymptotically, the modulus q is of size O(λ + log B) bits, giving a share
size in O(Nd(λ + log B)) for R = Z[X]/(XN + 1). The cost of multiplication is
˜O(Nd) operations in Zq.

Plugging in the “LPR” RLWE-based scheme of [36] (where ciphertexts consist
of d = 2 ring elements), our HSS shares consist of 4 Rq-elements per Rr-element
plaintext, and homomorphic multiplication of an input and memory value in Rr

is dominated by 4 Rq-multiplications (with correctness if the resulting product y
over R maintains ‖y‖∞ ≤ B). For concrete parameters, the resulting HSS shares
will be of comparable size to the analogous SHE-based approach, but will offer
significantly cheaper homomorphic multiplication operations—faster by approx-
imately one order of magnitude. (See “Comparison to SHE-based solutions”
discussion below.)
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We further explore extensions and optimizations to the core construction,
within the following settings:
1. Secret-key HSS: For applications where all secrets in the system originate

from a single party; e.g., the client in 2-server Private Information Retrieval.
2. Degree-2 computations: For the special case of homomorphic evaluation of

degree-2 polynomials (and extension to low-degree polynomials), with appli-
cations to secure computation.

3. SIMD computations: Direct support for homomorphic evaluation of “packed”
single-instruction multiple data (SIMD) parallel computations on data items
encoded as vectors. This has useful application to parallel computations, and
to PIR-type applications, where one wishes to perform several identical eval-
uations on different database items.

Comparison to Existing Approaches. We briefly discuss our resulting HSS
in reference to existing approaches for comparable function classes.

Comparison to Group-Based HSS. Our core construction framework resem-
bles the HSS schemes of Boyle, Gilboa, and Ishai [7] and successors [6,10,21],
which rely on various flavors of discrete logarithm type assumptions in cryp-
tographically hard Abelian groups (e.g., Decisional Diffie Hellman (DDH) or
circular security of ElGamal). We refer to this line as “group-based” HSS.

Despite many algorithmic and heuristic advances, all works in this line are
subject to a common computation barrier: In addition to their upper bounds,
Dinur, Keller, and Klein [21] showed that (barring a breakthrough in discrete log-
arithm techniques1) performing a homomorphic multiplication via this general
approach with plaintext space size B and correctness error δ requires runtime
T = Ω(

√

B/δ). Of particular note, this inherently restricts support to plaintext
spaces of polynomial size B, as well as inverse-polynomial error δ.
– Superpolynomial-size plaintext space. In contrast, our HSS scheme can directly

support operations within superpolynomial plaintext spaces over the ring
Z[X]/(XN + 1), with complexity growing roughly as the logarithm of the
maximum magnitude B. This circumvents blowups associated with artificial
emulation of larger input spaces by breaking input elements into small pieces
(e.g., bits) and operating piecewise. Such blowups manifest even when oper-
ating over small inputs, as encodings of the secret key as a plaintext are
necessary in order to support homomorphism.

– Negligible error. Our HSS also enjoys negligible correctness error. Beyond a
theoretical distinction, this greatly affects efficiency. Even to obtain constant
failure probability in group-based approaches, homomorphic evaluation of S
multiplications requires computation scaling as S3/2 [21], since the error of
each individual multiplication must be pushed down to ∼ δ/S to reach over-
all error δ. The presence (or non-presence) of error may further leak infor-
mation about the secret inputs; this adds layers of complexity and overhead
to HSS-based applications, wherein effects of error must be sanitized before
homomorphically evaluated output shares can be exchanged [6,7,10].

1 Namely, solving the Discrete Logarithm in a Interval problem with interval length
R in time o(

√
R).
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– Cheaper operations. Overall, the resulting lattice-based schemes require
cheaper operations than group-based alternatives, e.g. replacing crypto-
graphic group exponentiations by simple polynomial ring multiplications (effi-
ciently implementable using FFT). Most stark in contrast: the expensive
“share-conversion” steps in group-based approaches—requiring large scales
of repeated group multiplications and pattern matches, and dominating com-
putation costs in homomorphic evaluation—are trivialized given our new
techniques.

Comparison to SHE-based solutions. Two-server HSS can also be constructed
from threshold variants of somewhat or fully homomorphic encryption, by replac-
ing the (interactive) distributed decryption procedure with the non-interactive
“rounding” technique from [22] to give additive shares of the output. Using FHE
this can give HSS for circuits, although the computational overhead either grows
with the depth of the circuit [14] or is independent of the circuit size but very
large due to a costly bootstrapping step.2

SHE is reasonably practical for evaluating low-depth circuits, where the dom-
inant cost is homomorphic multiplication. There are several different approaches
to SHE multiplication, all of which have various complications due to the need
for a “key-switching” procedure [14,27] to avoid ciphertext expansion, as well
as either modulus switching [14] or scale-invariant operations [13,24] to reduce
noise growth.3

Our approach avoids these complications, leading to a conceptually simpler
and more efficient scheme with several advantages over SHE-based HSS.

– Cheaper multiplication. Our homomorphic multiplication procedure is much
simpler and cheaper than in SHE, since we avoid costly ciphertext expan-
sion or key/modulus-switching procedures which are inherent in most SHE
schemes. Concretely, our multiplication procedure has roughly the cost of 2
decryption operations in SHE, which we estimate improves our performance
by around an order of magnitude based on recent implementation results [31].
While our supported multiplications are of a “restricted” form, requiring one
of the multiplicands to be an original input value, this has a mild effect within
low-degree computations, which are anyway the competitive regime for SHE.

– Simpler setup. Since we do not need key-switching, we also avoid the cost
of setting up the key-switching material in a distributed manner, which is a
source of additional complexity in threshold FHE [2] as it requires generating
several “quasi-encryptions” of s2, where s is the secret-shared private key.

– No noise growth. Unlike FHE, ciphertexts in our homomorphic evaluation
procedure do not incur noise growth, which increases ciphertext size and

2 Although the cost of bootstrapping has fallen dramatically in recent years [16,17,
23,32], the efficiency is still orders of magnitude worse than low-depth somewhat
homomorphic encryption using SIMD operations.

3 So-called “third generation” SHE schemes based on GSW [28] have simpler homo-
morphic multiplication, but much larger ciphertexts that grow with Ω(N log2 q)
instead of O(N log q), for (R)LWE dimension N and modulus q.
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limits the number of homomorphic operations. Instead, we are only limited
in that the parameters must be chosen based on an upper bound on the
maximum size of any plaintext value (without modular reduction) during the
computation.

Sample applications. To illustrate the potential of our techniques, we consider
two example use-cases of HSS for branching programs. Firstly, we look at secure
two-party computation of low-degree polynomials, and its application to gen-
erating various forms of correlated randomness. Many MPC protocols use pre-
processed, correlated randomness such as Beaver multiplication triples, matrix
multiplication triples or truth-table correlations to achieve a very fast “online”
protocol. Protocols such as SPDZ [20] often use SHE to generate this random-
ness, whereas using HSS (considered in [6]) has potential to greatly improve
computational costs, and reduce the round complexity to just a single round,
while paying a slight overhead with larger ciphertexts. Secondly, we look at 2-
server Private Information Retrieval (PIR), which allows a client to perform
private queries to a public database. Our HSS for branching programs allows a
much richer set of queries than previous, practical schemes based on one-way
functions [40], and in this case we can reduce the share size compared with using
SHE, as well as the computation.

1.2 Technical Overview

Recall our HSS is with respect to an encryption scheme (Gen,Enc,Dec) with
nearly linear decryption over ring Z[X]/(XN + 1) (as discussed above), with
moduli r ≤ B � p � q/B and parameter d. Ciphertexts and the secret key of
the encryption scheme are elements c, s ∈ Rd

q with s = (1, ŝ) ∈ Rq × Rd−1
q , the

plaintext space of encryption is Rp, and we will support homomorphic operations
over Rr for computations for which all intermediate computation values y (as
performed over R) remain bounded by ‖y‖∞ ≤ B. (We will denote y ∈ [R]B to
highlight that arithmetic is not performed modulo B.)

The core of our HSS resembles the DDH-based framework of [7], translated
to the setting of lattice-based encryption. The HSS public key pk is precisely the
public key of the encryption scheme.4 The evaluation keys (ek0, ek1) ∈ Rd

q × Rd
q

are additive secret shares of the key s ∈ Rd
q over Rq.5 Homomorphic evaluation

maintains the invariant that for every intermediate computation value y ∈ [R]B,
Party 0 and Party 1 will hold additive shares (ty

0, ty
1) ∈ Rd

q × Rd
q of the product

y ·s ∈ Rd
q over Rq. This directly admits homomorphic addition, by locally adding

the corresponding secret shares.
As usual, the challenge comes in addressing multiplication. We support homo-

morphic “restricted” multiplications, between any intermediate computation

4 Note that nearly linear decryption generically implies existence of a public-key
encryption procedure.

5 This can be decreased to (d − 1) Rq-elements communicated, as s1 = 1 ∈ Rq.
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value y and input value x. To aid this operation, the HSS sharing of input
x ∈ [R]B will be a (componentwise) encryption of x · s: i.e., d ciphertexts
Cx = (cx·s1 , . . . , cx·sd) ∈ (Rd

q)d. Interestingly, these encryptions can be gen-
erated given just pk of the encryption, leveraging a weak form of key-dependent
message (KDM) security implied by nearly linear decryption—see “KDM Secu-
rity” discussion below. Combining the HSS encoding Cx of x with the secret
shares (ty

0, ty
1) for y, nearly linear decryption then gives us:

for every i ∈ [d] : 〈ty
0, cx·si〉+〈ty

1, cx·si〉 = 〈y ·s, cx·si〉 ≈ (q/p) ·xy ·si over Rq.

Collectively, this almost yields the desired additive shares of xy · s ∈ Rd
q to

maintain the homomorphic evaluation invariant.

Rounding. Our first observation is that we can use the non-interactive round-
ing trick as in [22] to locally convert the approximate shares of (q/p) ·xy ·si over
Rq from above, to exact shares of xy · si over Rp. Concretely, each party simply
scales his share by (p/q) and locally rounds to the nearest integer value. This
operation heavily relies on the fact that there are 2 parties, and provides correct
output shares over Rp with error probability pB/q, negligible for p � q/B.

However, this is not quite what we need: the resulting secret shares of xy · s
are over Rp, not Rq. This means we cannot use the shares again to “distributively
decrypt” the original set of ciphertexts Cx′ for any input x′, a task whose opera-
tions must take place over Rq. (In fact, information about the si ∈ Rq may even
be lost when taken mod p.) Performing a second analogous multiplication would
then necessitate a second set of ciphertexts, over a smaller modulus: namely with
Rp playing the original role of Rq, and some p1 � p playing the previous role of
p. In such fashion, one can devise a leveled HSS scheme operating via a sequence
of decreasing moduli q � p � p1 � p2 � · · · pdeg, where each step must drop
by a superpolynomial factor to guarantee negligible correctness error. The size
and complexity of such HSS scheme, however, would grow significantly with the
desired depth of homomorphic computation.

Lifting. We avoid the above conundrum by (quite literally) doing nothing.
Our observation is as follows. In general, converting secret shares up to a higher
modulus constitutes a problem: e.g., even from Z2 to Z3 we have 1 + 1 ≡ 0 ∈
Z2 turning to 1 + 1 ≡ 2 ∈ Z3. However, if we can guarantee that the secret
shared payload is very small compared to the modulus, this wraparound problem
drops to a negligible fraction of possible secret shares. Concretely, given shares
t0 + t1 ≡ t mod p for t0, t1, t ∈ (−p/2�, . . . , (p − 1)/2�], then t0 + t1 = t with
equality (over Z) unless t − t0 falls ≤ −p/2� or > (p − 1)/2�. If t0 is randomly
chosen and t � p, then these corner cases occur with only negligible probability.
Conditioned on this, conversion to shares modulo q is immediate: it already holds
that t0 + t1 = t mod q.

Recall that we wish to perform share conversion on payload values of the
form y · si ∈ Rq. To use this trick, we must thus adjust the construction to guar-
antee that the shares tb are distributed randomly, and that any such payload
value has low magnitude ‖y ·si‖∞ � p. Rerandomizing shares is accomplished by
each party shifting his share by the same pseudorandom offset (determined via a
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PRF). Ensuring low magnitude of y · si is done via two pieces. First, we leverage
a result of Applebaum et al. [1], which allows us to replace a randomly sampled
secret key s ∈ Rd

q of encryption with one sampled from the low-magnitude noise
distribution, without loss of security. Second, we introduce an additional modulus
level B � p, and address only computations which remain bounded in magni-
tude by ‖y‖∞ ≤ B. Together, this will ensure each value y · si has small norm in
comparison to p, and thus the shares of y · si over Rp can be directly interpreted
as shares of y · si over Rq, successfully returning us to the desired homomor-
phic evaluation invariant. Finally, using the same low-magnitude-payload share
conversion trick, in the final step of computation, the parties can convert their
shares of y · s = (y, y · ŝ) (recall s = (1, ŝ)) over Rq to shares of y over Rr for
target output modulus r.

Ultimately, the HSS scheme uses three moduli levels: B � p � q/B. Cor-
rectness holds as long as the magnitude of computation values is bounded within
[R]B. Homomorphic evaluation maintains secret shares over Rq as its invariant.
Each homomorphic multiplication drops down to Rp to remove effects of noise,
then steps back up to shares over Rq to reinstate the invariant. An advantageous
side effect of this structure is that, conditioned on remaining within magnitude
bound B (e.g., Boolean computations), the size of our HSS shares is completely
independent of the depth or size of the homomorphic computation.

To conclude, we highlight some of the additional ideas and techniques arising
within our scheme and extensions.

KDM security. Our HSS reveals encryptions of the form Enc(x · si), for input
x and secret key s of the underlying encryption scheme. Key-dependent message
(KDM) security of the encryption scheme with respect to this class of linear
functions of s follows from its nearly linear decryption structure. As typical in
KDM literature (following [1,15]), this is shown by demonstrating as an inter-
mediate step that such encryptions can be efficiently generated from knowledge
only of the public key and rerandomized to “look like” fresh encryptions.

In our construction, we leverage this efficient generation procedure. This
enables pk of the HSS to consist purely of the public key of the encryption scheme,
while still allowing parties to encode their respective inputs x as {Enc(x·si)}i∈[d].
The corresponding encoding procedure is simpler and achieves better parameters
than publishing {Enc(si)}i∈[d] as part of pk (as was done in [7]), as this intro-
duces extra ciphertexts as well as a second noise term that must be “drowned”
by larger noise when scaling by x and rerandomizing.

Secret key as an input. For our RLWE-based HSS schemes with plaintext
space Rr = Zr[X]/(XN + 1), and when sampling the secret key s = (1, ŝ) ∈ R2

q

from the low-magnitude noise distribution, it holds that ŝ itself lies within the
supported input space Rr of the HSS. This is implicitly exploited in our attained
HSS efficiency, e.g. where our encryptions of x · s = (x, xŝ) ∈ R2

q can consist of
just two ciphertexts (instead of λ).

However, this also opens qualitatively new approaches toward optimization.
For example, suppose the evaluation keys ek0, ek1 are augmented with shares of
(ŝ)2, as well as shares of ŝ. We can then view the shares of (ŝ, (ŝ)2) = ŝ(1, ŝ) as
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HSS sharings of the computation value ŝ, and thus use them to homomorphically
multiply an input x by ŝ. For degree 2, this allows us to save sending encryptions
of x · ŝ for inputs x, since we can now generate these “for free” using ek0, ek1 and
the encryptions of x, reducing the share size by a factor of two.

SIMD operations. If the underlying encryption scheme is over a ring R
of the right form, then our basic HSS supports homomorphic evaluation of
“single instruction, multiple data” (SIMD) operations. Namely, suppose R =
Z[X]/(XN +1) where XN +1 splits over Rr (for some prime r ≥ 2) into pairwise
different irreducible polynomials of degree k ∈ N: that is, Rr

∼= Frk × · · · × Frk

for N/k copies of Frk . In such case, our homomorphic additions and multipli-
cations over Rr directly translate to corresponding SIMD operations within the
individual computation “slots.”

A caveat of this correspondence is that the magnitude bound requirement
B over Rr (in coefficient embedding) does not translate directly to a per-slot
magnitude bound of B (in CRT embedding). Thus current SIMD support can
effectively handle low-degree computations, but suffers performance degradation
as the degree increases, even if the magnitude of the SIMD computations is
bounded. An interesting goal for future investigation will be to devise new ways
of packing to mitigate this disadvantage.

Beyond 2 parties. A major open problem is constructing an efficient HSS
scheme with additive reconstruction for a reasonably expressive function class in
the setting of 3 or more parties. Unfortunately, even for 3 parties, the rounding
and lifting techniques we use would result in an error with constant probability
for any choice of underlying parameters.

The authors of [22] manage to extend their construction of “spooky encryp-
tion” to the multiparty setting by using a GMW-like approach [30]. We can apply
this to our scheme for degree-2 functions, by performing pairwise products on
shares involving pairwise secret keys. However, it is not clear how to extend this
further, as one would need to obtain shares of the pairwise outputs under all
other secret keys.

2 Preliminaries

We begin this section by introducing some notation. For notation that we con-
sider common knowledge we refer to the full version [12]. We denote our security
parameter by λ. Throughout this paper we consider all parameters to implicitly
depend on λ, e.g. by � ∈ N we actually consider � to be a function � : N → N,
but simply write � in order to refer to �(λ).

For a real number x ∈ R, by x� ∈ Z we denote the element closest to x ∈ R,
where we round up when the first decimal place of x is 5 or higher.

For x ∈ Z[X]/(XN + 1) the maximum norm of x is defined as ‖x‖∞ :=
max |(x1, . . . , xN )|, where xi ∈ Z such x =

∑N
i=1 xiX

i−1 mod XN + 1.
For p ∈ N, by Rp we denote R/pR. Note that we consider Rp as elements for

which all coefficients are in the interval (− p/2� , . . . , (p − 1)/2�]. For B ∈ N,
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we denote [R]B := {x ∈ R | ‖x‖∞ ≤ B}. More generally, for an interval I ⊆ Z,
we write R|I to denote all elements of R that have only coefficients in I.

We denote vectors by bold lower-case letters and matrices by bold upper-case
letters. We interpret vectors as column-vectors. For a vector x ∈ R�, by xi we
refer to the i-th entry (for i ∈ {1, . . . , �}).

We consider public-key encryption schemes that satisfy the security notion
of pseudorandomness of ciphertexts. For a formal definition we refer to the full
version.

2.1 Homomorphic Secret Sharing

We consider homomorphic secret sharing (HSS) as introduced in [7]. By default,
in this work, the term HSS refers to a public-key variant of HSS. Unlike [7], we
do not need to consider non-negligible δ error failure probability.

Definition 2 (Homomorphic Secret Sharing). A (2-party, public-key)
Homomorphic Secret Sharing (HSS) scheme for a class of programs P
over a ring R with input space I ⊆ R consists of PPT algorithms
(HSS.Gen,HSS.Enc,HSS.Eval) with the following syntax:

– HSS.Gen(1λ): On input a security parameter 1λ, the key generation algorithm
outputs a public key pk and a pair of evaluation keys (ek0, ek1).

– HSS.Enc(pk, x): Given public key pk and secret input value x ∈ I, the encryp-
tion algorithm outputs a ciphertext ct.

– HSS.Eval(b, ekb, (ct(1), . . . , ct(ρ)), P, r): On input party index b ∈ {0, 1}, eval-
uation key ekb, vector of ρ ciphertexts, a program P ∈ P with ρ input values
and an integer r ≥ 2, the homomorphic evaluation algorithm outputs yb ∈ Rr,
constituting party b’s share of an output y ∈ Rr.

The algorithms (HSS.Gen,HSS.Enc,HSS.Eval) should satisfy the following cor-
rectness and security requirements:

– Correctness: For all λ ∈ N, for all x(1), . . . , x(ρ) ∈ I, for all programs P ∈ P
with size |P | ≤ poly(λ) and P (x(1), . . . , x(ρ)) �= ⊥, for integer r ≥ 2, for
(pk, ek0, ek1) ← HSS.Gen(1λ) and for ct(i) ← HSS.Enc(1λ, pk, x(i)) we have

PrcorHSS,(x(i))i,P,r(λ) := Pr
[

y0 + y1 = P (x(1), . . . , x(ρ)) mod r
]

≥ 1 − λ−ω(1),

where
yb ← HSS.Eval(b, ekb, (ct(i))i, P, r)

for b ∈ {0, 1} and where the probability is taken over the random coins of
HSS.Gen, HSS.Enc and HSS.Eval.

– Security: For all security parameters λ ∈ N, for all PPT adversaries A
that on input 1λ output a bit b ∈ {0, 1} (specifying which encryption key to
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corrupt), and input values x0, x1 ∈ I, we require the following advantage to
be negligible in λ:

Advsec
HSS,A(λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎢

⎣

A(inputb) = β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(b, x0, x1, state) ← A(1λ),
β ← {0, 1},
(pk, (ek0, ek1)) ← HSS.Gen(1λ),
ct ← HSS.Enc(pk, xβ),
inputb := (state, pk, ekb, ct)

⎤

⎥

⎥

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Remark 1. Within applications, we additionally consider a secret-key variant of
HSS. For details we refer to the full version.

2.2 Computational Models
Our main HSS scheme naturally applies to programs P in a computational model
known as Restricted Multiplication Straight-line (RMS) programs [7,18].

Definition 3 (RMS programs). An RMS program consists of a magnitude
bound Bmax and an arbitrary sequence of the four following instructions, sorted
according to a unique identifier id ∈ Sid:
– Load an input into memory: (id, ŷj ← x̂i).
– Add values in memory: (id, ŷk ← ŷi + ŷj).
– Add input values: (id, x̂k ← x̂i + x̂j).
– Multiply memory value by input: (id, ŷk ← x̂i · ŷj).
– Output from memory, as R element: (id, r, ̂Oj ← ŷi).

If at any step of execution the size of a memory value exceeds the bound Bmax
(i.e. ‖ŷj‖∞ > Bmax), the output of the program on the corresponding input is
defined to be ⊥. Otherwise the output is the sequence of ̂Oj values, sorted by
id. We define the size (resp., multiplicative size) of an RMS program P as the
number of instructions (resp., multiplication and load input instructions). Note
that we consider addition of input values merely for the purpose of efficiency.
We denote the maximum number of additions on input values by Pinp+.

3 HSS from Encryption with Nearly Linear Decryption
As explained in the introduction, the core of our HSS construction is an encryp-
tion scheme with nearly linear decryption, where nearly linear means that for
message m ∈ Rp := R/pR, secret key s ∈ Rd

q , and ciphertext c ∈ Rd
q encrypting

m, for some “small” noise e ∈ R we have

〈s, c〉 = (q/p) · m + e mod q.

We begin in Sect. 3.1 by explaining our two main share conversion tricks,
which allow two parties holding secret shares of (q/p) · m + e mod q for small
m to locally modify their values, such that in the end each party holds a secret
share of the message m modulo q. In Sect. 3.2 we present our formal definition
of nearly linear decryption, and prove two properties that it implies. Then, in
Sect. 3.3 we give our HSS construction based on any such encryption scheme.
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3.1 Computation on 2-Party Secret Shared Values

First, we present a local rounding trick as in [22] which allows to recover the
shares of m (modulo p). The idea is that if q/p is large, the probability that the
error term e leads to a rounding error is small. Note that it is crucial here that
we are in the 2-party setting, where the secret shares of (q/p) · m + e mod q
have both approximately (that is, except for the error e) the same distance from
some multiple of q/p. In fact, even for arbitrarily large gap between p and q,
rounding for 3 or more parties fails with constant probability. For a proof of the
rounding lemma we refer to the full version.

Lemma 1 (Rounding of noisy shares). Let p, q ∈ N be modulus values with
q/p ≥ λω(1). Let R = Z[X]/(XN + 1) for N a power of 2 (i.e. N = 2n for
n ∈ N0). Let t0, t1 ∈ Rq random subject to

t0 + t1 = (q/p) · m + e mod q

for some m ∈ Rp, e ∈ R with q/(p·‖e‖∞) ≥ λω(1). Then, for the the deterministic
polynomial time procedure Round that on input tb ∈ Rq outputs

(p/q) · tb� mod p ∈ Rp

it holds:
Round(t0) + Round(t1) = m mod p

with probability at least 1 − N · (‖e‖∞ + 1) · p/q ≥ 1 − λ−ω(1) over the choice of
the shares t0, t1.

The following simple observation constitutes a crucial step of our HSS con-
struction, as it will allow to have several levels of multiplication without requiring
a sequence of decreasing moduli. While in general the conversion of secret shares
from one modulus to another constitutes a problem, we observe that whenever
the secret shared value is small in comparison to the modulus, and we use the
centered representation of Rp with coefficients in (− p/2� , . . . , (p − 1)/2�], then
with high probability the secret sharing actually constitutes a secret sharing over
R, so switching to an arbitrary modulus is trivial. Note that (as for rounding)
this only holds true in the 2-party setting. For the proof we refer to the full
version.

Lemma 2 (Lifting the modulus of shares). Let p ∈ N be a modulus with
p ≥ λω(1). Let R = Z[X]/(XN +1) for N a power of 2. Let m ∈ R and z0, z1 ∈ Rp

be random, subject to
z0 + z1 = m mod p.

Then, we have
z0 + z1 = m over R

with probability at least 1 − (N · (‖m‖∞ + 1)/p) ≥ 1 − λ−ω(1) over the choice of
the shares z0, z1.
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3.2 Encryption with Nearly Linear Decryption

We now formally introduce encryption with nearly linear decryption. Basically,
we require the following properties: First, there is a way to encrypt certain key-
dependent messages without knowledge of the secret key. Second, it is possible
to “distributively decrypt” a ciphertext. More precisely, given an encryption of
message m and secret shares of some multiple x of the secret key s, there is
a way to obtain secret shares of x · m over the same modulus as the original
secret shares. These properties together enable us to perform several stages of
distributed decryption. That is, given an encryption of x · s (for some value x)
and a secret share of x′ · s modulo q, distributed decryption results in a secret
share of x · x′ · s modulo q, which can serve as input to another distributed
decryption. One way to achieve both properties at once is to require nearly
linear decryption.

Definition 4 (Encryption scheme with nearly linear decryption). Let
PKE := (PKE.Gen,PKE.Enc,PKE.Dec) be a public-key encryption scheme with
pseudorandom ciphertexts. We say that PKE is a public-key encryption scheme
with nearly linear decryption if it further satisfies the following properties:
– Parameters: The scheme is parametrized by modulus values p, q ∈ N, dimen-

sion d ∈ N, and bounds Bsk, Bct ∈ N, where p|q, p ≥ λω(1), q/p ≥ λω(1)

and d, Bsk, Bct ≤ poly(λ), as well as a ring R = Z[X]/(XN + 1), where
N ≤ poly(λ) is a power of 2.6

– Message space and secret key: The scheme has message space M :=
Rp := R/pR and ciphertext space C := Rd

q := (R/qR)d. The secret key s
returned by PKE.Gen on input 1λ is an element of Rd satisfying ‖s‖∞ ≤ Bsk.
Further, s is of the form (1, ŝ) for some ŝ ∈ Rd−1

p .
– Nearly linear decryption: For any λ ∈ N, for any (pk, s) in the image of

Gen(1λ), for any message m ∈ Rp and for any ciphertext c ∈ Rd
q in the image

of PKE.Enc(pk, m), for some e ∈ R with ‖e‖∞ ≤ Bct it holds

〈s, c〉 = (q/p) · m + e mod q.

Notation. For (pk, s) ← Gen(1λ) and m = (m1, . . . , md) ∈ Rd
p, we

denote by PKE.Enc(pk, m) the componentwise encryption C ← (PKE.Enc
(pk, m1), . . . ,PKE.Enc(pk, md)); we denote by Dec(sk, C) the decryption
(PKE.Dec(sk, c1), . . . ,PKE.Dec(sk, cd)) ∈ Rd

p of the matrix of d ciphertexts
C = (c1| . . . |cd) ∈ Rd×d

q .

Remark 2. Encryption with nearly linear decryption can be instantiated based
on LWE (e.g. with [1,37], where d = λ) and based on RLWE (e.g. with [15,36],
where d = 2). Further, it can be instantiated with schemes based on assumptions
like module-LWE [34] and LWR [3]. For more details on the instantiation from
the RLWE-based encryption scheme of LPR [36], we refer to Sect. 4, and for the
instantiation from the LWE-based encryption scheme of Regev [37] we refer to
the full version.
6 To simplify the analysis, we restrict the definition to 2-power cyclotomic rings. How-

ever, our construction can be generalized to arbitrary cyclotomics.
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Fig. 1. Security challenge experiment for the KDM oracle.

We prove that our two desired properties are satisfied by any encryption
scheme with nearly linear decryption. The first property allows anyone to com-
pute an encryption of any linear function of the secret key without having access
to the secret key itself, serving as a “KDM oracle.” A similar notion, but for
secret-key encryption schemes and with deterministic procedure, was introduced
in [4]. For the proof of the following lemma we refer to the full version.

Lemma 3 (KDM oracle). Let PKE := (PKE.Gen,PKE.Enc,PKE.Dec) be a
public-key encryption scheme with nearly linear decryption and parameters
(p, q, d, Bsk, Bct, R).

Then, for the PPT procedure PKE.OKDM that on input of a public key
pk, a value x ∈ R and an index j ∈ {1, . . . , d} computes an encryption
c ← PKE.Enc(pk, 0) and outputs

cj := (q/p) · x · ej + c mod q,

where ej ∈ Rd
q is the j-th unit vector, the following properties are satisfied.

– Nearly linear decryption to the message x · sj: For any λ ∈ N, for any
(pk, s) in the image of Gen(1λ), and for any ciphertext cj ∈ Rd

q in the image
of PKE.OKDM(pk, x, j), it holds

〈s, cj〉 = (q/p) · (x · sj) + e mod q

for some e ∈ R with ‖e‖∞ ≤ Bct.
– Security: For any λ ∈ N and any PPT adversary A we have that

Advkdm−ind
PKE.OKDM,A(λ) :=

∣

∣

∣Pr
[

Expkdm−ind
PKE.OKDM,A(λ) = 1

]

− 1/2
∣

∣

∣

is negligible in λ, where Expkdm−ind
PKE.OKDM,A(λ) is as defined in Fig. 1

By PKE.OKDM(pk, x) we denote the KDM oracle that returns a component-
wise encryption of x · s, i.e. that outputs the matrix (PKE.OKDM(pk, x, 1), . . . ,
PKE.OKDM(pk, x, d)) ∈ Rd×d

q .

The following shows that any encryption with nearly linear decryption allows
two parties to perform decryption distributively, employing their respective
shares of the secret key to obtain a secret share of the corresponding message
modulo q. Further, the scheme inherently supports homomorphic addition of
ciphertexts, and the distributed decryption property holds accordingly for any
sum of a bounded number of ciphertexts (generated from Enc or OKDM).
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Lemma 4 (Distributed decryption of sums of ciphertexts). Let PKE :=
(PKE.Gen,PKE.Enc,PKE.Dec) be a public-key encryption scheme with nearly
linear decryption and parameters (p, q, d, Bsk, Bct, R), where R has dimension
N . Let PKE.OKDM be the KDM oracle from Lemma 3. Let Badd ∈ N with
Badd ≤ poly(λ). Then the deterministic polynomial time decryption procedure
PKE.DDec that on input b ∈ {0, 1}, tb ∈ Rd, c ∈ Rd

q outputs

Round(〈tb, c〉 mod q) ∈ Rq

(where Round is as in Lemma 1) satisfies the following:
For all x ∈ Rp with p/‖x‖∞ ≥ λω(1) and q/(p · ‖x‖∞) ≥ λω(1), for all

(pk, s) ← Gen(1λ), for all messages m1 . . . , mBadd ∈ Rp, for all encryptions ci of
mi that are either output of PKE.Enc or of PKE.OKDM (in that case we have
mi = xi · sj for some value xi ∈ Rp and some index j ∈ {1, . . . , d}) and for
shares t0, t1 ∈ Rd

q random subject to

t0 + t1 = x · s mod q

for c :=
∑Badd

i=1 ci and m :=
∑Badd

i=1 mi it holds

PKE.DDec(0, t0, c) + PKE.DDec(1, t1, c) = x · m mod q

with probability over the random choice of the shares t0, t1 of at least

1 − N · (N · Badd · ‖x‖∞ · Bct · p/q + ‖x · m‖∞/p + p/q + 1/p) ≥ 1 − λ−ω(1).

For C = (c1| . . . |cd) ∈ Rd×d
p by m ← PKE.DDec(b, tb, C) we denote the

componentwise decryption m ← (PKE.DDec(b, tb, c1), . . . ,PKE.DDec(b, tb, cd))
∈ Rd

p.

For a proof that PKE.DDec indeed satisfies the required we refer to the full
version. The idea is that nearly linear decryption allows (almost) homomorphic
addition of ciphertexts with linear growth in the error. As q/(p · ‖x‖∞) ≥ λω(1)

and the vectors tb are individually random, by Lemma 1 we can recover x · m
mod p with overwhelming probability. Finally, as p ≥ λω(1), by Lemma 2 we can
lift the modulus q (as with overwhelming probability the shares constitute a
correct sharing of x · m over R and thus Rq).

Remark 3. Note that our techniques also extend to encryption schemes which
encrypt messages in low-order symbols, e.g. where 〈s, c〉 = m + p · e mod q for
p and q coprime. For more details we refer to the full version.

3.3 HSS from Encryption with Nearly Linear Decryption

We now present our construction of a public-key HSS from an encryption scheme
with nearly linear decryption. For various extensions that allow to improve the
efficiency in specific applications, we refer to Sect. 3.4.
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Fig. 2. 2-party public-key homomorphic secret sharing scheme HSS for the class of RMS
programs from encryption with nearly linear decryption. Here, x ∈ R with ‖x‖∞ ≤ Binp
is an input value. Throughout, input values x ∈ R are represented by encryptions Cx

of x · s and memory values x ∈ R are represented by shares (tx0 , tx1) ∈ Rd
q × Rd

q with
tx0 + tx1 = x · s mod q.
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Fig. 3. Games G0
HSS,A(λ) and G1

HSS,A(λ) in the proof of Theorem 2 (Sec. of HSS).

Theorem 2 (HSS from encryption with nearly linear decryption). Let
PKE := (PKE.Gen,PKE.Enc,PKE.Dec) be a secure public-key encryption scheme
with nearly linear decryption and parameters (p, q, d, Bsk, Bct, R).

– Let Binp ∈ N with p/Binp ≥ λω(1) and q/(Binp · p) ≥ λω(1).
– Let PKE.OKDM be the KDM oracle from Lemma 3.
– Let PKE.DDec be the distributed decryption from Lemma 4.
– Let PRF : K × Sid → Rd

q be a pseudorandom function.

Then, the scheme HSS = (HSS.Gen,HSS.Enc,HSS.Eval) given in Fig. 2 is a 2-
party public-key homomorphic secret sharing scheme with input space [R]Binp for
the class of RMS programs with magnitude bound Bmax, where p/Bmax ≥ λω(1)

and q/(Bmax · p) ≥ λω(1). More precisely, HSS satisfies the following (Fig. 3).

– Correctness: For any λ ∈ N, for any x(1), . . . , x(ρ) ∈ [R]Binp , for any
polynomial-sized RMS program P with P (x(1), . . . , x(ρ)) �= ⊥ and magnitude
bound Bmax with p/Bmax ≥ λω(1) and q/(Bmax ·p) ≥ λω(1), and for any integer
r ≥ 2, there exist a PPT adversary B on the pseudorandomness of PRF such
that

PrcorHSS,(x(i))i,P,r(λ) ≥ 1 −
(

Advprf
PRF,B(λ) + λ−ω(1)

)

.

– Security: For every PPT adversary A on the security of HSS, there exists
an PPT adversary B on the security of PKE.OKDM such that

Advsec
HSS,A(λ) ≤ Advkdm−ind

PKE.OKDM,B(λ).

We prove correctness in the following lemma and refer to the full version for the
proof of security.

Lemma 5 (Correctness of the HSS). Let HSS be the HSS from Fig. 2 with
underlying ring R = Z[X]/(XN + 1). Then, for all λ ∈ N, for all inputs
x(1), . . . , x(ρ) ∈ [R]Binp , for all RMS programs P , s.t.
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– P is of size |P | ≤ poly(λ)
– P has magnitude bound Bmax with p/Bmax ≥ λω(1) and q/(Bmax · p) ≥ λω(1),
– P has maximum number of input addition instructions Pinp+

for (pk, ek0, ek1) ← HSS.Gen(1λ), for Cx(i) ← HSS.Enc(1λ, pk, x(i)), there exists
an PPT adversary B on the pseudorandom function PRF with such that correct-
ness holds with probability at least

PrcorHSS,(x(i))i,P (λ) ≥ 1 − Advprf
PRF,B(λ) − N · (Bmax + 1)/q

− |P | · d · N2 · Pinp+ · Bmax · (Bct · p/q + Bsk/p) .

− |P | · d · N · (p/q + 1/p).

Proof. We prove correctness via a hybrid argument. Let ε0 := PrcorHSS,(x(i))i,P,r(λ).
Recall that by ε0 we denote the probability that homomorphic evaluation of a
program P on input (x(1), . . . , x(ρ)) ∈ [R]ρBinp

employing our HSS presented in
Fig. 2 is successful (over the random choices of HSS.Gen,HSS.Enc). Our goal is
to prove that for all x(1), . . . , x(ρ) ∈ [R]Binp and for all bounded RMS programs
P the probability ε0 is negligible in λ.

To this end, let ε1 := Pr1HSS,(x(i))i,P,r(λ) denote the probability that evalua-
tion yields the correct output, where we replace every evaluation of the PRF by
inserting a value r $← Rd

q chosen at random. We show that if the probabilities ε0
and ε1 differ significantly, then there exists an adversary B attacking the under-
lying PRF PRF. Namely, B homomorphically evaluates the program P on input
(x(1), . . . , x(ρ)), but instead of evaluating PRF(K, id) the adversary B queries its
PRF oracle. Finally, B returns real if homomorphic evaluation does not yield
the correct result, and random otherwise. This yields

|ε0 − ε1| ≤ Advprf
PRF,B(λ).

It is left to give a lower bound for the probability ε1. To that end, we prove
that with overwhelming probability over the choice of r ← Rd

q (in place of the
PRF evaluation) all shares (tx

0 , tx
1) computed during homomorphic evaluation of

P satisfy
tx
0 + tx

1 = x · s = (x, x · ŝ) mod q (1)
if the function evaluation of P at point (tx

0 , tx
1) corresponds to x ∈ R, where

s = (1, ŝ) ∈ R × Rd−1 is the secret key returned by PKE.Gen on input 1λ.
Further, we have that (tx

0 , tx
1) are distributed uniformly at random conditioned

on Eq. 1.
Assuming Eq. 1 is true, by Lemma 2 we have x0 + x1 = x over R (and thus

over Rr) with probability at least 1 − N · (Bmax + 1)/q.
It is left to prove that indeed Eq. 1 holds true during homomorphic evaluation

of P except with negligible probability. Recall that PKE.DDec is the procedure
for distributed decryption from Lemma 4. First, assume that distributed decryp-
tion is always successful. In this case we prove that any instruction preserves
correctness. Note that we do not need to consider the addition of input values
and the output of a memory value, as those do not affect the shares.
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– Load an input into memory: Consider instruction (id, Cx) for b ∈ {0, 1}.
Assuming correctness of distributed decryption it holds

tx
0 + tx

1 =PKE.DDec(0, s0, Cx) + r + PKE.DDec(1, s1, Cx) − r mod q

= 1 · (x · s) mod q = x · s mod q.

– Add values in memory: Assuming correctness holds for shares (tx
0 , tx

1) and
(tx′

0 , tx′
1 ) we have, as required,

tx+x′
0 + tx+x′

1 = tx
0 + tx′

0 + r + tx
1 + tx′

1 − r mod q

= x · s + x′ · s mod q = (x + x′) · s mod q.

– Multiply memory value by input: Assuming correctness holds for the
share (tx

0 , tx
1) and assuming correctness of distributed decryption it holds

tx·x′
0 + tx·x′

1 =PKE.DDec(0, tx
0 , Cx′

) + PKE.DDec(1, tx
1 , Cx′

) mod q

= x · (x′ · s) mod q = (x · x′) · s mod q.

As r is chosen at random, the distribution of (ty
0, ty

1) ∈ Rd
q for y ∈ {x, x +

x′, x · x′} is random conditioned on Eq. 1.

It is left to bound the probability that distributed decryption fails. As for all x
computed throughout the evaluation of program P the distribution of (tx

0 , tx
1) ∈

Rd
q is random conditioned on Eq. 1, by Lemma 4 for all messages m1 . . . , mPinp+ ∈

Rp and for all encryptions ci of mi that are output of PKE.OKDM distributed
decryption of

∑Pinp+
i=1 ci fails with probability at most

N2 · Pinp+ · ‖x‖∞ · Bct · p/q + N · ‖x · m‖∞/p + N · (p/q + 1/p),

where m :=
∑Pinp+

i=1 mi. Throughout the evaluation of P we are guaranteed
‖x‖∞ ≤ Bmax for all intermediary values x ∈ R. Further, for the messages
mi = xi · sji corresponding to outputs of PKE.OKDM we have

‖x ·
Pinp+
∑

i=1
xi · sji‖∞ ≤

Pinp+
∑

i=1
‖x · xi · sji‖∞ ≤ Pinp+ · N · Bmax · Bsk.

Finally, applying a union bound over all |P | · d decryptions yields

ε1 ≥ 1 − N · (Bmax + 1)/q − |P | · d · N2 · Pinp+ · Bmax · (Bct · p/q + Bsk/p)
− |P | · d · N · (p/q + 1/p).

3.4 Extensions

In the following we briefly describe some extensions which are tailored to spe-
cial applications and improve the HSS construction introduced in the previous



Homomorphic Secret Sharing from Lattices Without FHE 23

section in terms of efficiency. For a complete treatment, we refer the reader to
the full version.
Secret-key HSS. For certain applications, where all secret inputs originate
from a single party, it is sufficient to consider a secret-key HSS. This allows
a more efficient instantiation for two reasons. First, the underlying encryption
scheme is not required to support ciphertexts from a KDM oracle (but has to be
KDM secure), which slightly saves in noise parameters. Further, we can save in
terms of computations (at the cost of a larger share size), by replacing the DDec
steps for loading an input x into memory, by instead sending the secret shares
of x · s as an additional part of the HSS share.

HSS for degree-2 polynomials. For the restricted class of degree-2 polyno-
mials, we can achieve improved efficiency in both the secret-key and public-
key setting, by leveraging the fact that our HSS need only support terminal
multiplications.

For the secret-key case, as we do not need to load inputs, we actually only
need one level of distributed decryption. This has two advantages: First, it suf-
fices to encrypt x ∈ Rp instead of x · s ∈ Rd

p, as the output is not required to
allow another distributed encryption. Second, for the same reason, we do not
need to lift the modulus of the output of the distributed decryption back to q.
Thus, we can choose p ≤ poly(λ) and q ≥ λω(1) (as we no longer must apply
Lemma 2).

The idea of our public-key HSS is to change the way inputs are loaded into
memory. The idea is to obtain the shares of x · s = (x, x · s2, . . . , x · sd) ∈ Rd

by decrypting PKE.Enc(pk, x) with s and with s2 · s, . . . , sd · s. This strategy
requires a quadratic number of secret shares (namely shares of s·s�), but reduces
the number of required encryption from d to 1 (as only encryptions of x are
required). An additional advantage of this approach is that we only have to
require the underlying encryption scheme to be IND-CPA secure (instead of
satisfying pseudorandomness of ciphertexts).

HSS supporting SIMD operations. As first observed by [39], if the under-
lying ring R is of the right form, one can “pack” multiple plaintexts in one
ciphertext. We show that our basic HSS supports “single instruction, multiple
input” (SIMD) in this case. More precisely, we show that if R = Z[X]/(XN + 1)
for N ∈ N, N ≤ poly(λ) a power of 2, such that XN + 1 splits over Rr (for some
prime r ≥ 2) into pairwise different irreducible polynomials of degree k ∈ N (i.e.
Rr

∼= (Frk)N/k), one can evaluate a program P simultaneously on N/k inputs in
Frk . However, there are some caveats regarding magnitude growth with respect
to the SIMD versus coefficient representations (see the full version for more
details).

4 Instantiations and Efficiency Analysis

Our HSS schemes can be instantiated in a number of ways, using LWE or RLWE-
based encryption schemes satisfying the nearly-linear decryption property from
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Fig. 4. Ring-LWE based instantiation of PKE with approximately linear decryption,
with procedures for HSS from Sect. 3

Definition 4. In this section we focus on a particularly efficient RLWE-based
instantiation using a variant of the “LPR” encryption scheme [35] over 2-power
cyclotomic rings. In the full version we also show how to use standard Regev
encryption based on LWE [37], but this is less efficient in terms of share size.

4.1 Instantiation from Ring-LWE

Definition 5 (Decisional Ring Learning With Errors). Let N be a power
of 2, q ≥ 2 be an integer, R = Z[X]/(XN + 1) and Rq = R/(qR). Let Derr
be an error distribution over R and Dsk be a secret key distribution over R.
Let s ← Dsk. The RLWEN,q,Derr,Dsk problem is to distinguish the following two
distributions over R2

q:

– ODerr,s: Output (a, b) where a ← Rq, e ← Derr and b = a · s + e
– U : Output (a, u) ← R2

q

Formally, for a PPT adversary A we define the advantage Advrlwe
N,q,Derr,Dsk(λ) =

|Prs←Dsk [AODerr,s(λ) = 1] − Prs←Dsk [AU (λ) = 1]|.
In Fig. 4 we present the core algorithms for our RLWE-based instantation

using the LPR [35] public-key encryption scheme LPR = (LPR.Gen, LPR.Enc), as
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well as the auxiliary algorithms LPR.OKDM and LPR.DDec used by our HSS con-
structions. We use an error distribution Derr where each coefficient is a rounded
Gaussian with parameter σ, which gives Berr = 8σ as a high-probability bound
on the �∞ norm of samples from Dsk, with failure probability erf(8/

√
2) ≈ 2−49.

We choose the secret-key distribution such that each coefficient of s is uniform
in {0, ±1}, subject to the constraint that only hsk coefficients are non-zero.7

The following lemma (proven in the full version) shows that LPR satisfies the
nearly-linear decryption property for our HSS scheme. Furthermore, notice that
ciphertexts output by LPR.Enc are pseudorandom under the decisional ring-LWE
assumption, by a standard hybrid argument [36]. Therefore, the correctness and
security properties of the LPR.OKDM and LPR.DDec procedures follow from
Lemmas 3 and 4.

Lemma 6. Assuming hardness of RLWEN,q,Derr,Dsk , the scheme LPR (Fig. 4)
is a public-key encryption scheme with nearly-linear decryption over R =
Z[X]/(XN + 1), with ciphertext dimension d = 2 and bounds Bsk and Bct =
Berr · (2hsk + 1).

4.2 Parameters and Efficiency Analysis

We now analyse the efficiency of our RLWE-based instantiation and compare it
with using HSS constructed from somewhat homomorphic encryption, for various
different settings of parameters.

For comparison with HSS based on DDH [7], we remark that for non-SIMD
computations, DDH-based HSS shares can be smaller than both our approach
and SHE. However, we estimate that homomorphic evaluation is around an order
or magnitude faster than the times reported in [6] due to the expensive share
conversion procedure, and when using SIMD both this and the share size can be
dramatically improved.

Parameter estimation. We derived parameters for our HSS based on LPR
using the bounds for correctness from Lemma 5, chosen to ensure that each RMS
multiplication of a ring-element during evaluation is correct with probability
1−2−κ, where we chose κ = 40. To compare with constructing HSS from SHE, we
estimated parameters for the “BFV” scheme based on RLWE [13,24], currently
one of the leading candidate SHE schemes. To modify this to achieve HSS with
additive output sharing, we need to increase the size of q by around 2κ bits.
With both schemes we chose parameters estimated to have at least 80 bits of
computational security, see the full version for more details.

Share size. Tables 1 and 2 show BFV ciphertext parameters for different mul-
tiplicative depths of circuit, and plaintext modulus 2 or ≈ 2128, respectively, to
illustrate different kinds of Boolean and arithmetic computations. Table 3 gives
7 Choosing a sparse secret like this does incur a small loss in security, and only gives

us a small gain in parameters for the HSS. The main reason we choose s like this
is to allow a fair comparison with SHE schemes, which typically have to use sparse
secrets to obtain reasonable parameters.
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our HSS parameters for various choices of Bmax, the maximum value any plain-
text coefficient can hold during the computation. Note that in contrast to SHE,
our parameters depend only on this bound and not the multiplicative depth,
although we are more restricted in that we can only perform homomorphic mul-
tiplications where one value is an input.

This means that comparing parameters of the two schemes is very
application-dependent. For instance, for Boolean computations where we can
have Bmax = 2, our scheme has smaller parameters than SHE for all computa-
tions of depth > 3, so this can give a significant advantage for very high degree
functions that can be expressed as an RMS program. However, if SIMD com-
putations are required then Bmax must be chosen to account for the worst-case
coefficient growth, which is not directly related to the plaintexts, so our scheme
would likely have larger ciphertexts than SHE in most cases. For operations on
large integers, the parameters in both schemes quickly get very large, though
our parameters grow slightly quicker due to the increase in Bmax.

Computational efficiency. The relative computational efficiency of the
schemes is much clearer, and is the main advantage of our scheme over SHE.
The cost of a homomorphic RMS multiplication with RLWE is roughly twice
the cost of a decryption in any RLWE-based scheme (including BFV) with the
same parameters. Recently, Halevi et al. [31] described an optimized implemen-
tation of BFV using CRT arithmetic, where according to their single-threaded
runtimes, decryption costs between 20–30x less than multiplication (including
key-switching) for the ranges of parameters we consider (cf. [31, Table 3]). This
indicates a 10–15x improvement in performance for homomorphic evaluation
with our scheme compared with SHE, assuming similar parameters and num-
bers of multiplications. We remark that this comparison deserves some caution,
since other SHE schemes such as BGV [14] may have different characteristics;
we have not run experiments with BGV, but due to the complications in key-
switching and modulus-switching we expect the improvement to still be around
an order of magnitude.

5 Applications

In this section we highlight some applications of HSS for which our scheme
seems well-suited. There are four primary approaches to compare: approaches
not relying on HSS, using DDH-based or one-way function-based HSS, using HSS
based on SHE, or using our new HSS. We remark that the concrete practicality
of SHE-based HSS approaches has also not been considered before this work.

5.1 Secure 2-PC for Low-Degree Polynomials

Perhaps the most natural application of HSS is to achieve a very succinct form
of multi-party computation. After a setup phase to create the key material
pk, (ek0, ek1), each party publishes HSS-shares of its input, which can then be
directly used to compute additive shares of the output. Even the simplest case
of evaluating degree-2 polynomials has many interesting applications, and also
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Table 1. BFV parameters
with plaintext modulus 2

Depth N log q Security

1 4096 102 145.1
2 4096 118 122.6
3 4096 134 106.2
4 4096 150 93.73
5 4096 164 85.53
6 8192 186 157.5
7 8192 202 142.9
8 8192 220 129.8
9 8192 236 120.1
10 8192 252 111.9

Table 2. BFV parameters
with plaintext modulus ≈
2128

Depth N log q Security

1 16384 456 124.3
2 16384 602 92.44
3 32768 750 154.2

Table 3. RLWE based HSS
parameters for RMS pro-
grams with maximum plain-
text size Bmax

Bmax N log q Security

2 4096 137 103.3
216 4096 167 83.74
232 8192 203 142.0
264 8192 267 104.9
2128 16384 399 143.9
2256 16384 655 84.60

allows us to use our optimized HSS scheme from Sect. 3.4, where shares consist of
a single RLWE ciphertext, instead of two. The main motivating example we look
at is to MPC protocols in the preprocessing model, where correlated randomness
is pre-generated ahead of time to help increase efficiency when the actual com-
putation takes place. This correlated randomness can take many forms, but the
most common are Beaver triples, namely additive shares of (a, b, c) where c = a·b
and a, b are random elements of a (typically) large prime field. These can easily
be generated using degree-2 HSS, where each party inputs two field elements,
and are also highly amenable to SIMD processing.

Looking at Tables 2 and 3, for an example of degree 2 functions over a 128-bit
message space, BFV with depth 1 requires a dimension N = 16384 and modulus
log q = 456, whereas our scheme would need to use Bmax ≈ 2256, giving the same
dimension and a slightly larger modulus of around 655 bits. Therefore, our com-
munication cost will be slightly larger than using SHE-based HSS, but we expect
to gain from the lower computational costs that come with our multiplication.

Using DDH-type HSS [6], an m-bit triple can be created with 3712(5m/4 +
160) bits of communication, giving 148 kB for m = 128, meaning our commu-
nication is 20x higher for producing a single triple (at 2682 kB), but orders
of magnitude smaller (∼900x) when amortized using SIMD (over N = 16834
triples). Computation requirements will greatly favor our approach.

We can also compare this with other approaches to Beaver triple generation.
The SPDZ protocol [20] uses SHE (without HSS) to create triples; as well as
the more complex homomorphic multiplication, this incurs extra costs in an
interactive distributed decryption protocol, which adds a round of interaction
that we can avoid using HSS with local rounding. The latest version of SPDZ [33]
uses linearly-homomorphic encryption instead of SHE, and reports ciphertexts
with log q as small as 327 bits, around half the size of ours. This would likely beat
HSS in terms of communication and computation, but still has the undesirable
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feature of 2 rounds of interaction, whereas with HSS (and a small one-time
setup), the triples are obtained after just one message from each party.

The recent work of Boyle et al. [6] considered an interesting alternative app-
roach to triple generation using so-called “cryptographic capsules”, where HSS
evaluation of a local PRG is used to expand a small, initial amount of correlated
randomness into many more triples. This allows communication complexity sub-
linear in the number triples. They showed that this can be done with O(β2)
Boolean RMS multiplications, where β is a parameter related to the locality
of the PRG. With a DDH-like scheme, their protocol involves significant com-
plications to ensure correct triples in the presence of a non-negligible failure
probability for multiplication, making it quite impractical. However, using our
HSS or SHE-based HSS with negligible error considerably simplifies this app-
roach; it is not immediately clear of the best way to instantiate the parameters,
but since it is a Boolean computation with relatively small degree it seems well-
suited to our HSS scheme. We leave this exploration, as well as extending to
other distributions, as an interesting direction of future research.

5.2 2-Server PIR

An attractive application of HSS is to obtain highly succinct Private Information
Retrieval (PIR) protocols for m ≥ 2 servers. Here, m servers hold a public
database DB and allow clients to submit private queries to DB, such that both
the query and response remain hidden to up to m − 1 colluding servers.8 When
using HSS, we can obtain a very simple, 1-round protocol where the client first
sends an encryption of its query to both servers, who respond with an additive
share of the result. Note that we only need the more efficient, secret-key version
of HSS, such as our scheme from Sect. 3.4 with m = 2 servers.

Recent works on 2-server PIR have used HSS for point functions9 to sup-
port basic queries including equality conditions, range queries and disjoint OR
clauses, based on simple schemes using only one-way functions [9,40]. However
these techniques degrade dramatically for more complex queries, due to the rela-
tively weak homomorphic ability of the underlying HSS. With HSS for branching
programs we can significantly increase the expressiveness of queries, at the cost
of some overhead in ciphertext size and running time.

In a bit more detail, suppose that a client issues a simple COUNT query,10
which applies some predicate Q to each row xi ∈ DB, and returns

∑

i Q(xi), that
is, the number of rows in DB that match Q. The general idea is that the client
splits Q into HSS shares s1, s2, and sends sj to server j. For each row xi ∈ DB,
8 Using S/FHE alone instead of HSS allows for the stronger setting of single-server

PIR. However, a major advantage of HSS with additive reconstruction is that shares
across many rows can easily be combined, allowing more expressive queries with
simpler computation.

9 Actually, these works use function secret-sharing [8] for point functions, which in
this case is equivalent to HSS for the same class of functions.

10 Other queries such as returning the record identifier, or min/max and range queries
can easily be supported with similar techniques, as previously shown in [6,40].
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the servers then use homomorphic evaluation with the function fxi
(Q) := Q(xi)

on the shares, to obtain a shared 0/1 value indicating whether a match occurred.
Given additive shares modulo r of the results q1, . . . , qD (where D = |DB|), the
servers can sum up the shares and send the result to the client, who reconstructs
the result q =

∑

qi (this assumes that r < N , so wraparound does not occur).
Below we analyse some useful classes of predicates that are much more expres-

sive than function classes that can be handled using one-way function based
approaches, and seem well-suited for our scheme supporting RMS programs.

Conjunctive keyword search. Suppose that each entry in DB is a document
x with a list of keywords Wx = {wx

1 , . . . , wx
m}, and the query is a COUNT query

consisting of an arbitrary conjunction of keywords, each in {0, 1}�. That is, for a
query W = {w1, . . . , wk} containing keywords shared bit-by-bit using the HSS,
the servers will compute a sharing of

#{(x, Wx) ∈ DB : W ⊆ Wx}

To evaluate the query on a single entry of DB as an RMS program, we
maintain the result f as a secret-shared memory value, which is initially set to
1. We then iterate over each query keyword wi ∈ W , letting wij denote the j-th
bit of wi, and update f as

f :=
∑

wx∈Wx

f ·
m

∏

j=1
(1 ⊕ wx

j ⊕ wij)

Note that the i-th product evaluates to 1 iff xx = wi, and since all wx are
distinct, at most one of these will be 1. Multiplication by f applies a conjunction
with the previous keyword, and must be performed inside the summation as f
is a memory value. All other product terms are linear functions (over Z) in the
inputs wi (via a⊕b = a+b−2ab), so each product can be evaluated left-to-right
as an RMS program, for a total of m · � · k RMS multiplications after iterating
over all k query keywords.

Comparison to SHE-based HSS. When using SHE, the number of homomor-
phic multiplications is roughly the same as our case, and the multiplicative depth
is log(m�k). For a concrete example, suppose that each document has m = 10
keywords of length � = 128 bits, and a client’s query has k = 4 keywords. Using
either our HSS scheme or HSS from SHE would need around 5120 multiplications
per document, with a multiplicative depth of 13. This needs SHE parameters
of log q ≈ 300 and dimension N = 8192 for the BFV scheme as above, whereas
with our scheme we can use the best case of Bmax = 2, giving log q ≈ 137 and
N = 4096. Using our secret-key HSS and LPR instantiation, the share size is
3N log q bits ≈ 210 kB, around 1/3 of the SHE ciphertext size using BFV. The
communication cost for the whole query would be 107 MB for our HSS, and
314 MB with BFV, whilst we estimate the computational costs of homomorphic
evaluation per document are around 2.5 s and 300 s, respectively, so even with



30 E. Boyle et al.

the relatively high communication cost, for matching several documents using
our HSS would certainly give a significant performance improvement.

However, one drawback of our approach is that handling SIMD computations
is more challenging, since the Bmax bound must be chosen much larger to account
for the coefficient growth of the plaintext polynomials, which may continue to
grow even when the packed plaintext messsages themselves are only bits. If
the number of documents in the database is large enough to warrant SIMD
processing then it seems likely that SHE will be preferable, since N = 8192
documents could be searched at once without increasing the parameters.

Pattern-matching queries. Suppose here that the client wants to search
for the occurrence of a pattern p = (p1, . . . , pm) ∈ {0, 1}m in each row
x = (x1, . . . , xN ) ∈ {0, 1}N . An RMS program for computing the pattern-
matching predicate, with public input x and private input p, can be done with
m · N multiplications using a similar method to the previous example, modified
slightly to compute the OR of matching p with every position in x.

Comparison to SHE-based HSS. When using SHE, this computation has
depth log(nm), also requiring around N · m homomorphic multiplications. The
comparison with our scheme is then similar to the keyword search example,
depending on the parameters chosen. For another example, if we have a fairly
large string of length N = 10000, and a pattern of size m = 100, then the SHE-
based HSS must support depth 20, giving parameters (N, log q) = (16384, 434).
Again, we can use our HSS with parameters for Bmax = 2, which lead to cipher-
texts around 8.5x smaller than with SHE.

Acknowledgements. We would like to thank the anonymous reviewers of Eurocrypt
2019 for their thorough and generous comments.
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Abstract. Since Cheon et al. introduced a homomorphic encryption
scheme for approximate arithmetic (Asiacrypt ’17), it has been recog-
nized as suitable for important real-life usecases of homomorphic encryp-
tion, including training of machine learning models over encrypted data.
A follow up work by Cheon et al. (Eurocrypt ’18) described an approxi-
mate bootstrapping procedure for the scheme. In this work, we improve
upon the previous bootstrapping result. We improve the amortized boot-
strapping time per plaintext slot by two orders of magnitude, from ∼1 s
to ∼0.01 s. To achieve this result, we adopt a smart level-collapsing tech-
nique for evaluating DFT-like linear transforms on a ciphertext. Also,
we replace the Taylor approximation of the sine function with a more
accurate and numerically stable Chebyshev approximation, and design
a modified version of the Paterson-Stockmeyer algorithm for fast evalu-
ation of Chebyshev polynomials over encrypted data.

Keywords: Fully Homomorphic Encryption · Bootstrapping

1 Introduction

Homomorphic Encryption (HE) refers to a specific class of encryption schemes
which allows computing directly on encrypted data without having to decrypt.
Due to this special property, it has numerous potential applications in data-heavy
industries, where one challenge is to gain meaningful insights from data while
keeping the data itself private. Since the first construction of HE by Gentry [23],
the field has witnessed a lot of growth: more efficient schemes (e.g. [7–9,17,18,20,
22]) have been proposed, and there has been various design and implementations
(e.g. [4,6,10,12,19,25]) of confidential computing applications using HE.

However, the HE-based solutions have two issues when we apply them to
applications which requires arithmetic on real numbers. The first issue is plain-
text growth: the native plaintext in the HE schemes belong to a certain finite

Most of this work was done while the second author was an intern in the Cryptography
Research group at Microsoft Research (Redmond, USA).

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11477, pp. 34–54, 2019.
https://doi.org/10.1007/978-3-030-17656-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17656-3_2&domain=pdf
http://orcid.org/0000-0003-4457-6231
http://orcid.org/0000-0002-0496-9789
https://doi.org/10.1007/978-3-030-17656-3_2


Improved Bootstrapping for Approximate Homomorphic Encryption 35

space. In order to encrypt a real number, one needs to first scale it up to an
integer, so that the fractional part becomes the less significant digits. The size
of this scaled integer will grow as we perform homomorphic multiplications on
the ciphertext. Since the plaintext space is finite, after a certain number of
multiplications, it is impossible to recover the actual number. So, we need to
perform “scale down and truncate” operation on encrypted data. However, it
is an expensive operation since the available HE schemes only support addition
and multiplication.

The second issue is ciphertext growth. Following Gentry’s blueprint, a fresh
encryption contains a small amount of “noise”, and the noise level grows as
operations are done on the ciphertext. It is necessary that the noise does not
overwhelm the actual data within a ciphertext. To achieve this, one could use
the Somewhat Homomorphic Encryption (SHE) approach, where the parameters
are scaled up with the level of the circuit to be evaluated so that noise overflow
is unlikely. Using SHE, both the ciphertext size and the performance overhead
of HE will grow at least linearly with the circuit level, hence this approach has
scaling issues. The other option is the Fully Homomorphic Encryption (FHE)
approach, which uses Gentry’s bootstrapping technique to refresh the noise in a
ciphertext, so that circuit of arbitrary level can be evaluated on a fixed set of
parameters. The FHE approach solves the ciphertext growth problem, with the
caveat being that bootstrapping is expensive in practice despite the continuous
effort in optimizations.

In 2017, Cheon et al. [16] proposed a HE scheme (denoted by CKKS scheme
from now) which performs approximate arithmetic on encrypted data, by intro-
ducing a novel encoding technique and a fast “scaling down” operation, which
effectively controls the growth of plaintext. Due to the nice properties, the CKKS
scheme performs well at tasks such as training a logistic regression over encrypted
data on a medium-sized data set with around 1000 samples [30]. Recently, a
bootstrapping algorithm for the CKKS scheme was proposed in [14]. Using the
bootstrapping procedure, one could train a logistic regression model over data
sets with more than 4 × 105 samples in around 17 h [29].

1.1 Previous Bootstrapping Method for CKKS

In the CKKS scheme, the ciphertext modulus q decreases after each homomor-
phic multiplication, and decryption is correct if and only if the norm of the mes-
sage is smaller than q. Hence, one can only perform a certain number of sequential
multiplications before q gets too low for the next multiplication. Hence, boot-
strapping amounts to the following function: giving a ciphertext ct with modulus
q encrypted under the secret sk such that

[〈ct, sk〉]q = m,

bootstrapping outputs a ciphertext ct′ in a larger modulus Q > q such that

[〈ct′, sk〉]Q ≈ m,



36 H. Chen et al.

Note that we do not hope to have exact equality, due to the approximate nature
of CKKS.

Given this goal, the bootstrapping method in previous work [14] starts by the
following observation: if ct is a ciphertext with modulus q and message m(X),
then for a larger modulus Q � q, the same ciphertext decrypts to t(X) =
m(X) + q · I(X) for a polynomial I(X) with small coefficients. The next step
approximately evaluates the modulo q function on coefficients to recover the
coefficients mi = [ti]q of the input plaintext. It is done by first taking the d-th
Taylor polynomial of the scaled exponential function exp(2πit/(2r · q)), raising
the polynomial to power 2r through repeated squaring, and finally taking the
imaginary part and scale by q/(2π). In other words, we have an approximation
polynomial indexed by d and r:

Kd,r(t) =
q

2π

[
d∑

k=0

1
k!

(
2πit

2r · q

)k
]2r

,

whose imaginary part approximates values of (q/2π) · sin(2πt/q) ≈ [t]q, as
desired. One issue remaining is that homomorphic operations are not performed
on coefficients but on plaintext slots. Before and after the evaluation of an expo-
nential function, we have to shift the coefficients into the plaintext slots, and
vice versa. It can be done by evaluating the encoding and decoding algorithms
which are linear transformations on plaintext vectors.

Why the previous method does not scale well. There have remained some
efficiency issues in the previous work. First, the parameters of Kd,r(t) were cho-
sen by d = O(1) and r = O(log q) to guarantee the accuracy of approximation.
It requires only O(log q) homomorphic operations to evaluate the exponential
function, but the depth O(log q) is somewhat large. Meanwhile, the linear trans-
formations require only one level, but their complexity grows linearly with the
number of plaintext slots. As a result, the previous solution was not scalable
when a ciphertext is densely-packed, and it was not optimal with respect to the
level consumption.

1.2 Our Contribution

In this paper, we suggest two improvements upon the bootstrapping algorithm
in [14].

Linear transforms. To improve the linear transform step, we first observed
that the linear transforms involved in the bootstrapping process admit FFT-like
algorithms, which requires more levels but less operations. Then, in order to
fully explore the trade-off between level consumption and number of operations,
we adopted an idea from Halevi and Shoup in [27], which uses a dynamic pro-
gramming approach to decide the optimal level collapsing strategy for a generic
multi-leveled linear transforms. As a result, our linear transforms are faster while
being able to operate on 2-128x more slots, resulting in a large increase on the
bootstrapping throughput.
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Sine approximation. Then, we used a Chebyshev interpolant to approximate
the scaled sine function, which not only consumes less levels but also is more
accurate than the original method. Our results indicate that in order to achieve
the same level of approximation error, our method only requires max{log K +
2, log log q} levels, whereas the previous solution requires O(log(Kq)) levels. Here
q is closely related to the plaintext size before bootstrapping, and K = O(λ) is
related to the security parameter and is small in practice.

In order to evaluate a Chebyshev interpolant of form
∑n

k=0 ckTk(x) efficiently
on encrypted inputs, we proposed a modified Paterson-Stockmeyer algorithm
which works for polynomials represented in Chebyshev base. As a result, our
approach requires O(

√
max{K, log q}) ciphertext multiplications to evaluate the

sine approximation, compared to O(log(Kq)) in the previous work.

1.3 Related Works

There has been a few works which focus on improving the performance of boot-
strapping. In terms of throughput, the works [11,24,28] designed optimized boot-
strapping algorithms for BGV/BFV schemes. In terms of latency, the line of work
[17,18,20] designed a specific RLWE-based HE scheme suitable for bootstrap-
ping, and through extensive optimizations brought the bootstrapping time down
to 13 ms. However, the scheme encrypts every bit separately, and bootstrapping
needs to be performed after every single binary gate. Hence the overhead is still
quite large for it to be practical in large scale applications.

Our major point of comparison is [14], bootstrapping for the CKKS approx-
imate homomorphic encryption scheme. It is based on a novel idea of using a
scaled sine function 1

2π sin(2πt/q) to approximate the modulus reduction func-
tion [t]q.

1.4 Road Map

In Sect. 2, we recall the constructions and properties of the CKKS scheme and its
bootstrapping algorithm. In Sect. 3, we describe our optimization of the linear
transforms. In Sect. 4, we discuss our optimization of the sine evaluation step in
CKKS bootstrapping using Chebyshev interpolants. We analyze our improved
bootstrapping algorithm and present performance results in Sect. 5. Finally, we
conclude in Sect. 6 with future research directions.

2 Background

2.1 The CKKS Scheme

We restate the CKKS scheme [16] below. For a power-of-two integer N , we
denote R = Z[X]/(XN + 1) be the ring of integers of the (2N)-th cyclotomic
field. A single CKKS ciphertext can encrypt a complex vector with � ≤ (N/2)
entries. To be precise, let ζ = exp(πi/2�) be a (4�)-th primitive root of unity
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for a power-of-two integer 1 ≤ � ≤ N/2. The decoding algorithm takes as the
input an element m(Y ) of the cyclotomic ring R[Y ]/(Y 2� + 1) and returns a
vector Decode(m) = (m(ζ),m(ζ5), . . . , m(ζ4�−3)). Note that Decode is a ring
isomorphism between R[Y ]/(Y 2� + 1) and C

�/2. If we identify m(Y ) with the
vector m = (m0, . . . ,m2�−1) of its coefficients, then the decoding algorithm can
be viewed a linear transformation whose matrix representation is given by

M� =

⎡
⎢⎢⎢⎣

1 ζ ζ2 . . . ζ2�−1

1 ζ5 ζ5·2 . . . ζ5(2�−1)

...
...

...
. . .

...
1 ζ4�−3 ζ(4�−3)·5 . . . ζ(4�−3)(2�−1)

⎤
⎥⎥⎥⎦ ,

i.e., Decode(m) = M� · m . The encoding algorithm is defined by its inverse.
When we implement the decoding function, we first define the special Fourier
transformation matrix

SF� =

⎡
⎢⎢⎢⎣

1 ζ . . . ζ�−1

1 ζ5 · · · ζ5(�−1)

...
...

. . .
...

1 ζ4�−3 . . . ζ(4�−3)(�−1)

⎤
⎥⎥⎥⎦ ,

which is an � × � square matrix satisfying M� = [SF�|i · SF�]. Then, the decoding
and encoding algorithms can be represented using the multiplication with SF�,
its inverse and some conjugations.

We embed plaintext polynomials in R[Y ]/(Y 2� + 1) into R[X]/(XN + 1) by
Y �→ XN/2�. We say that a plaintext is fully packed (full-slot) when � = N/2.
An encoded polynomial should be rounded to the closest integral polynomial in
R to be encrypted.

• Setup(1λ). Given the security parameter λ, choose a power-of-two integer N .
Set the distributions χkey, χerr, χenc on R for the secret, error, and encryption,
respectively. For a base integer p and the number of levels L, set the chain of
ciphertext moduli q� = p� for 1 ≤ � ≤ L. Choose an integer P .

• Keygen(). Sample s ← χkey and set the secret key as sk ← (1, s). Sample
a ← U(RqL

) and e ← χerr, and set the public key as pk ← (b, a) ∈ R2
qL

for
b = −as + e (mod qL). Sample a′ ← RP ·qL

, e′ ← χerr and set evaluation key
as evk ← (b′, a′) ∈ R2

P ·qL
for b′ = −a′s + e′ + Ps2 (mod P · qL).

• Encpk(m). Sample r ← χenc and e0, e1 ← χerr. Output the ciphertext ct =
r · pk + (m + e0, e1) (mod qL). Note that 〈ct, sk〉 (mod qL) is approximately
equal to m.

• Decsk(ct). For an input ciphertext of level �, compute and output m = 〈ct, sk〉
(mod q�).

We remark that the encryption procedure of CKKS introduces an error so its
decrypted value is not exactly same as the input value. We describe homomor-
phic operations (addition, multiplication, scalar multiplication, and rescaling) as
follows.
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• Add(ct, ct′). For ciphertexts ct, ct′ in the same level �, output ctadd = ct + ct′

(mod q�).
• CMultevk(a, ct). For a constant a ∈ R and a ciphertext ct of level �, output

ctcmult = (d0, d1) + �P−1 · d2 · evk� (mod q�).
• Multevk(ct, ct′). For ct = (c0, c1), ct′ = (c′

0, c
′
1) ∈ R2

q�
, let (d0, d1, d2) =

(c0c′
0, c0c

′
1 + c′

0c1, c1c
′
1) (mod q�). Output ctmult = (d0, d1) + �P−1 · d2 · evk�

(mod q�).
• Rescale�→�′(ct). For an input ciphertext of level �, output ct′ = �p�′−� · ct� ∈

(mod q�′).

We note that {1, 5, . . . , 2� − 3} is a cyclic subgroup of the multiplicative
group Z

×
2� generated by the integer 5. One can rotate or take the conjugate of

an encrypted plaintext by evaluating the maps Y �→ Y 5 or Y �→ Y −1 based
on the key-switching technique. Certain evaluation keys should be published to
perform these algorithms (see [14] for details).

• Rotaterk(ct; k). For an input encryption of m(Y ), return an encryption of
m(Y 5k

) in the same level. The encrypted plaintext vector is shifted by k
slots.

• Conjugateck(ct). For an input encryption of m(Y ), return an encryption of
m(Y −1) in the same level. It takes the conjugation of the encrypted plaintext.

In applications of CKKS, we usually multiply a scaling factor to plaintexts
to maintain the precision of computations. The rescaling algorithm can divide
an encrypted plaintext by a power of p and preserve the size of scaling factors
during homomorphic arithmetic.

2.2 Previous Bootstrapping for CKKS

Cheon et al. [14] showed how to refresh a ciphertext of the CKKS scheme. In
this section, we briefly explain the previous solution.

Suppose that we have a low-level ciphertext ct ∈ R2
q encrypting m(Y ) ∈

Z[Y ]/(Y 2� + 1) ⊆ R, i.e., 〈ct, sk〉 (mod q) ≈ m(Y ). Recall that m(Y ) can
be identified with an �-dimensional complex vector z = Decode(m). The goal
of boostrapping is to generate a high-level ciphertext ct′ satisfying 〈ct′, sk〉
(mod Q) ≈ m(Y ) by evaluating the decryption circuit homomorphically.

The first step raises up the modulus of an input ciphertext. We have that
[〈ct, sk〉]Q0 ≈ q · I(X) + m(Y ) for some Q0 > q and I(X) ∈ R. The coefficients
of I(X) is bounded by a constant K which depends on the secret distribution
χkey. Then, we perform the subsum procedure which generates a ciphertext ct′

such that 〈ct′, sk〉 ≈ (N/2�) · t(Y ) (mod Q0) for J(Y ) = I0 + IN/2� · Y + · · · +
I(2�−1)N/2� · Y N−1 and t(Y ) = q · J(Y ) + m(Y ).1 The constant (N/2�) can be
canceled by the rescaling process.

1 The subsum algorithm can be understood as the evaluation of trace with respect to
the field extension Q[X]/(XN +1) ≥ Q[Y ]/(Y 2� +1). It does nothing when � = N/2.
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The coefficients to slots step, denoted by coeffToSlot, is to generate an encryp-
tion of the coefficients of t(Y ) = q · J(Y ) + m(Y ), i.e., a ciphertext ct′′ which
satisfies that

[〈ct′′, sk〉]Q1 ≈ Encode(t)

for some Q1. This step can be done by homomorphically evaluating the encod-
ing algorithm which is a variant of complex Fourier transformation. We point
out that the resulting ciphertext should encrypt an (2�)-dimensional vector
(t0, . . . , t2�−1) compared to the input ciphertext with � plaintext slots, so we
need to generate two ciphertexts encrypting halves of coefficients when the full-
slot case � = N/2.

Now we have one or two ciphertexts which encrypt ti = q ·Ji +mi for 0 ≤ i <
2� in their plaintext slots. The goal of next step (evalExp) is to homomorphically
evaluate the reduction modulo q function and return ciphertexts encrypting mi =
[ti]q in plaintext slots. Since the modulo reduction is not a polynomial function,
the previous work used the following approximation by a trigonometric function
which has a good accuracy under the condition that |m| � q:

[t]q = m ≈ q

2π
sin

(
2πt

q

)
.

For the evaluation of this sine function, we first evaluate the polynomial

P−r(t) =
d∑

k=0

1
k!

(
2πt

2r · q

)k

≈ exp
(

2πit

2r · q

)

for some integers r and d, which is the d-th Taylor polynomial of complex
exponential function. Then, we can recursively perform the squaring r times
Pi+1(x) = Pi(x)2 to get an encryption of

P0(t) = [P−r(t)]2
r ≈ exp(2πit/q)

whose imaginary part is sin(2πit/q) as desired. The output of evalExp is one or
two ciphertexts which contains approximate values of [ti]q = mi in their plaintext
slots.

During the evalExp step, one needs to multiply a scaling factor δ · q to
encrypted values for an appropriate constant δ to keep the precision of com-
putation. A larger scaling factor will consume more ciphertext modulus while
a small scaling factor makes the result less accurate. Table 1 summarizes the
consumption of modulus bits and relative error from approximation based on
the parameter Set-I which uses the initial polynomial of degree d = 7 and r = 6
iterations.

Finally, the slots to coefficients (slotToCoeff) stage is exactly the inverse of
coeffToSlot. It homomorphically evaluates the decoding algorithm to get a cipher-
text such that [〈ct′′′, sk〉]Q2 ≈ m(Y ) for some Q2. We stress again that ct′′′ has �
plaintext slots, the same as the input ciphertext ct. The slotToCoeff step merges
two output ciphertexts of evalExp and returns a fully packed ciphertext in the
full-slot case. Otherwise, the number of plaintext slots is reduced from 2� to �
during the evaluation.
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Table 1. Comparison of different log T and log I values

Params log δ Mod bit consumption Relative error

Set-I

4 337 0.00083

3 327 0.002

2 317 0.003

3 Improved Linear Transforms from Level-Collapsing

In this section, we present a method to improve the performance of linear trans-
formations coeffToSlot and slotToCoeff.

3.1 FFT-like Algorithms for coeffToSlot and slotToCoeff

The coeffToSlot and slotToCoeff steps in the original bootstrapping algorithm
amounts to two linear transforms that are mutual inverses to each other. More
precisely, slotToCoeff includes the computation z �→ SF� · z where SF� is the
special Fourier transformation matrix defined in the previous section. Meanwhile,
coeffToSlot is equivalent to computing the map SF−1

� on the plaintext vector. In
order to evaluate these transforms on a ciphertext encrypting the vector z, the
previous work [14] adopted the diagonal method combined with a baby step-giant
step trick.

We begin by noting that similar to the Cooley-Tukey butterfly algorithm for
DFT, the linear transform SF� can be expressed as a sequence of “butterfly”
operations. The following algorithm is taken from the HEAANBOOT library [13].

Algorithm 1: FFT-like algorithm for evaluating SF�

Input: � > 1 a power of 2 integer; z ∈ C
�, and a precomputed table Ψ of

complex 4�-roots of unities Ψ [j] = exp(πij/2�), 0 ≤ j < 4�.
Output: w = SF� · z

1 w = z
2 bitReverse(w, �)
3 for ( m = 2; m ≤ �; m = 2m ) {
4 for ( i = 0; i < �; i = i + m ) {
5 for ( j = 0; j < m/2; j = j + 1 ) {
6 k = (5j mod 4m) · �/m
7 U = w[i + j]
8 V = w[i + j + m/2]
9 V = V · Ψ [k]

10 w[i + j] = U + V
11 w[i + j + m/2] = U − V

12 }
13 }
14 }
15 return w
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In the beginning of Algorithm1, a bit-reversal is performed, which effec-
tively permutes the input vector. Then, the algorithm performs log � layers of
transforms. Similarly, we can invert the above algorithm to obtain an FFT-like
algorithm to compute SF−1

� , which starts with � levels of transforms, followed
by a bit-reversal.

3.2 Our Solution

First, we observe that for the purpose of bootstrapping, the bit-reversal opera-
tions are not necessary in the linear transforms. This is because bit-reversal is
a permutation of order 2, and the sine evaluation is a SIMD (single instruction
multiple data) operation, i.e., the same operation is performed independently on
each slot. Hence, bit-reversals right before and after the sine evaluation will can-
cel themselves out. Therefore, we only need to perform the butterfly transforms
homomorphically. For ease of notations, we still use SF� to denote the linear
transform in lines 3–15 of Algorithm 1.

Next, we note that each layer of Algorithm 1 can be implemented using two
slot rotations and three SIMD plaintext multiplications. More precisely, the i-th
iteration in Algorithm 1 can be represented as

w := a[i] � w + b[i] � (w � 2i−1) + c[i] � (w � 2i−1),

where w � j (resp. w � j) denotes rotating the vector w to the left (resp.
right) by j slots, and � denotes the component-wise multiplication between
vectors. The vectors a[i],b[i], c[i] ∈ C

� can be precomputed. This gives us a direct
algorithm to evaluate linear transform SF� on an encrypted vector in CKKS
scheme using log � levels and O(log �) operations. In contrast, the approach in
[14] requires one level and O(�) operations to evaluate SF�.

In practice, a hybrid approach might work better than the above two
extremes. For example, we can trade operations for levels by “collapsing” some
levels in the above algorithm. We will elaborate on this method below.

3.3 Optimal Level-Collapsing from Dynamical Programming

First we recall the idea of Halevi and Shoup [27]. The task is to apply a sequence
of linear transforms L1 ◦ · · · ◦ L� on some input, and each evaluation consumes
one “level”. One is allowed to collapse some levels by merging some adjacent
transforms into one. For example, for n = 4 we could merge into two levels
by letting M1 = L1 ◦ L2 and M2 = L3 ◦ L4. Assuming there is a cost function
associated to every linear transform, it is an optimization problem to find the best
level collapsing strategy that minimizes the cost. More precisely, let Cost(a, b)
denote the cost of evaluating La ◦ · · · ◦ Lb−1 and let �′ ≤ � be an upper bound
on the level. Then we wish to solve the following optimization problem:

min
a0=1<a1<...<ak<ak+1=�+1,

k+1≤�′

k∑
i=0

Cost(ai−1, ai).



Improved Bootstrapping for Approximate Homomorphic Encryption 43

To solve for an optimal solution, we recall the idea outlined in [27] as follows.
Let Opt(d, �′) be the optimal cost to evaluate the first d linear transforms using
�′ levels. Then

Opt(d, �′) = min
1≤d′≤d

Cost(d − d′, d + 1) + Opt(d − d′, �′ − 1).

We can then use a dynamic programming algorithm to compute the optimal
strategy as a list of splitting points (a1, . . . , ak). Given this optimal level col-
lapsing strategy, we can generate the collapsed levels by merging the individual
layers.

Applying level-collapsing to our case. First, we give an example of how
levels can be merged. Recall that the i-th level of Algorithm 1

w := a[i] � w + b[i] � (w � 2i−1) + c[i] � (w � 2i−1).

Suppose we merge the layers i and i + 1. Then the new linear transform is

w := a[i + 1] � (
a[i] � w + b[i] � (w � 2i−1) + c[i] � (w � 2i−1)

)
+ b[i + 1] � (

a[i] � w + b[i] � (w � 2i−1) + c[i] � (w � 2i−1))
) � 2i

+ c[i + 1] � (
a[i] � w + b[i] � (w � 2i−1) + c[i] � (w � 2i−1)

) � 2i

= A � w + B � (w � 2i−1) + C � (w � 2i−1) + D � (w � 2i)

+ E � (w � 2i) + F � (w � 3 · 2i−1) + G � (w � 3 · 2i−1)

for some vectors A,B, . . . , G. Overall, this merged layer requires 6 rotations and
7 plaintext multiplications. In general, if we merge some layers together, then
we end up with a merged layer which looks like

w :=
k∑

i=1

p[i] � (w � ti)

for some precomputable vectors p[i] and integers ti, and requires (k−1) rotations
and k plaintext multiplications to evaluate. To further reduce the complexity,
we can utilize a baby step-giant step method to reduce the number of rotations
to about 2

√
k. Note that in a new version of the implementation of the CKKS

scheme [1], plaintext multiplication takes much less time than rotation. There-
fore, we define the cost of the merged layer as 2

√
k. In the following Fig. 1, we

present the optimal costs for different � and level upper bounds.
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Fig. 1. Optimal complexity (number of rotations) of FFT-like algorithm with respect
to the depth and number of slots

4 Improved Sine Evaluation from Chebyshev
Approximations

4.1 Background: Chebyshev Polynomials and Chebyshev
Interpolants

Recall that the Chebyshev polynomials is a family of polynomials {Tn(x)}n≥0

defined by the recurrence relation:

T0(x) = 1
T1(x) = x

T2n(x) = 2Tn(x)2 − 1
T2n+1(x) = 2Tn(x) · Tn+1(x) − x.

(1)

Given a Lipschitz continuous function f defined on the interval [−1, 1], the
n-th Chebyshev interpolant of f is defined as

pcheb
n (x) =

n∑
k=0

ckTk(x)

where the coefficients ck are uniquely determined such that pcheb
n (xj) = f(xj)

for
xj = cos(jπ/n), for 0 ≤ j ≤ n.

Let p∗
n denote the minimax polynomial of degree ≤ n which minimizes the

infinity norm ‖f − p∗
n‖∞. It would be optimal to use p∗

n as a polynomial approx-
imation to f . However, computing such polynomials is not trivial in practice.
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On the other hand, Chebyshev interpolants are not only easy to compute, but
also almost as good as the minimax approximation. More precisely, we have the
following formula from [21]:

‖f − pcheb
n ‖∞ ≤

(
2
π

log n + 2
)

· ‖f − p∗
n‖∞. (2)

4.2 Chebyshev Interpolants of the Sine Function

Recall that in the bootstrapping procedure, we need to homomorphically
evaluate

q

2π
sin

(
2πt

q

)
.

with t ∈ [−Kq,Kq]. After a change of variables, we see that it suffices to evaluate

g(x) :=
1
2π

sin(2πKx)

with x ∈ [−1, 1]. Our goal is to find a polynomial p(x) with small degree such
that ‖g − p‖∞ is small. How good can the approximation be? For the scaled
sine function g, it has been shown (see e.g. [26]) that the minimax error εn =
‖g − p∗

n‖∞ satisfies

lim sup
n→∞

nε1/n
n =

eK

2
. (3)

Therefore, εn decreases like
(

eK
2n

)n
as n → ∞, i.e., the approximation error

decreases super-exponentially as a function of the degree n. So, the log n loss
factor from replacing the minimax approximation with Chebyshev interpolant
is almost negligible compared to the decreasing speed of εn. Hence, Chebyshev
interpolants provide a decent approximation of the sine function in our boot-
strapping algorithm.

We compare the Chebyshev interpolant approach with the approach in [14].
Recall that [14] first uses a Taylor polynomial of exp(2πiKx/2r) of degree d
to approximate it. Then, it performs r repeated squaring operations to obtain
an approximation of exp(2πiKx). Finally, g(x) is equal to 1/(2π) times the
imaginary part of exp(2πiKx). In Fig. 2 below, we present the log-log plot of
approximation error versus polynomial degree for different values of d.

From the plot, we see that the Chebyshev interpolant achieves small error
quickly for degree less than 128. On the other hand, the [14] approach requires a
much larger degree to reach the same error when d = 7. For a larger d = 55, the
difference between the approaches becomes smaller. However, since the Taylor
coefficients of exp(2πKix/2r) decrease super-exponentially, evaluating such a
large degree Taylor approximation is likely to result in large numerical errors.
Therefore, we decided to use Chebyshev interpolants for approximating the sine
function.
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4.3 Computing Chebyshev Polynomials in FHE

The Chebyshev coefficients ck of the scaled sine function g can be precomputed
and stored. Next, our task is to evaluate

∑n
k=0 ckTk(x) homomorphically. There

are several choices:
Since each Tk(x) is a polynomial in x, we could rewrite pcheb

n (x) as
∑n

k=0 c′
kxk,

and use any existing method for homomorphic evaluation of polynomials in one
variable in the literature. However, the transition matrix between the ck and
c′
k coefficients is ill-conditioned (actually, its conditional number grows expo-

nentially as a function of n (see e.g. [3]), and the coefficients c′
k differ by many

orders of magnitude. Therefore, the evaluation is likely to generate large numer-
ical errors, even over unencrypted input.

A better method is to use the recurrence relation (1) to evaluate Tk(x) for 0 ≤
k ≤ n, and then compute

∑
ckTk(x) using scalar multiplications and additions.

This method yields smaller numerical errors in practice. However, the efficiency is
sub-optimal: we still need O(n) homomorphic multiplications in order to evaluate
a degree-n Chebyshev interpolant.

Paterson-Stockmeyer for Chebyshev. Our next idea is to use the Paterson-
Stockmeyer algorithm [31], which requires only O(

√
n) non-scalar multiplications

to evaluate a polynomial of degree n in x. However, we could not directly apply
this algorithm since it requires the polynomial to be presented in the power base
1, x, . . . , xn. Of course, one could rewrite the Chebyshev interpolant in power
base first, and then execute the Paterson-Stockmeyer algorithm. But as we dis-
cussed above, such method is subject to large numerical errors, hence it is not a
desirable solution.
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Instead, we propose a new approach by modifying the Paterson-Stockmeyer
algorithm to directly evaluate Chebyshev interpolants. As a result, we can eval-
uate a Chebyshev interpolant of degree n with

√
2n + O(log n) non-scalar mul-

tiplications. In order to describe our algorithm, we first recall the Paterson-
Stockmeyer algorithm in [31]:

Algorithm 2: The original Paterson-Stockmeyer algorithm
Input: (a0, a1, . . . , an), u
Output: f(u) =

∑
i aiu

i

1 Find positive integers k, m such that k ≈ √
n/2 and k(2m − 1) > n

2 f̃(x) = f(x) + xk(2m−1)

3 Compute powers bs = (u, u2, . . . , uk), gs = (uk, u2k, u4k, . . . , u2m−1k)

4 Using long division, write f̃(x) = xk2m−1
q(x) + r(x)

5 Set r̃(x) = r(x) − xk(2m−1−1)

6 Using long division, write r̃(x) = c(x)q(x) + s(x)
7 Evaluate c(x) at u using the precomputed powers

8 Set s̃(x) = s(x) + xk(2m−1−1)

9 Recursively evaluate q(x) and s̃(x) at u (with lines 1-3 skipped)

10 Compute f̃(u) = (uk(2m−1) + c(u))q(u) + s̃(u).

11 Compute uk(2m−1) by multiplying all values in gs

12 return f(u) = f̃(u) − uk(2m−1)

Now suppose we wish to use the Chebyshev basis {Tk(x)}k instead of the
power base in Algorithm 2. We can start by replacing every occurrence of xi in the
algorithm with Ti(x). Line 3 requires computing certain Ti(x) values, which can
be done in k+m operations using the recurrence formula (1). Thus we only need
an algorithm for long division of polynomials in Chebyshev base. That is, given
Chebyshev coefficients of polynomials f and g, output Chebyshev coefficients of
the quotient and remainder polynomials q and r such that deg q = deg f −deg g,
deg r < deg g and f = qg + r. A first attempt is to convert f and g to the power
base, perform long division as usual, and convert the resulting q and r back to
Chebyshev base. Again, this approach is likely to generate a lot of numerical
errors since the transform matrices are ill-conditioned. To resolve this issue, we
present a direct algorithm.

Long division for polynomials in Chebyshev base.

Lemma 1 (Long Division). Given two polynomials f and g with positive
degrees n and k given by their Chebyshev coefficients, there exists an algorithm
with O(k(n−k)) operations to compute the Chebyshev coefficients of polynomials
q(x) and r(x), such that deg q = deg f − deg g, deg r < deg g, and

f(x) = g(x)q(x) + r(x).
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Proof. For simplicity, we assume both f and g are monic, meaning their highest
Chebyshev coefficient is 1. We do it with induction on n = deg f . If n ≤ deg g
then we are done. Now suppose n > k = deg g and k ≥ 1. Let

r0(x) = Tn(x) − 2g(x)Tn−k(x).

Using the formula

Tm(x) = 2Ti(x)Tm−i(x) − T|m−2i|(x),

we see that deg(r0) < n, and we may compute the Chebyshev coefficients of
r0(x). Now we could recursively perform the division r0 by g to finish the algo-
rithm. The correctness is easy to verify, and since computing r0 requires O(k)
operations, the algorithm requires O(k(n−k)) operations. This finishes the proof.

Given the above lemma, we can modify Algorithm 2 to directly perform long
division of polynomials in Chebyshev base. We omit the detailed description of
the modified algorithm since it is straightforward. As a result, we have

Theorem 1. There exists an algorithm to evaluate a polynomial of degree n
given in Chebyshev base with

√
2n + O(log n) non-scalar multiplications and

O(n) scalar multiplications.

5 Putting it Together

5.1 Asymptotic Analysis

Combining the optimization techniques in Sects. 3 and 4, we come up with a
new bootstrapping algorithm for the CKKS scheme, whose complexity improves
upon the algorithm in [14]. We make a detailed comparison below:

Linear transforms. The subSum step remains unchanged from [14], which
requires O(N/2�) rotations. For the two transforms coeffToSlot and slotToCoeff,
recall that [14] takes O(

√
�) rotations and � plaintext multiplications, whereas

our algorithm provides a spectrum of trade-offs between level consumption and
operation counts. For example, if we fix the level budget to be �′ = 2, then both
the coeffToSlot and slotToCoeff requires O(�1/4) rotations and O(

√
�) plaintext

multiplications.

Sine evaluation. The approach of [14] to evaluate the sine approximation
requires a polynomial of degree d · 2r and O(d + r) ciphertext multiplications.
They took d = O(1) and r = O(log(Kq)) in order to achieve an approximation
error of O(1) for the function (q/2π) sin(2πt/q). Thus, both the required level
and the number of operations are O(log(Kq)).

In our case, we used a Chebyshev interpolant to approximate the sine func-
tion. From the results in Sect. 4, we see that it suffices to take n = max{4K, log q}
to achieve 1/q approximation error from (2) and (3). Therefore, our approach
consumes only log n ≤ max{log K + 2, log log q} levels. In terms of the num-
ber of operations, by using the modified Paterson-Stockmeyer algorithm, we can
evaluate the Chebyshev interpolant in O(

√
n) ciphertext multiplications.
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5.2 Implementation and Performance

Recently, the authors of [16] published a improved version [1] of the implemen-
tation of the CKKS scheme with faster operations. We implemented our boot-
strapping algorithm on top of the new version. In order to separate the causes of
speedups, we also experimented with the original bootstrapping algorithm with
the new library. We summarize our findings in Table 4.

Parameter choices. To benchmark the original bootstrapping algorithm, we
used the same parameter sets (Table 2) from [14]. We modified these parameters
slightly for our new bootstrapping algorithm. The modified parameters are pre-
sented in Table 3. We note that these modifications do not involve log N, log Q
or the initial noise in the ciphertexts, hence the security level remains the same
as previous work.

Table 2. Parameter sets

Parameter log N log Q0 log p log q r

Set-I
15 620

23 29 6
Set-II 27 37 7

Set-III
16 1240

31 41 7
Set-IV 39 54 9

Table 3. New parameter sets

Parameter log p log q lctos lstoc

Set-I∗ 25 29 2 2
Set-II∗ 25 34 2 2
Set-II∗∗ 27 37 2 1
Set-III∗ 33 41 2 2
Set-III∗∗ 35 41 3 3
Set-IV∗ 43 54 3 3
Set-IV∗∗ 43 54 4 4

In Table 3, the columns labeled lctos and lstoc denote the level consumption
for coeffToSlot and slotToCoeff, respectively. Note that larger levels result in less
operations. For the sine evaluation, we fixed K = 12 and a Chebyshev interpolant
of degree n = 119 based on experimental results. All experiments are performed
on a laptop with 2.8 GHz Intel Core i7 Processor and 16 GB memory, running
on a single thread.
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Table 4. Performance comparisons for bootstrapping: LT (linear transformations) tim-
ing is the sum of the timings for subSum, coeffToSlot and slotToCoeff. Precision is
averaged among all slots. The “After Level” column shows how many levels of multi-
plications are allowed after each bootstrapping.

Params logSlots Method LT
Sine Total Amortized Average After
Eval Time (s) Time (s) Precision Level

Set-I
7 [13] 139.2 12.3 151.5 1.2 7.64 8
7 [13] + [1] 36.1 5.26 41.36 0.32 7.64 8

Set-I* 10 This work 28.78 9.55 38.33 0.04 6.92 5

Set-II
7 [13] 127.3 12.5 139.8 1.1 9.9 1
7 [13] + [1] 43.9 8.73 52.63 0.41 9.9 1

Set-II∗ 8 This work 16.87 9.18 26.05 0.04 10.03 2
Set-II∗∗ 10 This work 37.11 9.18 85.83 0.08 9.1 1

Set-III
7 [13] 528 63 591 4.6 13.2 19
7 [13] + [1] 158.2 29.3 187.5 1.46 13.2 19

Set-III∗ 10 This work 154.28 47.7 201.98 0.2 13.7 17
Set-III∗∗ 12 This work 134.35 43.7 178.05 0.04 11.75 13

Set-IV
7 [13] 456 68 524 4.1 20.1 7
7 [13] + [1] 224.2 80.7 304.9 2.38 20.1 7

Set-IV∗ 12 This work 127.49 40.38 167.87 0.04 20.86 6
Set-IV∗∗ 14 This work 119.76 38.56 158.32 0.01 18.63 3

5.3 Comparison

In order to make a meaningful comparison of the efficiency of the different boot-
strapping methods/implementations, we need to provide a common measure,
and one such measure is the number of slots times the number of levels allowed
after bootstrapping, divided by the bootstrapping time. We argue that this def-
inition makes sense, since in the process of evaluating a typical circuit homo-
morphically, the frequency of bootstrapping should be inverse proportional to
the allowed multiplicative depth after bootstrapping. Also, since the complexity
of bootstrapping depends on the bit precision of the output, we plot the utility
versus precision in the following Fig. 3.
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Fig. 3. Bootstrapping utility comparisons

From Fig. 3, we see that our new algorithms can improve the utility of boot-
strapping by two orders of magnitude. For example, [14] could bootstrap numbers
with around 20 bits of precision with a utility of 2.94 (Level × Slot/Second).
With a slightly larger precision, we achieved a utility of 150, yielding a 50x
improvement.

6 Conclusion and Future Work

In this work, we showed that algorithmic improvements to the linear transforms
and sine evaluation steps could boost the efficiency of bootstrapping for the
CKKS approximate homomorphic encryption scheme by two orders of magni-
tude.

Our results suggest that using Chebyshev interpolant together with the
Paterson-Stockmeyer algorithm is a promising solution for approximately eval-
uating non-polynomial functions in FHE. For example, we could apply this idea
to evaluate the sigmoid function or the RELU function, which is interesting from
the point of view of doing machine learning over encrypted data. Also, this idea
can be applied to the absolute value function, which may expedite evaluation of
a sorting network over encrypted data.

The improved linear transform technique for the CKKS scheme can be used
to provide a fast evaluation of discrete Fourier transform (DFT) over encrypted
data, which might be of independent interest. Also, we could utilize our algo-
rithm to provide an efficient implementation of the conversion between CKKS
ciphertexts and ciphertexts from TFHE or BFV/BGV schemes, outlined in a
recent work [5].
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Recently, there is another variant of the CKKS scheme [15] based on the
Residue Number System (RNS), following an idea of Bajard et al. [2]. The
reported performance numbers of this new variant are up to 10x better than
the original implementation. Thus, it would be interesting to implement our
bootstrapping algorithm on this RNS variant to obtain even better performance.

References

1. HEAAN with Faster Multiplication (2018). https://github.com/snucrypto/
HEAAN/releases/tag/2.1

2. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

3. Beckermann, B.: On the numerical condition of polynomial bases: estimates for
the condition number of Vandermonde, Krylov and Hankel matrices. Ph.D. thesis,
Verlag nicht ermittelbar (1997)

4. Bonte, C., Bootland, C., Bos, J.W., Castryck, W., Iliashenko, I., Vercauteren, F.:
Faster homomorphic function evaluation using non-integral base encoding. In: Fis-
cher, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 579–600. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 28

5. Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for B/FV,
TFHE and HEAAN fully homomorphic encryption and predictions for deep learn-
ing. Cryptology ePrint Archive, Report 2018/758 (2018). https://eprint.iacr.org/
2018/758

6. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of ITCS, pp. 309–325. ACM
(2012)

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, pp. 97–106. IEEE Computer Soci-
ety (2011)

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

10. Chen, H., et al.: Logistic regression over encrypted data from fully homomorphic
encryption. BMC Med. Genomics 11(4), 81 (2018)

11. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 315–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 12

12. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1243–1255. ACM (2017)

https://github.com/snucrypto/HEAAN/releases/tag/2.1
https://github.com/snucrypto/HEAAN/releases/tag/2.1
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-66787-4_28
https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2018/758
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12


Improved Bootstrapping for Approximate Homomorphic Encryption 53

13. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Implementation of boostrapping
for HEAAN (2017). https://github.com/kimandrik/HEAANBOOT

14. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

15. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-
imate homomorphic encryption. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018.
LNCS, vol. 11349, pp. 347–368. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-10970-7 16

16. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

18. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

19. Crawford, J.L., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work
with FHE: the case of logistic regression. In: Proceedings of the 6th Workshop
on Encrypted Computing & Applied Homomorphic Cryptography, pp. 1–12. ACM
(2018)

20. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

21. Ehlich, H., Zeller, K.: Auswertung der normen von interpolationsoperatoren. Math.
Ann. 164(2), 105–112 (1966)

22. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012:144 (2012)

23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM
(2009)

24. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

25. Gilad-Bachrach, R., et al.: CryptoNets: applying neural networks to encrypted
data with high throughput and accuracy. In: International Conference on Machine
Learning, pp. 201–210 (2016)

26. Giroux, A.: Approximation of entire functions over bounded domains. J. Approx.
Theory 28(1), 45–53 (1980)

27. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

https://github.com/kimandrik/HEAANBOOT
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-662-44371-2_31


54 H. Chen et al.

28. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

29. Han, K., Hong, S., Cheon, J.H., Park, D.: Efficient logistic regression on large
encrypted data. Cryptology ePrint Archive, Report 2018/662 (2018). https://
eprint.iacr.org/2018/662

30. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Med. Genomics
11(4), 83 (2018)

31. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-
essary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)

https://doi.org/10.1007/978-3-662-46800-5_25
https://eprint.iacr.org/2018/662
https://eprint.iacr.org/2018/662


Minicrypt Primitives with Algebraic
Structure and Applications

Navid Alamati1,2(B), Hart Montgomery2, Sikhar Patranabis2,3,
and Arnab Roy2

1 University of Michigan, Ann Arbor, USA
alamati@gmail.com

2 Fujitsu Laboratories of America, Sunnyvale, USA
3 IIT Kharagpur, Kharagpur, India

Abstract. Algebraic structure lies at the heart of Cryptomania as we
know it. An interesting question is the following: instead of building
(Cryptomania) primitives from concrete assumptions, can we build them
from simple Minicrypt primitives endowed with some additional algebraic
structure? In this work, we affirmatively answer this question by adding
algebraic structure to the following Minicrypt primitives:

• One-Way Function (OWF)
• Weak Unpredictable Function (wUF)
• Weak Pseudorandom Function (wPRF)

The algebraic structure that we consider is group homomorphism
over the input/output spaces of these primitives. We also consider a
“bounded” notion of homomorphism where the primitive only supports
an a priori bounded number of homomorphic operations in order to cap-
ture lattice-based and other “noisy” assumptions. We show that these
structured primitives can be used to construct many cryptographic pro-
tocols. In particular, we prove that:

• (Bounded) Homomorphic OWFs (HOWFs) imply collision-resistant
hash functions, Schnorr-style signatures and chameleon hash func-
tions.

• (Bounded) Input-Homomorphic weak UFs (IHwUFs) imply CPA-
secure PKE, non-interactive key exchange, trapdoor functions, blind
batch encryption (which implies anonymous IBE, KDM-secure and
leakage-resilient PKE), CCA2 deterministic PKE, and hinting PRGs
(which in turn imply transformation of CPA to CCA security for
ABE/1-sided PE).

• (Bounded) Input-Homomorphic weak PRFs (IHwPRFs) imply PIR,
lossy trapdoor functions, OT and MPC (in the plain model).

In addition, we show how to realize any CDH/DDH-based protocol with
certain properties in a generic manner using IHwUFs/IHwPRFs, and
how to instantiate such a protocol from many concrete assumptions.
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We also consider primitives with substantially richer structure, namely
Ring IHwPRFs and L-composable IHwPRFs. In particular, we show the
following:

• Ring IHwPRFs with certain properties imply FHE.
• 2-composable IHwPRFs imply (black-box) IBE, and L-composable

IHwPRFs imply non-interactive (L + 1)-party key exchange.

Our framework allows us to categorize many cryptographic protocols
based on which structured Minicrypt primitive implies them. In addition,
it potentially makes showing the existence of many cryptosystems from
novel assumptions substantially easier in the future.

1 Introduction

An important question in the theory of cryptography is also one of the simplest to
state: what implies public-key cryptography? Ever since the (public) invention
of public-key encryption [DH76,RSA78], people have debated this important
question.

The history of symmetric-key cryptography goes back millenia–the Caesar
cipher is a classic example of old cryptography–and it has continued to evolve
through the centuries in different ways. There is a long list of ciphers, notably
including the Viginère cipher, the Enigma machine, and even modern ciphers like
AES, that can be thought of as the output of an enormous amount of human
effort to build secure symmetric-key encryption.

On the other hand, public-key cryptography is a very recent development
compared to symmetric-key cryptography. Many people thought that public-
key cryptography was impossible before the seminal work by Diffie and Hell-
man [DH76]. Although we can build symmetric-key ciphers from many different
assumptions, including some very simple ones, the known methods for realizing
public-key cryptography require at least some kind of mathematical structure.
This has led many to conjecture that public-key cryptography does, in fact,
require some mathematical structure.

Barak ruminated on this question in his recent work “The Complexity of
Public Key Cryptography” [Bar17]. As he puts it, “... it seems that you can’t
throw a rock without hitting a one-way function” but public-key cryptography
is somehow “special”. Barak implicitly argues that there is some mathematical
structure inherent in public-key cryptography: “One way to phrase the question
we are asking is to understand what type of structure is needed for public-key
cryptography.”

But many cryptosystems that interest people today are substantially more
complicated than basic public-key encryption (PKE). In recent years, primitives
like identity-based encryption [Sha84], fully homomorphic encryption [Gen09],
and functional encryption [BSW11] have captivated cryptographers. It is natu-
ral to ask: is there any sort of mathematical structure that is inherent to these
primitives as well? While there has been a substantial amount of work relating
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relatively similar primitives, to our knowledge no one has attempted to compre-
hensively examine the relationship between a broader collection of these higher-
level primitives.

In a celebrated work, Impagliazzo [Imp95] proposed “five worlds” of relative
complexity, which range from Algorithmica–where “efficient” algorithms for all
(worst-case) problems in NP exist and cryptography is essentially nonexistent–
to Cryptomania, a world in which public-key cryptography exists. Only two of
these worlds allow for cryptography: Minicrypt, where symmetric cryptographic
primitives exist but public-key cryptography does not, and the aforementioned
Cryptomania.

It turns out that Minicrypt is a fairly simple world. A number of famous
works have shown how to build the most commonly studied and used Minicrypt
primitives from one-way functions in a generic manner. For instance, one-way
functions imply pseudorandom generators [BM82,HILL99], which in turn can be
used to build pseudorandom functions [GGM84]. From these primitives, it has
long been known how to generically build symmetric-key encryption schemes
and digital signature schemes [Rom90].

On the other hand, Cryptomania is a significantly more complicated class. It
contains primitives that are very different, and it seems difficult to relate them in
a generic manner. We cannot expect to, say, build FHE from PKE in a black-box
manner, and there are many black-box separation results for cryptosystems in
Cryptomania (we discuss this more in our related work section). In fact, recently
it has even become popular to separate Cryptomania into two worlds: a world
where indistinguishability obfuscation (iO) [BGI+01,GGH+13b] doesn’t exist,
and a world called Obfustopia [GPSZ17] where it does.

This, of course, raises a fundamental question in the complexity of public-
key cryptography: can we construct classes of primitives within Cryptomania
(i.e. “continents” of Cryptomania) that are tightly tied to each other through
generic constructions? Ideally, we would want these “continents” to have strong
relationships with a particular primitive (similar to the relationship between
one-way functions and Minicrypt) where all of the cryptographic algorithms in
the class could be built from the given primitive in a generic manner, and the
given primitive would be conceptually the simplest function in the class.

The fact that most of the concrete assumptions that imply PKE (and also
many other cryptographic primitives) have some algebraic structure seems to
imply that perhaps we can classify cryptosystems by the algebraic structure
necessary for them to function. This leads us to the following question:

Is it possible to construct Cryptomania primitives from simple Minicrypt
primitives that are additionally equipped with some algebraic structure?

1.1 Our Contributions

In this work, we provide a constructive answer to the question of building PKE
(and other primitives in Cryptomania) from Minicrypt primitives with algebraic
structure. Let’s start by considering the following Minicrypt primitives:
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1. One-way Functions
2. Weak Unpredictable Functions
3. Weak Pseudorandom Functions

To add algebraic structure to the mentioned primitives, we assume that they are
(Input-)Homomorphic: the input and output spaces of the primitive are groups,
and the primitive is (bounded) homomorphic with respect to an efficiently com-
putable group homomorphism. We use the following primitives and abbreviations
throughout the paper:

• Homomorphic One-way Functions (HOWFs)1

• Input-Homomorphic Weak Unpredictable Functions (IHwUFs)
• Input-Homomorphic Weak Pseudorandom Functions (IHwPRFs)2

In the body of the paper we also consider “bounded” homomorphisms, where
the number of allowed homomorphisms is bounded by some function γ = γ(λ)
where λ is the security parameter, which lets us work with lattice-based and
other “noisy” cryptographic assumptions.

At this point we can informally state our main contribution: we
present a framework for building cryptographic primitives from HOWFs/
IHwUFs/IHwPRFs (see Fig. 1). This framework lets us categorize cryptographic
primitives by the type of structured Minicrypt primitive that implies them. How-
ever, we need to be able to instantiate the above general primitives from concrete
assumptions to have a useful framework. It turns out that we can instantiate our
primitives (in most cases) from a wide variety of assumptions, typically including
the assumptions that would be expected for such applications.

Instantiations from Concrete Assumptions. We show that “main-
stream” cryptographic assumptions such as DDH and LWE naturally imply
(bounded) HOWFs/IHwUFs/IHwPRFs. We also show that a (bounded) group-
homomorphic PKE implies a (bounded) IHwPRF. This allows instantiating these
primitives from any concrete assumption that implies a (bounded) homomorphic
PKE (e.g. QR and DCR). Unfortunately, there is a caveat to this: the transfor-
mation from homomorphic PKE to IHwPRF comes with a disadvantage that
the input space may depend on the key.3 The reader may refer to Fig. 2 for an
overview of instantiations from concrete assumptions.4

1 When the function does not have a key (i.e. a one-way function) we will drop the
“I” and refer to the function as simply homomorphic.

2 In case of IHwUFs/IHwPRFs we do not assume any homomorphism on the key
space.

3 This property is necessary to realize certain cryptographic primitives from IHwUFs
or IHwPRFs.

4 Notice that search to decision reductions are mostly for Gaussian-like distributions,
and there are certain distributions for which search to decision reduction is not
available.
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Minicrypt and Homomorphism
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[BLSV18]
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���: Homomorphism over Abelian groups.
U: Unbounded Homomorphism
*: Input space of IHwUF is independent of the the key.

Fig. 1. Cryptographic primitives from Minicrypt and Homomorphism.

Building Cryptosystems from New Assumptions. One of the benefits of
our work is the implications for new assumptions. Rather than manually building
lots of different cryptosystems from a new assumption, researchers only need to
build one (or more) of our simple structured primitives, and the existence of a
whole host of cryptosystems immediately follows.

To illustrate how this might be useful, let’s look at the history of lattice-based
cryptography: Ajtai and Dwork [AD97] gave a lattice-based PKE (following
Ajtai’s worst-case to average-case reductions for lattice problems [Ajt96]), but
lattice cryptography may have begun in earnest with Regev’s LWE paper [Reg05]
in 2005. This work, in addition to introducing the LWE problem, showed how
to build a basic PKE scheme from LWE as well. However, it took a while for
the cryptographic community to “catch up” to other group-based cryptosys-
tems: for instance, the first private information retrieval scheme from lattices
was presented in [AMG07], and the first identity-based encryption was given
in [GPV08].
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(Bounded) HOWF (Bounded) IHwUF (Bounded) IHwPRF
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Nth Residiosity

Approximate GCD
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U

*

*

���: Homomorphism over Abelian groups.
U: Unbounded Homomorphism
*: Input space depends on the the key.

Fig. 2. Instantiations from Concrete Assumptions

These works used sophisticated techniques on lattices in order to extend
the range of lattice-based cryptosystems. With our work, the existence of all
of these types of cryptosystems based on the LWE assumption follows imme-
diately from the simple observation that LWE implies a (bounded) IHwPRF.
While the necessary tools for many of our constructions were not around in 2008
(particularly [DG17b] and the line of work following it), we do hope that this
paper is useful for public-key cryptography assumptions in the future in terms
of feasibility results. Ideally, it will be easy to show the existence of many types
of cryptosystems for new assumptions using the tools from this paper.

More Primitives from Richer Structures. Although the main focus of this
work is to construct many cryptographic primitives from IHwUFs/IHwPRFs,
one might ask: what if we consider richer structures? For instance, what would
happen if we have a ring homomorphism for an IHwPRF instead of just a group
homomorphism? To partially answer this question, we consider two additional
structures over wPRFs:

• Ring Homomorphism: We consider Ring IHwPRFs (RIHwPRFs) where the
input and output spaces are rings, and the homomorphism is with respect to
ring operations (instead of just group operations).

• L-composability: We consider L-composable IHwPRFs, where L levels of IHw-
PRF operations compose with each other under certain conditions.

We summarize our results for these richly structured primitives in Fig. 3. We
remark that “*” means the order of the output ring of RIHwPRF is polynomial
in the security parameter.
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IBE
(L + 1)-Party
Key Exchange

L-composable
IHwPRF, L ≥ 2

(bounded) RIHwPRF (leveled) FHE

*

Fig. 3. Cryptographic primitives from richer structures.

While the structure of 2-composability appears similar to that of bilinear pairing
groups, we partially explore a possible separation between the two. We argue that
2-composability suffices to achieve three-party non-interactive key exchange and
simple black-box constructions of IBE. Subsequently, we also present a discus-
sion on why this primitive does not naturally yield other cryptographic protocols
implied by bilinear pairings. This leaves open the interesting question of whether
there exists some concrete assumption that implies 2-composability but not bilin-
ear pairings. The separation seemingly extends to the general L-composability
setting, in the sense that the structure of L-composability appears to be weaker
than that of a full-fledged multilinear map [GGH13a].

On the Categorization of Primitives. This work enables us to categorize dif-
ferent primitives based upon which structured Minicrypt primitive implies them.
But it is also possible to ask whether a given cryptosystem may be constructed
from some other structured Minicrypt primitive. For instance, is it possible to
construct PKE from a HOWF? A positive answer would imply that one can
base PKE on the discrete log problem, a long-standing (and potentially possi-
ble) goal in cryptography. We can build PKE from IHwUFs, but can we hope to
do better? Our work gives rise to interesting questions like this for future work,
and we discuss this more later in the paper.

It is easy to see that none of the three primitives HOWF/IHwUF/IHwPRF
can be built from PKE in a black-box manner [HHRS07], as all of them imply
collision-resistant hash functions. In addition to input homomorphisms, one may
consider other structures on Minicrypt primitives.

One of the simplest structures is what we term dual-computable. This notion
is certainly folklore, and some earlier works on PKE and key exchange implicitly
constructed this primitive. A dual-computable primitive is a tuple of keyed func-
tions (F1, G1, F2, G2) such that G1 (k1, F2 (k2, x)) = G2 (k2, F1 (k1, x)) where x
represents the input and ki represent keys. The reader may notice that this
primitive is almost an abstraction of key exchange if the functions are unpre-
dictable. It is not clear what kind of (minimal) structure over OWFs would imply
dual-computable functions (Fig. 4).
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Dual-computable Functions
IHwUF
IHwPRF

L-composable

Fig. 4. Implication Landscape

1.2 Related Works

Realizing public-key cryptography via some form of structure and hardness
has been studied seemingly since its invention. However, several recent works
have discussed this relationship in more detail. For instance, [BDV17] exam-
ined the relationship of structure and hardness through obfuscation lens, while
a recent work by Berman et al. showed that laconic zero-knowledge protocols
imply PKE [BDRV18]. Pietrzak and Sjödin [PS08] showed that a certain input
property of weak PRFs implies PKE. A recent survey [BR17] briefly discusses
structure and PKE through the lens of (strengthened) PRFs.

A number of works have shown how to build certain cryptosystems from
cryptographic primitives with algebraic structure. These include commitment
schemes, CRHF, IND-CCA secure PKE, PIR, and key-dependent message
(KDM) secure PKE [IKO05,HO12,KO97,HKS16]. Of particular relevance to
us is the work of Hajiabadi et al. [HKS16] on using homomorphic weak PRFs to
build KDM secure PKE.5

There are other related black-box constructions (or implications in a non-
black-box way) between cryptographic primitives, some of which we utilize in
our work. For instance, Ishai et al. showed how to construct secure computation
protocols from enhanced trapdoor functions (or homomorphic PKE) [IKLP06].
Rothblum [Rot11] showed a transformation of a secret-key encryption (SKE)
scheme with some special form of weak homomorphism into a PKE that has
similar properties. Black-box constructions have been shown for resettable zero-
knowledge arguments [OSV15] and cryptographic accumulators [DHS15]. Many
cryptographic primitives have been realized in a black-box manner from lossy
trapdoor functions [PW08,BHY09,GPR16]. Very recently, Friolo et al. [FMV18]
showed how to build secure multi-party computation from what they call
strongly uniform key agreement and Fischlin and Harasser [FH18] showed the
equivalence of invisible sanitizable signatures and PKE.

Understanding the complexity of various public-key primitives also requires
knowledge of black-box separations, which have been extensively studied in the
literature. This (non-exhaustively) includes studies separating IBE from CRHFs
(and thus FHE) [MM16], separating indistinguishability obfuscation (iO) from
certain primitives (for instance, CRHFs) [AS15,MMN+16], separating succinct
non-interactive arguments from falsifiable assumptions [GW11], and showing

5 As mentioned earlier, we refer to this primitive as Input-Homomorphic weak
PRF (IHwPRF) to emphasize that the homomorphism is on the input space and
not on the key space.
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that garbling of circuits having one-way function gates are not sufficient to realize
PKE [GHMM18]. These separations (and related works) allow us to clearly see
that some primitives are not equivalent, at least modulo certain assumptions. We
refer the reader to [RTV04,Fis12,BBF13] for a survey on black-box reductions
and separations.

2 Technical Overview

In this section, we aim to explain some of the intuition behind our results. We
will start by focusing on one particular primitive–the input homomorphic weak
PRF–and some of its applications. The results for other primitives are not exactly
the same, but the general structure of how we build cryptosystems from these
other primitives is relatively similar. We will discuss these other primitives later
in this section.

2.1 PKE from IHwUFs/IHwPRFs

Let’s start by considering the notion of a general input-homomorphic weak PRF,
or, as we have been abbreviating, an IHwPRF, which we will define as a function
F : K×X → Y. Recall that, informally speaking, a weak PRF is a function that
is indistinguishable from a random function with respect to uniformly sampled
inputs. This “weakness” as compared to a regular PRF will be critical.

We will also endow our weak PRF F with a homomorphism over the input.
Suppose our input space X and our output space Y are groups with group
operations ⊕ and ⊗, respectively. Roughly speaking, an IHwPRF is just a regular
weak PRF with the following property:

F (k, x1 ⊕ x2) = F (k, x1) ⊗ F (k, x2) .

We also consider what we call γ-bounded IHwPRFs. These IHwPRFs have a
homomorphism that can only be computed a maximum of γ times, where γ is a
pre-determined parameter. This concept lets us consider noisy assumptions like
LWE, which are only approximately homomorphic. The notion is very similar
to definitions of the almost key-homomorphic PRFs of [BLMR13]. γ-bounded
IHwPRFs work for almost all of the applications that we consider in almost the
same way that unbounded IHwPRFs do. For the rest of this technical overview,
though, we will assume we have an unbounded IHwPRF. Also, we occasionally
refer to an Input-Homomorphic weak Unpredictable Function (IHwUF), which
has the same properties as IHwPRF except for the fact that its output on a
uniformly random input is just unpredictable and not necessarily pseudorandom.

DDH-Based Instantiation of IHwPRF. In general, it is simple to build
IHwPRFs from assumptions that are widely used in cryptography. Here we show
how to build an IHwPRF from the DDH assumption. Let G be a group of prime
order q where the DDH problem is hard. For a uniformly sampled key k ← Zq

and an input x ∈ G, consider the following function:

F (k, x) = xk.
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If we are only allowed to see the evaluation of F on random inputs xi (as the
weak PRF definition requires), then it is easy to see that F is a weak PRF
based on the DDH assumption. Moreover, the homomorphism property is also
satisfied:

xk
1 · xk

2 = (x1 · x2)
k
.

Thus F is an IHwPRF. Building a bounded IHwPRF from LWE is similarly
straightforward, but we defer this to later in the paper.

On the Input Space. It is useful to note that the “discrete logarithm problem”
on the input space of an IHwPRF must be hard by its weak pseudorandomness
property. Concretely, given two evaluations (x1, F (k, x1)) and (x2, F (k, x2)), an
adversary can compute some value c such that xc

1 = x2, then they can check if

F (k, x1)
c = F (k, x2)

and use this to break the (weak) pseudorandomness of F . In the context of
(bounded) IHwPRFs over arbitrary groups, we note that there must exist an
equivalent “discrete log” problem that allows us to capture the aforementioned
property.6 This property is crucial to the security of nearly all constructions
presented in this paper.

PKE Construction. We now illustrate how to construct a CPA-secure PKE
given an IHwPRF. To provide more intuition, we will present an instantiation of
the encryption scheme using the DDH assumption in parallel. The construction
from IHwPRF is highlighted for clarity.

Setup:
• IHwPRF Construction: Select an IHwPRF F : K×X → Y over groups

(X ,⊕) and (Y,⊗) with key space K, input space X , and output space
Y and some integer n > 3 log (|X |). Select a set X of 2n uniform “base
elements” from X as

X = {xj,b ← X}j∈[n],b∈{0,1} .

Select a random key k ← K. Create a tuple Y of 2n elements from Y as

Y = {yj,b}j∈[n],b∈{0,1}

such that yj,b = F (k, xj,b). Output the secret key and public key as:7

sk = k, pk = (X,Y) .

6 For our LWE-based bounded IHwPRF, the “discrete log” problem equivalent is the
ISIS problem.

7 We implicitly assume that the description of IHwPRF is publicly available. This is
similar to the assumption that in a DDH-based encryption scheme like ElGamal, the
description of the cyclic group G is public.
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• DDH Instantiation: Let F : Zq × G → G be the function defined as
F (k ∈ Zq, g ∈ G) = gk. Select a set G of 2n randomly sampled elements
from G as

G = {gj,b ← G}j∈[n],b∈{0,1} .

Select a random key k ← Zq. Create a tuple H of 2n elements from G as

H = {hj,b}j∈[n],b∈{0,1}

such that hj,b = gk
j,b. Output the secret key and the public key as

sk = k, pk = (G,H) .

Encrypt:
• IHwPRF Construction: On input a message m ∈ Y, sample a vector
s = (s1, . . . , sn) ← {0, 1}n. Set

x∗ =
⊕

j∈[n]

xj,sj
, y∗ =

⊗

j∈[n]

yj,sj
.

Output the ciphertext ct = (x∗, y∗ ⊗ m).
• DDH Instantiation: On input a message m ∈ G, sample a vector s =

(s1, . . . , sn) ← {0, 1}n. Set

g∗ =
n∏

j=1

gj,sj
, h∗ =

n∏

j=1

hj,sj
.

Output the ciphertext ct = (g∗, h∗ · m).

By the leftover hash lemma, our “subset sum” process gives us outputs that
are statistically close to uniform for arbitrary groups. This may be viewed as
a generalization of the “exponentiation” operation to arbitrary groups.

Decrypt:
• IHwPRF Construction: On input a ciphertext ct = (ct1, ct2) ∈ X ×Y,

output
m′ = [F (k, ct1)]

−1 ⊗ ct2.

If (ct1, ct2) = (x∗, y∗ ⊗ m), we have

m′ = [F (k, ct1)]
−1 ⊗ ct2 = (y∗)−1 ⊗ (y∗ ⊗ m) = m.

• DDH Instantiation: On input a ciphertext ct = (ct1, ct2) ∈ G × G,
output

m′ =
(
ctk1

)−1 · ct2.
If (ct1, ct2) = (g∗, h∗ · m), we have

m′ =
(
ctk1

)−1 · ct2 = (h∗)−1 · (h∗ · m) = m.
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Fig. 5. PKE from IHwPRF and DDH Instantiation

Fig. 6. Visualization of Non-Interactive Key Exchange from IHwPRF

Note that the decryption in the IHwPRF construction works even when X and
Y are non-abelian groups.

We summarize the main steps in the construction of PKE from IHwPRF in
Fig. 5, and compare it with the DDH-instantiation over cyclic groups of prime
order. Observe that the DDH-based PKE described above is very similar to
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ElGamal encryption [ElG84]. In fact, it can be viewed as a form of ElGamal
encryption where we use a less efficient method to create the group elements
(g, h) and (g∗, h∗): namely, in order to get a random element, we take a subset
product of many public elements rather than just raising a single element to a
random power.

This leads us to the following question: how far can we go if we take tra-
ditional DDH-based schemes and write them as IHwPRFs? For schemes that
require two exponentiations, we could write the first exponentiation as a “subset
sum”, and then the second as a IHwPRF evaluation. This is essentially how
our DDH-based instantiation of PKE from IHwPRF works. In what follows, we
illustrate this comparison via a non-interactive key exchange protocol.

We show a non-interactive key exchange protocol from IHwPRFs in Fig. 6.
For illustration, we compare it with the Diffie-Hellman key exchange protocol. In
the IHwPRF setting, the (randomly sampled) “base elements” {xj,b}j∈[n],b∈{0,1}
are publicly available to both parties at the beginning of the protocol. Given
the “base elements”, there are two ways to arrive at the final secret y∗. The
first way is to apply the IHwPRF on the “base elements”, followed by applying
a “subset product” in the output space of the IHwPRF. The second way is to
first do a “subset sum” on the base elements, and then apply the IHwPRF. The
two parties involved in the protocol each use one of these strategies. Security of
the protocol follows from the weak pseudorandomness of F and one-wayness of
“subset sums” in its input space, where the latter is also implied by the weak
pseudorandomness of F .

Finally, the reader may observe that the protocol is secure even if the function
F is an IHwUF instead of an IHwPRF, provided that both parties extract a
“hardcore bit” from the secret y∗ and use it as the key.8 Similarly, one can
construct a CPA-secure PKE from IHwUF by using the hardcore bit of the
secret y∗ to mask the message bit.

2.2 Extending the Scheme with a General Protocol

It turns out that we can do substantially more than just PKE, as an examination
of the above protocol might suggest. It turns out we can take any one-round9

CDH/DDH-based protocol and convert it into a (less efficient) protocol using a
general IHwUF/IHwPRF. The basic idea is the following: visualize one-round
CDH/DDH schemes as protocols played by two parties with the following four
phases. Below is a rough description of this protocol:

• Initialization: Setting up the group and any random elements needed for
the protocol.

8 Note that the protocol assumes that the input space of the IHwUF/IHwPRF is
independent of the choice of key.

9 Informally, in our context this means a protocol that can be “played” by two parties
with a simple out-and-back communication flow, along with any PPT computation
the parties choose to do before, during, or after the communication.



68 N. Alamati et al.

• Pre-evaluation: The first party exponentiates some (or all) of the random
elements from the initialization stage and sends some (or all) of these to the
second player.

• Evaluation: The second party exponentiates some of the elements from the
first player and potentially some of the elements from initialization as well.
The second player potentially publishes some of these elements as well.

• Post-evaluation: Either party can multiply/invert/process the elements,
and may publish some outputs of these.

It turns out that the vast majority of CDH/DDH-based cryptosystems fall
into this archetype, and thus we can build them using an IHwUF/IHwPRF.
Among other implications, this approach encompasses recent constructions such
as (anonymous) IBE from CDH/DDH and a number of other works in the same
vein [DG17b,DG17a,BLSV18,DGHM18,GH18,KW18,GGH18]. Although these
works use many novel techniques, we show that the CDH/DDH-related portion
of the constructions can be boiled down to something that fits within the above
framework. The few protocols that cannot be handled involve at least three
exponentiations (and cannot be rewritten as less efficient protocols with two or
less exponentiations).

We can use our general protocol and the ideas around it to build many
cryptosystems. In the following subsection, we outline some of the constructions
that we consider interesting.

2.3 Batch Encryption from IHwUFs

In a recent work, Brakerski et al. [BLSV18] introduced and formalized a powerful
cryptographic primitive called batch encryption. Roughly speaking, the basic idea
of batch encryption is the following: a user encrypts a 2 × N matrix of bits, and
decryption selectively reveals only N of these bits–one in each column. For a
given column, which bit is revealed depends on the value of the secret key used
for decryption.

Brakerski et al. showed that batch encryption can be used in conjunction
with garbled circuits to construct identity-based encryption (IBE).10 In fact,
when equipped with a stronger property called “blinding”, batch encryption was
shown to imply anonymous IBE, KDM-CPA secure PKE, and leakage resilient
PKE [BLSV18]. The authors of [BLSV18] showed how to construct batch encryp-
tion from concrete assumptions, so it is natural to ask the following question: is
there a generic primitive that implies batch encryption?

In this subsection, we answer this question in the affirmative by showing
that IHwUFs are sufficient to construct blind batch encryption. This in turn
implies that IHwUFs are sufficient to construct anonymous IBE, KDM-secure

10 An equivalent cryptosystem, named as hash encryption, was introduced by Döttling
et al. in [DGHM18].
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PKE and leakage-resilient PKE as well.11 We begin by defining blind batch
encryption informally, and then illustrate how to construct the same from any
IHwUF family. 12

Batch Encryption. A batch encryption scheme is a public-key encryption
scheme in which the key generation algorithm Gen “projects” a secret string
s ∈ {0, 1}n onto a corresponding hash value h ∈ {0, 1}�, such that � < n.
Corresponding to this “projection” function, there should exist encryption and
decryption algorithms such that:

• The encryption algorithm Enc(pp, h, i, (m0,m1)) takes as input the public
parameter pp associated with the projection function, a hash h ∈ {0, 1}�,
a position index i ∈ [n] and a pair of message-bits (m0,m1) ∈ {0, 1}2, and
outputs a ciphertext ct.

• The decryption algorithm Dec (pp, s, i, ct) takes as input a ciphertext ct and
a secret string s, and then recovers msi

where si is the value of the ith-bit of
s, provided that ct was generated using h = Gen(pp, s).

In other words, a decryptor can use the knowledge of the preimage s of a hash
output string h ∈ {0, 1}� to decrypt exactly one of the two encrypted messages,
depending on the ith-bit of s. The security requirement is roughly that the
distributions

{pp, s,Enc(pp, h = Gen(pp, s), i, (msi
,m1−si

))}s∈{0,1}n and

{pp, s,Enc(pp, h = Gen(pp, s), i, (msi
,m∗))}s∈{0,1}n,m∗←{0,1}

are computationally indistinguishable. In fact, as Brakerski et al. pointed out
in [BLSV18], a weaker selective notion of security suffices, where the adversary
commits to a string s ∈ {0, 1}n and an index i ∈ [n] before the public parameter
pp is published.

Note that the adaptive security guarantee implicitly requires the projection
function to be collision-resistant; otherwise, a PPT adversary could distinguish
an encryption of m1−si

from random with non-negligible probability simply by
generating a different preimage s′ of h such that s′

i �= si.
An additional security requirement, called “blindness” was formalized with

respect to batch encryption in [BLSV18]. Roughly, a batch encryption scheme is
said to be blind if the ciphertext ct can be decomposed into parts (ct1, ct2) such
that the marginal distribution of ct1 is independent of both the image string h
and the message pair (m0,m1), while the marginal distribution of ct2 is uniform
whenever the message pair (m0,m1) is uniform in {0, 1}2.

11 The construction of anonymous IBE requires an additional primitive - “blind garbled
circuits” besides blind batch encryption. However, blind garbled circuits are implied
by any one-way function, and are hence also implied by IHwUFs.

12 We can analogously construct blind batch encryption from γ-bounded IHwUFs. For
simplicity, we show the construction from an “unbounded” IHwUF here.
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Projection Function from IHwUF. The first step in instantiating a batch
encryption scheme is to realize the projection function. Given an IHwUF F :
K × X → Y, we define GenIHwUF(pp, s) to output

h =
⊕

j∈[n]

xj,sj
,

where {xj,b}j∈[n],b∈{0,1} is a set of uniformly random elements in the input group
of the IHwUF, published as part of the public parameter pp. We claim that this
function is both one-way and collision resistant, provided that n > 3 log |X |.13

One-Wayness. To see that this function is one-way, consider a PPT adversary
A that, given uniformly random group elements {xj,b}j∈[n],b∈{0,1} and a “target”
element x∗, outputs a vector s ∈ {0, 1}n such that

x∗ =
⊕

j∈[n]

xj,sj
.

One can then construct a PPT algorithm B that on input {xj,b,
F (k, xj,b)}j∈[n],b∈{0,1} (where each xj,b is uniformly random) and a uni-
formly random target element x∗, invokes A as a subroutine on the tuple{

x∗, {xj,b}j∈[n],b∈{0,1}
}

to obtain s ∈ {0, 1}n and outputs

F (k, x∗) =
⊗

j∈[n]

F
(
k, xj,sj

)
,

which violates the weak unpredictability of the function F . We note that the
reduction is valid because for n > 3 log |X |, the distribution of

⊕
j∈[n] xj,sj

is
statistically indistinguishable from uniform by the leftover hash lemma [IZ89].

Collision-Resistance. To see that this function is collision-resistant, con-
sider a PPT adversary A that, given uniformly random group elements
{xj,b}j∈[n],b∈{0,1}, outputs (s, s′) ∈ {0, 1}n × {0, 1}n such that s �= s′ and

⊕

j∈[n]

xj,sj
=

⊕

j∈[n]

xj,s′
j
.

One can then construct a PPT algorithm B that on input {xj,b,
F (k, xj,b)}j∈[n],b∈{0,1} (where each xj,b is uniformly random) and a random
target element x∗, uniformly guesses i ← [n], resets xi,0 := x∗ and invokes A as
a subroutine on the modified set {xj,b}j∈[n],b∈{0,1} to obtain a collision (s, s′). If
si = s′

i, it aborts. Otherwise, it exploits the homomorphism of the function F
to output F (k, x∗). Since the probability that s and s′ differ in the ith bit is at
least 1/n, B breaks the weak unpredictability of F .
13 We note that it is possible to use a smaller constant, but we use 3 through the whole

paper for the sake of simplicity.
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Encryption and Decryption. Corresponding to the projection function as
described above, we realize our encryption procedure EncIHwUF(pp, h, i, (m0,m1))
as follows: sample k0, k1 ← K and set the following

y
(0)
j,0 = F (k0, xj,b) , y

(1)
j,1 = F (k1, xj,b) for j ∈ [n] \ {i}, b ∈ {0, 1}

y
(0)
i,0 = F (k0, xi,0) , y

(1)
i,0 = ⊥,

y
(0)
i,1 = ⊥ , y

(1)
i,1 = F (k1, xi,1) .

Next, mask the messages (m0,m1) ∈ {0, 1} × {0, 1} as follows:14

e0 = XOR (HardCore (F (k0, h)) ,m0)
e1 = XOR (HardCore (F (k1, h)) ,m1) .

Output the ciphertext as

ct =
(
ct1 =

{
y
(0)
j,b , y

(1)
j,b

}

j∈[n],b∈{0,1}
, ct2 = (e0, e1)

)
.

Given a preimage string s, our decryption algorithm DecIHwUF (pp, s, i, ct) now
recovers msi

as

msi
= XOR

(
HardCore

( ⊗

j∈[n]

y
(si)
j,sj

)
, esi

)
.

Correctness follows from the homomorphic property of the function F . Observe
that irrespective of the value of the bit si, msi

can always be recovered as the
decryptor has access to y

(b)
i,b for each b ∈ {0, 1}. However, it cannot recover m1−si

since it does not have access to y
(b)
i,1−b for either b = 0 or b = 1. In addition, we

note that, unlike existing constructions, our construction does not require the
groups (X ,⊕) and (Y,⊗) to be abelian for correctness to hold.

Security. We now sketch our security proof. Suppose we are given an adversary
A that breaks the security of this scheme. We construct a PPT algorithm B that
breaks the weak unpredictability of the function F . We assume that B has oracle
access to an IHwUF F with key k.

In our security game, B receives a uniformly random challenge element x∗

and a bit e∗ ∈ {0, 1} such that e∗ = HardCore (F (k, x∗)) (the “real” case) or e∗

is a uniform bit (the “random” case). The goal of B is to output a bit b, such
that

b =

{
0 if e∗ = HardCore (F (k, x∗))
1 if e∗ ← {0, 1}

14 We assume that each group element y ∈ Y has a deterministic hardcore bit, denoted
as HardCore(y). If a deterministic hardcore bit is not known then we can use the
Goldreich-Levin [GL89] construction.
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In other words, B must distinguish the hardcore bit associated with the output
of F (k, x∗) from random (which is equivalent to constructing the entire output
F (k, x∗))15 using the adversary A.

We note here that the exact value of n is typically chosen by the adversary
A at the beginning of the game, subject to the restriction that n > 3 log |X |. For
simplicity, we describe the interaction between B and A after the value of n has
been chosen.

• The adversary A chooses an arbitrary preimage string s ∈ {0, 1}n and an
index i ∈ [n], and provides (s, i) to B.

• B queries the IHwUF F a total of 2n times, getting a tuple of the form

{xj,b, F (k, xj,b)}j∈[n],b∈{0,1} .

• B now resets

xi,si
:=

( ⊕

j∈[i−1]

xj,sj

)−1

⊕ x∗ ⊕
( ⊕

j∈[i+1,n]

xj,sj

)−1

,

and provides pp = {xj,b}j∈[n],b∈{0,1} to A. In other words, B fixes x∗ to be
the image of s under the projection function parameterized by pp.

• The adversary A generates m(0) =
(
m

(0)
0 ,m

(0)
1

)
and m(1) =

(
m

(1)
0 ,m

(1)
1

)

such that m
(0)
si = m

(1)
si , and sends them to B.

• In response, B samples k′ ← K, and implicitly fixes ksi
:= k′ and k1−si

:= k.
It then sets the following

y
(si)
j,sj

= F
(
k′, xj,sj

)
, y

(1−si)
j,sj

= F
(
k, xj,sj

)
for j ∈ [n] \ {i}, b ∈ {0, 1},

y
(si)
i,si

= F (k′, xi,si
) , y

(1−si)
i,si

= ⊥,

y
(si)
i,1−si

= ⊥ , y
(1−si)
i,1−si

= F (k, xi,1−si
) .

To mask the messages, B sets the following

e(0)si
= XOR

(
HardCore (F (k′, x∗)) ,m(0)

si

)
, e

(0)
1−si

= XOR
(
e∗,m(0)

1−si

)
,

e(1)si
= XOR

(
HardCore (F (k′, x∗)) ,m(1)

si

)
, e

(1)
1−si

= XOR
(
e∗,m(1)

1−si

)
.

Finally, B samples b∗ ← {0, 1} and sends ct to A where

ct =
(
ct1 =

{
y
(0)
j,b , y

(1)
j,b

}

j∈[n],b∈{0,1}
, ct2 =

(
e
(b∗)
0 , e

(b∗)
1

))
.

• A outputs a bit b′. If b∗ = b′, B outputs 1. Otherwise it outputs 0.

Note that when e∗ = HardCore (F (k, x∗)), the challenge ciphertext is generated
perfectly. On the other hand, when e∗ is a uniform bit, the adversary A has no
advantage since m(0)

si = m
(1)
si by definition. Hence, the advantage of B is negligibly

different from the advantage of A.
15 By the Goldreich-Levin Theorem [GL89], this can be used to build an algorithm

that constructs F (k, x∗) with only polynomial loss in advantage.
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Blindness. The aforementioned batch encryption scheme is additionally
“blind”. This follows from the fact that the ciphertext component ct1 is inde-
pendent of both the image string h and the message-pair (m0,m1). Additionally,
if (m0,m1) is uniform in {0, 1}2, then the distribution of ct2 is also uniform.

2.4 More Primitives

Recyclable OWFE. In a recent work, Garg and Hajiabadi [GH18] introduced
a cryptographic primitive called recyclable one-way function with encryption
(OWFE), and showed that recyclable OWFEs imply trapdoor functions (TDFs)
with negligibly small inversion error. They also showed how to construct recy-
clable OWFE from the CDH assumption, which in turn gave the first TDF
construction from the CDH assumption. In a more recent follow-up, Garg
et al. [GGH18] introduced a strengthened version of recyclable OWFE called
smooth recyclable OWFE, and showed how to realize the same from CDH
assumption. They showed that this strengthened primitive implies TDFs with
almost-perfect correctness and CCA2-secure deterministic encryption, where the
CCA2-security holds with respect to plaintexts sampled from distributions with
super-logarithmic min-entropy.

We show that IHwUFs imply smooth recyclable OWFE, thereby answering
the question of whether this cryptosystem can be constructed from a generic
primitive. This shows that IHwUFs also imply TDFs with almost-perfect cor-
rectness and CCA2-secure deterministic encryption for plaintexts sampled from
distributions with super-logarithmic min-entropy. The techniques for this con-
struction are similar to those presented for batch encryption.

Hinting PRG. A “hinting PRG” is a stronger variant of traditional PRGs
introduced by Koppula and Waters in [KW18], who show that hinting PRGs
can be used to generically transform any CPA-secure attribute-based encryption
scheme or one-sided predicate encryption scheme into a CCA-secure counterpart.
Informally, a hinting PRG takes n bits as input and outputs n · � output bits
with the restriction that no PPT adversary can distinguish between 2n uniformly
random strings and 2n strings such that half the strings are output by the PRG,
and the remaining half are uniformly random, where the strings are arranged
as a 2 × n matrix as follows: in the ith column of this matrix, the top entry is
pseudorandom and the bottom entry is random if the ith bit of the seed is 0;
otherwise the bottom entry is pseudorandom and top entry is random.

Koppula and Waters [KW18] showed explicit constructions of hinting PRG
families from the CDH and LWE assumptions. We show that any IHwUF fam-
ily can be used to construct a hinting PRG, thereby answering the question of
whether hinting PRGs can be constructed from a generic primitive. The tech-
niques for our construction are also similar to those presented for batch encryp-
tion.
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CRHF and More from HOWF. Informally, a HOWF is just a one-way
function f : X → Y with the following additional properties: the input space X
and the output space Y are groups with group operations ⊕ and ⊗, respectively,
and

f (x1 ⊕ x2) = f (x1) ⊗ f (x2) .

In this paper, we show that any HOWF can used to construct a collision-resistant
hash function (CRHF) family that maps bit strings to elements in the output
space of the HOWF. In addition, we show constructions of Schnorr signatures
and chameleon hash functions from HOWFs.16

Richer Structures. As mentioned earlier, we can also consider richer structures
than just a group homomorphism over a Minicrypt primitive. In this section, we
provide more details for two of these more structured primitives, namely Ring
IHwPRFs and L-composable IHwPRFs.

Ring IHwPRFs. We first informally define a Ring Input-Homomorphic weak
PRF (RIHwPRF). Let (R,+,×) and ( R ,�,�) be two efficiently samplable
rings such that the ring operations are efficiently computable. An RIHwPRF is
a weak PRF

F : K × R → R

(with input space R and output space R) such that for every key k ∈ K the
mapping F (k, ·) : R → R is a ring homomorphism from R to R.17

We outline a simple construction of symmetric-key FHE from an RIHwPRF
F provided that the size of output space of F is polynomial in the security
parameter, i.e., |R| ≤ poly(λ). Using the generic transformation in [Rot11], one
can obtain a public-key FHE from a symmetric-key FHE. The construction is
as follows:

• Given an RIHwPRF F : K × R → R, publish its description as the public
parameters. To generate a secret key sample a key k ← K.

• To encrypt a bit m ∈ {0, 1} under key k, sample a preimage ct ← R such
that F (k, ct) = mR and publish ct as the ciphertext.18 (Notice that 0R and 1R

are the multiplicative and the additive identity elements of R, respectively.)

16 Here we use “unbounded” HOWF for simplicity. We also consider “bounded”
HOWFs for which only a bounded number of homomorphic operations is allowed.
The notion of bounded HOWFs works for all of the applications that we consider in
almost the same way that unbounded HOWFs do.

17 It is also possible to define (bounded) RIHwPRFs similar to IHwPRFs, but we only
consider unbounded homomorphism here for the sake of simplicity.

18 Such a preimage can be efficiently sampled by weak pseudorandomness of F and the
fact that the order of the ring is polynomial.



Minicrypt Primitives with Algebraic Structure and Applications 75

• To decrypt a ciphertext ct ∈ R under key k, output m′ where

m′ =

⎧
⎪⎨

⎪⎩

0 if F (k, r ) = 0R

1 if F (k, r ) = 1R

⊥ otherwise.

• To evaluate a (homomorphic) NAND(ct, ct′) operation, output 1 � ct � ct′

where 1 is the identity element of R with respect to addition, and � is the
subtraction in the ring R .

The security of the scheme follows from a standard hybrid argument. Observe
that by ring-homomorphism of F , if ct and ct′ are valid ciphertexts encrypting
m and m′ respectively, decrypting 1 � ct � ct′ gives NAND(m,m′).

L-Composable IHwPRFs. We first describe 2-Composable IHwPRFs before
generalizing to L ≥ 2. Informally, a two-composable IHwPRF is a collection of
two functions and two “composers”

F1 : K × X1 → Y1 , F2 : K × X2 → Y2,

C1 : Y1 × X2 → Z , C2 : Y2 × X1 → Z.

such that the functions are IHwPRFs and the composers are weak PRFs. Addi-
tionally, the following composition property holds: for every k ∈ K and for every
x1, x2 ∈ X , we have:

C1 (F1 (k, x1) , x2) = C2 (F2 (k, x2) , x1) , both denoted FT (k, (x1, x2)).

This primitive gives us 3-party non-interactive key exchange (NIKE) in the
following way: the public key includes vectors x(1) and x(2). Two of the parties
generate secret subsets s1 and s2, and publish the group elements

⊕

j∈[n]

x
(1)
j,s1,j

,
⊕

j∈[n]

x
(2)
j,s2,j

,

respectively. The 3rd party generates a secret key k and publishes F1(k,x(1))
and F2(k,x(2)). Each party computes the shared key:

FT

(
k,

( ⊕

j∈[n]

x
(1)
j,s1,j

,
⊕

j∈[n]

x
(2)
j,s2,j

))
,

which can be computed from any party’s secret and the other parties’ outputs,
using the composition property and input homomorphism of F1 and F2. Security
follows by the weak PRF properties and LHL.

We argue that 2-composable IHwPRFs are seemingly much weaker than
bilinear pairing groups. Specifically, we argue that the general abstraction of
dual system groups (DSG [CGW15]) is hard to capture in the 2-Composable
IHwPRF setting due to the following limitations:
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1. DSG seems to require properties that translate to the requirement of key
homomorphism in the 2-composable IHwPRF setting.

2. DSG also requires algebraic interaction on both of the coordinates. Realizing
this in the IHwPRF setting forces both the coordinate domains X1 and X2 to
be ring homomorphic on a single ring, where all the algebra can take place.

The currently known constructions of rich ABEs like fuzzy IBEs [SW05],
spatial encryption [BH08] and monotone span program ABEs [GPSW06] from
bilinear groups all require at least one of the properties just described. Since the
only instantiation of 2-composable IHwPRFs we know of are bilinear groups,
it seems difficult to achieve these rich ABEs without restricting 2-composable
IHwPRFs to almost traditional bilinear groups.

Thus we see a seeming separation in the amount of structure that we need
for 3-party NIKE and simple IBE (in RO) from that seemingly necessary for
NIZKs (without RO) and rich ABEs. This poses a tantalizing question: Can
we construct a 3-party NIKE protocol from a weaker primitive than bilinear
pairing groups? In other words, can we achieve the structure of 2-composability
from concrete assumptions, e.g., lattice-based assumptions, that do not naturally
imply bilinear pairings?

Generalizing to L ≥ 2. In the general setting, we consider L inner IHwPRFs
Fi and L different composers which satisfy an analogous composition property as
the 2-composable setting. By a straightforward generalization, we get an (L+1)-
party non-interactive key exchange from an L-Composable IHwPRF, which is
not known from any (<L)-Composable IHwPRFs. We also do not know how
to construct such a protocol from any hard (<L)-multilinear group. We still
observe an analogous seeming separation in the amount of structure that we
need for multi-party non-interactive key exchange from that seemingly necessary
for circuit ABEs and iOs. The corresponding open question is whether we can
build the former from weaker primitives that may lack the structure needed for
the latter.

2.5 Conclusion and Future Work

In this paper, we presented a framework to build many cryptosystems from
Minicrypt primitives with structure. Our framework allows us to categorize
many cryptosystems based on which structured Minicrypt primitive implies
them, and potentially makes showing the existence of many cryptosystems from
novel assumptions substantially easier in the future. In addition, some of our
constructions are novel in their own right. Although our framework yields new
constructions from less studied assumptions, the main focus of this work is to
investigate what kind of structure, when added to simple and natural Minicrypt
primitives, implies advanced cryptosystems like IBE. Hence, we are not explicitly
examining new constructions from a mainstream assumption. We believe that
our work opens up a substantial number of questions, some of which we mention
here.
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Primitives from Weaker Assumptions. A pertinent open question is: can
we build some of the Cryptomania primitives discussed in this paper from
weaker Minicrypt primitives with structure. For instance, can we build PKE from
HOWFs (which would imply PKE from discrete log)? Can we build PIR/lossy
TDFs from IHwUFs (which would imply the first PIR/lossy TDFs from CDH)?
Is it possible to build round-optimal OT and MPC in the plain model from
IHwUFs/IHwPRFs?

More Primitives. While we constructed many popularly used Cryptomania
primitives from our framework, we could not encompass many others. These
(non-exhaustively) include primitives implied by bilinear pairings such as NIZK,
unique signatures, VRFs, ABE and PE, and primitives known from specific
assumptions such as worst-case smooth hash proof systems, KDM-CCA secure
PKE and dual-mode cryptosystems. It is open to construct one or more of these
primitives from simple Minicrypt primitives with structure.

New Assumptions. One of the nicest aspects of our work is the implications
for new assumptions. If a new assumption implies one of the Minicrypt primitives
with structure discussed in this paper, then it immediately implies a whole host of
cryptographic primitives. We leave it open to build HOWFs/IHwUFs/IHwPRFs
from new concrete assumptions, which in conjunction with our framework would
allow building a large number of Cryptomania primitives from such assumptions.

“Continents” of Cryptomania. We leave it open to explore if there are even
weaker forms of structure that, when endowed upon Minicrypt primitives, lead
to interesting implications in Cryptomania. It is also interesting to explore non-
trivial separations between these structured primitives, e.g., between HOWFs
and IHwUFs. Such separations would potentially allow us to divide the world
of Cryptomania into many “continents” of primitives, where each “continent” is
entirely implied by some simple Minicrypt primitive with structure.
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Abstract. We improve the attack of Durak and Vaudenay (CRYPTO’17)
on NIST Format-Preserving Encryption standard FF3, reducing the run-
ning time from O(N5) to O(N17/6) for domain ZN×ZN . Concretely, DV’s
attack needs about 250 operations to recover encrypted 6-digit PINs,
whereas ours only spends about 230 operations. In realizing this goal,
we provide a pedagogical example of how to use distinguishing attacks
to speed up slide attacks. In addition, we improve the running time of
DV’s known-plaintext attack on 4-round Feistel of domain ZN ×ZN from
O(N3) time to just O(N5/3) time. We also generalize our attacks to a
general domain ZM ×ZN , allowing one to recover encrypted SSNs using
about 250 operations. Finally, we provide some proof-of-concept imple-
mentations to empirically validate our results.

Keywords: Format-Preserving Encryption · Attacks

1 Introduction

Format-Preserving Encryption (FPE) [6,12] is a form of deterministic symmet-
ric encryption mechanism that preserves the format of plaintexts. For example,
encrypting a 16-digit credit-card number under FPE would result in a 16-digit
number, and encrypting a valid SSN would produce a ciphertext of nine deci-
mal digits. FPE is widely used in practice by several companies, such as HPE
Voltage, Verifone, Protegrity, Ingenico, to encrypt credit-card numbers and pro-
tect legacy databases. Recent research [4,15,20] however show that existing FPE
standards FF1 and FF3 (NIST SP 800-38G, ANSI ASC X9.124) are somewhat
vulnerable in small domains. The most damaging attack, due to Durak and Vau-
denay (DV) [15], can recover the entire codebook of FF3 using O(N5) expected
time, for domain ZN × ZN .
Still, the attacks above are feasible only if the domain size is small; their cost
becomes prohibitive for moderate and large domains. For example, for domain
Z
6
10 (namely encrypting 6-digit PINs), DV’s attack would use about 250 opera-

tions. In this paper, we improve DV’s attack to break FF3 on large domains. Our
attack can reduce the cost of breaking FF3 on domain ZN × ZN to O(N17/6)

c© International Association for Cryptologic Research 2019
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Table 1. Our attack versus DV’s. The first column indicates the values of N in the
domain ZN × ZN . The second column and third column show the number of queries
in our attack and that of DV respectively; in both attacks, the queries are made over
two tweaks. The fourth and fifth columns show our recovery rate and that of DV
respectively, and the fifth and sixth columns show our time and DV’s time respectively.

N Our queries DV’s queries Our rate DV’s rate Our time DV’s time

128 16,384 17,388 39% 56.85% 220 235

256 52,012 55,176 50% 55.9% 223 240

512 165,140 175,164 33% 77.4% 226 245

expected time, meaning that it will need about 230 operations to break FF3 of
the domain Z

6
10 above. Achieving this efficiency involves an elegant paradigm of

combining distinguishing attacks with slide attacks [10,11], and improved crypt-
analyses of 4-round Feistel. We give rigorous analyses to justify the advantage
of our attack; proofs omitted due to lack of space appear in the full version
of this paper. We also provide proof-of-concept implementations in Sect. 5 that
empirically confirm our analyses.
We note that our attack essentially performs the same queries as DV’s, and thus
the two attacks have the same scenario and asymptotic data/space complexity
Θ(N11/6) for domain ZN × ZN . However, DV use more aggressive choices of
the parameters, and thus our attack is concretely better in both data and space
complexity, albeit at the cost of lower recovery rate. A concrete comparison
of the two attacks are given in Table 1. Still, one can improve the recovery
rate by relaunching our attack with different tweaks. For example, for domain
Z128 × Z128, if one relaunches our attack another time, the recovery rate would
become 1 − (1 − 0.39)2 ≈ 62%. See Sect. 3.3 for further details.

Existing cryptanalysis. Let us begin by reviewing prior attacks on the stan-
dards FF1 and FF3. Bellare, Hoang, and Tessaro (BHT) [4] give the first attack
on these schemes, showing that one can fully recover a target message using
O(N6 log(N)) pairs of plaintext/ciphertext, on domain ZN × ZN . Their attack
however requires that a designated, partially known message must have the same
right half as the target, but it is unclear how one could mount such a correlation
in practice. Hoang, Tessaro, and Trieu (HTT) [20] subsequently improve BHT’s
attack, requiring no correlation between the known messages and the target.
Even better, they can reuse the known plaintext/ciphertext pairs to attack mul-
tiple targets, thus reduce the amortized cost to O(N5 log2(N)) pairs per target.
Both attacks above apply to a generic Feistel-based FPE, meaning that they
break both FF1 and FF3, and the only way to thwart them is to increase the
round count of the underlying Feistel networks.
In a different direction, Durak and Vaudenay (DV) [15] give a dedicated attack
on FF3, exploiting a bug in its design of round functions. They show that on
domain ZN × ZN , one can recover the entire codebook of FF3 using O(N11/6)
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pairs of chosen plaintext/ciphertext, within O(N5) expected running time. We
stress that DV’s attack does not apply to FF1, and it can be fixed without
hurting performance by restricting the tweak space, as DV already suggested.
In response to DV’s attack, NIST has temporarily suspended the use of FF3,
whereas a draft update of the ANSI ASC X9.124 standard additionally recom-
mends using double encryption on small domains to cope with the other attacks.

A bird’s-eye view on DV’s attack. We now briefly sketch a blueprint of
DV’s attack. Recall that in the balanced setting, the encryption scheme of FF3
is simply a tweakable blockcipher F.E : F.Keys×F.Twk×(ZN ×ZN ) → (ZN ×ZN )
that is based on an 8-round balanced Feistel network. Due to a bug in the round
functions of FF3, one can find two tweaks T and T ∗ such that F.E(K,T, ·) is the
cascade g(f(·)) of two 4-round Feistel networks f and g, whereas F.E(K,T ∗, ·) =
f(g(·)). Then, by mounting a slide attack using O(N11/6) encryption queries,
we obtain O(N2) instances, each of O(N5/3) pairs of plaintext/ciphertext for f
and also O(N5/3) pairs for g. However, often just one of those instances provides
the correct ciphertexts under f or g; in the remaining instances, the ciphertexts
are random strings, independent of the plaintexts. DV resolve this by developing
a codebook-recovery attack on 4-round Feistel networks using O(N3) expected
running time. They then try this attack on every instance, using totally O(N5)
expected time.

Contribution: Eliminating false instances. To improve the running time
of DV’s attack, we observe that it is an overkill to use an expensive codebook-
recovery attack on false instances. A better solution is to find a cheap test to
tell whether an instance is true or false, and then use the codebook-recovery
attack on the true instances. A natural choice for such a test is a distinguishing
attack on 4-round Feistel. However, the requirement here is a lot more stringent.
To eliminate most of the random instances, our distinguishing attack should
output 1 with probability about 1/N if it is given a false instance. To ensure
that we will not incorrectly eliminate all true instances, the distinguishing attack
should output 1 with high probability, say 1/2, if it is given a true instance.
Our starting point is Patarin’s distinguishing attack on 4-round Feistel [25],1

which uses O(
√

N) pairs of plaintext/ciphertext. However, using this attack
for our purpose runs into two obstacles. First, Patarin’s asymptotic analysis
is insufficient to pinpoint the hidden constant in the Big-Oh. Next, Patarin’s
attack fails to meet the requirement above, as given a false instance, the attack
outputs 1 with constant probability.
Given the issues above, we instead design a new distinguishing attack, Left-Half
Differential (LHD), such that (1) in the ideal world, it returns 1 with probability
at most 1√

N
, and (2) in the real world, it returns 1 with probability at least 1 −

1
8
√

N
− 10

N − 1
N3/4 . The LHD attack uses O(N5/6) pairs of plaintext/ciphertext, and

runs in O(N5/6) time. Our analyses are generalized enough to include Patarin’s

1 While Patarin’s attack is given for classic Feistel (meaning that N = 2n, and the
underlying operator is xor), generalizing it to cover FF3 setting is straightforward.
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Table 2. A list of attacks on generic 4-round Feistel of domain ZN × ZN . While the
distinguishing attack was discovered by Patarin [24] and independently by Aiello and
Venkatesan [1], the analyses in those papers are asymptotic. Our paper gives the first
concrete treatment for this attack.

Type Power Source Data Time

Known-plaintext Distinguishing [1,24]
Here

O(
√

N) O(
√

N)

Known-plaintext Full recovery [15] O(N5/3) O(N3)

Known-plaintext Full recovery Here O(N5/3) O(N5/3)

Chosen plaintext & ciphertext Full recovery [9] O(N3/2) O(N3/2)

attack as a special case. As a result, we can show that for N ≥ 216, if one uses
�7 ·

√
N� pairs of plaintext/ciphertext then Patarin’s attack achieves advantage

at least 1/2.
In our test, we run LHD twice, first on the plaintext/ciphertext pairs of f , and
then on those of g. Thus given a false instance, the chance that we fail to eliminate
it is at most 1

N , whereas given a true instance, the chance that we accept it is

at least
(
1 − 1

8
√

N
− 10

N − 1
N3/4

)2

. Even better, our experiments indicate that
in practice our test is nearly perfect, meaning that empirically, we never miss a
true instance, and eliminate almost all false instances.
We note that while the idea of using distinguishing attacks to eliminate false
instances in slide attacks was already known in the literature [2], to the best of
our knowledge, nobody has ever explored this direction. Our analyses of FF3
thus provide a pedagogical example of this paradigm.

Contribution: A better attack on 4-round Feistel. Thanks to the
LHD tests above, we are now left with O(N) false instances and a few true
instances. If one uses DV’s codebook recovery attack on 4-round Feistel, one
would end up with O(N4) expected time, which is still very expensive. The core
part of DV’s attack needs to find all directed 3-cycles of zero weight in a (ran-
dom) directed graph G = (V, E). DV’s approach is to enumerate all directed 3-
cycles via some sparse matrix multiplications, and then pick those of zero weight,
spending O(|V | · |E|) time. We instead give an elementary algorithm that uses
O(|V | + |E|) expected time. In addition, DV’s attack relies on a conjecture of
Feistel networks. They however can only empirically verify this conjecture for
N ∈ {2, 22, . . . , 29}. In this work, we resolve this conjecture, solving an open
problem posed by DV.
Our algorithm above leads to the best known-plaintext attack to 4-round Feistel
in the literature, using O(N5/3) data and time complexity. A prior work by
Biryukov, Leurent, and Perrin [9] is slightly better, recovering the codebook
within O(N3/2) data and time, but this attack requires chosen plaintexts and
ciphertexts. A comparison of the attacks on 4-round Feistel is listed in Table 2.
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Other contributions. We also generalize our FF3 attack to unbalanced set-
tings, for a general domain ZM ×ZN , with M ≥ N ≥ 64, so that we can recover,
say encrypted SSNs. The asymmetry M ≥ N however requires some care in the
extension of the attack on 4-round Feistel. In particular, due to the symmetry
of 4-round Feistel, given plaintext/ciphertext pairs (M1, C1), . . . , (Mp, Cp), one
can view M1, . . . ,Mp as the “ciphertexts” of C1, . . . , Cp under an inverse 4-round
Feistel, leading to a dual attack. The two attacks yield no difference in the bal-
anced setting M = N , but if M 	 N , we find that the dual attack provides a
superior recovery rate. We also introduce some tricks that substantially improve
both the data complexity and the recovery rate.
On the other hand, there are often some gaps between the choices of the parame-
ters according to DV’s analyses, and what their experiments suggest. Even worse,
the performance of their attacks is highly sensitive: in some experiments, if they
triple the number of plaintext/ciphertext pairs, ironically, the recovery rate drops
from 77% to 0%. DV thus have to calibrate concrete choices of the parameters
via extensive experiments. In contrast, we choose to err on the conservative side
in our analyses, and our estimates are consistent with the experiments. We also
add some fail-safe to avoid the performance degradation when the number of
plaintext/ciphertext pairs increases.

Limitation of our attack on FF3. Our attack exploits the same bug of FF3
as DV’s attack, and thus it can be thwarted without hurting performance by
restricting the tweak space, as DV suggested. In addition, both of our attack
and DV’s requires that the adversary can adaptively make chosen plaintexts on
Θ(N2) queries for domain ZN ×ZN , but it is unclear how to mount this kind of
attack, especially with that many queries, in practice.

Additional related work. There have been two separate lines of building
FPE schemes. On the theoretical side, we have provably secure constructions
that are based on card shuffling, such as Swap-or-Not [18], Mix-and-Cut [26], or
Sometimes-Recurse [22] that are too slow for performance-hungry applications.
On the practical side, in addition to FF1/FF3, there are other industry propos-
als, such as FNR from Cisco [14], or DTP from Protegrity [21], that have no
theoretical justification. Hoang, Tessaro, and Trieu [20] however show that FNR
is somewhat vulnerable in tiny domains, and DTP is completely broken even in
large domains.
In a different direction, Bellare and Hoang [3] study the security of DFF, an
FPE scheme currently proposed to NIST for standardization [28], and show
that for appropriately large domains, DFF provides a way to localize and limit
the damage from key exposure. However, as DFF is based on a 10-round Feistel
network, it is still subject to prior attacks on generic Feistel-based FPE [5,20]
on tiny domains.
Very recently, Durak and Vaudenay [16] give some theoretical codebook-recovery
attacks on generic balanced r-round Feistel, for r ≥ 5. They conclude that on
domain ZN ×ZN , FF1 cannot provide 128-bit security for N ≤ 11, and FF3 for
N ≤ 17.
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2 Preliminaries

Notation. If y is a string then let |y| denote its length and let y[i] denote its
i-th bit for 1 ≤ i ≤ |y|. We write y[i : j] to denote the substring of y, from
the ith bit to the j-th bit, inclusive. If X is a finite set, we let x ←$ X denote
picking an element of X uniformly at random and assigning it to x. We use the
code based game playing framework of [7]. In particular, by Pr[G] we denote the
probability that the execution of game G returns true.

FPE. An FPE scheme F is a pair of deterministic algorithms (F.E,F.D),
where F.E : F.Keys × F.Twk × F.Dom → F.Dom is the encryption algorithm,
F.D : F.Keys × F.Twk × F.Dom → F.Dom the decryption algorithm, F.Keys
the key space, F.Twk the tweak space, and F.Dom the domain. For every key
K ∈ F.Keys and tweak T ∈ T, the map F.E(K,T, ·) is a permutation over F.Dom,
and F.D(K,T, ·) reverses F.E(K,T, ·).
Feistel-based FPEs. Most existing FPE schemes, including FF3, are based
on Feistel networks. Following BHT [5], we specify Feistel-based FPE in a gen-
eral, parameterized way. This allows us to refer to both schemes of ideal round
functions for the analysis, and schemes of some concrete round functions for
realizing the standards.

We associate to parameters r,M,N,�,PL an FPE scheme F = Feistel
[r,M,N,�,PL]. Here r ≥ 2 is an integer, the number of rounds, and � is an
operation for which (ZM ,�) and (ZN ,�) are Abelian groups. We let � denote
the inverse operator of �, meaning that (X � Y ) � Y = X for every X and Y .
Integers M,N ≥ 1 define the domain of F as F.Dom = ZM × ZN . The param-
eter PL = (T ,K, F1, . . . , Fr) specifies the set T of tweaks and a set K of keys,
meaning F.Twk = T and F.Keys = K, and the round functions F1, . . . , Fr such
that Fi : K × T ×ZN → ZM if i is odd, and Fi : K × T ×ZM → ZN if i is even.
The code of F.E and F.D is shown in Fig. 1.

Classic Feistel schemes correspond to the boolean case, where M = 2m and
N = 2n are powers of two, and � is the bitwise xor operator ⊕. The scheme is
balanced if M = N and unbalanced otherwise. For X = (L,R) ∈ ZM × ZN , we
call L and R the left segment and right segment of X, respectively. We write
LH(X) and RH(X) to refer to the left and right segments of X respectively.
For simplicity, we assume that 0 is the zero element of the groups (ZM ,�) and
(ZN ,�).

Feistel-based Blockciphers. If the tweak space T is a singleton set then
FPE degenerates into a blockcipher (of a general domain). For such a blockcipher
F, we write F.E(K,M) and F.D(K,C) instead of F.E(K,T,M) and F.D(K,T,C)
respectively.

In our analysis of Feistel-based blockciphers, the round functions are modeled
as truly random. We write Feistel[r,M,N,�] to denote Feistel[r,M,N,�,PL],
for the ideal choice of PL = (T ,K, F1, . . . , Fr) in which (i) T = {ε} where ε is
the empty string, and (ii) K is the set RF(r,M,N) of all tuples of functions
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Fig. 1. Left: The code for the encryption and decryption algorithms of F = Feistel
[r, M, N, �, PL] where PL = (T , K, F1, . . . , Fr). Right: An illustration of encryption
with r = 4 rounds.

(G1, . . . , Gr) such that Gi : ZN → ZM if i is odd, and Gi : ZM → ZN if i is
even, and (iii) for 1 ≤ i ≤ r, the function Fi(K, ·) is defined as Gi(·), where
(G1, . . . , Gr) ← K.

3 Breaking FF3

In this section, we describe a chosen-plaintext codebook-recovery attack on FF3
that we call Slide-then-Differential (SD) attack.2 This is based on Triangle-
Finding (TF) attack, a known-plaintext codebook-recovery attack on 4-round
Feistel that we will present in the next section. The running time ofTF is O(M5/3),
and it actually recovers the round functions of the Feistel network, using

p = max
{

21/3M2/3N�,
⌈
M(ln(M) + 5)

⌉}
(1)

known plaintext/ciphertext pairs. We note that TF is used in a modular way;
one does not need to know its technical details to understand SD.

The FF3 scheme. FF3 is a Feistel-based FPE scheme F = Feistel[8,M,N,
�,PL] of 8 rounds, where M and N are integers such that M ≥ N ≥ 2 and
MN ≥ 100.3 The parameter PL specifies tweak space F.Twk = {0, 1}2τ , and
2 While the notion of chosen-plaintext codebook-recovery attacks on blockciphers is

folklore, one has to exercise some care in carrying this notion to FPE, because FPE
domains can be tiny. In the full version we give a formal definition of chosen-plaintext
codebook-recovery attacks on FPE.

3 In NIST specification, the � operation is the modular addition in ZN and ZM , but
here we will consider a generic group operator. Moreover, FF3 uses near-balanced
Feistel, and thus the values of M and N are very close: if one wants to encrypt m
characters in radix d, then M = d�m/2� and N = d�m/2�.
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two keyed hash functions H1 : F.Keys × {0, 1}τ × ZN → ZM , and H2 : F.Keys ×
{0, 1}τ × ZM → ZN . For each i ≤ 8, if i is odd then the round function Fi

is constructed via Fi(K,T,X) = H1(K,T [1 : τ ] ⊕ [i − 1]τ ,X), otherwise if i is
even then Fi(K,T,X) = H2(K,T [τ + 1 : 2τ ] ⊕ [i − 1]τ ,X), where [j]τ is a τ -bit
encoding of the integer j and ⊕ is the bitwise xor operator.

In analysis, the hash functions H1 and H2 are modeled as truly random.
Formally, let K be the set RF(τ,M,N) of all pairs of functions (G1, G2) such
that G1 : {0, 1}2τ × ZN → ZM , and G2 : {0, 1}2τ × ZM → ZN . Then for
each j ≤ 2, define Hj(K, ·, ·) = Gj(·, ·), where (G1, G2) ← K, and we write
FF3[M,N, τ,�] to denote this ideal version of FF3.

In our attack to FF3, we will consider M ≥ N ≥ 64 and MN ≥ 2p, where p
is specified as in Eq. (1). While there are indeed applications of smaller values of
M and N , they are already susceptible to prior attacks [4,15,20] whose running
time is practical in those tiny domains. In addition, to simplify our asymptotic
analysis, we will assume that N = Ω(

√
M), which applies to the setting of the

FF3 scheme, since FF3 uses near-balanced Feistel. Thus p ∈ O(M2/3N).

3.1 DV’s Blueprint for Breaking FF3

Let F = FF3[M,N, τ,�]. Let K and T be a key and tweak for F, respec-
tively. Recall that F.E(K,T, ·) is an 8-round Feistel network. View F.E(K,T, ·)
as the cascade of two 4-round Feistel networks f and g, meaning F.E(K,T,X) =
g(f(X)) for every X ∈ ZM × ZN . DV [15] observe that F.E(K,T ′, ·) is the cas-
cade of g and f—note that the ordering of f and g is now reversed—where
T ′ = T ⊕ ([4]τ ‖ [4]τ ). See Fig. 2 for an illustration.

A sketch of DV’s attack. From the observation above, one can launch a
chosen-plaintext codebook-recovery attack on F as follows; this can also be
viewed as a slide attack [10,11]. Let p be as specified in Eq. (1) and let
s =

⌊√
MN/2p

⌋
≥ 1.4 Sample s elements uniformly and independently from

ZM × ZN , and let S be the set of these elements. Repeat this process, and let
S∗ be the resulting set. Recall that the adversary is given an encryption oracle
Enc in this attack. Now, for each U0 ∈ S, we iterate Ui ← Enc(T,Ui−1), for
i = 1, . . . , 2p, forming a U-chain U0 → U1 → · · · → U2p. For each V0 ∈ S∗, let
Vi ← Enc(T ′, Vi−1) for i = 1, . . . , 2p, forming a V-chain V0 → V1 → · · · → V2p.
Consider a U-chain and a V-chain such that each chain has at least p distinct
elements.5 If there is some index i < p such that V0 = f(Ui) then the pair
(Ui, V0) is called a slid pair, and Vk = f(Ui+k) and Ui+k+1 = g(Vk) for every
0 ≤ k < p. Likewise, if there is some index j < p such that U0 = g(Vj) then the

4 DV actually use different concrete choices of p and s to aggressively improve the
recovery rate.

5 To test if, say a U-chain (U0, . . . , U2p) contains at least p distinct elements, we only
need to check if U0 �∈ {U1, . . . , Up−1}, since |{U0, . . . , U2p}| < p if and only if U0 is
within a cycle of length k < p in the functional graph of the permutation f(g(·)).
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Fig. 2. Left: Encryption F.E(K, T, ·) as a cascade of 4-round Feistel networks f and g.
Right: Slided encryption F.E(K, T ′, ·) as a cascade of g and f , with T ′ = T ⊕([4]τ ‖ [4]τ ).
Here T1 and T2 are the left half and right half of the tweak T , respectively. For simplicity,
in the picture, instead of writing, say T1 ⊕ [0]τ , we simply write T1 ⊕ 0.

Fig. 3. Illustration of the slide attack. Here (U1, V0) is a slid pair.

pair (Vj , U0) is also called a slid pair, and Uk = g(Vj+k) and Vj+k+1 = f(Uk) for
every 0 ≤ k < p. See Fig. 3 for an illustration.

Suppose that somehow we manage to find a slid pair. Then we get p
input/output pairs for f , and can run TF to recover the codebook of f . Likewise,
we can also recover the codebook of g. By composing the codebook of f and g,
we finally recover the codebook of F on tweak T . We can also compose g and f
to recover the codebook of F on tweak T ′.
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Fig. 4. The blueprint of DV’s attack, which is also the main procedure of the SD
attack. Procedure Slide(U ,V ) takes as input two chains U = (U0, . . . , U2p) and V =
(V0, . . . , V2p), tries to find a slid pair (Ui, V0), and then uses TF to recover the codebook.
Numbers M, N, τ are global parameters.

The code of the blueprint of DV’s attack is given in Fig. 4, which is also the
main procedure of our SD attack. The two attacks however differ in how they
implement procedure Slide for finding a slid pair, among 2s2p ≈ MN candidates.
DV simply try every possible candidate, by running (a slow version of) the TF
algorithm to recover the codebook of f and g. As we will show below, there
are often very few slid pairs, and thus DV’s attack essentially has to run TF
for about Θ(MN) times, which is very expensive. The key idea in our Slide-
then-Differential, which we will elaborate in Sect. 3.2, is to use some differential
analysis to quickly eliminate false candidates.

The number of slid pairs. Clearly, the attack above only works if there exists
at least one slid pair. Let P be the random variable for the number of slid pairs.
DV use a heuristic6 to estimate that Pr[P ≥ 1] ≈ 1 − e−2s2p/MN ≈ 1 − 1/e,
under the model that the cascade of f and g is an ideal permutation. We instead
give a rigorous lower bound of Pr[P ≥ 1] for a generic value p in Lemma 1 in the
same model; the proof is in the full version. For s = 1 (equivalently, M < 1024),
we can compute the exact probability Pr[P ≥ 1], but we stress that this result
only holds in the model above. The experiments in Sect. 5 show that empirically,
the event P ≥ 1 happens with higher probability.

6 While DV only consider balanced Feistel networks, their heuristic can be easily
generalized to the general case. For completeness, in the proof of Lemma 1, we also
describe this heuristic argument.
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Lemma 1. Let M ≥ N ≥ 8 and let F = FF3[M,N, τ,�]. Let p ≥ 1 be an
integer such that p ≤ MN/2 and let s = 

√
MN/2p�. Let f and g be as above,

and let π be the cascade of f and g. Let P be the random variable for the number
of slid pairs. Let δ = 2p

MN − (2.5p2−1.5p)
(MN)2 . We will model π as an ideal random

permutation on ZM × ZN .

(a) If s = 1 then Pr[P ≥ 1] = δ ≈ 3
8 .

(b) If s ≥ 2 then Pr[P ≥ 1] ≥ s2δ
2 ≈ 1

2 .

Above, we show that it is quite likely that there are one or more slid pairs. How-
ever, often there will be very few of them. Lemma 2 below bounds the expected
number of slid pairs for a generic value of p; the proof is in the full version.
Combining this with Markov’s inequality, one can show that with probability at
least 0.8, there are at most 5 slid pairs.

Lemma 2. Let M ≥ N ≥ 64 and let F = FF3[M,N, τ,�]. Let p ≥ 1 be an
integer such that p ≤ MN/2 and let s = 

√
MN/2p�. Let f and g be as above,

and let π be the cascade of f and g. Let P be the random variable for the number
of slid pairs. If we model π as an ideal random permutation on ZM × ZN then
E[P ] ≤ 2s2p

MN ≤ 1.

3.2 Distinguishing Slid-Pair Candidates

As shown above, we often have very few slid pairs, among 2s2p ≈ MN candi-
dates, and using TF to find the actual slid pairs is an overkill. Note that each
candidate gives us p plaintext/ciphertext pairs for f . If a candidate is indeed a
slid pair, then the ciphertexts for f are indeed the images of the corresponding
plaintexts under f , otherwise we can view them as produced from an ideal per-
mutation on ZM ×ZN . The analogous claim also holds for g. A natural solution
is to find a quick distinguishing attack for 4-round Feistel, so that we can tell
the true candidates from the false ones.

Our distinguishing attack on 4-round Feistel. Below, we will give a dis-
tinguishing attack Left-Half Differential (LHD) of 4-round Feistel such that (1)
in the ideal world, it returns 1 with probability at most N5/6

M4/3 , and (2) in the

real world, it returns 1 with probability at least 1 −
√

N
8M − 9.7

M − 0.88N3/4

M3/2 . For
each slid-pair candidate, we run LHD on the plaintext/ciphertext pairs of f , and
also on those of g. We will accept the candidate if LHD returns 1 in both cases.
Then, for each false candidate, the chance that we incorrectly accept it is at
most N5/3/M8/3. Since we have at most MN false candidates, on average we
will have at most

MN · N5/3

M8/3
=

N8/3

M5/3
≤ N

false candidates that survived our test. In addition, for each true candidate, the
chance that we incorrectly reject it is at most

1 −
(
1 −

√
N

8M
− 9.7

M
− 0.88N3/4

M3/2

)2

≤ 0.37
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for M,N ≥ 64. We note that our bounds are very conservative, since we obtain
them via Chebyshev’s inequality, which is loose. In fact, our empirical results,
presented in Sect. 5, significantly outperform the theoretical estimates. In par-
ticular, on average just one (possibly false) candidate survives our test, and we
never incorrectly reject a true candidate.
Proceeding into details, the LHD algorithm is based on the following Lemma 3,
which is a generalization of a result by Patarin for balanced, boolean Feistel [24].
A more general version of Lemma 3 appears in [5] for a Feistel network of an even
number of rounds, but this result only provides a (very tight) approximation of
the bound, instead of an exact one. The proof is in the full version

Lemma 3. Let M,N ≥ 8 be integers and F = Feistel[4,M,N,�]. Let X and
X ′ be two distinct messages in ZM ×ZN such that RH(X) = RH(X ′). Let C and
C ′ be the ciphertexts of X and X ′ under F with a uniformly random key. Then

Pr[LH(C) � LH(C ′) = LH(X) � LH(X ′)] =
M + N − 1

MN
.

Lemma 3 above shows that if we encrypt two messages X and X ′ of the same
right segment under a 4-round Feistel network, then there will be some bias in the
distribution of the ciphertexts C and C ′: (1) the chance that LH(C)� LH(C ′) =
LH(X) � LH(X ′) is M+N−1

MN , (2) had we instead sampled C and C ′ uniformly
without replacement from ZM×ZN , this probability would have been just N

MN−1 .
Our distinguishing attack LHD will amplify this bias, by using several messages
of the same right segments.

Random variables X1, . . . , Xm ∈ ZM × ZN are t-wise right-matching if they
satisfy the following constraints:

– If we partition X1, . . . , Xm into groups P1, . . . , Pd according to their right
segments then d ≤ t.

– Within each partition Pi, the left segments of the messages in Pi are uniformly
distributed over ZM , subject to the constraint that those left segments are
distinct.

Our attack LHD takes as input m messages (X1, . . . , Xm) that are t-wise right-
matching and their ciphertexts (C1, . . . , Cm), where m =

⌈
p
N · �32N1/6�

⌉
and

t = �mM
p �. The code of LHD is given in Fig. 5. Informally, LHD will compute

count, the number of pairs Xi and Xj , with i < j, such that RH(Xi) = RH(Xj)
and LH(Ci) � LH(Cj) = LH(Xi) � LH(Xj). If the ciphertexts are produced by
a 4-round Feistel network then from Lemma 3, the expected value of count
is M+N−1

MN · size, where size is the number of pairs Xi,Xj such that i < j
and RH(Xi) = RH(Xj). If the ciphertexts are produced by a truly random
permutation on ZM × ZN then the expected value of count is N

MN−1 · size.
The algorithm LHD will return 1 if count is greater than the weighted average(

1
5 · M+N−1

MN + 4
5 · N

MN−1

)
size, otherwise it will return 0.
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Fig. 5. Distinguishing attack LHD on four-round Feistel.

Implementing LHD. The code in Fig. 5 describes just the conceptual view of
LHD for ease of understanding. Implementing it efficiently requires some care.
First, messages X1, . . . , Xm will be grouped according to their right segments, by
a one-time preprocessing that we will describe in Sect. 3.3. Thus the partitioning
takes only linear time. Let P1, . . . , Pd be the resulting partitions, and let |m�| =
|P�|, for every � ≤ d. In the for loops, if we naively follow the code, then the
running time would be

d∑
�=1

Ω(m2
�) = Ω(m2/d) = Ω(M1/3N7/6),

which is expensive. Instead, we will execute as in Fig. 6. That is,

– For each fixed � ≤ d, we want to find count�, the number of pairs (i, j) such
that i < j and Xi,Xj ∈ P� and LH(Ci) � LH(Xi) = LH(Cj) � LH(Xj). We
then can compute count via count1 + · · · + countd.

– Thus for each � ≤ d, we create an empty hash table H� of key-value pairs and
initialize count� ← 0. We process P� so that eventually, for each entry in H�,
its key is a number Z ∈ ZM and its value indicates how many Xk ∈ P� that
LH(Ck) � LH(Xk) = Z.

– Finally, we iterate through all keys of H�. For each key Z, we find its value v

and update count� ← count� + v(v−1)
2 .

The total running time of this implementation is O(m) = O(M2/3N1/6).

Analysis of LHD. Lemma 4 below bounds the probability that LHD outputs 1
in the ideal world, for generic m and t, and also for a generic weighted average
Δ = λ · M+N−1

MN + (1 − λ) N
MN−1 ; see the full version for the proof. If we pick

m =
⌈

p
N · �32N1/6�

⌉
, t = �mM

p �, and λ = 1
5 as suggested then this probability

is about N5/6

M4/3 .

Lemma 4. Let M ≥ N ≥ 8 be integers, and let 0 < λ < 1 be a real number. Let
m > t ≥ 1 be integers. Let X1, . . . , Xm be t-wise right-matching messages, and let
C1, . . . , Cm be their ciphertexts, respectively, under an ideal random permutation
on ZM×ZN . Let V be the random variable of the number of pairs Xi and Xj, with
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Fig. 6. Implementation of LHD.

i < j, such that RH(Xi) = RH(Xj) and LH(Ci) � LH(Cj) = LH(Xi) � LH(Xj).
Let size be the number of pairs Xi,Xj such that i < j and RH(Xi) = RH(Xj),
and Δ = λ · M+N−1

MN + (1 − λ) N
MN−1 . Then

Pr [V ≥ Δ · size] ≤ N2

λ2(M − 2)2
( 1

MN − 2
+

2MN − 2
N(m2/t − m)

)
.

Lemma 5 below bounds the probability that LHD fails to output 1 in the
real world, again for generic m and t, and for a generic weighted average
Δ = λ · M+N−1

MN + (1 − λ) N
MN−1 ; see the full version for the proof. If we use

m =
⌈

p
N · �32N1/6�

⌉
, t = �mM

p �, and λ = 1
5 as suggested then this probability

is about
√

N
8M + 9.7

M + 0.88N3/4

M3/2 .

Lemma 5. Let M ≥ N ≥ 8 be integers and let 0 < λ < 1 be a real number. Let
m > t ≥ 1 be integers. Let X1, . . . , Xm be t-wise right-matching messages and let
C1, . . . , Cm be their ciphertexts, respectively, under F = Feistel[4,M,N,�] with
a uniformly random key. Let V be the random variable of the number of pairs
Xi and Xj, with i < j, such that RH(Xi) = RH(Xj) and LH(Ci) � LH(Cj) =
LH(Xi)�LH(Xj). Let Δ = λ · M+N−1

MN +(1−λ) N
MN−1 , and let size be the number

of pairs Xi,Xj such that i < j and RH(Xi) = RH(Xj). Then

Pr [V ≤ Δ · size] ≤ 2(M + N − 1)MN

(1 − λ)2(m2/t − m)(M − 2)2
+

6.2(M − 1)(N − 1)
(1 − λ)2N(M − 2)2

+
4MN

(1 − λ)2(M − 2)2
√

(m2/t − m)
.

Using LHD. The LHD attack requires m chosen plaintexts, but recall that for
each slid-pair candidate, we only have p known plaintext/ciphertext pairs for f ,
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and also p known pairs for g.7 To find m messages that are �mM
p �-wise right-

matching, the naive approach is to partition p given messages according to their
right segments, and let P1, . . . , PM be the (possibly empty) partitions, with
|P1| ≥ · · · ≥ |PM |. We then output m messages from the first (and also biggest)
s =

⌈
mM

p

⌉
partitions. Since there are at most M partitions, our chosen parti-

tions contain at least
⌈
s · p

M

⌉
≥ m messages. Moreover, as the given p messages

are sampled uniformly without replacement from ZM × ZN , within each parti-
tion Pi, the left segments of the messages in Pi are sampled uniformly without
replacement from ZM .

The naive approach above is however very expensive. Totally, for Θ(MN)
slid-pair candidates, it uses Ω(MNp) = Ω(M5/3N2) time just to find their right-
matching messages. In the next section we’ll describe a one-time preprocessing
of O(MN) time such that later for each slid-pair candidate, we need only O(m)
time to find their right-matching messages to run LHD tests. Only for candidates
that survive the LHD tests that we extract their p plaintext/ciphertext pairs from
the corresponding chains to run TF.

Eliminating false negatives. Since our distinguishing test of slid-pair can-
didates above might occasionally produce false negatives, we still have to use
TF to eliminate the survived false candidates. The TF algorithm, after recover-
ing the round functions (G1, G2, G3, G4), will compute the outputs of the first
3M ≤ p plaintexts under a 4-round Feistel network with the round functions
(G1, G2, G3, G4), and compare them with the corresponding ciphertexts. By a
simple counting argument, one can show that it is extremely likely that TF will
reject all these false candidates. Specifically, for a false candidate, view its 3M
associated ciphertexts as the outputs of the 3M plaintexts under an ideal permu-
tation on ZM ×ZN . On the one hand, there are at most M2NN2M ≤ M2MN2N

choices of four round functions for a 4-round Feistel network on ZM ×ZN . On the
other hand, if we sample 3M ciphertexts uniformly without replacement from
ZM × ZN , there are

MN · · · (MN − 3M + 1) ≥ (MN − 3M)3M ≥ M3M (N − 3)3N

equally likely outputs. Since we have to deal with at most MN false candidates,
the chance that the TF algorithm fails to eliminate all false candidates is at most

MN · M2MN2N

M3M (N − 3)M+2N
=

N2N+1

M3M−1(N − 3)3N
≤ 1

M3M−1
.

Relation to prior Feistel attacks. Our LHD attack generalizes Patarin’s
distinguishing attack on 4-round balanced, boolean Feistel [24]; Patarin’s result
was later rediscovered by Aiello and Venkatesan [1]. To attack Feistel networks on
2n-bit strings, those papers suggest using messages X1, . . . , Xm of the same right
half, with m = Θ(2n/2). However, both papers only compute the expected value
7 Recall that in our attack, we require M ≥ N ≥ 64. This ensures that m ≤ p, so that

we can select m right-matching messages from p known messages.
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of the number of pairs (i, j) such that 1 ≤ i < j ≤ m and LH(Ci) ⊕ LH(Cj) =
LH(Xi) ⊕ LH(Xj) in both the real and ideal worlds. Consequently, they cannot
analyze the advantage of their attack, and can only suggest an asymptotic value
of m. Our Lemmas 4 and 5 allow one to fill this gap. By using N = M = 2n,
t = 1, m = c · 2n/2, and λ = 1

2 , the attack in [1,24] achieves advantage around
1 − 24

c2 − 29
2n − 16

c·2n/2 . Thus to achieve advantage 1/2, for n ≥ 16, we can use
c = 7.

The attack in [1,24] however cannot be used in place of LHD. Recall that we
want a distinguishing attack that outputs 1 with probability around 1/

√
N or

smaller in the ideal world, so that it can be used to eliminate most false slid-pair
candidates. Using m = Θ(

√
N) messages as suggested in [1,24] does not meet

this requirement, as the attack will output 1 with constant probability in the
ideal world, according to Lemma 4.

3.3 Slide-then-Differential Attack

In this Section, we describe how to combine DV’s slide attack with the LHD
attack above, resulting in our Slide-then-Differential attack.

Speeding up with preprocessing. Recall that we have Θ(MN) slid-pair
candidates, and for each such candidate we have to process Θ(p) pairs of
plaintext/ciphertext. At the first glance it seems that we are doomed with
Ω(pMN) = Ω(M5/3N2) time. However, we will perform a one-time preprocess-
ing using O(MN) time. After this preprocessing, for every slid-pair candidate,
we can extract m right-matching messages for f in O(m) = O(M2/3N1/6) time,
and even better, those messages are already grouped according to their right
segments. The same running time would be needed to extract messages for g.
We then can run LHD to eliminate most false slid-pair candidates.
Proceeding into details, suppose that we have a U-chain U0 → U1 → · · · → U2p

and a V-chain V0 → V1 → · · · → V2p, and we want to check if (Ui, V0) is a slid
pair, for every k ≤ {0, 1, . . . , p − 1}. For each slid-pair candidate (Ui, V0), the
known plaintext/ciphertext pairs for f are (Ui+k, Vk) for k ≤ 2p − i, and the
known plaintext/ciphertext pairs for g are (Vk, Ui+k+1), for k ≤ 2p − k − 1.

– In order to preprocess these p slid-pair candidates for f , note that they all use
plaintexts Up+1, . . . , U2p. So we will partition these plaintexts by their right
segments into (possibly empty) groups P1, . . . , PM , with |P1| ≥ · · · ≥ |PM |.
We then store m messages Uj from the first �32N1/6� partitions, together
with their indices j, in a list L. Later, for a slid-pair candidate (Ui, V0), we
iterate through pairs (Uj , j) in L, and for each such pair, the corresponding
ciphertext of Uj for f is Vj−i, which takes O(1) time to find if we store
(U0, . . . , U2p) and (V0, . . . , V2p) in arrays.

– Preprocessing for g is similar, but note that the p candidates all use plaintexts
V0, V1, . . . , Vp−1.

For a pair of U chain and V chain, partitioning takes O(p + M) time, and by
using a max-heap, we can find the �32N1/6� biggest partitions in O(M) time,
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Fig. 7. The implementation of procedure Slide in the SD attack. The numbers M and
N are global parameters. We assume that there is a global total ordering on the domain
ZM × ZN , so that we can write (Z1, . . . , ZMN ) ← ZM × ZN .

and extracting m messages from those partitions takes O(m) time. Summing up,
for a pair of U chain and V chain, the running time of the preprocessing is O(p).
Hence, totally, for s2 pairs of U chains and V chains, the overall running time of
the preprocessing is O(s2p) = O(MN).

Putting things together. By combining the LHD attack and the prepro-
cessing, one can implement procedure Slide as in Fig. 7. Thus the SD attack uses
O(sp) = O(M5/6N) queries and space, and its running time is O(MN) for the
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preprocessing, O(MN · m) = O(M5/3N7/6) for running LHD, and expectedly,
O(M5/3N) for running TF. Hence the total running time of SD is O(M5/3N7/6).

Improving the recovery rate. To improve the recovery rate of SD, one
can run the attack several times with different tweak pairs (T1, T1 ⊕
Mask), . . . , (Tr, Tr ⊕ Mask), where Mask = [4]τ ‖ [4]τ . If (Ti ⊕ Tj)[1 : τ ], (Ti ⊕
Tj)[τ + 1 : 2τ ] �∈ {[0]τ , . . . , [7]τ} for every i �= j then those r instances of SD will
call AES on different τ -bit prefixes. If we model AES as a good PRF then the
results of those SD instances are independent. Hence if the recovery rate of SD
is ε then running it for r times will have recovery rate 1 − (1 − ε)r.

4 Attacking 4-Round Feistel-Based Blockciphers

In this section, we generalize and improve DV’s known-plaintext codebook-
recovery attack on Feistel-based, 4-round blockciphers where the Feistel network
might be unbalanced. In particular, on a four-round balanced Feistel of domain
size N2, DV’s attack runs in O(N3) expected time, but our attack, which we
name Triangle-Finding (TF), runs in only O(N5/3) expected time. Both our
attack and DV’s rely on a conjecture of Feistel networks that DV empirically
verified for balanced Feistel of domain {0, 1}2n, for n ∈ {1, . . . , 9}. We prove that
this conjecture indeed holds, making both attacks unconditional.
Let

p = max
{

21/3M2/3N�,
⌈
M(ln(M) + 5)

⌉}
.

In our attack, we suppose that we are given p pairs (X1, C1), . . . , (Xp, Cp) of
plaintext/ciphertext under a four-round Feistel network F = Feistel[4,M,N,�]
with a uniformly random key, where M ≥ N ≥ 64 and the plaintexts are cho-
sen uniformly without replacement from ZM × ZN . To simplify our asymptotic
analysis, we assume that N = Ω(

√
M), which applies to the setting of the FF3

scheme, since FF3 uses near-balanced Feistel. Thus p ∈ O(M2/3N).

In our attack, we need a graph representation of the first p plaintext/ciphertext
pairs, and a few algorithms, which we will elaborate in Sect. 4.1. We then describe
our TF attack in Sect. 4.2.

4.1 Differential Graph and Its Triangles

Differential graph. Let G = (V, E) be the following directed graph. First,
for each i �= j, we create a node vi,j with label Label(vi,j) = RH(Ci) � RH(Cj)
if RH(Xi) = RH(Xj) and LH(Ci) � LH(Xi) = LH(Cj) � LH(Xj). Next, for every
two nodes vi,j and vk,� such that i, j, k, � are distinct, we create a directed edge
(vi,j , vk,�) if LH(Cj) = LH(Ck) and the following non-degeneracy conditions hold:

(1) LH(Ci) �= LH(C�),
(2) RH(Xi) �= RH(Xk),
(3) RH(Xj) � RH(Xk) �= RH(Cj) � RH(Ck), and
(4) LH(Xi) � LH(Xj) �= LH(Xk) � LH(X�).
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Fig. 8. Top: Seven pairs of plaintext/ciphertext (X1, C1), . . . , (X7, C7) on ZM × ZN ,
with M = N = 100. Bottom: Differential graph G constructed from those seven pairs.

See Fig. 8 for an illustration of the graph G. We call G the differential graph of
the plaintext/ciphertexts pairs (X1, C1), . . . , (Xp, Cp).

Good versus bad nodes. For a node vi,j in the differential graph G, we say
that it is good if RH(X2

i ) = RH(X2
j ); otherwise we say that it is bad. Lemma 6

below characterizes an important property of good nodes; it is a direct general-
ization of a result in DV’s work; see the full version for the proof.

Lemma 6. Let M,N ≥ 10 be integers and let F = Feistel[4,M,N,�]. Let
(X1, C1), . . . , (Xp, Cp) be plaintext/ciphertext pairs under F with a uniformly
random key, where the plaintexts are chosen uniformly without replacement from
ZM × ZN . Let G = (V, E) be the differential graph of those pairs, and let
(G1, G2, G3, G4) be the functions specified by the secret key of F. Then for any
good node vi,j ∈ V , we have Label(vi,j) = G4(LH(Ci)) � G4(LH(Cj)).

The following Lemma 7 computes the average number of good and bad nodes,
and estimates the average number of edges in the differential graph; see the full
version for the proof.

Lemma 7. Let M,N ≥ 10 be integers and let F = Feistel[4,M,N,�]. Let
(X1, C1), . . . , (Xp, Cp) be plaintext/ciphertext pairs under F with a uniformly
random key, where the plaintexts are chosen uniformly without replacement from
ZM × ZN . Let G = (V, E) be the differential graph of those pairs, and let Z be
the random variable for the number of good nodes in G. Then

(a) E[|V |] = p(p−1)(M−1)(M+N−1)
MN(MN−1) .

(b) E[Z] = p(p−1)(M−1)
(MN−1)N .

(c) E[|E|] ≤ p!
(p−4)! · (M+N)2

M3N4 .
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Since p = O(M2/3N) and M ≥ N , from Lemma 7, on average, the differential
graph G contains about O(M4/3) nodes, and the majority of them are good. In
addition, there are on average O(M5/3) edges in G.

A fast construction of differential graphs. The naive approach to
construct G would take Θ(p2) = Θ

(
M10/3

)
time just to construct the node

set V . We now show how to build G in O
(
M5/3

)
expected time; the code is

given in Fig. 9.

– First, partition the pairs (Xi, Ci) based on (LH(Ci)�LH(Xi),RH(Xi)). Using
appropriate data structure, this takes O(p) time.

– For each partition P , enumerate all distinct pairs (Xi, Ci), (Xj , Cj) ∈ P . Each
such pair forms a node in V , and its label can be computed accordingly. This
takes O(|V |) time.

– Finally, partition V into M groups Pd with d ∈ ZM , such that each node
vi,j goes to group PLH(Cj). Also, partition V into M groups Sd with d ∈ ZM ,
such that each node vk,� goes to group SLH(Ck). By enumerating elements in
Pd×Sd (with some pruning) for every d ∈ ZM via appropriate data structure,
we can create the edge set E using

O
(
|V | + M +

∑
i,j,k,�

Di,j,k,�

)

time, where Di,j,k,� is the indicator random variable for the event that (i)
vi,j ∈ V , (ii) vk,� ∈ V , and (iii) LH(Cj) = LH(Ck). The summation is taken
over all distinct i, j, k ∈ {1, . . . , p} and � ∈ {1, . . . , p}\{k}. By pretending that
(i), (ii), (iii) are independent, we can heuristically estimate that Pr[Di,j,k,� =
1] � 4

MN4 .

Hence the total expected time is

O
(
p + M + E[|V |] +

4p4

MN4

)
= O

(
M5/3

)
.

Triangles. Recall that from Lemma 7, on average, the majority of nodes in
the differential graph are good. We now describe a method to realize good nodes
with high probability. A triangle of the graph G is a directed cycle of length 3.
For a triangle T = (u1, u2, u3, u1), its weight weight(T ) is defined as the sum of
the labels, meaning that

weight(T ) = Label(u1) � Label(u2) � Label(u3) .

DV observed that in the balanced setting, for a triangle T , if all of its three nodes
are good then its weight is 0. Lemma 8 below shows that their observation also
holds in the unbalanced setting; see the full version for the proof.
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Fig. 9. Code for building the differential graph G = (V, E) of X1, C1, . . . , Xp, Cp.

Lemma 8. Let M,N ≥ 10 be integers and let F = Feistel[4,M,N,�]. Let
(X1, C1), . . . , (Xp, Cp) be plaintext/ciphertext pairs under F with a uniformly
random key, where the plaintexts are chosen uniformly without replacement from
ZM ×ZN . Let G = (V, E) be the differential graph of those pairs. For a triangle
T in G, if all the three nodes of T are good then weight(T ) = 0.

Above, we show that a triangle whose nodes are all good will have weight 0. The
following Lemma 9 shows that the converse holds with very high probability;
see the full version for the proof. This proves a conjecture in DV’s work [15]
that they empirically verified for the balanced, boolean case M = N = 2n, with
n ∈ {2, 3, . . . , 9}. We also give a rigorous lower bound for the expected number
of triangles whose all nodes are good, whereas DV could only give a heuristic
estimation of this number.

Lemma 9. Let M,N ≥ 19 be integers and let F = Feistel[4,M,N,�]. Let
(X1, C1), . . . , (Xp, Cp) be plaintext/ciphertext pairs under F with a uniformly
random key, where the plaintexts are chosen uniformly without replacement from
ZM × ZN . Let G = (V, E) be the differential graph of those pairs.

(a) For a triangle T in G of zero weight, the probability that all nodes in T are
good is at least 1

1+ε , where ε = N
M−9

(
4
M + 33N

(N−2)M2 + 39
M2

)
.
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Fig. 10. Code to enumerate triangles of zero weight from the differential graph G =
(V, E) of X1, C1, . . . , Xp, Cp.

(b) The expected number of triangles in G whose all nodes are good is at least
p!

3(p−6)! · 1
M3N6

(
1 − 7

N − 14
M

)
.

Discussion. While the core idea of differential graphs is from DV’s work, there
are important differences between our definition and DV’s:

– Because of the symmetry of Feistel, one can view Rev(X1), . . . ,Rev(Xp) as
the “ciphertexts” of Rev(C1), , . . . ,Rev(Cp) under a four-round Feistel F =
Feistel[4, N,M,�] where Rev(X) = (R,L) for any X = (L,R) ∈ ZM × ZN .
In this sense, DV’s notion is the dual of ours. While the two definitions yield
no difference in the balanced setting, if M 	 N , DV’s notion would give a
much poorer bound8 in a dual version of Lemma 9, leading to an inferior
recovery rate of the TF attack.

– Our notion also adds some non-degeneracy requirements, allowing us to prove
DV’s conjecture on differential graph in Lemma 9 further below.

Enumerating zero-weight triangles. From Lemma 9, a simple way to real-
ize good nodes is to enumerate all triangles of zero weight. We now show how
to do that in O(M5/3) expected time; the code is given in Fig. 10.

– First, for each node v ∈ V , partition its set of incoming edges such that each
edge (u, v) goes to group Pv,d, with d = Label(u)�Label(v), and also partition
the set of outgoing edges into groups such that each edge (v, w) goes to group
Sv,s, where s = 0 � Label(w).

– Next for each (v, d), enumerate all pairs (u,w) ∈ Pv,d × Sv,d such that there
is a directed edge (w, u) ∈ E. Each triple (v, u, w) is a triangle of zero weight.

8 In fact, the dual version of Lemma 9 would yield the bound 1
1+ε∗ , where ε∗ =

M
N−9

(
4
N

+ 33M
(M−2)N2 + 39

N2

)
. Concretely, for M = 100 and N = 10, the bound in our

Lemma 9 is 0.9947, whereas its dual is much poorer, just 0.0089.
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Using appropriate data structure, the first step takes O(|V |+ |E|) time, whereas
the cost of the second step is in the order of

∑
v∈V

∑
d∈ZN

|Pv,d| · (1 + |Sv,d|) ≤
(∑

v∈V

∑
d∈ZN

|Pv,d|
)

+
(∑

v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
)

=
(∑

v∈V

indeg(v)
)

+
(∑

v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
)

= |E| +
(∑

v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
)

,

where indeg(v) is the incoming degree of node v. Since E[|V |] ∈ O(M4/3) and
E[|E|] ∈ O(M5/3), what remains is to show that

E
[∑

v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
]

∈ O(M5/3) . (2)

For each tuple L = (i, j, k, �, r, s, d) ∈ ({1, . . . , p})6 × ZN such that i, j, k, �, r, s
are distinct, let BL denote the Bernoulli random variable such that BL = 1
if and only if (vi,j , vk,�) and (vr,s, vi,j) are edges of G, and vk,� ∈ Svi,j ,d and
vr,s ∈ Pvi,j ,d. Then

E
[∑

v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
]

= E
[∑

L
BL

]
=

∑
L

E[BL] =
∑
L

Pr[BL = 1] .

Note that for each L = (i, j, k, �, r, s, d), the event BL = 1 happens only if
the following events happen: (1) vi,j ∈ V , (2) vj,k ∈ V , (3) vr,s ∈ V , (4)
LH(Cj) = LH(Ck), (5) LH(Cs) = LH(Ci), (6) Label(vi,j) � Label(vr,s) = d, and
(7) Label(vk,�) = 0 � d. By pretending that these seven events are independent,
from Lemma 3, we can heuristically estimate

Pr[BL = 1] �
(M + N − 1

MN
· 1
N

)3( 1
M

)2( 1
N

)2

≤ (M + N)3

M5N8
≤ 8

M2N8
.

Hence ∑
L

E[BL] � p! · N

(p − 6)!
· 8
M2N8

∈ O(M2/N) .

Moreover, due to our assumption that N = Ω(
√

M), it follows that M2/N ∈
O(M1.5). We then conclude that

E
[∑

v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
]

∈ O(M1.5)

and thus justify Eq. (2).

Remarks. DV also considered the problem of finding zero-weight triangles for
the balanced case M = N . They first enumerated all triangles via sparse matrix
multiplications, and then computed the sum of labels for each triangle. In this
balanced setting, DV’s algorithm takes O(N3) time, whereas our algorithm takes
O(N5/3) time.
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4.2 The TF Attack

We begin with a simple but useful observation of DV on four-round Feistel.

An observation. Let (F1, F2, F3, F4) be the round functions of F. For any Δ ∈
ZN , let Shift(F,Δ) denote a 4-round Feistel network F = Feistel[4,M,N,�] of
round functions (F 1, F 2, F 3, F 4) such that F 1 = F1, F 2(K,x) = F2(K,x) � Δ,
F 3(K, y) = F3(K, y�Δ), and F 4(K,x) = F4(K,x)�Δ, for any x ∈ ZM , y ∈ ZN ,
and any key K. Note that for any choice of Δ, scheme F = Shift(F,Δ) ensures
that F.E(K,X) = F.E(K,X) for any key K and any X ∈ ZM × ZN . Therefore,
in a codebook recovery attack against F.E(K, ·), without loss of generality, one
can pick a designated point x∗ ∈ ZM and assume that F4(K,x∗) = 0.

The attack. Let (G1, G2, G3, G4) be the functions specified by the secret key
of F. We will recover even the tables of those functions, instead of just the
codebook.
Our attack TF is based on a known-plaintext codebook-recovery attack RY on
three-round Feistel that we describe in the full version. If we run RY on � ≥
max{�N(ln(N)+ln(2)+λ)�, �M(ln(M)+δ)�} known plaintext/ciphertext pairs,
for any λ, δ > 0, the RY attack will take O(�) time, and recovers all the round
functions of the three-round Feistel with probability around e−e−λ − e−δ. If we
just have � ≥ �N(ln(N)+ln(2)+λ)� then RY will recover the top round function
with probability at least e−e−λ

. We note that RY is used in a modular way; one
does not need to know the technical details of RY to understand the TF attack.
While TF somewhat resembles DV’s attack on 4-round Feistel, there are impor-
tant changes to improve efficiency and recovery rate, which we will elaborate
further below. The code of TF is given in Fig. 11; below we will describe the
attack.
In the TF attack, we will first construct the differential graph G = (V, E) of
the plaintext/ciphertext pairs (X1, C1), . . . , (Xp, Cp), and then enumerate all
triangles of G of zero weight. Let S be the set of the nodes of those triangles;
each node S is very likely to be good, due to Lemma 9. For each vi,j ∈ S, from
Lemma 6, if vi,j is indeed good then Label(vi,j) = G4(LH(Ci)) � G4(LH(Cj)).
Our first step is to recover several (but possibly not all) entries of G4. In order
to do that, construct the following undirected graph G∗ = (V∗, E∗) of |V ∗| = M
nodes. Nodes in V ∗ are distinctly labeled by elements of ZM . For each node
vi,j ∈ S, we create an edge between nodes LH(Ci) and LH(Cj) of V ∗, indicating
that we know the difference between G4(LH(Ci)) and G4(LH(Cj)). Once the
graph G∗ is constructed, we pick an arbitrary node x∗ ∈ V ∗ that belongs to the
biggest connected component of G∗, and set G4(x∗) ← 0. We then recover G4(u)
for every node u ∈ V ∗ reachable from x∗ using breadth-first search (BFS), but
stop when

⌊
3M√

N

⌋
entries of G4 are recovered. Let I ⊆ {1, 2, . . . , p} be the set of

indices i such that G4(LH(Ci)) is recovered at this point.

Our next step is to recover the entire table of G1 using RY. For each i ∈ I,
recover the round-3 intermediate output Yi of Xi via LH(Yi) = LH(Ci) and
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Fig. 11. The TF attack (parameterized by a small number μ) on 4-round Feistel, which
is based on another attack RY on 3-round Feistel and a procedure Restore in Fig. 12.

RH(Yi) = G4(LH(Ci)) � RH(Ci). Then run RY on the pairs {(Xi, Yi) | i ∈ I}
to recover G1, and then recover the round-1 intermediate outputs Z1, . . . , Zp of
X1, . . . , Xp. In addition, observe that Rev(Ci) is the ciphertext of Rev(Zi) under
a 3-round Feistel F = Feistel[3, N,M,�] of round functions G2, G3, G3 (note
that the roles of M and N are now reversed), where for Z = (A,B) ∈ ZM ×ZN ,
we write Rev(Z) to denote the pair (B,A) ∈ ZN × ZM . We then run RY on
Rev(Z1), . . . ,Rev(Zp),Rev(C1), . . . ,Rev(Cp) to recover G2, G3, G4.

To amplify the recovery rate, instead of using just one random node x∗, we try μ
independent choices of x∗; in our implementation, we pick μ = 10.9 As analyzed
in Sect. 3.3, we can decide which node yields a correct output by evaluating
3M plaintexts on a Feistel network with the recovered round functions, and
comparing them with the corresponding ciphertexts.

Analysis. We now analyze the advantage of the TF attack; the key ideas in our
analysis are largely from DV’s work. We however tighten some of their arguments
to improve the bounds.
9 We note that here μ = 10 means that the attack will iterate up to 10 times, each

time with an independent choice of the initial node x∗, until it succeeds in recovering
the entire codebook. The expected number of the iterations is often smaller than 10.
For example, with M = 1000 and N = 100, empirically the attack would succeed at
the first iteration, and thus it only performs a single iteration.
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Fig. 12. Procedure Restore in the TF attack. Here for Z = (A, B) ∈ ZM ×ZN , we write
Rev(Z) to denote the pair (B, A) ∈ ZN × ZM .

Table 3. Empirical estimation of |E∗| over 100 trials. The first row indicates the values
of M and N . The second row shows the 95% confidence interval of |E∗|.

(M,N) (27, 26) (27, 27) (28, 27) (28, 28) (29, 28) (29, 29) (102, 102) (103, 102)

|E∗| 217± 6 203± 6 270± 6 321± 6 802± 11 965± 11 156± 5 1576± 16

� We begin by estimating E[|E∗|]. A direct generalization of DV’s analysis would
yield E[|E∗|] ≈ p6

M3N6 , which is rather loose. Consider the empirical estimation
of |E∗| in Table 3. For M = N = 100, the 95% confidence interval of |E∗| is
156 ± 5, but the approximation above suggests that E[|E∗|] ≈ 400.

We now provide a tighter analysis. Let W be the number of triangles in G whose
all three nodes are good. From part (a) of Lemma 9, when we enumerate zero-
weight triangles in G, most of them will have three good nodes. Thus those
triangles will contribute approximately 3W distinct good nodes. Note that if
T = (vi,j , vk,�, vr,s) is a triangle then T ∗ = (vj,i, vs,r, v�,k) is also a triangle,
and weight(T ∗) = 0 � weight(T ). (See Fig. 9 for an illustration.) Hence if T is a
zero-weight triangle then so is T ∗, but these two triangles will produce the same
three edges for E∗. Taking into account this duplication, E[|E∗|] ≈ 3E[W ]

2 . From
part (b) of Lemma 9,
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E[W ] � p6

3M3N6

(
1 − 7

N
− 14

M

)
≥ 2p6

9M3N6

for M ≥ N ≥ 64. Hence

E[|E∗|] � p6

3M3N6
� 4M

3
. (3)

This lower bound is consistent with Table 3. For example, for M = N = 100,
we estimate that E[|E∗|] � 133, and recall that empirically, the 95% confidence
interval of |E∗| is 156 ± 5.

� Next, following DV, we model the graph G∗ as a random graph according
to the Erdős-Rényi model, in which each of the

(
M
2

)
possible edges will have

probability ρ to appear in E∗, independent of other edges. To determine the
parameter ρ, note that according to the model above, the expected number of
edges in E∗ is (

M

2

)
ρ =

M(M − 1)ρ
2

. (4)

From Eqs. (3) and (4), we have Mρ = 2E[|E∗|
M−1 � 8M

3 . From the theory of random
graph (see, for example, Chapter 2 of Durrett’s book [17]), the graph G∗ will
almost surely contain a giant component of size about (1−c)M or bigger, where
c ≈ 0.0878 is the unique solution of the equation e

8
3 (t−1) = t in the interval (0, 1).

In DV’s attack, one recovers G4(u) for every node u in the giant component, but
since S may contain a few bad nodes, some entries of G4 that we recover might
be incorrect. Instead, we only recover G4(u) for nodes u in a connected subgraph
of the giant component of size

⌊
3M√

N

⌋
. Those nodes are produced by about

⌊
M√
N

⌋

triangles of zero-weight, and thus from Lemma 9, the chance that the nodes of
these triangles are good is at least 1−

√
N

(M−9) ·
(
4 + 33N

(N−2)M + 39
M

)
. On the other

hand, expectedly, we obtain about

3p√
N

≥ 3 · 21/3M2/3
√

N ≥ N(ln(N) + ln(2) + 2.7)

pairs of plaintext/ciphertext for RY, where the second inequality is due to the
fact that M ≥ N ≥ 64. Thus we can run RY to recover G1 with probability at
least e−e−2.7

> 0.935. We then can run RY with

p ≥ M(ln(M) + 5) ≥ max{N(ln(N) + 5),M(ln(M) + ln(2) + 4.3)}

inputs, and thus can recover (G2, G3, G4) with probability at least e−e−4.3−e−5 >
0.975. Summing up, if we just try one node x∗ then our recovery rate is at least
0.91 −

√
N

(M−9) ·
(
4 + 33N

(N−2)M + 39
M

)
. Using μ independent choices of x∗ can only
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Fig. 13. The performance of TF with respect to μ, on balanced domains ZN × ZN ,
over 100 trials. The x-axis indicates the values of μ, and the y-axis shows how many
trials, out of 100 ones, that TF can recover the entire codebook.

improve the success probability. In fact, as illustrated in Fig. 13, empirically, the
improvement when we increase μ from 1 to 10 is substantial.

� As mentioned in Sect. 4.1, constructing the differential graph G takes O(M5/3)
expected time, and so does enumerating zero-weight triangles. The graph G∗ has
M nodes, and expectedly, around p6

3M3N6 ∈ O(M) edges. Thus identifying the
connected components of G∗ and doing BFS on its largest component takes
O(|V ∗| + E[|E∗|]) = O(M) expected time. Running RY takes O(p) time. Hence
the total running time is O(M5/3).

Comparison with DV’s attack. While our attack is inspired by DV’s attack,
there are important changes:

– First, as mentioned earlier, compared to DV’s notion of differential graphs, we
actually use a dual definition, for better recovery rate. Our notion also adds
some non-degeneracy requirements, allowing us to find a proof for Lemma 9
and resolve DV’s conjecture.

– Next, our attack has a much faster way to enumerate triangles of zero weight,
reducing the running time from O(N3) to O(N5/3) in the balanced setting.

– Recall that some zero-weight triangles may contain bad nodes, creating some
noise in the attack. DV mentioned that their attack hardly succeeded for
2N5/3 or more plaintext/ciphertext pairs, and posed an open question to
eliminate the noise. To resolve this issue, we introduce the trick of exploring
the giant component from μ random places, and from each place, we stop
after visiting �3M/

√
N� nodes.

– DV only run RY once to recover (G1, G2, G3), and then derive the round-3
intermediate Wi values of Xi, and use (Wi, Ci) pairs to recover G4. This works
well for DV, as they consider just the balanced setting M = N . However, in
unbalanced settings, for the first run of RY, we only have 3p/

√
N � M ln(M)
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Table 4. Empirical performance of the LHD attack over 100 trials. The first row
indicates the values of M and N . The second row shows how many times, over 100
trials, that LHD correctly outputs 1 in the real world. The last row shows how many
times, again over 100 trials, that LHD incorrectly outputs 1 in the ideal world.

(M, N) (27, 26) (27, 27) (28, 27) (28, 28) (29, 28) (29, 29) (102, 102) (103, 102)

Real 100 100 100 100 100 100 100 100

Ideal 0 0 0 0 0 0 1 0

inputs. Thus the chance that one can recover (G1, G2, G3) by using one RY
call is poor. We therefore only use the first RY call to get G1, and run RY
another time to recover (G2, G3, G4).

5 Experiments

In this section, we empirically evaluate the LHD, SD, and TF attacks.

Benchmarking environment. We implemented our attack in C++ ,
and ran experiments using 72 threads in a server of dual Intel(R)
Xeon(R) CPU E5-2699 v3 2.30 GHz CPU and 256 GB RAM. We evalu-
ate our attacks in both balanced and unbalanced settings, and for both
binary and decimal domains. Specifically, we consider every (M,N) ∈
{(27, 26), (27, 27), (28, 27), (28, 28), (29, 28), (29, 29), (102, 102), (103, 102)}. For
each choice of (M,N), we let

p = max
{

21/3M2/3N�,
⌈
M(ln(M) + 5)

⌉}

as specified in Eq. (1).

Evaluating LHD. For each domain ZM ×ZN , we sample p messages uniformly
without replacement from ZM × ZN , and then extract m = � p

N · �32N1/6�� t-
wise right-matching plaintexts, with t = �mM

p �. In the real world, we encrypt
the plaintexts using the 4-round version of FF3 with the all-zero tweak to pro-
duce m ciphertexts. In contrast, the ciphertexts are chosen uniformly without
replacement from ZM × ZN in the ideal world. The results of our experiments,
given in Table 4, show that LHD is nearly perfect, which is much better than
our theoretical estimation in Sect. 3.2. This is not surprising, since our analysis
is very conservative.

Evaluating TF. For each domain ZM × ZN , we sample p messages uniformly
without replacement from ZM × ZN , and generate p ciphertexts using 4-round
FF3 with the all-zero tweak. We consider all choices of μ from 1 to 10. The
results of our experiments, given in Table 5, are consistent with the theory. For
example, with M = N = 128 and μ = 1, the attack is supposed to recover the
entire codebook with probability around

0.91 −
√

N

M − 9
·
(

4 +
33N

(N − 2)M
+

39
M

)
≈ 47.6%
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Table 5. Empirical performance of the TF attack over 100 trials. The first row indicates
the values of M and N . Each subsequent row shows how many trials, over 100 ones,
that TF correctly recovers the entire codebook, for the given choice of μ.

(M,N) (27, 26) (27, 27) (28, 27) (28, 28) (29, 28) (29, 29) (102, 102) (103, 102)
Recover, µ = 1 70 45 75 66 84 73 39 100
Recover, µ = 2 77 57 88 79 93 93 48 100
Recover, µ = 3 81 64 91 89 95 97 51 100
Recover, µ = 4 84 66 94 92 99 98 54 100
Recover, µ = 5 85 69 95 94 100 100 56 100
Recover, µ = 6 86 71 96 95 100 100 57 100
Recover, µ = 7 87 73 97 96 100 100 58 100
Recover, µ = 8 87 74 97 97 100 100 59 100
Recover, µ = 9 88 74 98 97 100 100 59 100
Recover, µ = 10 88 75 98 97 100 100 60 100

Table 6. Empirical performance of the SD attack over 100 trials. The first row indicates
the values of M and N . The second row shows how many trials, over 100 ones, have at
least one slid pair, the third row shows how many of them survive the LHD tests, and
the last row shows how many of them can successfully recover the entire codebook.

(M, N) (27, 26) (27, 27) (28, 27) (28, 28) (29, 28) (29, 29) (102, 102) (103, 102)

Have
61 65 53 53 38 33 75 27

slid pairs

Survive
61 65 53 53 38 33 75 27

LHD tests

Recover 50 39 51 50 38 33 22 27

Table 7. The total number of survived (possibly false) candidates after using LHD
tests in SD, over 100 trials. The first row indicates the values of M and N . The second
row shows the total number of survived (possibly false) candidates after using LHD
tests in SD, over 100 trials.

(M, N) (27, 26) (27, 27) (28, 27) (102, 102)

No. of
74 72 53 89

candidates

and in the experiments, 45 out of 100 trials yield the correct codebook. Increasing
μ will improve the performance substantially. For example, with μ = 10, the
recovery rate goes up to 75%.

Evaluating SD. To save time in evaluating SD, we use the FF3 key to find true
candidates and run the LHD tests and the TF attack on them. Table 6 reports
the empirical performance of SD over 100 trials, in which we use μ = 10 for the
underlying TF attack. The recovery rate is reasonable, ranging from 22% to 51%,
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and we never miss any true candidate using LHD tests. In addition, we also run
the full SD attack on (M,N) ∈ {(27, 26), (27, 27), (28, 27), (102, 102)} to evaluate
the performance of LHD test on false slid-pair candidates. As shown in Table 7,
our test is a nearly perfect filtering, leaving on average a single (possibly false)
slid-pair candidate in each trial.
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Abstract. The TLS 1.3 0-RTT mode enables a client reconnecting to a
server to send encrypted application-layer data in “0-RTT” (“zero round-
trip time”), without the need for a prior interactive handshake. This
fundamentally requires the server to reconstruct the previous session’s
encryption secrets upon receipt of the client’s first message. The standard
techniques to achieve this are Session Caches or, alternatively, Session
Tickets. The former provides forward security and resistance against
replay attacks, but requires a large amount of server-side storage. The
latter requires negligible storage, but provides no forward security and
is known to be vulnerable to replay attacks.

In this paper, we first formally define session resumption protocols as
an abstract perspective on mechanisms like Session Caches and Session
Tickets. We give a new generic construction that provably provides for-
ward security and replay resilience, based on puncturable pseudorandom
functions (PPRFs). This construction can immediately be used in TLS
1.3 0-RTT and deployed unilaterally by servers, without requiring any
changes to clients or the protocol.

We then describe two new constructions of PPRFs, which are par-
ticularly suitable for use for forward-secure and replay-resilient session
resumption in TLS 1.3. The first construction is based on the strong
RSA assumption. Compared to standard Session Caches, for “128-bit
security” it reduces the required server storage by a factor of almost
20, when instantiated in a way such that key derivation and puncturing
together are cheaper on average than one full exponentiation in an RSA
group. Hence, a 1 GB Session Cache can be replaced with only about 51
MBs of storage, which significantly reduces the amount of secure memory
required. For larger security parameters or in exchange for more expen-
sive computations, even larger storage reductions are achieved. The sec-
ond construction combines a standard binary tree PPRF with a new
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“domain extension” technique. For a reasonable choice of parameters,
this reduces the required storage by a factor of up to 5 compared to
a standard Session Cache. It employs only symmetric cryptography, is
suitable for high-traffic scenarios, and can serve thousands of tickets per
second.

1 Introduction

0-RTT Protocols. A major innovation of TLS 1.3 [39] is its 0-RTT (zero round-
trip time) mode, which enables the resumption of sessions with minimal latency
and without the need for an interactive handshake. A 0-RTT protocol allows the
establishment of a secure connection in “one-shot”, that is, with a single message
sent from a client to a server, such that cryptographically protected payload
data can be sent immediately (“in 0-RTT”) along with the key establishment
message, without the need for a latency-incurring prior handshake protocol. This
significant speedup of connection establishment yields a smoother Web browsing
experience and, more generally, better performance for applications with low-
latency requirements. This is particularly noticeable in networks with relatively
high latency, such as mobile networks.

The huge practical demand for 0-RTT is exemplified by the fact that many
large Internet companies have developed and experimented with such protocols
in the recent past, for example Google’s QUIC [13] and Facebook’s Zero [27]
protocols. The content distribution provider Cloudflare has deployed the 0-RTT
mode of TLS 1.3 as early as March 2017 at large scale, long before the finalization
of the standard [44]. Google and Facebook declared that the cryptography in
QUIC and Zero will soon be replaced by TLS 1.3 0-RTT [4,27].

The TLS 1.3 0-RTT Handshake. A full TLS 1.3 handshake (not 0-RTT) is always
used in the very first connection between a client and a server. If the server
supports 0-RTT, then both the client and server can derive a Resumption Secret
from their shared key and session parameters. The client will simply store this
secret. Naturally, the server then needs to retrieve the Resumption Secret during
a subsequent handshake. There are two standard approaches for this, Session
Caches and Session Tickets, which have different advantages and drawbacks.
During the first handshake, the server sends to the client either a lookup key
pointing to an entry in the Session Cache of the server, or a Session Ticket -
depending on the configuration of the server. These approaches essentially work
as follows:

Session Caches: The server stores all Resumption Secrets of recent sessions in
a local database and issues each client a unique lookup key. When a client
reconnects, it includes that lookup key in its 0-RTT messages, enabling the
server to retrieve and use the matching Resumption Secret.

Session Tickets: The server uses a long-term symmetric encryption key, called
the Session Ticket Encryption Key (STEK). Instead of storing the Resump-
tion Secret in a local database, the server encrypts it with the STEK to
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create a Session Ticket. The Session Ticket is stored by the client. When
a client reconnects, it includes that Session Ticket in its 0-RTT messages,
which enables the server to decrypt it and recover the Resumption Secret.
Note that the same STEK is used for many sessions and clients.

On a subsequent 0-RTT handshake, the client will include in its first mes-
sage either the lookup key or the encrypted Session Ticket, in addition to a
Diffie-Hellman key exchange message. The client can also send, in the same mes-
sage, encrypted application-layer data, termed 0-RTT data. This data will be
encrypted with a key derived from the Resumption Secret and a public client
random value, without any input from the server.1

In its reply, the server will typically include a Diffie-Hellman key exchange
message, and further messages (in either direction) will be encrypted with a
key derived also from the DH secret, not only the Resumption Secret. Hence,
the only data protected by the Resumption Secret alone is the 0-RTT data. We
note that the use of DH is not mandatory, and it is possible to rely only on the
Resumption Secret for the security of the entire session; we expect most traffic
will use DH as described above.

We stress that the use of Session Caches or Session Tickets is opaque to
clients. That is, in either case the server sends a New Session Ticket message
containing an opaque sequence of bytes, which may be either a lookup key for
the Session Cache, or an encrypted Session Ticket, without specifying which is
the case.2 This property ensures that our proposed techniques are compatible
with the final TLS 1.3 standard [39] and can be implemented on the server-side
without requiring modifications to the protocol or to clients.

Forward Security and Replay Resilience of 0-RTT Protocols. Forward security
essentially means that the protocol provides security of sessions, even if an
attacker is able to corrupt one party after the session has terminated (e.g., by
breaking into a Web server and learning the long-term secret key). Resilience to
replay attacks is a fundamental, classical design goal of cryptographic protocols,
which prevents an attacker from replaying the same payload data to a server
repeatedly.

Both forward security and replay resilience are standard design goals of mod-
ern security protocols. However, achieving these properties is well-known to be
difficult for 0-RTT protocols. This is because classical (“non-0-RTT”) protocols

1 The above describes typical modes of operation of TLS 1.3. The standard also allows
for other modes, e.g. modes that include client authentication. We expect other
modes will be used much less often, and therefore they are beyond the scope of this
paper.

2 Confusingly, the message containing this opaque sequence of bytes is always termed a
“New Session Ticket Message”, for both Session Caches and encrypted self-contained
Session Tickets. To our knowledge there is no standard nomenclature, in [39] or
elsewhere, for these two different approaches when used in TLS 1.3; see e.g. [39, § 8.1].
TLS 1.2 referred to “Session ID Resumption” and “Session Ticket Resumption”, but
these terms are not used in TLS 1.3.
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include fresh input from the server (e.g., a Diffie-Hellman message) generated
using ephemeral randomness, which provides a leverage to achieve forward secu-
rity. However, there is no such interactivity in 0-RTT protocols. Furthermore,
an attacker is able to replay the 0-RTT key establishment message along with
the 0-RTT payload data over and over again to a server, which is not detectable
without additional server-side countermeasures.

Forward Security and Replay Resilience of TLS 1.3 0-RTT. With Session Caches
the server stores a “unique” Resumption Secret in a local database for each
client. In most cases, it is able to delete the Resumption Secret immediately
after retrieving it. This provides forward security, as an attacker obtaining the
server state cannot decrypt past sessions. It also provides resilience against replay
attacks, as the server is not able to decrypt replayed messages.

If Session Tickets are used, then an attacker that obtains access to the server
can learn the STEK, and thus decrypt all tickets encrypted with this key to
learn the Resumption Keys. Hence, servers using Session Tickets do not provide
forward security. They are also generally vulnerable to replay attacks.3 Since
an attacker learning the STEK has catastrophic implications for security, large
server operators usually rotate the STEK. Such deployments typically generate
a new STEK roughly once per hour, and limit the STEK lifetime to roughly a
day [34]. An attacker that learns one STEK can therefore decrypt approximately
one hour’s worth of traffic. However, most current TLS implementations do not
provide out-of-the-box support for STEK rotation, and this (welcome) defensive
measure is usually limited to large operators who can afford to modify TLS
implementations [32,34]. Long-lived STEKs are unfortunately prevalent, and
even among high-profile websites, some reuse the same STEK for many weeks,
or even for many months [43].

To summarize, Session Caches are generally forward-secure and replay-
resistant, while Session Tickets are not. Näıvely, it would therefore appear that
Session Caches are the superior solution. However, Session Caches require the
server to store the session state for each (recent) connection. This is often infea-
sible, in particular for high-traffic server operators. Such server operators often
reluctantly use Session Tickets, knowingly forgoing forward secrecy. Addition-
ally, even if forward security is not prioritized by a particular server operator and
thus Session Tickets are used, the prevention of replay attacks may still require
additional storage at the server, since the only way to prevent replay attacks
in this case is to log used tickets.4 In this context it is sometimes claimed that
so-called idempotent requests, that is, requests that have the same effect on the
server state whether they are served once or several times, are safe to use with
TLS 1.3 0-RTT. However, it is well-known [36] and also discussed in the TLS
3 Unless there is additional server-side logging of tickets that have already been used.
4 When using resumption, the client must include in its first message the ticket’s

age, i.e. the time elapsed between receiving the ticket from the server in a previous
session. The server expects this time interval to be precise up to a small window of
error allowing for propagation delay, typically on the order of 10 s. An attacker can
perform replay attacks within this time window.
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1.3 specification [39] that even replays of idempotent requests may give rise to
attacks that, e.g., reveal the target URL of HTTP requests.

All of these issues are well-known to apply to TLS 1.3 0-RTT and have
raised significant concerns about its secure deployability in practice [36]. Eric
Rescorla, the main author of the TLS 1.3 RFC draft, acknowledges that this
poses a “difficult application integration issue” [38]. However, due to the huge
practical demand, 0-RTT is also considered “too big a win not to do” [38]. Very
recently, at EUROCRYPT 2017 [25] and 2018 [15,16], the first 0-RTT protocols
that simultaneously achieve forward security and replay resilience were proposed,
but these require relatively heavy cryptographic machinery, such as hierarchical
or broadcast identity-based encryption, and thus are not yet suitable for large-
scale deployment in TLS 1.3.

Our Contributions. We give the first formal definition for secure 0-RTT session
resumption protocols, as an abstraction of the constructions currently used in
practice in TLS 1.3. We propose new techniques to achieve forward security
and replay resilience that are ready-to-use with TLS 1.3 as it is standardized,
without any changes to the protocol. Our proposal is based on Session Tickets,
and thus requires minimal storage at the server side, but we extend this approach
with efficient puncturable pseudorandom functions (PPRFs) that enable us to
achieve forward security and replay resilience for Session Tickets. We provide
new constructions of PPRFs with short keys and formal security proofs based
on standard hardness assumptions. We propose two variants:

1. The first variant is based on the strong RSA assumption. It reduces the server
storage by a factor of at least 11 compared to a Session Cache, increases
ticket size by a negligible length, and requires the server to perform two
exponentiations (one per issuance and one per resumption).

2. The second variant reduces server storage by a factor of up to 5 compared
to a Session Cache, while using tickets that are roughly 400 bytes longer
than standard tickets. It extends a standard GGM-style [22] binary tree-
based PPRF, as described in [10,11,30], with a new domain extension idea.
It employs only symmetric cryptography, is suitable for very-high-traffic sce-
narios, and can serve thousands of tickets per second, at the cost of hundreds
of megabytes in server storage.

Our Approach. At the base of our approach is the concept of puncturing a pseu-
dorandom function (PRF) to obtain a puncturable symmetric-key encryption
scheme. Puncturable PRFs are a special case of constrained PRFs [10,11,30],
which make it possible to derive constrained keys that allow computation of
PRF output only for certain inputs.

In our approach, a server initially maintains a STEK k that allows decryption
of any Session Ticket; when receiving ticket t, the server uses k to decrypt t
in order to recover the Resumption Secret. Using the puncturing feature of the
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PPRF, it then derives from k a new key, k′, that can decrypt any ticket except for
t. The server then discards k and stores only k′. It repeats this process for every
ticket received. This yields forward secrecy and replay-resistance: an attacker
that compromises the server learns a key that is not capable of decrypting past
tickets. Similarly, an attacker cannot successfully replay a message, since the
server is only able to decrypt each ticket once.

The näıve way to employ this approach in TLS 1.3 0-RTT would be to
use public-key puncturable encryption, as in [15,16,25]. However, this approach
results in impractically long puncturing times or very long secret keys. More-
over, the most practical constructions require relatively expensive pairing-based
cryptography by both the client and the server, thereby obviating a significant
benefit of TLS 1.3 0-RTT. Rather than using public-key puncturable encryption,
we observe that in TLS 1.3 0-RTT, the server itself generates the tickets it would
later need to decrypt. It therefore suffices to use symmetric cryptography, and
to maintain a key that allows decryption of only a limited set of ciphertexts,
generated by the server itself. To achieve this, we use PPRFs to derive keys for
standard TLS 1.3 tickets. Concretely, we describe two new PPRF constructions
that are particularly suitable for our application:

– The first builds a new PPRF from the Strong RSA Assumption. The PPRF
has a polynomially-bounded input size, but this is sufficient for our appli-
cation (and probably for certain other PPRF applications as well). Its main
distinguishing feature is that its secret key size is independent of the number
of puncturings. It consists of an RSA modulus N , a number g ∈ ZN , and
a bitfield, indicating positions where the PPRF was punctured. Due to the
short secret key, our construction may find other applications in applied and
theoretical cryptography. Since our primary objective is to provide an as-
efficient-as-possible solution for practical protocols such as TLS 1.3 0-RTT,
we describe a construction with security proof in the random oracle model [5].
It seems likely that our construction can be lifted to the standard model in a
straightforward way, via standard techniques like hardcore predicates [6,8,23],
but this would yield less efficient constructions and is therefore outside the
scope of this paper.

– The second construction is based on a standard tree-based PPRF [10,11,30],
instantiated with a cryptographic hash function, such as SHA-3.
The size of punctured keys depends linearly on the depth of the tree, which
in turn depends on the size of the domain of the PPRF. We describe a new
domain extension technique that reduces the size of punctured keys by trading
secret key size for ticket size, while preserving the puncturing functionality.
Domain extension makes it possible to use a PPRF with a smaller domain
(and thus smaller punctured keys). To save a factor of up to n in server-side
storage, the ticket size rises roughly as (n − 1)!. Thus, this is only useful
for small values of n, but choosing e.g. n = 5 can yield significant savings
with a modest increase in ticket size on the wire. Concretely, for n = 5
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and “128-bit security”, ticket size is increased by 384 bytes. As discussed in
Sect. 5.5, experiments done by Google estimate that this will impose only a
small impact on latency [33].

Large-Scale Server Clusters and Load Balancing. Large TLS server deployments
typically consist of many servers that share the same public key. This compli-
cates any logic that relies on the server storing some state, since these servers
will typically not share a globally-consistent state. Such discussion is beyond the
scope of this paper, and we will assume a single server with consistent storage
throughout. When many servers share a Session Cache, the cache is likely to
be distributed, and any logic relying on an atomic retrieve-and-delete operation
becomes more complex. Therefore, distributed Session Caches are not neces-
sarily replay-resistant nor forward-secure, as this requires synchronous deletion
of Resumption Secrets at all servers, and thus synchronized state.5 However, in
such large-scale settings it is highly desirable to minimize the amount of memory
that must be consistently synchronized across different servers. Our techniques
are therefore useful to that end as well.

Further Applications to Devices with Restricted Resources. Our techniques may
also be useful for devices with very restricted resources, such as battery-powered
IoT devices with a wireless network connection. For such devices, it is usually
extremely expensive to send data, because each transmitted bit costs energy,
which limits the battery lifetime and thus the range of possible applications. In
order to maximize the battery lifetime, it is useful to avoid expensive interactive
handshakes and use a 0-RTT protocol whenever data is sent to such devices. Note
that here the main gain from using 0-RTT is not minimal latency, but rather
that no key exchange messages must be sent by the receiver. Ideally, transmitted
data should be forward-secure, but such devices have low storage capacity and
we cannot use large amounts of storage to achieve forward security.

For such devices, it is reasonable to relax the requirement for very efficient
computation, since adding unnecessary transmissions to even a fraction of con-
nections is likely more costly than using moderately more expensive computa-
tions. By instantiating our session resumption protocol in a way that puncturing
is more expensive (say, five full RSA exponentiations, which may still be reason-
able for most IoT devices), we achieve reductions in storage by factors close to
100. Thus, our techniques make it possible to use forward-secure 0-RTT proto-
cols even on such devices. Instead of requiring, say, 1 GB of memory for a session
cache, we need only about 10 MBs of memory.

Related Work. Puncturable encryption [24] was used to construct forward-secure
instant messaging [24] and 0-RTT protocols [15,16,25], for instance. Green and

5 When using Session Tickets, the same holds for mechanisms that store used tickets,
which are likely to be distributed as well. See [39, §2.3, §8, §E.5], [36,37] for more
in-depth discussion.
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Miers [24] first proposed puncturable encryption as a practical building block
for the case of asynchronous messaging. They used pairing-based puncturable
encryption, and as a result observed impractically long processing times for
their construction. Günther et al. [25] proposed using puncturable encryption
for 0-RTT protocols, again proposing concrete constructions based on pairings
that are also impractical for high-traffic scenarios. Derler et al. [15,16] pro-
posed trading off space in exchange for processing time, with the use of their
proposed Bloom Filter Encryption. Their construction essentially precomputes
many already-punctured keys, and these keys are used only once, so punctur-
ing becomes simply key deletion. Bloom Filter Encryption may be considered
practical for low-traffic scenarios, but supporting a large number of punctur-
ings per key requires precomputation and storage of keys on the order of many
gigabytes.

Over the past years there have been several papers formally analyzing the
security of TLS 1.2 [7,28,31] and TLS 1.3 [17,21]. Especially noteworthy are
the analyses of the 0-RTT mode of TLS 1.3 [21] and QUIC [20] by Fischlin and
Günther, who analyze both protocols in a multi-stage key exchange model [20].
Lychev et al. [35] further formally analyzed QUIC in a security model that
additionally captures the secure composition of authenticated encryption and key
exchange. A security definition and construction for QUIC-like 0-RTT protocols
were given in [26]. However, all these publications do not consider forward secrecy
for the very first message in their security models. Hence, we believe that our
techniques may also influence the design of protocols providing a 0-RTT key
exchange, such as TLS 1.3 and QUIC, in order to achieve forward secrecy for all
messages.

Outline. The rest of this paper is organized as follows. In Sect. 2 we provide
formal definitions for secure 0-RTT Session Resumption Protocols. In Sect. 3 we
describe a generic construction, based on abstract PPRFs, and formally prove
forward security and replay resilience. Section 4 describes the Strong-RSA-based
PPRF and an analysis of the efficiency when used in the protocol construction in
Sect. 3. Section 5 describes the tree-based PPRF and a novel “domain extension”
technique for standard binary tree PPRFs, along with an efficiency analysis.

Notation. We denote the security parameter as λ. For any n ∈ N let 1n be the
unary representation of n and let [n] = {1, . . . , n} be the set of numbers between
1 and n. Moreover, |x| denotes the length of a bitstring x, while |S| denotes the
size of a set S. We write x

$← S to indicate that we choose element x uniformly at
random from set S. For a probabilistic polynomial-time algorithm A we define
y

$← A(a1, . . . , an) as the execution of A (with fresh random coins) on input
a1, . . . , an and assigning the output to y.



Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 125

2 0-RTT Session Resumption Protocols and Their
Security

In this section we provide formal definitions for secure 0-RTT session resumption
protocols. These definitions capture well both our new techniques and the existing
solutions already standardized in TLS 1.3. We also expect that the techniques
used to formally analyze and verify TLS 1.3 0-RTT [14,18] can be extended to use
our abstraction of a session resumption protocol within TLS 1.3.6 This leads us to
believe that our definitions capture a reasonable abstraction of the cryptographic
core of the TLS 1.3 0-RTT mode (and likely also of similar protocols that may
be devised in the future).

For simplicity, in the following we will refer to pre-shared values as session
keys, as they are either previously established session keys, or a Resumption
Secret derived from a session key, as e.g. in TLS 1.3. The details of how to
establish a shared secret and potentially derive a session key from it are left to
the individual protocol and are outside the scope of our abstraction. Session keys
are elements of a keyspace S.

Definition 1. A 0-RTT session resumption protocol consists of three probabilis-
tic polynomial-time algorithms Resumption = (Setup,TicketGen,ServerRes) with
the following properties.

– Setup(1λ) takes as input the security parameter λ and outputs the server’s
long-term key k.

– TicketGen(k, s) takes as input a long-term key k and a session key s, and
outputs a ticket t and a potentially modified long-term key k′.

– ServerRes(k, t) takes as input the server’s long-term key k and the ticket t,
and outputs a session key s and a potentially modified key k′, or a failure
symbol ⊥.

Using a Session Resumption Protocol. A 0-RTT session resumption scheme is
used by a set of clients C and a set of servers S. If a client and a server share a
session key s, the session resumption is executed as follows (cf. Fig. 1).

1. The server uses its long-term key k and the session key s to generate a ticket
t by running (t, k′) $← TicketGen(k, s). The ticket is sent to the client. Addi-
tionally, the server replaces its long-term key k by k′ and deletes the session
key s and ticket t, i.e. it is not required to keep any session state.

2. For session resumption at a later point in time, the client sends the ticket t
to the server.

3. Upon receiving the ticket t, the server runs (s, k′) := ServerRes(k, t) to retrieve
the session key s. Additionally, k is deleted and replaced by the updated
key k′.

6 Obtaining a formal security proof for this would be an interesting direction for future
research, but is beyond the scope of this work.
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Fig. 1. Execution of a generic 0-RTT session resumption protocol with early data
m, where client and server initially are in possession of a shared secret s. Note that
procedures TicketGen and ServerRes both potentially modify the server’s key k.

Compatibility with TLS 1.3. As explained in Sect. 1, using either Session Tickets
or Session Caches in TLS 1.3 is transparent to clients, i.e. clients are generally
unaware of which is used. In either case, the client stores a sequence of bytes
which is opaque from the client’s point of view. Since all algorithms of a session
resumption protocol are executed on the server, while a client just has to store
the ticket t (encoded as a sequence of bytes), this generic approach of TLS 1.3 is
immediately compatible with our notion of session resumption protocols. Thus,
a session resumption protocol can be used immediately in TLS 1.3, without
requiring changes to clients or to the protocol. Furthermore, Session Tickets and
Session Caches are specific examples of such protocols.

2.1 Security in the Single-Server Setting

We define the security of a 0-RTT session resumption protocol Resumption by a
security game G0-RTT-SR

A,Resumption(λ) between a challenger C and an adversary A. For
simplicity, we will start with a single-server setting and argue below that security
in the single-server setting implies security in a multi-server setting. The security
game is parametrized by the number of session keys μ (equal to the number of
clients in the single-server setting).

1. C runs k
$← Setup(1λ), samples a random bit b

$← {0, 1} and generates session
keys si

$← S for all clients i ∈ [μ]. Furthermore, it generates tickets ti and
updates key k by running (ti, k) $← TicketGen(k, si) for all clients i ∈ [μ]. The
sequence of tickets (ti)i∈[μ] is sent to A.

2. The adversary gets access to oracles it may query.
(a) Dec(t) takes as input a ticket t. It computes (si, k

′) := ServerRes(k, ti),
returns the session key si and replaces k := k′. Note that ticket t can
either be a ticket of the initial sequence of tickets (ti)i∈[μ] or an arbitrary
ticket chosen by the adversary.
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(b) Test(t) takes as input a ticket t. It computes (si, k
′) := ServerRes(k, t)

and outputs ⊥ if the output of ServerRes was ⊥. Otherwise, it updates
k := k′. If b = 1, then it returns the session key si. Otherwise, a random
ri

$← S is returned. Note that ticket t can either be a ticket of the initial
sequence of tickets (ti)i∈[μ] or an arbitrary ticket chosen by the adversary.
The adversary is allowed to query Test only once.

(c) Corr returns the current long-term key k of the server. The adversary
must not query Test after Corr, as this would lead to a trivial attack.

3. Eventually, adversary A outputs a guess b∗. Challenger C outputs 1 if b = b∗

and 0 otherwise.

Note that this security model reflects both forward secrecy and replay pro-
tection. Forward secrecy is ensured, as an adversary may corrupt the challenger
after issuing the Test-query. If the protocol would not ensure forward secrecy,
an attacker could corrupt its long-term key and trivially decrypt the challenge
ticket. Replay protection is ensured, as an adversary is allowed to issue Dec(ti)
after already testing Test(ti) (as both queries invoke the ServerRes algorithm).
If the protocol would not ensure replay protection, an attacker could use the
decryption oracle to distinguish a real or random session key of the Test-query.

Definition 2. We define the advantage of an adversary A in the above security
game G0-RTT-SR

A,Resumption(λ) as

Adv0-RTT-SRA,Resumption(λ) =
∣
∣
∣
∣
Pr

[

G0-RTT-SR
A,Resumption(λ) = 1

] − 1
2

∣
∣
∣
∣
.

We say a 0-RTT session resumption protocol is secure in a single-server envi-
ronment if the advantage Adv0-RTT-SRA,Resumption(λ) is a negligible function in λ for all
probabilistic polynomial-time adversaries A.

3 Constructing Secure Session Resumption Protocols

In this section we will show how session resumption protocols providing full
forward security and replay resilience can be constructed. We will start with a
generic construction, based on authenticated encryption with associated data
and any puncturable pseudorandom function that is invariant to puncturing.
Later we describe new constructions of PPRFs, which are particularly suitable
for use in session resumption protocols.

3.1 Building Blocks

We briefly recall the basic definition of puncturable pseudorandom functions and
authenticated encryption with associated data.
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Puncturable PRFs. A puncturable pseudorandom function is a special case of a
pseudorandom function (PRF), where it is possible to compute punctured keys
which do not allow evaluation on inputs that have been punctured. We recall
the definition of puncturable pseudorandom functions and its security from [41].

Definition 3. A puncturable pseudorandom function (PPRF) with keyspace K,
domain X and range Y consists of three probabilistic polynomial-time algorithms
PPRF = (Setup,Eval,Punct), which are described as follows.

– Setup(1λ): This algorithm takes as input the security parameter λ and outputs
a description of a key k ∈ K.

– Eval(k, x): This algorithm takes as input a key k ∈ K and a value x ∈ X , and
outputs a value y ∈ Y.

– Punct(k, x): This algorithm takes as input a key k ∈ K and a value x ∈ X ,
and returns a punctured key k′ ∈ K.

Definition 4. A PPRF is correct if for every subset {x1, . . . , xn} = S ⊆ X and
all x ∈ X \ S, we have that

Pr
[

Eval(k0, x) = Eval(kn, x) : k0
$← Setup(1λ);

ki = Punct(ki−1, xi) for i ∈ [n];

]

= 1.

A new property of PPRFs that we will need is that puncturing is “com-
mutative”, i.e. the order of puncturing operations does not affect the resulting
secret key. That is, for any x0, x1 ∈ X , x0 �= x1, if we first puncture on input
x0 and then on x1, the resulting key is identical to the key obtained from first
puncturing on x1 and then on x0. Formally:

Definition 5. A PPRF is invariant to puncturing if for all keys k ∈ K and all
elements x0, x1 ∈ X , x0 �= x1 it holds that

Punct(Punct(k, x0), x1) = Punct(Punct(k, x1), x0).

We define two notions of PPRF security. The first notion represents the typ-
ical pseudorandomness security experiment with adaptive evaluation queries by
an adversary. The second notion is a weaker, non-adaptive security experiment.
We show that it suffices to prove security in the non-adaptive experiment if the
PPRF is invariant to puncturing and has a polynomial-size domain.

Definition 6. We define the advantage of an adversary A in the rand (resp.
na-rand) security experiment Grand

A,PPRF(λ) (resp. Gna-rand
A,PPRF(λ)) defined in Fig. 2 as

AdvrandA,PPRF(λ) :=
∣
∣
∣
∣
Pr

[

Grand
A,PPRF(λ) = 1

] − 1
2

∣
∣
∣
∣
,

Advna-randA,PPRF(λ) :=
∣
∣
∣
∣
Pr

[

Gna-rand
A,PPRF(λ) = 1

] − 1
2

∣
∣
∣
∣
.

We say a puncturable pseudorandom function PPRF is rand-secure (resp.
na-rand -secure), if the advantage AdvrandA,PPRF(λ) (resp. Advna-randA,PPRF(λ)) is a negli-
gible function in λ for all probabilistic polynomial-time adversaries A.



Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 129

Fig. 2. Security experiments for PPRFs. The na-rand security experiment for PPRF is
left and the rand security experiment is right.

It is relatively easy to prove that na-rand-security and rand-security are equiv-
alent, up to a linear security loss in the size of the domain of the PPRF. In par-
ticular, if the PPRF has a polynomially-bounded domain size and is invariant
to puncturing, then both are polynomially equivalent.

Theorem 1. Let PPRF be a na-rand-secure PPRF with domain X . If PPRF is
invariant to puncturing, then it is also rand-secure with advantage

AdvrandA,PPRF(λ) ≤ Advna-randA,PPRF(λ)
|X | .

Proof. The proof is based on a straightforward reduction. We give a sketch. Let
A be an adversary against the rand security of PPRF. We guess A’s challenge
value in advance by sampling ν

$← X uniformly at random. We initialize the
na-rand challenger by sending it ν. In return we receive a challenge y (either
computed via Eval or random) and a punctured key k that cannot be evaluated
on input ν.

The punctured key k allows us to correctly answer all of A’s Eval queries,
except for ν. When the adversary outputs its challenge x∗ we will abort if x∗ �= ν.
Otherwise, we forward y and a punctured key k′ that has been punctured on all
values of the Eval queries. Note that the key has a correct distribution, as we
require that the PPRF is invariant to puncturing.

Eventually, A outputs a bit b∗ which we forward to the na-rand challenger.
The simulation is perfect unless we abort it, which happens with

polynomially-bounded probability 1/|X |, due to the fact that |X | is polynomially
bounded. �	

Authenticated Encryption with Associated Data. We will furthermore need
authenticated encryption with associated data (AEAD) [40], along with the stan-
dard notions of confidentiality and integrity.

Definition 7. An authenticated encryption scheme with associated data is a
tuple AEAD = (KGen,Enc,Dec) of three probabilistic polynomial-time algorithms:
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– KGen(1λ) takes as input a security parameter λ and outputs a secret key k.
– Enc(k,m, ad) takes as input a key k, a message m, associated data ad and

outputs a ciphertext c.
– Dec(k, c, ad) takes as input a key k, a ciphertext c, associated data ad and

outputs a message m or an failure symbol ⊥.

An AEAD scheme is called correct if for any key k
$← KGen(1λ), any

message m ∈ {0, 1}∗, any associated data ad ∈ {0, 1}∗ it holds that
Dec(k,Enc(k,m, ad), ad) = m.

Definition 8. We define the advantage of an adversary A in the IND-CPA
experiment GIND-CPA

A,AEAD (λ) defined in Fig. 3 as

AdvIND-CPA
A,AEAD (λ) :=

∣
∣
∣
∣
Pr

[

GIND-CPA
A,AEAD (λ) = 1

] − 1
2

∣
∣
∣
∣
.

We say an AEAD scheme AEAD is indistinguishable under chosen-plaintext
attacks (IND-CPA -secure), if the advantage AdvIND-CPA

A,AEAD (λ) is a negligible func-
tion in λ for all probabilistic polynomial-time adversaries A.

Definition 9. We define the advantage of an adversary A in the INT-CTXT
experiment GINT-CTXT

A,AEAD (λ) defined in Fig. 3 as

AdvINT-CTXT
A,AEAD (λ) :=

∣
∣Pr

[

GINT-CTXT
A,AEAD (λ) = 1

]∣
∣ .

We say an AEAD scheme AEAD provides integrity of ciphertexts (INT-CTXT
-secure), if the advantage AdvINT-CTXT

A,AEAD (λ) is a negligible function in λ for all
probabilistic polynomial-time adversaries A.

Additionally, we will need the notion of ε-spreadness for AEAD. ε-spreadness
captures the intuition that a ciphertext encrypted under a key k should not be
valid under a random key k′ �= k.

Definition 10. An AEAD scheme is ε-spread if for all messages m and all
associated data ad it holds that

Pr
k,k′ $←KGen(1λ)

k �=k′

[AEAD.Dec(k′,AEAD.Enc(k,m, ad), ad) �= ⊥] ≤ ε.

We note that one can easily prove that INT-CTXT-security implies ε-spreadness
with negligible ε. However, the “statistical” formulation of Definition 10 will
simplify parts of our proof significantly, and therefore we believe it reasonable
to make it explicit.

3.2 Generic Construction

Now we are ready to describe our generic construction of a 0-RTT session
resumption protocol, based on a PPRF and an AEAD scheme, and to prove
its security.
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Fig. 3. The IND-CPA and INT-CTXT security experiment for AEAD [40].

Construction 1. Let AEAD = (KGen,Enc,Dec) be an authenticated encryption
scheme with associated data and let PPRF = (Setup,Eval,Punct) be a PPRF
with range Y. Then we can construct a 0-RTT session resumption protocol
Resumption = (Setup,TicketGen,ServerRes) in the following way.

– Setup(1λ) runs kPPRF = PPRF.Setup(1λ), and outputs k := (kPPRF, 0), where
“0” is a counter initialized to zero.

– TicketGen(k, s) takes a key k = (kPPRF, n). It computes κ = PPRF.Eval

(kPPRF, n). Then it encrypts the ticket as t′ $← AEAD.Enc(κ, s, n). Finally,
it defines t = (t′, n) and k := (kPPRF, n + 1), and outputs (t, k).

– ServerRes(k, t) takes k = (kPPRF, n) and t = (t′, n′). It computes a key κ :=
PPRF.Eval(kPPRF, n′). If κ = ⊥, then it returns ⊥. Otherwise it computes a
session key s := AEAD.Dec(κ, t′, n′). If s = ⊥, it returns ⊥. Else it punctures
kPPRF := PPRF.Punct(kPPRF, n′), and returns (s, (kPPRF, n)).

Note that the associated data n is sent in plaintext, posing a potential privacy
leak. This can be circumvented by additionally encrypting n under a dedicated
symmetric key. Compromise of this key would only allow an attacker to link
sessions by the same returning client, not to decrypt past traffic, therefore this
symmetric key needs not be punctured to achieve forward security.7

Theorem 2. If AEAD is ε-spread and PPRF is invariant to puncturing, then
from each probabilistic polynomial-time adversary A against the security of
Resumption in a single-server environment with advantage Adv0-RTT-SRA,Resumption(λ), we
can construct four adversaries BPPRF1, BPPRF2, BAEAD1, and BAEAD2 such that

7 The natural solution would be to encrypt n using public-key puncturable encryption,
but this would be costly, and obviate most of the efficiency benefits described in
this work. We are unfortunately unaware of a good solution that achieves session
unlinkability in the event of server compromise. We further note that TLS 1.3 0-RTT
includes a mechanism named “obfuscated ticket age” that solves a similar session
linkability concern; that mechanism as well is not applicable here.
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Adv0-RTT-SRA,Resumption(λ) ≤ AdvrandBPPRF1,PPRF(λ) + ε + μ ·
(

Advna-randBPPRF2,PPRF(λ)

+ AdvINT-CTXT
BAEAD1,AEAD(λ) + AdvIND-CPA

BAEAD2,AEAD(λ)
)

,

where μ is the number of clients.

Proof. We will conduct this proof in a sequence of games between a challenger C
and an adversary A. We start with an adversary playing the 0-RTT-SR security
game. Over a sequence of hybrid arguments, we will stepwise transform the
security game to a game where the Test-query is independent of the challenge
bit b. The claim then follows from bounding the probability of distinguishing
any two consecutive games. By Advi we denote A’s advantage in the i-th game.

Game 0. We define Game 0 to be the original 0-RTT-SR security game. By
definition we have

Adv0 = Adv0-RTT-SRA,Resumption(λ).

Game 1. This game is identical to Game 0, except that we raise an event
abortPPRF, abort the game, and output a random bit b∗ $← {0, 1}, if the adver-
sary A ever queries Test(t) for a ticket t = (t′, n′) such that n′ /∈ [μ] and
AEAD.Dec(κ, t′, n′) �= ⊥, where κ := PPRF.Eval(kPPRF, n′). Since both games
proceed identical until abort, we have

|Adv1 − Adv0| ≤ Pr[abortPPRF]

and we claim that we can construct an adversary BPPRF1 on the rand-security of
the PPRF with advantage at least Pr[abortPPRF].

Construction of BPPRF1. BPPRF1 behaves like the challenger in Game 1, expect
that it uses the Eval-oracle to generate the keys to encrypt the initial sequence
of μ tickets and to answer all Dec-queries by A. Eventually, A will query Test(t)
for a ticket t = (t′, n′). BPPRF1 outputs n′ to its PPRF-challenger, which will
respond with a punctured key k := PPRF.Punct(k, n′) and a value γ, where
either γ := ρ

$← Y or γ := PPRF.Eval(k, n′).
BPPRF1 now tries to decrypt the challenge ticket by invoking AEAD.Dec

(γ, t′, n′). If γ = PPRF.Eval(k, n′), the decryption will succeed by definition.
If γ = ρ, the decryption will fail with probability 1 − ε, since the ε-spreadness
of AEAD ensures that AEAD.Dec(ρ, t′, n′) �= ⊥ for random ρ happens only with
probability ε. Hence, BPPRF1 returns 1 if decryption succeeds and 0 otherwise.
Thus, we have

Pr[abortPPRF] ≤ AdvrandBPPRF1,PPRF(λ) + ε.

Game 2. This game is identical to Game 1, except for the following changes. At
the beginning of the experiment the challenger picks an index ν

$← [μ]. It aborts
the security experiment and outputs a random bit b∗ $← {0, 1}, if the adversary
queries Test(t) with t = (t′, i) such that i �= ν. Since the choice of ν

$← [μ] is
oblivious to A until an abort occurs, we have
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Adv2 ≥ 1
μ

· Adv1.

Game 3. This game is identical to Game 2, except that at the beginning of
the game we compute κν = PPRF.Eval(k, ν) and then k := PPRF.Punct(k, ν).
Furthermore, we replace algorithm PPRF.Eval with the following algorithm F3:

F3(k, i) :=

{

PPRF.Eval(k, i) if i �= ν

κν if i = ν

Everything else works exactly as before. Note that we have simply implemented
algorithm PPRF.Eval in a slightly different way. Since PPRF is invariant to
puncturing, the fact that κν was computed early, immediately followed by
k := PPRF.Punct(k, ν), is invisible to A. Hence, Game 3 is perfectly indistin-
guishable from Game 2, and we have

Adv3 = Adv2.

Game 4. This game is identical to Game 3, except that the challenger now addi-
tionally picks a random key ρ

$← Y from the range of the PPRF. Furthermore,
we replace algorithm F3 with the following algorithm F4:

F4(k, i) :=

{

PPRF.Eval(k, i) if i �= ν

ρ if i = ν

Everything else works exactly as before. We will now show that any adversary
that is able to distinguish Game 3 from Game 4 can be used to construct an
adversary BPPRF2 against the na-rand-security of the PPRF. Concretely, we have

|Adv4 − Adv3| ≤ Advna-randBPPRF2,PPRF(λ).

Construction of BPPRF2. BPPRF2 initially picks ν
$← [μ] and outputs ν

to its PPRF-challenger, which will respond with a punctured key k :=
PPRF.Punct(k, ν) and a value γ, where either γ = PPRF.Eval(k, ν) or γ

$← Y.
Now BPPRF2 simulates Game 4, except that it uses the following function F in
place of F4.

F (k, i) :=

{

PPRF.Eval(k, i) if i �= ν

γ if i = ν

Eventually, A will output a guess b∗. BPPRF2 forwards this bit to the PPRF-
challenger. Note that if γ = Eval(k, ν), then function F is identical to F3, while
if γ = ρ then it is identical to F4. This proves the claim.

Game 5. This game is identical to Game 4, except that we raise an event
abortAEAD, abort the game, and output a random bit b∗ $← {0, 1}, if the adversary
A ever queries Test(t) for a ticket t = (t′, ν) �= tν , but AEAD.Dec(ρ, t′, ν) �= ⊥,
where ρ = F4(k, ν). We have

|Adv5 − Adv4| ≤ Pr[abortAEAD]

and we claim that we can construct an adversary BAEAD1 on the INT-CTXT-
security of the AEAD with advantage at least Pr[abortAEAD].
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Construction of BAEAD1. BAEAD1 proceeds exactly like the challenger in Game 5,
except that it uses its challenger from the AEAD security experiment to create
ticket tν . To this end, it outputs the tuple (sν , ν) for some sν

$← S. The AEAD
challenger responds with t′ν := AEAD.Enc(ρ, sν , ν), computed with an indepen-
dent AEAD key ρ. Finally, BAEAD1 defines the ticket as tν = (t′ν , ν). Apart from
this, BAEAD1 proceeds exactly like the challenger in Game 5.

Whenever the adversary A makes a query Test(t) with a ticket t = (t′, i) with
i �= ν, then we abort, due to the changes introduced in Game 2. If it queries
Test(t) with t = (t′, ν) such that t �= tν , then BAEAD1 responds with ⊥ and
outputs the tuple (t′, ν) to its AEAD challenger. With probability Pr[abortAEAD]
this ticket is valid, which yields

AdvINT-CTXT
BAEAD1,AEAD(λ) ≥ Pr[abortAEAD].

Game 6. This game is identical to Game 5, except that when the adversary
queries Test(tν), then we will always answer with a random value, independent
of the bit b. More precisely, recall that we abort if the adversary queries Test(t),
t = (t′, ν) such that t �= tν , due to the changes introduced in Game 5. If the
adversary queries Test(tν), then the challenger in Game 5 uses the bit b

$← {0, 1}
sampled at the beginning of the experiment as follows. If b = 1, then it returns
the session key sν . Otherwise, a random rν

$← S is returned.
In Game 6, the challenger samples another random value s′

ν
$← S at the

beginning of the game. When the adversary queries Test(tν), then if b = 1 the
challenger returns s′

ν . Otherwise, it returns a random rν
$← S. Note that in

either case the response of the Test(tν)-query is a random value, independent of
b. Therefore the view of A in Game 6 is independent of b. Obviously, we have

Adv6 = 0.

We will now show that any adversary who is able to distinguish Game 5 from
Game 6 can be used to construct an adversary BAEAD2 against the IND-CPA-
security of AEAD.

Construction of BAEAD2. Recall that the key used to generate ticket tν is ρ =
F4(k, ν). By definition of F4, ρ is an independent random string chosen at the
beginning of the security experiment. This enables a straightforward reduction
to the IND-CPA-security of the AEAD.

BAEAD2 proceeds exactly like the challenger in Game 6, except for the way the
ticket tν is created. BAEAD2 computes ρν = F4(k, ν). Then it outputs (sν , s′

ν , ν)
to its challenger, which returns

tν :=

{

AEAD.Enc(ρ, sν , ν) if b′ = 0
AEAD.Enc(ρ, s′

ν , ν) if b′ = 1

where ρ is distributed identically to ρν and b′ is the hidden bit used by the
challenger of the AEAD. Apart from this, BAEAD2 proceeds exactly like the chal-
lenger in Game 6. Eventually, A will output a guess b∗. BAEAD2 forwards this bit
to its challenger.
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Note that if b′ = 0, then the view of A is perfectly indistinguishable from
Game 5, while if b′ = 1 then it is identical to Game 6. Thus, we have

|Adv6 − Adv5| ≤ AdvIND-CPA
BAEAD2,AEAD(λ).

By summing up probabilities from Game 0 to Game 6, we obtain

Adv0-RTT-SRA,Resumption(λ) ≤ AdvrandBPPRF1,PPRF(λ) + ε + μ ·
(

Advna-randBPPRF2,PPRF(λ)

+ AdvINT-CTXT
BAEAD1,AEAD(λ) + AdvIND-CPA

BAEAD2,AEAD(λ)
)

.

�	

4 A PPRF with Short Secret Keys from Strong RSA

In order to instantiate our generic construction of forward-secure and replay-
resilient session resumption protocol with minimal storage requirements, which
is the main objective of this paper, it remains to construct suitable PPRFs with
minimal storage requirements and good computational efficiency. Note that a
computationally expensive PPRF may void all efficiency gains obtained from
the 0-RTT protocol.

In this section we describe a PPRF based on the Strong RSA (sRSA) assump-
tion with secret keys that only consist of three elements, even after an arbitrary
number of puncturings. More precisely, a secret key consists of an RSA mod-
ulus N , an element g ∈ ZN and a bitfield r, indicating positions where the
PPRF was punctured. The secret key size is linear in the size of the PPRF’s
domain, since the bitfield needs to be of the same size as the domain (which is
determined at initialization, and does not change over time). Hence, the PPRF’s
secret key size is independent of the number of puncturings. Moreover, for any
reasonable choice of parameters, the bitfield is only several hundred bits long,
yielding a short key in practice. Servers can use many instances in parallel with
the instances sharing a single modulus, so it is only necessary to generate (and
store) the modulus once, at initialization.

Since our primary objective is to provide an efficient practical solution for
protocols such as TLS 1.3 0-RTT, the PPRF construction described below is
analyzed in the random oracle model [5]. However, we note that we use the
random oracle only to turn a “search problem” (sRSA) into a “decisional prob-
lem” (as required for a pseudorandom function). Therefore we believe that our
construction can be lifted to the standard-model via standard techniques, such
as hardcore predicates [6,8,23]. All of these approaches would yield less efficient
constructions, and therefore are outside the scope of our work. Alternatively, one
could formulate an appropriate “hashed sRSA” assumption, which would essen-
tially boil down to assuming that our scheme is secure. Therefore we consider
a random oracle analysis based on the standard sRSA problem as the cleanest
and most insightful approach to describe our ideas.

Idea Behind the Construction. The construction is inspired by the RSA accumu-
lator of Camenisch and Lysyanskaya [12]. The main idea is the following. Given
a modulus N = pq, a value g ∈ ZN , and a prime number P , it is easy to compute
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g �→ gP mod N , but hard to compute gP �→ g mod N without knowing the
factorization of N .

In the following let pi be the i-th odd prime. That is, we have (p1, p2, p3,
p4, . . .) = (3, 5, 7, 11, . . .). Let n be the size of the domain of the PPRF. Our
PPRF on input � produces an output of the form H(gp1·...·pn/p�), where H is
a hash function that will be modeled as a random oracle in the security proof.
Note that g is raised to a sequence of prime numbers except for the �-th prime
number. As long as we have access to g, this is easy to compute. However, if we
only have access to gp� instead of g, we are unable to compute the PPRF output
without knowledge of the factorization of N . This implies that by raising the
generator to certain powers, we prevent the computation of specific outputs. We
will use this property to puncture values of the PPRF’s domain.

4.1 Formal Description of the Construction

Definition 11. Let p, q be two random safe primes of bitlength λ/2 and let
N = pq. Let y

$← Z
∗
N . We define the advantage of algorithm B against the

Strong RSA Assumption [2] as

AdvsRSAB (λ) := Pr [(x, e) ← A(N, y) : xe = y mod N ] .

The following lemma, which is due to Shamir [42], is useful for the security
proof of our construction.

Lemma 1. There exists an efficient algorithm that, on input y, z ∈ ZN and
integers e, f ∈ Z such that gcd(e, f) = 1 and Ze ≡ Y f mod N , computes
X ∈ ZN satisfying Xe = Y mod N .

Construction 2. Let H : ZN → {0, 1}λ be a hash function and let pi be the
i-th odd prime number. Then we construct a PPRF PPRF = (Setup,Eval,Punct)
with polynomial-size X = [n] in the following way.

– Setup(1λ) computes an RSA modulus N = pq, where p, q are safe primes.
Next, it samples a value g

$← ZN and defines r := 0n and k = (N, g, r). The
primes p, q are discarded.

– Eval(k, x) parses k = (N, g, (r1, . . . , rn)). If rx = 1, then it outputs ⊥. Other-
wise it computes and returns

y := H
(

gPx mod N
)

.

where pi is the i-th odd prime and

Px :=
∏

i∈[n],i �=x,ri �=1

pi

is the product of the first n odd primes, except for px.
– Punct(k, x) parses k = (N, g, (r1, . . . , rn)). If rx = 1, then it returns k. If

rx = 0, it computes g′ := gpx and r′ = (r1, . . . , rx−1, 1, rx+1, . . . , rn) and
returns k′ = (N, g′, r′).

It is straightforward to verify the correctness of Construction 2 and that it
is invariant to puncturing in the sense of Definition 5.
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4.2 Security Analysis

We prove the following security theorem in the full version of this paper [1].

Theorem 3. Let PPRF = (Setup,Eval,Punct) be as above with polynomial-size
input space X = [n]. From each probabilistic polynomial-time adversary A with
advantage Advna-randA,PPRF(λ) against the na-rand-security (cf. Definition 6) we can
construct an efficient adversary B with advantage AdvsRSAB (λ) against the Strong
RSA problem, such that

AdvsRSAB (λ) ≥ Advna-randA,PPRF(λ).

4.3 Efficiency Analysis

Note that a server is able to create multiple instances of our construction to
serve more tickets than one instance is able to. Using multiple instances allows
using smaller exponents, but in return, the storage cost grows linearly in the
number of instances.

Serving a ticket requires two exponentiations, one for computing the key and
one for puncturing. Computing the key requires raising the state g to the power
of

∏

p∈S p for some subset of primes S. Puncturing requires exponentiating by
a single prime. Therefore, all exponentiations feature exponents smaller than
∏n

i=1 pi. We start by comparing to 2048-bit RSA, which according to the NIST
key size recommendations [3] corresponds to “112-bit security”, before comparing
to larger RSA key sizes.

Worst-case Analysis. We compare to standard exponentiation in the group, i.e.
raising to the power of d ∈ N, where log d ≈ 2048. For puncturing to be compara-
ble in the worst-case, we require log (

∏n
i=1 pi) ≤ 2048. Choosing pi to be the i-th

odd prime yields n ≤ 232. An economic server may store only one 2048-bit group
element for the current state, and a bitfield indicating which of the 232 primes
have been punctured, requiring 2280 bits in total. This allows serving 232 tick-
ets, resulting in a storage cost of 1.22 bytes per ticket. Alternatively, a standard
Session Cache would require 112 · 232 = 25984 bits to serve those 232 tick-
ets, assuming symmetric keys of 112 bits. Therefore, our construction decreases
storage size compared to a Session Cache by a factor of 25984/2280 = 11.4.

Averaged Analysis. Note that in the above worst-case analysis we consider an
upper bound on the exponentiation cost. That is, we guarantee that a puncturing
and key derivation operation is never more expensive than a full exponentiation.
Indeed, the first key computation raises to the power of p1 · . . . ·pn/p�, i.e. to the
product of n − 1 primes. However, subsequent key calculations raise to smaller
powers, i.e. to the product of n − 2 primes, then n − 3, and so on. Therefore
serving tickets arriving later is much cheaper than serving the first. In particular
in settings where a server uses many PPRF instances in parallel, in order to
deal with potentially thousands of simultaneously issued tickets, an alternative
and more reasonable efficiency analysis considers the average cost of serving a
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ticket be comparable to exponentiation in the group. In the worst-case, primes
are punctured in order, so pn is included in the exponent in all key derivations,
pn−1 in all derivations except the last, etc. Each prime is also used once for
puncturing. Requiring

∑n
i=1 i · log(pi) ≤ n · 2048 yields a maximum n = 387,

and a savings factor of 112 · 387/(2048 + 387) = 17.8. The required storage is
therefore 0.79 bytes per ticket.

Considering Other Security Parameters and Efficiency Requirements. Generaliz-
ing the above calculations, Table 1 gives concrete parameters for various security
levels, following the NIST recommendations for key sizes [3]. Larger key sizes
result in larger reductions in storage, especially when requiring average cost sim-
ilar to exponentiation in the RSA group. We also show the improvement factor
in storage when relaxing the above heuristic choice that serving a ticket must
not cost more than one full RSA-exponentiation, by considering the case where
serving a ticket is cheaper on average than 5 group exponentiations. This demon-
strates that the proposed PPRF can yield very significant storage savings in gen-
eral cryptographic settings, while keeping computation costs on the same order
of magnitude as common public key operations. In the context of TLS, however,
we expect most server operators would prefer parameters that keep processing
time comparable to a single exponentiation. We emphasize that the improve-
ment factor in storage is determined at initialization time, and is deterministic
rather than probabilistic. The largest prime used in exponentiations determines
how many tickets are served using a single group element. The worst-case and
average-case refer to the processing time, not to the savings in storage.

Additional Storage for the Primes. The server will also need to store the first
n primes, but this requires negligible additional storage. Storing the primes
requires on the order of magnitude of ten kilobytes, where we expect typical
caches to use many megabytes. For the minimal storage requirement, we consider
2048-bit RSA while requiring that the worst case puncturing time is cheaper than
group exponentiation. In this case n = 232 and pn = 1471, therefore all primes fit
in 32-bit integers. Storing all the primes would require at most 4·232 = 928 bytes.

The largest value of n for the parameter choices presented in this work is
n = 9704, for the “average cheaper than 5 exponentiations” case with 15360-bit
RSA. p9704 = 101341. The required additional storage is therefore 4 · 9704 =
38,816 bytes. To reiterate, we expect typical caches to use many megabytes.

Concrete Benchmarks. We now give concrete performance estimates for this
construction, using OpenSSL [45]. OpenSSL is a well-known production-grade
library that implements the TLS and SSL protocols, as well as low-level cryp-
tographic primitives. For each key size, we measure the computation time of
exponentiating by all primes

∏n
i=1 pi, by calling the OpenSSL “BigNum” expo-

nentiating function. This is analogous to the computation required to serve the
first ticket and then puncture the key: Serving requires exponentiating to the
power of all primes except one, pi, and puncturing requires exponentiating to
the power of pi. This is the worst-case, since serving later tickets is cheaper.
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Table 1. Savings factors for various key sizes. Symmetric and asymmetric key sizes are
matched according to the NIST recommendations [3]. Both savings factors denote the
reduction in server-side storage required when using Construction 3. Column 3 denotes
the reduction in storage achieved under the requirement that serving a single ticket
is always cheaper than an exponentiation in the RSA group of respective key size.
Column 4 denotes the reduction in storage achieved under the requirement that the
average cost for serving a ticket is cheaper than a single exponentiation. Column 5
denotes the reduction in storage achieved under the requirement that the average cost
for serving a ticket is cheaper than 5 group exponentiations.

Storage Savings Factor

Symmetric Modulus W.C. cheaper than Average cheaper Average cheaper than
Key Size Size exponentiation than exponentiation 5 exponentiations

112 2048 11.40 17.80 48.92
128 3072 12.28 19.47 54.49
192 7680 16.37 26.52 77.36
256 15360 20.10 33.05 99.12

We measure the performance of this calculation for two of the above cases,
which determine the value of n: (1) Worst-case is cheaper than exponentiation,
and (2) The average case is cheaper than exponentiation. We note the latter case
is slightly unintuitive: we measure the worst-case performance, under the require-
ment that the average case is comparable to one exponentiation in the group.

Table 2 gives our results. We observe that performance is comparable to, but
slower than, RSA decryption. In typical cases, it requires only a few additional
milliseconds compared to RSA decryption. We argue the additional latency
and computation requirement are small enough to allow the construction to be
deployed as-is, in current large scale TLS deployments. It is unsurprising that
RSA decryption is faster than our construction, since OpenSSL performs RSA
decryption using the Chinese Remainder Theorem.

Table 2. Worst-case running time for serving a single ticket using our construction,
compared to RSA decryption. All times are measured in milliseconds. Measurements
were performed on a standard workstation, with a 3.60 GHz Intel i7 CPU. All mea-
surements used code from OpenSSL 1.0.2q, released in November 2018. To benchmark
our construction we used a short piece of custom code, based on [9], to repeatedly call
the OpenSSL exponentiating function. For each parameter choice, we generated 100
random moduli, and performed 100 exponentiations of random group elements to the
power of

∏n
i=1 pi. To benchmark RSA decryption, we used a built-in OpenSSL bench-

marking command, “openssl speed” (after applying a small patch that adds support
for 3072-bit RSA to the command [29]).

Our construction: Decryption + Puncturing

Modulus W.C. cheaper than Average cheaper RSA
Size exponentiation than exponentiation Decryption

2048 2.6 4.7 0.5
3072 8.3 15.2 2.5
4096 19.4 35.8 5.6
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5 Tree-Based PPRFs

This section will consider a different approach to instantiating Construction 1
based on PPRFs using trees. At first we will recap the idea behind tree-based
PPRFs and explain how we utilize tree-based PPRFs as an instantiation of our
session resumption protocol and highlight implications. Finally, we will describe
our new “domain extension” technique for PPRFs and analyze its efficiency.

5.1 Tree-Based PPRFs

We will briefly recap the main idea behind tree-based PPRFs. It is well known
that the GGM tree-based construction of pseudorandom functions (PRFs) from
one-way functions [22] can be modified to construct a puncturable PRF, as noted
in [10,11,30]. It works as follows.

Let G : {0, 1}λ → {0, 1}2λ be a pseudorandom generator (PRG) and let
G0(k), G1(k) be the first and second half of string G(k), where k is a random
seed. The GGM construction defines a binary tree on the PRF’s domain, where
each leaf represents an evaluation of the PRF. We label each edge with 0 if it
connects to a left child, and 1 if it connects to a right child. We label each node
with the binary string determined by the path from the root to the node. The
PRF value of x = x1 . . . xn ∈ {0, 1}n is (Gxn

◦ . . . ◦ Gx1)(k) ∈ {0, 1}λ, i.e. we
compose G according to the path from root to leaf x.

We will briefly describe how this construction can be transformed into a
PPRF. In order to puncture the PPRF at input x = x1 . . . xn we compute a
tuple of n intermediate node evaluations for prefixes x1, x1x2, . . . , x1x2 . . . xn

and discard the initial seed k. The intermediate evaluations enable us to still
compute evaluations on all inputs but x. Successive puncturing is possible if we
apply the above computations to an intermediate evaluation. Note that we have
to compute at most n · m intermediate values if we puncture at random, where
m is the number of puncturing operations performed.

The PPRF is secure if an adversary is not able to distinguish between a punc-
tured point and a truly random value, even when given the values of all computed
“neighbor nodes”. This holds as long as the underlying PRG is indistinguishable
from random [10,11,30].

5.2 Combining Tree-Based PPRFs with Tickets

In our session resumption scenario the tree-based PPRF will act as a puncturable
STEK. That is, evaluating the PPRF returns a ticket encryption key. Upon
resumption with a ticket we will retrieve the ticket encryption key from the
PPRF by evaluating it and puncture the PPRF at that very value to ensure the
ticket encryption key cannot be computed twice. Note that each ticket encryption
key essentially corresponds to a leaf of the tree. Thus we will subsequently use
the terms leaf and ticket (encryption key) interchangeably depending on the
context.

For simplicity, we consider tickets which consist of a ticket number i and
a ticket lifetime t. Following Construction 1 we will issue the tickets one after
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another while incrementing the ticket number for each. Note that the ticket
number i corresponds to the i-th leftmost leaf of the tree. The ticket lifetime t
determines how long an issued ticket is valid for resumption. That is, if t′ > t
time has passed, the server will reject the ticket.

We assume that the rate at which tickets are issued is roughly the same as
the rate tickets are used for session resumption. This holds as for each session
resumption we will issue a new ticket to again resume the session at a later point
in time. Similarly, we argue that tickets are roughly used in the same order for
resumption as we issued them. Again, if we consider multiple users, repeatedly
requesting tickets and resuming sessions, we are able to average the time a user
takes until a session is resumed.8 This yields an implicit window of tickets in
usage. The window is bounded left by the ticket lifetime and bounded right by
the last ticket the server issued. Within the lifetime of the tree-based PPRF this
implicit window will shift from left to right over the tree’s leaves. It immediately
follows that tickets are also roughly used in that order.

5.3 Efficiency Analysis of the Tree-Based PPRF

We will now discuss how the performance of tree-based PPRFs depends on the
ticket lifetime. We consider a scenario where the ticket lifetime t equals the
number of leaves �. It is also possible to consider a scenario where the ticket
lifetime is smaller than the number of leaves. If both number of leaves � and
ticket lifetime t are powers of 2, we can divide the leaves in �/t windows, which
span a subtree each.9 The subtrees are all linked with the “upper part” of the
tree. A different approach would be to instantiate a new tree when a tree runs
out of tickets. We stress that this does not affect our analysis. As soon as one
subtree runs out of tickets, the next subtree is used. If the rate at which we issue
tickets stays the same, we are able to delete parts of the former tree when issuing
tickets of the next one. Hence, for analysis, it is sufficient to consider a single tree.

If we were to puncture leaves strictly from left to right, we would need to
store at most log(�) leaves (one leaf per layer). Note that if we puncture leaves at
random, we would need to store at most p · log(�) nodes, where p is the number
of punctures performed. We can also bound the number of nodes we need to
store by p · log(�) ≤ �/2. This is due to the tree being binary. Essentially each
node (except for the lowest layer) represents at least two leaves. To be more
precise, in a tree with L layers, storing a node on layer i allows evaluating its
2L−i children. Thus it is preferable to store those nodes instead of storing leaves
in order to save memory. In the worst-case only every second leaf is punctured.
8 Cloudflare have suggested that these assumptions seem reasonable. Unfortunately,

they cannot provide data on returning clients’ behavior yet.
9 When implementing tree-based PPRFs in session resumption scenarios, such win-

dows should not be implemented as they only add management overhead to the
algorithm instead of providing notable advantages. It is sufficient to use a tree-based
PPRF as is and puncture leaves for which the ticket’s lifetime has expired. This way
we achieve an implicit implementation of a sliding window scenario that ensures all
established bounds still hold.
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This results in precomputation of all other leaves without being able to save
memory by only storing an intermediary node. Note that this would actually
resemble a Session Cache, where all issued tickets are stored. However, note that
a session cache needs to store each ticket when it has been issued, whereas our
construction only needs to increase its storage if a ticket is used for resumption.
Thus, our tree-based construction performs (memory-wise) at least as well as
a Session Cache. In practice, where user behavior is much more random, our
approach is always better than Session Caches.

The tree-based PPRF performs more computations compared to a Session
Cache. When issuing tickets we need to compute all nodes from the closest
computed node to a leaf. For puncturing we need to compute the same, plus
computation of some additional sibling nodes. However, when instantiating the
construction with a cryptographic hash function, such as SHA-3, evaluation and
puncturing of the PPRF consists only of several hash function evaluations. This
makes our construction especially suitable for high-traffic scenarios.

Table 3 gives worst-case secret key sizes based on the above analysis. However,
we expect the secret key size to be much smaller in practice. Unfortunately, we
are not able to estimate the average key size as this would depend on the exact
distribution of returning clients’ arrival times.

Table 3. Worst-case size of secret key depending on the rate of tickets per second
and the ticket lifetime assuming 128 bit ticket size. The worst-case secret key size is
computed as |k| = 128rt/2.

Tickets per Second r Ticket Lifetime t Worst-case Secret Key Size |k|
16 1 hour 461 kB
16 1 day 11.06 MB
128 1 hour 3.69 MB
128 1 day 88.47 MB
1024 1 hour 29.49 MB
1024 1 day 707.79 MB

5.4 Generic Domain Extension for PPRFs

Most forward-secure and replay-resilient 0-RTT schemes come with large secret
keys (possibly several hundred megabytes) when instantiated in a real-world
environment [15,16,25]. This is especially problematic if the secret key needs to
be synchronized across multiple server instances. Therefore it is often desirable
to minimize the secret key size.

In this section we will describe a generic domain extension. In the context of
our work, the domain extension reduces the size of punctured keys by trading
secret key size for ticket size, while preserving the puncturing functionality.

Idea Behind the Construction. Our session resumption protocol uses the output
of the PPRF as a ticket encryption key. Normally, a PPRF only allows one
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output per input as it is designed to be a function. Our protocol, however,
does not rely on this property. Instead of only using one ticket encryption key
we could generate multiple ticket encryption keys. Ticket issuing would work
as follows. First, we generate an intermediary symmetric key to encrypt the
Resumption Secret10. The intermediary symmetric key is then encrypted under
each of the ticket encryption keys. The ticket will consist of one encryption of
the Resumption Secret and several (redundant) encryptions of the intermediary
symmetric key.

As long as the PPRF is able to recompute at least one of those ticket encryp-
tion keys, the server will still be able to resume the session. This allows us to
construct a wrapper around the PPRF that extends the PPRF’s domain by
relaxing the requirement that every input has only a single output.

Before formally describing our construction, we will provide an example to
illustrate the idea. Let X be the PPRF’s domain. We will extend the domain to
X ×[n] with a domain extension factor of n. That is, we will allow (x, i), i ∈ [n] for
any x ∈ X as input. Let G : {0, 1}λ → {0, 1}nλ be a pseudorandom generator and
let Gj(x) be the j-th bitstring of size λ of G on input x. We define the evaluation
of (x, i) as all possible compositions of Gj which end with Gi. That is, for any
input (x, i) there will be (n − 1)! different outputs, as there are (n − 1)! ways to
compose Gj with j �= i. The possible compositions of PRGs can be illustrated
as a tree as shown in Fig. 4.

Fig. 4. Possible composition of PRGs for n = 3 illustrated as a tree. Each path from
parent to child illustrates an evaluation of the PRG shown next to the path. Upon
puncturing (x, 3), the value y3 is computed and stored and y is discarded. Thus, only
the white nodes are computable, whereas the gray nodes cannot be computed without
inverting G3.

10 Typically, a ticket contains not only the Resumption Secret but also the chosen
cipher suite and other additional session parameters, and is thus larger than just the
Resumption Secret. Therefore it is reasonable to encrypt this data only once, while
encrypting the shorter intermediary symmetric key multiple times. This makes the
ticket as short as possible.
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After puncturing the PPRF’s key for a value (x, i), it must not be possible to
evaluate the value anymore. This requires a mechanism to ensure that composing
the PRGs which end with Gi is no longer possible. We achieve this by forcing an
evaluation of yi := Gi(y), where y is the evaluation of the underlying PPRF on
input x. In order to render recomputation of y impossible, we additionally need
to puncture the PPRF’s key on value x and delete the computed y. Formally,
the construction is defined as follows.

Construction 3. Let G : {0, 1}λ → {0, 1}nλ be a PRG and let Gi(k) be the
i-th bitstring of size λ of G. Let PPRF′ = (Setup′,Eval′,Punct′) be a PPRF with
domain X . We construct a domain extended PPRF DE = (Setup,Eval,Punct)
with domain X × [n] for n ∈ N as follows.

– Setup(1λ) computes kPPRF := Setup′(1λ). Next, it defines an empty list L = ∅.
Output is k = (kPPRF,L)

– Eval(k, x) parses x = (xPPRF, xext) ∈ X × [n] and k = (kPPRF,L). It computes
y := Eval(kPPRF, xPPRF).
If y = ⊥, it checks whether ∃xPPRF with (xPPRF, y

′, (r1, . . . , rn)) ∈ L. If it
exists, assign y := y′. Otherwise it outputs ⊥.
Furthermore, it defines a set R = {i ∈ [n] | ri = 1}. If ri are undefined, set
R is empty. Next, it computes

Y = {(Gin−|R|−1 ◦ . . . ◦ Gi1)(y)},

where (i1, . . . , in−|R|−1) are all (n−|R|−1)! possible permutations of elements
in [n] \ (R ∪ {xext}). Output is Y.

– Punct(k, x) parses k = (kPPRF,L) and x = (xPPRF, xext) ∈ X ×[n]. It computes
y := Eval(kPPRF, xPPRF). If y �= ⊥, it appends L′ = L ∪ {xPPRF, y, (r1, . . . ,
rn)}, where ri = 0, but rxext = 1. Additionally, it punctures k′

PPRF :=
Punct′(kPPRF, xPPRF).
If y = ⊥ and �xext with (xext, y

′, r) ∈ L, it outputs k.
Otherwise it retrieves � = (xext, y

′, (r1, . . . , rn)) ∈ L. If ri = 1 for all
i ∈ [n] \ {xext}, remove � from L. Else it updates � ∈ L by computing
L′ = (L \ {�}) ∪ {�′}. Output is k = (k′

PPRF,L′).

5.5 Efficiency Analysis of the Generic Domain Extension

Increased Ticket Size. Note that a ticket is longer than a standard ticket by
(n − 1)! encrypted blocks. Assuming 128-bit AES, and choosing n = 5, this
translates to 4! · 16 = 384 additional bytes. This is likely to be insignificant
on the modern Internet. For example, Google has pushed for increasing the
maximum initial flight from 4 TCP packets to 10 [19], as most server responses
span several packets already (a typical full packet is about 1500 bytes). A basic
experiment performed by Google and Cloudflare in 2018 measured a similar
scenario: It added 400 bytes for both the client’s and server’s first flights [33].
They observed relatively small additional latencies: 2–4 ms in the median, and
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less than 20 ms for the 95th percentile.11 However, choosing n = 6 or larger is
likely to be not cost-effective. This would translate to 5! · 16 = 1920 additional
bytes, larger than a standard TCP packet.

Storage Requirements. Comparing the storage requirements of the tree-based
construction to standard Session Caches depends on the specific distribution of
returning clients. In the best case, tickets arrive in large contiguous blocks. In
this case, a tree-based construction uses negligible storage (logarithmic in the
number of tickets), making the savings factor in storage huge. However, this is
unrealistic in practice. In the worst-case, tickets arrive in blocks of n−1 tickets of
the form (xPPRF, i) for i ∈ [n − 1], adversarially rendering the domain extension
technique useless as each subtree is reduced to a single node. As before, this is
unrealistic in practice.

We have therefore resorted to simulations in order to assess the improvement
in storage requirements. Our simulation constructs two trees: a standard binary
tree with � layers, and a domain-extended tree with n = 4. For the domain-
extended tree, the first � − 2 layers are constructed as a standard binary tree,
and the last log(4) = 2 layers are represented by the domain extension.

We simulated the storage requirements for trees of 10,000 tickets.12 We
focused on the relationship between ticket puncturing rate and savings in storage.
The ticket puncturing rate denotes the percentage of tickets that are punctured,
out of the 10,000 outstanding tickets. This can also be thought of as the percent-
age of returning clients. After fixing the puncturing rate to r, we simulate the
arrival of r% of clients according to two distributions: Gaussian and uniform.
With the uniform distribution, the next ticket to be punctured is sampled uni-
formly out of the outstanding tickets. With the Gaussian distribution, the next
ticket to be punctured is sampled using a discrete Gaussian distribution with
mean μ = 5000 and standard deviation σ (for varying values of σ). We then sim-
ulate the state of both trees after puncturing the sampled ticket. We repeatedly
sample tickets and puncture them, until we reach the desired puncturing rate.
We then report the ratio between the storage for the standard binary tree and
the storage for the domain-extended tree, in their final states.

Intuitively, the Gaussian distribution aims to simulate the assumption where
tickets arrive in some periodic manner. For example, assume the tickets most
likely to arrive are the tickets issued roughly one hour ago. Then the distribution
of arriving tickets will exhibit a noticeable mode (“peak”), where tickets close to
the mode are much more likely to arrive than tickets far from it. The Gaussian
distribution is a natural fit for this description. On the other hand, the uniform
distribution makes no assumptions on which ticket is likely to arrive next. In

11 The relevant experiment is denoted as “Phase Two”; “Phase One” only added bytes
to the client’s first flight.

12 We note that results for trees of 10,000 tickets should closely follow results for larger
tree sizes. Trees are quickly split into smaller sub-trees when puncturing, regardless
of the initial tree size. In the first puncturing operation we delete the root and store
smaller sub-trees with at most half the nodes in each, and so forth.
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personal communication, Cloudflare have advised us that it is reasonable to
assume tickets are redeemed roughly in order of issuance (they do not have
readily-available data on returning clients’ behavior). This motivated our use
of Gaussian distributions. We hope to see additional research in this area. In
particular, it would be helpful if large server operators could release anonymized
datasets that allow simulating the behavior of returning clients in practice.

Using our domain extension technique with n = 4 results in a typical factor
of 1.4 (or more) reduction in storage compared to a tree-based PPRF. Figure 5
plots the results when using the uniform distribution and a Gaussian distribution
with σ = 2000. We encountered similar results when using other values for σ.
We estimate ticket redeeming rates in large-scale deployments are roughly 50%.
We therefore focus on cases where the puncturing rate is at least 40% and at
most 60%. We note that in the worst-case, the domain extension performs as
well as the binary tree.

Fig. 5. Average storage improvement factor of the domain-extended binary tree (with
n = 4) compared to a standard binary tree, depending on the ticket puncturing rate.
All simulations used trees of 10,000 tickets. The dashed blue line (resp. continuous red
line) shows the storage improvement when modeling client’s arrivals with a uniform
distribution (resp. discrete Gaussian distribution with mean μ = 5000 and standard
deviation σ = 2000). (Color figure online)

6 Comparison of Solutions and Conclusion

Comparison of Solutions. To summarize this work, Table 4 compares our two
constructions with the standard solutions of Session Tickets and Session Caches.
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Table 4. Comparison of security guarantees and dominant cost for Session Tickets,
Session Caches, and our two constructions. For Session Tickets, we assume a deploy-
ment that rotates STEKs, as in [34]. For Session Caches, we assume each key is 128 bits
(16 bytes) long. The unique ticket identifier, and other storage overhead, will typically
require a few more bytes. We therefore estimate total storage per key as 20–30 bytes.
For the Tree-based PPRF, actual storage per ticket highly depends on returning clients
behavior. However, this solution always requires at most as much storage as a Session
Cache.

Forward Replay Storage See
Solution Security Protection per Ticket Dominant Cost Section

Session Tickets After ≈ 1 day No Negligible Symmetric encryption 1

Session Caches Yes Yes ≈20–30 bytes Database access 1

sRSA-based PPRF Yes Yes ≈0.8–1.2 bytes Group exponentiation 4.3

Tree-based PPRF Yes Yes ≤20–30 bytes Database access 5.3

Conclusion. In most facets, TLS 1.3 offers significant improvements in secu-
rity compared to earlier TLS versions. However, when 0-RTT mode is used,
it surprisingly weakens standard security guarantees, namely forward security
and replay resilience. This was noted as the protocol was standardized, but the
latency reduction from 0-RTT was considered “too big a win not to do” [38].

This paper presented formal definitions for secure 0-RTT Session Resump-
tion Protocols, and two new constructions that allow achieving the aforemen-
tioned security guarantees at a practical cost. We expect continued research in
the coming years in this area, of achieving secure 0-RTT traffic as cheaply as
possible. Currently, many large server operators serve 0-RTT traffic using STEK-
encrypted Session Tickets. As more Internet traffic becomes 0-RTT traffic, this
solution rolls back the security guarantees offered to everyday secure sessions.
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Abstract. We investigate the security properties of the three determin-
istic random bit generator (DRBG) mechanisms in NIST SP 800-90A [2].
The standard received considerable negative attention due to the con-
troversy surrounding the now retracted DualEC-DRBG, which appeared
in earlier versions. Perhaps because of the attention paid to the DualEC,
the other algorithms in the standard have received surprisingly patchy
analysis to date, despite widespread deployment. This paper addresses a
number of these gaps in analysis, with a particular focus on HASH-DRBG
and HMAC-DRBG. We uncover a mix of positive and less positive results.
On the positive side, we prove (with a caveat) the robustness [13] of
HASH-DRBG and HMAC-DRBG in the random oracle model (ROM).
Regarding the caveat, we show that if an optional input is omitted,
then – contrary to claims in the standard—HMAC-DRBG does not even
achieve the (weaker) property of forward security. We then conduct a
more informal and practice-oriented exploration of flexibility in the stan-
dard. Specifically, we argue that these DRBGs have the property that
partial state leakage may lead security to break down in unexpected
ways. We highlight implementation choices allowed by the overly flex-
ible standard that exacerbate both the likelihood, and impact, of such
attacks. While our attacks are theoretical, an analysis of two open source
implementations of CTR-DRBG shows that these potentially problematic
implementation choices are made in the real world.

1 Introduction

Secure pseudorandom number generators (PRNGs) underpin the vast majority
of cryptographic applications. From generating keys, nonces, and IVs, to produc-
ing random numbers for challenge responses, the discipline of cryptography—
and hence system security—critically relies on these primitives. However, it has
been well-established by a growing list of real-world failures [6,18,32,39], that
when a PRNG is broken, the security of the reliant application often crumbles
with it. Indeed, with much currently deployed cryptography being effectively
‘unbreakable’ when correctly implemented, exploiting a weakness in the under-
lying PRNG emerges as a highly attractive target for an attacker. As such, it is
of paramount importance that standardized PRNGs are as secure as possible.

NIST Special Publication 800-90A “Recommendation for Random Number
Generation Using Deterministic Random Bit Generators (NIST SP 800-90A) [2]
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11477, pp. 151–180, 2019.
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has had a troubled history. The first version of this standard included the
now infamous DualEC-DRBG, which was long suspected to contain a backdoor
inserted by the NSA [36]. This suspicion was confirmed by documents included
in the Snowden leaks [29], leading to a revision of the document that removed
the disgraced algorithm. The remaining DRBGs—which respectively use a hash
function, HMAC, and a block cipher as their basic building blocks—are widely
used. Indeed, any cryptographic software or hardware seeking FIPS certifica-
tion must implement a PRNG from the standard [16,38]. While aspects of these
constructions have been analyzed [9,19–21,33,35] and some implementation con-
siderations discussed [5], these works make significant simplifying assumptions
and/or treat certain algorithms rather than the constructions as a whole. To
date, there has not been a deeper analysis of these standardized DRBGs, either
investigating the stronger security properties claimed in the standard or taking
into account the (considerable) flexibility in their specification.

The constructions provided in NIST SP 800-90A are nonstandard. Even the
term DRBG is rare, if not absent from the literature, which favors the term
PRNG. Similarly the NIST DRBGs—which return variable length (and sizable)
outputs upon request, and support a variety of optional inputs and parameters—
do not fit cleanly into the usual PRNG security models. With limited formal
analysis to date, coupled with the fact that the standardization of these algo-
rithms did not follow from a competition or widely publicly vetted process, this
leaves large parts of software relying on relatively unanalyzed algorithms.

Security claims. The standard claims that each of the NIST DRBGs is ‘back-
tracking resistant’ and ‘prediction resistant’. The former property guarantees
that in the event of a state compromise, prior output remains secure. The latter
property ensures that if a compromised state is reseeded with sufficient entropy
then security will be recovered. To the best of our knowledge, neither of these
properties have been formally investigated and proved. In fact, the NIST DRBG
algorithms which are responsible for initial state generation and reseeding do
not seem to have been analyzed at all in prior work.

A number of factors may have contributed to this lack of analysis. It seems
likely that the attention given to the Dual EC resulted in the other PRNGs in
NIST SP 800-90A being comparatively overlooked. Secondly, our understanding
of what a PRNG should achieve has developed since the NIST DRBGs were
standardized in 2006. Indeed, the concept of robustness for PRNGs [13] was
not formalized until 2013. Finally, the NIST DRBGs are based on fairly run-
of-the mill concepts such as running a hash function in counter mode, and yet
simultaneously display design quirks which significantly complicate analysis and
defy attempts at a modular treatment. As such, perhaps they have escaped
deeper analysis by not being ‘interesting’ enough to tackle for an attention-
grabbing result and yet too tricky for a straightforward proof.

The goal of this paper is to address some of these gaps in analysis.

1.1 Contributions

We conduct an investigation into the security of the DRBGs in NIST SP 800-90A,
with a focus on HASH-DRBG and HMAC-DRBG. We pay particular attention
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to flexibilities in the specification of these algorithms, which are frequently
abstracted away in previous analysis. We set out to analyze the algorithms as
they are specified and used, and so sometimes make heuristic assumptions in our
modeling (namely, working in the random oracle model (ROM) and assuming an
oracle-independent entropy source). We felt this to be more constructive than
modifying the constructions solely to derive a proof under weaker assumptions,
and explain the rationale behind all such decisions.

Robustness proofs. Robustness, introduced by Dodis et al. [13], captures both
backtracking and prediction resistance and is the ‘gold-standard’ for PRNG secu-
rity. For our main technical results, we analyze HASH-DRBG and HMAC-DRBG
within this framework. As a (somewhat surprising) negative result, we show that
if optional strings of additional input are not always included in next calls (see
Sect. 3), then HMAC-DRBG is not forward secure. This contradicts the claimed
backtracking resistance of HMAC-DRBG. This highlights the importance of for-
mally proving security claims which at first sight seem obviously correct, and of
paying attention to implementation choices. As positive results, we prove that
HASH-DRBG and HMAC-DRBG (called with additional input) are robust in the
ROM. The first result is fully general, while the latter is for a class of entropy
sources which includes those approved by the standard.

A key challenge is that the NIST DRBGs do not appear to have been designed
with a security proof in mind. As such, seemingly innocuous design decisions turn
out to significantly complicate matters. The first step is to reformulate robust-
ness for the ROM. Our modeling is inspired by Gazi and Tessaro’s treatment of
robustness in the ideal permutation model [17]. We must make various adapta-
tions to accommodate the somewhat unorthodox interface of the NIST DRBGs,
and specifying the model requires some care. It is for this reason that we focus on
HASH-DRBG and HMAC-DRBG in this work, since they map naturally into the
same framework. Providing a similar treatment for CTR-DRBG would require
different techniques, and is an important direction for future work.

At first glance, it may seem obvious that a PRNG built from a random oracle
will produce random looking bits. However, formally proving that the construc-
tions survive the strong forms of compromise required to be robust is far from
trivial. While the proofs employ fairly standard techniques, certain design fea-
tures of the algorithms introduce unexpected complexities and some surprisingly
fiddly analysis. Throughout this process, we highlight points at which a minor
design modification would have allowed for a simpler proof.

Implementation flexibilities. We counter these formal and (largely) positive
results with a more informal discussion of flexibilities in the standard. We argue
that when the NIST DRBGs are used to produce many blocks of output per
request—a desirable implementation choice in terms of efficiency, and permit-
ted by the standard—then the usual security models may overlook important
attack vectors against these algorithms. Taking a closer look, we propose an
informal security model in which an attacker compromises part of the state of
the DRBG—for example through a side-channel attack—during an output gen-
eration request. Reconsidered within this framework, each of the DRBGs admits
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vulnerabilities which allow an attacker to recover unseen output. We find a fur-
ther flaw in a certain variant of CTR-DRBG, which allows an attacker who com-
promises the state to potentially recover strings of additional input which are fed
to the DRBG and which may contain secrets. While our attacks are theoretical
in nature, we follow this up with an analysis of the open-source OpenSSL and
mbed TLS CTR-DRBG implementations and find that these potentially problem-
atic implementation decisions are taken by implementors in the real world. We
conclude with reflections and recommendations for the safe use of these DRBGs.

Related work. The PRNGs in NIST SP 800-90A have received little formal
analysis to date; we provide an overview here. A handful of prior works have ana-
lyzed the NIST DRBGs as deterministic PRGs with an idealized initialization
procedure. i.e., they prove the next algorithm produces pseudorandom bits when
applied to an ideally random initial state e.g., S0 = (K0, V0, cnt0) for uniformly
random K0, V0 in the case of CTR-DRBG and HMAC-DRBG. This is a substan-
tial simplification; in reality, state components must be derived from the entropy
source using the setup algorithm. Such proofs are provided for CTR-DRBG by
Campagna [9] and Shrimpton and Terashima [35], and for HMAC-DRBG by
Hirose [19] and Ye et al. [21]. A formal verification of the mbedTLS implemen-
tation of HMAC-DRBG is also provided in [21]. None of these works model setup
or reseeding; as far as we know, ours is the first analysis of these algorithms
for HASH-DRBG and HMAC-DRBG. With the exception of [19], they do not
model the use of additional input. Moreover, pseudorandomness is a weaker prop-
erty than robustness and does not model state compromise. Kan [20] considers
assumptions underlying the security claims of the DRBGs; however, the analysis
is informal and contains inaccuracies. To our knowledge, this is the only previ-
ous work to consider HASH-DRBG. Ruhault claims a potential attack against
the robustness of CTR-DRBG [33]. However, the specification of CTR-DRBG’s
BCC function in [33] is different to that provided by the standard. In [33], BCC
is defined to split the input IV ‖S into n 128-bit blocks ordered from right to
left as [Bn, . . . , B1]. However, in the standard these blocks are ordered left to
right [B1, . . . , Bn]. The attack from [33] does not work when the correct BCC
function is used, and it does not seem possible to recover the attack.

2 Preliminaries

Notation. The set of binary strings of length n is denoted {0, 1}n. We write
{0, 1}∗ to denote the set of all binary strings, and {0, 1}≤n to denote the set of
binary strings of length at most n-bits; we include the empty string ε in both
sets. We write {0, 1}n≤i≤n to denote the set of binary strings of length between
n and n-bits inclusive. We convert binary strings to integers, and vice versa, in
the standard way. We let x ⊕ y denote the exclusive-or (XOR) of two strings
x, y ∈ {0, 1}n, and write x||y to denote their concatenation. We write left(x, β)
(resp. right(x, β)) to denote the leftmost (resp. rightmost) β bits of string x, and
select(x, α, β) to denote the substring of x consisting of bits α to β inclusive. We
let [j1, j2] denote the set of integers between j1 and j2 inclusive. For an integer
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j ∈ N, we write (j)c to represent j encoded as a c-bit binary string. The notation

x
$← X denotes sampling an element uniformly at random from the set X . We let

N = {1, 2, . . . } denote the set of natural numbers, and let N
≤n = {1, 2, . . . , n}.

Entropy and Cryptographic Components. In the full version, we recall the
standard definitions of worst-case and average-case min-entropy, along with the
usual definitions of pseudorandom functions (PRFs) and block ciphers.

PRNGs with input. A pseudorandom number generator with input
(PRNG) [13] produces pseudorandom bits and offers strong security guarantees
(see Sect. 4) when given continual access to an imperfect source of randomness.
We define PRNGs, and discuss our choice of syntax, below.

Definition 1. A PRNG with input is a tuple of algorithms G = (setup, refresh,
next) with associated parameters (p, p, α, βmax), defined:

– setup: Seed×{0, 1}p≤i≤p×N → S takes as input a seed X ∈ Seed, an entropy
sample I ∈ {0, 1}p≤i≤p, and a nonce N ∈ N (where Seed, N , and S denote
the seed space, nonce space, and state space of the PRNG respectively), and
returns an initial state S0 ∈ S.

– refresh: Seed × S × {0, 1}p≤i≤p → S takes as input a seed X ∈ Seed, a state
S ∈ S, and an entropy sample I ∈ {0, 1}p≤i≤p, and returns a state S′ ∈ S.

– next: Seed × S × N
≤βmax × {0, 1}≤α → {0, 1}≤βmax × S takes as input a seed

X ∈ Seed, a state S ∈ S, a parameter β ∈ N
≤βmax , and a string of additional

input addin ∈ {0, 1}≤α, and returns an output R ∈ {0, 1}β and an updated
state S′ ∈ S.

If a PRNG always has X = ε or addin = ε (indicating that, respectively, a seed
or additional input is never used), then we omit these parameters.

Discussion. Our definition follows that of Dodis et al. [13], with a number
of modifications. The key differences are: (1) we extend the PRNG syntax to
accommodate additional input, nonces and a parameter indicating the number
of output bits requested, all of which are part of the NIST DRBG interface;
(2) following Shrimpton et al. [34], we define setup to be the algorithm which
constructs the initial state of the PRNG from a sample drawn from the entropy
source, and assume that a random seed X is generated externally and supplied
to the PRNG; and (3) we allow entropy samples and outputs to take any length
in a range indicated by the parameters of the PRNG, rather than being of fixed
length. We provide a full discussion of these modifications in the full version.
NIST SP 800-90A uses the term deterministic random bit generator (DRBG)
instead of the more familiar PRNG. We use these terms interchangeably.

3 The NIST SP 800-90A Standard

3.1 Overview of the Standard

NIST SP 800-90A defines three DRBG mechanisms, HASH-DRBG,
HMAC-DRBG, and CTR-DRBG. The former two are based on an approved hash
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function (e.g., SHA-256), and the latter on an approved block cipher (e.g.,
AES-128); we include parameters for these variants in the full version.

Algorithms. The standard specifies (Instantiate,Reseed,Generate) algorithms
for each of the DRBGs. These map directly into the (setup, refresh, next) algo-
rithms in the PRNG model of Definition 1. Since the NIST DRBGs are not
specified to take a seed (see Sect. 4), we take X = ε and Seed = ∅ in
this mapping, and omit these parameters from subsequent definitions. For
consistency, we refer to the NIST DRBG algorithms as (setup, refresh, next)
throughout. These (setup, refresh, next) algorithms underly (respectively) the
(Instantiate, Reseed, Generate) functions of the DRBG. When called, these
functions check the validity of the request (e.g., that the number of requested
bits does not exceed βmax), and return an error if these checks fail. If not, the
function fetches the internal state of the DRBG, plus any other required inputs
(e.g., entropy samples, a nonce, etc.), and the underlying algorithm is applied to
these inputs. The resulting outputs are returned and/or used to update the inter-
nal state, and the successful status of the call is indicated to the caller. To avoid
cluttering our exposition we abstract away this process, assuming that required
inputs are provided to algorithms (without modeling how these are fetched), and
that all inputs and requests are valid, omitting success/error notifications.

The DRBG State. The standard defines the working state of a DRBG to be
the set of stored variables which are used to produce pseudorandom output.
The internal state is then defined to be the working state plus administrative
information which indicates e.g., the security strength of the instantiation. We
typically omit administrative information as this shall be clear from the context.

Entropy sources. A DRBG must have access to an approved entropy source1

during initial state generation via setup, after which the DRBG is said to be
instantiated. The function Get entropy input() is used to request an entropy
sample I of length within range [p, p] containing a given amount of entropy
(discussed further below). Nonces used by setup must either contain γ∗/2-bits
of min-entropy or not be expected to repeat more than such a value would.
Examples of suitable nonces given in the standard include strings drawn from
the entropy source, time stamps, and sequence numbers.

Reseeding. Entropy samples drawn from the source are periodically incorpo-
rated into the DRBG state via refresh. A parameter reseed interval indicates
the maximum number of output generation requests allowed by an implementa-
tion before a reseed is forced; this is tracked by a state component called a reseed
counter (cnt). The reseed counter is not a security critical state variable, and
we assume that it is publicly known. For all approved DRBG variants (except
CTR-DRBG based on 3-KeyTDEA) reseed interval may be as large as 248. We
assume here that reseeds are always explicitly requested by the caller; this is
without loss of generality. A DRBG instantiation is parameterized by a security

1 Either a live entropy source as approved in NIST SP 800-90B [37] or a (truly) random
bit generator as per NIST SP 800-90C [3].
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strength γ∗ ∈ {112, 128, 192, 256}, where the highest supported security strength
depends on the underlying primitive. Each entropy sample used by setup and
refresh must contain at least γ∗-bits of entropy2.

Output generation. The caller may request outputs of length up to βmax bits
via the input β to the next function. For all approved DRBG variants (except
CTR-DRBG based on 3-KeyTDEA), βmax may be as large as 219.

Additional input. Optional strings of additional input (denoted addin) may
be provided to the DRBG by the caller during next calls. These inputs may
be public or predictable (e.g., device serial numbers and time stamps), or may
contain secrets. Optional additional input may also be provided in refresh calls
and during setup; for brevity, we do not model this here and omit these inputs
from the presentation of the algorithms.

3.2 HASH-DRBG

HASH-DRBG is built from an approved cryptographic hash function H :
{0, 1}≤ω → {0, 1}�. The working state is defined S = (V,C, cnt), where the
counter V ∈ {0, 1}L and constant C ∈ {0, 1}L are the security critical state vari-
ables. The standard does not explicitly state the role of C; however its purpose
would appear to be preventing HASH-DRBG falling into a sequence of repeated
states. We discuss this further in the full version.

Algorithms. The component algorithms for HASH-DRBG are shown in Fig. 1.
Both setup and refresh derive a new state by applying the derivation function
HASH-DRBG df to the entropy input and (in the case of refresh) the previous
counter. Output generation via next first incorporates any additional input into
the counter V (lines 3–5). Output blocks are then produced by hashing V in
CTR-mode (lines 7–10). At the conclusion of the call, V is hashed with a distinct
prefix prepended, and the resulting string—along with the constant C and reseed
counter cnt—are added into V (lines 12–13).

3.3 HMAC-DRBG

HMAC-DRBG is based on HMAC : {0, 1}� × {0, 1}≤ω → {0, 1}�, built from an
approved hash function. The working state is of the form S = (K,V, cnt), where
the key K ∈ {0, 1}� and counter V ∈ {0, 1}� are security critical.

Algorithms. The component algorithms of HMAC-DRBG are shown in Fig. 1.
Algorithms setup and refresh both use the update subroutine to incorporate an
entropy sample I into K and V . For setup, these variables are initialized to
K = 0x00 . . . 00 and V = 0x01 . . . 01 prior to this process. Output production
via next first incorporates any additional input into K and V via the update

2 In contrast, robustness [13] requires that a PRNG is secure when reseeded with a
set of entropy samples which collectively has γ∗-bits of entropy. Looking ahead to
Sect. 5, we analyze HASH-DRBG with respect to this stronger notion.
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HASH-DRBG df
Require: inp str, (num bits)32
Ensure: req bits

temp ε ;m �num bits/��
For i = 1, . . . , m

temp temp ‖H((i)8 ‖ (num bits)32 ‖ inp str)
req bits left(temp, num bits)
Return req bits

HASH-DRBG setup
Require: I, N

Ensure: S0 = (V0, C0, cnt0)
seed material I ‖ N

V0 HASH-DRBG df(seed material, L)
C0 HASH-DRBG df(0x00 ‖ V0, L)
cnt0 1
Return (V0, C0, cnt0)

HASH-DRBG refresh
Require: S = (V, C, cnt), I

Ensure: S′ = (V ′, C′, cnt′)
seed material 0x01 ‖ V ‖ I

V ′ HASH-DRBG df(seed material, L)
C′ HASH-DRBG df(0x00 ‖ V ′, L)
cnt′ 1
Return (V ′, C′, cnt′)

HASH-DRBG next
Require: S = (V, C, cnt), β, addin

Ensure: R, S′ = (V ′, C′, cnt′)
1. If cnt > reseed interval

2. Return reseed required
3. If addin �= ε

4. w H(0x02 ‖ V ‖ addin)
5. V (V + w) mod 2L

6. data V ; tempR ε ;n �β/��
7. For j = 1, . . . , n

8. r H(data)
9. data (data + 1) mod 2L

10. tempR tempR ‖ r

11. R left(tempR, β)
12. H H(0x03 ‖ V )
13. V ′ (V + H + C + cnt) mod 2L

14. C′ C ; cnt′ cnt + 1
15. Return R, (V ′, C′, cnt′)

CTR-DRBG update
Require: provided data, K, V

Ensure: K, V

temp ε ;m �(κ + �)/��
For j = 1, . . . , m

V (V + 1) mod 2� ;Z E(K, V )
temp temp ‖ Z

temp left(temp, (κ + �))
temp temp ⊕ provided data

K left(temp, κ)
V right(temp, �)
Return K, V

HMAC-DRBG update
Require: provided data, K, V

Ensure: K, V

K HMAC(K, V ‖ 0x00 ‖ provided data)
V HMAC(K, V )
If provided data �= ε

K HMAC(K, V ‖ 0x01 ‖ provided data)
V HMAC(K, V )

Return (K, V )

HMAC-DRBG setup
Require: I, N

Ensure: S0 = (K0, V0, cnt0)
seed material I ‖ N

K 0x00 . . . 00
V 0x01 . . . 01
(K0, V0) update(seed material, K, V )
cnt0 1
Return (K0, V0, cnt0)

HMAC-DRBG refresh
Require: S = (K, V, cnt), I

Ensure: S′ = (K′, V ′, cnt′)
seed material I

(K0, V0) update(seed material, K, V )
cnt0 1
Return (K0, V0, cnt0)

HMAC-DRBG next
Require: S = (K, V, cnt), β, addin

Ensure: R, S′ = (K′, V ′, cnt′)
1. If cnt > reseed interval

2. Return reseed required
3. If addin �= ε

4. (K, V ) update(addin, K, V )
5. temp ε ;n �β/��
6. For j = 1, . . . , n

7. V HMAC(K, V )
8. temp temp ‖ V

9. R left(temp, β)
10.(K′, V ′) update(addin, K, V )
11. cnt′ cnt + 1
12. Return R, (K′, V ′, cnt′)

CTR-DRBG next
Require: S = (K, V, cnt), β, addin

Ensure: R, S′ = (K′, V ′, cnt′)
1. If cnt > reseed interval

2. Return reseed required
3. If addin �= ε

4. If derivation function used then
5. addin CTR-DRBG df(addin, (κ + �))
6. Else if len(addin) < (κ + �) then
7. addin addin ‖ 0(κ+�−len(addin))

8. (K, V ) update(addin, K, V )
9. Else addin 0κ+�

10. temp ε ;n �β/��
11. For j = 1, . . . , n

12. V (V + 1) mod 2� ; r E(K, V )
13. temp temp ‖ r

14. R left(temp, β)
15. (K′, V ′) update(addin, K, V )
16. cnt′ cnt + 1
17. Return R, (K′, V ′, cnt′)

Fig. 1. Component algorithms for HASH-DRBG, HMAC-DRBG and CTR-DRBG.
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function (lines 3–4). Output blocks r are generated by iteratively computing
V ← HMAC(K,V ) and setting r = V (lines 6–8). At the conclusion of the call,
both key and counter are updated via the update function (line 10).

3.4 CTR-DRBG

CTR-DRBG is built from an approved block cipher E : {0, 1}κ×{0, 1}� → {0, 1}�.
The working state is defined S = (K,V, cnt), where key K ∈ {0, 1}κ and counter
V ∈ {0, 1}� are the security critical state variables.

Algorithms. Component algorithms for CTR-DRBG are shown in Fig. 13. Use
of the derivation function CTR-DRBG df is optional only if the implementation
has access to a ‘full entropy source’ which returns statistically close to uniform
strings. Output generation via next first incorporates any additional input addin
into the state via the update function (line 8). If a derivation function is used,
additional input addin is conditioned into a (κ+�)-bit string with CTR-DRBG df
prior to this process (line 5); otherwise addin is restricted to be at most (κ+ �)-
bits in length. Output blocks are then iteratively generated using the block cipher
in CTR-mode (lines 11–13). At the conclusion of the call, both K and V are
updated via an application of the update function (line 15).

4 Robustness in the Random Oracle Model

The security properties of backtracking and prediction resistance claimed in the
standard have never been formally investigated. We address this be analyzing
the robustness [13] of HASH-DRBG and HMAC-DRBG. This models a powerful
attacker who is able to compromise the state and influence the entropy source
of the PRNG, and is easily verifed to imply both backtracking and prediction
resistance. In this section, we adapt the robustness model of [13] to accommodate
the NIST DRBGs, and introduce the notion of robustness in the ROM.

Distribution sampler. We model the gathering of entropy inputs from the
entropy source via a distribution sampler [13]. Formally, a distribution sampler
D : {0, 1}∗ → {0, 1}∗ × {0, 1}∗ × R

≥0 × {0, 1}∗ is a stateful and probabilistic
algorithm which takes as input its current state σ ∈ {0, 1}∗ and outputs a
tuple (σ′, I, γ, z), where σ′ ∈ {0, 1}∗ denotes the updated state of the sampler,
I ∈ {0, 1}∗ denotes the entropy sample, γ ∈ R

≥0 is an entropy estimate for the
sample, and z ∈ {0, 1}∗ denotes a string of side information about the sample.
We say that a sampler D is (q+D, γ∗)-legitimate if (1) for all j ∈ [1, qD + 1]:

H∞(Ij |I1, . . . , Ij−1, Ij+1, . . . , IqD+1, γ1, . . . , γqD+1, z1, . . . , zqD+1) ≥ γj ,

where σ0 = ε and (σj , Ij , γj , zj) ←$ D(σj−1); and (2) it holds that γ1 ≥ γ∗. Here,
condition (2) extends the definition of [13] to model the sample (which recall

3 We do not directly analyze setup, refresh and CTR-DRBG df in this work, and so
defer their presentation to the full version.
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must contain γ∗ bits of entropy) with which the DRBG is initially seeded during
setup. It is straightforward to see that to any sequence of Get entropy input()
calls made by the DRBG we can define an associated sampler4.

4.1 Robustness and Forward Security in the Random Oracle Model

Our positive results about HASH-DRBG and HMAC-DRBG will be in the random
oracle model (ROM). As such, the first step in our analysis is to adapt the
security model of Dodis et al. [13] to the ROM.

Robustness. Consider game Rob shown in Fig. 2. The game is parameterized
by an entropy threshold γ∗. We expect security when the entropy in the system
exceeds this value. When analyzing the NIST DRBGs, we take γ∗ to be the secu-
rity strength of the instantiation. At the start of the game, we choose a random
function H ←$ H where H denotes the set of all functions of a given domain and
range. All of the PRNG algorithms have access to H (indicated in superscript
e.g., setupH). For reasons discussed below, we do not give the sampler D access
to H. To the best of our knowledge, this is the first treatment of robustness
in the ROM, and our model may be useful beyond analyzing HASH-DRBG and
HMAC-DRBG. We additionally modify game Rob from [13] to: (1) accommodate
our PRNG syntax (including the use of additional input, discussed below); (2)
remove the Next oracle, which was shown in [11] to be without loss of generality;
and (3) generate the initial state with the deterministic setupH algorithm using
the first entropy sample output by the sampler, similarly to [34].

The game is implicitly parameterized by a nonce distribution N , where we
write N ← N to denote sampling a nonce. Since nonces may be predictable
(e.g., if a sequence number is used) we assume that N is public and the nonce
used during initalization is provided to A. Similarly, we assume the attacker can
choose the strings of additional input which may be included in next calls. These
are conservative assumptions, since any entropy in these values can only make
the attacker’s job harder. With this in place, the Rob advantage of an adversary
A, and a (q+D, γ∗)-legitimate sampler D, is defined

Advrob
G,γ∗(A,D) = 2 · |Pr

[
RobA,D

G,γ∗ ⇒ 1
]

− 1
2
|.

We say that A is a (qH, qR, qD, qC , qS)-adversary if it makes qH queries to the
random oracle H, qR queries to its RoR oracle, a total of qS queries to its Get and
Set oracles, and qD queries to its Ref oracle of which at most qC are consecutive.

Fixed length variant. While we define the general game Rob here, our robust-
ness proofs will be in a slightly restricted variant Robβ , in which the attacker
may only request outputs of fixed length β ≤ βmax in RoR queries. This sim-
plifying assumption is to avoid further complicating bounds with parameters
4 NIST SP 800-90B [37] defines the entropy estimate of sample I as H∞(I), rather

than this conditioned on other samples and associated data. However, since the tests
in NIST SP 800-90B estimate entropy using multiple samples drawn from the source,
it seems reasonable to assume the conditional entropy condition is satisfied also.
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indicating the length of each RoR query. Results for the general game Rob can
be recovered as a straightforward extension of our proofs.

Standard model forward security. Our negative result about the forward
security of HMAC-DRBG shall be in the standard model. We define game Fwd
to be a restricted variant of Rob in which: (1) we remove oracle access to H
from all algorithms; and (2) the attacker A is allowed no Set queries, and makes
a single Get query after which they may make no further queries. The forward
security advantage of (A,D) is defined

Advfwd
G,γ∗(A,D) = 2 · |Pr

[
FwdA,D

G,γ∗ ⇒ 1
]

− 1
2
|.

The problem of seeding. Since deterministic extraction from imperfect
sources is impossible in general, the PRNG in game Rob is initialized with a
random public seed X which crucially is independent of the entropy source.
Unfortunately (for our analysis), none of the NIST DRBGs are specified to take
a seed, (i.e., X = ε in our modeling). Moreover, all state components and inputs
to HASH-DRBG and HMAC-DRBG may depend on the entropy source, and so
cannot be reframed as a seed without adding substantial assumptions; we discuss
this further in the full version. At this point we are faced with two choices. We
either: (1) give sampler D access to H (as in the robustness in the IPM model
of [17]), and either modify the NIST DRBGs to accommodate a random seed or
restrict our analysis to implementations for which additional input is sufficiently
independent of the source to suffice as a seed. Or: (2) do not give D access to H.
In this case, the oracle H with respect to which security analysis is carried out
is chosen randomly and independently of the entropy source, and so serves the
same purpose as a seed. We take the latter approach for a number of reasons.
Firstly, we wish to analyze the NIST DRBGs as they are specified and used, and
so modifying the construction or restricting the implementations we can reason
about (as per (1)) solely to facilitate the analysis seems counterproductive. Sec-
ondly, as pointed out in [35], generating a seed is challenging in practice due to
the necessary independence from the entropy source. Moreover, given the litany
of tests which approved entropy sources in NIST SP 800-90B are subjected to, it
seems reasonable to assume that the pathological sources used to illustrate e.g.,
deterministic extraction impossibility results, are unlikely to pass these tests.

RobA,D
G,γ∗

H $ H ; b $ {0, 1} ;N N
σ ε ;X $ Seed
(σ, I, γ, z) $ D(σ)
S setupH(X, I, N)
c γ∗ ; γ (γ, z, N)
b∗ $ ARef,RoR,Get,Set,H(X, γ)
Return (b = b∗)

Ref
(σ, I, γ, z) $ D(σ)
S refreshH(X, S, I)
c c + γ

Return (γ, z)

proc. H(X)
Return H(X)

RoR(β, addin)

(R0, S) nextH(X, S, β, addin)
If c < γ∗

Return R0

c 0
Else R1 $ {0, 1}β

Return Rb

Get
Return S

c 0

Set(S∗)
S S∗

c 0

Fig. 2. Security game Rob for a PRNG G = (setup, refresh, next).
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Security games. A key insight of [13] is that the complex notion of robustness
can be decomposed into two simpler notions called preserving and recovering
security. The former models the PRNG’s ability to maintain security if the state
is secret but the attacker is able to influence the entropy source. The latter
models the PRNG’s ability to recover from state compromise after sufficient
(honestly generated) entropy has entered the system. Here we will utilize the
variants of these from [34], which extended the original definitions and added a
new game Init modelling initial state generation.

Consider games Pres, Rec, and Init shown in Fig. 3, given here for Robβ .
Here we have adapted the notions of [34] in the natural way to accommodate:
(1) a random oracle; and (2) our PRNG syntax. It is straightforward to extend
our analysis to accommodate variable length outputs. All games are defined with
respect to a masking function, which is a randomized function M : S ∪{ε} → S
where S denotes the state space of the PRNG. Here, we extend the definition
of [34] to include ε in the domain (implicitly assuming that ε does not lie in the
state space of the PRNG; if this is not the case then any distinguished symbol
may be used instead). We discuss the reasons for this adaptation in Sect. 5. We
give the masking function access to the random oracle, indicated by MH. We
make a number of further modifications. Firstly in Init, we require S∗

0 to be
indistinguishable from MH(ε) as opposed to MH(S∗

0 ) as in [34]. Secondly, during
the computation of the challenge in Pres and Rec, we apply the masking function
to the state Sd which was input to nextH as opposed to the state S∗ which is
output by nextH. Finally, in Pres, we allow A to output S ∈ S ∪ {ε} at the start
of his challenge rather than S ∈ S. In all cases, this is to accommodate the
somewhat complicated state distribution of HASH-DRBG (see Sect. 5). For all
Gmx

y ∈ {InitA,D
G,M,qD,γ∗ ,PresA,

G,M,β ,RecA,D
G,M,γ∗,qD,β} we define

Advgm
x (y) = 2 · |Pr

[
Gmx

y ⇒ 1
] − 1

2
|.

An adversary in Init is said to be a qH-adversary if it makes qH queries to its H
oracle. An adversary in game Pres or Rec is said to be a (qH, qC)-adversary if it
makes qH queries to its H oracle and always outputs d ≤ qC .

With this in place, the following theorem—which says that Init, Pres and
Rec security collectively imply Rob security—is an adaptation of the analogous
results from [17,34]. As a bonus, employing a slightly different line of argument
with two series of hybrid arguments means our proof holds for arbitrary masking
functions, lifting the restriction from [34] that masking functions possess a prop-
erty called idempotence. The proof is given in the full version. We note that the
original result [13] omits a factor of two from the right-hand side of the equation
which we recover here.

Theorem 1. Let G = (setupH, refreshH, nextH) be a PRNG with input with asso-
ciated parameter set (p, p, α, βmax), built from a hash function H which we model
as a random oracle. Suppose that each invocation of refreshH and nextH makes
at most qref and qnxt queries to H respectively. Let MH : S ∪ {ε} → S be a
masking function for which each invocation of MH makes at most qM H queries.
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Then for any (qH, qR, qD, qC , qS)-adversary A and (q+D, γ∗)-legitimate sampler D
in game Robβ against G, there exists a (qH + qD · qref + qR · qnxt)-adversary A1

and (qH + qD · qref + qR · (qnxt + qM), qC)-adversaries A2,A3, such that

Advrob
G,γ∗,β(A,D) ≤ 2 · Advinit

G,M,γ∗,qD (A1,D)
+ 2qR · Advpres

G,M,β(A2) + 2qR · Advrec
G,M,γ∗,qD,β(A3,D).

Tightness. Unfortunately due to a hybrid argument taken over the qR RoR
queries made by A, Theorem 1 is not tight. This is exacerbated in the ROM,
since the attacker in each of qR hybrid reductions must make enough H queries to
simulate the whole of game Rob for A. This hybrid argument accounts for the qR

coefficients in the bound and in the attacker query budgets. This seems inherent
to the proof technique and is present in the analogous results of [13,17,34].
Developing a technique to obtain tighter bounds is an important open question.

InitA,D
G,M,γ∗,qD

H $ H ; b $ {0, 1} ;N
σ0 ε ;X $ Seed
For k = 1, . . . , qD + 1

(σk, Ik, γk, zk) $ D(σk−1)
If (b = 0) then S∗

0 setupH(X, I1, N)
Else S∗

0 $ MH(ε)
b∗ $ AH(X, S∗

0 , (Ii)
qD+1
i=2 , (γi, zi)

qD+1
i=1 , N)

Return (b = b∗)

PresA
G,M,β

H $ H ; b $ {0, 1}
X $ Seed
(S′

0, I1, . . . , Id, addin) $ AH(X)
If S′

0 /∈ S ∪ {ε} return ⊥
S0 $ MH(S′

0)
For i = 1, . . . , d

Si refreshH(X, Ii, Si−1)
If (b = 0) then (R∗, S∗) nextH(X, Sd, β, addin)
Else R∗ {0, 1}β ;S∗ MH(Sd)
b∗ $ AH(X, R∗, S∗)
Return (b = b∗)

RecA,D
G,M,γ∗,qD,β

H $ H ; b $ {0, 1}
σ ε ;X $ Seed ;μ 1
For k = 1, . . . , qD + 1

(σk, Ik, γk, zk) $ D(σk−1)
(S0, d, addin) $ AH,Sam(X, (γk, zk))

qD+1
i=1 )

If S0 /∈ S return ⊥
If μ + d > (qD + 1) or

∑μ+d
i=μ+1 γi < γ∗

Return ⊥
For i = 1, . . . , d

Si refreshH(X, Iμ+i, Si−1)
If (b = 0) then (R∗, S∗) $ nextH(X, Sd, β, addin)
Else R∗ {0, 1}β ;S∗ $ MH(Sd)
b∗ $ A(X, R∗, S∗, (Ik)k>μ+d)
Return (b = b∗)

Sam()
μ = μ + 1
Return Iμ

proc. H(X)
Return H(X)

Fig. 3. Security games Init, Pres and Rec for a PRNG G = (setup, refresh, next) and
M : S ∪ {ε} → S.

5 Analysis of HASH-DRBG

We now present our analysis of the robustness of HASH-DRBG, in which the
underlying hash function H : {0, 1}≤ω → {0, 1}� is modelled as a random
oracle. Our proof is with respect to the masking function MH shown in Fig. 4.
To avoid further complicating security bounds we assume that HASH-DRBG is
never called with additional input; we expect extending the proof to include
additional input to be straightforward.
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MH(S)
If S = ε

V ′ $ {0, 1}L

C′ HASH-DRBG dfH(0x00||V, L)
cnt′ 1

Else (V, C, cnt) S

H $ {0, 1}�

V ′ (V + C + cnt + H) mod 2L

C′ C ; cnt′ cnt + 1
S′ (V ′, C′, cnt′)
Return S′

Fig. 4. Masking function for proof
of Theorem 2

Challenges. Certain features of HASH-DRBG
significantly complicate the proof, and neces-
sitated adaptations in our security model-
ing (Sect. 4). Notice that the distributions of
states returned by setupH and refreshH are
quite different from the distribution of states
S′ where (R,S′) ← nextH(S, β). To model this
in games Init,Pres and Rec, we extended the
domain of M to include the empty string ε
to indicate that an idealized state of the first
form should be returned (for example, when
modeling initial state generation in Init), and
extended Pres to allow A to output ε at the
start of the challenge (which is required for the proof of Theorem1, see the full
version). Juggling these different state distributions complicates analysis, and
introduces multiple cases into the proof of Pres security. Care is also required
when analyzing the distribution of S′ = MH(S) for S ∈ S, which idealizes the
distribution of the state S′ = (V ′, C ′, cnt′) as updated following an output gen-
eration request. It is straightforward to verify that V ′ is distributed uniformly
over the range [V + C + cnt, V + C + cnt + (2� − 1)] where S = (V,C, cnt) and
L > � + 1. To accommodate this dependency between the updated state S′ and
the previous state S, we have modifed games Pres and Rec so that it is S which
is masked instead of S′. More minor issues, such as: (1) not properly separating
the domain of queries made by setupH to produce the counter V from those made
to produce the constant C; and (2) the way in which L is not a multiple of �
for the approved hash functions; make certain steps in the analysis more fiddly
than they might have been. We discuss these issues further in the full version.

Parameter settings. We provide a general treatment into which any parameter
setting may be slotted, subject to two restrictions which are utilized in the proof.
Namely, we assume that L > � + 1 and n < 2L, where n = �β/� is the number
of output blocks produced by nextH to satisfy a request for β-bits (without this
latter restriction HASH-DRBG is trivially insecure, as the same counter would be
hashed twice during output production). We additionally require that L < 232

and m < 28 where |V | = |C| = L and m = �L/� is the number of blocks hashed
by setupH/refreshH to produce a new counter. This is because these values have
to be encoded as a 32-bit and an 8-bit string, respectively, by HASH-DRBG df.
All approved hash functions fall well within these parameters. (Indeed, for all of
these, L > 2�, n < 3277 � 2L, and m ≤ 3.)

Robustness. With this in place, we present the following theorem bounding
the Rob security of HASH-DRBG. The proof follows from a number of lemmas
presented below, combined with Theorem 1. (When applying Theorem1, it is
readily verified that for HASH-DRBG qnxt = n+1, qref = 2m, and qM = m.) The
proofs of all lemmas are given in the full version.
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Theorem 2. Let G be HASH-DRBG with parameters (p, p, α, βmax), built from
a hash function H : {0, 1}≤ω → {0, 1}� which we model as a random ora-
cle. Let L denote the state length of HASH-DRBG where L > � + 1, n =
�β/�, and m = �L/�. Let MH denote the masking function shown in Fig. 4,
and suppose that HASH-DRBG is never called with additional input. Then for
any (qH, qR, qD, qC , qS)-attacker A in game Robβ against G, and any (q+D, γ∗)-
legitimate sampler D, it holds that

Advrob
G,M,γ∗,β(A,D) ≤ qR · qH + 2q′

H

2γ∗−2
+

qR · qH · (2n + 1)
2�−2

+
qR · ((qC − 1)(2qH + qC) + q2H) + 2

2L−2
.

Moreover, q′
H = (qH + 2m · qD + (n + 1) · qR) and qH = q′

H + m · qR.

Init security. We first argue that the states returned by setupH are indistin-
guishable from MH(ε). The qH · 2−γ∗

term follows since the initial state variable
V0 will be indistinguishable from random unless the attacker queries H on one of
the points which was hashed to produce it. This in turn requires A to guess the
value of the entropy sample I1, which contains γ∗-bits of entropy. The additional
2−L term arises since the queries made to compute the counter V0 are not fully
domain separated from those made to compute the constant C0. Indeed, if it so
happens that I1||N = 0x00||V0 where I1 and N denote the entropy input and
nonce (an event which—while very unlikely—is not precluded by the parame-
ter constraints in the standard), then the derived values of V0 and C0 will be
equal, allowing the attacker to distinguish with high probability. A small tweak
to the design of setup (e.g., prepending 0x01 to I||N before hashing) would have
avoided this. For implementations of HASH-DRBG for which such a collision is
impossible (e.g., due to length restrictions on the input I) this additional term
can be removed.

Lemma 1. Let G = HASH-DRBG and masking function MH be as specified
in Theorem2. Then for any qH-adversary A in game Init against G, and any
(q+D, γ∗)-legitimate sampler D, it holds that

Advinit
G,M,γ∗,qD(A,D) ≤ qH · 2−γ∗

+ 2−L.

Pres security. At the start of game Pres, the (qH, qC)-attacker A outputs
(S′

0, I1, . . . , Id) where d ≤ qC . The game sets (V0, C0, cnt0) ←$ MH(S′
0), and itera-

tively computes Sd via Si = refreshH(Si−1, Ii) for i ∈ [1, d]. The proof first argues
that unless A queries H on the counter V0, or any of the counters V1, . . . , Vd−1

passed through during reseeding, then (barring certain accidental collisions)
Sd = (Vd, Cd, cntd) is indistinguishable from a masked state. The proof then
shows that, unless the attacker can guess Vd, the resulting output/state pair is
indistinguishable from its idealized counterpart. We must consider a number of
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cases depending on whether the tuple (S′
0, I1, . . . , Id) output by A is such that:

(1) S′
0 ∈ S or S′

0 = ε; and (2) d ≥ 1 or d = 0; since these induce different
distributions on S0 and Sd respectively.

Lemma 2. Let G = HASH-DRBG and masking function MH be as specified in
Theorem2. Then for any (qH, qC)-adversary A in game Pres against G, it holds
that

Advpres
G,M,β(A) ≤ qH · (n + 1)

2�−1
+

(qC − 1)(2qH + qC)
2L

.

Rec security. The first stage in the proof of Rec security argues that itera-
tively reseeding an adversarially chosen state S0 with d entropy samples which
collectively have entropy γ∗ yields a state Sd = (Vd, Cd, cntd) which is indistin-
guishable from MH(ε). This represents the main technical challenge in the proof,
and uses Patarin’s H-coefficient technique (see full version). Our proof is closely
based on the analogous result for sponge-based PRNGs in the ideal permutation
model (IPM) of Gazi and Tessaro [17], essentially making the same step-by-step
argument. However, making the necessary adaptations to analyze HASH-DRBG
is still non-trivial. As well as working in the ROM as opposed to the IPM, we
must adapt the proof to handle the state component C and the more involved
reseeding process, which concatenates the responses to multiple H queries to
derive updated counters. With this in place, an analogous argument to that
made for Pres security implies that an output/state pair produced by applying
nextH to this masked state is indistinguishable from its idealized counterpart.

Lemma 3. Let G = HASH-DRBG and masking function MH be as specified in
Theorem2. Then for any (qH, qC)-adversary A in game Rec against G, and any
(q+D, γ∗)-legitimate sampler D, it holds that

Advrec
G,M,γ∗,qD,β(A,D) ≤ qH

2γ∗−1
+

qH · n

2(�−1)
+

(qC − 1) · (2qH + qC) + 2q2H
2L

.

Using Theorem 1 to combine Lemmas 1, 2 and 3—which bound the Init,Pres and
Rec security of HASH-DRBG respectively—proves Theorem 2, and completes our
analysis of the robustness of HASH-DRBG in the ROM.

6 Analysis of HMAC-DRBG

In this section, we present our analysis of HMAC-DRBG. We give both positive
and negative results, showing that the security guarantees of HMAC-DRBG differ
depending on whether additional input is provided in next calls.

6.1 Negative Result: HMAC-DRBG Called Without Additional
Input Is Not Forward Secure

We present an attack which breaks the forward security of HMAC-DRBG if
called without additional input. This contradicts the claim in the standard that
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HMAC-DRBG is backtracking resistant. Since Rob security implies Fwd security,
this rules out a proof of robustness in this case also.

The attack. Consider the application of update at the conclusion of a next call
for HMAC-DRBG (Fig. 1). Notice that if addin = ε, then the final two lines of
update are not executed. In this case, the updated state S∗ = (K∗, V ∗, cnt∗) is
of the form V ∗ = HMAC(K∗, r∗) where r∗ is the final output block produced in
the call. An attacker A in game Fwd who makes a RoR query with addin = ε to
request �-bits of output, followed immediately by a Get query to learn S∗, can
easily test this relation. If it does not hold, they know the challenge output is
truly random. We note that the observation that V ∗ depends on r∗ is also implicit
in the proof of pseudorandomness by Hirose [19]; however, the connection to
forward security is not made in that work. To concretely bound A’s advantage we
define game Fwd$, which is identical to game Fwd against HMAC-DRBG except
the PRNG is initialized with an ‘ideally distributed’ state S0 = (K0, V0, cnt0)
where K0, V0 ←$ {0, 1}� and cnt0 ← 1. The attacker’s job can only be harder in
Fwd$, since they cannot exploit any flaws in the setup procedure.

Theorem 3. Let G be HMAC-DRBG built from the function HMAC : {0, 1}� ×
{0, 1}≤ω → {0, 1}�, with parameters (p, p, α, βmax) such that βmax ≥ �. Then
there exist efficient adversaries A,B, such that for any sampler D, it holds that

Advfwd-$
G,γ∗ (A,D) ≥ 1 − 2 · AdvprfHMAC(B, 2) − 2−(�−1).

A makes one RoR query in which additional input is not included, and one Get
query. B runs in the same time as A, and makes two queries to their real-or-
random function oracle.

Discussion. The first negative term on the right-hand side of the above equation
is the advantage of an attacker B who tries to break the PRF-security of HMAC
given two queries to its real-or-random function oracle; since HMAC is widely
understood to be a secure PRF, we expect this term to be small. Similarly,
� denotes the output length of HMAC and so the second negative term will
be small for all commonly used hash functions. This implies that A succeeds
with probability close to one, making this an effective attack. For simplicity, the
theorem assumes that outputs of length � bits may be requested (i.e., βmax ≥ �);
in the full version, we discuss how to relax this restriction.

6.2 Positive Result: Robustness of HMAC-DRBG Called with
Additional Input in the ROM

In this section, we prove that HMAC-DRBG is robust in the ROM when additional
input is always used, with respect to a restricted (but realistic) class of samplers.
We model the function HMAC : {0, 1}� ×{0, 1}≤ω → {0, 1}� as a keyed random
oracle, whereby each fresh query of the form (K,X) ∈ {0, 1}� × {0, 1}≤ω is
answered with an independent random �-bit string.
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MHMAC(S)
If S = ε

cnt 0
Else (K, V, cnt) S

K′, V ′ $ {0, 1}�

cnt′ cnt + 1
S′ (K′, V ′, cnt′)
Return S′

Fig. 5. Masking function
for proof of Theorem 4.

Rationale. While a standard model proof of Pres
security is possible via a reduction to the PRF-security
of HMAC, how to achieve the same for Init and Rec is
unclear. These results require showing that HMAC is a
good randomness extractor. In games Init and Rec, the
HMAC key is chosen by or known to the attacker, and
so we cannot appeal to PRF-security. Entropy sam-
ples are non-uniform, so a dual-PRF assumption does
not suffice either. As such, some idealized assumption
on HMAC or the underlying hash/compression func-
tion seems to be inherently required. The extraction properties of HMAC (under
various idealized assumptions) were studied in [12]. However, these consider a
single-use version of extraction which is weaker than what is required here, and
typically require inputs containing much more entropy than is required by the
standard, and so are not generally applicable to real-world implementations of
HMAC-DRBG.

By modeling HMAC as a keyed RO, we can analyze HMAC-DRBG with respect
to the entropy levels of inputs specified in the standard (and at levels which
are practical for real-world applications). This is a fairly standard assumption,
having been made in other works in which HMAC is used with a known key or to
extract from lower entropy sources e.g., [23,24,32]. In [14], HMAC was proven to
be indifferentiable from a random oracle for all commonly deployed parameter
settings (although since robustness is a multi-stage game, the indifferentiability
result cannot be applied generically here [31]).

Discussion. A standard model proof of Rec security for HMAC-DRBG would
be a stronger and more satisfying result. While idealizing HMAC or the under-
lying hash/compression function seems inherent, a result under weaker idealized
assumptions is an important open problem. Despite this, we feel our analysis is a
significant forward step from existing works. Ours is the first analysis of the full
specification of HMAC-DRBG; prior works [19,21] omit reseeding and initializa-
tion, assuming HMAC-DRBG is initialized with a state for which K,V ←$ {0, 1}�,
which is far removed from HMAC-DRBG in a real system. Our work is also the
first to consider security properties stronger than pseudorandomness. We hope
our result is a valuable first step to progress the understanding of this widely
deployed (yet little analyzed) PRNG, and a useful starting point for further work
to extend.

Sampler. Our proof is with respect to the class of samplers {D}γ∗ , defined to be
the set of (q+D, γ∗)-legitimate samplers for which γi ≥ γ∗ for i ∈ [1, qD + 1] (i.e.,
each sample I contains γ∗-bits of entropy). This is a simplifying assumption,
making the proof of Rec security less complex. However, we stress that this is
the entropy level per sample required by the standard, and so this is precisely
the restriction imposed on allowed entropy sources. An H-coefficient analysis, as
in the proof of Lemma 3, seems likely to yield a fully general result.
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Proof of robustness. We now present the following theorem bounding the
robustness of HMAC-DRBG. The proof follows from the lemmas presented below,
combined with Theorem 1. (It is straightforward to verify that qref = 4, qnxt =
n + 8, and qM = 0). The proofs of all lemmas are given in the full version.

Theorem 4. Let G be HMAC-DRBG with parameters (p, p, α, βmax), built from
HMAC : {0, 1}� ×{0, 1}≤ω → {0, 1}� which we model as a keyed random oracle.
Let MHMAC be the masking function shown in Fig. 5 and n = �β/�. Then for any
(qH, qR, qD, qC , qS)-attacker A in game Robβ against HMAC-DRBG who always
outputs addin �= ε, and any (q+D, γ∗)-legitimate sampler D ∈ {D}γ∗ , it holds that

Advrob
G,M,γ∗,β(A) ≤ qR · (q̄H · ε1 + ε2) · 2−(2�−1)

+ q̄H · 2−(�−2) + qR · (q̄H · (n + 3) + ε3) · 2−(�−2)

+ (q̄H · (2qR + (1 + 2−2�)) · 2−(γ∗−1) + 2−(2�−1).

Here ε1 = 12qC + 10 + (4qC − 2) · 2−γ∗
, ε2 = (qC · (10qC + 4n + 18 + (qC − 1) ·

2−(γ∗−1)) + 6n + 16), ε3 = n(n + 1), and q̄H = (qH + 4 · qD + (n + 8) · qR).

Concrete example. For HMAC-SHA-512, � = 512 and the bound is dominated
by the O(q̄H · qR) · 2−(γ∗−1) term. Supposing qD ≤ qR (i.e., there are fewer Ref
than RoR calls) and n is small, then q̄H · qR ≤ qR · (qH + c · qR) for some small
constant c. Now if HMAC-DRBG is instantiated at strength γ∗ = 256, it achieves
a good security margin up to fairly large qH, qR. At lower γ∗ the margins are
less good; however, this is likely an artefact of the proof technique.

Init security. The proof of Init security argues that unless attacker A queries
HMAC on certain points which require guessing the value of either the input I1
with which HMAC-DRBG was seeded, or an intermediate key/counter computed
during setup, then—barring a collision in the inputs to the second and fourth
HMAC queries made by setup, contributing 2−2� to the bound—the resulting
state is identically distributed to MHMAC(ε).

Lemma 4. Let G = HMAC-DRBG and masking function MHMAC be as specified
in Theorem4. Then for any qH-adversary A in game Init against HMAC-DRBG,
and any (q+D, γ∗)-legitimate sampler D ∈ {D}γ∗ , it holds that

Advinit
G,M,γ∗,qD(A,D) ≤ qH · ((1 + 2−2�) · 2−γ∗

+ 2−(�−1)) + 2−2�.

Pres and Rec security. The proofs of Pres and Rec security proceed by bound-
ing: (1) the probability that two of the points queried to HMAC during the
challenge computation collide; and (2) the probability that A queries HMAC on
one of these points. We then argue that if neither of these events occur, then
the challenge output/state are identically distributed to their idealized coun-
terparts. However, this process is surprisingly delicate. Firstly, the domains of
queries are not fully separated, so multiple collisions must be dealt with. Sec-
ondly, the guessing/collision probabilities of points from the same domain differ
throughout the game. This rules out a modular treatment, and complicates the
bound. A small modification to separate queries would simplify analysis.
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Lemma 5. Let G = HMAC-DRBG and masking function MHMAC be as spec-
ified in Theorem4. Then for any (qH, qC)-adversary A in game Pres against
HMAC-DRBG who always outputs addin �= ε, it holds that

Advpres
G,M,β(A) ≤ (qH · (8qC + 6) + ε) · 2−2� + (qH · (n + 2) + n(n + 1)) · 2−�,

where ε = qC · (6qC + 2n + 8) + 3n + 8.

Lemma 6. Let G = HMAC-DRBG and masking function MHMAC be as spec-
ified in Theorem4. Then for any (qH, qC)-adversary A in game Rec against
HMAC-DRBG who always outputs addin �= ε, and any (q+D, γ∗)-legitimate sam-
pler D ∈ {D}γ∗ , it holds that

Advrec
G,M,γ∗,qD,β(A,D) ≤ (qH · (4qC + 4 + (4qC − 2) · 2−γ∗

) + ε′) · 2−2�

+ (qH · (n + 4) + n(n + 1)) · 2−� + qH · 2−(γ∗−1),

where ε′ = (qC · (4qC + 2n + 10 + (qC − 1) · 2−(γ∗−1)) + 3n + 8).

This completes our analysis of the Init, Pres, and Rec security of HMAC-DRBG.
Combining these results via Theorem1 then proves Theorem 4.

7 Overlooked Attack Vectors

While the positive results of Sects. 5 and 6 are reassuring, the flexibility in the
standard to produce variable length and large outputs (of up to 219 bits) means
that two implementations of the same DRBG may be very different depending
on how limits on output production are set. While this is reflected in the secu-
rity bounds of the previous sections (in terms of the parameter n denoting the
number of output blocks computed per request), we argue that the standard
security notion of robustness may overlook attack vectors against the (fairly
non-standard) NIST DRBGs. The points made in this section do not contradict
the results of the previous sections; rather we argue that in certain (realistic)
scenarios—namely when the DRBG is used to produce many output blocks per
next call—it is worth taking a closer look at which points during output gener-
ation a state may be compromised.

Iterative next algorithms. The next algorithm of each of the NIST DRBGs
has the same high-level structure (modulo slight variations which again frustrate
a modular treatment). First, any additional input provided in the call is incor-
porated into the state, and in the case of HASH-DRBG one of the state variables
is copied into an additional variable in preparation for output generation (i.e.,
setting data = V , see Fig. 1). Output blocks are produced by iteratively applying
a function to the state variables (or in the case of HASH-DRBG, the copy of the
state variable). These blocks are concatenated and truncated to β-bits to form
the returned output R, and a final state update is performed to produce S′.

Decomposition. We wish to track the evolution of the state variables dur-
ing a next call relative to the production of different output blocks, in order
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to reason precisely about the effects of state component compromises at dif-
ferent points. We say that a DRBG has an iterative next algorithm if next
may be decomposed into a tuple of subroutines C = (init, gen, final). Here
init : Seed×S×N

≤βmax×{0, 1}≤α → S×{0, 1}∗ updates the state with additional
input prior to output generation, and optionally sets a variable data ∈ {0, 1}∗.
Algorithm gen : Seed × S × {0, 1}∗ → {0, 1}� × S × {0, 1}∗ maps a state S
and optional string data to an output block r ∈ {0, 1}�, an updated state S′,
and string data′ ∈ {0, 1}∗. Finally final : Seed × S × N

≤βmax × {0, 1}≤α → S
updates the state post output generation. The next algorithm is constructed
from these component parts as shown in the top left panel of Fig. 6. The decom-
position algorithms C = (init, gen, final) for each of the NIST DRBGs are shown
in remaining panels of Fig. 6. For CTR-DRBG and HMAC-DRBG, data is not set
during output generation (e.g., data = ε, and so we omit it from the discussion
of these DRBGs. Similarly since none of the NIST DRBGs are specified to take
a seed, we omit this parameter.) A diagrammatic depiction of output generation
for each of the DRBGs is shown in the full version.

Variable length outputs. Within this iterative structure, the gen subroutine
acts like the next algorithm of an internal PRNG, called multiple times within
a single next call to produce output blocks. However, as we shall see, the state
updates performed by gen do not provide forward security after each block 5.
This may not seem unreasonable if the DRBG produces only a handful of blocks
per request; however since the standard allows for up to 219 bits of output to be
requested in each next call, there are situations in which the possibility of a par-
tial state compromise occurring during output generation is worth considering.

Attack scenario: side channels. We consider an attacker who learns some
information about the state variables being processed during output generation,
but who is not able to perform a full memory compromise by which they would
learn e.g., the output blocks r1, . . . , rn buffered in the internal memory, thereby
compromising all output in the call. The natural scenario we consider here is
a side channel attack. Generating multiple output blocks in a single next call
results in a significant amount of computation going on ‘under the hood’ of
next—e.g., up to 212 = 4096 AES-128 computations using a fixed key K0 for
CTR-DRBG with AES-128—which, given that AES invites leaky implementations
[4,7,22,25,27,28], is concerning. Since robustness only allows the attacker to
compromise the state after it has ‘properly’ updated (via the final process) at
the conclusion of a next call, it does not model side channel during the call.

Use case: buffering output. As pointed out by Bernstein [5], the overhead
incurred by the state update at the conclusion of a CTR-DRBG next call is
undesirable. As such, an appealing usage choice is to generate a large output

5 This is similar to an observation by Bernstein [5] criticizing the inefficiency of
CTR-DRBG’s update function which appeared concurrently to the production of the
first draft of this work. We stress that our modelling of the attack scenario, and
systematic treatment of how the issue affects each of the NIST DRBGs, is novel.
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next(X, S, β, addin)
If cnt > reseed interval

Return reseed required
(S0, data0) init(X, S, β, addin)

If addin ε then addin 0n

tempR ε ;n β/��
For i = 1, . . . , n

(ri, Si, datai) gen(X, Si−1, datai−1)
tempR tempR ‖ ri

R left(tempR, β)
S′ final(X, Sn, β, addin)
Return (R, S′)

HASH-DRBG init
Require: S = (V, C, cnt), β, addin

Ensure: S = (V, C, cnt), data

If addin �= ε

w H(0x02 ‖ V ‖ addin)
V (V + w) mod 2L

data V

Return (V, C, cnt), data

HASH-DRBG gen
Require S = (V, C, cnt), data

Ensure: r, S = (V, C, cnt), data

r H(data)
data (data + 1) mod 2L

Return r, (V, C, cnt), data

HASH-DRBG final
Require: S = (V, C, cnt), β, addin

Ensure: S = (V, C, cnt)
H H(0x03 ‖ V )
V (V + H + C + cnt) mod 2L

cnt cnt + 1
Return (V, C, cnt)

HMAC-DRBG init
Require : S = (K, V, cnt), β, addin

Ensure: S = (K, V, cnt)
If addin �= ε

(K, V ) update(addin, K, V )
Return (K, V, cnt)

HMAC-DRBG gen
Require (K, V, cnt)
Ensure r, S = (K, V, cnt)
V HMAC(K, V ) ; r V

Return r, (K, V, cnt)

HMAC-DRBG final
Require : S = (K, V, cnt), β, addin

Ensure: S = (K, V, cnt)
(K, V ) update(addin, K, V )
cnt cnt + 1
Return (K, V, cnt)

CTR-DRBG init
Require: S = (K, V, cnt), β, addin

Ensure: S = (K, V, cnt)
If addin �= ε

If derivation function used then
addin CTR-DRBG df(addin, (κ + �))

Else if len(addin) < (κ + �) then
addin addin ‖ 0(κ+�−len(addin))

(K, V ) update(addin, K, V )
Return (K, V, cnt)

CTR-DRBG gen
Require: S = (K, V, cnt)
Ensure: r, S = (K, V, cnt)
V (V + 1) mod 2� ; r E(K, V )
Return r, (K, V, cnt)

CTR-DRBG final
Require: S = (K, V, cnt), β, addin

Ensure: S = (K, V, cnt)
(K, V ) update(addin, K, V )
cnt cnt + 1
Return (K, V, cnt)

Fig. 6. Top left: iterative next algorithm for a DRBG with associated decomposition
C = (init, gen, final). Boxed text included for CTR-DRBG only. Right and bottom left:
C = (init, gen, final) for HASH-DRBG, HMAC-DRBG and CTR-DRBG.

upfront in a single request, and buffer it to later be used for different purposes6.
Our attack model investigates the soundness of this approach for scenarios in
which partial state compromise during output generation via a side channel—
which can only be exacerbated by such usage—is a realistic concern. Portions of
the buffered output may be used for public values such as nonces, whereas other
portions of the output from the same call may be used for e.g., secret keys. As
such, our model assumes an attacker learns an output block sent in the clear as

6 Indeed, NIST SP 800-90A says: “For large generate requests, CTR-DRBG produces
outputs at the same speed as the underlying block cipher algorithm encrypts data”,
highlighting the efficiency of this approach.
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e.g., a nonce, in conjunction with the partial state information gleaned via a side
channel. The attacker’s goal is to recover unseen output blocks used as security
critical secrets, thereby breaking the security of the consuming application.

7.1 Attack Model

We now describe our attack model. We found that a more formal and/or code-
based model using abstract leakage functions (in line with the literature on
leakage-resilient cryptography e.g., [1,15,26]) introduced significant complexity,
without clarifying the presentation of the attacks or providing further insight.
We therefore opted for a more informal written definition of the attack model
which is nonetheless sufficiently precise to capture e.g., exactly what the attacker
may learn, what he is challenged to guess, and so on. We aim to demonstrate
key attacks rather than providing an exhaustive treatment.

Attack setup and goals. Consider the next call shown in Fig. 6. Letting S
denote the state input to next, then this defines a sequence of intermediate
states/output blocks passed through during the course of the request:

(S, (S0, data0), r1, (S1, data1), . . . , rn, (Sn, datan), S′),

with the algorithm finally returning (R,S′) = (r1 ‖ . . . ‖ rm, S′). (For simplicity,
we assume the requested number of bits is a multiple of the block length; it is
straightforward to remove this assumption.) We consider an attacker A who is
able to compromise a given component of an arbitrary intermediate state Si (or
in the case of HASH-DRBG, the additional state information datai) for i ∈ [0, n],
in addition to an arbitrary output block rj for j ∈ [1, n] produced in the same
call. We assume the indices (i, j)7 are known to A. We then assess the attacker’s
ability to achieve each of the following ‘goals’:

– (1) Recover unseen output blocks produced prior to the compromised block
within the call {rk}k<j ;

– (2) Recover unseen output blocks produced following the compromised block
within the call {rk}k>j ; and

– (3) Recover the state S′ as updated at the conclusion of the call. This allows
the attacker to run the generator forwards and recover future output.

Extensions. If addin = ε, then init returns the state unchanged, S0 = S. As
such, all attacks which succeed when S0 is partially compromised in our model
can also be executed if the relevant component of state S is compromised prior
to the next call, creating a greater window of opportunity for the attacker.
7 Here we assume the attacker learns a full block and knows its index. This seems

reasonable; for example, a TLS client or server random will contain at least one
whole block and 12 bytes of a second block (if 4 bytes of timestamp are used). These
values would be generated early in a call to the DRBG, and so have a low index j.
Both assumptions can be relaxed at the cost of the attacker performing more work
to brute-force any missing bits and/or the index.
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(1) Past output (2) Future output (3) Updated Additional

within call within call state S′ input

CTR-DRBG // compromised K � � � �∗

HMAC-DRBG // compromised K × � � ×
HASH-DRBG // compromised V � � ×∗∗ ×

(a) Table summarizing our analysis. The leftmost three columns correspond to Sections 7.2–7.4.
The rightmost column corresponds to Section 7.5. A � indicates that we demonstrate an attack. A
× indicates that we believe the DRBG is not vulnerable to such an attack, with justification given.
∗ corresponds to an attack if CTR-DRBG is implemented without a derivation function. ∗∗ indicates
an exception in the case that cnt = 1 at the point of compromise.

CTR-DRBG//A(Ki, rj , i, j)

V j E−1(Ki, rj)
V 0 (V j − j) mod 2�

For k = 1, . . . , n

V k (V k−1 + 1) mod 2�

rk E(Ki, V k)
(K′, V ′) update(addin, Ki, V n)
cnt′ cnt + 1
S′ (K′, V ′, cnt′)
Return ({rk}k<j , {rk}k>j , S′)

HMAC-DRBG//A(Ki, rj , i, j)

V j rj

For k = j + 1, . . . , n

V k HMAC(Ki, V k−1)
rk V k

(K′, V ′) update(addin, Ki, V n)
cnt′ cnt + 1
S′ (K′, V ′, cnt′)
Return (⊥, {rk}k>j , S′)

HASH-DRBG//A(datai, rj , i, j)

data0 (datai − i) mod 2L

For k = 1, . . . , n

rk H(datak−1)
datak (datak−1 + 1)

Return ({rk}k<j , {rk}k>j , ⊥)

(b) Adversaries for Section 7.2-7.4.

Fig. 7. Summary of analysis (top) and adversaries (bottom) for Sect. 7.

Security analysis. We analyzed each of the NIST DRBGs with respect to
our attack model, and found that each DRBG exhibited vulnerabilities, with
CTR-DRBG faring especially badly. We summarize our findings in Fig. 7a.

7.2 CTR-DRBG with Compromised Key

Since each output block encrypts the secret counter V , leakage of the key compo-
nent of the CTR-DRBG state is especially damaging. Consider attacker A shown
in the left-hand panel of Fig. 7b. We claim that for all i ∈ [0, n] and j ∈ [1, n], if
additional input is not used (addin = ε) then A achieves goals (1), (2) (recovery
of all unseen output blocks produced in the next call) and (3) (recovery of the
next state S′) with probability one. If additional input is used (addin �= ε) then
the same statement holds for (1), (2), and the attacker’s ability to satisfy (3) is
equal to his ability to guess addin. To see this, notice that each block of output
produced in the next call is computed as rk = E(K0, V 0 + k) for k ∈ [1, n],
where K0, V 0 denote the key and counter as returned by init at the start of out-
put generation. The key does not update through this process, and so whatever
intermediate key Ki attacker A compromises, this is the key used for output
generation. It is then trivial for A to decrypt the output block rj received in his
challenge to recover the secret counter, thereby possessing all security critical
state variables. However if addin �= ε, A must guess its value to compute S′.

Discussion. This attack is especially damaging, since target output blocks used
as e.g., secret keys will be recovered irrespective of their position relative to
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the block learnt by the attacker, increasing the exploitability of the compro-
mised CTR-DRBG. In comparison, the infamously backdoored DualEC-DRBG
only allowed recovery of output produced after the compromised block, impact-
ing its practical exploitability [10] (although, of course, the embedded backdoor
in DualEC means the attack itself is far easier to execute).

7.3 HMAC-DRBG with Compromised Key

Consider the attacker A shown in the middle panel of Fig. 7b, who compromises
the key component Ki of an intermediate state of HMAC-DRBG. We claim that
for all i ∈ [0, n] and j ∈ [1, n], if addin = ε then A achieves goals (2) and (3)
with probability one. If addin �= ε then the same statement holds for (2), and the
attacker’s ability to satisfy (3) is equal to his ability to guess addin. To see this,
let K0, V 0 denote the state variables at the beginning of output generation.
Output blocks are iteratively produced by computing rk = HMAC(K0, V k−1)
for k ∈ [1, n], and setting rk = V k. Since the key does not update during this
process, the key Ki compromised by the attacker will be equal to the key K0

used for output generation. Since the output block rj which A receives in his
challenge is equal to the secret counter V j , A now knows all security critical
state variables of intermediate state Sj . A can then run HMAC-DRBG forward
to recover all output produced following the compromised block in the call, and
the updated state S′ (subject to guessing addin).

Past output in a compromised next call. It appears that even if an attacker
learns the entirety of an intermediate state Si for i ∈ [0, n] in addition to an
output block rj for j ∈ [1, n], then it is still infeasible to achieve goal (1) and
recover the set of output blocks {rk}k<j produced prior to the compromised
block within the call. To see this, let V 0 denote the value of the counter at the
start of output generation. For each j ∈ [1, n], output block rj takes the form:

rj = V j = HMACj(K0, V 0),

where HMACi(K, ·) denotes the ith iterate of HMAC(K, ·). As such, recovering
prior blocks rk for k < j given K0 and V j corresponds to finding preimages of
HMAC(K0, ·). Since the key is known to the attacker, we clearly cannot argue
that this is difficult based on the PRF-security of HMAC. However, modeling
HMAC as a random oracle (Sect. 6), it follows that inverting HMAC for sufficiently
high entropy V 0 is infeasible. Formalizing this intuition under a standard model
assumption remains an interesting open question.

7.4 HASH-DRBG with Compromised Counter

For HASH-DRBG, it is straightforward to see that if A learns the counter V i or
its iterating copy datai for any i ∈ [0, n], j ∈ [1, n], then A achieves goals (1)
and (2) with probability one. Knowledge of the counter is sufficient to execute
the attack; no output block is needed. The case in which datai is compromised
is shown in the rightmost panel of Fig. 7b. However, unlike CTR-DRBG and
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HMAC-DRBG, without also learning the constant C, achieving goal (3) does not
seem to be possible in general; we discuss this further in the full version.

7.5 Security of Additional Input

We present an additional attack against CTR-DRBG implemented without a
derivation function; an appealing implementation choice in terms of efficiency
due to the overhead incurred by CTR-DRBG df. Under certain conditions, this
allows an attacker who compromises the DRBG state to recover strings of addi-
tional input (which may contain secrets) fed to the DRBG during next calls.

The attack. Notice that if CTR-DRBG is implemented without a derivation
function, then raw strings of additional input are XORed directly into the
CTR-DRBG state during the application of the update function in next calls
(Fig. 1, lines 8 and 15). Consider such an implementation of CTR-DRBG built
from AES-128. We describe the attack with respect to the ‘ideal’ conditions.
Suppose that attacker A has compromised the internal state S = (K,V, cnt)8,
and that the state compromise is followed by a next call in which additional
input addin is used. Moreover, suppose addin has the form addin = X1 ‖X2

where X1 ∈ {0, 1}128 is known to the attacker and X2 ∈ {0, 1}128 consists of 128
unknown bits. We assume X2 includes a secret value such as a password which
will be the target of the attack.

At the start of the next call, the state components K,V are updated with
addin via (K0, V 0) ← update(addin,K, V ). It is straightforward to verify that

K0 ‖V 0 = K∗ ‖V ∗ ⊕ addin = (K∗ ⊕ X1) ‖ (V ∗ ⊕ X2),

where K∗ ‖V ∗ = E(K,V + 1) ‖E(K,V + 2). Since A has compromised (K,V ),
they can compute (K∗, V ∗). Moreover, since X1 is known to A, it follows that
the updated key K0 = (K∗ ⊕ X1) is known to A also. During output genera-
tion, output blocks are produced by encrypting the iterating counter under K0.
Therefore, the kth block of output is of the form:

rk = E(K0, V 0 + k) = E(K0, (V∗ ⊕ X2) + k),

where the variables in bold are known to A. As such, each block of output
produced is effectively an encryption of the target secret X2 under a known key.
Given a single block of output rk, A can instantly recover the target secret X2—
consisting of 128-bits of unknown and secret data—as X2 = (E−1(K0, rk)−k)⊕
V ∗. Moreover, it is straightforward to verify that A has sufficient information to
compute the state as updated following the next call. As such, A can continue
to execute the same attack against subsequent output generation requests for as
long as the key component of the state evolves predictably.

Extensions. In the full version we describe how to generalize the attack, and
discuss how use of the derivation function prevents it.
8 Here we mean the working state of the PRNG, as opposed to the ‘intermediate’

states considered in the previous section.
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8 Open Source Implementation Analysis

In Sect. 7, we showed that certain implementation decisions—permitted by the
overly flexible standard—may influence the security guarantees of the NIST
DRBGs. To determine if these decisions are taken by implementers in the
real world, we investigated two open source implementations of CTR-DRBG,
in OpenSSL [30] and mbed TLS [8]. We found that between the two libraries
these problematic decisions have indeed been made.

Large output requests. Generating many blocks of output in a single request
increases the likelihood and impact of our attacks. In OpenSSL, the next call
of CTR-DRBG is implemented in the function drbg ctr generate in the file
drbg ctr.c. Interestingly—and contrary to the standard—this function does not
impose any limit on the number of random bits which may be requested. As such,
an arbitrarily large output may be generated using a single key, exacerbating
the attacks of Sect. 7.2. More generally, exceeding the output generation limit
increases the success probability of the well-known distinguishing attack against
a block cipher in CTR-mode, which uses colliding blocks to determine if an
output is truly random. The implementation of CTR-DRBG in mbed TLS limits
the number of output blocks per next call to 64 blocks of 128-bits; much better
for security in the context of our attacks than the 4,096 blocks allowed by the
standard. Also, this implementation forces a reseed after 10,000 calls to next;
much lower than the allowed maximum of 248.

Derivation function. In Sect. 7.5, we described a potential vulnerability in
implementations of CTR-DRBG which do not use a derivation function. We found
that the OpenSSL implementation of CTR-DRBG allows the generator to be
called simultaneously without the derivation function and with additional input.
Specifically, by setting the flags field of the RAND DRBG FLAG CTR NO DF structure
to RAND DRBG FLAG CTR the caller may suppress calls to the derivation function,
presumably for performance purposes. As such, the attack described in Sect. 7.5
may be possible in real world implementations.

Summary. Despite the high level and theoretical nature of our analysis, we
found that the problematic implementation decisions which we highlight are
made in the real world. While none of these decisions leads to an immediate vul-
nerability, both the implementation and usage of the functions may exacerbate
other problems such as side channel or state compromise attacks. We hope that
highlighting these issues will help implementers make informed decisions about
how best to use these algorithms in the context of their implementation.

9 Conclusion

We conducted an in-depth analysis of NIST SP 800-90A, to investigate unproven
security claims and explore flexibilities in the standard. On the positive side, we
formally verify a number of the claimed—and yet, until now unproven—security
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properties in the standard. However, we argue that taking certain implementa-
tion choices permitted by the overly flexible standard may lead to vulnerabilities.

Design and prove. Certain design features of the NIST DRBGs complicate
their analysis, and a small tweak in design would facilitate a far simpler proof.
This emphasizes the importance of developing cryptographic algorithms along-
side security proofs, and—more importantly—not standardizing algorithms with
unproven security properties.

Flexibility. In Sect. 6, we saw how the option to call HMAC-DRBG without
additional input changed the algorithm in a subtle way which lead to an attack.
Similarly, the attacks of Sect. 7 are both facilitated, and exacerbated, by certain
implementation choices allowed by the overly flexible standard. In Sect. 8, we
confirmed that implementers do make these choices in the real world. These
may be a warning to standard writers to avoid unnecessary flexibility which
may lead to unintended vulnerabilities.

Recommendations. Because these vulnerabilities stem from implementation
choices, we can offer recommendations to make the use of these algorithms more
secure. First off, if the algorithms are being run in a setting where side channel
attacks are a concern then CTR-DRBG should not be used. Additional input
should be (safely) incorporated during output generation wherever possible and
the DRBG should be reseeded with fresh entropy as often as is practical. While
the standard allows outputs of sizeable length to be requested, users should
not ‘batch up’ calls by making a single call for all randomness required for an
application. Finally, the CTR-DRBG derivation function should always be used.

Future work. Analyzing the robustness of CTR-DRBG is an important direc-
tion for further work. More generally, the design flexibilities we critique above
are related to efficiency savings. Designing PRNGs that achieve an optimal bal-
ance between security and efficiency is a key direction for future work. The
gap between the specification of these DRBGs, which allows for various optional
inputs and implementation choices, and the far simpler manner in which PRNGs
are typically modeled in the literature could indicate that theoretical models are
not adequately capturing real world PRNGs. Extending these models may help
understand the limits and possibilities of what can be achieved.

Acknowledgements. The authors thank Kenny Paterson and the anonymous review-
ers for their insightful comments which greatly improved the paper. The first author is
supported by the EPSRC and the UK government as part of the Centre for Doctoral
Training in Cyber Security at Royal Holloway, University of London (EP/K035584/1);
much of this work was completed during an internship at Microsoft Research.



An Analysis of NIST SP 800-90A 179

References
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Abstract. We initiate the study of structured encryption schemes with
computationally-secure leakage. Specifically, we focus on the design of
volume-hiding encrypted multi-maps; that is, of encrypted multi-maps
that hide the response length to computationally-bounded adversaries.
We describe the first volume-hiding STE schemes that do not rely on
näıve padding; that is, padding all tuples to the same length. Our first
construction has efficient query complexity and storage but can be lossy.
We show, however, that the information loss can be bounded with over-
whelming probability for a large class of multi-maps (i.e., with lengths
distributed according to a Zipf distribution). Our second construction is
not lossy and can achieve storage overhead that is asymptotically better
than näıve padding for Zipf-distributed multi-maps. We also show how to
further improve the storage when the multi-map is highly concentrated
in the sense that it has a large number of tuples with a large inter-
section. We achieve these results by leveraging computational assump-
tions; not just for encryption but, more interestingly, to hide the volumes
themselves. Our first construction achieves this using a pseudo-random
function whereas our second construction achieves this by relying on the
conjectured hardness of the planted densest subgraph problem which
is a planted variant of the well-studied densest subgraph problem. This
assumption was previously used to design public-key encryptions schemes
(Applebaum et al., STOC ’10 ) and to study the computational complex-
ity of financial products (Arora et al., ICS ’10 ).

1 Introduction

A structured encryption (STE) scheme encrypts a data structure in such a
way that it can be privately queried. An STE scheme is secure if it reveals
nothing about the structure and query beyond a well-specified and “reason-
able” leakage profile [12,15]. An important special case of STE is searchable
symmetric encryption (SSE) which relies on encrypted multi-maps [4,5,7,8,10–
12,15,16,18,28,29,36] to achieve optimal-time search. Another example is graph
encryption which encrypts various kinds of graphs [12,33]. STE has received a
lot of attention due to its potential applications to cloud storage and database
security. In recent years, much of the work on STE has focused on supporting
more complex queries like Boolean [11,21,25,37] and range queries [20,21,37,38],
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11477, pp. 183–213, 2019.
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more complex structures like relational databases [26] and on improving security,
for example achieving forward-privacy [1,7,8,19,40].

Leakage. One aspect of STE that is still poorly understood is its leakage. There
are currently two approaches to dealing with leakage. The first is cryptanaly-
sis; that is, designing leakage attacks against various leakage profiles so that
we can better understand their concrete security. This was initiated by Islam,
Kuzu and Kantarcioglu in the context of SSE [24] and expanded to PPE by
Naveed, Kamara and Wright [35] and to ORAM by Kellaris, Kollios, Nissim and
O’Neill [30]. While there has been some progress on designing leakage attacks
against STE [9,24,30,32], these attacks remain mostly of theoretical interest
due to the strong assumptions they rely on. Assumptions like knowledge of at
least 80%–90% of client data in addition to knowledge of 5% of client queries
[9,24], or assuming clients make queries uniformly at random, often in addition
to assumptions about how client data is distributed [30,32]. Nevertheless, these
attacks do provide us with some guidance as to which leakage profiles to avoid
when designing schemes. Another line of work related to leakage was initiated
recently by Kamara, Moataz and Ohrimenko in [27] where they propose design-
ing general-purpose techniques to suppress specific leakage patterns. In [27], they
show how to do this for the query equality pattern (also known as the search pat-
tern) without making use of ORAM simulation and, therefore, without incurring
its poly-logarithmic multiplicative overhead.

Computationally-secure leakage. In this work, we consider a new approach
to dealing with leakage. Our work starts from the observation that the presence
of leakage does not necessarily imply that this leakage can be exploited. In fact,
it could be that the leakage is not exploitable because it does not convey enough
useful information to the adversary. Alternatively, it could be that the leakage
does convey enough information but no computationally-bounded adversary can
extract it. In other words, the leakage could be computationally-secure. The pos-
sibility of designing STE schemes with computationally-secure leakage patterns
is interesting for several reasons. From a theoretical point of view, as far as we
know, this question has never been considered before and it raises some intriguing
foundational questions; like what kind of computational assumptions would lend
themselves to the design of secure leakage patterns? The traditional assumptions
used in cryptography are usually algebraic or number-theoretic in nature and
it is not clear how such assumptions could be used. From a more practical per-
spective, the ability to leverage “computationally-secure leakage” in the design
of STE schemes could lead to a whole new set of techniques and, ultimately, to
highly-efficient zero- or low-leakage schemes—computationally speaking.

Volume-hiding EMMs. In this work, we initiate the study of computationally-
secure leakage. In particular, we focus on the design of volume-hiding encrypted
multi-maps or, more precisely, of encrypted multi-maps that hide the response
length to computationally-bounded adversaries.1 We focus on encrypted multi-
1 Our constructions also reveal the query equality—even to a bounded adversary—but

the latter can be suppressed using the cache-based transform from [27].
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maps because they are by far the most important encrypted structure; this is
illustrated by the fact that they are central to the design of optimal-time single-
keyword SSE [7,8,10,12,15,19,29,34], of sub-linear Boolean SSE [11,25], of
graph encryption [12,33], of encrypted range structures [17,20] and of encrypted
relational databases [26]. We consider the response length leakage pattern for
several reasons. The first is that it is a very difficult leakage pattern to suppress.
In fact, though encrypted search has been investigated since 2000, the first non-
trivial construction to even partially hide the response length is the recent PBS
scheme of [27].2 In fact, response lengths are leaked even by ORAM-based solu-
tions. The second reason we focus on response lengths is because of the recent
volume attacks of Kellaris et al. [30] or its extension by Grubbs et al. [23]. Again,
while these attacks are mostly of theoretical interest, they do suggest that the
design of volume-hiding encrypted structures is well-motivated.

1.1 Näıve Approaches

To better understand our techniques and the improvements they provide, we
first describe two possible näıve approaches to designing volume-hiding EMMs.
Recall that a multi-map is a data structure that stores a set of pairs {(�,v)},
where � is a label from a label space L and v is a tuple of values from some value
space V. Multi-maps support get and put operations. Get takes as input a label
� and returns its associated tuple v whereas Put takes as input a label/value
pair (�,v) and stores it. We denote the get operation by v := MM[�] and the put
operation by MM[�] := v.

Näıve padding. The first approach to designing a volume-hiding multi-map
encryption scheme is to pad the tuples of the plaintext multi-map MM to their
maximum response length t = max�∈L #MM[�] and encrypt the padded multi-
map with any standard multi-map encryption scheme [1,7,10,12]. It is easy to see
that this hides the response lengths. Unfortunately, it also induces a non-trivial
storage overhead.

Using ORAM. We now describe a volume-hiding construction based on
ORAM. Note that, as far as we know, this construction has not appeared
before and may be of independent interest.3 We first represent the multi-map
MM as a dictionary by generating N

def
=

∑
�∈L

#MM[�] pairs of the form{
(�, v)�∈L,v∈MM[�]

}
and storing them in a dictionary DX. We then add t − 1

dummy label/value pairs to DX, where t is the maximum response length of
a label in MM. DX is then stored and managed using ORAM. To get the
tuple associated with a label �, we first obliviously access DX. There are two

2 The PBS construction has two variants. One can hide the response length on non-
repeating sub-patterns but has a probability of failure in the sense that the client
might not receive all its query responses. The second variant is always correct but
reveals the sequence response length on non-repeating sub-patterns.

3 Kellaris, Kollios, Nissim and O’Neil show in [31] how to use differential privacy to
perturb the response length in ORAM. This is different from this näıve approach
which completely hides the response length.
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cases: if #MM[�] = t, then we retrieve all pairs associated with �; otherwise if
#MM[�] < t, we retrieve an additional t − #MM[�] dummies.

It is clear that this hides the response length since the ORAM simulation
hides the query equality and, therefore, an adversary can’t distinguish between
a dummy label and a real label. From an efficiency perspective, if we use a
state-of-the-art ORAM [41] then the storage overhead is O(N). The commu-
nication complexity, however, is O(t · log2 N) which includes a multiplicative
poly-logarithmic factor in addition to logarithmic round complexity.

1.2 Our Techniques and Contributions

In this work, we describe two volume-hiding multi-map encryption schemes: VLH
and AVLH. Both our constructions work by first transforming an input multi-
map into a volume-hiding multi-map and encrypting the result with a custom
multi-map encryption scheme that itself makes black-box use of a standard multi-
map encryption scheme. These constructions avoid the limitations of the näıve
approaches described above either by improving on the storage of näıve padding
or avoiding the multiplicative poly-logarithmic overhead of the ORAM-based
solution.

A time-efficient construction. Our first construction relies on a simple trans-
formation we call the pseudo-random transform which is parameterized by a
public parameter λ and makes use of a small-domain pseudo-random function
as follows. Each tuple v in the multi-map is transformed into a new tuple v′ of
size n′ = λ +FK(n), where n = #v. If n′ > n, then the elements of v are stored
in v′ and the latter is padded to have length n′. If n′ ≤ n then only the first n′

items of v are stored in v′ which effectively truncates v (we think of the case
n′ = n as a padding). Note that the multi-map that results from this process is
volume-hiding since each tuple has pseudo-random length. Perhaps surprisingly,
we also show that if the lengths of the input multi-map are Zipf-distributed
then the storage overhead and the number of truncations can be kept relatively
small with overwhelming probability in the number of labels. More precisely, we
show that the storage overhead is half that of näıve padding while the num-
ber of truncations is equal to m/ log m. Our scheme VLH essentially consists of
transforming a multi-map using the pseudo-random transform and encrypting
it with a standard multi-map encryption scheme. The query complexity of VLH
is O(λ + ν), where ν is the largest value in the domain of F . While the pseudo-
random transform leads to an efficient construction, it is lossy since tuples can be
truncated. In many practical settings, however, truncations are not necessarily
an issue. For example, in the case of SSE where EMMs are used to store docu-
ment identifiers clients can rank the document ids (say, by relevance) at setup
time so that truncations only affect the low-ranked documents. Nevertheless, we
also consider the problem of designing non-lossy volume-hiding EMMs.

A non-lossy transform. Our second construction relies on a different transfor-
mation we call the dense subgraph transform. Unlike the pseudo-random trans-
form which introduces truncations, this approach is non-lossy. On the other hand,
it is less efficient in terms of query complexity. Note, however, that it is hard
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to imagine any non-lossy construction being able to hide the response length of
a query and having query complexity o(t), where t is the maximum response
length. Our goal, therefore, is to design a non-lossy scheme that improves on
the storage overhead of the näıve padding approach. At a high-level, our non-
lossy transform works by re-arranging the data stored in the multi-map into bins
according to a random bi-partite graph. Roughly speaking, we construct a ran-
dom (regular) bi-partite graph with labels in one set and bins in the other. We
then assign the values in a label’s tuple to the bins that are incident to the label.
The bins are then padded to hide their size. To ensure that this re-arrangement
is still efficiently queryable, we show how to represent the structure encoded in
the bi-partite graph and the data stored in the bins with a pair of standard data
structures; specifically, a multi-map and a dictionary. We show that, with the
right choice of parameters, this version of our transformation already yields a
volume-hiding multi-map structure with better storage overhead than the näıve
padding approach. More precisely, we show that the näıve approach produces
a volume-hiding multi-map of size SNV = Ω(N), where N is the size of the
original multi-map, whereas our approach yields a volume-hiding multi-map of
size O(N) with overwhelming probability in N . Interestingly, we also show that
if the tuple-lengths of the input multi-map are Zipf-distributed then our trans-
formation yields a multi-map of size o(SNV) with overwhelming probability. We
note that this version of the transformation already makes use of computational
assumptions. In particular, it uses a pseudo-random function to generate the
edges of the random bi-partite graph which allows us to “compress” the size of
our data structures by storing random seeds as opposed to all the graph’s edges.
To query our transformed multi-map on some label �, it suffices to retrieve the
bins incident to �. Intuitively, this is volume-hiding because the bins are padded
and the number of bins is fixed. Furthermore, it hides other leakage patterns
because the tuple values are assigned to bins randomly.

Concentration and planted subgraphs. The version of the transformation
described so far already improves over näıve padding (with overwhelming prob-
ability) but we show that for a certain class of multi-maps we can do even
better—though at the cost of increased query complexity. Specifically, we con-
sider multi-maps that have a large number of tuples with a large intersection.
We refer to this property as concentration and describe a version of the dense
subgraph transform that leverages the multi-map’s concentration to improve
storage efficiency even more. At a high-level, the idea is as follows. A concen-
trated multi-map has a number of redundant values which our transformation
assigns to multiple bins. In our improved transform, we instead assign each of
these redundant values to a single bin and add edges between these bins and a
large subset of the labels whose tuples they appear in. The rest of the bi-partite
graph is generated (pseudo-)randomly as above. This has the benefit of induc-
ing smaller bins and, therefore, of requiring less padding. The bi-partite graph,
however, is not random anymore (even ignoring our use of a pseudo-random func-
tion to generate edges). We observe, however, that by adding the edges to the
bins of the redundant values, we are effectively planting a small dense subgraph
inside of a larger random graph. And while the resulting graph is clearly not
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random anymore, it can be shown to be computationally indistinguishable from
a random graph. In fact, this reduces to the planted densest subgraph problem
which has been used in the past by Applebaum et al. in the context of cryp-
tography [2] and by Arora et al. in the context of computational complexity [3].
Based on this assumption, we can show that for multi-maps with concentration
parameters within a certain range (in turn determined by the densest subgraph
assumption) the transformed multi-map is of size O

(
N − m0.5+δ · polylog(m)

)

with overwhelming probability, where m is the number of labels in the original
multi-map and δ ≥ 0. If the input multi-map is Zipf-distributed, then the output
multi-map has size o(SNV).

Our non-lossy construction. As mentioned above, the dense subgraph trans-
form produces multi-maps that we represent using a combination of a dictionary
and a standard multi-map. To encrypt this particular representation, we design
a new scheme called AVLH. The resulting construction has query complexity

O

(

t · N−m0.5+δ·polylog(m)
m·polylog(m)

)

for multi-maps with concentration parameters within

a certain range.

Dynamism. Our VLH and AVLH constructions are for static multi-maps. While
there are many important applications of static EMMs, we describe how to
extend these constructions to handle updates. This results in two additional
constructions, VLHd and AVLHd. The former handles three kinds of updates:
tuple addition, tuple deletion and tuple edits; and the latter handles tuple edits.

1.3 Related Work

Structured encryption was introduced by Chase and Kamara [12] as a general-
ization of searchable symmetric encryption which was first considered by Song,
Wagner and Perrig [39] and formalized by Curtmola, Garay, Kamara and Ostro-
vsky [15]. Multi-map encryption schemes are a special case of STE and have
been used to achieve optimal-time single-keyword SSE [7,8,10,15,19,29], sub-
linear Boolean SSE [11,25], encrypted range search [17,20], encrypted relational
databases [26] and graph encryption [12,33]. The first leakage attack against
volume leakage was described by Kollios, Kellaris, Nissim and O’Neill [30] under
the assumption of uniform query distributions. In [27], Kamara, Moataz and
Ohrimenko describe an STE scheme called PBS which partially hides the vol-
ume pattern. More precisely, the first variant of PBS reveals only the sequence
response length (i.e., the sum of the response lengths of a given query sequence)
on non-repeating query sequences. The second variant reveals nothing (beyond a
public parameter independent of the volume) on non-repeating query sequences.
While there are schemes that hide the response length at setup time [42] or use
differential privacy to perturb response lengths [31], our techniques hide the pat-
tern entirely at query time. The planted densest graph problem was first used
as a computational assumption by Applebaum, Barak and Wigderson in [2] for
the purpose of designing public-key encryption schemes under new assumptions.
It was later used by Arora, Barak, Brunnermeier and Ge to study the computa-
tional complexity of financial products [3].
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2 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the
set of all finite binary strings as {0, 1}∗. We write x ← χ to represent an element

x being sampled from a distribution χ, and x
$← X to represent an element x

being sampled uniformly at random from a set X. The output x of an algorithm
A is denoted by x ← A. Given a sequence v of n elements, we refer to its ith
element as vi or v[i]. If S is a set then #S refers to its cardinality and 2S to its
powerset.

Basic cryptographic primitives. A private-key encryption scheme is a set of
three polynomial-time algorithms SKE = (Gen,Enc,Dec) such that Gen is a prob-
abilistic algorithm that takes a security parameter k and returns a secret key K;
Enc is a probabilistic algorithm takes a key K and a message m and returns a
ciphertext c; Dec is a deterministic algorithm that takes a key K and a cipher-
text c and returns m if K was the key under which c was produced. Informally, a
private-key encryption scheme is secure against chosen-plaintext attacks (CPA) if
the ciphertexts it outputs do not reveal any partial information about the plain-
text even to an adversary that can adaptively query an encryption oracle. We say
a scheme is random-ciphertext-secure against chosen-plaintext attacks (RCPA)
if the ciphertexts it outputs are computationally indistinguishable from random
even to an adversary that can adaptively query an encryption oracle. In addition to
encryption schemes, we also make use of pseudo-random functions (PRF), which
are polynomial-time computable functions that cannot be distinguished from ran-
dom functions by any probabilistic polynomial-time adversary.

3 Definitions

Structured encryption schemes encrypt data structures in such a way that they
can be privately queried. There are several natural forms of structured encryp-
tion. The original definition of [12] considered schemes that encrypt both a
structure and a set of associated data items (e.g., documents, emails, user pro-
files etc.). In [13], the authors also describe structure-only schemes which only
encrypt structures. Another distinction can be made between interactive and
non-interactive schemes. Interactive schemes produce encrypted structures that
are queried through an interactive two-party protocol, whereas non-interactive
schemes produce structures that can be queried by sending a single message,
i.e, the token. One can also distinguish between response-hiding and response-
revealing schemes: the former reveal the response to queries whereas the latter
do not. We recall here the syntax of an interactive response-hiding structured
encryption scheme.

Definition 1 (Structured encryption). An interactive response-hiding struc-
tured encryption scheme ΣDS = (Setup,Query) for data type DS consists of the
following polynomial-time algorithms and protocols:
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– (K,EDS) ← SetupC(1k,DS): is a probabilistic algorithm that takes as input a
security parameter 1k and a structure DS of type DS and outputs a secret key
K and an encrypted structure EDS.

– (r,⊥) ← QueryC,S(tk;EDS): is an interactive protocol executed between a
client C and a server S. The client inputs a token tk and the server inputs
an encrypted structure EDS. The client receives a response r and the server
receives ⊥.

We refer the reader to, for example [1], for syntax definitions of dynamic STE.

Security. The standard notion of security for STE guarantees that: (1) an
encrypted structure reveals no information about its underlying structure beyond
the setup leakage LS; (2) that the query protocol reveals no information about
the structure and the queries beyond the query leakage LQ. If this holds for
non-adaptively chosen operations then the scheme is said to be non-adaptively
secure. If, on the other hand, the operations can be chosen adaptively, the scheme
is said to be adaptively-secure.

Definition 2 (Adaptive security of interactive STE). Let Σ = (Setup,
Query) be an interactive STE scheme and consider the following probabilistic
experiments where A is a stateful semi-honest adversary, S is a stateful simula-
tor, LS and LQ are leakage profiles and z ∈ {0, 1}∗:

RealΣ,A(k): given z the adversary A outputs a structure DS and receives EDS
from the challenger, where (K,EDS) ← Setup(1k,DS). The adversary then
adaptively chooses a polynomial number of queries and, for each, executes
the Query protocol with the challenger, where the adversary plays the server
and the challenger plays the client. Finally, A outputs a bit b that is output
by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends
to the challenger. Given z and leakage LS(DS) from the challenger, the sim-
ulator S returns an encrypted structure EDS to A. The adversary then adap-
tively chooses a polynomial number of queries and, for each one, executes the
Query protocol with the simulator, where the adversary plays the server and
the simulator plays the client (note that here, the simulator is allowed to devi-
ate from Query). Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-secure if there exists a ppt simulator S
such that for all ppt adversaries A, for all z ∈ {0, 1}∗,

|Pr [RealΣ,A(k) = 1 ] − Pr [ IdealΣ,A,S(k) = 1 ]| ≤ negl(k).

Modeling leakage. Every STE scheme is associated with leakage which itself
can be composed of multiple leakage patterns. The collection of all these leakage
patterns forms the scheme’s leakage profile. Leakage patterns are (families of)
functions over the various spaces associated with the underlying data structure.
For concreteness, we borrow the nomenclature introduced in [27] and recall some
well-known leakage patterns that we make use of in this work:
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Let F : {0, 1}k × {0, 1}∗ {0, 1}log ν be a pseudo-random function, rank : Rn

R
n be ranking function and λ ∈ N be a public parameter. Consider the transform

PRT defined as follows:

– PRT(1k, λ,MM):

1. sample a key K
$ {0, 1}k;

2. instantiate an empty multi-map MM′;
3. for all � ∈ LMM,

(a) let r := MM[�] and n� = #r;
(b) compute r′ := rank(r);
(c) let n′

� = λ + FK(�‖n�);
(d) if n′

� > n�, set MM′[�] := r′, ⊥1, . . . , ⊥n′
�
−n�

)
;

(e) otherwise, set MM′[�] := r′
1, · · · , r′

n′
�

)
;

4. output MM′.
– Get(�,MM): output MM[�].

Fig. 1. The pseudo-random transform.

– the query equality pattern is the function family qeq = {qeqk,t}k,t∈N with
qeqk,t : Dk × Q

t
k → {0, 1}t×t such that qeqk,t(DS, q1, . . . , qt) = M , where M

is a binary t × t matrix such that M [i, j] = 1 if qi = qj and M [i, j] = 0 if
qi �= qj . The query equality pattern is referred to as the search pattern in the
SSE literature;

– the response identity pattern is the function family rid = {ridk,t}k,t∈N with
ridk,t : Dk×Q

t
k → [2[n]]t such that ridk,t

(
DS, q1, . . . , qt

)
= (DS[q1], . . . ,DS[qt]).

The response identity pattern is referred to as the access pattern in the SSE
literature;

– the response length pattern is the function family rlen = {rlenk,t}k,t∈N

with rlenk,t : Dk × Q
t
k → N

t such that rlenk,t(DS, q1, . . . , qt) =(|DS[q1]|, . . . , |DS[qt]|
)
;

– the domain size pattern is the function family dsize = {dsizek, t}k,t∈N with
dsizek, t : Dk → N such that dsizek,t(DS) = #Q.

– the total response length pattern is the function family trlen = {trlenk}k∈N

with trlenk : Dk → N such that trlenk(DS) =
∑

q∈Qk
|DS[q]|;

4 The Pseudo-Random Transform

We describe the pseudo-random transform (PRT) in Fig. 1 and provide a high
level description below.

Overview. PRT is a data structure transformation that takes as input a multi-
map MM, a security parameter k and a public parameter λ. It first generates
a random key K and initializes an empty multi-map MM′. For each label � in
the multi-map, it ranks the tuple r := MM[�];4 resulting in a ranked tuple r′.
4 The ranking function can be any ordering defined by the user; including standard

ranking algorithms from information retrieval.
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It then evaluates a PRF on the label � concatenated to the length n� of r. The
output of this PRF evaluation is then added to λ in order to compute a new
length n′

�. There are two possible cases that can occur at this point: (1) if n′
�

is larger than n�, the ranked response is padded with dummies and inserted in
MM′[�]; (2) if n′

� is at most n�, the ranked response is truncated to its first n′
�

elements and inserted in MM′[�]. Note that for ease of exposition and without
loss of generality, we consider the case where n′

� = n� a padding. Finally, the
transform outputs the multi-map MM′. The get algorithm simply outputs the
tuple corresponding to the label �.

A note on probabilistic analysis. Throughout this work, we model pseudo-
random functions as random functions for the purposes of probabilistic analysis.
It should be understood that all our bounds will have an additional negligible
value in the security parameter.

4.1 Analyzing the Number of Truncations

For any label � of the multi-map, the transform can pad or truncate its ranked
response depending on the output of the PRF. In this Section, we will ana-
lyze the number of truncations induced by our transformation. The number of
truncations is defined as

#{� ∈ LMM : #MM′[�] < #MM[�]}.

In the worst-case, the number of truncations can be #LMM which occurs when
every label in MM is truncated. We will show, however, that in practice this is
very unlikely to occur. In particular, we will show that for real-world distributions
of response lengths, the number of truncations is small with high probability.
Note that if we set λ ≥ max�∈L #MM[�], then truncations can never occur since
#MM′[�] ≥ max�∈L #MM[�] ≥ #MM[�]. We therefore only consider settings in
which λ < max�∈L #MM[�].

Zipf-distributed multi-maps. To get a concrete bound on the number of
truncations, we have to make an assumption on how the response lengths of
the multi-map are distributed. Here, we will assume that they are distributed
according to the Zipf distribution which is a standard assumption in information
retrieval [14,43]. We note that our analysis can be extended to any power-law
distribution. More precisely, we say that a multi-map MM is Za,b-distributed if
its rth response has length

r−b

Ha,b
· N

where N
def
=

∑
�∈L

#MM[�] is the volume of MM and Ha,b is the harmonic
number

∑a
i=1 i−b. Throughout, we will consider multi-maps that are Zm,1-

distributed where m = #LMM. From this assumption, it follows that the set
of all response lengths is

L = (L1, . . . , Lm) =
(

N

1 · Hm,1
, . . . ,

N

m · Hm,1

)

,
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Note that we consider the case where b = 1 for ease of exposition but our analyses
generalize to any b.

Theorem 1. If MM is Zm,1-distributed, then with probability at least 1 − ε the
number of truncations is at most

m ·
(

N

ν · H2
m,1

·
(

Hρ,2 − λ · Hm,1

N
· Hρ,1

)

+

√
ln(1/ε)

2m

)

,

where ρ = 	N/(λ · Hm,1)
.
Due to space limitations, the proof of Theorem1 is in the full version of this
work. Note that the worst case information loss (i.e., the total number of pairs
lost due to truncations) can be computed as

∑
i∈[σ](N/(i · Hm,1)) − λ), where σ

is the number of truncations.

4.2 Analyzing the Storage Overhead

As detailed above, PRT can truncate or pad the responses in the multi-map.
This has a direct impact on the storage overhead of the transformed multi-map
since padding increases the storage overhead while truncations decrease it. In the
following, we show that the size of the transformed multi-map MM′ can be upper
bounded with high probability without any assumptions on the distribution of
response lengths.

Theorem 2. With probability at least 1 − ε, the size of the transformed multi-
map is at most

m ·
(

ν − 1
2

+ (ν − 1) ·
√

ln(1/ε)
2m

+ λ

)

,

where λ ≥ 0.

Due to space limitations, the proof of Theorem2 is in the full version.

4.3 Concrete Parameters

In this Section, we will provide concrete parameters for PRT. Our goal is to
find parameters that will provide a good balance between a small number of
truncations and a small storage overhead. To study this, we first introduce two
näıve transformations that achieve extreme tradeoffs between truncations and
storage:

– the näıve padding transform is a transformation that pads the response of
every label with dummies ⊥ so that the length of the new responses are all
set to the maximum response’s length max�∈LMM

#MM[�]. Note that there are
no truncations in this case and the size of the transformed multi-map is

SNV
def
= m · max

�∈LMM

#MM[�].
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Let STEEMM = (Setup,Get) be a static multi-map encryption scheme and PRT be
the pseudo-random transform. Consider the scheme VLH = (Setup,Get) defined
as follows:

– Setup(1k, λ,MM):
1. generate a PRT-transform of MM by computing MM′ = PRT(1k, λ,MM);
2. encrypt the transform by computing

(K, st,EMM) STEEMM.Setup 1k,MM′);
3. output (K, st,EMM).

– GetC,S((K, st, �),EMM): C and S execute

(r, ⊥) STEEMM.GetC,S (K, st, �),EMM
)
.

Fig. 2. VLH: A volume-hiding multi-map encryption scheme.

– the näıve truncating transform truncates the responses of every label to the
minimum response length min�∈L #MM[�]. Note that the number of trun-

cations in this case is TNV
def
= #LMM = m and the storage overhead is

m · min�∈LMM
#MM[�], which is optimal.

In the following Corollary, we set concrete values for λ and s so that we
can achieve the best of both worlds. Specifically, we show that if the input
multi-map is Zm,1-distributed, then by setting the output length of the PRF
to s = log(L1 + 1), where L1 is the maximum response length, and setting
λ = O(ν · α), where 1/2 < α < 1, then we can achieve storage overhead α · SNV

with β ·TNV truncations with high probability, where β is a function of α and m.

Corollary 1. Let 1/2 < α < 1. If MM is Zm,1-distributed and if

log ν = log
(
L1 + 1) and λ = (ν − 1) · (2α − 1)/4

then with probability at least:

– 1 − exp
( − m · (2α − 1)2/8

)
, the total volume of the transformed multi-map

is at most α · SNV.
– 1 − exp

( − 2m/ log2 m
)
, the number of truncations is at most

1
log m

· H	 4
2α−1 
,2 · TNV.

Due to space limitations, the proof of Corollary 1 is in the full version.

5 A Volume-Hiding Multi-map Encryption Scheme

In this Section, we use the PRT to construct a volume-hiding multi-map encryp-
tion scheme. Our construction is described in detail in Fig. 2 and works as follows.
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Overview. The construction, VLH = (Setup,Get), makes black-box use of an
underlying multi-map encryption scheme STEMM = (Setup,Get). VLH.Setup
takes as input a security parameter k, a public parameter λ and a multi-map
MM. It applies the PRT transform on MM which results in a new multi-map
MM′. It then encrypts MM with STEMM, resulting in an encrypted multi-map
EMM, a state st and a key K which it returns as its own output. To execute
a Get query � on EMM, the client and the server execute STEMM.Get on � and
EMM.

Efficiency. Assuming that STEMM is an optimal-time multi-map encryption
scheme [1,7,10,15], the get complexity of VLH is O(λ + n′

�), where n′
� ∈

{0, · · · , ν − 1}. Therefore, the worst-case complexity is O(λ + ν) while the best-
case complexity is O(λ). The expected complexity is O(λ + 2s−1).

The storage overhead of VLH is

O(N) = O

( ∑

�∈LMM

#MM′[�]
)

= O

(

λ · m +
∑

�∈LMM

n′
�

)

,

where, again, n′
� ∈ {0, · · · , ν − 1}. So based on Corollary 1, when λ = (ν − 1) ·

(2α − 1)/4 and 1/2 < α < 1, the storage overhead of VLH is

O
(
α · (ν − 1) · m

)

with high probability.

Correctness. The correctness of VLH is affected by the number of truncations
induced by PRT. Based on Corollary 1, we can show that the number of trun-
cations performed by VLH is at most O(m/ log m) under the same assumptions
stated in the corollary.

Security. We now describe the leakage profile of VLH assuming STEMM

is instantiated with one of the standard optimal-time multi-map encryption
schemes [1,7,10,15] all of which have leakage profile

ΛMM = (LS,LQ) =
(
trlen, (qeq, rlen)

)
.

Theorem 3. If STEEMM is a (trlen, (qeq, rlen))-secure multi-map encryption
scheme and F in PRT is a pseudo-random function, then VLH is a

(
dsize, qeq

)
-

secure multi-map encryption scheme.

Due to space limitations, the proof of Theorem3 is in the full version of this
work. We observe that if we consider λ to be a public parameter, then dsize
will leak an approximation of m rather than the exact value of m as stated in
the theorem since λ−1 · trlen = λ−1 · ∑

i∈[m] #MM[�] = m + λ−1 · ∑
i∈[m] ri,

where ri is generated uniformly at random. Note that this differs slightly from
standard EMM schemes as their setup leakage is usually the sum of all pairs in
the multi-map.
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6 DST: The Densest Subgraph Transform

In this section, we introduce a new data structure transformation called the dense
subgraph transform (DST). Unlike the PRT which achieves efficient storage by
increasing truncations (and therefore losing information), this new transform
improves on the storage complexity of PRT without losing any information.
The transformation is randomized and, surprisingly, we can show that, with
high probability, it incurs no asymptotic storage overhead. Furthermore, we can
also show that, for the case of Zipf-distributed multi-maps, it produces multi-
maps that are asymptotically-smaller than the näıve padding and truncating
transforms described in Sect. 4.3.

The DST takes a multi-map MM as input and creates a new multi-map MM′

that is volume-hiding. This new structure results from re-arranging the data in
the input multi-map according to a random bi-partite graph. To ensure this re-
arrangement is still efficiently queryable, we represent it using a pair of standard
data structures which include a multi-map MMG and a dictionary DX. As we
will show, the storage complexity of the final representation depends on certain
properties of the bi-partite graph which are, in turn, inherited from the original
multi-map.

Below, we provide a high-level overview of our transformation. A more
detailed description is given in Sect. 6.1. The overview is divided in two parts:
(1) a variant for general multi-maps; and (2) a variant for what we refer to as
concentrated multi-maps. Note that the transformation handles both cases but
achieves better results for the later. We then provide a more detailed description
in Fig. 6.

General multi-maps. Given a multi-map MM we begin creating a bi-partite
graph with LMM as the top vertices and a set of n empty bins as the bottom
vertices. For each label/vertex � in Vtop, we randomly select t bins and insert in
each bin a single value of the tuple MM[�]. Here, t is the maximum tuple size in
the multi-map. If #MM[�] < t, then some of the selected bins won’t receive a
value. At the end of this process, we pad all bins so that they all have the same
size. Note that this process creates a bi-partite graph where the edges incident
to some top vertex/label � correspond to the bins selected for that label/vertex.
We now create two data structures to represent and efficiently process this bi-
partite graph. The first is a dictionary that maps bin identifiers to the bin’s
contents. The second is a multi-map that maps a label to the identifiers of the
bins associated to it. To retrieve the values associated to a given label �, we query
the multi-map on � to retrieve its t bin identifiers and then query the dictionary
on each of the t bin identifier to retrieve the contents of the bins.

It is already clear from this high-level description that all labels will have
exactly the same response length: t · α, where α is the maximum size of a bin.
It can be shown that with the right choice of parameters, this transformation
results in a small amount of padding compared to the näıve approach.

Concentrated multi-maps. The storage overhead of our approach can be
greatly improved when the multi-map satisfies a certain property we refer to as
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concentration. At a high level, a multi-map is concentrated if there exists a large
number of values that appear in the tuples of a large number of labels. More
formally, we define this property as follows.

Definition 3. (Concentrated multi-maps). Let μ, ν > 0. We say that a
multi-map MM is (μ, ν)-concentrated if there exists a set of μ labels �1, · · · , �μ ∈
LMM such that,

#
μ⋂

i=1

MM[�i] = ν.

We refer to this set of labels as MM’s concentrated component and denote it L̂MM.
Throughout, we will assume the existence of an efficient algorithm FindComp that
takes as input a multi-map and outputs the multi-map’s concentrated component
L̂MM. If no such component exists, the algorithm outputs ⊥.

A (μ, ν)-concentrated multi-map has μ labels with an intersection of size ν
which means that there is some redundancy in the structure. Unfortunately, the
previous approach does not take advantage of this since it stores all the values in
the multi-map independently. To exploit this redundancy, we proceed as follows.
We dedicate a random subset of the bins to store the tuple values of the multi-
map’s concentrated component. Because the component’s tuples have a large
intersection, we will avoid storing the same values over and over again. At a
high-level, we modify the process as follows. We first choose a random subset
of ν bins and store, in each one, one value from the intersection ∩�∈̂LMM

MM[�].
We then add an edge between a random subset of size τ of these bins and the
labels/vertices in the concentrated component. This results in μ labels/vertices
sharing a large portion of the bins. In the special case of τ = ν, then this will
result in μ labels/vertices that share the same bins. Notice the improved storage
overhead as we don’t store the values in the intersection in multiple bins. For
the remaining labels, we follow a similar process to the one presented in the
generic case. We sometimes refer to the value (μ − ν

τ ) · τ as the multi-map’s
concentration, for τ > 0.

Finding the concentration component. Our DST transform relies on an
efficient algorithm FindComp to find the concentration component of a multi-
map. We now describe such an algorithm. Informally, this algorithm will try
different combinations of labels, compute the intersection of their tuples, and
only retain the combination for which the intersection was the highest and that
verify some specific conditions on its size. The algorithm first determines the set
of labels L̃MM with tuples of size Ω(n0.5+δ), for some positive n. For i ∈ [λ], it
selects μ labels uniformly at random with replacement from L̃MM. We refer to
this set as L

i

MM. The algorithm then computes νi = #
(⋂

�∈L
i
MM

MM[�]
)

where λ

is the number of times the random selection is computed. The algorithm finally
determines ρ = argmaxi∈[λ]{νi : νi ∈ Ω(n0.5+δ)} and outputs L̂MM = L

ρ

MM if
such ρ exists and L̂MM = ⊥ otherwise. Notice that the algorithm runs in O(λ ·μ)
time. So it is sufficient to choose λ and μ to be polynomial in m. In our setting,
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we need to set the parameters to align with the the densest subgraph assumption
(described in Definition 5) so we need μ = Ω(m0.5+δ) and for some positive δ.
We note that this algorithm is only an example and we believe that more efficient
algorithms can be designed.

A storage optimization. Notice that the auxiliary multi-map MMG associates
to every label a randomly selected set of t bins. In particular this means that
the size of MMG is O(m · t) which could be rather large. Fortunately, storing the
identifiers of each bin is not necessary. Instead, we can choose the bins to assign
to a label using a pseudo-random function and store the key in MMG. This will
reduce the size of MMG to O(m).

6.1 Detailed Description

We now provide a detailed description of the DST. The pseudo-code is in Figs. 4
and 5. The transform makes black-box use of three pseudo-random functions F ,
H and G.

Setup. The Setup algorithm takes as input a security parameter 1k, two inte-
gers n and τ and a multi-map MM. It instantiates a bi-partite graph G =
(Vtop,Vbot,E) where the top vertices Vtop = LMM are the labels in MM, the
bottom vertices Vbot are n empty bins denoted B = {B1, . . . , Bn} and the set
of edges E is empty.

The set of edges are generated as follows. Setup first computes the concen-
trated component of the multi-map L̂MM := FindComp(MM). If no concentrated
component exists, FindComp outputs ⊥. If #L̂MM �= ⊥, it then pseudo-randomly
chooses ν bins B′ = {B′

1, . . . , B
′
ν}, where ν = #

( ⋂
�∈̂LMM

MM[�]
)
. More precisely,

it samples a k-bit value rand
 uniformly at random and chooses the bins indexed
by the set {

FK1(rand

‖1), . . . , FK1(rand


‖ν)
}

.

Note that all these ν positions have to be distinct. If not, then it keeps
resampling a new k-bit value rand
 uniformly at random until no collisions are
found. Note however that the probability p that no collision occurs, modeling F
as a random function, is equal to

p =
ν−1∏

i=0

(

1 − i

n

)

≥
(

1 − ν

n

)ν

≈ e−ν2/n,

which tends to 1 when ν = o(n)–which aligns with the concrete parameters that
we will detail in Sect. 6.4.

For all � ∈ L̂MM, it: (1) adds an edge between � and t−τ bins outside of B′; and
(2) adds an edge between � and τ bins in B′. Note that this separation between
the labels is necessarily for our reduction to the densest subgraph problem to
hold.
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To do the former, it indexes the bins in B \ B′ from 1 to n − τ , samples a
k-bit value rand�,1 uniformly at random, and chooses the bins indexed by the set

{

HK2(rand�,1‖1) + slide1, . . . , HK2(rand�,1‖t − τ) + slidet−τ

}

,

where slidei, for i ∈ {1, · · · , t − τ}, is an integer used to deterministically map
back the smaller output of H in [n− τ ] to the corresponding bin identifier in [n]
and is computed as follows. First, it orders the set of bins in B′ in a numerical
order such that

B′ =
(

Bpos1 , · · · , Bposν

)

,

where posi < posj , for i, j ∈ [ν]. Then it defines the following quantities based
on which the slide value is determined– refer to Fig. 3 for an illustration of the
computation,

gapi =

⎧
⎪⎨

⎪⎩

[1, posi − 1] if i = 1
]posi−1 − (i − 1), posi − (i − 1)[ if i ∈ {2, · · · , ν}
]posi−1 − (i − 1), n − ν] if i = ν + 1

Then, for i ∈ {1, · · · , n − ν}, identify j ∈ {1, · · · , ν + 1} such that
HK2(rand�,1‖i) ∈ gapj , then set slidei = j − 1.

gap1 gap2 gap3 gap4 gap5 gap6 gap7

Bin index in [n]

Bin index [n − ν]

Fig. 3. Gaps computation for n = 16 and ν = 6. � denotes bins being part of B′ =
{B4, B5, B6, B7, B11, B14} while • denotes bins in B \B′.

Note that rand�,1 has also to be chosen in such a way that the selected t − τ
positions are distinct. If not, similarly to above, it resamples a new k-bit value
uniformly at random until no collision occurs. The probability that no collision
occurs is approximately equal to e−(t−τ)2/(n−ν) which tends to 1 when t = o(n)–
which aligns with our concrete parameterization as we are going to detail in
Sect. 6.4.

To do the latter, it samples rand�,2 uniformly at random and adds an edge
between � and all bins indexed by

{

jGK3 (rand�,2‖1), · · · , jGK3 (rand�,2‖τ)

}

,
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where ji = FK1(rand

‖i), for i ∈ [ν]. If a collision is found, then it keeps resam-

pling a new k-bit value uniformly at random until all τ positions are distinct.
The probability that no collision occurs is approximately e−τ2/ν which tends to
1 given our parametrization.

For each � �∈ L̂MM, it samples a k-bit value rand� uniformly at random and
adds an edge between � and all bins indexed by the set

{

FK1(rand�‖1), . . . , FK1(rand�‖t)
}

.

Again, if a collision is found, it keeps resampling a new k-bit value uniformly at
random until all positions are distinct. The probability that no collision occurs
is approximately equal to e−t2/n. Notice that at the end of this process, each
vertex has degree exactly t.

Now Setup will use the graph to load the bins in Vbot as follows. For each
� �∈ L̂MM, it stores one value from the tuple MM[�] in one of the bins that are
incident to �. When inserting into a bin, the algorithm concatenates each value
with � (this will be helpful at query time). If #MM[�] < t, then some of the
incident bins will not receive any value. For all � ∈ L̂MM, it stores one element
from MM[�]\r� in the bins from B\B′ that are incident to �—again concatenating
each value with �, where

r� = (r1, · · · , rτ ) ⊆
⋂

�∈̂LMM

MM[�]

Also if #MM[�] < t, then some of the incident bins will not receive any value.
Finally, it stores each value from the set

r′ :=
⋂

�∈̂LMM

MM[�]

in a distinct bin in B′ in such a way that every bin in B′ will contain one value
in r′. Here, the algorithm concatenates the values with �. The algorithm then
pads all the bins to have the same size.

Finally, it creates a dictionary DX and a multi-map MMG. The dictio-
nary maps bin identifiers to bin contents. The multi-map MMG maps labels
� �∈ L̂MM to rand� and labels � ∈ L̂MM to (rand�,1, rand�,2, rand


). It outputs
MM′ = (MMG,DX).

The storage complexity of MM′ is O(m + n · λ), where λ is the maximum
load of a bin.

Get. Get operations on MM′ = (MMG,DX) work as follows. Given a label �,
we first query MMG on �. If � �∈ L̂MM, then MMG returns rand� from which we
compute the bin identifiers {FK1(rand�‖i)}t

i=1. We can then query DX on the
bin identifiers to recover the bins and output the elements concatenated with
�. If � ∈ L̂MM, MMG returns a triple (rand�,1, rand�,2, rand


) from which we can
compute the sets
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Let n ∈ N be a public parameter, F : {0, 1}k × {0, 1}∗ [n], G : {0, 1}k ×
{0, 1}∗ [n′] and H : {0, 1}k × {0, 1}∗ [n′′] be two pseudo-random functions
with n′ < n′′ < n. Consider the transform DST defined as follows:

– DST(1k, param,MM):
1. parse param as (n, τ), instantiate an empty dictionary DX, an empty

multi-map MMG, and a bi-partite graph G = (LMM,B),E
)
where B =

(B1, · · · , Bn) and E = ∅;
2. compute L̂MM FindComp(MM), set ν = #

⋂
�∈̂LMM

MM[�]
)
and

t := max�∈LMM MM[�];

3. sample three keys K1
$ {0, 1}k, K2

$ {0, 1}k and K3
$ {0, 1}k;

4. for all � ∈ LMM \ L̂MM,

(a) sample rand�
$ {0, 1}k and output

(i1, · · · , it) :=
{

FK1(rand�‖1), . . . , FK1(rand�‖t)
}

,

if there exist distinct i, j ∈ [t] for which ii = ij redo the sampling.
Add to E {

(�, ij) : j ∈ [t]
}
;

(b) parse MM[�] as (r1, · · · , rn�) and put rj‖� in Bij for all j ∈ [n�];

5. if L̂MM �= ⊥, sample rand� $ {0, 1}k and set B′ = (Bi1 , · · · , Biν ) where

(i1, · · · , iν) :=
{

FK1(rand
�‖1), . . . , FK1(rand

�‖ν)
}

,

if there exist distinct i, j ∈ [τ ] for which ii = ij redo the sampling.
Otherwise set B′ = ⊥;

6. compute
r′ :=

⋂
�∈̂LMM

MM[�] = (r′
1, · · · , r′

ν);

7. put r′
j‖� in Bj for all j ∈ [ν] and Bj ∈ B′;

8. for all � ∈ L̂MM,
(a) sample rand�,1

$ {0, 1}k and output

(i1, · · · , it−τ ) :=
{

HK2(rand�,1‖1), . . . , HK2(rand�,1 ‖t − τ)
}

,

if there exist distinct i, j ∈ [t−τ ] for which ii = ij , redo the sampling.
Add to E {

(�, ij + slidej) : j ∈ [t − τ ]
}
;

where slidej is computed as follows
i. order B′ in a numerical order such that B′ := (Bpos1 , · · · , Bposν );
ii. if ij ∈ [1, pos1], set slidej = 0;
iii. if ij ∈]posi−1 − (i − 1), posi − (i − 1)[, set slidej = i − 1, for any

i ∈ {2, · · · , ν};
iv. if ij ∈]posν − ν, n − ν[, set slidej = ν;

Fig. 4. DST: The Dense Subgraph Transform (Part 1).
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– DST(1k, param,MM):
8. for all � ∈ L̂MM,

(b) sample rand�,2
$ {0, 1}k and set r� = (ri1 , · · · , riτ ) ⊆ r′ where

(i1, · · · , iτ ) :=
{

GK3(rand�,2|1), . . . , GK3(rand�,2‖τ)
}

,

if there exist distinct i, j ∈ [τ ] for which ii = ij , redo the sampling.
Add {

(�, FK1(rand
�‖ij) : j ∈ [τ ]

}
to E;

(c) parse MM[�] as (r1, · · · , rn�);
(d) for all rj ∈ MM[�] \ r�, then put rj‖� in Bij+slidej ;

9. set θ = maxi∈[n] #Bi and set for all i ∈ [n]

Bi = (Bi, ⊥1, · · · , ⊥θ−#Bi);

10. for all i ∈ [n], set DX[i] = Bi;
11. for all � ∈ LMM, if � ∈ L̂MM, set MM[�] := (rand�,1, rand�,2, rand

�), other-
wise set MM[�] := rand�;

12. output the key K = (K1, K2, K3) and MM′ = (DX,MMG).
– Get(K, �,MM):

1. parse K as (K1, K2, K3) and MM as (DX,MMG) and instantiate an
empty set Result;

2. if MMG[�] = rand, then
(a) add DX[�i] to Result, where for all i ∈ [t],

�i := FK1(rand‖i);

(b) keep all values of the form ·‖�;
3. if MMG[�] = (rand1, rand2, rand�), then

(a) add DX[�i] to Result, where for all i ∈ [t − τ ],

�i := HK2(rand1‖i) + slidei,

and for all i ∈ [τ ],
�i := jGK3 (rand2‖i)

where (j1, · · · , jν) = FK1(rand
�‖1), . . . , FK1(rand

�‖ν);
(b) keep all values of the form ·‖� or ·‖�;

4. output Result.

Fig. 5. DST: The Dense Subgraph Transform (Part 2).

{

HK2(rand�,1‖i) + slidei

}t−τ

i=1

and
{

jGK3 (rand�2‖i)

}τ

i=1

where ji = FK1(rand

‖i), for i ∈ [ν], which we, in turn, use to query DX and

recover the bins. From these bins the algorithm recovers the elements concate-
nated with � and �. The complexity of gets is O(t · λ) where, again, λ is the
maximum load of a bin.
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6.2 Analyzing the Load of a Bin

As seen in the previous Section, an important quantity to evaluate the query
and storage efficiency of our transformation is the maximum load of a bin. In
this Section, we will show that, with high probability, the maximum load can
be upper bounded by (N − Nds)/n where Nds is the size of the concentrated
component and n is the number of bins. Before stating our result, we recall a
generalization of Chernoff’s inequality for the binomial distribution.

Lemma 1. Let X1, . . . , Xm be independent random variables over {0, 1} such
that Pr [Xi = 1 ] = pi and Pr [Xi = 0 ] = 1 − pi. If X = X1 + · · · + Xm, then

Pr [X ≥ E[X] + θ ] ≤ exp
(

− θ2

2(E[X] + θ/3)

)

.

Theorem 4. With probability at least 1 − ε, the maximum load of a bin is at
most

N − Nds

n
+

ln(1/ε)
3

(

1 +

√

1 +
18(N − Nds)
n · ln(1/ε)

)

,

where Nds = (μ − ν
τ ) · τ , for τ > 0.

Due to space limitations, the proof of Theorem4 is in the full version.

6.3 Query and Storage Efficiency

We now give the storage and query efficiency of the DST transform.

Storage efficiency. The output of DST consists of a multi-map MMG and a
dictionary DX. The multi-map MMG has tuples of size 1 or 3 depending on the
label. That is, the size of the multi-map is upper bounded by 2m. The dictionary
DX stores the content of the padded bins. From Theorem4 and the union bound,
we have that the size of the dictionary is at most

N − Nds +
n · ln(1/ε)

3
·
(

1 +

√

1 +
18(N − Nds)
n · ln(1/ε)

)

with probability 1 − n · ε.

Get efficiency. The Get algorithm first retrieves either a random value or a
pair of random values from MMG. In the former case, t PRF evaluations are
computed and t bins are retrieved. In the later case, 2t + ν PRF evaluations are
computed (using F , H and G) and t bins are retrieved.5 Assuming that both
MMG and DX are data structures with optimal query complexity, the Get query
complexity is at most
5 Note that the computation of the slidei’s is O(ν). These evaluations can be performed

once and stored at the client which reduces the total PRF evaluations at query time
to 2t.
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t · N − Nds

n
+

t · ln(1/ε)
3

·
(

1 +

√

1 +
18(N − Nds)
n · ln(1/ε)

)

with probability 1 − n · ε.

6.4 Concrete Parameters

In this Section, we propose concrete parameters for the DST. In particular, we
will be interested in parameters that guarantee better storage overhead than the
näıve padding transform. Note that we do not compare to the näıve truncating
approach since the DST does not lose any information.

General multi-maps. Recall that the näıve padding transform has a storage
overhead

SNV
def
= m · max

�∈LMM

#MM[�] = Ω(N),

where N
def
=

∑
�∈L

#MM[�]. From Theorem 4, we have the following corollary.

Corollary 2. Let n ≥ 1 and m ≥ 0. If N > n log n, then with probability at
least 1 − 1/eN/5n, the size of the resulting multi-map is at most O(N).

Notice that if the original multi-map is Zm,1-distributed (but not necessarily
concentrated), then SNV = N · m/Hm,1 where Hm,1 = Θ(log m) is the harmonic
number (please refer to Sect. 4). It follows that, in this case, N = o(SNV) so
the storage overhead of DST is small-o of the overhead of the näıve padding
transform.

Concentrated multi-maps. We now consider a multi-map MM with a concen-
trated component of size (μ− ν

τ ) ·τ . We show below that in this case, the storage
overhead induced by DST can be considerably smaller than the storage over-
head of the näıve padding transform. The following Corollary is a consequence
of Theorem 4.

Corollary 3. Let n ≥ 1 and m ≥ 0. If N > n log n,

μ = O

(

m0.5+δ · polylog(m)
)

and τ = O

(

polylog(m)
)

,

for some δ ≥ 0, then with probability at least 1−1/eN/5n, the size of the resulting
multi-map is at most

O

(

N − m0.5+δ · polylog(m)
)

.

As above, if the original multi-map MM is Zm,1-distributed, then the storage
overhead of DST is small-o of the overhead of the näıve padding transform.

A remark on security. As we will see in Sect. 7, the parameters μ and τ have
to satisfy certain constraints for our multi-map encryption scheme to be secure.
In particular, the parameters have to be chosen in such a way that they verify the
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densest subgraph assumption which we detail in Definition 5. We note here that
to satisfy both this assumption and the constraints of Corollary 3, it is sufficient
that for some positive δ,

μ = O

(

m0.5+δ · polylog(m)
)

, τ = O(t) = O

(

polylog(m)
)

and,

ν = O

(

m0.5+δ · polylog(m)
)

, n = Θ

(

m · polylog(m)
)

.

Note that this is only an example and is not the only choice of parameters that
can be used. The intuition is that the larger the multi-map’s concentration is,
the better storage overhead DST will achieve. More precisely, multi-maps with
larger values of μ and τ will achieve better storage gain as long as the DSP
problem is hard.

7 AVLH: Advanced Volume Hiding Multi-map Encryption
Scheme

In this Section, we use the DST to construct a volume-hiding multi-map encryp-
tion scheme. Our construction is described in detail in Fig. 6 and works as follows.

Overview. The construction, AVLH = (Setup,Get), makes black-box use of an
underlying response-hiding dictionary encryption scheme STERH

DX = (Setup,Get).
AVLH.Setup takes as input a security parameter k, a public parameter param, and
a multi-map MM. It first applies the DST transform on MM which results in a
key K1 = (K1,1,K1,2,K1,3) and two structures: a multi-map MMG and a dic-
tionary DX. It then encrypts the dictionary DX, resulting in an encrypted dictio-
nary EDX, a state stDX and a key K2. It finally outputs a key K = (K1,K2), a
state st = (MMG, stDX) and an encrypted multi-map EMM = EDX. To execute
AVLH.Get, the client differentiates two cases: if MMG[�] is a tuple composed of a
single value rand, then the client and server execute the STERH

DX.Get on �i where �i

is a new label equal to FK1,1(rand‖i), for all i ∈ [t], and t = max�∈LMM
#MM[�]. In

this case the client C only outputs values of the form ·‖�. Otherwise, if MMG[�] is a
tuple composed of a triple (rand1, rand2, rand
), then the client and server execute
STERH

DX.Get on �i where now �i is equal to jGK1,3 (rand2)‖i where jl = FK1,1(rand

‖l),

for l ∈ [ν] and i ∈ [τ ], and HK1,2(rand‖i) + slidei for all i ∈ {1, · · · , t − τ}. Note
that slidei, for which the computation was detailed in Sect. 6.1, is used to deter-
ministically map the smaller output of H in [n− τ ] into a value in [n]. In this case,
the client C only outputs values of the form ·‖� or ·‖�.

Efficiency. Assuming that STERH
DX is an optimal-time dictionary encryp-

tion scheme [1,7,10,15], the get complexity of AVLH is O(t ·λ) where t =
max�∈LMM

#MM[�] and λ is the load of a bin. Given the parameters detailed
in the previous section and if N > n · log n then the get complexity is

O

(

t · N − m0.5+δ · polylog(m)
m · polylog(m)

)

.
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for some δ > 0, when

μ = O

(

m0.5+δ · polylog(m)
)

, τ = O(t) = O

(

polylog(m)
)

and,

ν = O

(

m0.5+δ · polylog(m)
)

, n = Θ

(

m · polylog(m)
)

.

The storage overhead of AVLH is, with high probability,

O
( n∑

i=1

#DX[�i]
)

= O(n · λ) = O(N − m0.5+δ · polylog(m)).

7.1 Security

We will now study the security of our construction. More precisely, we will show
that it is volume-hiding in the sense that its query leakage does not include the
response length. The proof relies on a computational assumption known as the
densest subgraph assumption. We first recall this assumption and then proceed
to stating our security theorem.

The densest subgraph problem. The hardness of the (decisional) densest
subgraph problem problem was first used by Applebaum, Barak, and Wigderson
in [2] to design public-key encryption schemes based on new assumptions. It
was later used by Arora et al. [3] to study the hardness of financial products.
Informally, the DSP asks whether it is possible to distinguish between a random
regular bi-partite graph and a random regular bi-partite graph with a planted
random subgraph.

Definition 4 (The (decision) densest subgraph problem). Let m,n, t,
μ, ν, τ > 0. The decisional unbalanced expansion problem is to distinguish
between the two following distributions:

– R samples an (m,n, t)-bi-partite graph uniformly at random. In other words,
for each vertex in Vtop it samples t neighbors from Vbot uniformly at random.

– P is obtained as follows. First, two sets T ⊂ Vtop and B ⊂ Vbot, such that
#T = μ and #B = 2ν, are sampled uniformly at random. Then, for each
vertex in T , we choose t−τ random neighbors in Vbot and τ random neighbors
in B. For each vertex in Vtop \ T , we choose t random neighbors in Vbot.

The following hardness assumption, used in [2,3], is based on state-of-the-art
algorithms of Bhaskara, Charikar, Chlamtac, Feige, and Vijayaraghavan in [6].

Definition 5 (The DSP assumption). There is no ε > 0 and ppt adversary
A that can distinguish between R and P with advantage ε when

n = o(m · t),
(

μ · τ2

ν

)2

= o

(
m · t2

n

)

, ν = Ω(n0.5+δ),

μ = Ω(m0.5+δ) and τ = Õ(
√

t)

for some positive δ.
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Leakage profile. We now describe the leakage profile of AVLH assuming STERH
DX

is instantiated with one of the standard optimal-time dictionary encryption
schemes [1,7,10,15] all of which have leakage profile

ΛDX = (LS,LQ) =
(
trlen, qeq

)
.

Theorem 5. If STERH
DX is a (trlen, qeq)-secure dictionary encryption scheme, F ,

G and H are pseudo-random functions, and the DSP assumptions holds, then
AVLH is a

(
(trlen, conc), qeq

)
-secure multi-map encryption scheme; where conc

is the leakage pattern that outputs a multi-map’s concentration.

Due to space limitations, the proof of Theorem5 is in the full version of this
work. The leakage pattern conc is due to the fact that we leak the size of the
bins in trlen which is a function of the concentration.

Improving communication complexity. The communication (query) com-
plexity of AVLH is equal to O(t · λ) where λ is the size of the bin and t the
maximum response length. In the following we introduce a simple modification
of AVLH such that the communication complexity becomes sub-linear in λ.

At a high level, the idea consists of replacing the retrieval of the entire bin’s
content by an oblivious retrieval that only fetches the value of interest (note that
a bin will always contain at most one value associated to any label). Therefore
this technique would reduce the overhead from λ to the overhead of a single
oblivious access into an array of size λ. The (informal) modified AVLH works as
follows. At setup time, we parse the content of each bin as an array (a RAM)
and encrypt it using a computationally-secure state-of-the-art ORAM algorithm.
Note that now, instead of using a response-hiding dictionary, we use a response-
revealing one. The get algorithm works similarly to the one in AVLH except that
the dictionary’s get algorithm outputs an ORAM that we access separately. In
terms of efficiency, the communication complexity becomes O(t · √

λ) assuming
that we use square-root ORAM [22] as the underlying ORAM.6 Note that we
can achieve better communication complexity by leveraging techniques from [27].
The storage complexity however remains the same since square-root does not
asymptotically increase the load of the bin.

8 Dynamic Volume Hiding Multi-map Encryption
Schemes

In this section, we show how to extend both VLH and AVLH to be dynamic. In
particular, we will be interested in the following class of updates:

– tuple addition: this update operation adds a new tuple (�,v) to the multi-map
where � is a label that was not part of the original label space LMM.

6 Note that one cannot use tree-based ORAM schemes such as Path ORAM [41] as the
security is function of the size of the RAM. In our case, under realistic parameters,
the bin’s load is very small to consider any of these schemes.
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Let STERH
DX = (Setup,Get) be a response-hiding dictionary encryption scheme and

DST the densest subgraph transform. Consider the scheme AVLH = (Setup,Get)
defined as follows:

– Setup(1k, param,MM):
1. generate a DST-transform of MM by computing

(K1,MMG,DX) DST(1k, param,MM);

2. encrypt DX by computing

(K2, stDX,EDX) STERH
DX.Setup 1k,DX

)
;

3. set K = (K1, K2), st = (MMG, stDX), and EMM = EDX and output
(K, st,EMM).

– GetC,S((K, st, �),EMM):
1. C parses K as ((K1,1, K1,2, K1,3), K2), st as (MMG, stDX) and S parses

EMM as EDX;
2. if MMG[�] = rand, then

(a) C and S execute STERH
DX.GetC,S((K2, stDX, �i),EDX), for all i ∈ [t],

where
�i := FK1,1(rand‖i);

(b) C outputs values of the form ·‖�;
3. if MMG[�] = (rand1, rand2, rand�), then

(a) C and S execute STERH
DX.GetC,S((K2, stDX, �i),EDX), where for all

i ∈ [τ ],
�i := jGK1,3 (rand2‖i),

and (j1, · · · , jν) = (FK1,1(rand
�‖1), · · · , FK1,1(rand

�‖ν)) and for all
i ∈ {1, · · · , t − τ},

�i := HK1,2(rand1‖i) + slidei,

where slidej is computed as follows
i. order {

FK1,1(rand
�‖i)

}
i∈[ν]

as (pos1, · · · , posν);
ii. if HK1,2(rand‖i) ∈ [1, pos1], set slidei = 0;
iii. if HK1,2(rand‖i) ∈]posj−1−(j−1), posj−(j−1)[, set slidei = j−1,

for any j ∈ {2, · · · , ν};
iv. if HK1,2(rand‖i) ∈]posν − ν, n − ν], set slidei = ν;

(b) C outputs all values of the form ·‖� or ·‖�.

Fig. 6. AVLH: An Advanced Volume Hiding Multi-Map Encryption Scheme.
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– tuple deletion: this update operation removes an entire label/tuple pair (�,v)
from the multi-map.

– editing : this update operation modifies the content of a specific tuple v asso-
ciated to � by replacing an old value vold ∈ v by a new one vnew.

In particular, we do not consider updates that add or remove a value to/from an
existing tuple in the multi-map. In the following, we detail how to extend VLH
to handle these three update operations and AVLH to handle the third update
operation.

8.1 VLHd: A Dynamic Variant of VLH

The pseudo-code of VLHd is in the full version and it works as follows.

Overview. VLHd = (Setup,Get,Put) makes black-box use of a dynamic
response-hiding multi-map encryption scheme STERH

EMM = (Setup,Get,Put,
Remove) and of the volume-hiding multi-map encryption scheme VLH =
(Setup,Get).7 Both the Setup algorithm and the Get protocol are exactly the
same as of those of VLH. The Put algorithm takes as input an update u and
processes it as follows. If u = (add, (�,v)), then the client first computes the
PRT transform on a single-pair multi-map defined as {(�,v)} and outputs a new
single-pair multi-map {(�,v′)}. The client and server then execute STERH

EMM.Put
on the label/tuple pair (�,v′). If u = (rm, �), then the client and server execute
STERH

EMM.Remove on the label �. If u = (edit, (�, vold, vnew)), then the client and
server first execute VLH.Get, the client receives the tuple v associated to the
label �. The client and server then execute STERH

EMM.Remove on the label �. The
client locally replaces the value vold by vnew in the tuple v and then executes
STERH

EMM.Put with the server on the modified label/tuple pair.

Efficiency analysis. In our analysis, assume STERH
EMM is an optimal-time

dynamic multi-map encryption scheme [7,10,29]. It is clear that the get and
storage complexity of VLHd are exactly the same as VLH. The Put complexity
varies depending on the type of the update operation. If u is a tuple addition or
a tuple edit, then the Put complexity is O(λ + n′

�) where n′
� ∈ {0, · · · , 2s − 1}.

The worst-case is O(λ+2s) while the best case is O(λ). The expected complexity
is O(λ + 2s−1). If u is a tuple deletion, then the put complexity has constant
time.

Security analysis. We now describe the leakage of VLHd assuming that STERH
EMM

is instantiated with one of the standard optimal-time forward-private multi-map
encryption schemes [1,7,8] all of which have leakage profile

ΛMM = (LS,LQ,LU) = (trlen, (qeq, rlen), (op, rlen))

7 Note that the same multi-map encryption scheme STERH
EMM = (Setup,Get,Put,

Remove) has to be used as the underlying multi-map encryption scheme for VLH.
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Theorem 6. If STERH
EMM is a (trlen, (qeq, rlen), (op, rlen))-secure multi-map

encryption scheme, F in PRT is a pseudo-random function and VLH
is a

(
m, qeq

)
-secure multi-map encryption scheme, then VLHd is a(

m, qeq, (op, ueq)
)
-secure multi-map encryption scheme.

The update equality pattern ueq leaks if and when a label edit has occurred. The
proof of this theorem is similar to Theorem 3 and deferred to the full version of
this work.

8.2 AVLHd: Dynamic Variant of AVLH

The pseudo-code of AVLHd is in the full version and it works as follows.

Overview. The construction, AVLHd, makes black box use of a dynamic
response-hiding dictionary STERH

EDX = (Setup,Get,Put,Remove) and of the
volume hiding multi-map encryption scheme AVLH = (Setup,Get).8 The
Setup algorithm and the Get protocol are exactly the same as of those
of AVLH. The Put algorithm takes as input an update u and processes it
as follows. Parse u as (edit, (�,v)), the client and server execute (r,⊥) ←
AVLH.GetC,S

(
(K, st, �),EMM

)
where r = (Bi1 , · · · , Bit

) and the client here does
not dismiss any value from the retrieved bins. The client and server then exe-
cute STERH

EDX.Remove on all retrieved bins. The client then identifies the bin that
contains the value vold‖� (or vold‖�) that it replaces with vnew‖� (or by vnew‖�
if concentrated). The client and server then execute STEEDX.Put on the pairs
(ij , Bij

), for all j ∈ [t].

Efficiency analysis. We assume STERH
EDX is an optimal-time dynamic dictio-

nary encryption scheme [7,10,29]. Clearly, the get and the storage complexity of
AVLHd are exactly the same as AVLH. The Put complexity is equal to O(t · λ),
where t = max�∈LMM

#MM[�] is the maximum response length and λ is the size
of the bin–which is the same as the get complexity. Refer to Sect. 7 for a more
detailed and concrete analysis of the bin size λ.

Security analysis. We now describe the leakage of AVLHd assuming that
STERH

EDX is instantiated with one of the standard optimal-time forward-private
dictionary encryption scheme [1,7,8] all of which have a leakage profile at most

ΛDX = (LS,LQ,LU) = (trlen, qeq, op)

Theorem 7. If STERH
EDX is a (trlen, qeq, op)-secure dictionary encryption scheme

and AVLH is a
(
trlen, qeq

)
-secure multi-map encryption scheme, then VLHd is a(

trlen, qeq, (op, ueq)
)
-secure multi-map encryption scheme.

The proof of this theorem is similar to Theorem 5 and deferred to the full version
of this work.

8 Note that the same dictionary encryption scheme STERH
EDX = (Setup,Get,Put,

Remove) has to be used as the underlying dictionary encryption scheme for AVLH.
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23. Grubbs, P., Lacharité, M., Minaud, B., Paterson, K.G.: Pump up the volume:
practical database reconstruction from volume leakage on range queries. In: Lie, D.,
Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, 15–19 October 2018, pp. 315–331. ACM (2018)

24. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS 2012 (2012)

25. Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case
sub-linear complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 94–124. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 4

26. Kamara, S., Moataz, T.: SQL on structurally-encrypted databases. In: Peyrin, T.,
Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 149–180. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 6

27. Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage sup-
pression. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991,
pp. 339–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-
1 12

28. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

29. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM CCS 2012 (2012)

30. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure out-
sourced databases. In: ACM Conference on Computer and Communications Secu-
rity (CCS 2016) (2016)

31. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Accessing data while preserving
privacy. CoRR, abs/1706.01552 (2017)
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Abstract. Oblivious RAMs, introduced by Goldreich and Ostrovsky
[JACM’96], compile any RAM program into one that is “memory oblivi-
ous”, i.e., the access pattern to the memory is independent of the input.
All previous ORAM schemes, however, completely break the locality of
data accesses (for instance, by shuffling the data to pseudorandom posi-
tions in memory).

In this work, we initiate the study of locality-preserving ORAMs—
ORAMs that preserve locality of the accessed memory regions, while
leaking only the lengths of contiguous memory regions accessed. Our
main results demonstrate the existence of a locality-preserving ORAM
with poly-logarithmic overhead both in terms of bandwidth and local-
ity. We also study the tradeoff between locality, bandwidth and leakage,
and show that any scheme that preserves locality and does not leak the
lengths of the contiguous memory regions accessed, suffers from pro-
hibitive bandwidth.

To the best of our knowledge, before our work, the only works combin-
ing locality and obliviousness were for symmetric searchable encryption
[e.g., Cash and Tessaro (EUROCRYPT’14), Asharov et al. (STOC’16)].
Symmetric search encryption ensures obliviousness if each keyword is
searched only once, whereas ORAM provides obliviousness to any input
program. Thus, our work generalizes that line of work to the much more
challenging task of preserving locality in ORAMs.

Keywords: Oblivious RAM · Locality · Randomized algorithms

1 Introduction

Oblivious RAM [23,25,36], originally proposed in the seminal work by Goldre-
ich and Ostrovsky [23,25], allows a client to outsource encrypted data to an
untrusted server, and access the data in a way such that the access patterns
observed by the server are provably obfuscated.
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Thus far, the primary metric used to analyze ORAM schemes has been band-
width which is the number of memory blocks accessed for every logical access.
After a long sequence of works (e.g., [25,34,36,37,41]) it is now understood that
ORAM schemes can be constructed incurring only logarithmic bandwidth [6];
and moreover, this is asymptotically optimal [25,33].

An important performance metric that has been traditionally overlooked in
the ORAM literature is data locality. The majority of real-world applications
and programs exhibit a high-degree of data locality, i.e., if a program or applica-
tion accesses some address it is very likely to access also a neighboring address.
This observation has profoundly influenced the design of storage systems—for
example, commodity hard-drive and SSD disks support sequential accesses faster
than random accesses.

Unfortunately, existing ORAM schemes (e.g., [6,18,23,25,36,37,41]) are not
locality-friendly. Randomization in ORAMs is inherent due to the requirement to
hide the access pattern of the program, and ORAM schemes (pseudo-)randomly
permute blocks and shuffle them in the memory. As a result, if a client wants to
read a large file consisting of Θ(N) contiguous blocks, all known ORAM schemes
would have to access more than Ω(N log N) random (i.e., discontiguous) disk
locations, introducing significant delays due to lack of locality.

In this paper, we ask the question: can we design ORAM schemes with data
locality? At first sight, this seems impossible. Intuitively, an ORAM scheme
must hide whether the client requests N random locations or a single contiguous
region of size N . As a result, such a scheme cannot preserve locality, and indeed
we formalize this intuition and formally show that any ORAM scheme that hides
the differences between the above two extreme cases must necessarily suffer from
either high bandwidth or bad locality.

However, this does not mean that providing oblivious data accesses and pre-
serving locality simultaneously is a hopeless cause. In particular, in many prac-
tical applications, it may already be public knowledge that a user is accessing
contiguous regions; e.g., consider the following two motivating scenarios:

– Outsourced file server. Imagine that a client outsources encrypted files to a
server, and then repeatedly queries the server to retrieve various files. In this
case, each file captures a contiguous region in logical memory. Note that unless
we pad all files to the maximum size possible (which can be very expensive
if files sizes vary greatly), we would already leak the file size (i.e., length of
contiguous memory region visited) on each request.

– Outsourced range query database. Consider an outsourced (encrypted)
database system where a client makes range queries on a primary search
key, e.g., an IoT database that allows a client to retrieve all sensor readings
during a specified time range. We would like to protect the client’s access
patterns from the server. As previous works argued [16,30], in this case one
can leverage differential privacy to hide the number of matching records and
it may be safe to reveal a noisy version of the length of the contiguous region
accessed.

Note that in both of the above scenarios, some length leakage seems unavoidable
unless we always pad to the maximum with every request—and this is true even
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if we employ ORAM to outsource the files/database! Further, disk IO may be
more costly than network bandwidth depending on the deployment scenario:
for example, if the server is serving many clients simultaneously (e.g., serving
many users from the same organization sharing a secret key, or if the server has
a trusted CPU such as Intel SGX and is serving multiple mutually distrustful
clients), the system’s bottleneck may well be the server’s disk I/O rather than
the server’s aggregate bandwidth.

Motivated by these practical scenarios, we ask the following question.

Can we construct a bandwidth-efficient ORAM that preserves data
locality while leaking only the lengths of contiguous regions accessed?

We answer the question in the affirmative and prove the following result:

Theorem 1.1 (Informal). Let N be the size of the logical address space. There
is an ORAM scheme that makes use of only 2 disks and O(1) client storage,
such that upon receiving a sufficiently long request sequence containing T logical
addresses, the ORAM can correctly answer the requests paying only T ·poly log N
bandwidth; and moreover, if the T addresses requested contains � discontiguous
regions, the ORAM server visits only � · poly log N discontiguous regions on its
2 disks.

To the best of our knowledge, we are the first to consider and formulate the
problem of locality-friendly ORAM. Even formulating the problem turns out to
be non-trivial, since it requires teasing out the boundaries between theoretical
feasibility and impossibility, and capturing what kind of leakage is reasonable
in practical applications and yet does not rule out constructions that are both
bandwidth-efficient and locality-friendly. Besides the conceptual definitional con-
tributions, we also describe novel algorithmic techniques that result in the first
non-trivial locality-friendly ORAM construction.

To help the reader understand the technical nature of our work, we point
out that our problem formulation in fact generalizes a line of work on optimiz-
ing locality in Searchable Symmetric Encryption (SSE) schemes. The issue of
locality was encountered in recent implementations [12] of searchable symmetric
encryption in real-world databases, showing that the practical performance of
known schemes that overlook the issue of locality do not scale well to large data
sizes. The problem of optimizing locality in searchable symmetric schemes has
received considerable attention recently (see, e.g., [7,8,13,20,21]). Our problem
generalizes this line of work, and achieving good locality in oblivious RAM is
significantly more challenging due to the following reasons: (1) In SSE, oblivious-
ness is guaranteed only if each “file” is accessed at most once (and the length of
the file is also leaked in SSE)1; and (2) SSE assumes that rebuilding the “server-
side oblivious data structure” happens on a powerful client with linear storage,
and thus the rebuilding comes “for free”. We show, for the first time, how to
remove both of these above restrictions, and provide a generalized, full-fledged
oblivious memory abstraction that supports unbounded polynomial accesses and
yet preserves both bandwidth and locality.
1 Intuitively, a file stores the identifiers of the documents matching a keyword search

in SSE schemes.
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2 Technical Roadmap

In the following we provide a summary of results and techniques. In Sect. 2.1
we discuss our modeling of locality. In Sect. 2.2 we discuss our lower bounds,
providing tradeoffs between the locality of a program, leakage and bandwidth.
Towards introducing our construction, we start in Sect. 2.3 with a warmup–
oblivious sort with “good” locality. In Sect. 2.4 we introduce range ORAM, our
core building block for achieving locality, in which in Sect. 2.5 we overview its
construction. In Sect. 2.6 we overview a variant of Range ORAM, called “Online
Range ORAM”, which can also be viewed as a locality preserving ORAM.

2.1 A Generalized Model of Locality

How do we model locality of an algorithm (e.g., an ORAM or SSE algorithm)?
A natural option is to use the well-accepted approach adopted by the SSE line
of work [7,8,13,20]. Imagine that every time an algorithm (e.g., SSE or ORAM)
needs to read an item from disk, it has two choices: (1) read the next contiguous
address; and (2) jump to a new address (often called “seek” in the systems
literature). While both types of operations contribute to the bandwidth measure;
only the latter type contributes to the locality measure [7,8,13,20] since seeks are
significantly more expensive than sequential reads on real-world disks. We point
out that locality alone is not a meaningful measure since we can always achieve
better locality and minimize jumps by scanning through the entire memory
extracting the values we want along the way. Thus we always use locality in
conjunction with a bandwidth metric too, i.e., how many blocks we must must
fetch from the disk upon each request. This model was adopted by the SSE line of
work, however, is very constraining in the sense that they assume that the server
has access to only 1 disk. In practice, cloud-hosting services such as EC2 and
Azure provide servers with multiple disks. Constraining to such a single-disk
model might rule out interesting cryptographic algorithms of practical value.
Therefore, we generalize the locality definition as follows.

Defining (D, �)-locality. We consider the scenario where the ORAM server
may have multiple (but ideally a small number) of disks, where eack disk still
supports the aforementioned two types of instructions: “read the next contiguous
address” and “jump to a new address”. Henceforth, we say that an ORAM
scheme satisfies (D, �)-locality and β bandwidth cost iff for a sufficiently long
input sequence containing B requests spanning L non-contiguous regions, the
ORAM server, with access to D disks, may access at most β ·B blocks and issue
at most � · L jump instructions. Of course, the adversary can observe all disks,
and all movements operations in these disks. We refer the readers to Sect. 3.1
for the formal definition.

Under these new definitions, our result can be stated technically as “an
ORAM scheme with (2, poly log N)-locality and poly log N bandwidth (amor-
tized) cost” where N is the total number of logical blocks. Moreover, as men-
tioned, our ORAM scheme leaks only the length of each contiguous region in the
request sequence and nothing else (and as mentioned, some leakage is inherent
if we desire efficiency).



218 G. Asharov et al.

Open questions. Given our new modeling techniques and results, we also sug-
gest several exciting open questions, e.g., is it possible to have an ORAM scheme
that achieves (1, �)-locality and β bandwidth cost where � and β are small? Can
we compile source programs that exhibit (D, �)-locality where D > 1 with mean-
ingful leakage? For the former question, if there is a lower bound that shows a
sharp separation between 1 and 2 disks, it would be technically really intriguing.
For the latter question, the constructions in this paper directly imply that if one
is willing to leak the disk each request wants to access, such schemes are pos-
sible. However, depending on the practical application such leakage vary from
reasonable to extremely harmful. Thus the challenge is to understand the fea-
sibility/infeasibility of achieving such compilation while hiding which disk each
request wants to access. We refer the reader to Sect. 7 for other open problems.

2.2 Locality with No Leakage

As we already discussed, preserving both bandwidth and locality with no leak-
age is impossible. We formalize this claim, and study tradeoffs between leakage
profiles and performance. We consider schemes that leak only the total number
of accesses (just as in standard ORAM2) and show that a scheme with good
locality must incur a high bandwidth, even when allowing large client-side space
blowup. We prove the following:

Theorem 2.1. For any �, c ≤ N
10 , any (D, �)-local ORAM scheme with c blocks

of client storage that leaks no information (besides the total number of requests)
must incur Ω(N

D ) bandwidth.

To intuitively understand the lower bound, consider a simplified case where
the ORAM must satisfy (1, 1)-locality. Consider the following two scenarios: (1)
requesting contiguous blocks at addresses 1, 2, . . . N ; and (2) requesting blocks at
random addresses. By the locality constraint, in the former scenario the ORAM
scheme can access only 1 contiguous region on 1 disk. Now the oblivious require-
ment says that the address distributions under these two scenarios must be indis-
tinguishable, and thus even for the second scenario the ORAM server can only
access a single contiguous region too. Now, if each request’s address is generated
at random, in expectation the desired block is at least N/2 far from where the
disk’s head currently is—and this holds no matter how one arranges the contents
stored on the disk, and even when the server’s disk may be unbounded! Since the
ORAM scheme must perform a single linear scan even in the second scenario,
it must read in expectation N/2 locations to serve each randomized request.
Note that one key idea in this lower bound proof is that we generate the request
sequence at random in the second scenario, such that even if the ORAM scheme
is allowed to perform arbitrary, possibly randomized setup, informally speaking
it does not help. In Sect. 6, we make non-trivial generalizations to the above
intuition and prove a lower bound for generalized choices of D and �.

2 We emphasize that many practical applications leak some more information even
when using standard ORAM, e.g., in the form of communication volume. See dis-
cussion in below.
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On leaking the lengths. Given our lower bound, our constructions presented
next leak the lengths of the accessed regions to achieve good locality. Before
proceeding with our construction, we remark the following points regarding this
leakage: (1) The input program can always break locality (say, via fictitious
non-contiguous accesses) and therefore our scheme can be viewed as a strict
generalization of ordinary ORAM schemes. In other words, the user can choose to
opt out of the locality feature. (2) As we mentioned above, in many applications
it is already public knowledge that the client accesses contiguous regions. In
those cases, the leakage is the same had we used an ordinary ORAM [29]. (3)
Finally, we stress that just like the case of ordinary ORAM, our locality-friendly
ORAM can be combined with differential privacy techniques as Kellaris et al. [30]
suggested to offer strengthened privacy guarantees.

Despite these arguments, in some applications with good locality, such leak-
age might be harmful. For example, a program may access several regions of
different lengths and which regions are accessed depend on some sensitive data.
Whether the locality feature of our scheme should be used or not is application
dependent, and we encourage using the locality feature only in places where the
leakage pattern is clear and is public information to begin with.

2.3 Warmup: Locality-Friendly Oblivious Sort

Before describing our main construction, we first introduce a new building block
called locality-friendly oblivious sort which we will repeatedly use. First, we
observe that not all known oblivious sorting algorithms are “locality-friendly”.
For example, algorithms such as AKS sort [2] and Zig-zag sort [26] are described
with a sorting circuit whose wiring has good randomness-like properties (e.g., in
AKS the wiring involve expander graphs, which have proven random-walk prop-
erties), thus making these algorithms difficult to implement with small locality
consuming a small number of disks (while preserving the algorithm’s runtime).

Fortunately, we observe that there is a particular method to implement the
Bitonic Sort [9] algorithm such that with only 2 disks, the algorithm can be
accomplished using O(log2 n) “jumps” (note also that “natural” implementa-
tions of the Bitonic Sort circuit do not seem to have such locality friendliness).

We defer the details of this specific locality-friendly implementation of
Bitonic-Sort to AppendixA, stating only the theorem here:

Theorem 2.2 (Locality-friendly oblivious sort). Bitonic sort (when imple-
mented as in AppendixA) is a perfectly oblivious sorting algorithm that sorts
n elements using O(n log2 n) bandwidth and (2, O(log2 n))-locality.

2.4 Range ORAM: An Intermediate, Relaxed Abstraction

We now start to give an informal exposition of our upper bound results. This is
perhaps the most technically sophisticated part of our work.

To achieve the final result, we will do it in two steps. In our final ORAM
scheme (henceforth called Online Range ORAM), the ORAM client receives
the requests one by one in an online fashion, and it is not informed a-priori
when a contiguous scan would occur in the request sequence. That is, it has
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exactly the same syntax as an ordinary ORAM, but when the client accesses
contiguous addresses, the online range ORAM has to recognize this fact, and
fetch contiguous regions from the memory. To reach this final goal, however, we
need an intermediate stepping stone called Range ORAM, which is an “offline”
version of Online Range ORAM. In a Range ORAM, imagine that the ORAM
client receives a request sequence that can look ahead into the future, i.e., the
client is informed that the next len requests will scan contiguously through the
logical memory.

More formally, in a Range ORAM, the ORAM client receives requests of the
form Access(op, [s, t], data), where op ∈ {read, write}, s, t ∈ [N ], s < t, and
data ∈ ({0, 1}b)(t−s+1) where b is the block size. Upon each request, the client
interacts with the server to update the server-side data structure and fetch the
data it needs:

– If op = read, at the end of the request, all blocks whose logical addresses
belong to the range [s, t] are written down in server memory starting at a
designated address; the server may then return the blocks to the client one-
by-one in a single contiguous scan.

– If op = write, then imagine that the client has already written down a data
array consisting of t − s + 1 blocks on the server in a designated, contiguous
region; the client and the server then perform interactions to update the
server-side data structure to reflect that the logical address range [s, t] should
now store the contents of data.

Note that as described above, a Range ORAM is well-defined even for a client
that has only O(1) blocks of storage—and indeed we give a more general formu-
lation by assuming O(1) client storage.

As for obliviousness, we require that the distribution of memory addresses
accessed by the Range ORAM can be simulated from the lengths of the accessed
ranges only, which implies that there is no other leakage other than these lengths.
We prove the following theorem:

Theorem 2.3. There exists a perfectly secure Range ORAM construction con-
suming O(N log N) space with (amortized) len · poly log N bandwidth and (2,
poly log N)-locality, for accessing a range of length len.

In comparison, for all existing ORAM schemes, accessing a single region of
len contiguous blocks involves accessing Ω(len · log N) blocks residing at dis-
contiguous physical locations. We now overview the high level ideas behind our
range ORAM construction.

Strawman scheme: read-only Range ORAM. Assuming that the CPU
sends only read instructions, we can achieve locality and obliviousness as follows.
The idea is to make replications of a set of super-blocks that form contiguous
memory regions. Specifically, let N be a power of 2 that bounds the size of the
logical memory. A size-2i super-block consists of 2i consecutive blocks with the
starting address being a multiple of 2i. We call size-1 blocks as “primitive blocks”.
We store log N different ORAMs, where the i-th ORAM (for i = 0, . . . , log N−1)
stores all size-2i (super-)blocks (exactly N/2i blocks of size 2i each). Since any
contiguous memory region of length 2i is “covered” by two super-blocks of that
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Fig. 1. Hierarchy of range trees. Logically, data is divided into trees of exponen-
tially increasing sizes. In each tree block, a parent super-block stores the contents of
both its children. If a block appears in more than one tree, the smallest tree contains
the freshest copy. The above figure shows the state of the data structure after two
accesses (read, 5, 2,⊥) and (read, 1, 2,⊥). h denotes height of a node in the Range
Tree.

length, reading any contiguous memory of length 2i region would boil down to
making two accesses to the i-th ORAM.

However, this approach breaks down once we also need to support writes. The
main challenge is to achieve data coherency in different ORAMs. Since there are
multiple replicas of each data block, either a write must update all replicas, or
a read must fetch all replicas to retrieve the latest copy. Both strategies break
data locality.

2.5 Constructing Range ORAM

Range Trees. The aforementioned strawman scheme demonstrates the chal-
lenges we face if we want a Range ORAM supporting both reads and writes. To
achieve this we need more sophisticated data structures.

We first describe a logical data structure called a Range Tree (without speci-
fying at this point how to actually store this logical Range Tree on physical mem-
ory). A Range Tree of size 2i is the following (logical) data-structure: the leaves
store 2i primitive blocks sorted by their (possibly non-contiguous) addresses,
whereas each internal node replicates and stores all blocks contained in the
leaves of its subtree. For example, in Fig. 1, each of T0,T1,T2 and T3 is a logical
Range Tree of sizes 1, 2, 4, 8 respectively. In such a Range Tree, each node at
height j stores a super-block of size 2j (leaves have height 0 and store primitive
blocks).

Range ORAM’s data structure. As shown in Fig. 1, our full Range ORAM
(supporting both reads and writes) will logically contain a hierarchy of such
Range Trees of sizes 1, 2, 4, 8, . . . , N , denoted T0,T1, . . . ,TL respectively where
L = O(log N). These trees form a hierarchy of stashes just like in hierarchical
ORAM [23,25], i.e., each Ti is a stash for Ti+1 which is twice as large. Thus, if
a block at some logical address is replicated multiple times in multiple Range
Trees, the copy in a smaller Range Tree is always more fresh (e.g., in Fig. 1,
notice that the block at logical address 1 appears in both T3 and T2). Within
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each Range Tree, a logical block also appears multiple times within super-blocks
(or primitive blocks) of different sizes, but all these copies within the same tree
contain the same value.

We now specify how these logical Range Trees are stored in the physical
memory. Basically, in each Range Tree, all super-blocks at the same height will
be stored in a separate ORAM—thus an ORAM at height j of the tree stores
super-blocks of size 2j .

Besides the ORAMs storing each height of each Range Tree, we also need
an auxiliary data structure that facilitates lookup. The client can access this
data structure to figure out, for a requested range [s, t], which super-blocks in a
specific tree height intersect the request. This auxiliary data structure is stored
on the server in an ORAM, and it can be viewed as a variant of “oblivious binary
search tree”.

Fetch phase of the Range ORAM. Let us now consider how to read and
write contiguous ranges of blocks (i.e., implement the read and write operations
of Range ORAM). Each request, no matter read or write requests, proceed in
two phases, a fetch phase and a maintain phase. We first describe the fetch phase
whose goal is to write down the requested range in a designated contiguous space
on the server.

Suppose that the range [s, t] is requested. Without loss of generality, assume
that the length of the range t − s + 1 = 2i (otherwise round it up to the nearest
power of 2). Roughly speaking, we would like to achieve the following effect:

– For every Range Tree at least 2i in size, we would like to fetch all size-2i

super-blocks that intersect the range requested—it is not difficult to see that
there are at most two such super-blocks.

– For every Range Tree smaller than 2i in size, we simply fetch the root.
– Write down all these super-blocks fetched in a contiguous region on the server,

and then obliviously reconstruct the freshest value of each logical address
(using locality-friendly oblivious sort).

Henceforth we focus only on the Range Trees that are at least 2i in size since
for the smaller trees it is trivial to read the entire root. To achieve the above,
roughly speaking, the client may proceed in the following steps. For each Range
Tree that is not too small,

1. Look up the auxiliary data structure (stored on the server) to figure out which
two super-blocks to request in the desired height that stores super-blocks of
size 2i;

2. Fetch these two desired super-blocks from the corresponding ORAM and write
down the fetched super-block in a contiguous region (starting at a designated
position) on the server’s memory.

All these fetched super-blocks are written down on the server’s memory con-
tiguously (including the root nodes for the smaller Range Trees which we have
ignored above). The client now relies on oblivious sorting to reconstruct the
freshest copy of each logical address requested, and the result is stored in a
designated contiguous region on the server.
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Notice that the entire read procedure reads only polylogarithmically many
contiguous memory regions:

– Queries to the oblivious auxiliary data structure accesses polylogarithmically
many “small” metadata blocks using ordinary oblivious data structures;

– There are only logarithmically many requests to per-height ORAMs storing
super-blocks of size 2i. Using an ordinary ORAM scheme, this step requires
reading polylogarithmically many regions of size 2i. Here, since every super-
block of size 2i is bundled together, we do not need to read 2i separate small
blocks from an ORAM, and this is inherently why the algorithm’s locality is
independent of the length of the range requested.

– The oblivious sorting needed for reconstruction also consumes polylogarith-
mic locality as mentioned in Sect. 2.3.

Maintain phase of the Range ORAM. Inspired by the hierarchial ORAM
[23,25], here a super-block fetched will be written to the smallest Range Tree
that is large enough to fit this super-block. If this Range Tree is full, we will
then perform a cascading merge to merge consecutive, full Range Trees into the
next empty Range Tree.

During this rebuilding process, we must also maintain correctness, including
but not restricted to the following:

– for duplicated copies of each block, figure out the freshest copy and suppress
duplicates; and

– correctly rebuild the oblivious auxiliary data structure in the process.

Without going into algorithmic details at this point, most of this rebuilding
process can be accomplished through a locality-friendly oblivious sorting pro-
cedure as mentioned earlier in Sect. 2.3. However, technically instantiating all
the details and making everything work together is non-trivial. To enable this,
we in fact introduce a new algorithmic abstraction, that is, an ordinary ORAM
scheme with a locality-friendly initialization procedure (see Sect. 4.3). We will use
this new building block to instantiate both the oblivious auxiliary data struc-
ture and each tree height’s ORAM. In comparison with a traditional ORAM
where rebuilding can be supported by writing the blocks one by one (which
will consume super-linear locality), here we would like to rebuild the server-side
ORAM data structure using a special locality-friendly algorithm upon receiving
a possibly large input array of the blocks. In subsequent technical sections, we
show how to have such a special ORAM scheme where initializing the server-side
data structure can be accomplished using locality-friendly oblivious sorting as a
building block. We refer the reader to Sect. 5 for the algorithmic details.

2.6 Online Range ORAM

Given our Range ORAM abstraction, we are now ready to construct Online
Range ORAM. The difference is that now, when the client receives request,
it is unaware whether the future requests will be contiguous. In fact, Online
Range ORAM provides the same interface as an ordinary ORAM: each request
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the client receives is of the form (op, addr, data) where op ∈ {read, write}, and
addr ∈ [N ] specifies a single address to read or write (with data). Yet the Online
Range ORAM must preserve the locality that is available in the request sequence
up to polylogarithmic factors.

Roughly speaking, we can construct Online Range ORAM from Range
ORAM as follows, by using a predictive prefetching idea: when a request (con-
taining a single address) comes in, the client first requests that singe address.
When a new request comes in, it checks whether the request is consecutive to
the address of the previous request. If so, it requests 2 contiguous blocks – the
specified address and also its next address. This can be done by requesting a
range in Range ORAM. If the next 2 requests happen to be contiguous, then
the client prefetches the next 4 blocks with Range ORAM; and if the requests
are still contiguous, it will next prefetch 8 blocks with Range ORAM. At any
time if the contiguous pattern stops, back off and start requesting a region of
size 1 again. It is not hard to see that the Online Range ORAM still preserves
polylogarithmic bandwidth blowup; moreover, if the request sequence contains a
contiguous region of length len, it will be separated into at most log(len) Range
ORAM requests. Thus the Online Range ORAM’s locality is only a logarith-
mic factor worse than the Range ORAM. The reader is referred to Sect. 5.5 for
further details.

2.7 Related Work

Related work on locality. Algorithmic performance with data stored on the
disk has been studied in the external memory models (e.g., [4,35,39,40] and ref-
erences within). Fundamental problems in this area include scanning, permut-
ing, sorting, range searching, where there are known lower bounds and matching
upper bounds.

Relationship to locality-preserving SSE. Searchable symmetric encryption
(SSE) enables a client to encrypt an index of record/keyword pairs and later
retrieve all records matching a keyword. The typical approach (e.g., [17,19,28,
31,38], and references within) is to store an inverted index. Our work is inspired
by recent works that study locality in SSE schemes [7,8,13,20,21]. Our new
locality ORAM formulation can be viewed as a generalization of the one-time
ORAM (with free rebuild) construct adopted in recent SSE constructions.

In a concurrent work, Demertzis, Papadopoulos and Papamanthou [20] also
consider such a one-time ORAM (with free rebuild) abstraction for an SSE
application. In their construction, they leverage as a building block a perfectly
secure (multi-use) ORAM with O(1)-locality, by blowing up the bandwidth to
O(

√
N) and the client storage to O(N2/3). This construction fails to preserve

the locality of the input program, and when accessing a region of size len will
result in O(len)-locality, and O(len · √

N)-bandwidth. In contrast, we achieve
poly log N -locality and len · poly log N -bandwidth when accessing a region of size
len, and with O(1)-client space.

Oblivious RAM (ORAM). Numerous works [6,27,32,34,36,37,41–45] con-
struct ORAMs in different settings. Most of ORAM constructions follow one of
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two frameworks: the hierarchical framework, originally proposed by Goldreich
and Ostrovsky [23,25], or the tree-based framework proposed by Shi et al. [36].

Up until recently, the asymptotically most efficient scheme was given by [32],
providing O(log2 N/ log log N) bandwidth. A recent improvement was given by
Patel et al. [34], reducing the bandwidth to O(log N ·poly log log N). The scheme
of Asharov et al. [6] achieves O(log N) bandwidth, and matches the lower bounds
given by Goldreich and Ostrovsky [23,25] and Larsen and Nielsen [33]. Further,
the Goldreich-Ostrovsky lower bound is also known not to hold when the memory
(i.e., ORAM server) is capable of performing computation [3,22], which is beyond
the scope of this paper.

In a subsequent work, Chakraborti et al. [14] show an ORAM called rORAM
with good locality and with O(log2 N) bandwidth assuming Ω(log2 N) block
size. Their scheme is based on tree-based ORAM. The construction works with
large client storage (i.e., linear in the sequential data to be read/write), and
reducing this client storage to O(1) would incur multiplicative poly log N factors
in locality and bandwidth in addition to using more disks to achieve locality.

3 Definitions

Notations and conventions. We let [n] denote the set {1, . . . , n}. We denote
by p.p.t. probabilistic polynomial time Turing machines. A function negl(·) is
called negligible if for any constant c > 0 and all sufficiently large λ’s, it holds
that negl(λ) < λ−c. We let λ denote the security parameter. For an ensemble of
distributions {Dλ} (parametrized with λ), we denote by x ← Dλ a sampling of
an instance according to the distribution Dλ. Given two ensembles of distribu-

tions {Xλ} and {Yλ}, we use the notation {Xλ} ε(N)≡ {Yλ} to say that the two
ensembles are statistically (resp. computationally) indistinguishable if for any
unbounded (resp. p.p.t.) adversary A,

∣
∣
∣
∣

Pr
x←Xλ

[A(1λ, x) = 1
] − Pr

y←Yλ

[A(1λ, y) = 1
]
∣
∣
∣
∣
≤ ε(λ)

Throughout this paper, for underlying building blocks, we will use n to denote
the size of the instance and use λ to denote the security parameter. For our final
ORAM constructions, we use N to denote the size of the total logical memory
size as well as the security parameter—note that this follows the convention of
most existing works on ORAMs [23,25,27,32,36,37,41].

3.1 Memory with Multiple Disks and Data Locality

To understand the notion of data locality, it may be convenient to view the
memory as D rotational hard drives or other storage mediums where sequential
accesses are faster than random accesses. The program interacting with the
memory has to specify which disk to access. Each disk is equipped with one
read/write head. In order to serve a read or write request with address addr in
some disk d ∈ [D], the memory has to move the read/write head of the disk d to
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the physical location addr to perform the operation. Any such movement of the
head introduces cost and delays, and the machine that interacts with the memory
would like to minimize the number of move head operations. Traditionally, the
latter can be improved by ensuring that the program accesses contiguous regions
of the memory. However, this poses a great challenge for oblivious computation
in which data is often continuously shuffled across memory.

More formally, a memory is denoted as mem[N, b,D], consisting of D disks,
indexed by the address space [N ] = {1, 2, . . . , N}, where D · N is the size of the
logical memory. We refer to each memory word also as a block and we use b
to denote the bit-length of each block. The memory supports the following two
types of instructions.

– Move head operation (move, d, addr) moves the head of the d-th disk (d ∈
[D]) to point to address addr within that disk.

– A read/write operation (op, d, data), where op ∈ {read, write}, d ∈ [D]
and data ∈ {0, 1}b ∪ {⊥}. If op = read, then data = ⊥ and mem should
return the content of the block pointed to by the d-th disk; If op = write,
the block pointed to by the d-th disk is updated to data. The d-th head is then
incremented to point to the next consecutive address, and wrapped around
when the end of the disk is reached.

Locality. A sequence of memory operations has (D, �) worst-case locality if it
contains � move operations to a memory that is equipped with D disks.

Examples. The above formalism enables us to distinguish between different
degrees of locality, such that:

– An algorithm that just accesses an array sequentially can be described using
a program that is (1, O(1))-local.

– An algorithm that computes the inner product of two vectors can be imple-
mented with (2, O(1))-local (but cannot be implemented with O(1) locality
with 1 disk).

– An algorithm that merges two sorted arrays is (3, O(1))-local (and cannot be
implemented with O(1) locality with only 2 disks).

– An algorithm that makes N random accesses to an array is (D, Θ(N))-local
for any constant number of D disks with overwhelming probability.

Relation to the standard memory definition. Instead of specifying which
disk to read from/write to, we can define a memory of range [D ·N ] = {1, . . . ,D ·
N}. The address space determines the disk index, and therefore also whether or
not to move the read/write head. Thus, one can consider the regular notion of a
RAM program, and our definition provides a way to measure the locality of the
program. Different implementations of the same functionality can have different
locality, similarly to other metrics.

3.2 Oblivious Machines

In this section, we define oblivious simulation of functionalities, either stateless
(non-reactive) or stateful (reactive). As most prior works, we consider oblivious
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simulation of deterministic functionalities only. We capture a stronger notion
than what is usually considered, in which the adversary is adaptive and can
issue request as a function of previously observed access pattern.

Warmup: Oblivious simulation of a stateless deterministic function-
ality. We consider machines that interact with the memory via move and
read/write operations. In case of a stateless (non-reactive) functionality, the
machine M receives one instruction I as input, interacts with the memory, com-
putes the output and halts. Formally, we say that the stateless algorithm M
obliviously simulates a stateless, deterministic functionality f w.r.t. to the leak-
age function leakage : {0, 1}∗ → {0, 1}∗, iff

– Correctness: there exists a negligible function μ(·) such that for every λ and
I, M(1λ, I) = f(I) except with μ(λ) probability.

– Obliviousness: there exists a stateless p.p.t. simulator Sim, such that for

any λ and I, Addr(M(1λ, I))
ε(λ)≡ Sim(1λ, leakage(I)), where Addr(M(1λ, I))

is a random variable denoting the addresses incurred by an execution of M
over the input I.

Depending on whether
ε(λ)≡ refers to computational or statistical indistin-

guishability, we say M is computationally or statistically oblivious. If ε(·) = 0,
we say M is perfectly oblivious. For example, an oblivious sorting algorithm is
an oblivious simulation of the functionality that receives an array and sorts it
(according to some specified preference function), where the leakage function
contains only the length of the array being sorted.

Oblivious simulation of a stateful functionality. We often care about obliv-
ious simulation of stateful functionalities. For example, the ordinary ORAM is
an oblivious simulation of a logical memory abstraction. We define a composable
notion of security for oblivious simulation of a stateful functionality below. This
time, the machine M , the simulator Sim, the functionality f and the leakage func-
tion leakage are all interactive machines that might receive instructions as long as
they are activated, and each might maintain a secret state. Moreover, we explic-
itly introduce the distinguisher A, which is now also an interactive machine. In
each step, the distinguisher A observes the access pattern and selects the next
command to perform. We write (outi, addri) ← M(Ii), where outi denotes the
intermediate output of M for the instruction Ii, and addri denote the memory
addresses accessed by M when answering the instruction Ii. We have:

Definition 3.1 (Adaptively secure oblivious simulation of stateful function-
alities). Let M, leakage, f be interactive machines. We say that M oblivi-
ously simulates a possibly randomized, stateful functionality f w.r.t. to the
leakage function leakage iff there exists an (interactive) p.p.t. simulator Sim,
such that for any non-uniform (interactive) p.p.t. adversary A, A’s view in
the following two experiments, Exptreal,MA and Exptideal,fA,Sim are computationally
indistinguishable.
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Exptreal,MA (1λ):

out0 = addr0 = ⊥
For i = 1, 2, . . . poly(λ):

Ii ← A(1λ, outi−1, addri−1)
outi, addri ← M(Ii)

Exptideal,fA,Sim (1λ):

out0 = addr0 = ⊥
For i = 1, 2, . . . poly(λ):

Ii ← A(1λ, outi−1, addri−1)
outi ← f(Ii)
addri ← Sim(leakage(Ii))

In the above definition, if we replace computational indistinguishability with
statistical indistinguishability (or identically distributed resp.) and remove the
requirement for the adversary to be polynomially bounded, then we say that the
stateful machine M obliviously simulates the stateful functionality f with statis-
tical (or perfect resp.) security. Besides the leakage of the individual instruction,
the simulator might have some additional information in the form of the public
parameters of the functionality. We also remark that Definition 3.1 captures cor-
rectness and obliviousness simultaneously, and capture both deterministic and
randomized functionalities. We refer the reader to the relevant discussions in the
literature of secure computation for the importance of capturing correctness and
obliviousness simultaneously for the case of randomized functionalities [11,24].

Our definition of oblivious simulation is general and captures any stateless
or stateful functionality, and thus later in the paper, whenever we define any
oblivious algorithm, it suffices to state (1) what functionality it computes; (2)
what is the leakage; and (3) what security (i.e., computational, statistical, or
perfect) we achieve. We use ordinary ORAM as an example to show how to use
our definitions.

Ordinary ORAM. As an example, a conventional ORAM, first proposed by
Goldreich and Ostrovsky [23], is an oblivious simulation of a “logical memory
functionality”, parameterized by (N, b), where N is the size of the logical memory
and b is the block size:

– Functionality: The internal state of the functionality consists of an array
mem ∈ ({0, 1}b)N . Upon each instruction of the form (op, addr, data), with
op ∈ {read, write}, addr ∈ [N ], and data ∈ {0, 1}b ∪ {⊥}, the functionality
proceeds as follows. If op = write, then mem[addr] = data. In both cases, the
functionality returns mem[addr].

– Leakage: The simulator has the public parameters of the functionality – N
and b. With each instruction (op, addr, data), the leakage is just that an access
has been performed.

We remark that previous constructions of ORAM [32,37,41] in fact satisfy
Definition 3.1.

Bandwidth, and private storage of oblivious machines. Throughout the
paper, we use the terminology bandwidth to denote the total number of memory
read/write operations of size Ω(log N) a machine needs to use. We assume the
machine/algorithm has only O(1) blocks of private storage.

Remark. In this paper, we focus on hiding the access patterns to the memory,
but not the data contents. Therefore, we do not explicitly mention that data
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is (re-)encrypted when it is accessed, but encryption should be added since the
adversary can observe memory contents. That is, while we assume that the
adversary completely sees the instructions (move, d, addr) and (op, d, data) that
are sent to the memory, data should be encrypted. Note, however, that the
adversary sees in particular the contents and accesses of all disks.

4 Locality-Friendly Building Blocks

In this section, we describe several locality-friendly building blocks that are
necessary for our constructions.

4.1 Oblivious Sorting Algorithms with Locality

An important building block for our construction is an oblivious sorting algo-
rithm that is locality-friendly. In AppendixA, we describe an algorithm for
Bitonic sort to achieve good locality, and provide a detailed analysis.

Theorem 4.1 ((Theorem 2.2, restated) Perfectly secure oblivious sort with
locality). Bitonic sort (when implemented as in AppendixA) is a perfectly obliv-
ious sorting algorithm that sorts n elements using O(n log2 n) bandwidth and
(2, O(log2 n)) locality.

4.2 Oblivious Deduplication with Locality

We define a handy subroutine that removes duplicates obliviously. Y ←
Dedup(X,nY ), where X contains some real elements and dummy elements, and
nY is some target output length. It is assumed that each real element is of the
form ((k, k′), v) where k is a primary key and k′ is a secondary key. The sub-
routine outputs an array Y of length nY in which for each primary key k in
X, only the element with the smallest secondary key k′ remains (possibly with
some dummies at the end). It is assumed that the number of primary keys k is
bounded by nY .

Given a locality-friendly oblivious sort, we can easily realize oblivious Dedup
with locality. We obliviously sort X by the (k, k′) tuple, scan X to replace dupli-
cates with dummies, and sort X again to move dummies towards the end. Finally,
pad or truncate X to have length nY and output. The procedure is just few scans
of the array and 2 invocations of oblivious sort, and therefore the bandwidth and
locality is the same as the oblivious sort. Concretely, using Theorem 4.1 this can
be implemented using O(|X| log2 |X|)-bandwidth and (2, O(log2 |X|))-locality.

4.3 Locally Initializable ORAM

In this section, we show that the oblivious sort can be utilized to define an
(ordinary) ORAM scheme that is also locally initializable.

A locally initializable ORAM is an ORAM with the additional property that
it can be initialized efficiently and in a locality-friendly manner given a batch
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of initial blocks. The syntax and definitions of a locally initializable ORAM is
the same as a normal ORAM, except that the first operation in the sequence
is a locality-friendly initialization procedure. More formally, a locally initial-
izable ORAM is an oblivious implementation of the following functionality,
parametrized by N and b:

– Secret state: an array mem of size N and block size b. Initially all are 0.
– T.Build(X) takes an input array X of |X| < N blocks of the form (addri, datai)

where each addri ∈ [N ] and datai ∈ {0, 1}b. Blocks in X have distinct inte-
ger addresses that are not necessarily contiguous. The functionality has no
output, but it updates its internal state: For every i = 1, . . . , |X| it writes
mem[addri] = datai.

– B ← T.Access(op, addr, data) with op ∈ {read, write}, addr ∈ [N ], and data ∈
{0, 1}b. If op = write then mem[addr] = data. In both cases of op = read
and op = write, return mem[addr].

The leakage function of locally initializable ORAM reveals |X| and the number
of Access operations (as well as the public parameters N and b). Obliviousness
is defined as in Definition 3.1 with the above leakage and functionality.

Locality-friendly initialization. We now show that the hierarchical ORAM
by Goldreich and Ostrovsky [23] can be initialized in a locality-friendly manner,
i.e., how to implement Build with (2, O(poly log n)) locality, where n = |X|. To
initialize a hierarchical ORAM, it suffices to place all the n blocks in the largest
level of capacity n. In the Goldreich and Ostrovsky ORAM, each block is placed
into one of the n bins by applying a pseudorandom function PRFK(addr) where
K is a secret key known only to the CPU and addr is the block’s address. By a
simple application of the Chernoff bound, except with negl(λ) probability, each
bin’s utilization is upper bounded by α log λ for any super-constant function α.
Goldreich and Ostrovsky [23] show how to leverage oblivious sorting to oblivi-
ously initialize such a hash table. For us to achieve locality, it suffices to use a
locality-friendly oblivious sort algorithm such as Bitonic sort. This gives rise to
the following theorem:

Theorem 4.2 (Computationally secure, locally initializable ORAM). Assum-
ing one-way functions exist, there exists a computationally secure locally-
initializable ORAM scheme that has negl(λ) failure probability, and can be ini-
tialized with n blocks using (n+λ) ·poly log(n+λ) bandwidth and (2, poly log(n+
λ)) locality, and can serve an access using poly log(n + λ) bandwidth and
(2, poly log(n + λ)) locality.

Notice that for ordinary ORAMs, since the total work for accessing a singe
block is only polylogarithmic, obtaining polylogarithmic locality per access is
trivial. Our goal later is to achieve ORAMs where even if you access a large file
or large region, the locality is still polylogarithmic, i.e., one does not need to
split up the file into little blocks and access them one by one. Our constructions
later will leverage a locally initializable, ordinary ORAM as a building block.
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5 Range ORAM

In this section, we define range ORAM and present a construction with poly-
logarithmic bandwidth and poly-logarithmic locality. The construction uses a
building block which we call an oblivious range tree (Sect. 5.2). It supports
read-only range lookup queries with low bandwidth and good locality. From an
oblivious range tree, we show how to construct a range ORAM, which supports
reads and updates (Sect. 5.3). Then, we discuss statistical and perfect security in
Sect. 5.4. Finally, we extend Range ORAM to online Range ORAM (Sect. 5.5).

Our ORAM construction uses multiple disks only when it invokes an oblivious
sort operation (and Dedup operation which invokes an oblivious sort). Thus, for
the following algorithms, it can be assumed that the entire data is stored on a
single disk. Multiple disks are used only transiently using during an oblivious
sort or a Dedup operation.

5.1 Range ORAM Definition

A Range ORAM is an oblivious machine that supports read/write range instruc-
tions, and interacts with the memory while leaking only the size of the range.
Formally, using Definition 3.1, Range ORAM is defined as follows, parameterized
by N and b:

Functionality: The internal state is an array mem of size N and blocksize b.
Range ORAM takes as input range requests in the form Access(op, [s, t], data),
where op ∈ {read, write}, s, t ∈ [N ], s < t, and data ∈ ({0, 1}b)(t−s+1). If op =
read, then it returns mem[s, . . . , t]. If op = write, then mem[s, . . . , t] = data.

Leakage: With each instruction Access(opi, [si, ti], datai), range ORAM leaks
ti − si + 1.

5.2 Oblivious Range Tree

A necessary building block for construction Range ORAM is a Range Tree. An
oblivious Range Tree is a read-only Range ORAM with an initialization proce-
dure from a list of blocks with possibly non-contiguous addresses. Formally, it is
an oblivious simulation of the following reactive functionality with the following
leakage (where obliviousness is defined using Definition 3.1):

Functionality: Formally, an oblivious Range Tree T supports the following
operations:

– T.Build(X) takes in a list X of blocks of the form (addr, data). Blocks in X
have distinct integer addresses that are not necessarily contiguous. Store X
as the secret state. Build has no output.

– B ← T.Access(read, [s, t],⊥) takes in a range [s, t] and returns all (and only)
blocks in X that has addr in the range [s, t]. We assume len = t − s + 1 = 2i

is a power of 2 for simplicity.
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Fig. 2. An oblivious Range Tree with Locality.

Leakage: T.Build(X) leaks |X|. Each T.Access(read, [s, t],⊥) leaks t − s + 1.

A logical Range Tree. For simplicity, assume n := |X| is a power of 2; if not,
we simply pad with dummy blocks that have addr = ∞. A logical Range Tree is
a full binary tree with n leaves. Each leaf contains a block in X, sorted by addr
from left to right. Each internal node is a super-block, i.e., blocks from all leaves
in its subtree concatenated and ordered by addresses. A height-i super-block
thus has size 2i. The leaves are at height 0, and the root is at height log2 n.

Metadata tree. Each super-block in the logical Range Tree defines a range:
[as, am, at] where as is the lowest address, at is the highest address, and am is
the middle address (the address of the 2i−1-th block for a height-i super-block).
We use another full binary tree to store the range metadata of each super-block,
henceforth referred to as the metadata tree. The metadata tree is a natural binary
search tree that supports the following search operations:

– Given a request range [s, t] with len := t − s + 1 = 2i, find the leftmost and
rightmost height-i (super)-blocks whose ranges intersect [s, t], or return ⊥ if
none is found.

Since t − s + 1 = 2i, the leftmost and rightmost height-i (super-)blocks that
intersect [s, t] (if they exist) are either contiguous or the same node.

Next, to achieve obliviousness, we will put the metadata tree and each height
of the logical range tree into a separate ORAM, as shown in Fig. 2.

Algorithm 5.1: T.Build(X). The Build algorithm takes a list of blocks X, con-
structs the logical Range Tree and metadata tree, and then puts them into
ORAMs through local initialization (Sect. 4.3).

1. Create leaves. Obliviously sort X by the addresses. Pad X to the nearest
power of 2 with dummy blocks that have addr = ∞. Let height[0] denote the
sorted X, which will be the leaves of the logical Range Tree.
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2. Create super-blocks. For each height i = 1, 2, . . . , L := log2 n, create
height-i super-blocks by concatenating their two child nodes. Let height[i]
denote the set of height-i super-blocks. Tag each super-block with its offset
in the height.

3. Create metadata tree. Let metadata be the resulting metadata tree repre-
sented as an array, i.e., metadata[i] is the parent of metadata[2i + 1] and
metadata[2i + 2]. Tag each node in the metadata tree with its offset in
metadata.

4. Put each height and metadata tree in ORAMs. For each height
i = 0, 1, . . . , L, let Hi be a locally initializable ORAM from Sect. 4.3,
and call Hi.Build(height[i]) in which each height-i super-block behaves as
an atomic block. Let Hmeta be a locally initializable ORAM, and call
Hmeta.Build(metadata).

Algorithm 5.2: T.Access(read, [s, t],⊥) (with len = t − s + 1 = 2i)

1. Look up address. Call Hmeta.Access(·) 2L times to obliviously search for
the leftmost and rightmost height-i (super-)blocks in the logical Range Tree
that intersects [s, t]. Suppose they have addresses addr1 and addr2 (which may
be the same and may both be ⊥).

2. Retrieve super-blocks. Call B1 ← Hi.Access(read, addr1,⊥) and B2 ←
Hi.Access(read, addr2,⊥) to retrieve the two (super-)blocks.

3. Output. Remove blocks from B1 and B2 that are not in [s, t]. Output B =
Dedup(B1 || B2, len).

We prove the following theorem in the full version.

Theorem 5.3 (Oblivious Range Tree). Assuming one-way functions exist, there
exists a computationally secure oblivious Range Tree scheme that has correctness
except with negl(λ) probability, and
– Build requires n · poly log(n + λ) bandwidth and (2, poly log(n + λ)) locality,
– Access requires poly log(n + λ) bandwidth and (2, poly log(n + λ)) locality.

5.3 Range ORAM from Oblivious Range Tree

In this section, we show how to construct a Range ORAM from oblivious
Range Tree scheme. Since the underlying oblivious Range Tree has good effi-
ciency/locality, so will the resulting Range ORAM. The idea behind our con-
struction is similar to that of the standard hierarchical ORAM [23,25]. Intu-
itively, where a standard hierarchical ORAM employs an oblivious hash table,
we instead employ an oblivious Range Tree.

Data structure. We use N to denote both the total size of logical data blocks
as well as the security parameter. There are log N +1 levels numbered 0, 1, . . . , L
respectively, where L := �log2 N� is the maximum level. Each level is an obliv-
ious Range Tree denoted T0,T1, . . . ,TL where Ti has capacity 2i. Data will be
replicated across these levels. We maintain the invariant that data in lower levels
are fresher. At any time, each Ti can be in two possible states, non-empty or
empty. Initially, the largest level is marked non-empty, whereas all other levels
are marked empty.
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Algorithm 5.4: Range ORAM Access(op, [s, t], data) (with t − s + 1 = 2i

for some i).

1. Retrieve all blocks in range trees of capacity no more than 2i, i.e., fetched :=
∪i−1

j=0Tj . This can be easily done by fetching its root. Mark blocks in fetched

that are not in the range [s, t] as dummy.
Each real block in fetched is tagged with its level number j as a secondary key
so that later after calling Dedup(fetched, t − s + 1), where Dedup is defined in
Sect. 4.2, only the most fresh version of each block remains. We assume each
block also carries a copy of its address.

2. For each j = i, i + 1, . . . , L , if Tj is non-empty, let fetched = fetched ∪
Tj .Access(read, [s, t],⊥).

3. Let data∗ := Dedup(fetched, 2i). If op = read , then data∗ will be returned at
the end of the procedure. Else, data∗ := data.

4. If all levels ≤ i are marked empty then perform Ti.Build(data∗) and mark it
as ready. Otherwise:
(a) Let � denote the smallest level greater than i that is empty. If no such

level exists, let � := L.
(b) Let S := ∪�−1

j=0Tj . If � = L, additionally include S := S ∪ TL. Call
T�.Build(Dedup(S, 2�)) and Ti.Build(data∗). Mark levels � and i as non-
empty, and all other levels below � as empty.

Example. We show a simple example for how levels are updated after some
accessed. We assume initially that all blocks are stored in the largest Range
Tree. Consider the following sequence of ranges [1, 1], [2, 3], [4, 5], [6, 6].

– Access [1, 1]: A block of size 1. Added to T0.
– Access [2, 3]: A block of size 2, and so i = 1. Levels ≤ i are not empty. The

smallest empty level larger than i = 1 is 2. Thus, move [1, 1] to T2 (which
has capacity 4), and then put [2, 3] to T1. At this point, T0 is empty and T1

and T2 are occupied.
– Access [4, 5]: A block of size 2, and so i = 1. Levels ≤ i are not empty. The

smallest empty level larger than i = 1 is 3. Thus, move {1, 2, 3} to T3 (which
has capacity 8), and then put [4, 5] to T1. At this point, T0 and T2 are empty,
and T1 and T3 are occupied.

– Access [6, 6]: A block of size 1, and so i = 0. Levels ≤ i are empty. [6, 6] is
added to T0. At this point, T2 is empty, and T0, T1 and T3 are occupied.

The following theorem is proven in the full version of the paper.

Theorem 5.5 (Range ORAM). Assuming one-way functions exist, there exists
a computationally secure Range ORAM consuming O(N log N) space with
negl(N) failure probability, and len·poly log N bandwidth and (2, poly log N) local-
ity for accessing a range of size len.

We remark that the both bandwidth and locality are in an amortized sense:
for sufficiently large amount of accesses of contiguous addresses len1, . . . , lenm,
the total bandwidth is (

∑m
i=1 leni) · poly log N and locality is (2,m · poly log N).
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5.4 Perfectly Security Range ORAM

The computational security in our construction is due to the use of a computa-
tionally secure locally initializable hierarchical ORAM (Theorem4.2).

We can achieve perfect security by making the perfectly secure ORAM con-
struction with polylogarithmic bandwidth in Chan et al. [15] locally initializable.

For a hierarchical ORAM, within each level, the position of a data block is
determined by applying a PRF to the block’s logical address. To achieve perfect
security, Chan et al. [15] replace the PRF with a truly random permutation. To
access a block within a level, the client must first figure out the block’s correct
location within the level. If the client had linear storage, it could simply store
the locations (or position labels). To achieve small client storage, Chan et al.
recursively store the position labels in a smaller ORAMs, similar to the idea
of recursion in tree-based ORAMs [36]. Thus, there are logarithmically many
ORAMs (each is a perfectly secure hierarchical ORAM), where the ORAM at
depth d stores position labels for the ORAM at depth d + 1; and finally, the
ORAM at the maximum depth D = O(log N) stores the real data blocks.

The Build procedure for one ORAM depth relies only on oblivious sorts and
linear scans, and thus consumes (2, poly log N) locality using locality-preserving
Bitonic sort. The Build procedure for one ORAM depth outputs its position map,
which is subsequently used to initialize the next ORAM depth. Thus, all ORAM
depths combined can be initialized with (2, poly log N) locality. Thus, we have
the following theorem.

Theorem 5.6 (Perfectly secure Range ORAM). There exists a perfectly secure
Range ORAM consuming O(N log N) space, len · poly log N bandwidth and
(2, poly log N) locality for accessing a range of size len.

5.5 Online Range ORAM

So far, our range ORAM assumes an abstraction where we have foresight on
how many contiguous locations of logical memory we wish to access. We now
consider an online variant, where the memory requests arrive one by one just as
in normal ORAM. Formally:

Functionality: A logical memory functionality that supports the follow-
ing types of instructions:

– (op, addr, data): where op ∈ {read, write}, addr ∈ [N ] and data ∈
{0, 1}b ∪ {⊥}. If op = write, then write mem[addr] = data. In both
cases, return mem[addr].

Leakage: Consider a sequence of requests I = ((op1, addr1, data1), . . . ,
(opi, addri, datai), . . .). Each instruction leaks one bit indicating whether
the last instruction is contiguous, i.e., for every i, the leakage is 1 iff
addri+1 = addri + 1.

Blackbox construction of online range ORAM from range ORAM.
Given a range ORAM construction, we can convert it to an online range ORAM
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scheme as follows, incurring only logarithmic further blowup. Intuitively, the
idea is to prefetch a contiguous region of size 2k every time a 2k contiguous
region has been accessed. That is, if a contiguous region of overall size 2k is
being read, then it is fetched as k distinct blocks of size 1, 2, 4, 8, . . . , 2k. The
detailed construction is given below:

Let prefetch be a dedicated location in memory storing prefetched contiguous
memory regions. Initially, let rsize := 1, p = 1, and let prefetch := ⊥. Upon
receiving a memory request:

– If prefetch[p] does not match the logical address requested, then do the fol-
lowing.
1. First, write back the entire prefetch back into the range ORAM.
2. Next, request a region of length 1 consisting of only the requested logical

address, store the result in prefetch;
3. Reset p := 1 and rsize := 1;

– Read and write prefetch[p], and let p := p + 1.
– If p > rsize, then do the following.

1. First, let rsize := 2 · rsize.
2. Next, write prefetch back into the range ORAM.
3. Now, prefetch the next contiguous region containing rsize logical

addresses, and store them in prefetch, and let p := 1.

It is not hard to see that given the above algorithm, accessing each range of
size R will be broken up into at most O(log R) accesses, to regions of sizes
1, 2, 4, . . . , R respectively, and each size has one read request and one write
request. Security is straightforward as range ORAM is oblivious, and the trans-
formation between the leakage profiles of online range ORAM and range ORAM
is straightforward. Thus we have the following theorem.

Theorem 5.7 (Online Range ORAM). There exists a perfectly secure online
Range ORAM, which on receiving len consecutive memory locations online per-
forms len · poly log N bandwidth and achieves (2, poly log N) locality.

6 Lower Bound for More Restricted Leakage

In Sect. 5.5, the online range ORAM leaks which instructions form a contiguous
group of addresses. In this section, we show that if we restrict the leakage and do
not allow the adversary to learn whether adjacent instructions access contiguous
addresses, the lower bound for bandwidth to achieve locality will be significantly
worse.

Model assumptions. We first clarify the model in which we prove the lower
bound.

1. We restrict the leakage such that the adversary knows only the number N of
logical blocks stored in memory, and the total number T of online operations,
each of which has the form (op, addr, data), where op ∈ {read, write}, addr ∈
[N ] and data ∈ {0, 1}b ∪ {⊥}.
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2. Just like earlier ORAM lower bounds [10,23,25]), we assume the so-called
balls-and-bins model, i.e., the blocks are opaque objects and the algorithm,
for instance, cannot use encoding techniques to combine blocks in the storage.
Note that all known ORAM algorithms indeed fall within this model.

3. We assume that the algorithm has an offline phase in which it can preprocess
memory before seeing any instructions. However, recall that the instructions
are online, i.e., the algorithm must finish serving an instruction before seeing
the next one.

Notation. Recall that we use D to denote the number of disks (each of which has
a single head), � to denote the locality (where we consider the very general case
� ≤ N

10 ), m to denote the memory size blowup3, and β to denote the bandwidth.
Moreover, suppose the CPU has only c block of local cache, where we just need
a loose bound c ≤ N

10 . We shall prove the following theorem.

Theorem 6.1. For any �, c ≤ N
10 , any Online Range ORAM satisfying the

restricted leakage that has (D, �)-locality with c blocks of cache storage will incur
Ω(N

D ) bandwidth.

Proof Intuition. By our leakage restriction assumption, the adversary cannot
distinguish between the following two scenarios.

1. There are N operations that access contiguous addresses in the order from 0
to N − 1.

2. There are N operations, each of which access an address chosen independently
uniformly at random from [N ].

Observe that to achieve (D, �)-locality, in scenario 1, there can be at most �
jumping moves for the disk heads. Therefore, the same must hold for scenario 2.
To serve an online request in scenario 2, we consider the following cases.

1. The block of the requested address is already in the cache. (However, the
ORAM might still pretend to do some accesses.) Observe this happens with
probability at most c

N ≤ 1
10 , since the next requested address is chosen inde-

pendently uniformly at random.
2. The online request is served by some disk head jump, which takes O(1) phys-

ical accesses. Again, the ORAM might make other accesses to hide the access
pattern. Observe at most � ≤ N

10 requests can be served this way.
3. The online request is served by linear scan of the disk heads. By the Chernoff

Bound, except with e−Θ(N) probability, at least N
2 of the requests are served

by linear scan. The following lemma gives a stochastic lower bound on the
number of physical accesses in this case.

For ease of notation, we assume that K := N−c
D is an integer.

3 However, as we shall see, m does not play a role in the lower bound.
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Lemma 6.2 (Stochastic Lower Bound on the Number of Physical Accesses).
Suppose in Scenario 2, the block of the next random address requested is not in
the ORAM’s cache. Moreover, suppose this request is served by only linear scan
of disk heads, i.e., no jump move is made. Then, the random variable of the
number of physical accesses for serving this request stochastically dominates the
random variable with uniform distribution on {1, 2, . . . , N−c

D }.
Proof. Consider some configuration of the disk heads. Without loss of generality,
assume that the cache currently stores the blocks for exactly c distinct addresses.
For each of the remaining N −c addresses, we can assign it to the disk head that
takes a minimum number of accesses to reach a corresponding block by linear
scan, where a tie can be resolved arbitrarily. For each j ∈ [D], let aj be the
number of addresses assigned to disk head j; observe that we have

∑

j∈[D] aj =
N − c.

For each integer 1 ≤ i ≤ K = N−c
D , observe that the number of addresses that

take at least i physical accesses to reach is at least
∑

j∈[D] max{0, aj − i + 1} ≥
D · (K − i + 1), where the last equality holds when all aj ’s equal K.

Hence, the probability that at least i physical accesses is needed is at least
D·(K−i+1)

N−c = K−i+1
K , which implies the required result.

Lemma 6.3 (Lower Bound on Bandwidth). Except with probability at
most e−Θ(N), the average number of physical accesses to serve each request in
Scenario 2 is at least Ω(N

D ).

Proof. As observed above, except with at most e−Θ(N) probability, at least N
2 of

the online requests must be served by linear scan of disk heads. By Lemma 6.2,
the number of physical accesses for each such request stochastically dominates
the uniform distribution on {1, 2, . . . , N−c

D }, which has expectation Θ(N
D ), since

we assume the cache size c ≤ N
10 .

Since the addresses of the online requests are picked independently after the
previous requests are served, by Chernoff bound, except with probability e−Θ(N),
the average number of physical accesses to serve each such online request is at
least Ω(N

D ), as required.

7 Conclusions and Open Problems

We initiate a study of locality in oblivious RAM. For conclusion, we obtain the
following results:

– There is an ORAM scheme that makes use of only 2 disks, that preserves the
locality of the input program. Namely, if the input program accesses in total
� discontiguous regions, the ORAM scheme accesses at most � · poly log N
discontiguous regions. Moreover, if the program accesses in total T logical
addresses, then the ORAM accesses in total T · poly log N addresses. The
ORAM leaks the sizes of the contiguous regions being accessed.

– Without leaking the sizes, we show a lower bound that the bandwidth of an
oblivious program must be Ω(N), assuming O(1)-disks.
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Open problems. We hope that our result will inspire future work on this topic.
In the following, we provide several open questions on further understanding the
trade-off between locality and bandwidth in oblivious compilation.

Preserving the number of disks. Our ORAM construction compiles (1, �)-
local program into (2, poly log N)-local program that is oblivious. Is it possible
to achieve a compiler that preserve the number of disks? We emphasize that our
construction uses the second disk only in the oblivious sorting, and it unclear
whether sorting with (1, � · poly log N)-locality is possible to achieve.

Supporting more expressive input programs. Our motivated applications
(e.g., outsourced file server, outsourced range query database), involve fetching
some region from the memory and then accessing it in a streaming fashion. That
is, we focused so far on supporting ORAM for (1, �)-local programs. A natural
generalization is to construct an ORAM scheme that supports more expressive
input programs, such as (D, �)-local programs for D ≥ 2. This allows, for instance,
computing inner products of D-arrays, or merging D-arrays. The input program
sends to the memory instructions that also specify which disks to access, i.e.,
instructions of the form (move, d, addr) and (op, d, data), as defined in Sect. 3.
As we discuss further in the appendices of the online full version [5], depending
on how we formulate the allowable leakage, the problem can be easy or an open
challenge.

Locality preserving OPRAM. We have considered a single CPU in this work.
A natural question is whether we can extend the construction to support multiple
CPUs, namely, to construct an oblivious parallel RAM (OPRAM) that preserves
locality.

Asymptotic efficiency. We have showed the theoretic feasibility of construct-
ing a Range ORAM with poly-logarithmic work and locality. In this feasibility
result, we favored conceptual simplicity over optimizing poly-logarithmic fac-
tors. Nevertheless, it is interesting to see to what extent the constructions can
be optimized. Perhaps locality-preserving ORAM can be constructed with the
same bandwidth efficiency as a regular ORAM?
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A Appendix: Locality of Bitonic Sort

In this section, we first analyze the locality of Bitonic sort, which runs in
O(n log2 n) time.

We call an array of numbers bitonic if it consists of two monotonic sequences,
the first one ascending and the other descending, or vice versa. For an array S,
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we write it as Ŝ if it is bitonic, as
−→
S (resp.

←−
S ) if it is sorted in an ascending

(resp. descending) order.
The algorithm is based on a “bitonic split” procedure

−−→
Split, which receives as

input a bitonic sequence Ŝ of length n and outputs a sorted sequence
−→
S .

−−→
Split

first separates Ŝ into two bitonic sequences Ŝ1, Ŝ2, such that all the elements in
S1 are smaller than all the elements in S2. It then calls

−−→
Split recursively on each

sequence to get a sorted sequence.

Procedure A.1:
−→
S =

−−→
Split(Ŝ)

– Let Ŝ1 =
〈

min(a0, an/2),min(a1, an/2+1), . . . ,min(an/2−1, an−1)
〉

.
– Let Ŝ2 =

〈

max(a0, an/2),max(a1, an/2+1), . . . ,max(an/2−1, an−1)
〉

.
–

−→
S 1 =

−−→
Split(Ŝ1),

−→
S 2 =

−−→
Split(Ŝ2) and

−→
S = (

−→
S 1,

−→
S 2).

Similarly,
←−
S =

←−−
Split(Ŝ) sorts the array in a descending order. We refer to [9]

for details.
To sort an array S of n elements, the algorithm first converts S into a bitonic

sequence using the Split procedures in a bottom up fashion, similar to the struc-
ture of merge-sort. Specifically, any size-2 sequence is a bitonic sequence. In each
iteration i = 1, . . . , log n − 1, the algorithm merges each pair of size-2i bitonic
sequences into a size-2i+1 bitonic sequence. Towards this end, it uses the

−−→
Split

and
←−−
Split alternately, as two sorted sequences (

−→
S 1,

←−
S 2) form a bitonic sequence.

The full bitonic sort algorithm is presented below:

Algorithm A.2: BitonicSort(S)

1. Convert S to a bitonic sequence: For i = 1, . . . , log n − 1:
(a) Let S = (Ŝ0, . . . , Ŝn/2i−1) be the size-2i bitonic sequences from the pre-

vious iteration.
(b) For j = 0, . . . , n/2i+1 − 1, B̂j = (

−−→
Split(Ŝ2j),

←−−
Split(Ŝ2j+1)).

(c) Set S = (B̂0, . . . , B̂n/2i+1−1).
2. The array Ŝ is now a bitonic sequence. Apply

−→
S =

−−→
Split(Ŝ) to obtain a sorted

sequence.

Locality and obliviousness. It is easy to see that the sorting algorithm is
oblivious, as all accesses to the memory are independent of the input data.
For locality, first note that procedure

−−→
Split and

←−−
Split are (2, O(log n))-local. No

move operations are needed between instances of recursions, as these can be
executed one after another as iterations (and using some vacuous reads). Thus,
Algorithm A.2 is (2, O(log2 n))-local as it runs in log n iterations, each invoking−−→
Split and

←−−
Split. Figure 3 gives a graphic representation of the algorithm for input

size 8 and Fig. 4 illustrates its locality. The (2, O(log2 n)) locality of Bitonic sort
is also obvious from the figure.
Remark. Observe that in each pass of

−−→
Split (or

←−−
Split), a min/max operation

is a read-compare-write operation. Thus, strictly speaking, each memory loca-
tion is accessed twice for this operation – once for reading and once for writ-
ing. When the write is performed, the read/write head has already moved for-
ward and is thus not writing back to the same two locations that it read from.
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Going back to the same two locations would incur an undesirable move head
operation. However, we can easily convert this into a solution that still pre-
serves (2, O(1))-locality for each pass of

−−→
Split by introducing a slack after every

memory location (and thus using twice the amount of storage). In this solu-
tion, every memory location ai is followed by a′

i; the entire array is stored as
((a0, a

′
0), . . . , (an−1, a

′
n−1)) where ai stores real blocks and a′

i is a slack location.
When ai and aj are compared, the results can be written to a′

i and a′
j respec-

tively without incurring a move operation. Before starting the next iteration, we
can move the data from slack locations to the actual locations in a single pass,
thus preserving (2, O(1))-locality for each pass of

−−→
Split (and

←−−
Split).

Fig. 3. Bitonic sorting network for 8 inputs. Input come in from the left end,
and outputs are on the right end. When two numbers are joined by an arrow, they are
compared, and if necessary are swapped such that the arrow points from the smaller
number toward the larger number. This figure is modified from [1].
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Fig. 4. Locality of Bitonic Sort for 8 elements. The figure shows the allocation
of the data in the two disks for an 8 element array. For each input, either a compare-
and-swap operation is performed in the specified direction or the input is ignored as
denoted by ⊥. The figure shows the first 3 passes out of the required 6 passes for 8
elements (see Fig. 3).
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Abstract. We consider a scenario where a server holds a huge database
that it wants to make accessible to a large group of clients. After an
initial setup phase, clients should be able to read arbitrary locations
in the database while maintaining privacy (the server does not learn
which locations are being read) and anonymity (the server does not
learn which client is performing each read). This should hold even if
the server colludes with a subset of the clients. Moreover, the run-time
of both the server and the client during each read operation should be
low, ideally only poly-logarithmic in the size of the database and the
number of clients. We call this notion Private Anonymous Data Access
(PANDA). PANDA simultaneously combines aspects of Private Informa-
tion Retrieval (PIR) and Oblivious RAM (ORAM). PIR has no initial
setup, and allows anybody to privately and anonymously access a public
database, but the server’s run-time is linear in the data size. On the other
hand, ORAM achieves poly-logarithmic server run-time, but requires an
initial setup after which only a single client with a secret key can access
the database. The goal of PANDA is to get the best of both worlds:
allow many clients to privately and anonymously access the database as
in PIR, while having an efficient server as in ORAM.

In this work, we construct bounded-collusion PANDA schemes, where
the efficiency scales linearly with a bound on the number of corrupted
clients that can collude with the server, but is otherwise poly-logarithmic
in the data size and the total number of clients. Our solution relies
on standard assumptions, namely the existence of fully homomorphic
encryption, and combines techniques from both PIR and ORAM. We
also extend PANDA to settings where clients can write to the database.

1 Introduction

As individuals and organizations increasingly rely on third party data stored
remotely, there is often a need to access such data both privately and anony-
mously. For example, we can envision a service that has a large database of med-
ical conditions, and allows clients to look up their symptoms; naturally clients do
c© International Association for Cryptologic Research 2019
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not want to reveal which symptoms they are searching for, or even the frequency
with which they are performing such searches.

To address this, we consider a setting where a server holds a huge database
that it wants to make accessible to a large group of clients. The clients should
be able to read arbitrary locations in the database while hiding from the server
which locations are being accessed (privacy), and which client is performing each
access (anonymity). We call this Private Anonymous Data Access (PANDA).

In more detail, PANDA allows some initial setup phase, after which the server
holds an encoded database, and each client holds a short key. The setup can be
performed by a trusted third party, or via a multi-party computation protocol.
After the setup phase, any client can execute a read protocol with the server,
to retrieve an arbitrary location within the database. We want this protocol
to be highly efficient, where both the server’s and client’s run-time during the
protocol should be sub-linear (ideally, poly-logarithmic) in the database size and
the total number of clients. For security, we consider an adversarial server that
colludes with some subset of clients. We want to ensure that whenever an honest
client performs a read access, the server learns nothing about the location being
accessed, or the identity of the client performing the access beyond the fact that
she belongs to the group of all honest clients. For example, the server should not
learn whether two accesses correspond to two different clients reading the same
location of the database, or one client reading two different database locations.1

We call the above a read-only PANDA, and also consider extensions that
allow clients to write to the database, which we discuss below in more detail.

Connections to PIR and ORAM. PANDA combines aspects of both Pri-
vate Information Retrieval (PIR) [CGKS95,KO97] and Oblivious RAM
(ORAM) [GO96]. Therefore, we now give a high-level overview of these primi-
tives, their goals, and main properties.

In a (single-database) PIR scheme [KO97], the server holds a public database
in the clear. The scheme has no initial setup, and anybody can run a protocol
with the server to retrieve an arbitrary location within the database. Notice that
since there are no secret keys that distinguish one client from another, a PIR
scheme also provides perfect anonymity. However, although the communication
complexity of the PIR protocol is sub-linear in the data size, the server’s run-
time is inherently linear in the size of the data. (Indeed, if the server didn’t
read the entire database during the protocol, it would learn something about
the location being queried, since it must be among the ones read.) Therefore,
PIR does not provide a satisfactory answer to the PANDA problem, where we
want sub-linear efficiency for the server.

In an ORAM scheme, there is an initial setup after which the server holds
an encoded database, and a client holds a secret key. The client can execute a
protocol with the server to privately read or write to arbitrary locations within
the database, and the run-time of both the client and the server during each such
protocol is sub-linear in the data size. However, only a single client in possession

1 We assume clients have an anonymous communication channel with the server (e.g.,
using anonymous mix networks [Cha03] such as TOR [DMS04] or [BG12,LPDH17]).
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of a secret key associated with the ORAM can access the database. Therefore,
ORAM is also not directly applicable to the PANDA problem, where we want a
large group of clients to access the database.

1.1 Prior Work Extending PIR and ORAM

Although neither PIR nor ORAM alone solve the PANDA problem, several prior
approaches have considered extensions of PIR and ORAM, aimed to overcome
their aforementioned limitations. We discuss these approached, and explain why
they do not provide a satisfactory solution for PANDA.

ORAM with Multiple Clients. As mentioned above, in an ORAM scheme only
a single client can access the database, whereas in PANDA we want multiple
clients to access it. There are several natural ways that we can hope to extend
ORAM to the setting of multiple clients.

The first idea is to store the data in a single ORAM scheme, and give all the
clients the secret key for this ORAM. Although this solution provides anonymity
(all clients are identical) it does not achieve privacy; if the server colludes with
even a single client, the privacy of all other clients is lost.

A second idea is to store the data in a separate ORAM scheme for each
client, and give the client the corresponding secret key. Each client then accesses
the data using her own ORAM. This achieves privacy even if the server colludes
with a subset of clients, but does not provide anonymity since the server sees
which ORAM is being accessed.2

The third idea is similar to the previous one, where the data is stored in a
separate ORAM scheme for each client, and the client accesses the data using
her own ORAM. However, unlike the second idea, the client also performs a
“dummy” access on the ORAM schemes of all other clients to hide her iden-
tity. This requires a special ORAM scheme where any client without a secret
key can perform a “dummy” access which looks indistinguishable from a real
access to someone that does not have the secret key. It turns out that exist-
ing ORAM schemes can be upgraded relatively easily to have this property
(using re-randomizable encryption). Although this solution achieves privacy and
anonymity, the efficiency of both the server and the client during each access is
linear in the total number of clients.

Lastly, we can also store the data in a single ORAM scheme on the server, and
distribute the ORAM secret key across several additional proxy servers. When a
client wants to access a location of the data, she runs a multiparty computation
protocol with the proxy servers to generate the ORAM access. Although this
solution provides privacy, anonymity and efficiency, it requires having multiple
non-colluding servers, whereas our focus is on the single server setting.

Variants of the above ideas have appeared in several prior works
(e.g., [BMN17,MMRS15,KPK16,BHKP16,ZZQ16]) that explored multi-client
2 Also, the server storage in this solution grows proportionally to the number of clients
times the data size. Reducing the server storage, even without anonymity, is an
interesting relaxation of PANDA which we explore in the full version.
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ORAM. In particular, the work of Backes et al. [BHKP16] introduced the notion
of Anonymous RAM (which is similar to our notion of secret-writes PANDA,
discussed below), and proposed two solutions which can be seen as variants of
the third and fourth ideas discussed above. Specifically, they are able to achieve
security for up to all but one colluding clients in both schemes, one achieving
linear storage in the number of users, the other relying on two non-colluding
servers. Our solution, for the same collusion threshold, is able to achieve linear
storage overhead in the number of users with only a single server, and for lower
collusion thresholds we are more efficient (linear in the collusion threshold). We
note, despite much research activity, no prior solution simultaneously provides
privacy, anonymity and efficiency in the single-server setting.

Doubly Efficient PIR. As noted above, the server run-time in a PIR protocol is
inherently linear in the data size, whereas in PANDA we want the run time of
both the client and the server to be sub-linear. However, it may be possible to
get a doubly efficient PIR (DEPIR) variant in which the server run-time is sub-
linear, by relaxing the PIR problem to allow a pre-processing stage after which
the server stores an encoded version of the database. This concept was first
proposed by Beimel, Ishai and Malkin [BIM00], who showed how to construct
information-theoretic DEPIR schemes in the multi-server setting, with several
non-colluding servers. Two recent works, of Canetti et al. [CHR17] and Boyle
et al. [BIPW17], give the first evidence that this notion may even be achievable in
the single-server setting. Concretely, they consider DEPIR schemes with a pre-
processing stage which generates an encoded database for the server, and a key
that allows clients to query the database at arbitrary locations. They distinguish
between symmetric-key and public-key variants of DEPIR, based on whether the
key used to query the database needs to be kept secret or can be made public.
Both works show how to construct symmetric-key DEPIR under new, previously
unstudied, computational hardness assumptions relating to Reed-Muller codes.
The work of [BIPW17] also shows how to extend this to get public-key DEPIR
by also relying on a heuristic use of obfuscation. Unfortunately, both of the above
assumptions are non-standard, poorly understood, and not commonly accepted.

In relation to PANDA, symmetric-key DEPIR suffers from the same draw-
backs as ORAM, specifically, only a single client with a secret key can access
the database.3 If we were to give this key to several clients, then all privacy
would be lost even if only a single client colludes with the server. On the other
hand, public-key DEPIR immediately yields a solution to the PANDA problem,
at least for the read-only variant. Moreover, it even has additional perks not
required by PANDA, specifically: the set of clients does not need to be chosen
ahead of time, anybody can use the system given only a public key, and the
server is stateless. Unfortunately, we currently appear to be very far from being
able to instantiate public-key DEPIR under any standard hardness assumptions.
3 The main difference between symmetric-key DEPIR and ORAM is that in the former

the server is stateless and only stores a static encoded database, while in the latter
the server is stateful and its internal storage is continuously updated after each
operation. In PANDA, we allow the server to be stateful.
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1.2 Our Results

Read-Only PANDA. In this work, we construct a bounded-collusion PANDA
scheme, where we assume some upper bound t on the number of clients that
collude with the server. The client and server efficiency scales linearly with t, but
is otherwise poly-logarithmic in the data size and the total number of clients. In
particular, our PANDA scheme allows for up to a poly-logarithmic collusion size
t while maintaining poly-logarithmic efficiency for the server and the client. Our
construction relies on the generic use of (leveled) Fully Homomorphic Encryption
(FHE) [RAD78,Gen09] which is in turn implied by the Learning With Errors
(LWE) assumption [Reg09]. Our basic construction provides security against a
semi-honest adversary, and we also discuss how to extend this to get security in
the fully malicious setting. In summary, we get the following theorem.

Theorem 1 (Informal statement of Theorem 6). Assuming the existence
of FHE, there exists a (read-only) PANDA scheme with n clients, t collusion
bound, database size L and security parameter λ such that, for any constant
ε > 0, we get:

– The client/server run-time per read operation is t · poly(λ, log L).
– The server storage is t · L1+ε · poly(λ, log L).

PANDA with Writes. We also consider extensions of PANDA to a setting that
supports writes to the database. If the database is public and shared by all
clients, then the location and content of write operations is inherently public
as well. However, we still want to maintain privacy and anonymity for read
operations, as well as anonymity for write operations. We call this a public-
writes PANDA and it may, for example, be used to implement a public message
board where clients can anonymously post and read messages, while hiding from
the server which messages are being read. We also consider an alternate scenario
where each client has her own individual private database which only she can
access. In this case we want to maintain privacy and anonymity for both the reads
and writes of each client, so that the server does not learn the content of the
data, which clients are accessing their data, or what parts of their data they are
accessing. We call this a secret-writes PANDA.4 We show the following result.

Theorem 2 (Informal statement of Theorem 7). Assuming the existence
of FHE, there exists a public-writes PANDA with n clients, t collusion bound,
database size L and security parameter λ such that, for any constant ε > 0, we
get:

– The client/server run-time per read operation is t · poly(λ, log L).

4 Note that in the read-only setting, having a scheme for a shared public database is
strictly more flexible than a scheme for individual private databases. We can always
use the former to handle the latter by having clients encrypt their individual data
and store it in a shared public database. However, once we introduce writes, these
settings become incomparable.
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– The client run-time per write is O(log L), and the server run-time is t · Lε ·
poly(λ, log L).

– The server storage is t · L1+ε · poly(λ, log L).

The same results as above hold for secret-writes PANDA, except that the
client run-time per write increases to t·poly(λ, log L), and L now denotes the sum
of the initial database size and the total number of writes performed throughout
the lifetime of the system.

Extensions. We also consider the PANDA problem in stronger security models
in which the adversary can adaptively choose the access pattern, and maliciously
corrupt parties. Our constructions are also secure in the adaptive setting. The
read-only PANDA scheme is secure against maliciously-corrupted clients, and a
variant of it (which employs Merkle hash trees and succinct interactive arguments
of knowledge) is secure if the server is also maliciously corrupted. Finally, we
discuss modifications of our PANDA with writes schemes that remain secure in
the presence of malicious corruptions. See the full version [HOWW18] for further
details.

1.3 Our Techniques

We now give a high-level overview of our PANDA constructions. We start with
the read-only setting, and then discuss how to enable writes.

Read-Only PANDA. Our construction relies on Locally Decodable Codes
(LDCs) [KT00], which have previously been used to construct multi-server
PIR [CGKS95,WY05]. We first give an overview of what these are, and then
proceed to use them to build our scheme in several steps.

Locally Decodable Codes (LDCs). An LDC consists of a procedure that encodes
a message into a codeword, and a procedure that locally decodes any individual
location in the message by reading only few locations in the codeword. We denote
the locality by k. An LDC has s-smoothness if any s out of k of the codeword
locations accessed by the local decoder are uniformly random and independent of
the message location being decoded. Such LDCs (with good parameters) imme-
diately give information-theoretic multi-server doubly-efficient PIR without any
keys [BIM00]: each of the k servers holds a copy of the encoded database, and
the client runs the local decoding procedure by reading each of the k queried
codeword locations from a different server. Even if s out of k servers collude, they
don’t learn anything about the database location that the client is retrieving.5

LDCs with sufficiently good parameters for our work can be constructed using
Reed-Muller codes [Ree54,Mul54].
5 In standard PIR schemes, the servers hold the original database, and each query is

answered by computing the requested codeword symbol on the fly. However, if the
codeword size is polynomial, then the servers can compute the codeword first in a
preprocessing phase, and then use the pre-computed codeword to answer each query
in sub-linear time.
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Initial Idea: LDCs + ORAM. Although LDCs naturally only give a multi-server
PIR, our initial idea is to think of these as “virtual servers” which will all be
emulated by a single real server by placing each virtual server under a separate
ORAM instance. Each client is assigned a random committee consisting of a
small subset of these virtual servers, for which she gets the corresponding ORAM
keys. When the adversary corrupts a subset of the clients, it gets all of their
ORAM keys, and can therefore be seen as corrupting all the virtual servers that
are on the committees of these clients. Nevertheless, we can ensure that the
committee of any honest client has sufficiently few corrupted virtual servers for
LDC smoothness to hide the client’s queries.

In more detail, we think of having k′ virtual servers, for some k′ which is
sufficiently larger than the locality k of the LDC. For each virtual server, we
choose a fresh ORAM key, and store an LDC encoding of the database under this
ORAM. Each client is assigned to a random committee consisting of k out of k′ of
the virtual servers, for which she gets the related ORAM keys. To read a database
location, the client runs the LDC local decoding algorithm, which requests to
see k codeword locations. The client then reads each of the k codeword locations
from a different virtual server on her committee, by using the corresponding
ORAM scheme. Notice that an adversary that corrupts some subset of t clients,
thus obtaining all of their ORAM keys, can be seen as corrupting all the virtual
servers on their committees. We can choose the parameters to ensure that the
probability of the adversary corrupting more than s out of k of the virtual servers
on the committee of any honest client is negligible (specifically, setting k′ = tk2

and s to be the security parameter). As long as this holds, our scheme guarantees
privacy, since the server only learns at most s out of the k codeword locations
being queried (by the security of ORAM), and these locations reveal nothing
about the database location being read (by the LDC smoothness).

Although the above solution already gives a non-trivial multi-client ORAM
with privacy and low server storage (see the full version [HOWW18]), it does
not provide any anonymity. The problem is that each client only accesses the
k out of k′ ORAM schemes belonging to her committee, and doesn’t have the
keys needed to access the remaining ORAM schemes. Therefore, the server can
distinguish between different clients based on which of the ORAMs they access.

One potential idea to fix this issue would be for the client to make some
“dummy” accesses to the k′ − k remaining ORAM schemes (which are not on
her committee) without knowing the corresponding keys. Most ORAM schemes
can be easily modified to enable such “dummy” accesses without a key, that
look indistinguishable from real accesses to a distinguisher that doesn’t have the
key. Unfortunately, in our case the adversarial colluding server does have the
keys for many of these ORAM schemes. Therefore, to make this idea work in
our setting, we would need an ORAM where clients can make a “smart dummy”
access without a key that looks indistinguishable from a real access to a ran-
dom location even to a “smart” distinguisher that has the key. The square-root
ORAM scheme [Gol87,GO96] can be modified to have this property, but the
overall client/server efficiency in the final solutions would be at least square-
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root of the data size. Unfortunately, more efficient ORAM schemes with poly-
logarithmic overhead (such as hierarchical ORAM [Ost90,GO96] or tree-based
ORAM [SvDS+13]) do not have this property, and it does not appear that they
could be naturally modified to add it. Instead, we take a different approach and
get rid of ORAM altogether.

Bounded-Access PANDA: LDCs + Permute. Our second idea is inspired by the
recent works of Canetti et al. [CHR17] and Boyle et al. [BIPW17] on DEPIR, as
well as earlier works of Hemenway et al. [HO08,HOSW11]. Instead of implement-
ing the virtual servers by storing the LDC codeword under an ORAM scheme, we
do something much simpler and use a Pseudo-Random Permutation (PRP) to
permute the codeword locations. In particular, for each of the k′ virtual servers
we choose a different PRP key, and use it to derive a different permuted code-
word. Each client still gets assigned a random committee consisting of k out of k′

of the virtual servers, for which she gets the corresponding PRP keys. To retrieve
a value from the database, the client runs the LDC local decoding algorithm,
which requests to see k codeword locations, and reads these locations using the
virtual servers on her committee by applying the corresponding PRPs. She also
reads uniformly random locations from the k′ −k virtual servers that are not on
her committee.

In relation to the first idea, we can think of the PRP as providing much
weaker security than ORAM. Namely, it reveals when the same location is read
multiple times, but hides everything else about the locations being read (whereas
an ORAM scheme even hides the former). On the other hand, it is now extremely
easy to perform a “smart dummy” access (as informally defined above) by read-
ing a truly random location in the permuted codeword, which is something we
don’t know how to do with poly-logarithmic ORAM schemes.

It turns out that this scheme is already secure if we fix some a-priori bound
B on the total number of read operations that honest clients will perform. We
call this notion a bounded-access PANDA. Intuitively, even though permuting
the codewords provides much weaker security than putting them in an ORAM,
and leaks partial information about the access pattern to the codeword, the fact
that this access pattern is sampled via a smooth LDC ensures that this leakage is
harmless when the number of accesses is sufficiently small. More specifically, our
proof follows the high-level approach of Canetti et al. [CHR17], who constructed
a bounded-access (symmetric-key) DEPIR which is essentially equivalent to the
above scheme in the setting with a single honest client and exactly k virtual
servers, where the adversary doesn’t get any of the PRP keys. In our case, we
need to extend this proof to deal with the fact that the adversary colludes with
some of the clients, and therefore learns some subset of the PRP keys.

Upgrading to Unbounded-Access PANDA. Our bounded-access PANDA scheme
is only secure when the number of accesses is a-priori bounded by some bound
B, and can actually be shown to be insecure for sufficiently many accesses
beyond that bound (following the analysis of [CHR17]). In the work of Canetti
et al. [CHR17] and Boyle et al. [BIPW17], going from bounded-access DEPIR
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to unbounded-access DEPIR required new non-standard computational hardness
assumptions. In our case, we will convert bounded-access PANDA to unbounded-
access PANDA using standard assumptions, namely leveled FHE (instantiatable
under the LWE assumption). The main reason that we can use our approach for
PANDA, but not DEPIR, is that it makes the server stateful. This is something
we allow in PANDA, whereas the main goal of DEPIR was to avoid it.

Our idea is essentially to “refresh” the bounded-access PANDA after every
B accesses. More specifically, we think of the execution as proceeding in epochs,
each consisting of B accesses. We associate a different Pseudo-Random Function
(PRF) key with each virtual server and, for epoch i, we derive an epoch-specific
PRP key for each server by applying the corresponding PRF on i. We then use
this PRP key to freshly permute the codeword in each epoch. The clients get
the PRF keys for the virtual servers in their committee. This lets clients derive
the corresponding epoch-specific PRP keys for any epoch, and they can then
proceed as they would using the bounded-access PANDA. The only difficulty
is making sure that the server can correctly permute the codeword belonging
to each virtual server in each epoch without knowing the associated PRF/PRP
keys. We do this by storing FHE encryptions of each of the PRF keys on the
server and, at the beginning of each epoch, the server performs a homomorphic
computation to derive an encryption of the correctly permuted codeword for
each virtual server. The clients also get the FHE decryption keys for the virtual
servers in their committee, and thus can decrypt the codeword symbols that they
read from the virtual servers. Note that the server has to do a large amount of
work, linear in the codeword size, at the beginning of each epoch. However, we
can use amortized accounting to spread this cost over the duration of the epoch
and get low amortized complexity. Alternately, the server can spread out the
actual computation across the epoch by performing a few steps of it at a time
during each access to get low worst-case complexity. (This is possible because
the database is read-only, and so its contents at the onset of the next epoch are
known in advance at the beginning of the current epoch.) The security of this
scheme follows from that of the bounded-access PANDA since in each epoch,
the read operations are essentially performed using a fresh copy of the bounded-
access PANDA (with fresh PRP keys).

PANDA with Public Encoding. Our construction of (unbounded-access) PANDA
scheme described above has some nice features beyond what is required by the
definition. Specifically, although the server is stateful and its internal state is
updated in each epoch, the state can be computed using public information (the
FHE encryptions of the PRF keys), the database, and the epoch number.6 We
find it useful to abstract this property further as a PANDA with public encoding.
Specifically, we think of the PANDA scheme as having a key generation algorithm

6 For example, the state does not depend on the history of protocol executions with
the clients, and is unaffected by client actions. This may be of independent interest
even if we downgrade the scheme to the single client setting, and gives the first
ORAM scheme we are aware of with this property.
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which doesn’t depend on the database, and generates a public-key for the server
and secret-keys for each of the clients. The server can then use the public-key
to create a fresh encoding of the database with respect to an arbitrary epoch
identifier (which can be a number, or an arbitrary bit string). The clients are
given the epoch identifier, and can perform read operations which consist of
reading some subset of locations from the server. Security holds as long as the
number of read operations performed by honest clients with respect to any epoch
identifier is bounded by B. Such a scheme can immediately be used to get an
unbounded-access PANDA by having the server re-encode the database at the
beginning of each epoch with an incremented epoch counter.

Note that our basic security definition considers a semi-honest adversary
who corrupts the server and some subset of the clients, but otherwise follows
the protocol specification. However, with the above structure, it’s also clear that
fully malicious clients (who might not follow the protocol) have no affect on the
server state, and therefore cannot violate security. A fully malicious server, on the
other hand, can lie about the epoch number and cause honest clients to perform
too many read operations in one epoch, which would break security. However, if
we assume that the epoch number is independently known to honest clients (for
example, epochs occur at regular intervals, and clients know the rate at which
accesses occur and have synchronized clocks) then this attack is prevented. The
only other potential attack for a fully malicious server is to give incorrect values
for the locations accessed in the encoded database. We can also prevent this
attack by using succinct (interactive) arguments to prove that the values were
computed correctly.

PANDA with Writes. We also consider PANDA schemes where clients can
write to the database, and discuss two PANDA variants in this setting which we
call public-writes and secret-writes.

Public-Writes PANDA. In a public-writes PANDA, we consider a setting where
the server holds a shared public database which should be accessible to all clients.
Clients can write to arbitrary locations in the database but, since the database is
public, the locations and the values being written are necessarily public as well.
However, we still want to maintain anonymity for the write operations (i.e., the
server does not learn which client is performing each write), and both privacy
and anonymity for the read operations (namely, the server does not learn which
client is performing each read, or the locations being read). Our write operation
is extremely simple: the client just sends the location and value being written
to the server. However, even if we use PANDA with public encoding, the server
cannot simply update the value in the encoded database since this would require
(at least) linear time to re-encode the entire database.

Instead, we use an idea loosely inspired by hierarchical ORAM [Ost90,GO96].
We will store the database on the server in a sequence of log L levels, where L
is the database size. Each level i consists of a separate instance of a read-only
PANDA with public encoding, and will contain at most Li = 2i database values.
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We think of the levels as growing from the top down, namely level-0 (the smallest)
is the top-most level, and level-log L (the largest) is the bottom-most. Initially,
all the data is stored in the bottom level i = log L, and all the remaining levels
are empty. When a client wants to read some location j of the database, she
uses the read-only PANDA for each of the log L levels to search for location j,
and takes the value found in the top-most level that contains it. When a client
writes to some location j, the server will place that database value in the top
level i = 0. The server knows (in the clear) which database values are stored at
each level. After every 2i write operations, the server takes all the values in levels
0, . . . , i and moves them to level i + 1 by using the public encoding procedure
of PANDA and incrementing the epoch counter; level i + 1 will contain all the
values that were previously in levels ≤ i+1, and levels 0, . . . , i will be emptied.7

Although the cost of moving all the data to level i + 1 scales with the data size
Li+1, the amortized cost is low since this only happens once every 2i writes.8

One subtlety that we need to deal with is that our read-only PANDA was
designed as an array data structure which holds L items with addresses 1, . . . , L.
However, the way we use it in this construction requires a map data structure
where the intermediate levels store Li � L items with addresses corresponding
to some subset of the values 1, . . . , L. We can resolve this using the standard
data-structures trick of storing a map in an array by hashing the n addresses into
n buckets where each bucket contains some small number of values (to handle
collisions). Our final public-writes PANDA scheme can also be thought of as
implementing a map data structure, where database entries can be associated
with arbitrary bit-strings as addresses, and clients can read/write to the value
at any address. We can also allow the total database size to grow dynamically
by adding additional levels as needed.

Secret-Writes PANDA. In this setting, instead of having a shared public
database, we think of each client as having an individual private database which
only she can access. We want the clients to be able to read and write to loca-
tions in their own database, while maintaining privacy and anonymity so that
the server doesn’t learn the identity of the client performing each access, the
location being accessed, or the content of the data.

Our starting point is the public-writes PANDA scheme, which already guar-
antees privacy and anonymity of read operations, and anonymity of write opera-
tions. The clients can also individually encrypt all their content to ensure that it
remains private. Therefore, we only need to modify write operations to provide
privacy for the underlying location being written. To achieve this, we rely on the
fact that our public-writes PANDA scheme already supports a map data struc-
ture, where data can be associated with an arbitrary bit-string as an address.
As a first idea, when a client wants to write to some location j in her database,

7 Note that the epoch counters are also incremented, and the encodings are refreshed,
when sufficiently many reads occur at that level, just like in the read-only case.

8 The server complexity can actually be de-amortized using the pipelining trick of
Ostrovsky and Shoup [OS97].
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she can use a client-unique PRF, associating the data with the address PRF (j),
and then write it using the public-writes scheme. While this partially hides the
location j, the server still learns when the same location is written repeatedly. To
solve this problem, we also add a counter c, and set the address to be PRF (j, c).
Whenever a client wants to read some location j, she uses the read operation of
the public-writes PANDA to perform a binary search, and find the largest count
c such that there is a value at the address PRF (j, c) in the database. Whenever
a client wants to write to location j, she first finds the correct count c (as she
would in a read access), and then writes the value to address PRF (j, c + 1).
This ensures that the address being written reveal no information about the
underlying database location. The only downside to this approach is that the
server storage grows with the total number of writes, rather than the total data
size. Indeed, since the server cannot correlate different “versions” of the same
database location, it cannot delete old copies. Although we view this as a nega-
tive, we note that many existing database systems only support “append only”
operations, and keep (as a backup) all old versions of the data. Therefore, in
such a setting the growth in server storage caused by our scheme does not in
fact add any additional overhead.

2 Preliminaries

Throughout the paper λ denotes a security parameter. We use standard crypto-
graphic definitions of Pseudo-Random Permutations (PRPs), Pseudo-Random
Functions (PRFs), and Fully Homomorphic Encryption (FHE) (see, e.g., [Gol01,
Gol04]). For a vector a = (a1, . . . , an), and a subset S = {i1, . . . , is} ⊆ [n], we
denote aS = (ai1 , . . . , ais).

Parameter Names. For all variants of the PANDA problem, we will let n denote
the number of clients, L denote the database size, and t denote a bound on the
number of corrupted clients colluding with the server.

2.1 Locally Decodable Codes (LDCs)

Locally decodable codes were first formally introduced by [KT00]. We rely on
the following definition of smooth LDCs.

Definition 1 (Smooth LDC). An s-smooth, k-query locally decodable code
with message length L, and codeword size M over alphabet Σ, denoted by
(s, k, L,M)Σ-smooth LDC, is a triplet (Enc,Query,Dec) of PPT algorithms with
the following properties.

Syntax. Enc is given a message msg ∈ ΣL and outputs a codeword c ∈ ΣM ,
Query is given an index � ∈ [L] and outputs a vector r = (r1, . . . , rk) ∈ [M ]k,
and Dec is given cr = (cr1 , . . . , crk

) ∈ Σk and outputs a symbol in Σ.
Local decodability. For every message msg ∈ ΣL, and every index � ∈ [L],

Pr [r ← Query (�) : Dec (Enc (msg)r) = msg�] = 1.
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Smoothness. For every index � ∈ [L], the distribution of (r1, . . . , rk) ←
Query (�) is s-wise uniform. In particular, for any subset S ⊆ [k] of size
|S| = s, the random variables ri : i ∈ S are uniformly random over [M ] and
independent of each other.

We will use the Reed-Muller (RM) family of LDCs [Ree54,Mul54] over a
finite field F which, roughly, are defined by m-variate polynomials over F. More
specifically, to encode messages in F

L, one chooses a subset H ⊆ F such that
|H|m ≥ L. Encoding a message msg ∈ F

L is performed by interpreting the
message as a function msg : Hm → F, and letting m̃sg : Fm → F be the low
degree extension of msg; i.e., the m-variate polynomial of individual degree < |H|
whose restriction to Hm equals msg. The codeword c consists of the evaluations
of m̃sg at all points if F

m. We can locally decode any coordinate � ∈ [L] of
the message by thinking of � as a value in Hm. This is done by choosing a
random degree-s curve ϕ : F → F

m such that ϕ (0) = �, and querying the
codeword on k ≥ ms (|H| − 1) non-0 points on the curve. The decoder then
uses the answers a1, · · · , ak to interpolate the (unique) univariate degree-(k − 1)
polynomial ϕ̃ such that ϕ̃ (i) = ai for every 1 ≤ i ≤ k. It outputs ϕ̃ (0) as
the �’th message symbol. To guarantee that the field contains sufficiently many
evaluation points, the field is chosen such that |F| ≥ k +1. The codeword length
is M = |F|m. We will need the following theorem, whose proof appears in the
full version [HOWW18].

Theorem 3. For any constant ε > 0, there exist (s, k, L,M)Σ-smooth LDCs
with |Σ| = poly(s, log L), k = poly(s, log L) and M = L1+ε · poly(s, log L). Fur-
thermore, the encoding time is ˜O(M) and the decoding time is ˜O(k).

3 Read-Only PANDA

In this section we describe our read-only PANDA scheme. We first formally
define this notion. At a high level, a PANDA scheme is run between a server S
and n clients C1, · · · , Cn, and allows clients to securely access a database DB,
even in the presence of a (semi-honestly) corrupted coalition consisting of the
server S and a subset of at most t of the clients. In this section, we focus on
the setting of a read-only, public database, in which the security guarantee is
that read operations of honest clients remain entirely private and anonymous,
meaning the corrupted coalition learns nothing about the identity of the client
performed the operation, or which location was accessed.

Definition 2 (RO-PANDA). A Read-Only Private Anonymous Data Access
(RO-PANDA) scheme consists of procedures (Setup,Read) with the following
syntax:

– Setup(1λ, 1n, 1t,DB) is a function that takes as input a security parameter λ,
the number of clients n, a collusion bound t, and a database DB ∈ {0, 1}L, and
outputs the initial server state stS, and client keys ck1, · · · , ckn. We require
that the size of the client keys |ckj | is bounded by some fixed polynomial in
the security parameter λ, independent of n, t, |DB|.
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– Read is a protocol between the server S and a client Cj. The client holds as
input an address addr ∈ [L] and the client key ckj, and the server holds its
current states stS. The output of the protocol is a value val to the client, and
an updated server state st′S.

We require the following correctness and security properties.

– Correctness: In any execution of the Setup algorithm followed by a sequence
of Read protocols between various clients and the server, each client always
outputs the correct database value val = DBaddr at the end of each protocol.

– Security: Any PPT adversary A has only negl (λ) advantage in the following
security game with a challenger C:

• A sends to C:
∗ The values n, t and the database DB ∈ {0, 1}L.
∗ A subset T ⊂ [n] of corrupted clients with |T | ≤ t.
∗ A pair of read sequences R0 =

(

j0l , addr0l
)

1≤l≤q
, R1 =

(

j1l , addr1l
)

1≤l≤q

(for some q ∈ N), where
(

jb
l , addr

b
l

)

denotes that client jb
l ∈ [n] reads

address addrbl ∈ [L].
We require that

(

j0l , addr0l
)

=
(

j1l , addr1l
)

for every l ∈ [q] such that j0l ∈
T ∨ j1l ∈ T .

• C performs the following:
∗ Picks a random bit b ← {0, 1}.
∗ Initializes the scheme by computing Setup

(

1λ, 1n, 1t,DB
)

.
∗ Sequentially executes the sequence Rb of Read protocol executions

between the honest server and clients. It sends to A the views of
the server S and the corrupted clients {Cj}j∈T during these protocol
executions, where the view of each party consists of its internal state,
randomness, and all protocol messages received.

• A outputs a bit b′.
The advantage AdvA (λ) of A in the security game is defined as: AdvA (λ) =
|Pr [b′ = b] − 1

2 |.

Efficiency Goals. Since a secure PANDA scheme can be trivially obtained by
having the client store the entire database locally, or having the server send
the entire database to the client in every read request, the efficiency of the
scheme is our main concern. We focus on minimizing the client storage and the
client/server run-time during each Read protocol. At the very least, we require
these to be t · o (|DB|).

Bounded-Access PANDA. We will also consider a weaker notion of a bounded-
access RO-PANDA scheme, for which security is only guaranteed to hold as long
as the total number of read operations q is a-priori bounded. Such schemes will
be useful building blocks for designing RO-PANDA schemes with full-fledged
security.
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Definition 3 (B-access RO-PANDA). Let B be an access bound. We say
that (Setup,Read) is a B-access RO-PANDA scheme if the security property of
Definition 2 is only guaranteed to hold for PPT adversaries that are restricted
to choose read sequences R0, R1 of length q ≤ B.

Remark on Adaptive Security. Note that, for simplicity, our definition is selective,
where the adversary chooses the entire read sequences R0, R1 ahead of time. We
could also consider a stronger adaptive security definition where the adversary
chooses the sequence of reads adaptively as the protocol progresses. Although our
constructions are also secure in the stronger setting (with minimal modifications
to the proofs), we chose to present our results in the selective setting to keep
them as simple as possible.

3.1 A Bounded-Access Read-Only PANDA Scheme

As a first step, we now show how to construct a bounded-access RO-PANDA
scheme, yielding the following theorem.

Theorem 4 (B-access RO-PANDA). Assuming one-way functions exist, for
any constant ε > 0 there is a B-bounded access RO-PANDA where, for n clients
with t collusion bound and database size L:

– The client and server complexity during each Read protocol is t·poly(λ, log L).
– The client storage is t · poly(λ, log L).
– The server storage is α ≤ t · L1+ε · poly(λ, log L).
– The access bound is B = α/(t · poly(λ, log L)).

Note that in the above theorem we can increase the access-bound B arbi-
trarily by artificially inflating the database size L to increase α. However, we
will mainly be interested in having a small ratio α/B while keeping α as small
as possible.

Construction Outline. As outlined in the introduction, our idea is inspired by the
recent works of Canetti et al. [CHR17] and Boyle et al. [BIPW17] on DEPIR.
We rely on an s-smooth, k-query LDC where s = λ is set to be the security
parameter. We think of the server S as consisting of k′ = k2t different “virtual
servers”, where t is the collusion bound. Each virtual server contains a permuted
copy of the LDC codeword under a fresh PRP. Each client is assigned a random
committee consisting of k out of k′ of the virtual servers and gets the corre-
sponding PRP keys. To retrieve an entry from the database, the client runs the
LDC local decoding algorithm, which requests to see k codeword locations, and
reads these locations using the virtual servers on its committee by applying the
corresponding PRPs. It also reads uniformly random locations from the k′ − k
virtual servers that are not on its committee.

Construction 1 (B-Access RO-PANDA). The scheme uses the following build-
ing blocks:
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– An (s, k, L,M)Σ-smooth LDC (EncLDC,QueryLDC,DecLDC) (see Definition 1,
Theorem 3).

– A CPA-secure symmetric encryption scheme
(

KeyGensym,Encsym,Decsym
)

.
– A pseudorandom permutation (PRP) family P : {0, 1}λ × [M ] → [M ] where

for every K ∈ {0, 1}λ the function P (K, ·) is a permutation.

The scheme consists of the following procedures:

– Setup(1λ, 1n, 1t,DB): Recall that n denotes the number of clients, t is the
collusion bound, and DB ∈ {0, 1}L. Instantiate the LDC with message size L
and smoothness s = λ, and let k be the corresponding number of queries, M
be the corresponding codeword size and Σ be the alphabet. Set k′ = k2t to
be the number of virtual servers. Proceed as follows.

• Database encoding. Generate the codeword ˜DB = EncLDC (DB) with ˜DB ∈
ΣM .

• Virtual server generation. For every 1 ≤ i ≤ k′:
∗ Generate a PRP key Ki

PRP ← {0, 1}λ, and an encryption key Ki
sym ←

KeyGensym
(

1λ
)

.

∗ Let ̂DB
i ∈ ΣM be a permuted database which satisfies ̂DB

i

P (Ki
PRP,j) =

˜DBj for all j ∈ [M ].

∗ Let ˜DB
i

be the encrypted-permuted database with ˜DB
i

j =

Encsym
(

Ki
sym, ̂DB

i

j

)

.
• Committee generation. For every j ∈ [n], pick a random size-k subset

Sj ⊆ [k′].
• Output. For each client Cj , set the client key ckj =

(Sj ,
{

Ki
PRP,Ki

sym : i ∈ Sj

}

) to consist of the description of the
committee and the PRP and encryption keys of the virtual servers on

the committee. Set the server state stS = { ˜DB
i

: i ∈ [k′]} to consist of
the encrypted-permuted databases of every virtual server.

– The Read protocol. To read database entry at location addr ∈ [L] from the
server S, a client Cj with key ckj = (Sj ,

{

Ki
PRP,Ki

sym : i ∈ Sj

}

) operates as
follows.

• (Query.) Denote Sj = {v1, . . . , vk} ⊆ [k′]. Sample (rv1 , · · · , rvk
) ←

QueryLDC (addr), and for each v ∈ Sj set r̂v = P (Kv
PRP, rv) to be the

query to virtual server v. For every v ∈ [k′] \ Sj , pick r̂v ∈R [M ] uni-
formly.

• (Recover). Send (r̂1, · · · , r̂k′) to the server S and obtain the answers
(

˜DB
1

r̂1
, · · · , ˜DB

k′

r̂k′

)

. For every v = vh ∈ Sj , decrypt ah =

Decsym
(

Kv
sym, ˜DB

v

r̂v

)

, and output DecLDC (a1, · · · , ak).

Remark. Note that in the above construction the server is completely static and
stateless. Indeed the Read protocol simply consists of the client retrieving some
subset of the locations from the server.
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Proof of Security. We prove the following claim about the above construction.

Claim 1. Assuming the security of all of the building blocks, Construction 1 is
B-bounded-access RO-PANDA for B = M/(2k2).

Claim implies Theorem. It’s easy to see that Claim 1 immediately implies The-
orem 4 by plugging in the LDC parameters from Theorem 3. In particular, for
n clients, t collusion bound and database size L:

– The client/server run-time is k′ log |Σ| = tk2 log |Σ| = t · poly(λ, log L).
– The client storage is k′ · (poly(λ) + log L) = t · poly(λ, log L).
– The server storage is α = k′ · M · log |Σ| = tk2M · log |Σ| = t · L1+ε ·

poly(λ, log L).
– The bound B is B = M/(2k2) = α/(t · poly(λ, log L)).

Background Lemmas. To show that the construction is secure, we rely on two
lemmas. The first lemma comes from the work of Canetti et al. [CHR17].

Lemma 1 (Lemma 1 in [CHR17]). Let X = (X1, · · · ,Xm) , Y = (Y1, · · · , Ym)
be l-wise independent random variables such that for every 1 ≤ i ≤ m, Xi, Yi are
identically distributed. Assume also that there is a value � such that Pr [Xi = �] ≥
1 − δ. Then SD (X,Y ) ≤ (mδ)l/2 + ml−1δl/2−1 ≤ 2ml−1δl/2−1 ≤ 2m(m2δ)l/2−1.

The second lemma (whose proof appears in the full version [HOWW18]) deals
with the intersection size of random sets.

Lemma 2. Let T ⊆ [n] be an arbitrary set of size |T | ≤ t. Let S1, · · · , Sn be
chosen as random subsets Sj ⊆ [k′] of size |Sj | = k, where k′ = k2t. Then, for
all ρ > 2e, the probability that there exists some j ∈ [n]\T such that | (∪i∈T Si)∩
Sj | ≥ ρ is at most n · 2−ρ.

Proof of Claim. We are now ready to prove Claim 1.

Proof of Claim 1. The correctness of the scheme follows directly from the correct-
ness of the LDC and the symmetric encryption scheme. We now argue security.

Let A be a PPT adversary corrupting the server and a subset T of at most t
clients. Let R0, R1 be the two sequences of read operations of length q ≤ B which
A chooses in the security game. Without loss of generality, we can assume that
R0, R1 do not contain read operations by corrupted clients since A can generate
the corresponding accesses itself (and it does not affect the server state in any
way). Let S1, . . . , Sn be the random committees chosen during Setup and let
E =

⋃

i∈T Si. We proceed via a sequence of hybrids.

H1 Hybrid H1 is the security game as in Definition 2.
H2 In hybrid H2, for all i �∈ E, we replace the encrypted database ˜DB

i
by a

dummy encryption (e.g.,) of the all 0 string.
Hybrids H1 and H2 are computationally indistinguishable by CPA security
of the encryption scheme.
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H3 In hybrid H3, for all i �∈ E we replace all calls to the PRP P (Ki
PRP, ·)

during the various executions of the Read protocol with a truly random
permutation πi : [M ] → [M ].
Hybrids H2 and H3 are computationally indistinguishable by PRP security.

Here we rely on the fact that in both hybrids the encrypted database ˜DB
i
for

i �∈ E is independent of the permutation.
H4 In hybrid H4, if during the committee selection in the Setup algorithm it

occurs that there exists some j ∈ [n] \ T such that |E ∩ Sj | ≥ s/2, then the
game immediately halts.
Hybrids H3 and H4 are statistically indistinguishable by Lemma 2, where
we set ρ = s/2. Recall that s = λ and therefore n · 2−ρ = negl(λ).

H5 In hybrid H5, we replace the queries (r̂1, · · · , r̂k′) created during the execu-
tion of each Read protocol with truly random values (u1, · · · , uk′) ← [M ]k

′
.

The main technical difficulty is showing that hybrids H4 and H5 are (statis-
tically) indistinguishable, which we do below. Once we do that, note that hybrid
H5 is independent of the challenge bit b and therefore in hybrid H5 we have
Pr[b = b′] = 1

2 . Since hybrids H1 and H5 are indistinguishable, it means that in
hybrid H1 we must have |Pr[b = b′] − 1

2 | = negl(λ) which proves the claim.
We are left to show that hybrids H4 and H5 are statistically indistinguishable.

We do this by showing that for every Read protocol execution, even if we fix the
entire view of the adversary prior to this protocol, the queries sent during the
protocol in hybrid H4 are statistically close to uniform. The protocol is executed
by some honest client j with committee Sj = {v1, . . . , vk} and we know that
|Sj ∩ E| ≤ s/2. Let (r̂1, . . . , r̂k′) be the distribution on the client queries in the
protocol.

(i) For all v �∈ Sj the values r̂v are chosen uniformly at random and indepen-
dently by the client.

(ii) For v ∈ Sj ∩ E, the values r̂v = P (Kv
PRP, rv) are uniformly random by the

s-wise independence of {rv}v∈Sj
and the fact that |Sj ∩ E| ≤ s/2.

(iii) For v ∈ Sj \ E, we want to show that the values r̂v = πv(rv) are statisti-
cally close to uniform, even if we condition on (i),(ii). Note that the values
{rv}v∈Sj\E are s/2-wise independent even conditioned on the above, and
therefore so are the values {r̂v}v∈Sj\E . For each v, let Zv ⊆ [M ] be the
set of values πv(r) that were queried in some prior protocol execution by
some client. Then |Zv| ≤ B. Note that if r̂v = πv(rv) �∈ Zv then r̂v is
simply uniform over [M ] \ Zv by the randomness of the permutation πv.
We can define random variables Xv where Xv = r̂v when r̂v ∈ Zv and
Xv = � otherwise. We can then think of sampling {r̂v}v∈Sj\E by sampling
{Xv}v∈Sj\E and defining r̂v = Xv when Xv �= � and sampling r̂v uni-
formly at random over [M ]\Zv otherwise. Note that {Xv}v∈Sj\E is a set of
|Sj\E| ≤ k variables which are s/2-wise independent and Pr[Xv = �] ≥ 1−δ
where δ ≤ |Zv|/M ≤ B/M . Therefore, by applying Lemma 1, the variables
{Xv}v∈Sj\E are statistically close to truly independent variables {Yv}v∈Sj\E

such that each Yv has the same marginal distribution as Xv, where the sta-
tistical distance is 2k(k2B/M)s/4−1 ≤ 2k(1/2)s/4−1 = negl(λ). Replacing
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the variables {Xv} by {Yv} is equivalent to replacing the values {r̂v}v∈Sj\E

by truly uniform and independent values. ��

3.2 Public-Encoding PANDA

In this section we describe a public-encoding variant of bounded-access RO-
PANDA schemes, which will be used to construct an unbounded-access RO-
PANDA as well as PANDA schemes that support writes. At a high level, a public-
encoding bounded-access PANDA scheme contains a key-generation algorithm
KeyGen that generates a public key pk and a set {ckj} of client secret keys.
Any database owner can locally encode the database using only the public key.
The scheme guarantees privacy and anonymity, even if the adversary obtains a
subset of the secret keys, as long as the honest clients make at most B accesses
to the database. Furthermore, we allow the server to create many encodings of
the same, or different, databases with respect to some labels lab, and the clients
can generate accesses using the corresponding label lab. As long as the clients
make at most B accesses with respect to any one label, security is maintained.

Definition 4 (Public-Encoding PANDA). A public-encoding PANDA (PE-
PANDA) consists of a tuple of algorithms (KeyGen,Encode,Query,Recover) with
the following syntax.

– KeyGen(1λ, 1n, 1t, 1L) is a PPT algorithm that takes as input a security
parameter λ, the number of clients n, and the collusion bound t, and a
database size L. It outputs a public key pk, and a set of client secret keys
{ckj}j∈[n].

– Encode(pk,DB, lab) is a deterministic algorithm that takes as input a public-
key pk, a database DB, and a label lab, and outputs an encoded database ˜DB.

– Query(ckj , addr, lab) is a PPT algorithm that takes as input a secret-key ckj,
an address addr in a database, and a label lab, and generates a list (q1, · · · , qk′)
of coordinates in the encoded database.

– Recover
(

ckj , lab,
(

˜DBq1 , · · · , ˜DBqk′

))

is a deterministic algorithm that takes

as input a secret-key ck, a label lab, and a list
(

˜DBq1 , · · · , ˜DBqk′

)

of entries
in an encoded database, and outputs a database value val.

We require that it satisfies the following correctness and security properties.

– Correctness: For every λ, n, t, L ∈ N, every DB ∈ {0, 1}L, every label lab ∈
{0, 1}∗, every address addr ∈ [L], and every client j ∈ [n]:

Pr

⎡

⎢

⎢

⎢

⎢

⎣

(

pk, {ckj}j∈[n]

)

← KeyGen
(

1λ, 1n, 1t, 1L
)

˜DB = Encode (pk,DB, lab)
(q1, · · · , qk′) ← Query (ckj , addr, lab)

val = Recover
(

ckj , lab,
(

˜DBq1 , · · · , ˜DBqk′

))

: val = DBaddr

⎤

⎥

⎥

⎥

⎥

⎦

= 1.
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– B-Bounded-Access Security: Every PPT adversary A has only negl (λ)
advantage in the following security game with a challenger C:

• A sends to C values n, t, L, and a subset T ⊂ [n] of size |T | ≤ t.
• C executes

(

pk, {ckj}j∈[n]

)

← KeyGen
(

1λ, 1n, 1t, 1L
)

and sends pk and
{ckj}j∈T to A. Additionally, C picks a random bit b.

• A is given access to the oracle Queryb
{ckj} that on input (j0, j1, addr0,

addr1, lab) such that j0, j1 /∈ T , outputs Query (ckjb , addrb, lab).
We restrict A to make at most B queries to the oracle with any given
label lab, but allow it to make an unlimited number of queries in total.

• A outputs a bit b′.
The advantage AdvA (λ) of A in the security game is defined as: AdvA (λ) =
|Pr [b′ = b] − 1

2 |.
Next, we construct a public-encoding PANDA scheme, based on our bounded-

access PANDA scheme (Construction 1 in Sect. 3.1). The high-level idea is to use
fresh PRP keys for every label, by creating them via a PRF applied to the label.
The public key of the server contains FHE encryptions of the PRF keys. This
enables the server to create the encoded-permuted databases for each virtual
server, as in Construction 1, by operating on the PRF keys under FHE.

Construction 2 (Public-Encoding PANDA). The scheme uses the same build-
ing blocks as Construction 1. In addition we rely on:

– A pseudo-random function F : {0, 1}λ × {0, 1}∗ → {0, 1}λ.
– The symmetric-key encryption scheme in Construction 1 will be replaced by

a symmetric-key leveled FHE scheme (KeyGenFHE,EncFHE,DecFHE,EvalFHE).

The scheme consists of the following algorithms:

– KeyGen
(

1λ, 1n, 1t, 1L
)

operates as follows:
• Let the parameters s, k,M, k′ be chosen the same way as in Construc-

tion 1.
• For every virtual server i ∈ [k′]:

∗ Generates a random FHE key Ki
FHE ← KeyGenFHE

(

1λ
)

. We use a lev-
eled FHE that can evaluate circuits up to some fixed polynomial depth
d = poly(λ, log M) specified later.

∗ Generates a random PRF key Ki
PRF ← {0, 1}λ.

∗ Encrypts the PRF key: ˜Ki
PRF ← EncFHE

(

Ki
FHE,K

i
PRF

)

.
• Generates the random size-k committee Sj ⊆ [k′] for every 1 ≤ j ≤ n.

• Outputs the public key pk =
(

L,
{

˜Ki
PRF

}

i∈[k′]

)

, and the secret keys
{

ckj =
(

Sj , L,
{

Ki
PRF,K

i
FHE : i ∈ Sj

})}

j∈[n]
.
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– Encode

(

pk =
(

L,
{

˜Ki
PRF

}

i∈[k′]

)

,DB, lab

)

operates as follows:

• Let ˜DB = EncLDC (DB) using and LDC with parameters s, k, L,M as in
the Setup algorithm of Construction 1.

• For every i ∈ [k′]:
∗ Generates an encrypted key ˜Ki

PRP = EvalFHE
(

CF,lab (·) , ˜Ki
PRF

)

, where
CF,x (·) is the circuit that on input K computes F (K,x).

∗ Generate an encrypted-permuted database ˜DB
i
= EvalFHE

(

C
P, ˜DB

(·) ,

˜Ki
PRP

)

, where C
P, ˜DB

(·) is the circuit that on input K computes the

permuted database ̂DB which satisfies ̂DB
i

P (K,j) = ˜DBj for all j ∈
[M ].

• Outputs
(

˜DB
1
, · · · , ˜DB

k′)

.

– Query,Recover. These algorithms work the same way as the two stages of the
Read protocol in Construction 1 where the client sets Ki

PRP := F
(

Ki
PRF, lab

)

and Ki
sym := Ki

FHE for i ∈ Sj .

Leveled FHE Remark. In the above construction we set parameter d represent-
ing the maximum circuit depth for the leveled FHE to be the combined depth
of the circuits CF,x (·) and C

P, ˜DB
(·) defined above. Since we can use a per-

mutation network which permutes data of size M in depth log M , so we have
d = poly(λ, log M). We assume that the leveled FHE scheme allows us to com-
pute circuits C of depth d in time |C| · poly(λ, d).

In the full version [HOWW18] we prove the following theorem:

Theorem 5 (Public-Encoding PANDA). Suppose leveled FHE exists. Then
for any constant ε > 0 there is a PE-PANDA scheme with B-bounded access
security, for n clients, t collusion bound and database size L where:

– The complexity of Query and Recover procedures is t · poly(λ, log L).
– The server public key and the client secret keys are each of size t ·

poly(λ, log L).
– The complexity of the encoding procedure and the size of the encoded database

is α ≤ t · L1+ε · poly(λ, log L).
– The access bound is B = α/(t · poly(λ, log L)).

3.3 Read-Only PANDA with Unbounded Accesses

In this section we use the public-encoding PANDA scheme of Sect. 3.2, which
has B-bounded-access security, to obtain a read-only PANDA scheme that is
secure against any unbounded number of accesses.

The high-level idea of our construction is conceptually simple: after every B
operations, the server re-encodes the database with a fresh label. We think of
these sequences of B consecutive accesses as “epochs”, and the label is simply a
counter indicating the current epoch. The clients get the current epoch number
by reading it from the server before performing an access.
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Construction 3 (Read-only PANDA). The scheme uses a PE-PANDA scheme
(KeyGen,Encode,Query,Recover) with B-bounded-access security as a building
block. We define the following procedures.

– Setup(1λ, 1n, 1t,DB). Takes as input a security parameter λ, the number of
clients n, a collusion bound t, and a database DB ∈ {0, 1}L. It does the
following.

– Counter initialization. Initializes an epoch counter counte, and a step
counter counts, to 0.

– Generating keys. Runs
(

pk, {ckj}j∈[n]

)

← KeyGen
(

1λ, 1n, 1t, 1L
)

.

– Encoding the database. Runs ˜DB = Encode (pk,DB, counte).
– Output. For each client Cj , 1 ≤ j ≤ n set the client key to ckj := ckj . For

the server S set stS := (pk, ˜DB, counte, counts).
– The Read Protocol. To read the data block at address addr from the server,

a client Cj and the server S run the following protocol.
• The client reads the epoch counter counte from S.
• The client runs (q1, · · · , qk′) ← Query (ckj , addr, counte), and sends

(q1, · · · , qk′) to S.
• The server computes ai = ˜DBqi and sends back the values (a1, · · · , ak′)

to the client.
• The client recovers DBaddr = Recover (ckj , counte, (a1, · · · , ak′)).
• The server S updates its state as follows: if counts < B − 1, S updates

counts := counts + 1. Otherwise, S updates counts := 0, counte :=
counte + 1, and replaces ˜DB := Encode (pk,DB, counte). If the complexity
of the computation Encode (pk,DB, counte) is cEncode, the server performs
cEncode/B steps of this computation during each protocol execution so
that it is completed by the end of the epoch.

In the full version [HOWW18] we prove the following theorem:

Theorem 6 (Read-Only PANDA). Suppose leveled FHE exists. Then for
any constant ε > 0 there is a read-only PANDA, for n clients, t collusion bound
and database size L where:

– The client/server complexity during each Read protocol is t · poly(λ, log L).
– The client keys are of size t · poly(λ, log L).
– The server state is of size t · L1+ε · poly(λ, log L).

4 PANDA with Public-Writes

In this section we extend the read-only scheme of Sect. 3 to support writes in
the public database setting. In the full version [HOWW18] we design a PANDA
scheme that supports writes in the private database setting.
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Our PANDA scheme for public databases supports write operations, but only
guarantee privacy of read operations. We call this primitive a Public-Writes
PANDA (PW-PANDA). Notice that this is the “best possible” security guar-
antee when there is (even) a (single) corrupted client. (Indeed, as the database
is public, a corrupted coalition can always learn what values were written to
which locations by simply reading the entire database after every operation.) We
note that it suffices to consider this weaker security guarantee when all clients
are honest, since any public-writes PANDA scheme can be generically trans-
formed into a PANDA scheme which guarantees the privacy of write operations
when all clients are honest. Indeed, one can implement a (standard) single-client
ORAM scheme on top of the public-writes PANDA scheme, for which all clients
know the private client key. (We note that the transformation might require
FHE-encrypting the PANDA, to allow the server to perform operations on the
PANDA which are caused by client operations on the ORAM.)

We now formally define the notion of a public-writes PANDA scheme.

Definition 5 (Public-Writes PANDA (PW-PANDA)). A public-writes
PANDA (PW-PANDA) scheme consists of procedures (Setup,Read,Write), where
Setup,Read have the syntax of Definition 2, and Write has the following syntax.
It is a protocol between the server S and a client Cj. The client holds as input
an address addr ∈ [L], a value v, and the client key ckj, and the server holds its
current states stS. The output of the protocol is an updated server state st′S.

We require the following correctness and security properties.

– Correctness: In any execution of the Setup algorithm followed by a sequence
of Read and Write protocols between various clients and the server, where the
Write protocols were executed with a sequence Q of values, the output of each
client in a read operation is the value it would have read from the database
if (the prefix of) Q (performed before the corresponding Read protocol) was
performed directly on the database.

– Security: Any PPT adversary A has only negl (λ) advantage in the following
security game with a challenger C:

• A sends to C:
∗ The values n, t, and the database DB ∈ {0, 1}L.
∗ A subset T ⊂ [n] of corrupted clients with |T | ≤ t.
∗ A pair of access sequences Q0 =

(

opl, val
0
l , j

0
l , addr0l

)

1≤l≤q
, Q1 =

(

opl, val
1
l , j

1
l , addr1l

)

1≤l≤q
, where

(

opl, val
b
l , j

b
l , addr

b
l

)

denotes that

client jb
l performs operation opl at address addrbl with value valbl

(which, if opl = read, is ⊥).
We require that

(

opl, val
0
l , j

0
l , addr0l

)

=
(

opl, val
1
l , j

1
l , addr1l

)

for every l ∈
[q] such that j0l ∈ T ∨ j1l ∈ T ; and

(

val0l , addr
0
l

)

=
(

val1l , addr
1
l

)

for every
l ∈ [q] such that opl = write (in particular, write operations differ only in
the identity of the client performing the operation).

• C performs the following:
∗ Picks a random bit b ← {0, 1}.
∗ Initializes the scheme by computing Setup

(

1λ, 1n, 1t,DB
)

.
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∗ Sequentially executes the sequence Qb of Read and Write protocol exe-
cutions between the honest server and clients. It sends to A the views
of the server S and the corrupted clients {Cj}j∈T during these pro-
tocol executions, where the view of each party consists of its internal
state, randomness, and all protocol messages received.

• A outputs a bit b′.
The advantage AdvA (λ) of A in the security game is defined as: AdvA (λ) =
|Pr [b′ = b] − 1

2 |.

Construction Outline. As outlined in the introduction, the public-writes PANDA
scheme consists of log L levels of increasing size (growing from top to bottom),
each containing size-λ “buckets” that hold several data blocks, and implemented
with a B-bounded-access PE-PANDA scheme. To initialize our PANDA scheme,
we generate PE-PANDA public- and secret-keys for every level. Initially, all levels
are empty, except for the lowest level, which consists of a PE-PANDA for the
database DB. read operations will look for the data block in all levels (returning
the top-most copy),9 whereas write operations will write to the top-most level,
causing a reshuffle at predefined intervals to prevent levels from overflowing.
We note that adding a new copy of the data block (instead of updating the
existing data block wherever it is located) allows us to change only the content
of the top level. This is crucial to obtaining a non-trivial scheme, since levels
are implemented using a read-only PANDA, and so can only be updated by
generating a new scheme for the entire content of the level, which might be
expensive (and so must not be performed too often for lower levels).

Notice that since the levels are implemented using a PE-PANDA scheme
(which, in particular, is only secure against a bounded number of accesses),
security is guaranteed only as long as each level is accessed at most an a-priori
bounded number of times. To guarantee security against any (polynomial) num-
ber of accesses, we “regenerate” each level when the number of times it has
been accessed reaches the bound. This regeneration is performed by running the
Encode algorithm of the PE-PANDA scheme with a new label, consisting of the
epoch number of the current level and the number of regeneration operations
performed during the current epoch (this guarantees that every label is used at
most once in each level). In summary, each level can be updated in one of two
forms: (1) through a reshuffle operation that merges an upper level into it; or (2)
through a regenerate operation, in which the PE-PANDA of the level is updated
(but the actual data blocks stored in it do not change). We note that (unlike
standard hierarchical ORAM) the reshuffling and regeneration need not be done
obliviously, since the server knows the contents of all levels.

As in the introduction, we associate a public hash function with each level,
which is used to map data blocks into buckets, thus overcoming the issue that
9 We note that in standard hierarchical ORAM, once the data block was found, the

client should make “dummy” random accesses to lower levels. However, since in our
construction each level is implemented as a PE-PANDA scheme which anyway hides
the identity of the read operation, we can simply continue looking for the data block
in the “right” locations at all levels.
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the PE-PANDA scheme is designed for an array structure (in particular, read-
ing a certain data block requires knowing its index in the array), whereas the
hierarchical structure causes the structure implemented in each level to be a
map, since levels contain a subset of (not necessarily consecutive) data blocks.
(In particular, since this subset depends on previous write operations performed
on the PANDA, a client does not know the map structure of the levels, and
consequently will not know in which location to look for the desired data block.)

We now formally describe the construction. We assume for simplicity of the
exposition that B is a multiple of λ.

Construction 4 (Public-writes PANDA). The scheme uses the following build-
ing blocks:

– A PE-PANDA scheme (KeyGen,Encode,Query,Recover).
– A hash function family h (used to map data blocks to buckets).

We define the following protocols.

– Setup(1λ, 1n, 1t,DB): Recall that n denotes the number of clients, t is the
collusion bound, and DB ∈ {0, 1}L. It does the following.

• Counter initialization. Initialize a counter countW to 0. (countW counts
the total number of writes performed so far.)

• Generating level counters and keys. For every 1 ≤ i ≤ �, where � = log L
is the number of levels:

∗ Run
(

pki,
{

cki
j

}

j∈[n]

)

← KeyGen
(

1λ, 1n, 1t, 12
i·λ

)

.

∗ Pick a random hash function hi for level i.
∗ Initialize a write-epoch counter countiW , a read-epoch counter countiR,

and a step counter countis, to 0.10

• Initializing level �. Generate an encoded database using the InitLevel pro-
cedure of Fig. 1:

˜DB
� ← InitLevel

(

�, pk�, h�, count�W , count�R,DB′
)

where DB′ = ((1, b1) , . . . , (L, bL)),11 and set level � to be L� =
(

DB′, ˜DB
�
)

.

10 countiW represents the number of times the level was reshuffled into a lower level, i.e.,
the number of level-i epochs; countiR represents the number of times the underlying
PE-PANDA scheme was refreshed, i.e., re-initialized, in the current level-i epoch;
and countis represents the number of read operations performed in level i since its
underlying PE-PANDA was last refreshed. We note that though countiW can be
computed from countW , it is included for simplicity.

11 This guarantees that each data block contains also the logical address of the block,
which will be needed when blocks are mapped to buckets.
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• Output. For each client Cj , set the client key ckj =
(

{

cki
j

}

i∈[�]
,
{

hi
}

i∈[�]

)

to consist of its secret keys, and the hash functions, for all levels. Set the
server state

stS =
(

countW ,
{

countiW , countiR, countis
}

i∈[�]
,
{

pki
}

i∈[�]
,
{

hi
}

i∈[�]
, L�

)

to consist of all counters, its public keys and the hash functions of all
levels, and the contents of level �.

– The Read protocol. To read the database value at location addr ∈ [L] from
the server S, a client Cj with key

(

{

cki
j

}

i∈[�]
,
{

hi
}

i∈[�]

)

and the server S run
the following protocol.

• The client Cj initializes an output value val to ⊥.
• Cj performs the following for every non-empty level i from � to 1:

∗ Obtaining database label. Read countiW , countiR from S.
∗ Computing bucket index. Computes l = hi (addr). (If addr appears in

level i, it will be in bucket Bucl.)
∗ Looking for data block addr in level i. Reads Bucl from level i, namely

for every (l − 1) · λ + 1 ≤ m ≤ l · λ:
· Runs (q1, . . . , qz) ← Query

(

cki
j ,m,

(

countiW , countiR
))

, sends
(q1, . . . , qz) to S, and obtains answers (a1, . . . , az).

· Runs
(

addr′, val′
)

= Recover
(

cki
j ,

(

countiW , countiR
)

, (a1, . . . , az)
)

.
· If addr′ = addr then set val := val′.

• The server S updates its state as follows: if countis < Bi − λ, S updates
countis ← countis + λ.12 Otherwise, S updates countis = 0, countiR ←
countiR + 1, and sets ˜DB

i
:= Encode

(

pki,DBi,
(

countiW , countiR
))

(where

Li =
(

DBi, ˜DB
i)

).
– The Write protocol. To write value val at location addr ∈ [L] on the server

S, a client Cj with key
(

{

cki
j

}

i∈[�]
,
{

hi
}

i∈[�]

)

and the server S run the fol-
lowing protocol.

• The client Cj generates a “dummy” level 0 which contains a single data
block (addr, val), and sends it to the server.

• The server S updates its state as follows:
∗ countW := countW + 1.
∗ For i = 0, 1, . . . , � such that 2i divides countW , S reshuffles level i into

level i + 1 using the ReShuffle procedure of Fig. 1, namely executes

ReShuffle(i, countiW , countiR, countis, counti+1
W , counti+1

R , counti+1
s ,

pki+1, hi+1, Li, Li+1)

where Li, Li+1 are the contents of levels i and i + 1 (respectively).

12 This is where we use the assumption that λ divides B, otherwise a regeneration of
level i mights be needed while Bucl is being read.
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The InitLevel procedure
Inputs:

i: the index of a level to initialize.
pki, hi, countiW , countiR: the public key, hash function, and counters of level i.
DB: a database (of size at most 2i), consisting of entries of the form (addr, val).

Operation:

– For every entry (addr, val) ∈ DB, add (addr, val) to bucket Bucihi(addr).
a

– Fill every bucket to size λ using “dummy” blocks of the form (0, 0).b

– Run D̃B
i

Encode pki, Buci1, . . . ,Buc
i
2i

)
, countiW , countiR

))
, and output

D̃B
i
.

The ReShuffle procedure

Inputs:

i: the index of a level to reshuffle.
countjW , countjR, countjs, j ∈ {i, i + 1}: the counters of levels i, i + 1.
pki+1, hi+1: the public-key and hash function of level i + 1.
Lj =

(
DBj , D̃B

j
)

, j ∈ {i, i + 1}: the contents of levels i, i + 1.

Operation:

– Removing duplicate entries. Merge DBi,DBi+1 into a single database DB,
where if (addr, val) ∈ DBi, (addr, val′) ∈ DBi+1, then DB contains only
(addr, val).c

– Update level i. Set level i to be empty, and update countiW := countiW + 1,
and countiR = countis = 0.

– Update level i + 1. Run

D̃B
i+1′

= InitLevel
(
i + 1, pki+1, hi+1, counti+1

W , counti+1
R ,DB

)
.

Set the new level i + 1 to be Li+1 :=
(
DB, D̃B

)
, and update counti+1

R =

counti+1
s = 0.

a We implicitly assume here that no bucket overflows. If a bucket overflows then
the server simply aborts the computation. As we show below, this happens only
with negligible probability.

b We note that “dummy” blocks are not required to be indistinguishable from
real blocks, but rather all parties should be able to distinguish between the
two. Here, we implicitly assume that “0” is not a valid address, but it could be
replaced with any other non-valid address. Alternatively, one could concatenate
a bit to every entry, indicating whether it is a real or “dummy” entry.

c This can be done in time O
∣∣DBi

∣∣ +
∣∣DBi+1

∣∣) by putting both databases in a
hash table, and then scanning the table for collisions, and checking, for every
collision, whether it is due to multiple copies of the same data block.

Fig. 1. Procedures used in Construction 4
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If before executing ReShuffle for level i, Li+1 is empty (following a
previous reshuffle, or because it has not yet been initialized), then S

first sets Li+1 :=
(

DB∅, ˜DB
i+1)

where DB∅ is the empty database,

and ˜DB is generated using the InitLevel procedure of Fig. 1: ˜DB
i+1

:=
InitLevel

(

i + 1, pki+1, hi+1, counti+1
W , counti+1

R ,DB∅
)

.

In the full version [HOWW18] we prove the following theorem:

Theorem 7 (Public-writes PANDA). Suppose leveled FHE exists. Then for
any constant ε > 0 there is a PW-PANDA, for n clients, t collusion bound and
database size L, where:

– The client/server complexity during each Read protocol is t · poly(λ, log L).
– The client complexity during each Write protocol is O(log L), and the amor-

tized server complexity is t · Lε · poly(λ, log L).
– The client keys are of size t · poly(λ, log L).
– The server state is t · L1+ε · poly(λ, log L).

Remark on De-amortization. We note that using a technique of Ostrovsky and
Shoup [OS97], the server complexity in Theorem 7 can be de-amortized, by
slightly modifying Construction 4 to allow the server to spread-out the reshuf-
fling process. More specifically, we only need to modify the order in which reshuf-
fles are performed in the Write algorithm, such that the operations needed for
reshuffle can be executed over multiple accesses to the PANDA. (We note that
the server complexity caused by Encode operations in the Read algorithm can
be de-amortized as in Construction 3.) See the full version [HOWW18] for addi-
tional details.
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Abstract. Proofs of sequential work (PoSW) are proof systems where a
prover, upon receiving a statement χ and a time parameter T computes
a proof φ(χ, T ) which is efficiently and publicly verifiable. The proof can
be computed in T sequential steps, but not much less, even by a mali-
cious party having large parallelism. A PoSW thus serves as a proof that
T units of time have passed since χ was received.

PoSW were introduced by Mahmoody, Moran and Vadhan [MMV11],
a simple and practical construction was only recently proposed by Cohen
and Pietrzak [CP18].

In this work we construct a new simple PoSW in the random per-
mutation model which is almost as simple and efficient as [CP18] but
conceptually very different. Whereas the structure underlying [CP18] is
a hash tree, our construction is based on skip lists and has the interesting
property that computing the PoSW is a reversible computation.

The fact that the construction is reversible can potentially be used
for new applications like constructing proofs of replication. We also show
how to “embed” the sloth function of Lenstra and Weselowski [LW17]
into our PoSW to get a PoSW where one additionally can verify correct-
ness of the output much more efficiently than recomputing it (though
recent constructions of “verifiable delay functions” subsume most of the
applications this construction was aiming at).

1 Introduction

Timed-release cryptography was envisioned by May [May93] and realised by
Rivest, Shamir and Wagner [RSW00] in the form of a “time-lock puzzle”. For
a time parameter T , such a puzzle can be efficiently sampled together with a
solution. However, solving it requires T sequential computational steps, and this
holds even for parties aided with massive parallelism. In other words, there are no
“shortcuts” to the solution. The application envisioned in [RSW00] was “sending
a message to the future”: generate a puzzle, derive a symmetric key from the
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solution, encrypt your message using that key, then release the ciphertext and
the puzzle. Now everyone can decrypt by solving the puzzle which requires T
sequential steps.

The construction put forward in [RSW00] is in the RSA setting: the puzzle
is a tuple (N,x, T ), where N = p · q is an RSA modulus and x ∈ Z∗

N a group
element, and the solution to the puzzle is x2T mod N . Although the solution can
be computed efficiently if the factorisation of N is known, it is conjectured to
require T sequential squarings given only N .

The assumption that underlies the soundness of the [RSW00] time-lock puzzle
is rather non-standard (which is basically that the puzzle is sound, i.e., there’s
no shortcut in computing the solution) and it’s an open problem to come up
with constructions under more standard assumptions. In a negative result, Mah-
moody, Moran and Vadhan [MMV11] show that there’s no black-box construc-
tion of a time-lock puzzle in the random oracle model. In subsequent work the
same authors [MMV13] propose and construct proofs of sequential work (PoSW).
This is a proof system wherein a prover P can convince a verifier V that it spent
T sequential time steps upon receiving some challenge χ. Even though PoSW
seem related to time-lock puzzles, they are not directly comparable. In particu-
lar, a PoSW does not require that one can sample the solution together with an
instance. On the other hand, a PoSW must be publicly verifiable1 and sampling
a challenge must be public-coin2 so it can be made non-interactive by the Fiat-
Shamir heuristic. [MMV13] construct a PoSW in the random oracle model (or
under a standard model assumption on hash functions called “sequentiality”).

As possible applications for PoSW [MMV13] suggest universally verifiable
CPU benchmarks and non-interactive time-stamping. The construction given in
[MMV13] is not practical as a prover needs not only T sequential time steps but
also linear in T space to compute a proof. Cohen and Pietrzak [CP18] resolved
this issue by constructing a PoSW where the prover requires just log(T ) space.

More recently there has been renewed interest in time-delayed cryptography
as it found applications in decentralized systems, including public randomness
beacons (cf. discussion in [BBBF18]), blockchain designs like chia.net or proofs of
replication [Fis19]. For the first two applications the PoSW need to be unique,
which means it should not be possible (or at least computationally hard) to
compute more than one accepting proof for the same challenge. This notion was
introduced in [CP18] but constructing such a PoSW was left as an open problem.

Our Contribution. Constructions of hash-based PoSW start with some under-
lying graph structure, which in [MMV13] is a depth-robust graph and in [CP18] a
binary tree with some extra edges. In this paper we construct a new PoSW which

1 So everybody, not just the party who generated the challenge, can efficiently verify
correctness. Note that in the RSW time-lock puzzle only the party who generated the
challenge (which is called a puzzle in this context) and thus knows the factorization
can verify the proof efficiently.

2 This basically means that the challenge is just a uniformly random string. Note that
the RSW time-lock puzzle is not public-coin as the coins used to sample the RSA
modulus N must remain secret.

https://www.chia.net/
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is as simple and almost as efficient as [CP18] with the underlying graph being
a skip list. Our construction can be instantiated with permutations – instead of
hash functions – and is “reversible”.

Until recently the sloth hash function [LW17] was the closest we had to a
unique PoSW. It’s not a PoSW because the computation required for verification
is linear in the time parameter T (albeit around a 1000 times faster). The fact
that our PoSW is reversible allows us to “embed” sloth into our PoSW, this
way we get a PoSW where verification (of the claim that T sequential time steps
were spent) is very efficient (logarithmic in T ), while verifying correctness can be
done as efficiently as in sloth (in time O(T ) with a very small hidden constant).
We outline this construction in more detail in Sect. 1.1 below.

For applications of unique PoSW our construction is by now mostly subsumed
by very recent constructions of verifiable delay functions [BBBF18] (VDF). A
VDF is defined almost like a PoSW, but the (non-interactive) proof does not
only certify that T sequential time has been used to compute some value, but
the stronger property that this value is actually the correct value. A VDF is
thus basically a unique PoSW (the only reason it’s not exactly a unique PoSW
is that the proof itself could be malleable, but this doesn’t matter for any of
the applications). The notion of a VDF has been introduced by Boneh et al.
in [BBBF18] who also construct a VDF using rather heavy machinery like incre-
mentally verifiable computation. Subsequently two extremely simple and efficient
VDFs have been proposed [Wes19,Pie19b], both papers basically show how to
make the RSW time-lock puzzle [RSW00] publicly verifiable, that is, they give
proof systems for showing that a given tuple (x, y, T ) satisfies x2T = y in a group
of unknown order (e.g. Z∗

N as used in [RSW00]). These constructions are clearly
favourable to ours as correctness (which here means that the output is correctly
computed) can be verified much more efficiently, though as they are not post-
quantum secure, ours is arguably still the best option in a post-quantum setting
for some applications. This hopefully will change in the near future as research
on post-quantum VDFs is ongoing [FMPS19].

The fact that our PoSW is reversible seems also useful in the context of
proofs of replication [Fis19,Fis18,Pie19a] for similar reasons that “decodable”
VDFs are useful in this context as discussed in [BBBF18], we are currently
working towards constructing simple proofs of replication based on the skip list
based PoSW presented in this paper.

1.1 Hash Chains and the Sloth Function

A simple construction which is not quite a PoSW is a hash chain, where
on input x = x0 one outputs as proof xT which is recursively computed as
xi = hash(xi−1). If hash is a bijection and can be efficiently evaluated in both
directions (i.e., a permutation), then from a given state xi, one can compute the
previous state xi−1, we call such a construction reversible.

Verifying that xT has been correctly computed requires T hashes (so it’s no
a PoSW), but at least one can parallelize verification by additionally outputting
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some q intermediate values x0, xT/q, x2T/q, . . . , xT (then the proof can be verified
in T/q time assuming one can evaluate q instantiations of hash in parallel: for
every i ∈ [q], verify that T/q times hashing x(i−1)T/q gives xiT/q).

Lenstra and Wesolowski [LW17] suggest a construction called “sloth”, which
basically is a hash chain but with the additional property that it can be verified
with a few hundred times less computation than what is required to compute it.
The construction is based on the assumption that computing square roots in a
field Fp of size p is around log(p) times slower than the inverse operation, which
is just squaring. A typical value would be log(p) ≈ 1000, going much higher is
problematic as then fast multiplication methods (e.g., Karatsuba, Schönhage-
Strassen) can be applied.

Their idea is to simply use a hash chain where the hash function is some
permutation π : Fp → Fp, where Fp is a finite field of size p, followed by taking
a square root: that is xi =

√
π(xi−1). Verification goes as for a standard hash

chain, but one computes backwards, checking xi−1 = π−1(x2
i ), which – assuming

computing π, π−1 is cheap compared to squaring, and squaring is log(p) times
faster than taking square roots – gives the claimed speedup of ≈ log(p) compared
to a simple hash chain.

In Sect. 4 we show how sloth can be embedded into our skip list based PoSW
to get a construction such that it remains a good PoSW, while correctness of
the output can be verified as efficiently as in sloth, the constructions discussed
are summarized in the table below.

2 Construction

2.1 Notation

Throughout we denote the time parameter of our construction by N = 2n with
n ∈ N and assume it’s a power of 2. We reserve w, t ∈ N to denote two statistical
security parameters, w is the block size (say w = 256) and t denotes the number
of challenges: a cheating prover who only makes N(1−ε) sequential steps (instead
N) will pass verification with probability (1 − ε)t. For integers m,m′ we denote
with [m,m′] = {m,m + 1, . . . ,m′}, [m], [m]0 are short for [1,m] and [0,m].

We define 0̃ = n + 1 and for i ≥ 1 we denote with ĩ the number of trailing
zeros in the binary representation of i, plus 1

0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃, 9̃, . . . = n + 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, . . .

For σ ∈ {0, 1}w·i we denote with σ(j) the jth w-bit block of σ, so that σ =
σ(1)‖ . . . ‖σ(i). σ(i...j) is short for σ(i)‖ . . . ‖σ(j).

For a permutation π over � bit strings, we denote with π̇ the function over
bit stings of length ≥ � which simply applies π to the � bit prefix of the input,
and leaves the rest untouched.
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construction (using # of stepsd # of stepsd to assumption step post reversible
time parameter T to verify verify if output quantum
and statistical sequential is correct
security parameter computation (uniqueness)
λ) O(·) of O(·) of

hash chain T T random oraclea RO call yes yesb

sloth [LW17] T/ log(p) T/ log(p) log(p) gap computing x → √
x yes yes√

x vs x2 and & RP call
random permutationa,c

PoSW [CP18] λ · log(T ) T random oraclea RO call yes no

PoSW Sect. 2 λ · log2(T )f T random permutationa,c RP call yes yes

Combined Sect. 4 λ · log2(T )f T/ log(p) like sloth x → √
x yes yes

& RP call

[Pie19b] VDF λ · log(T ) λ · log(T ) (x, T ) → x2T requires x → x2 no no
T sequential squaringse

[Wes19] VDF λ λ as above plus x → x2 no no
“root assumption”

aOr a standard model assumption called “sequential hash function”.
bIf the function used is an efficiently invertible permutation.
cThe random permutation model is equivalent to the random oracle model.
dWhat a step is depends on the construction, but evaluating the function is always
assumed to require T sequential steps.
eThis assumption can only hold in groups of unknown order.
fStrictly speaking, the number of oracle calls required to verify is just λ · log T (as in
[CP18]), but in our constructions the input consists of up to log T + 1 blocks (unlike
[CP18], where it is 2 blocks) and therefore to make a fairer comparison, we count the
cost of an oracle call on an input of length k blocks as k calls.

0w

0w

0w

0w

π0

π1

π2

π3

π4

π5

π6

π7

π8

φ1

φ2

φ3

φ4

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

Fig. 1. Illustration of the computation of σΠ = (σ0, . . . , σN ) with n = 3, N = 2n = 8.
The blocks represent the permutations, whereas the dashed vertical lines represent the
states. Note that the structure of the graph is the same as a skip list with four layers,
where a pointer in layer i, i ∈ {0, 1, 2, 3}, points to the 2i-th element to its right on the
list.

2.2 The Sequence σΠ

At the core of our construction is a mapping based on the skip list data structure
(see Fig. 1). It is built from a set of permutations Π = {πi}i∈[N ]0 , where each
πi is over {0, 1}w·̃i, and defines a sequence of states σΠ = σ0, . . . , σN , σi ∈
{0, 1}(n+1)·w, recursively as

σ0 = π̇0(0w·(n+1)) and for i > 0 : σi = π̇i(σi−1)
(
= πi(σ

(1...̃i)
i−1 )‖σ

((̃i+1)...(n+1))
i−1

)
.
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2.3 The DAG GN

It will be convenient to consider the directed acyclic graph (DAG)

GN = (V,E) , V = [N ]0 , E = {(i, j) ∈ V 2 : ∃k ≥ 0 : j − i = 2k, 2k|i}

0 1 2 3 4 5 6 7 8

Fig. 2. The graph G8 that corresponds to the computation of σΠ with n = 3.

that is derived from the computation of σΠ as follows: identify the permutation
πi with the node i and add a directed edge (i, j) if in the computation of σΠ

part of the output of πi is piped through directly to πj (see Fig. 2).
For i ∈ [N − 1] we denote with path(i) ⊆ V the subgraph of V induced by

the nodes on the shortest path in GN which starts at 0, ends at N and passes
through node i. For example, in Fig. 1,

path(5) = ({0, 4, 5, 6, 8}, {(0, 4), (0, 8), (4, 5), (4, 6), (4, 8), (5, 6), (6, 8)}).

It’s not hard to check that the number of vertices in path(i) is n + 3 − ĩ, and in
particular is never more than n + 2.

2.4 Consistent States/Paths

By construction, the σi ∈ σΠ satisfy σi = π̇−1
i+1(σi+1), and more generally, for

every edge (i, j) ∈ E and d = min(̃i, j̃)

σ
(d...n+1)
i = (π̇−1

j (σj))(d...n+1).

We say two strings are consistent for (i, j) if they satisfy this condition.

Definition 1 (Consistent States/Path). αi, αj ∈ {0, 1}(n+1)·w are consis-
tent for edge (i, j) ∈ E if with d = min(̃i, j̃)

α
(d...n+1)
i = (π̇−1

j (αj))(d...n+1) .

We say α′
i ∈ {0, 1}ĩ·w, α′

j ∈ {0, 1}j̃·w are consistent if they can be “padded” to
consistent αi, αj as above, which is the case if

α′(d)
i = π−1(α′

j)
(d).

We say {αi}i∈path(k) are consistent with path(k) if αi, αj are consistent for every
edge (i, j) ∈ path(k).

Note that if αj is computed from αi by applying π̇i+1, . . . , π̇j to αi, then those
αi, αj will be consistent with (i, j), but the converse is not true (except if j =
i + 1).
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2.5 PoSW Construction

The protocol between P,V on common input T = N = 2n, w, t goes as follows

1. V samples χ ← {0, 1}w·n and sends it to P. This χ defines a fresh set of
random permutations Π (cf. Remark 1 below).

2. P computes σ0, . . . , σN and sends φ = σN to V.
3. V samples t challenges γ = (γ1, . . . , γt) ← [N − 1]t and sends them to P.
4. P sends {σi}i∈path(j),j∈γ to V (cf. Remark 2 below).
5. V verifies for every j ∈ γ that {σi}i∈path(j) is consistent as in Definition 1. If

any check fails output reject, output accept otherwise.

Remark 1 (Seeding Random Oracles/Permutations). Ideal permutations can be
constructed from random oracles [CPS08,HKT11,DSKT16] (formally, the ideal
permutation model is indifferentiable from the random oracle model), so we
can realize Π in the standard random oracle model.3 Consider a fixed random
oracle H(·) about which a potential adversary has some auxiliary input (i.e.,
it has queried it on many inputs before, and stored some information aux).
If one samples a random seed χ and uses it as a prefix to define the function
Hχ(x) = H(χ‖x), this Hχ – from the adversaries’ perspective – is a fresh random
oracle as long as this seed is just a bit longer that log(|aux|) [DGK17]. Thus, we
can also sample a fresh Π by just sending a seed χ.

Remark 2 (P ′s Space Requirement). To avoid any extra computation in step
4., P would need to store the entire σΠ = {σi}i∈[N ]0 . By using a bit of extra
computation, one can reduce the space requirement (we remark that a similar
trade off comes up in [CP18]). Concretely, for some K = 2k, we let P only store
σi where 2k|i, thus storing only N/K states. From this, every state σi can be
computed making at most K/2 invocations to Π (and K/2 not K as we can also
compute backwards).

3 Security Proof

Theorem 1. Consider a malicious prover P̃ which

1. makes at most N −Δ sequential queries to permutations in Π before sending
φ = σN (in step 3 of the protocol); and

2. queries the permutations in Π on at most q inputs in total during execution
of the protocol.

Then P̃ will win (i.e., make V output accept) with probability at most

Pr
(
P̃ wins

)
≤ 2q2(n + 3)2

2w
+

(
N − Δ

N

)t

. (1)

3 In practice, one could e.g. use χ to sample N +1 AES keys k0, . . . , kN , and then use
AES(ki, ·) : {0, 1}256 → {0, 1}256 – i.e., AES with a fixed public key – to construct
πi, where for ĩ > 1 one would use domain extension for random permutations to
extend the domain to 256 · ĩ bits.
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The proof of Theorem 1 mainly follows the intuition that sending φ “com-
mits” the prover to a set of challenges it can respond to. We prove this fact
formally in Lemma 7. If this set is a large fraction of the possible challenges,
it implies the existence of a long sequence (as defined below) that necessarily
requires many sequential steps.

To aid the proof we begin with a couple of definitions. The first one is merely
for notational convenience.

Definition 2. We use ∼ to denote that two strings (composed of w-bit blocks)
contain an identical block

α ∼ α′ ⇐⇒ ∃i, j : α(i) = α′(j).

We then say that α and α′ collide.

The next definition characterizes the property that paths through our skiplist
construction satisfy and that we rely on for the proof.

Definition 3 (Π-Sequence). For a family of N permutations Π = {πi}i a Π-
sequence of length N ′ < N is an N ′-tuple of pairs of strings ((xj , yj))j together
with an N ′-tuple of strictly increasing integers (ij)j such that for all j

πij (xj) = yj and yj ∼ xj+1.

Below we show that Π-sequences are inherently sequential (cf. Lemma 6 and
Corollary 1), but that requires a few technical lemmas, so we defer the details
and proceed to the main proof. We now show how Lemma 7 and Corollary 1
imply Theorem 1.

Proof (of Theorem 1). Consider a malicious prover P̃ that convinces the verifier
on a random challenge with probability ≥ N−Δ

N . Since the correct response to
any challenge is a distinct Π-sequence from 0 to φ, Lemma 7 implies that P̃ must
be able to respond to a fraction ≥ N−Δ

N of the challenges. This is because the set
of Π-sequences from 0 to φ that P̃ can compute is essentially fixed after sending
φ and thus independent of the choice of challenges. This means there must exist
a set of N −Δ responses which can be pieced together to a Π-sequence of length
N − Δ from 0 to φ (details below). Note that all responses can be obtained by
sending all the challenges using rewinding (which does not increase the number
of queries). Then the result follows from Corollary 1.

It remains to establish the fact that the responses can be merged to a long
sequence. To see this, first assume that whenever two paths contain the same
node, the corresponding responses have the same state at this node. If this is
the case then merging the responses to k distinct challenges is easy: simply take
the “union” of the responses, which will be a Π-sequence of length at least k.

Finally, we show that different verifying reponses must have the same state
at intersecting nodes. The proof of this fact is recursive: consider the node N/2
and assume for contradiction that there are two paths that both verify and each
contains a state σN/2 and σ′

N/2, respectively, with σN/2 �= σ′
N/2. First note that
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the states σ0 and σ′
0 must both be equal to π0(0), so they are equal to each

other. Similarly, σN and σ′
N must both be equal to φ in order to both verify.

Furthermore, verification ensures that σN/2 ∼ σ′
N/2. Specifically, they are equal

in block n − 1, where they must both be equal to π−1
N (σN )(n−1), since verifi-

cation checks the edge (N/2, N) for consistency (cf. Definition 1). Analogously,
verification ensures that π−1

N/2(σN/2) ∼ π−1
N/2(σ

′
N/2), since this corresponds to the

edge (0, N/2). Note that the latter pair of values could be extracted from the
prover by sending the appropriate challenges. By Lemma 5 (proved below) this
can only happen with probability ≤ 2q2(n+3)2

2w . We conclude that σN/2 is equal
among all valid responses with overwhelming probability. This allows to recurse
on the node N/4 and 3N/4, etc. ��

We now establish the remaining lemmas used in the main proof. Throughout
the rest of this section, w.l.o.g. we only consider algorithms that do not make
redundant queries. In all results in this section pertaining to random permuta-
tions the probabilities are taken over the choice of the permutations.

First, we need a version of a PRP/PRF switching lemma that allows the
adversary oracle access to the permutation and its inverse. We have not seen
such a version in the literature so we prove it in the appendix.

Lemma 1. Let π : {0, 1}w �→ {0, 1}w be a random permutation and consider an
algorithm Aπ,π−1

with oracle access to π and π−1 that makes exactly q queries
in total. Assume that A does not repeat any queries to π nor any queries to π−1,
and that if it queries π at x, it does not query π−1 at π(x) and vice versa. Let
F1, F2 : {0, 1}w �→ {0, 1}w be independent random functions. Then for any event
E over the output of A, we have Pr

(
Aπ,π−1 ∈ E

)
≤ Pr

(
AF1,F2 ∈ E

)
+ q(q−1)

2w ,
where the first probability is over the choice of π and the second over the choice
of F1, F2.

The Lemma shows that in the analysis we can replace the random permuta-
tion and its inverse oracle with random functions. Note that by a simple hybrid
argument, Lemma 1 also holds for families of permutations, where q is the sum
over all queries and w is the minimal input/output length over all permutations.

We now show that Lemma 1 implies a few restrictions on what an algorithm
can achieve when querying random permutations. Namely, we first show that
input/output pairs are hard to guess (cf., Lemma 2), that preimages are hard to
find without using the inverse oracle (cf., Lemma 3), and that it is hard to find
queries that result in collisions with earlier queries (cf., Lemma 4).

Lemma 2. Let Π = {πi}i be a family of random permutations. For any oracle
algorithm outputting a pair (x, y) and an integer i and making q queries to Π
except x in forward or y in backward direction, the probability that πi(x) = y is
≤ q2

2w .

Proof. We are trying to bound the probability that the algorithm is able to guess
the input/output pair of one of the permutations in Π (after making at most q
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queries). If the πi were random functions, this probability would be ≤ 1
2w . By

Lemma 1 the bound follows. ��
Lemma 3. Let Π = {πi}i be a family of random permutations. For any algo-
rithm taking y as input and making q queries to Π except querying π−1

i for y

and outputting some x and i, the probability that πi(x) = y is ≤ q2

2w .

Proof. If πi and π−1
i were random function, the probability of finding such an x

would be 1
2w . Lemma 1 completes the proof. ��

Lemma 4. Let Π = {πi}i be a family of random permutations. For any algo-
rithm making q queries to Π the probability of a query to Π either in forward
or backward direction resulting in a response z that collides (in the sense of ∼)
with any of the previous queries (in either input or output) is ≤ 2q2(n+2)2

2w .

Proof. Assume we replace the permutations with random functions. The prob-
ability that the response to any query collides with a specific string is at most
(n+1)2/2w, since there are at most n+1 blocks in each string. By union bound,
the probability that a query collides with any of the previous queries is thus at
most 2q(n+1)2/2w, since there are two strings in each query (input and output).
Applying a final union bound to all queries shows that the probability of this
event is 2q2(n + 1)2/2w. Lemma 1 now proves the result. ��

Using the basic lemmas above, we can make statements about certain cyclic
structures that are hard to find in random permutations and about the sequen-
tiality of random permutations.

Lemma 5. Let Π = {πi}i be a family of random permutations. For any algo-
rithm making q queries to Π and outputting two distinct values, x and x′, and
an integer i, the probability that x ∼ x′ and πi(x) ∼ πi(x′) is ≤ 2q2(n+3)2

2w .

Proof. Obtaining two such pairs requires to guess one of the two input/output
pairs or find a colliding query. Union bound over the two events (which are
bounded by Lemmas 2 and 4, respectively) yields the bound. ��
Lemma 6 (Π-Sequentiality of Random Permutations). Let Π = {πi}i be
a family of random permutations. For any algorithm A taking as input x and
making a sequence Q of q queries to Π, and any Π-sequence s starting at x, the
probability of A outputting s and Q not containing the pairs in s in order and in
forward direction is ≤ 2q2(n+3)2

2w .

Proof. Producing a Π-sequence starting at a specific value without query-
ing the pairs in order and in forward direction, requires to either guess some
input/output pair (for some specific πi) or find a colliding query, similarly to
Lemma 5. ��
Corollary 1. Let Π = {πi}i be a family of random permutations. For any
algorithm taking as input x and making q sequential queries to Π, the probability
of outputting a Π-sequence of length longer than q is ≤ 2q2(n+3)2

2w . ��
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We use the above observations to show that nothing the prover does after
sending its commitment φ will help responding to challenges.

Lemma 7. Let (PΠ
1 ,PΠ

2 ) be a pair of algorithms such that

– P1, on input x, makes q1 queries to Π, and outputs a state s1 and some y
– P2, on input s1, x, y, makes q2 queries to Π and outputs a Π-sequence s.

Let Q be the set of queries (including responses) made by P1, and let S be the
set of Π-Sequences between x and y computable4 from Q without any further
queries to Π. Then s ∈ S except with probability ≤ 2q2(n+3)2

2w , where q = q1 + q2.

Proof. Assume s /∈ S. Let (x′, y) be the last pair in s. First consider the case
that the query (x′, y) ∈ Q. Since s is a new sequence not computable from S it
must contain a pair (xi, yi) /∈ Q, so the queries in s were not made in order and
thus by Lemma 6 the probability of P2 outputting s is ≤ 2q2(n+3)2

2w .
Now consider the case (x′, y) /∈ Q. If P2 did not query x′ in forward direction,

by Lemma 6 the probability of P2 outputting s is ≤ 2q2(n+3)2

2w . Finally, if P2

queried x′ in forward direction, it did not submit an equivalent query in the
reverse direction by assumption. (Recall that we consider only algorithms that
do not make redundant queries.) It follow from Lemma 3 that the probability of
this event is ≤ q2

2w . ��
This completes the proof.

4 Embedding Sloth

As discussed in the introduction, we propose a reversible PoSW that is almost as
efficient as the construction from [CP18] but achieves a larger time gap between
the computation of the proof and the verification of correctness. To this aim, we
embed the sloth hash function from [LW17] into construction 2.5.

The idea underlying sloth is to use the fact that the best known algorithms for
computing modular square roots in a field Fp takes ≈ log(p) sequential squarings,
whereas verification of the result only takes a single modular squaring. Thus, this
gives a good candidate to build the slow-t imed hash function sloth.

Let p ≡ 3 mod 4 be a prime. We identify x ∈ Fp× with its canonical repre-
sentant in [0, p − 1]. If x ∈ Fp× is a quadratic residue, then there are two square
roots y, y′ ∈ Fp×, where y′ = p − y, one of them being even, the other one odd.
Let +

√
x, −√x denote the (unique) even and odd square root of x, respectively. If

x ∈ Fp× is not a quadratic residue, then −x is a quadratic residue, so it makes
sense to define a permutation ρ : Fp× → Fp× as

ρ(x) =

{
+
√

x, if x is a quadratic residue,
−√−x, otherwise.

4 By “computable” we mean here that there exists an algorithm for which the output
is correct with non-negligible probability.
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Its inverse is defined by

ρ−1(x) =

{
x2, if x is even,
−x2, otherwise.

Unfortunately, one cannot directly build a hash chain by iterating ρ since
reducing modulo p − 1 in the exponent would yield a much faster computation
than sequentially computing ρ. Lenstra and Wesolowski [LW17] solve this prob-
lem by prepending an easily computable (in both directions) permutation π on
Fp× to each iteration of the square rooting function ρ. Setting τ = ρ ◦ π, the
sloth function is hence defined as τN for some appropriate chain length N . Ver-
ification can be done backwards by the computation (τN )−1 = (σ−1 ◦ ρ−1)N ,
which is by a factor log p faster.

We now combine the ideas from [LW17] with our construction to achieve an
efficient PoSW while preserving the fast verification of correctness obtained by
the sloth construction. Let Π = {πi}i∈[N ]0 be a set of permutations where, for
each i ∈ [N ]0, πi : Fp× × {0, 1}w·(̃i−1). We define the sequence σ̄Π = σ̄0, . . . , σ̄N

with σ̄i ∈ Fp× × {0, 1}n·w recursively as

σ̄0 = ρ̇ ◦ π0((0, 0w·n))
(
= ρ

(
π0((0, 0w·n))(1)

)‖π0((0, 0w·n))(2...n+1)
)

and

for i > 0 : σ̄i = ρ̇ ◦ π̇i(σ̄i−1)
(
= ρ

(
πi(σ̄

(1...̃i)
i−1 )(1)

)‖πi(σ̄
(1...̃i)
i−1 )(2...̃i)‖σ̄

(̃i+1...n+1)
i−1

)
.

See Fig. 3 for an illustration of the computation of σ̄Π . Defining Π ′ =
{π′

i}i∈[N ]0 by π′
i = ρ̇ ◦ πi, it holds σ̄Π = σΠ′ . Thus, using σ̄Π in our proto-

col results in a PoSW that is secure in the random permutation model, almost
as efficient as the construction from [CP18], and at the same time achieves veri-
fication of correctness as efficient as in sloth. More formally, the efficiency of the
combined scheme can be analysed as follows: First, consider the proof size:

Fp � 0

0w

0w

0w

π0

ρ π1 ρ
π2 ρ π3 ρ

π4

ρ π5 ρ
π6 ρ π7 ρ

π8

ρ φ1

φ2

φ3

φ4

σ̄0 σ̄1 σ̄2 σ̄3 σ̄4 σ̄5 σ̄6 σ̄7 σ̄8

Fig. 3. Illustration of the computation of σ̄Π = (σ̄0, . . . , σ̄N ) with n = 3, N = 2n = 8.

|χ| = w · n, |φ| = log(p) + w · n, |γ| = t · n, |{σi}i,j | ≤ t · n(log(p) + w · n).

Hence, compared to [CP18], the proofs are by a factor n = log(N) = log(T )
larger. Next, consider the prover efficiency. To compute φ, the prover needs to
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sequentially evaluate N + 1 permutations π′
i = ρ̇ ◦ πi, i = 0, . . . , N . Storing only

the N/K states σi with K|i for some K = 2k, the prover can answer the challenge
γ after K parallel invocations to permutations (π′

i)
−1. Note, by construction

computing (π′
i)

−1 is assumed to be by a factor log(p) faster than computing π′
i.

The verifier, on the other hand, only needs t · n evaluations of (π′
i)

−1 to verify
the PoSW. Also verification of correctness can be done in backwards direction
by sequentially invocating (π′

i)
−1 for i = N, . . . , 0, which is assumed to be by a

factor log(p) faster than the computation of the prover.
When applied to a blockchain, our new PoSW allows extremely efficient

rejection of wrong proofs while additionally providing sloth-like verification of
correctness, which can be used whenever two or more distinct proofs pass the
verification.

A Proof of Lemma 1

Proof (of Lemma 1). Let X = (X1, . . . , Xq) be the random variable corre-
sponding to the responses to the queries of Aπ,π−1

and Y = (Y1, . . . , Yq) the
one corresponding to the responses to the queries of AF1,F2 . We will show that
ΔSD(X,Y ) ≤ q(q−1)

2w . The lemma then follows from standard properties of ΔSD.
In the following, we will abbreviate the conditional distributions (Xi|X1 =

x1, . . . , Xi−1 = xi−1) as (Xi|(x1, . . . , xi−1)) and similarly for Y . From sub-
additivity for joint distributions (a property of ΔSD), we have

ΔSD(X,Y ) ≤
q∑

i=1

max
x=(x1,...,xi−1)

ΔSD(Xi|x, Yi|x).

For each particular i we have

ΔSD(Xi|x, Yi|x) =
1
2

∑

y∈{0,1}w

|Pr (Xi = y|x) − Pr (Yi = y|x)|.

From the definition of F1, F2, it is clear that Pr (Yi = y|x) = 2−w for all
y ∈ {0, 1}w and x ∈ ({0, 1}w)i−1. For the other case, notice that any query to π
or π−1 fixes a particular input/output pair. Accordingly, Xi is uniform among
the remaining 2w − (i − 1), no matter if π or π−1 was queried (recall that no
input/output pair is repeated). It follows that

ΔSD(Xi|x, Yi|x) =
1
2

[
i − 1
2w

+ (2w − (i − 1))
(

1
2w − (i − 1)

− 1
2w

)]

=
i − 1
2w

for any x (in particular, the maximum). Summing over all i yields the final
bound. ��
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Abstract. A proof of sequential work allows a prover to convince a
verifier that a certain amount of sequential steps have been computed.
In this work we introduce the notion of incremental proofs of sequential
work where a prover can carry on the computation done by the previous
prover incrementally, without affecting the resources of the individual
provers or the size of the proofs.

To date, the most efficient instance of proofs of sequential work [Cohen
and Pietrzak, Eurocrypt 2018] for N steps require the prover to have√

N memory and to run for N +
√

N steps. Using incremental proofs of
sequential work we can bring down the prover’s storage complexity to
log N and its running time to N .

We propose two different constructions of incremental proofs of
sequential work: Our first scheme requires a single processor and intro-
duces a poly-logarithmic factor in the proof size when compared with
the proposals of Cohen and Pietrzak. Our second scheme assumes log N
parallel processors but brings down the overhead of the proof size to a
factor of 9. Both schemes are simple to implement and only rely on hash
functions (modelled as random oracles).

1 Introduction

Imagine that you discover a candidate solution to a famous open problem (e.g.,
the Riemann Hypothesis), and are fairly convinced that your solution is correct
but not entirely. Before publishing your solution you want to scrutinize it further.
However, fearing that someone else might make the same discovery, you need
a way to timestamp yours. While there are many online timestamping services
available1, authenticity of such a timestamp depends on how much one trusts
the service provider. Clearly, a solution independent of trust and resting only on
a cryptographic assumption is more desirable.

Proofs of Sequential Work (PoSW) [10] is an emerging paradigm which offers
a conceptually simple solution to the timestamping problem. Roughly speaking,

G. Malavolta—Work done while at Friedrich-Alexander-Universität Erlangen-Nürnberg.

1 e.g., https://www.freetsa.org.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11477, pp. 292–323, 2019.
https://doi.org/10.1007/978-3-030-17656-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17656-3_11&domain=pdf
https://www.freetsa.org
https://doi.org/10.1007/978-3-030-17656-3_11


Incremental Proofs of Sequential Work 293

proofs of sequential work allow a prover P to convince a verifier V that almost
time T elapsed since a certain event happened. A little more concretely, a PoSW
system consists of a prover P and a verifier V. The prover takes as input a
statement χ and a time parameter N . The statement χ can be something like
a hash of the file which one wants to timestamp. After terminating, the prover
interacts with the verifier V to convince him that at least time N has elapsed
since χ was sampled.

We require a PoSW to be complete, sound and efficient. Here completeness
means that an honest prover will succeed in convincing the verifier that time N
has elapsed since the sampling of χ. Soundness means that a cheating prover
will not succeed in convincing the verifier that time N has elapsed if, in fact
significantly less time has passed. Finally, efficiency means that time N is also
sufficient for the prover to generate such a proof. Another practically important
aspect is memory complexity of the prover, i.e. how much memory is required to
compute a proof for time parameter N . Regardless of the requirements on prover
efficiency, the verifier’s runtime should be essentially independent of N . Finally,
for practical reasons such a proof should be non-interactive. That is, after a proof
π is computed by the prover P and published, no further interaction with P is
necessary to verify the proof.

1.1 Incremental Proofs of Sequential Work

An aspect not considered in the original formulation of proofs of sequential work
is whether a still running proof of sequential work can be migrated from one
prover to another, or forked to two provers. This aspect becomes relevant when
considering that real computers are not immune to hardware failure, so one may
want to spawn clones of important proofs that have been running for a long
time.

In this work, we introduce the notion of incremental proofs of sequential work
(iPoSW). Essentially, an iPoSW is a non-interactive PoSW with the additional
feature that anyone who obtains a proof π for a statement χ and time parameter
N can resume the computation of π, thereby generating a proof π′ for χ with
time parameter N + N ′. More formally, we require that there exists an algorith
Inc which takes as input a proof π for time N and a parameter N ′ and outputs a
proof π′. We require that π′ has the same distribution as a proof for χ for time
N + N ′.

One could imagine a direct construction of iPoSW from PoSW as follows. To
increment a proof π for a statement χ and time N , first derive a new statement
χ′ from χ and π, e.g., by computing a hash χ′ ← H(χ, π). Now compute a proof
π′ for statement χ′ and time N ′ and then append π′ to π, i.e., output (π, π′). To
verify (π, π′) that (π, π′) is a proof for χ and time N +N ′, compute χ′ ← H(χ, π)
and check whether π is a proof for χ and time N and π′ is a proof for χ′ and
time N ′.

This simple solution has, however, an obvious drawback: The size of the proof
grows linearly in the number of increments, which very is undesirable if the proof
is frequently passed on to new provers.
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Moreover, if we look at existing constructions of PoSW [5,10], a prover P
computing a proof π for a statement χ and time N needs to commit memory
proportional to N . Cohen and Pietrzak [5] propose a tradeoff which reduces the
memory requirement of pi to a sublinear but still polynomial amount, however
this comes at the expense of additional sequential computation time, i.e., prover
efficiency is affected by this tradeoff.

1.2 Our Results

In this work we provide constructions of incremental proofs of sequential work
where the sequential runtime of an honest prover is N , while its memory com-
plexity is poly(log N).

We provide two instantiations, both based on the construction of Cohen and
Pietrzak [5], which differ in terms of prover resources and the proof size.

– The first construction is single-threaded, i.e., the prover needs a single pro-
cessor. Compared to the construction of [5], the proof size grows by a factor
of (log N)2.

– The second construction is multi-threaded, where the prover needs log N par-
allel processors. Compared to [5], the proof size grows by a factor of 9.

In particular, our results close the soundness gap between a prover with a
large memory and a prover with a poly-logarithmic memory present in previous
constructions.

We remark that from a technological point of view the assumption of prover
parallelism is justified. For actual applications, the expression log N can be
upper-bounded by 100, which corresponds to a processor capable of comput-
ing 100 hashes in parallel, a number well in the reach of modern GPUs.

1.3 Technical Overview

The starting point of our construction is the recent elegant PoSW construction
of Cohen and Pietrzak [5]. We will henceforth refer to this scheme as the CP
scheme, which is briefly reviewed below. The CP construction relies on properties
of a special directed acyclic graph, which we will refer to as CPn. This graph
is constructed as follows: Let Bn be a complete binary tree of depth n, i.e.,
the longest leaf-to-root path consists of n edges, with edges pointing from the
leaves towards the root. Each node in Bn is indexed by a bit string of length at
most n, while the root node is indexed by the empty string ε. The graph CPn

is constructed by adding edges from all nodes v to all leaves u such that v is a
left-sibling of the path from u to the root.

The CP Approach. For a time parameter N , choose n such that CPn contains
(at least) N nodes. The prover is given a statement χ which is used to seed
random oracles Hχ(·) := H(χ, ·) and H′

χ(·) := H′(χ, ·) given the random oracles
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H and H′ respectively. Using Hχ, the prover computes a label for each node v in
CPn by hashing the labels of all nodes with incoming edges to v. Starting from
the leftmost leaf 0n, which is assigned a label 0λ, the prover iteratively computes
the labels of all nodes in CPn, completing each subtree before starting a new
leaf. Eventually the prover obtains a label �ε for the root node.

Next, the prover computes H′
χ(�ε) which outputs a randomness for sampling

t challenge leaves, where t is a statistical security parameter. The proof then
consists of the labels of all t challenge leaves, as well as the labels of all siblings
of the paths from the challenge leaves to the root. To verify a proof, the verifier
recomputes H′

χ(�ε) to verify if the prover provided the correct paths, and if so
checks that the t paths provided by the prover are consistent.

Note that in order to compute a proof, the prover has to either remember the
N labels for the entire CPn graph, or recompute the labels required in the proof
once the challenge leaves are chosen, which requires N sequential hash computa-
tions. This introduces a soundness slack of 1

2 between these two strategies, i.e.,
the memory efficient prover has to compute for time 2N to prove a statement
for time N . This factor becomes particularly significant when large values of N
are considered, e.g., a PoSW that 10 years of sequential operations have been
performed may take between 10 and 20 years to be computed. To attenuate this
problem, Cohen and Pietrzak propose a hybrid approach where the prover stores√

N nodes and can then recompute the challenge root-to-leaf paths in time
√

N .

At the Heart of the Problem. This soundness slack is clearly undesirable as
the value of N grows: A prover with access to a large amount of memory can
achieve a non-trivial speed up in the computation of the proof over a prover with
polylogarithmic memory. As it turns out, this issue is tightly connected with the
fact that the CP proofs cannot be extended incrementally: On a very high level,
the crux of the problem is that the challenge leaves are determined solely by the
root of the CPn tree. Extending the tree causes the root to change and renders
the previous challenge set obsolete.

The main idea in our first construction is to choose challenge leaves “on-the-
fly” at each node of the tree and then gradually discard some of them as the
tree grows. This will allow us to compute a proof π in a single pass.

More precisely, our selection mechanism works as follows: For any node v in
CPn which has at most t leaves, we assign all these leaves to be the challenge
leaves for the node v. Let l and r be the children of a node v which has more
than t leaves, and let Sl and Sr be the challenge leaves for l and r respectively.
To determine the set Sv of challenge leaves for v, we first compute the label �v

of v as in the CP scheme, and then hash the label �v with H′
χ to obtain random

coins2. Using these random coins, we can sample Sv as a random subset of size
t from the set Sl ∪ Sr. This operation is visualized in Figs. 1 and 2.

2 As we are working in the random oracle model, these coins can be taken directly
from �v if we make the hashes sufficiently longer. However, for presentation purposes
we use a separate hash function which hashes �v.
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In a bit more detail, due to the way the graphs are traversed, we only need
to store challenge-paths at what we call unfinished nodes. A node is unfinished
if it has already been traversed/processed, but its right sibling has not yet been
traversed. Consequently, only left siblings can be unfinished. Moreover, due to
the structure of the graph CPn and the way it is traversed, at each step the
unfinished nodes are exactly the left siblings on the path from the root to the
node which is currently processed. Consequently, at each step there are at most
log N unfinished nodes. Essentially, when a node l becomes unfinished, it waits
until its right sibling r is processed. By the way we traverse CPn, the next node
to be traversed is the parent v of l and r. Once the label of v has been computed,
we can compute a set of challenge paths for v as described above and remove l
from the list of unfinished nodes.

Observe that if a leaf previously chosen as a challenge leaf is dropped due to
the above subset sampling, this leaf will not be chosen as a challenge leaf again
in the rest of the computation. Therefore the prover can safely erase the labels
of some of the nodes lying on the paths from these dropped challenge nodes
to the root, which surely will not appear in the eventual proof. On the other
hand the final challenge set is still unpredictable to the eyes of the prover since
the decision which paths are discarded is uniquely determined by the complete
labelling of the tree.

It is not immediately clear that the strategy we just described lead to a
sound protocol. Infact, a malicious prover can already see a large fraction of the
challenge path before the label of the root node is even computed and adaptively
recompute parts of the proof. The main observation on which our analysis is
based is that, once a node v becomes unfinished, its label commits to all the
leafs under v, thus the challenge paths at v provide a good statistical sample of
the overall fraction of invalid leafs in the subtree of v.

Fig. 1. Before choosing challenge subset. Fig. 2. After choosing challenge subset.

Recomputation to the Rescue. The above strategy seems to solve all prob-
lems at once:
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1. The prover algorithm can traverse the tree and remember the local challenge
paths using poly-logarithmic memory in N and in sequential time N . Once
the root is reached, the set of challenge paths is already in the memory of the
prover! Therefore no recomputation is needed and the source of the slack is
obliterated.

2. The proof is naturally incremental: Further iterations of the tree only shave off
root-to-leaf paths in the challenge set, as opposed to determining a completely
new set of challenges.

However there is still a challenge to be addressed: Due to the adaptivity of the
adversary, our strategy introduces a factor of log N in the soundness loss. That
is, if the CP scheme with a set of parameters achieves soundness α, i.e., the
prover cannot cheat by computing less than (1 − α)N steps, our scheme only
achieves soundness log N · α. This in turn means that in order to achieve the
same soundness parameter as the CP scheme, we need to increase the number of
challenge paths by a factor of (log N)2, which also results in an increase of the
proof size by a factor of (log N)2. Although this does not affect the asymptotic
performance of our scheme, it has an impact on the concrete proof sizes. For
N = 240, our proofs are bigger than those obtained with the CP scheme by a
factor of ∼1600. To bring down the proof sizes to a practical regime, we reconcile
CP scheme with our “on-the-fly” selection strategy. Our second construction
assumes that the prover is a parallel machine, but we can show that the number
of parallel processors required will never exceed log N .

Our second scheme is based on the following observation. Let v be a node in
CPn, and assume that l is its left child and r is its right child. Further assume that
the prover just finished traversing the tree under l, that is l becomes processed
but unfinished. By the structure of CPn, the prover next traverses the tree
underneath r. In our first scheme the node l would just be on a waiting list of
unfinished nodes and has to wait and remember its challenge paths until r is
processed. However, due to symmetry it will take the prover the same amount
of sequential steps to traverse the tree underneath r as it took to traverse the
tree under l. This suggests a strategy (depicted in Fig. 3): While l is unfinished
and waiting for the r to be processed, we can recompute the subtree underneath
l in order to fetch fresh challenge paths using an additional parallel processor.
By the time r is finished, this process will have terminated and we do not need
to bear the above soundness loss for l.

Notice further that, to recompute the tree underneath l, all the prover needs
is the labels of the currently unfinished nodes on the path from the root to v,
which the prover needs to keep in memory regardless. This modification of the
prover strategy must also be reflected by the verifier. When we verify a root-to-
leaf path, the verification strategy will change once the path takes a left turn.

Note that the memory complexity of the main thread is unchanged and that
at any point in time there are at most log N parallel processes. The parallel
threads are identical to the recomputation step. Therefore, the complexity of
each parallel thread is essentially the same as that of the CP scheme. This
hybrid construction brings down the loss in soundness to a factor of 3, which
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Fig. 3. Recomputation of Sub-Trees.

corresponds to an increase of the proof size by a factor of 9. We consider this
to be a modest price to pay in exchange for getting the additional feature of
incremental proofs and an essentially optimal prover complexity.

1.4 Perspectives

Merkle trees are ubiquitous in cryptographic protocol design, allowing to com-
press large amounts of data into a succinct digest. Membership proofs are partic-
ularly efficient as they usually consist of root-to-leaf paths and can be encoded
with logarithmic-size strings. The de-facto methodology to non-interactively
probe Merkle trees at random locations is to apply the Fiat-Shamir [7] trans-
form, on input the root of the tree. This means that the challenge locations are
determined only when the full tree is computed. Thus, the prover must either
recompute the paths or store the full tree in its memory.

Using our techniques one can compress data and generate challenges in a sin-
gle pass, without any memory blowup. This becomes particularly advantageous
when computing over very large databases or data streams. Here we exemplify
the applications of our methods to scenarios of interest.

Verifiable Probing. Consider a stream of data where some statistical measure
is computed by an untrusted party. Using our approach we can increase the
confidence in the validity of the statistics by probing the stream on random
locations. The prover iteratively computes a Merkle commitment of the stream
and selects random probes using our “on-the-fly” selection strategy. The verifier
can then non-interactively check whether the distribution of the probes resembles
the reported statistics.

Streaming Arguments. In Micali’s CS proofs paradigm [8,11], witnesses for NP
relations are encoded into probabilistically checkable proofs (PCP) [1] and then
committed using a Merkle tree. The testing locations for the PCP are selected
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using Fiat-Shamir [7] and the corresponding root-to-leaf paths form the CS
proof. Our techniques can be useful for memory-constrained provers that cannot
store the complete PCP encoding in their memory. Our challenge-selection algo-
rithm allows the provers to compute the CS proof using only one stream of the
encoding.

1.5 Related Work

Proofs of work, a concept introduced by Dwork and Naor [6] and having become
wildly popular in the context of cryptocurrencies, allow a prover to convince
a verifier that a certain amount of computational effort has been invested in a
certain task. However, the computation can be parallelized, thus it generates a
mismatch among players which have different resource constraints. Mahmoody,
Moran, and Vadhan [10] introduced the concept of PoSW and provided a con-
struction based on depth-robust graphs. Very recently, Cohen and Pietrzak [5]
provided an elegant construction based on a binary tree with some useful com-
binatorial properties. Their scheme improves over [10] in terms of conceptual
simplicity, concrete efficiency, and can reduce the memory complexity of the
prover up to log N . A shortcoming of their approach is that, in order to achieve
such a memory bound, one has to perform the same amount of computation
twice.

Incrementally verifiable computation (IVC) was introduced by Valiant [14]
and allows a machine to output short proofs that arbitrary parts of the compu-
tation have been done correctly without significantly affecting the resources of
such a machine. As observed by Boneh et al. [4], IVC is a more general primitive
than PoSW. The main construction paradigm for IVC consists of a recursive
composition of succinct arguments of knowledge [11], which means that existing
constructions of IVC either

– make non-black-box use of random oracles [14], or
– require a trusted setup [2].

In general, incremental PoSW appears to be an easier problem than IVC which
justifies the existence of more efficient solutions based on weaker assumptions.

Verifiable delay functions (VDF) have been introduced by Boneh et al. [4]
and can be seen as PoSW with unique proofs: The prover can only convince the
verifier with a single value, which is uniquely determined by the time parameter
N and by the statement. Thus VDF constitutes a stronger primitive than PoSW
and as to our current understanding requires stronger cryptographic material:
Known constructions [12,15] rely either on IVC or on specific number-theoretic
assumptions related to factoring large integers.

Time-lock puzzles [13] encapsulate a secret information for a pre-determined
amount of time. This primitive is tightly related to sequential computation
as it needs to withstand attacks from highly parallel processors. Time lock-
puzzles can be constructed assuming the hardness of a variant of the RSA
assumption [13] or succinct randomized encodings and the existence of a worst
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case non-parallelizable language [3]. Unlike PoSW, no construction based on
symmetric-key primitives is known and [9] gave a black-box separation for these
two objects.

2 Preliminaries

2.1 Notations

Let G = (V,E) be a graph where V is the set of nodes and E is the set of edges. If
v ∈ V , we write also v ∈ G for convenience. Let T be a tree and i ∈ T be a node.
Ti denotes the set of nodes in the subtree rooted at node i. leaf(i) denotes the
set of all leaf nodes that are descendants of i. parent(i) and child(i) denote the
parent of and the set of children of i, repectively. path(i) returns the set of nodes
located at the (unique) path from the root (inclusive) to node i (inclusive). The
notations are extended naturally to sets of nodes. Let S ⊆ T be a set of nodes,
then TS :=

⋃
i∈S Ti, leaf(S) := {leaf(i) : i ∈ S} and path(S) := {path(i) : i ∈ S}.

For a complete binary tree Bn = (V,E′) of N = 2n+1 − 1 nodes, we say
that Bn is of depth n (counting the number of edges in the longest leaf-to-root
path). The nodes V = {0, 1}≤n are identified by binary strings of length at most
n and the empty string ε represents the root. The edges E′ = {(x||b, x) : b ∈
{0, 1}, x ∈ {0, 1}i, i < n} are directed from the leaves towards the root. Let
v ∈ {0, 1}nv ⊆ Bn be a node nv edges away from the root. We say that v is of
depth nv or height hv := n − nv.

2.2 Statistical Distance

In the following we recall the definition of statistical distance.

Definition 1 (Statistical Distance). Let X and Y be two random variables
over a finite set U . The statistical distance between X and Y is defined as

SD [X,Y ] =
1
2

∑

u∈U
|Pr[X = u ] − Pr[Y = u ]|

2.3 Tail Bound for the Hypergeometric Distributions

Here we introduce a useful inequality by Hoeffding.

Theorem 1 (Hoeffding Inequality). Let X be distributed hypergeometrically
with t draws. Then it holds that

Pr [X < E[X] − ζ] < e−2ζ2t.
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3 Incremental Proofs of Sequential Work

Below we define incremental proof of sequential work in the same spirit as Cohen
and Pietrzak [5], except that we state directly the non-interactive variant.

Definition 2. A (non-interactive) incremental proof of sequential work
(iPoSW) scheme consists of a tuple of PPT oracle-aided algorithms
(Prove, Inc,Vf), executed by a prover P and a verifier V in the following fashion:

Common Inputs. P and V get as common input a computation security parameter
λ ∈ N, a statistical security parameter t ∈ N, and a time parameter N ∈ N. All
parties have access to a random oracle H : {0, 1}∗ → {0, 1}λ.

Statement. V samples a random statement χ ←$ {0, 1}λ and sends it to P.

Prove. P computes π ← ProveH(χ,N) and sends π to V.

Increment. P computes π′ ← IncH(χ,N,N ′, π) and sends π′ to V.

Verify. V computes and outputs VfH(χ,N, π).

We require a PoSW scheme to be complete in the following sense.

Definition 3. (Completeness). For all λ ∈ N, all N ∈ N, all random oracles
H, and all statements χ ∈ {0, 1}λ we say that a tuple (χ,N, π) is honest if

π ∈ ProveH(χ,N) or π ∈ IncH(χ,N ′, N ′′, π′),

where N ′ +N ′′ = N and the tuple (χ,N ′, π′) is also honest. A (non-interactive)
incremental proof of sequential work is complete if for all honest tuples (χ,N, π)
it holds that

VfH(χ,N, π) = 1.

In the following we define soundness for incremental proofs of sequential work.

Definition 4. (Soundness). A (non-interactive) incremental proof of sequen-
tial work PoSW is sound if for all λ,N ∈ N, for all α > 0, for all adversaries A
that make at most (1 − α)N sequential queries to H, it holds that

μ := Pr
[
χ ← {0, 1}λ;π ← AH(χ,N) : VfH(χ,N, π) = 1

]
∈ negl(λ)

where μ is called the soundness error.

For our construction we recall the following directed acyclic graph constructed
by Cohen and Pietrzak [5] which has some nice combinatorial properties.

Definition 5. (CP Graphs). For n ∈ N, let N = 2n+1 − 1 and Bn = (V,E′)
be a complete binary tree of depth n with edges pointing from the leaves to the
root. The graph CPn = (V,E) is a directed acyclic graph constructed from Bn =
(V,E′) as follows. For any leaf u ∈ {0, 1}n, for any node v which is a left-sibling
of a node on the path from u to the root ε, an edge (v, u) is appended to E′.
Formally, E := E′ ∪ E′′ where

E′′ := {(v, u) : u ∈ {0, 1}n, u = a||1||a′, v = a||0, for some a, a′ ∈ {0, 1}≤n}.
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Fig. 4. CP3 with traversal order highlighted in red. (Color figure online)

An illustration of CP3 is in Fig. 4, with its traversal order (c.f. Lemma 2) high-
lighted in red. Here we recall some technical lemmas from [5].

Lemma 1. ([5]). The labels of a CPn graph can be computed in topological order
using λ(n + 1) bits of memory.

Let T be a tree and S ⊆ T be a subset of nodes. We denote by S∗ the minimal
set of nodes with exactly the same set of leaves as S, in other words, S∗ is the
smallest set such that leaf(S∗) = leaf(S).

Lemma 2. ([5]). For all S ⊆ V , the subgraph of CPn = (V,E) on vertex set
V \ TS∗ has a directed path going through all the |V | − |TS∗ | nodes.

Lemma 3. ([5]). For all S ⊆ V , TS∗ contains |TS∗ |+|S|
2 many leaves.

4 Main Construction

For any n ∈ N, we construct an incremental PoSW scheme based on the graph
CPn = (V,E) as follows. We assume without loss of generality that, given a
random oracle H, one can sample a fresh random oracle indexed by a string x,
which we denote by Hx. This can e.g., be done by prepending x and a special
separator symbol to any query to H, i.e., Hx(y) := H(x#y) for a separator
symbol #.

4.1 Parameters

Our incremental Proof-of-Sequential-Work system depends on the following
parameters and objects.

– A time parameter N of the form N = 2n+1 − 1, for some integer n ∈ N.
– A computational security parameter λ
– A statistical security parameter t
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– A full-domain hash function H : {0, 1}∗ → {0, 1}λ modelled as a random
oracle.

– A full-domain hash function H′ : {0, 1}∗ → {0, 1}3t modelled as a random
oracle.

– A sampler RandomSubset(M,m; r) which takes a universe size M , a sample
size m and uniform random coins r and outputs a uniformly random subset
X ⊆ [M ] such that |X| = m. In our application, we will always set M = 2t

and m = t. Since
(
2t
t

)
<

(
2t·e

t

)t = (2e)t, where log 2e ≈ 2.44, random coins of
size 3t are sufficient to sample statistically close to a uniform subset.

Notation. Let ε be the root-node of CPn and 0n the left-most leaf in the tree or
starting-node. We will call a left node v ∈ V unfinished, if v has been traversed
by the prover algorithm but parent(v) has not yet been. At any time, the prover
will keep a list of the currently unfinished nodes U . At each unfinished node v,
the prover will store Lv, a set of extended labeled paths from v to leaf(v). An
extended labeled path consists of a list of tuples of the form (vi, �li , �ri

, indi),
where vi is the index/address of a node on the path, li is the left child of vi, ri

is the right child of vi and consequently �li is the label of li and �ri
is the label

of ri. Finally, indi is a local path index, the meaning of which will be explained
later.

For simplicity of exposition, we assume that t is a power of 2. Our construc-
tion can be easily adapted to the more general case where t is arbitrarily chosen.
For convenience, we denote by n∗ = n∗(n, t) the depth at which every node has
exactly t leafs underneath, i.e., it holds for every node v which is n∗ edges from
ε that |leaf(v)| = t.

4.2 Scheme Description

ProveH,H′
(χ,N) :

1. Initialize U ← ∅, the set of unfinished nodes.
2. Assign �0n ← 0λ as the label of the starting node.
3. Traverse the graph CPn starting from 0n. At every node v ∈ V which is

traversed, do the following:
(a) Compute the label �v by

�v ← H(χ,v)(�v1 , . . . , �vd
)

where v1, . . . , vd ∈ V are all nodes with edges pointing to v, i.e., (vi, v) ∈
E.

(b) Let l and r be the children of v.
(c) If |leafs(v)| ≤ t, set Lv ← {[(v, �l, �r,⊥)‖L] where L ∈ Ll ∪ Lr}.
(d) Otherwise (i.e., if |leafs(v)| ≥ 2t), do the following:

i. Compute

rv ← H′
(χ,v)(�v).
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ii. Choose a random t-subset Sv of [2t] via Sv ← RandomSubset(2t, t; rv).
iii. For j ∈ {0, . . . , t − 1}, write Sv[j] = at + b with a ∈ {0, 1} and

0 ≤ b < t.

Lv[j] ←
{

[(v, �l, �r, j)‖Ll[b]], if a = 0
[(v, �l, �r, j)‖Lr[b]], if a = 1

(e) Mark l as finished, i.e., remove l from U and, if v is a left child, mark v
as unfinished, i.e., add v to U .

4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}),
terminate and output π ← (�ε,Lε).

IncH,H′
(χ,N,N ′, π) :

1. Initialize U ← ∅.
2. Parse π as (�ε,Lε)
3. Assign �0n′−n := �ε and L0n′−n := Lε.
4. Execute the algorithm ProveH,H′

(χ,N ′) starting from step 3 with a slight
change: Traverse the graph CPn′ starting from 0n′−n−1‖1‖0n (instead of from
0n′

).

VfH,H′
(χ,N, π) :

1. Parse π as (�ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, �l0 , �r0 , ind0)‖ . . . ‖(vn, �ln , �rn
, indn)].

(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label �v was
computed correctly. That is, for v = 0n check whether �v = 0λ, and for
any other node v ∈ V \{0n} check whether �v = H(χ,v)(�v1 , . . . , �vd

), where
v1, . . . , vd are all the nodes with edges pointing to v. The value �v can
either be retrieved from the parent node of v, or is directly available for
the case of the root-node ε. For the special case of leaf-nodes, the values
�v1 , . . . , �vd

are not stored locally with the node v, but are stored at some
other (a-priori known) nodes along the path path (refer to the structure
of the graph CPn).

(c) For all j ∈ {0, . . . , n∗}, compute rvj
← H′

(χ,vj)
(�vj

) and Svj
←

RandomSubset(2t, t; rvj
). If vj+1 is the left child of vj , check if

Sv[indj ] = indj+1.

Otherwise, if vj+1 is the right child of vj , check if

Sv[indj ] = t + indj+1.

3. If all checks pass output 1, otherwise 0.
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Incomplete Trees. We briefly outline how to handle incomplete binary trees. If
N does not define a complete tree, then at the end of the prover’s iteration the
list of unfinished nodes consists of several elements: U = {v1, . . . , vn}. The new
proof π consists of the tuples (�v1 ,Lv1), . . . , (�vn

,Lvn
). The proof can be easily

verified by running the standard verification algorithm on each pair (�vi
,Lvi

)
separately and outputting 1 if all the verifications succeeds. In a similar way,
one can increment the proof by recovering the trees computed so far, setting
the labels of the unfinished nodes to (�v1 , . . . , �vn

) and the corresponding sets
to (Lv1 , . . . ,Lvn

). Given such a snapshot of the execution, one can continue the
standard iteration and complete the proof for the new (larger) tree.

4.3 Efficiency Analysis

We now discuss the efficiency of our scheme in terms of proof size, computation
and communication.

Proof Size. The proof consists of the root-label �ε and t challenge paths
path0, . . . , patht−1. Each path ∈ {path0, . . . , patht−1} consists of n tuples of the
form (v, �l, �r, ind), where v is the index of a node, �l and �r are the labels of the
left and right children of v, and ind ∈ [t] is the index of path in the challenge set
Sv at v. The node index v can be stored using a single bit per node, indicating
whether it is the left or right child of its parent. Each of �l and �r can be stored
using λ bits, and ind can be represented using log t bits. Consequently, the entire
proof has size at most t · n · (1 + 2λ + log t) = O(t · λ · n) (assuming t ∈ poly(λ)).
Later, in the soundness analysis, we will show that our construction is sound if
t ∈ O(λ · n2). With such choice of t, the proof size is bounded by O(λ2 · n3).

Prover Efficiency. The prover traverses the N nodes of the graph CPn in the
same manner as the prover algorithm of the CP scheme. Additionally, at each
node the prover computes a challenge using the random oracle H′

(χ,v).
The challenges H′

(χ,v) can be computed in a way that does not increase the
parallel time complexity of the prover. Specifically, instead of computing the
randomness for the challenges via rv ← H′

(χ,v)(�v), we can equivalently compute
the rv similar to �v via rv ← H′

(χ,v)(�v1 , . . . , �vd
). This is possible as both H

and H′ are random oracles. The proof changes only slightly, but we kept the
naive version for presentation purposes. In the modified scheme H and H′ can
be evaluated in parallel. thus the parallel complexity is not increased by the
evaluation of H′. To conclude, the parallel complexity of the prover is bounded
by the time needed for O(N) sequential calls to the random oracles.

For the memory complexity of the prover, Cohen and Pietrzak [5] show using
a standard pebbling argument (c.f. Lemma1) that the labels of CPn can be
computed in topological order storing at most n + 1 labels at any time, i.e.,
having at most n + 1 pebbles in the graphs at any time. This corresponds to
the number of unfinished nodes, i.e. at every time-step there are at most n + 1
unfinished nodes. At each unfinished node v ∈ U , the prover keeps a list Lv

consisting of t labeled paths. By the analysis above these t paths can be stored
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using O(λ2 ·n3) bits. Consequently, the space complexity of the prover is bounded
by O(λ2 · n4).

Verifier Efficiency. The verifier needs to check the consistency of t paths, each
consisting n nodes. Checking a node incurs the computation of a hash using
H(χ,v) and one using H′

(χ,v). All nodes can be checked in parallel with by
computing a constant number of hashes. After that, the verifier has to check
whether all t · n checks are passed, which can be performed in parallel time
O(log(t · n)) = O(log(λ · n3)).

4.4 Soundness

We now establish soundness of our construction. Before proving the main theo-
rem, we prove some useful lemmas. Throughout the following analysis, we always
assume that N and t are powers of two, but the arguments naturally extend to
the more generic case. We denote by L := (Tv, {�u}u∈Tv

) the labelling for a
sub-tree Tv. We slightly abuse the notation and we say that u ∈ L if u ∈ Tv.

Lemma 4. Let A be an algorithm with access to a random oracle H : {0, 1}∗ →
{0, 1}λ which outputs a root-hash of a Merkle tree of depth n and a (valid) root-
to-leaf path path with siblings. Then there exists an efficient online extractor
Extract, which on input a node v ∈ T, a label �∗ and a list Q (of size q) of
all H-queries of A so far, outputs a labelling L of the sub-tree Tv rooted at v
such that the following holds. Let path∗ be the leaf-to-root path p truncated at v
and let pathL be the same path in L, then path∗ = pathL, except with probability
1+q(q−1)

2λ , over the choice of H.

Proof. We assume without loss of generality that the list Q is of the form
{(in, out)}, and that the depth nv of a node is efficiently computable from its
identifier. We define the algorithm Extract in the following.

Extract(v, �∗, Q) : The root of the tree L set to be �∗ and the rest of the tree is
recursively constructed applying (n − nv) times the following function f(node):
Parse Q for an entry of the form (in, node), if such an entry does not exist then
return ⊥. Else parse in as �0‖�1, set �0 as the left child of node and �0 as the
right child of node in L. Then run f(�0), f(�1) and return L.

The algorithm runs with a logarithmic factor in the size of Tv (assuming an
ordered list Q) and therefore it is efficient. Let BAD be the event such that there
exists a node v ∈ path∗ labelled �′

v such that �v �= �′
v and �parent(v) = �′

parent(v),
where �′

v and �v are the labelling output by A and by the extractor, respectively.
By the law of total probability we have that

Pr [BAD] = Pr [BAD | �v = ⊥]Pr [�v = ⊥] + Pr [BAD | �v �= ⊥]Pr [�v �= ⊥]
≤ Pr [BAD | �v = ⊥] + Pr [BAD | �v �= ⊥] .

To bound the first summand observe that H(�′
v‖�′

v′) = �′
parent(v), where v′ is

the sibling of v, since the path path needs to be valid. Further note that there
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exists no entry of the form (·, �′
parent(v)) ∈ Q, since �v is set to ⊥ and �′

parent(v) =
�parent(v). This implies that the adversary has correctly guessed a pre-image of
�′
parent(v) without querying H, which happens with probability 2−λ. Thus we can

bound from above

Pr [BAD | �v = ⊥] ≤ 2−λ.

For the second summand consider again that H(�′
v‖�′

v′) = �′
parent(v) and that

H(�v‖�v′) = �parent(v). Since �′
parent(v) = �parent(v) we have that H(�′

v‖�′
v′) =

H(�v‖�v′), which is a valid collision for H since, by assumption, �′
v �= �v. There-

fore we have that

Pr [BAD | �v �= ⊥] ≤ 1 −
q−1∏

k=0

(

1 − k

2λ

)

= 1 − 2λ

2λ
· 2λ − 1

2λ
· · · 2λ − (q − 1)

2λ

≤ 1 −
(

2λ − (q − 1)
2λ

)q

= 1 −
(

1 − q − 1
2λ

)q

≤ q(q − 1)
2λ

where the last inequality is due to Bernoulli. Thus by triangle inequality we have
that

Pr [BAD] ≤ 1
2λ

+
q(q − 1)

2λ
=

1 + q(q − 1)
2λ

,

which implies that the complementary event happens with all but negligible
probability. That is, for all nodes in v ∈ path∗ labelled �v such that and
�parent(v) = �parent(v) it holds that �′

v = �v. Since L is rooted at �∗ and path∗

and L have the same depth, it follows by induction that path∗ must be identical
to pathL, with the same probability. ��
Given a labeled tree L, we say that a node v ∈ L is inconsistent if it holds that
�v �= H(�v1 , . . . , �vd

), where (v1, . . . , vd) are the nodes with an incoming edge
to v. Let n(L) be the depth of L, then L has 2n(L)-many paths (or, equivalently,
leaves) and we define C as the set of paths which contain at least one inconsistent
node. Note that L uniquely defines a set of t challenge paths (as specified in the
description of the prover algorithm) which we denote by Z. For convenience we
define the functions γ(L) := |C|

2n(L) and δ(L) := |Z∩C|
|Z| .

Lemma 5. Let v be a node and let l and r be the left and right child of v,
respectively. If

δ(Ll) ≥ γ(Ll) − ηl and δ(Lr) ≥ γ(Lr) − ηr

then it holds that

Pr [γ(Lv) ≤ δ(Lv) + ηv] ≥
(

1 − e
−2

(
ηv− (ηl+ηr)

2

)2
t
)

.
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Proof. Recall that γ(Lv) counts the fraction of inconsistent paths of v. Since l
and r are the children of v it holds that

γ(Lv) =
(γ(Ll) + γ(Lr))

2
. (1)

Rearranging the terms we have that

γ(Ll) ≤ δ(Ll) + ηl (2)
γ(Lr) ≤ δ(Lr) + ηr, (3)

thus combining (1), (2), and (3) we obtain

γ(Lv) ≤ (δ(Ll) + ηl + δ(Lr) + ηr)
2

=
(δ(Ll) + δ(Lr))

2
+

(ηl + ηr)
2

. (4)

Let Z ′
v be the set of all paths in Zl ∪ Zr extended to v, i.e. Z ′

v = {(v, p) | p ∈
Zl ∪ Zr}. By construction, the set Zv is a random t-subset of Z ′

v (where the
randomness for this choice is taken from H′

(χ,v)(�v)). Assume now that there are
sl rejecting paths in Zl and sr rejecting paths in Zr, i.e. it holds that δ(Ll) = sl

t
and δ(Lr) = sr

t . That is, there are sl + sr rejecting paths in Z ′
v. Consequently,

the expected number of rejecting paths in Zv is sl+sr

2t · t = 1
2 (δ(Ll) + δ(Lr)) · t,

that is

E[δ(Lv)] =
(δ(Ll) + δ(Lr))

2
, (5)

where the expectation is taken over the random choice H′
(χ,v)(�v). Thus we can

rewrite

Pr [γ(Lv) > δ(Lv) + ηv] = Pr [δ(Lv) < γ(Lv) − ηv]

< Pr

[

δ(Lv) <
(δ(Ll) + δ(Lr))

2
+

(ηl + ηr)
2

− ηv

]

= Pr

[

δ(Lv) < E[δ(Lv)] +
(ηl + ηr)

2
− ηv

]

< e
−2

(
ηv− (ηl+ηr)

2

)2
t

where the first inequality holds by (4), the second equality holds by (5), and the
last inequality is a direct application of the Hoeffding inequality for hypergeo-
metric distributions (Theorem1). ��
We are now ready to state and prove the main theorem.

Theorem 2. The construction given in Sect. 4.2 is sound for any t ∈ O(λ ·n2),
and the soundness error is given by 1+q(q−1)

2λ + q · e−2(α
n )2t.

Proof. Let χ be the challenge statement and let qv be the number of calls of A
to the random oracle H′

(χ,v), i.e., the adversary makes at most q =
∑

v∈T qv calls
to H′ in total.
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By Lemma 4, there exists an (efficient) algorithm Extract which on input a node
v ∈ T, a label �v and a list Q of all query to H by A with their responses,
outputs a a labelling Lv of the sub-tree Tv rooted at v. For i = {0, . . . , n} and
for j = {1, . . . , 2i}, let vi,j be the j-th node at layer i of the tree (counting from
the root towards the leaves).

Consider the following sequence of hybrids.

– Hybrid H0: This is identical to the real experiment.
– Hybrid H1: The same as H0, except for the following modifications.

• The experiment records a list Q of all H queries made by A with their
responses.

• Every time A queries H′
(χ,v) for a v ∈ V with a label �v, a labelling Lv for

the sub-tree under v is computed via Lv ← Extract(v, �v, Q).
• If it holds for any path opened by A that the labels on the path are

different from the labels in Lε (where ε is the root), then H1 aborts and
outputs 0.

Let BADv be the following event: A queries H′
(χ,v) with a query �̂v corresponding

to a labeled sub-tree Lv ← Extract(v, �̂v, Q) for which it holds that δ(Lv) <
γ(Lv) − n∗−nv

n∗ · α, where nv is the depth of v (i.e. the distance between the
root-node ε and v) and n∗ is the depth at which every node has exactly t leafs
underneath.

For i = n∗, . . . , 0 and j = 1, . . . , 2i define the following hybrids.

– Hybrid Hi,j : The same as the previous hybrid, except that the experiment
outputs 0 if the event BADvi,j

happens (Recall that vi,j is the j-th node at
layer i of the tree, counting from the root towards the leaves).

We will now show indistinguishability between the hybrids. By Lemma4 it holds
that H0 and H1 are indistinguishable. We now turn to the indistinguishability
of hybrids Hi,j . For notational convenience, let H↓

i,j be the hybrid before Hi,j .
First consider i = n∗. It holds for each node v at level i that the set Zv of

challenge paths consists of all paths from v to the leaves under v. Consequently,
it holds for all v at level i that δ(Lv) = γ(Lv) and therefore BADv happens with
probability 0.

Now consider the case of i < n∗ and let v = vi,j . Moreover, let l and r be the
the left and right children of v.

First notice that, conditioned on that the event BADv does not hap-
pen, hybrid Hi,j is distributed identically to the previous hybrid, i.e.

Pr [Hi,j(A) = 1|¬BADv] = Pr
[
H↓

i,j(A) = 1|¬BADv

]
. Therefore

SD[Hi,j ,H↓
i,j ] = Pr [BADv] ·

∣
∣
∣Pr [Hi,j(A) = 1|BADv] − Pr

[
H↓

i,j(A) = 1|BADv

]∣
∣
∣

︸ ︷︷ ︸
≤1

≤ Pr [BADv]
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It is thus sufficient to bound the probability for the event BADv. A queries the
random oracle H′

(χ,v) with at most qv distinct queries. Fix a query �̂v, and let �̂l

and �̂r be the corresponding labels of the children l and r of v. It holds that

δ(Ll) ≥ γ(Ll) − n∗ − (i + 1)
n∗ · α

δ(Lr) ≥ γ(Lr) − n∗ − (i + 1)
n∗ · α,

as otherwise one of the events BADl or BADr would have happened and the
experiment would have aborted. We can now rewrite

Pr [BADv] = Pr

[

δ(Lv) < γ(Lv) − n∗ − i

n∗ · α

]

= 1 − Pr

[

γ(Lv) ≤ δ(Lv) +
n∗ − i

n∗ · α

]

< e
−2

(
n∗−i

n∗ ·α− n∗−(i+1)
n∗ ·α

)2
t

= e−2( α
n∗ )2t

by Lemma 5. A union-bound over all queries to H(χ,v) yields

Pr [BADv] < qv · e−2( α
n∗ )2t.

Thus we conclude that the statistical distance between Hi,j and H↓
i,j is at most

qv · e−( α
n∗ )2t. Consequently, we can bound the statistical distance between the

first hybrid H0 and the last hybrid H0,1 by

SD[H0,H0,1] =
1 + q(q − 1)

2λ
+

∑

v∈T

qv · e−2( α
n∗ )2t =

1 + q(q − 1)
2λ

+ q · e−2( α
n∗ )2t.

We will finally bound the success probability of A in the last hybrid H0,1. This
is in fact identical to the analysis of [5]. Let S denote the set of all inconsistent
nodes in the tree output by A in H0,1. Then by Lemma 2 there exists a path
going though all the nodes in V \ TS∗ . We distinguish two cases

1. |TS∗ | ≤ αN
2. |TS∗ | > αN

For the first case A must have done at least (1 − α)N sequential queries, so
we are left with a bound on the second case. By Lemma 3 TS∗ (and therefore
S∗) contains at least |S∗|+|TS∗ |

2 > α2n leaves. However, note that in the exper-
iment H0,1 the challenger aborts whenever the adversary satisfies the winning
conditions, since

γ(Lε) >
α2n

2n
= α
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and therefore

δ(Lε) ≥ γ(Lε) − α > 0.

Consequently, as δ(Lε) = |Z∩C|
|Z| , this implies that |Z ∩ C| > 0 and therefore at

least one of the paths in Z is also in C and therefore we detect an inconsistent
node. This however implies that the proof is always rejected by the verifier. So
in the final experiment H0,1 the success-probability of the adversary is exactly
0. This concludes our proof. ��

5 Multi-thread Construction

In this section we show how to improve the concrete efficiency of incremental
proofs of sequential work by assuming some parallel capability of the prover.
More specifically, we assume that the prover can spawn n parallel threads, where
n denotes the depth of the graph CPn. Note that we can upper bound n by
λ = 100, since we require the prover to be polynomial time.

5.1 Parameters

Throughout the following section we use the same parameters and notation
of Sect. 4.1 and we define the following additional subroutines.

– A full-domain hash function H′′ : {0, 1}∗ → {0, 1}t(n+2) modelled as a random
oracle.

– A sampler RandomPath(v; r) which takes as input a node v and uniform ran-
dom coins r, and outputs a set of t uniformly random paths with common

prefix v. Since log
(
2hv

t

)
< log

(
2hv ·e

t

)t

< t(hv + 2) ≤ t(n + 2), random tapes
of size t(n + 2) always suffice to sample a uniform set.

– A function FetchPath(Sv, U, {�v : v ∈ U}) which takes as input a set Sv of
t paths with common prefix v, a set of U = {u : ∃v′ ∈ Tv s.t . (u, v′) ∈ E}
where with edges pointing to Tv, and the set {�v : v ∈ U} of labels of all
nodes in U . The function recomputes the labelling of Tv using the labels of
nodes in U . The output of the function is the labelling of all paths in Sv.
Note that such a function can be computed in time O(2hv ) and with memory
O(t · hv).

5.2 Scheme Description

ProveH,H′,H′′
(χ,N) :

1. Initialize U ← ∅ to be the set of unfinished nodes.
2. Assign �0n ← 0λ.
3. Traverse the graph CPn starting from 0n. At every node v ∈ V which is

traversed, do the following:
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(a) Compute the label �v by

�v ← H(χ,v)(�v1 , . . . , �vd
)

where v1, . . . , vd ∈ V are all nodes v is adjacent with, i.e., (vi, v) ∈ E.
(b) Let l and r be the children of v.
(c) If |leafs(v)| ≤ t, set Lv ← {[(v, �l, �r,⊥)‖L] where L ∈ Ll ∪ Lr}.
(d) Otherwise (i.e., if |leafs(v)| ≥ 2t), do the following:

i. Compute

ru ← H′
(χ,u)(�u).

ii. Choose a random t-subset Sv of [2t] via Sv ← RandomSubset(2t, t; rv).
iii. For j ∈ {0, . . . , t − 1}, write Sv[j] = at + b where a ∈ {0, 1} and

0 ≤ b < t. Set

Lu[j] :=

{
[(u, �l, �r, j)‖Ll[b]], if a = 0
[(u, �l, �r, j)‖Lr[b]], if a = 1

(e) If v is a left node (i.e., it is the left child of its parent):
i. Compute

ru ← H′′
(χ,u)(�u).

ii. Choose a random t-set of paths with prefix v via Sv ←
RandomPath(v; rv).

iii. Execute in a parallel thread L ← FetchPath(Sv, U, {�v : v ∈ U}) and
set Lv := {[(v, �l, �r,⊥)‖L] where L ∈ L}.

iv. Mark l as finished, i.e., remove l from U and mark v as unfinished,
i.e., add v to U .

4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}),
terminate and output π ← (�ε,Lε).

IncH,H′,H′′
(χ,N,N ′, π) : Defined as in Sect. 4.2.

VfH,H′,H′′
(χ,N, π) :

1. Parse π as (�ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, �l0 , �r0 , ind0)‖ . . . ‖(vn, �ln , �rn
, indn)].

(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label �v was
computed correctly. That is, for v = 0n check whether �v = 0λ, and
for any other node v ∈ V \{0n} check whether �v = H(χ,v)(�v1 , . . . , �vd

),
where v1, . . . , vd are the nodes with edges pointing to v. The value �v can
either be retrieved from the parent node of v, or is directly available for
the case of the root-node ε. For the special case of leaf-nodes, the values
�v1 , . . . , �vd

are not stored locally with the node v, but are stored at some
other (a-priori known) nodes along path (refer to the structure of the
graph CPn).
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(c) For all j ∈ {0, . . . , n∗}:
i. If vj is a right node or j = 0: Compute rvj

← H′
(χ,vj)

(�vj
) and Svj

←
RandomSubset(2t, t; rvj

). If vj+1 is the left child of vj , check if

Su[indj ] = indj+1.

Otherwise, if vj+1 is the right child of vj , check if

Su[indj ] = t + indj+1.

ii. If vj is a left node: Compute rvj
← H′′

(χ,vj)
(�vj

) and Svj
←

RandomPath(vj ; rvj
). Check if all paths in Svj

are present in Lε.
3. If all checks pass output 1, otherwise 0.

5.3 Efficiency Analysis

The verifier efficiency is essentially unchanged from the construction in Sect. 4.2.

Prover Efficiency. For the main thread the prover complexity is identical to our
construction in Sect. 4.2. For the parallel threads the prover has to recompute
a CPn graph of size at most n, so we can again upper bound their memory
complexity to λ(n + 1) by Lemma 1.

In the following we argue that the number of parallel threads of our protocol
is upper-bounded by n. Recall that a new thread is spawned each time the main
thread traverses a left node v (i.e., a node which is the left child of its parent).
The complexity of each parallel thread is dominated by the factor O(2hv ) of the
function FetchPath, where hv is the height at which the thread was spawned.
However, note that the main thread must perform at least O(2hv ) steps before
spawning a new sub-thread at height hv. This implies that for each hv = 1, . . . , n
there can be at most one parallel thread running. It follows that n parallel
processors are sufficient to run the prover algorithm.

Proof Size. As for our construction in Sect. 4.2, the proof size is O(t · λ · n).
Theorem 3 shows that our construction is sound if t = O(λ), which gives proofs
of size O(λ2 · n). Concretely, our proofs are larger than those of the CP scheme
by a factor of roughly 9.

5.4 Soundness

Theorem 3. The construction given in Sect. 5.2 is sound for any t ∈ O(λ), and
the soundness error is given by 1+q(q−1)

2λ + q · e− 2α2t
9 .

Proof. Let χ be the challenge statement and let qv be the number of calls of A
to the random oracle H′

(χ,v), i.e., the adversary makes at most q =
∑

v∈T qv calls
to H′ in total. Let η be a free (positive) variable to be fixed later.

Consider the following sequence of hybrids.

– Hybrid H0: This is identical to the real experiment.



314 N. Döttling et al.

– Hybrid H1: The same as H0, except for the following modifications.
• The experiment records a list Q of all H queries made by A with their

responses.
• Every time A queries H′

(χ,v) for a v ∈ V with a label �v, a labelling Lv for
the sub-tree under v is computed via Lv ← Extract(v, �v, Q).

• If it holds for any path opened by A that the labels on the path are
different from the labels in Lε (where ε is the root), then H1 aborts and
outputs 0.

Let BADv be the following event: A queries H′
(χ,v) with a query �̂v corresponding

to a labeled sub-tree Lv ← Extract(v, �̂v, Q) for which it holds that δ(Lv) <
γ(Lv) − η.

For v ∈ {1n∗−1‖0, . . . , 10, 0} define the following hybrids.

– Hybrid Hv
1 : The same as the previous hybrid, except that the experiment

outputs 0 if the event BADv happens.

Let ˆBADv be the following event: A queries H′
(χ,v) with a query �̂v corresponding

to a labeled sub-tree Lv ← Extract(v, �̂v, Q) for which it holds that δ(Lv) <
γ(Lv) − (

3η − 2n∗−nvη
)
, where nv is the depth of v (i.e., the distance between

the root-node ε and v).
For v ∈ {1n∗

, . . . , 1, ε} define the following hybrids.

– Hybrid Hv
2 : The same as the previous hybrid, except that the experiment

outputs 0 if the event ˆBADv happens.

We will now show indistinguishability between the hybrids. By Lemma4 it holds
that H0 and H1 are indistinguishable. We now turn to the indistinguishability
of hybrids Hv

1 . For notational convenience, let Hv↓
1 be the hybrid before Hv

1 .
First consider v = 1n∗−1‖0. For each node v at level n it holds that the

set Zv of challenge paths consists of all paths from v to the leaves under v.
Consequently, it holds that δ(Lv) = γ(Lv) and therefore BADv happens with
probability 0.

First notice that, conditioned on that the event BADv does not hap-
pen, hybrid Hv

1 is distributed identically to the previous hybrid, i.e.,
Pr [Hv

1(A) = 1|¬BADv] = Pr
[
Hv↓

1 (A) = 1|¬BADv

]
. Therefore

SD[Hv
1 ,Hv↓

1 ] = Pr [BADv] ·
∣
∣
∣Pr [Hv

1(A) = 1|BADv] − Pr
[
Hv↓

1 (A) = 1|BADv

]∣
∣
∣

︸ ︷︷ ︸
≤1

≤ Pr [BADv]

It is thus sufficient to bound the probability for the event BADv. A queries the
random oracle H′

(χ,v) with at most qv distinct queries. Note that v is always a
left node and therefore the challenge set Z is chosen uniformly at random for
each label. Hence we have that E[δ(Lv)] = γ(Lv), i.e., the fraction of inconsistent
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paths is preserved in expectation, over the random coins of H′
(χ,v). We can then

rewrite

Pr [BADv] = Pr [δ(Lv) < γ(Lv) − η]
= Pr [δ(Lv) < E[δ(Lv)] − η]

< e−2η2t

by Theorem 1. A union-bound over all queries to H(χ,v) yields

Pr [BADv] < qv · e−2η2t.

Thus we conclude that the statistical distance between Hv
1 and Hv↓

1 is at most
qv · e−η2t. We now turn to the indistinguishability of hybrids Hv

2 . Again we use
the convention that Hv↓

2 denotes the hybrid before Hv
2 .

First consider v = 1n∗
. As argued above, for each node at depth n it holds

that δ(Lv) = γ(Lv) and therefore ˆBADv happens with probability 0. For the
rest of the cases, bounding the probability that ˆBADv happens suffice, since, if

ˆBADv does not happen, the hybrids are identical. We bound the probability that
ˆBADv happens with an inductive argument over v ∈ {1n∗

, . . . , 1, ε}. The base
case v = 1n∗

is settled above.
For any node v ∈ {1n∗−1, . . . , 1, ε}, fix a query �̂v and let l and r be the left

and right child of v. Since l is a left node, we have that

δ(Ll) ≥ γ(Ll) − η (6)

as otherwise BADl would be triggered. For the right node r we have that

δ(Lr) ≥ γ(Lr) −
(
3η − 2n∗−(nv+1)η

)
(7)

by induction hypothesis, as otherwise ˆBADr would be triggered. We can now
rewrite

Pr
[

ˆBADv

]
= Pr

[
δ(Lv) < γ(Lv) −

(
3η − 2n∗−nvη

)]

= 1 − Pr
[
γ(Lv) ≤ δ(Lv) +

(
3η − 2n∗−nvη

)]

< e
−2

((
3η−2n∗−nv η

)
− η+(3η−2n∗−(nv+1)η)

2

)2

t

= e−2(3η− (η+3η)
2 )2t

= e−2η2t

by (6), (7), and Lemma 5. A union-bound over all queries to H(χ,v) yields

Pr
[

ˆBADv

]
≤ qv · e−2η2t.
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This bounds the statistical distance between Hv
2 and Hv↓

2 by qv · e−2η2t.
We are now in the position to bound the statistical distance between the first

hybrid H0 and the last hybrid Hε
2. Let Tl be the set {1n∗−1‖0, . . . , 10, 0} and let

Tr be the set {1n∗
, . . . , 1, ε}

SD[H0,Hε
2] =

1 + q(q − 1)
2λ

+
∑

v∈{Tl∪Tr}
qv · e−2η2t

≤ 1 + q(q − 1)
2λ

+ q · e−2η2t.

Setting η := α
3 we obtain

SD[H0,Hε
2] ≤ 1 + q(q − 1)

2λ
+ q · e−2α2t

9 .

What is left to be shown is that A cannot win in Hε
2. Note that in the latter

experiment we have that for all Lε computed via Extract we have that

δ(Lε) ≥ γ(Lε) −
(
3η − 2n∗

η
)

≥ γ(Lε) − 3η = γ(Lε) − α.

The same argument as in the proof of Theorem 2 can be used to show that the
success probability of A is exactly 0. ��

General Arity Trees. Both schemes presented in this work can be generalized to
work over p-ary trees, for any p ≥ 2. By adjusting the value p, we can achieve
slightly better concrete proof sizes and prover efficiency. We refer the reader
to Sect. A for an extensive treatment on the matter.

A General Arity Constructions

The schemes described in Sects. 4.2 and 5.2 can be generalized rather easily to
work with p-ary trees for any p ≥ 2.

A.1 Generalized CP Graphs

We begin by describing the generalized CP graph CP p
n , and generalizing Lem-

mas 1, 2, and 3.

Definition 6 (Generalized CP Graphs). For n ∈ N, let N = pn+1 − 1 and
Tp,n = (V,E′) be a complete p-ary tree of depth n. Let Σ := {0, . . . , p − 1} be
an alphabet set of size p. The nodes V = Σ≤n are identified by p-ary strings
of length at most n and the empty string ε represents the root. The edges E′ =
{(x||s, x) : s ∈ Σ, x ∈ Σi, i < n} are directed from the leaves towards the root.

The graph CP p
n = (V,E) is a DAG constructed from Tp,n = (V,E′) as fol-

lows. For any leaf u ∈ Σn, for any node v which is a left-sibling of a node
on the path from u to the root ε, an edge (v, u) is appended to E′. Formally,
E := E′ ∪ E′′ where

E′′ := {(v, u) : u ∈ Σn, u = a||r||a′, v = a||s, r > s for some a, a′ ∈ Σ≤n}.
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We state and prove the generalizations of Lemmas 1, 2, and 3.

Lemma 6. The labels of a CP p
n graph can be computed in topological order using

λ((p − 1)n + 1) bits of memory.

Proof. We prove by induction on n. Let 0, . . . , p − 1 be the children of ε. For
i ∈ Σ = {0, . . . , p − 1}, let Ti be the subtree rooted at the i. Note that Ti is iso-
morphic to CP p

n−1. To compute the labels of CP p
n , we first compute the labels of

T0. Upon completion, we store only the label of 0, denoted �0. Next, we compute
the labels of T1 using �0. This is possible since all edges start from the node 0.
Upon completion, we store the label �1. Now suppose that for some i ∈ {1, . . . , p}
the labels of T0, . . . ,Ti−1 are computed, and we have stored �0, . . . , �i−1. The
labels of Ti can be computed since all edges start from the nodes 0, . . . , i − 1.
Eventually, we obtain the last label �p−1. Using this with �0, . . . , �p−2 stored in
the memory, we can compute the label of ε.

Since for each i ∈ Σ, storing �i requires λ bits of memory, the memory
required for computing the label of CP p

n equals to that of CP p
n−1 plus λ(p − 1)

extra bits. Furthermore, CP p
0 has exactly 1 node and its label can be computed

using λ bits of memory. Solving the recursion gives the claimed bound.

Lemma 7. For all S ⊆ V , the subgraph of CP p
n = (V,E) on vertex set V \TS∗ ,

has a directed path going through all the |V | − |TS∗ | nodes.

Proof. We prove by induction on n. The lemma is trivial for CP p
0 as it contains

only 1 node. Now, suppose the lemma is true for CP p
n−1. Consider CP p

n , and let
0, . . . , p−1 be the children of ε. For i ∈ Σ = {0, . . . , p−1}, let Ti be the subtree
rooted at the i. Note that Ti is isomorphic to CP p

n−1. CP p
n consists of the root

ε, the subtrees T0, . . . ,Tp−1, and edges going from i to the leaves of Tj for all
i < j and i, j ∈ Σ.

The lemma is true if ε ∈ S∗, as |V | − |TS∗ | = 0. Otherwise, let I := S∗ ∩ Σ
be the subset of children of ε which are in S∗. For concreteness, we write I =
{i1, . . . , ik} for some k ∈ {1, . . . , p}. We apply the lemma to Ti for all i ∈ Σ \ I,
so that for each Ti there exists a directed path going from the left-most leaf of
Ti, i.e., i0 . . . 0, to i. Since for all i, j ∈ Σ where i < j, there exists an edge from
i to j0 . . . 0, it means that for each i′ ∈ I, there exists a edge (i′ −1, (i′ +1)0 . . . 0)
which “skips” Ti′ . Formally, the following edges exist:

(0, 10 . . . 0), . . . , (i1 − 2, (i1 − 1)0 . . . 0),
(i1 − 1, (i1 + 1)0 . . . 0), . . . , (ik − 1, (ik + 1)0 . . . 0),

(ik + 1, (ik + 2)0 . . . 0), . . . , (p − 1, p0 . . . 0).

Finally, we note that there also exists an edge (i∗, ε) where i∗ := maxi/∈I(i ∈ Σ),
which completes the path from 0 . . . 0 to ε, passing through all |V |−|TS∗ | nodes.

Lemma 8. For all S ⊂ V , TS∗ contains |TS∗ |+|S|
p many leaves.



318 N. Döttling et al.

Proof. Let S∗ = {v1, . . . , vk}. Since S∗ is minimal, it holds that Tvi
∩ Tvj

= ∅
for all i, j ∈ {1, . . . , k} with i �= j. Therefore we can write

|Σn ∩ TS∗ | =
k∑

i=1

|Σn ∩ Tvi
|.

As for all i ∈ {1, . . . , k}, Tvi
is a complete p-ary tree, it has (|Tvi

| + 1)/p many
leaves. Thus,

k∑

i=1

|Σn ∩ Tvi
| =

k∑

i=1

|Tvi
| + 1
p

=
|TS∗ | + |S|

p
.

A.2 Generalized Single-Thread Construction

The generalized construction is almost identical to the basic one presented
in Sect. 4.2, except the graph CPn is replaced with CP p

n , and the computation
of the labels is changed accordingly.
ProveH,H′

(χ,N) :

1. Initialize U ← ∅.
2. Assign �0n ← 0λ.
3. Traverse the graph CP p

n = (V,E) starting from 0n. At every node v ∈ V
which is traversed, do the following:
(a) Compute the label �v by �v ← H(χ,v)(�v1 , . . . , �vd

), where v1, . . . , vd ∈ V
are all nodes with edges pointing to v, i.e., (vi, v) ∈ E.

(b) Let c0, . . . , cp−1 be the children of v.
(c) If |leafs(v)| ≤ t, set

Lv ← {[(v, �c0 , . . . , �cp−1 ,⊥)‖L] where L ∈ Lc0 ∪ . . . ∪ Lcp−1}.

(d) Otherwise (i.e., if |leafs(v)| ≥ pt), do the following:
i Compute rv ← H′

(χ,v)(�v).
ii Choose a random t-subset Sv of [pt] via Sv ← RandomSubset(pt, t; rv).
iii For j ∈ {0, . . . , t − 1}, write Sv[j] = at + b where 0 ≤ a < p and

0 ≤ b < t and set Lv[j] ← (v, �c0 , . . . , �cp−1 , j)‖Lca
[b].

(e) Mark c0, . . . , cp−2 as finished, i.e., remove c0, . . . , cp−2 from U and, if v
is not the right-most child of its parent, mark v as unfinished, i.e., add v
to U .

4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}),
terminate and output π ← (�ε,Lε).

IncH,H′
(χ,N,N ′, π) :

1. Initialize U := ∅.
2. Parse π as (�ε,Lε)
3. Assign �0n′−n := �ε and L0n′−n := Lε.
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4. Execute the algorithm ProveH,H′
(χ,N ′) starting from step 3 with a slight

change: Traverse the graph CP p
n′ starting from 0n′−n−1‖1‖0n (instead of from

0n′
).

VfH,H′
(χ,N, π) :

1. Parse π = (�ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, �c0,0 , . . . , �c0,p−1 , ind0), . . . , (vn, �cn,0 , . . . , �cn,p−1 , indn)].
(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label �v was

computed correctly. That is, for v = 0n check whether �v = 0λ, and
for any other node v ∈ V \{0n} check whether �v = H(χ,v)(�v1 , . . . , �vd

),
where �v1 , . . . , �vd

are the nodes with edges pointing to v. The value �v

can either be retrieved from the parent node of v, or is directly available
for the case of the root-node ε. For the special case of leaf-nodes, the
values �v1 , . . . , �vd

are not stored locally with the node v, but are stored
at some other (a-priori known) nodes along the path path (refer to the
structure of the graph CP p

n).
(c) For all j ∈ {0, . . . , n∗}, compute rvj

← H′
(χ,vj)

(�vj
) and Svj

←
RandomSubset(pt, t; rvj

). Let i ∈ {0, . . . , p − 1} so that vj+1 is the i-th
child of vj . Check if Sv[indj ] = i · t + indj+1.

3. If all checks pass then output 1. Otherwise output 0.

We state the soundness error and the efficiency of the generalized construction.
The analysis is essentially identical to that in Sect. 4.3 and is therefore omitted.

Soundness. Here we state a generalized version of Lemma 5 for p-ary trees.

Lemma 9. Let v be a node and let (v1, . . . , vp) the set of children of v. If for
all i ∈ {1, . . . , p} we have

δ(Lvi
) ≥ γ(Lvi

) − ηvi

then it holds that

Pr [γ(Lv) ≤ δ(Lv) + ηv] ≥ 1 − e

−2

⎛
⎜⎝ηv−

∑
i∈p ηvi

p

⎞
⎟⎠

2

t

.

The bound for the soundness error has the same form as that in the basic con-
struction, except that n = logp(N + 1) − 1. Previously, n = log(N + 1) − 1. The
proof is identical to that of Theorem2, except that we apply Lemma 9 instead
of Lemma 5.

Theorem 4. The construction given in Sect. A.2 is sound for any t ∈ O(λ ·n2),
and the soundness error is given by 1+q(q−1)

2λ + q · e−2(α
n )2t.

Efficiency. In the following, we set t = O(λ·n2) and n = logp N . The parallel time
complexity of the prover remains unchanged at O(N). The parallel time com-
plexity of the verifier is O(log( 1

log3 p
·λ · log3 N)), which decreases at p increases.
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The proof size and the space complexity of the prover are O( p
log3 p

· λ2 · log3 N)

and O( p2

log4 p
· λ2 · log4 N) respectively. The fractions φp := p

log3 p
and θp := p2

log4 p

are minimized at p = 20 and p = 7 respectively. Compared to p = 2, we have
φ20/φ2 ≈ 0.124 and θ7/θ2 ≈ 0.197.

A.3 Generalized Multi-thread Construction

Similar to the above, we present a generalization of the construction in Sect. 5.2.
ProveH,H′,H′′

(χ,N) :

1. Initialize U ← ∅ to be the set of unfinished nodes.
2. Assign �0n ← 0λ.
3. Traverse the graph CP p

n starting from 0n. At every node v ∈ V which is
traversed, do the following:
(a) Compute the label �v by �v ← H(χ,v)(�v1 , . . . , �vd

), where v1, . . . , vd ∈ V
are all nodes nodes v is adjacent with, i.e., (vi, v) ∈ E.

(b) Let c0, . . . , cp−1 be the children of v.
(c) If |leafs(v)| ≤ t, set

Lv ← {[(v, �c0 , . . . , �cp−1 ,⊥)‖L] where L ∈ Lc0 ∪ . . . ∪ Lcp−1}.

(d) Otherwise (i.e., if |leafs(v)| ≥ pt), do the following:
i. Compute rv ← H′

(χ,v)(�v).
ii. Choose a random t-subset Sv of [pt] via Sv ← RandomSubset(pt, t; rv).
iii. For j ∈ {0, . . . , t − 1}, write Sv[j] = at + b where 0 ≤ a < p and

0 ≤ b < t. Set Lv[j] := [(v, �l, �r, j)‖Lca
[b]].

(e) If v is not a right node (i.e., it is not the right-most child of its parent):
i. Compute rv ← H′′

(χ,v)(�v).
ii. Choose a random t-set of paths with prefix v via Sv ←

RandomPath(v; rv).
iii. Execute in a parallel thread L ← FetchPath(Sv, U, {�v : v ∈ U}) and

set Lv := {[(v, �l, �r,⊥)‖L] where L ∈ L}.
iv. Mark c0, . . . , cp−2 as finished, i.e., remove c0, . . . , cp−2 from U and

mark v as unfinished, i.e., add v to U .
4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}),

terminate and output π ← (�ε,Lε).

IncH,H′,H′′
(χ,N,N ′, π) : Defined as in Sect. A.2.

VfH,H′,H′′
(χ,N, π) :

1. Parse π as (�ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, �c0,0 , . . . , �c0,p−1 , ind0)‖ . . . ‖(vn, �cn,0 , . . . , �cn,p−1 , indn)].



Incremental Proofs of Sequential Work 321

(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label �v was
computed correctly. That is, for v = 0n check whether �v = 0λ, and
for any other node v ∈ V \{0n} check whether �v = H(χ,v)(�v1 , . . . , �vd

),
where v1, . . . , vd are the nodes with edges pointing to v. The value �v can
either be retrieved from the parent node of v, or is directly available for
the case of the root-node ε. For the special case of leaf-nodes, the values
�v1 , . . . , �vd

are not stored locally with the node v, but are stored at some
other (a-priori known) nodes along path (refer to the structure of the
graph CP p

n).
(c) For all j ∈ {0, . . . , n∗}:

i. If vj is the right-most child of its parent or j = 0: Compute rvj
←

H′
(χ,vj)

(�vj
) and Svj

← RandomSubset(pt, t; rvj
). Let vj+1 be the i-th

child of vj , check if Sv[indj ] = i · t + indj+1.
ii. If vj is not the right-most child of its parent: Compute rvj

←
H′′

(χ,vj)
(�vj

) and Svj
← RandomPath(vj ; rvj

). Check if all paths in
Svj

are present in Lε.
3. If all checks pass output 1, otherwise 0.

Next we state the soundness error and the efficiency.

Soundness. The soundness analysis requires some tweaking of the argument.

Theorem 5. The construction given in Sect. A.3 is sound for any t ∈ O((1 +

p
p−1 )2 · λ), and the soundness error is given by 1+q(q−1)

2λ + q · e
−

(
α

1+ p
p−1

)2

t
.

Proof. The proof follows the blueprint of the proof of Theorem3, except for
the following changes. First we add a hybrid Hv

1 for each sibling of the nodes
{1n∗

, . . . , 1, ε}. The indistinguishability arguments are identical.
Then we define the event ˆBADv as follows: A queries H′

(χ,v) with a query

�̂v corresponding to a labeled sub-tree Lv ← Extract(v, �̂v, Q) for which it holds
that δ(Lv) < γ(Lv) −

(
2η + η

∑n∗−nv

i=1
1
pi

)
, where nv is the depth of v.

We bound the probability that ˆBADv happens with an inductive argument over
v ∈ {1n∗

, . . . , 1, ε}. For the base case v = 1n∗
is enough to observe that δ(Lv) =

γ(Lv) and therefore ˆBADv happens with probability 0.
For any node v ∈ {1n∗−1, . . . , 1, ε}, fix a query �̂v and let (v1, . . . , vp) be the

children of v. For all i ∈ {1, . . . , p − 1} we have that

δ(Lvi
) ≥ γ(Lvi

) − η (8)

as otherwise BADvi
would be triggered. For the node vp we have that

δ(Lvp
) ≥ γ(Lvp

) −
(

2η + η

n∗−nv−1∑

i=1

1
pi

)

(9)
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by induction hypothesis, as otherwise ˆBADvp
would be triggered. We can now

rewrite

Pr
[

ˆBADv

]
= Pr

[

δ(Lv) < γ(Lv) −
(

2η + η

n∗−nv∑

i=1

1
pi

)]

= 1 − Pr

[

γ(Lv) ≤ δ(Lv) +

(

2η + η

n∗−nv∑

i=1

1
pi

)]

< e
−2

⎛
⎝(

2η+η
∑n∗−nv

i=1
1

pi

)
−

η(p−1)+
(
2η+η

∑n∗−nv−1
i=1

1
pi

)

p

⎞
⎠

2

t

= e−2η2t

by (8), (9), and Lemma 9. For p > 1 we can bound

2η + η
n∗
∑

i=1

1
pi

= η + η
n∗
∑

i=0

1
pi

≤
(

1 +
p

p − 1

)

η.

since it is a geometric series. Thus we can set η := α

(1+ p
p−1 )

and derive

SD[H0,Hε
2] ≤ 1 + q(q − 1)

2λ
+ q · e

− 2α2t

(1+ p
p−1 )

2

.

The remainder of the analysis is unchanged. ��

Efficiency. In the following, we set t = O

((
1 + p

p−1

)2

· λ

)

and n = logp N .

The parallel time complexity of the prover remains unchanged at O(N). The
number of parallel threads is bounded by O(p logp N), which is minimized at

p = 3. The parallel time complexity of the verifier is O(log(
(1+ p

p−1 )
2

log p ·λ · log N)),
which decreases at p increases. The proof size and the space complexity of the

prover are O(
p(1+ p

p−1 )
2

log p · λ2 · log N) and O(
p2(1+ p

p−1 )
2

log2 p
· λ2 · log2 N) respectively.

The fractions φ′
p :=

p(1+ p
p−1 )

2

log p and θ′
p :=

p2(1+ p
p−1 )

2

log2 p
are both minimized at p = 4.

Compared to p = 2, we have φ′
4/φ′

2 ≈ 0.605 and θ′
7/θ′

2 ≈ 0.605.
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Abstract. We construct a concretely practical proof-of-space (PoS)
with arbitrarily tight security based on stacked depth robust graphs and
constant-degree expander graphs. A proof-of-space (PoS) is an interactive
proof system where a prover demonstrates that it is persistently using
space to store information. A PoS is arbitrarily tight if the honest prover
uses exactly N space and for any ε > 0 the construction can be tuned
such that no adversary can pass verification using less than (1 − ε)N
space. Most notably, the degree of the graphs in our construction are
independent of ε, and the number of layers is only O(log(1/ε)). The
proof size is O(d/ε). The degree d depends on the depth robust graphs,
which are only required to maintain Ω(N) depth in subgraphs on 80%
of the nodes. Our tight PoS is also secure against parallel attacks.

Tight proofs of space are necessary for proof-of-replication (PoRep),
which is a publicly verifiable proof that the prover is dedicating unique
resources to storing one or more retrievable replicas of a specified file.
Our main PoS construction can be used as a PoRep, but data extrac-
tion is as inefficient as replica generation. We present a second variant
of our construction called ZigZag PoRep that has fast/parallelizable data
extraction compared to replica generation and maintains the same space
tightness while only increasing the number of levels by roughly a factor
two.

1 Introduction

Proof-of-space (PoS) has been proposed as an alternative to proof-of-work (PoW)
for applications such as SPAM prevention, DOS attacks, and Sybil resistance in
blockchain-based consensus mechanisms [8,11,16]. Several industry projects1 are
underway to deploy cryptocurrencies similar to Bitcoin that use proof-of-space
instead of proof-of-work. Proof-of-space is promoted as more egalitarian and eco-
friendly that proof-of-work because it is ASIC-resistant and does not consume
its resource (space instead of energy), but rather reuses it.

A PoS is an interactive protocol between a prover and verifier in which the
prover uses a minimum specified amount of space in order to pass verification.
The protocol must have compact communication relative to the prover’s space
requirements and efficient verification. A PoS is persistent if repeated audits force
the prover to utilize this space over a period of time. More precisely, there is an
1 https://chia.net/, https://spacemesh.io/, https://filecoin.io/.
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“offline” phase in which the prover obtains challenges from a verifier, generates
a (long) string σ that it stores, and outputs a compact verification tag τ to the
verifier. (The offline phase can be made non-interactive using the Fiat-Shamir
transform). This is followed by an “online” challenge-response protocol in which
the verifier uses τ to generate challenges and the prover uses σ to efficiently
compute responses to the verifier’s challenges.

The soundness of the PoS relies on a time bound on the online prover that
is enforced by frequent verifier audits. A time bound is necessary as otherwise
the prover could store its compact transcript and simulate the setup to re-derive
the advice whenever it needs to pass an online proof. If the PoS guarantees
that an adversary must use the minimum amount of space to pass challenges
within the wall-clock time allotted no matter how much (polynomially bounded)
computation it expends then the PoS is said to resist parallelization attacks. A
PoS must resist parallelization attacks in order to be considered unconditionally
secure. Otherwise, the security may still be reasoned through a cost benefit
analysis for a rational prover, who will not expend significant computation to
save a relatively small fraction of space.

More formally, correctness and (S, T, μ)-soundness for a PoS protocol is
defined as follows. First, if the prover commits to persistently utilize N blocks of
space then the honest prover algorithm defined by the protocol must use O(N)
persistent space and must succeed in passing the verifier’s challenges without
error. Next, a pair of offline/online adversaries is considered. The “offline” adver-
sary generates an adversarial string σ′ and offline proof π′. An (S, T, μ)-sound
protocol guarantees that if the string length of σ′ output by the online adversary
is less than S then either the verifier accepts π′ with negligible probability or
otherwise any online adversary who runs in time less than T on the input σ′ and
the verifier’s challenge will fail verification with probability at least 1 − μ.

There is generally a gap between the honest space utilization and the lower
bound S on the adversary’s space. If the honest prover uses S′ space and some
adversary is able to use (1 − ε)S′ space then this PoS protocol has at least
an ε space gap. Loosely speaking, a tight PoS construction makes ε arbitrarily
small. The construction is allowed to involve ε as a parameter, and the value of
ε may impact efficiency. All else equal, a tighter PoS is obviously more desirable
as it has tighter provable security. Nearly all existing PoS constructions have
enormous space gaps, including those that are currently being used in practice
[2,8]. The one exception is a recent PoS protocol by Pietrzak [18]. Although
this PoS construction is provably tight, the concrete parameters required in the
analysis result in an impractically large offline proof.

Proof-of-replication (PoRep) [1,9,10,18] is a recently proposed variant of
PoS. A PoRep demonstrates that the prover is dedicating unique resources to
storing a retrievable copy of a committed data file, and is therefore a useful proof
of space. It has been proposed as an alternative Sybil resistance mechanism (e.g.
for a blockchain) that is not only ASIC resistant and eco-friendly, but also has
a useful side-effect: file storage. Furthermore, since the prover may run several
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independent PoReps for the same file that each require unique resources, PoReps
may be used as a publicly verifiable proof of data replication/duplication.

Unfortunately, it is not possible to cryptographically guarantee that a prover
is persistently storing data in a replicated format. A prover can always sabotage
the format (e.g. by encrypting it and storing the key separately) and can then
recover the original format quickly when challenged. A recently proposed security
model for PoReps is ε-rational replication [9], which says that an adversary can
save at most an ε fraction of its space by deviating from storing the data in
a replicated format. A PoRep that satisfies ε-rational replication is also a PoS
with an ε space gap. Intuitively, if a PoRep is not a tight proof of space then
there may exist some adversary that would be rationally incentivized to deviate
from honest behavior in a way that also destroys the replication format. In fact,
if the input file is incompressible then any adversary who manages to saves an
ε fraction of the claimed space cannot be storing the data in the replicated
format. Thus, tight proofs of space are necessary for PoReps because a PoRep
construction is only meaningfully secure when ε is very small.

The goal of this work is to construct a practical and provably tight PoS that
can also be used as a PoRep that satisfies ε-rational replication for arbitrarily
small ε.

1.1 Related Work

The original PoS of Dziembowski et al. [8] was based on hard to pebble directed
acyclic graphs (DAGs), using a blend of techniques from superconcentrators,
random bipartite expander graphs and depth robust graphs [17]. During the
offline initialization the prover computes a labeling of the graph using a collision-
resistant hash function where the label ev on each node v ∈ G of the graph
is the output of the hash function on the labels of all parent nodes of v. It
outputs a commitment to this labeling along with a proof that the committed
labeling was “mostly” correct. This offline proof consists of randomly sampled
labels and their parent labels, which the verifier checks for consistency. During
the online challenge-response phase the verifier simply asks for random labels
that the prover must produce along with a standard proof that these labels are
consistent with the commitment. The construction leaves a space gap of at least
1 − 1

512 .
Ren and Devadas [19] construct a PoS from stacked bipartite expander graphs

that dramatically improved on the space gap, although it is not secure against
parallel attacks. Their construction involves λ levels V1, ..., Vλ consisting of n
nodes each, with edges between the layers defined by the edges of a constant-
degree bipartite expander. The prover computes a labeling of the graph just as
in the Dziembowski et al. PoS, however it only stores the labels on the final level.
Their construction still leaves a space gap of at least2 1/2.

2 For practical parameters, the Ren and Devadas construction has a space gap larger
than 1/2. For example, it requires a graph of degree at least 40 in order to achieve
a space gap of less than 2/3.
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Recently, Abusalah et al. [2] revived the simple PoS approach based on storing
tables of random functions. The basic idea is for the prover to compute and store
the function table of a random function f : [N ] → [N ] where f is chosen by
the verifier or a random public challenge. During the online challenge-response
the verifier asks the prover to invert f on a randomly sampled point x ∈ [n].
Intuitively, a prover who has not stored most of the function table will likely have
to brute force f−1(x), performing Ω(N) work. This simple approach fails to be a
PoS due to Hellman’s time/space tradeoffs, which enable a prover to succeed with
S space and T computation for any ST = O(N). However, Abusalah et al. build
on this approach to achieve a provable time/space tradeoff of SkT = Ω(εkNk).
This PoS is not secure against parallel attacks, and also has a very large (even
asymptotic) space gap.

Pietrzak [18] and Fisch et al. [9,10] independently proposed simpler variants
of the graph labeling PoS by Dziembowski et al. based solely on pebbling a
depth robust graph (DRG). A degree d DAG on n nodes is (α, β)-depth robust
if any subgraph on αn nodes contains a path of at least length βn. It is triv-
ial to construct DRGs of large degree (a complete DAG is depth robust), but
much harder to construct DRGs with small degree. Achieving constant α, β is
only possible asymptotically with degree Ω(log N). The graph labeling PoS on
a DRG results in a PoS with an α space gap that is also secure against parallel
attacks. Fisch et al. also suggested combining this labeling PoS with a verifiable
delay function (VDF) [5] to increase the expense of labeling the graph without
increasing the size of the proof verification complexity. The delay on the VDF
can be tuned depending on the value of n. Both of these constructions were pro-
posed for PoReps. In this variant of the PoS protocol, the prover uses the labeling
of the graph to encode a data file on n blocks D = d1, ..., dn. The ith label ei

is computed by first deriving a key ki by hashing the labels on the parents of
the ith node, and then setting ei = ki ⊕ di. If all the labels are stored then any
data block can be quickly extracted from ei by recomputing ki. More generally,
this DAG encoding of the data input could use any encoding scheme (enc, dec),
where enc is sequentially slow and dec is fast, in order to derive ei = enc(ki, di).
The data is decoded by computing di = dec(ki, ei).

The labeling PoS on a DRG is not technically a tight PoS because decreasing
α also decreases the time bound βn on the prover’s required computation to
defeat the PoS. Moreover, while there exist constructions of (α, β)-DRGs for
arbitrarily small α, these constructions have concretely very high degrees and
are thus not useful for building a practical PoS. Pietrzak [18] improved on the
basic construction by relying on a stronger property of special DRGs [4,17] that
have degree Ω((log n)/ε) and are (α, β)-depth robust for all (α, β) such that
1 − α + β ≥ 1 − ε. This DRG can be constructed for any value of ε < 1. In
Pietrzak’s PoS, the prover builds a DRG on 4n nodes and only stores the labels
on the topologically last n nodes. This can similarly be used as a PoRep where
the data is encoded only on the last level and the labels on previous levels are just
used as keys. This PoRep has a slow data extraction time because extracting the
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data requires recomputing most of the keys from scratch, which is as expensive
as the PoS initialization.

Pietrzak shows that a prover who deletes an ε′ fraction of the labels on the
last n nodes will not be able to re-derive them in fewer than n sequential steps.
The value ε′ can be made arbitrarily small, but at the expense of increasing the
degree of the graph proportionally to 1/ε′. The resulting proof has asymptotic
size Ω((log N)/ε2). Moreover, although these special DRGs achieve asymptotic
efficiency, their current analysis requires the graphs to have impractically large
degrees. According to the analysis in [4], achieving just a 1/2 space gap would
require instantiating these graphs with degree at least 2, 760 log N . The proof
size is proportional to the graph degree, so to achieve the space gap ε = 1/2
with soundness μ = 2−10 and N = 230 the proof size would be at least 26 MB.

Boneh et al. [5] describe a simple PoRep (also a PoS) just based on storing
the output of a verifiable delay function (VDF) on N randomly sampled points,
which generalizes an earlier proposal by Sergio Demian Lerner [13]. This is in
fact an arbitrarily tight PoS with very practical proof sizes (essentially optimal).
However, the time complexity of initializing the prover’s O(N) storage is O(N2),
and therefore is not practically feasible for large N . This construction is similar
to the PoS based on storing function tables [2], but uses the VDF as a moderately
hard (non-parallelizable) function on a much larger domain (exponential in the
security parameter) and stores a random subset of its function table. The reason
for the large initialization complexity is that the prover cannot amortize its cost
of evaluating the VDF on the entire subset of points.

1.2 Summary of Contributions

We construct a new tight PoS based on graph labeling with asymptotic proof
size O(log N/ε) where ε is the achieved space gap. We can instantiate this con-
struction with relatively weak3 depth robust graphs that do not require any
special properties other than retaining Ω(N) depth in subgraphs on some con-
stant fraction of the nodes bounded away from 1 (e.g. our concrete analysis
assumes 80%).

PoS from Stacked DRGs. Our basic approach is a combination of the stacked
bipartite expanders of Ren and Devadas [19] with depth robust graphs. Instead of
stacking λ path graphs we stack O(log(1/ε)) levels of fixed-degree DRGs where ε
is a construction parameter. We refer to this graph construction as Stacked DRGs.
We are able to show that this results in a PoS that has only an ε space gap.
Intuitively, the expander edges between layers amplify the dependence of nodes
on the last layer and nodes on earlier layers so that deletion of a small ε fraction
of node labels on the last level will require re-derivation of nearly all the node
labels on the first several layers. Thus, since every layer is a DRG, recomputing
the missing ε fraction of labels requires Ω(N) sequential computation. It is easy
3 There is experimental evidence that a simple DRG construction with concretely

small constant degree (even degree 2) has this property on a graph of size N = 220

[3].
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to see that this would be the case if the prover were only storing (1−ε)n labels on
the last level and none of the labels on earlier levels, however the analysis becomes
much more difficult when the prover is allowed to store any arbitrary (1 − ε)n
labels. This analysis is the main technical contribution of this work. Concretely,
we analyze the construction with an (n, 0.80n,Ω(n)) DRG, i.e. deletion of 20%
of nodes leaves a high depth graph on the 80% remaining nodes, regardless of
the value of ε.

Our construction is efficient compared to prior constructions of tight PoS
primarily because we can keep the degree of the graphs fixed for arbitrary ε while
keeping the number of levels proportional to log(1/ε). In a graph labeling PoS,
the offline PoS proofs sample O(1/ε) labels along with their parent labels, which
the verifier checks for consistency. Thus, any construction based on this approach
that requires scaling the degree of graphs by 1/ε also scales the proof size by
1/ε, resulting in a proof complexity of at least O(1/ε2). In our stacked DRG
PoS construction the offline proof must include queries from each level to prove
that each level of computed labels are “mostly” correct. If done naively, O(1/ε)
challenge labels are sampled from each level, resulting in a proof complexity
O(d/ε · log(1/ε)) where d is the degree of the level graphs. This is already an
improvement, however with a more delicate analysis we are able to go even
further and show that the total number of queries over all layers can be kept at
O(1/ε), achieving an overall proof complexity O(d/ε).4

The PoS on Stacked DRGs can also be used as the basis for a PoRep that
satisfies ε-rational replication for arbitrarily small ε. The PoRep simply uses the
labels on the 
−1st level as keys to encode the n-block data input D = d1, ..., dn

on the 
th (last) level, using the same method described earlier for encoding
data into the labels of a PoS (see Related Work, [9,10,18]). However, extracting
data from this PoRep is as expensive as initializing the PoRep space because it
requires recomputing the keys on the 
 − 1st level (Fig. 1).

PoRep from ZigZag Expander DRGs. Our second contribution is a variant
of the PoS on Stacked DRGs that compromises slightly on initialization efficiency
and proof size (requires doubling the number of levels for the same security
guarantee) but improves the efficiency of extracting data when this is used as
a PoRep. Instead of adding bipartite expander edge dependencies between the
layers, these edges are mapped into each layer itself. Specifically, an edge from the
ith node of one layer to the jth node of the next is replaced with edges between
the ith and jth nodes in each layer. The directionality of these mapped edges
alternates between layers, forming a “zig-zag”. The only edges retained between
layers are between nodes at the same indices. As an undirected graph, every layer
is the union of a DRG and a constant degree non-bipartite expander graph. As
a directed graph, each layer forms a DAG where the union of any subset with
its dependencies and targets is a constant fraction larger than the subset itself.

4 Asymptotically, this is close to the optimal proof complexity achievable for any PoS
based on graph labeling that has an ε space gap. If the prover claims to be storing
n labels and the proof queries less than 1/ε then a random deletion of an ε fraction
of these labels evades detection with probability at least (1 − ε)1/ε ≈ 1/e.
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c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

c6 c7 c8 c9 c10

c11 c12 c13 c14 c15

Fig. 1. Stacked DRGs. Dotted edges are the DRG edges and dashed edges are
expander edges. In the PoS on Stacked DRGs the prover computes a labeling of the
graph and stores the labels on the nodes in green.

c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

c6 c7 c8 c9 c10

c11 c12 c13 c14 c15

Fig. 2. ZigZag DRGs. The dashed edges in ZigZag DRGs are the same as in Stacked
DRGs but projected into the layers. Dashed edges in ZigZag DRGs are reversed every
other layer while dotted edges are redefined by reversing the order of the nodes. Dashed
edges correspond to encoding instead of key-derivation dependencies. In the PoRep on
ZigZag DRGs each labeling on a layer encodes the previous layer and the prover stores
only the encoding labels of the green nodes.
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By alternating the direction of the edges between layers, the dependencies of a
subset in one layer become targets of the same subset in the adjacent layer, and
the dependencies between layers expands. We refer to this graph construction
as ZigZag DRGs (Fig. 2).

The PoRep on ZigZag DRGs encodes in the labels of each layer the labels
of the previous levels. The edges within a layer enforce dependencies between
labels by deriving a key for each encoding using a cryptographic hash function.
A special key is derived for the encoding on each ith node from the labels on
the parents of the ith node within the same layer. Essentially, this construction
on 
 DAG layers iterates the basic DAG encoding of the data inputs 
 times
rather than performing a long key derivation. The labels in any given layer can
be decoded (in parallel) from the labels in the preceding layer.

2 Preliminaries

2.1 Proofs of Space

A PoS interactive protocol has three procedures:

1. Setup The setup runs on security parameters λ and outputs public parameters
pp for the scheme. The public parameters are implicit inputs to the next two
protocols.

2. Initialization is an interactive protocol between a prover P and verifier V that
run on shared input (id,N). P outputs Φ and S, where S is its storage advice
of length N and Φ is a compact O(polylog(N)) length string given to the
verifier.

3. Execution is an interactive protocol between P and V where P runs on input
S and V runs on input Φ. V sends challenges to P , obtains back a proof π,
and outputs accept or reject.

Efficiency. The commitment Φ is O(polylog(N)) size, the storage S is size N ,
and the verifier runs in time O(polylog(N)).

Completeness. The prover succeeds with probability 1 (causes verifier to
accept) if it follows the protocol honestly.

Soundness. The PoS is (s, t, μ)-sound if for all adversaries P ∗ running in time
t and storing advice of size s during Execution, P ∗ passes verification with prob-
ability at most μ. The PoS is parallel (s, t, μ)-sound if P ∗ may run in parallel
time t. We say that a PoS construction is tight if for any constant ε < 1 the PoS
can be parametrized so that the resulting PoS is (εN, t, μ)-sound for t ∈ Ω(N)
and μ = negl(λ).

Amortization-free soundness. An (s, t, μ) PoS is amortization-free if for any
k distinct ids id1, ..., idk, the modified PoS protocol that runs Initialization on
k independent inputs (idi, N) for each i to get outputs (Si, Φi) and then runs
Execution independently on each (Si, Φi) is (ks, t, kμ)-sound.
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2.2 Graph Pebbling Games

Pebbling games are the main analytical tool used in graph-based proofs of space
and memory hard functions.

Black pebbling game. The black pebbling game is a single-player game on a
DAG G = (V,E). At the start of the game the player chooses a starting configu-
ration of P0 ⊆ V of vertices that contain black pebbles. The game then proceeds
in rounds where in each round the player may place a black pebble on a ver-
tex only if all of its parent vertices currently contain pebbles placed in some
prior round. In this case we say that the vertex is available. Placing a pebble
constitutes a move, whereas placing pebbles on all simultaneously available ver-
tices consumes a round. The adversary may also remove any black pebble at any
point. The game stops once the adversary has placed pebbles on all vertices in
some target/challenge set VC ⊆ V .

Pebbling complexity. The pebbling game on graph G with vertex set V and
target set VC ⊆ V is (s, t)-hard if no player can pebble the set VC in t moves (or
fewer) starting from s initial pebbles, and is (s, t)-parallel-hard if no player can
complete the pebbling in t rounds (or fewer) starting from an initial configuration
of at most s pebbles. If a 1−α fraction of the nodes in VC each require t rounds
to pebble then the pebbling game on (G,VC) is (s, t, α)-parallel-hard, i.e. every
subset containing more than an α fraction of the nodes in V C requires t rounds
to pebble.

In a random pebbling game a challenge node is sampled randomly from VC

after the player commits to the initial configuration P0 of s vertices, and the
hardness measure includes the adversary’s probability of success. The random
pebbling game is (s, t, ε)-(parallel)-hard if from any s fixed initial pebbles the
probability that a uniformly sampled challenge node can be pebbled in t or fewer
moves (resp. t or fewer rounds) is less than ε.

The following facts are easy to prove:

Fact 1. The random pebbling game on a DAG G on n nodes with target set VC

is (s, t, α)-parallel-hard if and only if the deterministic pebbling game on G with
target set VC is (s, t, α)-parallel-hard.

Fact 2. A random pebbling game with a single challenge is (s, t, α)-parallel-hard
if and only if the the random pebbling with κ challenges is (s, t, αk)-parallel-hard.

DAG labeling game. A labeling game on a degree d DAG G is analogous to
the pebbling game, but involves a cryptographic hash function H : {0, 1}dm →
{0, 1}m, often modeled as a random oracle. The vertices of the graph are indexed
in [n] and each ith vertex associated with the label ci where ci = H(i) if i is a
source vertex, or otherwise ci = H(i||cparents(i)) where cparents(i) = {cv1 , ..., cvd

}
if v1, ..., vd are the parents of the ith vertex, i.e. the vertices with a directed
edge to vertex i. The game ends when the player has computed all the labels on
a target/challenge set of vertices VC . A “fresh” labeling of G could be derived
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by choosing a salt id for the hash function so that Hid(x) = H(id||x), and the
labeling may be associated with the identifier id.

The complexity of the labeling game (on a fresh identifier id) is measured in
queries to the hash function instead of pebbles. This includes the number of labels
initially stored, the total number of queries, and the total rounds of sequential
queries, etc. The labeling game is (s, r, q, ε, δ)-labeling-hard if no algorithm that
stores initial advice of size s and after receiving a uniform random challenge
node v ∈ [n] makes a total of q queries to H in r sequential rounds can output
the correct label on v with probability greater than ε over the challenge v and δ
over the random oracle H.

Random oracle query complexity. A general correspondence between the
complexity of the black pebbling game on the underlying graph G and the ran-
dom oracle labeling game is not yet known. However, Pietrzak [18] recently
proved an equivalence between the parallel hardness of the randomized pebbling
game and the parallel hardness of the random oracle labeling game for arbitrary
initial configurations S0 adapting the “ex post facto” technique from [7].

Theorem 1 (Pietrzak [18]). If the random pebbling game on a DAG G with
n nodes and in-degree d is (s, r, ε)-parallel-hard then the labeling game on G
with a random oracle H : {0, 1}md → {0, 1}m is (s′, r, ε, δ, q)-labeling-hard with
s′ = s(m − 2(log n + log q)) − log(1/δ).

Generic PoS from graph labeling game. Many PoS constructions are based
on the graph labeling game [8,18,19]. Let G(·) be a family of d-in-regular DAGs
such that Gn ← G(n) is a d-in-regular DAG on N > n nodes and VC(n) is a sub-
set of n nodes from Gn. Let H : {0, 1}dm → {0, 1}m be a collision-resistant hash
function (or random oracle). Let Chal(n,Λ) denote a distribution over challenge
vectors in [N ]λ. For each n ∈ N, the generic PoS based on the labeling game
with Gn and target set VC(n) is as follows:

Initialization: The prover plays the labeling game on Gn using a hash function
Hid = H(id||·). The prover does the following:

1. Computes the labels c1, ..., cN on all nodes of G and commits to them in com
using any vector commitment scheme.

2. Obtains vector of λ challenges r ←R Chal(n) from the verifier (or non-
interactively derives them using as a seed Hid(com)).

3. For challenges r1, ..., rλ , the prover opens the label on the rith node of Gn,
which was committed in com, as well as the labels cparents(ri) of all its parent
nodes. The labels are added to a list L with corresponding opening proofs in
a list Λ and the prover outputs the proof Φ = (com,L,Λ).

The verifier checks the openings Λ with respect to com. It also checks for
each challenge specifying an index v ∈ [N ], the label cv in L label and its parent
labels cparents(cv), that cv = Hid(v||cparents(cv)). Finally, the prover stores as S
only the n labels in VC .
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Execution: The verifier selects κ challenge nodes v1, ..., vκ uniformly at random
from VC . The online prover uses its input S to respond with the label on v and an
opening of com at the appropriate index. The verifier can repeat this sequentially,
or ask for a randomly sampled vector of challenge vertices to amplify soundness.

Red-black pebbling game. An adversary places both black and red pebbles
on the graph initially. The red pebbles correspond to incorrect labels that the
adversary computes during Initialization and the black pebbles correspond to
labels the adversary stores in its advice S. Without loss of generality, an adver-
sary that cheats generates some label that does not require any space to store,
which is why red pebbles will be “free” pebbles and counted separately from
black pebbles. The adversary’s choice of red pebble placements (specifically how
many to place in different regions of the graph) is constrained by the λ non-
interactive challenges, which may catch these red pebbles and reveal them to
the verifier. The formal description of the red-black pebbling security game for
a graph labeling PoS construction with G(n), VC(n), and Chal(n) is as follows.

Red-Black-PebblesA(G, VC ,Chal, t):

1. A outputs a set R ⊆ [N ] (of red pebble indices) and S ⊆ [N ] (of black pebble
indices).

2. The challenger samples c1, ..., cλ ←R Chal(n). If ci ∈ R for some i then A
immediately loses. The challenger additionally samples v1, ...., vκ uniformly
at random from indices in VC(n) and sends these to A.

3. A plays the random (black) pebbling game on G(n) with the challenges
v1, ..., vκ and initial pebble configuration P0 = R ∪ S. It runs for t paral-
lel rounds and outputs its final pebble configuration Pt. A wins if Pt contains
pebbles on all of v1, ..., vκ.

Graph labeling PoS soundness. Given the correspondence between the hard-
ness of the random oracle labeling game and parallel black pebbling game, we
can entirely capture the soundness of the graph labeling PoS in terms of the
complexity of Red-Black-PebblesA(G, VC , t). Let c : N → N denote a cost func-
tion c : N → N representing the parallel time cost (e.g. in sequential steps on a
PRAM machine) of computing a label on a node of G(n) for each n ∈ N.

Definition 1. A graph labeling PoS with G(n), VC(n),Chal(n) and cost function
c(n) is parallel (s, c(n) · t, μ)-sound if and only if the probability that any A wins
Red-Black-PebblesA(G, VC ,Chal, t) is bounded by μ where |S| = s.

2.3 Depth Robust Graphs

A directed acyclic graph (DAG) on n nodes with d-indegree is (n, α, β, d) depth
robust graph (DRG) if every subgraph of αn nodes contains a path of length at
least βn.

DRGs have been constructed for constant α, β and d = O(log n) using
extreme constant-degree bipartite expander graphs, or local expanders [4,14,17].
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Explicit constructions of local expanders exist [15], however they are compli-
cated to implement and their concrete practicality is hindered by very large
hidden constants. The most efficient way to instantiate these extreme expander
graphs is probabilistically. A probabilistic DRG construction outputs a graph
that is a DRG with overwhelming probability. The most efficient probabilis-
tic construction to date is due to Alwen et al. [3]. The analysis still leaves large
gaps between security and efficiency although was shown to resist depth-reducing
attacks empirically. Their construction is also locally navigatable, meaning that
it comes with an efficient parent function to derive the parents of any node in
the graph using polylogarithmic time and space.

2.4 Expander Graphs

The vertex expansion of a graph G on vertex set V characterizes the size of the
boundary of vertex subsets S ⊆ V (i.e. the number of vertices in V \ S that are
neighbors with vertices in S). In the case of directed bipartite graphs, vertex
expansion is defined by the minimum number of sources connected to any given
number of sinks.

Definition 2. For any constants α, β where 0 < α < β < 1 and integer n ∈ N,
an (n, α, β) bipartite expander is a directed bipartite graph with n sources and n
sinks such that any subset of αn sinks are connected to at least βn sources. For
any δ > 0, a subset S of sinks is called (1 + δ)-expanding if it is connected to at
least (1 + δ)|S| sources.

Chung’s bipartite expander. The randomized construction of Chung [6]
defines the edges of a d-regular bipartite expander on 2n vertices by connecting
the dn outgoing edges of the sources to the dn incoming edges of the sinks via
a random permutation Π : [d] × [n] → [d] × [n]. The ith source is connected to
the jth sink if there is some k1, k2 ∈ [d] such that Π(k1, i) = (k2, j).

Lemma 1 (RD [19]). The Chung random bipartite graph construction is a
d-regular (n, α, β) expander with probability 1 − negl(nHb(α)) for all d, α, β
satisfying:

Hb(α) + Hb(β) + d(βHb(α/β) − Hb(α)) < 0 (2.1)

where Hb(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function.

For example, the above formula shows that for α = 1/2 and β = 0.80 Chung’s
construction gives an (n, 0.5, 0.80) expander for d ≥ 8, meaning any subset of
50% of the sinks are connected to at least 80% of the sources when the degree
is at least 8.

The following lemmas establish further properties of Chung’s bipartite
expander construction that will be used in the analysis of our PoS. The proofs
are included in the full version of this paper. Let βG(α) denote the smallest
expansion of a subset of αn sources in a bipartite graph G, i.e. every subset of
αn sources is connected to at least βG(α) sinks.
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Lemma 2. For any k > 1 and d > 2, if the output of Chung’s construction is
a d-regular (n, α, kα) bipartite expander for some α < d−k−1

k(d−2) with probability
1 − negl(nHb(α)) then βG(α′) ≥ kα′ for every α′ < α with probability 1 −
negl(nHb(α′)).

Corollary 1. For d = 8 Chung’s construction is an 8-regular bipartite graph
such that every subset of at most 1/3 of the nodes is 2-expanding, i.e. it is an
(n, α, 2α)-bipartite expander for every α ≤ 1/3 with overwhelming probability.

Proof. Plugging α = 1/3 and β = 2/3 into the formula for degree (Eq. 2.1) gives
d = 7.21 < 8. With d = 8 and k = 2 the condition in Lemma 2 is satisfied:
α = 1/3 < (d − k − 1)/k(d − 2) = 5/12.

For fixed d the expansion improves further as α decreases. Figure 3 provides
a table of expansion factors over a range of α with fixed degree d = 8. Figure 4
plots the expansion as a function of subset size.

Size (α) 0.01 0.10 0.20 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Expansion (β) 0.04 0.33 0.53 0.65 0.75 0.78 0.81 0.84 0.88 0.89 0.91 0.93 0.94
Factor (β/α) 4 3.3 2.65 2.1 1.8 1.73 1.62 1.53 1.47 1.37 1.3 1.24 1.17

Fig. 3. A table of the maximum expansion (β) satisfying the condition from Lemma 1
for Chung’s construction with fixed degree d = 8 over a range of subset sizes (α).

Fig. 4. The graph on the left plots the lower bound from Lemma 1 on the expansion
β as a function of the subset size α (in fractions of the sources/sinks) for Chung’s con-
struction with fixed d = 8. The graph on the right plots the corresponding lower bound
on β − α, which is the analog of the subgraph boundary in non-bipartite expanders.
Specifically, this is a lower bound on the fraction of sinks connected to an α fraction
of sources that have distinct index labels from the sources.

In a bipartite expanders, the “boundary” of a set of sources is the set of sinks
connected to these sources that have distinct index labels from the sources, which
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is at least βG(α) − α. Lemma 3 gives a smooth lower bound on βG(α) − α for
Chung’s bipartite expander graphs that we can show has a unique local maximum
in (0, 1). To simplify the analysis, we look at the function defined by the zeros
of φ(α, β) = d(βHb(α/β)−Hb(α))+2 = 0. Any α, β satisfying this relation also
satisfies the relation in Lemma 1 because Hb(α) + Hb(β) < 2 when β > α. This
implicitly defines β as a function of α, as well as the function β̂ = β − α, by
pairs of points (α, β̂(α)) such that φ(α, α + β̂(α)) = 0 is a lower bound to the
boundary of subsets of size α, which holds at any point α with probability at
least 1 − negl(nHb(α)).

Lemma 3. Define φ(x, y) = d(yHb(x/y) − Hb(x)) + c where c is any constant
and let β̂ be the function on (0, 1) defined by pairs of points (α, β − α) such that
φ(α, β) = 0 and 0 < α < β < 1. The function β̂ is continuously differentiable on
(0, 1) and has a unique local maximum.

Corollary 2. With overwhelming probability in n, Chung’s construction (with
d = 8) is an 8-regular bipartite graph on n sinks and n sources each indexed
in [n] such that for all α ∈ (0.10, 0.80) every αn sinks are connected to at least
0.12n sources with distinct indices.

Lemma 4. For any d ≥ 4, Chung’s construction yields a d-regular bipartite
graph that is an (n, α, (d/3)α) bipartite expander for every α ≤ 3

2d with proba-
bility 1 − negl(nHb(α)).

3 Stacked DRG Proof of Space

In this section we show that stacking DRGs with bipartite expander edges
between layers yields an arbitrarily tight proof of space with the number of
layers increasing as O(log2(1/ε)) where ε is the desired space gap. Moreover,
the proof size is also O(log2(1/ε)), which is asymptotically optimal. Our proofs
attempt a tight analysis as well, e.g. showing that just 10 layers achieve a PoS
with a 1% space gap, degree 8+d graphs where d is the degree of the DRG, and
relies only on a DRG that retains depth in 80% subgraphs.

3.1 Review of the Stacked-Expander PoS

The PoS construction by Ren and Devadas [19] based on stacked bipartite
expander graphs is a building block towards our tight PoS construction. Their
construction uses a layered graph where each layer is a directed line on n nodes
and the directed edges of a bipartite expander graph are placed between layers.
This was shown to be an (εγn, (1 − 2ε)γn)-sound PoS for parameters ε < 1/2
and γ < 1 [19].

The graph GSE . The stacked-expander PoS uses the same underlying graph
as the Balloon Hash memory hard function [12]. The graph GSE consists of

 = O(λ) layers V1, ..., V� consisting each of n vertices indexed in each level by
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the integers [n], and where λ is a security parameter. First directed edges are
placed from each kth vertex to the k + 1st vertex in each level, i.e. forming a
directed line. Next directed edges are placed from Vi−1 to Vi according to the
edges of an (n, α, β) bipartite expander on (Vi−1, Vi). Finally a “localization”
operation is applied so that each kth vertex uk in Vi−1 is connected to the kth
vertex vk in Vi and any directed edge from the kth vertex of Vi−1 to some jth
vertex of Vi where j > k is replaced with a directed edge from the kth vertex
of Vi to the jth vertex of Vi. GSE can be pebbled in n
 steps using a total of n
pebbles.

Stacked-expander PoS. The PoS follows the generic PoS based on graph
labeling. We remark only on several nuances. Due to the topology of GSE after
localization, the prover only needs to use a buffer of size n and deletes the labels
of Vi−1 as it derives the labels of Vi. After completing the labels Ci in the ith level
it computes a vector commitment (e.g. Merkle commitment) to the labels in Ci

denoted comi. Once it has derived the labels C� of the final level V� it computes
com = Hid(com1|| · · · ||com�) and uses Hid(com||j) to derive λ non-interactive
challenges for each jth level.

3.2 A New Tight PoS from Stacked DRGs

By simply replacing each of the path graphs Vi in the stacked-expander PoS con-
struction with a depth robust graph results in an arbitrarily tight PoS. Specif-
ically, only O(log 1/ε) layers are needed to achieve a ((1 − ε)n,Ω(n))-parallel-
sound PoS. We demand only very basic properties from the DRG, e.g. that any
subgraph on 80% of the nodes contains a long path of Ω(n) length.

Construction of GSDR [�]. The graph GSDR[
] will be exactly like GSE only
each of the 
 layers V1, ..., V� contains a copy of an (n, 0.80n, βn)-depth-robust
graph for some constant β. For concreteness, we define the directed edges
between the layers using the degree 8 Chung random bipartite graph construc-
tion. For simplicity we will analyze the construction without applying local-
ization to the expander edges between layers. Even without localization this is
already a valid PoS, only the initialization requires a buffer of size 2n rather
than n. The PoS is still “tight” with respect to the persistent space storage.

Vector commitment storage. If the vector commitment storage overhead
required for the PoS is significant then this somewhat defeats the point of a tight
PoS. Luckily this is not the case. Most vector commitment protocols, including
the standard Merkle tree, offer smooth time/space tradeoffs. With a Merkle tree
the honest prover can delete the hashes on nodes on the first k levels of the tree
to save a factor 2k space and re-derive all hashes along a Merkle path by reading
at most 2k nodes and computing at most 2k hashes. If k = 7 this is less than
a 1% overhead in space, and requires at most 128 additional hashes and reads.
Furthermore, as remarked in [18] these 2k reads are sequential memory reads,
which in practice are inexpensive compared to the random reads for challenge
labels.
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Proof size. We show that 
 = O(log( 1
3(ε−2δ) )) suffices to achieve negl(λ) sound-

ness against any prover running in parallel time less than βn rounds of queries
where Chal samples λ/δ nodes in each layer. This would result in a proof size of
O((1/ε) log(1/ε)), which is already a major improvement on any PoS involving
a graph of degree O(1/ε) (recall that the only previously known tight PoS con-
struction relied on very special DRGs whose degree must scale with 1/ε, which
results in a total proof size of O(1/ε2)). However, we are able to improve the
result even further and show that only O(1/δ) challenge queries are required
overall, achieving proof complexity O(1/ε). This is the optimal proof complexity
for the generic pebbling-based PoS with at most an ε space gap. If the prover
claims to be storing n pebbles and the proof queries less than 1/ε then a random
deletion of an ε fraction of these pebbles evades detection with probability at
least (1 − ε)1/ε ≈ 1/e. The same applies if a random ε fraction of the pebbles
the prover claims to be storing are red (i.e. errors).

Analysis outline. We prove the hardness of the red-black pebbling game Red-
Black-PebblesA(GSDR[
], V�,Chal) where Chal samples λi uniform challenges over
Vi. We first show that it suffices to consider the parallel complexity of pebbling
the set U� ⊆ V� of all unpebbled nodes on V� from an initial configuration of γn
black pebbles overall and δin red pebbles in each layer where δ� < ε/2.

As a shorthand notation, we will say that GSDR[
] is (γ, δ, t, μ)-hard if every
subset containing a μ fraction of the nodes in V� require t rounds to pebble (i.e.
greater than a 1 − μ fraction of the nodes each individually require t rounds
to pebble) from an initial configuration of γn black pebbles overall and δin red
pebbles in each layer where δ� < ε/2. In Claim 1 we show that if GSDR[
] is
(γ, δ, t, μ)-hard then the labeling PoS on GSDR[
] is (γn, t,max{p∗, μκ})-sound
where p∗ = maxi(1 − δi)λi . (Recall that κ and λ are parameters defined in the
game).

For μ = 1, (γ, δ, t, 1)-hardness is nearly equivalent to the standard parallel
pebbling complexity of U�. The one distinction5 is its dependency on the restric-
tion to δi red pebbles in each layer, counted separately from black pebbles. In
Claim 3 we show that if GSDR[
] is (1 − ε + 2δ�, δ, t, 1)-hard then GSDR[
 + 1]
is (1 − ε, δ∗, t, 1 − ε/2)-hard where δ∗ is equal to δ on all common indices and
δ�+1 = δ�.

Finally, we analyze the complexity of pebbling all of U�, i.e. the (γ, δ, t, 1)-
hardness of GSDR[
]. We show in Claim 5 that when the adversary uses at most
γ < 1 − ε black pebbles and δ red pebbles in each layer then pebbling all the
unpebbled nodes in layer V� (for 
 dependent on ε and δ) requires pebbling 0.80n
unpebbled nodes (including both red and black pebbles) in some layer Vi. Since
the layer Vi contains a (n, 0.80, βn)-depth-robust graph, this takes at least βn

5 In prior uses of the red-black pebbling game to analyze proofs of space, it sufficed
to consider parallel black pebbling complexity because replacing red pebbles with
“free” black pebbles only increases the adversary’s power. Our more refined analysis
requires analyzing the weaker adversary who is restricted to a maximum number of
red pebbles on each level of the graph, enforced by the construction.
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rounds. We then generalize this analysis (Claim 6) to apply when δi is allowed
to increase from level 
 to 1 by a multiplicative factor such that

∑
i δi = O(δ�).

Theorem 2 ties everything together, taking into account the constraints of
each claim to derive the PoS soundness of the labeling PoS on GSDR[
].

Theorem 2. The labeling PoS on GSDR[
] with Chal sampling λi challenges in
each level Vi and κ online challenges in V� is ((1 − ε − δ)n, βn, e−λ)-sound with
κ = 2λ/ε if either of the following conditions are met for ε ≤ 0.24:

(a) 
 = max(8, log2(
1

3(ε−2δ) ) + 4) and each λi = λ/δ and δ < min(0.01, ε/3)
(b) 
 = max(14, log2(

1
3(ε−3δ) ) + 5) and each λi = λ/δi where δ� = δ <

min(0.01, ε/2) and δi = min(0.05, 2
3δi−1)

Proof. For any GSDR[
], if the set of unpebbled nodes in V� are connected
via unpebbled paths to at least 0.80n unpebbled nodes (including red and
black) in some prior level Vi, then pebbling all of V� requires pebbling all these
0.80n unpebbled nodes, which requires βn rounds due to the fact that Vi is
(n, 0.80n, βn) depth robust. Claim 5 implies that GSDR[
] is (1− ε, δ, βn, 1)-hard
for δ and 
 such that δi = δ < ε/2 for all i and 
 = max(7, log2(

1
3(ε−2δ) + 3)).

Claim 6 gives a different tradeoff between 
 and δ, showing that the same
hardness holds for δ and 
 such that δ� = δ < ε/3 and δi = min(0.05, 2

3δi−1)
and 
 = max(13, log2(

1
3(ε−3δ) ) + 4).

Assuming ε ≤ 0.24, Claim 3 implies that GSDR[
+1] is (1−ε−δ, δ, βn, 1−ε/2)-
hard extending δ so that δ�+1 = δ� = δ. Finally, by Claim 1, the labeling PoS
on GSDR[
 + 1] with challenge set V� and Chal sampling λi in each level Vi is
((1− ε− δ)n, βn,max{p∗, (1− ε/2)κ})-sound where p∗ = maxi(1− δi)λi . Setting
λi = λ/δi and κ = 2λ/ε, the PoS is ((1 − ε − δ)n, βn, e−λ)-sound.

Notation 1 (Common analysis notations). Let Ui denote the entire index
set of nodes that are unpebbled in Vi and Pi the set that are pebbled. The total
number of pebbles placed in the initial configuration is γn. Each level initially
has ρin black pebbles and δin red pebbles. Finally, γin =

∑
j<i ρin is the number

of black pebbles placed before level i.

Claim 1. If GSDR[
] is (γ, δ, t, μ)-hard then the labeling PoS on GSDR[
] is
(γn, t,max{p∗, μκ})-sound where p∗ = maxi(1 − δi)λi .

Proof. Fix γ = 1 − ε and δi for each i. The λi challenges during Initialization in
each level ensure that A wins with at most probability (1−δi)λi if it places more
than δi red pebbles on Vi. If A has exceeded the δi bound in more than one level
this only increases its probability of failure. Thus, in case 1 (A places more than
δi red pebbles on some level i), A’s success probability is bounded by maximum
value of (1 − δi)λi over all i. In case 2 (A places fewer than δi on each ith level),
the fact that GSDR[
] is (γ, δ, t, μ)-hard implies that at most a μ fraction of the
nodes on V� can individually be pebbled from the starting configuration in t
rounds, hence A’s success probability of answering κ independent challenges is
bounded by μκ. The success probability is bounded by the maximum of these
two cases.
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Claim 2 (trivial). GSDR[
] is (γ, δ, t, 1)-hard if and only if given any initial
configuration P0 of γ�n black pebbles placed on layers V1, ..., V�−1 at most δin red
pebbles in each layer, and any set U ⊆ V� of αn unpebbled nodes in V� such that
α − γ� ≥ 1 − γ − δ, no adversary can pebble U in fewer than t rounds.

The proof of this claim is in the full version of the paper.

Claim 3. For any ε ≤ 0.24, if GSDR[
 − 1] is (1 − ε + δ�−1, δ, t − 1, 1)-hard then
GSDR[
] is (1 − ε, δ∗,min(βn, t), 1 − ε/2)-hard where δ∗ is identical to v on all
common indices and δ� = δ�−1 ≤ ε/2.

Proof. Refer to Notation 1. Consider the graph GSDR[
] with γn = (1−ε)n black
pebbles initially placed. Let δ = δ� = δ�−1 ≤ ε/2. Let α� = |U�|/|V�| denote the
fraction of nodes in V� that are unpebbled. Every 1 − ε/2 fraction of V� contains
at least α∗n = (α� − ε/2)n unpebbled nodes. If α∗ ≥ 0.80, then every 1 − ε/2
fraction of V� contains a path of length βn because V� is a (n, 0.80n, βn)-depth
robust graph. We consider the two other cases next:

Case α∗ < 1/3: The α∗n unpebbled nodes have dependencies on at least
a 2α∗ = 2α� − ε fraction of nodes in V�−1 (Corollary 1, bipartite expansion).
These contain at least α′n = (2α� − ε − ρ�−1 − δ)n unpebbled nodes because
in the worst case they include ρ�−1n black pebbles and δn red pebbles. There
are γ�−1n = (γ − ρ�−1 − ρ�)n pebbles placed on all prior levels. By definition
ρ� = 1−α� −δ and γ = 1− ε. Substituting α� ≥ 1−γ −δ shows that α′ −γ�−1 =
2α� −γ +ρ� −ε−δ = α� +1−γ −ε−2δ ≥ 1−2γ −3δ+1−ε = 1−γ −3δ. Setting
γ′ = 1 − ε + δ = γ + δ gives the relation α′ − γ�−1 ≥ 1 − γ′ − δ. It then follows
from Claim 2 that if GSDR[
 − 1] is (γ′, δ, t − 1, 1)-hard then the α′n unpebbled
nodes in V�−1 require t − 1 rounds to pebbled. Thus, the α∗n unpebbled nodes
in V� require t rounds to pebble.

Case α∗ ≥ 1/3: In this case α∗ ∈ (0.33, 0.80). It is connected to β∗n nodes
in V�−1. Among these at least α′n for α′ ≥ β∗ − ρ�−1 − δ are unpebbled. Since
γ�−1 = γ −ρ� −ρ�−1 we get α′ −γ�−1 ≥ β∗ −γ +ρ� − δ. According to Corollary 2
on the bipartite expander boundary β∗ −α∗ ≥ 0.12. Therefore, ρ� = 1−α� −δ ≥
1−α∗ − ε/2− δ so α′ −γ�−1 ≥ β∗ −γ +1−α∗ − ε/2− 2δ = β∗ −α∗ + ε/2− 2δ ≥
0.12 + ε/2 − 2δ. If GSDR[
 − 1] is (1 − ε + δ, δ, t − 1, 1)-hard, then by Claim 2 the
α′n unpebbled nodes require t − 1 rounds as long as 0.12 + ε/2 − 2δ ≥ ε − 2δ,
which is true for ε ≤ 0.24.

Claim 4. If GSDR initially has at most γn black pebbles for γ ≤ 1 − ε and at
most δn < εn/2 red pebbles in each layer then for 
 = log2(

1
3(ε−2δ) ) the unpebbled

nodes in V� have unpebbled paths from at least n/3 unpebbled nodes in some layer
Vi.

Proof. Refer to Notations 1. Let αin denote the number of unpebbled depen-
dencies of U� in Vi, i.e. the number of nodes in Ui that have unpebbled paths
to U�. Suppose that αi is bounded by 1/3 for all levels up to 
 − k, i.e.
α� < 1/3, ..., α�−k < 1/3. We will prove the following bound:

α�−k ≥ 2k(α� − γ�/2 − δ) ≥ 2k−1(α� + ε − 3δ) ≥ 2k(ε − 2δ) (3.1)
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Before proving this bound let us note its implication. For k = log2(
1

3(ε−2δ) )
this implies α�−k ≥ 1/3, which contradicts α�−k < 1/3. Therefore, it follows
that αi ≥ 1/3 at some index i > 
 − log2(

1
3(ε−2δ) ), which leads to the conclusion

that for 
 ≥ log2(
1

3(ε−2δ) ) there exists some level Vi with at least n/3 unpebbled
nodes that have unpebbled dependency paths to the set X� of unpebbled nodes
in V�.

Let j = 
 − i. From Corollary 1 (bipartite expansion), if αj ≤ 1/3 then Xj

is connected to at least 2αj nodes in Vj−1. At most (ρj−1 + δ)n of these are
pebbled. Therefore, αj−1 ≥ 2αj − ρj−1 − δ. Now we show by induction that
α�−k ≥ 2kα� − 2k−1ρ�−1 − (2k − 1)δ. The base case k = 0 is trivial. Assuming
this holds for k:

α�−k−1 ≥ 2α�−k − ρ�−k−1 − δ ≥ 2(2kα� − 2k−1ρ�−1 − (2k − 1)δ) − ρ�−k−1 − δ

≥ 2k+1α� − 2kρ�−1 − (2k+1 − 1)δ

The last inequality used the fact that
∑k

i=1 ρ�−i ≤ γ� and therefore
∑k

i=1 2k−iρ�−i is maximized by setting ρ�−1 = γ� and ρ�−i = 0 for all i > 1.
From the identities γ� = γ − ρ� and α� = 1 − ρ� − δ we derive γ� = γ + α� −

1 + δ ≤ α� + δ − ε. Finally, inserting this into the bound above and using the
fact that α� ≥ ε − δ gives:

α�−k ≥ 2k−1(2α� − γ� − 2δ) ≥ 2k−1(α� + ε − 3δ) ≥ 2k(ε − 2δ)

We could stop here as we have already shown unpebbled dependency paths
from the unpebbled sinks in V� to a 1/3 fraction of nodes in some level for

 = O(log(1/(ε − 2δ)) and the remainder of our PoS analysis could rely on a
graph that is (n, 0.33n,Ω(n))-depth-robust. However, we can tighten the analysis
further so that we only need to assume the graph is (n, 0.80, Ω(n))-depth robust.

Claim 5. If GSDR initially has at most γn black pebbles for γ ≤ 1 − ε and
at most δ < ε/2 red pebbles in each layer then the unpebbled nodes in V�

have unpebbled paths to at least 0.80n unpebbled nodes in some layer Vi for

 = max(0.68−ε+δ

0.12−δ , log2(
1

3(ε−2δ ))+3). In particular, 
 = max(7, log2(
1

3(ε−2δ ))+3)
when δ ≤ 0.01.

Proof. In Claim 4 we showed that for 
 ≥ log2(
2

3(α�+ε−3δ) ) there exists an index
i where αi ≥ 1/3 and α� + ε − 3δ ≥ 2ε − 4δ (Eq. 3.1). Picking up from here, we
consider what happens once αi ≥ 1/3. We break the analysis into two cases: in
the first case α� < 1/3 and in the second case α� ≥ 1/3.

In both cases we will use a different bound on αi−k because once αi > 1/3
the unpebbled sets may not be 2-expanding. Define the function β(α) to be the
minimum bipartite expansion of a set of fractional size α, i.e. every set of αn
nodes is connected to at least β(α)n nodes in the previous level. Let β̂(α) =
β(α) − α. Using the relation αi−1 ≥ β(αi) − ρi−1 − δ we derive that αi−2 ≥
β̂(αi−1) + β(αi) − ρi−1 − ρi−2 − 2δ and more generally, since

∑k
j=1 ρi−j ≤ γi:
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αi−k ≥
k−1∑

j=1

β̂(αi−j) + β(αi) − kδ −
k∑

j=1

ρi−j

≥ (k − 1)(minj<kβ̂(αi−j) − δ) + β(αi) − γi − δ

The final ingredient is the bound γi ≤ αi − ε + δ for all i. To see this, first
observe that α�−γ� = 1−ρ�−δ−(γ−ρ�) = ε−δ. If αi−γi ≥ ε−δ and ε > 2δ, then
0.80 > αi > δ, and so the αin dependencies are connected to β(αi)n > (αi + δ)n
nodes in level Vi−1. Therefore αi−1 ≥ αi − ρi−1 = αi − (γi − γi−1). In words,
decreasing the number of dependencies requires using black pebbles 1-to-1, so
αi−1 − γi−1 ≥ αi − γi.

αi−k ≥ (k − 1)(minj<kβ̂(αi−j) − δ) + β̂(αi) + ε − 2δ (3.2)

By Corollary 2 to Lemma 3, β̂(α) ≥ 0.12 for α ∈ (0.10, 0.80).

Case α� ≥ 1/3: First we claim that α�−i ≥ 0.12 for all i. If αi ≥ 0.12 then
as shown above αi−1 ≥ β̂(αi) + ε − 2δ ≥ 0.12 because β̂(α) ≥ 0.12 for all
α ∈ (0.10, 0.80) and ε > 2δ. Our claim thus follows by induction. Therefore, for
all j ≤ k we derive that minj≤k(β̂(α�−j)) ≥ 0.12. Equation 3.2 then shows that
α�−k−1 ≥ k(0.12−δ)+0.12+ε−δ, or α�−k−1 ≥ 0.80 at k ≥ (0.68−ε+δ)/(0.12−δ)
(e.g. k = 7 when δ ≤ 0.01).

Case α� < 1/3: From Eq. 3.1, αi ≥ 1/3 at some index i ≥ 
 − k for k =
log2(

2
3(α�+ε−3δ) ). At this point αi ≥ 1/3 and γi < γ� ≤ α� − ε + δ. Combining

this with Eq. 3.2, we can apply the same analysis as in the previous case to
first show by induction that αi−k′ ≥ 0.12 for all k′ and then more generally:
αi−k′ ≥ (k′ −1)(0.12−δ)+β(αi)−α� + ε−2δ ≥ k′(0.12−δ)+0.68−α� + ε−2δ.
We used the fact that β(αi) ≥ β(0.33) ≥ 0.68. Therefore, αi−k′−1 ≥ 0.80 when
k′ ≥ (0.80 − 0.68 + α�)/(0.12 − δ). This shows that the total number of levels
where αi < 0.80 is at most:


 = k + k′ + 1 ≤ 1 + log2
( 2
3(α� + ε − 3δ)

)
+

0.12 + α�

0.12 − δ

The derivative of this expression with respect to α� is 1
0.12−δ − 1

ln(2)(α�+ε−3δ) ,
which is initially decreasing when ln(2)(α�+ε−3δ) < 0.12−δ and then increasing
for larger α�. Therefore, the maxima are on the endpoints of the interval α� ∈
(ε − δ, 0.33). We already considered the case α� = 0.33. When α� = ε − δ then
the number of levels is at most 1 − log2(3(ε − 2δ)) + 0.12

0.12−δ .
In conclusion, the total number of levels before αi ≥ 0.80 is at most:


 ≤ max
(
(0.68 − ε + δ)/(0.12 − δ), 1 − log2

(
3(ε − 2δ)

)
+ 1/(1 − δ/12)

)

In particular, when δ ≤ 0.01 this becomes max(7,− log2(3(ε − 2δ)) + 3).
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Relaxing δ. Claim 5 improved on Claim 4 to show unpebbled dependency paths
to 80% of the subgraph in some layer. The final improvement is to redistribute the
δi such that

∑
i δi = O(δ) but security is still maintained. Intuitively, ensuring

δ < ε is necessary on level V� as otherwise γ + δ ≥ 1 and there are no unpebbled
nodes on level V� (all the missing black pebbles can be covered with red pebbles).
However, as the dependencies expand between levels a larger δ can be tolerated
as well. Although the number of black pebbles the prover will place on each level
isn’t fixed a priori, we show that if δ < ε/2 in level V� then we can tolerate a
factor 3/2 increase between levels as long as δ ≤ 0.05 in any layer.

That is, if δi denotes the bound on the number of red pebbles in the ith
layer then our new analysis requires δ� < ε/2 and δi = min(0.05, (3/2)δi+1).
This means that the total number of queries in the PoS over all levels is O(1/ε)
because

∑�
i=1 1/δi ≤ max(0.10
, 3

2δ�
).

Claim 6. For any γ ≤ 1− ε and δ < ε/3, if GSDR initially has at most γn black
pebbles, δ� = δ red pebbles in layer V�, and δi = min(0.05, (2/3)δi−1) red pebbles
in layer Vi, then for 
 = max(13, log2(

1
3(ε−3δ )) + 4) the unpebbled nodes in V�

have unpebbled paths to at least 0.80n unpebbled nodes in some layer Vi.

Proof. Modifying Eq. 3.1 to account for the different values of δi gives:

α�−k ≥ 2kα� − 2k−1γ� − (2k−1δ�−1 + 2k−2δ�−2 + · · · + δ�−k)

≥ 2kα� − 2k−1γ� −
k∑

i=1

2k−i(3/2)i−1δ�

Let σk =
∑k

i=1 2k−i(3/2)i−1. Then (4/3)σk = σk +2k+1/3− (3/2)k−1. Therefore
σk = 2k+1 − 3k/2k−1 < 2k+1. Using γ� ≤ α� + δ� − ε and α� ≥ ε − δ� we derive
the new bound:

α�−k ≥ 2kα� − 2k−1γ� − 2k+1δ� ≥ 2k−1(α� + ε − 5δ�) ≥ 2k(ε − 3δ) (3.3)

This shows that if 
 ≥ log2(
1

3(ε−3δ) ) then there is some level Vi where αi ≥ 1/3.

We must also modify Eq. 3.2 using
∑k

j=1 ρi−j ≤ γi ≤ αi − ε + δi:

αi−k ≥ (k − 1)minj<kβ̂(αi−j) −
k∑

j=0

δi−j + β̂(αi) + ε (3.4)

When i = 
 and k is small δ�−k = (3/2)kδ� and δ� ≤ ε/3 implies:

α�−k ≥ (k − 1)minj<kβ̂(αi−j) + β̂(α�) + (
2
3

− 3k

2k+1
)ε

Otherwise, we can use δi ≤ 0.05.

αi−k ≥ (k − 1)(minj<kβ̂(αi−j) − 0.05) + β̂(αi) + ε − 0.10
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Now we turn back to the two cases for αi ≥ 1/3.

Case α� ≥ 1/3: We claim that α�−k ≥ 0.11 for all k. This is true for α� by
hypothesis. From the equation above and the bound β̂(α) ≥ 0.12 for all α ∈
(0.10, 0.80) (Corollary 2), α�−1 ≥ β̂(α�)−ε/12 > 0.11. Therefore, α�−2 ≥ (0.12−
0.05)+0.12−(11/24)ε ≥ 0.18. Now assume that α�−2−j ≥ 0.12 for all j < k, then
α�−2−j ≥ (k − 1)0.07 + 0.12 − (11/24)ε > 0.11. The claim follows by induction.
This also shows that α�−k ≥ (k − 3)0.07 + 0.11 > 0.80 when k = 13.

Case α� < 1/3: From Eq. 3.3, αi ≥ 1/3 at some index i ≥ 
 − k for k =
log2(

2
3(α�+ε−5δ�)

). At this point αi ≥ 1/3 and γi < γ� ≤ α� − ε + δ�. Combining
this with Eq. 3.4 gives:

αi−k′ ≥ (k′ − 1)(minj<k′ β̂(αi−j) − 0.05) + β(αi) − α� + ε − 0.05 − δ�

We claim that αi−k′ ≥ 0.30 for all k′. Observe that αi − 1 ≥ β(αi)−α� + ε−
0.05− δ� ≥ 0.68− 0.38+ ε− δell ≥ 0.30 for any value α� < 0.33 because β(αi) ≥
β(0.33) ≥ 0.68. Assuming this is true for all αi−j where 1 < j ≤ k′ implies
αi−k′ ≥ (k′ − 1)0.07 + 0.30 ≥ 30. Therefore, we can state more generally that
αi−k′ ≥ (k′ − 1)0.07 + 0.68 − α� and αi−k′−1 ≥ 0.80 when k′ = (0.12 + α�)/0.07.
The total number of levels where αi < 0.80 is thus at most:

k + k′ + 1 ≤ 1 − log2((3/2)(α� + ε − 5δ�)) + 2 + α�/0.07

Differentiating this expression with respect to α� shows that the maxima
over α� ∈ (ε − δ�, 0.33) are on the endpoints. The endpoint α� = 0.33 coincides
with the case above. At the endpoint ε − δ� the number of levels is bounded by
3 − log2(3(α� + ε − 5δ)) + ε/0.07.

In conclusion, considering both cases, the total number of levels before αi ≥
0.80 is at most:


 ≥ max(13, 3 − log2(3(ε − 3δ�)) + ε/0.07)

In particular, when ε ≤ 0.07 and δ� = δ then 
 ≤ max(12, 4− log2(3(ε−3δ)).

4 “ZigZag” DRG PoS/PoRep

The Stacked-DRG PoS can be adapted into a PoRep which encodes input data
D using the labels on the last level V� as encoding keys. However, decoding the
data requires first re-computing the PoS labels, which is by design expensive.

The basic idea of the ZigZag PoS/PoRep is to layer DRGs so that each layer
“encodes” the previous layer. The critical desired property to achieve is: if all
the labels on a given level are available in memory then the labels can decoded
in parallel. To achieve this, instead of adding edge dependencies between the
layers, we add the edges of a constant degree expander graph in each layer so
that every layer is both depth-robust and has high “expansion”. Technically, the
graph we construct in each layer is an expander as an undirected graph. As a
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DAG this means that the union of the dependencies and targets of any subset is
large. By alternating the direction of the edges between layers, forming a “zig-
zag”, we are able to show that the dependencies between layers expand. Now the
only edges between layers are between nodes at the same index, and the label
on each node encodes the label on the node at the same index in the previous
level. The dependencies used for keys are all contained in the same layer. Thus,
the labels in any layer are sufficient to recover the labels in the preceding layer.
Moreover, the decoding step can be done in parallel.

Without alternating the direction of the edges between layers this construc-
tion would fail to be a tight proof of space because the topologically last εn
nodes in a layer would only depend on the topologically last εn nodes in the
previous layer. Moreover, if the prover stores the labels on the topologically first
(1− ε)n nodes it can quickly recover the labels on the topologically first (1− ε)n
nodes in the preceding level, allowing it to recover the missing εn labels as well
in parallel-time O(εn).

Construction of GZZ [�]. Similar to GSDE , the graph GZZ [
] contains a copy of
an (n, 0.80n, βn)-depth-robust graph for some constant β in each of the 
 layers
V1, ..., V�. The nodes in each layer are indexed in [n]. Every odd layer overlays
the edges of the DRG in the forward direction (edges go from lower to higher
indices) while every even layer the edges of the DRG in the reverse direction
(edges go from higher indices to lower indices).

Edges are added between same index nodes in adjacent layers (i.e. the ith
node in layer Vk is connected to the ith node in layer Vk+1 for all i, k). Next,
the edges that were between layers in GSDE [
] are projected into each layer of
GZZ [
] with the direction of each edge determined by the parity of the layer. We
call these expander edges to distinguish6 them from other edges. More precisely,
if GSDE [
] has an edge from the ith node of a layer Vk to the jth node of layer
Vk+1 then GZZ [
] has an edge between the ith node of Vk+1 and the jth node of
Vk+1. The direction of the edges added to Vk+1 is from lower indices to higher
indices when k +1 is odd, and from higher indices to lower indices when k +1 is
even. (For concreteness in the analysis, the edges between layers in the reference
graph GSDE are assumed to be constructed using the degree 8 Chung random
bipartite graph construction).

DAG encoding. Instead of the standard DAG labeling, the ZigZag PoS/PoRep
uses a DAG encoding scheme. It takes in a data file X on n blocks x1, ..., xn, a salt
σ for a collision-resistant hash function H : {0, 1}md → {0, 1}m, and a d-inregular
DAG on n nodes together with its parent function Parents(i) which outputs the
parent nodes of the ith node. It uses a randomized encoding scheme Enc,Dec to
derive the label ci on each node as Enc(ki, xi) where ki ← H(σ||cv1 || · · · ||cvd

) for
(v1, ..., vd) ← Parents(i). This encoding scheme may be as simple as the identity
function, or could use sequentially slow encoding for added delay.

6 The distinction between expander edges and all other edges is important in the
analysis. In particular, the expander edges are between the same index nodes in
every layer and differ only in their directionality.
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4.1 PoS Analysis of ZigZag PoRep

Invertible pebbling game. The red-black pebbling game no longer entirely
captures the PoS security of the ZigZag PoRep due to the involvement of the
encoding scheme (Enc,Dec) in the labeling rather than purely a collision-resistant
hash function. Most significantly, the labels are now invertible. In terms of the
dependency graph of the labeling computation, the keys in each layer Vi still need
to be computed in topological order, however the labels may either be derived
by decoding labels in layer Vi+1 or encoding labels in layer Vi−1. We modify the
black pebbling game to capture invertibility of labels by coloring edges.

White & green colored edges. White edges are “one-way streets” corre-
sponding to edge dependencies involved in deriving keys via calls to the random
oracle and are treated like normal pebbling game edges. Green edges are “two-
way street”, but still have a direction and different rules in either direction. If
there is a directed green edge from u to v then a pebble can be placed on v if
and only if u and all nodes with white edges to v have pebbles. A pebble can be
placed on u if and only if v and all nodes with white edges to v have pebbles.

We still analyze the soundness of a PoS with invertible labels through the
game Red-Black-Pebbles as in Definition 1, however with the modification that
the adversary plays the black pebbling game with white/green edges instead of
the plain black pebbling game. Specifically we analyze the hardness of a mod-
ification of Red-Black-PebblesA(GZZ [
], V�,Chal) using green/white edges where
the directed edges within every layer Vi are white and the directed edges between
the same index nodes in adjacent layers are green. Our analysis, included in the
full version of this paper, will demonstrate in this model that the ZigZag PoRep
is an arbitrarily tight PoS with only 
 = O(log(1/ε) layers.
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Abstract. We study the foundations of secure computation in the
blockchain-hybrid model, where a blockchain – modeled as a global func-
tionality – is available as an Oracle to all the participants of a cryp-
tographic protocol. We demonstrate both destructive and constructive
applications of blockchains:

– We show that classical rewinding-based simulation techniques used
in many security proofs fail against blockchain-active adversaries that
have read and post access to a global blockchain. In particular, we
show that zero-knowledge (ZK) proofs with black-box simulation are
impossible against blockchain-active adversaries.

– Nevertheless, we show that achieving security against blockchain-
active adversaries is possible if the honest parties are also blockchain
active. We construct an ω(1)-round ZK protocol with black-box sim-
ulation. We show that this result is tight by proving the impossibility
of constant-round ZK with black-box simulation.

– Finally, we demonstrate a novel application of blockchains to over-
come the known impossibility results for concurrent secure com-
putation in the plain model. We construct a concurrent self-
composable secure computation protocol for general functionalities
in the blockchain-hybrid model based on standard cryptographic
assumptions.

We develop a suite of techniques for constructing secure protocols in the
blockchain-hybrid model that we hope will find applications to future
research in this area.

1 Introduction

Blockchain is an exciting new technology which is having a profound impact on
the world of cryptography. Blockchains provide both: new applications of exist-
ing cryptographic primitives (such as hash function, or zero-knowledge proofs),
as well as, novel foundations on which new cryptographic primitives can be real-
ized (such as fair-secure computation [2,10,24], or, one-time programs [36]). In
this work, we seek to examine the foundations of secure computation proto-
cols in the context of blockchains. More concretely, we study what we call the

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11477, pp. 351–380, 2019.
https://doi.org/10.1007/978-3-030-17656-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17656-3_13&domain=pdf
http://orcid.org/0000-0003-0452-3426
https://doi.org/10.1007/978-3-030-17656-3_13


352 A. R. Choudhuri et al.

blockchain-hybrid model and examine constructions of zero-knowledge and secure
computation in this model.

The Blockchain-Hybrid Model. In order to facilitate the use of blockchains in
secure computation, we study the blockchain-hybrid model, where the blockchain
– modeled as a global ledger functionality – is available to all the participants of
a cryptographic protocol. The parties can access the blockchain by posting and
reading content, but no single party has any control over the blockchain. Our
modeling follows previous elegant works on formalizing the blockchain function-
ality [3,4,47]. In particular, our model is based on the global blockchain ledger
model from Badertscher et al. [4].

We study simulation-based security in the blockchain-hybrid model. In our
model, the simulator does not have any control over the blockchain, and simply
treats it as an oracle just like protocol participants. Thus, unlike traditional
trusted setup models such as common reference string, the blockchain-hybrid
model does not provide any new “power” to the simulator. In particular, the
simulator is restricted to its plain model capabilities such as resetting the adver-
sary or using knowledge of its code. Thus, in our model, the blockchain can
be global, in that it can be used by multiple different protocols at the same
time. This is reminiscent of simulation in the global UC framework [15,18,43].
A related model is the global Random Oracle model [18] where the simulator
can only observe the queries made by the adversary to the random oracle, but
cannot program the random oracle (since it is global and therefore shared across
many protocols).

Secure Computation based on Blockchains. We study the foundations
of secure computation in the presence of the global blockchain functionality.
Interestingly, we demonstrate both destructive and constructive applications of
blockchains to cryptography. Primitives which were earlier possible to realize now
become impossible. At the same, working in this model allows us to overcome pre-
viously established deep impossibility results in cryptography. Interestingly, we
also utilize mining delays – typically viewed as a negative feature of blockchains
– for constructive purposes in this work. Our main results as discussed next.

1.1 Our Results

Simulation Failure in the Presence of Blockchains. We consider a new
class of adversaries that we refer to as blockchain-active adversaries. These adver-
saries are similar to usual cryptographic adversaries, except that they have user
access to a blockchain, i.e., they can post on the blockchain and read its state
at any point.

We observe that such adversaries can foil many existing simulation tech-
niques that are used for proving security of standard cryptographic schemes. To
illustrate the main idea, let us consider rewinding-based black-box simulation
techniques that are used, e.g., in zero-knowledge (ZK) proofs [35], secure multi-
party computation [34,59], and signature schemes in the random oracle model



Founding Secure Computation on Blockchains 353

constructed via the Fiat-Shamir heuristic [29]. A crucial requirement for the suc-
cess of rewinding-based simulation is that the adversary should be oblivious to
the rewinding. Usually, this requirement can be easily met since the simulator
can simply “reset” the code of the adversary, which prevents it from keeping
state across the rewindings.

A blockchain-active adversary, however, can periodically post on the
blockchain and use it to maintain state across rewindings, and therefore detect
that it is being rewound. In this case, the adversary can simply abort and there-
fore fail the simulation process.1 It is not too difficult to turn the above idea into
a formal impossibility result for ZK proofs against blockchain-active adversaries,
when the simulation is required to be black-box.

Theorem 1 (Informal). There does not exist an interactive argument in
the plain model which is zero-knowledge w.r.t. black-box simulation against
blockchain-active adversaries.

The above impossibility result extends to secure multiparty computation and
other natural cryptographic primitives whose security is proven via a rewinding
simulator.

Constructing Zero-Knowledge Protocols. To overcome the above problems
posed by blockchains, we look towards blockchains for a solution as well. Our
idea is to make the protocol blockchain active as well. That is, in addition to the
adversary, the honest parties would have access to the blockchain as well.

Our first positive result is an ω(1)-round ZK proof system in the blockchain-
hybrid model whose security is proven w.r.t. black-box simulation.

Theorem 2 (Informal). Assuming collision-resistant hash functions, there
exists an ω(1)-round ZK proof system in the blockchain-hybrid model w.r.t. black-
box simulation.

Interestingly, in our construction, the honest parties do not post any message
on the blockchains. Instead, they only keep a “tab” on the current state of the
blockchain in order to decide whether or not to continue the protocol.

We also show that the above result is tight. Namely, we show that using
black-box simulation, constant-round ZK is impossible in the blockchain-hybrid
model.

Theorem 3 (Informal). Assuming one-way functions, there does not exist
an O(1)-round ZK argument system in the blockchain-hybrid model w.r.t. a
(expected probabilistic polynomial time) black-box simulator.

1 This is reminiscent to the problems that arise in the context of UC security, where
the adversary cannot be rewound since it can communicate with an external envi-
ronment, leading to broad impossibility results for zero-knowledge and secure com-
putation [14,16,19].
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This is in sharp contrast to the plain model where there are a number of
classical constant round zero-knowledge protocols that are proven secure w.r.t.
a black-box simulator [9,28,33].

Concurrent Secure Computation using Blockchains. Classical secure
computation protocols such as [34,59] only achieve “stand-alone” security, and
fail in the setting of concurrent self-composition, where multiple copies of a pro-
tocol may be executed concurrently, under the control of an adversary. In fact,
achieving concurrent secure computation in the plain model has been shown
to be impossible [1,8,13,32,37,50–52]. The above impossibility results are far
reaching and rule out secure computation for a large class of functionalities in a
variety of settings.

Interestingly, we show that concurrent self-composition is possible in the
blockchain-hybrid model w.r.t. standard real/ideal model notion of security with
a PPT simulator. Thus, our results (put together) show that designing crypto-
graphic primitives in the blockchain-hybrid model is, in some sense, harder and
easier at the same time.

Theorem 4 (Informal). Assuming collision-resistant hash functions and
oblivious transfer, there exists a concurrent self-composable secure computation
protocol for all polynomial-time functionalities in the blockchain-hybrid model.

In our protocol, each party is required to post an initial message (which
corresponds to a commitment to its input and randomness) on the blockchain.
However, an honest party can simply perform this posting in an “offline” phase
prior to the start of the protocol. In particular, once the protocol starts, an
honest party is not required to post any additional message on the blockchain.

A number of prior beautiful works have constructed concurrent (and uni-
versally composable) secure computation in various setup models such as the
trusted common reference string model [21], the registered public-key model
[6], the tamper-proof hardware model [22,39,45], and the physically unclone-
able functions model [5,12,25]. We believe that the blockchain model provides
an appealing decentralized alternative to these models since there are no phys-
ical assumptions or centralized trusted parties involved. Moreover, it allows for
basing concurrent security on an already existing and widely used infrastruc-
ture. Further, it is possible to obtain strong guarantees of the following form:
an adversary who can break our construction can also break the security of the
underlying blockchain (potentially allowing it to gain large amounts of cryp-
tocurrency), or the underlying cryptographic assumptions (oblivious transfer
and collision-resistant hash functions in our case).

Impossibility of UC Security. While Theorem 4 establishes the feasibility of
concurrent self-composition, we show that universal composition security [14] is
impossible in the blockchain-hybrid model:

Theorem 5 (Informal). Universally composable commitments are impossible
in the blockchain-hybrid model.
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We prove the above result via a simple adaptation of the impossibility result
of [16] to the blockchain-hybrid model. The main intuition behind this result is
that a simulator in the blockchain-hybrid model has the same capabilities as in
the plain model, namely, the ability to rewind the adversary or using knowledge
of its code. Crucially, (unlike the non-programmable random oracle model [18])
the ability to see the queries made to the blockchain do not constitute a new
capability for the simulator since everyone can see those queries.

1.2 Technical Overview

We start with the observation that if an adversary is blockchain-active, it can
“detect” that it is being rewound by posting the transcript of the interaction so
far on the blockchain. In more detail, upon getting an incoming message, the
adversary concatenates the entire transcript with a session ID and submits it
to the blockchain Oracle. Before giving a response, the adversary waits for the
next block to be mined and checks the following: the transcript it posted on the
blockchain has indeed appeared, and, no such transcript (for the same session
and the same round) appeared on any of the prior blocks. If the check passes
(which is guaranteed in the real execution), the adversary proceeds honestly
with computing and sending the next protocol message. We show that it would
be impossible for any polynomial-time simulator to rewind this adversary which
forms the basis of our black-box impossibility result for zero-knowledge.

Constructing Black-Box Zero-Knowledge Protocols. To overcome the
above problems posed by blockchains, we look towards blockchains for a solution
as well. Our idea is to make the protocol blockchain active as well. Specifically,
we let the honest prover keep track of the blockchain state, and, if the number
of new blocks mined since the beginning of the protocol exceed a fixed number
k, abort. Thus, the honest parties use the blockchain to implement a time-out
mechanism. We emphasize, however, that we do not require the honest parties to
have synchronized clocks. The only requirement placed is that the protocol must
be finished in an a priori bounded amount of time, as measured by the progress
of the blockchain. For example, while using Bitcoin, if k is set to 20, this gives
the parties nearly 3.5 h to finish the zero-knowledge protocol before a time-out
occurs (since a block is mined roughly every 10 min in Bitcoin). For simplicity,
we will treat the parameter k as a constant (even though our constructions can
handle an arbitrary value of k by scaling the round complexity of the protocol
appropriately).

We devise a construction for black-box zero-knowledge proofs where the num-
ber of “slots” (or rewinding opportunities) in the protocol is higher than k. While
the adversary can send any information to the blockchain Oracle at any point of
time, there can be at most k points in the protocol execution where the adver-
sary actually receives from the Oracle a new (unforgeable) mined block. However
by our construction, this would still leave several slots in the protocol where the
simulator is free to rewind (without having to forge the blockchain state).

A potentially complication in the design of the simulator arises from the fact
that, apart from the newly mined blocks, the adversary can also “listen in” on the
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network communication in real time. This could consist of various (honest party)
transactions currently outstanding on the network and waiting to be included in
the next block. This is formalized by buffer reads in the model of Badertscher
et al. [4]. We handle this problem by having the simulator simply replay the
honest-party outstanding transactions since they could not have changed from
the main thread to the look-ahead thread. The adversarial outstanding trans-
actions (which might change from thread to thread) in the current thread are
already known to the simulator since the simulator can read all outgoing mes-
sages from the adversary. The above ideas form the basis of our first positive
result modulo the issue of simulation time which is discussed next.

The Issue of Simulation Time. Interestingly, the fact that blockchains can
be used to implement a global unforgeable clock presents a novel challenge in
proving security against blockchain-active adversaries, that to the best of our
knowledge, does not arise elsewhere in cryptography. Typically in cryptography,
the running time of the simulator is larger than the running time of the adver-
sary. This means that the number of blocks mined during a simulated execution
may be higher than the number of blocks mined during a real execution. Then,
the number of mined blocks can be used as “side-channel” information to distin-
guish real and simulated executions, if the adversary and the distinguisher are
blockchain-active! Such a difficulty does not arise in the plain model since the
simulator is assumed to have complete control over the clock of the adversary
(including the ability to freeze it).

To address this issue, we seek to construct a simulator whose running time is
the same as the real protocol execution. Towards that end, we build upon tech-
niques from the notion of precise zero-knowledge [53]. To start with, it would
seem that we need to construct a simulator with precision exactly 1, some-
thing that is currently not known to be possible. To resolve this problem, our
key observation is that there is a crucial difference between the time that the
simulator takes to finish and the number of computation steps it executes. In
particular, if the simulator can execute a number of computations in parallel, it
could potentially perform more computations than the prover in the real execu-
tion, and yet, finish in the same amount of time. Our rewinding strategy would
run several threads of execution in parallel (e.g., by making several copies of the
adversary code) and ensure that by the time the main2 thread finishes, all the
rewound execution threads have finished as well. To ensure that the simulation
succeeds, our simulator is necessarily required to have a super-constant number
of rewinding opportunities (which can be pursued in parallel). Such a simula-
tor would give a guarantee of the following form: any information learnt by an
adversarial verifier in the protocol could also be produced from scratch by an
algorithm which is capable of running sufficient (polynomial) number of compu-
tations in parallel. For example, a quad core processor is capable of running 4
parallel computations.

We believe that the issue of simulation time is one of independent interest.
In particular, developing an understanding of the time required by the simulator
2 The thread output by the simulator is referred to as the main thread.
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(as opposed to the number of computation steps) could shed additional light on
the knowledge complexity of cryptographic constructions as well as motivate the
study of strong notions of security.

Lower Bound on Round Complexity of Black-Box Zero-Knowledge.
We prove that constant round ZK arguments are impossible w.r.t black-box
simulation in the blockchain-hybrid model. Our impossibility result holds even
for expected polynomial-time simulators.

Consider an adversarial verifier that waits for a fixed constant time c before
responding to any message from the prover. Our proof works in two steps:

1. Recall that black-box simulators can only query the adversarial verifier as an
Oracle. However, the simulator may choose to make these queries in parallel
rather than sequentially by making several copies of the adversary state (and
hence, increasing the number of available Oracles).
In the first step, we assume that the simulator is memory bounded. This
means that at any given time, the simulator may only have a bounded (strict
polynomial) number of copies (say) q(·) of the adversary. Furthermore, since
the verifier takes time c to answer each query, the total number of queries the
simulator may make to the adversary in a given time t can be bounded by
q·t
c (an a priori bounded strict polynomial). Now we observe the following:
– The simulator must terminate within roughly t steps where t is the time

an honest prover takes to complete the proof. To see this, let r be an upper
bound on the number of blocks that can created in the time taken by the
honest prover to complete the proof. We consider a blockchain active
adversary that observes the state of the blockchain when the protocol
starts, and posts a transcript on the completion of the proof. If it notices
that more than r blocks have been created since the protocol started, it
concludes that it is interacting with the simulator.

– Thus, the overall number of queries (and hence) the running time of the
simulator is a strict polynomial. Now, we can directly invoke the result of
Barak and Lindell [7] that rules out constant-round ZK arguments with
strict polynomial-time black-box simulation.

2. The above only rules out a simulator with “a priori bounded parallelism”.
However what if, e.g., the number of parallel queries the simulator may make
to the verifier cannot be a priori bounded (and instead we only require that
the simulator finish in a priori bounded number of computational steps)? In
particular, the simulator may see the responses to the queries made so far,
and, adaptively decide to increase the number of parallel queries (i.e., the
number of copies of the adversary)? This case is more tricky and as such, the
ideas from the work of [7] don’t apply.
To resolve this issue, we crucially rely upon the fact that by carefully choosing
the delay parameter c and an aborting probability for the adversary, the
number of such “adaptive steps” can be bounded by a constant. Thereafter,
we argue that in each adaptive step, if the simulator increases the number of
parallel copies by more than an a priori bounded polynomial factor, it runs
the risks of blowing the number of computation steps to beyond expected
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polynomial. On the other hand if the number of parallel copies blow up by
at most a fixed polynomial factor, since the number of adaptive steps is a
constant, the simulator is still using “bounded parallelism” (a case already
covered by our previous step). The full proof is delicate and can be found in
the full version.

Concurrent Secure computation. We now proceed to describe the main ideas
behind our positive result for concurrent self-composable secure computation.
We start by recalling the intuition behind the impossibility of concurrent secure
computation w.r.t. black-box simulation in the plain model.

A primary task of a simulator for a secure computation protocol is to extract
the adversary’s input. A black-box simulator extracts the input of the adversary
by rewinding. However, in the concurrent setting, extracting the input of the
adversary in each session is a non-trivial task. In particular, given an adversarial
scheduling of the messages of concurrent sessions, it may happen that in order
to extract the input of the adversary in a given session s, the simulator rewinds
past the beginning of another session s′ that is interleaved inside the protocol
messages of session s. When this happens, the adversary may change its input in
session s′. Thus, the simulator would be forced to query the ideal functionality
more than once for the session s′.

Indeed, as shown in [51], this intuition can be formalized to obtain a black-box
impossibility result for concurrent self-composition w.r.t. the standard definition
of secure computation, where only one query per session is allowed. While Lin-
dell’s impossibility result is only w.r.t. black-box simulation, subsequent works
have shown impossibility of concurrent secure computation even w.r.t. non-black-
box simulation [1,8,32,37].

In order to overcome the impossibility results, our starting idea is the follow-
ing: prior to the start of a protocol, each party must commit to its input and
randomness on the blockchain. It must then wait for its commitment string to
be posted on the blockchain before sending any further message in the protocol.
Similar to our ZK protocols (with stand-alone security), we use a time-out mech-
anism to place an upper bound on the number of blocks that can be mined during
a session. Then, by using sufficiently many rewinding “slots,” we can ensure that
there exist some slots in each session where the adversary is guaranteed to not
see new block (and hence no new interleaved sessions), making them “safe” for
rewinding. Note, however, that this mechanism does not bound the overall num-
ber of concurrent sessions since an adversary can start any polynomial number
of sessions in parallel.

Once we have the above protocol template, the key technical challenge is to
perform concurrent extraction of the adversary’s inputs in all of the sessions.
Since there are multiple “unsafe” rewinding slots in every session (wherever a
new block is mined), we need to extract adversary’s inputs in all of the sessions
under the constraint that only the safe slots are rewound. Unfortunately, com-
monly known rewinding strategies in the concurrent setting [49,57,58] rewind
all parts of the protocol transcripts (potentially multiple times). Therefore, they
immediately fail in our setting.
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In order to solve this problem, we develop a new concurrent rewinding strat-
egy. The starting idea towards developing this rewinding strategy is the observa-
tion that our particular setting has some similarities to the work of Goyal et al.
[41] who were interested in a seemingly unrelated problem: designing commit-
ment schemes that are secure w.r.t. chosen commitment attacks [20]. Goyal et al.
introduced what they call the “robust extraction lemma” that guarantees con-
current extraction even if a constant number of “breakpoints” – that cannot be
rewound – are interspersed throughout the overall transcript of the concurrent
sessions. These breakpoints are analogous to the unsafe points in our setting.

While this serves as a useful starting point, robust extraction is not directly
applicable to our setting since overall, the number of external blocks seen by the
adversary (the equivalent of breakpoints in [41]) cannot be bounded. Indeed, if
the number of sessions is T , the number of blocks can only be upper bounded
by T · k (if e.g., all the sessions are sequential).

Our main observation is that the concurrent adversary can only choose one
of the following: either too much concurrency, or too many newly mined blocks,
but not both. This allows us to come up with a new variant and analysis of
the robust extraction lemma which we believe could be of independent interest.
In particular, our new variant uses twice as many slots as the one used by the
robust extraction lemma. We refer the reader to the technical sections for more
details.

1.3 Related Work

Blockchains and Cryptography. In a recent work, [36] used blockchains
to construct non-interactive zero-knowledge (NIZK) arguments and selectively-
secure one-time programs. Their model, however, is fundamentally different from
ours in that they rely on a much stronger notion of simulation where the simula-
tor controls all the honest miners in the blockchain. Intuitively, this is somewhat
similar to the honest majority model used to design (universally composable)
secure multiparty computation protocols. Due to the power given to the sim-
ulator, their model necessitates the blockchain to be “local” (i.e., private) to
the protocol. In contrast, our model allows for the blockchain to be a “global”
setup since the simulator has no extra power over the blockchain compared to
the adversary. This is similar to the difference between universal composability
framework [14] and global universal composability framework [15], where in the
former model, a setup (such as a common reference string) cannot be reused by
different protocols, whereas in the latter model, a common setup can be used
across multiple protocols. Indeed, since the simulator has no additional power
except the ability to reset the adversary or use knowledge of its code, NIZKs are
impossible in our model, similar to the plain model. Unlike our work, [36] do not
consider interactive ZK proofs or any notion of secure multiparty computation.

In another recent work, [24] study the problem of fair multiparty computation
in a “bulletin-board” model that can be implemented with blockchains. Similar
to [36], however, their model provides the simulator the ability to control the
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blockchain. Prior to their work, multiple works [2,10] studied the problem of
fairness with penalties using cryptocurrencies.

Several elegant works have conducted a formal study of various properties
of blockchains [4,30,31,46,56]. Most relevant to our work is that of Badertscher
et al. [4] whose modeling of the blockchain ideal functionality we closely follow.

Concurrent Security. The study of concurrent security for cryptographic pro-
tocols was initiated by Dwork et al. [27] who also introduced a timing model
for constructing concurrent ZK. In this model, the parties have synchronized
clocks and are required to insert “delays” at appropriate points in the protocol.
A refined version of their model was later considered in [44] for the problem of
concurrent secure computation. We note that while our approach to concurrent
secure computation in the blockchain-hybrid model appears to bear some simi-
larity to the timing model, there are fundamental differences that separate these
models. For example, the simulator can fully control the clock of the adversary
in the timing model, while this is not possible in our setting since the blockchains
provide an unforgeable clock to the adversary. More importantly, in the timing
model, there are no “unsafe” points, and the simulator can rewind anywhere.
For this reason, the timing model does not require developing new concurrent
extraction techniques, and instead standard rewinding techniques for the stand-
alone setting are applicable there. Finally, in the timing model, honest parties
insert artificial delays in the protocol based on their clocks, while in our con-
structions, an honest party responds immediately to messages received from the
other (possibly adversarial) party.

1.4 Organization

We start with our model of the blockchain in Sect. 2, and all subsequent results
are in this model. In Sect. 4 we describe a ω(1) round black-box zero-knowledge
protocol. We describe our concurrently extractable commitment scheme in
Sect. 5 and use our constructed commitment scheme to achieve a concurrently
secure two-party computation protocol described in Sect. 5.2.

1.5 Full Version

Due to space constraints, our impossibility results and the security proofs are
omitted from this manuscript, and appear in the full version of this paper [23].

2 Blockchain Model

Blockchains. In a blockchain protocol, the goal of all parties is to maintain
a global ordered set of records that are referred to as blocks. New blocks can
only be added using a special mining procedure that simulates a puzzle-solving
race between participants and can be run by any party (called miner) executing
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the blockchain protocol. Presently, two broad categories of puzzles are used:
Proof-of-Work (PoW) and Proof-of-Stake (PoS).

Following the works of [3,4,47], we model the blockchain as a global ledger
Gledger that internally keeps a state state which is the sequence of all the blocks
in the ledger. Parties interact with the ledger by making one of many queries
described by the functionality.

We reproduce here the ledger functionality described in [4] with a few minor
modifications to be described subsequent to the description.

The ledger maintains a central and unique permanent state denoted by state.
When data/transactions are sent to Gledger, they are validated using a Validate
predicate and added to a buffer buffer. The buffer is meant to indicate those
transactions that are not sufficiently deep to become permanent. The Blockify
function creates a block including some transactions from buffer and extends
state. The decision of when the state is extended is left to the adversary. The
adversary proposes a next block candidate NxtBC containing the transactions
from the buffer it wants included in the state. An empty NxtBC is used to
indicate that the adversary does not want the state to be updated at the current
clock tick. To restrict the behavior of the adversary, there is a ledger algorithm
ExtendPolicy that enforces a state-update policy restriction. Further discussion
on the ExtendPolicy can be found in the full version.

Each registered party can see the state, but is guaranteed only a sufficiently
long prefix of it. This is implemented by monotonically increasing pointers pti,
defining the prefix state|pti , for each party that the adversary can manipulate
with some restrictions. This can be viewed as a sliding window over the state,
wherein the adversary can only set pointers to be within this window starting
from the head of state. The size of the sliding window is denoted by windowSize.
It should be noted that the prefix view guarantees that the value at position k
will appear in position i in every party’s state.

A party is said to be desynchronized if the party recently registered or
recently got de-registered from the clock. At this point, due to network delays,
the adversary can make the parties believe in any value of the state up until
the party gets messages from the network. This time period is denoted by the
parameter Delay, wherein the desynchronized parties are practically under the
control of the adversary. A timed honest input sequence

−→I T
H , is a vector of the

form ((x1, P1, τ1), · · · , (xm, Pm, τm)), used to denote the inputs received by the
parties from the environment, where Pi is the player that received the input and
τi was the time of the clock when the environment handed the input to Pi. The
ledger uses the function predict-time to ensure that the ideal world execution
advances with the same pace (relative to the clock) as the protocol does. −→τ state

denotes the block-insertion times vector, which lists the times each block was
inserted into state.
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Functionality Gledger

Gledger is parameterized by found algorithms, Validate, ExtendPolicy, Blockify,
and predict-time: windowSize, Delay∈ N. The functionality manages variables
state, NxtBCbuffer, τL, and −→τ state as described above. The variables are initial-
ized as follows: state := −→τ state := NxtBC := ε, buffer := ∅, τL = 0.

The functionality maintains the set of registered parties P, the subset of honest
parties H ⊆ P and the subset of de-synchronized honest parties PDS ⊂ H. The
sets P, H, PDS are all initially set to ∅. When a new honest party is registered
at the ledger, if it is registered with the clock already then it added to the party
sets H and P and the current time of registration is also recorded if the current
time τL > 0, it is also added to PDS . Similarly, when a party is deregistered, it is
removed from both P (and therefore also from PDS or H). The ledger maintains
the invariant that it is registered (as a functionality) to the clock whenever H �= ∅.

For each party Pi ∈ P the functionality maintains a pointer pti (initially set to
1) and a current-state view statei := ε (initially set to empty). The functionality

also keeps track of the timed honest-input sequence in a vector
−→I T

H (initially−→I T
H := ε)

Upon receiving any input I from any party or from the adver-
sary, send (CLOCK-READ, sidC) to Gclock and upon receiving the response
(CLOCK-READ, sidC , τ), set τL := τ and do the following:

1. Let ̂P ⊆ PDS denote the set of desynchronized honest parties that have been
registered continuously since time τ ′ < τL −Delay (to both ledger and clock).

Set PDS := PDS \ ̂P.

2. If I was received from an honest party Pi ∈ P:

(a) Set
−→I T

H :=
−→I T

H ||(I, Pi, τL);

(b) Compute
−→
N = (

−→
N 1, · · · ,

−→
N �) :=

ExtendPolicy
(−→I T

H , state, NxtBC, buffer, −→τ state

)

and if
−→
N �= ε set

state := state||Blockify(
−→
N 1)|| · · · ||Blockify(

−→
N �) and −→τ state := −→τ state||τ �

L

where τ �
L = τL|| · · · ||τL.

(c) If there exists Pj ∈ H \ PDS such that |state| − ptj > windowSize or
ptj < |statej |, then set ptk := |state| for all Pk ∈ H \ PDS .

(d) If
−→
N �= ε, send (state) to A; else send (I, Pi, τL) to A

3. Depending on the above input I and its sender’s ID, Gledger executes the
corresponding code from the following list:

– Submitting data:
If I = (SUBMIT, sid, x) and is received from a party Pi ∈ P or from A
(on behalf of corrupted party Pi) do the following
(a) Choose a unique identifier uid and set y := (x, uid, τL, Pi)

(b) buffer := buffer ∪ {y}.
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(c) Send (SUBMIT, y) to A if not received from A.

– Reading the state:
If I = (READ, sid) is received from a party Pi ∈ P then set statei :=
state|min{pti,|state|} and return (READ, sid, statei) to the requestor. If the
the requestor is A then send (state, buffer).

– Maintain the ledger state:
If I = (MAINTAIN-LEDGER, sid) is received by an honest Pi ∈ P and

predict-time(
−→I T

H) = τ̃ > τL then send (CLOCK-UPDATE, sidC) to Gclock.
Else send I to A.

– The adversary proposing the next block:
If I = (NEXT-BLOCK, hflag, (uid1, · · · , uid�)) is sent from the adversary,
update NxtBC as follows:
(a) Set listOfUid ← ε

(b) For i ∈ [�], if there exists y := (x, uid, τL, Pi) ∈ buffer with ID uid =
uidi then set listOfUid := listOfUid||uidi.

(c) Finally, set NxtBC := NxtBC||(hflag, listOfUid).

– The adversary setting state-slackness:
If I = (SET-SLACK, (Pi1 , ̂pti1

), · · · , (Pi� , ̂pti�
)) with {Pi1 , · · · , Pi�} ⊆ H\

PDS is received from the adversary, do the following:
(a) If ∀j ∈ [�] : |state| − ̂ptij

≤ windowSize and ̂pti1
≥ |stateij |, set

ptij
:= ̂ptij

for every j ∈ [�].

(b) Otherwise set ptij
:= |state| for all j ∈ [�]

– The adversary setting the state for desynchronized parties:
If I = (DESYNC-STATE, (Pi1 , state′

i1), · · · , (Pi1 , state′
i�

)) with
{Pi1 , · · · , Pi�} ⊆ PDS is received from the adversary, set stateij

:= state′
ij

for every j ∈ [�].

The work of Badertscher et al. [4] show that under appropriate assumptions,
Bitcoin realizes the ledger functionality described enforcing the ExtendPolicy
described in the full version of our paper. For convenience we’ve made a few
syntactic changes to the Gledger functionality as described in [4]:

– Firstly, the Validate predicate is not relevant in our setting since parties will
use ledger to post data, and these should be trivially validated. Hence, we’ve
abstracted out the Validate predicate from the description of the model.

– We require that the adversary cannot invalidate data sent by other parties,
thereby denying data from ever making it on to the ledger. For transactions,
the adversary can invalidate honest transactions. This can be remedied using
a strong variant of Gledger described in [4].

– Every time that the size of the state increases, the adversary is notified of the
new state by Gledger.
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The changed functionality the same properties of the ideal Gledger functionality
as described in [4].

Remarks. We point out a few properties of the Gledger functionality and its use
case in our setting.

– As described in [4], we can achieve a strong liveness guarantee by slightly
modifying the above ledger functionality which guarantees that posted infor-
mation will make it on to the view of other parties within Δ := 4 ·windowSize
number of blocks (relative to the view of the submitting party).

– There are occasions wherein we will run parallel executions of the adversary,
and one thread will be assigned to be the main execution thread while the
others will be denoted as “look-ahead” threads. In an effort to make the
adversary oblivious to rewinding, we cannot allow messages from these “look-
ahead” threads to make its way to Gledger. Drop messages sent by the adversary
to Gledger and will have to abort the thread if Gledger sends a state with an
increased size.

– We require that for a READ query, buffer is efficiently simulatable, while state
is not. This is a reasonable assumption to make given that the state indi-
cates the permanent component of the blockchain, and simulating this would
requiring forging the state. On the other hand, the buffer consists of outstand-
ing queries from both honest and adversarial parties. From the description
of Gledger, each time a SUBMIT query is made to Gledger, the information is
passed along to the adversary, and the adversary’s own outstanding queries
are known. Looking ahead, a READ query can be answered without mak-
ing a query to Gledger. The honest outstanding queries are replayed on each
thread since they could not have changed across threads, while the adversarial
queries local to that thread are known to the simulator.

– We wait for Delay time before the start of any protocol to ensure all parties
are synchronized. Moving ahead, for simplicity of exposition, the notion of
de-synchronised parties is ignored.

– While the works of [3,4,47] use Gclock functionality, we do not require parties
to have access to a clock and can consider this to be local to Gledger. In fact
our positive results do not rely on parties having access to a clock.

– Additionally, we require that a locally initialized Gledger is efficiently simu-
latable to any adversary that does not have additional access to the global
Gledger. These local Gledger will be useful in establishing certain properties of
our protocol.

Blockchain active (BCA) adversaries. Consider an adversary that has access
to Gledger, and thus can post to and access the state (the entire blockchain) at
any time. In fact its strategy in any protocol may be a function of the state. We
refer to any such adversary that actively uses the Gledger as a blockchain active
adversary (BCA).

Simulation in the Blockchain-hybrid model. Moving ahead, we inter-
changeably use blockchain-hybrid and Gledger-hybrid, while preferring the later
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for our formal descriptions. A simulator has the same power as other parties
while accessing the global functionality Gledger. In addition, it acts as an inter-
face between the party and Gledger, and thus can choose what messages between
the party and the functionality it wants delivered. This is unlike the setting con-
sidered in [24,36] where the simulator has control of the blockchain, and thus
can “rewind” the blockchain by discarding and re-creating blocks. This is rem-
iniscent of the difference between simulation in Universal Composability (UC)
framework [14] and simulation in the global UC framework [15,18,43].

Our simulator can use arbitrary polynomial amount of parallelism. Although
arbitrary, the polynomial is fixed in advance. We will use this modeling to run
parallel invocations of the adversary by making copies.

At this point we would like to emphasize the need for considering this model
for the simulator. We start off by mentioning that any party can use the state
obtained from Gledger as the basis for its execution. Importantly, the adversary’s
view is now no longer determined solely by the message it receives from the
simulator since the Gledger state gives it an additional auxiliary input. In the
plain model, if we wanted to rewind the adversary back to a specific point in the
execution, we could restart the adversary and send the same messages up to the
specific point. And we were guaranteed that the adversary’s responses would be
identical. But now since the adversary has access to Gledger, its responses could
depend on the state of Gledger.

Let us consider such an adversary. Now when the simulator tries to restart the
adversary, suppose the state has expanded since. Even if the simulator provides
the same messages as a previous execution, the adversary’s behavior now may
be drastically different and of potentially no use to the simulator. The simulator
could ensure identical behavior by providing it the earlier truncated view of the
state, but moving forward with this execution would be problematic since any
message that the adversary wants to post will no longer appear on the state
within the promised time period, and thus the adversary will notice that the
Gledger no longer follows the model specified. Thus it is imperative that executions
are run in parallel to ensure that views across multiple threads are identical if
the same inputs are provided.

The above modeling is crucial for rewinding when we prove security of our
protocols. We will work with this modeling unless otherwise specified. Looking
ahead, our construction of the zero-knowledge proof in the non-black-box setting
will use a modified variant of this model.

Security. Since the distinguisher attempting to distinguish between views of the
adversary in the real and simulated setting has access to Gledger, the simulator
cannot create an isolated view of Gledger for the adversary. But as it turns out, the
ability to initialize a local Gledger is a useful property useful in certain situations
that we will leverage in our work.

Protocols in the plain model are a reference to any protocol that does not
require its participants to interact with Gledger in any form. These protocols are
proven secure without considering the presence of Gledger. Given such a protocol, a
blockchain active adversary may try to leverage access to this global functionality
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Gledger to gain undue advantage over the setting where it did not have such access.
We are interested in such adversaries since we want to see how the security of
known protocols or primitives fare when the adversary has access to the Gledger.

3 Definitions and Preliminaries

Unless otherwise specified, we consider the adversaries that have access to the
global functionality Gledger, and thus the view includes messages received from
and sent to Gledger. Thus, when we denote that two distributions representing
the views of parties with access to Gledger are computationally indistinguishable
in the Gledger-hybrid model, we give distinguisher access to the global Gledger

functionality. An immediate consequence of this is that, any view generated
by a simulator using a privately initialized Gledger functionality will be trivially
distinguished from the real execution by the distinguisher that views the state
of the global Gledger.

3.1 Zero Knowledge in the Gledger-hybrid Model

Definition 1. An interactive protocol (P,V) for a language L is zero knowledge
in the Gledger-hybrid model if the following properties hold:

– Completeness. For every x ∈ L,

Pr
[
outV [P(x,w) ↔ V(x)] = 1

]
= 1

– Soundness. There exists a negligible function negl(·) s.t. ∀x /∈ L and for all
adversarial prover P∗.

Pr
[
outV [P∗(x) ↔ V(x)] = 1

]
≤ negl(n)

– Zero Knowledge. For every PPT adversary V ∗, there exists a PPT simu-
lator Sim such that the probability ensembles
–

{
viewV [P(x,w) ↔ V(x, z)]

}
x∈L,w∈RL(x),z∈{0,1}∗

–
{

Sim(x, z)
}

x∈L,w∈RL(x),z∈{0,1}∗

are computationally indistinguishable in the Gledger-model.

3.2 Concurrently Secure Computation in the Gledger-hybrid Model

In this work, we consider a malicious, static adversary that chooses whom to
corrupt before the execution of the protocol. The adversary controls the schedul-
ing of the concurrent executions. We only consider computational security and
therefore restrict our attention to adversaries running in probabilistic polyno-
mial time. We denote computational indistinguishability by ≈c, and the security
parameter by n. We do not require fairness and hence in the ideal model, we
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allow a corrupt party to receive its output in a session and then optionally block
the output from being delivered to the honest party, in that session. Further,
we only consider “security with abort”. To formalize the above requirement and
define security, we follow the standard paradigm for defining secure computa-
tion (see also [52]). We define an ideal model of computation and a real model of
computation, and require that any adversary in the real model can be emulated
by an adversary in the ideal model. More details follow.

IDEAL MODEL. We first define the ideal world experiment, where there is a
trusted party for computing the desired two-party functionality F : {0, 1}r1 ×
{0, 1}r2 → {0, 1}s1 × {0, 1}s2 . Let P1 and P2 denote the two parties in a single
execution. In total. let there be k parties Q1, Q2, · · · , Qk, where each party may
be involved in multiple sessions with possibly interchangeable roles, i.e. Qi may
play the role of P1 in one session and P2 in some other session. Let the total
number of executions be m = m(n). For each � ∈ [m], we will denote by P �

1 , the
party playing the role of P1 in session �. P �

2 is defined analogously. The adversary
may corrupt any subset of the parties in Q1, . . . , Qk. The ideal world execution
proceeds as follows:

I Inputs: There is a PPT usage scenario which gives inputs to all the parties.
For each session � ∈ [m], it gives inputs x� ∈ X ⊆ {0, 1}r1 to P �

1 and
y� ∈ Y ⊆ {0, 1}r2 to P �

2 . The adversary is given auxiliary input z ∈ {0, 1}∗,
and chooses the subset of the parties to corrupt, say M . The adversary
receives the inputs of the corrupted parties.

II Session initiation: When the adversary wishes to initiate the session num-
ber �, it sends a (start-session, �) message to the trusted party. On receiving a
message of the form (start-session, �), the trusted party sends (start-session, �)
to both P �

1 and P �
2 .

III Honest parties send inputs to the trusted party: Upon receiving
(start-session, �) from the trusted party, an honest party P �

i sends its real
input along with the session identifier. More specifically, if P �

1 is honest, it
sends (�, x�) to the trusted party. Similarly, an honest P �

2 sends (�, y�) to the
trusted party.

IV Corrupted parties send inputs to the trusted party: At any point
during execution, a corrupted part P �

1 may send a message (�, x′
�) to the

trusted party, for any string x′
� (of appropriate length) of its choice. Similarly,

a corrupted party P �
2 sends (�, y′

�) to the trusted party, for any string y′
� (of

appropriate length) of its choice.
V Trusted party sends results to the adversary: For a session �, when

the trusted party has received messages from both P �
1 and P �

2 , it computes
the output for that session. Let x′

� and y′
� be the inputs received from P �

1

and P �
2 , respectively. It computes the output F(x′

�, y
′
�). If either P �

1 or P �
2 is

corrupted, it sends (�,F(x′
�, y

′
�)) to the adversary. If neither of the parties

is corrupted, then the trusted party sends the output message (�,F(x′
�, y

′
�))

to both P �
1 and P �

2 .
VI Adversary instructs the trusted party to answer honest players:

For a session �, where exactly one of the party is corrupted, the adversary,
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depending on its view up to this point, may send the message (output, �) to
the trusted party. Then, the trusted party sends the output (�,F(x′

�, y
′
�)),

computed in the previous step, to the honest party in session �.
VII Outputs: An honest party always outputs the value that it received from

the trusted party. The adversary outputs an arbitrary (PPT computable)
function of its entire view (including the view of all corrupted parties)
throughout the execution of the protocol including messages exchanged with
the Gledger functionality.

The ideal execution of a function F with security parameter n, input vectors−→x ,−→y , auxiliary input z to Sim and the set of corrupted parties M , denoted by
IDEALF

M,Sim(n,−→x ,−→y , z), is defined as the output pair of the honest parties and
the ideal world adversary Sim from the above ideal execution.

REAL MODEL. We now consider the real model in which a real two-party
protocol is executed (and there exists no trusted third party). Let F ,−→x ,−→y , z be
as above and let Π be a two-party protocol for computing F . Let A denote a
non-uniform probabilistic polynomial time adversary that controls any subset M
of parties Q1, . . . , Qk. The parties run concurrent executions of the protocol Π,
where the honest parties follow the instructions of Π in all executions. The honest
party initiates a new session �, using the input provided whenever it receives a
start-session message from A. The scheduling of all messages throughout the
execution is controlled by the adversary. That is, the execution proceeds as
follows: the adversary sends a message of the form (�,msg) to the honest party.
The honest party then adds msg to its view of session � and replies according
to the instructions of Π and this view in that session. At the conclusion of the
protocol, an honest party computes its output as prescribed by the protocol.
Without loss of generality, we assume the adversary outputs exactly its entire
view in the execution of the protocol, which includes messages exchanged with
the Gledger functionality.

The real concurrent execution of Π with security parameter n, input vectors−→x ,−→y , auxiliary input z to A and the set of corrupted parties M , denoted by
REALF

M,A(n,−→x ,−→y , z), is defined as the output pair of the honest parties and the
real world adversary A from the above real world process.

Definition 2. Let F and Π be as above. Then protocol Π for computing F
is a concurrently secure computation protocol in the Gledger-hybrid model if for
every probabilistic polynomial time adversary A in the real model, there exists a
probabilistic polynomial time adversary Sim in the ideal model such that for every
polynomial m = m(n), every input vectors −→x ∈ Xm,−→y ∈ Y m, every z ∈ {0, 1}∗,
and every subset of corrupt parties M , the following

{
IDEALF

M,Sim(n,−→x ,−→y , z)
}

n∈N

≈c

{
REALF

M,A(n,−→x ,−→y , z)
}

n∈N

holds in the Gledger-hybrid model.
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4 Black-Box Zero Knowledge

In this section we will describe a ω(1) round zero-knowledge protocol that can
be proven secure using a black-box simulator. We build our protocol atop the
protocol for graph hamiltonicity proof.

4.1 Our Protocol

The high level idea for our protocol is that the verifier commits to its challenge
via a multi-round extractable commitment, and reveals the challenge in place of
the second round of the Hamiltonicity proof system. Since we are constructing a
proof system where the prover has unbounded computational power, we require
the commitment by the verifier to be statistically hiding so that an unbounded
adversarial prover is not able to guess the challenge. We refer to the multi-round
extractable commitment as the preamble.

In the preamble, the challenge committed to by the verifier is retrieved by
rewinding the verifier in each of the slots. As long as the rewinding is success-
ful in one of the slots, the committed challenge can be extracted. But in the
presence of the blockchain (abstracted by the Gledger functionality) this becomes
difficult. Consider a verifier that sends the challenge received by the prover in a
given slot to Gledger, and waits for the state to expand to include the challenge
before responding to the challenge. It then checks in the state if there is another
challenge from the prover for the same slot. If this is the case, it knows that it
has been rewound, and will abort the protocol. Thus, in the simulated setting,
the verifier will abort with a disproportionate probability in comparison to the
real execution.

The trivial solution of not relaying messages from the verifier to Gledger on
the look ahead threads does not work because the verifier can refuse to respond
unless the state expands.

Thus, to overcome this issue, we design a protocol in the blockchain-hybrid
model, where the protocol requires all parties to access Gledger in order to
participate in the protocol. In our protocol, we just require that during the
preamble, the local state of each party increases by at most k. But since
parties may have different views of thus state, we must be careful when we
claim the state size increase for other parties. But since Gledger guarantees that
|stateP − stateV| ≤ windowSize, we are guaranteed that if the size of the state of
one party increases by k, the size of the state of any other party can increase by
at most windowSize + k (with maximum when both parties point to the head of
the state initially).

If we set the number of rounds of the preamble to be m > k+windowSize, we
are guaranteed to have at least m − (k + windowSize) slots where the state does
not expand during the slot. For simplicity we assume k to be a constant, but our
protocol can handle arbitrary k by scaling the number of rounds accordingly.
The high level idea then is to just rewind in the slots where the state has not
expanded, and thus the verifier does not expect the state to expand before it
responds, and thus messages to or from Gledger can be kept from the verifier on
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the look ahead threads. Of course the exact number of rounds would depend
on the exact simulator strategy. In our protocol, the number of rounds in the
preamble is set to be m = ω(1). We should point out that k > windowSize to
avoid trivial aborts in an honest execution of the protocol since otherwise the
parties may start off with states that may then be k behind the head of the state,
and in one computation step catches up to the head, thereby increasing local
state size by k, and thus causing an abort. The complete protocol is presented
in Fig. 1.

Protocol BCA-ZK

Common Input: An instance x of a language L with witness relation RL, the security
parameter n, the time out parameter k and the round parameter m := m(n).

Auxiliary Input for Prover: a witness w, such that (x, w) ∈ RL, size of local state
from the ledger iP := |stateP|.
Auxiliary Input for Verifier: size of local state from the ledger iV := |stateV|.
Phase I: Prior to each message sent in this phase, the respective party checks if the
size of the state is such that |stateP| < iP + k (correspondingly |stateV| < iV + k for the
verifier). If not, the party aborts.

1. Prover uniformly select a first message for a two round statistically hiding commit-
ment scheme and send it to the verifier.

2. Verifier uniformly selects σ ∈ {0, 1}n, and mn pairs of n-bit strings (σ0
�,p, σ1

�,p) for
� ∈ [n], p ∈ [m] such that ∀�, p : σ0

�,p ⊕σ1
�,p = σ. It commits to all 2mn+1 selected

strings using the statistically hiding commitment scheme. The commitments are
denoted by α, {αb

�,p}b∈{0,1},�∈[n],p∈[m].
3. For p = 1 to m:

(a) Prover sends an n-bit challenge string rp = r1,p, . . . , rn,p to the verifier.
(b) Verifier decommits α

r1,p
1,p , . . . , α

rn,p
n,p to σ

r1,p
1,p , . . . , σ

rn,p
n,p .

4. The prover proceeds with the execution if and only if all the decommitments send
by the verifier are valid.

Phase II: The prover and verifier engage in n parallel executions of the Hamiltonicity
protocol as described below:

1. The prover sends the first message of the Hamiltonicity proof system.
2. The verifier decommits α to σ. And also reveals all mn commitments not decom-

mitted to in the earlier phase.
3. The prover checks if decommitted values σ, {σb

�,p}b∈{0,1},�∈[n],p∈[m] are valid de-
commitments. Additionally, check if ∀�, p : σ0

�,p ⊕ σ1
�,p = σ. If any of the checks

fail, abort. Else, send the third message of the Hamiltonicity proof system.
4. Verifier checks if all conditions of the Hamiltonicity proof system are met. It accepts

if and only if this is the case.

Fig. 1. Protocol for zero-knowledge proof in the blockchain aware setting.

Theorem 6. The protocol BCA-ZK is a Zero-Knowledge Proof with black-box
simulation in the Gledger-hybrid model.
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5 Concurrent Self Composable Secure Computation

In this section, we will construct a two-party protocol that is secure under con-
current self composition. We follow the line of works [17,38,40] that rely on real-
izing an extractable commitment scheme that remains extractable even when
there are multiple concurrent copies of this scheme in execution. Thus we con-
struct our protocol in a two-step process. First, we describe a modified version
of the multi-round extractable commitment preamble in the blockchain-hybrid
model and show that we can extract from each session when multiple sessions are
executed concurrently. Next, we plug our constructed concurrently extractable
commitments into the compilers constructed in [17,38,40] to achieve a concur-
rently secure two-party computation protocol.

5.1 Concurrently Extractable Commitment

In this section we present our construction of the concurrently extractable com-
mitment scheme in the blockchain-hybrid model. We will refer to this as the
modified PRS preamble. The idea for the modified PRS preamble is quite sim-
ple. Prior to starting the preamble, the party needs to post the first message
to Gledger. It is guaranteed that it will appear in the view of every party within
the next Δ := 4 · windowSize blocks. Once the local state increase by Δ blocks,
it sends the same message to the receiver. Posting to Gledger gives the party an
“expiry period” of k-blocks after the Δ wait i.e., all slots of the preamble must be
completed before the size of the state increases by a total of Δ+k. As in the case
of zero-knowledge, if the size of the state of a party increases by Δ + k, for any
other party the size of the state can have increased by at most Δ+k+windowSize,
which is a constant when k is a constant. This needs to be taken into account
when choosing the parameters � and k. The formal description of the protocol
is given below.

Protocol 〈C,R〉BCA
Common Input: The security parameter n, the time-out parameter k,
and the round parameter 2 · � := �(n).

Input to the Committer: the value σ to be committed, size of local state
from the ledger iC := |stateC |.
Input to the Receiver: size of local state from the ledger iR := |stateR|.
Commitment:
1. Committer uniformly selects σ ∈ {0, 1}n, and 2 · � · n pairs of n-bit

strings (σ0
�,p, σ

1
�,p) for � ∈ [n], p ∈ [2 · �] such that ∀�, p : σ0

�,p ⊕ σ1
�,p = σ.

It generate commitments to all 2(2 · �) · n + 1 selected strings using the
statistically binding commitment scheme. The commitments are denoted



372 A. R. Choudhuri et al.

by α, {αb
�,p}b∈{0,1},�∈[n],p∈[2·�]. Send a SUBMIT query of these commit-

ments to Gledger. By our assumption, these will be guaranteed to appear
in every party’s state (at the same position) when |stateC | = iC +Δ. Let
it appear in index i of the state.

2. The committer sends to receiver the commitments along with the index
i of the state that it appears in. The receiver verifies if the commitments
were indeed in the designated index of the state.

3. Prior to each message subsequently sent, the respective party checks if
the size of the state is such that |stateR| < iR + k + Δ (correspondingly
|stateC | < iC + k + Δ for the committer). If not, the party aborts.
For p = 1 to m:
(a) Receiver sends an n-bit challenge string rp = r1,p, . . . , r1n,p to the

committer.
(b) Committer decommits α

r1,p

1,p , . . . , α
rn,p
n,p to σ

r1,p

1,p , . . . , σ
rn,p
n,p .

In the full version of our paper, we describe the simulation-extraction strat-
egy to extract values committed by an adversary in every session of multiple
concurrent executions of the modified preamble described above.

5.2 Protocol for Concurrent Self Composable Secure Computation

We now describe our concurrent secure computation protocol Π in the Gledger-
hybrid model for a general functionality F . Our protocol is, in fact, the same as
the one presented in [17,38,40], except that we use the concurrently extractable
commitment from Sect. 5.1. Indeed, the core ingredient of the compiler in [40]
(which is also used in [17,38]) is a concurrently extractable commitment, and in
particular, it follows from these works that if there exists a concurrent simulator
for the extractable commitment, then the resultant compiled protocol securely
evaluates the function F .

For completeness, we recall the protocol here. The proof of security for our
case follows in essentially an identical fashion to [40] with the main difference
being that our simulator only performs a single ideal world query per session
(while the simulator performs multiple ideal world queries per session in their
work). We discuss other minor differences below.

Building Blocks

Statistical Binding String Commitments. We will use a (2-round) statis-
tically binding string commitment scheme, e.g., a parallel version of Naor’s bit
commitment scheme [54] based on one-way functions. For simplicity of exposi-
tion, however, in the presentation of our results, we will use a non-interactive
perfectly binding string commitment. Let com(·) denote the commitment func-
tion of the string commitment scheme.

Statistical Witness Indistinguishable Arguments. We shall use a statis-
tically witness indistinguishable (SWI) argument 〈Pswi, Vswi〉 for proving mem-
bership in any NP language with perfect completeness and negligible soundness
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error. Such a scheme can be constructed by using ω(log k) copies of Blum’s
Hamiltonicity protocol [11] in parallel, with the modification that the prover’s
commitments in the Hamiltonicity protocol are made using a statistically hiding
commitment scheme [42,55].

Semi-Honest Two Party Computation. We will also use a semi-honest two
party computation protocol 〈P sh

1 , P sh
2 〉 that emulates the ideal functionality F

in the stand-alone setting. The existence of such a protocol 〈P sh
1 , P sh

2 〉 follows
from [34,48,59].

Concurrent Non-Malleable Zero Knowledge Argument. Concurrent non-
malleable zero knowledge (CNMZK) considers the setting where a man-in-the-
middle adversary is interacting with several honest provers and honest verifiers
in a concurrent fashion: in the “left” interactions, the adversary acts as verifier
while interacting with honest provers; in the “right” interactions, the adversary
tries to prove some statements to honest verifiers. The goal is to ensure that
such an adversary cannot take “help” from the left interactions in order to
succeed in the right interactions. This intuition can be formalized by requiring
the existence of a machine called the simulator-extractor that generates the view
of the man-in-the-middle adversary and additionally also outputs a witness from
the adversary for each “valid” proof given to the verifiers in the right sessions.

Barak, Prabhakaran and Sahai [8] gave the first construction of a concurrent
non-malleable zero knowledge (CNMZK) argument for every language in NP
with perfect completeness and negligible soundness error. In our construction,
we will use a specific CNMZK protocol, denoted 〈P, V 〉, based on the CNMZK
protocol of Barak et al. [8] to guarantee non-malleability. Specifically, we will
make the following two changes to Barak et al’s protocol: (a) Instead of using
an ω(log n)-round extractable commitment scheme [57], we will use the N -round
extractable commitment scheme 〈C,R〉 (described in the full version). (b) Fur-
ther, we require that the non-malleable commitment scheme being used in the
protocol be public-coin w.r.t. receiver3. We now describe the protocol 〈P, V 〉.

Let P and V denote the prover and the verifier respectively. Let L be an
NP language with a witness relation R. The common input to P and V is a
statement x ∈ L. P additionally has a private input w (witness for x). Protocol
〈P, V 〉 consists of two main phases: (a) the preamble phase, where the verifier
commits to a random secret (say) σ via an execution of 〈C,R〉 with the prover,
and (b) the post-preamble phase, where the prover proves an NP statement. In
more detail, protocol 〈P, V 〉 proceeds as follows.

3 The original NMZK construction only required a public-coin extraction phase inside
the non-malleable commitment scheme. We, however, require that the entire commit-
ment protocol be public-coin. We note that the non-malleable commitment protocol
of [26] only consists of standard perfectly binding commitments and zero knowledge
proof of knowledge. Therefore, we can easily instantiate the DDN construction with
public-coin versions of these primitives such that the resultant protocol is public-
coin.
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Preamble Phase.

1. P and V engage in execution of 〈C,R〉 where V commits to a random string σ.

Post-preamble Phase.

2. P commits to 0 using a statistically-hiding commitment scheme. Let c be
the commitment string. Additionally, P proves the knowledge of a valid
decommitment to c using a statistical zero-knowledge argument of knowledge
(SZKAOK).

3. V now reveals σ and sends the decommitment information relevant to 〈C,R〉
that was executed in step 1.

4. P commits to the witness w using a public-coin non-malleable commitment
scheme.

5. P now proves the following statement to V using SZKAOK:
(a) either the value committed to in step 4 is a valid witness to x (i.e.,

R(x,w) = 1, where w is the committed value), or
(b) the value committed to in step 2 is the trapdoor secret σ.

P uses the witness corresponding to the first part of the statement.

Modified Extractable Commitment Scheme. 〈C ′, R′〉 Due to technical rea-
sons, in our secure computation protocol, we will also use a minor variant,
denoted 〈C ′, R′〉BCA, of the extractable commitment scheme presented in 5.1.
Protocol 〈C ′, R′〉BCA is the same as 〈C,R〉BCA, except that for a given receiver
challenge string, the committer does not “open” the commitments, but instead
simply reveals the appropriate committed values (without revealing the ran-
domness used to create the corresponding commitments). More specifically, in
protocol 〈C ′, R′〉BCA, on receiving a challenge string vj = v1,j , . . . , v�,j from the
receiver, the committer uses the following strategy: for every i ∈ [�], if vi,j = 0,
C ′ sends α0

i,j , otherwise it sends α1
i,j to R′. Note that C ′ does not reveal the

decommitment values associated with the revealed shares.
When we use 〈C ′, R′〉BCA in our main construction, we will require the com-

mitter C ′ to prove the “correctness” of the values (i.e., the secret shares) it
reveals in the last step of the commitment protocol. In fact, due to technical
reasons, we will also require the committer to prove that the commitments that
it sent in the first step are “well-formed”.

We remark that the extraction proof for the simulation-extraction procedure
also holds for the 〈C ′, R′〉BCA commitment scheme.

Protocol Description Notation. Let com(·) denote the commitment function
of a non-interactive perfectly binding commitment scheme. Let 〈C,R〉BCA denote
the N -round extractable commitment scheme and 〈C ′, R′〉BCA be its modified
version as described above. For the description, we drop the subscript and refer to
them as 〈C,R〉 and 〈C ′, R′〉 respectively. Let 〈P, V 〉 denote the modified version
of the CNMZK argument of Barak et al. [8]. Further, let 〈Pswi, Vswi〉 denote a
SWI argument and let 〈P sh

1 , P sh
2 〉 denote a semi-honest two party computation
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protocol 〈P sh
1 , P sh

2 〉 that securely computes F in the stand-alone setting as per
the standard definition of secure computation.

Let P1 and P2 be two parties with inputs x1 and x2. Let n be the security
parameter. The protocol proceeds as follows.

Protocol BCA-CONC

I. Trapdoor Creation Phase.
1. P1 ⇒ P2 : P1 creates a commitment Com1 = com(0) to bit 0 and sends

Com1 to P2. P1 and P2 now engage in the execution of 〈P, V 〉 where P1

proves that Com1 is a commitment to 0.
2. P2 ⇒ P1 : P2 now acts symmetrically. That is, it creates a commitment

Com2 = com(0) to bit 0 and sends Com2 to P1. P2 and P1 now engage
in the execution of 〈P, V 〉 where P2 proves that Com2 is a commitment
to 0.

Informally speaking, the purpose of this phase is to aid the simulator in
obtaining a “trapdoor” to be used during the simulation of the protocol.

II. Input Commitment Phase.In this phase, the parties commit to their
inputs and random coins (to be used in the next phase) via the commitment
protocol 〈C ′, R′〉.
1. P1 ⇒ P2 : P1 first samples a random string r1 (of appropriate length, to

be used as P1’s randomness in the execution of 〈P sh
1 , P sh

2 〉 in Phase III)
and engages in an execution of 〈C ′, R′〉 (denoted as 〈C ′, R′〉1→2) with
P2, where P1 commits to x1‖r1. Next, P1 and P2 engage in an execution
of 〈Pswi, Vswi〉 where P1 proves the following statement to P2: (a) either
there exist values x̂1, r̂1 such that the commitment protocol 〈C ′, R′〉1→2

is valid with respect to the value x̂1‖r̂1, or (b) Com1 is a commitment
to bit 1.

2. P2 ⇒ P1 : P2 now acts symmetrically. Let r2 (analogous to r1 chosen by
P1) be the random string chosen by P2 (to be used in the next phase).

Informally speaking, the purpose of this phase is aid the simulator in
extracting the adversary’s input and randomness.

III. Secure Computation Phase.In this phase, P1 and P2 engage in an
execution of 〈P sh

1 , P sh
2 〉 where P1 plays the role of P sh

1 , while P2 plays the role
of P sh

2 . Since 〈P sh
1 , P sh

2 〉 is secure only against semi-honest adversaries, we
first enforce that the coins of each party are truly random, and then execute
〈P sh

1 , P sh
2 〉, where with every protocol message, a party gives a proof using

〈Pswi, Vswi〉 of its honest behavior “so far” in the protocol. We now describe
the steps in this phase.

1. P1 ↔ P2 : P1 samples a random string r′
2 (of appropriate length) and

sends it to P2. Similarly, P2 samples a random string r′
1 and sends it to

P1. Let r′′
1 = r1 ⊕ r′

1 and r′′
2 = r2 ⊕ r′

2. Now, r′′
1 and r′′

2 are the random
coins that P1 and P2 will use during the execution of 〈P sh

1 , P sh
2 〉.
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2. Let t be the number of rounds in 〈P sh
1 , P sh

2 〉, where one round consists
of a message from P sh

1 followed by a reply from P sh
2 . Let transcript T1,j

(resp., T2,j) be defined to contain all the messages exchanged between
P sh
1 and P sh

2 before the point P sh
1 (resp., P sh

2 ) is supposed to send a
message in round j. For j = 1, . . . , t:
(a) P1 ⇒ P2 : Compute β1,j = P sh

1 (T1,j , x1, r
′′
1 ) and send it to P2. P1

and P2 now engage in an execution of 〈Pswi, Vswi〉, where P1 proves
the following statement:
i. either there exist values x̂1, r̂1 such that (a) the commitment

protocol 〈C ′, R′〉1→2 is valid with respect to the value x̂1‖r̂1,
and (b) β1,j = P sh

1 (T1,j , x̂1, r̂1 ⊕ r′
1)

ii. or, Com1 is a commitment to bit 1.
(b) P2 ⇒ P1 : P2 now acts symmetrically.

Proof of Security. Our proof of security follows in almost an identical fashion
to [17,38,40]. The main difference is that due to the property of our concurrent
extractor (discussed in the full version), our simulator only needs to make one
ideal world query per session (as opposed to multiple ideal world queries). Indeed,
this is why we achieve standard concurrent security, while [17,38,40] achieve
security in the so-called multiple-ideal-query model.

Our indistinguishability hybrids also follow in the same manner as in [17,38,
40]. There is one minor difference that we highlight. The hybrids of [17,38,40]
maintain a “soundness invariant”, where roughly speaking, it is guaranteed that
whenever an honest party changes its input in any sub-protocol used within
the secure computation protocol, the value committed by the adversary in the
non-malleable commitment (inside the CNMZK) does not change, except with
negligible probability. In some hybrids, this property is argued via extraction
from the non-malleable commitment.

In our setting, we have to be careful with such an extraction since a
blockchain-active adversary may try to keep state using Gledger. However, the
key point is that for such a soundness argument, the reduction can use a locally
initialized Gledger that it controls (and can therefore modify arbitrarily). This
follows from the fact that we do not care about the view of an adversary in such
a reduction to be indistinguishable to a distinguisher that has access to Gledger.
In fact, it will trivially be distinguishable. But since a locally initialized Gledger

is indistinguishable to the adversary that is simply allowed to interact using the
given interface (i.e. efficiently simulatable), the adversary’s behavior does not
change. Using this idea, we can perform extraction as in the plain model.
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Abstract. A fundamental problem in the theory of secure multi-party
computation (MPC) is to characterize functions with more than 2 parties
which admit MPC protocols with information-theoretic security against
passive corruption. This question has seen little progress since the work
of Chor and Ishai (1996), which demonstrated difficulties in resolving it.
In this work, we make significant progress towards resolving this question
in the important case of aggregating functionalities, in which m parties
P1, . . . , Pm hold inputs x1, . . . , xm and an aggregating party P0 must
learn f(x1, . . . , xm).

We uncover a rich class of algebraic structures that are closely related
to secure computability, namely, “Commuting Permutations Systems”
(CPS) and its variants. We present an extensive set of results relating
these algebraic structures among themselves and to MPC, including new
protocols, impossibility results and separations. Our results include a
necessary algebraic condition and slightly stronger sufficient algebraic
condition for a function to admit information-theoretically secure MPC
protocols.

We also introduce and study new models of minimally interactive

MPC (called UNIMPC and UNIMPC�), which not only help in under-
standing our positive and negative results better, but also open up new
avenues for studying the cryptographic complexity landscape of multi-
party functionalities. Our positive results include novel protocols in these
models, which may be of independent practical interest.

Finally, we extend our results to a definition that requires UC security
as well as semi-honest security (which we term strong security). In this
model we are able to carry out the characterization of all computable
functions, except for a gap in the case of aggregating functionalities.

1 Introduction

Secure Multi-Party Computation (MPC) is a central and unifying concept in
modern cryptography. The foundations, as well as the applications, of MPC
have been built up over a period of almost four decades of active research since
the initial ideas emerged [SRA79,Blu81,Yao82]. Yet, some of the basic questions
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in MPC remain open. Specifically, the following basic problem remains open to
this day for various standard notions of security (when there are no restrictions
like honest majority):

Which multi-party functions admit information-theoretically secure MPC?

Indeed, one of the most basic forms of this problem remains wide open: for the
case of security against passive corruption, a characterization of securely real-
izable functions is known only for 2-party functions [Kus89]. Chor and Ishai
pointed out the difficulty of this problem, by disproving a natural conjecture for
characterizing securely realizable k-party functionalities in terms of functionali-
ties involving fewer parties [CI96]. Since then, very little progress has been made
on this problem.

In this work, we make significant progress towards resolving this question in
the important case of aggregating functionalities: In an aggregating functionality,
there are m parties P1, . . . , Pm with inputs x1, . . . , xm and an aggregating party
P0 must learn f(x1, . . . , xm). Aggregating functionalities form a practically and
theoretically important class. In particular, it has been the subject of an influ-
ential line of study that started with the minimal model for secure computation
of Feige, Kilian and Naor [FKN94]. This model – also referred to as the Private
Simultaneous Messages (PSM) model [IK97] – served as a precursor of important
concepts like randomized encodings [IK00] that have proven useful in a variety of
cryptographic applications. Recently, a strengthening of this model, called Non-
Interactive MPC (NIMPC) was introduced by Beimel et al. [BGI+14], which is
closer to standard MPC in terms of the security requirements.1 However, these
models do not address the question of secure realizability in the standard model,
because due to weakened security requirements, all aggregating functions are
securely realizable in these models.

Towards characterizing secure realizability under (the standard model of)
MPC, we uncover and examine a rich class of algebraic structures of aggregat-
ing functionalities. We exploit these structures to give new positive and negative
results for MPC. Further, we also put forth new minimalistic, yet natural models
of secure computation that arise from these results. These new models and alge-
braic structures, in tandem, open up new avenues for investigating the landscape
of secure multiparty computation involving many parties.

Commuting Permutations Systems. We identify an algebraic-combinatorial
structure called Commuting Permutations System (CPS) and interesting sub-
classes thereof. CPS generalizes the function of abelian group summation to a
1 Both PSM and NIMPC consider protocols of the following form: a coordinator sends

a private message to each of P1, . . . , Pm; each Pi uses this message and its input to
compute a single message which it sends to P0; P0 computes an output. PSM has a
corruption model in which only P0 could be corrupted, whereas NIMPC allows any
subset of the parties (other than the coordinator) to be corrupted. But when such
corruption takes place, NIMPC allows the adversary to learn the residual function
determined by the honest parties’ inputs – i.e., the output for each possible setting
of the inputs for the corrupt parties (unlike in MPC, where the output for only a
given input of the corrupt parties is learned).
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less structured class of functions. Indeed, as a function of two inputs (denoted
as m = 2), a CPS can be identified with a quasigroup operation, or equivalently
the function specified by a minor of a Latin square. (For m > 2 inputs, CPS
imputes more structure than m-dimensional Latin hypercubes.)

Fig. 1. The m-PC landscape of
aggregating functions. The classes in
blue typeface are defined in terms of
algebraic/combinatorial properties,
and the others in terms of secure
computability. Arrow A → B indi-
cates A ⊇ B. (Color figure online)

We define CPS as the class of all aggre-
gating functions which embed into a CPS
functionality (Definition 2). We also identify
two interesting sub-classes of CPS that (as
we shall see) are closely related to secure
computability, corresponding to Commuting
Permutation Subgroup Systems (CPSS) and
Complete CPS (CCPS).

Minimal Models of MPC. In a parallel
thread, we develop new minimalistic mod-
els of MPC, that help us study feasibility
of information-theoretic MPC. These mod-
els (called UNIMPC� and UNIMPC) admit
secure protocols only for functions which
have secure protocols in the standard MPC
model. We remark that ours is perhaps the
first significant minimalistic model with this
property, as previous minimalistic models
– PSM [FKN94] and NIMPC [BGI+14] –
admit secure protocols for all functions.

UNIMPC stands for Unassisted NIMPC
and, as the name suggests, removes the assis-
tance from the trusted party in NIMPC:
Instead the parties should securely compute
the correlated randomness by themselves, in an offline phase. Unlike PSM and
NIMPC, which have an incorruptible party, UNIMPC retains the standard secu-
rity model of MPC, allowing corruption of any set of parties, and requiring the
adversary to learn nothing more than the output of the function.

A UNIMPC protocol is an MPC protocol and can also be immediately
interpreted as an NIMPC protocol.2

Note that MPC and NIMPC are incomparable in the sense that an MPC pro-
tocol does not yield an NIMPC protocol (because of the general communication
pattern) and an NIMPC protocol does not yield an MPC protocol (because of
the use of a trusted party, and because the adversary is allowed to learn poten-
tially more than the output of the function). Thus UNIMPC could be seen as a
common denominator of these two secure computation models.

UNIMPC� corresponds to a minimalistic version of UNIMPC, with protocols
which have a single round of (simultaneous) communication among the parties
2 Replacing the views from the pre-processing phase of a UNIMPC protocol with

correlated randomness from a trusted party turns it into an NIMPC protocol.
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before they get their inputs, followed by a single message from each party to
the aggregator after they receive their input. (UNIMPC allows arbitrarily many
rounds of communication prior to receiving inputs.)

Strongly Secure MPC. We also study feasibility under a stronger model of
MPC, which requires both UC security and passive security to hold simultane-
ously (information theoretically). Traditionally, UC security refers to the setting
of active corruption, in which the security guarantees are relative to an ideal
model where too the corrupt parties are actively corrupt. While stronger in gen-
eral, this gives a weaker guarantee than security against passive corruption, when
the corrupt parties are indeed only passively corrupt.3 From a practical point of
view, strong security (possibly weakened to hold only against PPT adversaries)
is important, and arguably the “right” notion in many cases. Here we initiate
the study of characterizing multi-party functionalities that are strongly securely
realizable.

Relating Secure Computation to the Algebraic Classes. Our results show
the rich connections between the cryptographic complexity landscape of MPC
and the combinatorial/algebraic structures of the functions, as summarized in
Fig. 1. We briefly point out the several results that go into making this map. All
results relate to the information-theoretic setting with finite functions.

� MPC ⊆ CPS: This result hinges on characterizing the following cryptographic
property algebraically: given any subset of the inputs and the output of the
function, the residual function of the remaining inputs can be determined.
(Theorem 2).

� CPSS ⊆ UNIMPC�: We establish this by developing a novel MPC protocol
that generalizes the simple abelian group summation protocol to a certain
class of (non-abelian) group actions (Theorem 3).

� CPSS � CPS: We give a concrete family of functions that fall into the gap
between these two classes (Theorem 1). Combined with the above results, this
separation leaves an intriguing gap between the necessary and sufficient condi-
tions for MPC. (But we show in Theorem 4, that this gap disappears/reduces
for a small number of input parties.)

� CCPS ⊆ UNIMPC�: The class CCPS (for Complete CPS) consists of the
“Latin Hypercube” functionalities that fall within CPS. We show that all such
functions, in more than two dimensions, are highly structured and in partic-
ular fall within CPSS (Theorem 5). For two dimensions, i.e., Latin squares,
this is not true; but in this case a UNIMPC� protocol can be directly given
for all Latin squares. Further, in this case, due to a classical result of Ryser
[Rys51], CPS = CCPS (see Sect. 1.2).

� UC security results: The characterization of UC securely realizable func-
tions has been resolved for 2 and 3-party functionalities [CKL06,PR08], but

3 E.g., a 2-party functionality in which Bob receives a∨b, where a, b ∈ {0, 1} are inputs
to Alice and Bob respectively, has no protocol secure against passive corruption;
but a protocol in which Alice simply sends a to Bob is UC secure. Also see FAND

discussed in Sect. 8.1..
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remains open for more than 3 parties. Prabhakaran and Rosulek [PR08]
showed that there are only two classes of secure function evaluation function-
alities – aggregating and disseminating – that can possibly have UC secure
protocols. They also gave a UC secure protocol for the “disseminated OR”
functionality for 3 parties. We build on this further to show that:

– Disseminated OR functionality with any number of players is UC securely
realizable. Further, every disseminating functionality is UC securely real-
izable by a reduction to the disseminated OR functionality (Sect. 8.2).

– Every aggregating functionality in CCPS has a UC secure protocol; this
relies on a compiler from a strongly secure protocol for F (which exists
only if F is a CPS functionality) to one for F restricted to a domain D
(Sect. 8.1).

– In both these positive results, we obtain strong security (Theorem7). Com-
bined with the negative results (Theorem 6), this shows that

CCPS ∪ DISS ⊆ STRONGMPC ⊆ CPS ∪ DISS

where STRONGMPC denotes the class of all functionalities (not just aggre-
gating functionalities) that have strongly secure protocols, and DISS and
CCPS are interpreted as all functionalities “isomorphic” to functionalities
that are disseminating or functionalities that embed into a CCPS func-
tionality. In Fig. 1, this relationship is indicated restricted to aggregating
functionalities (in which, case the extension to isomorphism – which allows
all parties to have inputs and outputs – can be ignored).

� Additional Results and Implications:
– Recently, Halevi et al. introduced the notion of “Best Possible Information-

Theoretic MPC” (BIT-MPC) [HIKR18], by removing the trusted party and
the non-interactive structure in the NIMPC model, but retaining the provi-
sion that (in the ideal-world) the adversary is allowed to learn the residual
function of the honest parties’ inputs. While the set of functions for which
BIT-MPC is possible is a strict superset of MPC, the main open problem
posed in [HIKR18] is whether all functions have BIT-MPC protocols. We
note that for all functions in CPS, BIT-MPC protocols are automatically
MPC protocols (because for them the residual function can be deduced from
the output and the corrupt parties’ own inputs). Thus if CPS \ MPC �= ∅,
then there exist functions which do not have a BIT-MPC protocol.

– Our necessity result – that MPC ⊆ CPS – can be extended in a couple of
ways (Sect. 5.1): Firstly, the necessity condition continues to hold even if the
corruption model allowed the corruption of at most one party other than
the aggregating party, if we require a UNIMPC protocol (this model could
be called 1-Robust UNIMPC). Secondly, the necessity condition holds even
for NIMPC (even 1-Robust NIMPC), if we required an additional security
property that the adversary learns only what the output reveals (like in
MPC) rather than the residual function of the honest parties (as NIMPC
does).
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– While our focus is on aggregating functionalities, our positive results for
passive-secure MPC do yield new protocols for symmetric functionalities
wherein all parties get the same output – as considered in [CI96]. This
is because a passive-secure MPC protocol for an aggregating functionality
can be readily converted into one for a symmetric functionality computing
the same function.

– Since one of our results (Theorem 4) depends on the existence of NIMPC
protocols, we present a simple NIMPC protocol for general functionalities
in the full version. This protocol is a generalization of an NIMPC protocol
in [HIJ+16] to arbitrary input domains, presented more directly in terms
of the function matrix. This NIMPC protocol is more efficient and much
simpler than the earlier ones in the literature [BGI+14,OY16].

We present more details of our results and techniques in Sect. 1.2. In the full
version, we also discuss several problems that are left open by this work.

1.1 Related Work

There has been a large body of work aimed at characterizing functionalities
with MPC protocols in various models (see, e.g., a survey [MPR13]). For some
important classes, exact characterizations are known: this includes passive and
active (stand-alone) security for 2-party deterministic functions [Kus89,KMR09,
MPR09], multi-party functions with restricted adversary structures [BGW88,
CCD88,HM97], multi-party functions with binary alphabet [CK91], multi-party
protocols which only have public communication [KMR09], and UC security for
2-party functions [CKL06,PR08].

The characterization question for the multi-party setting (with point-to-point
channels and no honest majority, for passive security) was explicitly considered
in [CI96]. It was shown there that there exist m-party functions which do not
have any passive-secure protocol such that the m − 1-party function obtained
by merging any two parties results in a securely realizable functionality. This
problem in the context of UC security was studied in [PR08], where the terms
aggregating functionality and disseminating functionality were coined.

The NIMPC model was introduced by Beimel et al. [BGI+14], inspired by
the earlier work of Feige et al. [FKN94]. This was generalized to other patterns
of interaction in [HIJ+16]. A computational version of UNIMPC (but with a
public-key infrastructure) was recently explored in [HIJ+17].

A recent independent and concurrent work by Halevi et al. [HIKR18] overlaps
with some of our results. Specifically, they also observe the fact that an MPC
protocol must reveal the residual function of the honest parties to an adversary
corrupting the output party, which is the staring point of our proof of Theorem2
(they do not derive the combinatorial characterization of CPS). The transfor-
mation from NIMPC to UNIMPC we use to prove Theorem 4 is a special case
of the NIMPC to MPC compiler of [HIKR18], which forms the main tool for
their positive results. Finally, as pointed out above, the main open problem left
in [HIKR18] is whether there are functions with no BIT-MPC protocol, and this
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relates to an open problem we leave, namely whether CPS = MPC: A negative
answer to our question answers that of [HIKR18] in the negative.

1.2 Technical Overview

We give a brief overview of CPS functions, and a couple of our protocols that
exploit this structure.

An m + 1 aggregating functionality involves parties P1, · · · , Pm with inputs
and an aggregator P0 who learns the output. A classical example of an aggregat-
ing functionality that admits secure computation is the summation operation in
an abelian group. As a starting point to understanding all securely computable
functions, one could try to generalize this function. Consider the 3-party ver-
sion of this problem, involving two input parties P1, P2 and an output party P0.
W.l.o.g. we can consider computing a function f : [n1] × [n2] → [n], given an as
a matrix M with Mij = f(i, j). Suppose there is a passive secure protocol Π
for computing f . From the results on 2-party MPC we know that an adversary
which passively corrupts {P0, P1} must learn P2’s input fully (up to equivalent
inputs). Then, for this protocol to be secure, even given an ideal functionality,
an adversary who passively corrupts {P0, P1} should be able to learn P2’s input.
A passive adversary is not allowed to change the parties’ inputs. Hence, for any
inputs x1 ∈ [n1], x2 ∈ [n2], it must be the case that (x1, f(x1, x2)) uniquely
determines x2. Symmetrically, (x2, f(x1, x2)) uniquely determines x1. We refer
to this as the Latin property of M , named after Latin squares. (Latin squares
are n × n square matrices in which each row and each column is a permutation
of [n]. Note that a square matrix with the Latin property is the same as a Latin
square.)

It is easy to see that any 3-party aggregating functionality f : [n]× [n] → [n]
which is a Latin square has a passive secure protocol: P1 and P2 privately agree
on a random permutation σ over [n], and then P1 sends P0 the row indexed by its
input x1, but with positions permuted according to σ: i.e., a vector (z1, · · · , zn)
where zσ(j) = Mx1,j . P2 sends k = σ(x2) to P0, and P0 outputs zk = Mx1,x2 .
Note that the security of this protocol relies on not only the Latin property, but
also on the fact that each row has all n elements. However, since any rectangle
with the Latin property can be embedded into an (at most quadratically larger)
Latin square [Rys51], any function f which has the Latin property does indeed
have a passive secure protocol.

This might suggest that for arbitrary number of parties, an analogous Latin
hypercube property would be a tight characterization of secure computability.
Interestingly, this is not the case. With m input clients, the 2-party results imply
that an adversary corrupting a subset of the m input parties and the aggrega-
tor P0 can learn the residual function of the honest parties’ inputs. Since the
passive adversary cannot change the input of the corrupt parties even in the
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ideal world, this means that any choice of the corrupt parties’ inputs should
reveal the residual function of the honest parties. We identify an algebraic for-
mulation in terms of a “Commuting Permutation System” (CPS) that captures
this condition tightly.

A CPS over the output alphabet [n] has input sets Xi ⊆ Sn, for i = 1 to
m, where Sn is the group of all permutations of [n]. On input (π1, · · · , πm) ∈
X1 × · · · × Xm, the output is defined as π1 ◦ · · · ◦ πm(1). The “commuting”
property is the requirement that this output is invariant to the order in which
the m permutations are applied to 1. Note that the commutativity needs to hold
only when applied to 1. Also, it holds only across the sets X1, · · · ,Xm. That
is if π, π′ ∈ Xi, it is not necessary that π ◦ π′(1) equals π′ ◦ π(1). The function
table of a CPS functionality is indeed a Latin hypercube, but the converse does
not hold.

Being a CPS functionality is necessary to have an MPC protocol (let alone
a UNIMPC protocol). Unfortunately, we do not know if this is also a sufficient
condition. But given some additional structure in a CPS, we are able to give a
new protocol. The additional structure that we can exploit is that each Xi is
a subgroup of Sn, in which case we call the system a Commuting Permutation
Subgroups System or CPSS. Exploiting this property, we design a protocol for
computing CPSS functions, as discussed below.

UNIMPC Protocol for CPSS Functionalities. We present a novel protocol
with perfect, information-theoretic security against passive corruption for all
CPSS functionalities (and, further, is in fact, UC secure for a sub-class). Recall
that the goal is to let P0 learn π1 ◦ · · · ◦πm(1), where πi is a permutation that Pi

receives as input. At first glance, our protocol may appear similar in structure
to a protocol for an abelian group sum: each party Pi shares its input πi as
πi = σi,0 ◦σi,1 ◦ · · · ◦σi,m, where each of the shares itself belongs to Xi. It will be
helpful to visualize these shares as forming the ith row in a matrix of shares. The
shares in each column (σ1,j , · · · , σm,j) for j ∈ [m] will be correlated with each
other in some manner, so that the output can be reconstructed by aggregating
only the shares (σ1,0, · · · , σm,0). (An analogy for the case of the abelian group
would be to choose the shares in each column to sum up to the identity element.)
These shares will be sent to P0.

But there are a couple of major differences. Firstly, permutations do not
commute in general, and it is not clear how the shares can be meaningfully
combined. Secondly, we must not reveal the composition of the inputs – i.e.,
the permutation π1 ◦ · · · ◦ πm – to the aggregator; only the result of applying
this composition to 1 should be revealed. So, choosing the column shares to “add
up to” the identity permutation would be problematic, not to mention that there
may not be any such choice other than choosing all the shares to be the identity
element.



Uncovering Algebraic Structures in the MPC Landscape 389

Fig. 2. Elements in the ith row belong
to a subgroup Xi in a CPSS. The sub-
group structure enables secret-sharing as
πi =

∏0
j=m σi,j . Then the illustrated quan-

tities are equal:
( ∏

i∈[m] πi

)
(1) =

( ∏
i∈[m]∏0

j=m σi,j

)
(1) =

( ∏0
j=m

∏
i∈[m] σi,j

)
(1).

The last equality relies on the closure
property in the subgroup, as well as the
commutativity guarantee (when applied
to 1). In our protocol, for each j > 0,( ∏

i∈[m] σi,j

)
(1) = 1, and hence this also

equals
( ∏

i∈[m] σi,0

)
(1).

In our protocol, we choose the col-
umn shares such that their compo-
sition has 1 as a fixed point (there
is at least one such choice, since the
each entry can be chosen as the iden-
tity permutation). Then, using the
CPSS property, it can be shown that
(
∏

i∈[m] σi,0)(1) = (
∏

i∈[m] πi)(1) (see
Fig. 2). It turns out that we can use the
subgroup structure in CPSS to argue
that if the shares are chosen uniformly
at random subject to the above con-
straint, then (σ1,0, · · · , σm,0) reveals
nothing more than π1 ◦ · · · ◦ πm(1).

Further, even if we consider all the
shares σi,j except for (i, j) ∈ S × S
for some S ⊆ [m], we show that they
reveal nothing more than the resid-
ual function

( ∏
i∈S πi

)
(1). The need

to consider revealing this set of shares
comes from the fact that our protocol
is not an NIMPC protocol (where a trusted dealer could compute σi,j for all
(i, j) ∈ [m]2 and send only (σi,1, · · · , σi,m) to each party Pi); instead we require
the parties to compute all the shares themselves, which is achieved by each party
Pj computing the jth column of shares, and distributing it among all the parties
Pi. Thus when we consider a set S of honest parties, only the shares σi,j where
(i, j) ∈ S2 remain hidden from the adversary.

UC-secure Protocols. It turns out that the above protocol for aggregating
functions is UC secure if the function is a Complete CPSS (CCPSS) function.
For m ≥ 3, a Complete CPS is always a Complete CPSS, and hence this gives a
UC secure (in fact, strongly secure) protocol for all CCPS functionalities. (The
case of m = 2 is handled separately.)

However, for a function that is only embedded in a CCPS functionality, this
protocol is not necessarily UC secure (because nothing prevents an adversary
from using an input from the full domain of the CCPS functionality). We give a
compiler that can take a UC secure protocol for a CCPS functionality, and trans-
form it into a UC secure protocol for the functionality restricted to a smaller
domain. The main idea of the compiler is to run several instances of the origi-
nal protocol with the parties using random inputs from the restricted domain.
That they used inputs from the restricted domain is then verified using a cut-
and-choose phase. Then, an aggregated AND functionality is used to identify
instances among the unopened executions to obtain the output. Plugging in
a simple UC secure protocol for aggregated AND, this compiler yields a UC
secure protocol. Interestingly, though aggregated AND itself has no strongly



390 N. Agarwal et al.

secure protocol (or passive-secure protocol, for that matter) as it is not a CPS
functionality, the resulting protocol above is a strongly secure protocol.

We remark that this is a feasibility result that relies on the domains being
finite (small) as the compiler’s overhead is polynomial in the domain size.

We also present a reduction from any disseminating function to the
disseminated-OR functionality. This is also a feasibility result that relies on
the number of parties being finite (small) as the protocol is exponential in the
number of parties. To complete establishing the realizability of all disseminating
functions, we give a UC secure protocol for the disseminated-OR functionality
(extending a 3-party protocol for the same functionality in [PR08]).

2 Preliminaries

We write [n] to denote the set {1, · · · , n}. Sn denotes the symmetric group over
[n], namely, the group of all permutations of [n]. In our proofs, we shall use the
product notation

∏
to denote the composition operation of permutations. Note

that composition of permutations is a non-commutative operation in general,
and hence the order of the indices is important (as in

∏t
i=1 ρi). When the order

is not important, we denote the indices by a set (as in
∏

i∈[t] ρi).
Below we define notions referred to through out the paper. Additional notions

relevant to strong security are deferred to Sect. 8.
We adapt the definition of an aggregating functionality from [PR08].4

Definition 1 (Aggregating Functionality). An (m + 1) party Aggregat-
ing functionality accepts inputs xi ∈ Xi from Pi for i = 1 to m, and sends
f(x1, · · · , xm) to party P0, where f : X1 × · · · × Xm → Ω is a fixed function.

Consistent with the literature on feasibility questions, we consider the func-
tions to have constant-sized domains (rather than infinite domains or domains
expanding with the security parameter). Also, in all our positive results, the
security obtained is perfect and hence the protocols themselves do not depend
on the security parameter. Our negative results do allow protocols to have a
negligible statistical error in security.

Definition 2 (Embedding). An aggregating functionality f : X1 × · · · ×
Xm → [n] is said to embed into a functionality g : X ′

1 × · · · × X ′
m → [n′]

if there exist functions φi : Xi → X ′
i for i ∈ [m], and an injective function

φ0 : [n] → [n′] such that for all (x1, · · · , xm) ∈ X1 × · · · × Xm,

φ0(f(x1, · · · , xn)) = g(φ1(x1), · · · , φm(xm)). (1)

Below, A ∼= B denotes that the statistical difference between the two distri-
butions A and B is negligible as a function of a (statistical) security parameter.
4 We allow only the aggregating party P0 to have an output. The original definition

in [PR08] allows all the parties to have outputs, but requires that for each party
other than P0, its output is a function only of its own input. Such a function is
“isomorphic” to an aggregated functionality as we define here.
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Definition 3 (Passive Secure MPC). An (m+1)-party protocol Π with par-
ties P1, · · · , Pm, P0 is said to be an information-theoretically secure MPC proto-
col for an (m + 1)-party aggregating functionality f against passive corruption,
if for any subset T ⊆ [m] ∪ {0}, there exists a simulator S s.t. for any input
x ∈ X:

viewΠ(x)({Pi|i ∈ T}) ∼=
{

S(xT , f(x)) if 0 ∈ T

S(xT ,⊥) otherwise

where viewΠ(x)({Pi|i ∈ T}) represents the view of the parties {Pi|i ∈ T} in an
execution of Π with input x and ⊥ represents an empty input.

We shall use the following result for 2-party MPC, obtained from the general
characterization in [KMR09].

Lemma 1 (2-Party MPC with one-sided output [KMR09]). If a finite
2-party functionality which takes inputs x ∈ X and y ∈ Y from Alice and Bob
respectively and outputs f(x, y) to Bob for some function f : X × Y → Z has a
statistically secure protocol against passive adversaries, then ∀x, x′ ∈ X it holds
that ∃y ∈ Y, f(x, y) = f(x′, y) ⇒ ∀y ∈ Y, f(x, y) = f(x′, y).

We refer the reader to [BGI+14] for a definition of NIMPC and PSM.

3 New Models

In this section we define UNIMPC and UNIMPC�, which are models of secure
computation, as well as combinatorial objects CPS and CPSS. For simplicity, we
define UNIMPC and UNIMPC� for fixed functions rather than function families
(though the definitions can be easily extended to function families, where all the
input players receive the function as an input).

Definition 4 (UNIMPC). We define an Unassisted Non-Interactive Secure
Multi-party Computation (UNIMPC) protocol Π for an (m+1)-party aggregat-
ing functionality f : X → Ω as Π = (R,Enc,Dec) where:

– R is an m-party randomized protocol (without inputs), generating correlated
views (r1, · · · , rm) ∈ R1 × · · · × Rm.

– Enc is an m-tuple of deterministic functions (Enc1, · · · ,Encm) where Enci :
Xi × Ri → Mi.

– Dec : M1 ×· · ·×Mm → Ω is a deterministic function satisfying the following
correctness requirement: for any (x1, · · · , xm) ∈ X and any view (r1, · · · , rm)
which R generates with positive probability,

Dec((Enc1(x1, r1), · · · ,Encm(xm, rm)) = f(x1, · · · , xm).

It is identified with a two-phase MPC protocol where:
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1. Offline Phase: The parties Pi : i ∈ [m] run R (without any input) so that
each Pi obtains the view ri.

2. Online Phase: Every Pi encodes its input xi as zi = Enci(xi, ri) and sends
it to the aggregator P0. P0 outputs Dec(z1, · · · , zm).

Security: A UNIMPC protocol Π for f : X → Ω is said to be T -secure (for
T ⊆ [m]) if there exists a simulator S s.t. for any x ∈ X:

viewΠ(x)({Pi|i ∈ T} ∪ {P0}) ∼= S(xT , f(x))

where viewΠ(x)(·) represents the view of a given set of parties in the two-phase
protocol above, with input x.

For any t ∈ [m], Π is said to be t-robust if it is T -secure ∀T ⊆ [m] s.t.
|T | ≤ t. A UNIMPC protocol Π is said to be secure if it is m-robust.

We point out that a secure UNIMPC protocol as defined above is a passive
secure MPC protocol for f (as in Definition 3). Note that in defining T -security
we considered only the case when the set of corrupt parties includes the aggrega-
tor. But when the aggregator is honest, security is automatically guaranteed by
the structure of the UNIMPC protocol (the view of the adversary being derived
completely from the offline phase).

Definition 5 (UNIMPC�). We define an Unassisted Non-Interactive
Secure Multi-party Computation protocol with Non-Interactive Pre-Processing
(UNIMPC� protocol) Π for a functionality f : X → Ω as a UNIMPC protocol
Π = (R,Enc,Dec) for f where R consists of a single round (i.e., each party
simply sends messages to the others, and then receives all the messages sent to
it).

We define classes MPC, UNIMPC, UNIMPC� as the class of aggregat-
ing functionalities that have (information-theoretically) passive secure MPC,
UNIMPC and UNIMPC� protocols, respectively.

4 Commuting Permutations System

In this section, we define the new algebraic-combinatorial classes.

Definition 6 (CPS and CPSS). An (n,m)-Commuting Permutations System
(CPS) is a collection (X1, · · · ,Xm) where for all i ∈ [m], Xi ⊆ Sn contains the
identity permutation, and for any collection (π1, · · · .πm) with πi ∈ Xi, and
ρ ∈ Sm, π1 ◦ · · · ◦ πm(1) = πρ(1) ◦ · · · ◦ πρ(m)(1).5

It is called an (n,m)-Commuting Permutation Subgroups System (CPSS) if
each Xi is a subgroup of Sn.

5 Choice of 1 is arbitrary. Requiring identity permutation to always be part of each
Xi is w.l.o.g., as a CPS without it will remain a CPS on adding it.
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Note that given a CPS (X1, · · · ,Xm), for any (π1, · · · , πm) ∈ X1 ×· · ·×Xm,
the expression (

∏
i∈[m] πi)(1) is well-defined as the order of composition is not

important.

Definition 7 (CCPS). An (n,m)-CPS (X1, · · · ,Xm) is said to be complete in
dimension i if {π(1) | π ∈ Xi} = [n]. If it is complete in all m dimensions, it is
called a Complete CPS (CCPS).

Definition 8. An (m + 1)-party aggregating functionality f : X1 × · · · ×
Xm → [n] is said to be a CPS functionality (resp., CPSS and CCPS functional-
ity) if (X1, · · · ,Xm) is an (n,m)-CPS (resp., (n,m)-CPSS and (n,m)-CCPS),
and for all (π1, · · · , πm) ∈ X1 × · · · × Xm, f(π1, · · · , πm) = (

∏
i∈[m] πi)(1).

CPS (resp., CPSS and CCPS) is defined as the class of all aggregating func-
tionalities that embed into a CPS functionality (resp., CPSS functionality and
CCPS functionality).

A CPSS enjoys a certain (non-abelian) group structure. More specifically,
the CPSS (G1, · · · , Gm) can be identified with a group, with the set of elements
G1 × · · · × Gm and group operation ∗ defined as (σ1, . . . , σm) ∗ (σ′

1, . . . , σ
′
m) =

(σ1 ◦ σ′
1, . . . , σm ◦ σ′

m). This is captured in the following lemma.

Lemma 2. Suppose (G1, · · · , Gm) is a CPSS. Then, for any set of mt permu-
tations {σi,j | i ∈ [m], j ∈ [t]} such that σi,j ∈ Gi, it holds that

( t∏

j=1

m∏

i=1

σi,j

)
(1) =

( ∏

i∈[m]

t∏

j=1

σi,j

)
(1).

Proof: Consider ρ ◦ ∏m
i=1 ρi(1), where ρi ∈ Gi for each i, and ρ ∈ Gi0 for some

i0 ∈ [m]. Note that the order of composition is not important in
∏m

i=1 ρi(1), since
(G1, · · · , Gm) is a CPS(S), and we may write it as

∏
i∈[m] ρi(1). Also, define ρ′

i

as

ρ′
i =

{
ρ ◦ ρi0 if i = i0

ρi otherwise.

Since Gi0 is a group, we have ρ′
i ∈ Gi for all i ∈ [m] (including i0). Then,

(
ρ ◦

m∏

i=1

ρi

)
(1) =

(
ρ ◦ ρi0 ◦

∏

i∈[m]\{i0}
ρi

)
(1) =

(
ρ′
i0 ◦

∏

i∈[m]\{i0}
ρ′
i

)
(1) =

( ∏

i∈[m]

ρ′
i

)
(1)

where in the last step, we again used the CPS property. The claim follows by
repeatedly using the above equality. ��
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Our first result is a separation:

Theorem 1. CPSS � CPS.

Proof: We prove this by giving an explicit (5, 3)-CPS (X1,X2,X3), and showing
that the corresponding CPS functionality does not embed into any (n, 3)-CPSS
functionality. (In the full version we give instances of (n,m)-CPS that cannot
be embedded into a CPSS, for every value of m ≥ 2.) Let

X1 = {π0, π1},X2 = {π0, π2},X3 = {π0, π3},

where (using the standard cycle notation for permutations), π0 =
(1)(2)(3)(4)(5), π1 = (1 2 5)(3 4), π2 = (1 3 5)(2 4) and π3 = (1 4 5)(2 3). It can
be verified that this is a CPS by computing all non-trivial applications of these
permutations on 1:

∏
i∈{1,2,3} πi(1) = 5,

∏
i∈{1,2} πi(1) = 4,

∏
i∈{1,3} πi(1) = 3,

and
∏

i∈{2,3} πi(1) = 2.
We argue that this cannot be embedded into a CPSS. Suppose, for some

n, there is an (n, 3)-CPSS, (G1, G2, G3), and functions φi : Xi → Gi and an
injective function φ0 : [5] → [n], as specified in Definition 2. Let φi(π0) = σi

and φi(πi) = ρi. First, we argue that w.l.o.g., we can require all σi to be the
identity function. This is because, otherwise, φ̂i(π) = σ−1

i ◦ φi(π) and φ̂0 =
(σ1 ◦σ2 ◦σ3)−1 ◦φ0 is a valid embedding, with φ̂i(π0) being the identity function.
This follows from the fact (see Lemma 2) that in a CPSS with {αi, βi} ⊆ Gi,

(α1 ◦ β1) ◦ · · · ◦ (αm ◦ βm)(1) = (α1 ◦ · · · ◦ αm) ◦ (β1 ◦ · · · ◦ βm)(1).

Next we argue that (with σi being identity), w.l.o.g., φ0 is the identity function
as well. This is because φ̂i(π) = φ0 ◦ φi(π)φ−1

0 , along with φ̂0 being the identity
function yields an embedding. This relies on the fact that φ0(1) = 1 (as implied
by Eq. 1 of Definition 2, by considering x1 = x2 = x3 = π0).

Now, we derive a contradiction from the following two requirements:

– From Eq. 1, we get that πi(a) = ρi(a) for all i and a ∈ {1, 2, 3, 4} (but not
necessarily for a = 5).

– Since (G1, G2, G3) is a CPSS, we require that ρ22 ∈ G2. Then, we require that
ρ22 ◦ ρ3(1) = ρ3 ◦ ρ22(1).

Using the first condition, we derive three equalities: ρ3(1) = 4, ρ22 ◦ ρ3(1) = 4
and ρ3 ◦ ρ22(1) = ρ3(5). From the last two equalities, and the second condition,
we find that ρ3(5) = 4, yielding a contradiction with the first equality. ��

5 Only CPS Functionalities Have (UNI)MPC Protocols

We show that if an aggregating functionality has a statistically secure MPC pro-
tocol against semi-honest adversaries (without honest majority or setups), then
it must be a CPS functionality. Since UNIMPC protocols are MPC protocols,
this applies to UNIMPC as well.



Uncovering Algebraic Structures in the MPC Landscape 395

Theorem 2. If an aggregating functionality has an information-theoretically
secure MPC protocol against semi-honest adversaries, then it embeds into a CPS
functionality.

Proof: Suppose an (m+1)-party aggregating functionality f : X1 ×· · ·×Xm →
[n] is semi-honest securely realizable. Denote the aggregating party as P0 and
for each i ∈ [m], the party with input domain Xi as Pi.

Firstly, w.l.o.g., we may assume that no party has two equivalent inputs, by
considering an embedding if necessary. Further, we may let Xi = [ni] for each i,
and f(1, · · · , 1) = 1, by relabeling the inputs and the outputs.

Now, for each i ∈ [m], consider the 2-party SFE functionality obtained by
grouping parties {Pj |j ∈ [m]\{i}} as a single party Alice, and the parties {Pi, P0}
as a single party Bob. This functionality has the form in Lemma1, namely, only
Bob has any output. Then applying the lemma, we get the following (where
the notation x[i : 
] denotes the vector obtained from x by setting xi to 
):
∀x,x′ ∈ X1 × · · · × Xm,

f(x) = f(x′) and xi = x′
i ⇒ ∀
 ∈ Xi, f(x[i : 
]) = f(x′[i : 
]). (2)

We use this to prove the following claim.

Claim. For each i ∈ [m] and 
 ∈ Xi, there exists a permutation π
(i)
� such that,

for all x ∈ X1 × · · · × Xm with xi = 1,

π
(i)
� (f(x)) = f(x[i : 
]). (3)

Proof: Fix i ∈ [m], 
 ∈ Xi. Now, consider defining a (partial) function π
(i)
� using

Eq. 3. This is well-defined thanks to Eq. 2: Even though there could be multiple
x with xi = 1 and the same value for f(x), Eq. 2 ensures that they all lead to
the same value for f(x[i : 
]).

Further, with this definition, if π
(i)
� (a) = π

(i)
� (b), this means that there exist

x,x′ with xi = x′
i = 1, f(x) = a, f(x′) = b and f(x[i : 
]) = f(x′[i : 
]). But

by considering z = x[i : 
], z′ = x′[i : 
], we have zi = z′
i and f(z) = f(z′).

Hence, by Eq. 2, we have f(z[i : 1]) = f(z′[i : 1]. But since x = z[i : 1] and
x′ = z′[i : 1], this means that a = f(x) = f(x′) = b. Hence, π

(i)
� is a one-to-one

function, from {a|∃x, xi = 1, f(x) = a} ⊆ [n] to [n]. We can arbitrarily extend
this to be a permutation over [n] to meet the condition in the claim. ��

Finally, for any x such that xi1 = · · · = xit
= 1, and distinct i1, · · · , it, by

iteratively applying Eq. 3, π
(it)
�t

◦ · · · ◦ π
(i1)
�1

(f(x)) = f(x[i1 : 
1] · · · [it : 
t]).
Taking (ik, 
k) = (ρ(k), zρ(k)) for any permutation ρ ∈ Sm and any z ∈ X1×· · ·×
Xm, we have x[i1 : 
1] · · · [im : 
m] = z, for any x. Then, with x = (1, · · · , 1) we
get that

f(z) = π(ρ(1))
zρ(1)

◦ · · · ◦ π(ρ(m))
zρ(m)

(1),

where we substituted f(x) = 1. This concludes the proof that f embeds into the
CPS functionality with input domains X̂i = {π

(i)
� |
 ∈ [ni]}. ��
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5.1 Extensions to 1-Robust UNIMPC and NIMPC

Since every secure UNIMPC protocol is a secure MPC protocol, Theorem 2
applies to UNIMPC as well. But it extends to UNIMPC in a stronger manner
than it holds for MPC. Note that if we restrict the number of corrupt parties
to be at most m/2, then every m + 1 party functionality has a passive secure
MPC protocol, even if the functionality is a non-CPS aggregating functionality.
But we show that as long as the adversary can corrupt just two parties (the
aggregator and one of the input parties), the only aggregating functionalities
that have secure UNIMPC protocols are CPS functionalities.

To see this, we consider how Eq. 2 was derived in the proof of Theorem2
(the rest of the argument did not rely on the protocol). We used the given
(m + 1)-party protocol to derive a secure 2-party protocol to which Lemma1
was applied. In arguing that this 2-party protocol is secure we considered two
corruption patterns in the original protocol: the adversary could corrupt {P0, Pi}
(Bob) or {Pj | j ∈ [m] \ {i}} (Alice). Now, if we allow only corruption of up to
two parties, we cannot in general argue that the resulting two party protocol is
secure when Alice is corrupted. However, if the starting protocol was a UNIMPC
protocol, then in the resulting 2-phase protocol, there is an offline phase when
Alice and Bob interact without using their inputs, and after that Alice sends a
single message to Bob in the second phase. Any such protocol is secure against
the corruption of Alice, as Alice’s view can be perfectly simulated without Bob’s
input. Thus, when the starting protocol is a UNIMPC protocol that is T -secure
for every T of the form {0, i} (i ∈ [m]), then Lemma 1 applies to the 2-party
protocol constructed, and the rest of the proof goes through unchanged. Thus,
an aggregating functionality f has a 1-robust UNIMPC protocol only if it is a
CPS functionality.

The above argument extends in a way to 1-robust NIMPC as well. Of course,
every function has a secure NIMPC protocol [BGI+14], and we cannot require all
such functions to be CPS. But we note that NIMPC turned out to be possible for
all functions not only because a trusted party is allowed (to generate correlated
randomness), but also because NIMPC allows the adversary (corrupting the
aggregator and some set of parties) to learn the residual function of the honest
parties’ inputs. So, one may ask for which functionalities does the adversary
learn nothing more than the output of the function on any input (just as in the
security requirement for MPC), even as we allow a trusted party to generate
correlated randomness. Here, we note that the above argument in fact extends
to the NIMPC setting with the trusted party: We simply include the trusted
party as part of Alice in the above 2-party protocol. Since the security of the
2-party protocol relied only on security against Bob (and the 2-phase nature of
the protocol), including the trusted party as part of Alice does not affect our
proof. Thus we conclude that only CPS functionalities have 1-robust NIMPC
where the simulator takes only the input of the corrupt parties and the output
of the function (rather than the residual function of the honest parties’ inputs).



Uncovering Algebraic Structures in the MPC Landscape 397

6 UNIMPC Protocols

In this section we present our positive results for UNIMPC� and UNIMPC
(Theorems 3 and 4).

Theorem 3. Any function embeddable in a CPSS function has a UNIMPC�

protocol with perfect security.

To prove Theorem 3 it is enough to present a perfectly secure protocol for
a CPSS function: the protocol retains security against passive corruption when
the input domains are restricted to subsets.

UNIMPC� Protocol for CPSS Function.

For i ∈ [m], party Pi has input πi ∈ Gi, where (G1, · · · , Gm) is an (n,m)-CPSS.
Party P0 will output π1 ◦ · · · ◦ πm(1).

1. Randomness Computation: For each j ∈ [m], Pj samples (σ1j , · · · , σmj)
uniformly at random from G1 × · · · × Gm, conditioned on

σ1j ◦ σ2j ◦ · · · ◦ σmj(1) = 1. (4)

For each i, j ∈ [m], Pj sends σij to Pi.
2. Input Encoding: Pi computes σi0 := πi ◦ (σi1 ◦ · · · ◦ σim)−1, and sends

it to P0. Note that (σi0, · · · , σim) is an additive secret-sharing of πi in the
group Gi.

3. Output Decoding: P0 outputs σ1,0 ◦ σ2,0 ◦ · · · ◦ σm,0(1).

By construction, the protocol has the structure of a UNIMPC� protocol.
Indeed, it is particularly simple for a UNIMPC� protocol in that the random-
ness computation protocol in offline phase is a single round protocol. Below
we argue that this protocol is indeed a perfectly secure protocol for computing( ∏

i∈[m] πi

)
(1) against passive corruption of any subset of parties.

Perfect Correctness: The output of P0 is
∏m

i=0 σi,0(1). By Eq. 4 (applied to
j = 1) we may write 1 =

∏m
i=1 σi1(1). We further expand 1 in this expres-

sion again by applying Eq. 4 successively for j = 2, · · · ,m to obtain 1 =∏m
j=1

∏m
i=1 σij(1). Hence, the output of P0 may be written as

∏m
j=0

∏m
i=1 σi,j(1).

By Lemma 2, this equals
∏

i∈[m]

∏m
j=0 σij(1). By the definition of σi,0 this in turn

equals
∏

i∈[m] πi(1), as desired.

Perfect Semi-Honest Security: A protocol with the UNIMPC structure is
always perfectly semi-honest secure as long as the aggregator is honest, or if all
the input parties are corrupt. Hence we focus on the case when the aggregator P0

is corrupt and there is at least one honest party. Suppose the adversary corrupts
P0 and {Pi | i ∈ S} for some set S � [m]. Below, we write S := [m]\S to denote
the set of indices of the honest parties. Recall that an execution of the protocol
(including the inputs) is fully determined by the m × (m + 1) matrix σ, with
(i, j)th entry σij ∈ Gi, for (i, j) ∈ [m] × ([m] ∪ {0}). The input determined by
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σ is defined by input(σ) = (π1, · · · , πm), where πi =
∏m

j=0 σij . We say that σ is
valid if for every j ∈ [m],

∏
i∈[m] σij(1) = 1.

When the functionality is invoked with inputs π = (π1, · · · , πm), in the ideal
world, the adversary learns only the corrupt parties’ inputs π|S and the residual
function of the honest parties’ inputs πS(1), where πS :=

(∏
i∈S πi

)
. But in the

real world its view consists also 〈σ〉S := {σij | i ∈ S ∨ j ∈ S ∪ {0}}. We need
to show that for any two input vectors π,π′ with identical ideal views for the
adversary – i.e., π|S = π′|S , and πS(1) = π′

S
(1) – the distribution of 〈σ〉S is also

identical. For this we shall show a bijective map φπ ′
S between valid matrices σ

consistent with π and those consistent with π′, which preserves 〈σ〉S . Since σ
is distributed uniformly over all valid matrices consistent with the input in the
protocol, this will establish that the distribution of 〈σ〉S is identical for π and
π′. More precisely, the following claim completes the proof.

Claim. For any S � [m], and any π,π′ ∈ G1 × · · · × Gm such that π|S = π′|S
and πS(1) = π′

S(1), there is is a bijection φπ ′
S from {σ | input(σ) = π ∧σ valid}

to {σ | input(σ) = π′ ∧ σ valid}, such that 〈σ〉S = 〈φπ ′
S (σ)〉S .

Proof: Let S,π,π′ be as in the lemma. We shall first define φπ ′
S for all m×(m+1)

matrices σ, with σij ∈ Gi, and then prove the claimed properties when restricted
to the domain in the claim. Fix h ∈ S as (say) the smallest index in S. Given
σ, φπ ′

S maps it to σ′ as follows.

σ′
ij =

{
σij if j �= h

α−1
i ◦ π′

i ◦ β−1
i if j = h

where αi :=
∏h−1

j=0 σij and βi :=
∏m

j=h+1 σij . Note that like σ, σ′ also satisfies
the condition that σ′

ij ∈ Gi for all j = 0 ∪ [m], because αi, βi, π
′
i ∈ Gi.

By construction,
∏m

j=0 σ′
ij = π′

i, and hence the image of φπ ′
S is contained

in {σ′ | input(σ′) = π′}. Also, when the domain is {σ | input(σ) = π}, the
mapping is invertible since φπ

S (φπ ′
S (σ)) = σ, when input(σ) = π. Hence, by

symmetry, this is a bijection from {σ | input(σ) = π} to {σ | input(σ) = π′}.
Further, for i ∈ S, πi = π′

i and hence σ′
ih = σih, so that 〈σ′〉S = 〈σ〉S .

It remains to prove that the map is a bijection when the domain and range
are restricted to valid matrices. So, suppose σ is a valid matrix. Then we have

(
∏

i∈[m]

σij)(1) = 1 ∀j ∈ [m] (5)

(
∏

i∈[m]

βi)(1) = (
m∏

j=h+1

∏

i∈[m]

σij)(1) = 1. (6)

where the first equality in (6) is obtained by applying Lemma2, and the second
by applying the validity condition (5) successively for j = m, · · · , h + 1.

To verify that σ′ = φπ ′
S (σ) is valid, we only need to verify that

(
∏

i∈[m] σ
′
ih)(1) = 1 (as the other columns of σ′ are the same as in σ). This we

show as follows (where for brevity, we write α :=
∏

i∈[m] αi and β :=
∏

i∈[m] βi):
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∏

i∈[m]

π′
i(1) =

∏

i∈[m]

πi(1)

⇒ (
∏

i∈[m]

αi ◦ σ′
ih ◦ βi)(1) = (

∏

i∈[m]

αi ◦ σih ◦ βi)(1)

⇒ α ◦ (
∏

i∈[m]

σ′
ih) ◦ β(1) = α ◦ (

∏

i∈[m]

σih) ◦ β(1) by Lemma 2

⇒ (
∏

i∈[m]

σ′
ih) ◦ β(1) = (

∏

i∈[m]

σih) ◦ β(1) α a permutation

⇒ (
∏

i∈[m]

σ′
ih)(1) = (

∏

i∈[m]

σih)(1) = 1 by (6) and (5).

��
Theorem 4. Any CPS functionality with 4 or fewer parties has a UNIMPC
protocol with perfect security. Further, any CPS functionality with 3 or fewer
parties has a UNIMPC� protocol with perfect security.

We present the full proof in the full version. In particular, for the case of 4 parties,
we describe a UNIMPC protocol, which uses an NIMPC scheme (Gen,Enc,Dec),
but implements Gen using a 3-party perfectly secure protocol for general func-
tions that is secure against passive corruption of 1 party (e.g., the passive-secure
protocol in [BGW88]). This transformation has appeared in a recent, indepen-
dent work [HIKR18].

7 Latin Hypercubes

CPS functions are closely related to Latin Squares, and more generally, Latin
Hypercubes. An n-ary Latin Square is an n × n matrix with entries from [n]
such that each row and column has all elements of [n] appearing in it. The
m-dimensional version is similarly a tensor indexed by m-dimensional vectors,
so that every “row” (obtained by going through all values for one coordinate of
the index, keeping the others fixed) is a permutation of [n]. We can associate an
m-input functionality with a Latin hypercube, which maps the index vector to
the corresponding entry in the hypercube.

In the case of m = 2, an n-ary Latin square functionality f always is (or,
technically, embeds into) an (n, 2)-CPS (X1,X2).6 However, this is not true in
higher dimensions (see the full version for an explicit counter example). So not
all Latin hypercube functions can have MPC protocols. We obtain an exact
characterization of all Latin hypercube functionalities that have UNIMPC�

6 We let X1 = {πi | πi(f(1, j)) = f(i, j) ∀j ∈ [n]}, and X2 = {ρj | ρj(f(i, 1)) =
f(i, j) ∀i ∈ [n]}. These functions are well-defined permutations because of f being a
Latin square functionality, and it is a CPS because, πi◦ρj(f(1, 1)) = ρj◦πi(f(1, 1)) =
f(i, j). With a bijective embedding that relabels the outputs of f so that f(1, 1) = 1,
this meets the definition of a CPS.
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(or MPC) protocols. Recall that by Theorem 2 only CPS functionalities can
have UNIMPC� (or even MPC) protocols. We show that all Latin hypercube
functionalities that are CPS functionalities indeed have UNIMPC� protocols.
To prove this, we relate this class—Latin hypercube functionalities that are
CPS functionalities—to CPSS functionalities (which have UNIMPC� protocols).
Firstly, a Latin hypercube functionality that is a CPS functionality forms a
Complete CPS (CCPS) functionality, as defined in Definition 7. Then we use the
following theorem:

Theorem 5. For m > 2, an (n,m)-CCPS is an (n,m)-CPSS.

The proof of this theorem, given in the full version, has two parts: Firstly,
we show that for m > 2, the permutations in an (n,m)-CCPS enjoy “full -
commutativity,” rather than commutativity when applied to 1. Then we show
that any (n,m)-CPS functionality with such full-commutativity embeds into an
(n,m)-CPSS. Further, since a CCPS has the maximal number of possible inputs
for every party in a CPS (namely, n), this embedding must use a surjective
mapping for the inputs, making the original CCPS itself a CPSS.

The following can be stated as a corollary of the above theorems (see the full
version).

Corollary 1. A Latin hypercube functionality has a UNIMPC� protocol if and
only if it is a CPS functionality.

8 Towards a Characterization of Strong Security

While security against active corruption is often stronger than security against
passive corruption, this is not always the case. This is because, in the ideal world
model for active corruption, the adversary (i.e., simulator) is allowed to send any
inputs of its choice to the functionality, the adversary in the passive corruption
setting is required to send the same input as the corrupt parties received. To
reconcile this discrepancy, one could weaken the notion of passive security by
allowing the simulator to change the input sent to the functionality. However,
the resulting security guarantee is quite pessimistic, as it assumes that even
passively corrupt parties will alter their inputs, and may not be appropriate in
scenarios where the passively corrupt parties will not do so (see Footnote 3).
Instead, we propose using a stronger definition – which we simply call strong
security – which requires the simulator to not alter the inputs if the parties are
corrupted passively, but allows it to use arbitrary inputs if they are corrupted
actively. Formally, we use the following information-theoretic security definition:

Definition 9 (Strong security). A protocol Π is said to be a strongly secure
protocol for a functionality F if it is both passive secure and UC secure (with
selective abort) for F against computationally unbounded adversaries.
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Note that strong security admits composition as both semi-honest security
and UC security are composable. From a practical point of view, strong secu-
rity (possibly weakened to hold only against PPT adversaries) is important, and
arguably the “right” notion in many cases. Here we initiate the study of charac-
terizing multi-party functionalities that are strongly securely realizable. Clearly,
the impossibility results for both UC security and passive security apply to strong
security.

To state our results for all multi-party functions, we need to go beyond
aggregating functionalities. Firstly, we shall need the notion of disseminating
functionalities: An (m + 1)-party disseminating functionality f = (f1, · · · , fm)
has a single party P0 with an input x, so that every other party Pi receives the
output fi(x). The class of disseminating functions is denoted by DISS. Secondly,
we need to consider functions which are “essentially” aggregating or disseminat-
ing, but not strictly so because of the presence of additional information in each
party’s local output which is derived solely from its own inputs. The idea that
a function can be essentially the same as another function is captured using the
notion of isomorphism among functionalities, as defined in [MPR13]. We repro-
duce this below, adapted to strong security. Here, a protocol πG

F for F , using G
as a setup, is said to be local if each party (deterministically) maps its input to
an input for the functionality G, then calls G once with that input and, based on
their private input and the output obtained from G, locally computes the final
output (deterministically), without any other communication.

Definition 10 (Isomorphism [MPR13]). We say F and G are isomorphic to
each other if there exist two local protocols πG

F and πF
G that strongly securely

realize F and G respectively.

Now we are ready to state and prove our main results regarding strongly
secure MPC.

Theorem 6. If a functionality has a strongly secure protocol, then it is isomor-
phic to a functionality in DISS ∪ CPS.

Proof: It follows from [PR08] that all strongly securely realizable functionalities
are isomorphic to a disseminating functionality (i.e., a functionality in DISS),
or an aggregating functionality (as defined in here). Further, if a functionality F
that has a strongly secure protocol is isomorphic to an aggregating functionality
F ′, then from the definition of isomorphism, F ′ too has a strongly secure (and
in particular, a passive secure) protocol. Then, by Theorem2, F ′ ∈ CPS. ��

We contrast this with our positive result below, which refers to CCPS (Def-
inition 7), instead of CPS. We point out that our protocols below are efficient
in the sense of having polynomial complexity in the statistical security param-
eter, but can be polynomial (rather than logarithmic) in the domain sizes or
exponential in the number of parties.

Theorem 7. If a functionality is isomorphic to one in DISS ∪ CCPS, then it
has a strongly secure protocol.
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Proof: We show in Sect. 8.2 that every disseminating functionality has a UC
secure protocol. A UC secure protocol for a disseminating functionality is always
passive secure as well: only the disseminator has any input, and if the dissemina-
tor is passively corrupt, the correctness guarantee under UC security (when no
party is corrupt) ensures that the simulator can send the disseminator’s actual
input to the functionality.

In the full version, we prove that the UNIMPC� protocol in Sect. 6 is UC
secure for every Complete CPSS functionality. By Theorem5, this covers all
Complete CPS functionalities of more than 2 dimensions. For 2-dimensional
Complete CPS functionalities (which are precisely Latin Squares), we give a UC
secure protocol in the full version. In Sect. 8.1, we show a compiler that extends
these results to functionalities embedded in a CCPS functionality.

Finally, we note that for aggregating CPS functionalities too, UC security
implies strong security: If the aggregator is honest, the correctness guarantee
under UC security allows the simulator to send the corrupt parties’ actual input
to the functionality; if the aggregator is corrupt, a simulator which sends the
correct inputs of the passively corrupt players obtains the honest parties’ residual
function, and can internally execute the UC simulator (which may send arbitrary
inputs to the functionality and expect the output). ��

8.1 Restricting Input Domains While Retaining UC Security

In this section we give a compiler to transform a UC secure protocol for a CPS
functionality F to a UC secure protocol for the same functionality, but with
restricted input domains for each party. To illustrate the need for this compiler,
suppose m input parties wish to total their votes (0 or 1) and provide it to an
aggregator, securely. We do have a UC secure protocol for addition modulo m+1,
and this functionality can correctly compute the total of m bits. However, this is
not a UC secure protocol for our functionality, as the corrupt parties can provide
inputs other than 0 or 1. Nevertheless, we show that the original protocol can
be transformed into one which restricts the domain as desired.

Definition 11 (Domain Restriction). Given a functionality F with input
domain X = X1 × · · · × Xm, we define a domain restriction of F to D =
D1 × · · · × Dm ⊆ X as a functionality FD which is defined only on inputs in D,
where it behaves identically as F .

We give a compiler that transforms a UC secure protocol for a CPS function-
ality F to a UC secure protocol for FD for any D = D1×· · ·×Dm. Our compiler
can be presented as a protocol RDomF,FAND

D – a protocol in a hybrid model with
access to the ideal functionalities F and (m-input) aggregating functionality
FAND. We note that while FAND is not a CPS functionality (and hence cannot
have a passive secure protocol), it does have a UC secure protocol. Specifically,
one can reduce FAND to summation over an exponentially large abelian group,
where each party Pi maps its input xi to a group element gi as follows: if xi = 0,
let gi be random, and if xi = 1, let gi = 0. The aggregator receives

∑
i gi and

outputs 1 if the sum is 0, and 0 otherwise.
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Protocol RDomF ,FAND

D . The high-level idea of this protocol is to first invoke F
on random inputs from the domain D, and use a cut-and-choose phase to verify
that indeed most of the invocations used inputs in the domain D. Then, using
access to FAND, the executions involving the correct input from all the parties
are isolated, and the aggregator P0 outputs what it received from F in those
executions (if there is a consistent output). The formal description follows.

Let F represent the functionality to be realized and k be the security param-
eter. Let E be the input domain of F and D be the desired domain. Let
Pi, i ∈ [m] ∪ {0} be the set of parties with inputs {xi}i∈[m]. Let P0 be the
aggregator with output space [n].

1. Random Execution: Invoke k sessions of the functionality F with domain
E . Each honest party Pi, i ∈ [m] chooses input uniformly at random from
domain D. Let uij be the input used by party Pi in the jth execution and let
vj be its output.

2. Opening: P0 chooses S ⊆ [k], where every element has a probability of 0.5 of
being picked up (thus E(|S|) = k/2), and announces it. Every party Pi, i ∈ [m]
sends uij ,∀j ∈ S to P0. Then, P0 checks the consistency of all the inputs and
outputs it received: i.e., if ∀j ∈ S, F({uij}i∈[m]) = vj . It also confirms that
each input is chosen from the domain D. Otherwise P0 aborts.

3. Tallying with actual inputs: Invoke k−|S| sessions of the FAND function-
ality, indexed by S̄ = [m] \ S. Each honest party Pi sets its input to session
j of FAND aij as

aij =

{
1 if vij = xi

0 otherwise

and let the output for jth FAND be bj . Also let T = {j : bj = 1}.
4. Computing the result: If |T | ≥ t/2 where t = k/(2 · ∏

i∈[m] |Xi|) is the
expected size of T , and if ∃v∀j ∈ T , vj = v, then P0 outputs v. Otherwise P0

Aborts.

In the full version, we prove the following.

Theorem 8. If F is an m-input CPS functionality, and D = D1 × · · · × Dm is
a subset of its domain, then RDomF,FAND

D is a UC secure protocol for FD.

8.2 Disseminating Functionalities

We rely on the disseminated-OR functionality DOR to show that all disseminated
functionalities are UC secure. The functionality DOR takes (x1, · · · , xm) from the
disseminator P0 and outputs (b, xi) to Pi where b = x1 ∨ · · · ∨ xm. We start by
giving a UC secure protocol for DOR.



404 N. Agarwal et al.

Protocol for DOR. In [PR08] a UC secure protocol for 3-party DOR was given.
We present a variant that works for all values of m (please see the full version
for the proof).

1. P0 broadcasts (UC-securely [GL02]) b :=
∨

i>0 xi to all Pi.
2. If b = 0, for each i > 0, Pi outputs (0, 0) and halts. Else, they continue.
3. P0 sends xi to each Pi.
4. For i ∈ [m], j ∈ [k], P0 samples rij from a large group (e.g., k-bit strings) s.t.

∀j,
∑

i rij = 0.
5. For each i, if xi = 0, P0 sends rij for all j to Pi (and otherwise sends nothing

to Pi).
6. Cut-and-choose:

(a) P1 picks a random subset S ⊂ [k] of size k/2 and sends it to P0.
(b) For all j ∈ S, P0 broadcasts rij for all i, and all parties verify that∑

i rij = 0. P1 verifies that the set S used is what it picked.
(c) Any Pi with xi = 0 aborts if it sees that for some j, rij broadcast by P0

is not equal to rij it received.
7. For each j �∈ S, P1, · · · , Pm do the following:

(a) For each i, if xi = 0, Pi sets sij = rij , and otherwise samples sij randomly.
(b) They use the standard semi-honest secure protocol to compute

∑
i sij .

(c) Each Pi aborts if it gets the sum as 0.
8. If no abort has been observed, each Pi outputs (1, xi), where xi is as received

from P0 in the beginning. Otherwise it aborts.

In the full version we prove that this protocol is secure. The interesting
cases are when (1) a corrupt P0 attempts to make all (honest) Pi’s output (1, 0)
(thwarted by the summation evaluating to 0, or the cut-and-choose failing), and
(2) when P0 is honest and a set of corrupt Pi’s may learn all sij (thwarted by
sij being distributed uniformly, either because a corrupt Pi does not know rij

as xi = 1, or because an honest Pi used a random sij).

Protocol for any disseminating functionality. A disseminating functional-
ity F with m output parties is specified by a function F : X → Y1 × · · · × Ym,
for some finite domains X and Yi. We consider a boolean function InvF

[m] :
Y1 × · · · × Ym → {0, 1} (for “invalid”) as follows: InvF

[m](y1, · · · , yn) = 1 iff
�x ∈ X s.t. F (x) = (y1, . . . , yn).

More generally, for any S ⊆ [m], define InvF
S : YS → {0, 1} as follows

(denoting by YS the input combinations of parties indexed by S): for yS ∈ YS ,
InvF

S (y) = 1 iff �x ∈ X, yS ∈ YS s.t. F (x) = (yS , yS) (with the output tuple
understood as being sorted appropriately by the indices).
Protocol DissDOR

F (for disseminating functionality F computing F ):

1. On input x, P0 sends yi to each Pi, where F (x) = (y1, · · · , ym).
2. For each subset S ⊆ [m]

– For each ỹS ∈ YS such that InvF
S (ỹS) = 1:

(a) Invoke DOR, with P0’s input being (a1, · · · , am), where ai = 0 iff
ỹi = yi and 1 otherwise.
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(b) Each Pi receives (b, ai). If b = 0, or if ai = 1 but ỹi = yi, then abort.
3. If no abort has been observed, each Pi outputs yi, and else aborts.

We point out that it is important to have the protocol consider all subsets
S ⊆ [m] (which makes it take time exponential in m), and not just the whole
set [m], as otherwise P0 can collude with a corrupt Pi∗ (who never aborts), and
ensure that b = 1 always, by setting ai∗ = 1. Then P0 can make the honest
parties accept any combination of outputs, valid or not. In the full version we
prove that the above protocol UC securely realizes F .
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1 Introduction

Castryck, Lange, Martindale, Panny, and Renes recently introduced CSIDH [15],
an isogeny-based key exchange that runs efficiently and permits non-interactive
key exchange. Like the original CRS [20,64,68] isogeny-based cryptosystem,
CSIDH has public keys and ciphertexts only about twice as large as traditional
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elliptic-curve keys and ciphertexts for a similar security level against all pre-
quantum attacks known. CRS was accelerated recently by De Feo, Kieffer, and
Smith [23]; CSIDH builds upon this and chooses curves in a different way, obtain-
ing much better speed.

For comparison, the SIDH (and SIKE) isogeny-based cryptosystems [22,36,
37] are somewhat faster than CSIDH, but they do not support non-interactive
key exchange, and their public keys and ciphertexts are 6 times larger1 than
in CSIDH. Furthermore, there are concerns that the extra information in SIDH
keys might allow attacks; see [58].

These SIDH disadvantages come from avoiding the commutative structure
used in CRS and now in CSIDH. SIDH deliberately avoids this structure because
the structure allows quantum attacks that asymptotically take subexponential
time; see below. The CRS/CSIDH key size thus grows superlinearly in the post-
quantum security level. For comparison, if the known attacks are optimal, then
the SIDH key size grows linearly in the post-quantum security level.

However, even in a post-quantum world, it is not at all clear how much
weight to put on these asymptotics. It is not clear, for example, how large the
keys will have to be before the subexponential attacks begin to outperform the
exponential-time non-quantum attacks or an exponential-time Grover search.
It is not clear when the superlinear growth in CSIDH key sizes will outweigh
the factor 6 mentioned above. For applications that need non-interactive key
exchange in a post-quantum world, the SIDH/SIKE family is not an option, and
it is important to understand what influence these attacks have upon CSIDH
key sizes. The asymptotic performance of these attacks is stated in [15], but it is
challenging to understand the concrete performance of these attacks for specific
CSIDH parameters.

1.1 Contributions of This Paper. The most important bottleneck in the
quantum attacks mentioned above is the cost of evaluating a group action, a
series of isogenies, in superposition. Each quantum attack incurs this cost many
times; see below. The goals of this paper are to analyze and optimize this cost.
We focus on CSIDH because CSIDH is much faster than CRS.

Our main result has the following shape: the CSIDH group action can be
carried out in B nonlinear bit operations (counting ANDs and ORs, allowing
free XORs and NOTs) with failure probability at most ε. (All of our algorithms
know when they have failed.) This implies a reversible computation of the CSIDH
group action with failure probability at most ε using at most 2B Toffoli gates
(allowing free NOTs and CNOTs). This in turn implies a quantum computation
of the CSIDH group action with failure probability at most ε using at most 14B

1 When the goal is for pre-quantum attacks to take 2λ operations (without regard to
memory consumption), CRS, CSIDH, SIDH, and SIKE all choose primes p ≈ 24λ.
The CRS and CSIDH keys and ciphertexts use (approximately) log2 p ≈ 4λ bits,
whereas the SIDH and SIKE keys and ciphertexts use 6 log2 p ≈ 24λ bits for 3
elements of Fp2 . There are compressed variants of SIDH that reduce 6 log2 p to
4 log2 p ≈ 16λ (see [1]) and to 3.5 log2 p ≈ 14λ (see [19] and [75]), at some cost in
run time.
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T -gates (allowing free Clifford gates). Appendix A reviews these cost metrics
and their relationships.

We explain how to compute pairs (B, ε) for any given CSIDH parameters.
For example, we show how to compute CSIDH-512 for uniform random exponent
vectors in {−5, . . . , 5}74 using

• 1118827416420 ≈ 240 nonlinear bit operations using the algorithm of Sect. 7,
or

• 765325228976 ≈ 0.7 · 240 nonlinear bit operations using the algorithm of
Sect. 8,

in both cases with failure probability below 2−32. CSIDH-512 is the smallest
parameter set considered in [15]. For comparison, computing the same action
with failure probability 2−32 using the Jao–LeGrow–Leonardi–Ruiz-Lopez algo-
rithm [38], with the underlying modular multiplications computed by the same
algorithm as in Roetteler–Naehrig–Svore–Lauter [63], would use approximately
251 nonlinear bit operations.

We exploit a variety of algorithmic ideas, including several new ideas pushing
beyond the previous state of the art in isogeny computation, with the goal of
obtaining the best pairs (B, ε). We introduce a new constant-time variable-degree
isogeny algorithm, a new application of the Elligator map, new ways to handle
failures in isogeny computations, new combinations of the components of these
computations, new speeds for integer multiplication, and more.

1.2 Impact upon Quantum Attacks. Kuperberg [46] introduced an algo-
rithm using exp

(
(log N)1/2+o(1)

)
queries and exp

(
(log N)1/2+o(1)

)
operations on

exp((log N)1/2+o(1)) qubits to solve the order-N dihedral hidden-subgroup prob-
lem. Regev [61] introduced an algorithm using only a polynomial number of
qubits, although with a worse o(1) for the number of queries and operations. A
followup paper by Kuperberg [47] introduced further algorithmic options.

Childs, Jao, and Soukharev [17] pointed out that these algorithms could be
used to attack CRS. They analyzed the asymptotic cost of a variant of Regev’s
algorithm in this context. This cost is dominated by queries, in part because the
number of queries is large but also because the cost of each query is large. Each
query evaluates the CRS group action using a superposition of group elements.

We emphasize that computing the exact attack costs for any particular set of
CRS or CSIDH parameters is complicated and requires a lot of new work. The
main questions are (1) the exact number of queries for various dihedral-hidden-
subgroup algorithms, not just asymptotics; and (2) the exact cost of each query,
again not just asymptotics.

The first question is outside the scope of our paper. Some of the simpler
algorithms were simulated for small sizes in [46], [10], and [11], but Kuperberg
commented in [46, p. 5] that his “experiments with this simulator led to a false
conjecture for [the] algorithm’s precise query complexity”.

Our paper addresses the second question for CSIDH: the concrete cost of
quantum algorithms for evaluating the action of the class group, which means
computing isogenies of elliptic curves in superposition.
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1.3 Comparison to Previous Claims Regarding Query Cost. Bon-
netain and Schrottenloher claim in [11, online versions 4, 5, and 6] that CSIDH-
512 can be broken in “only” 271 quantum gates, where each query uses 237

quantum gates (“Clifford+T” gates; see Appendix A.4).
We work in the same simplified model of counting operations, allowing any

number of qubits to be stored for free. We further simplify by counting only T -
gates. We gain considerable performance from optimizations not considered in
[11]. We take the best possible distribution of input vectors, disregarding the 22

overhead estimated in [11]. Our final gate counts for each query are nevertheless
much higher than the 237 claimed in [11]. Even assuming that [11] is correct
regarding the number of queries, the cost of each query pushes the total attack
cost above 280.

The query-cost calculation in [11] is not given in enough detail for full repro-
ducibility. However, some details are provided, and given these details we con-
clude that costly parts of the computation are overlooked in [11] in at least
three ways. First, to estimate the number of quantum gates for multiplication in
Fp, [11] uses a count of nonlinear bit operations for multiplication in F2[x], not
noticing that all known methods for multiplication in Z (never mind reduction
modulo p) involve many more nonlinear bit operations than multiplication in
F2[x]. Second, at a higher level, the strategy for computing an �-isogeny requires
first finding a point of order �, an important cost not noticed in [11]. Third,
[11] counts the number of operations in a branching algorithm, not noticing the
challenge of building a non-branching (constant-time) algorithm for the same
task, as required for computations in superposition. Our analysis addresses all
of these issues and more.

1.4 Memory Consumption. We emphasize that our primary goal is to min-
imize the number of bit operations. This cost metric pays no attention to the
fact that the resulting quantum algorithm for, e.g., CSIDH-512 uses a quantum
computer with 240 qubits.

Most of the quantum-algorithms literature pays much more attention to the
number of qubits. This is why [17], for example, uses a Regev-type algorithm
instead of Kuperberg’s algorithm. Similarly, [15] takes Regev’s algorithm “as a
baseline” given “the larger memory requirement” for Kuperberg’s algorithm.

An obvious reason to keep the number of qubits under control is the difficulty
of scaling quantum computers up to a huge number of qubits. Post-quantum
cryptography starts from the assumption that there will be enough scalability
to build a quantum computer using thousands of logical qubits to run Shor’s
algorithm, but this does not imply that a quantum computer with millions of
logical qubits will be only 1000 times as expensive, given limits on physical chip
size and costs of splitting quantum computation across multiple chips.

On the other hand, [11] chooses Kuperberg’s algorithm, and claims that the
number of qubits used in Kuperberg’s algorithm is not a problem:

The algorithm we consider has a subexponential memory cost. More pre-
cisely, it needs exactly one qubit per query, plus the fixed overhead of the
oracle, which can be neglected.
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Concretely, for CSIDH-512, [11, online versions 1, 2, 3] claim 229.5 qubits, and
[11, online versions 4, 5, 6] claim 231 qubits. However, no justification is provided
for the claim that the number of qubits for the oracle “can be neglected”. There
is no analysis in [11] of the number of qubits used for the oracle.

We are not saying that our techniques need 240 qubits. On the contrary: later
we mention various ways in which the number of qubits can be reduced with
only moderate costs in the number of operations. However, one cannot trivially
extrapolate from the memory consumption of CSIDH software (a few kilobytes)
to the number of qubits used in a quantum computation. The requirement of
reversibility makes it more challenging and more expensive to reduce space, since
intermediate results cannot simply be erased. See Appendix A.3.

Furthermore, even if enough qubits are available, simply counting qubit oper-
ations ignores critical bottlenecks in quantum computation. Fault-tolerant quan-
tum computation corrects errors in every qubit at every time step, even if the
qubit is merely being stored; see Appendix A.5. Communicating across many
qubits imposes further costs; see Appendix A.6. It is thus safe to predict that
the actual cost of a quantum CSIDH query will be much larger than indicated
by our operation counts. Presumably the gap will be larger than the gap for,
e.g., the AES attack in [28], which has far fewer idle qubits and much less com-
munication overhead.

1.5 Acknowledgments. Thanks to Bo-Yin Yang for suggesting factoring
the average over vectors of the generating function in Sect. 7.3. Thanks to Joost
Renes for his comments.

2 Overview of the Computation

We recall the definition of the CSIDH group action, focusing on the computa-
tional aspects of the concrete construction rather than discussing the general
case of the underlying algebraic theory.

Parameters. The only parameter in CSIDH is a prime number p of the form
p = 4 · �1 · · · �n − 1, where �1 < · · · < �n are (small) odd primes and n ≥ 1. Note
that p ≡ 3 (mod 8) and p > 3.

Notation. For each A ∈ Fp with A2 �= 4, define EA as the Montgomery curve
y2 = x3 + Ax2 + x over Fp. This curve EA is supersingular, meaning that
#EA(Fp) ≡ 1 (mod p), if and only if it has trace zero, meaning that #EA(Fp) =
p + 1. Here EA(Fp) means the group of points of EA with coordinates in Fp,
including the neutral element at ∞; and #EA(Fp) means the number of points.

Define Sp as the set of A such that EA is supersingular. For each A ∈ Sp and
each i ∈ {1, . . . , n}, there is a unique B ∈ Sp such that there is an �i-isogeny
from EA to EB whose kernel is EA(Fp)[�i], the set of points Q ∈ EA(Fp) with
�iQ = 0. Define Li(A) = B. One can show that Li is invertible: specifically,
L−1

i (A) = −Li(−A). Hence Le
i is defined for each integer e.

Inputs and Output. Given an element A ∈ Sp and a list (e1, . . . , en) of integers,
the CSIDH group action computes Le1

1 (Le2
2 (· · · (Len

n (A)) · · · )) ∈ Sp.
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2.1 Distribution of Exponents. The performance of our algorithms de-
pends on the distribution of the exponent vectors (e1, . . . , en), which in turn
depends on the context.

Constructively, [15] proposes to sample each ei independently and uniformly
from a small range {−C, . . . , C}. For example, CSIDH-512 in [15] has n = 74
and uses the range {−5, . . . , 5}, so there are 1174 ≈ 2256 equally likely exponent
vectors. We emphasize, however, that all known attacks actually use consid-
erably larger exponent vectors. This means that the distribution of exponents
(e1, . . . , en) our quantum oracle has to process is not the same as the distribution
used constructively.

The first step in the algorithms of Kuperberg and Regev, applied to a finite
abelian group G, is to generate a uniform superposition over all elements of G.
CRS and CSIDH define a map from vectors (e1, . . . , en) to elements le1

1 · · · len
n

of the ideal-class group G. This map has a high chance of being surjective but
it is far from injective: its kernel is a lattice of rank n. Presumably taking, e.g.,
1774 length-74 vectors with entries in the range {−8, . . . , 8} produces a close-to-
uniform distribution of elements of the CSIDH-512 class group, but the literature
does not indicate how Kuperberg’s algorithm behaves when each group element
is represented as many different strings.

In his original paper on CRS, Couveignes [20] suggested instead generating
a unique vector representing each group element as follows. Compute a basis
for the lattice mentioned above; on a quantum computer this can be done using
Shor’s algorithm [67] which runs in polynomial time, and on a conventional
computer this can be done using Hafner and McCurley’s algorithm [29] which
runs in subexponential time. This basis reveals the group size #G and an easy-
to-sample set R of representatives for G, such as {(e1, 0, . . . , 0) : 0 ≤ e1 < #G}
in the special case that l1 generates G; for the general case see, e.g., [50, Sect. 4.1].
Reduce each representative to a short representative, using an algorithm that
finds a close lattice vector. If this algorithm is deterministic (for example, if all
randomness used in the algorithm is replaced by pseudorandomness generated
from the input) then applying it to a uniform superposition over R produces a
uniform superposition over a set of short vectors uniquely representing G.

The same idea was mentioned in the Childs–Jao–Soukharev paper [17] on
quantum attacks against CRS, and in the description of quantum attacks in the
CSIDH paper. However, close-vector problems are not easy, even in dimensions
as small as 74. Bonnetain and Schrottenloher [11] estimate that CSIDH-512
exponent vectors can be found whose 1-norm is 4 times larger than vectors
used constructively. They rely on a very large precomputation, and they do not
justify their assumption that the 1-norm, rather than the ∞-norm, measures the
cost of a class-group action in superposition. Jao, LeGrow, Leonardi, and Ruiz-
Lopez [38] present an algorithm that guarantees (log p)O(1) bits in each exponent,
i.e., in the ∞-norm, but this also requires a subexponential-time precomputation,
and the exponents appear to be rather large.

Perhaps future research will improve the picture of how much precomputation
time and per-vector computation time is required for algorithms that find vectors
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of a specified size; or, alternatively, will show that Kuperberg-type algorithms
can handle non-unique representatives of group elements. The best conceivable
case for the attacker is the distribution used in CSIDH itself, and we choose this
distribution as an illustration in analyzing the concrete cost of our algorithms.

2.2 Verification of Costs. To ensure that we are correctly computing the
number of bit operations in our group-action algorithms, we have built a bit-
operation simulator, and implemented our algorithms inside the simulator. The
simulator is available from https://quantum.isogeny.org/software.html.

The simulator has a very small core that implements—and counts the number
of—NOT, XOR, AND, and OR operations. Higher-level algorithms, from basic
integer arithmetic up through isogeny computation, are built on top of this core.

The core also encapsulates the values of bits so that higher-level algorithms
do not accidentally inspect those values. There is an explicit mechanism to break
the encapsulation so that output values can be checked against separate compu-
tations in the Sage computer-algebra system.

2.3 Verification of Failure Probabilities. Internally, each of our group-
action algorithms moves the exponent vector (e1, . . . , en) step by step towards
0. The algorithm fails if the vector does not reach 0 within the specified num-
ber of iterations. Analyzing the failure probability requires analyzing how the
distribution of exponent vectors interacts with the distribution of curve points
produced inside the algorithm; each ei step relies on finding a point of order �i.

We mathematically calculate the failure probability in a model where each
generated curve point has probability 1 − 1/�i of having order divisible by �i,
and where these probabilities are all independent. The model would be exactly
correct if each point were generated independently and uniformly at random. We
actually generate points differently, so there is a risk of our failure-probability
calculations being corrupted by inaccuracies in the model. To address this risk,
we have carried out various point-generation experiments, suggesting that the
model is reasonably accurate. Even if the model is inaccurate, one can compen-
sate with a minor increase in costs. See Sects. 4.3 and 5.2.

There is a more serious risk of errors in the failure-probability calculations
that we carry out within the model. To reduce this risk, we have carried out
107 simple trials of the following type for each algorithm: generate a random
exponent vector, move it step by step towards 0 the same way the algorithm
does (in the model), and see how many iterations are required. The observed
distribution of the number of iterations is consistent with the distribution that we
calculate mathematically. Of course, if there is a calculation error that somehow
affects only very small probabilities, then this error will not be caught by only
107 experiments.

2.4 Structure of the Computation. We present our algorithms from bot-
tom up, starting with scalar multiplication in Sect. 3, generation of curve points
in Sect. 4, computation of Li in Sect. 5, and computation of the entire CSIDH
group action in Sects. 6, 7, and 8. Lower-level subroutines for basic integer and
modular arithmetic appear in Appendices B and C respectively.

https://quantum.isogeny.org/software.html
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Various sections and subsections mention ideas for saving time beyond what
we have implemented in our bit-operation simulator. These ideas include low-
level speedups such as avoiding exponentiations in inversions and Legendre-
symbol computations (see Appendix C.4), and higher-level speedups such as
using division polynomials (Sect. 9) and/or modular polynomials (Sect. 10) to
eliminate failures for small primes. All of the specific bit-operation counts that
we state, such as the 1118827416420 ≈ 240 nonlinear bit operations mentioned
above, are fully implemented.

3 Scalar Multiplication on an Elliptic Curve

This section analyzes the costs of scalar multiplication on the curves used in
CSIDH, supersingular Montgomery curves EA : y2 = x3 + Ax2 + x over Fp.

For CSIDH-512, our simulator shows (after our detailed optimizations; see
Appendices B and C) that a squaring S in Fp can be computed in 349596 nonlin-
ear bit operations, and that a general multiplication M in Fp can be computed in
447902 nonlinear bit operations, while addition in Fp takes only 2044 nonlinear
bit operations. We thus emphasize the number of S and M in scalar multipli-
cation (and in higher-level operations), although in our simulator we have also
taken various opportunities to eliminate unnecessary additions and subtractions.

3.1 How Curves Are Represented. We consider two options for represent-
ing EA. The affine option uses A ∈ Fp to represent EA. The projective option
uses A0, A1 ∈ Fp, with A0 �= 0, to represent EA where A = A1/A0.

The formulas to produce a curve in Sect. 5 naturally produce (A0, A1) in pro-
jective form. Dividing A1 by A0 to produce A in affine form costs an inversion and
a multiplication. Staying in projective form is an example of what Appendix C.5
calls “eliminating inversions”, but this requires some extra computation when A
is used, as we explain below.

The definition of the class-group action requires producing the output A
in affine form at the end of the computation. It could also be beneficial to
convert each intermediate A to affine form, depending on the relative costs of
the inversion and the extra computation.

3.2 How Points Are Represented. As in [51, p. 425, last paragraph] and
[53, p. 261], we avoid computing the y-coordinate of a point (x, y) on EA. This
creates some ambiguity, since the points (x, y) and (x,−y) are both represented
as x ∈ Fp, but the ambiguity does not interfere with scalar multiplication.

We again distinguish between affine and projective representations. As in
[5], we represent both (0, 0) and the neutral element on EA as x = 0, and
(except where otherwise noted) we allow X/0, including 0/0, as a projective
representation of x = 0. The projective representation thus uses X,Z ∈ Fp to
represent x = X/Z if Z �= 0, or x = 0 if Z = 0. These definitions eliminate
branches from the scalar-multiplication techniques that we use.

3.3 Computing nP . We use the Montgomery ladder to compute nP , given
a b-bit exponent n and a curve point P . The Montgomery ladder consists of b
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“ladder steps” operating on variables (X2, Z2,X3, Z3) initialized to (1, 0, x1, 1),
where x1 is the x-coordinate of P . Each ladder step works as follows:

• Conditionally swap (X2, Z2) with (X3, Z3), where the condition bit in itera-
tion i is bit nb−1−i of n. This means computing X2 ⊕ X3, ANDing each bit
with the condition bit, and XORing the result into both X2 and X3; and
similarly for Z2 and Z3.

• Compute Y = X2 − Z2, Y 2, T = X2 + Z2, T 2, X4 = T 2Y 2, E = T 2 − Y 2,
and Z4 = E(Y 2 +((A+2)/4)E). This is a point doubling: it uses 2S+3M
and a few additions (counting subtractions as additions). We divide A+2 by
4 modulo p before the scalar multiplication, using two conditional additions
of p and two shifts.

• Compute C = X3 + Z3, D = X3 − Z3, DT , CY , X5 = (DT + CY )2, and
Z5 = x1(DT − CY )2. This is a differential addition: it also uses 2S + 3M
and a few additions.

• Set (X2, Z2,X3, Z3) ← (X4, Z4,X5, Z5).
• Conditionally swap (X2, Z2) with (X3, Z3), where the condition bit is again

nb−1−i. We merge this conditional swap with the conditional swap at the
beginning of the next iteration by using nb−i−i ⊕ nb−i−2 as condition bit.

Then nP has projective representation (X2, Z2) by [9, Theorem 4.5]. The overall
cost is 4bS + 6bM plus a small overhead for additions and conditional swaps.

Representing the input point projectively as X1/Z1 means computing X5 =
Z1(DT + CY )2 and Z5 = X1(DT − CY )2, and starting from (1, 0,X1, Z1). This
costs bM extra. Beware that [9, Theorem 4.5] requires Z1 �= 0.

Similarly, representing A projectively as A1/A0 means computing X4 =
T 2(4A0Y

2) and Z4 = E(4A0Y
2 + (A1 + 2A0)E), after multiplying Y 2 by 4A0.

This also costs bM extra.

Other Techniques. The initial Z2 = 0 and Z3 = 1 (for an affine input point)
are small, and remain small after the first conditional swap, saving time in the
next additions and subtractions. Our framework for tracking sizes of integers
recognizes this automatically. The framework does not, however, recognize that
half of the output of the last conditional swap is unused. We could use dead-value
elimination and other standard peephole optimizations to save bit operations.

Montgomery [53, p. 260] considered carrying out many scalar multiplica-
tions at once, using affine coordinates for intermediate points inside each scalar
multiplication (e.g., x2 = X2/Z2), and batching inversions across the scalar mul-
tiplications. This could be slightly less expensive than the Montgomery ladder
for large b, depending on the S/M ratio. Our computation of a CSIDH group
action involves many scalar multiplications, but not in large enough batches
to justify considering affine coordinates for intermediate points. Computing the
group action for a batch of inputs might change the picture, but for simplicity
we focus on the problem of computing the group action for one input.

A more recent possibility is scalar multiplication on a birationally equivalent
Edwards curve. Sliding-window Edwards scalar multiplication is somewhat less
expensive than the Montgomery ladder for large b; see generally [8] and [34].
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On the other hand, for constant-time computations it is important to use fixed
windows rather than sliding windows. Despite this difficulty, we estimate that
small speedups are possible for b = 512.

3.4 Computing P, 2P, 3P, . . . , kP . An important subroutine in isogeny
computation (see Sect. 5) is to compute the sequence P, 2P, 3P, . . . , kP for a
constant k ≥ 1.

We compute 2P by a doubling, 3P by a differential addition, 4P by a dou-
bling, 5P by a differential addition, 6P by a doubling, etc. In other words, each
multiple of P is computed by the Montgomery ladder as above, but these compu-
tations are merged across the multiples (and conditional swaps are eliminated).
This takes 2(k − 1)S + 3(k − 1)M for affine P and affine A. Projective P adds
�(k − 1)/2�M, and projective A adds �k/2�M.

We could instead compute 2P by a doubling, 3P by a differential addition,
4P by a differential addition, 5P by a differential addition, 6P by a differential
addition, etc. This again takes 2(k − 1)S + 3(k − 1)M for affine P and affine A,
but projective P and projective A now have different effects: projective P adds
(k−2)M if k ≥ 2, and projective A adds M if k ≥ 2. The choice here also has an
impact on metrics beyond bit operations: doublings increase space requirements
but allow more parallelism.

4 Generating Points on an Elliptic Curve

This section analyzes the cost of several methods to generate a random point on
a supersingular Montgomery curve EA : y2 = x3 + Ax2 + x, given A ∈ Fp. As in
Sect. 2, p is a standard prime congruent to 3 modulo 8.

Sometimes one instead wants to generate a point on the twist of the curve.
The twist is the curve −y2 = x3+Ax2+x over Fp; note that −1 is a non-square
in Fp. This curve is isomorphic to E−A by the map (x, y) → (−x, y). Beware
that there are several slightly different concepts of “twist” in the literature; the
definition here is the most useful definition for CSIDH, as explained in [15].

4.1 Random Point on Curve or Twist. The conventional approach is as
follows: generate a uniform random x ∈ Fp; compute x3 + Ax2 + x; compute
y = (x3 + Ax2 + x)(p+1)/4; and check that y2 = x3 + Ax2 + x.

One always has y4 = (x3 + Ax2 + x)p+1 = (x3 + Ax2 + x)2 so ±y2 =
x3 + Ax2 + x. About half the time, y2 will match x3 + Ax2 + x; i.e., (x, y) will
be a point on the curve. Otherwise (x, y) will be a point on the twist.

Since we work purely with x-coordinates (see Sect. 3.2), we skip the compu-
tation of y. However, we still need to know whether we have a curve point or a
twist point, so we compute the Legendre symbol of x3 + Ax2 + x as explained
in Appendix C.4.

The easiest distribution of outputs to mathematically analyze is the uniform
distribution over the following p + 1 pairs:

• (x,+1) where x represents a curve point;
• (x,−1) where x represents a twist point.
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One can generate outputs from this distribution as follows: generate a uniform
random u ∈ Fp ∪ {∞}; set x to u if u ∈ Fp or to 0 if u = ∞; compute the
Legendre symbol of x3 + Ax2 + x; and replace symbol 0 with +1 if u = 0 or −1
if u = ∞.

For computations, it is slightly simpler to drop the two pairs with x = 0:
generate a uniform random x ∈ F

∗
p and compute the Legendre symbol of the

value x3 + Ax2 + x. This generates a uniform distribution over the remaining
p − 1 pairs.

4.2 Random Point on Curve. What if twist points are useless and the goal
is to produce a point specifically on the curve (or vice versa)? One approach
is to generate, e.g., 100 random curve-or-twist points as in Sect. 4.1, and select
the first point on the curve. This fails with probability 1/2100. If a computation
involves generating 210 points in this way then the overall failure probability
is 1 − (1 − 1/2100)2

10 ≈ 1/290. One can tune the number of generated points
according to the required failure probability.

We save time by applying “Elligator” [7], specifically the Elligator 2 map.
Elligator 2 is defined for all the curves EA that we use, except the curve E0, which
we discuss below. For each of these curves EA, Elligator 2 is a fast injective map
from {2, 3, . . . , (p − 1)/2} to the set EA(Fp) of curve points. This produces only
about half of the curve points; see Sect. 5.2 for analysis of the impact of this
nonuniformity upon our higher-level algorithms.

Here are the details of Elligator 2, specialized to these curves, further sim-
plified to avoid computing y, and adapted to allow twists as an option:

• Input A ∈ Fp with A2 �= 4 and A �= 0.
• Input s ∈ {1,−1}. This procedure generates a point on EA if s = 1, or on

the twist of EA if s = −1.
• Input u ∈ {2, 3, . . . , (p − 1)/2}.
• Compute v = A/(u2 − 1).
• Compute e, the Legendre symbol of v3 + Av2 + v.
• Compute x as v if e = s, otherwise −v − A.

To see that this works, note first that v is defined since u2 �= 1, and is nonzero
since A �= 0. One can also show that A2 − 4 is nonsquare for all of the CSIDH
curves, so v3+Av2+v �= 0, so e is 1 or −1. If e = s then x = v so x3+Ax2+x is a
square for s = 1 and a nonsquare for s = −1. Otherwise e = −s and x = −v −A
so x3+Ax2+x = −u2(v3+Av2+v), which is a square for s = 1 and a nonsquare
for s = −1. This uses that v and −v − A satisfy (−v − A)2 + A(−v − A) + 1 =
v2 + Av + 1 and −v − A = −u2v.

The (p − 3)/2 different choices of u produce (p − 3)/2 different curve points,
but we could produce any particular x output twice since we suppress y.

The Case A = 0. One way to extend Elligator 2 to E0 is to set v = u when
A = 0 instead of v = A/(u2 − 1). The point of the construction of v is that
x3 + Ax2 + x for x = −v − A is a non-square times v3 + Av2 + v, i.e., that
(−v − A)/v is a non-square; this is automatic for A = 0, since −1 is a non-
square.
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We actually handle E0 in a different way: we precompute a particular base
point on E0 whose order is divisible by (p + 1)/4, and we always return this
point if A = 0. This makes our higher-level algorithms slightly more effective
(but we disregard this improvement in analyzing the success probability of our
algorithms), since this point guarantees a successful isogeny computation start-
ing from E0; see Sect. 5. The same guarantee removes any need to generate other
points on E0, and is also useful to start walks in Sect. 10.

4.3 Derandomization. Rather than generating random points, we generate
a deterministic sequence of points by taking u = 2 for the first point, u = 3 for
the next point, etc. We precompute the inverses of 1 − 22, 1 − 32, etc., saving
bit operations.

An alternative, saving the same number of bit operations, is to precompute
inverses of 1 − u2 for various random choices of u, embedding the inverses into
the algorithm. This guarantees that the failure probability of the outer algorithm
for any particular input A, as the choices of u vary, is the same as the failure
probability of an algorithm that randomly chooses u upon demand for each A.

We are heuristically assuming that failures are not noticeably correlated
across choices of A. To replace this heuristic with a proof, one can generate
the u sequence randomly for each input. This randomness, in turn, is indistin-
guishable from the output of a cipher, under the assumption that the cipher is
secure. In this setting one cannot precompute the reciprocals of 1 − u2, but one
can still batch the inversions.

5 Computing an �-isogenous Curve

This section analyzes the cost of computing a single isogeny in CSIDH. There
are two inputs: A, specifying a supersingular Montgomery curve EA over Fp;
and i, specifying one of the odd prime factors �i of (p + 1)/4 = �1 · · · �n. The
output is B = Li(A). We abbreviate �i as � and Li as L.

Recall that B is characterized by the following property: there is an �-isogeny
from EA to EB whose kernel is EA(Fp)[�]. Beyond analyzing the costs of com-
puting B = L(A), we analyze the costs of applying the �-isogeny to a point on
EA, obtaining a point on EB . See Sect. 5.4.

The basic reason that CSIDH is much faster than CRS is that the CSIDH con-
struction allows (variants of) Vélu’s formulas [18,62,72] to use points in EA(Fp),
rather than points defined over larger extension fields. This section focuses on
computing B via these formulas. The cost of these formulas is approximately
linear in �, assuming that a point of order � is known. There are two important
caveats here:

• Finding a point of order � is not easy to do in constant time. See Sect. 5.1.
We follow the obvious approach, namely taking an appropriate multiple of a
random point; but this is expensive—recall from Sect. 3 that a 500-bit Mont-
gomery ladder costs 2000S+3000M when A and the input point are affine—
and has failure probability approximately 1/�.
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• In some of our higher-level algorithms, i is a variable. Then � = �i is also
a variable, and Vélu’s formulas are variable-time formulas, while we need
constant-time computations. Generic branch elimination produces a constant-
time computation taking time approximately linear in �1+�2+· · ·+�n, which is
quite slow. However, we show how to do much better, reducing �1+�2+· · ·+�n

to max{�1, �2, . . . , �n}, by exploiting the internal structure of Vélu’s formulas.
See Sect. 5.3.

There are other ways to compute isogenies, as explored in [23,42]:

• The “Kohel” strategy: Compute a univariate polynomial whose roots are
the x-coordinates of the points in EA(Fp)[�]. Use Kohel’s algorithm [45,
Sect. 2.4], which computes an isogeny given this polynomial. This strategy is
(for CSIDH) asymptotically slower than Vélu’s formulas, but could neverthe-
less be faster when � is very small. Furthermore, this strategy is deterministic
and always works.

• The “modular” strategy: Compute the possible j-invariants of EB by factor-
ing modular polynomials. Determine the correct choice of B by computing the
corresponding isogeny kernels or, on subsequent steps, simply by not walking
back.

We analyze the Kohel strategy in Sect. 9, and the modular strategy in Sect. 10.

5.1 Finding a Point of Order �. We now focus on the problem of finding
a point of order � in EA(Fp). By assumption (p + 1)/4 is a product of distinct
odd primes �1, . . . , �n; � = �i is one of those primes; and #EA(Fp) = p + 1. One
can show that EA(Fp) has a point of order 4 and is thus cyclic:

EA(Fp) ∼= Z/(p + 1) ∼= Z/4 × Z/�1 × · · · × Z/�n .

We try to find a point Q of order � in EA(Fp) as follows:

• Pick a random point P ∈ EA(Fp), as explained in Sect. 4.
• Compute a “cofactor” (p + 1)/�. To handle the case � = �i for variable i,

we first use bit operations to compute the list �′
1, . . . , �

′
n, where �′

j = �j for
j �= i and �′

i = 1; we then use a product tree to compute �′
1 · · · �′

n. (Computing
(p+1)/� by a general division algorithm could be faster, but the product tree
is simpler and has negligible cost in context.)

• Compute Q = ((p + 1)/�)P as explained in Sect. 3.

If P is a uniform random element of EA(Fp) then Q is a uniform random element
of EA(Fp)[�] ∼= Z/�. The order of Q is thus the desired � with probability 1−1/�.
Otherwise Q is ∞, the neutral element on the curve, which is represented by
x = 0. Checking for x = 0 is a reliable way to detect this case: the only other
point represented by x = 0 is (0, 0), which is outside EA(Fp)[�].

Different Concepts of Constant Time. Beware that there are two different
notions of “constant time” for cryptographic algorithms. One notion is that the
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time for each operation is independent of secrets. This notion allows the CSIDH
user to generate a uniform random element of EA(Fp)[�] and try again if the
point is ∞, guaranteeing success with an average of �/(� − 1) tries. The time
varies, but the variation is independent of the secret A.

A stricter notion is that the time for each operation is independent of all
inputs. The time depends on parameters, such as p in CSIDH, but does not
depend on random choices. We emphasize that a quantum circuit operating on
many inputs in superposition is, by definition, using this stricter notion. We
thus choose the sequence of operations carried out by the circuit, and analyze
the probability that this sequence fails.

Amplifying the Success Probability. Having each 3-isogeny fail with prob-
ability 1/3, each 5-isogeny fail with probability 1/5, etc. creates a correctness
challenge for higher-level algorithms that compute many isogenies.

A simple workaround is to generate many points Q1, Q2, . . . , QN , and use
bit operations on the points to select the first point with x �= 0. This fails if
all of the points have x = 0. Independent uniform random points have overall
failure probability 1/�N . One can make 1/�N arbitrarily small by choosing N
large enough: for example, 1/3N is below 1/232 for N ≥ 21, and is below 1/2256

for N ≥ 162.
We return to the costs of generating so many points, and the costs of more

sophisticated alternatives, when we analyze algorithms to compute the CSIDH
group action.

5.2 Nonuniform Distribution of Points. We actually generate random
points using Elligator (see Sect. 4.2), which generates only (p − 3)/2 different
curve points P . At most (p + 1)/� of these points produce Q = ∞, so the failure
chance is at most (2/�)(p + 1)/(p − 3) ≈ 2/�.

This bound cannot be simultaneously tight for � = 3, � = 5, and � = 7
(assuming 3 · 5 · 7 divides p + 1): if it were then the Elligator outputs would
include all points having orders dividing (p + 1)/3 or (p + 1)/5 or (p + 1)/7, but
this accounts for more than 54% of all curve points, contradiction.

Points generated by Elligator actually appear to be much better distributed
modulo each �, with failure chance almost exactly 1/�. Experiments support this
conjecture. Readers concerned with the gap between the provable 2/� and the
heuristic 1/� may prefer to add or subtract a few Elligator 2 outputs, obtaining
a distribution provably close to uniform (see [70]) at a moderate cost in perfor-
mance. A more efficient approach is to accept a doubling of failure probability
and use a small number of extra iterations to compensate.

We shall later see other methods of obtaining rational �-torsion points, e.g.,
by pushing points through �′-isogenies. This does not make a difference in the
analysis of failure probabilities.

For comparison, generating a random point on the curve or twist (see
Sect. 4.1) has failure probability above 1/2 at finding a curve point of order �.
See Sect. 6.2 for the impact of this difference upon higher-level algorithms.



Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies 423

5.3 Computing an �-isogenous Curve from a Point of Order �. Once
we have the x-coordinate of a point Q of order � in EA(Fp), we compute the
x-coordinates of the points Q, 2Q, 3Q, . . . , ((�−1)/2)Q. We use this information
to compute B = L(A), the coefficient determining the �-isogenous curve EB .

Recall from Sect. 3.4 that computing Q, 2Q, 3Q, . . . , ((� − 1)/2)Q costs (� −
3)S + 1.5(� − 3)M for affine Q and affine A, and just 1M extra for affine Q
and projective A. The original CSIDH paper [15] took more time here, namely
(� − 3)S + 2(� − 3)M, to handle projective Q and projective A. We decide,
based on comparing � to the cost of an inversion, whether to spend an inversion
converting Q to affine coordinates.

Given the x-coordinates of Q, 2Q, 3Q, . . . , ((� − 1)/2)Q, the original CSIDH
paper [15] took approximately 3�M to compute B. Meyer and Reith [49] pointed
out that CSIDH benefits from Edwards-coordinate isogeny formulas from Moody
and Shumow [54]; we reuse this speedup. These formulas work as follows:

• Compute a = A + 2 and d = A − 2.
• Compute the Edwards y-coordinates of Q, 2Q, 3Q, . . . , ((� − 1)/2)Q. The

Edwards y-coordinate is related to the Montgomery x-coordinate by y =
(x − 1)/(x + 1). We are given each x projectively as X /Z, and compute y
projectively as Y /T where Y = X − Z and T = X + Z. Note that Y and T
naturally occur as intermediate values in the Montgomery ladder.

• Compute the product of these y-coordinates: i.e., compute
∏

Y and
∏

T .
This uses a total of (� − 3)M.

• Compute a′ = a�(
∏

T )8 and d′ = d�(
∏

Y )8. Each �th power takes a logarith-
mic number of squarings and multiplications; see Appendix C.4.

• Compute, projectively, B = 2(a′ + d′)/(a′ − d′). Subsequent computations
decide whether to convert B to affine form.

These formulas are almost three times faster than the formulas used in [15]. The
total cost of computing B from Q is almost two times faster than in [15].

Handling Variable �. We point out that the isogeny computations for � = 3,
� = 5, � = 7, etc. have a Matryoshka-doll structure, allowing a constant-time
computation to handle many different values of � with essentially the same cost
as a single computation for the largest value of �.

Concretely, the following procedure takes approximately �nS + 2.5�nM, and
allows any � ≤ �n. If the context places a smaller upper bound upon � then one
can replace �n with that upper bound, saving time; we return to this idea later.

Compute the Montgomery x-coordinates and the Edwards y-coordinates of
Q, 2Q, 3Q, . . . , ((�n − 1)/2)Q. Use bit operations to replace each Edwards y-
coordinate with 1 after the first (� − 1)/2 points. Compute the product of these
modified y-coordinates; this is the desired product of the Edwards y-coordinates
of the first (� − 1)/2 points. Finish computing B as above. Note that the expo-
nentiation algorithm in Appendix C.4 allows variable �.

5.4 Applying an �-isogeny to a Point. The following formulas define an
�-isogeny from EA to EB with kernel EA(Fp)[�]. The x-coordinate of the image
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of a point P1 ∈ EA(Fp) under this isogeny is

x(P1)
∏

j∈{1,2,...,(�−1)/2}

(
x(P1)x(jQ) − 1
x(P1) − x(jQ)

)2

.

Each x(jQ) appearing here was computed above in projective form X /Z. The
ratio (x(P1)x(jQ) − 1)/(x(P1) − x(jQ)) is (x(P1)X − Z)/(x(P1)Z − X). This
takes 2M to compute projectively if x(P1) is affine, and thus (�−1)M across all
j. Multiplying the numerators takes ((�−3)/2)M, multiplying the denominators
takes ((�−3)/2)M, squaring both takes 2S, and multiplying by x(P1) takes 1M,
for a total of (2� − 3)M + 2S.

If x(P1) is instead given in projective form as X1/Z1 then computing X1X −
Z1Z and X1Z − Z1X might seem to take 4M, but one can instead compute the
sum and difference of (X1 − Z1)(X + Z) and (X1 + Z1)(X − Z), using just 2M.
The only extra cost compared to the affine case is four extra additions. This
speedup was pointed out by Montgomery [53] in the context of the Montgomery
ladder. The initial CSIDH software accompanying [15] did not use this speedup
but [49] mentioned the applicability to CSIDH.

In the opposite direction, if inversion is cheap enough to justify making x(P1)
and every x(jQ) affine, then 2M drops to 1M, and the total cost drops to
approximately 1.5�M.

As in Sect. 5.3, we allow � to be a variable. The cost of variable � is the cost
of a single computation for the maximum allowed �, plus a minor cost for bit
operations to select relevant inputs to the product.

6 Computing the Action: Basic Algorithms

Jao, LeGrow, Leonardi, and Ruiz-Lopez [38] suggested a three-level quantum
algorithm to compute Le1

1 · · · Len
n . This section shows how to make the algorithm

an order of magnitude faster for any particular failure probability.

6.1 Baseline: Reliably Computing Each Li. The lowest level in [38] reli-
ably computes Li as follows. Generate r uniform random points on the curve or
twist, as in Sect. 4.1. Multiply each point by (p + 1)/�i, as in Sect. 5.1, hoping
to obtain a point of order �i on the curve. Use Vélu’s formulas to finish the
computation, as in Sect. 5.3.

Each point has success probability (1/2)(1 − 1/�i), where 1/2 is the proba-
bility of obtaining a curve point (rather than a twist point) and 1 − 1/�i is the
probability of obtaining a point of order �i (rather than order 1). The chance
of all r points failing is thus (�i + 1)r/(2�i)r, decreasing from (2/3)r for �i = 3
down towards (1/2)r as �i grows. One chooses r to obtain a failure probability
as small as desired for the isogeny computation, and for the higher levels of the
algorithm.

The lowest level optionally computes L−1
i instead of Li. The approach in [38],

following [15], is to use points on the twist instead of points on the curve; an
alternative is to compute L−1

i (A) as −Li(−A).
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The middle level of the algorithm computes Le
i , where e is a variable whose

absolute value is bounded by a constant C. This level calls the lowest level
exactly C times, performing a series of C steps of L±1

i , using bit operations on
e to decide whether to retain the results of each step. The ±1 is chosen as the
sign of e, or as an irrelevant 1 if e = 0.

The highest level of the algorithm computes Le1
1 · · · Len

n , where each ei is
between −C and C, by calling the middle level n times, starting with Le1

1 and
ending with Len

n . Our definition of the action applied Len
n first, but the Li oper-

ators commute with each other, so the order does not matter.

Importance of Bounding Each Exponent. We emphasize that this algo-
rithm requires each exponent ei to be between −C and C, i.e., requires the
vector (e1, . . . , en) to have ∞-norm at most C.

We use C = 5 for CSIDH-512 as an illustrative example, but all known
attacks use larger vectors (see Sect. 2.1). C is chosen in [38] so that every input,
every vector in superposition, has ∞-norm at most C; smaller values of C create
a failure probability that needs to be analyzed.

We are not saying that the ∞-norm is the only important feature of the
input vectors. On the contrary: our constant-time subroutine to handle variable-
� isogenies creates opportunities to share work between separate exponents. See
Sects. 5.3 and 7.

Concrete Example. For concreteness we consider uniform random input vec-
tors e ∈ {−5, . . . , 5}74. The highest level calls the middle level n = 74 times,
and the middle level calls the lowest level C = 5 times. Taking r = 70 guar-
antees failure probability at most (2/3)70 at the lowest level, and thus failure
probability at most 1 − (1 − (2/3)70)74·5 ≈ 0.750 · 2−32 for the entire algorithm.

This type of analysis is used in [38] to select r. We point out that the failure
probability of the algorithm is actually lower, and a more accurate analysis
allows a smaller value of r. One can, for example, replace (1 − (2/3)r)74 with∏

i(1−(�i+1)r/(2�i)r), showing that r = 59 suffices for failure probability below
2−32. With more work one can account for the distribution of input vectors e,
rather than taking the worst-case e as in [38]. However, one cannot hope to do
better than r = 55 here: there is a 10/11 chance that at least one 3-isogeny is
required, and taking r ≤ 54 means that this 3-isogeny fails with probability at
least (2/3)54, for an overall failure chance at least (10/11)(2/3)54 > 2−32.

With the choice r = 70 as in [38], there are 74 · 5 · 70 = 25900 iterations,
in total using more than 100 million multiplications in Fp. In the rest of this
section we will reduce the number of iterations by a factor 30, and in Sect. 7 we
will reduce the number of iterations by another factor 3, with only moderate
increases in the cost of each iteration.

6.2 Fewer Failures, and Sharing Failures. We now introduce Algo-
rithm 6.1, which improves upon the algorithm from [38] in three important ways.
First, we use Elligator to target the curve (or the twist if desired); see Sect. 4.2.
This reduces the failure probability of r points from (2/3)r to, heuristically, (1/3)r

for �i = 3; from (3/5)r to (1/5)r for �i = 5; from (4/7)r to (1/7)r for �i = 7; etc.
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Algorithm 6.1: Basic class-group action evaluation.

Parameters: Odd primes �1 < · · · < �n, a prime p = 4�1 · · · �n − 1, and positive

integers (r1, . . . , rn).

Input: A ∈ Sp, integers (e1, . . . , en).

Output: Le1
1 · · · Len

n (A) or “fail”.

for i ← 1 to n do
for j ← 1 to ri do

Let s = sign(ei) ∈ {−1, 0, +1}.

Find a random point P on EsA using Elligator.

Compute Q ← ((p + 1)/�i)P .

Compute B with EB
∼= EsA/〈Q〉 if Q �= ∞.

Set A ← sB if Q �= ∞ and s �= 0.

Set ei ← ei − s if Q �= ∞.

Set A ← “fail” if (e1, . . . , en) �= (0, . . . , 0).

Return A.

Second, we allow a separate ri for each �i. This lets us exploit the differences
in failure probabilities as �i varies.

Third, we handle failures at the middle level instead of the lowest level. The
strategy in [38] to compute Le

i with −C ≤ e ≤ C is to perform C iterations,
where each iteration builds up many points on one curve and reliably moves to
the next curve. We instead perform ri iterations, where each iteration tries to
move from one curve to the next by generating just one point. For C = 1 this
is the same, but for larger C we obtain better tradeoffs between the number of
points and the failure probability.

As a concrete example, generating 20 points on one curve with Elligator has
failure probability (1/3)20 for �i = 3. A series of 5 such computations, overall
generating 100 points, has failure probability 1 − (1 − (1/3)20)5 ≈ 2−29.37. If
we instead perform just 50 iterations, where each iteration generates one point
to move 1 step with probability 2/3, then the probability that we move fewer
than 5 steps is just 3846601/350 ≈ 2−57.37; see Sect. 6.3. Our iterations are more
expensive than in [38]—next to each Elligator computation, we always perform
the steps for computing an �i-isogeny, even if Q = ∞—but (for CSIDH-512
etc.) this is not a large effect: the cost of each iteration is dominated by scalar
multiplication.

We emphasize that all of our algorithms take constant time. When we write
“Compute X ← Y if c” we mean that we always compute Y and the bit c, and
we then replace the jth bit Xj of X with the jth bit Yj of Y for each j if c is set,
by replacing Xj with Xj ⊕ c(Xj ⊕ Yj). This is why Algorithm 6.1 always carries
out the bit operations for computing an �i-isogenous curve, as noted above, even
if Q = ∞.
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Table 6.1. Examples of choices of ri for Algorithm 6.1 for three levels of failure
probability for uniform random CSIDH-512 vectors with entries in {−5, . . . , 5}. Failure
probabilities ε are rounded to three digits after the decimal point. The “total” column
is

∑
ri, the total number of iterations. The “[38]” column is 74 · 5 · r, the number of

iterations in the algorithm of [38], with r chosen as in [38] to have 1 − (1 − (2/3)r)74·5

at most 2−1 or 2−32 or 2−256. Compare Table 6.2 for {−10, . . . , 10}.

ε
�i 3 5 7 11 13 17 . . . 359 367 373 587 total [38]

0.499 · 2−1 11 9 8 7 7 6 . . . 5 5 5 5 406 5920

0.178 · 2−32 36 25 21 18 17 16 . . . 10 10 10 9 869 25900

0.249 · 2−256 183 126 105 85 80 73 . . . 37 37 37 34 3640 167610

6.3 Analysis. We consider the inner loop body of Algorithm 6.1 for a fixed
i, hence write � = �i, e = ei, and r = ri for brevity.

Heuristically (see Sect. 5.2), we model each point Q as independent and
uniform random in a cyclic group of order �, so Q has order 1 with prob-
ability 1/� and order � with probability 1 − 1/�. The number of points of
order � through r iterations of the inner loop is binomially distributed with
parameters r and 1 − 1/�. The probability that this number is |e| or larger is
prob�,e,r =

∑r
t=|e|

(
r
t

)
(1 − 1/�)t

/�r−t. This is exactly the probability that Algo-
rithm 6.1 successfully performs the |e| desired iterations of Lsign(e).

Let C be a nonnegative integer. The overall success probability of the algo-
rithm for a particular input vector (e1, . . . , en) ∈ {−C, . . . , C}n is

n∏

i=1

prob�i,ei,ri
≥

n∏

i=1

prob�i,C,ri
.

Average over vectors to see that the success probability of the algorithm for a
uniform random vector in {−C, . . . , C}n is

∏n
i=1

(∑
−C≤e≤C prob�i,e,ri

/(2C+1)
)
.

6.4 Examples of Target Failure Probabilities. The acceptable level of
failure probability for our algorithm depends on the attack using the algorithm.
For concreteness we consider three possibilities for CSIDH-512 failure proba-
bilities, namely having the algorithm fail for a uniform random vector with
probabilities at most 2−1, 2−32, and 2−256.

Our rationale for considering these probabilities is as follows. Probabilities
around 2−1 are easy to test, and may be of interest beyond this paper for con-
structive scenarios where failing computations can simply be retried. If each
computation needs to work correctly, and there are many computations, then
failure probabilities need to be much smaller, say 2−32. Asking for every input
in superposition to work correctly in one computation (for example, [38] asks for
this) requires a much smaller failure probability, say 2−256. Performance results
for these three cases also provide an adequate basis for estimating performance
in other cases.

Table 6.1 presents three reasonable choices of (r1, . . . , rn), one for each of the
failure probabilities listed above, for the case of CSIDH-512 with uniform random
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Table 6.2. Examples of choices of ri for Algorithm 6.1 for three levels of failure prob-
ability for uniform random CSIDH-512 vectors with entries in {−10, . . . , 10}. Failure
probabilities ε are rounded to three digits after the decimal point. The “total” column
is

∑
ri, the total number of iterations. The “[38]” column is 74 · 10 · r, the number of

iterations in the algorithm of [38], with r chosen as in [38] to have 1 − (1 − (2/3)r)74·10

at most 2−1 or 2−32 or 2−256. Compare Table 6.1 for {−5, . . . , 5}.

ε
�i 3 5 7 11 13 17 . . . 359 367 373 587 total [38]

0.521 · 2−1 20 15 14 13 12 12 . . . 10 10 10 10 786 13320

0.257 · 2−32 48 34 30 25 24 22 . . . 15 15 15 14 1296 52540

0.215 · 2−256 201 139 116 96 90 82 . . . 43 43 43 41 4185 335960

vectors with entries in {−5, . . . , 5}. For each target failure probability δ and each
i, the table chooses the minimum ri such that

∑
−C≤e≤C prob�i,e,ri

/(2C + 1) is
at least (1 − δ)1/n. The overall success probability is then at least 1 − δ as
desired. The discontinuity of choices of (r1, . . . , rn) means that the actual failure
probability ε is somewhat below δ, as shown by the coefficients 0.499, 0.178, 0.249
in Table 6.1. We could move closer to the target failure probability by choosing
successively rn, rn−1, . . ., adjusting the probability (1 − δ)1/n at each step in
light of the overshoot from previous steps. The values ri for ε ≈ 0.499 · 2−1 have
been experimentally verified using a modified version of the CSIDH software.
To illustrate the impact of larger vector entries, we also present similar data in
Table 6.2 for uniform random vectors with entries in {−10, . . . , 10}.

The “total” column in Table 6.1 shows that this algorithm uses, e.g., 869
iterations for failure probability 0.178 · 2−32 with vector entries in {−5, . . . , 5}.
Each iteration consists mostly of a scalar multiplication, plus some extra cost for
Elligator, Vélu’s formulas, etc. Overall there are roughly 5 million field multipli-
cations, accounting for roughly 241 nonlinear bit operations, implying a quantum
computation using roughly 245 T -gates.

As noted in Sect. 1, using the algorithm of [38] on top of the modular-
multiplication algorithm from [63] would use approximately 251 nonlinear bit
operations for the same distribution of input vectors. We save a factor 30 in
the number of iterations compared to [38], and we save a similar factor in the
number of bit operations for each modular multiplication compared to [63].

We do not analyze this algorithm in more detail: the algorithms we present
below are faster.

7 Reducing the Top Nonzero Exponent

Most of the iterations in Algorithm 6.1 are spent on exponents that are already 0.
For example, consider the 869 iterations mentioned above for failure probability
0.178 · 2−32 for uniform random CSIDH-512 vectors with entries in {−5, . . . , 5}.
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Algorithm 7.1: Evaluating the class-group action by reducing the top
nonzero exponent.

Parameters: Odd primes �1 < · · · < �n with n ≥ 1, a prime p = 4�1 · · · �n − 1,

and a positive integer r.

Input: A ∈ Sp, integers (e1, . . . , en).

Output: Le1
1 · · · Len

n (A) or “fail”.

for j ← 1 to r do
Let i = max{k : ek �= 0}, or i = 1 if each ek = 0.

Let s = sign(ei) ∈ {−1, 0, +1}.

Find a random point P on EsA using Elligator.

Compute Q ← ((p + 1)/�i)P .

Compute B with EB
∼= EsA/〈Q〉 if Q �= ∞, using the �i-isogeny formulas

from Section 5.3 with maximum degree �n.

Set A ← sB if Q �= ∞ and s �= 0.

Set ei ← ei − s if Q �= ∞.

Set A ← “fail” if (e1, . . . , en) �= (0, . . . , 0).

Return A.

Entry ei has absolute value 30/11 on average, and needs (30/11)�i/(�i − 1) iter-
ations on average, for a total of

∑
i(30/11)�i/(�i − 1) ≈ 206.79 useful iterations

on average. This means that there are 662.21 useless iterations on average, many
more than one would expect to be needed to guarantee this failure probability.

This section introduces a constant-time algorithm that achieves the same
failure probability with far fewer iterations. For example, in the above scenario,
just 294 iterations suffice to reduce the failure probability below 2−32. Each
iteration becomes (for CSIDH-512) about 25% more expensive, but overall the
algorithm uses far fewer bit operations.

7.1 Iterations Targeting Variable �. It is obvious how to avoid useless
iterations for variable-time algorithms: when an exponent reaches 0, move on to
the next exponent. In other words, always focus on reducing a nonzero exponent,
if one exists.

What is new is doing this in constant time. This is where we exploit the
Matryoshka-doll structure from Sect. 5.3, computing an isogeny for variable �
in constant time. We now pay for an �n-isogeny in each iteration rather than
an �-isogeny, but the iteration cost is still dominated by scalar multiplication.
Concretely, for CSIDH-512, an average �-isogeny costs about 600 multiplications,
and an �n-isogeny costs about 2000 multiplications, but a scalar multiplication
costs about 5000 multiplications.

We choose to reduce the top exponent that is not 0. “Top” here refers to
position, not value: we reduce the nonzero ei where i is maximized. See Algo-
rithm 7.1.
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7.2 Upper Bounds on the Failure Probability. One can crudely estimate
the failure probability of Algorithm 7.1 in terms of the 1-norm E = |e1|+· · ·+|en|
as follows. Model each iteration as having failure probability 1/3 instead of
1/�i; this produces a loose upper bound for the overall failure probability of the
algorithm.

In this model, the chance of needing exactly r iterations to find a point of
order �i is the coefficient of xr in the power series

(2/3)x + (2/9)x2 + (2/27)x3 + · · · = 2x/(3 − x).

The chance of needing exactly r iterations to find all E points is the coefficient
of xr in the Eth power of that power series, namely cr =

(
r−1
E−1

)
2E/3r for r ≥ E.

See generally [74] for an introduction to the power-series view of combinatorics;
there are many other ways to derive the formula

(
r−1
E−1

)
2E/3r, but we make

critical use of power series for fast computations in Sects. 7.3 and 8.3.
The failure probability of r iterations of Algorithm 7.1 is at most the failure

probability of r iterations in this model, namely f(r, E) = 1−cE −cE+1−· · ·−cr.
The failure probability of r iterations for a uniform random vector with entries
in {−C, . . . , C} is at most

∑
0≤E≤nC f(r, E)g[E]. Here g[E] is the probability

that a vector has 1-norm E, which we compute as the coefficient of xE in the nth
power of the polynomial (1 + 2x + 2x2 + · · · + 2xC)/(2C + 1). For example, with
n = 74 and C = 5, the failure probability in this model (rounded to 3 digits after
the decimal point) is 0.999 · 2−1 for r = 302; 0.965 · 2−2 for r = 319; 0.844 · 2−32

for r = 461; and 0.570 · 2−256 for r = 823. As a double-check, we observe that a
simple simulation of the model for r = 319 produces 241071 failures in 1000000
experiments, close to the predicted 0.965 · 2−2 · 1000000 ≈ 241250.

7.3 Exact Values of the Failure Probability. The upper bounds from the
model above are too pessimistic, except for �i = 3. We instead compute the
exact failure probabilities as follows.

The chance that Le1
1 · · · Len

n requires exactly r iterations is the coefficient of
xr in the power series

(
(�1 − 1)x
�1 − x

)|e1|
· · ·

(
(�n − 1)x
�n − x

)|en|
.

What we want is the average of this coefficient over all vectors (e1, . . . , en) ∈
{−C, . . . , C}n. This is the same as the coefficient of the average, and the average
factors nicely as
⎛

⎝
∑

−C≤e1≤C

1
2C + 1

(
(�1 − 1)x
�1 − x

)|e1|
⎞

⎠ · · ·
⎛

⎝
∑

−C≤en≤C

1
2C + 1

(
(�n − 1)x
�n − x

)|en|
⎞

⎠ .

We compute this product as a power series with rational coefficients: for example,
we compute the coefficients of x0, . . . , x499 if we are not interested in 500 or more
iterations. We then add together the coefficients of x0, . . . , xr to find the exact
success probability of r iterations of Algorithm 7.1.
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As an example we again take CSIDH-512 with C = 5. The failure probability
(again rounded to 3 digits after the decimal point) is 0.960 · 2−1 for r = 207;
0.998 · 2−2 for r = 216; 0.984 · 2−32 for r = 294; 0.521 · 2−51 for r = 319;
and 0.773 · 2−256 for r = 468. We double-checked these averages against the
results of Monte Carlo calculations for these values of r. Each Monte Carlo
iteration sampled a uniform random 1-norm (weighted appropriately for the
initial probability of each 1-norm), sampled a uniform random vector within
that 1-norm, and computed the failure probability for that vector using the
single-vector generating function.

7.4 Analysis of the Cost. We have fully implemented Algorithm 7.1 in our
bit-operation simulator. One iteration for CSIDH-512 uses 9208697761 ≈ 233

bit operations, including 3805535430 ≈ 232 nonlinear bit operations. More than
95% of the cost is explained as follows:

• Each iteration uses a Montgomery ladder with a 511-bit scalar. (We could
save a bit here: the largest useful scalar is (p+1)/3, which is below 2510.) We
use an affine input point and an affine A, so this costs 2044S + 3066M.

• Each iteration uses the formulas from Sect. 5.3 with � = 587. This takes
602S + 1472M: specifically, 584S + 876M for multiples of the point of order
� (again affine); 584M for the product of Edwards y-coordinates; 18S + 10M
for two �th powers; and 2M to multiply by two 8th powers. (We merge the
6S for the 8th powers into the squarings used for the �th powers.)

• Each iteration uses two inversions to obtain affine Q and A, each 507S+97M,
and one Legendre-symbol computation, 506S + 96M.

This accounts for 4166S+4828M per iteration, i.e., 4166·349596+4828·447902 =
3618887792 ≈ 232 nonlinear bit operations.

The cost of 294 iterations is simply 294 · 3805535430 = 1118827416420 ≈ 240

nonlinear bit operations. This justifies the first (B, ε) claim in Sect. 1.

7.5 Decreasing the Maximum Degrees. Always performing isogeny com-
putations capable of handling degrees up to �n is wasteful: With overwhelming
probability, almost all of the 294 iterations required for a failure probability
of less than 2−32 with the approach discussed so far actually compute isoge-
nies of degree (much) less than �n. For example, with e uniformly random in
{−5, . . . , 5}, the probability that 10 iterations are not sufficient to eliminate all
587-isogenies is approximately 2−50. Therefore, using smaller upper bounds on
the isogeny degrees for later iterations of the algorithm will not do much harm
to the success probability while significantly improving the performance. We
modify Algorithm 7.1 as follows:

• Instead of a single parameter r, we use a list (r1, . . . , rn) of non-negative inte-
gers, each ri denoting the number of times an isogeny computation capable
of handling degrees up to �i is performed.

• The loop iterating from 1 through r is replaced by an outer loop on u from n
down to 1, and inside that an inner loop on j from 1 up to ru. The loop body
is unchanged, except that the maximum degree for the isogeny formulas is
now �u instead of �n.
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Table 7.1. Examples of choices of ri, . . . , ri for Algorithm 7.1 with reducing the max-
imal degree in Vélu’s formulas for uniform random CSIDH-512 vectors with entries in
{−5, . . . , 5}. Failure probabilities ε are rounded to three digits after the decimal point.

ε rn . . . r1
∑

ri avg. �

0.594 · 2−1
5 3 4 5 3 5 5 4 3 5 4 3 4 4 3 4 3 4 3 3 3 4 3 3 3 4 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 4 2 3 3 3 3 2 3 3 3 2 3
3 2 3 2 3 2 3 2 2 3 2 2 2 1 1 1 0 0

218 205.0

0.970 · 2−32
9 5 5 5 5 5 4 5 5 5 4 5 4 5 5 4 5 4 4 5 5 4 4 4 5 4 4 4
4 4 3 5 3 4 4 4 3 4 4 4 3 4 4 3 4 3 4 3 4 4 3 4 3 3 4 4
3 3 4 3 3 4 3 4 3 3 4 3 3 3 4 3 3 4

295 196.0

0.705 · 2−256
34 8 6 6 5 6 6 5 5 6 5 6 5 5 5 5 6 5 5 5 5 6 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 6 5 5 5 5 5 4 6
5 5 5 5 5 5 5 6 5 5 6 6 6 6 7 7 11 16 38

469 182.7

For a given sequence (r1, . . . , rn), the probability of success can be computed as
follows:

• For each i ∈ {1, . . . , n}, compute the generating function

φi(x) =
∑

−C≤ei≤C

1
2C + 1

(
(�i − 1)x
�i − x

)|ei|

of the number of �i-isogeny steps that have to be performed.
• Since we are no longer only interested in the total number of isogeny steps

to be computed, but also in their degrees, we cannot simply take the product
of all φi as before. Instead, to account for the fact that failing to compute a
�i-isogeny before the maximal degree drops below �i implies a total failure,
we iteratively compute the product of the φi from k = n down to 1, but
truncate the product after each step. Truncation after some power xt means
eliminating all branches of the probabilistic process in which more than t
isogeny steps are needed for the computations so far. In our case we use
t =

∑n
j=i rj after multiplying by φi, which removes all outcomes in which

more isogeny steps of degree ≥ �i would have needed to be computed.
• After all φi have been processed (including the final truncation), the proba-

bility of success is the sum of all coefficients of the remaining power series.

Note that we have only described a procedure to compute the success probability
once r1, . . . , rn are known. It is unclear how to find the optimal values ri which
minimize the cost of the resulting algorithm, while at the same time respecting a
certain failure probability. We tried various reasonable-looking choices of strate-
gies to choose the ri according to certain prescribed failure probabilities after
each individual step. Experimentally, a good rule seems to be that the failure
probability after processing φi should be bounded by ε · 22/i−2, where ε is the
overall target failure probability. The results are shown in Table 7.1.

The average degree of the isogenies used constructively in CSIDH-512 is
about 174.6, which is not much smaller than the average degree we achieve.
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Since we still need to control the error probability, it does not appear that one
can expect to get much closer to the constructive case.

Also note that the total number of isogeny steps for ε ≈ 2−32 and ε ≈ 2−256 is
each only one more than the previous number r of isogeny computations, hence
one can expect significant savings using this strategy. Assuming that about 1/4 of
the total time is spent on Vélu’s formulas (which is close to the real proportion),
we get a speedup of about 16% for ε ≈ 2−32 and about 17% for ε ≈ 2−256.

8 Pushing Points Through Isogenies

Algorithms 6.1 and 7.1 spend most of their time on scalar multiplication. This
section pushes points through isogenies to reduce the time spent on scalar mul-
tiplication, saving time overall.

The general idea of balancing isogeny computation with scalar multiplication
was introduced in [22] in the SIDH context, and was reused in the variable-
time CSIDH algorithms in [15]. This section adapts the idea to the context of
constant-time CSIDH computation.

8.1 Why Pushing Points Through Isogenies Saves Time. To illustrate
the main idea, we begin by considering a sequence of just two isogenies with the
same sign. Specifically, assume that, given distinct �1 and �2 dividing p + 1, we
want to compute L1L2(A) = B. Here are two different methods:

• Method 1. The method of Algorithm 6.1 uses Elligator to find P1 ∈ EA(Fp),
computes Q1 ← [(p + 1)/�1]P1, computes EA′ = EA/〈Q1〉, uses Elligator
to find P2 ∈ EA′(Fp), computes Q2 ← [(p + 1)/�2]P2, and computes EB =
EA′/〈Q2〉. Failure cases: if Q1 = ∞ then this method computes A′ = A, failing
to compute L1; similarly, if Q2 = ∞ then this method computes B = A′,
failing to compute L2.

• Method 2. The method described in this section instead uses Elligator to find
P ∈ EA(Fp), computes R ← [(p + 1)/�1�2]P , computes Q ← [�2]R, computes
ϕ : EA → EA′ = EA/〈Q〉 and Q′ = ϕ(R), and computes EB = EA′/〈Q′〉.
Failure cases: if Q = ∞ then this method computes Q′ = R (which has order
dividing �2) and A′ = A, failing to compute L1; if Q′ = ∞ then this method
computes B = A′, failing to compute L2.

For concreteness, we compare the costs of these methods for CSIDH-512. The
rest of this subsection uses approximations to the costs of lower-level operations
to simplify the analysis. The main costs are as follows:

• For p a 512-bit prime, Elligator costs approximately 600M.
• Given P ∈ E(Fp) and a positive integer k, the computation of [k]P

via the Montgomery ladder, as described in Sect. 3.3, costs approximately
10(log2 k)M, i.e., approximately (5120 − 10 log2 �)M if k = (p + 1)/�.

• The computation of a degree-� isogeny via the method described in Sect. 5.3
costs approximately (3.5� + 2 log2 �)M.
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• Given an �-isogeny ϕ� : E → E′ and P ∈ E(Fp), the computation of ϕ�(P )
via the method described in Sect. 5.4 costs approximately 2�M.

Method 1 costs approximately

(1200 + 10240 + 3.5�1 + 3.5�2 − 8 log2 �1 − 8 log2 �2)M,

while Method 2 costs approximately

(600 + 5120 + 5.5�1 + 3.5�2 − 8 log2 �1 + 2 log2 �2)M.

The savings of (600 + 5120)M clearly outweighs the loss of (2�1 + 10 log2 �2)M,
since the largest value of �i is 587.

There are limits to the applicability of Method 2: it cannot combine two
isogenies of opposite signs, it cannot combine two isogenies using the same prime,
and it cannot save time in applying just one isogeny. We will analyze the overall
magnitude of these effects in Sect. 8.3.

8.2 Handling the General Case, Two Isogenies at a Time. Algorithm 8.1
computes Le1

1 · · · Len
n (A) for any exponent vector (e1, . . . , en). Each iteration of

the algorithm tries to perform two isogenies: one for the top nonzero exponent
(if the vector is nonzero), and one for the next exponent having the same sign
(if the vector has another exponent of this sign). As in Sect. 7, “top” refers to
position, not value.

The algorithm pushes the first point through the first isogeny, as in Sect. 8.1,
to save the cost of generating a second point. Scalar multiplication, isogeny com-
putation, and isogeny application use the constant-time subroutines described
in Sects. 3.3, 5.3, and 5.4 respectively. The cost of these algorithms depends on
the bound �n for the prime for the top nonzero exponent and the bound �n−1

for the prime for the next exponent. The two prime bounds have asymmetric
effects upon costs; we exploit this by applying the isogeny for the top nonzero
exponent after the isogeny for the next exponent.

Analyzing the correctness of Algorithm 8.1—assuming that there are enough
iterations; see Sect. 8.3—requires considering three cases. The first case is that
the exponent vector is 0. Then i, i′, s are initialized to 0, 0, 1 respectively, and i, i′

stay 0 throughout the iteration, so A does not change and the exponent vector
does not change.

The second case is that the exponent vector is nonzero and the top nonzero
exponent ei is the only exponent having sign s. Then i′ is 0 throughout the
iteration, so the “first isogeny” portion of Algorithm 8.1 has no effect. The point
Q = R in the “second isogeny” portion is cP where c = (p + 1)/�i, so �iQ = ∞.
If Q = ∞ then i is set to 0 and the entire iteration has no effect, except for
setting A to sA and then back to s(sA) = A. If Q �= ∞ then i stays nonzero
and A is replaced by Li(A), so A at the end of the iteration is Ls

i applied to A
at the beginning of the iteration, while s is subtracted from ei.

The third case is that the exponent vector is nonzero and that ei′ is the next
exponent having the same sign s as the top nonzero exponent ei. By construction
i′ < i ≤ n so �i′ ≤ �n−1. Now R = cP where c = (p+1)/(�i�i′). The first isogeny



Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies 435

Algorithm 8.1: Evaluating the class-group action by reducing the top
nonzero exponent and the next exponent with the same sign.

Parameters: Odd primes �1 < · · · < �n with n ≥ 1, a prime p = 4�1 · · · �n − 1,

and a positive integer r.

Input: A ∈ Sp, integers (e1, . . . , en).

Output: Le1
1 · · · Len

n (A) or “fail”.

for j ← 1 to r do
Set I ← {k : 1 ≤ k ≤ n and ek �= 0}.

Set i ← max I and s ← sign(ei) ∈ {−1, 1}, or i ← 0 and s ← 1 if I = {}.

Set I ′ ← {k : 1 ≤ k < i and sign(ek) = s}.

Set i′ ← max I ′, or i′ ← 0 if I ′ = {}.

Twist. Set A ← sA.

Isogeny preparation. Find a random point P on EA using Elligator.

Compute R ← cP where c = 4
∏

1≤j≤n,j �=i,j �=i′ �j .

First isogeny. Compute Q ← �iR, where �0 means 1.

[Now �i′Q = ∞ if i′ �= 0.] Set i′ ← 0 if Q = ∞.

Compute B with EB
∼= EA/〈Q〉 if i′ �= 0, using the �i′ -isogeny formulas from

Section 5.3 with maximum degree �n−1.

Set R to the image of R in EB if i′ �= 0, using the �i′ -isogeny formulas from

Section 5.4 with maximum degree �n−1.

Set A ← B and ei′ ← ei′ − s if i′ �= 0.

Second isogeny. Set Q ← R.

[Now �iQ = ∞ if i �= 0.] Set i ← 0 if Q = ∞.

Compute B with EB
∼= EA/〈Q〉 if i �= 0, using the �i-isogeny formulas from

Section 5.3 with maximum degree �n.

Set A ← B and ei ← ei − s if i �= 0.

Untwist. Set A ← sA.

Set A ← “fail” if (e1, . . . , en) �= (0, . . . , 0).

Return A.

uses the point Q = �iR, which is either ∞ or a point of order �i′ . If Q is ∞ then
i′ is set to 0; both A and the vector are unchanged; the point R must have order
dividing �i; and the second isogeny proceeds as above using this point. If Q has
order �i′ then the first isogeny replaces A with Li′(A), while subtracting s from
ei′ and replacing R with a point of order dividing �i on the new curve (note that
the �i′ -isogeny removes any �i′ from orders of points); again the second isogeny
proceeds as above.

8.3 Analysis of the Failure Probability. Consider a modified dual-isogeny
algorithm in which the isogeny with a smaller prime is saved to handle later:
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• Initialize an iteration counter to 0.
• Initialize an empty bank of positive isogenies.
• Initialize an empty bank of negative isogenies.
• For each � in decreasing order:

• While an �-isogeny needs to be done and the bank has an isogeny of the
correct sign: Withdraw an isogeny from the bank, apply the isogeny, and
adjust the exponent.

• While an �-isogeny still needs to be done: Apply an isogeny, adjust the
exponent, deposit an isogeny with the bank, and increase the iteration
counter.

This uses more bit operations than Algorithm 8.1 (since the work here is not
shared across two isogenies), but it has the same failure probability for the same
number of iterations. We now focus on analyzing the distribution of the number
of iterations used by this modified algorithm.

We use three variables to characterize the state of the modified algorithm
before each �:

• i ≥ 0 is the iteration counter;
• j ≥ 0 is the number of positive isogenies in the bank;
• k ≥ 0 is the number of negative isogenies in the bank.

The number of isogenies actually applied so far is 2i−(j+k) ≥ i. The distribution
of states is captured by the three-variable formal power series

∑
i,j,k si,j,kxiyjzk

where si,j,k is the probability of state (i, j, k). Note that there is no need to track
which primes are paired with which; this is what makes the modified algorithm
relatively easy to analyze.

If there are exactly h positive �-isogenies to perform then the new state after
those isogenies is (i, j −h, k) if h ≤ j, or (i+h− j, h− j, k) if h > j. This can be
viewed as a composition of two operations on the power series. First, multiply
by y−h. Second, replace any positive power of y−1 with the same power of xy;
i.e., replace xiyjzk for each j < 0 with xi−jy−jzk.

We actually have a distribution of the number of �-isogenies to perform. Say
there are h isogenies with probability qh. We multiply the original series by∑

h≥0 qhy−h, and then eliminate negative powers of y as above. We similarly
handle h < 0, exchanging the role of (j, y) with the role of (k, z).

As in the analyses earlier in the paper, we model each point Q for an �-
isogeny as having order 1 with probability 1/� and order � with probability
1 − 1/�, and we assume that the number of �-isogenies to perform is a uniform
random integer e ∈ {−C, . . . , C}. Then qh for h ≥ 0 is the coefficient of xh in∑

0≤e≤C(((� − 1)x)/(� − x))e/(2C + 1); also, q−h = qh.
We reduce the time spent on these computations in three ways. First, we

discard all states with i > r if we are not interested in more than r iterations.
This leaves a cubic number of states for each �: every i between 0 and r inclusive,
every j between 0 and i inclusive, and every k between 0 and i − j inclusive.

Second, we use fixed-precision arithmetic, rounding each probability to an
integer multiple of (e.g.) 2−512. We round down to obtain lower bounds on success
probabilities; we round up to obtain upper bounds on success probabilities; we
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choose the scale 2−512 so that these bounds are as tight as desired. We could save
more time by reducing the precision slightly at each step of the computation,
and by using standard interval-arithmetic techniques to merge computations of
lower and upper bounds.

Third, to multiply the series
∑

i,j,k si,j,kxiyjzk by
∑

h≥0 qhy−h, we actually
multiply

∑
j si,j,kyj by

∑
h≥0 qhy−h for each (i, k) separately. We use Sage for

these multiplications of univariate polynomials with integer coefficients. Sage, in
turn, uses fast multiplication algorithms whose cost is essentially bd for d b-bit
coefficients, so our total cost for n primes is essentially bnr3.

Concretely, we use under two hours on one core of a 3.5GHz Intel Xeon E3-
1275 v3 to compute lower bounds on all the success probabilities for CSIDH-512
with b = 512 and r = 349, and under three hours2 to compute upper bounds. Our
convention of rounding failure probabilities to 3 digits makes the lower bounds
and upper bounds identical, so presumably we could have used less precision.

We find, e.g., failure probability 0.943 · 2−1 after 106 iterations, failure prob-
ability 0.855 · 2−32 after 154 iterations, and failure probability 0.975 · 2−257 after
307 iterations. Compared to the 207, 294, 468 single-isogeny iterations required
in Sect. 7.3, the number of iterations has decreased to 51.2%, 52.3%, 65.6%
respectively.

8.4 Analysis of the Cost. We have fully implemented Algorithm 8.1 in our
bit-operation simulator. An iteration of Algorithm 8.1 uses 4969644344 ≈ 232

nonlinear bit operations, about 1.306 times more expensive than an iteration of
Algorithm 7.1.

If the number of iterations were multiplied by exactly 0.5 then the total
cost would be multiplied by 0.653. Given the actual number of iterations (see
Sect. 8.3), the cost is actually multiplied by 0.669, 0.684, 0.857 respectively. In
particular, we reach failure probability 0.855 · 2−32 with 154 · 4969644344 =
765325228976 ≈ 0.7 ·240 nonlinear bit operations. This justifies the second (B, ε)
claim in Sect. 1.

8.5 Variants. The idea of pushing points through isogenies can be com-
bined with the idea of gradually reducing the maximum prime allowed in the
Matryoshka-doll isogeny formulas. This is compatible with our techniques for
analyzing failure probabilities.

A dual-isogeny iteration very late in the computation is likely to have a
useless second isogeny. It should be slightly better to replace some of the last
dual-isogeny iterations with single-isogeny iterations. This is also compatible
with our techniques for analyzing failure probabilities.

There are many different possible pairings of primes: one can take any two
distinct positions where the exponents have the same sign. Possibilities include
reducing exponents from the bottom rather than the top; reducing the top
nonzero exponent and the bottom exponent with the same sign; always pairing

2 It is unsurprising that lower bounds are faster: many coefficients qh round down to
0. We could save time in the upper bounds by checking for stretches of coefficients
that round up to, e.g., 1/2512, and using additions to multiply by those stretches.
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“high” positions with “low” positions; always reducing the largest exponents in
absolute value; always reducing ei where |ei|�i/(�i − 1) is largest. For some of
these ideas it is not clear how to efficiently analyze failure probabilities.

This section has focused on reusing an Elligator computation and large scalar
multiplication for (in most cases) two isogeny computations, dividing the scalar-
multiplication cost by (nearly) 2, in exchange for some overhead. We could push
a point through more isogenies, although each extra isogeny has further overhead
with less and less benefit, and computing the failure probability becomes more
expensive. For comparison, [15] reuses one point for every �i where ei has the
same sign; the number of such �i is variable, and decreases as the computation
continues. For small primes it might also save time to push multiple points
through one isogeny, as in [22].

9 Computing �-isogenies Using Division Polynomials

As the target failure probability decreases, the algorithms earlier in this paper
spend more and more iterations handling the possibility of repeated failures for
small primes �. This section presents and analyzes an alternative: a deterministic
constant-time subroutine that uses division polynomials to always compute �-
isogenies. See full version of paper online at https://ia.cr/2018/1059.

10 Computing �-isogenies Using Modular Polynomials

Modular polynomials, like division polynomials, give a deterministic subroutine
to compute �-isogenies. The advantage of modular polynomials over division
polynomials is that modular polynomials are smaller for all � ≥ 5. However,
using modular polynomials requires solving two additional problems. See full
version of paper online at https://ia.cr/2018/1059.
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Abstract. In privacy amplification, two mutually trusted parties aim
to amplify the secrecy of an initial shared secret X in order to establish
a shared private key K by exchanging messages over an insecure commu-
nication channel. If the channel is authenticated the task can be solved
in a single round of communication using a strong randomness extrac-
tor; choosing a quantum-proof extractor allows one to establish security
against quantum adversaries.

In the case that the channel is not authenticated, this simple solution
is no longer secure. Nevertheless, Dodis and Wichs (STOC’09) showed
that the problem can be solved in two rounds of communication using a
non-malleable extractor, a stronger pseudo-random construction than a
strong extractor.

We give the first construction of a non-malleable extractor that is
secure against quantum adversaries. The extractor is based on a construc-
tion by Li (FOCS’12), and is able to extract from source of min-entropy
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rates larger than 1/2. Combining this construction with a quantum-proof
variant of the reduction of Dodis and Wichs, due to Cohen and Vidick
(unpublished) we obtain the first privacy amplification protocol secure
against active quantum adversaries.

1 Introduction

Privacy amplification. We study the problem of privacy amplification [4,5,30,31]
(PA). In this problem, two parties, Alice and Bob, share a weak secret X (a
random variable with min-entropy at least k). Using X and an insecure commu-
nication channel, Alice and Bob would like to securely agree on a secret key R
that is ε-close to uniformly random even to an adversary Eve who may have full
control over their communication channel. This elegant problem has multiple
applications including biometric authentication, leakage-resilient cryptography,
and quantum cryptography.

If the adversary Eve is passive, i.e., she is only able to observe the communi-
cation but may not alter the messages exchanged, then there is a direct solution
based on the use of a strong seeded randomness extractor Ext [33]. This can be
done by Alice selecting a uniform seed Y for the extractor, and sending the seed
to Bob; Alice and Bob both compute the key R = Ext(X,Y ), which is close
to being uniformly random and independent of Y by the strong extractor prop-
erty. The use of a quantum-proof extractor suffices to protect against adversaries
holding quantum side information about the secret X.

Privacy amplification is substantially more challenging when the adversary is
active, i.e. Eve can not only read but also modify messages exchanged across the
communication channel. This problem has been studied extensively in several
works including [2,3,8,9,12,13,16,17,19,20,25–29,31,35], yielding constructions
that are optimal or near-optimal in any of the parameters involved in the prob-
lem, including the min-entropy k, the error ε, and the communication complexity
of the protocol.

Active adversaries with quantum side information. We consider the problem
of active attacks by quantum adversaries. This question arises naturally when
privacy amplification is used as a sub-protocol, e.g., as a post-processing step in
quantum key distribution (QKD), when it may not be safe to assume that the
classical communication channel is authenticated.1 To the best of our knowledge
the question was first raised in [7], whose primary focus is privacy amplification
with an additional property of source privacy. Although the authors of [7] initially
claimed that their construction is secure against quantum side information, they
later realized that there was an issue with their argument, and withdrew their
claim of quantum security. The only other work we are aware of approaching the
question of privacy amplification in the presence of active quantum adversaries

1 QKD relies on an authenticated channel at other stages of the protocol, and here we
only address the privacy amplification part: indeed, PA plays an important role in
multiple other cryptographic protocols, and it is a fundamental task that it is useful
to address first.
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is [14]. In this paper it is shown that a classical protocol for PA introduced
by Dodis and Wichs [19] remains secure against active quantum attacks when
the main tool used in the protocol, a non-malleable extractor, is secure against
quantum side information (a notion that is also formally introduced in that
paper, and to which we return shortly). Unfortunately, the final contribution
of [14], a construction of a quantum-proof non-malleable extractor, also had a
flaw in the proof, invalidating the construction. Thus, the problem of quantum-
secure active privacy amplification remained open.

It may be useful to discuss the difficulty faced by both these previous works,
as it informed our own construction. The issue is related to the modeling of
the side information held by the adversary Eve, and how that side information
evolves as messages are being exchanged, and possibly modified, throughout the
privacy amplification protocol. To explain this, consider the setting for a non-
malleable extractor, whose security property can be defined without referring
to the way the extractor is used for privacy amplification. Here, Alice initially
has a secret X (the source), while Eve holds side information E, a quantum
state, correlated with X. Alice selects a uniformly random seed Y and computes
Ext(X,Y ). However, in addition to receiving Y (as would already be the case
for a strong randomness extractor), Eve is also given the possibility to select
an arbitrary Y ′ �= Y and receive Ext(X,Y ′) as “advice” to help her break
the extractor—i.e., distinguish Ext(X,Y ) from uniform. Now, clearly in any
practical scenario the adversary may use her side information E in order to guide
her choice of Y ′; thus Y ′ should be considered as the outcome of a measurement
{My′

y }, depending on Y = y and performed on E, which returns an outcome
Y ′ = y′ and a post-measurement state E′. This means that the security of the
extractor should be considered with respect to the side information E′. But due
to the measurement, E′ may be correlated with both X and Y in a way that
cannot be addressed by standard techniques for the analysis of strong extractors.
Indeed, even if E′ is classical, so that we can condition on its value, X and Y may
not be independent after conditioning on E′ = e′; due to the lack of independence
it is unclear whether extraction works. (Classical proofs condition on E = e at
the outset, which does preserve independence.)

The issue seems particularly difficult to accommodate when analyzing extrac-
tors based on the technique of “alternate extraction”, as was attempted in [7,14].
In fact, in the original version of [7] the issue is overlooked, resulting in a flawed
security proof. In [14] the authors attempted to deal with the difficulty by using
the formalism of quantum Markov chains; unfortunately, there is a gap in the argu-
ment and it does not seem like the scenario can be modeled using the Markov chain
formalism. Note that in the classical setting the issue does not arise: having fixed
E = e we can consider Y ′ to be a fixed, deterministic function of Y —there is no
E′ to consider, and X is independent of both Y and Y ′ conditioned on E = e. In
this paper we do not address the issue, but instead focus on a specific construction
of non-malleable extractor whose security can be shown by algebraic techniques
sidestepping the difficulty; we explain our approach in more detail below.

Our results. We show that a non-malleable extractor introduced by Li [27] in
the classical setting is secure against quantum side information. Combining this
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construction with the protocol of Dodis and Wichs and its proof of security
from [14], we obtain the first protocol for privacy amplification that is secure
against active quantum adversaries.

Before describing our results in more detail we summarize Li’s construction
and its analysis for the case of classical side information. The construction is
based on the inner product function. Let p be a prime, Fp the finite field with
p elements, and 〈·, ·〉 the inner product over Fp. Consider the function Ext :
F

n
p × F

n
p → Fp given by Ext(X,Y ) := 〈X,Y 〉, where X ∈ F

n
p is a weak secret

with min-entropy (conditioned on the adversary’s side information) assumed to
be greater than (n log p)/2, and Y is a uniformly random and independent seed.
For this function to be a non-malleable extractor, it is required that Ext(X,Y ) is
close to uniform and independent of Ext(X, f(Y )), where f is any adversarially
chosen function such that f(Y ) �= Y for all Y . This is clearly not true, since
if f(Y ) = cY for some c ∈ Fp \ {1}, then Ext(X, f(Y )) = cExt(X,Y ), and
hence we don’t get the desired independence. Thus, for such a construction
to work, it is necessary to encode the source Y as Enc(Y ), for a well-chosen
function Enc, in such a way that 〈X,Enc(Y )〉 − c · 〈X,Enc(f(Y ))〉 is hard to
guess. The non-uniform XOR lemma [3,13,17] shows that it is sufficient to show
that 〈X,Enc(Y )〉 − c · 〈X,Enc(f(Y ))〉 = 〈X,Enc(Y ) − c · Enc(f(Y ))〉 is close to
uniform conditioned on Y and E. The encoding that we use in this paper (which
is almost the same as the encoding chosen by Li) is to take Y ∈ F

n/2
p , and encode

it as Y ‖Y 2, which we view as an n-character string over Fp, with the symbol
‖ denoting concatenation of strings and the square taken by first interpreting
Y as an element of Fpn/2 . Then it is not difficult to show that for any function
f such that f(Y ) �= Y and any c, we have that (Y ‖Y 2) − (c · f(Y )‖c · f(Y )2)
(taking the addition coordinatewise) has min-entropy almost (n log p)/2. Thus,
provided X has sufficiently high min-entropy and using the fact that X and
(Y ‖Y 2) − (c · f(Y )‖c · f(Y )2) are independent conditioned on E, the strong
extractor property of the inner product function gives the desired result.2

Our main technical result is a proof of security of Li’s extractor, against
quantum side information. We show the following (we refer to Definition 5 for
the formal definition of a quantum-proof non-malleable extractor):

Theorem 1. Let p �= 2 be a prime. Let n be an even integer. Then for any
ε > 0 the function nmExt(X,Y ) : Fn

p × F
n/2
p → Fp given by 〈X,Y ‖Y 2〉 is an

(
(

n
2 + 6

)
log p − 1 + 4 log 1

ε , ε) quantum-proof non-malleable extractor.

We give the main ideas behind our proof of security for this construction,
highlighting the points of departure from the classical analysis. Subsequently,
we explain the application to privacy amplification.

Proof ideas. We begin by generalizing the first step of Li’s argument, the reduc-
tion provided by the non-uniform XOR lemma, to the quantum case. An XOR

2 This description is a little different from Li’s description since he was working with
a field of size 2n, but we find it more convenient to work with a prime field.
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lemma with quantum side information is already shown in [22], where the lemma
is used to show security of the inner product function as a two-source extractor
against quantum side information. This version is not sufficient for our purposes,
and we establish the following generalization, which may be of independent inter-
est (we refer to Sect. 3 for relevant definitions):

Lemma 1. Let p be a prime power and t an integer. Let ρX0XE be a ccq state
with X0 ∈ Fp and X = (X1, . . . , Xt) ∈ F

t
p. For all a = (a1, . . . , at) ∈ F

t
p, define

a random variable Z = X0 + 〈a,X〉 = X0 +
∑t

i=1 aiXi. Let ε ≥ 0 be such that
for all a, 1

2 ‖ρa
ZE − UZ ⊗ ρE‖1 ≤ ε. Then

1
2

∥
∥ρX0XE − UX0 ⊗ ρXE

∥
∥

1
≤ p

t+1
2

√
ε

2
. (1.1)

XOR lemmas are typically proved via Fourier-based techniques (including
the one in [22]). Here we instead rely on a collision probability-based argument
inspired from [3]. We prove Lemma 1 by observing that such arguments general-
ize to the quantum setting, as in the proof of the quantum leftover hash lemma
in [36].

Based on the XOR lemma (used with t = 1), following Li’s arguments it
remains to show that the random variable 〈X, g(Y, Y ′)〉 ∈ Fp, where g(Y, Y ′) =
Y ‖Y 2 − c(Y ′‖Y ′2) ∈ F

n
p , is close to uniformly distributed from the adversary’s

point of view, specified by side information E′, for every c �= 0 ∈ Fp. As already
mentioned earlier, this cannot be shown by a reduction to the security proof of
the inner product function as a two-source extractor against side information,
as X and g(Y, Y ′) are not independent (not even conditioned on the value of E′

when E′ is classical).
Instead, we are led to a more direct analysis which proceeds by formulat-

ing the problem as a communication task.3 We relate the task of breaking our
construction—distinguishing 〈X, g(Y, Y ′)〉 from uniform—to success in the fol-
lowing task. Alice is given access to a random variable X, and Bob is given a
uniformly random Y . Alice is allowed to send a quantum message E, correlated
with X, to Bob. Bob then selects a Y ′ �= Y and returns a value b ∈ Fp. The play-
ers win if b = 〈X, g(Y, Y ′)〉. Based on our previous reductions it suffices to show
that no strategy can succeed with probability substantially higher than random
in this game, unless Alice’s initial message to Bob contains a large amount of
information about X; more precisely, unless the min-entropy of X, conditioned
on E, is less than half the length of X.

Note that the problem as we formulated it does not fall in standard frameworks
for communication complexity. In particular, it is a relation problem, as Bob is
allowed to choose the value Y ′ to which his prediction b applies. This seems to
prevent us from using any prior results on the communication complexity of the
inner product function, and we develop an ad-hoc proof which may be of inde-
pendent interest. We approach the problem using the “reconstruction paradigm”
3 The correspondence between security of quantum-proof strong extractors and com-

munication problems has been used repeatedly before, see e.g. [21,22].
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(used in e.g. [15]), which amounts to showing that from any successful strategy of
the players one may construct a measurement for Bob which completely “recon-
structs” X, given E; if this can be achieved with high enough probability it will
contradict the min-entropy assumption on X, via its dual formulation as a guess-
ing probability [23]. We show this by running Bob’s strategy “in superposition”,
and applying a Fourier transform to recover a guess for X. This argument is sim-
ilar to one introduced in [11,32]. We refer to Sect. 4.1 for more detail.

Application to privacy amplification. Finally we discuss the application of our
quantum-proof non-malleable extractor to the problem of privacy amplification
against active quantum attacks, which is our original motivation. The application
is based on a breakthrough result by Dodis and Wichs [19], who were first to
show the existence of a two-round PA protocol with optimal (up to constant
factors) entropy loss L = Θ(log(1/ε)), for any initial min-entropy k. This was
achieved by defining and showing the existence of non-malleable extractors with
very good parameters.

The protocol from [19] is recalled in Sect. 5. The protocol proceeds as follows.
Alice sends a uniformly random seed Y to Bob over the communication channel,
which is controlled by Eve. Bob receives a possibly modified seed Y ′. Then Alice
computes a key K = nmExt(X,Y ), and Bob computes K ′ = nmExt(X,Y ′).
In the second round, Bob generates another uniformly random seed W ′, and
sends W ′ together with T ′ = MACK′(W ′) to Alice, where MAC is a one-time
message authentication code. Alice receives a possibly modified T,W and checks
whether T = MACK(W ). If yes, then the shared secret between Alice and Bob
is Ext(X,W ) = Ext(X,W ′) with overwhelming probability, where Ext is any
strong seeded extractor.

The security of this protocol intuitively follows from the following simple
observation. If the adversary does not modify Y , then K ′ = K, and so W ′ must be
equal to W by the security of the MAC. If Y ′ �= Y , then by the non-malleability
property of nmExt, K is uniform and independent of K ′, and so it is impossible
for the adversary to predict MACK(W ) for any W even given K ′ and W ′.

Since [19] could not construct an explicit non-malleable extractor, they
instead defined and constructed a so called a look-ahead extractor, which can
be seen as a weakening of the non-malleability requirement of a non-malleable
extractor. This was done by using the alternating extraction protocol by Dziem-
bowski and Pietrzak [18].

In [14], Dodis and Wichs’ reduction is extended to the case of quantum
side information, provided that the non-malleable Extractor nmExt used in the
protocol satisfies the appropriate definition of quantum non-malleability, and Ext
is a strong quantum-proof extractor. Based on our construction of a quantum-
proof non-malleable extractor (Theorem 1) we immediately obtain a PA protocol
that is secure as long as the initial secret X has a min-entropy rate of (slightly
more than) half. The result is formalized as Corollary 1 in Sect. 5.

In Sect. 5.2 we additionally prove security of a one-round protocol due to
Dodis et al. [16] against active quantum attacks. The protocol has the advantage
of being single-round, but it induces a significantly higher entropy loss, (n/2) +
log(1/ε), than the Dodis-Wichs protocol, for which the loss is independent of n.
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Future work. There have been a series of works in the classical setting [3,9,12,13,
17,20,25,27–29] that have given privacy amplification protocols (via constructing
non-malleable extractors or otherwise) that achieve near-optimal parameters. In
particular, Li [29] constructed a non-malleable extractor that works for min-
entropy k = Ω(log n + log(1/ε) log log(1/ε)), where ε is the error probability.

Our quantum-proof non-malleable extractor requires the min-entropy rate of
the initial weak secret to be larger than 1/2. We leave it as an open question
whether one of the above-mentioned protocols that work for min-entropy rate
smaller than 1/2 in the classical setting can be shown secure against quantum
side information.

2 Preliminaries

2.1 Notation

For p a prime power we let Fp denote the finite field with p elements. For any
positive integer n, there is a natural bijection φ : Fn

p �→ Fpn that preserves group
addition and scalar multiplication, i.e., the following hold:

– For all c ∈ Fp, and for all x ∈ F
n
p , φ(c · x) = c · φ(x).

– For all x1, x2 ∈ F
n
p , φ(x1) + φ(x2) = φ(x1 + x2).

We use this bijection to define the square of an element in F
n
p , e.g. for y ∈ F

n
p

y2 = φ−1
(
(φ(y))2

)
. (2.1)

We write 〈·, ·〉 for the inner product over F
n
p . log denotes the logarithm with

base 2.
We write H for an arbitrary finite-dimensional Hilbert space, L(H) for the

linear operators on H, Pos(H) for positive semidefinite operators, and D(H) ⊂
Pos(H) for positive semidefinite operators of trace 1 (density matrices). A linear
map T : L(H) → L(H′) is CPTP if it is completely positive, i.e. T ⊗ Id(A) ≥ 0
for any d ≥ 0 and A ∈ Pos(H ⊗ C

d), and trace-preserving.
We use capital letters A,B,E,X, Y, Z, . . . to denote quantum or classical ran-

dom variables. Generally, the letters near the beginning of the alphabet, such as
A,B,E, represent quantum variables (density matrices on a finite-dimensional
Hilbert space), while the letters near the end, such as X,Y,Z represent classi-
cal variables (ranging over a finite alphabet). We sometimes represent classical
random variables as density matrices diagonal in the computational basis, and
write e.g. (A,B, . . . , E)ρ for the density matrix ρA,B,...,E . For a quantum ran-
dom variable A, we denote HA the Hilbert space on which the associated density
matrix ρA is supported, and dA its dimension. If X is classical we loosely identify
its range {0, . . . , dX − 1} with the space HX spanned by {|0〉X , . . . , |dX − 1〉X}.
We denote IA the identity operator on HA. When an identity operator is tensor
producted with another matrix, we sometimes omit the identity operator for
brevity, e.g. writing IA ⊗ B as B. When a density matrix specifies the states of
two random variables, one of which is classical and the other is quantum, we call
it a classical-quantum(cq)-state. A cq state (X,E)ρ takes the form
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ρXE =
∑

x

|x〉〈x|X ⊗ ρx
E ,

where the summation is over all x in the range of X and {ρx
E} are positive

semidefinite matrices with Tr ρx
E = px, where px is the probability of getting

the outcome x when measuring the X register. Similarly, a ccq state (X,Y,E)σ

is a density matrix over two classical variables and one quantum variable, e.g.
σXY E =

∑
x,y |x〉〈x|X ⊗ |y〉〈y|Y ⊗ σxy

E . We will sometimes add or remove ran-
dom variables from an already-specified density matrix. When we omit a ran-
dom variable, we mean the reduced density matrix, e.g. (Y,E)σ = TrX(σXY E).
When we introduce a classical variable, we mean that the classical variable is
computed into another classical register. For example, for a function F (·, ·) on
variables X,Y ,

(F (X,Y ),X, Y,E)σ =
∑

f,x,y

δ(f, F (x, y))|f〉〈f | ⊗ |x〉〈x| ⊗ |y〉〈y| ⊗ σxy
E ,

where δ(·, ·) is the Kronecker delta function, and the summation over f is taken
over the range of F . When F is a random function, the density matrix is averaged
over the appropriate probability distribution.

We use UΣ to denote the uniform distribution over a set Σ. For m-bit string
{0, 1}m, we abbreviate U{0,1}m as Um. For a classical random variable X, UX

denote the uniform distribution over the range of X.
For p ≥ 1 we write ‖·‖p for the Schatten p-norm (this is the p-norm of the

vector of singular values). We write ‖·‖ for the operator norm.
Wewrite≈ε todenote that twodensitymatrices are ε-close to eachother in trace

distance. For example, (X,E)ρ ≈ε (UX , E)ρ means 1
2 ‖ρXE − UX ⊗ ρE‖1 ≤ ε.

Note that in case both X and E are classical random variables, this reduces to the
statistical distance.

2.2 Quantum Information

The min-entropy of a classical random variable X conditioned on quantum side
information E is defined as follows.

Definition 1 (Min-entropy). Let ρXE ∈ D(HX ⊗ HE) be a cq state. The
min-entropy of X conditioned on E is defined as

Hmin(X|E)ρ = max{λ ≥ 0 : ∃σE ∈ Pos(HE), Tr (σE) ≤ 1, s.t. 2−λIX ⊗ σE ≥ ρXE}.

When the state ρ with respect to which the entropy is measured is clear from
context we simply write Hmin(X|E) for Hmin(X|E)ρ.

Definition 2 ((n, k) -source). A cq state ρXE is an (n, k)-source if n = log dX

and Hmin(X|E))ρ ≥ k.

Rather than using Definition 1, we will most often rely on an operational
expression for the min-entropy stated in the following lemma from [23].
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Lemma 2 (Min-entropy and guessing probability). For a cq state ρXE ∈
D(HX ⊗ HE), the guessing probability is defined as the probability to correctly
guess X with the optimal strategy to measure E, i.e.

pguess(X|E)ρ = sup
{Mx}

∑

x

px Tr (Mxρx
E) , (2.2)

where {Mx} is a positive operator-valued measure (POVM) on HE. Then the
guessing probability is related to the min-entropy by

pguess(X|E)ρ = 2−Hmin(X|E)ρ . (2.3)

2.3 Extractors

We first give the definition of a strong quantum-proof extractor. Recall the nota-
tion (X,E)ρ ≈ε (X ′, E′)ρ for 1

2‖ρXE−ρX′E′‖1 ≤ ε, and Um for a random variable
uniformly distributed over m-bit strings.

Definition 3. Let k be an integer and ε ≥ 0. A function Ext : HX ×HY → HZ

is a strong (k, ε) quantum-proof extractor if for all cq states ρXE ∈ D(HX ⊗HE)
with Hmin(X|E) ≥ k, and for a classical uniform Y ∈ HY independent of ρXE,

(Ext(X,Y ), Y, E)ρ ≈ε (UZ , Y, E)ρ .

There are known explicit constructions of strong quantum-proof extractors.

Theorem 2 ([36]). For any integers dX , k and for any ε > 0 there exists an
explicit strong (k, ε) quantum-proof extractor Ext: {0, . . . , dX −1}×{0, . . . , dY −
1} → {0, . . . , dZ − 1} with log dY = O(log dX) and log dz = k − O(log(1/ε)) −
O(1).

We use the same definition of non-malleable extractor against quantum side
information that was introduced in the work [14]. The definition is a direct gen-
eralization of the classical notion of non-malleable extractor introduced in [19].
The first step is to extend the notion that the adversary may query the extractor
on any different seed Y ′ than the seed Y actually used to the case where Y ′ may
be generated from Y as well as quantum side information held by the adversary.

Definition 4 (Map with no fixed points). Let HY , HE and HE′ be finite-
dimensional Hilbert spaces. We say that a CPTP map T : L(HY ⊗ HE) →
L(HY ⊗ HE′) has no fixed points if for all ρE ∈ D(HE) and all computational
basis states |y〉 ∈ HY it holds that

〈y|Y TrHE′
(
T

(|y〉〈y|Y ⊗ ρE

)) |y〉Y = 0 .

The following definition is given in [14]:

Definition 5 (Non-malleable extractor). Let HX , HY , HZ be finite-
dimensional Hilbert spaces, of respective dimension dX , dY , and dZ . Let k ≤
log dX and ε > 0. A function

nmExt : {0, . . . , dX − 1} × {0, . . . , dY − 1} → {0, . . . , dZ − 1}
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is a (k, ε) quantum-proof non-malleable extractor if for every cq-state (X,E)ρ on
HX ⊗HE such that Hmin(X|E)ρ ≥ k and any CPTP map Adv : L(HY ⊗HE) →
L(HY ⊗ HE′) with no fixed points,

∥
∥σnmExt(X,Y )nmExt(X,Y ′)Y Y ′E′ − UZ ⊗ σnmExt(X,Y ′)Y Y ′E′

)∥∥
1

≤ ε ,

where
σY Y ′XE′ =

1
dY

∑

y

|y〉〈y|Y ⊗ (IX ⊗ Adv)(|y〉〈y|Y ⊗ ρXE) (2.4)

and σnmExt(X,Y )nmExt(X,Y ′)Y Y ′E′ is obtained from σY Y ′XE′ by (classically) com-
puting nmExt(X,Y ) and nmExt(X,Y ′) in ancilla registers and tracing out X.

2.4 Hölder’s Inequality

We use the following Hölder’s inequality for matrices. For a proof, see e.g. [6].

Lemma 3 (Hölder’s inequality). For any n×n matrices A, B, C with com-
plex entries, and real numbers r, s, t > 0 satisfying 1

r + 1
s + 1

t = 1,

‖ABC‖1 ≤ ‖|A|r‖1/r
1 ‖|B|s‖1/s

1

∥
∥|C|t∥∥1/t

1
. (2.5)

3 Quantum XOR Lemma

In this section we prove two XOR lemmas with quantum side information. We
prove a non-uniform version, Lemma 1, in Sect. 3.1. In the full version of the
paper [1], we also prove a more standard XOR lemma with quantum side infor-
mation for completeness.4 Since XOR lemmas often play a fundamental role,
they might be of independent interest. Our proofs are based on quantum collision
probability techniques5 from [36] to transform a classical collision probability-
based proof into one that also allows for quantum side information. The idea of
non-uniform XOR lemma is natural in the context of non-malleable extractors,
and has been explored in [3,13,27]. Our non-uniform XOR lemma generalizes a
restricted version of Lemma 3.15 of [27] to Fp with quantum side information.6

The quantum collision probability is defined as follows.

Definition 6 (Quantum collision probability). Let ρAB ∈ D(HA⊗HB) and
σB ∈ D(HB). The collision probability of ρAB, conditioned on σB, is defined as

Γc(ρAB |σB) ≡ Tr
(
ρAB(IA ⊗ σ

−1/2
B )

)2

, (3.1)

where σB ∈ D(HB).
4 When restricted to F2, our standard XOR lemma is very similar to Lemma 10 of [22],

although the result from [22] provides a tighter bound in this case. [22] provides a
bound of p2tε2, while ours scales as ptε, a quadratic loss. However our result applies
to Fp, while it is unclear whether the proof of [22] generalizes to p > 2. [22] obtains
the result by Fourier analysis.

5 The term “quantum collision probability” is ours.
6 Compared to [27, Lemma 3.15], we have m = 1 and n = t.
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A careful reader might notice that Γc ≤ 1 is not generally true, so calling Γc

collision probability seems misleading. We give a general definition which allows
arbitrary states ρAB and σB to match the existing literature, but here we always
consider cq states ρAB and take σB = ρB . We prove in the full version [1] that
Γc ≤ 1 in such cases. Γc(ρAB |σB) also reduces to the classical collision probability
when both of A,B are classical and σB = ρB .

We will often use the following relation, also taken from [36], valid for any
ρAB ∈ D(HA ⊗ HB):

Tr
(
(ρAB − UA ⊗ ρB)(IA ⊗ ρ

−1/2
B )

)2

= Γc

(
ρAB |ρB

) − 1
dA

, (3.2)

which can be verified by expanding the square:

Tr
(
(ρAB − UA ⊗ ρB)(IA ⊗ ρ

−1/2
B )

)2

= Tr
(
ρAB ρ

−1/2
B

)2

− 2Tr
(
ρAB ρ

−1/2
B (UAρB)ρ−1/2

B

)
+ Tr

(
(UAρB)ρ−1/2

B

)2

= Γc(ρAB |ρB) − 1
dA

.

3.1 Non-uniform XOR Lemma

Our non-uniform XOR lemma bounds the distance to uniform of a ccq state, a
state with two classical registers and one quantum register. Roughly speaking,
the lemma states that given two random variables X0 ∈ Fp and X ∈ F

t
p, if

X0 + 〈a,X〉 is close to uniform, then X0 is close to uniform given X.

Lemma 1 (restated). Let p be a prime power, t an integer and ε ≥ 0. Let ρX0XE

be a ccq state with X0 ∈ Fp and X = (X1, . . . , Xt) ∈ F
t
p. For all a = (a1, . . . , at) ∈

F
t
p, define a random variable Z = X0 + 〈a,X〉 = X0 +

∑t
i=1 aiXi. If for all a,

1
2 ‖ρa

ZE − UZ ⊗ ρE‖1 ≤ ε, then

1
2

∥
∥ρX0XE − UX0 ⊗ ρXE

∥
∥

1
≤ p(t+1)/2

√
2

√
ε . (3.3)

The proof of the non-uniform XOR lemma has the following structure: we
bound the collision probability by the trace distance in Lemma5, then prove
the non-uniform XOR lemma based on that. First we establish that for any ccq
state ρXZE :

Tr
(
(ρXZE − UX ⊗ ρZE)(IXZ ⊗ ρ

−1/2
E )

)2

= Tr
(
ρXZE ρ

−1/2
E

)2

− 2 Tr
(
ρXZE ρ

−1/2
E (UXρZE)ρ

−1/2
E

)
+ Tr

(
(UXρZE)ρ

−1/2
E

)2

= Γc(ρXZE |ρE) − 1

dX
Γc(ρZE |ρE) . (3.4)

We need the following lemma to bound the collision probability by the trace
distance in Lemma 5.
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Lemma 4. Let ρXZE be a ccq state. Then

− 1

dX
IXZE ≤

(
IXZ ⊗ ρ

− 1
2

E

)
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

− 1
2

E

)
≤

(
1 − 1

dX

)
IXZE .

(3.5)

Proof. We bound the eigenvalues of the middle expression. Since ρXZE is a ccq
state, we know that the middle expression

(
IXZ ⊗ ρ

−1/2
E

)
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

−1/2
E

)

=
∑

x,z

|x〉〈x| ⊗ |z〉〈z| ⊗ ρ
−1/2
E

(
ρxz

E − 1
dX

ρz
E

)
ρ

−1/2
E (3.6)

is block diagonal, where ρz
E =

∑
x ρxz

E and ρE =
∑

x,z ρxz
E . For any state |φ〉 ∈

HE and x, z in the range of X,Z,

〈φ|ρ−1/2
E

(
ρxz

E − 1
dX

ρz
E

)
ρ

−1/2
E |φ〉 ≥ 〈φ|ρ−1/2

E

(
− 1

dX
ρz

E

)
ρ

−1/2
E |φ〉 ≥ − 1

dX
.

(3.7)

This proves the first inequality. We also have

〈φ|ρ−1/2
E

(
ρxz

E − 1
dX

ρz
E

)
ρ

−1/2
E |φ〉

= 〈φ|ρ−1/2
E

(

ρxz
E − 1

dX

∑

x′
ρx′z

E

)

ρ
−1/2
E |φ〉

=
(

1 − 1
dX

)
〈φ|ρ−1/2

E ρxz
E ρ

−1/2
E |φ〉 − 1

dX

∑

x′ �=x

〈φ|ρ−1/2
E ρxz

E ρ
−1/2
E |φ〉

≤
(

1 − 1
dX

)
. (3.8)

This proves the second inequality.

We then bound the collision probability by the trace distance.

Lemma 5 (Bounding collision probability with trace distance, non-
uniform). Let ρXZE be a ccq state. If

1
2

‖ρXZE − UXρZE‖1 = ε , (3.9)

then

4ε2

dXdZ
≤ Γc(ρXZE |ρE) − 1

dX
Γc(ρZE |ρE) ≤ 2ε

(
1 − 1

dX

)
. (3.10)
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Proof. For the first inequality, we use Hölder’s inequality (Lemma 3) with r =
t = 4, s = 2, A = C = IXZ ⊗ ρ

1/4
E , and B =

(
IXZ ⊗ ρ

−1/4
E

)
(ρXZE − UXρZE)

(
IXZ ⊗ ρ

−1/4
E

)
. This leads to

2ε = ‖ρXZE − UXρZE‖1

= ‖ABC‖1

≤ ∥
∥A4

∥
∥1/4

1

∥
∥B2

∥
∥1/2

1

∥
∥C4

∥
∥1/4

1

=

√

dXdZ Tr
(
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

−1/2
E

))2

=

√

dXdZ

(
Γc(ρXZE |ρE) − 1

dX
Γc(ρZE |ρE)

)
, (3.11)

where we used Eq. (3.4) in the last line. Squaring both sides and dividing by
dXdZ , we get the desired inequality. For the second inequality, we use Lemma4
to show that

− 1

dX
IXZE ≤

(
IXZ ⊗ ρ

− 1
2

E

)
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

− 1
2

E

)
≤

(
1 − 1

dX

)
IXZE

⇒
∣∣∣
(
IXZ ⊗ ρ

−1/2
E

)
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

−1/2
E

)∣∣∣ ≤
(

1 − 1

dX

)
IXZE .

(3.12)

Starting with Eq. (3.4), we have

Γc(ρXZE |ρE) − 1
dX

Γc(ρZE |ρE)

= Tr
(
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

−1/2
E

))2

≤ Tr
(
|ρXZE − UXρZE |

∣
∣
∣
(
IXZ ⊗ ρ

−1/2
E

)
(ρXZE − UX ⊗ ρZE)

(
IXZ ⊗ ρ

−1/2
E

)∣
∣
∣
)

≤ Tr
(

|ρXZE − UXρZE |
(

1 − 1
dX

)
IXZE

)

= 2ε

(
1 − 1

dX

)
, (3.13)

where we used Eq. (3.12) on the fourth line. ��
Now we restate and prove the non-uniform XOR lemma. The proof idea is to

start from the trace distance of X0 given X to uniform, apply Lemma5 to get an
upper bound in terms of the collision probability of X0 given X, apply Eq. (3.4)
and expand the square to express the collision probability of X0 given X in terms
of the collision probability of X0 + 〈a,X〉, and finally apply Lemma5 again to get
an upper bound in terms of the trace distance of X0 + 〈a,X〉 to uniform.

Lemma 1 (restated). Let p be a prime power, t an integer and ε ≥ 0. Let ρX0XE be
a ccq state with X0 ∈ Fp and X = (X1, . . . , Xt) ∈ F

t
p. For all a = (a1, . . . , at) ∈ F

t
p,
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define a random variable Z = X0 + 〈a,X〉 = X0 +
∑t

i=1 aiXi. If for all a,
1
2 ‖ρa

ZE − UZ ⊗ ρE‖1 ≤ ε, then

1
2

∥
∥ρX0XE − UX0 ⊗ ρXE

∥
∥

1
≤ p(t+1)/2

√
2

√
ε . (3.14)

Proof. We start by relating the collision probability of Z and X0 + 〈a,X〉:

Γc(ρa
ZE |ρE) − 1

p

= Tr
[
(ρa

ZE − UZρE)IZ ⊗ ρ
−1/2
E

]2

= Tr

[
∑

z

|z〉〈z|
∑

x,x0

(
δ (z − x0 − 〈a, x〉, 0) − 1

p

)
ρx0x

E IZρ
−1/2
E

]2

=
∑

z

Tr

[
∑

x0x

(
δ (z − x0 − 〈a, x〉, 0) − 1

p

)
ρx0x

E ρ
−1/2
E

]2

=
∑

z,x0,x′
0,x,x′

[δ (z − x0 − 〈a, x〉, 0) δ (z − x′
0 − 〈a, x′〉, 0)

−2
p
δ (z − x0 − 〈a, x〉, 0) +

1
p2

]
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x′

E ρ
−1/2
E

)

=
∑

x0,x′
0,x,x′

[
δ (x0 − x′

0 + 〈a, x − x′〉, 0) − 1
p

]
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x′

E ρ
−1/2
E

)

=
∑

x0,x′
0,x

(
δ (x0 − x′

0, 0) − 1
p

)
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x

E ρ
−1/2
E

)

+
∑

x0,x′
0,x �=x′

[
δ (x0 − x′

0 + 〈a, x − x′〉, 0) − 1
p

]
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x′

E ρ
−1/2
E

)

=
∑

x0,x

Tr
(
ρx0x

E ρ
−1/2
E ρx0x

E ρ
−1/2
E

)
− 1

p

∑

x0,x′
0,x

Tr
(
ρx0x

E ρ
−1/2
E ρ

x′
0x

E ρ
−1/2
E

)

+
∑

x0,x′
0,x �=x′

[
δ (x0 − x′

0 + 〈a, x − x′〉, 0) − 1
p

]
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x′

E ρ
−1/2
E

)

= Γc(ρX0XE |ρE) − 1
p
Γc(ρXE |ρE)

+
∑

x0,x′
0,x �=x′

[
δ (x0 − x′

0 + 〈a, x − x′〉, 0) − 1
p

]
Tr

(
ρx0x

E ρ
−1/2
E ρ

x′
0x′

E ρ
−1/2
E

)
.

(3.15)

When we average over a, the last term vanishes,

Ea

(
Γc(ρa

ZE |ρE) − 1
p

)
= Γc(ρX0XE |ρE) − 1

p
Γc(ρXE |ρE) . (3.16)
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With the heavy work done, we put everything together and prove the lemma

‖ρX0XE − UX0ρXE‖2
1

pt+1
≤ Γc(ρX0XE |ρE) − 1

p
Γc(ρXE |ρE)

= Ea

(
Γc(ρa

ZE |ρE) − 1
p

)

≤ 2ε , (3.17)

where we used Lemma 5 one the first line, Eq. (3.16) on the second line, Lemma 5
and the assumption of the lemma on the third line. Multiplying both sides by
pt+1

2 and take a square root, we get the desired result:

1
2

‖ρX0XE − UX0ρXE‖1 ≤ p(t+1)/2

√
2

√
ε . (3.18)

��

4 Quantum-Proof Non-malleable Extractor

In this section we introduce our non-malleable extractor and prove its security.
The extractor was first considered by Li [27]. We use the symbol ‖ for concate-
nation of strings, and for a, b ∈ F

n
p write 〈a, b〉 for the standard inner product

over F
n
p .

Definition 7 (Inner product-based non-malleable extractor). Let p �= 2
be a prime. For any even integer n, define a function nmExt : Fn

p × F
n/2
p → Fp

by nmExt(X,Y ) = 〈X,Y ||Y 2〉, where Y 2 is defined as in Sect. 2.1.

Theorem 1. Let p �= 2 be a prime. Let n be an even integer. Then for any ε > 0
the function nmExt(X,Y ) = 〈X,Y ‖Y 2〉 is an (

(
n
2 + 6

)
log p − 1 + 4 log 1

ε , ε)
quantum-proof non-malleable extractor.

The proof of Theorem 1 is based on a reduction showing that any successful
attack for an adversary to nmExt leads to a good strategy for the players in a
certain communication game, that we introduce next.

4.1 A Communication Game

Let p �= 2 be a prime. Let n be an even integer, and g : Fn/2
p × F

n/2
p → F

n
p an

arbitrary function such that for any z ∈ F
n
p there are at most two possible pairs

(y, y′) such that y �= y′ and g(y, y′) = z. Consider the following communication
game, called guess(n, p, g), between two players Alice and Bob.

1. Bob receives y ∈ F
n/2
p from the referee.

2. Alice creates a cq state ρXE , where X ∈ F
n
p , and sends the quantum register

E to Bob.
3. Bob returns y′ ∈ F

n/2
p and b ∈ Fp.
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The players win if and only if b = 〈x, g(y, y′)〉 and y′ �= y.
Note that Alice does not receive anything from the referee and is completely

free in what state she wants to create, so it is easy for the players to win with
probability 1 by creating a trivial state, e.g. ρXE = |0〉〈0| ⊗ |0〉〈0|. Therefore we
benchmark the success probability of a strategy by the min-entropy of Alice’s
“input” X, conditioned on her message E to Bob. The following lemma bounds
the players’ maximum success probability in this game over uniformly random
input y and quantum measurements as a function of the min-entropy of Alice’s
input X, conditioned on her message E to Bob.

Lemma 6 (Success probability of the communication game). Suppose
there exists a communication protocol for Alice and Bob in guess(n, p, g) that
succeeds with probability at least 1

p + ε, on average over a uniformly random
choice of input y to Bob. Then Hmin(X|E)ρ ≤ n

2 log p + 1 + 2 log 1
ε .

Proof. Let ρXE =
∑

x |x〉〈x|X ⊗ρx
E be the cq state prepared by Alice. A strategy

for Bob is a family of POVM {My′,b
y }y′,b, indexed by y ∈ F

n/2
p and with outcomes

(y′, b) ∈ F
n/2
p ×Fp. We can assume that {My′,b

y }y′,b is projective, since Alice can
send ancilla qubits along with ρ and allow Bob to apply Naimark’s theorem to
his POVM in order to obtain a projective measurement; this will change neither
his success probability nor the min-entropy of Alice’s state. By definition, the
players’ success probability in guess(n, p, g) is

1
p

+ ε =
∑

x

p− n
2

∑

y

∑

y′

∑

b

δ(b, 〈x, g(y, y′)〉)Tr
(
My′,b

y ρx
E

)
. (4.1)

For each u ∈ Fp let Ay′
y,u =

∑
b ωubMy′,b

y , where ω = e
2iπ

p . By inversion, My′,b
y =

1
p

∑
u ω−ubAy′

y,u. Replacing this into (4.1) we obtain

1
p

+ ε =
1
p

∑

u

p− n
2

∑

y

∑

y′

∑

b

δ(b, 〈x, g(y, y′)〉)ω−ub Tr
(
Ay′

y,u ρx
E

)

≤ 1
p

+
(
1 − 1

p

)
max
u�=0

∣
∣
∣p− n

2

∑

y

∑

y′

∑

b

δ(b, 〈x, g(y, y′)〉)ω−ub Tr
(
Ay′

y,u ρx
E

)∣∣
∣ ,

(4.2)

where for the second line we used that
∑

y′ Ay′
y,0 =

∑
y′,b My′,b

y = IE .
Fix u �= 0 that achieves the maximum in (4.2). For fixed y, define the map

Ty,u on HE by

Ty,u : |ψ〉 �→
∑

y′
|y′〉Ay′

y,u|ψ〉 . (4.3)

Ty,u has norm at most 1, since

T †
y,uTy,u =

∑

y′
(Ay′

y,u)†Ay′
y,u =

∑

y′

∑

b

(
My′,b

y

)2

= IE .
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For the second equality we used that {My′,b
y }y′,b is projective. Therefore Ty,u is

a physical operation.
Consider the following guessing strategy for an adversary holding side infor-

mation ρx
E about x. The adversary first prepares a uniform superposition over

y. Conditioned on y, it applies the map Ty,u. It computes g(y, y′) in an ancilla
register, and erases (y, y′), except for one bit of information r(y, y′) ∈ {0, 1},
which specifies which pre-image (y, y′) is, given g(y, y′) (this is possible by the
2-to-1 assumption on g). The adversary applies a Fourier transform on the reg-
ister containing g(y, y′), using ωu = ω−u as primitive p-th root of unity (this is
possible since u �= 0 and p is prime). It measures the result and outputs it as a
guess for x. Formally, the transformation this implements is

|ψ〉 �→ p− n
4

∑

y

|y〉
∑

y′
|y′〉Ay′

y,u|ψ〉

�→ p− n
4

∑

y,y′
|g(y, y′)〉|r(y, y′)〉Ay′

y,u|ψ〉

�→
∑

v

|v〉
(
p− 3n

4

∑

y,y′
ω〈v,g(y,y′)〉

u |r(y, y′)〉Ay′
y,u

)
|ψ〉 .

The adversary’s success probability in guessing v = x on input ρx
E is therefore

ps =
∑

x

Tr
((

p− 3n
4

∑

y,y′
ω〈x,g(y,y′)〉

u |r(y, y′)〉 ⊗ Ay′
y,u

)
ρx

E

·
(
p− 3n

4

∑

y,y′
ω−〈x,g(y,y′)〉

u 〈r(y, y′)| ⊗ (Ay′
y,u)†

))

=
1

p
3n
2

∑

x

∑

r∈{0,1}
Tr

(( ∑

y,y′: r(y,y′)=r

ω〈x,g(y,y′)〉
u Ay′

y,u

)†

·
( ∑

y,y′: r(y,y′)=r

ω〈x,g(y,y′)〉
u Ay′

y,u

)
ρx

E

)

≥ 1
p

3n
2

∑

x

1
2

Tr
(( ∑

y,y′
ω〈x,g(y,y′)〉

u Ay′
y,u

)†( ∑

y,y′
ω〈x,g(y,y′)〉

u Ay′
y,u

)
ρx

E

)
, (4.4)

where for the last line we used Tr(A†Aρ)+Tr(B†Bρ) ≥ 1
2Tr((A+B)†(A+B)ρ)

if ρ is positive semidefinite. Now, recall from (4.2) and our choice of u that

ε ≤ p− n
2

∣
∣
∣

∑

x,y,y′
ω−u(〈x,g(y,y′)〉) Tr

(
Ay′

y,u ρx
E

)∣∣
∣

≤ p− n
2

( ∑

x

Tr(ρx
E)

)1/2

·
( ∑

x

Tr
(( ∑

y,y′
ω−u(〈x,g(y,y′)〉) Ay′

y,u

)
ρx

E

( ∑

y,y′
ω−u(〈x,g(y,y′)〉) Ay′

y,u

)†))1/2

,

(4.5)
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where the inequality is Cauchy-Schwarz. Comparing (4.4) and (4.5) gives

ps ≥ 1
2
p− n

2 ε2 .

We conclude using that by Lemma 2, Hmin(X|E) ≤ − log ps. ��

4.2 Proof of Theorem1

In this section we give the proof of Theorem 1. Towards this we first prove a
preliminary lemma showing that a certain function, based on the definition of
nmExt, has few collisions.

Lemma 7. Let p �= 2 be a prime and n an even integer. For a ∈ Fp define a
function ga : Fn/2

p × F
n/2
p → F

n
p by

ga(y, y′) = y + ay′‖y2 + ay′2 , (4.6)

where y2 is defined in Sect. 2.1. Then for any a ∈ Fp, a �= 0 and z ∈ F
n
p there

are at most 2 distinct pairs (y, y′) such that y′ �= y and ga(y, y′) = z.

Proof. We use the bijection defined in Sect. 2.1 to interpret y and y′ in Fpn/2 .
For a �= 0, we fix an image ga = (c, d), where c, d are interpreted as elements of
Fpn/2 , and solve for (y, y′) in Fpn/2 × Fpn/2 satisfying

y + ay′ = c , (4.7)

y2 + ay′2 = d . (4.8)

Using (4.7) to eliminate y we get

(c − ay′)2 + ay′2 = d

⇒ (a + a2)y′2 + (−2ca)y′ + (c2 − d) = 0 . (4.9)

Since (4.9) is a quadratic equation, there are at most two solutions unless all
coefficients are zero. Since p �= 2, −2 �= 0. If all coefficients are zero, −2 �= 0, and
a �= 0, then c = d = 0, a = −1, which implies y′ = y by (4.7) and contradicts
our assumption. So there are at most two different y′ that can be mapped to
(c, d). By (4.7) each y′ corresponds to a unique y, so there are at most two
pre-images. ��

We are ready to give the proof of Theorem 1. The proof depends on a simple
lemma relating trace distance and guessing measurements, Lemma 8, which is
stated and proved after the proof of the theorem.

Proof of Theorem 1. Let k =
(

n
2 + 6

)
log p − 1 + 4 log 1

ε and ρXE ∈ D(Cpn ⊗ HE)
an (n log p, k)-source. Fix a CPTP map Adv : L(Cpn/2 ⊗HE) → L(Cpn/2 ⊗HE′)
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with no fixed points, and define σnmExt(X,Y )nmExt(X,Y ′)Y Y ′E′ as in Definition 5.
Given the definition of nmExt, to prove the theorem we need to show that

(〈X,Y ‖Y 2〉, 〈X,Y ′‖Y ′2〉, Y ′, Y, E′)σ ≈ε (UFp
, 〈X,Y ′‖Y ′2〉, Y ′, Y, E′)σ . (4.10)

Applying the XOR lemma, Lemma1, with X0 = 〈X,Y ||Y 2〉, X = 〈X,Y ′||Y ′2〉,
E = (Y ′, Y, E′) and t = 1, (4.10) will follow once it is shown that

(〈X,Y ||Y 2〉 + a〈X,Y ′‖Y ′2〉, Y ′, Y, E′)σ ≈ 2ε2

p2
(UFp

, Y ′, Y, E′)σ , (4.11)

for all a ∈ Fp. For a = 0, (4.11) follows from the fact that inner product is a
quantum-proof two source extractor, which can be shown by the combination of
Theorem 5.3 of [10] and Lemma 1 in [24]. For non-zero a ∈ Fp, recall the function
ga : Fn/2

p × F
n/2
p → F

n
p defined in (4.6). Lemma 7 shows that for any a �= 0, the

restriction of ga to {(y, y′) : y �= y′} is at most 2-to-1, and y �= y′ is ensured
by the fact that Adv has no fixed points. We establish (4.11) by contradiction.
Assume thus that

(〈X, ga(Y, Y ′)〉, Y ′, Y, E′)σ ≈ 2ε2

p2
(UFp

, Y ′, Y, E′)σ (4.12)

does not hold, for some non-zero a ∈ Fp. Fix such an a and write ga for g. From
Lemma 8 it follows that there exists a POVM measurement {Mz}z∈Fp

on σY ′Y E′

such that

∑

z∈Fp

Tr
(
Mzσz

Y Y ′E
) ≥ 1

p
+

2ε2

p3
, (4.13)

where σz
Y Y ′E is the reduced density of σ on Y Y ′E conditioned on 〈X, g(Y, Y ′)〉=z.

To conclude the proof of the theorem we show that the adversary’s map Adv
and the POVM {Mz} can be combined to give a “successful” strategy for the
players in the communication game introduced in Sect. 4.1. To see this, consider
the state ρXE that is instantiated as the source for the extractor; by definition
Hmin(X|E)ρ = k =

(
n
2 + 6

)
log p − 1 + 4 log 1

ε . In the third step of the game,
Bob applies the map Adv to the registers Y and E containing his input Y and
the state sent by Alice, and measures to obtain an outcome Y ′. He then applies
the measurement {Mz} on his registers (Y, Y ′, E) to obtain a value b = z ∈ Fp

that he provides as his output in the game. By (4.13) it follows that this strat-
egy succeeds in the game with probability at least 1

p + 2ε2

p3 , which by Lemma 6

implies Hmin(X|E) ≤ n
2 log p + 1 + 2 log p3

2ε2 , contradicting our choice of k. This
proves (4.11) and thus the theorem. ��

The following lemma is used in the proof of the theorem.

Lemma 8. Let ρXE =
∑

x |x〉〈x| ⊗ ρx
E be such that

1
2
‖(X,E) − (U,E)‖1 =

1
2

∥
∥ρXE − UX ⊗ ρE

∥
∥

1
= ε ,
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where UX is the totally mixed state on X and ρE =
∑

x ρx
E. Then there exists a

POVM {Mx} on ρE such that

∑

x

Tr(Mxρx
E) =

1
dX

+
ε

dX
.

Proof. Since ρXE is a cq state, ‖ρXE − UX ⊗ ρE‖1 =
∑

x ‖ρx
E − 1

dX
ρE‖1. For

each x, let M ′
x be the projector onto the positive eigenvalues of ρx

E − 1
dX

ρE , so

∑

x

Tr(M ′
x(ρx

E − 1
dX

ρE)) =
1
2

∑

x

‖ρx
E − 1

dX
ρE‖1 . (4.14)

Let M ′ =
∑

x M ′
x and Mx = 1

dX
(M ′

x + (IE − 1
dX

M ′)). Then Mx ≥ 0 and
∑

x Mx = 1
dX

(M ′ + dXIE − M ′) = IE . Moreover,

∑

x

Tr(Mxρx
E) =

∑

x

Tr
[

1
dX

(M ′
x + (IE − 1

dX
M ′))ρx

E

]

=
1

dX

[
∑

x

(Tr(M ′
xρx

E)) + Tr
(

(IE − 1
dX

M ′)ρE

)]

=
1

dX
+

1
dX

∑

x

(
Tr(M ′

xρx
E) − 1

dX
Tr(M ′

xρE)
)

=
1

dX
+

1
dX

( ∑

x

Tr
(
M ′

x(ρx
E − 1

dX
ρE)

))

=
1

dX
+

1
2dX

∑

x

∥
∥
∥ρx

E − 1
dX

ρE

∥
∥
∥

1

by (4.14). ��

5 Privacy Amplification

Dodis and Wichs [19] introduced a framework for constructing a two-message
privacy amplification protocol from any non-malleable extractor. In [14] it is
shown that the same framework, when instantiated with a quantum-proof non-
malleable extractor nmExt as defined in Definition 5, leads to a protocol that
is secure against active quantum adversaries. In Sect. 5.1 we recall the Dodis-
Wichs protocol, and state the security guarantees that follow by plugging in our
non-malleable extractor construction. The guarantees follows from the quan-
tum extension of the Dodis-Wichs results in [14]; since that work has not
been published we include their results regarding the Dodis-Wichs protocol in
AppendixA.

In Sect. 5.2 we show that a different protocol for privacy amplification due to
Dodis et al. [16], whose main advantage is of being a one-round protocol, is also
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quantum-proof. The construction and analysis of the protocol of [16] is simple,
with the drawback of a large entropy loss.

We start with the definition of a quantum-secure privacy amplification pro-
tocol against active adversaries. A privacy amplification protocol (PA, PB) is
defined as follows. The protocol is executed by two parties Alice and Bob shar-
ing a secret X ∈ {0, 1}n, whose actions are described by PA, PB respectively.7

In addition there is an active, computationally unbounded adversary Eve, who
might have some quantum side information E correlated with X but satisfy-
ing Hmin(X|E)ρ ≥ k, where ρXE denotes the initial state at beginning of the
protocol.

Informally, the goal for the protocol is that whenever a party (Alice or Bob)
does not reject, the key R output by this party is random and statistically
independent of Eve’s view. Moreover, if both parties do not reject, they must
output the same keys RA = RB with overwhelming probability.

More formally, we assume that Eve is in full control of the communication
channel between Alice and Bob, and can arbitrarily insert, delete, reorder or
modify messages sent by Alice and Bob to each other. At the end of the pro-
tocol, Alice outputs a key RA ∈ {0, 1}m ∪ {⊥}, where ⊥ is a special symbol
indicating rejection. Similarly, Bob outputs a key RB ∈ {0, 1}m ∪ {⊥}. The
following definition generalizes the classical definition in [17].

Definition 8. Let k,m be integer and ε ≥ 0. A privacy amplification protocol
(PA, PB) is a (k,m, ε)-privacy amplification protocol secure against active quan-
tum adversaries if it satisfies the following properties for any initial state ρXE

such that Hmin(X|E)ρ ≥ k, and where σ be the joint state of Alice, Bob, and
Eve at the end of the protocol:

1. Correctness. If the adversary does not interfere with the protocol, then
Pr[RA = RB ∧ RA �=⊥ ∧ RB �=⊥] = 1.

2. Robustness. This property comes in two flavors. The first is pre-application
robustness, which states that even in the presence of an active adversary,
Pr[RA �= RB ∧ RA �=⊥ ∧ RB �=⊥] ≤ ε. The second is post-application
robustness, which is defined similarly, except the adversary is additionally
given the key RA that is the result of the interaction (PA, PE), and the key RB

that results from the interaction (PE , PB), where PE denotes the adversary’s
actions in its interaction with Alice and Bob.

3. Extraction. Given a string r ∈ {0, 1}m ∪ {⊥}, let purify(r) be a random vari-
able on m-bit strings that is deterministically equal to ⊥ if r =⊥, and is
otherwise uniformly distributed. Let V denotes the transcript of an execution
of the protocol execution, and ρE′ the final quantum state possessed by Eve.
Then the following should hold:

(RA, V, E′)σ ≈ε (purify(RA), V, E′)σ and (RB , V, E′)σ ≈ε (purify(RB), V, E′)σ .

7 It is not necessary for the definition to specify exactly how the protocols are for-
mulated; informally, each player’s actions is described by a sequence of efficient
algorithms that compute the player’s next message, given the past interaction.
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In other words, whenever a party does not reject, the party’s key is indistin-
guishable from a fresh random string to the adversary.

The quantity k − m is called the entropy loss.

5.1 Dodis-Wichs Protocol with Non-malleable Extractor

Here we first recall the Dodis-Wichs protocol for privacy amplification (hereafter
called Protocol DW ), which is summarized in Fig. 1, and the required security
definitions, taken from [14]. We then state the result obtained by instantiating
the protocol with the quantum-proof non-malleable extractor from Theorem1.

Fig. 1. The Dodis-Wichs privacy amplification protocol.

Aside from the use of a strong quantum-proof extractor (Definition 3) and
a quantum-proof non-malleable extractor (Definition 5), the protocol relies on
an information-theoretically secure one-time message authentication codes, or
MAC. This security notion is defined as follows.

Definition 9. A function MAC : {0, . . . , dZ −1}×{0, 1}d → {0, 1}t is an εMAC-
information-theoretically secure one-time message authentication code if for any
function A : {0, 1}d × {0, 1}t → {0, 1}d × {0, 1}t it holds that for all m ∈ {0, 1}d

Pr
k←UZ

[
(MAC(k,m′) = σ′) ∧ (m′ �= m) : (m′, σ′) ← A(m,MAC(k,m))

] ≤ εMAC.

Efficient constructions of MAC satisfying the conditions of Definition 9 are
known. The following proposition summarizes some parameters that are achiev-
able using a construction based on polynomial evaluation.
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Proposition 1 (Proposition 1 in [34]). For any εMAC > 0, integer d > 0,
dZ ≥ d2

ε2MAC
, there exists an efficient family of εMAC-information-theoretically

secure one-time message authentication codes

{MAC : {0, . . . , dZ − 1} × {0, 1}d → {0, 1}t}d∈N

with t ≤ log d + log(1/εMAC).

The correctness and security requirements for the protocol are natural exten-
sions of the classical case (see Definition 18 in [19]). Informally, the adversary
has the following control over the outcome of the protocol. First, it possess
initial quantum side information E about the weak secret X shared by Alice
and Bob. That is, it has a choice of a cq source ρXE , under the condition that
Hmin(X|E) is sufficiently large. Second, the adversary may intercept and mod-
ify any of the messages exchanged. In Protocol DW there are only two mes-
sages exchanged, YA from Alice to Bob and (YB , σ) from Bob to Alice. To each
of these messages the adversary may apply an arbitrary transformation, that
may depend on its side information E. We model the two possible attacks,
one for each message, as CPTP maps T1 : L(HY ⊗ HE) → L(HY ⊗ HE′) and
T2 : L(C2d2 ⊗ H2t ⊗ HE′) → L(C2d2 ⊗C

2t ⊗ HE′′), where H denotes the Hilbert
space associated with system E. Note that we may always assume that H is
large enough for the adversary to keep a local copy of the messages it sees, if it
so desires.

The following result on the security of protocol DW is shown in [14]. We
include the proof in AppendixA.

Theorem 3. Let k, t, dZ and εMAC, εExt, εnmExt be parameters of Protocol DW,
as specified in Fig. 1. Let nmExt be a (k, εnmExt) quantum-proof non-malleable
extractor, Ext a strong (k − log dZ − log(1/εExt), εExt) quantum-proof extractor,
and MAC an εMAC-information-theoretically secure one-time message authenti-
cation code. Then for any active attack (ρXE , T1, T2) such that Hmin(X|E)ρ ≥ k,
the DW privacy amplification protocol described in Fig. 1 is (k,m, ε)-secure as
defined in Definition 8 with ε = O(εExt + εnmExt + εMAC).

Combined with Theorem 1 stating the security of our construction of a
quantum-proof non-malleable extractor, Theorem 3 provides a means to obtain
privacy amplification protocol secure against active attacks for a range of param-
eters. Due to the limitations of our non-malleable extractor we are only able to
extract from sources whose entropy rate is at least 1

2 . This is a typical setting
in the case of quantum key distribution, where the initial min-entropy satisfies
Hmin(X|E) ≥ α log dX for some constant α which depends on the protocol and
the noise tolerance, but is generally larger than 3/4. Specifically, we obtain the
following:

Corollary 1. For any ε > 0, there exists a constant c > 0, such that the fol-
lowing holds. For any active attack (ρXE , T1, T2) such that Hmin(X|E)ρ = k ≥
1
2 log dX + c · log(1/ε), there is an O(ε)-secure DW protocol that outputs a key of
length m = k − O(log(1/ε)).
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Proof. Let p be a prime and n a positive integer such that log p = Θ(log(1/ε))
and dX = pn. Let dY = pn/2, and dZ = p. Also, let d2 = O(log dX), m = k −
O(log(1/ε)), and t = O(log(1/ε)). We instantiate Theorem3 with the following.

– Let Ext : {0, . . . , dX − 1} × {0, 1}d2 → {0, 1}m be the (k − O(log(1/ε)), ε)
strong quantum-proof extractor from Theorem2.

– Let nmExt : {0, . . . , dX − 1} × {0, , . . . , dY − 1} → {0, . . . , dZ − 1} be the
(1
2 · log dX + O(log(1/ε)), ε) non-malleable extractor from Theorem 1.

– Let MAC : {0, . . . , dZ −1}×{0, 1}d2 → {0, 1}t be the one-time ε-information-
theoretically secure message authentication code from Proposition 1.

The result follows. ��

5.2 One-Round Privacy Amplification Protocol

In this section we show that the one-round protocol of Dodis et al. [16]
is also quantum-proof. This protocol has significantly higher entropy loss,
(n/2) + log(1/ε), than the DW protocol we presented in the previous section.

Fig. 2. The one-round privacy amplification protocol from [16].

Theorem 4. For any integer n and k > n/2, and any ε > 0, the protocol in
Fig. 2 is a one-round (k,m, ε)-quantum secure privacy amplification protocol with
post-application robustness and entropy loss k − m = (n/2) + log(1/ε).

Proof. Correctness and extraction follow as in the classical proof by observing
that Ext(X,Y ) = Y X1 + X2 is a quantum-proof extractor since hY (X1,X2) =
Y X1+X2 is a family of universal hash function, which is shown to be a quantum-
proof strong extractor in [36]. For robustness, the classical proof does not gen-
eralize directly. We prove post-application robustness as follows.

We proceed by contradiction. Suppose post-application robustness is vio-
lated, i.e. Pr[RA �= RB ∧ RA �=⊥ ∧ RB �=⊥] > ε. Then there is an initial state
ρXE with Hmin(X|E)ρ ≥ k and a CPTP map T : L(HY ⊗ HW ⊗ HRA

⊗ HE) →
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L(HY ⊗ HW ⊗ HE′) that can be applied by an adversary Eve to produce a
modified message that is accepted by Bob with probability greater than ε.
Note that T has RA as input since we consider post-application robustness.
Let (Y ′,W ′, E′) = T (Y,W,RA, E). If post-application robustness is violated,
then Pr[W ′ = [Y ′X1 + X2]v1] > ε.

Consider the following communication game: Alice has access to a cq-state
ρXE . Alice samples a uniformly random Y , computes W = [Y X1 + X2]v1,
RA = [Y X1 + X2]

n/2
v+1, and sends E, Y , W , and RA to Bob. They win if Bob

guesses X correctly from E, Y , W , and RA. Using the map T introduced above,
Bob can execute the following strategy. First, apply T on Alice’s message to
generate a guess (Y ′,W ′). Second, guess a uniformly random R′

B. Third, use
Y, Y ′, (W,RA) = Y X1 + X2, and (W ′, R′

B) = Y ′X1 + X2 to solve for a unique
X = (X1,X2). Note that Bob succeeds if the guesses (Y ′,W ′) and R′

B in the
first two steps are both correct (i.e., (W ′, R′

B) = Y ′X1 + X2), which has prob-
ability greater than ε · 2−((n/2)−v). On the other hand, we can upper bound the
winning probability of the communication game using the min entropy assump-
tion H(X|E)ρ ≥ k. Since Y is independent of X and the length of (W,RA) is
n/2, Hmin(X|E, Y,W )ρ ≥ k − (n/2). Thus the winning probability is less than
2−(k−(n/2)). Putting the two calculations together we have

ε · 2−((n/2)−v) ≤ Pr[ Bob wins ] ≤ 2−(k−(n/2)),

which implies v < n − k − log(1/ε), a contradiction. ��

A The Dodis-Wichs Protocol

In this appendix we reproduce the proof of Theorem3, taken from [14].

Proof of Theorem 3. Let an active attack on Protocol DW be specified by

– A cq state ρXE ∈ D(HX ⊗ HE) such that Hmin(X|E)ρ ≥ k;
– A CPTP map T1 : L(HY ⊗ HE) → L(HY ⊗ HE′) whose output on the first

registered is systematically decohered in the computational basis; formally,
for any ρY E , T1(ρY E) =

∑
y(|y〉〈y|Y ⊗ IdE)T1(ρY E)(|y〉〈y|Y

⊗ IdE);
– A CPTP map T2 : L(C2d2 ⊗ C

2t ⊗ HE′) → L(C2d2 ⊗ C
2t ⊗ HE′′).

Given an active attack (ρXE , T1, T2) we instantiate random variables
YA, Z, Y ′

A, YB , Z ′, σ, Y ′
B , σ′ and RA, RB in the obvious way, as defined in the

protocol and taking into account the maps T1 and T2, applied successively to
determine Y ′

A and (Y ′
B , σ′).

The correctness of the protocol is clear.
To show robustness, let σY ′

AYAXE′ denote the joint state of Y ′
A, YA (which

represents a local copy of YA kept by Alice), X, and Eve’s registers after her
first map T1 has been applied. Further decompose ρ as a sum of sub-normalized
densities σ=

Y ′
AYAXE′ , corresponding to conditioning on Y ′

A = YA, and σ⊥
Y ′

AYAXE′ ,
corresponding to conditioning on Y ′

A �= YA.
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Conditioned on Y ′
A = YA, by definition of a MAC the probability that

(Y ′
B ,W ′) �= (YB ,W ) and Alice reaches the KeyConfirmed state is at most

εMAC. If (Y ′
B ,W ′) = (YB ,W ) then RA = RB, so that in this case robustness

holds with error at most εMAC.
Now suppose Y ′

A �= YA. Consider a modified adversary Adv′ that keeps a
copy of YA, applies the map T1, and if Y ′

A = YA replaces Y ′
A with a uniformly

random string that is distinct from YA. This adversary implements a CPTP map
T ′

1 that has no fixed point. By the assumption that nmExt is a quantum-proof
non-malleable extractor,

σ′
nmExt(X,YA)nmExt(X,Y ′

A)YAY ′
AE′ ≈εnmExt Um ⊗ σ′

nmExt(X,Y ′
A)YAY ′

AE′ , (A.1)

where here Y ′
AE′ is defined as the output system of the map T ′

1 implemented by
Adv′. Conditioned on YA �= Y ′

A the maps T1 and T ′
1 are identical, thus it follows

from (A.1) and the definition of ρ⊥ that

σ⊥
nmExt(X,YA)nmExt(X,Y ′

A)YAY ′
AE′ ≈εnmExt Um ⊗ σ⊥

nmExt(X,Y ′
A)YAY ′

AE′ ,

where now the states are sub-normalized. Since Z ′ = nmExt(X,Y ′
A) this means

that the key used by Alice to verify the signature in Step 3. of Protocol DW is
(up to statistical distance εnmExt) uniform and independent of the key used by
Bob to make the MAC. By the security of MAC, the probability for Alice to
reach the KeyConfirmed state in this case is at most εnmExt + εMAC. Adding
both parts together, Pr(RA /∈ {RB ,⊥}) ≤ εnmExt +2εMAC. Since RB is never ⊥,
this implies the robustness property.

For the extraction property, it is sufficient to show that (RB , V, E) ≈ε

(Um, V, E) since then key extraction property follows from the robustness and
the fact that RB is never ⊥. We have that RB = Ext(X,YB) is close to uni-
form given V = YAYBW and E′, and we need to establish two properties: first,
independence between X and YB given YAZ ′E′ and second, that the source has
enough entropy conditioned on YAZ ′E′. Regarding the first property, observe
that conditioned on YAZ ′, X and YB are independent given E′. Regarding the
source entropy, by the chain rule for the (smooth) min-entropy [37], it follows
that HεExt

min (X|YAZ ′E′) ≥ k− log dZ −c log(1/εExt) for some constant c > 0. Note
that
∥∥(RB , V, E′)σ − (Um, V, E′)σ

∥∥
1

≤ ∥∥(RB , YA, YB , Z′, E′)σ − (Um, YA, YB , Z′, E′)σ

∥∥
1
,

which follows since W is a deterministic function YB and Z ′. Using that Ext is
a strong quantum-proof extractor, we conclude that (RB , V, E) ≈ε (Um, V, E),
as long as ε is such that ε > εExt. ��
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Abstract. Secure multiparty computation (MPC) addresses the chal-
lenge of evaluating functions on secret inputs without compromising their
privacy. A central question in multiparty computation is to understand
the amount of communication needed to securely evaluate a circuit of
size s. In this work, we revisit this fundamental question in the setting
of information-theoretically secure MPC in the correlated randomness
model, where a trusted dealer distributes correlated random coins, inde-
pendent of the inputs, to all parties before the start of the protocol. This
setting is of strong theoretical interest, and has led to the most practi-
cally efficient MPC protocols known to date.

While it is known that protocols with optimal communication (pro-
portional to input plus output size) can be obtained from the LWE
assumption, and that protocols with sublinear communication o(s) can
be obtained from the DDH assumption, the question of constructing
protocols with o(s) communication remains wide open for the important
case of information-theoretic MPC in the correlated randomness model;
all known protocols in this model require O(s) communication in the
online phase.

In this work, we exhibit the first generic multiparty computation pro-
tocol in the correlated randomness model with communication sublinear
in the circuit size, for a large class of circuits. More precisely, we show
the following: any size-s layered circuit (whose nodes can be partitioned
into layers so that any edge connects adjacent layers) can be evaluated
with O(s/ log log s) communication. Our results holds for both boolean
and arithmetic circuits, in the honest-but-curious setting, and do not
assume honest majority. For boolean circuits, we extend our results to
handle malicious corruption.

Keywords: Multiparty computation · Correlated randomness model ·
Information-theoretic security · Sublinear communication

1 Introduction

Secure multiparty computation (MPC) allows n players with inputs (x1, · · · ,
xn) to jointly evaluate a function f , while leaking no information on their
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own input beyond the output of the function. It is a fundamental problem in
cryptography, which has received a considerable attention since its introduc-
tion in the seminal works of Yao [Yao86], and Goldreich, Micali, and Wigder-
son [GMW87b,GMW87a] (GMW). One of the core questions in secure multi-
party computation is to understand the amount of communication needed to
securely compute a function. For almost three decades after the protocols of Yao
and GMW, all known constructions of secure computation protocols required a
communication proportional to the circuit size of the function, and understand-
ing whether this was inherent was a major open problem.

Secure Computation with Sublinear Communication. In 2009, this sit-
uation changed with the introduction by Gentry of the first fully-homomorphic
encryption scheme [Gen09] (FHE), which led to secure computation protocols
with communication independent of the size of the function (proportional only
to its input size and its output size), under (a circular-security variant of) the
LWE assumption. This resolved the long-standing open problem of designing
MPC protocols with optimal (asymptotic) communication, although only under
a specific assumption. More recently, the circuit-size barrier was broken again
under the DDH assumption in [BGI16], for a large class of structured circuits1

and in the two-party case. However, while these results are of strong theoretical
interest, they require expensive computations.

Secure Computation in the Correlated Randomness Model. While
secure computation (with no honest majority) is known to require computa-
tional assumptions, it was observed in several works (e.g. [IPS08,DPSZ12]) that
executing a pre-computation phase independent of the inputs to the protocol,
during which correlated random bits are distributed to the parties, allows to
make the online phase both information-theoretically secure and significantly
more efficient, by removing any expensive cryptographic operation from the
online computation phase. These observations led to the development of increas-
ingly efficient secure computation protocols in the correlated randomness model,
e.g. [KOS16,DNNR17], which are currently considered the most practical secure
computation protocols. Yet, unlike computationally secure protocols, all known
unconditionally secure protocols in the correlated randomness model (with com-
putation and storage polynomial in the circuit size) require communication pro-
portional to the circuit size of the function. Therefore, the major question of
understanding the communication required for multiparty computation remains
wide open for the important case of MPC in the correlated randomness model,
which captures the best candidates for practical secure computation. This is the
question we address in this work: must MPC protocols in the correlated random-
ness model inherently use a communication linear in the size of the circuit? Or,
in other words, can we get the best of both worlds: unconditional security with
high practical efficiency, and sublinear communication?
1 The work of [BGI16] considered, as we will do in this work, boolean circuits which

can be divided into layers such as any edge connects adjacent layers. Such circuits
are called layered boolean circuits.
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On the Communication of Secure Computation in the Correlated Ran-
domness Model. A partial answer to this question was given in [IKM+13],
where the authors designed a one-time truth-table protocol, which allows to
evaluate any function f : {0, 1}n �→ {0, 1}m with unconditional security in the
correlated randomness model, with optimal communication O(n+m). However,
this protocol requires storing an exponential number (in n) of correlated ran-
dom bits (polynomial in the size of the entire truth-table of f), which makes it
practical only for boolean functions with very small inputs. Furthermore, it was
argued in [IKM+13] that reducing the amount of correlated random coins from
exponential to polynomial (in the input size) for any function f is unlikely to be
feasible, as it would imply an unexpected breakthrough for long-standing open
problems related to private information retrieval.

While this negative result does not rule out a sublinear-communication pro-
tocol with small storage for circuits, this observation and the fact that all known
protocols (with polynomial storage) have communication proportional to the
circuit size s of the function have been seen as indications that breaking the
circuit-size barrier for multiparty computation in the correlated randomness
model might be non-trivial. For instance, it was mentioned in [DZ13] that “the
results and evidence we know suggest that getting constant overhead [over the
circuit size of the function] is the goal we can realistically hope to achieve”.
More recently in [DNPR16], the authors mentioned that “whether we can have
constant round protocols and/or communication complexity much smaller than
the size of the circuit and still be efficient (polynomial-time) in the circuit size
of the function is a long-standing open problem”.

In [DNPR16], the authors made progresses toward understanding why exist-
ing protocols have been stuck at the circuit-size barrier, by identifying a property
shared by all known efficient protocols in the correlated randomness model, which
states (informally) that they evaluate the function in a “gate-by-gate” fashion,
and require communication for every multiplication gate. They demonstrated
that all protocols following this approach (with passive security and dishonest
majority) must inherently have communication proportional to the circuit size
of the function. They concluded that improving the communication complexity
of secure computation in the correlated randomness model requires a fundamen-
tally new approach, and mentioned that the main question left open in their
work is to find out whether their bound does hold for any protocol which is
efficient in the circuit size of the function. This is the problem we address in this
work.

1.1 Our Contribution

In this paper, we construct for the first time protocols with polynomial storage
and communication sublinear in the circuit size, for a large class of circuit.
Perhaps surprisingly, our results turn out to be relatively simple to obtain; it
appears however that this simple solution was missed in previous works.

Sublinear Protocol for Structured Circuits. We exhibit a generic secure
computation protocol in the correlated randomness model, with communication
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sublinear in the circuit size. More specifically, we consider layered boolean cir-
cuits (LBC), whose nodes can be arranged into layers so that any edge connects
adjacent layers. We prove the following: for any N , there is an unconditionally
secure N -party protocol that evaluates an arbitrary LBC of size s with n inputs
and m outputs, with total communication

O

(
n + N ·

(
m +

s

log log s

))
,

sublinear in the size of the circuit, and polynomial storage O(s2/ log log s), in
the correlated randomness model against semi-honest adversaries, with dishonest
majority. While this requires an arguably large storage, it can be reduced to being
only slightly superlinear in s, namely

O

(
s · 2(log s)1/c

log log s

)
,

at the cost of increasing the communication to O(n + N · (m + c · s/ log log s))
(for an arbitrary c = o(log log n)). Our protocol enjoys perfect security, computa-
tional complexity O(s log s/ log log s+n+m), and round complexity d/ log log s,
where d is the depth of the circuit. All the constants involved are very small (in
fact equal to one, up to low order terms), and the computation involves solely
searching lookup tables.

Extensions. We generalize our result to secure evaluation of arbitrary lay-
ered arithmetic circuits (LAC) over any (possibly exponentially large) field F,
by relying on a connection between MPC with correlated randomness and the
classical notion of private simultaneous message protocols [FKN94]. The result-
ing protocol for arithmetic circuits has costs comparable to the boolean ver-
sion. Furthermore, we show that all our results can be extended to the stronger
function-independent preprocessing model, where only a bound on the size of
the circuit is known in the preprocessing phase, and that the communication
can be improved for “tall and narrow” circuits. Eventually, using the techniques
of [DNNR17,KOR+17], our protocols directly extend to the malicious setting
for boolean circuits, at an additive cost of N ·κ bits of communication (for some
statistical security parameter κ), and a O(κ) overhead in computation and cor-
related randomness (more advanced techniques from [DNNR17] can be used to
make this overhead constant).

Static vs Adaptive Setting. While we focus for simplicity on the static set-
ting in this work, where the adversary decides before the protocol which parties
to corrupt, our protocols can be proven to also satisfy adaptive security in a
relatively straightforward way. Indeed, when it must reveal the input of a party
which is being corrupted by the adversary, the simulator of our main protocol
(and its variants) can easily explain the view of the adversary as being consistent
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with any input of its choice, by choosing the preprocessing material in an appro-
priate way. As the view of the adversary will always consist of values perfectly
masked by random coins generated in the preprocessing phase, there will always
be a choice of preprocessing material which “unmask” the values known to the
adversary to any value chosen by the simulator.

1.2 Our Method

Perhaps surprisingly, our method does not depart significantly from existing
techniques in secure computation. Our starting point is the one-time truth-table
(OTTT) protocol of [IKM+13], which has optimal communication but requires
an exponential amount of data. It has been observed in several works that using
OTTT as an internal component in secure protocols can be used to reduce their
communication. For example, it was suggested to use OTTT to securely compute
S-boxes in AES in [DNNR17,KOR+17], as they can be efficiently represented as
small lookup-tables. More recently, the work of [DKS+17] developped methods
to automatically create tradeoffs between communication and computation in
secure protocols, by relying on a compiler that transforms high-level descrip-
tions of a function into a lookup-table-based representation of the function. All
these works rely on the fact that, for functions that can be broken into small
interconnected lookup-tables, the protocol of [IKM+13] can be used to save some
communication.

Dividing Layered Boolean Circuits into Local Functions. In this work,
we show that this intuition can in fact be extended to arbitrary layered boolean
circuit of size s, and that the savings obtained this way lead to a protocol
with o(s) communication. Our protocol builds upon a variant of the result
of [IKM+13], which states that every function can be securely evaluated in the
correlated randomness model with perfect security, optimal communication, and
exponential storage. Our variant relies on the observation that when evaluating
local functions, where each output bit depends on a number c of input bits, we
can reduce the storage cost of the protocol of [IKM+13] from being exponential
in the input size to being only exponential in the locality parameter c. Indeed,
consider the task of securely evaluating a function with n input bits, and m
output bits. The protocol of [IKM+13] (called OTTT, for one-time truth table)
requires the parties to store shares of (a shifted version of) the truth table of the
function, which has size m · 2n, exponential in the input size. When the func-
tion is c-local, however, there is a better solution: the parties can store shares
of (shifted variants of) truth tables corresponding to each function mapping c
input bits to a given output bit, for a total storage cost of m ·2c. Some care must
be taken, as doing straightfoward parallel repetitions of the OTTT protocol for
each subfunction would increase the communication from O(n) to O(c · m); we
show that carefully avoiding redundancies in the secret-shared representation of
the input allows to bring this cost back to O(n). We formally state this result
in a lemma, which we call core lemma.

Given the core lemma, our result is obtained by breaking an arbitrary layered
circuit into chunks, each chunk containing some number k of consecutive layers.
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We observe that, as the underlying directed graph of the circuit has indegree 2,
each value associated to the last layer of a chunk can be computed as a function
of at most 2k values on the last layer of the previous chunk. Therefore, computing
all the values on the last layer of a chunk can be reduced to evaluating a 2k-
local function of the values on the last layer of the previous chunk. Using the
core lemma, this can be done using O(w · 22

k

) bits of preprocessing material,
where w is the width of the input layer, with a communication proportional to w
only. If the circuit has size s, width w, and depth d, this means that the circuit
can be securely evaluated in a chunk-by-chunk fashion, with total communication
O((d/k)·w) = O(s/k), using O((d/k)·22k) bits of correlated randomness; setting
k ← log log s gives the claimed result.2

Extending the Result to Arithmetic Circuit. The above method breaks
down in the case of arithmetic circuits over large order fields. While we can
decompose an arbitrary LBC into polynomial-size truth tables (by breaking it
into interconnected functions operating on logarithmically many inputs), this is
not true anymore for arithmetic circuit over fields of exponential size, where even
a function with a single input will have an exponential-size truth table. We nev-
ertheless obtain a comparable result for arithmetic circuit, building upon a rela-
tion with the notion of private simultaneous message (PSM) protocols [FKN94],
which establishes that PSM protocols with some additional decomposability
property can be used to build two-party secure computation protocols in the
correlated randomness model. This link was indirectly established in [BIKK14],
where a connection was drawn both between PSM and PIR, and between MPC
in the correlated randomness and PIR. Building upon a recent PSM protocol
of [LVW17] for multivariate polynomial evaluation, we get an arithmetic ana-
logue of the protocol of [IKM+13], which relies on the representation of arith-
metic functions as multivariate polynomials. From this protocol, we derive a new
version of our core lemma, tailored to the arithmetic setting, which directly leads
to a secure computation protocol with communication O(s/ log log s) for layered
arithmetic circuits over arbitrary fields.

We note that, while lookup-table-based secure computation protocols for
boolean circuits have been investigated, the extension of this approach to the
arithmetic setting was (to our knowledge) never observed before. As a minor
side contribution of independent interest, we further observe that our generaliza-
tion to the arithmetic setting does in fact also provide some improvement over
the original TinyTable protocol [DNNR17] in the boolean setting: by replac-
ing the lookup-table-based representation of boolean gates by a multivariate-
polynomial-based representation, we show that the storage requirement of their
protocol can be reduced by 25%.

On the Lower Bounds of [IKM+13,DNPR16]. It should be noted that our
protocols do not follow the standard gate-by-gate design of unconditionally

2 We assume w · d = O(s) in this high level explanation for simplicity only, this is not
a necessary condition in the actual construction.
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secure protocols in the correlated randomness model, hence our result does not
contradict the lower bound of [DNPR16]. Moreover, our results apply only to
circuits, while the implausibility result of [IKM+13] assumes the existence of a
low-storage protocols for evaluating any function, which our results do not pro-
vide. Therefore, they do not lead to unexpected breakthroughs for information-
theoretic private information retrieval.

1.3 Related Work

The possibility of securely computing functions given access to a source of cor-
related random coins was first studied in the work of Beaver for the (MPC-
complete) oblivious-transfer functionality in [Bea95], and later generalized to
the commodity-based model, where multiple servers generate correlated random
coins in a honest majority setting in [Bea97]. The study of multiparty computa-
tion in the preprocessing model, where the correlated-randomness coin-generation
phase is implemented with a computationally secure MPC protocol, was initiated
in [Kil88,Bea92,IPS08]. These works started a rich line of work on increasingly
efficient MPC protocols in the preprocessing model [IPS09,BDOZ11,NNOB12,
DPSZ12,DZ13,DLT14,LOS14,FKOS15,BLN+15,DZ16,KOS16,DNNR17].

The quest for secure multiparty computation protocols with low-
communication was initiated in [BFKR91], which gave a protocol with opti-
mal communication, albeit with exponential computation and only for a num-
ber of party linear in the input size. An optimal communication protocol
with exponential complexity was also given in [NN01]. The work of [BI05]
gives a low-communication protocol for constant-depth circuit, for a number
of parties polylogarithmic in the circuit size. The breakthrough result of Gen-
try [Gen09] led to optimal communication protocols in the computational set-
ting [DFH12,AJL+12] under the LWE assumption.3 More recently, computa-
tionally secure MPC protocols with sublinear communication were achieved from
the DDH assumption in [BGI16].

The study of low-communication protocols in the correlated randomness
model was initiated in [IKM+13], where a protocol with optimal communica-
tion and exponential storage complexity was presented. The same paper showed
that improving the storage requirement for all functions would imply a break-
through in information-theoretic PIR. The work of [BIKK14] reduces the stor-
age requirement for functions with n inputs to 2O(

√
n), at the cost of increasing

the communication complexity to 2O(
√

n). The work of [BIKO12] leads to low-
communication protocols in the correlated randomness model for the special case
of depth-2 circuits with a layer of OR gates and a layer of gates computing a sum
modulo m, for composite m. All known protocols for evaluating arbitrary circuits
in the correlated randomness model (with polynomial computation and storage)
use communication linear in the circuit size. This limitation was formally studied

3 More precisely, the protocol needs to assume the circular security of an LWE-based
encryption scheme; alternatively, it can be based on the LWE assumption only, but
the communication will grow with the depth of the circuit.
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recently in [DNPR16], where it was shown that it is inherent in the setting of
gate-by-gate protocols.

The idea of using truth-table representation to reduce the communication
of secure computation protocols first arose in [CDv88], and was developped
in [IKM+13]. It was later used implicitly in [KK13], to construct one-out-of-
two oblivious transfer for short string from one-out-of-N oblivious transfer, and
in the works of [DNNR17,KOR+17,DKS+17] to evaluate circuits with an appro-
priate structure.

On the Relation to [DNNR17]. At a late stage of our work on this paper, it was
brought to our attention that the main techniques underlying the proof of our
core lemma – informally, breaking a function into interconnected truth-tables,
representing each outgoing wires from a table with secret-shared values, and
carefully avoiding all redundancies for wires which are used by several tables –
are already implicitely present in [DNNR17]. Indeed, [DNNR17] already explored
the possibility of breaking a circuit into small interconnected truth table, avoid-
ing redundancies in the secret-shared representation of the values associated to
each wire, and envisionned the possibility of generalizing this to larger tables.
However, it appears that the authors of [DNNR17] have overlooked the surpris-
ing potential consequences of these techniques, which we explore in this paper.
Therefore, our work can be seen as indentifying and abstracting out the technical
ideas underlying our main result (as well as providing additional contributions,
such as the extension to the arithmetic setting), but while the core lemma is new
to our work, we cannot (and do not) claim the novelty of the techniques used
in its proof, which should be credited to [DNNR17]. Still, we believe that our
result remains interesting and surprising, and that it deserves to be explicitly
presented.

1.4 On the Practical Efficiency of Our Protocols

In spite of its theoretical nature, our result can in fact lead to concrete effi-
ciency improvements for secure multiparty computation. We focus for simplicity
on the case of two-party computation, and argue that our protocols can lead to
improved efficiency, for useful types of computation. The state-of-the-art pro-
tocol for secure two-party computation in the correlated randomness model is,
to our knowledge, the protocol of [DNNR17] (in both the passive setting and
the active setting), which also relies on an OTTT-based evaluation of a boolean
circuit. In the online phase, the protocol of [DNNR17] communicates 2 bits per
AND gate (one from each player), and no bit at all for XOR and NOT gates (we
note that our protocols can be readily adapted to allow for free XOR and NOT
gates as well).

Concrete Efficiency. Using our protocol with k = 2, we get a two-party
protocol which communicates on average a single bit per AND gate, improving
over the protocol of [DNNR17] by 50% in both the passive and the active setting,
for arbitrary layered circuits. This comes at the cost of storing 8 times more
preprocessed data (a factor 22

k

/k = 8 for k = 2), and a factor 2k/k = 2 in
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computation (which comes from the need to search four-times larger lookup-
tables). As noted in [DNNR17], the limiting factor in a concrete implementation
of TinyTable is the bandwidth, hence we expect that an implementation of our
protocol would result in concrete improvements over [DNNR17] in the speed of
the online phase.

On the Generality of Layered Boolean Circuits. Unlike [DNNR17], how-
ever, our construction is restricted to layered boolean circuits. While this is a
large class of circuits, and getting improved secure computation protocols for
this class was already seen as an interesting goal in previous papers [BGI16],
one might wonder whether this class captures useful circuits, ones that arise
naturally in some applications. We argue that it is the case, by providing a
(non-exhaustive) list of types of circuits that are well-suited for our protocols.
We stress that this list is only for illustration purpose; many more examples can
be found.

– FFT circuit. The circuit for the fast Fourier transform, which is used in signal
processing and integer multiplication, and the circuit for permutation net-
works [Wak68], which allow to compute arbitrary permutations of the input,
have the exact same structure and are layered. For these circuits, which occur
naturally in many applications, our protocol leads to an online communica-
tion of O(n log n/ log log n) instead of O(n log n).

– Symmetric crypto primitives. It was already observed previously that any
computation involving large truth tables, such as block ciphers (e.g. AES),
have the appropriate structure to be evaluated efficiently with our app-
roach. More generally, algorithms that proceed in sequences of low-complexity
rounds, where each round requires only the state of the previous round
(and the input), are naturally “layered by blocks”, which suffices for our
result to apply. This structure is common to many primitives in symmetric
cryptography.

– Circuits for problems with a dynamic-programming algorithm. Dynamic pro-
gramming algorithm naturally proceed in stages, such that the computa-
tion at each stage depends on a (usually small) state of values stored after
the previous stage. Such dynamic programming algorithms arise for exam-
ple in various useful types of distance measures used in genetic computa-
tion, such as the Smith-Waterman distance [SW81], or the Levenshtein dis-
tance [Lev66] and its variants (LCS, weighted Levenshtein distance, etc).
Privacy-preserving genomic computations are an important application of
secure computation, hence the secure computation of the aforementioned
measures (which are among the fundamental building blocks of computational
biology) has been considered at length (see e.g. [AKD03,SPO+06,JKS08,
HEKM11,ALSZ13,CKL15]). The natural circuit for computing Levenshtein
and Smith-Waterman distances have size O(n2 log n), but can be computed
with online communication O(n2) with our protocol (the log n shaving comes
from the high locality of dynamic programming algorithms; our result leads
to better sublinearity guarantee for very local computations).
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1.5 On Implementing the Correlated Randomness Model

It is well known that the distribution of correlated random coins in the prepro-
cessing phase can be implemented by any generic MPC protocol. However, in
our setting, generic approaches would require a communication superlinear in
the circuit size. We note that, for the specific case of generating random shares
of correlated strings, there are better (theoretical) solutions: under the learn-
ing with error assumption, or under (variants of) the decisional Diffie-Hellman
assumption in the two-party case, the preprocessing phase of our protocols can be
implemented with constant communication poly(λ) (where λ is a security param-
eter), independent of the size of the circuit, resulting in protocols with sublin-
ear total communication O(s/ log log s + poly(λ)), and information-theoretically
secure online phase.

We briefly sketch how the preprocessing phase can be implemented with
constant communication. The main technical tool is a primitive known as homo-
morphic secret sharing [BGI16] (HSS); the idea of using HSS to the implement
preprocessing phase of MPC protocols was suggested in [BGI17,BCG+17]. Infor-
mally, an HSS scheme for a class of functions F allows to secretly share an
input x between several parties, such that given its share, each party can locally
compute an additive share of f(x), for any f ∈ F . Given an HSS scheme for
all circuits, the preprocessing phase can be implemented as follows: we assume
without loss of generality that the trusted dealer first samples a long random
string x, computes f(x) for some specified function f , and distributes random
additive shares of f(x) to the parties (e.g. in our protocol, f would output
≈ s/ log log s shifted truth-tables). To implement this preprocessing phase, the
parties jointly and securely construct, using a general purpose MPC protocol, an
homomorphic secret sharing of a random PRF key K. Then, all parties locally
evaluate the function f ′ that takes some counter c, generates pseudorandom coins
x from this counter using the PRF with key K (e.g. by computing PRF(K, c),
PRF(K, c + 1), and so on), and returns f(x). This way, with no further commu-
nication except for a one-time generation of the sharing of K (which takes com-
munication poly(λ), independently of s), the parties obtain correlated (pseudo)
random coins. An HSS scheme for all functions (and a PRF) can be constructed
under the LWE assumption [BGI15,JRS17]. With a more involved construction,
a protocol can also be obtained from DDH: under the DDH assumption, there
exists an approximately-correct HSS scheme for NC1 [BGI16], in the two-party
setting. Noting that the preprocessing function is parallelizable (in NC0) and
that there exists PRFs in NC1 under the DDH assumption, we can implement
the previous strategy from DDH. The correlated random coins obtained this way
are not all correct, but the approximately-correct HSS scheme of [BGI16] allows
the parties to make the error probability arbitrarily small, and to detect when
an output is erroneous. By setting the error parameter so that, with overwhelm-
ing probability, a small (constant) number of correlated random coins will be
erroneous, and by introducing some redundancy in the coins generated this way,
the parties can simply reveal to each other which correlated coins are susceptible
to be erroneous (indicating the position of erroneous bits only requires O(log s)
communication), and locally delete them. To prove security in spite of this small
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leakage, we need to rely on slightly leakage-resilient PRF and HSS, which can
both be constructed from DDH-based primitives using standard approaches. We
refer the reader to the full version [BCG+18] of [BCG+17] for a detailed overview
of this approach.

1.6 Organization

Section 2 introduces our notations, and recalls standard preliminaries on circuits.
In Sect. 3, we summarize the contributions of this paper in the form of a list of
theorems, formally state the core lemma on which these theorems are based, and
prove it. Section 4 builds upon the core lemma; it introduces our main protocol
and several variants, and proves its security. In Sect. 5, we discuss the extension
of our protocols to the malicious setting. Eventually, Sect. 6 lists some questions
left open by our work, that we believe to be of interest for future works.

2 Preliminaries

Notations. Let k be an integer. We let {0, 1}k denote the set of bitstrings of
length k. For two strings (x, y) in {0, 1}k, we denote by x ⊕ y their bitwise xor.
Given a subset S of [k], x[S] denotes the subsequence of the bits of x with indices
from S. We use bold letters to denote vector; for a vector x = (x1, · · · , xN ), x[S]
denotes the vector (x1[S], · · · , xN [S]). For a matrix M , we denote M |i,j its entry
(i, j).

2.1 Circuits

Boolean Circuits. A boolean circuit C with n inputs and m outputs is a
directed acyclic graph with two types of nodes:

– The input nodes are labelled according to variables {x1, · · · , xn};
– The gates are labelled according to a base B of boolean functions.

In this work, we will focus on boolean circuits with indegree two (hence, B
contains boolean functions with domain {0, 1} or {0, 1}2). C contains m gates
with no children, which are called output gates. If there is a path between two
nodes (v, v′), we say that v is an ancestor of v′. The size size(C) of C is the
number of its nodes; its depth depth(C) is the length of the longest path from
an input node to an output gate. The width of a circuit C = (V,E) is defined
as width(C) = max1≤i≤depth(C) #{v ∈ V | (0 ≤ depth(v) ≤ i) ∧ (∃w, (v, w) ∈
E ∧ depth(w) > i)}.

Layered Boolean Circuits. In this work, we will consider a special type of
boolean circuits, called layered boolean circuits (LBC). An LBC is a boolean
circuit C whose nodes can be partitioned into d = depth(C) layers (L1, · · · , Ld),
such that any edge (u, v) of C satisfies u ∈ Li and v ∈ Li+1 for some i ≤ d − 1.
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Note that the width of a layered boolean circuit is also the maximal number of
non-output gates contained in any single layer. Evaluating a circuit C on input
x ∈ {0, 1}n is done by assigning the bits of x to the variables {x1, · · · , xn}, and
then associating to each gate g of C (seen as a boolean function) the bit obtained
by evaluating g on the values associated to its parent nodes. The output of C
on input x, denoted C(x), is the bit-string associated to the output gates.

Arithmetic Circuits. We define arithmetic circuits over a field F comparably
to boolean circuits, as directed acyclic graphs with input nodes and arithmetic
gates. Input nodes are labeled with variables {x1, · · · , xn} over F, and the gates
compute negation, addition, or multiplication over F. Note that boolean circuits
correspond to the special case of arithmetic circuits over the field F2; we extend
layered boolean circuits to layered arithmetic circuits (LAC) in a similar way.

2.2 One-Time Truth Tables

We recall the one-time truth-table protocol of [IKM+13], which is at the heart
of our protocols. It allows multiple parties to jointly evaluate a function f :
X1 × X2 × · · · × XN �→ Z, by sharing between all parties a scrambled version
of the truth table of f . We focus for simplicity on a scenario where all parties
receive the same output, but the protocol can be trivially generalized to a setting
where the parties receive different outputs. The protocol is represented on Fig. 1;
it has optimal communication

∑
i log |Xi| + N · log |Z|, and exponential storage

complexity |Z| · ∏i |Xi| per party.

3 Theorems and Core Lemma

In this section, we formally introduce the theorems which we will prove in this
work, state the core lemma from which we will derive them, and prove it.

Network Model. We consider protocols involving N parties communicating
over synchronous and authenticated broadcast channel. Note that broadcasts
channels can be unconditionally implemented from (insecure) point-to-point
channels in the correlated randomness model.

Functionalities. An N -party functionality F : X1×X2×· · ·×Xn �→ Z1×Z2×
· · · × ZN specifies a mapping from the N input of each party to N outputs (one
for each party). Such functionalities capture arbitrary non-reactive computation
tasks. A useful special case of (randomized) N -party functionalities are secret
sharing functionalities for functions over an abelian group (G,+): a protocol
computes secret shares of a function g : G �→ G if it computes the (randomized)
N -party functionality which, on input (x1, · · · , xN ) ∈ G

N , outputs N uniformly
random group elements (z1, · · · , zN ) ∈ G

N subject to
∑N

i=1 zi = g(
∑N

i=1 xi).
This captures the situation where the parties hold secret shares of an input to a
(deterministic) function, and want to receive secret shares of the output of the
function.
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Fig. 1. Protocol OTTT for evaluating an arbitrary N -party functionality f in the
correlated randomness model, against a passively corrupted majority

3.1 Theorems

Following is a summary of the results that we obtain in the subsequent sections.

Theorem 1. For any N -party functionality f represented by a layered (boolean
or arithmetic) circuit C of size s with n inputs and m outputs, and for any
integer k, there is a perfectly secure protocol which realizes f in the preprocessing
model against semi-honest parties, without honest majority, with communication
n + N · (m + �s/k�) and storage n/N + (m + �s/k�) · (22

k

+ 1).

In the above theorem, “storage” refers to the number of correlated random
coins stored by each party at the end of the preprocessing phase (counted as
a number of bits in the boolean case, and as a number of field elements in the
arithmetic case). This gives, setting k = log log s,

Corollary 2. There is a protocol that perfectly realizes any N -party functional-
ity f (in the function-dependent preprocessing model and against semi-honest
parties, without honest majority) represented by a layered (boolean or arith-
metic) circuit C of size s with n inputs and m outputs, with communication
O(n + N · (m + s/ log log s)) and polynomial storage.

Building on the same techniques, we can also obtain a comparable result
in the stronger function-independent correlated randomness model, where the
correlated randomness is not allowed to depend on the target functionality (but
is only given a bound on its size):
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Theorem 3. For any N -party functionality f represented by a layered (boolean
or arithmetic) circuit C of size s with n inputs and m outputs, and for any integer
k, there is a perfectly secure protocol which realizes f in the function-independent
preprocessing model against semi-honest parties, without honest majority, with
communication n+N · (m+�s/k�) and storage n/N +(m+�s/k�) · (2k+22

k

+1).

Setting k = log log log s gives us

Corollary 4. There is a protocol that perfectly realizes any N -party functional-
ity f (in the function-independent preprocessing model and against semi-honest
parties, without honest majority) represented by a layered (boolean or arith-
metic) circuit C of size s with n inputs and m outputs, with communication
O(n + N · (m + s/ log log log s)) and polynomial storage.

Finally, we can obtain a stronger sublinearity guarantee for “tall and narrow”
layered circuits:

Theorem 5. For any N -party functionality f represented by a layered (boolean
or arithmetic) circuit C of size s and width w with n inputs and m outputs,
and for any integer k, there is a perfectly secure protocol which realizes f in the
preprocessing model against semi-honest parties, without honest majority, with
communication n + N · (m + �s/k�) and storage n/N + (m + �s/k�) · (2w·k + 1).

For example, setting k =
√

log s gives us

Corollary 6. There is a protocol that perfectly realizes any N -party functional-
ity f (in the preprocessing model and against semi-honest parties, without honest
majority) represented by a “tall and narrow” layered (boolean or arithmetic) cir-
cuit C of size s and width w = O(

√
log s) with n inputs and m outputs, with

communication O(n + N · (m + s/
√

log s)) and polynomial storage.

Alternatively, we get a protocol with communication O(s/ log s) for constant-
width circuit (which corresponds to the complexity class SC0). This can again be
generalized to the stronger function-independent correlated randomness model.
In the next section, we proceed with the description of our protocol. We first
focus on the case of layered boolean circuits, and then discuss our extension to
the case of arithmetic circuits.

3.2 Core Lemma

In this section, we state and prove the core lemma which underlies our results.

Definition 7 (Local Function). A Function g : Fn
2 �→ F

m
2 is c-local (for some

integer c ≤ n) if on any input x ∈ F
n
2 , any output bit of g(x) depends on at most

c bits from x.
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Lemma 8 (Core Lemma). For any c-local function g : Fn
2 �→ F

m
2 , there is

an information-theoretic semi-honest N -party secure computation protocol (with
dishonest majority) in the correlated randomness model for computing secret
shares of g with total online communication N ·n bits, and correlated randomness
m · 2c + n bits per party.

Before proving Lemma 8, it is instructive to compare its guarantees to
the protocol obtained by applying directly the one-time truth-table protocol
of [IKM+13] to the N -party functionality computing secret shares of g. Apply-
ing the OTTT protocol to the N -party functionality which sums its entries (over
F2) before evaluating g, we get a protocol with total communication N · n and
correlated randomness m · 2N ·n. However, it is straightforward to improve this
protocol, by applying the OTTT protocol to the 1-party functionality g, and
letting the trusted dealer distribute random shares of the shift r to all parties
in the preprocessing phase: in the online phase, each party broadcasts his share
of the input x, masked with his share of the shift r; this allows all parties to
reconstruct x + r. With this modification, the parties need only to store a share
of the one-dimensional truth-table of g, of size m · 2n.

Therefore, Lemma 8 can be seen as an generalization of the result
of [IKM+13], which shifts the exponential cost of the correlated randomness
from the input size to the locality parameter of the function. In the most gen-
eral case, when c = n, we recover the result of [IKM+13] (for the special case of
the secret sharing functionalities, and up to an additive factor n); when c < n,
however, this leads to a protocol which uses a smaller amount of correlated
randomness.

Proof. Let g : Fn
2 �→ F

m
2 be a c-local function. Without loss of generality, we

assume that each output bit of g depends on exactly c input bits. For j = 1 to
m, we denote by Sj ⊂ [n] the size-c subset of the bits of the input on which the
j’th output bit depends. We denote by gj ← restrict(g, j) the following function:
gj : Fc

2 �→ F2 is the function which, for any x ∈ F
n
2 , computes the j’th output

bit of g(x) when given the appropriate subset x[Sj ] of the bits of x as input.
We describe on Fig. 2 the protocol Πlocal, which allows N parties holding

shares of an input x to securely compute (in the semi-honest model, with corre-
lated randomness) shares of g(x), for some c-local function g. Below, we prove
that Πlocal satisfies all the properties of Lemma 8. It follows immediately by
inspection that the total communication of Πlocal is N · n bits, and that the
amount of preprocessing material stored by each party is m · 2c + n. We now
turn our attention to correctness and security.

Claim. The protocol Πlocal is correct.
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Fig. 2. Protocol Πlocal for securely computing secret shares of a function g between
N -party, with semi-honest and information-theoretic security in the correlated ran-
domness model.

Proof: for any j ∈ [m],

N∑
i=1

zi,j =
N∑

i=1

M i
j |u[Sj ]

= Mj |u[Sj ] by definition of the M i
j

= Mj |∑
i xi[Sj ]+ri[Sj ] by definition of u

= Mj |x[Sj ]+r[Sj ]

= gj(x[Sj ]) by definition of Mj

= g(x)[j] by definition of gj .

We now turn our attention to security. We represent on Fig. 3 the ideal
secret-sharing functionality for g. Note that the functionality explicitly allows
the adversary to choose the output of the corrupted parties; this is a standard
(and minor) technicality of protocols whose output is secret shared between the
parties. An alternative is to let the functionality pick the output of all parties at
random; however, to realize this functionality, we would need to add a (simple)
resharing step at the end of the protocol Πlocal, which would add unnecessary
communication to the protocol.

Claim. The protocol Πlocal implements the ideal functionality Flocal with perfect
security against a semi-honest corruption of a majority of the parties.
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Fig. 3. Ideal Functionality Flocal for the secure computation of secret shares of g(x) on
an input x ∈ F

n
2 shared between N parties.

Proof: let H ⊂ [N ] denote the subset of honest parties, and let C ← [N ] \
H denote the subset of (passively) corrupted parties; the simulator Sim first
sends (corrupt, C) to Flocal on behalf of the ideal aversary A . Sim simulates the
preprocessing phase by distributing uniformly random coins (ri, (M i

j)j≤m)i∈C

to all corrupted parties. In the online phase, the simulator picks random ui

in F
n
2 for every i ∈ H, and broascasts them on behalf of the honest parties.

When he receives (ui)i∈C , he computes for each i ∈ C xi ← ui − ri, and zi ←
(M i

j |u[Sj ])j≤m ∈ F
m
2 . He sends (input, xi) on behalf of each corrupted party Pi to

the ideal functionality Flocal, and wait until he receives ready from Flocal. Then,
he sends (set-output, (zi)i∈C) and (send, R) on behalf of A to Flocal, where R is
the set of parties that can obtain the output (which Sim can obtain by observing
which corrupted parties aborted early). It is immediate to see that the view of
the environment (which consists of the preprocessing material, the ui, and the
outputs of the parties) in the ideal world with Sim is perfecty distributed as its
view in the real world. This concludes the proof of the core lemma.

4 A Sublinear Protocol for Layered Circuits

In this section, we prove Theorem 1, by exhibiting a generic secure multiparty
computation protocol in the correlated randomness model against passive cor-
ruption of a majority of the parties, for any layered boolean circuit, with sub-
linear communication in the circuit size s. Informally, the construction proceeds
by breaking the layered circuit into chunks, each chunk containing k = k(s)
consecutive layers, for some function k. The parties will evaluate the circuit by
computing shares of the values carried by the wires leaving a chunk, given as
input shares of the values carried by the wires entering the chunk. As a chunk
contains k layers and the directed graph of the circuit has indegree 2, this task
corresponds to the secure evaluation of (shares of) a 2k-local function, with
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(approximately) w inputs and w outputs (where w is the width of the circuit).
By the core lemma (Lemma 8), this can be done with communication O(w)
and using O(w · 22

k

) bits of correlated randomness per party. After d/k chunk
evaluations (d is the depth of the circuit), the parties end up with shares of the
values the output wires, which they can broadcast to reconstruct the output.
The total communication involved is O(dw/k) = O(s/k), with O(22

k · s/k) bits
of correlated randomness per party.

4.1 Construction

Let C be a layered boolean circuit with n inputs and m outputs, of size s and
depth d = d(n), with layers (L1, · · · , Ld). For i = 1 to d, we let wi denote the
width of the layer Li. We fix an arbitrary ordering of the nodes.

Let k be an integer. We divide C into d′ = �d/k� chunks (chi)i≤d′ , each chunk
containing k consecutive layers (the last chunk contains less layers is k does not
divide d). Let t ∈ [k] be chosen so that the sum of the widths of the t’th layer of
each chunk is bounded by �s/k� (such a t necessarily exists, otherwise, we would
get a contradiction: s =

∑d
i=1 |Li| =

∑k
i=1(

∑d/k
j=1 |Ljk+i|) >

∑k
i=1�s/k� ≥ s).

For i = 1 to d′, we denote ti the index of the t’th layer in chi; it holds that∑d′

i=1 wti ≤ �s/k�.
For i = 1 to d′, we let mi denote the number of output nodes between the

layers Lti−1 and Lti (
∑

i mi = m). For any i ≤ d′, and j ≤ wti + mi, we denote
ni,j the j’th node of the layer Lti ∈ chi if j ≤ w, and the (j − w)’th output
node between the layers Lti−1 and Lti otherwise. We associate two sets to each
ni,j : we let Ai,j denote the set of ancestors of ni,j which belong to Lti−1 (A1,j

is empty for all j ≤ wt1 + m1), and we let Ii,j denote the set of input nodes
between the layers Lti−1 and Lti which are ancestors of ni,j . We let αi,j (resp.
ιi,j) denote the size of the set Ai,j (resp. Ii,j). We illustrate this construction
on Fig. 4. Observe that C has indegree 2, which implies that any node ni,j of
the t’th layer of a chunk can have at most 2k ancestors in the t’th layer of the
previous chunk, hence αi,j + ιi,j ≤ 2k.

Our protocol proceeds by evaluating the circuit C on an input x (seen as
a size-N vector (x1, · · · , xN ) over {0, 1}n/N , where xj is the input of the party
Pj) in a chunk-by-chunk fashion. We say that the parties evaluate a chunk i
when they compute (shares of) all the values associated to the nodes of the
layer Lti , as well as (shares of) all the values associated to the output nodes
between the layers Lti−1 and Lti . Each chunk will be evaluated during a round.
We will denote by yi,� the bitstring of the shares of the values on Lti computed
by the party P� in the i’th round, and yi =

⊕N
�=1 yi,� the reconstructed value.

Similarly, we denote by zi,� the bitstring of the shares of the values on the output
wires between Lti−1 and Lti computed by the party P� in the i’th round, and
zi =

⊕N
�=1 zi,� the reconstructed output string. For simplicity, for any � ≤ N , we

denote by y0,� an arbitrary dummy string (this is just to simplify the description
of the protocol; as the A1,j are empty, these strings will not have any effect on
the protocol anyway).
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Fig. 4. Illustration of the construction of the sets (Ai,j , Ii,j) for a node ni,j on a layered
directed acyclic graph. The index j is taken equal to 2 on this figure. The dashed edges
denote the paths of the graph that end at ni,2.

For any i ≤ d′ and j ≤ wti + mi, we let fi,j denote the following function:
on input the substring x[Ii,j ] of the input string x, and the bitstring yi−1[Ai,j ]
(whose bits form a substring of the values in Lti−1), fi,j outputs the value asso-
ciated to the node ni,j . We let δi ← wti + mi denote the number of functions
fi,j for a fixed i. Finally, we denote by fi : Fwti

+n
2 �→ F

δi
2 the following function:

on input the string yi−1 associated to the distinguished layer of the (i − 1)’th
chunk and the input string x, fi outputs (fi,j(x[Ii,j ], yi−1[Ai,j ]))j≤δi = (yi, zi).
Observe that, by construction, fi is a 2k-local function (the j’th output bit of fi

depends on αi,j + ιi,j ≤ 2k input bits). The full protocol is represented on Fig. 5.

4.2 Proof of Theorem 1

We now argue that the protocol Πsub satisfies all the properties outlined in
Theorem 1.

Correctness. It follows immediately by inspection: by the correctness of Πlocal,
the values yi,� computed by the parties form shares of the outputs of the functions
fi,j evaluated on the ancestors (in Lti−1) of the nodes of layer Lti (and the
ancestors in Lti−1 of the output nodes between the layers Lti1

and Lti), as well
as on the input nodes between the layers Lti1

and Lti . By definitions, those
values are exactly the values associated to the output nodes between the layers
Lti1

and Lti and the nodes in the layer Lti . From there, it immediately follows
that the reconstructed outputs (z1, · · · , zm) are correct.

Security. We prove that the protocol Πsub is perfectly secure against an adver-
sary passively corrupting a majority of the parties. The ideal functionality Fsub

that Πsub must realize is straightforward; it is represented on Fig. 6. The simula-
tor Sim simply simulates Πsub in the Flocal hybrid model, relying on the simulator
for Πlocal to interface with the real protocol. As Πsub is a simple sequential com-
position of executions of Πlocal, security follows immediately.
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Fig. 5. Protocol Πsub for evaluating a layered boolean circuit C of size s and depth d,
with n input gates and m output gates, in the correlated randomness model against
passive corruption of up to N − 1 parties.

Complexity. We now analyze the communication, storage, computation, and
interaction of the protocol Πsub. We first outline a straightforward optimization:
observe that each execution of Πlocal to evaluate (shares of) the output of one
of the fi operates, in particular, on the input x (whose length is n). Instead
of using independent executions of Πlocal, where the input vector x ends up
being re-shared between the parties for each execution, the parties can share it
only once in an “input sharing step”, before the execution of the first instance
of Πlocal, and reuse these shares in each execution. With this optimization, the
parties exchange n bits in the input sharing step, and N · (δi) bits during the
i’th round of the circuit evaluation step, for i = 1 to d′ = �d/k�. Therefore, the
total number of bits exchanged is

n + N ·
d′∑

i=1

wti−1 + mi−1 ≤ n + N · (m + �s/k�)

(note that the additive factor n would be n · d′ without the simple optimization
outlined above). The amount of correlated randomness stored by each party can
be upper bounded by

n/N +
d′∑

i=1

δi∑
j=1

2αi,j+ιi,j ≤ n/N +
d′∑

i=1

δi∑
j=1

22
k ≤ n/N + (m + �s/k�) · 22

k

,

where the first inequality comes from the fact that any node ni,j of the t’th layer
of a chunk can have at most 2k ancestors in the t’th layer of the previous chunk,
which leads to the claimed total storage. Eventually, the round complexity of
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Fig. 6. Ideal Functionality Fsub for the secure computation of secret shares of g(x) on
an input x ∈ F

n
2 shared between N parties.

the protocol is d′ + 1 = O(s/k), and the computation performed by each party
essentially boils down to performing m + �s/k� searches in lookup tables of size
bounded by 22

k

, which takes time (m + �s/k�) · 2k.

4.3 Extension to Layered Arithmetic Circuits

So far, our protocol does not readily extend to arithmetic circuits over (expo-
nentially large) finite fields. The main obstacle toward getting an arithmetic
analogue of the protocol Πsub lies in the generalization of the core lemma to
the arithmetic setting: our proof of Lemma 8 relies on the fact that we can use
the OTTT protocol of [IKM+13] to evaluate functions with a “small enough”
truth-table. While in the boolean case, any functionality with c input bits has
a truth table of size 2c, this is not true anymore for arithmetic functionalities
over large fields, where even single-input functions have truth table of exponen-
tial size. In addition, the standard conversion of arithmetic circuits into boolean
circuits would blow up the size too much: any size-s arithmetic circuit can be
securely evaluated (in the correlated randomness model) with communication
O(s) (counting the number of field elements), but the conversion to a boolean
circuit will in general blow up the circuit size by a log s factor, while our pro-
tocol only saves a factor log log s, and does therefore not lead to a sublinear
communication protocol for arithmetic circuits.

Nevertheless, we show that our protocol can be extended to the arithmetic
setting, by exhibiting a natural analogue of the OTTT protocol, tailored to
arithmetic functions. Our starting point is the recent work of [LVW17], on con-
ditional disclosure of secret and private simultaneous message (PSM) protocols.
The authors of [LVW17] build an elegant PSM protocol for multivariate polyno-
mial evaluation. The protocol has the following features: Alice holds an n-variate
polynomial P of degree deg, Bob holds a vector of input x ∈ F

n, and both par-
ties share a common random string. They send a single simultaneous message to
a third player, Charlie, with optimal communication (Alice’s message has size
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O(
(
n+deg
deg

)
), Bob’s message has size O(n)). This allows Charlie to learn P (x),

and nothing more. The protocol works as follows:

– The shared randomness is r ∈ F
n and a random n-variate degree-deg poly-

nomial R.
– Alice sends (x′, u) ← (x + r, R(x + r)).
– Bob sends the polynomial Q(X) = P (X − r) + R(X).
– Charlie outputs Q(x′) − u.

The correctness follows immediately by inspection, and security follows by
the argument of [LVW17, Sect. 5.1]. The above PSM can be readily converted
into a 2-player arithmetic analogue of the OTTT protocol, which relies on a
multivariate polynomial representation of an arithmetic circuit (instead of a
truth table representation). We represent on Fig. 7 a variant of the protocol
Πlocal, tailored to the arithmetic setting (over an arbitrary field F). Each party
sends n field elements (which is essentially optimal), and stores O(

(
n+deg
deg

)
) field

elements.
Using the above protocol, we immediately get a generalization of Lemma 8:

Lemma 9. For any depth-k arithmetic circuit f : F
n �→ F

m, there is an
information-theoretic semi-honest N -party secure computation protocol (with
dishonest majority) in the correlated randomness model for computing secret
shares of f with total online communication N · n elements of F, and correlated
randomness m · (2k+1

2k

)
+ n ≈ m · 22

k+1
/
√

π2k + n elements of F per party.

Therefore, we get polynomial storage (in s) by setting k ← log log s, as before.
This leads to a protocol for arithmetic circuits of size s, with n inputs and m
outputs, with polynomial storage and total communication O(n + N · (m +
s/ log log s)).

Reducing Storage in TinyTable. While the idea of using a multivariate-
polynomial representation instead of a truth-table representation seems rela-
tively natural and is the key to extend the construction to the arithmetic set-
ting, it was not explicitly observed before. Somewhat surprisingly, we observe
that even in the original (boolean) setting of the TinyTable paper [DNNR17]
(which uses truth-table representation at the gate level, for two-party evalua-
tion of AND gates in boolean circuits), replacing truth-tables by multivariate
polynomials in normal form improves the construction: it reduces the storage of
the parties by 25%. We sketch this observation below. The TinyTable protocol
maintains the following invariant: the parties know masked representation of all
inputs to some gate of the circuit, and will compute a masked representation of
the output. Typically, for a two-input AND gate, both parties will know u = x+r
and v = y + s, where x, y are the inputs to the gate, and r, s are random masks.
In addition, the parties hold random shares of the truth-table of the function

Fr,s,t : (u, v) → (u − r) · (v − s) + t,



On the Communication of MPC in the Correlated Randomness Model 495

Fig. 7. Protocol POLY for evaluating an arithmetic function f over a finite field F in
the correlated randomness model, against a passively corrupted majority

where t is another fresh random coin. Observe that Fr,s,t(x+ r, y + s) = x · y + t,
maintaining the appropriate invariant. In the TinyTable paper, each party knows
a share F0, F1 of the truth-table of a function of this form, for each AND gate of
the circuit, and the output is computed by broadcasting F0(u, v), F1(u, v) and
reconstructing w = F0(u, v) ⊕ F1(u, v). This represent a total storage of 4s bits
per party (and 2s bits of communication), where s is the number of AND gates
of the circuit.

Now, if we view instead Fr,s,t as a degree-2 polynomial in two variables, we
have Fr,s,t = uv + αu + βv + γ for some appropriate (α, β, γ) = (−s,−r, t + rs).
Observe that to randomly share Fr,s,t viewed as a multivariate polynomial, it
suffices to share additively each of its coefficients randomly; furthermore, the
leading coefficient of Fr,s,t is always one. Hence, we can improve the TinyTable
AND gate evaluation protocol as follows: the parties receive shares (α0, β0, γ0)
and (α1, β1, γ1) of (α, β, γ) (this is identical to giving a random degree-one bivari-
ate polynomial R to one party, and Fr,s,t + R to the other party; note that R
needs only having degree one since it needs not hide the leading coefficient of
Fr,s,t, which is 1). Given public values u = x + r and v = y + s, the parties
exchange w0 = α0u + β0v + γ0 and w1 = α1u + β1v + γ1, and publicly recon-
struct w = uv + w0 + w1. The communication and computation are essentially
the same as in [DNNR17], but the parties must now only store three bits per
AND gate, hence 3s bits in total, reducing the amount of storage required by
the protocol by 25%.
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4.4 Further Extensions

We sketch in this section how to extend our protocol to the case of function-
independent correlated randomness, and to the case of tall-and-narrow circuits.

Function-Independent Preprocessing. We introduce below a variant of the
core lemma, tailored to function-independent preprocessing. Theorem 3 follows
immediately from this variant.

Lemma 10. For any c-local function g : F
n
2 �→ F

m
2 , there is an information-

theoretic semi-honest N -party secure computation protocol (with dishonest
majority) in the function-independent correlated randomness model for comput-
ing secret shares of g with total online communication N · n bits, and correlated
randomness m · 2c+2c + n bits per party.

Proof. To prove Lemma 10, we modify Πlocal as follows: instead of computing
shares of the truth table Mj of gj (which is of size 2c) permuted with the shift
r[Sj ], we consider the list (Mj,q)q≤22c of all possible truth tables, corresponding
to a lexicographic ordering of all possible functions gj , each table being shifted
with the same r[Sj ]. Each party Pi receives (ri, (M i

j,q)q), which amounts to
n + 2c · 22c bits of correlated randomness. In the online protocol Πlocal.Protocol,
when the functions gj are revealed, the parties locally drop all unnecessary shares
of shifted truth tables, keeping only the one corresponding to gj . The security
analysis immediately follows from the analysis of Πlocal.

Tall-and-Narrow Circuits. For tall-and-narrow circuits, whose width w is
small, the proof follows by observing that in this situation the bound on the size
of the sets Ai,j and Ii,j can be refined to |Ai,j | + |Ii,j | ≤ w · k, hence the fi,j

have truth tables of size bounded by 2w·k. Theorem 5 follows immediately.

5 Malicious Setting

In the two-party case, combining our passively secure protocol Πsub with the
techniques of [DNNR17] directly implies the existence of a (statistical) uncon-
ditionally secure two-party protocol secure against malicious adversaries, with
communication O(n + m + s

log log s + κ) for a layered boolean circuit of size s,
where κ is a statistical security parameter. Indeed, the protocol of [DNNR17]
has a structure similar to our protocol: it decomposes the circuit into tables,
and distributes scrambled version of these tables to the parties in the prepro-
cessing phase. Each gate of the circuit is evaluated using the OTTT protocol
to obliviously select the output of the gate from its corresponding scrambled
truth-table.
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To enhance this protocol to security against malicious adversaries, [DNNR17]
uses a simple and natural information-theoretic authentication procedure.
Namely, for each entry b ∈ {0, 1} of a table given to the first party (let us
call it A), the trusted dealer additionally generates two κ-bit string (x0, x1),
hands xb to A, and (x0, x1) to the other player B. This way, when A must send
the entry b of the table to B, she can authenticate b by sending it along with xb.
B then retrieves the corresponding value xb and checks that A honestly opened
b; if A is dishonest, she will be caught with probability 1 − 2−κ. Note that the
only local computation performed by the parties are searches through lookup
table, hence authenticating each entry this way suffices to guarantee security of
the entire protocol.

However, directly applying this approach would require transmitting κ bits
per output of a table, which would increase the total communication by a factor
of κ. To avoid this overhead, the authors of [DNNR17] observe that it is not
necessary to explicitly authenticate each entry sent by a party. Instead, each
time A reveals an entry b corresponding to some authentication string xb, she
locally updates a “global MAC key” ΔA ← ΔA ⊕ xb, where ΔA is set to 0 at
the start of the protocol. Simultaneously, when he receives an entry b from A,
B retrieves the pair (x0, x1) corresponding to this entry, and locally updates
ΓB ← ΓB ⊕ xb, where ΓB is set to 0 at the start of the protocol. The parties
proceed symmetrically, with ΔB ,ΓA, when B sends an entry to A. At the end of
the protocol, A reveals ΔA and B reveals ΔB . If ΔB �= ΓA, A aborts the protocol;
B does the same if ΔA �= ΓB . If both checks passed, the parties reconstruct the
output. The analysis of [DNNR17] shows that this guarantees that no party can
cause its opponent to accept an incorrect output, except with probability 2−κ.
It increases the amount of preprocessed material by a factor κ,4 but only adds
2κ bits to the total communication.

For completeness, we provide a full self-contained description of the
maliciously-secure two-party version of our protocol on Fig. 8. We refer the reader
to Theorem 1 of [DNNR17] for a detailed proof of security against malicious
adversaries; it is straightforward to adapt the proof to our protocol (we note
that, while [DNNR17] focuses on small tables implementing standard two-input
boolean gates, [DNNR17, Sect. 2.3] already observes that this mechanisms can
be directly generalized to protocols evaluating larger tables).

Extension to N Parties. While the work of [DNNR17] focused only on
(maliciously secure) two-party computation, it was subsequently observed
in [KOR+17] that the techniques used in [DNNR17] can be easily generalized
to the multiparty setting, for an arbitrary number N of parties. We refer the
reader to [KOR+17] for more details; this directly gives:

4 A technique to amortize this overhead, using a linear MAC scheme, is described
in [DNNR17]; it applies to our setting as well, and allows to remove this factor κ
overhead in the storage complexity, but we focus on the more naive approach in this
work for simplicity.
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Theorem 11. For any N -party functionality f represented by a layered boolean
circuit C of size s with n inputs and m outputs, and for any integer k and
statistical security parameter κ, there is a κ-secure protocol which realizes f in
the preprocessing model against malicious adversaries with adaptive corruption
(of up to N−1 parties), with communication n+N ·(m+�s/k�+κ) and correlated
randomness n/N + (3κ + 1) · (m + �s/k�) · (22

k

+ 1) per party.

6 Open Questions

While our work shows that a large class of circuits of size s can be securely
evaluated in the correlated randomness model using o(s) communication, many
questions related to the communication of MPC in the correlated randomness
model remain open.

Question 1. Can our protocols be extended to arbitrary non-layered circuits?

It is immediate to extend our protocol to any circuit that is layered “by
blocks” of depth c, in the sense that no edge crosses more than c consecutive
layers, for any c = o(log log s). However, generalizing our result to all circuits
remains an interesting open question.

Question 2. Can we achieve better sublinearity for unconditional MPC in the
correlated randomness model, in general or for specific circuits?

It is known that some specific functions can be evaluated in the correlated
randomness model, with stronger sublinearity guarantees than those obtained
in this work. In particular, matrix multiplication can be computed with commu-
nication linear in the size n2 of the matrices, while the best known algorithm
for multiplying matrices of size n requires O(nt) communication, with t ≈ 2.3.
The work of [BIKO12] also implies the existence of low-communication proto-
cols in the correlated randomness model, for N ≥ 3 parties, for specific types
of constant-depth circuits. It would be interesting to improve the sublinearity of
our work, and to characterize the functions for which better sublinearity can be
achieved.

Question 3. Can we achieve sublinear communication and linear storage at the
same time?

By a lower bound of [WW10], linear storage is the best we can hope for.
Our protocols only achieve slightly superlinear storage; in the regime where the
1/ log log s factor would give non-trivial communication savings, this implies that
a rather large storage is required. Protocols for specific functions, such as matrix
multiplication, achieve both sublinearity and linear storage, but the question
remains open for more general functions.
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Fig. 8. Two-party protocol Πmal
sub for evaluating a layered boolean circuit C of size s and

depth d, with n input gates and m output gates, in the correlated randomness model
against active corruption of one of the parties.
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Abstract. We show, via a non-interactive reduction, that the existence
of a secure multi-party computation (MPC) protocol for degree-2 func-
tions implies the existence of a protocol with the same round complexity
for general functions. Thus showing that when considering the round
complexity of MPC, it is sufficient to consider very simple functions.

Our completeness theorem applies in various settings: information
theoretic and computational, fully malicious and malicious with vari-
ous types of aborts. In fact, we give a master theorem from which all
individual settings follow as direct corollaries. Our basic transformation
does not require any additional assumptions and incurs communication
and computation blow-up which is polynomial in the number of players
and in S, 2D, where S, D are the circuit size and depth of the function
to be computed. Using one-way functions as an additional assumption,
the exponential dependence on the depth can be removed.

As a consequence, we are able to push the envelope on the state of
the art in various settings of MPC, including the following cases.

– 3-round perfectly-secure protocol (with guaranteed output delivery)
against an active adversary that corrupts less than 1/4 of the parties.

– 2-round statistically-secure protocol that achieves security with
“selective abort” against an active adversary that corrupts less than
half of the parties.

– Assuming one-way functions, 2-round computationally-secure pro-
tocol that achieves security with (standard) abort against an active
adversary that corrupts less than half of the parties. This gives a
new and conceptually simpler proof to the recent result of Ananth
et al. (Crypto 2018).

Technically, our non-interactive reduction draws from the encoding
method of Applebaum, Brakerski and Tsabary (TCC 2018). We extend
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these methods to ones that can be meaningfully analyzed even in the
presence of malicious adversaries.

1 Introduction

A secure multi-party computation (MPC) allows a collection of n parties to
jointly compute a function f of their joint inputs without leaking additional
information other than the output. The focus of this work is on the so-called
“malicious” setting, where security should be guaranteed even if an adversary,
that controls up to t parties, actively deviates from the protocol instructions.
Security is usually formalized using the ideal vs. real paradigm, essentially trans-
lating an adversarial behavior in the protocol (the real model) into an indistin-
guishable behavior in a model where f is computed by a trusted party (the ideal
model). Various flavors of this notion have been considered in the literature, but
since our results apply in multiple settings we wish to keep the discussion general
at this point and not commit to a specific ideal model (however, we do focus on
the case where there are private channels between the parties).

A significant resource to optimize when designing an MPC protocol is the
round complexity, the number of communication rounds that are required in
order to complete the protocol (as usual, we assume simultaneous message trans-
mission in each round). Efforts to minimize round complexity started as soon as
MPC was introduced [24] and are receiving a lot of attention recently as well (e.g.
[1,6,9,10] and many others). A prominent approach to reducing round complex-
ity is tied to reducing the algebraic degree of the function to be computed.1 This
can be traced back to the work of Beaver, Micali and Rogaway [4,22] and to the
randomizing polynomials approach of Ishai and Kushilevitz [15,16]. The latter
work is based on the following paradigm: Reduce the task of securely computing
the function f to the task of securely computing a different function h, such that
h has low algebraic degree, and such that the output of h can be decoded to
produce the appropriate output for f . Once such reduction exists, with adequate
security guarantees (as we elaborate below), one can focus on providing a secure
MPC protocol for h, a task that usually gets easier as the degree of h drops.

In this context, it is most desirable to present a non-interactive reduction.
Such a reduction yields a function h together with a set of (possibly randomized)
local preprocessing function �i, and a method to decode the value h(�1, . . . , �n)
to recover the output of f . In terms of security, one has to show that the protocol
where each party computes �i locally, sends the value to a trusted realization
of h (“an h oracle”), and then performs the decoding of the output locally, is a
secure MPC protocol for computing f , respective to a security model specified
in the proof.

The resemblance of the h-oracle-aided protocol to the “ideal model” described
above allows to compose the reduction with a secure implementation of h, result-
ing in a secure realization of f . Since the reduction is non-interactive, the round
1 In this work we consider the algebraic degree over the binary field. This is the

common setting, but one could consider working over other fields as well.
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complexity of the resulting protocol is the same as the round-complexity of (the
low degree function) h.

Given this paradigm, it is natural to ask how low can the degree of h be
while still allowing a reduction from any arbitrary f . It is not hard to verify
that a linear (i.e. degree 1) h cannot be used to compute general functions.
However, the randomizing polynomials approach seems to only imply h of degree
3.2 Recently, Applebaum, Brakerski and Tsabary [3], showed how to reduce
any function to degree-2, but their reduction was only secure in a semi-honest
setting, where the adversary is required to follow the protocol (i.e. to compute
the functions �i correctly using a properly sampled random tape). Nevertheless,
the [3] reduction allowed them to improve the round complexity of semi-honest
MPC with perfect security and with honest majority to the optimum of 2 rounds.
The question whether there is non-interactive reduction to a quadratic function
in the malicious setting, and the implications of such reduction on the round
complexity of malicious MPC, remained open and is addressed in this work.

1.1 Our Results

We show that in various settings, a non-interactive reduction to a degree-2 func-
tion is possible. This means that it is sufficient to design protocols for degree-2
functions in order to optimize round complexity. We then design round-optimal
protocols by constructing round-efficient protocols for degree-2 functions in some
of these settings. Our results are all derived using a single “master theorem”,
which we believe can serve as basis for deriving additional results in other set-
tings as well. We elaborate on these contributions below.

A Master Non-Interactive Reduction (Sect. 4). The technical heart of
our result is a generic non-interactive “master reduction” from any function f
to a degree-2 function h. Methodologically, we show how to convert any proto-
col Π for computing f (irrespective of round complexity) into a non-interactive
h-oracle-aided protocol Π̂ (we denote this by Π̂h), while preserving the secu-
rity properties of Π. Specifically, we show that any adversarial strategy in the
h-oracle-aided protocol can be (perfectly) simulated by an adversary against the
protocol Π. In terms of the ideal/real paradigm, we show that for any Π̂h adver-
sary there exists a Π adversary with an identical real model view. We believe
that this could be an instrumental tool in constructing and analyzing MPC pro-
tocols, since it allows to translate arbitrary protocols to ones that make a single
oracle call to a fairly simple function.

We note that the conversion between Π and Π̂h incurs a communication
and computation overhead that is polynomial in (roughly) the total computa-
tional complexity of Π (i.e. the sum of computational complexities of all parties
participating in Π throughout the execution of the protocol) and exponential
in the depth of Π (roughly the longest computational path between an input
2 It is known that general functions cannot be represented by degree-2 perfectly-private

randomizing polynomials [15]. The existence of statistically-private degree-2 random-
izing polynomials has been open for nearly two decades.
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and an output in the protocol). Therefore, if communication and computational
complexity are of importance, we must be careful to only apply our theorem on
fairly “shallow” protocols Π.

Our master theorem generalizes the “multi-party randomized encoding”
(MPRE) approach of [3], both in terms of theorem statement and in terms of
techniques. The notion of h-oracle-aided protocol converges in the semi-honest
setting to MPRE, but allows to handle malicious adversarial behavior whereas
MPRE is by default a “passive” notion. Our master theorem, while building on
the techniques of [3], also implies their MPRE result as a special case since a
semi-honest Π̂h adversary translates to a semi-honest Π adversary.

A Completeness Theorem (Sect. 5). To illustrate the power of our master
theorem, we show a non-interactive reduction from the task of computing an
arbitrary function f to the task of computing degree-2 functions, in the context
of full security (guaranteed output delivery):

– A perfectly secure reduction, assuming more than 2/3 of the parties are
honest.

– A statistically secure reduction, assuming more than 1/2 of the parties are
honest.

– A computationally secure reduction, assuming more than 1/2 of the parties
are honest, and assuming the existence of one-way functions (that are used
in a black-box manner).

All of those reductions incur a communication and computation overhead. In all
reductions this overhead is polynomial in the number of parties and in the size
of the circuit computing f , and in the first two reductions (i.e. without making
computational assumptions) it is also exponential in the depth of f . We note
that these results are optimal in terms of the size of the adversarial coalition
achievable in each of these settings.

Optimal Round-Complexity Results (Sects. 6, 7). Finally, we obtain new
protocols with low round complexity for general functions in various MPC set-
tings. We believe that numerous results can be derived using our techniques.
For concreteness, we focus on achieving perfect malicious security with optimal
round complexity (i.e. 3 round). We then consider the setting of 2 round pro-
tocols, where malicious security is not achievable, and instead show statistical
security with selective aborts, and (assuming one way functions) computational
security with aborts. To this end, we devise round-efficient protocols for degree-2
functions with different malicious security guarantees and derive the following
corollaries.

– Fully Malicious Security in Three Rounds (Sect. 6). For all f , there
exists a 3 round protocol which is secure against fully malicious adver-
sarial coalitions containing less than 1/4 fraction of the parties. For NC1

the protocol is perfectly secure and for arbitrary polynomial-time functions
the protocol has computational security with black-box access to one-way
functions.
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In both cases the protocol provides full security (i.e. no abort). This is the
optimal round complexity, as Gennaro et al. [12] showed that full security can-
not be achieved in less than three rounds even when the adversary is allowed
to corrupt at most 2 players. Prior to our work, it was known that general
3-round MPC with perfect security can be achieved with security threshold
of t = αn for some small (unspecified) constant α � 1/4 [11]. Our protocol
shows that the threshold can be improved to n/4.

– Security with Aborts in Two Rounds (Sect. 7). For all f , there exists
a 2 round protocol (not requiring broadcast) which is secure with selective
aborts3 against any adversarial coalition containing a minority of the parties.
For NC1 the protocol is statistically secure and for arbitrary polynomial-time
functions the protocol has computational security with black-box access to
one-way functions. This improves over the result of Ishai et al. [17], that
achieve, in the same setting, security against an adversary that corrupts less
than 1/3-fraction of the parties.
We further show that in the computational setting (for polynomial-size func-
tions) the protocol can be modified to be secure with (unanimous) aborts4 at
the expense of using a broadcast channel. A result with similar parameters
was already shown by Ananth et al. [1]. Recently [20] showed that selective
abort is the best possible security for two-round protocols that only use secure
channels. Concurrently and independently from our work, Ananth et al. [2]
presented a two-round protocol achieving statistical security with (unani-
mous) abort. Contrary to our work, they do not propose a general framework
and do not achieve our general degree-2 completeness theorem or our results
in the fully malicious setting.

1.2 Technical Overview

We now provide a high level overview of our techniques.

Our Master Theorem. Recall that we want to show how to encode an arbitrary
protocol Π by an oracle aided protocol Π̂ that uses a quadratic oracle h, while
preserving the security properties of Π. As mentioned above, our techniques
extend those of [3] to the malicious setting.

In [3], the authors consider the boolean circuit induced by an execution of
the protocol Π, with wires corresponding to the internal values computed by
all parties throughout the protocols, and gates that represent either local com-
putation performed by a certain party, or a transmission of a value from one
party to another. Their encoding constitutes of an information-theoretic point-
and-permute garbled circuit [4,16,22] for this induced circuit. The encoding of

3 Security with selective aborts is a notion where in the ideal model the adversary can
prevent some of the honest parties of his choice from learning the output.

4 Security with aborts is a notion where in the ideal model the adversary can prevent
either all or none of the honest parties from receiving the output (but cannot allow
only some of them to receive it). We specify “unanimous aborts” in places where
there is a risk of confusion with the aforementioned notion of selective aborts.



Degree 2 is Complete for the Round-Complexity of Malicious MPC 509

Π is a protocol where the parties jointly compute this garbled circuit using their
inputs and local randomness.

The randomness required for computing the garbled circuit is distributed
between the parties in a clever way that ensures that the garbled circuit can be
written as h(�1, . . . , �n) for a quadratic h and for values �i that only depend on
the local input and randomness of each party. This allows to derive a protocol
encoding theorem for the semi-honest setting, where parties in Π̂ simply compute
their local �i and send these values to the h oracle. Garbled circuit security
ensures that any adversarial coalition can only learn from the garbled circuit
their respective views in an honest execution of Π (assuming that the �i values
were computed correctly).

However, the aforementioned approach relies on the values �i being computed
honestly. In contrast, a malicious adversary in this Π̂ can compute the �i values
belonging to the parties under its control arbitrarily, and thus a-priori we are
not guaranteed that h(�1, . . . , �n) is even a garbled circuit at all, not to mention
that it does not reveal “forbidden” values to the adversary.

Our main insight is that if the garbled circuit and the manner of distributing
randomness between parties are properly defined, such a malicious modification
must lead to h(�1, . . . , �n) being a secure garbled circuit, but one that does not
encode an honest execution of Π. Instead, h(�1, . . . , �n) can encode an execu-
tion of Π where the parties under the adversary’s control may deviate from the
protocol. In other words, any cheating strategy in the compiled protocol Π̂ (i.e.
some adversarial modification of the values �i controlled by the adversary) trans-
lates into some cheating strategy against Π with the same adversarial coalition.
Hence, Π̂ inherits the security properties of Π. More details follow.

Let us first be more specific about the “partition of work” between the local
functions �i and the quadratic function h. The local function �i takes the input
of the ith party xi, and two types of random tapes which we denote si,αi. The
function performs some (deterministic) preprocessing on αi, producing prei(αi),
and outputs (xi, si,αi, prei(αi)). Our adversary is allowed to arbitrarily modify
all of these values, let us examine the effects of such modification on each of
these components.

– Changing the value xi is equivalent to selecting a different input for the ith
party, which cannot be avoided in any model of secure computation.

– The random string si is used by h as shares for wire keys of the garbled
circuit. The exact functionality does not matter for this outline, but the
important thing is that h XORs these values among all parties. Thus, choosing
si maliciously does not buy the adversary any leverage, since h only uses the
aggregate value (⊕isi), which is uniform from the adversary’s viewpoint (so
long as there is at least one honest party).

– The random string αi is used to produce mask bits for the values of the wires
in the garbled circuit. Essentially, the evaluation of a point and permute
garbled circuit results in producing, for each wire of the circuit that was
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garbled, the value of this wire XORed with a random mask bit. Crucially,
the string αi contains the mask bits for the wires of the circuit whose values
party i is allowed to see. (The definition of the induced circuit for a protocol
guarantees that there is a disjoint partitioning of wires between the parties).
Hence, an adversarial choice αi gives the adversary no leverage. Such behavior
can only hurt the privacy of the adversary’s own wires, and has no effect on
the privacy of honest parties.

– The crux of the matter is prei(αi). The preprocessing prei is in fact what
allows to reduce the degree of h to 2. A malicious adversary can certainly
damage these computed values and indeed effect the resulting garbled circuit.
What we show next is that the damage of such malleability is controllable.
To explain, we go into a little more detail about the functionality of prei.
Recall that each gate in the circuit to be garbled represents either a local
computation by a party or communication from one party to another. The
function prei only computes on bits in αi that are associated with inputs of
local computation gates. For each such gate prei(αi) contains four evaluations
of the gate function (say NAND, w.l.o.g), on the four possible inputs in a
specific permuted order, where the permutation is determined by respective
αi bits. Specifically, the permutation is obtained by taking the canonical
sequence 00, 01, 10, 11, and XOR-ing it with the respective mask bits of the
input wires of that gate.
The adversary might plug in 4 arbitrary bits instead of the correct values to
be computed by prei, regardless of the actual values it chose for the mask
bits αi, and possibly depending on any other value that the adversary might
have. The crucial part of our argument is to notice that any change in the
preprocessing can equivalently be described as a change in the gate function,
e.g. computing OR instead of NAND, but executing this gate on the correct
mask bits. Once this is established, we can take a step back and notice that
in fact, all that the adversary can do by corrupting its prei(αi) values is
equivalent to changing the garbled circuit from one that corresponds to an
honest execution of the protocol Π, to an execution of Π where the parties
that are controlled by the adversary change the functionality of their local
computation gates!

We conclude that even if the �i values controlled by the adversary are mali-
ciously corrupted, h will still output a garbled circuit which corresponds to an
execution of Π, possibly with some parties behaving dishonestly (the parties
corresponding to the corrupted �i values). The security of this garbled circuit
(which follows from the fact that the wire keys and the mask keys for honest
parties remain random, as we described above) guarantees that the parties in
Π̂h learn the exact same information as they do in an execution of Π with
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the respective adversary (we use a perfectly secure garbled circuit which implies
that the adversary’s views in the two cases are identical).5

Lastly, we note that an additional modification to the [3] approach is required
in order to handle broadcast channel, i.e. the possibility of a party to send a
message to all other parties, such that parties are guaranteed that the same
message was sent to all. This is a useful component that aids in the design of
maliciously secure protocols, and is not needed in the semi-honest setting (since
parties there follow the protocol specifications, so if a party is instructed to send
the same value to all others, that is what it will do). If the underlying protocol
Π is one that uses broadcast, this needs to be enforced by the “induced circuit”
for which a garbled circuit is computed. Fortunately this is easy to handle by
generalizing the point-to-point transmission gates into fan-out gates with a single
input and multiple outputs. The way such gates are garbled guarantees that it
is impossible to produce an execution where the outputs are inconsistent (i.e.
where different parties receive different values).

The Completeness Theorem. Applying the master theorem is, on the face
of it, straightforward. Instantiating Π with a protocol that is secure in the mali-
cious setting, should immediately imply the theorem statement, and indeed the
fraction of honest parties required exactly matches that of best known malicious
MPC protocols with many rounds. However, there is one caveat that requires
careful consideration. The encoding theorem induces a blowup in the commu-
nication and computational complexity of the protocol Π̂, which is related to
the size of the (information theoretic) garbled circuit of the circuit induced by
Π. In particular, the size of the garbled circuit scales exponentially with the
depth. We want to argue that our reduction scales with the properties of the
target function f to be computed. Thus, for example, using an underlying Π
whose depth is (say) n times the depth of f will incur an exponential cost in
the parameters of the reduction. We thus carefully analyze existing protocols so
as to guarantee that there exists Π where the depth of the induced circuit only
relates linearly to the depth of the function f being evaluated.

One observation that proves very helpful is that there is no need to encode
local postprocessing that takes place after all the messages has been sent. That
is, given a protocol Π it is sufficient to apply our master theorem on a truncated
protocol Π ′ in which the parties send all messages as in Π, but instead of per-
forming the final postprocessing computation they just output their view in the
execution. This modification leads to a much shallower circuit for our encoding
theorem and at the same time allows to achieve the required functionality and
security. Functionality is maintained since the postprocessing in the final step

5 In fact, the adversary in Π is somewhat weaker than a full malicious adversary.
First, the adversarial parties are required to have the same circuit topology as honest
parties, since only gate functionality changes and not the interconnection of gates.
Second, the adversary cannot adjust the behavior of party i under its control based
on a message received by a different party j under its control during the execution of
the protocol. We find this property quite interesting and potentially useful, although
we do not need to exploit it to derive the consequences in the cases analyzed in this
paper.
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can be done on the output of the garbled circuit evaluation, rather than being
included in the garbled circuit itself. See Sect. 5 for more details.

Optimal Round-Complexity Results. As explained above, these are
achieved by plugging in secure protocols for evaluating degree-2 functions in
various models. Such protocols are usually not made explicit in the literature
(as computing degree-2 functions was not a major goal until this work). How-
ever, known techniques do seem to become monotonously more round-efficient
as the degree drops. We apply modifications on top of existing methods in order
to reduce the round complexity to the very optimum.

Three-Round Protocols with Full Security. In Sect. 6 we implement MPC
with full security for degree-2 functions f via the following template:

1. Each party shares each of its inputs between all the parties using a sub-
protocol for Verifiable Secret Sharing (VSS).

2. Each party locally computes the degree-2 functionality f over its shares and
gets a share of the outputs. To enable this computation, the underlying secret
sharing scheme has to be 2-multiplicative over the binary field.

3. The parties broadcast the result (after some randomization) and apply a
correction procedure for handling malformed shares.

The template can be instantiated with different ingredients (e.g., for the VSS
and for the recovery step). The security and round complexity of the result-
ing protocol depend on the corresponding properties of the underlying building
blocks.

We instantiate the above template with the standard polynomial-based
Shamir secret sharing scheme [23]. Gennaro et al. [11] showed that the sharing
phase of this secret sharing scheme can be perfectly realized (with full security)
in 2 rounds for our security threshold. This VSS natively supports secrets that
are taken from a medium-size field of size at least n + 1, and we show how to
modify it into a binary VSS.6 Eventually, we get a 2-round binary VSS with the
guarantee that at the end of the sharing phase, the honest parties hold shares
that are consistent with some binary secret, even if the dealer was malicious.
We observe that for our security threshold, after the third round (in which the
parties broadcast their shares of the output), the honest parties can recover the
output via the standard Reed-Solomon decoding algorithm.

Two-Round Protocols with Selective Abort. Here we rely on two results
from [17]. In their work, they consider a weaker notion of security, Privacy with
Knowledge of Outputs (PKO)7, and show that:
6 In particular, we use an extension field of GF(2), and add a mechanism that forces

the adversary to use binary inputs. Implementing this mechanism without increasing
the round complexity is somewhat challenging, and for this, we rely on some specific
properties of the [11] scheme. See Sect. 6 and full version for details.

7 Intuitively, this means that the correctness of honest parties may be violated, but
the adversary is required to “know” the (possibly incorrect) outputs of the honest
parties. Formally, in the ideal model, the ideal functionality first delivers the outputs
of the corrupted parties to the simulator, and then receives from the simulator an
output to deliver to each of the uncorrupted parties.
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1. Any r-rounds protocol with PKO security for functions in NC1 (resp.
polynomial-size functions) induces a r-rounds protocol with selective abort
security for functions in NC1 (resp. polynomial-size functions).

2. Any degree-2 function can be efficiently computed in two rounds with statis-
tical PKO security for threshold n/2, without a broadcast channel.

To complete the proof, we show that our completeness theorem maintains PKO
security. This turns to be somewhat subtle since, as we observe, PKO security
is not always preserved under composition. (See full version for details.)

Two-Round Protocols with Abort. Lastly we use a modification from [19]
which shows how a 2-round protocol with SSA security for polynomail-size func-
tions can be converted to a 2-round protocol with SA security of similar com-
plexity and security guarantees, at the expense of using a broadcast channel and
one way functions. The general reduction, however, involves a reduction to a
functionality f ′ that invokes the signing algorithm of a digital signature scheme.
When instantiated with an arbitrary signature scheme, computing f ′ results in
a non black-box use of a one-way function. We observe that the transformation
of [19] requires only one-time secure signatures, and therefore can be instantiated
with Lamport’s one-time signatures (cf. [13, Chap. 6.4.1]), in which the one-way
function is used only in the key-generation and verification algorithms, but not
in the signing algorithm. See full version for details.

2 Preliminaries

In this section, we define Boolean circuits, multi-party protocols, oracle-aided
protocols and security for multi-party computation. Briefly, we consider an active
non-adaptive rushing adversary that may be computationally unbounded or
computationally bounded (depending in the context) and, unless stated oth-
erwise, assume a fully connected network with point-to-point private channels
and a broadcast.

2.1 Boolean Circuits

In this work, we consider Boolean circuits containing two types of gates:

– A ( p-ary) fan-out gate, sometimes denoted as a transmission gate, that has a
single input and p outputs, its functionality is to copy its input to all outputs.

– A local gate has two input wires and one output wire. It computes some
arbitrary function G : {0, 1}2 → {0, 1} (that can vary from one gate to the
next).

For purposes of analysis, we define the depth of a p-ary transmission gate to
be �log p�, and the depth of a local gate to be 1. The depth of a circuit C is the
computed by considering the cumulative depth of gates along each path from an
input wire to an output wire in C, and taking the maximum among all paths.
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The size of a circuit, m, is the number of wires in the circuit (including input
and output wires). We assume a topological ordering of the wires in [m].

We say that two circuit C1, C2 are topologically equivalent (or have the same
topology) if they are identical, except perhaps in the functions G associated with
local gates.

2.2 Functionalities and Protocols

It will be convenient to treat functionalities and protocols as finite (fixed length)
objects. The infinite versions of these objects will be defined and discussed laster
in Sect. 2.3. We continue with a formal definition.

Notation. For any set T ⊆ [n], we denote T = [n]/T where n, which denotes
the number of players, will be clear from the context. For any sequence x =
(x1, . . . , xn) and any S ⊆ [n] let x[S] denote the ordered set {xi}i∈S .

Definition 2.1 (multi-party functionality). An n-party functionality f :
({0, 1}∗)n → ({0, 1}∗)n is a (possibly randomized) function that maps a sequence
of n inputs x = (x1, . . . , xn) to a sequence of n outputs y = (y1, . . . , yn). If f
sends the same output to all parties then we denote its output as a scalar, i.e.
we use the shorthand f : ({0, 1}∗)n → {0, 1}∗ and y = f(x1, . . . , xn).

Next we define a multi-party protocol in a non-asymptotic setting.

Definition 2.2 (multi-party protocol, oracles). An n-party, r-round proto-
col Π is a tuple of n · r boolean circuits {Cj,i}j∈[r+1],i∈[n] that correspond to the
computation that party i in the protocol performs before the j-th communication
round (or after the last round if j = r + 1). Each Ci,j (except for j = 1 and
j = r + 1, see below) takes n input strings, and outputs n output strings. The
i′-th output of Cj,i is the message sent from party i to party i′ at round j of
the protocol. If i = i′ then the respective output is the state of party i after the
j-th round of communication. We therefore require that for all i, i′, j the i′-th
output of Cj,i has the same length as the i-th input of Cj+1,i′ . In the first round
of communication C1,i only takes one input xi to be interpreted as party i-th
input for the protocol, and possibly an additional random tape. In the last round
of communication Cr+1,i only has one output which should be interpreted as the
output of party i in the protocol, sometimes denoted yi. We let Mi denote the
collection of circuits associated with party i, i.e. Mi = (C1,i, . . . , Cr+1,i) and
thus denote Π = (M1, . . . ,Mn). The view of the party in the protocol contains
its input, randomness and all messages it received during the execution.

Let h be an n-party functionality. A protocol Π with oracle h, which we
denote by Πh, is one that allows to replace some of the communication rounds
with calls to the functionality h (i.e. the circuits respective to this round each
produce one output that is sent to the oracle h as input, the outputs of h is then
fed as a single input to the next round circuit).
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A protocol with broadcast is one with access to the broadcast functionality that
on input x = (x1, . . . , xn) outputs x to all parties. More generally, the framework
in this paper can handle any oracle functionality that delivers the same output
(originating from a designated party) to a subset of parties. We note that in
circuit terminology this can be described as Cj,i producing an output associated
with sets of parties rather than a single party.

A non-interactive h-oracle-aided protocol is one that consists only of a single
round of oracle call, and no other communication between the parties.

Consistently with the above formal description, we often refer to Mi as
an interactive circuit that sends and receives messages (and maintains a state
throughout the execution), until finally producing an output after the r-th round
of communication.

2.3 Correctness and Security of Protocols

Security of multi-party computations is analyzed via the real vs. ideal paradigm.
The real model captures the information that can be made accessible to the
adversary in an actual execution of the protocol, which includes an arbitrary
function of the view of the corrupted parties, as well as honest parties’ input
and output (but not their internal state during the execution). The ideal model
considers a case where the target functionality is computed using oracle access.
The protocol is secure if the view of every real adversary can be simulated by
an ideal adversary.

We first define the notion of an adversary, note that we slightly deviate
from the standard notation and explicitly include the description of the set of
corrupted parties as a part of the definition of the adversary. This will be useful
for stating our results. We also note that the current definition is syntactic
and non-asymptotic and does not address the adversary’s having an efficient
implementation.

Definition 2.3 (adversaries, the real model, ideal model). An adversary
(A, T ) for an n-party protocol Π = (M1, . . . ,Mn) consists of an interactive cir-
cuit A (sometimes called the adversarial strategy), and a set T ⊆ [n]. The parties
in T (resp. T ) are the dishonest (resp. honest) parties.

The execution of Π with input x under (T,A) is as follows. The input to A
is the set of inputs x[T ] (the inputs for the parties in T ). In each round, A first
receives all messages sent to parties in T from parties in T , and then outputs
messages to be sent to the parties in T from the parties in T (i.e. A is rushing).
At the end of the protocol A produces outputs on behalf of all parties in T . The
parties in T execute according to their respective prescribed Mi algorithms.

A semi-honest adversary is one in which A executes according to the parties
{Mi}i∈T , and outputs some function of the views of {Mi}i∈T in the protocol as
the outputs of the parties in T .

The ordered sequence of outputs of all parties in the execution above is called
the output of the real-model execution and denoted REALΠ,T,A(x). The ideal-
model is defined by considering the trivial non-interactive f-oracle-aided protocol
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Υf in which each party simply sends its input xi to the f-oracle, gets the output
yi from the oracle, and terminates with this output. For an adversary (A, T )
and vector of inputs x we denote the output of the ideal-model execution by
IDEALf,T,A(x).

In the ideal-model with selective abort (SSA), the f-oracle first delivers the
outputs of the corrupted parties to the adversary, which then can decide for each
uncorrupted party whether this party will receive its output or a special abort
symbol. The ideal-model with abort (SA) is similar to SSA except that when
the adversary decides to abort, all of the honest parties receive a special abort
symbol.8

Asymptotic Versions. A sequence of functionalities F = {fκ}κ∈N is efficiently
generated if there exists a polynomial time algorithm that on input 1κ outputs
a circuit that computes the n(κ)-party functionality fκ. A sequence of protocols
Π = {Πκ} is efficiently generated if there exists a polynomial time algorithm that
takes 1κ as input and outputs all circuits Cj,i associated with Πκ. A sequence of
adversaries A = {Aκ} is (non-uniformly) efficient if there exists a polynomial p(·)
such that for every κ the size of the circuit Aκ is at most p(κ). We often abbre-
viate “efficient functionality/protocol/algorithm” and not refer to the sequence
explicitly. Throughout this work, we will be concerned with constructing effi-
ciently generated protocols for efficiently generated function ensembles. In fact,
our results (implicitly) give rise to a compiler that efficiently converts a finite
functionality into a finite protocol.

Definition 2.4 (correctness and security of protocols). Let f = {fκ} be
an n(κ)-party functionality and Π = {Πκ} a (possibly oracle-aided) n(κ)-party
protocol. We say that Π t(κ)-securely computes f if for every probabilistic non-
uniform algorithm A = {Aκ} and every infinite sequence of sets {Tκ} where
Tκ ⊆ [n(κ)] is of cardinality at most t(κ), there exists a probabilistic non-uniform
algorithm B = {Bκ} and a polynomial p(·) so that the complexity of Bκ is at most
p(|Aκ|), such that for every infinite sequence of inputs {xκ}, the distribution
ensembles (indexed by κ)

IDEALfκ,Tκ,Bκ
(xκ) and REALΠκ,Tκ,Aκ

(xκ)

are either identical (this is called perfect security), statistically close (this is
called statistical security), or computationally indistinguishable (this is called
computational security). In the latter case, A is assumed to be asymptotically
efficient.

Note that for an efficiently generated protocol it follows from the definition that
the number of parties n, and the input lengths are polynomial in the security
parameter κ.

8 The terminology of “security with abort” and “security with selective abort” is bor-
rowed from [17] and [19] and it corresponds to the notions of “security with unani-
mous abort and no fairness” and “security with abort and no fairness” from [14].
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Definition 2.5 (secure reductions, non-interactive reductions). If there
exists a secure h-oracle-aided protocol for computing f , we say that f is reducible
to h. If the aforementioned oracle-aided protocol is non-interactive (i.e. only
consists of non-adaptive calls to h) we say that the reduction is non-interactive.

Appropriate composition theorems, e.g., [13, Theorems 7.3.3, 7.4.3], guaran-
tee that the call to h can be replaced by any secure protocol realizing g, without
violating the security of the high-level protocol for f . (In the case of computa-
tional security the reduction is required, of course, to be efficient.)

3 Building Blocks

In this section we define building blocks that rely on previous works and will
be used for our master theorem in Sect. 4. Circuit representation of protocols is
defined in Sect. 3.1, and our presentation of point and permute garbled circuits
follows in Sect. 3.2.

3.1 Circuit Representation of a Protocol

Recall that a protocol Π = (M1, . . . ,Mn), is a sequence of interactive circuits. It
will be convenient to collapse all these circuits to a single “circuit representation”
of a protocol. (A similar abstraction appears in [3], but some of the details differ,
e.g., the treatment of fan-out gates which are needed for handling protocol that
employ broadcast.)

Informally, we consider the computation of all parties throughout the proto-
col as parts of one large computation. Each wire of the new circuit is associated
with an index corresponding to the party in the protocol that computes this
value. This includes the local computations performed by parties throughout
the protocol, which are represented as gates whose inputs and outputs are asso-
ciated with the party who is performing the local computation, and also message
transmissions between parties, that are modeled as gates that simply copy their
input to the output, where the inputs are associated with the sender and outputs
are associated with the receiver.

Our definition only considers circuits corresponding to deterministic proto-
cols. This is both for the sake of simplicity (since we can always consider parties’
randomness as a part of their input) and since we will only apply this definition
to deterministic protocols in our results.

Definition 3.1 (Circuit Representation of a Protocol). The circuit rep-
resentation of a deterministic n-party protocol Π is a pair (C,P ), where C is a
Boolean circuit of size m as defined in Sect. 2.1, and P : [m] → [n] is a mapping
from the wires in C to the n parties.

Given a protocol Π = (M1, . . . ,Mn), the circuit C and the mapping P are
defined as follows.
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1. Recalling Definition 2.2, Π consists of a sequence of circuits Cj,i which repre-
sent the local computation of party i before the j-th round of communication
(and a final circuit Cr+1,i for the local computation after the last round of
communication), we call this the j-th computational step of the protocol.

2. All input wires of sub-circuits that correspond to the first step in the protocol
are defined as input wires of C. All output wires of sub-circuits that correspond
to the last step in the protocol are defined as outputs wires of C.

3. The input wires representing the input state of Cj,i are connected to the wires
representing the output state of Cj−1,i via a unary transmission gate. That
is, the state of party i in the beginning of computation step j is identical to
its state in the end of computation step j − 1.

4. If party i expects a message in step j from party i′, then the respective output
wire of Cj−1,i′ is connected to the respective input wire of Cj,i via a unary
transmission gate. If party i0 was supposed to send some value via broadcast
to multiple parties i1, . . . , ip then a p-ary transmission gates connects the
respective output wire in Cj−1,i0 to the input wires in Cj,i1 , . . . , Cj,ip

.
5. Note that by the description above, the set of wires in C is exactly the union

of wires of all circuits Cj,i. The mapping P associates with party i the wires
of circuits Cj,i, for all j.

We note that this description implies that for any local gate, all inputs and
outputs have the same association. We say that a local gate g belongs to player
i if all g-adjacent wires are associated with i.

The following is an observation that will be useful for our construction. Essen-
tially it says that if we switch some of the gates that belong to some party with
different gates, then the resulting circuit still represents a protocol.

Lemma 3.1. Let Π = (M1, . . . ,Mn) be a protocol, and let (C,P ) be its circuit
representation. Let T ⊆ [n] be some set and let H be a subset of the local gates
of T such that every gate in H belongs to a party i ∈ T . Consider a circuit C ′

topologically equivalent to C, which is identical to C except on the gates in H.
Then (C ′, P ) is a circuit representation of a protocol Π ′ = (M ′

1, . . . ,M
′
n) with

the same round complexity and message pattern as Π, and where M ′
i = Mi for

all i 	∈ T .

Proof. This follows almost by definition. Define the sub-circuits C ′
j,i of C ′ accord-

ing to their isomorphic counterparts in C. Since only local gates belonging to
parties in T are changed, it follows that C ′

j,i = Cj,i for all j and for all i 	∈ T .
Now define the party M ′

i for i ∈ T to have the functionality that in computation
step j it runs the cub-circuit C ′

j,i on its state from the previous step and incom-
ing messages, to produce the next state and outgoing messages. By definition
(C ′, P ) is the circuit representation of Π ′.

3.2 Point and Permute Garbled Circuits

We present an information theoretic variant of the point-and-permute construc-
tion of [4,22]. Our variant extends the information theoretic garble circuits of [16]
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to handle (p-ary) transmission gates as in Definition 3.1. In addition, we slightly
modify the encoding and decoding procedures, Encode and Decode, as follows.
The encoding procedure Encode is decomposed into two parts, Permute and
Encrypt, where Permute shuffles the truth tables of each gate based only on the
mask bits α (and is independent from the randomness s that is being used to
generate the gate keys) and the second part Encrypt (for “Table encryption”)
generates the encrypted gate tables (based on all the randomness and on the
outcome of the first part). We also modify the decoding procedure so that it
outputs the masked bits of all wires of the circuits (instead of outputting only
the un-masked bits of the outputs). We begin with a detailed description of the
encoding and decoding procedures, and continue by analyzing their properties.

The Construction Randomness of the Encoder. The encoder
Encode(C,x; s,α) takes as input a circuit C with local and transmission gates,
with m wires in total, as well as an input x for C and random tape consisting of
two strings: a vector α = (αj)j∈[m] ∈ {0, 1}m of masks (one for each wire), and a
vector of “wire keys” s = (s0j , s

1
j )j∈[m]. The keys of the j-th wire s0j , s

1
j ∈ {0, 1}ωj

are of length ωj which is defined recursively. If j is an output wire then ωj = 0.
If j is an input wire of local gate whose output wire is k, then ωj = 2(ωk +1). If
j is an input wire of a p-ary transmission gate whose output wires are k1, . . . , kp

then ωj =
∑

i∈[p](ωki
+ 1). By our definition of depth, the total length of s,

denoted by ωC = 2 · ∑j∈[m] ωj , is polynomial in m and 2d where d is the depth
of C. Lastly, if j is an input wire for a local gate and s is one of its wire keys,
we let s[0], s[1] denote the first and second half of s respectively.

The Encoding. We now turn to the encoding procedure, which is divided
into two parts, first we compute a sequence Γ by running a subroutine Γ =
Permute(C,α) (note that this subroutine depends only on α and not on any of
the other input values). Then we apply Encrypt(C,x, s,α,Γ ), which outputs the
final encoding. The procedures are described below.

– The procedure Permute(C,α) operates as follows. For every local gate g in
C, with input wires c, d ∈ [m], compute the (ordered) set

Γg :=
{
γβc,βd

g := G(αc ⊕ βc, αd ⊕ βd)
}

βc,βd∈{0,1} (1)

where G : {0, 1}2 → {0, 1} is the function that the gate g computes. Let Γ
denote the (ordered) set {Γg}g for all local gates in C, output Γ .

– The procedure Encrypt(C,x, s,α,Γ ) operates as follows. For every gate g in
C, construct its gate table Qg:

• If g is a local gate, with incoming wires c, d and outgoing wire k, the gate
table of g consist of four values. For every βc, βd ∈ {0, 1}, compute Qβc,βd

g

by setting γ := γβc,βd
g and computing:

Qβc,βd
g

︸ ︷︷ ︸
“ciphertext”

:= (sγ
k‖γ ⊕ αk)

︸ ︷︷ ︸
“message”

⊕ sαc⊕βc
c [βd] ⊕ sαd⊕βd

d [βc].
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One can view Qβc,βd
g as a one-time pad ciphertext, encrypted using the

wire keys of the input wires.
• Transmission gates are treated analogously. That is, if g is a transmission

gate g with incoming wire c and outgoing wires k1, . . . , kp, the table of g
consists of two values. For every βc ∈ {0, 1}, set γ = βc ⊕ αc and define

Qβc
g :=

(
(sγ

k1
‖γ ⊕ αk1)‖ . . . ‖(sγ

kp
‖γ ⊕ αkp

)
)

⊕ sαc⊕βc
c .

Finally, the encoding includes the sequence Q containing all gate table values
Qβc,βd

g , Qβc
g , as well as a sequence σ containing the wire keys and masked

values (sxj

j , xj ⊕ αj) for every input wire j.

Decoding. The decoding procedure Decode(Q,σ) takes as input a sequence of
gate tables, and pairs (sj , v̂j) for the input wires. It outputs a sequence v̂j for
all j ∈ [m] by traversing the gate tables in topological order. (Here we slightly
deviate from the standard convention in randomized encoding literature that
the decoder outputs the unmasked values of the output wires.) This is done by
traversing the circuit from the inputs to the outputs as follows. For input wires j
the pair v̂j , sj is given explicitly the input. For an internal wire that is an output
wire of a local gate g with incoming wires c, d, this is done by using the masked
bits v̂c, v̂d to select the ciphertext Qv̂c,v̂d

g and then decrypting (i.e., XOR-ing) it
with sc[v̂d] ⊕ sd[v̂c]. The recovered value is then denoted (sk, v̂k). Transmission
gates are treated similarly: use the masked bit v̂c of the input wire to select the
ciphertext Qv̂c

g and then XOR it with sc to obtain (ski
, v̂ki

) for i = 1, . . . , p.

Useful Properties. We first state properties of Encrypt that will be important
for our purposes.

Proposition 3.1. The function Encrypt has algebraic degree 2 when written as
a polynomial over the binary field in its inputs.

Proof. This property is straightforward from the definition, since the only non-
linear components in Encrypt are ones that require making a selection of the
form sz, where z is some variable from α or Γ (or a linear shift thereof), such a
value can be expressed as s0 ⊕ z · (s0 ⊕ s1), i.e. a quadratic function. (Note that
all β values are fixed and known whenever they are used.)

The next proposition follows by definition.

Proposition 3.2. The function Encrypt is only dependent on the topology of C
and not on the functionality G of local gates.

The following Propositions (3.3, 3.4) have been proven multiple times in the
garbled circuit literature (cf. [16]).

Proposition 3.3 (Efficiency). For all C,x, s,α, where C if of depth d and
size m, the computational complexity of Encode(C,x; s,α) is a fixed polynomial
in m, 2d.
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For every circuit C and input x, we define for all j ∈ [m] the value vj as the
value that the wire takes when evaluating C on x (in particular for input wires,
vj = xj).

Proposition 3.4 (Correctness). For all C,x, s,α, setting z = Encode(C,x;
s,α), and then {v̂j}j∈[m] = Decode(z), it holds that v̂j = vj ⊕ αj.

In Sect. 3.3 we will prove the following, somewhat non-standard, simulation
property of garbled circuit. (The case where W is taken to be set of output
wires corresponds to the standard simulation property of information-theoretic
garbled circuits.)

Proposition 3.5. There exists a ppt simulator Sim that takes as an input a cir-
cuit C, a subset of wires W , and for every wire j ∈ W a mask-bit/intermediate-
value pair (αj , vj) ∈ {0, 1}×{0, 1} such that the following holds. For every C,W
and {αj}j∈W and every input x the random variable

Sim(C,W, {αj , vj}j∈W ),

where the value vj is the value induced on the j-th wire of C by the input x, is
distributed identically to the random variable

Encode(C,x; s,α),

where s is uniformly random and α = {αj}j∈W ∪ {αj}j /∈W for a uniformly
random {αj}j /∈W .

Recall that the outcome Γ of Permute(C,α) is a vector that is indexed by
the gates of C where for each gate g the entry Γg is a four-bit string as defined
in Eq. (1). The following key lemma shows that a corruption of some entries of
Γ corresponds to applying Permute to a corrupted version of the circuit C with
the same randomness α.

Lemma 3.2 (Corruption Lemma). For all C,α, let Γ = Permute(C,α), let
H be a subset of the gates of C, and let Γ ′ be a vector for which Γ ′

g = Γg for
all gates g /∈ H. Then there exists a circuit C ′ which is obtained from C by
(possibly) modifying only gates in H, such that Γ ′ = Permute(C ′,α). Moreover,
C ′ can be efficiently computed based on C,H, {Γ ′

g}g∈H and based on the values
of the masked bits αi for all wires i that enter the gates in H.

Proof. We define C ′ by modifying the H gates of the circuit C as follows. For
all g ∈ H, consider Γ ′

g = {γ′β1,β2}β1,β2∈{0,1}. Let α1, α2 denote the α values
corresponding to the input wires of g. Define a new gate functionality G′

g :
{0, 1}2 → {0, 1} as

G′(β1, β2) = γ′(β1,β2)⊕(α1,α2).

The property Γ ′ = Permute(C ′,α) follows by definition.
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3.3 Proof of Proposition 3.5

We begin with the following standard proposition that captures the privacy
property of garbled circuits. Note that our Encode procedure as defined above
does not release any of the α values in the clear.

Proposition 3.6 (Simulation). Let (C(1),x(1)), (C(2),x(2)) be such that
C(1), C(2) are topologically equivalent. Then for uniformly random s,α, the ran-
dom variables Encode(C(1),x(1); s,α) and Encode(C(2),x(2); s,α) are identically
distributed.

The following claim will be useful for deriving Proposition 3.5 below.

Claim 1. Let (C(1),x(1),α(1)), (C(2),x(2),α(2)) be such that C(1), C(2) are
topologically equivalent, and such that v(2) ⊕ y(2) = v(2) ⊕ y(2). Then, con-
sidering a uniformly random s, the distributions Encode(C(1),x(1); s,α(1)) and
Encode(C(2),x(2); s,α(2)) are identical distributed.

Proof. Let y(1),y(2), s(1), s(2) be uniform and independent, and define, for
i ∈ {1, 2}, random variables ζ(i) = Encode(C(i),x(i); s(i),α(i)). Then by Propo-
sition 3.6, the two random variables are identically distributed: ζ(1) ≡ ζ(2). We
recall that by the definition of Decode, there exists a deterministic function d s.t.
d(ζ(i)) = v(i) ⊕ y(i). As for any deterministic function, we have (ζ(1), d(ζ(1))) ≡
(ζ(2), d(ζ(2))), i.e. (ζ(1),v(1) ⊕ y(1)) ≡ (ζ(2),v(2) ⊕ y(2)). This implies that for
any value of y∗ it holds that (ζ(1)|v(1) ⊕ y(1) = y∗) ≡ (ζ(2)|v(2) ⊕ y(2) = y∗).
That is, the conditional distributions are identical.

Now set y∗ = v(1) ⊕ y(1) = v(2) ⊕ y(2), and notice that the random variable
(ζ(i)|v(i) ⊕ y(i) = y∗) is distributed identically to Encode(C(i),x(i); s,α(i)). The
claim follows.

We can now prove Proposition 3.5.

Proof (Proof of Proposition 3.5). The simulator Sim(C,W, {αj , vj}j∈W ) considers
a circuit C ′ topologically equivalent to C, but such that the values on the wires
W are always fixed to the respective vj regardless of the input. This can be done
by fixing some of the local gates to always output the desired values. This is
possible since in v[W ], for any fan-out gate, the input and all outputs take the
same value. The simulator then samples random values for α′[W ], and creates
α′ by merging them with the values α[W ]. Finally it samples a random s′ and
outputs z′ ← Encode(C ′,0; s′,α′).

Consider now z ← Encode(C,x; s,α), where s is uniformly random and
α = {αj}j∈W ∪ {αj}j /∈W for a uniformly random {αj}j /∈W . Recall that C,C ′

are topologically equivalent, so have the same set of wires, and let vj , v′
j denote

the values of wire j in the executions C(x) and C ′(0) respectively. We note that
α[W ] = α′[W ], and that by the definition of C ′ it holds that v[W ] = v′[W ].
Since α[W ], α′[W ] are uniformly random, it must be the case that v ⊕ α and
v′ ⊕ α′ are identically distributed. Invoking Claim 1 concludes the proof.
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4 Our Master Theorem

We show how to convert any protocol Π for computing a functionality f (irre-
spective of round complexity) into a non-interactive h-oracle-aided protocol Π̂h,
where h is a quadratic function and while preserving the security properties of
Π. A formal statement follows.

Theorem 4.1 (Master Theorem). For every n-party protocol Π there exists
an n-party non interactive oracle-aided protocol Π̂h and an L = poly(2d, n,m),
where d (resp. m) is the depth (resp. size) of the circuit representation of Π (see
Definition 3.1), with the following properties.

1. Efficiency. The communication and computational complexity of Π̂h is at
most L times larger than that of Π.

2. Quadratic Oracle. The oracle h is a quadratic function.
3. Simulation. For every strategy Â acting on Π̂h, there exists a strategy A of

complexity at most L times larger acting on Π, such that for all T ⊆ [n] and
for all x = (x1, . . . , xn), the distributions REALΠ,T,A(x) and REALΠ̂h,T,Â(x)
are identical. Furthermore, if Â is semi-honest (i.e. follows the protocol) then
so is A.

Note that the simulation property also guarantees that the functionality of Π̂ is
the same as that of Π since the outputs of honest parties is included in the real
model distribution.

Remark 4.1. It suffices to prove Theorem 4.1 only for deterministic protocols
Π, since for a randomized protocol we can always consider Π to be the induced
deterministic protocol where the parties’ coins are treated as part of their input.
Since our theorem quantifies over all inputs x, this will also capture the case
where part of the input (corresponding to the random tapes of the randomized
protocol) is uniformly sampled.

Remark 4.2. Interestingly, we are able to prove the theorem using strategies A
that are somewhat weaker than the most general conceivable malicious strategy,
in the following sense. The colluding parties can only communicate before the
execution of Π starts. That is, they cannot change their strategy in intermediate
rounds of Π according to messages that were received by other parties in the
collusion, however they share their initial views after seeing their inputs and
before the first round begins.

In the remainder of the section we prove Theorem 4.1. We note that Lem-
mas 3.1 and 3.2 are new observations made in this work and they constitute a
fundamental part of this proof.

Proof. As explained in Remark 4.1, we may assume that Π is deterministic.
Our protocol essentially computes the point-and-permute encoding (Sect. 3.2) of
the circuit representation of the protocol Π (Definition 3.1). The oracle h will
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correspond to the procedure Encrypt, and the Γ values are to be precomputed
by the parties. Details follow.

Let (C,P ) be the circuit representation of Π, and consider the computation
Encode(C,x; s,α). The protocol Π̂h is a non-interactive oracle-aided protocol,
i.e. it contains a pre-processing step where each party locally computes a message
to send to the oracle, followed by an oracle response and local post-processing.

– Preprocessing. Each party i, on input xi, samples a uniform vector si ∈
{0, 1}ωC (see the description of Encode in Sect. 3.2 for the definition of ωC),
and uniform values αj for all j for which P (j) = i (i.e. for all wires “belonging”
to player i). Then for each local gate g that belongs to player i, the party
computes the values Γg as in Eq. (1) (note that since g belongs to i, then i
possesses all α values required for this computation). Finally, player i sends
�i = (xi, si,αi,Γ i) to the oracle h.

– Oracle. The oracle h takes all messages �i = (xi, si,αi,Γ i). It concatenates
all xi into a joint input x for C, unites all αi into a vector α containing a
value for every wire, and unites all Γ i into a single Γ containing a set Γg for
every local gate g. Finally, it XORs the si values into a single string s = ⊕isi.
Note that all of these are linear operations.
Finally it computes z = Encrypt(C,x, s,α,Γ ) and sends (the same) z to all
parties as response to their query.

– Postprocessing. Upon receiving z, each party i applies Decode(z) to obtain
the sequence v̂j for all j ∈ [m]. Then, for any output wire j belonging to
party i, it computes v̂j ⊕αj to obtain the output value (recall that for a wire
j belonging to party i, the value αj was locally generated by party i and is
therefore available for postprocessing). Its output contains the collection of
values on these output wires.

Properties 1, 2 in the theorem follow immediately from the properties of
the point-and-permute encoding (Propositions 3.3 and 3.1). It remains to prove
Property 3.

Let (Â, T ) be an adversary for Π̂. Since Π̂ is non-interactive, then Â only
gets to choose the values �[T ] = {�i}i∈T based on the inputs x[T ], and then
postprocess the oracle response z. We can further simplify and consider w.l.o.g
only adversaries Â that are deterministic (since our simulation is perfect and
therefore holds even conditioned on any random string) and do not perform any
postprocessing but instead just output z (since any postprocessing results in a
deterministic function of z, thus simulating z allows to simulate any such value).

Our Simulator. Our task is to produce an adversary (A, T ) for the original
protocol Π with the same real-model distribution as our (deterministic, no-
postprocessing) Â. We assume throughout that T 	= [n] (i.e. there exist honest
parties) otherwise the result is trivial. The adversary A first runs Â on x[T ]
to obtain the values �[T ]. Let us denote by W all wires j s.t. P (j) ∈ T , i.e. all
wires that belong to parties controlled by the adversary (and W the complement
set of wires), and by H all local gates that are controlled by parties in T (and
H the complement set of local gates). By parsing �[T ] appropriately, we derive
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the values x′[T ], α[W ] and Γ [H], namely all α and Γ values associated with
adversarially controlled parts of C. (Note that x′[T ] is not necessarily identical
to x[T ] since the adversary is allowed to “change its input”.)

By the Corruption Lemma (3.2) we can efficiently generate a circuit C ′ that is
topologically equivalent to C and only differs from it in local gates controlled by
the adversary. By Lemma 3.1, (C ′, P ) is a protocol representation of a protocol
Π ′ where all M ′

i for i 	∈ T are the same as in Π, but M ′
i for i ∈ T might differ.

The adversary A now sets each party i ∈ T to (honestly) execute the protocol
Π ′ (i.e. the machine M ′

i) using its respective input x′
i. Since for honest parties

Mi = M ′
i , we have that the parties jointly execute Π ′ on input x′ = x[T ]∪x′[T ].

Notice that if Â is semi-honest then Γ ′ = Γ and thus C ′ = C, which, in turn,
implies that Π ′ = Π and therefore A is semi-honest as well.

After the end of the execution of Π ′, the parties under the adversary’s control
do not return their prescribed output in Π ′. Instead, the adversary A collects
the views of all parties under its control, which correspond to the set of values
v[W ], i.e. the values on the W wires of C ′ when computed on x′ (however A
does not know x[T ] or any of the values v[W ]). Lastly we apply the simulator
from Proposition 3.5, i.e. the adversary A executes Sim(C ′,W,α[W ],v[W ]) → z′

and sets the outputs of all parties in T to be z′.

Proof of Simulation. It remains to show that indeed REALΠ̂h,T,Â(x) ≡
REALΠ,T,A(x). Let us fix a value for x throughout the proof. Since we assume
w.l.o.g that Â is deterministic, this also fixes values for x′[T ], α[W ], Γ [H], and
{si}i∈T . Recall that x′ = x[T ] ∪ x′[T ] (again a fixed value).

We start by noting that in REALΠ̂h,T,Â the parties in T all output the same
value z, and in REALΠ,T,A they all output the same z′. Letting y[T ] denote the
output of T parties in REALΠ̂h,T,Â, and y′[T ] denote the outputs of these parties
in REALΠ,T,A, we conclude that our goal is to prove that (y[T ], z) is distributed
identically to (y′[T ], z′).

Consider the distribution (y[T ], z), and note that z = Encrypt(C,x′, s,α,Γ ).
The vector s is random since it is XOR of all parties’ si and there exists at least
one honest party that samples its si uniformly. The vector α is the union of
α[W ] and a uniformly sampled α[W ]. The vector Γ , by Lemma 3.2, is equal to
Permute(C ′,α). Since Encrypt only cares about the topology of its input circuit
(Proposition 3.2), then in fact

z = Encrypt(C,x′, s,α,Γ )
= Encrypt(C ′,x′, s,α,Γ )
= Encode(C ′,x′; s,α) ,

where the last inequality is because Encode by definition first generates Γ =
Permute(C ′,α), and then applies Encrypt.

Defining z in this way will allow us to show that the marginal distributions of
y[T ] and y′[T ] are both identical and in fact fixed (having fixed x, deterministic
Â). To see this, first note that by Proposition 3.4 (correctness of garbled circuit),
y[T ] is determined by the values of the output wires belonging to T parties in
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the evaluation of C ′ on x′. These values are determined by C ′,x′ regardless of
randomness. Likewise, y′[T ] by definition is the output of the honest parties
during the execution of Π ′ on x′, and since Π ′ is represented by C ′, the output
values are exactly the output values of C ′. Lastly, z ≡ z′ since by Proposition 3.5

Encode(C ′,x′; s,α) ≡ Sim(C ′,W,α[W ],v[W ])

where the randomness is taken over s, α[W ] and the coins of Sim. This finalizes
the proof of the theorem.

5 Completeness Theorems

In this section we prove that degree-2 functionalities are complete under non-
interactive reductions. We say that a protocol has a security loss of L if any
viable real-world adversary A can be simulated by an ideal-world adversary B
whose complexity is at most L times larger than the complexity of A. We prove
the following theorem.

Theorem 5.1 (Completeness of quadratic functions). Let f be an n-party
functionality computable by a circuit of size S and depth D. Then there exists
a non-interactive reduction from the task of securely computing f to the task of
computing a degree-2 functionality over F2. The reduction can take any of the
following forms:

1. Perfectly secure reduction with threshold of t =
⌈

n
3 − 1

⌉
and computational

complexity and security loss of poly(n, S, 2D).
2. Statistically secure reduction with threshold of t =

⌈
n
2 − 1

⌉
and computational

complexity and security loss of poly(n, S, 2D).
3. Assuming one-way functions, computationally secure reduction with threshold

of t =
⌈

n
2 − 1

⌉
and computational complexity and security loss of poly(n, S).

Furthermore, the reduction makes a black-box use of the one-way function (as
part of the preprocessing and postprocessing phases).9

The protocols are employed over synchronous network with pairwise private
channels and a broadcast channel (which is our default setting). In all three
settings, we require full security (in particular, the adversary cannot abort the
honest players). It is well known that in this case the best achievable thresh-
old is �(n/3) − 1� for perfect MPC (cf. [5]) and �(n/2) − 1� for statistical, or
even computational, MPC [21]. Hence, the theorem achieves optimal security
thresholds in all three cases.

As usual in the context of constant-round information-theoretic MPC, our
information-theoretic protocols are efficient only for NC1 functionalities.10 Nev-
ertheless, even for general functions, for which our perfect and statistical reduc-
tions are inefficient, the result remains meaningful since the protocols resist
computationally unbounded adversaries.

See full version for proof of Theorem 5.1.
9 In the computational setting, we let the circuit size S play the role of the security

parameter, and assume that n is at most polynomial in S.
10 This can be slightly pushed to log-space computation via standard techniques.
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6 Perfect Three-Round MPC

In this section we obtain a 3-round protocol with full security (i.e. no abort) for
general functions. Namely, we prove the following theorem.

Theorem 6.1 (Perfect 3-round MPC with threshold of quarter).

– Every NC1 functionality can be securely computed in 3 rounds with perfect
security and threshold of t =

⌈
n
4 − 1

⌉
.

– Given a black-box access to a one-way function, the above extends to arbi-
trary polynomial-time functionalities at the expense of downgrading security
to computational.

By item 1 and item 3 of Theorem 5.1, the design of such protocols reduces to
the design of a protocol with similar security properties for degree-2 functional-
ities. It therefore suffices to prove the following proposition.

Proposition 6.1. Let f be an n-party functionality with complexity S and
degree 2 (over the binary field). Then f can be perfectly computed in 3 rounds
with security threshold of t =

⌈
n
4 − 1

⌉
and complexity of poly(n, S).

The proof of Proposition 6.1 appears in Sect. 6.1.

6.1 Proof of Proposition 6.1

VSS and Friends. A key component in the proof is verifiable secret sharing
(VSS) [7]. In such secret sharing schemes, even if the dealer acts maliciously
while sharing the secret s, all of the honest parties end up with shares that are
consistent with some secret s′. We consider the Shamir-based VSS for threshold
t where n = 4t + 1. The VSS will be implemented over an extension field F of
GF(2) of size at least n + 1, e.g., F = GF(2�log n+1�). In particular, we will need
2-round protocols that realize the following functionalities with perfect security
and threshold of t.

– The functionality Shared in which a single designated party (denoted as the
dealer) holds as an input a degree d univariate polynomial P over F (whose
zero coefficient s plays the role of the secret) and all other parties have no
input. The functionality delivers to the i-th party the value s[i] = P (i).11 We
refer to (s[1], . . . , s[n]) as a degree-d sharing of s. Note that security guarantees
that for any adversarial set T of cardinality at most t, after the execution of
Shared the outputs of honest parties, i.e. s[T ], lie on a single polynomial P ′

of degree d, and, if the dealer is honest (i.e. not in T ) then P ′ = P . For every
degree-bound d ≤ t, Gennaro et al. [11] describe a 2-round n-party protocol
that perfectly realizes Shared.

11 As usual we assume that every i ∈ [n] is associated with some public distinct field
element αi �= 0 and, by abuse of notation, we denote this element by i.



528 B. Applebaum et al.

– The functionality Shared,0 which is defined similarly to Shared except that
the free coefficient of the dealer’s input polynomial P must be zero. This
functionality will be employed with degree d = 2t, and we can realize it in
2 rounds with perfect security and threshold t via the following standard
reduction to Sharet. The dealer decomposes her polynomial P (Z) into

t∑

j=1

ZjRj(Z) (2)

where R1, . . . , Rt are degree t polynomial that are chosen uniformly at random
subject to the above constraint. Then the dealer shares each Rj via Sharet,
and the i-th party gets R1(i), . . . , Rt(i) and locally set his output to i1R1(i)+
· · · + itRt(i).

– The functionality BinSharet which is defined similarly to Sharet except that
the free coefficient of the dealer’s input polynomial P must be zero or one.
We realize this functionality in 2 rounds with perfect security and threshold t
via a reduction to the Sharet protocol of Gennaro et al. [11]. This reduction,
described in the full version, is non-black-box and it relies on some concrete
properties of the protocol. (To the best of our knowledge this reduction has
not appeared in the literature.)

Given the above ingredients the protocol is quite straightforward. In par-
ticular, we rely on the following two standard properties of polynomial-based
secret sharing: (1) 2-multiplicative: If the parties share the secrets (s1, . . . , sk)
via a degree-d sharing then, for every degree-2 mapping f over F, we can get
a degree 2d-sharing of the secret f(s1, . . . , sk) by locally applying the degree-2
mapping f to the shares of each party. (2) Noisy interpolation: Given N points
(y1, . . . , yN ) ∈ F

N with the promise that there exists a degree-D polynomial P
for which P (i) = yi for all but �(N − D)/2� of i ∈ [N ], we can efficiently recover
the polynomial P (and this polynomial is unique) via the standard Reed-Solomon
decoder.

The Protocol. Let f be a degree-2 n-party functionality. We view f as a formal
degree-2 polynomial over F with 0-1 coefficients. For ease of notation, assume
that each party holds a single input xi, and that the functionality has a single
output that is delivered to all parties. (The protocol can be easily modified to
handle the more general case.)

1. In parallel, every party i ∈ [n] that holds an input xi ∈ {0, 1} samples a
random degree-t polynomial Pi over F whose free coefficient is xi. The party
invokes the 2-round protocol that implements BinSharet as a dealer whose
input is Pi. All parties receive the shares (xi[1], . . . , xi[n]). In addition, every
party i ∈ [n] chooses a random degree-2t polynomial Ri whose free coefficient
is zero and distribute it to all the parties using via Share2t,0.

2. Each party j computes f over its shares, i.e. f(x1[j], . . . , xn[j]) → y[j]. It then
randomizes the result by adding the value R1(j)+ · · ·+Rn(j) and broadcasts
the randomized share ỹ[i].
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3. Each party interpolates a degree 2t polynomial Y which is consistent with at
least n − t of the points (ỹ[1], . . . , ỹ[n]), the party outputs the value Y (0).

Standard analysis (cf. [8, Sect. 2.2]) shows that the above protocol perfectly
computes f with threshold t. ��

7 Two-Round MPC with Abort

We move on to the case of two-round protocols. As already mentioned, even if
a broadcast channel is given we cannot hope for full security (or even fairness)
when more than a single party is corrupted [12]. We therefore consider two
standard relaxations of security with abort. As explained in Sect. 3, both notions
are formalized by modifying the ideal-model in a way that grants the adversary
additional power. We repeat the definition for the convenience of the reader.

– Security with Selective Abort (SSA) allows the adversary to selectively abort
some of the honest parties (after the adversary learns his output). Formally,
the ideal functionality first delivers the outputs of the corrupted parties to
the simulator, which then can decide for each uncorrupted party whether this
party will receive its output or a special abort symbol.

– Security with Abort (SA) allows the adversary to abort the honest parties
even after the adversary learns his output. This is formalized similarly to
SSA except that when the adversary decides to abort, all the honest parties
receive a special abort symbol.

In the remainder of this section we prove the following theorems.

Theorem 7.1 (2-Round MPC with selective abort).

– Every NC1 functionality can be computed in 2 rounds with statistical security,
selective abort and security threshold of t =

⌈
n
2 − 1

⌉
. The protocol does not

use a broadcast channel.
– Given a black-box access to a one-way function, the above extends to arbi-

trary polynomial-time functionalities at the expense of downgrading security
to computational.

Theorem 7.2 (Computational 2-Round MPC with abort). Given a
black-box access to a one-way function, every polynomial-time functionality can
be computed in 2 rounds with computational security, standard abort and security
threshold of t =

⌈
n
2 − 1

⌉
.

Theorem 7.2 and the computational part in Theorem7.1 both introduce 2-
round protocols with black-box access to one-way functions for polynomial-time
functions and the same security threshold. They differ, however, since the proto-
cols in Theorem 7.2 guarantee the stronger security notion (SA) at the expense
of using a broadcast channel. (Indeed, the proof of Theorem7.2 relies on Item 2
in Theorem 7.1.). By [20], selective abort is the best possible security for 2-round
protocols that only use secure channels.

For proofs of Theorems 7.1, 7.2, see full version.
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Abstract. We provide the first constructions of two round information-
theoretic (IT) secure multiparty computation (MPC) protocols in the
plain model that tolerate any t < n/2 malicious corruptions. Our proto-
cols satisfy the strongest achievable standard notions of security in two
rounds in different communication models.

Previously, IT-MPC protocols in the plain model either required a
larger number of rounds, or a smaller minority of corruptions.

1 Introduction

The ability to securely compute on private datasets of individuals has wide
applications of tremendous benefits to society. The notion of secure multiparty
computation (MPC) [9,14,26,37] provides a solution to the problem of comput-
ing on private data by allowing a group of mutually distrusting parties to jointly
evaluate any function over their private inputs in a manner that reveals nothing
beyond the output of the function.

Information-Theoretic MPC. Over the years, a large body of works have
investigated the design of MPC protocols against computationally bounded as
well as computationally unbounded adversaries. In this work, we focus on the
latter, namely, MPC with information-theoretic (IT) security.

The seminal works of [9,14] established the first feasibility results for IT-
MPC for general functionalities. These works also established that IT security
for non-trivial functions is only possible when at most t < n/2 of the n parties
are corrupted. In scenarios where honest majority is a viable assumption, IT-
MPC protocols are extremely appealing over their computational counterparts.
In particular, they are typically more efficient since they do not use any compu-
tational primitives. Furthermore, IT-MPC protocols achieve security in models
such as concurrent composition [11] without relying on external trust [12].

Round Complexity. In this work, we investigate the minimal conditions neces-
sary for IT-MPC in the plain model. We focus on round complexity – a well stud-
ied complexity measure in distributed protocol design. We consider the standard
c© International Association for Cryptologic Research 2019
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simultaneous-message model of communication for MPC where in any round,
each party can send messages to other parties, depending upon the communica-
tion from the previous rounds. We consider security against malicious adversaries
who may corrupt any subset of t < n/2 parties and use arbitrary strategy to
decide their protocol messages.

It is well known that two rounds of communication are necessary for MPC
[28]. We ask whether two rounds are sufficient for achieving IT security:

Does there exist two round IT-MPC for any t < n/2 corruptions?

The above question has remained open for the last three decades. In par-
ticular, while constant round IT-MPC protocols are known for any t < n/2
corruptions (e.g., [6,31]), the only known two round IT-MPC protocols are due
to [29,31,34] who require two-thirds honest majority (as opposed to standard
honest majority). We refer the reader to Sect. 1.3 for a comprehensive survey of
prior work, and Sect. 1.1 for comparison with the recent works of [3,4,19].

1.1 Our Results

In this work, we resolve the above question in the affirmative.

I. Main Result. Our first result is a two-round IT-MPC protocol for NC1

functions that tolerates any t < n/2 corruptions. In the case of malicious adver-
saries, our protocol achieves statistical security with abort – the standard notion
of security (c.f. [25]) where an adversary may prevent the honest parties from
learning the output by aborting the computation. In the setting of two rounds,
this is known to be the strongest achievable standard notion of security [24].

In the case of semi-honest adversaries, our protocol achieves perfect security.

Theorem 1. There exists a two round MPC protocol for NC1 functions that
achieves:

– Statistical security with abort against t < n/2 malicious corruptions.
– Perfect security against t < n/2 semi-honest corruptions.

II. Protocols over P2P Channels. Our protocol in Theorem 1 necessarily uses
both broadcast and private point-to-point (P2P) channels for achieving security
against malicious adversaries.1 We next investigate whether it is possible to
construct two round IT-MPC against malicious adversaries by using only P2P
channels.2

Our second result is a two round IT-MPC protocol over P2P channels that
achieves statistical security with selective abort against any t < n/2 malicious
corruptions. This notion [27] is a weakening of the standard notion of security of
1 In the case of semi-honest adversaries, broadcasts can be trivially emulated over P2P

channels without any increase in round complexity.
2 Note that the complementary goal of IT-MPC over only broadcast channels is known

to be impossible.
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(unanimous) abort in that it allows the adversary to separately decide for each
honest party whether it will receive the correct output or ⊥. Achieving security
with abort in two rounds over P2P channels is known to be impossible in general
[18,35]. This establishes security with selective abort as the strongest achievable
standard notion of security in two rounds.

Theorem 2. There exists a two round MPC protocol over P2P channels for
NC1 functions that achieves statistical security with selective abort against t <
n/2 malicious corruptions.

Put together, Theorems 1 and 2 fully resolve the round complexity of mali-
ciously secure IT-MPC (for NC1 functions).

Comparison with [3,4,19]. Recently, Applebaum et al. [3] constructed two round
perfectly secure MPC for NC1 against any t < n/2 semi-honest corruptions.
Garg et al. [19] achieve a similar result; however, the communication complexity
of their protocols grows super-polynomially with the number of parties. Neither
of these works consider security against malicious adversaries, which is the main
focus of our work. A recent independent and concurrent work of Applebaum et
al. [4] also considers the case of malicious adversaries. Similar to our work, they
also construct a two-round statistically secure protocol for NC1 functionalities
that achieves security with selective abort. However, they do not achieve our
main result, namely a two-round information-theoretic protocol for security with
(unanimous) abort.

1.2 Technical Overview

We first focus on achieving two-round IT-secure MPC in the presence of both
broadcast and point to point communication channels.

Recent works on two-round secure MPC [10,21,22] follow a common
blueprint of squishing an arbitrary round secure protocol, referred to as inner
protocol, into a two round secure protocol, referred to as outer protocol using
garbled circuits. Roughly speaking, every party in the outer protocol computes
t garbled circuits, one for every round of the inner protocol. The job of the jth

garbled circuit computed by the ith party is to emulate the computation of the
next message function of the ith party in the jth round. Every party sends the
generated t garbled circuits to the other parties.

The main challenge here is to ensure that the garbled circuits can talk to
each other the same way the parties in the inner protocol talk to each other.
The tools used to address this challenge differs from one work to another: [21]
use bilinear maps, [22] use two-round oblivious transfer, [10,20] use two-round
oblivious oblivious transfer and additionally garbled circuits and finally, [1,3,19]
use information-theoretic MPC protocols. Of particular interest to us is the work
of Ananth et al. [1] who show how to achieve maliciously secure two-round secure
MPC in the honest majority setting for polynomial-sized circuits assuming only
one-way functions.
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Background on [1]. They propose the following template: The first step is to
construct helper protocols that enable communication between garbled circuits
in the outer protocol. The helper protocols they consider are delayed-function
two-round MPC protocols, handling malicious adversaries, for two functionalities
defined below. In a delayed-function two-round MPC protocol, the functionality
is only available to the parties after the first round.

– The first functionality, parameterized by a bit v, is defined as follows: it
takes as input r1 from the first party, r2 from the second party and outputs
r1 ⊕ r2 ⊕ v.

– The second functionality, parameterized by two bits (v1, v2), is defined as
follows: it takes as input a string K from the first party (interpreted as an
input wire label of a garbled circuit), three bits (r1, r2, r3) from the second
party and outputs Kr3⊕NAND(v1⊕r1,v2⊕v3).

Observe that both these functionalities can be represented by quadratic polyno-
mials over F2 and there exist two-round protocols for quadratic polynomials in
the literature (see [34]). While these protocols do not achieve full-fledged mali-
cious security, they achieve a weaker property termed as privacy with knowledge
of outputs and [1] show how this weaker property is sufficient for their goal.

The next step is to transform the inner interactive protocol into an outer two-
round protocol using the helper protocols. Since the helper protocols can only
compute restricted functionalities, they impose a restriction on the “structure”
of the inner protocol. In particular, every round of the inner interactive protocol
is forced to only perform a single NAND computation. The term conforming
protocols (originally coined by [22]) was used to described such interactive pro-
tocols.

Informally, a conforming protocol proceeds in a sequence of rounds. In every
round, a party, termed as “receiver”, obtains a global state from another party,
termed as “sender”, that encodes information about the current states of all the
parties. Every party possesses a decryption key that lets it decode only a certain
section of the global state. Once the party decodes the appropriate information,
it then performs some local computation and then re-encodes the result and
the resulting updated global state will be broadcasted to the rest of the parties,
termed “listeners”. Thus in every round, there is a sender, receiver and the rest
of the parties are listeners.

At first, it might seem unclear as to why conforming protocols should exist at
all. Luckily, an arbitrary round information-theoretically secure protocol can be
transformed into a conforming protocol. However, the transformation demon-
strated by [1] blows up the round complexity of the conforming protocol. In
particular, even if the original protocol had a constant number of rounds, the cor-
responding conforming protocol will now have round complexity proportional to
the size of the circuit being securely computed. Nevertheless, their transformation
from a conforming protocol into the two-round outer protocol for polynomial-
sized circuits is unaffected by the round complexity of the underlying conforming
protocol.
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Limitations on Extending [1] to IT Setting. To construct maliciously
secure information-theoretically secure MPC protocols for NC1 circuits, a nat-
ural direction to explore is to adapt the construction of [1] to the information-
theoretic setting. The only part in the construction where one-way functions are
used is in the generation of garbled circuits. If we restrict to NC1 circuits, we
could hope to use garbling schemes with perfect security [32]. These garbling
schemes have the property that the size of the wire labels for the input wires
grows exponentially in the depth of the circuit being garbled and linearly in the
size of the garbled circuit.

This results in a fundamental issue in using information-theoretic garbling
schemes to replace the garbled circuits based on one-way functions in [1]: as
part of the outer protocol, every party sends a sequence of garbled circuits,
where every garbled circuit encodes wire labels for the next garbled circuit.
Recall that every garbled circuit emulates the next message function in a round
and it needs to encode the wire labels for the next garbled circuit to enable
transferring information from one round to the next. Once we use information-
theoretically secure garbling schemes, the communication complexity now blows
up exponentially in the length of the chain of garbled circuits. Since the length
of the chain is the round complexity of the underlying conforming protocol, this
results in exponential communication complexity even for NC1 functionalities.

Our Approach. As a first step towards achieving our goal, we consider con-
forming protocols that do not restrict every round in the outer protocol to be
just a single NAND computation. More generally, we allow the next message
in every round of the conforming protocol to be a polynomial-size NC1 circuit.
We term this class of protocols to be generalized conforming protocols. On the
one hand, the advantage of considering generalized conforming protocols is that
we can construct this in constant number of rounds for NC1 which makes it
suitable to use it towards constructing a two-round protocol in the information-
theoretic setting. On the other hand, the helper protocols designed in [1] are
no longer compatible with our notion of generalized conforming protocols; recall
that since the helper protocols in [1] were associated with quadratic polynomials,
they imposed the requirement that every round in the conforming protocol is a
single NAND computation.

To address this issue, we design new helper protocols that are “compatible”
with generalized conforming protocols. Specifically, we require that the helper
protocols are associated with functionalities computable in NC1. By carefully
examining the interiors of [1], it can be observed that it suffices to construct
helper protocols for three-input functionalities computable in NC1; these are
the functionalities where only three parties have inputs. Informally, the three
parties correspond to a sender party that sends a message in a round, a receiver
party that receives a message in a round and finally, a listener party that listens
to the communication from the sender to the receiver. Even though there are
multiple listeners in every round in the conforming protocol, it suffices to design
helper protocols for every listener separately. In the helper protocol, the inputs of
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the sender and the receiver are their private states3 and the listener’s input would
be the wire labels for its garbled circuits. Note, however, that the functionality
associated with the helper protocol is as complex as the next message function of
the conforming protocol.

As such, it is unclear how to construct helper protocols even for three-input
functionalities; in fact, if we had a two-round secure protocol for the three-
input functionality that outputs the product of its inputs, then it could be
bootstrapped to achieve two-round secure protocols for arbitrary functionali-
ties via randomized encodings [31]. In light of this, the problem of constructing
two-round secure protocols for three-input functionalities seems as hard as con-
structing two-round secure protocols for all functionalities computable in NC1.

We resolve this dilemma in two main steps:

– We first focus on a weaker goal: constructing two-round information theoret-
ically secure protocols for two-input (as opposed to three-input) functionali-
ties.

– We then go back to our definition of generalized conforming protocols and
impose additional structure on generalized conforming protocols – without
blowing up their round complexity – to make them compatible with helper
protocols for two-input functionalities.

We start by defining and constructing helper protocols for two-input function-
alities.

Helper Protocols for Two-Input Functionalities. A two-input multiparty
functionality, as the name suggests, is a functionality where only the first two par-
ties get inputs while the rest of the parties are input-less. We consider two-input
functionalities of the following form: these functionalities U are parameterized
by two NC1 functions f,G such that U(x1, x2,⊥, · · · ,⊥) = G(x1, f(x2)). At
first sight, this representation may seem unnecessary since one can rewrite U as
another NC1 function G′ such that U(x1, x2,⊥, · · · ,⊥) = G′(x1, x2). However,
the functions G and f we use to express U makes a difference when we state
the security guarantees. Moreover, we require that the resulting helper proto-
col satisfies delayed-function property, meaning that the functionalities is only
available to the parties after the first round.

Informally, we require the following asymmetric security guarantees:

– If the first party is honest then no information about its input x1 should be
leaked beyond G(x1, y

∗). Ideally, we would require y∗ to be the output of f
on some input x∗

2. Here, we relax the security requirement to allow y∗ to not
even belong in the range of f .

– If the second party is honest then no information about its input x2 should
be leaked beyond f(x2). In particular, we allow the adversary to learn the

3 Since the listener listens to the conversation, the receiver and the sender would share
a secret string in order to emulate communication over private channels (which are
necessary for information-theoretic security). This is the reason why the receiver
should also input its private state.
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value f(x2) during the execution of the protocol. In addition, we only require
that the simulator extracts the implicit input (interpreted as f(x2)) and not
x2 itself.

Both the security requirements are non-standard and indeed, its should not be
clear in what context these two security properties would be useful. To answer
this, lets recall the structure of the conforming protocol: in every round, every
party receives a global state, decodes a portion of the global state, computes on
it and re-encodes the result. Looking ahead, when the conforming protocol is
used alongside the helper protocols, the function f would have the global state
hardwired inside its code; it takes as input private state of the party, represented
by x2, performs computation and then re-encodes the result. So the output f(x2)
denotes the resulting global state.

Let us revisit the security requirements stated above. Allowing for y∗ to not
be in the range of f reduces to allowing for the second party to be malicious in the
conforming protocol. We handle this by designing conforming protocols already
secure against malicious parties. Regarding the second security requirement,
revealing the value f(x2) reduces to the party revealing the updated global state.
Since a party anyways has to broadcast the entire global state in the conforming
protocol, its perfectly safe to reveal f(x2).

We now give a glimpse of our construction of two-round protocol for two-
input functionalities. Our construction is heavily inspired by the techniques
introduced in the work of Benhamouda and Lin [10].

– In the first round, the second party holding the input x2, sends a garbling
GC2 of a universal circuit with x2 hardwired inside it. The first party, holding
the input x1, receives GC2 and computes another garbling GC1 of a circuit,
with x1 hardwired inside it, that is defined as follows: it takes as input, wire
labels of GC2 with respect to input f , evaluates GC2 using these input wire
labels to obtain f(x2) and finally outputs G(x1, f(x2)).

– Simultaneously, all the parties execute a secure MPC protocol for quadratic
polynomials, that takes as input wire labels of GC2 from the second party,
input wire labels of GC1 from the first party and finally, computes GC1 input
wire labels associated with the input which is in turn defined to be the GC2

input wire labels associated with f .

At the end of the second round, every party evaluates GC1 to obtain G(x1, f(x2)).
We briefly describe the simulation strategy for arguing security of the above

construction. If the second party is corrupted then the simulator extracts all the
wire labels of GC2 and then evaluates GC2 using the wire labels of f to obtain the
value y∗. The simulator then sends y∗ to the ideal functionality, which responds
back with G(x1, y

∗). The simulator cannot verify that the second party indeed
sent a valid garbling of the universal circuit. However, this still satisfies our
security definition since the simulator is not required to extract x2 but only the
value y∗.

The case when the first party is corrupted can similarly be argued by design-
ing a simulator that first extracts all the wire labels of GC1 and then simulates
GC2 using the value f(x2).
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CLC Property of Generalized Conforming Protocols. As explained ear-
lier, helper protocols for two-input functionalities is as such incompatible with
our current definition of generalized conforming protocols. Recall that the reason
for incompatibility was that in every round of the generalized conforming proto-
col there were three parties participating. To remedy this situation, we introduce
a new structural property for generalized conforming protocols, that we refer to
as copy-local-copy (CLC) property. Specifically, we require that a party in every
round, behaves as follows:

– Copy operation: first, every party copies the information transferred on the
communication channels onto its own private state.

– Local computation: then it performs computation on its own local state.
– Copy operation: finally, it copies the result obtained onto the communication

channel.

The CLC property effectively “breaks down” each three-input computation
required in the earlier notion of generalized conforming protocol into three dif-
ferent operations. Now, given a generalized conforming protocol that satisfies
the CLC property, it suffices to devise helper protocols for the above three oper-
ations.

The helper protocols for the first copy operation, and also the third copy
operation, are associated with three parties: speaker, receiver and the listener.
However, since the copy operation is a simple function, we observe that it suffices
to use helper protocols for quadratic polynomials to implement this. The helper
protocol for the local computation, however, is only associated with two parties:
the party performing the local computation and the listener. Now, we use the
delayed-function secure protocol for two-input functionalities constructed earlier
to realize helper protocols associated with the local computation operation.

Since we divide every round of the protocol into three parts, a party sends
three garbled circuits for every round of the conforming protocol, instead of just
one.

Summary. We now summarize the main steps in the construction of maliciously
secure information-theoretically secure multiparty protocols for NC1 function-
alities.

– First, we consider delayed-function two round secure MPC protocols for
quadratic polynomials in Sect. 3.1.

– Then we define the notion of delayed-function two round secure MPC pro-
tocols for two-input NC1 functionalities in Sect. 3.2. We define the security
requirements in Sect. 3.2. This is followed by a construction of this notion
in Sect. 3.2.

– In Sect. 4, we define the notion of generalized conforming protocols. We state
the CLC property in Definition 7.

– Finally, we present the main construction in Sect. 5.

Protocol over P2P Channels. Next, we focus on designing a two-round pro-
tocol over P2P channels that achieves security with selective abort against mali-
cious adversaries. Recall that in security with selective abort, the adversary can
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selectively decide which of the honest parties can receive the output while the
rest of them abort. However, the adversary cannot force an “invalid” output on
any of the honest parties.

To achieve our goal, we start with a two-round protocol Πin over broadcast
and P2P channels satisfying security with (unanimous) abort. A naive attempt
would be as follows: start with Πin and whenever a party has to send a broadcast
message, he instead sends this message over P2P channels to all the other parties.
Note that the resulting protocol is over P2P channels. However, this doesn’t
work: there is no mechanism in place to ensure that a malicious party indeed
sends the same message, originally a broadcast message in Πin, to all the other
parties over P2P channels. The protocol Πin might not be resilient to such attacks
which would result in our resulting protocol to be insecure.

We introduce mechanisms to prevent this attack. Towards this, our idea is
to require each party to send a garbled circuit of (a slightly modified version of)
their second round next message function in Πin in the second round of the P2P
channel protocol. This (modified) next message function has the party’s input
and randomness, and the private channel messages that the party received in the
first round of Πin hard-wired inside its description. It additionally takes the first
round broadcast channel messages of Πin as input. To enable other parties to
evaluate this garbled circuit, we require each party to send additive secret shares
of all the labels for its garbled circuit over private channels (in particular, each
party only receives one of the shares for each label) in the first round itself. In the
second round, each party simply reveals the appropriate shares for each garbled
circuit based on the messages received in the first round. If the adversary does
not send the same set of broadcast messages to all parties, each party will end
up revealing shares corresponding to a different label. In this case, we rely on
the security of garbled circuits to ensure that nobody (including the adversary)
is able to evaluate any of the honest party garbled circuits.

However, there are some subtle issues that crop when implementing this
approach:

– Since we want the resulting protocol to satisfy information-theoretic security,
we require the next-message function of Πin to be computable in NC1.

– The transformation sketched above does not handle the case when Πin sends
messages over private channels in the second round.

Fortunately, the information-theoretically secure MPC protocol over broad-
cast and P2P channels that we constructed earlier satisfies both the above prop-
erties and thus can be used to instantiate Πin in the above approach. This gives
us a P2P channel two-round MPC protocol that achieves security with selective
abort against malicious adversaries. We present the construction of this protocol
in Sect. 6.

1.3 Related Work

Since the initial feasibility results [9,14,26,37], a long sequence of works have
investigated the round complexity of MPC. Here, we focus on protocols in the
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honest majority setting, and refer the reader to [5] for a survey of related works
in the dishonest majority setting.

Information-Theoretic MPC. The seminal works of [9,14] provided the first
constructions of polynomial-round IT-MPC protocols for general functionalities.
These results were further improved upon in [7,13,36] w.r.t. malicious corruption
threshold.

Bar-Ilan and Beaver [6] initiated the study of constant-round IT-MPC proto-
cols. Subsequently, further improvements were obtained by [15,17,30]. The work
of [31] provided the first constructions of two and three round IT-MPC proto-
cols against t < n/3 and t < n/2, respectively, semi-honest corruptions. In the
three round setting, their work was extended to handle a constant fraction of
malicious adversaries by [23]. [32] constructed constant round perfectly secure
protocols, improving upon the work of [6]. More recently, two round IT-MPC
protocols that achieve security with selective abort against t < n/3 malicious
corruptions were constructed by [34] and [29]. In fact, [34] and [29], put together,
also achieve the stronger notion of security with guaranteed output delivery for
the specific case of n � 4 parties and t = 1 corruptions which is not covered
by the impossibility results of [18,35]. All of these positive results are for NC1

functions; [33] established the difficulty of constructing constant-round IT-MPC
protocols for general functionalities.

We also highlight the work of [27] who provided a general compiler to trans-
form protocols over broadcast channels that achieve security with abort into
protocols over P2P channels that achieve security with selective abort. Their
transformation is unconditional, and increases the round-complexity by a mul-
tiplicative factor of three.

Computationally Secure MPC. The study of constant-round computation-
ally secure MPC protocols in the honest majority setting was initiated by Beaver
et al. [8] who constructed such protocols for general functionalities based on one-
way functions. Damg̊ard and Ishai [16] provided improved constructions based
on only black-box use of one-way functions.

Two round protocols for general functionalities against t < n/3 malicious
corruptions were constructed by [34] and [29] based on one-way functions. Very
recently, Ananth et al. [1] constructed two round protocols for general function-
alities that achieve security with abort against any t < n/2 malicious corruptions
based on black-box use of one-way functions. Applebaum et al. [3] and Garg et
al. [19] also achieve similar results, albeit only against semi-honest adversaries.

2 Preliminaries

We denote the statistical security parameter by k. We use the standard notion of
security with abort for multi-party computation against malicious adversaries.
For our second result over P2P channels, we consider a weaker notion of security,
call security with selective abort. In security with selective abort, the adversary
can selective cause some honest parties to output ⊥. Note that this is slightly
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different from the standard notion of security with abort, where the adversary
can only either allow all honest parties to learn the output or cause all the honest
parties to output ⊥.

We also consider an even weaker notion of security called privacy with knowl-
edge of outputs where the privacy of honest parties’ inputs is ensured but the
correctness of output for the honest parties is not guaranteed. We also use sta-
tistically secure garbled circuits [37] in our protocols.

3 Helper Two-Round Secure Protocols

We consider two types of helper protocols towards achieving our main goal:

– First, we consider a two-round secure multiparty computation protocol for
NC1 two-input functionalities; that is, only two of the parties have inputs.
We consider this notion in the delayed-function setting.

– Next, we consider a two-round secure multiparty computation protocol for
quadratic polynomials, also in the delayed function setting.

3.1 Delayed-Function Two-Round Secure MPC for Quadratic
Polynomials

A delayed-function two-round secure MPC protocol is a special case of mali-
ciously secure two-round secure MPC where the functionality is available to the
parties only after the first round. One of the helper tools we use is a two-round
secure MPC protocol for quadratic polynomials in the delayed function setting.
Such a result was already shown by Ishai et al. [34]. Formally, they prove the
following lemma.

Lemma 1 ([34]). Let n > 0 and �out > 0. Consider a n-party functionality
G : {0, 1} × · · · × {0, 1} → Y�out , where Y = {(0, . . . , 0), (1, . . . , 1)}, and every
output bit of G is computable by an n-variate quadratic polynomial over F2. There
is a delayed-function two-round MPC protocol for G satisfying perfect privacy
with knowledge of outputs property in the honest majority setting. Moreover, the
next message of this protocol can be represented by a O(log(n))-depth (�out ·n)c-
sized circuit, for some constant c.

Remark. The protocol of [34] only guarantees a weaker variant of privacy with
knowledge of outputs where the adversary can force different honest parties to
output different values. However if we use a broadcast channel in the second
round, their protocol achieves a stronger variant of privacy with knowledge of
outputs, where all honest parties learn the same output.

3.2 Delayed-Function Two-Round Secure MPC

The other helper tool we require is a delayed-function secure MPC protocol for
arbitrary functionalities, but where only two parties have inputs. In particular,



Two Round Information-Theoretic MPC with Malicious Security 543

we are interested in the class of functionalities {FG,f}: each functionality FG,f

is parameterized by two functions G, f ; it takes as input (x1, x2,⊥, . . . ,⊥) and
outputs FG,f (x1, x2,⊥, . . . ,⊥) = G(x1, f(x2)). That is, party P1 gets as input
x1 and party P2 gets as input x2. If the functionality FG,f were to be available
to the parties before the protocol begins then securely computing FG,f would
reduce to securely computing G since P2 can pre-compute f(x2) and then run
the secure protocol for G. However, we consider delayed-function setting and so
this would not work.

In terms of security, we require the following informal guarantees.

– Security against P2: unlike the standard simulation-based paradigm, in the
ideal world, the honest parties and the simulator only have oracle access to G.
In particular, the simulator only has to extract the value y (termed as true
input of P2), interpreted as the output of f on some input x2 (also called
implicit input of P2), from the adversary.

– Security against P1: we require that the implicit input x2 of P2 is hidden
from P1. However, we don’t enforce that the output f(x2) is hidden from P1.
Moreover, we require the input privacy of P2 to hold even if P1’s behaviour
deviates from the protocol.

In particular, we require different security guarantees depending on which party
the adversary corrupts.

Two-Input Multiparty Functionalities. We consider delayed-function two-
round secure MPC protocols, where the parties determine the functionality (to
be computed on their private inputs) only after the first round. This notion is
referred as delayed-function secure MPC protocols in the literature. We describe
the class of functionalities that we are interested in. Later, we define the security
properties associated with delayed-function secure MPC protocols for this class
of functionalities.

Two-Input n-Party Functionalities. A two-input n-party functionality is an
n-party functionality where only two parties receive inputs from the environ-
ment.

Definition 1 (Two-Input n-Party Functionality). Let n, �1, �2, �
′ > 0. We

define an n-party functionality G to be a two-input functionality if its of the
following form: it takes as input from the domain {0, 1}�1 ×{0, 1}�2 ×⊥×· · ·×⊥
and outputs a value in {(y, . . . , y)}y∈{0,1}�′ .

We are interested in a sub-class of two-input functionalities that we refer to
as specialized two-input n-party functionalities. Every functionality in this class,
on input (x1, x2,⊥, . . . ,⊥), first performs pre-processing on one of the inputs,
say x2, and then performs computation on the preprocessed result and x1. The
reason why we differentiate between pre-processing and post-processing becomes
clear later on, when we define security against adversarial P2.
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Definition 2 (Specialized Two-Input n-Party Functionality). Let
n, �1, �2, �

′ > 0. We define an n-party functionality mapping {0, 1}�1 ×{0, 1}�2 ×
⊥ · · ·×⊥ to {(y, . . . , y)}y∈{0,1}�′ (parameterized by a functions G and f) to be a
specialized two-input functionality if its of the following form: it takes as input
(x1, x2,⊥, . . . ,⊥) and outputs G(x1, f(x2)).

Security. Let P1, . . . , Pn be the parties participating in the delayed-function
secure MPC protocol. We consider three cases and define separate security prop-
erties for each of these three cases: (i) P1 is in the corrupted set while P2 is not,
(ii) P2 is in the corrupted set while P1 is not and, (iii) neither P1 nor P2 is in the
corrupted set. Note that we don’t consider the case when P1 and P2 are both
in the corrupted set because P1 and P2 are the only parties receiving inputs
in the protocol. We note that in all the three cases we are required to handle
adversaries that deviate from the behavior of the protocol.

We define the following set systems.

– S1 =
{
T ⊆ {P1, . . . , Pn} : |T | < �n

2 �, P1 ∈ T, P2 /∈ T
}

– S2 =
{
T ⊆ {P1, . . . , Pn} : |T | < �n

2 �, P1 /∈ T, P2 ∈ T
}

– S3 =
{
T ⊆ {P1, . . . , Pn} : |T | < �n

2 �, P1 /∈ T, P2 /∈ T
}

We now handle the three cases below. Denote S to be the corrupted set of parties.
Let x1 and x2 be the inputs of P1 and P2 respectively.

Case 1. S ∈ S1. To define the security property for this case, we consider two
experiments Expt0 and Expt1. In Expt0, the honest parties and the adversary exe-
cute the protocol (real world). The output of Expt0 is the view of the adversary
and the outputs of the honest parties.

In Expt1, the corrupted set of parties execute the protocol with the rest of
the parties, simulated by a PPT algorithm Sim. In the first round, the simulator
does not get any input and after the first round, the simulator gets as input
f(x2), where FG,f is the n-party functionality associated with the protocol. The
output of Expt1 is the view of the adversary and the output of the simulator.

We require that the output distributions of the experiments Expt0 and Expt1
are identically distributed.

Definition 3 (Security Against S1). Consider a delayed-function n-party
protocol Π for a class of specialized two-input n-party functionalities {FG,f}
mapping {0, 1}�1 × {0, 1}�2 × ⊥ · · · × ⊥ to {(y, . . . , y)}y∈{0,1}�′ . We say that Π
is secure against S1 if for every adversary corrupting a set of parties S ∈ S1,
there exists a PPT simulator Sim such that the output distributions of Expt0 and
Expt1 are identically distributed.

Case 2. S ∈ S2. We handle this case using the real world-ideal world paradigm.
In the real world, the corrupted parties and the honest parties execute the pro-
tocol. The output of the real world is the view of the adversary and the outputs
of the honest parties. In the ideal world, the honest parties and the simulator
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have oracle access to the n-party functionality G4. The output of the ideal world
are the outputs of the honest parties and the output of the simulator.

More formally, we can define the real world process RealA,F and the ideal
world process IdealSim,G – in particular, as in the definition of privacy with knowl-
edge of outputs property, the simulator directs the trusted party to deliver out-
puts, of its choice, to the honest parties.

We define security of delayed-function secure MPC protocols against S2.

Definition 4 (Security Against S2). Consider a delayed-function n-party
protocol Π for a class of specialized two-input n-party functionalities {FG,f}
mapping {0, 1}�1 × {0, 1}�2 × ⊥ · · · × ⊥ to {(y, . . . , y)}y∈{0,1}�′ . We say that
Π is secure against S2 if for every adversary A corrupting a set of parties
S ∈ S2, there exists a PPT simulator Sim such that the output distributions
of RealA,F (x1, . . . , xn) and IdealSim,G(x1, . . . , xn) are identically distributed.

Remark 1. Since the simulator only has access to the ideal functionality of G
(and not F ) in the ideal world, this means that the simulator is required to
only extract the implicit input (and not the true input) of the adversary. In
particular, if f is the identity function, then this security notion implies the
standard simulation-based security.

Case 3. S ∈ S3. In this case, we require the protocol to satisfy privacy with
knowledge of outputs property. Formally, we can analogously define the real
world process RealA,F and ideal world process IdealSim,F . We define the security
property below.

Definition 5 (Security Against S3). Consider a delayed-function n-party
protocol Π for a class of specialized two-input n-party functionalities {FG,f}
mapping {0, 1}�1 × {0, 1}�2 × ⊥ · · · × ⊥ to {(y, . . . , y)}y∈{0,1}�′ . We say that
Π is secure against S3 if for every adversary A corrupting a set of parties
S ∈ S3, there exists a PPT simulator Sim such that the output distributions
of RealA,F (x1, . . . , xn) and IdealSim,F (x1, . . . , xn) are identically distributed.

We are now ready to formally define a delayed-function secure MPC protocol
for specialized two-input functionalities.

Definition 6. Consider a delayed-function n-party protocol Π for a specialized
two-input n-party functionality. We say that Π is secure if Π is secure against
S1 (Definition 3), secure against S2 (Definition 4) and secure against S3 (Defi-
nition 5).

Construction. We prove the following lemma.

Lemma 2. Let n, �1, �2, �
′ > 0. Consider a two-input n-party functionality

G : {0, 1}�1 × {0, 1}�2 × ⊥ × · · · × ⊥ → {(y, . . . , y)}y∈{0,1}�′ computable by a
depth-d circuit of size s. There is a delayed-input two-round MPC protocol for
4 We emphasize that the parties have oracle access to G and not F .
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a specialized two-input functionality G (Definition 2) satisfying perfect privacy
with knowledge of outputs property in the honest majority setting. Moreover, the
next message function of the every party in the protocol can be represented by a
circuit of depth O(d + log(s)) and size sc2c·(d+log(s)), for some constant c.

Proof. The main tools used in the construction are a perfectly secure gar-
bling scheme and a secure MPC protocol for quadratic polynomials in the
honest majority setting satisfying privacy with knowledge of outputs property
(Lemma 1). We denote the garbling scheme by (Gen,Garb,Eval). We denote the
secure MPC protocol for quadratic polynomials by ΠQuad.

We construct a delayed-function secure MPC protocol for a class of spe-
cialized two-input functionalities {FG,f}, each functionality implementable by a
circuit of size s and depth d. Our construction is heavily inspired by the tech-
niques introduced in the work of Benhamouda and Lin [10]. Suppose P1 has
input x1, P2 has input x2 and the rest of the parties don’t receive any input.
The protocol proceeds as follows: set the statistical security parameter, k = 1.

Round 1.

– P1 generates Gen(1k, 1L′
, 1d′

) to obtain (gk1,K1
I), where L′ and d′ are defined

below. It also generates the first round messages of ΠQuad. In ΠQuad, its input
is K1

I . It sends the first round messages of ΠQuad to other parties.
– P2 generates Gen(1k, 1L′′

, 1d′′
) to obtain (gk2,K2

I), where L′′ and d′′ (defined
in first of Round 2). It also generates the first round messages of ΠQuad. It
also generates a random string R (we define its length below). In ΠQuad, its
input is (K2

I ◦ R). It generates Garb(gk2, Ux2) to obtain GC2, where Ux2 is a
universal circuit with x2 hardwired in it, it takes as input a circuit of size
s, depth d and outputs a single bit. Set |R| = |GC2|. Note that Ux2 can be
implemented by a circuit of size L′′ = O(s) and depth d′′ = O(d). It sends
GC2 ⊕ R along with the first round messages of ΠQuad to other parties.

– Pi, for i 
= 1, i 
= 2, generates the first round messages of ΠQuad. It sends the
first round messages to other parties.

Round 2. At the end of round 1, the parties receive the function f as input.

– P1 generates the second round messages of ΠQuad. The protocol ΠQuad is
associated with a function that takes as input (K1

I ,K
2
I ,⊥, . . . ,⊥) and outputs

K1
I

[
K2

I [f ] ◦ R
]
5. We note that this function can be implemented by a system

of quadratic polynomials over F2. It generates Garb(gk1, Ĝ) to obtain GC1,
where Ĝ (with GC2 ⊕ R hardwired) is defined as follows: it takes as input
(K2

I [f ], R), computes y ← Eval(GC2,K2
I [f ]) and finally it outputs G(x1, y).

Ĝ can be implemented by a circuit of size L′ = O(s) and depth d′ = O(d).
P1 sends the second round messages of ΠQuad along with GC1.

5 Recall that the notation K1
I

[
K2

I [f ] ◦ R
]

refers to the input wire labels for GC1 cor-
responding to the input (K2

I [f ] ◦ R). Moreover, K2
I [f ] refers to the input wire labels

for GC2 corresponding to the input f .
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– P2 generates the second round messages of ΠQuad and sends them to other
parties.

– Pi, for i 
= 1 and i 
= 2, computes the second round messages of ΠQuad and
sends them to other parties.

Reconstruction. All the parties compute the output of ΠQuad to learn the
output K1[K2[f ]]. They then evaluate GC1 to obtain G(x1, f(x2)).

If any point in time, if one of the parties abort, the rest of the parties abort
as well. This completes the description of the protocol.

We now argue security. However, we refer the reader to the full version of
our paper [2] for more details on the security, correctness and efficiency of this
construction.

Security. We consider the following cases. Let S be the set of parties corrupted
by the adversary.

P1 ∈ S and P2 /∈ S. The simulator is defined as follows:

– Round 1.
• Simulating on behalf of P2: Execute the simulator of ΠQuad to obtain the

first round messages of ΠQuad. Generate R
$←− {0, 1}|GC2|. Send the first

round messages of ΠQuad along with R, intended for the parties in S, to
the adversary.

• Simulating on behalf of parties in S\{P2}: Execute the simulator of ΠQuad

to obtain the first round messages of ΠQuad. Send the first round messages,
intended for the parties in S, to the adversary.

Also, extract the input K1
I of P1 in ΠQuad from the first round messages of

ΠQuad.
– Round 2. At the end of Round 1, the simulator receives (f, ŷ) from the

environment.
• Simulating on behalf of P2: Execute the simulator SimGC of the garbling

scheme (Gen,Garb,Eval); generate
(
ĜC2, K̂2

)
← SimGC(1k, ϕ(Ux2), ŷ),

where ϕ(Ux2) is the topology of Ux. Execute the simulator of ΠQuad
6, with

the output of ΠQuad set to be K1
I

[
K̂2

I ◦ R ⊕ ĜC2

]
, to generate the sec-

ond round messages of ΠQuad. Send the second round messages of ΠQuad,
intended for the parties in S, to the adversary.

• Simulating on behalf of parties in S\{P2}: Similar to simulation on behalf
of P2, Execute the simulator of ΠQuad, with the output of ΠQuad set to
be K1

I

[
K̂2

I ◦ R ⊕ ĜC2

]
, to generate the second round messages of ΠQuad.

Send the second round messages of ΠQuad, intended for the parties in S,
to the adversary.

6 By the privacy with knowledge of outputs property, the simulator of ΠQuad directs
the ideal functionality to deliver outputs (of its choice) to honest parties. However,
the outer simulator (i.e., the simulator of ΠDFunc), which is running the simulator of
ΠQuad as a subroutine, discards these outputs.
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– Reconstruction. Receive the second round messages of ΠQuad from the cor-
rupted parties in S. Also receive ĜC1 from P1. Reconstruct the output K̂1

I

from the second round messages of ΠQuad. Evaluate Eval
(
ĜC1, K̂1

I

)
to obtain

b̂. Output b̂.
If at any point in time, the adversary aborts, the simulator aborts as well.

P2 ∈ S and P1 /∈ S. The simulator is defined as follows:

– Round 1.
• Simulating on behalf of P1: Execute the simulator of ΠQuad to obtain the

first round messages. Send the messages intended for the parties in S to
the adversary.

• Simulating on behalf of parties in S\P1: This is identical to the simulation
on behalf of P1.

Receive the first round messages of ΠQuad from the adversary. Additionally
receive R̂ (masked garbled circuit) from P2. Extract the input (K̂2

I ◦R) of P2

from the first round messages of ΠQuad generated by P2.
– Round 2. At the end of first round, the simulator receives f from the envi-

ronment. Compute Eval
(
ĜC2, K̂2

I [f ]
)

to obtain ŷ, where ĜC2 = R̂ ⊕ R. Send

ŷ to the ideal functionality to receive b̂.
• Simulating on behalf of P1: Execute the simulator SimGC of the garbling

scheme (Gen,Garb,Eval); generate
(
ĜC1, K̂1

I

)
← SimGC(1k, ϕ(Ĝ), b̂).

Execute the simulator of ΠQuad, with the output of ΠQuad set to be K̂1
I ,

to generate the second round messages of ΠQuad. Send the second round
messages of ΠQuad along with the simulated garbled circuit ĜC1, intended
for the parties in S, to the adversary.

• Simulating on behalf of parties in S\P1: Execute the simulator of ΠQuad,
with the output of ΠQuad set to be K̂1

I , to generate the second round
messages of ΠQuad. Send the second round messages of ΠQuad intended
for the parties in S to the adversary.

– Reconstruction. Receive the second round messages of ΠQuad from the cor-
rupted parties in S. Reconstruct the output K̂1

I from the second round mes-

sages of ΠQuad. Evaluate Eval
(
ĜC1, K̂1

I

)
to obtain b̂′. Direct the ideal func-

tionality to deliver the output b̂′ to the honest parties. Output of the simulator
is the view of the adversary.
If any point in time, the adversary aborts, the simulator aborts as well.

P1 /∈ S and P2 /∈ S. The simulator is defined as follows:

– Round 1.
• Simulating on behalf of P1: Execute the simulator of ΠQuad to generate

the first round messages; send the messages intended for the parties in S
to the adversary.
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• Simulating on behalf of P2: Execute the simulator of ΠQuad to generate
the first round messages; send the messages intended for the parties in S

to the adversary. Also, send a string R
$←− {0, 1}|GC2|.

• Simulating on behalf of parties in S\{P1, P2}: This is identical to the
simulation on behalf of P1.

– Round 2. The simulator receives the value b̂ from the ideal functionality.
• Simulating on behalf of P1: Execute the simulator SimGC of

(Gen,Garb,Eval); compute
(
ĜC1, K̂1

)
← SimGC

(
1k, ϕ(Ĝ), b̂

)
. Execute

the simulator of ΠQuad, with the output of ΠQuad set to be K̂1, to gener-
ate the second round messages; send the messages intended for the parties
in S to the adversary.

• Simulating on behalf of P2: Execute the simulator of ΠQuad, with the
output of ΠQuad set to be K̂1, to generate the second round messages;
send the messages intended for the parties in S to the adversary.

• Simulating on behalf of parties in S\{P1, P2}: This is identical to the
simulation on behalf of P2.

– Reconstruction. Receive the second round messages of ΠQuad from the cor-
rupted parties in S. Reconstruct the output K̂1

I from the second round mes-

sages of ΠQuad. Evaluate Eval
(
ĜC1, K̂1

I

)
to obtain b̂′. Direct the ideal func-

tionality to deliver the output b̂′ to the honest parties. Output of the simulator
is the view of the adversary.
If any point in time, the adversary aborts, the simulator aborts as well.

�

4 Generalized Conforming Protocols

The notion of conforming protocols was first defined in [22] as an intermediate
tool to construct two-round secure MPC from two-round oblivious transfer. Their
notion as-is is insufficient to achieve our goal of constructing an information-
theoretic multiparty computation protocol secure against malicious adversaries.
To get around this, we define the notion of generalized conforming protocols.

Syntax. An n-party generalized conforming protocol Φ for an n-party function-
ality F is specified by the parameters

(
n,N, {Φi,j}i∈[n],j∈[t+1] ,P

)
, where n is

the number of parties in the system, N denotes the size of the global state Z,
Φi,j is a set of actions and P is a set of (2 · (n

2

)
+n) partitions of [N ]. We denote

P = (S1, . . . , Sn, {Ti1,i2}i1,i2∈[n],i1 �=i2 , U). One can think of Si as the set of loca-
tions reserved for private computation for party Pi, Ti1,i2 as the space allocated
to party Pi1 for communicating private messages to party Pi2 and U as the space
allocated for storing broadcast messages of each party. A generalized conform-
ing protocol proceeds as follows. Let x1, . . . , xn be the respective inputs of all
parties.
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– Pre-processing Phase. For each i ∈ [n], party Pi defines sti to be the list:
sti :=

(
Rk : ∀k ∈ Si

⋃
i�=i′ Ti,i′

⋃
i�=i′ Ti′,i

)
where ∀k ∈ Si

⋃
i�=i′ Ti,i′ it samples

each bit Rk uniformly at random. Compute an N -sized list Zi,1 as follows:

• For each k ∈ [N ], initialize Zi,1
k = 0. Here Zi,1

k denotes the kth bit of Zi,1

• Compute {(zk, k) : k ∈ Li} ← Pre(1k, i, xi, sti) where Li is a subset of
Si

⋃
i�=i′ Ti,i′ .

• For every k ∈ Li, set the kth location Zi,1
k in Zi,1 to have the value zk.

• For each i′ ∈ [n] \ {i}, it sends (Rk : ∀k ∈ Ti,i′) to party Pi′ over private
channels.

• It broadcasts Zi,1 to all other parties.
We require that there does not exist k ∈ [N ] such that for any i1 
= i2,
the set output by Pre(1k, i1, xi1 , sti1) contains (·, k) and the set output by
Pre(1k, i2, xi2 , sti2) also contains (·, k). This means that there is no location
in the global state Z that gets overwritten twice.
At the end of the pre-processing phase, Pi receives (Rk : ∀k ∈ Ti′,i) from all
other parties Pi′ (i′ ∈ [n] \ i). It includes this as a part of sti. It retains sti

as private information.

– Computation Phase. For each i ∈ [n], party Pi sets Z1 =
⊕n

i−1 Z
i,1 For

each j ∈ [t + 1], it proceeds as follows:
• Parse the action Φi,j as (LI

i,j ,Ci,j ,LO
i,j).

• If j 
= 1, for {(k, zk)}∀i′ �=i, k∈LO
i′,j−1

, update kth location in Zi,j with value

zk. Call the resulting state Zj .
• Take as input values in the locations of Zj specified by the set LI

i,j along
with sti, compute Ci,j and update the locations in Zj specified by the
set LO

i,j . Call the resulting state Zi,j+1.
• Send all the updated values and locations {(k, zk)}k∈LO

i,j
to all other par-

ties.
As before, we require that there is no location in Z, where two parties simul-
taneously write to this location in any given round. At the end of all the
rounds, the output of the computation for party Pi is in the last �′

i locations
of Si.

– Reconstruction. For every i ∈ [n], party Pi unmasks the last �′
i locations

of Si to learn the output.

In terms of correctness, we require that at the end of the above protocol, the last
�′
i locations of Si contains masked (yi), where F (x1, . . . , xn) = (y1, . . . , yn). Since

a generalized conforming protocol is a special instance of a secure multiparty
computation protocol, the security notions for generalized conforming protocols
can be defined analogously.

Definition 7 (CLC Property). An n-party generalized conforming protocol,
specified by the parameters

(
n,N, {Φi,j}i∈[n],j∈[t+1] ,P

)
, for an n-party func-

tionality F satisfies CLC property if the following holds: every Φi,j can be parsed
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as (LI
i,j = LI→

i,j ∪ LI←
i,j , Ci,j , LO

i,j = LO→
i,j ∪ LO←

i,j ). We require that Ci,j, for
every i ∈ [n], j ∈ [t + 1]\{1} (that is, all rounds except the first), is defined as
follows: it takes as input values in the locations of Z specified by the locations
LI

i,j = LI→
i,j ∪ LI←

i,j and state sti,

– Copy Operation: For every k ∈ LI→
i,j , there exists a unique k′ ∈ LI←

i,j ⊂ Si,
copy zk ⊕ Rk ⊕ Rk′ to (k′)th location in Z, where zk is the value in the
kth location of Z. Note that Rk, Rk′ are values in the list sti and hence,
LI→

i,j ⊂ U
⋃

i′∈[n]\{i} Ti,i′
⋃

i′∈[n]\{i} Ti′,i.

– Local Computation: Take as input a set of values in Z, indexed by a subset
of Si, sti, and compute a polynomial-sized circuit on these values. The output
of this computation is written to a subset of locations, indexed by Si, in Z.

– Copy Operation: For every k′ ∈ LO→
i,j ⊂ Si, there exists a unique k ∈

LO←
i,j , copy zk′ ⊕ Rk ⊕ Rk′ to kth location in Z, where zk is the value in the

kth location of Z. As before, Rk, Rk′ are values in the list sti and hence,
LO←

i,j ⊂ U
⋃

i′∈[n]\{i} Ti,i′ .

For the first round, we require Ci,1 to be defined as follows: it takes as input Z1,
computes a circuit Ĉi,1 on Z1 to obtain {vk}k∈LO

i,1
and finally, it updates the kth

location in Zi,2 with the value zk = vk ⊕ Rk for every k ∈ LO
i,1.

Lemma 3. Let n, �1, �
′
1, . . . , �n, �′

n > 0. Consider an n-party functionality F :
{0, 1}�1 ×· · ·×{0, 1}�n → {0, 1}�′

1 ×· · ·×{0, 1}�′
n computable by a depth-d circuit

of size s. There is a maliciously secure t-round generalized conforming protcol
for F , for some constant t, satisfying CLC property with perfect security in the
honest majority setting. Moreover, the next message function of every party can
be implemented by a circuit of depth O(d + log(s)) and size sc2c·(d+log(s)), for
some constant c.

We defer the proof of this lemma to the full-version of our paper [2].

5 Two-Round MPC over Broadcast and P2P: Security
with Abort

In this section, we show how to construct a two-round MPC in the honest major-
ity setting and satisfying statistical malicious security.

Lemma 4. Let n, �1, �
′
1, . . . , �n, �′

n > 0. Consider an n-party functionality F :
{0, 1}�1 ×· · ·×{0, 1}�n → {0, 1}�′

1 ×· · ·×{0, 1}�′
n computable by a depth-d circuit

of size s.
Fix a statistical security parameter k > 0. There is a malicious two-round

MPC protocol for F with negl(k)-statistical security in the honest majority set-
ting, for some negligible function negl. Moreover, the computational complexity
of this protocol is polynomial in s and exponential in d.
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Construction. Let F ′ = (F, τ) be an augmented single functionality that com-
putes F along with a multi-key MAC τ on the output of F . At a high level,
a multi-key MAC corresponding to n keys allows each party to locally verify
the MAC using their own key. We give a full definition and construction of this
primitive in the full version of our paper. We list the ingredients for our two
round MPC construction:

– A t-round Generalized Conforming protocol for the augmented functionality
F ′, guaranteed by Lemma 3. Denote this by ΠGConf . Let ΠGConf be parame-
terized by

(
n,N, {Φi,j}i∈[n],j∈[t+1] ,P

)
.

– Delayed-function two-round secure n-party MPC for quadratic polynomials,
as guaranteed by Lemma 1.

– Delayed-function two-round secure n-party MPC for specialized two-input
functionalities, as guaranteed by Lemma2.

– Information-theoretic garbling scheme (Gen,Garb,Eval).
– A multi-key MAC scheme (KeyGen,Sign,Verify).

We now describe a two-round secure MPC protocol for F .

Round 1.

– Generation of Initial Global State: For every i ∈ [n], the ith party sam-
ples a key Ki for the mult-key MAC scheme. It sets it’s input to x′

i = (xi,Ki).
It then computes the pre-processing phase of ΠGConf . In particular it does
the following: it defines sti := (Rk : ∀k ∈ Si

⋃
i�=i′ Ti,i′

⋃
i�=i′ Ti′,i), where

∀k ∈ Si

⋃
i�=i′ , it samples the bit Rk uniformly at random. It computes

Pre(1k, i, x′
i, sti) to obtain the set {(zk, k) : k ∈ Li}. It computes a N -sized

list Zi,1 as follows: initialize Zi,1 to consist of only zeroes. It sets the kth loca-
tion in Zi,1 to have the value zk. Broadcast Zi,1 and sends (Rk : ∀k ∈ Ti,i′)
to party Pi′ for each i′ ∈ [n] \ i over a private channel.

– Generation of Garbling Wire Labels: (gki,1,Ki,1) ← Gen(1k, 1L, 1d),
where L is the number of leaves and d is the depth of the formula in Fig. 1a.

– For every j ∈ [t + 1]\{1}, the ith party computes the following:

– (gki,j [copy1],Ki,j [copy1]) ← Gen(1k, 1L, 1d), where L is the number of
leaves and d is the depth of the formula in Fig. 1b.

– (gki,j [copy2],Ki,j [copy2]) ← Gen(1k, 1L, 1d), where L is the number of
leaves and d is the depth of the formula in Fig. 2b.

– First Round Messages of Delayed-Function MPC for Quadratic
Polynomials: All the parties participate in O(n3t) executions of delayed-
function two-round secure n-party MPC for quadratic polynomials, as guar-
anteed by Lemma 1. Each of these instantiations are denoted as follows:

• For every i1, i2 ∈ [n] and i1 
= i2, the input of the ith party in
ΠQuad[i1, i2, 1, 1] is the following:
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* If i = i1 then the ith party inputs {vk}k∈LO
i1,1

, {Rk}kLO
i1,1

7, where

{vk}k∈LO
i1,1

is the output of circuit Ĉi1,1
8 on Z1, as defined in the

Definition 7.
* If i = i2 then the ith party inputs Ki2,2[copy1].
* If i 
= i1, i 
= i2 then the ith party doesn’t have any input.

Denote ΠQuad[i1, i2, 1, 1].msg1,i4→i5 to be the first round message of
ΠQuad[i1, i2, 1j, 1] sent by the (i4)th party to the (i5)th party. We don’t
require that i4 or i5 be distinct from i1, i2. We define similar notation for
the other ΠQuad instantiations. Let the total randomness used by the ith

party in all these executions be Ri
Q.

• {ΠQuad[i1, i2, i3, j, 1]}i1,i3∈[n],i1 �=i3,i2∈[n+1] j∈[t+1]\{1}
For i1, i3 ∈ [n], i1 
= i3, i2 ∈ [n + 1], j ∈ [t + 1] \ {1}, the input of the ith

party in ΠQuad[i1, i2, i3, j, 1] is the following:
* If i = i1, then the ith party inputs {Rk}k∈Si1

* If i = i1 = i2, then the ith party additionally inputs
{{Rk′}k∈Ti1,i′ }i′∈[n]\{1}.

* If i = i2 
= i1, then the ith party inputs {Rk′}k′∈Ti2,i1
.

If i2 = n + 1, then party Pi2 has no input. This corresponds to the
copy operations from locations in U to locations in Si1 .

* If i = i3 then the ith party inputs Ki3,j [local]
* If i 
= i1, i 
= i2, i 
= i3 then the ith party doesn’t have any input.

• {ΠQuad[i1, i2, j, 2]}i1,i2∈[n],i1 �=i2, j∈[t]\{1}

For i1, i2 ∈ [n], i1 
= i2, j ∈ [t] \ {1}, the input of the ith party in
ΠQuad[i1, i2, j, 1] is the following:

* If i = i1, then the ith party inputs {Rk′}k′∈Si1
,

{Rk}k∈U
⋃

i′∈[n]\{i1} Ti1,i′

* If i = i2 then the ith party inputs Ki2,j+1[copy1]
* If i 
= i1, i 
= i2 then the ith party doesn’t have any input.

The functionalities associated with each of these protocols are determined in
the second round.

– First Round Messages of Delayed-Function MPC for Two-Input
Functionalities: All the parties participate in O(n2t) executions of delayed-
function two-round secure n-party MPC, as guaranteed by Lemma2. Denote
these instantiations to be {ΠDFunc[i1, i2, j]}i1,i2∈[n],j∈[t+1]\{1}. For every

7 Recall that LO
i1,1 consists of a subset of locations in Si1 ,

⋃
i′∈[n]\{i1} Ti1,i′ and U and

the locations in U are not a part of sti1 . But since Rk is not a part of sti′ for any
k ∈ U and i′ ∈ [n]. Hence this is equivalent to every party setting Rk = 0 for all
k ∈ U .

8 Note that the only values from Z1 that Ĉi1,1 computes on are known to Pi1 in the
first round itself. Hence even if it does not know the entire value of Z1 in the first
round, values {vk}k∈LO

i1,1
can still be computed.



554 P. Ananth et al.

i1, i2 ∈ [n] and i1 
= i2, j ∈ [t+1]\{1}, the input of ith party in ΠDFunc[i1, i2, j]
is the following:

• If i = i1 then the ith party inputs Ki1,j [copy2].
• If i = i2 then the ith party inputs {Rk}k∈Si2

.

• If i 
= i1, i 
= i2 then the ith party doesn’t have any input.
Denote ΠDFunc[i1, i2, j].msg1,i→i′′ to be the first message of ΠDFunc[i′, j] sent
by the ith party to (i′′)th party. Let the total randomness used by the ith

party in all the executions be Ri
DF .

Round 2.

– Compute Joint Global State: All the parties compute Z1 =
⊕n

i=1 Z
i,1.

– Updates Private State: It updates sti to include (Rk : ∀k ∈ Ti′,i) received
from party Pi′(∀i′ ∈ [n] \ i) in the first round.

– Generate Input Wire Labels for First Garbled Circuit: The ith party
computes (GCi,1,Ki,1) ← Garb(gki,1, Ci,1), where Ci,1 is defined in Fig. 1a.
Let Ki,1

[
Z1

]
be the set of wire keys corresponding to the input Z1.

– Generate Garbled Circuits for every round of Generalized Con-
forming Protocol: For every j ∈ [t + 1]\{1}, the ith party computes:

• (GCi,j [copy1],Ki,j [copy1]) ← Garb(gki,j [copy1], Ci,j [copy1]), where Ci,j

[copy1] is defined in Fig. 1b.
• (GCi,j [local],Ki,j [local]) ← Garb(gki,j [local], Ci,j [local]), where Ci,j [local]

is defined in Fig. 2a.
• (GCi,j [copy2],Ki,j [copy2]) ← Garb(gki,j [copy2], Ci,j [copy2]), where Ci,j

[copy2] is defined in Fig. 2b.
– The ith party broadcasts the following message:(

GCi,1, Ki,1

[
Z1

]
, {GCi,j [copy1],GCi,j [local],GCi,j [copy2]}j∈[t+1]

)

Evaluation. To compute the output of the protocol, each party Pi does the
following:

• For each i′ ∈ [n], let Ki′,1[Z1] be the labels received from party Pi′ at the
end of round 2.

• Obtain For each i′ ∈ [n], compute Eval(GCi′,1,Ki′,1[Z1]) to obtain labels
in Ki′,2[copy1] corresponding to Zi′,2[copy1] and second round messages
{ΠQuad[i1, i2, 1, 1].msg2,i′→i′′}i1,i2,i′,i′′∈[n],i1 �=i2 . Use these second round
messages to reconstruct the remaining labels in Ki′,2[copy1] correspond-
ing to {(k, zk)}∀i′′ �=i′, k∈LO

i,1
.

• For each j from 2 to (t + 1) do the following:
* For each i′ ∈ [n], compute Eval(GCi′,j [copy1],Ki′,j [copy1][Zi′,j [copy1]

|| {(k, zk)}∀i′′ �=i′, k∈LO←
i′′,j−1

]) (if j = 2,LO←
i′′,j−1 = LO

i′′,j−1) to obtain

labels in Ki′,j [local] corresponding to Zi′,j [local] and second round
messages {ΠQuad[i1, i2, i3, j, 1].msg2,i′→i′′}i1,i3,i′,i′′∈[n],i1 �=i3,i2∈[n+1].
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* Use these second round messages to reconstruct the remaining labels
in Ki′,j [local] corresponding to {(k, zk)}∀i′′ �=i′, k∈LI←

i′′,j
.

* For each i′ ∈ [n], compute Eval(GCi′,j [local],Ki′,j [local][Zi′,j [local]
|| {(k, zk)}∀i′′ �=i′, k∈LI←

i′′,j
]) to obtain labels in Ki′,j [copy2] correspond-

ing to Zi′,j [copy2] and second round messages
{ΠDFunc[i1, i2, j, 1].msg2,i′→i′′}i1,i2,i′,i′′∈[n],i1 �=i2 .

* Use these second round messages to reconstruct the remaining labels
in Ki,j [copy2] corresponding to {(k, zk)}∀i′′ �=i′, k∈Si′′ .

* For each i′ ∈ [n], if (j 
= t+1), compute Eval(GCi′,j [copy2],Ki′,j [copy2]
[Zi′,j [copy2]|| {(k, zk)}∀i′′ �=i′, k∈Si′′ ]) to obtain labels in Ki′,j+1[copy1]

corresponding to Zi′,j+1[copy1] and second round messages
{ΠQuad[i1, i2j, 1].msg2,i′→i′′}i1,i2,i′,i′′∈[n],i1 �=i2 .

* Use these second round messages to reconstruct the remaining labels
in Ki′,j [local] corresponding to {(k, zk)}∀i′′ �=i′, k∈LO←

i′′,j−1
.

* If j = t + 1 compute Eval(GCi′,j [copy2],Ki′,j [copy2][Zi′,j [copy2]
|| {(k, zk)}∀i′′ �=i′, k∈Si′′ ]) to obtain Zfin.

• Use sti to unmask the last �i locations of Si in Zfin to compute the
output (y, τ). Use key Ki and the verification algorithm of the multi-key
MAC scheme to verify if τ is a valid multi-key MAC on y. If it verifies,
output y, else output ⊥.

We defer the security of this protocol to the full-version of our paper [2].

6 Two-Round MPC over P2P: Security with
Selective Abort

In this section we describe a general compiler to obtain a two-round information-
theoretic MPC protocol satisfying malicious security with selective abort over
point-point channels from any two-round information-theoretic MPC satisfying
security with abort against malicious adversaries.

Theorem 3. There exists a general information theoretic compiler that trans-
forms any two round maliciously secure MPC protocol (whose second round mes-
sages are computable in NC1) over broadcast and private channels that achieves
security with abort into a two-round protocol over private channels that achieves
selective security with abort against malicious adversaries.

Building Blocks. We use the following ingredients in our construction. A
two-round MPC Π, in the honest majority setting satisfying perfect malicious
security. We additionally want the second round next-message function of each
party in this protocol to be implementable using an NC1 circuit from Sect. 5.
Information-theoretic garbling scheme (Gen,Garb,Eval).



556 P. Ananth et al.

Input: Z1

Hardwired Values: action Φi,1 = (LI
i,1,Ci,1,L

O
i,1), state sti, wire labels Ki,2[copy1]

– Parse Φi,1 = (LI
i,1,Ci,1,L

O
i,1)

– Compute Ĉi,1, where Ĉi,1 is the circuit associated with Ci,1 (see Definition 7), on the
values in Z1 indexed by LI

i,1 along with sti. The output of the computation is written
to locations in Z1 indexed by LO

i,1. Call the resulting state Zi,2[copy1].

– The input to Ci,2[copy1] is of the form
(
Zi,2[copy1], {(k, zk)}∀i′ �=i, k∈LO

i′,1

)
. Thus, the

wire labels Ki,2[copy1] can be divided into two parts: the first part corresponds to
Zi,2[copy1] and the second part corresponds to {(k, zk)}∀i′ �=i, k∈LO

i′,1
.

– For every i1, i2 with i1 �= i2, compute the second round messages of ΠQuad[i1, i2, 1, 1].
The n-party functionality associated with ΠQuad[i1, i2, 1, 1] is Qi1,i2,1,1, defined below.

The (i1)th party has input {vk}k∈LO
i,1

, {Rk}k∈Si
⋃

i′∈[n]\{i1} Ti1,i′ , the (i2)th

party has input Ki2,2[copy1], the rest of the parties don’t have any input and
the output of this function are the labels in Ki2,2[copy1] corresponding to
{(k, Rk ⊕ vk)}, for every location k ∈ LO

i1,1; recall that LO
i1,1 is the set of the

locations written to at the end of first round in the conforming protocol.
Output the second round messages of all these protocols. Also, output the labels in
Ki,2[copy1] with respect to updated state Zi,2[copy1].

(a) Description of Ci,1

Input:
(
Zi,j [copy1], {(k, zk)}∀i′ �=i, k∈LO←

i′,j−1

)
(If j = 2, then LO←

i′,1 = LO
i′,1)

Hardwired Values: action Φi,j = (LI
i,j ,Ci,j ,L

O
i,j), state sti, wire labels Ki,j [local].

– For every i′ �= i, every k ∈ LO
i′,j−1, update the kth location in Zi,j [copy1] with the value

zk. Call the resulting state Zj [copy1].
– Compute the first copy operation of Φi,j on the global state Zj [copy1]. Call the resulting

state Zi,j [local].
– The input to Ci,j [local] is of the form

(
Zi,j [local], {(k, zk)}∀i′ �=i, k∈LI←

i′,j

)
Thus, the wire

labels Ki,j [local] can be divided into two parts: the first part corresponds to Zi,j [local]
and the second part corresponds to {(k, zk)}∀i′ �=i, k∈LI←

i′,j
.

– For every i1, i3 ∈ [n] with i1 �= i3 and i2 ∈ [n+1], compute the second round messages
of ΠQuad[i1, i2, i3, j, 1]. The n-party functionality associated with ΠQuad[i1, i2, i3, j, 1] is
Qi1,i2,i3,j,1, defined below.

The (i1)th party has input {Rk′}k′∈Si1
, the (i2)th party has input {Rk}k∈Ti2,i1

(if i1 = i2,, the ith1 party additionally has input {{Rk}k∈Ti1,i′ }i′∈[n]\{i1} and if

i2 = n+1, the (i2)th party has no input), the (i3)th party has inputKi3,j [local],
the rest of the parties don’t have any input and the output of this function
are the labels in Ki3,j [local] corresponding to {(k′, Rk′ ⊕ Rk ⊕ zk)}, for every
location k ∈ LI→

i1,j and k′ ∈ LI←
i1,j such that k′ is the unique location associated

with k as guaranteed by Definition 7.
Output the second round messages of all these protocols. Also, output the labels in
Ki,j [local] with respect to updated state Zi,j [local].

(b) Description of Ci,j [copy1], for j > 1.

Fig. 1. Descriptions of Ci,1 and Ci,j [copy1] for j > 1
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Input:
(
Zi,j [local], {(k, zk)}∀i′ �=i, k∈LI←

i′,j

)
Hardwired Values: action Φi,j = (LI

i,j ,Ci,j ,L
O
i,j), state sti, wire labels Ki,j [copy2].

– For every i′ �= i, for every k ∈ LI←
i′,j , update the kth location in Zi′,j [local] with the

value zk. Call the resulting state Zj [local].
– Compute the local operation of Φi,j on the global state Zj [local]. Call the resulting

state Zi,j [copy2].
– The input to Ci,j [copy2] is of the form

(
Zi,j [copy2], {(k, zk)}∀i′ �=i, k∈Si′

)
. Thus, the

wire labels Ki,j [copy2] can be divided into two parts: the first part corresponding to
Zi,j [copy2] and the second part corresponding to {(k, zk)}∀i′ �=i, k∈Si′

.
– For every i1, i2 with i1 �= i2, compute the second round messages of ΠDFunc[i1, i2, j].

The n-party functionality associated with ΠDFunc[i1, i2, j] is DFi1,i2,j , defined below.
The ith1 party has the inputKi1,j [copy2], the ith2 party has the input {Rk}k∈Si2

,
the rest of the parties don’t have any input and the output of the function
is computed as follows: compute the local operation of Φi2,j on the global
state Zj [local] and the output of the function are the labels in Ki1,j [copy2]
corresponding to {(k, zk)}, for every location k ∈ Si2 .

Output the second round messages of all these protocols. Also, output the labels in
Ki,j [copy2] with respect to updated state Zi,j [copy2].

(a) Description of Ci,j [local]

Input:
(
Zi,j [copy2], {(k, zk)}∀i′ �=i, k∈Si′

)
Hardwired Values: action Φi,j = (LI

i,j ,Ci,j ,L
O
i,j), state sti, wire labels Ki+1,j [copy1].

– For every i′ �= i, for every k ∈ Si′ , update the kth location in Zi′,j [copy2] with the
value vk. If j �= t + 1, call the resulting state Zj [copy2], otherwise call the resulting
state Zfin.

– If j = t + 1, output Zfin, else continue to next step.
– Compute the second copy operation of Φi,j on the global state Zj [copy2]. Call the

resulting state Zi,j+1[copy1].

– The input to Ci,j+1[copy1] is of the form
(
Zi,j+1[copy1], {(k, zk)}∀i′ �=i, k∈LO

i′,j←

)
.

Thus, the wire labels Ki,j+1[copy1] can be divided into two parts: the first part corre-
sponding to Zi,j+1[copy1] and the second part corresponding to {(k, zk)}∀i′ �=i,LO

i′,j←.

– For every i1, i2 with i1 �= i2, compute the second round messages of ΠQuad[i1, i2, j, 2].
The n-party functionality associated with ΠQuad[i1, i2, j, 2] is Qi1,i2,j,2, defined below.

The (i1)th party has input sti, the (i2)th party has input Ki2,j+1[copy1], the
rest of the parties don’t have any input and the output of this function are
the labels in Ki2,j+1[copy1] corresponding to {(k, Rk ⊕ Rk′ ⊕ zk)}, for every
location k ∈ LO←

i1,j and k′ ∈ LO→
i1,j such that k′ is the unique location associated

with k as guaranteed by Definition 7.
Output the second round messages of all these protocols. Also, output the labels in
Ki,j+1[copy1] with respect to updated state Zi,j+1[copy1].

(b) Description of Ci,j [copy2].

Fig. 2. Descriptions of Ci,j [local] and Ci,j [copy2]
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Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol. Let
{x1, . . . , xn} be their respective inputs and r1, . . . , rn be their respective ran-
domness used in the underlying protocol Π. Let k be the statistical security
parameter.

Round 1. For each i ∈ [n], party Pi does the following in the first round.

– Compute the first round messages of Π.
(Π.msg1,i→B , {Π.msg1,i→j}j∈[n]) := Π1(1k, i, xi; ri) where Π1 is the first
round next message function of the protocol Π.
Π.msg1,i→B is the message that is broadcast by Pi in the first round of Π
and Π.msg1,i→j is the message that is sent to party Pj over a private channel.

– Computes (gki,Ki) ← Gen(1k, 1L, 1d) where L is the number of leaves and
d is the depth of the second round next message function of Π as defined in
the next round. We parse Ki as (K0

i,1,K
1
i,1, . . . ,K

0
i,L,K1

i,L)
– Compute shares {{Kb,j

i,� }j∈[n]}�∈[L],b∈{0,1} such that for each � ∈ [L] and b ∈
{0, 1}, Kb

i,� :=
⊕

j∈[n] K
b,j
i,�

– For each j ∈ [n] \ {i}, it sends (Π.msg1,i→B ,Π.msg1,i→j , {Kb,j
i,� }�∈[L],b∈{0,1})

to party Pj over a private channel.

Round 2. For each i ∈ [n], party Pi does the following.

– Computes a garbled circuit as follows:
GCi ← Garb(gki,Π2(1k, i, xi, {Π.msg1,j→i,Π.msg1,i→j}j∈[n], .; ri))
where Π2(1k, i, xi, {Π.msg1,j→i}j∈[n], .; ri) is the second round next message
function of party Pi in Π that takes the messages {Π.msg1,j→B}j∈[n] that
were broadcast in the first round as input.

– For each j ∈ [n] \ {i}, it sends (GCi, {{KX�,i
j,� }j∈[n]}�∈[L]) to party Pj over

a private channel. Here X = Π.msg1,1→B || . . . ||Π.msg1,n→B and X� denotes
the �th bit of X.

Reconstruction. Each party does the following.

– It reconstructs the input wire keys received in the previous round. For each
i ∈ [n] and � ∈ [L], it computes the following. KX�

j,� :=
⊕

i∈[n] K
X�,i
j,� and for

each j ∈ [n], it sets Kj [Π.msg1,1→B || . . . ||Π.msg1,n→B ] := (KX1
j,1 , . . . ,KXL

j,1 )
– For each j ∈ [n] it evaluates the garbled circuit received in the previous round.

Π.msg2,j→B := Eval(GCj ,Kj [Π.msg1,1→B || . . . ||Π.msg1,n→B ])
– It runs the reconstruction algorithm of Π on {Π.msg2,j→B}j∈[n] to compute

the output.

We defer the security of this protocol to the full-version of our paper [2].

Acknowledgments. The last three authors were supported in part by a
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14. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, 2–4 May 1988, pp. 11–19. ACM Press (1988)

15. Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant number of
rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 7

https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://eprint.iacr.org/2018/1078
https://eprint.iacr.org/2018/894
https://eprint.iacr.org/2019/200
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/0-387-34805-0_49
https://doi.org/10.1007/3-540-39200-9_5
https://doi.org/10.1007/0-387-34805-0_52
https://doi.org/10.1007/0-387-34805-0_52
https://doi.org/10.1007/3-540-44647-8_7


560 P. Ananth et al.

16. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

17. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: 26th Annual ACM Symposium on Theory of Computing, Montréal,
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Abstract. We provide a generic construction of non-interactive zero-
knowledge (NIZK) schemes. Our construction is a refinement of Dwork
and Naor’s (FOCS 2000) implementation of the hidden bits model using
verifiable pseudorandom generators (VPRGs). Our refinement simplifies
their construction and relaxes the necessary assumptions considerably.

As a result of this conceptual improvement, we obtain interesting new
instantiations:

– A designated-verifier NIZK (with unbounded soundness) based on
the computational Diffie-Hellman (CDH) problem. If a pairing is
available, this NIZK becomes publicly verifiable. This constitutes the
first fully secure CDH-based designated-verifier NIZKs (and more
generally, the first fully secure designated-verifier NIZK from a non-
generic assumption which does not already imply publicly-verifiable
NIZKs), and it answers an open problem recently raised by Kim and
Wu (CRYPTO 2018).

– A NIZK based on the learning with errors (LWE) assumption, and
assuming a non-interactive witness-indistinguishable (NIWI) proof
system for bounded distance decoding (BDD). This simplifies and
improves upon a recent NIZK from LWE that assumes a NIZK for
BDD (Rothblum et al., PKC 2019).

Keywords: Non-interactive zero-knowledge ·
Computational Diffie-Hellman · Learning with errors ·
Verifiable pseudorandom generators

1 Introduction

Zero-knowledge proof systems allow a prover to convince someone of the truth
of a statement, without revealing anything beyond the fact that the statement
is true. After their introduction in the seminal work of Goldwasser, Micali, and
Rackoff [20], they have proven to be a fundamental primitive in cryptography.
Among them, non-interactive zero-knowledge proofs [5] (NIZK proofs), where the
proof consists of a single flow from the prover to the verifier, are of particular
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interest, in part due to their tremendous number of applications in cryptographic
primitives and protocols, and in part due to the theoretical and technical chal-
lenges that they represent.

On Building Non-Interactive Zero-Knowledge Proofs. It is known that
zero-knowledge proofs for arbitrary NP languages can be constructed from any
one-way function [19], and that this is a minimal assumption [30,32,39]. In
contrast, non-interactive zero-knowledge proofs have proven to be considerably
harder to construct. NIZKs in the plain model can only exist for trivial lan-
guages [31]; therefore, NIZKs for non-trivial languages are typically constructed
in the common reference string model, where the prover and the verifier are given
access to a common string honestly generated ahead of time in a setup phase.
Generic constructions of NIZK proof systems for NP in the CRS model have been
described from primitives such as doubly-enhanced trapdoor permutations [17],
invariant signatures [21], and verifiable pseudorandom generators [16], where the
last two are known to be also necessary for NIZKs. However, concrete instan-
tiations of these primitives are currently known only from factorization-related
assumption [5], pairing-based assumptions [8], and indistinguishability obfus-
cation [4,9] (together with injective one-way functions). More recently, direct
constructions of NIZKs in the CRS model have been given from pairings [24–
26], or from strong and less-understood assumptions such as indistinguishability
obfuscation [4,38] and exponentially-strong KDM-secure encryption [7].

A fundamental and intriguing open question remains: is it possible to build
NIZKs from other classical and well-established assumptions, such as discrete-
logarithm-type assumptions, or lattice-based assumptions? Faced with the dif-
ficulty of tackling this hard problem upfront, the researchers have investigated
indirect approaches, which can be divided into two main categories: the bottom-
up approach, and the top-down approach.

The Bottom-Up Approach. This line of research fundamentally asks the
following: starting from classical assumptions, either generic (OWF, public-key
encryption) or concrete (CDH, LWE), how close to full-fledged NIZKs in the
CRS model can we get, in terms of functionality? Early results in this direc-
tion have established the existence of NIZKs for NP in the preprocessing model
(where the prover and the verifier execute ahead of time a preprocessing phase
to generate respectively a secret proving key and a secret verification) assuming
any one-way function [15], and designated-verifier NIZKs for NP (where anyone
can compute a proof, but a secret verification key is required to verify a proof)
from any semantically-secure public-key encryption scheme [33]. In addition to
requiring the prover and/or the verifier to hold a secret key, these early results
all suffered from a severe limitation: they only achieve a bounded form of sound-
ness, where forging a proof for an incorrect statement is hard only if the prover
is not given access to a verification oracle. This strongly limits their usability as
a replacement for full-fledged NIZKs in most applications. More recently, various
NIZK proof systems with unbounded soundness have been proposed, from the
LPN assumption in the preprocessing model [6], from strong form of partially
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homomorphic encryption in the designated-verifier setting [11], and from LWE
in the designated-prover setting [29] (where a secret key is required to compute
a proof but anyone can verify a proof; the latter work also implies a NIZK with
unbounded soundness in the preprocessing model from a strong variant of the
Diffie-Hellman assumption). A slightly different approach was taken in [2], where
the authors introduce (and construct from the DDH assumption) implicit zero-
knowledge proofs, which are not NIZKs, but can replace them in applications
related to secure computation.

The Top-Down Approach. This line of research tackles the problem from
another angle: sticking with the goal of building full-fledged NIZKs in the CRS
model, it attempts to identify the minimal “missing piece” which would allow
to build NIZKs from classical assumptions. The work of [34] conjectured that a
NIZK proof system for a specific language (GapSVP) would allow to build a NIZK
proof system for all of NP from lattice assumptions, and the work of [37] almost
confirmed this conjecture, by establishing that a non-interactive zero-knowledge
proof for a specific language (bounded distance decoding, BDD) would imply the
existence of a full-fledged NIZK proof system for NP in the CRS model, from
the LWE assumption.

1.1 Our Contribution

In this paper, we revisit the problem of building non-interactive zero-knowledge
proofs for NP from classical assumptions, investigating both the bottom-up app-
roach and the top-down approach.

Our starting point is a fresh view on the work [16] of Dwork and Naor. In
a nutshell, they construct a NIZK proof for NP by implementing the hidden
bits model (HBM, [17]) using a tool they call verifiable pseudorandom generator
(VPRG).1 Intuitively, a VPRG is a pseudorandom generator (PRG) that allows
to selectively prove that certain parts of the PRG output are consistent (relative
to a commitment to the PRG input).

In the first part of our work, we relax the definition of VPRGs, and show that
the relaxed definition is still sufficient to implement the HBM (and thus to obtain
NIZK proofs for NP). Unlike the definition of [16], our definition also generalizes
to the designated-verifier setting. In the second part of our work, we show that
our new definition allows for considerably simple and new instantiations, both
in the designated-verifier and standard (publicly verifiable) setting. We obtain
instantiations from computational assumptions which were so far not known to
imply NIZKs for NP. Specifically, we provide:

– A designated-verifier NIZK (DVNIZK) system for NP from the CDH assump-
tion (with adaptive unbounded soundness and adaptive multi-theorem zero-
knowledge). If the underlying group allows for a (symmetric) pairing, our
construction can be made publicly verifiable. This is the first DVNIZK for NP
from a concrete (i.e., non-generic) assumption that is not already known to

1 In the HBM, there exist unconditionally secure NIZK proofs [17].
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imply publicly verifiable NIZKs for NP. Our result resolves an open problem
recently raised by Kim and Wu in [29], regarding the possibility of build-
ing multi-theorem NIZKs from DDH in the preprocessing model. Note that
our result achieves a strictly stronger form of NIZK and under a weaker
assumption.

– A NIZK system for NP (satisfying adaptive soundness and adaptive multi-
theorem zero-knowledge) that assumes LWE and a non-interactive witness-
indistinguishable proof system Π ′ for BDD. If Π ′ is designated-verifier,
resp. publicly verifiable, then so is our NIZK system for NP. Our scheme
improves the mentioned work of [37] that requires non-interactive zero-
knowledge proof system for BDD. (We comment below on what allows us
to avoid the need for simulation inherent in the approach of [37].)

1.2 Our Approach

The Proof System of Dwork and Naor. To outline our conceptual con-
tribution, we provide more background on the definitions and model of Dwork
and Naor [16]. First, the hidden bits model (HBM) is an abstract model of com-
putation for a prover and a verifier that allows to formulate the NIZK protocol
for graph Hamiltonicity from [17] in a convenient way. In the HBM, the prover
receives an ideally random string hb = (hbi)t

i=1 ∈ {0, 1}t of bits, as well as an
NP-statement x with witness w. In order to prove x, the prover then selects a
subset S ⊂ [t] of bit indices and auxiliary information M . The verifier is then
invoked with hb[S] = (hbi)i∈S and M , and outputs 1 if it is convinced of the
truth of x. [17] provide a NIZK proof in the HBM that is statistically sound and
statistically zero-knowledge. (Of course, at least one of those properties will have
to become computational when implementing the HBM.)

Now Dwork and Naor [16] implement the HBM using VPRGs. Formally, a
VPRG is a pseudorandom generator G : {0, 1}λ → {0, 1}m which allows to
construct commitments pvk to seeds (i.e., G-inputs) s and publicly verifiable
openings of individual bits of G(s) (relative to pvk). [16] require the following:

1. pvk information-theoretically determines a unique value y in the image of G,
2. valid openings to bits not consistent with the y determined by pvk do not

exist, and
3. an opening computationally leaks nothing about unopened bits of y.

Given a VPRG, [16] implement the HBM as follows. The prover initially selects
a seed s

$← {0, 1}λ and then generates a commitment pvk to s. This implicitly
sets hb = G(s). After selecting S, the prover then sends to the verifier pvk and
an opening of hb[S].

Observe that this protocol may still allow the prover to cheat by choosing
a “bad” seed s that might allow breaking soundness. However, since the HBM
protocol of [17] is statistically sound, there can be only comparatively few “bad”
HBM strings hb that allow cheating. Hence, the probability that there exists a
seed s such that hb = G(s) is bad will be negligible.2

2 A formal argument requires a little care in choosing parameters, and in randomizing
hb with an additional component in the NIZK common reference string.
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Our Conceptual Improvement. We show that points 1. and 2. from the
VPRG definition can be simplified. Specifically:

– We require that pvk uniquely determines some y, but we do not require that
y is in the image of G. Instead, we require that the bitlength |pvk| of pvk is
short (i.e., independent of m). Observe that now up to 2|pvk| “bad” y (and
thus “bad” hb) might exist. However, since |pvk| is still short (compared to
m), essentially the original proof strategy of [17] applies.

– We only require that it is computationally infeasible to come up with an
opening not consistent with y. This relaxation requires a careful tracking of
“bad events” during the security proof, but is essentially compatible with the
proof strategy from [16].

Our first change allows us to omit an explicit proof of consistency of pvk that
was necessary in [16]. This simplification will be highly useful in our concrete
instantiations. Furthermore, our second change allows to consider designated-
verifier NIZKs. Indeed, observe that the original requirement 2. above states
that no valid openings inconsistent with y exist. This excludes designated-verifier
realizations of VPRGs in which the verifier secret key can be used to forge proofs.
However, since most existing DVNIZK proofs have this property (otherwise, they
could be made publicly verifiable by making the secret verification key public),
they are not helpful to construct VPRGs in the sense of [16]. In contrast, our
relaxation is compatible with existing DVNIZKs (and indeed our first VPRG
instantiation crucially relies on DVNIZKs).

Concrete Constructions. We offer two VPRG constructions from concrete
assumptions. The first construction assumes a CDH group G = 〈g〉 of (not
necessarily prime) order n. A seed is an exponent s ∈ Zn, and a commitment
to s is gs. Given public ui, vi ∈ G (for i ∈ [t]), the i-th bit G(s)i of the PRG
image is B(us

i , v
s
i ), where B is a hard-core predicate of the CDH function. A

proof πi that certifies a given G(s)i consists of us
i , v

s
i , as well as proofs that both

(g, gs, ui, u
s
i ) and (g, gs, vi, v

s
i ) are Diffie-Hellman tuples. In a designated-verifier

setting, such proofs are known from hash proof systems [10,13]. Alternatively, a
symmetric pairing G×G → GT can be used to check the Diffie-Hellman property
of these tuples even without explicit proof.

Our second construction assumes LWE and uses the notion of homomorphic
commitments from [22]. These commitments have a “dual-mode” flavor, much
like the commitments from [14,26]. Specifically, under LWE, the public parame-
ters of these commitments can be switched between a “binding” mode (in which
commitments are perfectly binding) and a “hiding” mode (in which commit-
ments are statistically hiding). Furthermore, given a commitment coms to s, it
is possible to publicly compute a commitment comC(s) to C(s) for any (a-priori
bounded) circuit C.

In our construction, we will assume any PRG G, and set coms to be a com-
mitment to a PRG seed s ∈ {0, 1}λ. Let Gi be a circuit that computes the i-th bit
of G. An opening of the i-th bit is then an opening of the commitment comGi(s)
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to Gi(s). (Note that comGi(s) can be publicly computed from coms.) Unfor-
tunately, in the construction of [22], the opening of commitments may reveal
sensitive information about intermediate computation results (or even about s
in our case).

Hence, we will have to assume an additional proof system to open commit-
ments without revealing additional information. For the commitments of [22],
the corresponding language is the language of a BDD problem. Fortunately, the
strong secrecy properties of these commitments allow us to restrict ourselves to
a witness-indistinguishable (and not necessarily zero-knowledge) proof system
for BDD.3

Relation to [37]. We note that recently, [37] established a reduction from NIZKs
for NP from LWE to the existence of an NIZK for BDD, also through imple-
menting the HBM. Informally, and casting the construction of their work in the
language of VPRGs,4 the core reason why a NIZK was required in [37] is the
need for a consistency proof for pvk (as in [16]). Since the consistency of pvk is a
unique-witness relation, and since the proof must hide predicates of the seed, it
does not seem feasible to replace this NIZK, e.g., by a NIWI or a witness-hiding
proof. We note that although NIWIs for NP imply the existence of NIWIs for NP,
it is not clear whether a NIWI for a simple language such as BDD can be used
to build a NIZK for BDD.

Relation to [1]. We also note that Abusalah [1] also implements the HBM
using Diffie-Hellman-related assumptions (such as CDH in a pairing-friendly
group). However, he does not follow the PRG-based paradigm of [16] that we
refine. Instead, he directly generalizes the original HBM implementation of [17]
to generalizations of trapdoor permutations.

1.3 Concurrent Works

Concurrently and independently to our work, two other works [27,35] have
achieved a result comparable to the first of our two main contributions, namely,
designated-verifier non-interactive zero-knowledge proofs for NP from CDH. In
all three works, the construction proceeds in a comparable way, by designing
a CDH-based primitive which allows to compile the hidden-bit model into a
designated-verifier NIZK. We summarize below the main differences between
our works.

3 One might wonder why we do not follow another route to obtain VPRGs from NIWI
proofs for BDD. Specifically, [3,23] construct even verifiable random functions from
a NIWI for a (complex) LWE-related language. However, these constructions inher-
ently use disjunctions, and it seems unlikely that the corresponding NIWIs can be
reduced to the BDD language.

4 The actual construction of [37] relies on a new notion of public-key encryption with
prover-assisted oblivious ciphertext sampling, but the high level idea is comparable
to the VPRG-based approach. A side contribution of our construction is that it is
conceptually much simpler and straightforward than the construction of [37].
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– The work of [35] provides in addition a construction of malicious designa-
ted-verifier NIZK for NP, where the setup consists of an (honestly generated)
common random string and the verifier then gets to choose his own (poten-
tially malicious) public/secret key pair to generate and verify proofs. The
assumption underlying their construction is a stronger “one-more type” vari-
ant of CDH (i.e., the hardness of solving n + 1 CDH challenges given n calls
to an oracle solving CDH).

– The work of [27] provides two relatively different additional constructions of
NIZKs: a designated-prover NIZK for NP with proofs of size |C| + poly(λ)
(where C is the circuit checking the NP relation), under a strong Diffie-
Hellman-type assumption over pairing groups, and a preprocessing NIZK for
NP with proofs of size |C| + poly(λ) from the DDH assumption over pairing-
free groups.

– The construction of NIZKs for NP assuming LWE and a NIWI for BDD is
new to our work.

1.4 Organization

Section 2 introduces necessary preliminaries about non-interactive proof systems.
Section 3 formally introduces designated-verifier pseudorandom generators, and
defines their security properties. Section 4 provides a generic construction of a
(designated-verifier) non-interactive zero-knowledge proof system for NP from
our relaxed and generalized notion of DVPRGs, by instantiating the hidden bit
model. Section 5 provides two instantiations of DVPRGs, from the CDH assump-
tion in arbitrary group, and from the LWE assumption assuming in addition a
NIWI proof system for BDD (where the resulting scheme is publicly verifiable iff
the NIWI scheme is publicly verifiable).

2 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. A proba-
bilistic polynomial time algorithm (PPT, also denoted efficient algorithm) runs
in time polynomial in the (implicit) security parameter λ. A function f is negli-
gible if for any positive polynomial p there exists a bound B > 0 such that, for
any integer k ≥ B, |f(k)| ≤ 1/|p(k)|. An event occurs with overwhelming prob-
ability when its probability is at least 1 − negl(λ) for a negligible function negl.
Given a finite set S, the notation x

$← S means a uniformly random assignment
of an element of S to the variable x. We represent adversaries as interactive
probabilistic Turing machines; the notation AdvO indicates that the machine
Adv is given oracle access to O. Adversaries will sometimes output an arbitrary
state st to capture stateful interactions. For an integer n, [n] denotes the set of
integers from 1 to n. Given a string x of length n, we denote by xi its ith bit
(for any i ≤ n), and by x[S] the subsequence of the bits of x indexed by a subset
S of [n].
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2.1 Non-Interactive Zero-Knowledge

We recall the definition of non-interactive zero-knowledge (NIZK) proofs and
argument.

Definition 1 (Non-Interactive Zero-Knowledge Argument System).
A non-interactive zero-knowledge argument system for an NP-language L
with relation RL is a triple of probabilistic polynomial-time algorithms
(Setup,Prove,Verify) such that

– Setup(1λ), outputs a common reference string crs and a trapdoor T ,
– Prove(crs, x, w), on input the crs crs, a word x, and a witness w, outputs a

proof π,
– Verify(crs, x, π, T ), on input the crs crs, a word x, a proof π, and the trapdoor

T , outputs b ∈ {0, 1},

which satisfies the completeness, soundness, and zero-knowledge properties
defined below.

If the trapdoor T of the non-interactive proof system is set to ⊥ (or, alterna-
tively, if it is included in the crs), we call the argument system publicly verifiable.
Otherwise, we call it a designated-verifier non-interactive argument system. If the
soundness guarantee holds with respect to computationally unbounded adver-
sary, we have a NIZK proof system.

Definition 2 (Perfect Completeness). A non-interactive argument system
(Setup,Prove,Verify) for an NP-language L with witness relation RL satis-
fies perfect completeness if for every x ∈ L and every witness w such that
RL (x,w) = 1,

Pr[(crs, T ) $← Setup(1λ),π ← Prove(crs, x, w) : Verify(crs, x,π, T ) = 1] = 1.

The soundness notion can come in several flavors: it is non-adaptive if the
adversary must decide on a word on which to forge a proof before the common
reference string is drawn, and it is adaptive if the adversary can dynamically
choose the word given the common reference string. We will consider a strong
variant of adaptive soundness, denoted unbounded adaptive soundness, where
the adversary is given oracle access to a verification oracle. Note that in the
publicly-verifiable setting, this is equivalent to the standard soundness notion,
where the adversary must forge a valid proof on an incorrect statement without
the help of any oracle. However, in the designated-verifier setting, this is a strictly
stronger notion: the standard soundness notion only guarantees, in this setting,
that the argument system remains sound as long as the prover receives at most
logarithmically many feedback on previous proofs. On the other hand, if the
argument system satisfies unbounded soundness, its soundness is maintained
even if the adversary receives an arbitrary (polynomial) number of feedback on
previous proofs.
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Definition 3 (Unbounded Adaptive Soundness). A non-interactive argu-
ment system (Setup,Prove,Verify) for an NP-language L with relation RL sat-
isfies unbounded adaptive soundness if for any PPT A,

Pr
[
(crs, T ) $← Setup(1λ),
(x,π) $← AO(crs,·,·,T )(crs) : Verify(crs, x,π, T ) = 1 ∧ x /∈ L

]
≈ 0,

where A can make polynomially many queries to an oracle O(crs, ·, ·, T ) which,
on input (x,π), outputs Verify(crs, x,π, T ).

We now define zero-knowledge, which can again come in several flavors. We
will consider adaptive zero-knowledge argument systems, where the adversary
is allowed to pick a word on which to forge a proof after seeing the common
reference string. We will also distinguish single-theorem zero-knowledge, in which
the prover generates a single proof (and the length of the common reference string
can be larger than the length of the statement to prove) and multi-theorem zero-
knowledge (where the adversary can adaptively ask for polynomially many proofs
on arbitrary pairs (x,w) for the same common reference string).

Definition 4 (Adaptive Single-Theorem Zero-Knowledge). A non-inter-
active argument system (Setup,Prove,Verify) for an NP-language L with relation
RL satisfies (adaptive) single-theorem zero-knowledge if for any stateful PPT
algorithm A, there exists a simulator (Sim0,Sim1) such that∣∣∣∣∣∣∣

Pr

⎡
⎢⎣

(crs, T ) $← Setup(1λ),
(x,w) $← A(crs, T ), : (RL (x,w) = 1) ∧ (A(π) = 1)
π

$← Prove(crs, x, w)

⎤
⎥⎦−

Pr

⎡
⎢⎣

(crs, T ) $← Sim0(1λ),
(x,w) $← A(crs, T ), : (RL (x,w) = 1) ∧ (A(π) = 1)
π

$← Sim1(crs, T , x)

⎤
⎥⎦

∣∣∣∣∣∣∣
≈ 0.

Definition 5 (Adaptive Multi-Theorem Zero-Knowledge). A non-inter-
active argument system (Setup,Prove,Verify) for an NP-language L with relation
RL satisfies (adaptive) multi-theorem zero-knowledge if for any stateful PPT
algorithm A, there exists a simulator (Sim0,Sim1) such that A has negligible
advantage in distinguishing the experiments Expzk,0A (1λ) and Expzk,1A (1λ) given
on Fig. 1.

Note that Osim is only given the witness w to artificially enforce that A
queries only words x in the language L .

Zero-knowledge is a strong, simulation-style security notion. A common relax-
ation of zero-knowledge to an indistinguishability-based security notion is known
as witness-indistinguishability.

Definition 6 (Computational Witness-Indistinguishability). A non-
interactive proof system (Setup,Prove,Verify) for an NP-language L with
relation RL is (computationally) witness-indistinguishable if for any PPT
algorithm A,
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Exp ,0
A (1λ) :
(crs, T ) $← Setup(1λ)

b
$← AOprove(crs,·,·)(crs)

Oprove(crs, x, w) :
RL (x,w) = 1

Prove(crs, x, w)

⊥

Exp ,1
A (1λ) :
(crs, T ) $← Sim0(1λ)

b
$← AOsim(crs,T ,·,·)(crs)

Osim(crs, T , x, w) :
RL (x,w) = 1

Sim1(crs, T , x)

⊥

Fig. 1. Experiments Expzk,0A (1λ) and Expzk,1A (1λ), and oracles Oprove(crs, x, w) and
Osim(crs, T , x, w), for the (adaptive) multi-theorem zero-knowledge property of a non-
interactive argument system. A outputs b ∈ {0, 1}.

∣∣∣∣∣∣∣
Pr

⎡
⎢⎣

(crs, T ) $← Setup(1λ), A(crs,π) = 1
(x,w0, w1)

$← A(crs), : ∧RL (x,w0) = 1
π

$← Prove(crs, x, w0) ∧RL (x,w1) = 1

⎤
⎥⎦

− Pr

⎡
⎢⎣

(crs, T ) $← Setup(1λ), A(crs,π) = 1
(x,w0, w1)

$← A(crs), : ∧RL (x,w0) = 1
π

$← Prove(crs, x, w1) ∧RL (x,w1) = 1

⎤
⎥⎦

∣∣∣∣∣∣∣
≈ 0

We call such a proof system a non-interactive witness-indistinguishable
(NIWI) proof system.

It is known that the existence of a NIWI proof system for NP implies the
existence of a NIZK proof system for NP in the CRS model [17]. However, this
does not extend to proof systems for specific languages: the existence of a NIWI
proof system for a language L does not generally imply the existence of a NIZK
proof system in the CRS model for the same language.

3 Designated-Verifier Pseudorandom Generators

Verifiable pseudorandom generators (VPRG) have been introduced in the seminal
paper of Dwork and Naor [16], as a tool to construct non-interactive witness-
indistinguishable proofs and NIZKs in the CRS model. Informally, a VPRG
enhances a PRG with verifiability properties: the prover can compute a kind
commitment to the seed (called the verification key), and issue proofs that a
given position i of the pseudorandom string stretched from the committed seed
is equal to a given bit. Furthermore, this proof does not leak anything about the
output values at positions j = i.

In this section, we revisit the notion of verifiable pseudorandom generators.
Toward our goal of building VPRGs from new assumptions, we significantly
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weaken the binding property of VPRGs (which states, informally, that the ver-
ification key binds the prover to the seed) to a security notion that is simpler
to achieve and still allows to build NIZKs in the CRS model, and we extend the
definition to the more general setting of designated-verifier VPRGs (DVPRGs)
(this strictly encompasses public VPRGs since we recover the standard notion by
restricting the secret verification key to be ⊥).

3.1 On Defining DVPRGs

A natural attempt to define the binding property of a DVPRG would be as fol-
lows: it should be infeasible, for any polytime adversary, to output two accept-
ing proofs π0 and π1 that a given output of the PRG is equal to 0 and 1
respectively (relative to the same committed parameters). However, this security
notion turns out to be too weak for the construction of non-interactive witness-
indistinguishable proofs from VPRG of [16]. Intuitively, this stems from the fact
that a cheating prover will never send more than a single proof for a given
output, hence we cannot extract two contradictory proofs from this adversary.
Instead, the argument of [16] crucially rely on the following stronger definition:
a VPRG is binding if for every (possibly malicious) public verification key pvk,
there exists a single associated string x in the range of the stretching algorithm
of the DVPRG, and for any accepting proof π of correct opening to a subset y[I]
of the bits of a string y, it must hold that y[I] = x[I].

Unfortunately, this binding property turns out to be too strong for our pur-
pose. The reason is that we seek to build candidate DVPRGs from assumptions
such as LWE, where natural approaches lead to schemes where there exists mali-
cious public verification keys associated to strings which are not in the range
of the DVPRG, and which cannot be distinguished from honest verification keys
(typically, in our LWE-based construction, an honest verification key will be a
list of LWE samples, which are indistinguishable from random samples). A com-
parable issue arose in the work of [37], which tackled this issue by appending
to the verification key (or, in their language, the public key of an obliviously-
sampleable encryption scheme) a NIZK proof of validity.

Instead, we opt for a different approach and introduce a weaker binding
property for DVPRGs, which does not require assuming any specific structure of
the public verification key beyond its length. Namely, we consider the following
notion: a DVPRG is binding if there exists a (possibly inefficient) extractor Ext
such that no PPT adversary can output a triple (pvk, i, π) where π is a proof
of correct opening of position i to 1 − xi, and x = Ext(pvk). Note that our
definition does only consider verification keys generated by a computationally
bounded adversary (instead of arbitrary pvk), and does not require pvk to be
in the range of the DVPRG. This binding notion would in fact be trivial to
achieve without further constraints (e.g. one could define pvk to be a sequence
of extractable commitments to each bits of the pseudorandom string stretched
from the seed), hence we further require that pvk must be short (of size s(λ), for
a polynomial s independent of the stretch of the DVPRG). Afterward, we prove
that this weaker notion still suffices to build NIZKs for NP in the CRS model.
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Generalizing to the designated-verifier setting, where verification can involve
a secret-verification key, we strengthen the above property to the unbounded
binding property, which states that no PPT adversary can produce a triple
(pvk, i, π) as above, even given oracle access to a verification oracle (which has
the secret verification key hardcoded). We note that the above weakening of the
binding notion is also necessary for our generalization to the designated-verifier
setting: in this setting, the stronger binding notion of [16] does typically not
hold, since there always exists accepting proofs of opening to an incorrect bit (if
this was not the case, we could safely make the secret verification key public,
since it would not allow to find proofs of opening to incorrect values); however,
it is infeasible to find such proof (without knowing the secret verification key).
Below, we formally introduce designated-verifier pseudorandom generators and
the corresponding security notions.

3.2 Definition

Definition 7 (Designated-Verifier Pseudorandom Generator). A desig-
nated-verifier pseudorandom generator (DVPRG) is a four-tuple of efficient algo-
rithms (Setup,Stretch,Prove,Verify) such that

– Setup(1λ,m), on input the security parameter (in unary) and a bound m(λ) =
poly(λ), outputs a pair (pp, T ) where pp is a set of public parameters (which
contains 1λ), and T is a trapdoor;

– Stretch(pp), on input the public parameters, outputs a triple (pvk, x, aux),
where pvk is a public verification key of polynomial length s(λ) independent of
m, x is an m-bit pseudorandom string, and aux is an auxiliary information;

– Prove(pp, aux, i), on input the public parameters, auxiliary informations aux,
an index i ∈ [m], outputs a proof π;

– Verify(pp, pvk, T , i, b, π), on input the public parameters, a public verification
key pvk, a trapdoor T , a position i ∈ [m], a bit b, and a proof π, outputs a bit
β;

which is in addition complete, hiding, and binding, as defined below.

Note that the above definition also captures publicly verifiable pseudorandom
generators, which are DVPRGs where we restrict Setup(1λ,m) to always output
pairs of the form (pp,⊥).

Definition 8 (Completeness of a DVPRG). For any i ∈ [m], a perfectly
complete DVPRG scheme (Setup,Stretch,Prove,Verify) satisfies:

Pr

⎡
⎢⎣

(pp, T ) $← Setup(1λ,m),
(pvk, x, aux) $← Stretch(pp), : Verify(pp, pvk, T , i, xi, π) = 1
π

$← Prove(pp, aux, i),

⎤
⎥⎦ = 1.

We now define the binding property of a DVPRG. We consider a flavor of the
binding property which is significantly weaker than the one considered in [16],
yet still suffices for the application to NIZKs (see the discussion in Sect. 3.1).
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Definition 9 (Binding Property of a DVPRG). Let (Setup,Stretch,Prove,
Verify) be a DVPRG. A DVPRG is binding if there exists a (possibly inefficient)
extractor Ext such that for any PPT A, it holds that

Pr

⎡
⎣ (pp, T ) $← Setup(1λ,m),

(pvk, i, π) $← A(pp), : Verify(pp, pvk, T , i, 1 − xi, π) = 1
x ← Ext(pvk)

⎤
⎦ ≈ 0.

As for non-interactive zero-knowledge proofs, the designated-verifier setting
requires to explicitly consider whether the adversary is given access to a verifica-
tion oracle. We therefore extend the above definition and consider the unbounded
binding property:

Definition 10 (Unbounded Binding Property of a DVPRG). Let (Setup,
Stretch,Prove,Verify) be a DVPRG. A DVPRG satisfies unbounded binding if
there exists a (possibly inefficient) extractor Ext such that for any PPT A, it
holds that

Pr

⎡
⎣ (pp, T ) $← Setup(1λ,m),

(pvk, i, π) $← AVerify(pp,·,T ,·,·,·)(pp), : Verify(pp, pvk, T , i, 1 − xi, π) = 1
x ← Ext(pvk)

⎤
⎦ ≈ 0.

Note that in the case of publicly verifiable pseudorandom generators, where T is
set to ⊥, this security notion is equivalent to the binding property.

We now define equivocability. Intuitively, it states that no computationally
bounded adversary can distinguish honestly generated proofs of correctness for
bits of the pseudorandom sequence from simulated proofs (using T ) of opening
to true random bits.

Definition 11 (Equivocability of a DVPRG). A designated-verifier pseu-
dorandom generator (Setup,Stretch,Prove,Equivocate,Verify) is equivocable if
there are two additional algorithms (SimSetup,Equivocate) such that

– SimSetup(1λ,m), on input the security parameter in unary, outputs a triple
(pp, T , Ts),

– Equivocate(pp, pvk, i, b, Ts), on input the public parameters, a public verifica-
tion key pvk, an index i ∈ [m], a bit b, and a simulation trapdoor Ts, outputs
a simulated proof π′;

such that the following distributions are computationally indistinguishable:
⎧⎨
⎩

(pp, T ) $← Setup(1λ,m),
(pvk, x, aux) $← Stretch(pp)
π

$← (Prove(pp, aux, i))i

: (pp, pvk, T , x,π)

⎫⎬
⎭ = D0

≈

⎧⎨
⎩

(pp, T , Ts)
$← SimSetup(1λ,m),

(pvk, x′, aux) $← Stretch(pp), x $← {0, 1}m,

π
$← (Equivocate(pp, pvk, i, xi, Ts))i

: (pp, pvk, T , x,π)

⎫⎬
⎭ = D1.
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A weaker variant of equivocability is the following hiding property, which
states that an adversary cannot guess the value of a particular output (with
non-negligible advantage over the random guess), even if he is given the val-
ues of all other outputs together with proofs of correct opening. This notion is
implied by the equivocability property, and it suffices for the Dwork and Naor
construction of a NIZK proof system for NP; however, equivocable DVPRGs
allow for a simpler and more direct construction of NIZKs, without having to
rely on the FLS transform which constructs NIZKs from NIWI [17].

Definition 12 (Hiding Property of a DVPRG). A DVPRG scheme
(Setup,Stretch,Prove,Verify) is hiding if for any i ∈ [m] and any PPT adversary
A that outputs bits, it holds that:

Pr

⎡
⎢⎣

(pp, T ) $← Setup(1λ,m),
(pvk, x, aux) $← Stretch(pp), : A(pp, pvk, i, (xj , πj)j �=i) = xi

(πj
$← Prove(pp, aux, j))j

⎤
⎥⎦ ≈ 1/2.

Eventually, we define an additional security notion, the consistency, which
will prove useful to analyze the unbounded binding property of one of our
candidates:

Definition 13 (Consistency of a DVPRG). Given a DVPRG (Setup,Stretch,
Prove,Verify) and a pair (pp, T ) = Setup(1λ,m; r) for some random coin r, we
define for any ε the set ε-Good(r) to be the set of 4-tuples (pvk, i, π, xi) satisfying

Pr
[
T ′ $← Dist(r) : Verify(pp, pvk, T ′, i, xi, π) = 1

]
≥ ε,

where Dist(r) samples random pairs (pp′, T ′) with Setup(1λ,m) subject to the
constraint pp′ = pp, and outputs T ′. Note that for any ε′ ≥ ε, it holds that
ε′-Good(r) ⊂ ε-Good(r). Then, we say that a DVPRG is consistent if there exists
a negligible function ε such that for any PPT adversary A,

Pr
[

r
$← R, (pp, T ) ← Setup(1λ,m; r), (pvk, i, π, b) $← A(pp) :

(pvk, i, π, b) ∈ ε-Good(r) \ 1-Good(r)

]
≈ 0.

In the full version of this paper [12], we prove the following:

Theorem 14. Let G = (Setup,Stretch,Prove,Verify) be a binding and consistent
DVPRG, such that for any r, the distribution Dist(r) is efficiently sampleable.
Then G is unbounded binding.

4 DVNIZK Proof for NP from DVPRG

4.1 The Hidden Bit Model, and HB Proofs

The hidden bit model is an ideal formalization of a scenario in which both the
prover and the verifier have access to a long string of hidden random bits (let us
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denote with hb the random bits and t = t(λ) the length of the hidden string). In
this idealized model, the prover can send to the verifier a subset S ⊂ [t] of the
positions of the hidden bits (together with additional informations). The verifier
is restricted to inspecting only the bits of hb residing in the locations specified
by the prover, while the prover can see hb entirely.

Definition 15. A non-interactive proof system HB in the hidden bit model is a
pair of PPT algorithms (HB.Prove,HB.Verify) such that

– HB.Prove(hb, x, w), on input a random bit string hb ∈ {0, 1}t, and a word
x ∈ L with witness w, outputs a subset S ⊂ [t] together with a string M of
auxiliary informations,

– HB.Verify(x, hb[S],M), on input a word x, the subsequence of hb indexed by
S, and an auxiliary information M , outputs b ∈ {0, 1},

which satisfies the following perfect completeness, ε-soundness, and (adaptive,
single-theorem) zero-knowledge properties:

– Perfect Completeness. For any x ∈ L with witness w, any hb ∈ {0, 1}t,
and for (S,M) $← HB.Prove(hb, x, w), it holds that HB.Verify(x, hb[S],M) =
1.

– ε-Soundness. For any (possibly unbounded) adversary A,

Pr
[
hb

$← {0, 1}t,

(x, S,M) $← A(hb) : HB.Verify(x, hb[S],M) = 1 ∧ x /∈ L

]
≤ ε.

– Single-Theorem Zero-Knowledge. For any (possibly unbounded) stateful
adversary A, there exists a simulator (Simzk,Sim

′
zk) such that for every x ∈ L

and any w satisfying RL (x,w) = 1,
• the distributions

{(hb[S], S,M) : hb $← {0, 1}t, (S,M) $← HB.Prove(hb, x, w)}

and {Simzk(x)} are perfectly indistinguishable;
• the distributions

{(hb, S,M) : hb $← {0, 1}t, (S,M) $← HB.Prove(hb, x, w)}

and

{(hb, S,M) : (hb[S], S,M) $← Simzk(x), hb $← Sim′
zk(hb[S], S,M, x,w)}

are perfectly indistinguishable. That is, the simulator can generate
(hb[S], S,M) without a witness, and find a completion of the hidden string
hb given a witness w, which is identically distributed to an honestly gen-
erated hidden string and proof with w.
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Note that in the hidden bit model, the parties do not have access to a common
random string, but to a string of bits which are perfectly hidden to the verifier
until the prover opens a subsequence of them. Therefore, the adaptive and non-
adaptive formulations of zero-knowledge are equivalent since the verifier does
not get to see anything about hb before producing a word x with a witness w
(put differently, it is equivalent to define zero-knowledge for all x ∈ L or with
respect to adversarially chosen x). Examples of non-interactive proof systems
in the hidden-bit model can be found in [17,28]. We stress that the security of
these proof systems is unconditional (although a specific implementation of the
HB model can involve cryptography).

4.2 A DVNIZK for NP from Any DVPRG

We describe on Fig. 2 a general transformation that converts any (uncondi-
tional) proof system in the HB model into a DVNIZK for the same language,
given any DVPRG. The DVNIZK inherits the specificities of the DVPRG: it sat-
isfies unbounded soundness and/or statistical soundness whenever the DVPRG
is unbounded binding and/or statistically binding. At the exception of using
a DVPRG instead of a VPRG, the proof system is identical to the one of [16,
Section 5.1] (actually, [16] provides a ZAP in the plain model where the first
flow can be fixed non-uniformly, which immediately implies a NIZK in the CRS
model. Our construction does not imply a ZAP in the plain model, as we need
to setup a CRS containing, in particular, the public parameters of the DVPRG.
These public parameters must be honestly sampled to maintain the hiding prop-
erty, hence they cannot be picked by the verifier in the first round.)

While the scheme is almost identical to the scheme of [16], the proof of
soundness is more involved, as it must cope with the weaker binding property
of our PRGs. To prove soundness, we proceed as follows: we identify a “bad
event”, which occurs whenever the adversary outputs pvk and a proof π for
some position i of correct opening to 1 − xi, where x = Ext(pvk) (Ext being
the possibly inefficient extractor guaranteed by the unbounded binding security
notion of the DVPRG). We show that when this bad even does not happen, then
there is a string (essentially x ⊕ ρ, where ρ is a long random string which is
part of the CRS) which is a bad string, in the sense that if this string is used
as the hidden bit string of the HB proof system, there exists accepting proofs
of incorrect statement with respect to this hidden string. Then, we rely on the
statistical soundness of the HB proof system to argue that only a tiny fraction
of all possible strings (of a given length) are bad strings. Since ρ is random and
x is uniquely defined given pvk, we can rely on the fact that pvk is short to
argue, with a counting argument, that there is a negligible probability (over the
random choice of ρ) that there exists a short pvk such that ρ⊕Ext(pvk) is a bad
string. Hence, this situation is statistically unlikely, and we must be in the case
where the bad event happens; then, we conclude the proof by observing that an
occurrence of this bad event directly contradicts the unbounded binding property
of the DVPRG. In contrast, the argument of [16] uses a counting argument over
all possible seeds of the VPRG, which crucially relies on their stronger binding



578 G. Couteau and D. Hofheinz

property which states that any possible pvk is in the stretch of the PRG, and is
bound to a seed (while this seed need not be unique, all seeds associated to a
given pvk must lead to the same pseudorandom string).

Fig. 2. Designated-verifier non-interactive zero-knowledge proof system Π for a lan-
guage L using a DVPRG G and an HB proof system HB

Theorem 16. Let G be a hiding unbounded binding DVPRG, and let
(Π.Setup,Π.Prove,Π.Verify) be the DVNIZK proof system given on Fig. 2. Then
Π satisfies computational witness-indistinguishability and unbounded adaptive
soundness. Furthermore, if G is equivocable, Π satisfies (adaptive, single-
theorem) zero-knowledge.

The completeness of Π follows immediately from the completeness of HB and
G. In the remainder of this section, we prove Theorem16. The proof of witness-
indistinguishability is similar to the one given in [16], but the proof of soundness
is more involved (see the previous discussion).
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4.3 Witness Indistinguishability of Π

We prove the witness-indistinguishability of Π through a sequence of hybrids.
Let A be a PPT adversary; assume toward contradiction that

∣∣∣∣∣∣∣
Pr

⎡
⎢⎣

(crs, T ) $← Π.Setup(1λ), A(crs,π) = 1
(y, w0, w1)

$← A(crs), : ∧RL (y, w0) = 1
π

$← Π.Prove(crs, y, w0) ∧RL (y, w1) = 1

⎤
⎥⎦

− Pr

⎡
⎢⎣

(crs, T ) $← Π.Setup(1λ), A(crs,π) = 1
(y, w0, w1)

$← A(crs), : ∧RL (y, w0) = 1
π

$← Π.Prove(crs, y, w1) ∧RL (y, w1) = 1

⎤
⎥⎦

∣∣∣∣∣∣∣
≥ ε

for some non-negligible quantity ε. Let us denote Hb for b ∈ {0, 1} the exper-
iment in which we set (crs, T ) $← Π.Setup(1λ), (y, w0, w1)

$← A(crs), π
$←

Π.Prove(crs, y, wb), and output b′ $← A(crs,π).
Recall that HB′ consists of m/� parallel repetitions of HB (with independent

hidden bits hbj). We consider a sequence of intermediate hybrids H0.j for j = 0
to m/�, in which we use the witness w1 for the j first repetitions (computing
(Sj ,Mj) as HB.Prove(hbj , y, w0)) and the witness w0 for the repetitions j + 1
to m/�. By a standard pigeonhole argument, there exists a j such that the
advantage of A in distinguishing H0.j from H0.j+1 is at least ε�/m. We further
divide H0.j in the following sub-hybrids:

– H0.j.0. In this hybrid, we modify the generation of (hbj+1, Sj+1,Mj+1).
Namely, we compute (pvk, x, aux) $← G.Stretch(pp) (let xj+1, ρj+1 denote
the (j + 1)-th block of � bits of x, ρ), generate (hbj+1[Sj+1], Sj+1,Mj+1)

$←
Simzk(y), hbj+1 $← Sim′

zk(hb
j+1[Sj+1], Sj+1,Mj+1, y, w1), and set θ ← xj+1 ⊕

ρj+1 ⊕ hbj+1. The other repetitions of HB are executed as before; note that
it holds that hbi = xi ⊕ ρi ⊕ θ(i−1) mod � for every i ≤ m. By the (perfect)
single-theorem zero-knowledge property of HB, the distribution of (crs,π) in
H0.j.1 is identical to its distribution in H0.j , hence the advantage of A in
distinguishing H0.j.1 from H0.j+1 is at least ε�/m.

– H0.j.k. We denote by � − r the size of Sj+1 (r is the size of the “unopened”
subsequence of hbj+1). For k = 0 to r, we modify the generation of hbj+1 as
follows: we generate as before (hbj+1[Sj+1], Sj+1,Mj+1)

$← Simzk(y), denote
Rj+1 the set [�] \ Sj+1 of unopened positions of hbj+1, and compute

• hbj+1.0[Rj+1]
$← Sim′

zk(hb
j+1[Sj+1], Sj+1,Mj+1, y, w0),

• hbj+1.1[Rj+1]
$← Sim′

zk(hb
j+1[Sj+1], Sj+1,Mj+1, y, w1).

Then, we define hbj+1[Rj+1] to be the string that agrees with hbj+1.1[Rj+1]
for positions 1 to k, and with hbj+1.0[Rj+1] for positions k + 1 to r. By a
standard pigeonhole argument, there exists a k such that A distinguishes
H0.j.k from H0.j.k+1 with probability at least ε�/(mr) ≥ ε/m.

Note that the string hbj+1 differs by a single bit between H0.j.k and H0.j.k+1.
From there, we immediately reach a contradiction to the hiding property of
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G: denoting i ← (j + 1)� + k + 1, we receive (pp, pvk, i, (xt, πt)t�=i, compute
(hbj+1[Sj+1], Sj+1,Mj+1)

$← Simzk(y), guess the value xi at random (completing
the string x), and set θ ← xj+1 ⊕ ρj+1 ⊕ hbj+1. Depending on our guess of xi,
the distribution of (crs,π) is either identical to its distribution in H0.j.k or in
H0.j.k+1, hence we distinguish between xi = 0 and xi = 1 with probability at
least ε/m. This concludes the proof.

4.4 Adaptive Single-Theorem Zero-Knowledge of Π

A witness-indistinguishable NIZK proof system for NP implies an adaptive zero-
knowledge proof system for NP, by the transformation of [17]. However, if G is
equivocable, there is a more direct construction: we prove that in this case,
the DVNIZK Π is adaptive single-theorem zero knowledge (and can be made
adaptive multi-theorem zero-knowledge using [17]); the argument is simpler than
for witness indistinguishability, does only use Simzk (the simulator Sim′

zk is not
needed), and does not require θ (which can be removed from the construction –
we keep it in the proof below for simplicity). Let A be a PPT adversary against
the (adaptive) single-theorem zero-knowledge of Π. Let Sim = (Sim0,Sim1) be
the following simulator:

– On input 1λ, Sim0 computes (pp, T ) $← G.SimSetup(1λ,m), and ρ
$← {0, 1}m.

He outputs crs ← (pp, ρ) and T .
– On input (crs, T , y), Sim parses crs as (pp, ρ) and computes (pvk, x′, aux) $←

G.Stretch(pp). Then, Sim1 runs (hb[S], S,M) $← Simzk(y), where Simzk is the
simulator of the zero-knowledge property of HB′. Sim1 picks θ

$← {0, 1}�.
For every i ∈ S, he sets xi ← hbi ⊕ ρi ⊕ θ(i−1 mod �)+1 and computes πi

$←
G.Equivocate(pp, pvk, i, xi, T ). Sim1 outputs (pvk, θ, S, hb[S],M, (πi)i∈S).

We prove that
∣∣∣∣∣∣∣
Pr

⎡
⎢⎣

(crs, T ) $← Setup(1λ),
(y, w) $← A(crs, T ), : (RL (y, w) = 1) ∧ (A(π) = 1)
π

$← Π.Prove(crs, y, w)

⎤
⎥⎦ −

Pr

⎡
⎢⎣

(crs, T ) $← Sim0(1λ),
(y, w) $← A(crs, T ), : (RL (y, w) = 1) ∧ (A(π) = 1)
π

$← Sim1(crs, T , y)

⎤
⎥⎦

∣∣∣∣∣∣∣
≈ 0,

through a sequence of hybrids.

– Game H0. This is the real game, where we generate (crs, T ) $← Setup(1λ),
run (y, w) $← A(crs, T ), π

$← Π.Prove(crs, y, w), and b
$← A(π).

– Game H1. In this game, we generate instead (crs, T ) as Sim0(1λ) (that
is, we compute (pp, T ) $← G.SimSetup(1λ,m) and ρ

$← {0, 1}m). Further-
more, we modify Π.Prove(crs, y, w) as follow: after computing (pvk, x′, aux) $←
G.Stretch(pp), we pick x

$← {0, 1}m and set hbi ← xi ⊕ρi ⊕θ(i−1 mod �)+1. We
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compute the HB proof (S,M) honestly using (y, w) and the hidden string hb.
Finally, we compute the πi as G.Equivocate(pp, pvk, T , i, xi).
By the equivocability of G, the distribution of (pp, pvk, T , x, (πi)i∈S) in H1 is
computationally indistinguishable from its distribution in H0, and the rest of
the proof is computed from (pp, pvk, T , x) identically in both games, hence
there is a direct reduction from breaking the equivocability of G to distin-
guishing H0 and H1.

– Game H2. In this game, instead of picking x
$← {0, 1}m and setting hbi ←

xi ⊕ ρi ⊕ θ(i−1 mod �)+1, we first pick hb
$← {0, 1} and set xi ← hbi ⊕ ρi ⊕

θ(i−1 mod �)+1 for every i ≤ m. Note that this is a purely syntactic change,
since hb and x are just a uniformly random sharing of (ρi⊕θ(i−1 mod �)+1)i≤m,
hence this game is perfectly indistinguishable from the previous one.

– Game H3. In this game, we play as in Game H2 except that we compute
(hb[S], S,M) $← Simzk(y) instead (note that the remaining hidden bits of hb
are never used). By the single-theorem zero-knowledge property of HB, this
game is perfectly indistinguishable from the previous one. Note that Game H3

does exactly correspond to the simulation with (Sim0,Sim1). This concludes
the proof.

4.5 Unbounded Adaptive Soundness of Π

Let A be a PPT adversary against the soundness of Π, which is given oracle
access to a verification oracle O(crs, ·, ·, T ). Let (crs, T ) $← Π.Setup(1λ), and
parse crs as (pp, ρ). Run (y,π) $← A(crs). Let ε denote the probability (over the
coins of Π.Setup) that Π.Verify(crs, y,π, T ) = 1 and y /∈ L :

Pr
[
(crs, T ) $← Setup(1λ),
(y,π) $← AO(crs,·,·,T )(crs)

: Π.Verify(crs, y,π, T ) = 1 ∧ y /∈ L

]
= ε.

In the following, we assume for the sake of contradiction that ε is non-
negligible. We will construct from A an adversary B which contradicts the
unbounded binding of G. B interacts with A in the unbounded soundness secu-
rity experiment of Π. The challenger of the unbounded binding property of
G samples (pp, T ) $← Setup(1λ,m). B receives pp and is given oracle access
to G.Verify(pp, ·, T , ·, ·, ·). It picks ρ

$← {0, 1}m, sets crs ← (pp, ρ), and runs
A(crs). Let q be the number of queries that A asks to O(crs, ·, ·, T ) in the
unbounded soundness security experiment of Π. B simulates the answers of
O(crs, ·, ·, T ) as follows: on input π = (pvk, θ, S, hb[S],M, (πi)i∈S) it sets for
every i ∈ S xi ← hbi ⊕ ρi ⊕ θ(i−1 mod �)+1 and calls G.Verify(pp, ·, T , ·, ·, ·) on
input (pvk, i, xi, πi). Then, it verifies the HB proof (S, hb[S],M) for the state-
ment y ∈ L and outputs 1 iff all checks succeeded. Then, A outputs a pair
(y,π). Since B perfectly simulates crs and the answers of O(crs, ·, ·, T ), it holds
that Π.Verify(crs, y,π, T ) = 1 ∧ y /∈ L with probability ε over the coins of the
challenger and A,B. Finally, B parses π as (pvk∗, θ, S, hb[S],M, (πi)i∈S), picks
i∗ $← S, and outputs (pvk∗, i∗, πi∗). To simplify the analysis in the following, we
assume that B also outputs (crs, y,π) in addition to (pvk∗, i∗, πi∗) (it is only a
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syntactic modification that will make it more convenient to describe the proba-
bility experiments).

We analyze the probability that G.Verify(pp, pvk∗, T , i∗, 1−xi∗ , πi∗) = 1. Let
us call ‘bad’ a string hb for which there exists y /∈ L and an accepting proof of
y ∈ L under the HB proof system HB′. Under the 2−λm/�-statistical soundness
of HB′, the ratio of bad strings must be at most 2−λm/� < 2λ+s+�. Let us say that
a string hb′ is “close to a bad string w.r.t. pp” hb if there exists θ ∈ {0, 1}� and a
public verification key pvk ∈ {0, 1}s(λ) such that hb′ = (xi⊕hbi⊕θ(i−1 mod �)+1)i

is a bad string, where x = Ext(pp, pvk). As there are at most 2�+s possible choices
of (θ, pvk), for any choice of public parameters pp, the ratio of strings which are
close to a bad string w.r.t. pp must be at most 2−λ−s−� · 2�+s = 2−λ. Therefore,
with overwhelming probability 1−2−λ over the distribution of ρ, ρ is not close to
a bad string w.r.t. pp, hence there does not exist a string (y, pvk, θ) with y /∈ L
such that (hbi)i = (xi ⊕ ρi ⊕ θ(i−1 mod �)+1)i is a bad string.

We consider two complementary cases, one of which must necessarily occur:

Case 1. With probability at least ε/2, the output (y,π) of A satisfies
Π.Verify(crs, y,π, T ) = 1∧ y /∈ L , and for every i ∈ S, it holds that G.Verify(pp,
pvk∗, T , i∗, 1 − xi, πi) = 1. That is,

Pr

⎡
⎣

(pp, T )
$← Setup(1λ, m),

(pvk∗, i∗, πi∗ , crs, y, π)
$← B(pp),

x ← Ext(pp, pvk∗)

:
Π.Verify(crs, y, π, T ) = 1
∧ y /∈ L ∧ ∀i ∈ S,
G.Verify(pp, pvk∗, T , i, 1 − xi, πi) = 1

⎤
⎦ ≥ ε

2
,

where B is given oracle access to G.Verify(pp, ·, T , ·, ·, ·). Now, parse π as
(pvk∗, θ, S, hb[S],M, (πi)i∈S). Let x′ denote Ext(pp, pvk∗), and let (hb′

i)i =
(x′

i ⊕ ρi ⊕ θ(i−1 mod �)+1)i. Since a random ρ has probability at most 1/2λ

to be close to a bad string w.r.t. pp, (hb′
i)i has probability at most 1/2λ of

being a bad string. Therefore, if case 1 happens, we necessarily have (denoting
μ = ε/2 − 1/2λ):

Pr

⎡
⎢⎣

(pp, T )
$← Setup(1λ, m),

(pvk∗, i∗, πi∗ , crs, y, π)
$← B(pp),

x ← Ext(pp, pvk∗)

:

Π.Verify(crs, y, π, T ) = 1
∧ y /∈ L ∧ ∀i ∈ S,
G.Verify(pp, pvk∗, T , i, 1 − xi, πi) = 1
∧ hb′ is not a bad string

⎤
⎥⎦ ≥ μ.

Note that the condition Π.Verify(crs, y,π, T ) = 1 implies that for all i ∈ S,
denoting xi ← hbi⊕ρi⊕θ(i−1 mod �)+1, G.Verify(pp, pvk∗, T , i, xi, πi) = 1. Denot-
ing x′ = Ext(pp, pvk∗), it holds by assumption that G.Verify(pp, pvk∗, T , i, 1 −
xi, πi) = 1 for every i ∈ S, hence G.Verify(pp, pvk∗, T , i, 1 − x′

i, πi) = 0. This
implies that for any i ∈ S, xi = 1 − x′

i, hence that (xi)i∈S = (x′
i)i∈S , which in

turns implies that hb[S] = hb′[S]. Therefore, if case 1 happens, with probability
at least ε/2 − 1/2λ we have the following:
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– y /∈ L ,
– Π.Verify(crs, y,π, T ) = 1,
– hb[S] = hb′[S] is not a bad string.

However, by the soundness of the HB proof system HB′, there cannot exist any
accepting proof (S, hb[S],M) for a statement y /∈ L unless hb[S] is a bad string.
Since Π.Verify does also check the HB proof, this event can never happen and
we get:

ε

2
− 1

2λ
= 0,

contradicting our assumption that ε is non-negligible. Hence, case 1 never hap-
pens and the following case necessarily happens:

Case 2. There exists i ∈ S such that G.Verify(pp, pvk∗, T , i, 1 − xi, πi) = 1 with
probability at least ε/2. That is,

Pr

⎡
⎣(pp, T )

$← Setup(1λ, m),

(pvk∗, i∗, πi∗ , crs, y, π)
$← B(pp)

:
Π.Verify(crs, y, π, T ) = 1
∧ y /∈ L ∧ ∃i ∈ S,
G.Verify(pp, pvk∗, T , i, 1 − xi, πi) = 1

⎤
⎦ ≥ ε

2
.

Since B picks i∗ at random in a set S of size at most m, this gives us in particular

Pr

[
(pp, T )

$← Setup(1λ, m),

(pvk∗, i∗, πi∗ , crs, y, π)
$← B(pp)

: G.Verify(pp, pvk∗, T , i∗, 1 − xi, π
∗)=1

]
≥ ε

2m
,

which immediately gives a contradiction to the unbounded binding of G, con-
cluding the proof.

Impact on Our LWE-Based Instantiation. Note that our alternative proof
strategy, which does not use any assumed structure for pvk except a bound on its
length, is the key to our LWE-based instantiation. Indeed, if we had to assume
some structure of pvk (such as “pvk was honestly generated”), we would have to
include a NIZK proof of validity of pvk in our instantiation (which is similar to the
NIZK proof of validity for the public key used in [37]). Since there might not exist
more than a single witness for the validity of pvk, it seems unlikely that we could
use a NIWI instead of a NIZK here. By removing entirely the need for proving
validity of pvk in our LWE-based instantiation, we enable the construction of
a NIZK for NP from LWE using only a NIWI for a simple language (bounded
distance decoding), improving over the result of [37].

5 Constructions of Designated-Verifier Pseudorandom
Generators

5.1 A DVPRG from the CDH Assumption

Assumptions. Let DHGen denote a PPT algorithm which, on input 1λ, outputs
an integer n, the description of a group G of order n, and a generator g of G.
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The computational Diffie-Hellman assumption (CDH), with respect to g over
G, states that it is computationally infeasible, for any PPT algorithm which
is given (n, g,G) and a random pair (ga, gb) from G

2, to compute gab. The
decisional Diffie-Hellman assumption (DDH), with respect to g over G, states
that it is computationally infeasible for any PPT algorithm to distinguish the
distribution {(ga, gb, gab) | (a, b) $← Z

3
n} of random DDH tuples from the uniform

distribution over G
3.

The twin (computational or decisional) Diffie-Hellman assumption (twin-
CDH and twin-DDH), defined in [10], are variants of the CDH and DDH assump-
tions. The twin-CDH problem with respect to g over G states that it is com-
putationally infeasible, for any PPT algorithm which is given (n, g,G) and a
random triple (ga, gb, gc) from G

3, to compute (gab, gac); twin-DDH is its natu-
ral decisional variant. Twin-CDH (resp. twin-DDH) is equivalent to the standard
CDH (resp. DDH) assumption. However, there is a natural trapdoor test that
allows to check the correctness of twin-DDH tuples: let (α, β) be a random pair
of exponents satisfying gc = gα(gb)−β (note that many such pairs exist). Then
given an input (ga, gb, gc), the probability for an arbitrary (possibly unbounded)
adversary A to output a pair (h1, h2) such that the truth value of hβ

1h2 = (ga)α

does not agree with the truth value of (h1 = gab) ∧ (h2 = gac) is at most 1/n
(see [10]). Therefore, a verifier which is given the trapdoor (α, β) can check the
correctness of a twin Diffie-Hellman tuple, with negligible error probability. This
trapdoor test implies that the gap twin Diffie-Hellman problem, which states
that solving the twin-CDH problem is hard even given an oracle that solves the
twin-DDH problem, is at least as hard as the standard CDH problem.

Our Construction. Our construction will rely on the conjectured hardness of
the computational Diffie-Hellman (CDH) assumption. Let B : G

3 �→ {0, 1}
be a predicate satisfying the following property: given (ga, gb, gc), comput-
ing B(ga, gab, gac) should be as hard (up to polynomial factors) as computing
(ga, gab, gac). Note that this implies that distinguishing B(ga, gab, gac) from a
random bit given a random triple (ga, gb, gc) is as hard as solving CDH. There
are standard method to build this predicate using e.g. the Goldreich-Levin con-
struction [18], see e.g. [10] for an illustration in the specific case of CDH. Our
construction proceeds as follows:

– Setup(1λ,m) : sample (n,G, g) $← DHGen(1λ). For i = 1 to m, pick (ai, bi)
$←

Z
2
n and set (ui, vi) ← (gai , gbi). Set pp = (ui, vi)i≤m. For i = 1 to m, pick

βi
$← Zn and set αi ← bi+aiβi (observe that (αi, βi) are uniformly distributed

exponents subject to vi = gαiu−βi

i ). Output pp and T ← (αi, βi)i≤m. We also
define SimSetup(1λ,m) to be identical to Setup(1λ,m) and define Ts = T .

– Stretch(pp) : pick r
$← Zn, set pvk ← gr, and for i = 1 to m, set xi

$←
B(pvk, ur

i , v
r
i ). Output (pvk, x, aux = r).

– Prove(pp, aux, i) : output π ← (ur
i , v

r
i ).

– Equivocate(pp, pvk, Ts, i, σ) : pick u′ $← G, set v′ = pvkαi(u′)−βi , and check
whether B(pvk, u′, v′) = σ; if it does not hold, start again. Output π ←
(u′, v′).
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– Verify(pp, pvk, T , i, σ, π) : parse π as (u′, v′), check whether B(pvk, u′, v′) = σ
and check whether (u′)βiv′ = pvkαi . If both checks pass, output 1; otherwise,
output 0.

This construction follows the twin Diffie-Hellman paradigm of Cash, Kiltz,
and Shoup [10], which relies on the fact that computing the twin Diffie-Hellman
function, which on input (gx, gy1 , gy2) outputs (gxy1 , gxy2), is at least as hard as
solving the CDH problem, even given an oracle for twin-DDH.

Theorem 17. If the CDH assumption holds over G, then the above construc-
tion is a computationally hiding unbounded statistically binding DVPRG. Fur-
thermore, if the DDH assumption holds over G, the above construction is also
equivocable.

Proof. Completeness follows easily by inspection. We now look at the unbounded
binding property; by Theorem14, it suffices to show that the scheme is binding,
consistent, and that we can efficiently sample trapdoors consistent with pp (a
proof of Theorem14 is given in the full version of this paper [12]). From the
analysis of [10, Section 2], as (gx, gy1 , gy2) uniquely define the pair (h1, h2) such
that (h1 = gxy1) ∧ (h2 = gxy2) and any adversary has negligible probability 1/n
of outputting a non-twin-DH pair (h1, h2) that fools the test, it follows that the
scheme is statistically binding (the inefficient extractor Ext simply extracts r

from pvk = gr and computes the string x as xi
$← B(pvk, ur

i , v
r
i ) for i = 1 to m).

Second, observe that we can efficiently sample trapdoors consistent with pp, by
storing the random values (ai, bi)i and sampling each trapdoor T = (αi, βi) as
βi

$← Zn and αi ← bi + aiβi. Therefore, this defines an efficiently sampleable
distribution Dist((ai, bi)i).

We now show that our construction satisfies consistency. Let ε ← 2/n5 and
let A be an adversary that, on input pp = (ui, vi)i = (gai , gbi)i, outputs a 4-tuple
(pvk, i, π = (u′, v′), σ) such that

Pr[βi
$← Zn : Verify(pp, pvk, (αi, bi + aiβi), i, σ, (u′, v′)) = 1] ≥ ε.

The above implies that A outputs (pvk, u′, v′) such that (u′)βiv′ = pvkαi holds
with probability at least 2/n. Suppose now that (pvk, ui, vi, u

′, v′) is not a twin-
DH tuple; let us denote pvk = gr and (u′, v′) = (gs, gt) with s = air or t = bir.
Then the previous equation becomes gsβi+t = grαi , which gives

βi(s − air) = rbi − t.

However, if s−air = 0 or rbi−t = 0, then this equation holds with probability at
most 1/n over the random choice of βi, hence since we assumed that this equation
is satisfied with probability at least 2/n, it must be that s − air = rbi − t = 0,
hence (pvk, ui, vi, u

′, v′) is a twin-DH tuple. But then, it immediately follows that
the above equation is always satisfied, independently of the choice of βi:

Pr[βi
$← Zn : Verify(pp, pvk, (αi, bi + aiβi), i, σ, (u′, v′)) = 1] = 1,

5 Since n is the order of G and G is a group in which CDH is assumed to hold, 2/n is
negligible in the security parameter.
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which concludes the proof of consistency. Since the DVPRG is also statistically
binding (in a bounded sense), we use Theorem14 to conclude that the above
construction satisfies (statistical) unbounded binding.

We now discuss the hiding property. We show that a PPT adversary against
the hiding property of the above scheme implies the existence of a PPT adver-
sary that solves the computational twin Diffie-Hellman problem. The result fol-
lows from the proof of [10] that the computational twin Diffie-Hellman problem
is at least as hard as the CDH problem. The reduction is relatively straight-
forward: given a position i ≤ m, we pick (aj , bj)j �=i, receive a computational
twin-DH challenge (c0, c1, c2), and set pvk ← c0, (uj , vj) ← (gaj , gbj ) for
every j = i, and (ui, vi) ← (c1, c2). We output pp ← (uj , vj)j≤m, pvk, and
(xj , πj)

$← (B(pvk, cai
0 , c

bj

0 ), (cai
0 , c

bj

0 )) for every j = i. Note that pp, pvk and
the xj , πj are distributed exactly as in an honest execution of the experi-
ment. Then, we run A(pp, pvk, (xj , πj)j �=i) and get a bit b. If A guesses the
value of xi = B(pvk, c′

1, c
′
2), where (c′

1, c
′
2) = (cr

1, c
r
2) for the value r such that

c0 = pvk = gr, then we efficiently find a hardcore bit for the twin-DH problem
with non-negligible probability. As guessing a hardcore bit for twin-DH is at
least as hard as solving the computational twin-DH problem, the proof follows.

Regarding equivocability, the reduction gets a DDH challenge (c0, c1, c2). It
sets pvk ← gr, samples (αi, βi)i

$← Z
2m
n and pp = (ui, vi)i as (cai

1 , gαiu−βi

i )i with
random ai’s. It computes each proof πi as (u′, v′) ← (cai

2 , pvkαi(u′)−βi). Observe
that the distribution of (pp, T , pvk, (πi)i) is identical to the distribution obtained
with an honest run of the DVPRG when (c0, c1, c2) is a DDH tuple, and identical
to a run of the DVPRG with the algorithm Equivocate when (c0, c1, c2). Hence,
distinguishing honest proofs from equivocated proofs is equivalent to breaking
the DDH assumption.

Corollary 18. Assuming the computational Diffie-Hellman assumption, there
exists an unbounded designated-verifier non-interactive (adaptive, multi-
theorem) zero-knowledge proof system for NP.

Note that the above construction also implies that the existence of a (publicly
verifiable) NIZK proof system for the DDH language (together with the CDH
assumption) would imply a NIZK proof system for NP.

5.2 A DVPRG from the LWE Assumption

We also give a construction of a DVPRG in the LWE setting. Our construc-
tion already assumes a designated-verifier NIWI proof system Π for the LWE
language. We stress, however, that Π does not have to enjoy zero-knowledge;
witness-indistinguishability is sufficient. We also note that Π can be publicly
verifiable, in which case the DVPRG becomes publicly verifiable.

Algebraic setting. We largely follow the presentation of [22] and abstract the
setting as far as possible. In the following, let n,m = poly(λ) and q, β = 2poly(λ)
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with m > n and q > β be suitable integers. We also assume an error distribution
χ that outputs integers e with |e| < β.

The Learning With Errors (LWE) problem (relative to n,m, q, β) is to distin-
guish access to an oracle Olwe

real,s (with hardwired uniform s ∈ Z
n
q ) from access to

another oracle Olwe
rand. Here, Olwe

real,s (parameterized over s ∈ Z
n
q ) outputs samples

(a, s�a + e) for fresh a $← Z
n
q and e ← χ, and Olwe

real,s outputs (a, r) with fresh
a $← Z

n
q and r

$← Zq. The LWE assumption is that for every PPT adversary A,
∣∣∣Pr

[
AOlwe

real,s(1λ) = 1
]

− Pr
[
AOlwe

rand(1λ) = 1
]∣∣∣ ≈ 0,

where the probability is over s $← Z
n
q and the random coins of A and the oracles.

In the following, let A ∈ Z
n×m
q , and consider the language

LA :=
{
Au | u ∈ Z

m
q with ||u||∞ < β

}
.

Depending on A, LA may be trivial. However, if A can be written as A =(
A′

s�A′ + e

)
with ||e||∞ < β, then LA consists of all zero-encryptions under

Regev’s encryption scheme [36]. In that case, LA is hard to decide under the
LWE assumption.

Homomorphic commitments. In the setting above, Gorbunov, Vaikuntanathan,
and Wichs [22] construct homomorphic trapdoor functions (HTDFs). As they
point out, HTDFs can also be viewed as homomorphic commitments. Formally,
an HTDF HF consists of the following PPT algorithms:

Key generation. HF.Setup(1λ) outputs a keypair (pk, sk). We require that pk
defines input, output, and index sets U , V, and X . These sets must be effi-
ciently decidable, and we assume are efficiently samplable distributions DU
and DV over U and V.

Function evaluation. fpk,x evaluates a deterministic function from U to V. We
can view fpk,x(u) as a commitment under pk to x with random coins u.

Function inversion. Invsk,x probabilistically samples a preimage of fpk,x. We
require that for every (pk, sk) in the range of HF.Setup, every x ∈ X , and
every v in the range of fpk,x, the value Invsk,x(v) is distributed statistically
close to a random preimage of v under fpk,x sampled from DU .

Homomorphic evaluation. Evalin and Evalout allow homomorphic compu-
tations on inputs and outputs, in the following sense. For all pk in the
range of HF.Setup, all � ∈ N, all functions g (represented as circuits),
all (xi, ui, vi) ∈ X × U × V (1 ≤ i ≤ �) with vi = fpk,xi

(ui), and for
u∗ := Evalinpk(g, (xi, ui)�

i=1) and v∗ := Evaloutpk (g, (vi)�
i=1), we have

fpk,g(x1,...,x�)(u
∗) = v∗.
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Dual-mode homomorphic commitments. For security, [22] require that it is com-
putationally hard to find (x, u, x′, u′) with x = x′ and fpk,x(u) = fpk,x′(u′). When
viewing HTDFs as commitment schemes, this corresponds to a computational
binding property. For our purposes, however, we require a stronger property
that [22] mention but do not formally define or use. Namely, in analogy to dual-
mode commitment schemes [26], we require that there are two computationally
indistinguishable ways to sample public keys: one way leads to a statistically
hiding commitment scheme, and the other to a statistically binding scheme. In
the HTDF setting, this translates to the following requirements:

Statistically hiding. For any fixed pk in the range of HF.Setup, and any x, x′ ∈
X , the random variables fpk,x(u) and fpk,x′(u) (for random u ← DU ) are
statistically close.

Perfectly binding under alternate key generation. There exists a PPT
algorithm HF.Setupbind that outputs public keys pkbind with the following
properties:

– pkbind
c≈ pk for public keys pk output by HF.Setup,

– the “function evaluation” and “homomorphic evaluation” properties
above also hold (perfectly) for public keys pkbind,

– for all pkbind in the range of HF.Setupbind, and all x, x′ ∈ X with x = x′, the
sets {fpkbind,x(u) | u ∈ U} and {fpkbind,x′(u) | u ∈ U} are disjoint. In other
words, there are no (x, u, x′, u′) with x = x′ and fpkbind,x(u) = fpkbind,x′(u′).

The instantiation of Gorbunov, Vaikuntanathan, and Wichs. [22] offer a leveled
instantiation of dual-mode homomorphic commitments. That is, their construc-
tion only allows for an arbitrary, but a-priori bounded number of homomor-
phic base operations on commitments. If this number of operations is exceeded,
correctness will cease to hold. For our purposes, this leveled construction is
sufficient, since the number and type of homomorphic operations is known in
advance.

We further note that their HTDF application does not require any dual-mode
features. However, in [22, App. B], they explicitly describe and analyze what we
call HF.Setupbind above. They show that their construction is secure (in the sense
above) under the LWE assumption.

We will not need to consider any specifics of their construction, except for
one. Namely, in their scheme, {0, 1} ⊂ X ⊂ Z, and commitments to x are of
the form fpk,x(u) = AU + xG for fixed A,G ∈ Z

n×m
q defined in pk, and a

short U ∈ Z
m×m
q with ||U||∞ < β. In other words, commitments to x = 0

are composed of m elements of the language LA defined above. Furthermore, a
preimage u is the corresponding witness U. Hence, given an argument system for
LA, we can prove that a given commitment v commits to a given x by proving
that v − xG ∈ Lm

A.

Our construction. We can now give our construction of a DVPRG. We assume
dual-mode homomorphic commitments HF as described above, and any family
of PRGs Gm : {0, 1}λ → {0, 1}m. In the following, let Gm,i denote the circuit
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that computes the i-th output bit of Gm. Furthermore, we assume a NIWI proof
system Π = (Π.Gen,Π.Prove,Π.Verify) for the language LA. Slightly abusing
notation, we will use NIWI as an argument system for the language (LA)m.

– Setup(1λ,m) runs pkbind
$← HF.Setupbind(1λ) and (crs, T ) $← Π.Gen(1λ) (for

the language LA given by the matrix A defined in pkbind), and outputs public
parameters pp = (pkbind, crs) and a trapdoor T .

– Stretch(pp) samples s = (s1, . . . , sλ) $← {0, 1}λ and u1, . . . , uλ
$← DU , then

computes vi = fpkbind,si
(ui), and finally outputs pvk = (vi)λ

i=1, x = Gm(s),
and aux = (s, (ui)λ

i=1). Observe that the size of pvk does not depend on m.6

– Prove(pp, aux, i) (for aux = (s, (uj)λ
j=1)) computes vi = fpkbind,si

(ui) exactly as
Stretch, and derives a witness u∗ = Evalinpkbind(Gm,i, (sj , uj)λ

j=1) that explains
v∗ = Evaloutpkbind

(Gm,i, (vj)λ
j=1) as v∗ = fpkbind,b(u

∗). By our discussion above, we
have that hence v∗ − biG ∈ Lm

A with witness u∗. Hence, Prove next computes
and outputs a proof π

$← Π.Prove(crs, v∗ − bG, u∗).
– Verify(pp, pvk, T , i, b, π) parses pvk = (vi)λ

i=1, then computes

v∗ = Evaloutpkbind

(
Gm,i, (vj)λ

j=1

)
,

and finally returns Π.Verify(crs, v∗ − biG, π, T ).

Theorem 19. Assume that LWE holds for the parameters from [22], that Gm

is pseudorandom, and that Π is perfectly complete, computationally witness-
indistinguishable and satisfies unbounded adaptive soundness. Then the above
DVPRG is perfectly complete, equivocable, and has the unbounded binding
property.

We provide a proof of Theorem19 in the full version [12].
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Abstract. Non-interactive zero-knowledge proofs (NIZKs) are a funda-
mental cryptographic primitive. Despite a long history of research, we
only know how to construct NIZKs under a few select assumptions, such
as the hardness of factoring or using bilinear maps. Notably, there are
no known constructions based on either the computational or decisional
Diffie-Hellman (CDH/DDH) assumption without relying on a bilinear
map.

In this paper, we study a relaxation of NIZKs in the designated veri-
fier setting (DV-NIZK), in which the public common-reference string is
generated together with a secret key that is given to the verifier in order
to verify proofs. In this setting, we distinguish between one-time and
reusable schemes, depending on whether they can be used to prove only
a single statement or arbitrarily many statements. For reusable schemes,
the main difficulty is to ensure that soundness continues to hold even
when the malicious prover learns whether various proofs are accepted or
rejected by the verifier. One-time DV-NIZKs are known to exist for gen-
eral NP statements assuming only public-key encryption. However, prior
to this work, we did not have any construction of reusable DV-NIZKs
for general NP statements from any assumption under which we didn’t
already also have standard NIZKs.

In this work, we construct reusable DV-NIZKs for general NP state-
ments under the CDH assumption, without requiring a bilinear map.
Our construction is based on the hidden-bits paradigm, which was pre-
viously used to construct standard NIZKs. We define a cryptographic
primitive called a hidden-bits generator (HBG), along with a designated-
verifier variant (DV-HBG), which modularly abstract out how to use
this paradigm to get both standard NIZKs and reusable DV-NIZKs. We
construct a DV-HBG scheme under the CDH assumption by relying on
techniques from the Cramer-Shoup hash-proof system, and this yields
our reusable DV-NIZK for general NP statements under CDH.

We also consider a strengthening of DV-NIZKs to the malicious
designated-verifier setting (MDV-NIZK) where the setup consists of an
honestly generated common random string and the verifier then gets to
choose his own (potentially malicious) public/secret key pair to gener-
ate/verify proofs. We construct MDV-NIZKs under the “one-more CDH”
assumption without relying on bilinear maps.
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1 Introduction

(Non-Interactive) Zero-Knowledge. Zero-knowledge proofs, introduced in
the seminal work of Goldwasser, Micali, and Rackoff [GMR85,GMR89], allow
a prover to convince a verifier that a statement is valid without revealing any-
thing beyond its validity. Standard zero-knowledge proof systems are interactive.
Blum, Feldman, and Micali [BFM88] introduced the concept of non-interactive
zero-knowledge (NIZK) proofs, which consist of a single message from the prover
to the verifier. Such NIZKs cannot exist in the plain model, and are there-
fore considered in the common reference string (CRS) model, where a trusted
third party chooses some common string (either uniformly at random or from
some designated distribution) which is given to both the prover and the verifier.
Such NIZKs for general NP statements have been constructed from a few select
assumptions such as: (doubly-enhanced) trapdoor permutations which can be
instantiated from factoring [BFM88,DMP88,FLS99,Gol11], the Diffie-Hellman
assumption over bilinear groups [CHK03,GOS06] indistinguishability obfusca-
tion [SW14] or fully exponential KDM hardness [CCRR18]. We also have such
NIZKs in the random-oracle model [FS87].1 However, despite a long history
of research, we don’t have any constructions based on several common stan-
dard assumptions: most notably the computational or decisional Diffie-Hellman
assumptions (CDH, DDH) without requiring a bilinear map, or the learning-
with-errors (LWE) assumption.

Designated-Verifier NIZK. In this work, we focus on a relaxed notion of
NIZKs in the designated-verifier setting (DV-NIZK). In this model a trusted-
third party generates a CRS together with secret key which is given to the verifier
and is used to verify whether proofs are accepting or rejecting. We distinguish
between schemes having one-time (a.k.a. single-theorem) security versus reusable
(a.k.a. multi-theorem) security. One-time secure schemes only guarantee sound-
ness for a single proof of a single statement. However, since the verifier’s decision
whether to accept or reject a proof depends on the secret key, a malicious prover
may be able to learn something about the secret key over time by producing
many proofs and seeing whether they are accepted or rejected by the verifier.
Reusable DV-NIZKs ensure that soundness continues to hold even in such set-
tings, where a prover can test whether the verifier accepts or rejects various
proofs. In terms of constructions, there appears to be a huge gap between these
notions. One-time secure DV-NIZKs were constructed for general NP state-
ments assuming only the existence of public-key encryption [PsV06]. On the
other hand, prior to this work, we did not have any constructions of reusable
DV-NIZKs for general NP statements based on any assumptions under which
we don’t already also have standard NIZKs.

1 Additionally, we have constructions of NIZKs with an inefficient prover based on
one-way permutations [FLS99]. In this work, we restrict ourselves to NIZKs where
the prover can generate proofs efficiently given an NP witness.
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Malicious-Designated-Verifier NIZK. We also consider a strengthening of
(reusable) DV-NIZKs to the malicious-designated-verifier setting (MDV-NIZKs).
In this setting, the trusted party only generates a common uniformly random
string. The verifier then gets to choose a public/secret key pair where the public
key is used by the prover to generate proofs and the secret key is used by the
verifier to verify proofs. The main difference between DV-NIZKs and MDV-
NIZKs is that, in the latter, we require zero-knowledge to hold even if the public
key is chosen maliciously by the verifier. Therefore, an MDV-NIZK is similar to
standard NIZKs in that the only trusted setup consists of a common random
string, but an MDV-NIZK also requires additional potentially untrusted setup
where the verifier publishes a public-key for which it keeps the corresponding
secret key.

The notion of (reusable) MDV-NIZKs is equivalent to 2-round malicious-
verifier ZK protocols in the common random string model (where the verifier’s
first-round message is reusable) by thinking of the verifier’s public key as the
first-round message. It is easy to see that the construction of non-reusable DV-
NIZKs of [PsV06] extends naturally to yield non-reusable MDV-NIZKs assuming
2-round maliciously secure oblivious transfer in the common random string
model. However, prior to this work, we did not have any constructions of reusable
MDV-NIZKs for general NP statements based on any assumptions under which
we don’t already also have standard NIZKs.

Prior Work on DV-NIZKs and NIZKs with Pre-processing. In prior
work, the notion of DV-NIZKs was mainly studied in the context of non-
malleable and CCA secure encryption. It is known that one-time DV-NIZKs
allow us to compile any CPA secure (public-key) encryption scheme into a non-
malleable one [PsV06] and reusable DV-NIZKs can compile it into a CCA secure
one (by adapting the [NY90,DDN91] paradigm to the designated-verifier case).
In this context, the work of Cramer and Shoup [CS98,CS02] constructed “hash-
proof systems” which are unconditionally secure reusable DV-NIZKs for specific
“algebraic” languages (e.g., the equality of two discrete logarithms) and used
them to get practical CCA secure encryption. However, reusable DV-NIZKs
have received surprisingly little attention as a general primitive. We believe that
this notion is naturally interesting beyond its applications to non-malleable and
CCA encryption. For example, it can take the place of standard NIZKs in the
context of multiparty computation in scenarios where there is some (reusable)
trusted setup.

DV-NIZKs can be thought of as a special case of a more general notion
of “NIZKs with preprocessing” in which a trusted-third party creates a CRS
together with two secret key: tdV given to the verifier and tdP given to the
prover. We can consider two special cases of such NIZKs with preprocessing:
if tdP is empty then this corresponds to the “designated-verifier” (DV-NIZK)
setting that we study in this work, and if tdV is empty then we can think
of this as a “designated-prover” (DP-NIZK). Several prior works study NIZKs
with preprocessing [DMP90,KMO90,LS91,Dam93,DFN06,CC18] but all either
(1) only consider specific “algebraic” languages rather than general NP, (2)
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are not reusable or (3) require assumptions such as factoring from which we
already have standard NIZKs. The one exception is a very recent work of Kim
and Wu [KW18] (CRYPTO 2018), which gave a novel construction of reusable
DP-NIZKs for general NP languages under the LWE assumption. In that work,
they explicitly asked the question whether one can construct reusable NIZKs
in the preprocessing model under the CDH/DDH assumption. We answer their
open question positively in this paper by constructing reusable DV-NIZKs under
CDH. It remains a fascinating open question whether one can construct reusable
DV-NIZKs under LWE, and conversely, whether one can construct reusable DP-
NIZKs under CDH/DDH.

1.1 Our Results

In this work, we construct reusable DV-NIZKs for general NP languages under
the computational Diffie-Hellman (CDH) assumption without requiring a bilin-
ear map.

Theorem 1.1. Under the CDH assumption, there exists an (adaptively secure,
statistically sound) reusable DV-NIZK proof system for all NP.

We also construct reusable MDV-NIZKs for general NP languages under the
one-more CDH (OM-CDH) assumption without requiring a bilinear map.

Theorem 1.2. Under the One-More CDH assumption (Definition 6.3), there
exists an (adaptively secure, statistically sound) reusable MDV-NIZK proof sys-
tem for all NP.

Our construction goes through the hidden-bits paradigm introduced by Feige,
Lapidot and Shamir [FLS99] (see also [Gol01,Gol11]) to construct standard
NIZKs. This paradigm consists of two steps. First, construct a NIZK for gen-
eral NP statements in an idealized model called the “hidden-bits model” where
the prover is given a long string of uniformly random bits and can choose to
reveal some subset of them to the verifier. Such NIZKs in the hidden-bits model
were constructed unconditionally with statistical soundness and zero knowledge.
Second, use a cryptographic tool to compile NIZKs in the hidden-bits model
to NIZKs in the CRS model. Such a compiler was constructed concretely using
(doubly enhanced) trapdoor permutations, which can be instantiated based on
factoring.

We generalize the second step of the hidden bits paradigm by defining a
cryptographic primitive called a “hidden-bits generator” (HBG) which can be
used to compile NIZKs in the hidden-bits model into ones in the CRS model.2

This primitive modularizes the “hidden-bits paradigm” and simplifies the task
of constructing NIZKs by reducing it to the task of constructing a HBG. We
also clarify how to use HBG to get adaptive ZK security via the “hidden bits
2 A similar primitive called a “verifiable pseudorandom generator” was defined by

[DN00] for the purpose of constructing ZAPs, which also lead to a construction of
NIZKs.
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paradigm”, which turns out to be surprisingly subtle and was not very clear
from prior presentations of this paradigm. To get our main result, we general-
ize the hidden bits paradigm even further by extending the notion of HBG to
the designated-verifier setting (DV-HBG) and the malicious-designated-verifier
setting (MDV-HBG) and showing that the same compiler allows us to go from
DV-HBG (resp. MDV-HBG) to reusable DV-NIZKs (resp. MDV-NIZKs). We
then show how to construct DV-HBG from the computational Diffie-Hellman
(CDH) assumption without bilinear maps. The last step uses the Cramer-Shoup
hash-proof system, which can be thought of as a reusable DV-NIZK for equal-
ity of two discrete logarithms. Therefore we are in some sense bootstrapping
a reusable DV-NIZK for this specific language to get a reusable DV-NIZK for
all of NP. Finally, we show how to construct MDV-HBG from the one-more
CDH (OM-CDH) assumption. This essentially starts with our construction of
DV-HBG, which is clearly insecure in the malicious-designated-verifier setting,
and shows how to immunize it against malicious attacks. While the high level
idea is simple, the proof of security is quite involved and uses techniques which
may be of independent interest.

1.2 Technical Overview

NIZKs via the Hidden-Bits Paradigm. We first review the “hidden-bits
paradigm” proposed by [FLS99]; see [Gol01,Gol11] for a modern presentation
which we follow here.

The starting point of this paradigm is a construction of NIZKs in an idealized
model called the “hidden-bits model”. In this model, there is a trusted third party
that generates uniformly random bits r1, . . . , rk and gives them to the prover.
The prover outputs a proof π along with a subset I ⊆ [k] of the bits to open. The
verifier gets (I, π) from the prover together with the bits {ri}i∈I from the trusted
third party. Note that the verifier does not learn anything about the unopened
bits {ri}i�∈I and the prover cannot modify the values of the opened bits {ri}i∈I .
Such NIZKs in the hidden-bits model can be constructed unconditionally with
security against an unbounded prover/verifier where the soundness error can be
made exponentially small.

The second step compiles NIZKs in the hidden-bits model into NIZKs in
the CRS model. Such a compiler was presented by [FLS99,Gol01,Gol11] using
doubly-enhanced trapdoor permutations (TDPs) (see also [BY93,GR13,CL17]).
On a high level, the CRS consists of random values y1, . . . , yk in the range of the
TDP. The prover chooses a random permutation fcom along with an inversion
trapdoor sk and inverts all of the values in the CRS to get preimages x1, . . . , xk.
Define r1, . . . , rk to be hardcore bits of x1, . . . , xk. The prover then runs the
hidden-bits prover with r1, . . . , rk to generate some proof (π, I) to which it
appends the values com, {xi}i∈I . The verifier checks yi = fcom(xi), computes
{ri}i∈I to be the hardcore bit of xi and then runs the hidden bits verifier on
(π, I). Intuitively, a malicious prover has a extremely limited ability to control
the randomness r1, . . . , rk by choosing com; by relying on an exponentially small
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soundness error of the hidden-bits proofs which survives a union-bound over all
such com’s, this flexibility is insufficient to break soundness. On the other hand,
the verifier does not learn anything about the values {ri}i�∈I by the security
of the TDP.3 While this is the high level approach, there are some subtleties
involved; see [BY93,Gol01,Gol04,Gol11,GR13,CL17].

Hidden-Bits Generator (HBG). We begin by defining an abstract crypto-
graphic primitive, which we call a hidden-bits generator (HBG), that can be
used to compile NIZKs in the hidden-bits model to NIZKs in the CRS model.
An HBG that generates k bits consists of three algorithms:

– Setup creates a crs.
– GenBits(crs) outputs a short commitment com whose size is much smaller

than k, along with hidden-bits {ri}i∈[k], and certificates {πi}i∈[k].
– Verify(crs, com, i, ri, πi) checks the certificate πi to verify that ri is indeed the

i’th hidden bit.

An HBG should satisfy two simple properties. Firstly, we require the scheme
to be statistically binding, meaning that (crs, com) together completely determine
some sequence of bits r1, . . . , rk and no (even inefficient) prover can come up with
a valid certificate π′

i for the wrong bit r′
i �= ri. Intuitively, by combining the above

property together with the requirement that com is short, we ensure that the
prover does not have much control over the bits ri that he can open and the
limited control that he does have is insufficient to break the soundness of the
hidden-bits NIZK (by amplifying its soundness sufficiently so that it survives a
union bound over all the com’s that the prover can choose). Secondly, we require
the scheme to be computationally hiding, meaning that for any set I ⊆ [k], if
we are given honestly generated crs, com, {ri, πi}i∈I then the “unopened” hidden
bits {rj}j �∈I are computationally indistinguishable from uniform.

Compiling from Hidden-Bits Model to CRS Model. Intuitively, we would
like to use HBG to compile NIZKs from the hidden-bits model to the CRS model
by letting the prover generate the hidden-bits via the HBG GenBits algorithm.
There are two issues with this basic approach:

– For soundness, if the malicious prover chooses a “bad” (not uniformly ran-
dom) com then the HBG abstraction does not provide any guarantees that
the bits ri to which he is committed are random and hence we cannot rely
on the soundness of the hidden-bits NIZK.

– For zero-knowledge, we notice that the honest hidden-bits prover may choose
the set I adaptively depending on all of the bits {ri}i∈[k] (and indeed this is
the case for the hidden-bits NIZK constructed in [FLS99]) and we still need
to argue that the unopened bits {rj}j �∈I are hidden. The hiding property of
HBG only guarantees that the unopened bits are hidden when I is chosen
ahead of time.

3 The basic compiler only achieves zero-knowledge for a single theorem and [FLS99]
then relies on another generic compiler via the “or trick” to go from single-theorem
to multi-theorem zero-knowledge.
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To fix both of the above issues we add additional uniformly random bits s1, . . . , sk

to the CRS of the NIZK and define the hidden-bits to be ri ⊕ si where ri comes
from the HBG. This ensures that for any fixed com chosen by a malicious prover
the hidden-bits that he can open are uniform over the choice of si.4 It also
ensures that the choice of the set I chosen by the honest hidden-bits prover is
independent of the outputs ri of the HBG and therefore allows us to rely on
HBG security.

We uncover an additional complication when proving adaptive ZK, where the
malicious verifier can choose the statement to be proven adaptively depending on
the CRS. The work of [FLS99] showed adaptive ZK for their particular protocol
(using particular hidden-bits NIZK) but it did not give a modular proof. Indeed,
our attempts to prove that the compiler can generically start with any hidden-
bits NIZK and achieve adaptive ZK failed for subtle reasons involving “selective
opening” failures. Instead, we were able to abstract out a special property of the
hidden-bits NIZK of [FLS99] which we call “special ZK”, which we show to be
sufficient to get adaptive ZK in the CRS model via the above compiler.

Using the compiler, we reduce the task of constructing NIZKs to that of
constructing an HBG, which is a conceptually much simpler primitive.

Designated Verifier Setting: (M)DV-HBG to (M)DV-NIZK. We gen-
eralize the notion of HBG to the designated-verifier setting (DV-HBG). The
only differences are that: (1) the Setup algorithm generates a crs together with a
trapdoor td which is given to the verifier and the Verify algorithm takes the trap-
door td as an input, (2) we modify the statistically binding security property to
hold even if a computationally unbounded prover can make polynomially many
queries to the Verify(crs, td, · · · ) oracle which allows it to check whether various
certificates are valid or invalid, and (3) we modify the computationally hiding
property to hold even given td. To get our main result, we naturally extend our
compiler to show that DV-HBG allows us to compile NIZKs in the hidden-bits
model into reusable DV-NIZKs. Therefore, we reduce the task of constructing
reusable DV-NIZKs to that of constructing DV-HBG.

We further generalize the notion of HBG to the malicious-designated-verifier
setting (MDV-HBG). Now, in addition to a Setup algorithm that generates the
crs there is a KeyGen algorithm that generates a public key pk along an associated
secret key sk. Essentially, we think of crs, pk as together corresponding to the
crs in the previous definition, and of sk as the trapdoor. The binding property is
essentially the same as before. However, we require that hiding holds even if pk
is generated maliciously (and adaptively depending on crs). We show that MDV-
HBG allows us to compile NIZKs in the hidden-bits model into reusable MDV-
NIZKs. Therefore, we reduce the task of constructing reusable MDV-NIZKs to
that of constructing MDV-HBG.

DV-HBG from CDH. We show how to instantiate a designated-verifier DV-
HBG based on the computational Diffie-Hellman (CDH) assumption to get our

4 The fact that the prover can adaptively choose com after seeing s1, . . . , sk is handled
by simply taking a union bound over all possible choices of com.
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reusable DV-NIZK from CDH. Our construction relies on the ideas underlying
the Cramer-Shoup (1-universal) hash-proof system [CS98,CS02] which can be
thought of as an unconditionally secure reusable DV-NIZK for the “equality
of two discrete logs” – i.e., given some public group elements g, h we define
the language consisting of tuples (g′, h′) such that DLOGg(g′) = DLOGh(h′).
In particular, we think of the projection key of the hash-proof system as the
CRS of the DV-NIZK, and the hashing key as the associated trapdoor. In the
body of our paper, we give our full construction using the specific Cramer-Shoup
instantiation, but for the introduction we will treat the Cramer-Shoup reusable
DV-NIZK proof system as a black-box.

Our DV-HBG construction works as follows. Let G be some cyclic group of
order p and let g be a generator.

– The Setup algorithm chooses random group elements h1, . . . , hk. It also
instantiates k copies of the Cramer-Shoup DV-NIZK with respect to the
public group elements (g, hi) respectively. The crs consists of g, h1, . . . , hk

together with the k values {crsi}i∈[k] of the Cramer-Shoup DV-NIZK. The
trapdoor td = {tdi}i∈[k] consists of the k trapdoors for the Cramer-Shoup
DV-NIZK.

– The GenBits(crs) algorithm chooses y ← Zq and sets com = gy. For i =
1 . . . , k, it sets ti = hy

i , ri = hc(ti), where hc is a hardcore predicate (e.g.,
Goldreich-Levin [GL89]). Finally it sets πi = (ti, πCS

i ) where πCS
i is a Cramer-

Shoup proof that DLOGg(com) = DLOGhi
(ti).

– The Verify algorithm gets ri and πi = (ti, πCS
i ) and checks that ri = hc(ti)

and that πCS
i is a valid Cramer-Shoup proof using the corresponding trapdoor

tdi.

For the statistically binding property we note that given crs, com the values
ti = hy

i and therefore also the hidden bits ri = hc(ti) are completely determined.
The prover cannot lie about ti and therefore also about ri by the unconditional
reusable security of the Cramer-Shoup proof, and this holds even given ora-
cle access to the Cramer-Shoup verifier. For the computational hiding property
we rely on the fact that, given g, hi, g

y, the CDH assumption ensures that hy
i

is computationally unpredictable and therefore hc(hy
i ) is indistinguishable from

uniform. This holds even given hj , h
y
j for various random hj since the distin-

guisher can sample such values himself by sampling hj = gxj and computing
hy

j = (gy)xj .

MDV-HBG from One-More CDH. Finally, we show how to instantiate our
malicious-designated-verifier MDV-HBG based on the one-more CDH assump-
tion to get our reusable MDV-NIZK from one-more CDH. The construction and
the security intuition are somewhat involved and so we present them in several
stages.

Initial Attempt. As a first attempt, we can try to use the previous construction
directly as an MDV-HBG. In particular, we can set the crs to only consist of the
uniformly random values crs = (h1, . . . , hk). The Cramer-Shoup DV-NIZKs then
naturally define pk, sk. Here it helps to be concrete about how the Cramer-Shoup
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DV-NIZK works. For each i, the Cramer-Shoup proof system defines pki = hai
i gbi

and the corresponding ski = (ai, bi). The MDV-HBG public keys and secret keys
consist of these values pk = {pki}, sk = {ski}. Given a commitment com = gy,
recall that the i’th hidden bit is defined by taking a hardcore predicate ri = hc(ti)
where ti = hy

i . The opening to the i’th hidden bit consists of ti = hy
i and the

Cramer-Shoup proof πCS
i = pky

i .
Attack on Initial Attempt. Unfortunately, it’s clear that the above is not

secure as MDV-HBG. For example, if the malicious verifier chooses pki = hj for
j �= i then, by opening the i’th hidden bit and giving a proof πCS

i = pky
i = hy

j ,
the prover inadvertently also reveals the j’th hidden bit! While the above is easily
detectable, the malicious verifier can alternately set pki = hx

j for a random x
and still perform the same attack without being detectable. At the very least,
we need to modify our solution to overcome this particular attack.

The Fix. We start with the above “base scheme”, which is not secure in the
MDV setting, and show how to immunize against the above attack. To do so,
we use the “base scheme” to generate � “base hidden values” for some � � k
and then combine them carefully to create the k “actual hidden bits”. Recall
that the base scheme defines a commitment gy and the � base hidden values are
tj = hy

j . We can open any base value by giving the opening πCS
j = pky

j .
Instead of using the base values directly, we define each of the k “actual

hidden bits” by combining together a small group of base values and applying a
(Goldreich-Levin) hard-core predicate hc. The groups are chosen via a pseudo-
random mapping ϕ which maps each i ∈ [k] to a small group ϕ(i) ⊆ [�]. In other
words, the i’th actual hidden bit is defined as ri = hc({tj : j ∈ ϕ(i)}). The
mapping ϕ is chosen by the prover and is a part of com. To open any actual
hidden bit i ∈ [k] the prover opens all of the base hidden values tyj and also
provides the corresponding Cramer-Shoup proofs pky

j for j ∈ ϕ(i). Note that,
since ϕ is a part of com and we require com to be short, it is important that ϕ has
a short description size and therefore it must be a pseudo-random rather than
truly random mapping. For concreteness, we set the number of based hidden
values to � = 3kλ and the group size to |ϕ(i)| = λ, where λ is the security
parameter.

Intuition for the Fix. Intuitively, this prevents the above attacks for the follow-
ing reason. Assume that the verifier can choose pk maliciously so that the opening
of any base value j can inadvertently also reveal some other base value j′ = ψ(j),
where ψ is some mapping defined implicitly by the choice of pk. Nevertheless, it
is likely that each hidden bit i depends on some hidden value j ∈ ϕ(i) that is not
revealed even if we open all the other hidden bits i′ �= i. In particular, opening the
bits i′ �= i corresponds to giving out the base hidden value j′ as well as the inadver-
tently opened values ψ(j′) for each j′ ∈ ϕ(i′). But the entire set of revealed values
R = {j′, ψ(j′) : j′ ∈ ϕ(i′), i′ �= i} is of size |R| ≤ 2kλ and ϕ(i) ⊂ [� = 3kλ]
appears to be a random and independent subset of size |ϕ(i)| = λ. Hence it is
likely that ϕ(i) contains some value j �∈ R which was not revealed. Here we cru-
cially rely on the fact that ϕ is chosen (pseudo-)randomly by the prover after the
verifier chooses pk which defines the mapping ψ.
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The One-More CDH Assumption. While the above idea seems to immunize
against the particular class of attacks we previously discussed, proving security
against general attacks is more challenging. Nevertheless, we manage to do so
under the “one-more CDH” assumption. The one-more CDH assumption consid-
ers an adversary who is given g, gy, h1, . . . , hk along with an oracle Oy(·) which
takes as input an arbitrary group element f and returns Oy(f) = fy. It says
that even if the adversary makes m arbitrary calls to the oracle Oy he cannot
predict more than m of the values {hy

j }.
Security Under One-More CDH. Our high level proof goes as follows. Assume

that a malicious verifier gets to choose pk = {pkj}j∈[�] maliciously after seeing
crs = {hj}j∈[�] and can break hiding. This means that for some i ∈ [k], if
the verifier gets a random com and openings to all the hidden bits except for
the i’th one, he can distinguish hidden bit i from uniform with non-negligible
advantage. Since the i’th hidden bit is defined by taking the Goldreich-Levin
hardcore bit of the base hidden values j ∈ ϕ(i), this means that the verifier can
also predict all these values with non-negligible probability. So, if the verifier gets
ϕ, g, gy, {hy

j , pky
j : j ∈ ϕ(i′), i′ ∈ [k] \ {i}} then he can predict {hy

j : j ∈ ϕ(i)}.
Intuitively, we want to use such a verifier to break one-more CDH.

But in the above scenario, the verifier gets many more values raised to the
y power than he is able to output. To get around this, we want to “rewind” the
verifier run him on many different choices of ϕ to get more values {hy

j : j ∈ ϕ(i)}
out of him. But each time we rewind we also need to provide him with the
appropriate values {hy

j , pky
j : j ∈ ϕ(i′), i′ ∈ [k] \ {i}} so we are again getting

fewer powers of y out than we need to put in, which appears to be self-defeating.
If ϕ were truly random, we could get around this by freshly sample ϕ(i) on each
rewinding but keep ϕ(i′) : i′ ∈ [k] \ i fixed – that way we would only need
to give out some fixed 2kλ values {hy

j , pky
j : j ∈ ϕ(i′), i′ ∈ [k] \ {i}} but on

each rewinding we get some additional fresh values {hy
j : j ∈ ϕ(i)} out of the

verifier, and eventually we get more out than we put in which allows us to break
one-more CDH.

Unfortunately ϕ needs to have a short description, and therefore can only be
pseudorandom, in which case it’s not clear how to freshly re-sample ϕ(i) while
keeping ϕ(i′) : i′ ∈ [k] \ i fixed. We resolve this issue by using a special form of
pseudorandom functions (PRFs) called “somewhere equivocal PRFs” [HJO+16]
which essentially allow us to do exactly this while keeping the description of ϕ
short. Furthermore, such somewhere equivocal PRFs were constructed from only
one-way functions using the ideas of “distributed point functions” [GI14,BGI15]
and therefore don’t introduce any additional assumptions.

1.3 Concurrent Works

Concurrently and independently of ours, the works of [CH19] and [KNYY19]
present a similar construction of reusable DV-NIZKs from CDH, compiling the
hidden-bits NIZK of [FLS99] using the Cramer-Shoup hash-proof system [CS98,
CS02,CKS08]. Additionally, they respectively obtain the following results:



Reusable Designated-Verifier NIZKs for all NP from CDH 603

– [CH19] gives a construction of NIZKs for all NP assuming LWE, along with a
non-interactive witness intistinguishable (NIWI) proof for the Bounded Dis-
tance Decoding problem.

– [KNYY19] builds pre-processing NIZKs for all NP with succinct proofs,
namely a pre-processing NIZK from DDH with proofs of size |C| + poly(λ)
(where C is a circuit checking the NP relation), and a designated-prover
NIZK from (strong) assumptions over pairing-friendly groups, with proof size
|C| + poly(λ).

Meanwhile, our work introduces the notion of malicious designated-verifier
NIZKs (MDV-NIZK), and presents a construction from the One-More CDH
assumption.

Organization

Basic definitions and notations are given in Sect. 2. In Sect. 3 we introduce our
new notion of Hidden Bits Generator (HBG). In Sect. 4 we show how to use an
HBG to construct NIZKs. In Sect. 5 we construct a designated-verifier Hidden
Bits Generator assuming CDH. A few extension are mentioned in Sect. 7. In the
full version of the paper, we additionally give a construction of a HBG from the
CDH assumption over bilinear groups and we construct a HBG from (doubly-
enhanced) trapdoor permutations.

2 Preliminaries

We will denote by λ the security parameter. The notation negl(λ) denotes any
function f such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such
that f(λ) = O(λc) for some c > 0.

We define the statistical distance between two random variables X and Y
over some domain Ω as: SD(X,Y ) = 1

2

∑
w∈Ω |X(w) − Y (w)| . We say that two

ensembles of random variables X = {Xλ}, Y = {Yλ} are statistically indistin-
guishable, denoted X

s≈ Y , if SD(Xλ, Yλ) ≤ negl(λ).
We say that two ensembles of random variables X = {Xλ}, and Y = {Yλ} are

computationally indistinguishable, denoted X
c≈ Y , if, for all (non-uniform) PPT

distinguishers Adv, we have |Pr[Adv(Xλ) = 1] − Pr[Adv(Yλ) = 1]| ≤ negl(λ).
For a set X, integer k and sequence x ∈ Xk, we denote by xi the i-th entry

in the sequence, for any i ∈ [k]. For a subset I ⊂ [k], we denote by xI = (xi)i∈I

the subsequence of x in locations I.
For a probabilistic algorithm alg(·), we may explicit its internal randomness

as follows: alg( · ; coins).

2.1 The Diffie-Hellman Assumption

A group generator (G, p, g) ← GroupGen(1λ) is a PPT algorithm which, on input
1λ, outputs the description of a cyclic group G of order p, and a generator g of
G. We require that there are efficient algorithms running in time poly(λ) to
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perform the group operation in G and to test membership in G. For notational
simplicity, we will often shorten such an output (G, p, g) to G and assume that
g, p are implicit. A prime-order group generator additionally ensures that p is
prime.

Definition 2.1 (Computational Diffie-Hellman (CDH) assumption).
Let GroupGen be a group generator. We say that the Computational Diffie-
Hellman (CDH) assumption holds relative to GroupGen if for all PPT algorithm
A, we have:

Pr
[
A (

G, p, g, ga, gb
)

= gab : (G, p, g) ← GroupGen(1λ), (a, b) $← Z
2
p

]
≤ negl(λ).

Given such a group generator satisfying the CDH assumption, we can con-
sider an associated (randomized) hard-core bit hc : G → {0, 1} such that for all
PPT algorithm A, we have:

Pr

⎡
⎢⎣A

(
G, p, g, ga, gb, τ

)
= hc(gab ; τ) :

τ
$← {0, 1}L(λ)

(G, p, g) ← GroupGen(1λ)

(a, b)
$← Z

2
p

⎤
⎥⎦ ≤ 1/2 + negl(λ),

where the hard-core bit hc uses L(λ) random coins.
Such a hard-core bit can be generically obtained, using the Goldreich-Levin

construction [GL89].

2.2 Reusable Designated-Verifier NIZKs

In this section we define the notion of Reusable Designated-Verifier NIZKs (and
obtain the standard notion of NIZK as a special case).

Definition 2.2 (Reusable DV-NIZKs). Let be L an NP language with
witness relation RL. A Reusable Designated-Verifier Non-Interactive Zero-
Knowledge (DV-NIZK) Proof for L is a tuple of PPT algorithms (Setup,P,V)
where:

– Setup(1λ, 1n): On input the security parameter λ and statement length n,
outputs a common reference string crs and a trapdoor td;

– P(crs, x, w): On input a common reference string crs, a statement x of length
n and a witness w, outputs a proof π;

– V(crs, td, x, π): On input a common reference string crs, a trapdoor td, a state-
ment x and a proof π, outputs accept or reject,

such that they satisfy the following properties:

– Completeness: We require that for all (x,w) ∈ RL, we have:

Pr
[

V(crs, td, x, π) = accept : (crs, td) ← Setup(1λ, 1|x|)
π ← P(crs, x, w)

]

= 1;
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– Statistical Soundness: Let n and Q be any polynomials, and let P̃ be
any (computationally unbounded) cheating prover that makes at most Q(λ)
queries to an oracle V(crs, td, ·, ·) which takes as input (x, π), and outputs
V(crs, td, x, π)). We require that:

Pr

[
V(crs, td, x, π) = accept ∧ x /∈ L :

(crs, td) ← Setup(1λ, 1n(λ))

(x, π) ← P̃ V(crs,td,·,·)(crs)

]
≤ negl(λ);

– Zero-Knowledge (Selective): We require that there exists a PPT simu-
lator Sim such that for any PPT stateful5 adversary A, the two following
distributions are computationally indistinguishable:

expReal(1λ) : expIdeal(1λ) :

(x,w) ← A(1λ) (x,w) ← A(1λ)
where (x,w) ∈ RL where (x,w) ∈ RL

(crs, td) ← Setup(1λ, 1|x|), π ← P(crs, x, w) (crs, td, π) ← Sim(1λ, x)
Output A(crs, td, π) Output A(crs, td, π)

Our basic definition only considers selective ZK where the statement being
proven is chosen ahead of time, prior to seeing the CRS. In Sect. 4.1 we also
consider a stronger notion of adaptive ZK.

Our definition of designated-verifier NIZK coincides with that of standard
(publicly verifiable) NIZK if the trapdoor td is empty.

Definition 2.3. A publicly-verifiable NIZK is a reusable designated-verifier
NIZK where the trapdoor td output by Setup is an empty string.

Remark 2.4 (Bounding the number of queries to the Verify oracle). Notice that
for soundness we only allow the unbounded cheating prover to make a polyno-
mial number of queries to V(crs, td, ·, ·). One would ideally allow the unbounded
cheating prover to make arbitrarily many queries to V (matching more closely
the publicly-verifiable setting, where a cheating prover can indeed query the ver-
ification algorithm on arbitrarily many inputs). It turns out that any DV-NIZK
satisfying this stronger notion can be generically turned into a publicly-verifiable
one. This is because the cheating prover can query all possible proofs to V for
any x /∈ L; and therefore soundness can only hold if there are no valid proof of
any false statement (with overwhelming probability over the choice of crs), in
which case soundness also holds when the prover is given the trapdoor. Therefore
this is essentially the best requirement one can hope for as a meaningful notion
of reusable DV-NIZKs which is weaker than publicly-verifiable ones.

5 Throughout this paper we follow the convention that whenever a stateful adversary
A is invoked with some inputs it also produces some state which it gets as input on
the next invocation.
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Remark 2.5 (Single-Theorem vs. Multi-Theorem Zero-Knowledge). The defini-
tion of ZK above is often referred to as “single-theorem ZK” since it only requires
zero-knowledge to hold for a single statement. However, there is a generic com-
piler from single-theorem ZK to multi-theorem ZK where zero-knowledge holds
polynomially many statements via the “OR trick” [FLS99]. We note that the
very same transformation directly applies to both the selective and adaptive ZK
setting and also both the publicly-verifiable and the designated-verifier setting.

2.3 NIZKs in the Hidden-Bits Model

We now recall the definition of a NIZK in the hidden-bits model:

Definition 2.6 (NIZK in the Hidden-Bits Model). Let L be an NP lan-
guage and n be an integer. A Non-Interactive Zero-Knowledge Proof in the
Hidden-Bits Model for L is given by a pair of PPT algorithms (P,V), and a
polynomial k(λ, n), where:

– P(1λ, r, x, w): On input string r ∈ {0, 1}k(λ,n), a statement x of size |x| = n
and a witness w, output a set of indices I ⊆ [k] and proof π.

– V(1λ, I, rI , x, π): On input a subset I ⊆ [k], a string rI , a statement x and a
proof π, outputs accept or reject,

such that they satisfy the following properties:

– Completeness: We require that for all x ∈ L of size |x| = n with witness w
we have:

Pr

[

V(1λ, I, rI , x, π) = accept : r
$← {0, 1}k(λ,n)

(I, π) ← P(1λ, r, x, w)

]

= 1;

– Soundness: We require that for all polynomial n = n(λ), and all unbounded
cheating prover P̃, we have:

Pr

⎡

⎣
V(1λ, I, rI , x, π) = accept

∧ x /∈ L
∧ |x| = n

: r
$← {0, 1}k(λ,n)

(x, π, I) ← P̃(1λ, r)

⎤

⎦ ≤ negl(λ);

– Zero-Knowledge: We require that there exists an efficient simulator Sim
such that for any adversary A the two following distributions are statistically
indistinguishable:

(I, rI , π)
s≈ (I ′, r′

I , π
′)

where (x,w) ← A(1λ), r ← {0, 1}k(λ,|x|), (I, π) ← P(1λ, r, x, w), (I ′, r′
I , π

′) ←
Sim(1λ, x).

When clear from context, we will omit 1λ as an argument to the algorithms
defined above.
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Remark 2.7 (Amplifying soundness). Let �(λ, n) be a polynomial. Then, given
any NIZK in the hidden-bits model, we can build one with soundness 2−�(λ,n) ·
negl(λ). This is simply done by running �(λ, n) copies of the NIZK in parallel,
and where the new verification algorithm accepts a proof if and only if all of
the executions accept. Note that doing so requires to use k · �(λ, n) hidden bits
instead of k initially.

Theorem 2.8 ([FLS99], see also [Gol01, Section 4.10.2]). Every L ∈ NP has
a NIZK in the Hidden-Bits Model.

3 Hidden-Bits Generator

In this section, we define our new notion of Hidden-Bits Generator (HBG). For
simplicity, we first define a publicly verifiable version of HBG and then extend
the definition to a designated-verifier version (DV-HBG).

Definition 3.1 (Hidden-Bits Generator). A Hidden-Bits Generator (HBG)
is given by a set of PPT algorithms (Setup,GenBits,Verify):

– Setup(1λ, 1k): Outputs a common reference string crs.
– GenBits(crs): Outputs a triple

(
com, r, {πi}i∈[k]

)
, where r ∈ {0, 1}k.

– Verify(crs, com, i, ri, πi): Outputs accept or reject, where i ∈ [k].

We require any Hidden-Bits Generator to satisfy the following properties:

Correctness: We require that for every polynomial k = k(λ) and for all i ∈ [k],
we have:

Pr
[
Verify(crs, com, i, ri, πi) = accept : crs ← Setup(1λ, 1k)

(com, r, π[k]) ← GenBits(crs)

]
= 1.

Succinct Commitment: We require that there exists some set COM(λ) and
some constant δ < 1 such that |COM(λ)| ≤ 2kδpoly(λ), and such that for
all crs output by Setup(1λ, 1k) and all com output by GenBits(crs) we have
com ∈ COM(λ). Furthermore, we require that for all com /∈ COM(λ),
Verify(crs, com, ·, ·) always outputs reject.6

Statistical Binding: There exists an (inefficient) deterministic algorithm
Open(1k, crs, com) such that for every polynomial k = k(λ), on input 1k, crs
and com, the algorithms outputs r such that for every (potentially unbounded)
cheating prover P̃:

6 The set of commitments COM should not be thought of as the set of all valid com-
mitments (and indeed it may contain commitments not in the support of GenBits).
In particular, the simplest way to satisfy this property is to bound the bit-length of
com and have the verifier reject commitments that are too large. Note that additional
structural properties about com can be checked by the Verify algorithm.
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Pr

⎡
⎣ r∗

i �= ri

∧ Verify(crs, com, i, r∗
i , πi) = accept

:

crs ← Setup(1λ, 1k)

(com, i, r∗
i , πi) ← P̃(crs)

r ← Open(1k, crs, com)

⎤
⎦ ≤ negl(λ).

Computationally Hiding: We require that for all polynomial k = k(λ) and
I ⊆ [k], the two following distributions are computationally indistinguishable:

(
crs, com, I, rI , πI , rĪ

)

c≈(
crs, com, I, rI , πI , r

′̄
I

)
,

where crs ← Setup(1λ, 1k), (com, r, π[k]) ← GenBits(crs) and r′ $← {0, 1}k.

Designated-Verifier Hidden-Bits Generator. We define the Designated-
Verifier version of a Hidden-Bits Generator (DV-HBG) similarly, but with the
following differences:

– Setup(1λ, 1k) : Now outputs (crs, td), where td is a trapdoor associated to the
crs;

– Verify(crs, td, com, i, ri, πi) takes the trapdoor td as an additional input, and
outputs accept or reject as before;

– For Statistical Binding, the cheating prover P̃ can now make a polynomial
number of oracle queries to Verify(crs, td, · · · ). We require that for any such
P̃ :

Pr

⎡
⎣ r∗

i �= ri

∧ Verify(crs, td, com, i, r∗
i , πi) = accept

:

(crs, td) ← Setup(1λ, 1k)

(com, i, r∗
i , πi) ← P̃Verify(crs,td,··· )(crs)

r ← Open(1k, crs, com)

⎤
⎦≤negl(λ).

– For Computational Hiding, we require that the distributions are indistinguish-
able given the associated trapdoor td:

(
crs, td, com, I, rI , πI , rĪ

)
c≈

(
crs, td, com, I, rI , πI , r

′̄
I

)
,

where (crs, td) ← Setup(1λ, 1k), (com, r, π[k]) ← GenBits(crs) and r′ $←
{0, 1}k.

4 From Hidden-Bits Generator to NIZKs

We now prove that we can combine any (DV-)HBG with a NIZK in the Hidden-
Bits model to get a (Reusable DV-)NIZK in the CRS model. Recall that our
basic notion of NIZKs considered selective version of ZK where the statement
to be proven is chosen prior to seeing the CRS. In Sect. 4.1 we will then extend
our compiler to the adaptive ZK setting.
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Theorem 4.1. Suppose there exists a Hidden-Bits Generator, then there exists
a publicly verifiable NIZK. Suppose there exists a designated-verifier Hidden-
Bits Generator (DV-HBG), then there exists a reusable designated-verifier NIZK
(reusable DV-NIZK).

For simplicity, we first consider the publicly verifiable version of Theorem 4.1,
the minor differences that are needed to extend it to the designated-verifier
setting are discussed in the full version of the paper.

Construction. Let L be an NP language and n be an integer. Let (SetupBG,
GenBits, Verify) be a hidden-bits generator (Definition 3.1), where |COM| =
|COM(λ)| ≤ 2kδp(λ) for some polynomial p and constant δ < 1. (where k is the
number of hidden bits generated).

Given a NIZK in the hidden-bits model for L using k′ = k′(λ, n) hidden bits
(which exists unconditionally by Theorem 2.8), by Remark 2.7, there exists, for
all polynomial q(λ, n) (which we will set later), a NIZK in the hidden-bits model
(PHB,VHB) using k = k′ · q(λ, n) hidden bits with soundness-error 2−q(λ,n) ·
negl(λ).

Consider the following candidate NIZK (SetupZK,P,V) in the CRS model:

– SetupZK(1λ, 1n): Compute crsBG ← SetupBG(1λ, 1k), sample s
$← {0, 1}k and

output:
crs = (crsBG, s);

– P(crs, x, w): Compute (com, rBG, π[k]) ← GenBits(crsBG). Set ri = rBGi ⊕ si for
all i ∈ [k], and run the hidden-bits prover to get (I ⊆ [k], πHB) ← PHB(r, x, w).
Output:

Π = (I, πHB, com, rI , πI).
– V(crs, x,Π = ((I, πHB, com, rI , πI))): Compute rBGi = ri ⊕ si for all i ∈

[k]. Accept if for all i ∈ I, Verify(crsBG, com, i, rBGi , πi) accepts, and if
VHB(I, rI , x, πHB) also accepts.

We refer the reader to the full version of the paper for a proof that
(SetupZK,P,V) is a NIZK, and how to extend this construction to the designated-
verifier setting.

4.1 Adaptive ZK

Our default definition of (reusable designated-verifier) NIZKs considers a selec-
tive version of the zero-knowledge property, where the statement x is chosen
before the CRS. We also consider a stronger adaptive zero-knowledge property,
where the statement x can depend adaptively on the CRS. Let us begin by
defining adaptive ZK.

Definition 4.2 (Adaptive ZK). A (reusable designated-verifier) NIZK satis-
fies adaptive Zero-Knowledge (adaptive ZK) if the following holds. We require
that there exists a stateful PPT simulator Sim such that for any stateful PPT
adversary A the two following distributions are computationally indistinguish-
able:
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expReal(1λ) : expIdeal(1λ) :

1n ← A(1λ) 1n ← A(1λ)
(crs, td) ← Setup(1λ, 1n) (crs, td) ← Sim(1λ, 1n)
(x,w) ← A(crs, td) (x,w) ← A(crs, td)

where (x,w) ∈ RL, |x| = n where (x,w) ∈ RL, |x| = n
π ← P(crs, x, w) π ← Sim(x)
Output A(π) Output A(π)

The compiler of Theorem 4.1 can be extended to the adaptive setting:

Theorem 4.3. Suppose there exists a Hidden-Bits Generator, then there exists
a publicly verifiable NIZK with adaptive ZK security. Suppose there exists
a designated-verifier Hidden-Bits Generator (DV-HBG), then there exists a
reusable designated-verifier NIZK (DV-NIZK) with adaptive ZK security.

We refer to the full version of the paper for the proof of Theorem 4.3.

5 Designated-Verifier Hidden-Bits Generator
from CDH

Let (G, p, g) ← GroupGen(1λ) be a prime-order group generator so that G is
a group of prime order p, with a generator g. Let hc be the corresponding
Goldreich-Levin [GL89] hard-core bit. Let us define the following hidden-bits
generator:

– Setup(1λ, 1k): Let (G, p, g) ← GroupGen(1λ). For all i ∈ [k], pick random

ai, bi
$← Zp and hi

$← G and compute:

fi = hai
i · gbi .

Sample some random coins γ matching the randomness used by hc(·). Output:
(
crs =

(
G, {(hi, fi)}i∈[k], γ

)
, td = {(ai, bi)}i∈[k]

)
.

– GenBits(crs): Pick a random y ← Zp, and compute for all i ∈ [k]: ti = hy
i

and ui = fy
i . Output:

com = s = gy,

{ri = hc(ti; γ)}i∈[k],

{πi = (ui, ti)}i∈[k].

– Verify(crs, td = {(ai, bi)}, com = s, i, ri, πi = (ui, ti)) : Compute:

ρi = tai
i · sbi ,

and accept if and only if ρi = ui, and ri = hc(ti; γ).
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Theorem 5.1. The triple (Setup,GenBits,Verify) is a Designated-Verifier
Hidden-Bits Generator under CDH.

We refer to the full version of the paper for a proof of Theorem 5.1.
Combining Theorems 4.3 and 5.1, and Remark 2.5, we obtain the following:

Theorem 5.2 (Reusable DV-NIZK from CDH). Under the CDH assump-
tion, there exists a reusable DV-NIZK for all NP with statistical soundness, and
adaptive, multi-theorem zero-knowledge (Definitions 2.2, 4.2).

6 Malicious-Designated-Verifier NIZKs

In this section we consider a strengthening of designated-verifier NIZKs to the
malicious-designated-verifier setting (MDV-NIZK). In this setting, the trusted
setup consists solely of a common random string (CRS). Given the CRS, the
(potentially malicious) verifier generates a public key pk along with a secret key
sk. The rest of the protocol is otherwise similar to the previous setting: any
prover can use the CRS along with the newly generated public key to build
non-interactive proofs of (many) NP statements, which can be verified using the
corresponding secret key. The main difference is that we require zero-knowledge
to hold against malicious verifiers, who can generate arbitrarily malformed public
keys pk.

6.1 More Preliminaries

Reusable Malicious-Designated-Verifier NIZK.

Definition 6.1 (Reusable Malicious-Designated-Verifier NIZK (MDV-
NIZK)). Let L be an NP language with witness relation RL. A Reusable
Malicious-Designated-Verifier NIZK (MDV-NIZK) for L is a tuple of PPT algo-
rithms (Setup,KeyGen,P,V) where:

– Setup(1λ, 1n): outputs a common random string crs;
– KeyGen(crs): outputs a public key pk along with an associated secret key sk;
– P(crs, pk, x, w): outputs a proof π;
– V(crs, sk, pk, x, π): Outputs accept or reject.

We require those algorithms to satisfy the same completeness and statistical
soundness properties as Reusable DV-NIZKs (see Definition 2.2) with direct
modifications to match the new syntax above, where now (crs, pk) together act
in place of what was previously just the crs. The requirement for zero-knowledge
is strengthened to the following:

Malicious Zero-Knowledge (Adaptive): We require that there exists a PPT
simulator Sim such that for any PPT stateful adversary A, the two following
distributions are computationally indistinguishable:
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expReal(1λ) : expIdeal(1λ) :

1n ← A(1λ) 1n ← A(1λ)
crs ← Setup(1λ, 1n) crs ← Sim(1λ, 1n)
(x,w, pk) ← A(crs) (x,w, pk) ← A(crs)

where (x,w) ∈ RL, |x| = n where (x,w) ∈ RL, |x| = n
π ← P(crs, pk, x, w) π ← Sim(pk, x)
Output A(π) Output A(π)

Remark 6.2 (Single-Theorem vs. Multi-Theorem Zero-Knowledge). As in Def-
inition 2.2, the definition above only captures single-theorem zero-knowledge.
However the same “Or trick” of [FLS99] as in Remark 2.5 allows to generically
compile any MDV-NIZK with single-theorem, adaptive (resp. selective) ZK into
one satisfying multi-theorem, adaptive (resp. selective) ZK.

One-More CDH

We will use in this section a strengthening of the CDH assumption called One-
More CDH. Intuitively, it states that given a set of challenge elements {hj = gbj }
and the ability to make m queries to an oracle that raises arbitrary elements to
some hidden exponent a ∈ Zp, it is hard to guess more than m of the values
h

aj

j = gabj .

Definition 6.3 (One-More Computational Diffie-Hellman assumption
(One-More CDH)). Let GroupGen be a group generator. Let � = �(λ) and
m = m(λ) be polynomials. Consider, for any PPT A, the following experiment:

ExpOne-More CDH(1λ)

1. (G, p, g) ← GroupGen(1λ)

2.
(
ga, {gbi}i≤�

) $← G
1+�

3. L ← AOa(·)(G, p, g, ga, {gbi}i≤�)

4. Output 1 if ∃ i1 < · · · < im+1 ∈ [�] such that ∀j ≤ m + 1,, g
a·bij ∈ L;

Otherwise output 0,

where the oracle Oa takes as input a group element h ∈ G and outputs ha.
We say that the One-More CDH assumption holds relative to GroupGen7 if

for all PPT algorithm A making at most m queries to Oa, we have:

Pr[ExpOne-More CDH(1λ) = 1] ≤ negl(λ).
7 Later, we will also use the (mild) additional property that one can obliviously sam-

ple uniform group elements in G, so that the One-More CDH assumption holds
even given the random coins used to sample the group elements in Step 2. (and in
particular a and the bi’s should be computationally hidden). Note that most stan-
dard groups (such as Z

∗
p or elliptic curves) allow to do so. Looking ahead, if such a

property does not hold, the resulting MDV-NIZK (Theorem 6.9) will use a common
reference string instead.
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Remark 6.4 (One-More CDH in Prior Works). A variety of previous works
defined assumptions similar to the one above. To our knowledge, the first of
this kind was introduced in the context of blind signatures in [Bol03], follow-
ing the steps of [BNPS03] who first introduced One-More variants of the RSA
and Discrete Log assumptions. More recently, another variant was used in the
context of Oblivious PRFs (e.g. [JKK14]). The variant of [Bol03] requires the
adversary to output one single guess for each target index j ∈ J , as opposed
to a list of candidates L. As the adversary a-priori cannot test himself whether
an element is correct, this makes it more difficult for the adversary to win the
game and therefore the assumption of [Bol03] is weaker than our version in Def-
inition 6.3. In [JKK14], on the other hand, the adversary is also given oracle
access to a procedure that tests whether an element is a correct CDH output
associated to some target index, but still has to output a single element for each
target index. A direct reduction shows that this assumption is at least as strong
as our variant: an adversary in the latter can call the oracle of [JKK14] on the
whole list L to recover the matching indices.

Somewhere-Equivocable PRFs (SEPRFs)

We recall here the concept of Somewhere-Equivocable pseudorandom function
(SEPRF)s, introduced in [HJO+16]. This is a function PRF(K, ·) with two modes
of generating a key. There is the standard key generation algorithm which gen-
erates a key K honestly. In addition, there is a way to generate a key K ′ that
leaves a “hole” at some particular point x∗ but defines the PRF output at all
other points; later one can “plug the hole” to any value r by creating a key K∗

which agrees with K ′ on all values other than x∗ but on x∗ it outputs r. For any
x∗ and a random r one cannot distinguish between an honestly generated key K
and the key K∗ created as above. Intuitively, the second mode of key generation
ensures that the function PRF(K∗, ·) outputs a truly random and independent
value on some specific point x∗.

Definition 6.5 (1-Somewhere-Equivocable PRFs (1-SEPRFs)
[HJO+16]). A 1-Somewhere-Equivocable PRF (1-SEPRF) with input size s and
output size d is a tuple of PPT algorithms (ObvGen,PRF,Sim1,Sim2):

– ObvGen(1λ): outputs a key K such that PRF(K, ·) maps {0, 1}s to {0, 1}d;
– Sim1(x∗): on input x∗ ∈ {0, 1}s, outputs a key K and a state state;
– Sim2(state, r): on input r ∈ {0, 1}d, outputs a key K ′.

such that the following properties hold:

Correctness: We have that for all x∗ ∈ {0, 1}s and r ∈ {0, 1}d, if (K, state) $←
Sim1(x∗) and K ′ $← Sim2(state, r), then:

PRF(K,x) = PRF(K ′, x) if x �= x∗

PRF(K ′, x∗) = r.

Equivocation security: For all PPT adversary A we have:
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∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣

x∗ $← A(1λ)

K
$← ObvGen(1λ)
A(K) = 1

⎤

⎥
⎦ − Pr

⎡

⎢
⎢
⎢
⎣

x∗ $← A(1λ), r∗ $← {0, 1}d

(K, state) ← Sim1(x∗)

K ′ $← Sim2(state, r∗)
A(K ′) = 1

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(λ).

Claim ([HJO+16]). Assuming one-way functions exist, there exist 1-SEPRFs,
with key size O(s · d · λ).

6.2 Reusable Malicious-Designated-Verifier HBG (MDV-
HBG)

To define a reusable Malicious-Designated-Verifier Hidden-Bits Generator
(MDV-HBG), we extend the definition of a DV-HBG in a manner analogous
to the difference between DV-NIZKs and MDV-NIZKs. Namely, instead of hav-
ing a trusted setup that generates a public crs along with a secret key sk for the
verifier, we now only have the setup algorithm generate the crs and allow the
(potentially malicious) verifier to generate pk, sk on his own via a new KeyGen
algorithm. Furthermore, we want to ensure that the generated hidden bits only
depend on crs but not on pk; only the openings of the hidden bits can depend
on pk.

Definition 6.6 (Reusable Malicious-Designated-Verifier HBG (MDV-
HBG)). A Reusable Malicious-Designated-Verifier HBG is a tuple of PPT algo-
rithms (Setup,KeyGen, (GenBits.Commit,GenBits.Prove),Verify):

– Setup(1λ, 1k): outputs a common random string crs.
– KeyGen(crs): outputs a public key pk with an associated secret key sk.
– GenBits(crs, pk) is now split into two sub-procedures:

• GenBits.Commit(crs): on input a crs, outputs a commitment com, some
bits r ∈ {0, 1}k and a state state.

• GenBits.Prove(crs, pk, state): on input a public key pk, a crs and a state
state, produces proofs {πi}i∈k.

It outputs (com, r, {πi}i∈[k]).
– Verify(crs, sk, com, i, ri, πi): Outputs accept or reject.

We require an MDV-HBG to satisfy the following properties. The first three
(correctness, succinctness of the commitments and statistical binding), are direct
adaptations of Definition 3.1 to the new syntax:

Correctness: We require that for every polynomial k = k(λ) and for all i ∈ [k],
we have:

Pr
[
Verify(crs, sk, com, i, ri, πi) = accept :

crs ← Setup(1λ, 1k)
(pk, sk) ← KeyGen(crs)

(com, r, π[k]) ← GenBits(crs, pk)

]
= 1.
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Succinct Commitment: We require that there exists some set COM(λ) and
some constant δ < 1 such that |COM(λ)| ≤ 2kδpoly(λ), and such that for
all crs output by Setup(1λ, 1k) and all com output by GenBits(crs) we have
com ∈ COM(λ). Furthermore, we require that for all com /∈ COM(λ),
Verify(crs, com, ·, ·) always outputs reject.

Statistical Binding: There exists an (inefficient) deterministic algorithm
Open(1k, crs, com) such that for every polynomial k = k(λ), on input 1k, crs
and com, the algorithms outputs r such that for every (potentially unbounded)
cheating prover P̃:

Pr

⎡
⎢⎢⎣

r∗
i �= ri

∧ Verify(crs, sk, com, i, r∗
i , πi) = accept

:

crs ← Setup(1λ, 1k)

(pk, sk) ← KeyGen(crs)

(com, i, r∗
i , πi) ← P̃(crs, pk)

r ← Open(1k, crs, com)

⎤
⎥⎥⎦ ≤ negl(λ).

The main conceptual difference with Definition 3.1 comes from the computa-
tional hiding property, which now captures security against malicious verifiers:

Computationally Hiding against Malicious Verifiers: Consider, for an
integer k, a bit b, and a stateful PPT adversary A, the following experiment:

ExpHiding,b(1λ, 1k)

0. I ⊆ [k] ← A(1k)

1. crs ← Setup(1λ, 1k)
2. pk ← A(crs)
3. Compute (com, r, {πi}i∈[k]) ← GenBits(crs, pk).

Set for all i /∈ I :

{
ρi = ri if b = 0;

ρi
$← {0, 1} otherwise.

4. Output : β ← A (crs, com, I, rI , πI , {ρi}i/∈I)

We require that for all polynomial k = k(λ) and stateful PPT adversary A:
∣
∣
∣Pr

[
ExpHiding,0(1λ) = 1

]
− Pr

[
ExpHiding,1(1λ) = 1

]∣
∣
∣ ≤ negl(λ).

6.3 Reusable MDV-NIZK from MDV-HBG

We present here an analogue to Theorem 4.1 in the malicious-verifier setting.

Theorem 6.7. Suppose there exists a MDV-HBG. Then there exists a reusable
MDV-NIZK with adaptive ZK security.

The proof of Theorem 6.7 is a simple adaptation of the one of Theorem 4.1. We
refer the reader to the full version of the paper for more details.
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6.4 MDV-HBG from One-More CDH

Notation. Let d, k and � be integers, where � is a power-of-two. Given a function
ϕ : [k] → [�]d and some index i ∈ [k], we define, for some vector u of dimension
�, the vector:

uϕ(i) :=
(
uϕ(i)1 , . . . , uϕ(i)d

)
.

In other words, we can think of ϕ(i) as a set of neighbors of vertex i ∈ [k]
in the bipartite (multi-)graph ([k], [�]). Furthermore if the vertices j ∈ [�] are
labelled with some element uj , then uϕ(i) denotes the list of labels associated to
neighbors of i. Note that vertices in [k] have d neighbors in [�] (where there can
be multiple occurrences of the same edge). We naturally extend this definition
for sets of indices: for I ⊆ [k], we define

uϕ(I) :=
(
uϕ(i)1 , . . . , uϕ(i)d

)
i∈I

.

Let hc be the Goldreich-Levin [GL89] hard-core bit (which, on input a

bit-string x ∈ {0, 1}L, uses randomness r
$← {0, 1}L and outputs hc(x; r) :=

(〈x, r〉, r)).
Construction. Let (G, p, g) ← GroupGen(1λ) be a prime-order group generator
so that G is a group of prime order p, with a generator g. For λ, k ∈ N, let
� = �(λ, k) be the least power-of-two greater than 3kλ (i.e. � = 2
log(3kλ)�), and
let d = λ. Let (ObvGen,PRF,Sim1,Sim2) be a 1-SEPRF (as defined in Sect. 6.1)
where ObvGen(1λ) outputs keys K such that PRF(K, ·) maps {0, 1}
log k� to
{0, 1}d·log � (and in particular maps [k] to [�]).

Let us define the following hidden-bits generator:

– Setup(1λ, 1k): Let (G, p, g) ← GroupGen(1λ). For all j ∈ [�], pick hj
$← G.

Output:
crs = (G, {hj}j∈[�]).

– KeyGen(crs): For all j ∈ [�], pick random aj , bj
$← Zp, compute:

fj = h
aj

j · gbj ,

and output:

pk = {fj}j∈[�],

sk = {(aj , bj)}j∈[�].

– GenBits(crs, pk):
• GenBits.Commit(crs): Pick a random y ← Zp and set s = gy. Compute for

all j ∈ [�]: tj = hy
j . Sample some random coins γ matching the randomness

used by hc(·) taking as input (the bit-representation of) elements in G
d.

Sample K ← ObvGen(1λ). Parsing the output of PRF(K, ·) as d blocks of
log � bits, this defines for all i ∈ [k]:

ϕ(i) := (PRF(K, i)1, . . . ,PRF(K, i)d) ∈ [�]d. (1)
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Compute for all i ∈ [k]: ri = hc
(
(hy)ϕ(i) ; γ

)
, where we recall that by

definition (hy)ϕ(i) =
(
hy
PRF(K,i)1

, . . . , hy
PRF(K,i)d

)
. Output:

com = (s, γ,K),
{ri}i∈[k],

state = (y,K).

• GenBits.Prove(crs, pk, state): Parse pk as {fj}j∈[�]. The key K in state
defines a function ϕ as per Eq. 1. Compute for all j ∈ [�]: tj = hy

j and
uj = fy

j . Compute for all i ∈ [k]:

πi = {(tj , uj)}j∈ϕ(i).

Output:

(com, r, {πi}i∈[k]).

– Verify(crs, sk, com, i, ri, πi) : Parse sk = {(aj , bj)}j∈[�], com = (s, γ,K), πi =
{(tj , uj)}j∈ϕ(i). Compute for j ∈ ϕ(i) (where ϕ(i) is defined as per Eq. 1):

ρj = t
aj

j · sbj ,

and accept if and only if ρj = uj for all j ∈ ϕ(i), and ri = hc
(
{t}ϕ(i) ; γ

)
.

Theorem 6.8. Suppose that (ObvGen,PRF,Sim1,Sim2) is a 1-SEPRF (Defini-
tion 6.5). Then, assuming the One-More CDH assumption holds (Definition 6.3,
(Setup,GenBits,Verify) is a reusable Malicious-Designated-Verifier Hidden-Bits
Generator (Definition 6.6).

We refer the reader to the full version of this paper for a proof of Theorem 6.8.
Combining Claim 6.1, Theorems 6.7 and 6.8, and Remark 6.2, we obtain the

following:

Theorem 6.9 (MDV-NIZK from One-More CDH). Under the One-More
CDH assumption (Definition 6.3), there exists a MDV-NIZK for all NP (Defini-
tion 6.1) with statistical soundness, and adaptive, multi-theorem zero-knowledge.

7 Extensions

We informally describe two simple extensions of our construction.

Unbounded Statement Size. In our construction of (reusable DV-)NIZKs,
we need to have a bound n on the size of the statements that can be proved and
the size of the CRS depends on n. Ideally, we would have a fixed-size CRS which
allows us to prove statements of arbitrary size. Indeed, we can achieve this using
non-interactive statistically-binding commitments in the CRS model, which exist
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assuming OWFs [Nao90,Nao91]. Let us fix 3SAT as the NP-complete language.
To prove that some 3CNF is satisfiable the prover commits to the satisfying
assignments one variable at a time. Then he uses a (reusable DV-)NIZK scheme
for each clause separately to show that the 3 relevant committed values satisfy
the clause. Note that the size of the statements being proved by the underlying
(reusable DV-)NIZK is independent of the size of the actual 3CNF formula.
Therefore the above technique bootstraps a (reusable DV-)NIZK for statements
of some fixed size which depends only on the security parameter to construct a
(reusable DV-)NIZK for statements of arbitrary size.

Proof of Knowledge. While our basic construction is not a proof-of-knowledge
it is easy to generically add this property assuming the existence of public-key
encryption (PKE). We can add a public-key com of a PKE scheme to the CRS
and have the prover encrypt the witness under com and then use the (reusable
DV-)NIZK to prove that the ciphertext is an encryption of a valid witness for
the statement. The extractor would choose com along with a corresponding
decryption key sk and use it to extract the witness.
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Abstract. In a non-interactive zero-knowledge (NIZK) proof, a prover
can non-interactively convince a verifier of a statement without reveal-
ing any additional information. Thus far, numerous constructions of
NIZKs have been provided in the common reference string (CRS) model
(CRS-NIZK) from various assumptions, however, it still remains a long
standing open problem to construct them from tools such as pairing-free
groups or lattices. Recently, Kim and Wu (CRYPTO’18) made great
progress regarding this problem and constructed the first lattice-based
NIZK in a relaxed model called NIZKs in the preprocessing model (PP-
NIZKs). In this model, there is a trusted statement-independent prepro-
cessing phase where secret information are generated for the prover and
verifier. Depending on whether those secret information can be made
public, PP-NIZK captures CRS-NIZK, designated-verifier NIZK (DV-
NIZK), and designated-prover NIZK (DP-NIZK) as special cases. It was
left as an open problem by Kim and Wu whether we can construct
such NIZKs from weak paring-free group assumptions such as DDH.
As a further matter, all constructions of NIZKs from Diffie-Hellman
(DH) type assumptions (regardless of whether it is over a paring-free
or paring group) require the proof size to have a multiplicative-overhead
|C| · poly(κ), where |C| is the size of the circuit that computes the NP
relation.

In this work, we make progress of constructing (DV, DP, PP)-NIZKs
with varying flavors from DH-type assumptions. Our results are summa-
rized as follows:

– DV-NIZKs for NP from the CDH assumption over pairing-free
groups. This is the first construction of such NIZKs on pairing-
free groups and resolves the open problem posed by Kim and Wu
(CRYPTO’18).

– DP-NIZKs for NP with short proof size from a DH-type assumption
over pairing groups. Here, the proof size has an additive-overhead
|C|+poly(κ) rather then an multiplicative-overhead |C|·poly(κ). This
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is the first construction of such NIZKs (including CRS-NIZKs) that
does not rely on the LWE assumption, fully-homomorphic encryp-
tion, indistinguishability obfuscation, or non-falsifiable assumptions.

– PP-NIZK for NP with short proof size from the DDH assumption
over pairing-free groups. This is the first PP-NIZK that achieves a
short proof size from a weak and static DH-type assumption such as
DDH. Similarly to the above DP-NIZK, the proof size is |C|+poly(κ).
This too serves as a solution to the open problem posed by Kim and
Wu (CRYPTO’18).

Along the way, we construct two new homomorphic authentication
(HomAuth) schemes which may be of independent interest.

1 Introduction

1.1 Background

Zero-knowledge (ZK) proof system [57] is an interactive protocol where a prover
convinces the validity of a statement to a verifier without providing any addi-
tional knowledge. A non-interactive zero-knowledge (NIZK) proof (or argu-
ment1) [13] is a ZK proof (or argument) where a prover can generate a proof
to the validity of a statement without interacting with a verifier. Due to the
absence of interaction, NIZKs have found tremendous number of applications in
cryptography including (but not limited to) chosen-ciphertext secure public key
encryption [45,76,84], group/ring signatures [9,37,81], anonymous credentials
[35,40], and multi-party computations (MPC) [55]. Furthermore, aside from its
practical interests, due to its theoretically appealing nature, studying the types
of assumptions which imply NIZKs has also been an active research area for
NIZKs [12,47,63,82]. Below, we briefly review the current state of affairs con-
cerning NIZKs.

NIZKs in the CRS model. It is well known that NIZKs for non-trivial lan-
guages do not exist in the plain model where there is no trusted setup [56].
Therefore NIZKs for all of NP are constructed either in the common reference
string (CRS) model [47] or the random oracle model [48,79]. In the former type
of NIZK, the prover and the verifier have access to a CRS generated by a trusted
third party (hereafter referred to as CRS-NIZK). Thus far, known constructions
of CRS-NIZK for NP are based on (doubly-enhanced) trapdoor permutation
[10,47,53], pairing [63,64], or indistinguishability obfuscation [11,12,86]. Con-
structing CRS-NIZKs based on other assumptions such as pairing-free groups
and lattices remains to be a long standing open problem.

NIZKs in the designated verifier/prover model. As an alternative line
of research, NIZKs in a relaxed model have been considered: designated verifier
NIZKs (DV-NIZKs) and designated prover NIZKs (DP-NIZKs). Both notions
1 NIZK arguments are a relaxed notion of NIZK proofs where soundness only holds

against computationally bounded adversaries. Throughout the introduction, we sim-
ply refer to them as NIZKs.
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of NIZKs retain most of the useful security properties of NIZKs with some
relaxation. In DV-NIZKs, anybody can generate a proof, but the proof can
only be verified by a designated party in possession of a verification key. On
the other hand, in DP-NIZKs only a designated party in possession of a proving
key can generate a proof, but the proof can be verified by anybody. Although
the two types of NIZKs are relaxation of CRS-NIZKs, they showed to be no
easier to construct. There have been a long line of work concerning DV-NIZKs
[32–34,42,74,77,91], however, many of these schemes do not satisfy soundness
against multiple theorems, which in brief means that soundness does not hold
against a cheating prover given unbounded access to a verification oracle (See
Sect. 1.4 for more details). Moreover, DV-NIZKs satisfying soundness against
multiple theorems [32,34] are built on tools which are already known to imply
CRS-NIZKs. It was not until recently that Kim and Wu [71] in a breakthrough
result showed how to construct DP-NIZKs supporting NP languages from lat-
tices; this is the first NIZKs for all of NP in any model that is based on lattice
assumptions. They showed a generic construction of DP-NIZKs from homomor-
phic signatures (HomSig) and instantiated it with the lattice-based HomSig of
[60]. However, despite these recent developments, basing the construction of DV-
NIZKs or DP-NIZKs for all of NP on pairing-free groups still remains unsolved,
and Kim and Wu [71] have stated it as an open problem to construct such NIZKs
from the decisional Diffie-Hellman (DDH) assumption.

First Contribution. One of our main contributions is solving this open problem
and constructing the first DV-NIZKs from the computational Diffie-Hellman
(CDH) assumption over paring-free groups. As our scheme is DV-NIZKs and
not DP-NIZKs, our techniques depart from [71] and follows more closely to the
classical techniques of [47]. More details will be provided in Sect. 1.2.

NIZKs with short proof size. An equally important topic for NIZKs is con-
structing NIZKs with short proof size. Our construction above solves the open
problem of constructing DV or DP-NIZKs from paring-free groups, however, the
size of proof is rather large. Namely, it is of size poly(κ, |C|), where κ is the secu-
rity parameter and |C| is the size of circuit computing the NP relation R. In
particular, the proof size incurs at least a multiplicative-overhead of O(|C|κ). As
far as we know, the only (CRS, DV, DP)-NIZKs for NP in the standard model
with a short proof size, i.e., a proof with additive-overhead O(|C|) + poly(κ)
rather than O(|C|) ·poly(κ), either requires a knowledge assumption [62], (fully-)
homomorphic encryption (FHE) [52], indistinguishability obfuscation (iO) [86],
or HomSig with additional compactness properties [71].2 Notably, we do not
know how to construct (CRS, DV, DP)-NIZKs with short proof size from stan-
dard assumptions from paring-free groups. In fact, this is the case even if we
were to consider paring groups [1,25,63] as none of the aforementioned heavy
machineries are implied from such groups. In other words, it is not known
whether DH-type assumptions can be used to construct DV or DP-NIZKs with
short proof size.
2 In fact, as we show in Table 1, all of these approaches lead to a much more succinct

proof size of |w| + poly(κ), where w is the witness.
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Second Contribution. Our second contribution is constructing a DP-NIZK with
short proof size from a DH-type assumption over paring groups by proposing
a compact HomSig scheme from a new non-static DH-type assumption (proven
to hold in the generic group model) and following the general conversion from
HomSig to DP-NIZK by Kim and Wu [71]. More details will be provided in
Sect. 1.2.

Our second scheme achieves the first DP-NIZK with short proof size from any
DH-type assumptions, however, one caveat is that the assumption is non-static
and rather strong, and furthermore requires paring groups. Therefore, desirably we
would like to construct any type of NIZKs with short proof size from weaker and
static assumptions such as the DDH assumption while only requiring paring-free
groups. To this end, we consider a further relaxation of NIZKs in the preprocessing
model (hereafter referred to as PP-NIZK). In this model, there is a trusted prepro-
cessing setup that generates a verification and proving key, where only those with
the proving (resp. verification) key can generate (resp. verify) proofs. Analogously
to the history of DV and DP-NIZKs, even with this added relaxation, PP-NIZKs
turned out to be a rather difficult primitive to construct. There have been several
works concerning PP-NIZKs [39,41,43,66,70,73], however, all of them were only
bounded-theorem in the sense that either the soundness or zero-knowledge prop-
erty hold in a bounded manner. The problem of constructing unbounded-theorem
PP-NIZKs, which meets the standard criteria of NIZK, was only recently resolved
in the aforementioned paper [71], where Kim and Wu showed a generic construc-
tion of PP-NIZKs using homomorphic MACs (HomMAC). In particular, depend-
ing on whether the signature can be verified publicly (HomSig) or not (Hom-
MAC), their generic construction leads to a DP-NIZK or a PP-NIZK, respectively.
In fact, it was observed in [71] that using the compact HomMAC proposed by
Catalano and Fiore [27] based on the non-static �-computational DH inversion
(�-CDHI) assumption [14,21], we can construct PP-NIZKs from a non-static DH-
type assumption over paring-free groups. However, they left it as an open problem
to construct HomMAC that suffices for PP-NIZKs (with short proof size) from a
weaker static assumption such as DDH.

Final Contribution. Our final contribution is constructing a PP-NIZK with short
proof size from the DDH assumption over paring-free groups. We first construct a
non-compact HomMAC from the DDH assumption and exploit extra structures
in our HomMAC to achieve short proof size when converting it into a PP-NIZK.
More details will be provided in Sect. 1.2.

Motivation for studying different types of NIZKs. Although (DV, DP,
PP)-NIZKs may be more restricted compared to CRS-NIZKs, they can be useful
nonetheless. For example, applications of CRS-NIZKs including group signatures
[9,37], anonymous credentials [35,40], electronic cash [36], anonymous authen-
tication [89] may lead to a designated verifier or prover variant by using DV
or DP-NIZKs. In some natural scenarios where we do not require public veri-
fiability or require everybody to be able to construct proofs, these alternatives
may suffice. Furthermore, as stated in [71], PP-NIZKs can be used instead of
CRS-NIZKs to boost semi-honest security to malicious security [55]. Finally, we
believe studying different types of NIZKs and understanding which assumptions
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imply them will provide us with new insights on realizing the long standing open
problem of constructing CRS-NIZKs from paring-free groups or lattices.

1.2 Our Results in Detail

As briefly mentioned above, we give new constructions of DV-NIZK, DP-NIZK,
and PP-NIZK with different flavors from DH-type assumptions. Our first and
third schemes are instantiated on a pairing-free group, and the second scheme
requires a pairing group.
1. We construct DV-NIZKs for NP from the CDH assumption over pairing-free

groups that resists the verifier rejection attack. This is the first construction
of such (DV, DP)-NIZK on pairing-free groups and resolves the open problem
posed by Kim and Wu [71].

2. We construct DP-NIZKs for NP with short proof size from a newly defined
non-static (n,m)-computational DH exponent and ratio (CDHER) assump-
tion (proven in the generic group model) over pairing groups. This is the first
NIZK in the standard model to achieve a short proof size without assum-
ing the LWE assumption, fully-homomorphic encryption, indistinguishability
obfuscation, or non-falsifiable assumptions. The proof size has an additive-
overhead |C|+poly(κ) rather then a multiplicative-overhead |C|·poly(κ) where
|C| is the size of the circuit that computes the NP relation (See Table 1).
Moreover, if we make a slight relaxation in the assumption that the NP rela-
tion is expressed by a “leveled circuit” [20], then the proof size can be made
as short as |w| + |C|/ log κ + poly(κ) where |w| denotes the witness size. This
is the first NIZK (including PP-NIZKs) that achieves sublinear proof size in
|C|. We note that by applying the same technique to the �-CDHI-based con-
struction of PP-NIZK stated in Kim and Wu [71], we can make their proof
size sublinear as well, as long as the NP relation can be expressed by a leveled
circuit.

3. We construct PP-NIZKs for NP with short proof size from the DDH assump-
tion over pairing-free groups that are multi-theorem. This is the first PP-
NIZK that achieves a short proof size from a weak and static DH-type
assumption such as DDH. (In fact, this construction also serves as a solu-
tion to the open problem posed by Kim and Wu [71].) Similarly to the
above DP-NIZK, the proof size is |C| + poly(κ). Moreover, going through
the same technique with additional observations, in case the NP relation can
be expressed by a leveled circuit, we are able to make the proof size sublinear
|w| + |C|/ log κ + poly(κ).

Perhaps of an independent interest, along the way to achieve our second
result, we propose an HomSig scheme that simultaneously achieves compactness,
context-hiding, and online-offline efficiency under the (n,m)-CDHER assump-
tion. This is the first construction of such HomSig schemes on pairing groups.

The comparison table among existing and our NIZK is given in Table 1.
We note that we omit schemes that do not support all of NP, do not resist
the verifier rejection attack, or do not achieve unbounded-theorem soundness or
zero-knowledge from the table.
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Table 1. Comparison of NIZKs for NP.

Reference Soundness ZK Proof size Model Assumption

FLS [47] stat. comp. poly(κ, |C|) CRS trapdoor permutation‡

Groth [62] stat. comp. |C| · ktpm · polylog(κ) + poly(κ) CRS trapdoor permutation‡

Groth [62] stat. comp. |C| · polylog(κ) + poly(κ) CRS Naccache-Stern PKE

GOS [63] perf comp. O(|C|κ) CRS DLIN/SD

GOS [63] comp. perf O(|C|κ) CRS DLIN/SD

CHK, DN, Abu
stat. comp. poly(κ, |C|) CRS CDH

[1,25,46]

Groth [62] comp. perf O(κ) CRS q-PKE and q-CPDH

GGIPSS [52] stat. comp. |w| + poly(κ) CRS FHE and CRS-NIZK

SW [86] comp. perf O(κ) CRS iO+OWF

KW [71] stat.∗ comp. |w| + poly(κ, d) DP LWE

CF+KW
comp. comp. |C| + poly(κ) PP �-CDHI (pairing-free)

[27]+[71]

Sect. 3 stat. comp. poly(κ, |C|) DV CDH (pairing-free )

Sect. 4 comp. comp. |C| + poly(κ) DP (n, m)-CDHER

Sect. 4† comp. comp. |w| + |C|/ log(κ) + poly(κ) DP (n, m)-CDHER

Sect. 5 stat. comp. |C| + poly(κ) PP DDH (pairing-free)

Sect. 5† stat. comp. |w| + |C|/ log(κ) + poly(κ) PP DDH (pairing-free)

In column “Soundness” (resp.“ZK”), perf., stat., and comp. means perfect, statistical, and computational

soundness (resp. zero-knowledge), respectively. In column “Proof size”, κ is the security parameter, |w|
is the witness-size, and |C| and d are the size and depth of circuit computing the NP relation. In column

“Assumption”, DLIN stands for the decisional linear assumption, SD stands for the subgroup decision

assumption, q-PKE stands for the q-power knowledge of exponent assumption, and q-CPDH stands fo the

q-computational power Diffie-Hellman assumption.
∗Though their primary construction only has computational soundness, they sketched a variant that

achieves statistical soundness in the latest version [72, Remark 4.10]

†Applicable only when C is a leveled circuit.

‡If the domain of the permutation is not {0, 1}n, we further assume they are doubly-enhanced [53].

1.3 Technical Overview

We rely on mainly two approaches to achieve our results. The first approach
is an extension of the construction of CRS-NIZKs from trapdoor permutations
by Feige, Lapidot, and Shamir [47] (we call it the FLS construction) to the
DV setting. The second approach is constructing (DP, PP)-NIZKs using the
Kim-Wu conversion [71] from homomorphic authenticators (HomAuth), where
HomAuth are shorthand for HomSig and HomMAC. Specifically, we provide new
instantiations of context-hiding HomAuth schemes. Our first result is obtained
by the first approach, and the second and third results are obtained by the
second approach. In the following, we explain these approaches.

Part 1: DV-NIZK from CDH via FLS paradigm. Our DV-NIZK is based
on the Feige-Lapidot-Shamir (FLS) paradigm [47], which enables to construct
CRS-NIZKs based on trapdoor permutations (TDP). However, we can not
directly use the FLS paradigm since we currently do not know how to achieve
TDPs from the CDH assumption. In this study, we present a variant of the FLS
construction in the DV setting that can be instantiated by the CDH assumption
over paring-free groups.

Our starting point is the CRS-NIZK based on the CDH assumption over
pairing groups [1,25,46]. The idea is to use a function fι defined as follows
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instead of a TDP for the FLS construction: fι(X,Z) := X if (g,X, Y, Z) is a DH
tuple and otherwise ⊥, where ι := (g, Y = gτ ). Though fι is not a TDP, it is
a trapdoor function (TDF) with a structure that is sufficient for implementing
the FLS construction. Below, we take a closer look at the construction.

NIZK in the Hidden Bits Model. Before explaining the construction, we recall
the notion of NIZK proof systems in the hidden bits model (hereafter referred
to as HBM-NIZK) [47]. In [47], HBM-NIZKs is used as a building block for the
final CRS-NIZK. In HBM-NIZK, a prover is provided with a randomly generated
string ρ

$← {0, 1}� (referred to as a hidden random string) independently from
the statement x and witness w for the NP language L. Then it generates a proof
πhbm along with an index set I indicating the positions in the hidden random
string. A verifier given a sub-string ρ|I of the hidden random string ρ on positions
corresponding to the index set I along with the statement x and a proof πhbm,
either accepts or rejects. Soundness requires that no adversary can generate a
valid proof πhbm with an index set I if x /∈ L, and the zero-knowledge property
requires that a proof provides no additional knowledge to the verifier beyond
that x ∈ L If all bits of ρ on positions corresponding to [�] \ I are hidden to the
verifier. Feige et al. proved that HBM-NIZKs for all of NP exist unconditionally.

CRS-NIZK from CDH with pairings. We now describe the CRS-NIZK based on
the CDH assumption over pairing groups [1,25,46]. We give a direct (high-level)
description without using the abstraction by TDFs for clarity.

Setup(1κ): Output a CRS crs consisting of a group description (G, p, g) and
random group elements (X1, ...,X�)

$← G
� where � is the length of the hidden

random string of the underlying HBM-NIZK.
Prove(crs, x, w): The prover samples τ

$← Zp, computes Zi := Xτ
i and lets ρi be

the hardcore bit of Zi for all i ∈ [�]. Then it uses ρ := ρ1‖ · · · ‖ρ� as a hidden
random string to generate a proof πhbm along with an index set I ⊂ [�] by
the proving algorithm of the underlying HBM-NIZK on (x,w). It outputs a
proof π = (πhbm, I, {Zi}i∈I , Y := gτ ).

Verify(crs, x, π): Given a statement x and a proof π = (πhbm, I, {Zi}i∈I , Y := gτ ),
the verification algorithm verifies (g,Xi, Y, Zi) is a DH-tuple for all i ∈ I by
using pairing, and rejects if it is not the case. Then it computes the hardcore
bit ρi of Zi for all i ∈ I, and verifies πhbm by the verification algorithm of the
underlying HBM-NIZK.

Roughly speaking, soundness and zero-knowledge follow from those of the
underlying HBM-NIZK since a hidden random string ρ is somehow “committed”
in (X1, ...,X�) once τ is fixed, and only the sub-string of them corresponding to
I is revealed to the verifier.3 Clearly, the above construction relies on pairing to
check if (g,Xi, Y, Zi) is a DH-tuple during verification. We note that this check is
3 Though a cheating prover can arbitrarily choose τ ∈ Zp, we can negligibly bound

its success probability by the union bound if the success probability of a cheating
prover of the underlying HBM-NIZK is bounded by p−1 · negl(κ).
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essential since without it, a cheating prover can arbitrarily choose Zi for i ∈ I to
control ρ|I to any value, in which case soundness of HBM-NIZK ensures nothing.

Getting rid of pairing. Now, we explain how to get rid of the use of pairing
from the above construction in the DV setting. Our main idea is to use the
twin-DH technique [26]. Intuitively, the twin-DH technique enables a designated
entity to verify whether a tuple (g,X, Y, Z) ∈ G

4 is a DH-tuple without knowing
the discrete logarithm of X or Y and without using pairings, where (g,X) is
public, and (Y,Z) may be chosen arbitrarily. More precisely, suppose that an
extra element ̂X := gβ/Xα is published in addition to (g,X) where α, β

$← Zp.
Then for Y = gτ , we may consider (Z = Xτ , ̂Z = ̂Xτ ) to be a “proof” that
(g,X, Y, Z) is a DH-tuple. Namely, a designated verifier who holds α and β can
verify the validity of the “proof” by checking if Zα

̂Z = Y β holds. The main
implication of the twin-DH technique is that the above verification is essentially
equivalent to checking if Z = Xτ and ̂Z = ̂Xτ hold conditioned on the fact that
(Y,Z, ̂Z) is chosen by a “prover” who does not know (α.β).

With this technique in hand, we describe how to modify the above construc-
tion to achieve DV-NIZK without pairing: We add extra elements ̂Xi := gβi/Xαi

where αi, βi
$← Zp for i ∈ [�] in the CRS, give {αi, βi}i∈[�] as the verification

key to the designated verifier, and add extra elements ̂Zi := ̂Xτ
i for i ∈ I in the

proof. Then the verifier can verify that (g,Xi, Y, Zi) is a DH-tuple by checking
if Zαi ̂Z = Y βi holds without using pairing. This enables us to achieve DV-NIZK
without pairing.

On adaptive zero-knowledge. Though our main idea is as presented above, the
above described construction only achieves non-adaptive zero-knowledge which
requires an adversary to choose the statement x independently of the CRS. To
achieve adaptive zero-knowledge, we need to add some extra structures using
the technique of non-committing encryption [24,46]. See Sect. 3 for technical
details. We note that the original FLS NIZK proof system is also adaptive zero-
knowledge, but it uses specific properties of the underlying HBM-NIZK. Though
a similar analysis may also yield alternative construction of DV-NIZKs with
adaptive zero-knowledge from the CDH assumption without pairing, we choose
the above approach where we do not assume any structure on the underlying
HBM-NIZK for a conceptually simpler and modular construction.

Part 2: PP-NIZK via context-hiding HomAuth. Kim and Wu [71] showed
a conversion from any context-hiding HomAuth scheme to PP-NIZKs. In particu-
lar, they noted that context-hiding HomAuth scheme for NC1 suffices to instan-
tiate their conversion. In this part, we propose new constructions of context-
hiding HomAuth schemes for NC1, and plug them into their conversion. First,
we recall the definition of HomAuth. Roughly speaking, a HomAuth scheme is a
digital signature or MAC scheme with a homomorphic property. Namely, given
a vector of signatures σ for a vector of messages x, anyone can publicly evaluate
the signature on a circuit C to generate an evaluated signature σ for a message
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C(x). We say that a HomAuth scheme is a HomSig scheme if verification can be
done publicly, and is a HomMAC scheme otherwise. As a security requirement of
HomAuth scheme, we require that an adversary given x cannot generate a pair
of an evaluated signature σ∗ and a circuit C∗ such that σ∗ is a valid signature
for a message z �= C∗(x) even if the adversary is given access to a verification
oracle. In addition, we say that a HomAuth scheme is context-hiding if σ for a
message z generated by evaluating a circuit C on a vector of signatures σ for x
does not reveal information of x beyond that C(x) = z.

In this paper, we propose two new constructions of HomAuth schemes for
NC1. The first one is a HomSig scheme based on a new assumption that we call
(n,m)- CDHER assumption on a pairing-group. A nice feature of this HomSig
scheme is that the size of an evaluated signature is compact (i.e., does not depend
on the message vector length or the circuit to evaluate), and has online-offline
efficiency. The second one is a HomMAC scheme based on the DDH assumption
on a pairing-free group. The function class the second scheme supports is arith-
metic circuits over Zp of polynomial degree, which is larger than NC1, and we
take advantage of this extra freedom to improve the proof size. We explain these
constructions below.

HomSig from CDHER. Here, we informally explain how an attribute-based
encryption (ABE) scheme with some special properties can be converted into a
HomSig scheme. Our HomSig scheme from the CDHER assumption can be seen
as an instantiation of this conversion.

To explain the idea, we first recall the notion of (key-policy) ABE. In an ABE
scheme, one can encrypt a message M with respect to some string x ∈ {0, 1}�

using some public parameter pp. Furthermore, a secret key is associated with
some policy C : {0, 1}� → {0, 1} and the decryption is possible if and only
if C(x) = 1. As for security, we require the selective one-way security. In a
selective one-way security game, an adversary has to declare its target x� at the
beginning of the game before seeing the public parameter pp. An adversary can
further query secret keys for C such that C(x�) = 0 unbounded polynomially
many times throughout the game, and we require that an adversary given an
encryption of a random message M� under the string x� cannot recover M�.

We first observe that the security proofs for most selectively secure schemes
such as those proposed in [18,59,61,87,92] can be abstracted in the following
manner:4 At the beginning of the game, the reduction algorithm is given a prob-
lem instance Ψ of some hard problem (e.g., the bilinear Diffie-Hellman problem).
Then, it first runs the adversary to obtain the target x�. Given Ψ and x�, the
reduction algorithm generates pp along with some simulation trapdoor tdx� . The
reduction algorithm can perfectly simulate the game using tdx� . Namely, given
tdx� , it can generate correctly distributed secret key skC for any C such that
C(x�) = 0. Furthermore, given tdx� , it can embed the problem instance Ψ into
the challenge ciphertext so that it can extract the answer of the hard problem
whenever the adversary succeeds in extracting M�.
4 Actually, these previous works prove the standard indistinguishability security notion

rather than one-wayness. However, one-wayness is sufficient for our application.
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Our basic idea for constructing HomSig is to use the above reduction algo-
rithm in the real world. To sign on a message x, we generate tdx and set σ := tdx.
To evaluate the signature σ on a circuit C such that C(x) = 0, we run the reduc-
tion algorithm of the ABE scheme on input tdx to generate skC and set σ := skC .
Here, evaluation of signatures can be done publicly since tdx is the only secret
state required to run the reduction algorithm. A subtle problem with this app-
roach is that we cannot evaluate the signature on a circuit C such that C(x) = 1
since the reduction algorithm does not work for such C. This problem can be
easily fixed by defining the scheme so that when evaluating a signature on such
C, we generate sk¬C instead of skC , where ¬C is a circuit that is obtained by
flipping the output bit of C by applying the NOT gate. Now, for the signature
σ = skC to be publicly verifiable, we require it to be possible to efficiently check
whether σ is a correctly generated secret key of the ABE given (C, σ). However,
this is not such a strong restriction since it is satisfied by many selectively secure
ABE schemes such as the ones listed above.

We recall that given tdx, the reduction algorithm can perfectly simulate the
selective security game for ABE where x is the target chosen by the adversary.
This in particular implies that skC simulated by tdx follows the same distribution
as skC generated in the real system which does not use information of x. Then,
the context-hiding property of the scheme follows from this fact. Namely, the
distribution of σ = skC only depends on C and pp, not on x. In other words, σ
does not leak any information of x, which meets the requirements of the context-
hiding security. Furthermore, the unforgeability of the scheme follows from the
one-wayness of the ABE: If the adversary can forge a signature σ = skC� for C�

such that C�(x) = 1, then skC� can be used to decrypt the challenge ciphertext,
which contradicts the security of the ABE. We note that the circuit class of the
allowed homomorphic evaluation for the resulting HomSig scheme is roughly the
same as the circuit class supported by the original ABE scheme.

In order to obtain the aforementioned HomSig scheme for NC1 with com-
pact signatures, we need a key-policy ABE scheme with constant-size secret
keys. Unfortunately, the only construction of ABE scheme [7] which meets the
efficiency (i.e., compactness) property we require does not conform to our tem-
plate that uses the simulation trapdoor tdx. Therefore, we construct a new ABE
scheme with the required property which conforms to our template based on
the CDHER assumption. The structure of our ABE scheme is inspired by the
ciphertext-policy ABE scheme with constant-size ciphertexts (not secret keys)
due to Agrawal and Chase [3]. To turn their scheme into an ABE scheme with
constant-size secret keys, at a high level, we swap the ciphertexts and secret keys
of their construction. Since the security of the resulting scheme is not guaranteed
by that of the original one, we directly prove its security by adding considerable
modification to the previous proof techniques [4,83].

HomMAC from DDH. Here, we explain the construction of HomMAC under
the DDH assumption. Our idea is to add the context-hiding property to the non-
context-hiding HomMAC proposed by Catalano and Fiore [27] by using func-
tional encryption for inner products (IPFE). First, we recall their non-context-
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hiding HomMAC, which supports all arithmetic circuits of polynomially bounded
degree.5 The signing/verification key of their construction are r ∈ Z

�
p and s ∈ Z

∗
p

where � is the arity of arithmetic circuits it supports, and the evaluation key is
a prime p. A signature σ ∈ Z

�
p for a message x ∈ Z

�
p is set to be σ := (r−x)s−1

mod p.6 Given an arithmetic circuit f of degree D, a message x, and a signa-
ture σ, the evaluation algorithm computes the coefficients (c1, ..., cD) ∈ Z

D
p that

satisfy f(r) = f(x) +
∑D

j=1 cjs
j , and sets σ := (c1, ..., cD) as an evaluated sig-

nature. We remark that this can be done by using x, σ, and p without knowing
(r1, ..., rn) or s since the signatures satisfy sσ + x = r mod p. To verify the
evaluated signature, the verifier simply checks if the above equation holds by
using r and s included in the verification key. Though the construction is very
simple, the scheme satisfies unforgeability even against unbounded-time adver-
saries. Unfortunately, this construction cannot yet be used for the purpose of
PP-NIZKs, since in general it is not context-hiding.

Here, we observe that in the above construction, what a verifier has to know
for the verification is only

∑D
j=1 cjs

j , and not the entire (c1, ..., cD). Moreover,
∑D

j=1 cjs
j does not convey any information on x beyond f(x) because the term is

determined solely by r and f(x). Therefore if there exists a way to only transfer
∑D

j=1 cjs
j to the verifier, then context-hiding is guaranteed. We remark that

a trivial idea of publishing s does not work because it completely breaks the
unforgeability. In particular, we want to find a way to let a verifier only know
∑D

j=1 cjs
j without providing s to the evaluator. To solve this problem we rely

on IPFE. In an IPFE scheme, both a ciphertext and a secret key are associated
with a vector. If we decrypt a ciphertext of a vector x by a secret key associated
with y, then the decryption result is 〈x,y〉, which is an inner product of x
and y. We convert the above non-context-hiding HomMAC to a context-hiding
one by using IPFE as follows: In the setup, we additionally generate a public
parameter pp and a master secret key msk of IPFE. Then a verifier is provided
with a secret key sk(s,...,sD) for a vector (s, ..., sD), and an evaluator is provided
with pp. The evaluator sets the evaluated signature to be an encryption ct of
(c1, ..., cD) instead of (c1, , , ., cD) itself. Now, a verifier only learns

∑D
j=1 cjs

j due
to the security of IPFE, and thus context-hiding is achieved.

Given the above overview, it may seem that any IPFE scheme suffices for the
construction. Moreover, since only one secret key is needed in the construction, it
seems that one-key IPFE suffices. Since there are constructions of one-key secure
FE even for all circuits based on any PKE scheme [58,85], one may think that
we can implement the above construction based on any PKE scheme. However,
this is in fact not the case because these FE schemes are malleable. Namely,
the standard security notion of FE does not prevent a malicious encryptor from
generating an invalid ciphertext. Put differently, the decryption result may be

5 Though the original construction by Catalano and Fiore [27] is based on PRF, we
present an information theoretically secure variant of it in a simplified setting where
the arity of an arithmetic circuit is bounded.

6 Though the scheme is not publicly verifiable, we call σ a “signature” for compatibility
to HomSig.
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controlled. In the context of the above construction, the fact that an evaluator
generates a ciphertext ct by the secret key sk(s,...,sD) that is decrypted to T does
not necessarily mean that it knows (c1, ...., cD) such that

∑D
j=1 cjs

j = T . There-
fore, although the construction seems to work, we cannot prove unforgeability
of the above scheme. To solve this problem, we introduce a notion which we
call extractability for IPFE. Extractability requires that for any (possibly mal-
formed) ciphertext ct that is decrypted to T with a secret key sk associated with
a vector y, we can extract x such that 〈x,y〉 = T from ct. It is clear that the
above problem is resolved if we have an extractable IPFE.

Here, we observe that the IPFE scheme based on the DDH assumption pro-
posed by Agrawal, Libert, and Stehlé [5] satisfies extractability. A subtle problem
of their construction is that a decryptor must compute a discrete logarithm for
computing a decryption result, and thus the size of the decryption result must be
limited to being relatively small. Fortunately, this does not matter in our appli-
cation since the verification is done by simply checking if a decryption result of
IPFE satisfies a certain linear equation which can be performed on the expo-
nent. Concretely, we only need a variant of IPFE that enables a decryptor to
learn inner-product on the exponent. Putting all the ideas together, we obtain
a context-hiding HomMAC for arithmetic circuits of polynomial degree (which
includes NC1) based on the DDH assumption, which further combined with [71]
leads to PP-NIZK proofs based on the DDH assumption. Moreover, we can make
the proof size of the PP-NIZK short by incorporating the idea by Katsumata
[69]. Namely, the proof size of the resulting PP-NIZK is |C| + poly(κ) where |C|
is the size of a circuit that computes a relation to prove. See the full version for
details.

PP-NIZK with sublinear proof size. Direct adaptations of the Kim-Wu
conversion to compact context-hiding HomAuth for NC1 yield PP-NIZK with
proof sizes |C| + poly(κ). Here, we explain that this can be further reduced to
sublinear size |w| + |C|/ log κ + poly(κ) by making a slight relaxation that a
circuit C computing the NP relation is expressed as a leveled circuit [20]; a
circuit whose gates are partitioned into D + 1 levels and all incoming wires to
a gate of level i + 1 come from gates of level i for each i ∈ [D]. To explain
this, we first briefly review the Kim-Wu conversion. In their construction, a
prover is provided with a secret key K of a symmetric key encryption (SKE)
scheme as its proving key, and to prove that (x,w) satisfies C(x,w) = 1 for a
circuit C, it encrypts w by using K to generate a ciphertext ct, and generates
an evaluated signature σ on message “1” under the function fct,x defined by
fct,x(K ′) := C(x,Dec(K ′, ct)) where Dec is the decryption algorithm of the SKE
scheme. A proof consists of ct and σ. A verifier simply verifies that the evaluated
signature σ is a valid signature on message “1” under the function fct,x. To
implement this construction based on HomAuth for NC1, we have to express a
circuit that computes the NP relation in NC1. This is in general possible by
“expanding” the witness to values corresponding to all wires of C(x, ·). However,
since the size of the expanded witness is as large as the circuit size |C|, the proof
size of the resulting PP-NIZK is linear in |C|. Now, we observe that we actually
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need not expand the witness to all wires, and we can choose a portion of them
based on a similar idea used in [20]. Namely, for a leveled circuit C of depth
D, we divide [D] into log κ intervals of length D/ log κ, and choose “special
levels” i in each interval so that the number of gates of level i is the smallest
among those in the interval. Then we set an expanded witness to be the original
witness appended by values corresponding to all wires of special levels of C(x, ·).
We observe that the consistency of the expanded witness generated in this way
still can be verified in NC1 since successive special levels are at most 2 log κ
apart from each other. Moreover, the size of the expanded witness is at most
|w|+ |C|/ log κ since the number of gates of special levels is at most |C|/ log κ by
the choice of special levels. Thus, by applying the Kim-Wu conversion with the
above expanded witness, we obtain PP-NIZK with proof size |w| + |C|/ log κ +
poly(κ).

1.4 Other Related Works

Concurrent Works. There are two concurrent and independent works [38,80]
that contain similar results to our first result, namely, multi-theorem DV-NIZK
from CDH assumption in pairing-free groups. We summarize differences of these
results below.

– Couteau and Hofheinz [38] additionally give a construction of (CRS,DV)-
NIZK assuming the LWE assumption and a (CRS,DV)-non-interactive wit-
ness indistinguishable proof system for bounded distance decoding.

– Quach, Rothblum, and Wichs [80] additionally consider a stronger variant of
DV-NIZK called malicious DV-NIZK, and construct it based on a stronger
assumption called the one-more CDH assumption in pairing-free groups.

– Constructions of (DP,PP)-NIZKs with compact proofs are unique to this
paper.

CRS-NIZK from Lattices. Very recently, Peikert and Shiehian [78] con-
structed the first CRS-NIZKs for NP under standard lattice assumptions follow-
ing the line of researches [22,23,65,68] to instantiate the Fiat-Shamir transform
[48] in the standard model.

More discussions on existing (DV, DP, PP)-NIZK. Unlike CRS-NIZKs
where proving statements and verifying proofs can be done publicly, in (DV,
DP, PP)-NIZKs since we have the notion of secret states, it is not uncommon to
have a bound on the number of statements (i.e., theorems) one can prove without
compromising soundness or zero-knowledge. In DV-NIZKs, a common issue have
been the bound on the number of time the prover can query the verification
oracle. Namely, a prover can break the soundness of a DV-NIZK if the verifier
uses the same verification key to verify multiple statements. Due to this fact,
such DV-NIZKs that require a bound on the number of time a prover can query
the verification oracle are called bounded-theorem. If the verifier can keep using
the same key for multiple statements, then it is called multi-theorem. Almost



Designated Verifier/Prover and Preprocessing NIZKs 635

all previous DV-NIZKs for all of NP [33,42,74,77,91] suffered from this issue
of being bounded-theorem. There are more recent works that avoid the above
issue based on a certain type of additively homomorphic encryption [32] or a
primitive called oblivious linear-function evaluation [34]. However, instantiating
either of these primitives require an assumption that is already known to imply
a CRS-NIZK. DP and PP-NIZKs share similar problems, where in this case,
zero-knowledge does not hold if the prover uses the same proving key multiple
statements. Other than the recent schemes by Kim and Wu [71] and Boyle et al
[19], all previous DP or PP-NIZKs [39,41,43,66,70,73] are known to be bounded-
theorem. Though it is known that we can convert any bounded theorem NIZK to
unbounded theorem NIZK in the CRS setting [47], the conversion heavily relies
on the fact that proofs can be generated publicly, and does not seem to work in
the PP model. We refer to [71] for more discussions.

Homomorphic authenticators. The notion of homomorphic authenticators
(MACs or signatures) originates to Desmedt [44] and was first formalized by
Johnson et al. [67]. In the beginning, HomAuth was considered extensively in
the context of network coding where the homomorphism were focused on linear
functions, yielding a long line of interesting works such as [2,8,15–17,28,29,
31,49,50]. HomAuth for linear functions has also been considered for proofs of
retrievability for outsourced storage [6,88]. Boneh and Freeman [16] were the first
to consider homomorphism beyond linear functions, showing the first scheme for
polynomial function based on lattices. Since then numerous improvements on
HomAuth have been made [27,29,51,60]. Gorbunov et al. [60] constructed a
HomSig that supports arbitrary circuits with bounded-depth from lattices and
Catalano et al. [27] constructed a HomMAC that supports arbitrary arithmetic
circuits with bounded-degree from PRFs or DH-type assumptions.

Recently, Tsabary [90] showed a generic conversion of an attribute-based sig-
nature (ABS) to HomSig. Using their construction, we may obtain a HomSig
with compact signatures starting from an ABS with short signatures. However,
the two ABS schemes with short signatures are not a complete fit for the con-
version: The scheme by Attrapadung et al. [7] is only selectively-secure and
the above conversion is not applicable. The scheme by [75] is constructed on
composite-order groups, which is not desirable from the view points of security
and efficiency.

Finally, we also mention that our idea of viewing some types of ABE as
HomSig seems to be applicable for other ABE schemes such as [61]. This leads
to a context-hiding HomSig scheme from the CDH assumption and thus DP-
NIZK from the same assumption via the transformation due to Kim and Wu
[71]. In addition, we observe that if we start from the ABE for circuits from
lattices due to Boneh et al. [18], we recover the existing HomSig scheme by
Gorbunov, Vaikuntanathan, and Wichs [60]. While this is not a new result, the
observation provides new insights into the connection between them.
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2 Preliminaries

We omit basic notations and knowledge on cryptography due to limited space.

2.1 Preprocessing NIZKs

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable binary relation.
For (x,w) ∈ R, we call x as the statement and w as the witness. Let L be
the corresponding NP language L = {x | ∃w s.t. (x,w) ∈ R}. We also write
R(x,w) ∈ {0, 1} as the output of the polynomial time decision algorithm R on
input (x,w), where 0 is for reject and 1 is for accept. Below, we define (adaptive
multi-theorem) preprocessing NIZKs for NP languages. Some discussions on our
presentation of NIZKs are provided below.

Definition 2.1 (NIZK Proofs). A non-interactive zero-knowledge (NIZK)
proof in the preprocessing model ΠPPNIZK for the relation R is defined by the
following three polynomial time algorithms:

Setup(1κ) → (crs, kP, kV): The setup algorithm takes as input the security param-
eter 1κ and outputs a common reference string crs, a proving key kP, and a
verification key kV. This algorithm is executed as the “preprocessing” step.

Prove(crs, kP, x, w) → π: The prover’s algorithm takes as input a common refer-
ence string crs, a proving key kP, a statement x, and a witness w and outputs
a proof π.

Verify(crs, kV, x, π) →  or ⊥: The verifier’s algorithm takes as input a common
reference string, a verification key kV, a statement x, and a proof π and
outputs  to indicate acceptance of the proof and ⊥ otherwise.

Moreover, an (adaptive multi-theorem) NIZK proof in the preprocessing model
ΠPPNIZK is required to satisfy the following properties, where the probabilities are
taken over the random choice of the algorithms:

Completeness. For all pairs (x,w) ∈ R, if we run (crs, kP, kV) ← Setup(1κ),
then we have

Pr[π ← Prove(crs, kP, x, w) : Verify(crs, kV, x, π) = ] = 1.

Soundness. For all (possibly inefficient) adversaries A, if we run (crs, kP, kV) ←
Setup(1κ), then we have

Pr[(x, π) ← AVerify(crs,kV,·,·)(1κ, crs, kP) : x �∈ L ∧ Verify(crs, kV, x, π) = �] = negl(κ).

Here, in case soundness only holds for computationally bounded adversaries A,
we say it is a NIZK argument.

(Non-Programmable CRS) Zero-Knowledge. For all PPT adversaries A,
there exists a PPT simulator S = (S1,S2) such that if we run (crs, kP, kV) ←
Setup(1κ) and τV ← S1(1κ, crs, kV), then we have

∣
∣
∣Pr[AO0(crs,kP,·,·)(1κ, crs, kV) = 1] − Pr[AO1(crs,kV,τV,·,·)(1κ, crs, kV) = 1]

∣
∣
∣ = negl(κ),
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where O0(crs, kP, x, w) outputs Prove(crs, kP, x, w) if (x,w) ∈ R and ⊥ otherwise,
and O1(crs, kV, τV, x, w) outputs S2(crs, kV, τV, x) if (x,w) ∈ R and ⊥ otherwise.

Remark 2.1 (Programmable Zero-Knowledge). As also discussed in [72], we can
define a slightly weaker variant of zero-knowledge where the simulator is provided
the freedom of programming the common reference string crs and verification
key kV.

(Programmable CRS) Zero-Knowledge. For all PPT adversaries A, there
exists a PPT simulator S = (S1,S2) such that if we run (crs, kP, kV) ← Setup(1κ)
and (crs, k̄V, τ̄V) ← S1(1κ), then we have

∣
∣
∣Pr[AO0(crs,kP,·,·)(1κ, crs, kV) = 1] − Pr[AO1(c̄rs,k̄V,τ̄V,·,·)(1κ, crs, k̄V) = 1]

∣
∣
∣ = negl(κ),

where O0(crs, kP, x, w) outputs Prove(crs, kP, x, w) if (x,w) ∈ R and ⊥ otherwise,
and O1(crs, k̄V, τ̄V, x, w) outputs S2(crs, k̄V, τ̄V, x) if (x,w) ∈ R and ⊥ otherwise.

This definition captures the zero-knowledge property used in standard NIZKs
in the common reference string (CRS) model. In the CRS model, the Setup
algorithm outputs a CRS σ used by both the prover and verifier, and the zero-
knowledge simulator is allowed to program the CRS σ. Specifically, the proving
key and verification key are both set as the CRS σ.

Remark 2.2 (Different types of NIZKs). The definition is general enough to cap-
ture many of the existing types of NIZKs. In case kP = kV = ⊥, the above defini-
tion captures the standard NIZKs in the common reference string (CRS) model,
which we refer to as CRS-NIZKs hereafter. Specifically anybody can construct
a proof using the public CRS and those proofs are publicly verifiable [47]. On
the other hand, in case kP = ⊥ but kV is required to be kept secret, the above
definition captures designated verifier NIZKs (DV-NIZKs) [42,77]. Moreover, in
case kV = ⊥ but kP is required to be kept secret, the above definition captures
designated prover NIZKs (DP-NIZKs) [71]. Finally, in case both kP and kV must
be kept secret, it is simply called preprocessing NIZKs (PP-NIZKs) [39].

Remark 2.3 (Bounded and Multi-Theorem NIZK). Unlike CRS-NIZKs where
there are nothing to be kept secret, (DV, DP, PP)-NIZKs take more subtle care to
construct. Specifically, the latter types of NIZKs may possibly leak secret infor-
mation when constructing a proof (DP-NIZKs) or verifying a proof (DV-NIZKs).
We say the scheme is bounded-theorem if the number of statements supported by
the scheme to guarantee soundness or zero-knowledge is bounded before setup.
Otherwise, we say the scheme is multi-theorem. All the NIZKs we construct in
this paper are multi-theorem. Finally, we call the scheme single-theorem if it
only supports one statement.

Remark 2.4 (Adaptive and Non-Adaptive NIZK). One often considers weaker
security called non-adaptive soundness and zero-knowledge. In non-adaptive
soundness, an adversary has to declare the statement x on which he forges a
proof before seeing a common reference string. In non-adaptive zero-knowledge,
an adversary has to declare a pair of a statement x and its witness w to query
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the proving oracle before seeing a common reference string. All the NIZKs we
construct in this paper satisfy adaptive soundness and zero-knowledge.

NIZKs for Bounded Languages. Throughout this paper, we mainly consider
the weaker variant of PP-NIZKs which we call PP-NIZKs for bounded languages
as was done by Kim and Wu [71]. PP-NIZKs for bounded languages enable one
to generate a proof for (x,w) ∈ R∩ ({0, 1}n(κ) ×{0, 1}m(κ)) for a priori bounded
polynomials n(·) and m(·). For clarity, we say PP-NIZKs for unbounded lan-
guages to express PP-NIZKs that do not have the above limitation. As discussed
in the full version, we can generically convert any PP-NIZKs for bounded lan-
guages to PP-NIZKs for unbounded languages at the cost of making the proof
size larger. However, we note that since the conversion makes the proof size
larger, the distinction between PP-NIZKs for bounded and unbounded languages
are meaningful if we start to consider proof sizes.

3 DV-NIZK from CDH via FLS Transform

In this section, we construct a DV-NIZK from the CDH assumption over pairing-
free groups based on the FLS construction [47] for CRS-NIZKs from TDPs. More
formally, we prove the following theorem.

Theorem 3.1. If the CDH assumption holds on a pairing-free group, then there
exists an (adaptive multi-theorem) DV-NIZK proof system for all NP languages.

The theorem is proven in the following steps:

1. We first construct a variant of DV-NIZK proof system (which we call the base
proof system) with a special syntax satisfying a relaxed notion of soundness
and adaptive single-theorem zero-knowledge. We construct it from a NIZK
proof system in the hidden-bits model based on the CDH assumption over
pairing-free groups. This is done by applying the FLS construction [47] along
with the twin-DH technique. A relaxed notion of adaptive zero-knowledge is
achieved by using a technique often used in non-committing encryption.

2. We then construct an adaptive designated-verifier non-interactive witness
indistinguishable (DV-NIWI) proof for all NP languages by running many
copies of the base proof system in parallel.

3. Finally, we transform our adaptive DV-NIWI proofs into adaptive multi-
theorem DV-NIZK proofs by using pseudorandom generators via the trans-
formation of Feige, Lapidot, and Shamir [47] (i.e., the technique of FLS is
applicable to the DV-NIZK setting).

3.1 Preliminaries

We introduce the Goldreich-Levin hardcore function GL(a; r). This is defined by
GL(a; r) := 〈a, r〉 :=

⊕u
j=1(aj · rj) where a, r ∈ {0, 1}u and σj denotes the j-th

bit of a string σ. In fact, we use groups in our construction and the input to GL
is an element in G. Thus, we interpret a group element gri ∈ G as a u-bit-string.
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Theorem 3.2 (Goldreich-Levin Theorem (adapted) [54]). Assuming that
the CDH assumption holds, it holds that

∣

∣

∣Pr[ExptGL-cdhA (κ, 0) = 1] − Pr[ExptGL-cdhA (κ, 1) = 1]
]

≤ negl(κ),

where the experiment ExptGL-cdhA (κ, coin) is defined as follows.
ExptGL-cdhA (κ, coin)
Samples (G, p, g) $← GGen(1κ), R

$← {0, 1}u, and x, y
$← Zp.

If coin = 1, then ρ
$← {0, 1}, else if coin = 0, then ρ := GL(gxy;R).

Output coin′ ← A(1κ,G, p, g, gx, gy, R, ρ)

Next, we introduce a theorem called twin-DH trapdoor test which enables
one to check if a tuple (g,X, Y, Z) is a DH-tuple without knowing the discrete
logarithm of X or Y by using a special trapdoor.

Theorem 3.3 (Twin-DH Trapdoor Test [26]). For any (G, p, g) ← GGen(κ)
and function F , it holds that

Pr

⎡

⎢
⎣(ZαẐ

?
= Y β) �= ((Z

?
= Y x) ∧ (Ẑ

?
= Y x̂))

∣
∣
∣
∣
∣
∣
∣

X
$← G,

α, β
$← Zp, X̂ := gβ/Xα,

(Y, Z, Ẑ) ← F ((G, p, g), X, X̂)

⎤

⎥
⎦ ≤ 1/p,

where X = gx and ̂X = gx̂.

We introduce the notion of witness indistinguishability.

Definition 3.1 (Adaptive WI (in the DV model)). We say that a proof
system Π satisfies adaptive witness indistinguishability if for all PPT adversaries
A that makes arbitrary number of queries (resp. at most 1 query), if we run
(crs, kV) ← Setup(1κ), then we have

∣

∣

∣Pr[AO0(crs,·,·,·)(1κ, crs, kV) = 1] − Pr[AO1(crs,·,·,·)(1κ, crs, kV) = 1]
∣

∣

∣ = negl(κ),

where Ob(crs, x, w0, w1) outputs Prove(crs, x, wb) if (x,w0) ∈ R ∧ (x,w1) ∈ R
and ⊥ otherwise.

Definition 3.2 (Adaptive NIWI). We say that a proof system Π is adaptive
designated-verifier non-interactive witness indistinguishable proof system if Π
satisfies completeness, soundness in Definition 2.1 (in the designated-verifier
model), and adaptive witness indistinguishability in Definition 3.1.

We then formally define a NIZK proof in the hidden-bits model, which will
be used as a building block in our construction.

Definition 3.3. A NIZK proof in the hidden-bits model (HBM) for L is defined
by the following two polynomial time algorithms:
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Prove(1κ, x, w, ρ) → (π, I): The prover’s algorithm takes as input the security
parameter 1κ, a statement x, a witness w, and a hidden random string ρ ∈
{0, 1}�hrs(κ), and outputs a proof π and a set of indices I ⊆ [�hrs(κ)] where
�hrs(·) is a polynomial of κ.

Verify(1κ, x, π, I, ρ|I) →  or ⊥: The verifier’s algorithm takes as input the
security parameter, a statement x, a proof π, an index set I, a substring
ρ|I := {ρi}i∈I , where ρi is the i-th bit of ρ, and outputs  to indicate accep-
tance of the proof and ⊥ otherwise.

Completeness. For all x ∈ L and w such that (x,w) ∈ R, we have

Pr[ρ $← {0, 1}�hrs(κ), (π, I) ← Prove(1κ, x, w, ρ) : Verify(1κ, x, π, I, ρ|I) = ] = 1.

Soundness. For all (possibly inefficient) adversaries A, we have

εHBM := Pr[ρ
$← {0, 1}�hrs(κ)

, (x, π, I) ← A(1
κ
, ρ) : x �∈ L ∧ Verify(1κ

, x, π, I, ρ|I) = 	] = negl(κ).

We call εHBM soundness error.

Zero-Knowledge. There exists a PPT simulator S such that for all PPT adver-
saries A = (A1,A2), we have
∣
∣
∣Pr[(x, w) ← A1(1

κ), ρ
$← {0, 1}�hrs(κ), (π, I) ← Prove(1κ, x, w, ρ) : A2(x, π, I, ρ|I) = 1]

− Pr[(x, w) ← A1(1
κ), (π, I, ρ|I) ← S(1κ, x) : A2(x, π, I, ρ|I) = 1]

∣
∣ = negl(κ).

Theorem 3.4 (NIZK for all NP languages in the HBM [47]). Uncon-
ditionally, there exists NIZK proof systems for all NP languages in the HBM
with soundness error εHBM ≤ 2−cnκ where c > 1 is a constant, n is polynomially
related to the size of the circuit computing the NP language, κ is the security
parameter, and �hrs = poly(κ, n).

3.2 Constructing DV-NIWI

The goal of this subsection is proving the following theorem.

Theorem 3.5. Assume that the CDH assumption over paring-free group holds,
then there exists an adaptive DV-NIWI for all NP languages.

Here, we sketch our high-level construction. First, we present our so-called
base proof system bP, and then convert it into an adaptive DV-NIWI proof
system. Here, the base proof system bP is not a standard DV-NIWI proof system
since it has a slightly different syntax. Namely, the proving and verification
algorithms of the base proof system take an auxiliary string s as input in addition
to (crs, x, w) and (crs, kV, x, π), respectively. We show that the base proof system
satisfies two properties called relaxed soundness, which means that an adversary
cannot forge a proof if s is fixed, and relaxed zero-knowledge, which means that
a proof can be simulated without a witness if s is randomly chosen. Observe
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that if we were to convert the prover to sample s on its own and include it in the
proof, then the syntax fits that of DV-NIWI. However, such a simple conversion
of our base proof system bP into a DV-NIWI will not work as the acquired
DV-NIWI will not have soundness. Namely, the relaxed soundness of bP does
not prevent a cheating prover from forging a proof if he is allowed to choose
s himself. To resolve this problem, we use a similar idea used by Dwork and
Naor [46]. Our construction of an adaptive DV-NIWI proof system consists of
running many copies of the base proof system using a single common auxiliary
input s for all copies. Then, when the number of copies is sufficiently large,
soundness of the scheme can be proven from the union bound on all possible s.
Moreover, since the relaxed zero-knowledge implies witness indistinguishability,
and witness indistinguishability is preserved under parallel repetitions, we can
prove the witness indistinguishability of our DV-NIWI.

Base proof system. First, we introduce the syntax and security properties of the
base proof system bP. Note that bP is merely an intermediate system introduced
for a modular exposition and not a standard NIZK proof system.

Definition 3.4 (Syntax of base proof system). A base proof system bP
consists of the following three polynomial time algorithms.

bP.Setup(1κ) → (crs, kV): The setup algorithm takes as input the security param-
eter 1κ and outputs a common reference string crs, and a verification key kV.

bP.Prove(crs, x, w, s) → π: The prover’s algorithm takes as input a common
reference string crs, a statement x, a witness w, and a fixed string s ∈
{0, 1}�hrs(κ), and outputs a proof π.

bP.Verify(crs, kV, x, π, s) →  or ⊥: The verifier’s algorithm takes as input a
common reference string crs, a verification key kV, a statement x, a proof π,
and a fixed string s ∈ {0, 1}�hrs(κ), and outputs  to indicate acceptance of
the proof and ⊥ otherwise.

Definition 3.5 (Security of base proof system). A base proof system is
required to satisfy the following three properties.

Correctness: For all pairs (x,w) ∈ R and s ∈ {0, 1}�hrs(κ), if we run (crs, kV) $←
bP.Setup(1κ), then we have

Pr[π $← bP.Prove(crs, x, w, s) : bP.Verify(crs, kV, x, π, s) = ] = 1

Relaxed ε-soundness: For any fixed s ∈ {0, 1}�hrs , it holds that all (possibly
inefficient) adversaries A,

Pr[Exptr-sndA (1κ, s) = ] < ε,

where ε is the soundness error of bP, and the experiment Exptr-sndA (1κ) is
defined as follows.
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Exptr-sndA (1κ, s)
(crs, kV) ← bP.Setup(1κ),
(x∗, π∗) ← AbP.Verify(crs,kV,·,·,s)(1κ, crs, s),
If x∗ /∈ L ∧ bP.Verify(crs, kV, x∗, π∗, s) = , then outputs 1,
Otherwise, outputs 0.
This is basically the same as the standard soundness except that A must use
a fixed s.

Relaxed zero-knowledge: There exists a PPT simulation algorithm bP.S =
(bP.S1, bP.S2) that satisfies the following. For all (stateful) PPT adversaries
A, we have

∣

∣

∣Pr[Exptr-realA (1κ) = 1] − Pr[Exptr-simA,S (1κ) = 1]
∣

∣

∣ = negl(κ),

where experiments Exptr-realA and Exptr-simA,S are defined as follows.
Exptr-realA
(crs, kV) ← bP.Setup(1κ),
(x, w) ← A(1κ, crs, kV),

s
$← {0, 1}�hrs ,

If (x, w) ∈ R, π ← bP.Prove(crs, x, w, s),
otherwise π := ⊥,
b′ ← A(π, s)
outputs b′

Exptr-simA,S
(c̃rs, ˜kV, τ̃V) ← bP.S1(1κ),
(x, w) ← A(1κ, c̃rs, ˜kV),

If (x, w) ∈ R, (π, s) ← bP.S2(c̃rs, ˜kV, τ̃V, x),
otherwise π := ⊥,
b′ ← A(π, s)
outputs b′

We present a base proof system bP := (bP.Setup, bP.Prove, bP.Verify) based
on a NIZK proof system in the HBM (HBM.Prove,HBM.Verify) (with hidden-
random-string-length �hrs(κ)) and the CDH assumption. Note that we use the
GGen(1κ) algorithm to generate (G, p, g) where 22κ ≤ p throughout Sect. 3. Here-
after, we simply write �hrs instead of �hrs(κ) for ease of notation.

bP.Setup(1κ): This algorithm generates the following parameters.
1. Samples (G, p, g) $← GGen(1κ).
2. Samples (αi,b, βi,b)

$← Z
2
p for all i ∈ [�hrs] and b ∈ {0, 1} and a common

reference string crs := {Xi,b}i∈[�hrs],b∈{0,1}
$← G

2�hrs uniformly at random.
3. Sets ĉrs := { ̂Xi,b}i∈[�hrs],b∈{0,1} := {X

−αi,b

i,b · gβi,b}i∈[�hrs],b∈{0,1}.

4. Samples Ri
$← {0, 1}u for all i ∈ [�hrs] and sets R := {Ri}i∈[�hrs].

5. Outputs a common reference string crs := (G, p, g)‖crs‖ĉrs‖R and a veri-
fication key kV := {(αi,b, βi,b)}i∈[�hrs],b∈{0,1}.

We can interpret crs as ({Xi,b, ̂Xi,b, Ri}i∈[�hrs],b∈{0,1}) ∈ G
4�hrs × {0, 1}�hrsu,

where u is the length of the binary representation of a group element.
bP.Prove(crs, x, w, s): This algorithm does the following.

1. Parses crs = (G, p, g)‖crs‖ĉrs‖R where crs = {Xi,b}i∈[�hrs],b∈{0,1}, ĉrs =
{ ̂Xi,b}i∈[�hrs],b∈{0,1}, R = {Ri}i∈[�hrs], and s ∈ {0, 1}�hrs .

2. Samples τ
$← Zp.

3. Sets Zi := (Xi,si
)τ and ̂Zi := ( ̂Xi,si

)τ and ρi = GL(Zi;Ri) for i ∈ [�hrs].
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4. Generates (πhbm, I) ← HBM.Prove(1κ, x, w, ρ) where ρ := ρ1‖ · · · ‖ρ�hrs .
5. Outputs a proof π := (πhbm, I, {(Zi, ̂Zi)}i∈I , g

τ ).
bP.Verify(crs, kV, x, π, s): This algorithm parses π = (πhbm, I, {(Zi, ̂Z,i)}i∈I , T ),

kV := {(αi,b, βi,b)}i∈[�hrs],b∈{0,1}, crs = (G, p, g)‖crs‖ĉrs‖R where crs =
{Xi,b}i∈[�hrs],b∈{0,1}, ĉrs = { ̂Xi,b}i∈[�hrs],b∈{0,1}, R = {Ri}i∈[�hrs], and s ∈
{0, 1}�hrs . This algorithm does the following.
– For all i ∈ I,

1. Verifies that TestTDH((αi,si
, βi,si

),Xi,si
, ̂Xi,si

, T, Zi, ̂Zi) = , where
TestTDH is defined in Fig. 1. If any one of the equations does not hold,
then outputs ⊥.

2. Computes ρi = GL(Zi;Ri).
– If the proof passes all the tests above, then this algorithm outputs
HBM.Verify(1κ, x, πhbm, I, ρ|I).

Fig. 1. The algorithm TestTDH((α, β), X, X̂, Y, Z, Ẑ) verifies that Z = Y x and Ẑ = Y x̂,

that is (g, Y, X, Z) and (g, Y, X̂, Ẑ) where X = gx and X̂ = gx̂ are DDH-tuples without
(x, x̂).

Unlike the idea outlined in the introduction, the CRS in bP consists of a
doubled-line of random elements (Xi,0, ̂Xi,0) and (Xi,1, ̂Xi,1) for each i ∈ [�hrs].
These doubled-line of random elements are crucial for achieving adaptive zero-
knowledge. If we only had a singled-line of random elements as the CRS in the
introduction, then we would have the following issue: The only way for the ZK-
simulator of bP SbP to use the ZK-simulator Shbm of the NIZK in the HBM, is
to feed Shbm the statement x output by the adversary. Now, for the simulated
proof π, index set I, and hidden bits ρ|I output by Shbm to be useful, we must
have ρi = GL(Xτ

i ;Ri) for all i ∈ I where τ is some element simulated by SbP.
However, due to soundness, if the CRS was only a single-line of random elements
(Xi, ̂Xi), then there exists no τ with overwhelming probability such that the
above condition holds. Therefore, SbP must choose τ and program the singled-
line of random elements (Xi, ̂Xi) in the CRS conditioned on ρi = GL(Xτ

i ;Ri) for
all i ∈ I in order to appropriately use Shbm. However, since ρi is only output as
the result of feeding Shbm with the statement x, SbP can only set the CRS after
it is given the statement x from the adversary. To overcome this problem, we use
the technique of non-committing encryption. Namely, we let CRS be a doubled-
line of random elements (Xi,0, ̂Xi,0) and (Xi,1, ̂Xi,1). In the real-scheme the fixed
string s ∈ {0, 1}�hrs dictates which �hrs-random elements (Xi,si

, ̂Xi,si
)i∈[�hrs] a

prover must use. Then during the adaptive ZK proof, SbP will prepare the CRS
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so that {GL(Xτ
i,0;Ri),GL(Xτ

i,1;Ri)} = {0, 1} without seeing the statement x.
Then after the adversary outputs the statement x, it runs Shbm, and samples a
string s so that ρi = GL(Xτ

i,si
;Ri) for all i ∈ I.

Security of bP. The following lemmas address the correctness and security of
our base proof system. Due to limited space the proof will appear in the full
version.

Lemma 3.1 (Correctness). Our base proof system bP satisfies the correctness
in Definition 3.5.

Lemma 3.2 (Relaxed Soundness). If HBM is sound, then bP satisfies the
relaxed (p · εHBM + (qv + 1)/p)-soundness defined in Definition 3.5.

Lemma 3.3 (Relaxed ZK). If the CDH assumption over pairing-free group
holds, then bP satisfies the relaxed ZK defined in Definition 3.5.

Construction of DV-NIWI. Here, we present our adaptive DV-NIWI proof
system Π := (Setup,Prove,Verify) based on the base proof system bP :=
(bP.Setup, bP.Prove, bP.Verify) that has relaxed ε-soundness for some ε < 1. We
note that we proved that the base proof system satisfies relaxed (p · εHBM +(qv +
1)/p)-soundness in Lemma 3.2, and we can make (p · εHBM + (qv + 1)/p) < 1 by
choosing a parameter for HBM so that p · εHBM is negligible. (This is possible by
Theorem 3.4). We set an integer �′ so that we have 2�hrs · ε�′ ≤ 2−κ. Then Π is
described as follows.

Setup(1κ): This algorithm samples (crsj , k
(j)
V ) ← bP.Setup(1κ) for j ∈ [�′]. It sets

crs := crs1‖ · · · ‖crs�′ and kV := k
(1)
V ‖ · · · ‖k(�′)

V , and outputs (crs, kV).
Prove(crs, x, w) → π: This algorithm does the following:

1. chooses s
$← {0, 1}�hrs ,

2. generates πj ← bP.Prove(crsj , x, w, s) for all j ∈ [�′],
3. outputs a proof π := (π1, . . . , π�′ , s).

Verify(crs, kV, x, π) →  or ⊥: This algorithm parses π = (π1, . . . , π�′ , s). For all
j ∈ [�′], it verifies that  = bP.Verify(crsj , k

(j)
V , x, πj , s). If the proof passes

all the tests, then this algorithm outputs , otherwise ⊥.

Our adaptive DV-NIWI proof system Π is complete, sound, and adaptively
witness-indistinguishable. The proofs can be found in the full version.

3.3 Transformation from DV-NIWI into Multi-Theorem DV-NIZK

To complete the proof of Theorem 3.1, it remains to show the following theorem.

Theorem 3.6. If there exists an adaptive DV-NIWI proof systems for all NP
languages and pseudorandom generators, then there exists an adaptive multi-
theorem DV-NIZK proof system for all NP languages.

We omit the proof since the transformation is essentially the same as that of
Feige et al. [47] (from NIWI to multi-theorem NIZK), with the exception that
we consider the designated-verifier setting.
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4 Constructing HomSig from ABE-Simulation Paradigm

We construct a context-hiding HomSig for NC1 from a new non-static (q-type)
assumption on pairing groups that we call the CDHER assumption. Specifically,
we first construct a new ABE scheme from the same assumption and then apply
the (semi-generic) conversion sketched in Sect. 1.2. We directly give a construc-
tion of HomSig instead of constructing it via the new ABE. Using the transfor-
mation by Kim and Wu [71], we obtain a DP-NIZK from the same assumption.

Theorem 4.1. If the CDHER assumption holds on a pairing group, then there
exists DP-NIZK for all NP languages with proof size |C| + poly(κ), where |C|
denotes the size of the circuit that computes the relation being proved.

As far as we know, this is the first DP-NIZK scheme with short proofs without
assuming the LWE assumption, fully-homomorphic encryption, indistinguisha-
bility obfuscation, or non-falsifiable assumptions. Furthermore, if the proven NP
relation can be expressed as a leveled circuit, we can reduce the proof size to
|w| + |C|/ log κ + poly(κ), where |w| is the length of the witness of the proven
relation and a leveled circuit refers to a circuit whose gates can be divided into
layers and only gates from the consecutive layers are connected by wires. See the
full version for the details.

Besides being a building-block for PP-NIZKs, our HomSig scheme alone may
be of an independent interest. In the full version, we extend the scheme to the
multi-data setting and demonstrate that it achieves online-offline efficiency. This
greatly improves the HomSig scheme with the same properties from the multi-
linear map [30] in terms of efficiency and security.

5 HomMAC from Inner Product Functional Encryption

In this section, we give a construction of HomMAC based on a variant of
functional encryption for inner-products (IPFE) which we call a functional
encryption for inner-product on exponent (expIPFE). Namely, we show that
an expIPFE scheme that satisfies a property called extractability suffices for
constructing statistically unforgeable and computationally context-hiding Hom-
MAC. We also show that the IPFE scheme by Agrawal et al. [5] can be seen as
an instantiation of an extractable expIPFE scheme under the DDH assumption.
As a result, we obtain a statistically unforgeable and computationally context-
hiding HomMAC based on the DDH assumption, which yields statistically sound
and computationally (non-programmable CRS) zero-knowledge PP-NIZK based
on the DDH assumption (over paring-free groups). Since our HomMAC is not
compact, a simple adaptation of their transformation yields PP-NIZK with proof
size O(|C|κ)+poly(κ). However, by taking advantage of the fact our scheme can
deal with arithmetic circuits over Zp of polynomial degree, which is larger than
NC1, and incorporating the technique by Katsumata [69], we can reduce the
proof size to |C| + poly(κ). See the full version for details. Then we obtain the
following theorem.
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Theorem 5.1. If the DDH assumption holds on a pairing free group, then there
exists PP-NIZK for all NP languages with proof size |C| + poly(κ), where |C|
denotes the size of circuit that computes the relation being proved.

Similarly to the case in Sect. 4, if the proven NP relation can be expressed as
a leveled circuit, we can further reduce the proof size to |w|+ |C|/ log κ+poly(κ).
See the full version for the details.
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duces an output with specific (statistical) properties. The common gad-
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tion, subgaussian decomposition, Learning with Errors (LWE) decoding,
and discrete Gaussian sampling. In this work, we build and implement
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for efficient subgaussian sampling that have a number of major theoreti-
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crete Gaussian sampling in the Residue Number System (RNS) repre-
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1 Introduction

Many advanced applications of lattice cryptography require the generation of
a random integer matrix A ∈ Z

n×m
q (with uniform entries modulo q) together

with a strong trapdoor (typically a short1 basis S for the lattice defined by A
as a parity check matrix). The strong trapdoor is used to efficiently “invert” the
classical Short Integer Solution (SIS) and Learning with Errors (LWE) functions
fA(x) = Ax and gA(s, e) = stA + et associated to the matrix A. Theoretical
solutions to these trapdoor generation and function inversion problems have
long been known [1,6,7,26,34]. However, the trapdoor constructions of [1,6] and
generic inversion algorithms of [7,26,34] are rather complex, inefficient, and not
suitable for practice.

An important step towards bringing advanced lattice-based cryptographic
applications to practice was taken in [38], where a new notion of trapdoor (and
associated generation algorithm) is proposed. The trapdoor of [38] transforms
the problem of inverting the random functions fA, gA to the problem of inverting
the same type of functions fG, gG, but for a specific, carefully designed “gadget”
matrix G, which admits much simpler and faster inversion algorithms. Gadget
matrices similar to the one of [38] had already been used in a number of previous
works, starting from Ajtai’s first construction of “solved instances of the short-
est basis problem” [1], and including virtually all works on (fully) homomorphic
encryption schemes based on the LWE problem (e.g., see [12,27]); though differ-
ent works use the gadget matrix for somehow different purposes. In fact, there
are several inversion problems associated to the gadget matrix G:

– Digit Decomposition: This is the problem of expressing an arbitrary vector
u ∈ Z

n
q as a short vector x such that Gx = u (mod q). This is perhaps the

most basic use of the gadget matrix G, and plays an important role in the
key-switching and multiplication operations of fully homomorphic encryption
(FHE) schemes. For example, the binary decomposition gadget matrix G =
[I, 2I, . . . , 2k−1I] allows to write any vector with entries in Zq as a combination∑

i 2ixi of vectors xi ∈ {0, 1}n with the {0, 1} coefficients corresponding to
the binary digits of the entries in u.

– Subgaussian Decomposition: This is a type of randomized digit decompo-
sition, where a short vector x satisfying Gx = u (mod q) is chosen according
to a distribution with desirable statistical properties. This alternative to the
standard binary decomposition was suggested in [5] as a method to improve
the noise growth in homomorphic computations using variants of the GSW
homomorphic encryption scheme [27], and is potentially applicable to the key-
switching and homomorphic multiplication operations of many other FHE
schemes.

– LWE Decoding: Given stG+et for a sufficiently small error vector e, recover
both s and e. This is the (deterministic) inversion problem for the standard

1 In the context of lattice cryptography, “short” typically means much smaller than
the modulus q.



Building an Efficient Lattice Gadget Toolkit 657

(injective) LWE function gG, which is used, for example, in the decryption
algorithms of LWE-based cryptosystems.

– Discrete Gaussian Sampling: Produce a sample from a discrete Gaus-
sian distribution over the set of all integer vectors x such that fG(x) = u.
This problem was the main focus of [38], and is used, for example, in hash-
and-sign lattice-based signatures and trapdoor delegation for identity-based
encryption, among many other applications.

Very efficient gadget inversion algorithms were given in [38], but only for
the Discrete Gaussian Sampling and LWE Decoding problems, and in the very
special setting where the modulus q = bk is the power of a small base b. For the
case of Discrete Gaussian Sampling, an equally efficient, but more general solu-
tion, was recently proposed in [23] for arbitrary modulus q, expanding the range
of advanced lattice cryptography applications that admit a reasonably practical
implementation. (E.g., see [9,17,19,30,31].) We remark that trapdoor inversion
is the most complex operation in many applications of lattice cryptography, and
effective solutions to gadget inversion play a critical role in determining the effi-
ciency, quality and other performance characteristics of higher-level algorithms
and the final applications.

The main focus of our work is Subgaussian Decomposition, a problem that
has received little or no attention so far, and still has the potential to substan-
tially improve the efficiency of many important applications. The importance of
subgaussian sampling is easily explained by comparing it to the related prob-
lems of Digit Decomposition and Discrete Gaussian Sampling. We recall that
lattice-based cryptography directly supports linear homomorphic operations, but
ciphertexts are noisy, and their quality degrades when performing homomorphic
operations: the noise of a sum c0+c1 is the sum of the noise in the original cipher-
texts c0, c1. More critically, when multiplying a ciphertext by a constant α, the
noise scales by a factor α, which can be arbitrarily large. So, one needs to limit
linear combinations to use only small coefficients. This is typically done using
binary digit decomposition: given encryptions ci of 2im (for i = 0, . . . , k−1), one
can compute an encryption of αm (for a large α < 2k) by taking a 0 − 1 combi-
nation

∑
i αici, where α =

∑
i 2iαi is the binary representation of α. This way,

the resulting noise scales linearly with k = log α, rather than α. Subgaussian
decomposition allows to make the resulting noise even smaller: due to cancel-
lations between randomly chosen coefficients, subgaussian decomposition has a
“pythagorean additivity” property that makes the noise grow only as O(

√
k).

The gain is even more substantial when adding many (say n) ciphertexts, in
which case the noise growth is improved by a factor

√
nk. At the other end of

the spectrum, pythagorean growth can also be achieved using Discrete Gaussian
Sampling, as gaussian distributions are by definition also subgaussians. However,
gaussian sampling is considerably more costly than digit decomposition, both in
terms of running time, randomness and output quality: even with the improved
algorithms of [23,38], Discrete Gaussian Sampling is much more complex than a
simple digit decomposition, and it necessarily produces “digits” (i.e., coefficients)
that are larger than naive binary decomposition roughly by a factor Ω(

√
log k).
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The added algorithmic complexity and noise overhead make gaussian sampling
unattractive in practice, and, perhaps not surprisingly, all implementations we
are aware of use digit decomposition whenever possible.

Subgaussian decomposition has the potential to offer the best of both worlds:
pythagorean additivity, but without the Ω(

√
log k) noise overhead of a full-blown

discrete gaussian sampler. These potential advantages were already outlined in
[5], but they were so far considered only of theoretical interest. In fact, none
of the subsequent improvements and implementations [15,16,21,40] make use of
subgaussian sampling.

Our Contribution. The main contribution of our work is a set of new gadget
matrices and algorithms for efficient subgaussian sampling. The improvements
are not just theoretical/asymptotical, but very practical, as demonstrated by
a concrete complex application: an implementation of a Key-Policy Attribute-
Based Encryption (KP-ABE) scheme that speeds up previous implementation
efforts by more than one order of magnitude. (See below and Sects. 7 and
8 for details.) On the theoretical side, our algorithms and gadgets result in
pythagorean error growth and optimal (essentially linear) time complexity. In
practice, the algorithms are easy to implement and have very small hidden
constants both in the number of operations they perform and the subgaussian
parameters, offering a very attractive alternative to the naive deterministic digit
decomposition methods currently used in the implementation of FHE and other
related pritimives. Moreover, our gadgets and algorithms have a number of other
useful properties that make them even more attractive in practice:

– All our algorithms require very little storage and only a modest (essentially
optimal) amount of randomness. In particular, our gadget matrices have a
very regular structure, and do not need to be explicitly stored.

– We support an arbitrary modulus q. This is not just of theoretical interest, as
fast implementations of lattice cryptography [8,33,35,37] require moduli of
special form in order to make use of the Number Theoretic Transform (NTT).

– Our gadgets and algorithms support the “Full RNS” and “double CRT” tech-
niques used to implement lattice cryptography with large modulus without
the need for arbitrary-precision arithmetic libraries [8,25,33].

Beside subgaussian decomposition, we also provide very efficient algorithms
for LWE Decoding and Discrete Gaussian Sampling that improve previous work
[23,38] by supporting arbitrary moduli and Full RNS implementations. (For Dis-
crete Gaussian Sampling, algorithms supporting arbitrary moduli were already
provided in [23], but for gadget matrices that do not support Full RNS imple-
mentations.)

Taken together, our algorithms provide a complete lattice gadget toolkit, offer-
ing efficient solutions to the full range of inversion problems encountered in lat-
tice cryptography: Subgaussian Decomposition, LWE Decoding, and Discrete
Gaussian Sampling. Our results are not just of theoretical interest, but are also
relevant to the implementation and use of advanced lattice cryptography appli-
cations.
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In order to demonstrate the applicability of our results, we developed an
open-source optimized implementation of our algorithms and used it to imple-
ment a complex application: a key-policy attribute-based encryption scheme,
which utilizes in a single setting most of the new algorithms developed in this
paper. Our experimental results strongly support the theoretical analysis, show-
ing both that (with proper algorithms and implementations) the advantages of
pythagorean additivity clearly outweigh the modest increase in computational
cost over naive bit decomposition, and that the overall impact on the perfor-
mance of lattice applications can be substantial. Our CPU implementation of
homomorphic access policy evaluation for keys and ciphertexts (the most expen-
sive operation in KP-ABE schemes) outperforms the previous CPU implemen-
tation (for a comparable level of security) by a factor ranging from 18x to 289x
as the number of policy attributes grows from 2 to 16. For higher numbers of
attributes, previous CPU implementations were not feasible (only a GPU imple-
mentation is known), while we were able to run our implementation within rea-
sonable running times for as many as 128 attributes. Other operations are also
faster in our implementation, and memory requirements are also much smaller
(by more than a factor of 2x in the simplest case of 2 attributes, and more
than one order of magnitude at 16 attributes.) In summary, our results show
that using our toolkit gadget inversion is no longer the bottleneck in efficient
implementations of lattice cryptography, and it can be profitably used to achieve
better performance and scalability both in theory and practice.

While in this paper we focused on the algorithmic core of a general gadget
toolkit, and on a specific (but representative) application, our results are appli-
cable to a wide range of other advanced applications in lattice cryptography.
These include the use of subgaussian decomposition in GSW-based homomor-
phic encryption schemes [15,16,21], leveled fully homomorphic signatures [29],
other forms of ABE [4], obfuscation of finite automata and branching programs
using graph-induced encoding [32], and more.

Techniques. Our efficient lattice gadget toolkit is based on better algorith-
mic solutions to known problems, but also on a new class of gadget matrices
that enable our algorithmic improvements. While gadget matrices of the type
used in [38] and our work are quite common in lattice cryptography, they have
never been formally defined. In fact, as different applications and algorithms
use the gadget matrices in somehow different ways, it was not even clear if one
could meaningfully define gadget matrices as abstract mathematical objects,
and most of previous works use the term “gadget” informally to identify specific
constructions.

The starting point of our investigation is a simple, intuitive definition of
gadget matrix, which turns out to be relevant to the solution of all algorithmic
problems studied in this work. For any dimension n and modulus q (typically
mandated by the application), a gadget of quality β is a matrix G ∈ Z

n×w
q

such that any u ∈ Z
n
q can be represented as Gx = u for some small integer

vector x ∈ Z
w of norm ‖x‖ ≤ β. This definition is directly motivated by the

Digit Decomposition problem, but as we show in Sect. 3, it is already enough to
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enable theoretically efficient solutions to all of the algorithmic problems discussed
above. (See Theorem 3 and Corollary 1.) The generic solutions obtained from
Corollary 1 are not suited for practice, both in terms of algorithmic complexity
and output quality. Still, a generic definition of gadget is useful to delimit a
design space which extends well beyond the simplest (and perhaps most natural)
construction of decomposition gadget [1, 2, 22, . . . , 2k−1] corresponding to the the
standard binary representation of a number as a sequence of bits. Other gadgets
used in our work are digit decomposition gadgets [1, b, b2, . . . , bk−1] with a larger
base b > 2, the CRT gadget [g1, . . . , gk] where gi = ((q/qi)−1 mod qi) · (q/qi) [11]
(for composite moduli with relatively prime factorization q =

∏
i qi) as well as

hybrids between the two approaches where each gi is replaced by an appropriate
multiple of a vector of the form [1, b, b2, . . . , bk−1].

Our subgaussian decomposition algorithms use ideas and techniques from
recent work on discrete gaussian sampling for arbitrary modulus [23]. In partic-
ular, we use the SD matrix factorization for the lattice defined by G, and then
perform subgaussian decomposition with respect to matrix D, which is sparse
and triangular, and admits much faster algorithms. A solution to the original
problem is obtained using S as a linear transformation. Naturally, the details
of our subgaussian decomposition algorithm for D are quite different from the
algorithms in [23], as that paper solves a different problem (discrete gaussian
sampling.) But, as our algorithm can sample an output vector x with respect to
an arbitrary (not necessarily isotropic) subgaussian distribution, there is no need
to apply gaussian correction terms (as done in [23]), and our algorithm is much
simpler and more efficient. Our efficient LWE decoding algorithm is analogous.
Specifically, the decoding problem can be seen as decoding an input to a lattice
basis q(SD)−t = S−t(q · D−t). Now we can solve the decoding problem by first
using St as a linear transformation, then by decoding the transformed input to
the lattice generated by q ·D−t. This lattice is efficiently decodable since it, too,
has a sparse, triangular basis. Our toolkit implementation focuses on providing
full ring and RNS support for all gadget algorithms because ring multiplica-
tions can be efficiently computed via NTTs and large integer operations can be
efficiently performed using native arithmetic in RNS. Full RNS/double CRT con-
structions based on power-of-two cyclotomic rings provide the best performance
for the majority of known lattice cryptography primitives, as illustrated by our
experimental results for subgaussian sampling and key-policy attribute-based
encryption.

Related Work. The first use of subgaussian decomposition appears in [5] in
a theoretical form, not optimized for implementations. While the use of CRT
gadgets for digit decomposition in the implementation of FHE schemes [8,33]
or even the foundation of Ring LWE [36] is not new, their applicability in the
context of Gaussian or subgaussian sampling is, to the best of our knowledge,
novel. Our CRT gadget algorithms can be seen as an extension of [11,23,38].
The CRT-like gadget proposed in [32] can be considered as a special case of ours
when bi = pi (assuming that qi = pe

i ), which implies the gagdet noise width
is larger than pi. In our CRT gadget, bi’s can be chosen independently from
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CRT moduli qi, enabling significantly more efficient implementations in the ring
setting. Another related work is a deterministic, balanced digit decomposition
for the “double CRT/RNS” gadget [25] in the “LoL” library [18,41] (initially
unknown to the authors).

In the ring setting, one method [20] to achieve better-than-generic, n log2 q,
efficiency of “power-of-b” gadget discrete Gaussian sampling is to use the FFO
style of discrete Gaussian samplers from [22] and [23, Sect. 4]. This incurs a loga-
rithmic slowdown, log n, in time and space compared to using [23, Sect. 3] on the
coefficients independently, which has n log q time and space efficiency. Further,
Sect. 6 of this work extends [23, Sect. 3] to the “double-CRT” setting [25], freeing
implementations using discrete Gaussian gadget sampling from multi-precision
numbers when the modulus is over 64 bits.

Organization. The rest of the paper is organized as follows. In Sect. 2 we review
some preliminary material. In Sect. 3 we present our general definition of gadget
matrices. Next, in Sects. 4 and 5 we present our core gadgets and algorithms
for subgaussian decomposition and LWE decoding with arbitrary modulus. In
Sect. 6 we extend these algorithms to large composite moduli to allow efficient
operations in CRT form without the need of multiprecision integer arithmetic.
Sections 7 and 8 we present our implementation and experimental results. Note,
the full version of the paper [24] contains the missing proofs as well as the
description of the generic “subgaussian nearest plane” algorithm in its appendix.

2 Preliminaries

We indicate numbers with lowercase letters, such as z ∈ Z, vectors as bold low-
ercase letters, z ∈ Z

n, and matrices as uppercase bold letters, M ∈ R
n×n.

The default norm used is the l2 norm of a vector unless stated otherwise,
though we will often use the max, or l∞, norm. For a real number r, denote
�r� as the deterministic rounding function to a nearest integer of r. Round-
ing a real vector is applied analogously, entry-wise. Many computations will be
done over the integers modulo q, Zq. We view Zq through its balanced coset
representatives in (−q/2, q/2] unless stated otherwise. For a positive integer
base b and a non-negative integer u < bk, u’s b-ary decomposition is a vector
[u]kb = (u0, · · · , uk−1) ∈ {0, · · · , b − 1}k and satisfies

∑
i biui = u. When b = 2,

this is simply u’s binary decomposition. Recall the Chinese Remainder Theorem
for modular arithmetic. Let q be a positive integer with a prime factorization
of q = pe1

1 · · · pel

l = q1 · · · ql. Then by the Chinese Remainder Theorem (CRT),
we have Zq

∼= Zq1 × · · · × Zql . The isomorphism φ(·) is given by φ(a) = (a
mod q1, · · · , a mod ql) and its inverse is φ−1(a1, · · · , al) =

∑
i(ai)q∗

i q̂i where
q∗
i := q

qi
and q̂i := (q∗

i )−1 mod qi.
For a probability distribution χ, we denote e ← χ to mean e is sampled from

χ. When χ is trivial (often over a number x), we will use e ← x to be variable
assignment as well. We will need the following, known as the Geršgorin Circle
Theorem.
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Theorem 1 (Geršgorin). Let M be an n × n matrix with complex entries.
For each row i, let ri be the sum of its non-diagonal entries’ magnitudes:
ri =

∑
j �=i |M(i, j)|. Then, the eigenvalues of M are all in

⋃
i{z ∈ C :

|z − M(i, i)| ≤ ri}.

2.1 Subgaussian Random Variables

A random variable X over R is subgaussian [36,43] with parameter α > 0 if
its (scaled) moment generating function satisfies E[exp(2πtX)] ≤ exp(πα2t2)
for all t ∈ R. Scaling a subgaussian X by any c ∈ R to c · X yields a
subgaussian random variable with parameter |c|α. If X is subgaussian with
parameter α, then its tails are dominated by a Gaussian parameterized by α,
Pr{|X| ≥ t} ≤ 2 exp(−πt2/α2). Any B-bounded centered (E[X] = 0) random
variable X is subgaussian with parameter B

√
2π. When X is subgaussian with

parameter α and Y conditioned on X taking any value is subgaussian with
parameter β, X + Y is subgaussian with parameter

√
α2 + β2. This property is

called Pythagorean additivity. The proof of the following Lemma is derived by
expanding E[exp(2πt(X + Y ))].

Lemma 1. Let X,Y be discrete random variables over R such that X is subgaus-
sian with parameter α and Y conditioned on X taking any value is subgaussian
with parameter β. Then, X + Y is subgaussian with parameter

√
α2 + β2.

A random vector x over R
n is subgaussian with parameter α > 0 if 〈x,u〉 is

subgaussian with parameter α for all unit vectors u. Using a similar calculation to
the above, one can show that if each coefficient of a random vector is subgaussian
with parameter α conditioned on the previous coefficients taking any values, then
the vector is subgaussian with parameter α. The slightly more general fact below
is needed for our algorithms. Its proof is analogous to the proof of Lemma 1.

Lemma 2. Let x be a discrete random vector over R
n such that each coordinate

xi is subgaussian with parameter αi given the previous coordinates take any
values. Then, x is a subgaussian vector with parameter maxi{αi}.

We emphasize this fact, for without it one is left with an unnecessary
√

n
term in the subgaussian parameter of subgaussian vectors. Now, that the sum of
independently generated random vectors x and y subgaussian with parameters
α and β is a subgaussian vector with parameter

√
α2 + β2 immediately follows.

A main algorithm presented in this paper will rely on a linear transformation
of a discrete subgaussian vector.

Lemma 3 (Simplified [36, Corollary 2.3]). Let x be a subgaussian random
vector with parameter α and let M be a linear transformation. Then, Mx is a
subgaussian vector with parameter αλmax(MMT )1/2 where λmax(·) is the largest
eigenvalue.
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2.2 Lattices

A lattice is a discrete subgroup of Rn. Equivalently, a lattice Λ can be represented
as the set of all integer combinations of a basis B = [b1, · · · ,bk] ∈ Z

n×k,
Λ = {∑k

1 zibi : zi ∈ Z} = L(B). Notice that any permutation of basis vectors
is another lattice basis. We only consider full-rank lattices (k = n). A lattice
is an integer lattice if it is a sublattice of Z

n. The dual lattice of Λ, denoted
as Λ∗, is the set Λ∗ = {z ∈ R

n : 〈z, Λ〉 ⊆ Z}. Given a basis B for Λ, its dual
basis is B−t which is also a basis for Λ∗. We will consider direct sums of lattices,
Λ = Λ1⊕· · ·⊕Λl and their dual lattices Λ∗ = Λ∗

1⊕· · ·⊕Λ∗
l . The number λi(Λ) is

the radius of the smallest ball containing i linearly independent lattice vectors.
Given a basis B = [b1, · · · ,bn] for a lattice Λ, its Gram-Schmidt orthogonal-

ization (GSO) is the set of vectors B̃ = [b̃1, · · · , b̃n] where b̃i is the component
of bi orthogonal to span(b1, · · · ,bi−1). The GSO is not another basis for the
lattice in general, but it gives us a tiling of Rn given by R

n = ∪x∈Λ(x+P1/2(B̃))
where P1/2(B̃) := B̃ · (−1/2, 1/2]n. Note that the GSO depends on the order of
the vectors given. We define the reverse order GSO analogously. The algorithms
presented in this paper will all be instantiations of Babai’s greedy decoding
algorithm known as the nearest plane algorithm [7].

Theorem 2. There is an algorithm which given B, B̃, t ∈ R
n returns the unique

lattice point in t + P1/2(B∗) in time O(n2) and memory O(n3)2.

Discrete Gaussians. Let A ⊂ R
n be a discrete set, and let the (spherical) Gaus-

sian function with width s and center c ∈ R
n be ρs,c(x) = exp(−π‖x− c‖2/s2).

Let ρs,c(A) =
∑

y∈A ρs,c(y). The smoothing parameter of a lattice [39] for some
ε > 0, is denoted as ηε(Λ), and it is defined as the minimum s > 0 such that
ρ(s · Λ∗) ≤ 1 + ε. When s = 1 and c = 0, we denote this as ρ(·). Then, the
discrete Gaussian distribution has probability ρs,c(x)/ρs,c(A) for each x ∈ A.
This distribution is denoted as DA,s,c. Polynomial time discrete Gausisan sam-
pling algorithms for general lattices and their cosets, with width above the GSO
length of the input basis (times a small factor, ω(

√
log n) or O(

√
log n)), are

given in [13,26].

q-ary Lattices. Throughout this paper we will mostly be concerned with q-ary
lattices. These are full-rank integer lattices with q · Zk as a sublattice. Fix an
integer q > 0 to be used as a modulus and let m > w > n. A matrix A ∈ Z

n×m
q

is primitive if AZ
m
q = Z

n
q . Given an A ∈ Z

n×m
q , we define the following lattices:

Λ⊥
q (A) = {z ∈ Z

m : Az = 0 mod q}, and Λq(A) = {v ∈ Z
m : ∃ s ∈ Z

n, vt =
stA mod q}. These lattices satisfy the following duality relation: Λ⊥

q (A)∗ =
q · Λq(A). Further, the cosets of Λ⊥

q (A), Λ⊥
u (A) := {z ∈ Z

m : Az = u mod q},
are in bijection with Z

n
q when A is primitive. Let G be an arbitrary, primitive

matrix over Zq. The following sampling problem, defined on the integer cosets
of Λ⊥

q (G), is needed for many advanced lattice crypto-schemes.

2 This assumes the GSO has entries each described in O(n) bits.
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Definition 1. For a primitive G ∈ Z
n×w
q , the subgaussian decomposition prob-

lem with parameter α for G is to sample vectors x ∈ Z
w subgaussian with param-

eter α such that u = Gx mod q for arbitrary u given as input.

Another name for this problem is subgaussian sampling. A generic adaptation of
Babai’s algorithm (analyzed in the Appendix of the full version [24], called the
subgaussian nearest plane algorithm) is used in [5] (AP14) to achieve subgaussian
decomposition for a specific G. In general, this generic algorithm runs in time
O(k2), and uses space O(k3). Another, related problem is the discrete Gaussian
sampling problem.

Definition 2. For a primitive G ∈ Z
n×w
q , the discrete Gaussian sampling prob-

lem with width s for G is to sample vectors x ∈ Z
w distributed as DZw,s condi-

tioned on Gx mod q = u for arbitrary u given as input.

Efficient solutions with small s for commonly used G’s are given in [23,38]. Both
of the above sampling problems have polynomial time solutions using randomized
versions of Babai’s algorithm. In addition, we will consider decoding the q-ary
code defined by G for an arbitrary, primitive G.

Definition 3. For a primitive G ∈ Z
n×w
q , the LWE decoding problem with tol-

erance δ on G is to return s given stG + et mod q for an error ‖e‖∞ < δ.

Specifically, we want to efficiently decode G while maximizing δ ∈ [0, q/2). An
efficient LWE decoding algorithm for a specific, commonly used G (b = 2 in the
paragraph below) with tolerance q/4 is provided in [38].

A G commonly used in lattice crypto-schemes is defined as follows. Fix an
integer b ∈ (1, q), known as the base, and let k = �logb q�. The block-diagonal
gadget matrix is G = In ⊗gt with blocks gt := (1, b, · · · , bk−1). A common basis
for Λ⊥

q (gt) [23] Sq has a sparse, triangular factorization Sq = SD [23] (restated
in Sect. 4.2 in this paper).

3 Gadget Matrices

In order to guide our search for gadget matrices with efficient inversion and
sampling algorithms, we give a simple general definition of gadget. The definition
is modeled after the properties required by the digit decomposition problem,
perhaps the simplest and most natural application of gadgets. But, as we will
see, this simple characterization is enough to guarantee (theoretical) solutions
to all problems that arise in the application of gadgets in lattice cryptography.

Definition 4. For any finite additive group A, an A-gadget of size w and quality
β is a vector g ∈ Aw such that any group element u ∈ A can be written as an
integer combination u =

∑
i gi · xi where x = (x1, . . . , xw) has norm at most

‖x‖ ≤ β.

We are primarily interested in gadgets for A = Z
n
q , in which case the gadget is

conveniently represented as a matrix G ∈ Z
n×w
q such that for any u ∈ Z

n
q there
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is a vector x ∈ Z
w of length ‖x‖ ≤ β such that Gx = u (mod q). We defined

gadgets in terms of abstract groups to emphasize that the dimension n and
modulus q should be thought of as part of the problem specification (typically
mandated by the target application), while the w and β describe the size and
quality of the solution. In particular, for any given n and q, one may consider
multiple gadgets achieving different values of w and β. Naturally, smaller w and
β are preferable, but as we will see there is a natural tradeoff between these two
values, and one may increase β in order to reduce w and vice versa.

Before establishing a formal connection between the above definition and the
notion of gadget informally defined in previous work, we make some important
observations.

– The matrix G is necessarily primitive, i.e., GZ
w
q = Z

n
q . Moreover, any primi-

tive matrix is a Z
n
q -gadget for a sufficiently large β = maxu min{‖x‖ : Gx = u

(mod q)}.
– If g ∈ Z

k is a Zq-gadget of quality β, then G = I⊗gt ∈ Z
n×w
q is a Z

n
q -gadget

of size w = kn and quality
√

nβ.
– All definitions and constructions are easily adapted to ideal lattices (as used

in the Ring-SIS and Ring-LWE problems) simply by considering “structured
gadgets” of the form G ⊗ [α1, . . . , αn] where [α1, . . . , αn] is an appropriate
Z-basis of the underlying ring.

Based on the above observations, constructions may focus on the case n = 1,
i.e., gadget vectors g ∈ Z

w
q , and then extend the solution to larger n (and possibly

to the ring setting) using general techniques. In fact, this is how larger gadgets
are built in all applications we are aware of. However, all the results in this
section hold for arbitrary matrices, not necessarily with this tensor structure.
So, for the sake of generality, we use matrix notation.

In order to justify our abstract definition of gadget, we show that it guar-
antees all other properties of gadgets used by lattice cryptography: it maps the
gaussian distribution to an almost uniform vector GDw

Z,s ≈ Z
n
q (as needed by

the trapdoor generation algorithm of [38]), and it supports efficient algorithms
to invert the LWE function gG(x, e), for discrete gaussian sampling on f−1

G (u),
and for subgassian decomposition with respect to G. All these properties are
proved by bounding the relevant parameters of the lattice Λ⊥

q (G) defined by G.

Theorem 3. For any gadget matrix G ∈ Z
n×w
q of quality β, the lattice L =

Λ⊥
q (G) has a basis S with orthogonalized length ‖S̃‖ ≤ 2β +

√
w, successive

minima λ1(L), . . . , λw(L) ≤ 2β +
√

w and smoothing parameter η(L) ≤ (2β +√
w)ω(

√
log n).

Note, the proof and theorem easily generalizes to any finite abelian group.
Using the bound on the smoothing parameter, and the short (orthogonalized)
basis S ∈ Z

w×w, we immediately get the following applications. (E.g., for the
subgaussian decomposition algorithm see the Appendix of the full version [24].)
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Corollary 1. For any gadget matrix G ∈ Z
n×w
q of quality β and s ≥ (2β +√

w)
√

ω(log n), the distribution GDw
Z,s is statistically close to the uniform distri-

bution over Zn
q . Moreover, there are polynomial-time algorithms for the following

problems:

– Discrete Gaussian Sampling for the function fG(x) = Gx (mod q) and input
distribution Dw

Z,s with s ≥ (2β +
√

w)
√

ω(log n).
– Subgaussian Decomposition w.r.t G with parameter s ≥ (2β +

√
w) · √

2π.
– LWE decoding of gG(s, e) for any s ∈ Z

n
q and ‖e‖∞ ≤ q/2 · (2β +

√
w).

We remark that the general solutions provided by this corollary are of the-
oretical interest, and not suitable for practice. They are provided here only as
a general feasibility result, in order to identify classes of good gadget matrices.
The rest of the paper is dedicated to showing that by carefully choosing the
gadget vector g, one can obtain constructions and algorithms that are not only
theoretically efficient, but also easy to implement and extremely fast.

4 Subgaussian Gadget Decomposition

In this section we present our main algorithms for the problem of subgaussian
gadget decomposition, defined in Sect. 2.2, using the gadget matrix G = In ⊗ gt.
Since this decomposition G−1(u) = (g−1(ui))n

i=1 can be computed one compo-
nent at a time (even in-parallel!) we restrict our attention to efficiently computing
the subgaussian function g−1 : Zq → Z

k in the one-dimensional case, i.e., for
n = 1.

The gadgets and algorithms in this section are parametrized by a “base”
integer b, which we consider as fixed throughout the section, but can be used to
achieve different efficiency/quality trade-offs. We distinguish two cases, depend-
ing on whether the modulus is a power q = bk of the base b, or an arbitrary
integer q < bk. In either case, no assumption is made about the factorization
of the modulus q. Later, in Sect. 6, we will extend the gadgets and algorithms
from this section to provide optimized treatment of large moduli with useful
co-prime factorization q =

∏
i qi, where the input u ∈ Zq is given in CRT form

(u mod q1, . . . , u mod ql).
All algorithms in this section use the same gadget gt := (1, b, · · · , bk−1), for

k = �logb q�, but with different subgaussian decomposition procedures depending
on the whether q is a power of b. Notice that gt is a Zq-gadget of size k and
quality β =

√
k(b/2).

The main result of this section is summarized in the following theorem.3

Theorem 4. For any integer base b > 1, integer modulus q > 1, k = �logb q�
and gadget gt = [1, b, · · · , bk−1], there is a subgaussian decomposition algorithm
g−1 as follows:
3 This theorem is most relevant when q is a relatively small modulus (say q < 264),

so that arithmetic operations modulo q can be performed with unit cost. For larger
moduli, the theorem will be used as a building block for a more complex algorithm
described in Sect. 6 using RNS/CRT representation for the elements of Zq.
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– If q = bk, the algorithm runs in linear O(k) time (and space), uses log2 q
random bits, and achieves subgaussian parameter at most (b − 1)

√
2π.

– If q �= bk, the algorithm runs in linear O(k) time (and space), uses at most
k log2 q random bits, and achieves subgaussian parameter at most (b+1)

√
2π,

Notice how the generic solution obtained by applying Theorem 3 to our
gadget g only implies a polynomial time inversion algorithm with subgaussian
parameter (b + 1) · √

2kπ, and quadratic O(k2) time complexity (after a cubic
time O(k3) preprocessing). Depending on implementation details, this generic
solution would also require the use of high precision floating point numbers4 and
a substantial amount of randomness for high precision sampling. (For complete-
ness, we provide a more detailed analysis of the generic solution in the Appendix
of the full version [24].) By contrast, the solution described in Theorem 4 is much
more efficient (linear time and space, with no need for preprocessing) and also
achieves a smaller subgaussian parameter by a factor of

√
k. Moreover, our spe-

cialized algorithms use a relatively small (almost optimal) number of random
bits, and can be implemented without the need for high-precision floating-point
arithmetic.

A proof of Theorem 4 is given by the algorithms presented and analyzed in
the next two subsections for the two separate cases q = bk and q < bk.

4.1 Power-of-Base Case

Here we consider the subgaussian decomposition problem for the gadget g =
(1, b, . . . , bk−1) when q = bk, and the input is given as a positive coset represen-
tative u ∈ {0, 1, · · · , q − 1}. Conceptually, our solution to this problem is just
a specialized/optimized version of the randomized-rounding variant of Babai’s
nearest plane algorithm [5,7]. The general algorithm uses the Gram-Schmidt
orthogonalization of a basis for the lattice Λ⊥

q (gt) associated to the gadget g.
The optimization is based on the observation (from [38]) that for our gadget g
and modulus q = bk, the lattice Λ⊥

q (gt) has a very simple basis S, and an even
simpler GSO S̃:

S =

⎛

⎜
⎜
⎜
⎜
⎝

b

−1
. . .
. . . b

−1 b

⎞

⎟
⎟
⎟
⎟
⎠

, S̃ = b · I.

Using this special structure, there is no need to explicitly compute and store the
GSO, and the randomized-rounding nearest-plane algorithm can be implemented
in linear time and space O(k). The specialized algorithm is best illustrated when
b = 2, in which case it computes a randomized “bit” decomposition of u as
follows:

4 For a general integer basis B, the GSO can have numbers with denominators as large
as

∏
i ‖bi‖2.
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Algorithm 1: g−1(u) for q = bk.
Input: u ∈ {0, 1, · · · , q − 1}
Output: subgaussian x ∈ Λ⊥

u (gt) with parameter (b − 1)
√

2π
1 Let x ← 0
2 for i ← 0, · · · , k − 1 do
3 Let y ← u mod b ∈ {0, · · · , b − 1}.
4 if y = 0 then
5 xi ← 0.
6 else
7 with probability y/b, xi ← y − b, and xi ← y otherwise.
8 u ← (u − xi)/b.

9 return x

1. For i = 0, · · · , k − 1:
(a) if u is even, then set xi ← 0,
(b) if u is odd, then choose xi ← {−1,+1} uniformly at random
Update u ← (u − xi)/2.

2. Return x = (x0, x1, · · · , xk−1).

This is essentially the same as the standard (deterministic) bit decomposition
algorithm, except that when the bit is 1, we use a random ±1 digit. Since ±1
have the same parity modulo 2, the algorithm works as expected, with the only
difference that now each digit is a zero-mean random variable, and the final
output is subgaussian with parameter

√
2π.

We can modify this algorithm to an arbitrary base b as follows. Let y := u
mod b ∈ {0, · · · , b − 1} for an input u ∈ Zq. Then, at each step, we pick the
coset representative (of u with respect to Zb) with expectation 0 from the set
{y−b, y}. The resulting algorithm is given in Fig. 1. One can verify that this is the
subgaussian nearest plane algorithm (given in the Appendix of the full version
[24]) applied to the lattice L(S) = Λ⊥

q (gt), so the correctness of the algorithm is
straightforward. Efficiency is also easily analyzed by inspection. Notice that the
algorithm is randomness efficient as it needs only one random number in Zb for
every interaction, for a total of k · log2(b) = log2(q) random bits.

We remark that a similar algorithm is analyzed in [4], though with a loose
bound on its subgaussian parameter (there is an unnecessary

√
k factor in their

subgaussian analysis). This section’s main contribution is how to generalize the
algorithm to arbitrary modulus q, as described in the next subsection.

4.2 Arbitrary Modulus, Arbitrary Base

Unfortunately, the (randomized) nearest plane algorithm Λ⊥
q (gt) does not spe-

cialize well when the modulus q is not a power of b. The reason is that, while
we can still use the same gadget g = (1, b, . . . , bk−1), the corresponding lattice
Λ⊥

q (gt) has a slightly different basis Sq whose GSO is not diagonal, and not



Building an Efficient Lattice Gadget Toolkit 669

sparse. Our solution uses a technique developed in [23] for the discrete Gaus-
sian sampling problem. Specifically, we use the fact that Sq admits a sparse,
triangular factorization

Sq =

⎛

⎜
⎜
⎜
⎜
⎝

b q0

−1
. . .

...
. . . b qk−2

−1 qk−1

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

b

−1
. . .
. . . b

−1 b

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

1 d0
. . .

...
1 dk−2

dk−1

⎞

⎟
⎟
⎟
⎠

= SD (1)

where (q0, · · · , qk−1) are the (base b) digits of q, and the last column of D is
defined by the simple recurrence di = di−1+qi

b with initial condition d−1 = 0.
(Note that bi+1di = q mod bi+1 ∈ {0, · · · , bi+1 − 1}.)

Then, on input u ∈ {0, 1, · · · , q − 1}, we proceed as follows:

1. Compute an arbitrary element u ∈ Z
k of the lattice coset Λ⊥

u (gt), for example
u = (u, 0, . . . , 0).

2. Map u to t = S−1u by solving a sparse system of linear equations St = u
(mod q).

3. Pick a subgaussian sample from the lattice coset L(D) + t.
4. Apply the (sparse) linear transformation S to the sample, to obtain a sub-

gaussian sample from Λ⊥
u (gt).

Here the (randomized) nearest plane algorithm admits a simple and efficient
specialization because it is applied to a basis, D, which has a diagonal GSO. The
linear transformations S−1 and S can also be computed in linear time because S
is sparse and triangular. As a result, the algorithm runs in linear time O(k) and
does not require any pre-processing. Finally, we get an output with subgaussian
parameter (b + 1)

√
2π since S has small spectral norm.

The actual algorithm is given in Algorithm 2. The algorithm directly imple-
ments the outline given above, but it is specialized/optimized to avoid the
explicit computation of the sparse matrices S,D, and to use only integer num-
bers (avoids floating point numbers). Details about the correctness and analysis
of the algorithm are provided in the rest of this section.

Lemma 4. The first loop of Algorithm 2 performs the subgaussian nearest plane
algorithm (described generically in the Appendix of the full version, [24]) on the
lattice generated by D around target t := −S−1[u]kb .

By storing d = S−1[q]kb in-advance, one can change the code to sample the
first k − 1 coordinates of x in-parallel since L(d0, · · · ,dk−2) = Z

k−1 ⊕ {0}.

5 Gadget Decoding

Here we discuss our main algorithm for the problem of LWE gadget decoding,
defined in Sect. 2.2, on the gadget matrix G = In ⊗ gt with entries in Zq, for an
arbitrary modulus q. Given a vt = stG + et ∈ Z

nk
q as input, we can break the
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Algorithm 2: g−1(u)
Input: u ∈ {0, 1, · · · , q − 1}
Output: subgaussian x ∈ Λ⊥

u (gt) with parameter (b + 1)
√

2π
1 Let u ← [u]kb , x,y ← 0

2 x ← 0,q = [q]kb .
3 set xk−1 ← 0 with probability (q − u)/q and xk−1 ← −1 otherwise.
4 for i = k − 2, · · · , 0 do
5 u ← u − ui+1b

i+1, q ← q − qi+1b
i+1.

6 Let c ← −(u + xk−1q).
7 if c < 0 then
8 p ← (c + bi+1), z ← −1.
9 else

10 p ← c, z ← 0.

11 set xi ← z + 1 with probability p/bi+1 and xi ← z otherwise.

12 for i ∈ {0, · · · , k − 2} do
13 yi ← b · xi − xi−1 + xk−1 · qi + ui.
14 yk−1 ← −xk−2 + xk−1 · qk−1 + uk−1.
15 return y.

vector into n components of length k, then decode (in-parallel) each component
with respect to gt. Therefore, we focus on decoding gt as a gadget for Zq.

Our algorithm and its respective gadgets are parameterized by an integer
“base” b. We consider b as fixed in this section, though varying b for a fixed
modulus q yields efficiency/quality trade-offs for these gadgets. Later, in Sect. 6
we present a CRT gadget that can be used to efficiently decode an input given
in CRT form.

Let k = �logb q� and the gadget be gt = (1, b, · · · , bk−1). The vector gt

is a size k gadget of quality (b/2)
√

k for Zq. The results in this section are
summarized in the following theorem.

Theorem 5. For every modulus q, and gadget gt = (1, b, · · · , bk−1), there is a
time and space O(k) algorithm decoding gt with tolerance q/2(b + 1).

A proof of Theorem 5 is given by the algorithm presented in this section.
Note, Theorem 3 implies a polynomial time decoding algorithm for gt with error
tolerance ‖e‖∞ ≤ q/2

√
k(b + 1). Our decoding algorithm is more efficient and

has a higher error tolerance by a factor
√

k than the general gadgets decoding
guarantee given by Theorem 3.

An optimized, linear time and space O(k), decoding algorithm is given in
[38] for the case q = bk. The reason for this algorithm’s efficiency is that the
commonly used basis for Λbk(gt) results in a linear time nearest plane algorithm.
In more detail, a basis for Λbk(gt) in this case is the triangular matrix Bbk =
bk · S−t, where S is the commonly used basis for Λ⊥

bk(gt) presented in Sect. 2.2,
and this basis has a GSO of (q/b) · I.
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Algorithm 3: DecodeG(v, b, r[q]kb )

Input: v ∈ Z
k, b, and q = [q]kb .

Output: s ∈ Zq where v = sgt + et as long as ‖e‖∞ < q/2(b + 1).
1 for i ← 0, · · · , k − 2 do
2 vi ← bvi − vi+1.
3 vk−1 ← b · vk−1.
4 Let x ← 0 and reg ← 0.
5 for i ← 0, · · · , k − 2 do

6 xi ← �vi/q� and reg ← reg/b + bk−1 · qi.
7 vk−1 ← vk−1 + xi · reg.

8 xk−1 ← �vk−1/bk�.
9 Let s ← xk−1 and reg ← 0.

10 for i ← k − 2, · · · , 0 do
11 reg ← b · reg + qi+1.
12 s ← s + xi · reg

13 return s mod q.

However, the simple decoding idea presented in [38] fails when q �= bk.
Because Λq(gt)’s commonly used basis has a dense GSO, Babai’s nearest plane
algorithm takes time O(k2) and space O(k3) when naively applied on Λ⊥

q (gt).

Efficient Decoding Algorithm. The intuition for our algorithm is best initially
viewed through the case when q = bk. Given an input v, another way to decode
the lattice Λbk(gt) is to use St as a linear transformation, decode Stv to the
lattice bk · Zk with the nearest plane algorithm, then map the nearest point
in bk · Zk back to Λbk(gt). This leads to a slightly stronger condition on the
noise vector e since we now need Ste ∈ P1/2(q · I), which is satisfied if ‖e‖∞ <
q/2(b + 1). Though there is no need to do this given the algorithm in [38], this
is essentially what we will do in the case when q �= bk.

Overview. The overview of our efficient decoding algorithm for an arbitrary
modulus is as follows. First recall the sparse, triangular factorization of Λ⊥

q (gt)’s
commonly used basis given in Sect. 2.2, Sq = SD. The duality relation for q-ary
lattices, Λq(gt) = q ·Λ⊥

q (gt)∗, dictates that a basis for Λq(gt) is q ·S−t
q = S−t(q ·

D−t). Luckily, the matrix D−t is sparse with a diagonal GSO, and P1/2(q·D̃−t) ⊇
P1/2(q · I) (meaning we can decode as long as ‖e‖∞ < q/2(b + 1)). Therefore,
we can decode gt by the following.

1. Given v, first apply St as a linear transformation.
2. Then, decode the vector Stv to the lattice generated by qD−t using the

nearest plane algorithm.

Both steps can be computed in linear time and space, O(k), given the sparsity
of S and qD−t, and qD−t’s diagonal GSO.
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The pseudocode for our algorithm is shown in DecodeG. In short, the algo-
rithm has three components, where each is represented by a loop in the pseu-
docode. These components are to first compute the linear transformation on the
input v ← Stv, then to run the nearest plane algorithm on the lattice generated
by q · D−t, and finally to return s represented as the first entry of the nearest
lattice point in Λq(gt) modulo q. The proof of Theorem 5 follows from Lemmas 5
and 6 below.

Lemma 5. The second loop in DecodeG is an instantiation of Babai’s nearest
plane algorithm on the lattice q ·D−t given target Stv, running in time and space
O(k).

Lemma 6. The last loop in DecodeG computes s mod q in time and space
O(k).

6 Gadgets for the CRT Representation

Many applications of lattice gadgets require a large modulus that, for secure
and functional sets of parameters, surpasses the native 64-bit integer arithmetic
in a modern machine’s hardware. One common method to circumvent the use
of multi-precision numbers is to pick a modulus of the form q =

∏
qi with

each qi less than 64 bits. Then, one can store an element u ∈ Zq as its Chi-
nese Remainder representation (CRT form5) as (u mod q1, · · · , u mod ql) and
perform computations via the Chinese Remainder Theorem, utilizing the ring
isomorphism Zq

∼= Zq1 ×· · ·×Zql . Simple forms of the gadget matrix (e.g. power
of two matrix) are not compatible with this representation because the binary
digits of a number cannot be easily recovered from the CRT components without
a costly reconstruction phase involving large numbers modulo q.

In this section, we discuss a gadget for the CRT form. As usual, the gadget
admits a compact (implicit) representation, and does not need to be computed
and stored explicitly. Most importantly, the gadget allows us to use the algo-
rithms in Sects. 4 and 5 in order to perform subgaussian decomposition, discrete
Gaussian sampling, and LWE gadget decoding all given input represented in
CRT form. This has several theoretical and practical advantages: (1) the algo-
rithms can be directly used by efficient applications that already store their
numbers in CRT form, (2) our algorithms can be easily parallelized as they
operate on each CRT component independently, (3) all algorithms only require
arithmetic on small numbers (at most maxi qi) even if the modulus q =

∏
i qi

may be very big. (Efficient solutions to Discrete Gaussian Sampling for the indi-
vidual moduli qi, as needed by our CRT DGS algorithm, are given in [23,38].)
We remark that a balanced, deterministic digit decomposition is provided in
[18,41], and an LWE decoding algorithm for a CRT/RNS hybrid gadget for gen-
eral rings is given in the library’s code6 (without an analysis). Our results are

5 This is also known as the residue number system (RNS) in previous works.
6 https://github.com/cpeikert/Lol/blob/master/lol/Crypto/Lol/Gadget.hs.

https://github.com/cpeikert/Lol/blob/master/lol/Crypto/Lol/Gadget.hs
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Algorithm 4: Sampling in
CRT form.
Input: (u1, · · · , ul)
Output: g−1

CRT (u1, · · · , ul).
1 for i ∈ {1, · · · , l} do
2 xi ← g−1

i (ui).
3 return x = (x1, · · · ,xl).

Algorithm 5: Decoding in
CRT form.
Input: vt = s · gCRT + et mod q
Output: (s1, · · · , sl).

1 Let v = (v1, · · · ,vl) for each
vi ∈ Z

ki
q .

2 for i ∈ {1, · · · , l} do
3 si ← DecodeCRT(vi)
4 return (s1, · · · , sl).

Fig. 1. Pseudocode for the parallel algorithms given in Theorem 6. We let g−1
i (·) denote

either the subgaussian decomposition algorithm given in Sect. 4 or a discrete Gaussian
sampler. The subroutine DecodeCRT is a variation of the decoding algorithm given
in Sect. 5 and is described in Sect. 6.1.

summarized in the following theorem. We emphasize the analysis below assumes
integer operations, including reductions modulo qi, are done in constant time.
This is because our algorithms are best implemented when each qi is less than
64 bits, avoiding the use of multi-precision numbers.

Theorem 6. Let q have factorization q =
∏l

i=1 qi into coprime factors {qi},
(bi)l

i=1 be an l-tuple of bases with bi < qi for all i, and let k =
∑

ki where ki =
�logbi qi�. There exists a gadget, gt

CRT , for Zq of size k and quality maxi bi/2.
Further, the gadget satisfies the following properties:

– Subgaussian decomposition can be performed in-parallel with l processors,
each using time and space O(ki), consuming less than ki log2 qi random bits
((log2(qi) random bits if qi = bki

i )) and with parameter at most (maxi(bi) +
1)

√
2π.

– For any ε > 0, discrete Gaussian sampling can be performed in-parallel with
l processors, each in time and space O(ki) with width s ≥ O(b1.5

j )ηε(Zkj ) for
index j maximizing

√
2bj(bj + 1) · ηε(Zkj ).

– gt
CRT is decodable in-parallel with l processors in time and space O(ki) with

tolerance q/(2maxi(bi) + 1).

As expected, each processor gets slightly more efficient whenever qi = bki
i .

The algorithms are represented in Fig. 1.

The CRT Gadget. For each coprime factor qi, fix the base-bi gadget vector as
gt

i := (1, bi, · · · , bki−1
i ) where ki = �logbi(qi)�. Let k =

∑
i ki, q∗

i = q/qi, and
q̂i = (q∗

i )−1 mod qi. Consider the gadget vector, which we call the general CRT
gadget, gt

CRT = (q∗
1 q̂1 · gt

1, · · · , q∗
l q̂l · gt

l) mod q ∈ Z
1×k
q . This is a generalization

of the gadgets (or implicit in algorithms) used in [8,11,32,33]. As before, the
gadget matrix is the block-diagonal matrix G := In ⊗ gt

CRT . Theorem 6 follows
from the fact Λ⊥

q (gt
CRT ) = Λ⊥

q1(g
t
1) ⊕ · · · ⊕ Λ⊥

ql
(gt

l ), Theorem 4, and Proposition
3.1 in [23]. The parallel decoding algorithm is obtained by a slight adaptation
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Algorithm 4: DecodeCRT(vi, bi, t = [qi]ki

bi
, q, q∗

i )

Input: vi ∈ Z
ki , bi, q∗

i , q, and t = [qi]
ki
bi

.

Output: s mod qi where v = sgt + et mod q as long as ‖e‖∞ < q/2(bi + 1).
1 for j ← 0, · · · , ki − 1 do
2 vj ← bjvj − vj+1.
3 Let x ← 0.
4 for j ∈ {0, · · · , ki − 2} do
5 xj ← �vj/q�.
6 xk−1 ← �(vk−1 − 〈

c,xk−2
0

〉
)/(q∗

i bi
ki)�.

7 Let si ← xk−1 and reg ← 0.
8 for j ← ki − 2, · · · , 0 do
9 reg ← b · reg + tj+1 · q∗

i .
10 si ← si + xj · reg

11 return si mod qi.

to DecodeG presented in Sect. 5, and is analyzed in the Sect. 6.1. We prove the
direct sum decomposition of Λ⊥

q (gt
CRT ) in the full version of the paper.

6.1 Decoding the CRT Gadget

Here we show how the efficient gadget decoding algorithm from Sect. 5 adapts
to the general CRT gadget described in Sect. 6. Recall the decomposition of gt’s
lattice, Λ⊥

q (gt) = Λ⊥
q1(g

t
1) ⊕ · · · ⊕ Λ⊥

ql
(gt

l) = L(Sq1) ⊕ · · · ⊕ L(Sql). The duality
relation for q-ary lattices yields Λq(gt) = q · (Λ⊥

q (gt))∗ = q · (⊕
i L(S−t

qi D
−t
qi )

)

=
(⊕

i L(S−t
qi q∗

i · (qi · D−t
qi ))

)
.

Now we have a clear way to decode the general CRT gadget. First, break the
input into l blocks, vt = sgt+et mod q = (vt

1, · · · ,vt
l ) where vt

i = s ·q∗
i q̂igt

i +et
i

mod q. Then, we compute the following. First, transform vi to St
qivi. Then,

decode St
qivi to the lattice q∗

i (qiD−t
qi ). Finally, return s mod qi. The pseudocode

is given as the algorithm DecodeCRT. Another change is that we store the
vector c in memory. Recall, c has k − 2 entries of the form cj = −bki−1−j

i (qi

mod bj
i ). Note that the correctness condition of our algorithm is still ‖et‖∞ <

q/2(maxi(bi) + 1).

Decoding in CRT Form. Here we describe how DecodeCRT can decode v =
sg+e where the input is given in its CRT representation. The ideas sketched here
follow from [33]. The linear transformation v → Stv is easily computed given
the CRT form of v. Really, we are only concerned with divisions and integer
rounding. In the second loop, note that xj ← �vj/q� = �∑l

o=1[(v mod qo) ·
(q̂o/qo)]�. Next we consider the line xk−1 ← �(vk−1 +

〈
c,xk−2

0

〉
)/(q∗

i bi
ki)�. First,

note that vk−1/(bki
i q∗

i ) = b−ki
i · ∑l

o=1(vk−1 mod qo) · q̂o(qi/qo). This should be
a small number in nearly all practical instantiations. Lastly, we note that we
return s in CRT form, but we can alter the algorithm to return s ∈ (−q/2, q/2]
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via a simple change. The s computed in the last loop is actually s · q∗
i q̂i. So, we

can remove the mod qi in the return statement and sum up the output from
the l parallel processors,

∑
i(s · q∗

i q̂i) = s · ∑i(q
∗
i q̂i) = s · 1 mod q.

7 Toolkit Implementation and Its Application

7.1 Software Implementation

We implemented most of the algorithms presented in this work in PAL-
ISADE [42], a modular open-source lattice cryptography library that includes
ring-based implementations of homomorphic encryption, proxy re-encryption,
identity-based encryption, attribute-based encryption, and other lattice schemes.
More concretely, we added a new lattice gadget toolkit module to PALISADE
that implements the following algorithms:

– Subgaussian gadget decomposition (Algorithm 2) for arbitrary moduli and
gadget bases.

– Efficient gadget in CRT representation, enabling both trapdoor sampling and
subgaussian gadget decomposition in the CRT representation.

– Subgaussian gadget decomposition for cyclotomic rings both in positional and
CRT number systems, which wraps around Algorithm 2.

The toolkit module complements/improves the lattice gadget algorithms pre-
viously added to PALISADE, such as trapdoor sampling for cyclotomic rings
proposed in [23] and implemented in [17,31]. The full lattice gadget capability
will be included in the next major public release of PALISADE.

7.2 Optimized Variant of Key-Policy Attribute-Based Encryption

We use the lattice gadget toolkit algorithms to build and implement a full
RNS/CRT variant of the short-secret Key-Policy Attribute-Based Encryption
(KP-ABE) scheme originally proposed in [10] and implemented for cyclotomic
rings in [19]. The KP-ABE scheme is a complex cryptographic primitive that
can be used for attribute-based access control applications, as well as a building
block for audit log encryption, targeted broadcast encryption, predicate encryp-
tion, functional encryption, and some forms of program obfuscation [10,28].

Overview. ABE is a public key cryptography primitive that enables the decryp-
tion of a ciphertext by a user only if a specific access policy (defined over �
attributes) is satisfied. In the key-policy scenario, a message is encrypted using
the attribute values as public keys, and a specific access policy is typically defined
afterwards. When the access policy becomes known, a secret key for the policy is
generated (using trapdoor sampling in our KP-ABE scheme), and the ciphertexts
and public keys are homomorphically evaluated over the policy circuit (using a
GSW-type homomorphic multiplication in our KP-ABE scheme).

The short-secret KP-ABE scheme is a tuple of functions, namely Setup,
Encrypt, EvalPK, KeyGen, EvalCT, and Decrypt, whose definitions are:
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– Setup(1λ, �) → {MPK, MSK}: Given a security parameter λ and the number
of attributes �, a trusted private key generator (PKG) generates a master
public key MPK and a master secret key MSK. MPK contains the ABE public
parameters while MSK includes the trapdoor that is used by PKG to generate
secret keys for access policies.

– Encrypt(μ,x, MPK) → C: Using MPK and attribute values x ∈ {0, 1}�, sender
encrypts the message μ and outputs the ciphertext C.

– EvalPK(MPK,x, f) → PKf : Homomorphically evaluate MPK over a policy
(Boolean circuit) f : {0, 1}� → {0, 1} to generate a public key PKf for the
policy f .

– KeyGen(MSK, MPK, PKf ) → SKf : Given MSK, MPK and policy-specific PKf , PKG
generates the secret key SKf corresponding to f . PKG sends SKf to the
receiver that is authorized to decrypt ciphertexts encrypted under f .

– EvalCT(C,x, f) → Cf : Homomorphically evaluate C over the policy f to
generate the ciphertext Cf .

– Decrypt(Cf , SKf ) → μ̄: Given the homomorphically computed ciphertext
Cf and corresponding secret key SKf , find μ̄, which is the same as the original
message μ if the receiver has the secret key matching the policy f .

The most computationally expensive operations are EvalPK and EvalCT,
which homomorphically evaluate a circuit of depth �log2 �� using the GSW homo-
morphic multiplication approach. At each level of a Boolean circuit composed of
NAND gates (which are used for benchmark evaluation in [19]), the algorithms
compute matrix products B2iG−1(−Bi) and

(
G−1(−Ci)

)t
C2i for public keys

and ciphertexts, respectively. Here, Bi ∈ R1×m
q , Ci ∈ Rm

q , Rq = Zq[x]/ 〈xn + 1〉,
and m = �logb q� + 2 (the latter corresponds to the Ring-LWE trapdoor con-
struction). Note that that the gadget G is extended in this case to m by adding
two zero entries to the decomposed digits.

The work [19] presents a CPU implementation of the ring variant of the KP-
ABE scheme along with an efficient GPU implementation for policy evaluation
and encryption. The CPU implementation was done for a binary gadget base
and used the conversion from CRT to the positional number system for digit
decomposition both in trapdoor sampling and gadget decomposition. To avoid
the linear noise growth O(nm) in gadget decomposition, the authors used a
balanced digit decomposition, namely the binary non-adjacent form (NAF), that
replaces digits in (0,1) with a zero-centered representation in (−1, 0, 1). Although
this approach allows one to achieve a heuristic growth close to O(

√
nm) in the

case of the KP-ABE scheme, the noise properties depend on the randomness of
the input, i.e., this approach is deterministic.

The CPU runtimes for policy evaluation and encryption operations in [19]
were far from practical (the CPU results only for � up to 8 are presented),
and hence the authors developed an efficient GPU implementation for these
operations.

For detailed algorithms of the KP-ABE scheme, the reader is referred to [19].
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Our Optimizations. We present a full CRT/RNS ring variant of the KP-ABE
scheme that leverages the lattice gadget toolkit to significantly (by more than
one order of magnitude) speed up the policy evaluation operations. In particular,
our implementation includes the following optimizations as compared to [19]:

– The subgaussian gadget decomposition in CRT representation to minimize
the noise growth instead of the NAF decomposition with the conversion from
CRT representation to positional system. This provides a theoretical guaran-
tee of the square-root noise growth. To achieve the repeatability of random-
ized decomposition in EvalPK and EvalCT, we use the same seed for the
random operations in subgaussian gadget decomposition. The seed is treated
as part of the master public key.

– The CRT variant of trapdoor sampling using the gadget decomposition tech-
nique discussed in this paper in contrast to the multiprecision digit decom-
position in [19].

– The RNS/CRT scaling proposed in [33] for decryption in contrast to the
multiprecision scaling.

– Increased gadget base b (both in trapdoor and subgaussian gadget decompo-
sition) instead of the binary base.

Parameter Selection. As the correctness constraint in [19] was derived for the
classical binary-base gadget decomposition, we provide here a modified version
incorporating the effect of a larger gadget base for the case of subgaussian gadget
decomposition:

q > 4C1sσ
√

mn
(
b
√

mn
)d

, (2)

where C1 = 128, s = C · σ2(b + 1) · (√n logb q +
√

2n + 4.7), C = 1.8, σ ≈ 4.578,
and d = �log2 ��. Here, C and C1 are empirical parameters chosen the same way
as in [19].

The differences compared to [19] are the b factor in the exponentiation base
(as the digits vary between −b and b in subgaussian gadget decomposition)
and a (b+1) factor in the expression for s (contributed by Gaussian sampling;
see [17,23] for a more detailed discussion of the Gaussian distribution parameter
for arbitrary gadget bases).

8 Experimental Results

We ran the experiments in PALISADE version 1.2, which includes NTL version
10.5.0 and GMP version 6.1.2. The evaluation environment was a commodity
desktop computer system with an Intel Core i7-3770 CPU with 4 cores rated
at 3.40 GHz and 16 GB of memory, running Linux CentOS 7. The compiler was
g++ (GCC) 5.3.1.
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Fig. 2. Runtime baseline of subgaussian sampling rate for native uniformly random
integers (w.r.t a 60-bit modulus). When b = 2r, the modulo reduction in digit decom-
position is performed by simple bit shifting. When b is arbitrary, the slower hardware
modulo operation is used. The plateaus correspond to the same number of digits, i.e.,
the same value of �60/ log2 b�.

8.1 Subgaussian Gadget Decomposition

The experiments described in this section were all performed in the single-
threaded mode. The goal of these results is to provide the performance baselines
for subgaussian gadget decomposition, demonstrate the benefits of the efficient
gadget in CRT representation, and illustrate the effect of subgaussian sampling
on the noise growth in GSW-type products.

Figure 2 shows the dependence of subgaussian gadget decomposition rate (per
decomposed integer) on the gadget base for native (64-bit) integers. The results
are shown both for a power-of-two base, which supports fast modulo reduction
by bit shifting, and an arbitrary base, which requires a division-based modulo
operation on x86 architectures. In our implementation, the native arithmetic is
a building block for performing operations in CRT representation for integers
that are larger than 60 bits, and, therefore, these results can be used to estimate
the runtimes for larger CRT-represented integers. Figure 2 illustrates that the
sampling rate increases in a discrete manner as we raise the gadget base because
the number of digits is determined by �60/ log2 b�. The runtime is dominated
by the randomized operations (as the difference between a power-of-two-base
and arbitrary-base scenarios is relatively small), thus limiting the advantages
of choosing the faster power-of-two bases. This suggests that a CRT represen-
tation in terms of powers of primes, where the primes are used as the residue
bases, might be preferred in some instances (where an efficient implementation
of arithmetic over prime powers is available) over power-of-two bases.

Figure 3 illustrates the benefits of using the efficient gadget in CRT repre-
sentation when working with cyclotomic rings. The conversion from CRT rep-
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Fig. 3. Comparison of sampling rates for CRT and multiprecision (MP) variants of
subgaussian gadget decomposition for ring elements with 4096 coefficients and 60-bit
CRT moduli at r = �log2 b� = 20. The MP variant requires converting from CRT
representation to positional number system followed by digit decomposition w.r.t. a
large integer.

resentation to the positional system followed by digit decomposition w.r.t a
large modulus slows down subgaussian gadget decomposition rate by almost one
order of magnitude. We also observe that the difference in performance between
a power-of-two base and an arbitrary base is relatively small for both cases.

Figure 4 demonstrates the differences in the noise growth of GSW-type prod-
ucts using the subgaussian and classical binary gadget decomposition methods.
For this experiment, we generated an error vector in Rm and iteratively multi-
plied it by G−1(Ui), where Ui is a vector of uniformly random ring elements
in Rm

q at level i. We applied the tree multiplication approach (rather than a
sequential evaluation in a right-associative manner, which reduces the noise when
dealing with a chained product of fresh encryptions in GSW [5,14]) to emulate
the noise growth in evaluating a Boolean policy circuit in the KP-ABE scheme.
We considered both the cases when the same U was used at all levels (correlated
ciphertexts) and different Ui at each level. The results were approximately the
same for both scenarios because the classical gadget decomposition matrix is
centered at 0.5 (see [19] for a more detailed discussion of the classical gadget
decomposition case).

Figure 4 suggests that the noise growth in the subgaussian gadget decompo-
sition case has a square-root dependence on mn (β ≈ 0.5) while the classical
gadget decomposition approach results in almost linear noise growth (β ≈ 0.9).
Note that the intercept is lower for classical gadget decomposition because the
infinity norm of digits is 1 (only 0 or 1 are possible) vs. 2 in the case of subgaus-
sian decomposition (the allowed integer values are in the range from −2 to 2).
However, this advantage does not propagate to the second level of the circuit as
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Fig. 4. Noise growth for GSW-type multiplication in the ring-based KP-ABE variant
(k = 180, n = 1024, b = 2). The base in the exponentiation is (mn)β , where m = k+2 =
182 and β describes the rate of noise growth. The slope of the linear interpolation is
β log2(mn). The values of β are 0.497 and 0.893 for subgaussian and classical gadget
decomposition, respectively.

the square-root dependence of subgaussian gadget decomposition already plays
a more dominant role here.

8.2 Key-Policy Attribute-Based Encryption

Table 1 shows the performance results for our implementation along with the
corresponding results for the implementation in [19]. The first three rows for
the results in [19] were obtained using native (64-bit) integer arithmetic and
the last row used a multiprecision backend in PALISADE based on NTL/GMP.
The experiments were run for 4 threads on a commodity desktop system, i.e.,
Intel Core i7-3770 CPU with 4 cores at 3.40 GHz and 16 GB of memory running
CentOS 7. Both variants were implemented in PALISADE v1.2.

To choose the ring dimension n for both implementations, we ran the LWE
security estimator7 (commit 560525) [3] to find the lowest security levels for the
uSVP, decoding, and dual attacks following the standard homomorphic encryp-
tion security recommendations [2]. We selected the least value of the number of
security bits λ for all 3 attacks on classical computers based on the estimates for
the BKZ sieve reduction cost model. All results are presented for at least 128
bits of security.

Table 1 suggests there is a speed-up of 2.1x to 3.2x for key generation, where
the lattice trapdoor sampling subroutine is called. The speed-up for encryption
is 3.8x to 9.5x, which is mostly attributed to the use of a larger gadget base. The
speed-ups for the main bottleneck operations of homomorphic public key and

7 https://bitbucket.org/malb/lwe-estimator.

https://bitbucket.org/malb/lwe-estimator
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Table 1. Comparison of performance results for our KP-ABE variant (in bold) vs. the
implementation in [19] (in parentheses). EvalCT*=EvalPK+EvalCT corresponds
to the scenario when the policy evaluation of public keys and ciphertexts is done at
the same time.

� k log2 n r KeyGen Encrypt EvalCT* EvalPK Decrypt RAM

[ms] [ms] [s] [s] [ms] [MB]

2 50 (44) 11 (11) 5 (1) 40 (126) 7 (33) 0.023 (0.44) 0.021 (0.42) 1.8 (3.0) 19 (58.5)

4 100 (52) 12 (12) 20 (1) 64 (143) 15 (57) 0.072 (1.76) 0.064 (1.68) 3.9 (3.5) 36.4 (86.3)

8 120 (60) 13 (13) 15 (1) 151 (317) 56 (222) 0.59 (10.8) 0.53 (10.4) 8.9 (7.7) 94.1 (255)

16 180 (70) 13 (13) 20 (1) 177 (419) 157 (1,483) 1.68 (429) 1.48 (427) 11.5 (18.1) 230 (2,867)

32 180 13 15 206 414 5.67 5.0 13.46 508

64 204 13 17 226 1,052 13.1 11.2 16.39 1,229

128 300 14 25 568 6,454 98.3 85.5 45.43 7,024

ciphertext evaluation are in the range from 18x to 289x, which is a combined
effect of subgaussian gadget decomposition in CRT and a larger gadget base. The
decryption runtimes are comparable, and already fast for both implementations.
The memory requirements for our optimized variant are 2.4x to 12.5x smaller.

Note that the performance of the KP-ABE variant in [19] dramatically
degrades after switching from the native arithmetic (when k ≤ 60 bits) to the
multiprecision backend (for gadget decomposition), which is observed for � = 16
in Table 1. This implies the efficient gadgets in CRT representation are critical
for supporting deeper Boolean circuits with CPU systems.

We also profiled the contributions of subgaussian gadget decomposition and
the number theoretic transforms (NTT) of the digit-decomposed matrix (needed
for matrix multiplication) to the runtimes for homomorphic policy evaluation of
ciphertexts (EvalCT*). The contribution of subgaussian gadget decomposition
was in the range from 15% to 22% w.r.t. the total homomorphic policy eval-
uation runtime. The contribution of the related NTTs was between 47% and
63%, suggesting that the latter is the main bottleneck of homomorphic circuit
evaluation in our KP-ABE variant.
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Abstract. We describe an algorithm to solve the approximate Short-
est Vector Problem for lattices corresponding to ideals of the ring of
integers of an arbitrary number field K. This algorithm has a pre-
processing phase, whose run-time is exponential in log |Δ| with Δ the
discriminant of K. Importantly, this pre-processing phase depends only
on K. The pre-processing phase outputs an “advice”, whose bit-size is no
more than the run-time of the query phase. Given this advice, the query
phase of the algorithm takes as input any ideal I of the ring of integers,
and outputs an element of I which is at most exp( ˜O((log |Δ|)α+1/n))
times longer than a shortest non-zero element of I (with respect to the
Euclidean norm of its canonical embedding). This query phase runs in

time and space exp( ˜O((log |Δ|)max(2/3,1−2α))) in the classical setting, and

exp( ˜O((log |Δ|)1−2α)) in the quantum setting. The parameter α can be
chosen arbitrarily in [0, 1/2]. Both correctness and cost analyses rely on
heuristic assumptions, whose validity is consistent with experiments.

The algorithm builds upon the algorithms from Cramer et al. [EURO-
CRYPT 2016] and Cramer et al. [EUROCRYPT 2017]. It relies on the
framework from Buchmann [Séminaire de théorie des nombres 1990],
which allows to merge them and to extend their applicability from prime-
power cyclotomic fields to all number fields. The cost improvements are
obtained by allowing precomputations that depend on the field only.

1 Introduction

The Learning With Errors problem (LWE) introduced by Regev in [Reg05] has
proved invaluable towards designing cryptographic primitives. However, as its
instance bit-sizes grow at least quadratically with the security parameter to be
well-defined, LWE often results in primitives that are not very efficient. In order
to improve the efficiency, Stehlé, Steinfeld, Tanaka and Xagawa [SSTX09] intro-
duced the search Ideal-LWE problem which involves polynomials modulo Xn +1
for n a power of two, and Lyubashevsky, Peikert and Regev [LPR10] exhibited
the relationship to power-of-two cyclotomic fields, gave a reduction from the lat-
ter search problem to a decision variant, and tackled more general rings. This is
now referred to as Ring-LWE, and leads to more efficient cryptographic construc-
tions. To support the conjecture that Ring-LWE is computationally intractable,
the authors of [SSTX09,LPR10] gave polynomial-time quantum reductions from
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11477, pp. 685–716, 2019.
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the approximate Shortest Vector Problem (approx-SVP) restricted to ideal lat-
tices to Ring-LWE. Approx-SVP consists in finding a non-zero vector of an
input lattice, whose norm is within a prescribed factor from the lattice mini-
mum. Ideal lattices are lattices corresponding to ideals of the ring of integers
of a number field, for example a power-of-two cyclotomic field in the situation
above. When considering a lattice problem for such an ideal, the ideal is implic-
itly viewed as a lattice via the canonical embedding. A third quantum reduction
from approx-SVP for ideal lattices to Ring-LWE was proposed by Peikert, Regev
and Stephens-Davidowitz [PRS17]. It has the advantage of working for all num-
ber fields.

As is always the case, the value of these reductions highly depends on the
intractability of the starting problem, i.e., approx-SVP for ideal lattices: approx-
SVP for ideal lattices could even turn out to be computationally easy to solve,
hence making these reductions vacuous. We stress that even if this were the
case, that would not necessarily mean that there exists an efficient algorithm for
Ring-LWE. In this work, we investigate the intractability of ideal approx-SVP
for arbitrary number fields.

For arbitrary lattices, the best known trade-off between the run-time and
the approximation factor is given by Schnorr’s hierarchy of reduction algo-
rithms [Sch87], whose most popular variant is the BKZ algorithm [SE94].

For any real number α ∈ [0, 1] and any lattice L of dimension n given by an
arbitrary basis, it allows one to compute a vector of L \ {0} which is no more
than 2 ˜O(nα) times longer than a shortest one, in time 2 ˜O(n1−α) (assuming the
bit-size of the input basis in polynomial in n). This trade-off is drawn in blue
in Fig. 1.1 In the case of ideal lattices in a cyclotomic ring of prime-power con-
ductor (i.e., the ring of integers of Q(ζm) where m is a prime power and ζm is a
complex primitive m-th root of unity), it has been shown that it is possible to
obtain a better trade-off than the BKZ algorithm, in the quantum computation
setting. For principal ideal lattices, i.e., ideals that can be generated by a sin-
gle element, the algorithmic blueprint, described in [CGS14,Ber14], consists in
first using class group computations to find a generator of the ideal, and then
use the so-called log-unit lattice to shorten the latter generator (we note that
using the log-unit lattice for this purpose was already suggested in [RBV04]).
A quantum polynomial-time algorithm for the first step was provided by Biasse
and Song [BS16], building upon the work of [EHKS14]. The second step was
carefully analyzed by Cramer, Ducas, Peikert and Regev [CDPR16], resulting
in a quantum polynomial-time algorithm for approx-SVP restricted to principal
ideal lattices, with a 2 ˜O(

√
n) approximation factor. (See [HWB17] for a gener-

alization to cyclotomics with degree of the form pαqβ , with p and q prime.)
This line of works was extended by Cramer, Ducas and Wesolowski [CDW17]
to any (not necessarily principal) ideal lattice of a cyclotomic ring of prime-
power conductor. Put together, these results give us the trade-off between
approximation factor and run-time drawn in red dashes in Fig. 1. This is better
than the BKZ algorithm when the approximation factor is larger than 2 ˜O(

√
n).

1 This figure, like all similar ones in this work, is in (logn log2)-scale for both axes.
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However, for smaller approximation factors, Schnorr’s hierarchy remains the
record holder. One could also hope to improve the trade-off for classical com-
puting, by replacing the quantum principal ideal solver of [BS16] by the clas-
sical one of Biasse, Espitau, Fouque, Gélin and Kirchner [BEF+17]. However,
this classical principal ideal solver runs in sub-exponential time 2 ˜O(

√
n), hence

combining it with [CDPR16,CDW17] results in a classical approx-SVP algo-
rithm for a 2 ˜O(

√
n) approximation factor in time 2 ˜O(

√
n). Up to the ˜O(·) terms,

this is exactly the trade-off obtained using Schnorr’s hierarchy. Recently, Ducas,
Plançon and Wesolowski [DPW19] experimentally analysed the ˜O(·) term of the
2 ˜O(

√
n) approximation factor of the [CDPR16,CDW17] algorithm. This allows

them to determine for which dimension n this quantum algorithm outperforms
BKZ.

Time

Approximation
factor

quantum

classical

2
˜O(n)2

˜O(n0.5)poly

2
˜O(n)

2
˜O(n0.5)

poly

Fig. 1. Prior time/approximation trade-
offs for ideal approx-SVP in cyclotomic
fields of prime-power conductor. (Color
figure online)

Time

Approximation
factor

quantum

classical

2
˜O(n)2

˜O(n0.5)poly

2
˜O(n)

2
˜O(n0.5)

poly

Fig. 2. New trade-offs for ideal approx-
SVP in the same fields (with a pre-

processing of cost exp( ˜O(n))).

Contributions. We extend the techniques from [CDPR16,CDW17] to all num-
ber fields and improve the trade-off above by allowing the algorithm to perform
some pre-computations on the number field.

It is a classical fact due to Minkowski [Min67, pp. 261–264] that there exists
an absolute constant c > 1 such that for all number field K of degree n ≥ 2
and discriminant Δ, we have |Δ| > cn. In the sequel, we shall thus state all our
upper bounds in terms of log |Δ| ≥ Ω(n). Actually, to fix the ideas, one may
consider log |Δ| = ˜O(n), which is the case for cyclotomic fields.

Let us consider a number field K of degree n and discriminant Δ. We assume
a basis of the ring of integers R of K is given. Our algorithm performs some pre-
processing on K, in exponential time 2 ˜O(log |Δ|). Once this pre-processing phase
is completed and for any α ∈ [0, 1/2], the algorithm can, given any ideal lattice I

of R, output a 2 ˜O((log |Δ|)α+1/n) approximation of a shortest non-zero vector of I

in time 2 ˜O((log |Δ|)1−2α) + Tc-g(K). Here Tc-g(K) denotes the time needed to
perform class group related computations in K: computing relations between
elements of the class group and computing the units of R. Using the results
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of [BS16,BEF+17,BF14], we can replace Tc-g(K) by poly(log |Δ|) for a quantum
computer, and, for a classical computer, by 2 ˜O((log |Δ|)1/2) if K is a cyclotomic
field of prime-power conductor and by 2 ˜O((log |Δ|)2/3) for an arbitrary field K.
The three algorithms rely on the Generalized Riemann Hypothesis (GRH) and
the two sub-exponential algorithms in the classical setting also require additional
heuristic assumptions. The correctness and cost analyses of our algorithm rely
on these heuristic assumptions, and others. Our contribution is formalized in the
theorem below, which is the main result of this article.

Theorem 1.1 (Heuristic, see Theorems 3.4 and 5.1). Let α ∈ [0, 1/2] and
K be a number field of degree n and discriminant Δ. Assume that a basis of the
ring of integers R of K is known. Under some conjectures and heuristics, there
exist two algorithms Apre-proc and Aquery such that

• Algorithm Apre-proc takes as input the ring R, runs in time 2 ˜O(log |Δ|) and
outputs a hint w of bit-size 2 ˜O((log |Δ|)1−2α);

• Algorithm Aquery takes as inputs any ideal I of R (whose algebraic norm
has bit-size bounded by 2poly(log |Δ|)) and the hint w output by Apre-proc, runs
in time 2 ˜O((log |Δ|)1−2α) + Tc-g(K), and outputs an element x ∈ I such that
0 < ‖x‖2 ≤ 2 ˜O((log |Δ|)α+1/n) · λ1(I).

The hint output by the pre-processing phase has a bit-size that is bounded
by the run-time of the query phase. By considering larger hints, the run-time of
the query phase could be drastically improved. We give more details below, at
the end of the high-level description of the algorithm.

Considering only the query cost, this result is of interest when log |Δ| ≤
˜O(n4/3) for quantum computations and log |Δ| ≤ ˜O(n12/11) for classical com-
putations. Indeed, in the other cases, the time/quality trade-offs obtained by
our algorithm are worse than the ones obtained using Schnorr’s hierarchy of
algorithms. By letting α vary in [0, 1/2] and considering cyclotomic fields of
prime-power conductor, we obtain the trade-offs represented in Fig. 2. For a dis-
cussion for more general values of log |Δ|, we refer to Sect. 5. Going back to
cyclotomic fields of prime-power conductor, these new trade-offs improve upon
the prior ones, both for quantum and classical computers. Note that in Fig. 2, we
only plot the time needed for the query phase of the algorithm, but there is a pre-
processing phase of exponential time performed before. Also, the new algorithm
is no better than Schnorr’s hierarchy in the classical setting when the run-time
is sufficiently small. Hence, in Fig. 2, we plotted the trade-offs obtained using
Schnorr’s hierarchy when they are better than the ones obtained with the new
algorithm. The query phase of the new algorithm gives a quantum acceleration
for approx-SVP for ideal lattices in cyclotomic fields of prime-power conductor,
for all approximation factors 2 ˜O(nα) with α ∈ (0, 1). This extends [CDW17],
which obtained such a quantum acceleration for α ∈ [1/2, 1). The query phase
of the new algorithm also gives a classical acceleration for these fields, but only
for α ∈ (0, 1/2).
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Technical overview. Our algorithm is inspired by the algorithms in [CDPR16,
CDW17]. Given an ideal I as input, they first allow to find a principal ideal J
contained in I (using [CDW17]), and then, they allow to compute a short gener-
ator of this ideal J (using [CDPR16]). This short generator is a somehow small
element of I. This approach provides a 2 ˜O(

√
n) approximation factor for approx-

SVP in I. However, it can be shown that we cannot improve this approximation
factor using these techniques, even if we increase the run-time of the algorithm.
The reason is that, given an arbitrary principal ideal J , it may be that its shortest
generator is 2 ˜O(

√
n) times longer than its shortest non-zero vector.

We modify the strategy above, as follows. Given any ideal I, we try to find
a ‘good’ principal ideal J contained in I, where we say that a principal ideal is
‘good’ if its shortest generator is not much larger than its shortest non-zero vec-
tor. The precise definition of ‘not much larger’ will depend on the approximation
factor we want to achieve for our approx-SVP instance. Because the Euclidean
norm of the shortest non-zero vector of J (broadly) increases with its algebraic
norm, we also require that the algebraic norm of J is not much larger than the
one of I (note that this was already needed in [CDPR16,CDW17]). To find this
‘good’ principal ideal J , the main idea of our algorithm is to express the problem
as a Closest Vector Problem (CVP) instance in a lattice L depending only on
the number field K.

This lattice L is similar to the one appearing in sub-exponential algorithms
for computing the class group (see for instance [HM89,Buc88]). More precisely,
we first select a set B = {p1, . . . , pr} of prime ideals of polynomially bounded
algebraic norms, generating the class group. We then compute a generating set of
the B-units, i.e., the set of elements u ∈ K for which there exists (e1, . . . , er) ∈ Z

r

such that 〈u〉 =
∏

i p
ei
i . The lattice L is obtained by considering the integer linear

combinations of vectors of the form (Log u, e1, . . . , er)T , where 〈u〉 =
∏

i p
ei
i and

Log is the map applying the logarithm function to the canonical embedding,
coefficient-wise. This lattice L only depends on the field K and can then be
pre-computed and pre-processed.

Given any ideal I, the query phase of our algorithm computes a target vector t
from I, and then solves a CVP instance in L with this target vector t. First,
we decompose the ideal I in the class group as a product of the ideals of B.
Concretely, we compute g ∈ K and (v1, . . . , vr) ∈ Z

r such that I =
∏

i p
vi
i · 〈g〉.

This principal ideal 〈g〉 is a candidate for our principal ideal J contained in I
(assume for the moment that the vi’s are non-positive, so that 〈g〉 is indeed
contained in I). However, as is, we have no guarantee that 〈g〉 has a short
generator. We also have no guarantee that its algebraic norm is not much larger
than the one of I (i.e., that the vi’s are small). Hence, our objective is to multiply
the principal ideal 〈g〉 by other principal ideals, until we have a good candidate
for J . To do so, we define the vector t = (−Log g, v1, . . . , vr)T . Observe that 〈g〉
would be a good candidate for J if this vector was short (and with vi ≤ 0 for
all i). Indeed, this would mean that g is a short generator of 〈g〉 (because Log g
is short), and that 〈g〉 = I · ∏

i p
−vi
i is a small multiple of I (because the pi’s

have polynomially bounded norms, and the vi’s are small; the non-positivity of
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the vi’s is used to ensure that the ideal
∏

i p
−vi
i is integral). Also, we can see

that adding a vector of L to t amounts to multiply the principal ideal 〈g〉 by
another principal ideal (corresponding to the vector of L we are adding). Hence,
we can find a good candidate J (together with a short generator of J) by solving
a CVP instance in L with target t.

Finally, we need to solve CVP in the lattice L. We do not know any basis
for L which would enable us to solve CVP in it efficiently (as opposed to the
lattices considered in [CDPR16,CDW17]). However, the lattice L is fixed for a
given number field, hence we can pre-process it. For this, we use a CVP with
pre-processing (CVPP) algorithm due to Laarhoven [Laa16]. This leads to the
time/approximation trade-offs given in Theorem1.1. In [Laa16], significant effort
is spent towards minimizing the constant factors in the exponents. These have
recently been improved in [DLW19]. In this work, we neglect these factors for
the sake of simplicity, but these would clearly matter in practice.

Laarhoven’s CVPP algorithm is such that the bit-size of the output of the
pre-processing phase is no larger than the run-time of the query phase2 (hence,
it is also the case for our algorithm). If we do not require this, we could have
the following very simple and efficient algorithm for CVPP. First, it computes a
short basis Bsh of the lattice. Then, it partitions the fundamental parallelepiped
associated to Bsh into exponentially many small boxes, such that given any point
of the parallelepiped, it is easy to determine to which box it belongs. Then, for
each of these boxes, the pre-processing algorithm would compute a closest point
of the lattice. The output of the pre-processing phase would then be the small
basis Bsh and the set of all boxes together with their closest lattice point. Finally,
given any vector in the real span of the lattice, the query algorithm would reduce
it modulo Bsh to obtain a vector in the fundamental parallelepiped, and then
determine the box of this reduced vector and its associated lattice vector. All
this can be done efficiently (assuming we can efficiently access the database)
and provides a small factor approximation for CVP, at the expense of a huge
database.

Overall, the correctness and cost analyses of our algorithm rely on several
heuristic assumptions. Many of them come from previous works [Laa16,BEF+17,
BF14] and were already analysed. We introduce three new heuristic assumptions:
Heuristics 4, 5 and 6 in Sect. 4. We discuss them by providing some mathematical
justifications and some experimental results corroborating them. Concurrently
to this work, Stephens-Davidowitz [Ste19] obtained a provable variant of the
CVPP trade-offs from [Laa16,DLW19] that we use. Relying on it would allow us
to make do with Heuristic 1, which was inherited from [Laa16,DLW19], at the
expense of replacing Heuristic 4 by a similar one on the smoothing parameter of
the lattice under scope (rather than its covering radius).

Impact. The query phase of the new algorithm can be interpreted as a non-
uniform algorithm, as it solves approx-SVP for ideals of K, using a hint

2 Laarhoven also describes a variant of his algorithm in which he uses locality-sensitive
hashing to reduce the run-time of the query phase below the bit-size of the advice,
but we are not considering this variant here.
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depending on K only. As the time needed to compute that hint (i.e., the run-
time of Apre-proc) is exponential, the concrete impact is limited. Nevertheless,
our result should rather be interpreted as a strong indication that ideal approx-
SVP is most likely a weaker problem than approx-SVP for arbitrary lattices: for
unstructured lattices, there is no known non-uniform algorithm outperforming
Schnorr’s hierarchy.

Few cryptographic constructions have their security impacted by faster ideal
approx-SVP solvers. A notable example is Gentry’s fully homomorphic encryp-
tion scheme [Gen09], which was later superseded by faster homomorphic schemes
relying on better understood hardness assumptions (see, e.g., [BV11b,BV11a]).
Another important example is the Garg, Gentry and Halevi candidate construc-
tion of cryptographic multilinear map [GGH13] and its extensions. Because of
the large pre-processing time, our algorithm does not provide a concrete attack
on those schemes.

More importantly, our result strongly suggests that approx-SVP for ideals
of the ring of integers R of a number field K may be weaker than Ring-LWE,
for a vast family of number fields. Up to some limited parameter losses, Ring-
LWE and approx-SVP for R-modules over K (with ranks ≥ 2) reduce to one
another [LS15,AD17]. Therefore, a separation between approx-SVP for ideals
and Ring-LWE is essentially the same as a separation between approx-SVP for
ideals and approx-SVP for R-modules over K.

Open problems. Throughout the article, we keep track of all the different sub-
algorithms that compose our approx-SVP solver. The exact formulation of the
total cost of the algorithm, as a function of the costs of the sub-algorithms, is
given in Theorem 3.4. When instantiated with the run-times of the currently
known algorithms for the different sub-tasks, we obtain the values given in The-
orem 1.1. However, the formula with all the sub-algorithms allows to see whether
an improvement of the run-time of one of them leads to an improvement of the
overall cost of the approx-SVP solver. In particular, for the specific choice of
cyclotomic fields of prime-power conductor:

• Improving the approx-CVP solver would lead to an improvement of the slope
of the curves in Fig. 2, for approximation factors smaller than 2 ˜O(

√
n). In a dif-

ferent direction, removing the pre-processing step needed for this approx-CVP
solver would remove the pre-processing of the overall approx-SVP algorithm.

• Designing a classical algorithm that performs class group related computa-
tions in time less than 2 ˜O(

√
n) would allow to further extend the (classical)

segment of Fig. 2 with slope −1/2, until it reaches the cost needed to solve
these class group related problems. For example, Biasse described in [Bia17]
an algorithm to solve the principal ideal problem in cyclotomic fields of prime-
power conductor, with pre-processing. After pre-computations depending on
the field only, this algorithm finds a generator of a principal ideal in time less
than 2 ˜O(

√
n) if the ideal has algebraic norm ≤ 2 ˜O(n1.5).

Finally, one could wonder whether it is possible to find significantly faster
approx-SVP algorithms for specific families of number fields and/or restricted
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families of ideals. For instance, the Bauch et al. algorithm from [BBV+17] and
the follow-up algorithm of Biasse and van Vredendaal [BV18] allow to efficiently
solve class group related problems in real multiquadratic number fields in the
classical setting. This means that in these number fields, the classical version of
our algorithm is as efficient as the quantum one (there is no threshold for the
query phase in the classical setting). However, the algorithm still requires an
exponential pre-processing phase for the approx-CVP solver.

Roadmap. In Sect. 2, we recall some necessary background on lattices and num-
ber fields. Then, in Sect. 3, we explain how to transform an approx-SVP instance
in any ideal into an approx-CVP instance in some lattice depending only on
the number field. We detail in Sect. 4 some properties of the lattice in which
we want to solve approx-CVP, and we give the trade-offs obtained when using
Laarhoven’s algorithm. Finally, in Sect. 5, we instantiate our main theorem with
the best run-times currently known for solving approx-CVPP and class group
related problems.

Supplementary material. The code that was used to perform the experiments
is available on the webpage of the first author.

2 Preliminaries

We let Z,Q,R and C respectively denote the sets of integer, rational, real and
complex numbers. For a positive real number x, we let log x denote its binary
logarithm. For two functions f(n) and g(n), we write f(n) = ˜O(g(n)) if there
exists some constant c > 0 such that f(n) = O(g(n) · | log g(n)|c). We abuse
notations by defining ˜O(nα) = O(nα poly(log n)) even if α = 0 (this will simplify
some statements). For a vector v ∈ R

n, we let vi denote the i-th coordinate of v.
We write ‖v‖1 =

∑

i |vi|, ‖v‖2 =
√

∑

i v2
i and ‖v‖∞ = maxi |vi|. We recall the

following inequalities between these three different norms.

‖v‖∞ ≤ ‖v‖2 ≤ ‖v‖1, (2.1)
‖v‖2 ≤ √

n · ‖v‖∞, ‖v‖1 ≤ √
n · ‖v‖2. (2.2)

Note that only the �2-norm is invariant under orthonormal transformations.

2.1 Lattice Problems

For a lattice L and i ∈ {1, 2,∞}, we let λ
(i)
1 (L) denote the norm of a shortest

non-zero vector of L for the �i-norm. Similarly, for k ≥ 1, we let λ
(i)
k (L) denote

the smallest real number such that there exist k linearly independent vectors
of L whose �i-norms are no greater than λ

(i)
k (L). We let Span(L) denote the

real vector space spanned by the vectors of L. For a point t ∈ Span(L), we let
dist(i)(t, L) = infv∈L ‖t − v‖i be the minimal distance between t and any point
of L. We define the covering radius of L as μ(i)(L) = supt∈Span(L) dist(i)(t, L).
The determinant (or volume) det(L) of a full-rank lattice L is the absolute value
of the determinant of any of its bases.
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Lemma 2.1 (Minkowski’s inequality). For any full-rank lattice L of dimen-
sion n, we have λ

(∞)
1 (L) ≤ det(L)1/n. This implies that λ

(2)
1 (L) ≤ √

n·det(L)1/n.

We will consider the following algorithmic problems involving lattices.

Definition 2.2 (Approximate ShortestVectorProblem (approx-SVP)).
Given a lattice L and i ∈ {1, 2,∞}, the approximate Shortest Vector Problem in
norm �i, with approximation factor γ ≥ 1, is to find a vector v ∈ L \ {0} such that
‖v‖i ≤ γ · λ

(i)
1 (L).

Definition 2.3 (Approximate Closest Vector Problem (approx-CVP)).
Given a lattice L, i ∈ {1, 2,∞} and a target t ∈ Span(L), the approximate
Closest Vector Problem in norm �i, with approximation factor γ ≥ 1, is to find
a vector v ∈ L such that ‖v − t‖i ≤ γ · dist(i)(t, L).
In this article, we will be essentially interested in a variant of approx-CVP, in
which we ask that ‖v − t‖i ≤ β for some β, independently of dist(i)(t, L) (i.e.,
the distance of the found vector is bounded in absolute terms, independently of
whether the target is close to the lattice or not). We call this variant approx-
CVP’. For i ∈ {1, 2,∞}, we let TCVP(i, L, β) denote the worst-case run-time
of the best known algorithm that solves approx-CVP’ for the �i-norm, in the
lattice L, with a bound β.

Definition 2.4 (Approx-CVP with Pre-processing (approx-CVPP)).
This problem is the same as approx-CVP, except that the algorithm can perform
some pre-processing on the lattice L before it gets the target vector t. Approx-
CVPP’ is defined analogously. We will then consider the pre-processing time
(performed when knowing only L) and the query time (performed once we get
the target t). For i ∈ {1, 2,∞}, we let T pre-proc

CVP (i, L, β) (resp. T query
CVP (i, L, β))

denote the worst-case run-time of the pre-processing phase (resp. query phase)
of the best algorithm that solves approx-CVPP’ for the �i-norm, in the lattice L,
with a bound β.

In the following, we will always be interested in the approximate versions of
these problems, so we will sometimes omit the ‘approx’ prefix.

In [Laa16], Laarhoven gives a heuristic algorithm for solving approx-CVPP.
The following result is not explicitly stated in [Laa16] (only the two extreme
values are given), but the computations can be readily adapted.

Theorem 2.5 ([Laa16, Corollaries 2 and 3]). Let α ∈ [0, 1/2]. Then, under
Heuristic 1 below, there exists an algorithm that takes as pre-processing input an
n-dimensional lattice L (given by a basis whose bit-size is polynomial in n) and
as query input any vector t ∈ Span(L) (with bit-size that is polynomial in n) and
outputs a vector v ∈ L with ‖t − v‖2 ≤ O(nα) · dist(2)(t, L), with pre-processing
time 2O(n) and query time poly(n) · 2O(n1−2α) (the memory needed during the
query phase is also bounded by poly(n) · 2O(n1−2α)).

The heuristic assumption used in Laarhoven’s algorithm states that the lat-
tice L is somehow dense and behaves randomly.
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Heuristic 1. There exists a constant c > 0 such that the ball of radius c·λ(2)
1 (L)

(in �2-norm) contains at least 2n points of L. Moreover, once renormalized, these
points ‘behave’ as uniformly and independently distributed points on the unit
sphere.

We can weaken this heuristic assumption by taking c = poly(log n), in which
case the approximation factor in Laarhoven’s algorithm becomes ˜O(nα) (the
pre-processing and query costs remain the same).

We will use this algorithm to heuristically solve approx-CVPP’ in Euclidean
norm for α ∈ [0, 1/2], achieving T pre-proc

CVP (2, L,O(nα) · μ(2)(L)) = 2O(n) and
T query
CVP (2, L,O(nα) · μ(2)(L)) = 2 ˜O(n1−2α).

2.2 Number Fields and Ideals

We let K denote any number field of degree n and R be its ring of integers (i.e.,
elements of K which are roots of a monic polynomial with integer coefficients).
The ring R is a free Z-module of rank n. Let σ1, . . . , σn be the n distinct embed-
dings from K to C ordered such that for i ∈ {1, . . . , r1} we have σi : K → R and
for i ∈ {r1 + 1, . . . , r2} we have σi = σi+r2 . We have r1 real embeddings and r2
pairs of complex conjugate embeddings, with r1 and r2 satisfying r1 + 2r2 = n.
We let Δ denote the discriminant of K, i.e., Δ = [det(σi(bj))i,j ]2 for b1, . . . , bn

any basis of the Z-module R. Recall from Sect. 1 that Minkowski’s bound gives
us the following inequality:

log |Δ| ≥ Ω(n). (2.3)

In the following, most of the costs will be expressed in term of log |Δ|.
We let R× denote the group of units of R, that is R× = {u ∈ R | ∃v ∈

R, uv = 1}. Dirichlet’s unit theorem states that R× is isomorphic to the Carte-
sian product of a finite cyclic group (formed by the roots of unity contained
in K) with the additive group Z

r1+r2−1.
We associate to an element x ∈ K the vector (σ1(x), . . . , σr1(x),Re(σri+1(x)),

Im(σr1+1(x)), . . . ,Re(σr1+r2(x)), Im(σr1+r2(x)))T ∈ R
n, which we will call the

canonical embedding of x. In the following, we will only consider the canonical
embedding for the elements of K and R. We will abuse notation by considering
that the elements of K and R are real vectors of the above form. Using this
representation, the ring R becomes an n-dimensional lattice of Rn. The volume
of the lattice R is given by det(R) = 2−r2

√|Δ|.
A fractional ideal I of K is a subset of K which is stable by addition, and by

multiplication with any element of R, and such that dI ⊆ R for some d ∈ Z\{0}.
An ideal I is said to be integral if it is contained in R. A non-zero fractional ideal
I ⊆ R can be seen as a full-rank lattice in R

n, via the canonical embedding. For
an element g ∈ K, we write 〈g〉 = gR, the smallest fractional ideal containing g.
Such an ideal is said to be principal. An integral ideal I ⊆ R is said to be prime if
the ring R/I is an integral domain. The product of two fractional ideals I and J
is defined by I · J = {x1y1 + · · · + xryr | r ≥ 0, x1, . . . , xr ∈ I, y1, . . . , yr ∈ J}.



Approx-SVP in Ideal Lattices with Pre-processing 695

The algebraic norm N (I) of a non-zero fractional ideal I ⊆ R is the deter-
minant of I when seen as a lattice in R

n (via the canonical embedding), divided
by det(R) = 2−r2

√|Δ| (and N (〈0〉) is defined as 0). If I is integral, this is also
equal to |R/I|. The algebraic norm of a prime ideal is a power of a prime number.
For two fractional ideals I and J , the algebraic norm of their product satisfies
N (I · J) = N (I) · N (J). The algebraic norm of an element r ∈ R is defined by
N (r) =

∏n
i=1 σi(r). For any element r ∈ R, we have that N (〈r〉) = |N (r)|, so in

particular N (r) ∈ Z.
Let I be a non-zero fractional ideal seen as a lattice. By definition of the norm

of I and Minkowski’s inequality, we know that λ
(∞)
1 (I) ≤ N (I)1/n · |Δ|1/(2n).

We also have the following lower bound

λ
(∞)
1 (I) ≥ N (I)1/n. (2.4)

This lower bound comes from the fact that if x ∈ I is such that ‖x‖∞ = λ
(∞)
1 (I),

then we have |N (x)| =
∏

i |σi(x)| ≥ N (I) (because 〈x〉 is a sub-lattice of I). This
implies that at least one of the |σi(x)|’s is no smaller than N (I)1/n, hence the
inequality. When log |Δ| = ˜O(n), these two inequalities imply that λ

(∞)
1 (I) is

essentially N (I)1/n, up to a 2poly(log n) factor. When |Δ| increases, so does the
gap between the two bounds.

2.3 The Class Group

We let IK denote the set of non-zero fractional ideals of K and PK ⊆ IK denote
the subset of non-zero principal fractional ideals. One can prove that for every
non-zero fractional ideal I, there is a fractional ideal I−1 such that I · I−1 = R.
This gives IK a group structure, for which PK is a subgroup.

The class group of K is defined as the quotient ClK = IK/PK . For any
non-zero ideal I of K, we let [I] denote the equivalence class of I in the class
group. In particular, we have PK = [R]. The class group is a finite abelian group
and its cardinality hK is called the class number. We have the following bound:

log hK = ˜O(log |Δ|). (2.5)

This can be derived from the proof of Eq. (2.3), this proof being based on the
fact that any class of the class group contains an integral ideal whose norm is
bounded as 2 ˜O(log |Δ|). We also justify it later using Eq. (2.6) (which is signifi-
cantly stronger).

We know, thanks to a result of Bach [Bac90] that the class group can be
generated by ideals of polynomially bounded norms.

Theorem 2.6. (Theorem 4 of [Bac90]). Under the GRH, the class group of
a number field of discriminant Δ is generated by the prime ideals of algebraic
norms ≤ 12 log2 |Δ|.

Moreover, computing all prime ideals of norms ≤ 12 log2 |Δ| can be done
in time polynomial in log |Δ|. Indeed, these prime ideals can be obtained by
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factoring all ideals 〈p〉 where p ∈ Z is a prime no greater than 12 log2 Δ. Fur-
ther, factoring such an ideal can be done in polynomial time (either using the
Kummer-Dedekind theorem if p does not divide the index of Z[θ]/R, where θ is
an algebraic integer such that K = Q(θ), or using an algorithm due to Buch-
mann and Lenstra if p divides |Z[θ]/R|, see [Coh13, Section 4.8.2] for the former
and [Coh13, Section 6.2] for the latter).

We will use the following lemma.

Lemma 2.7. Let B be any finite set of fractional ideals that generates the class
group ClK . Then we can extract a subset B′ of B, of cardinality at most log hK ,
which also generates the class group. Moreover, this can be done efficiently if
we are given the relations between the elements of B, in the form of a basis of
ker(fB) where fB : (e1, . . . er) ∈ Z

r → ∏

i[p
ei
i ] ∈ ClK , with B = {p1, . . . , pr}.

We did not find this exact lemma in previous work, so we give a proof of it for
the sake of completeness (even if the technique used to prove it is far from new).

Proof. We know that ker(fB) is a lattice of volume hK contained in Z
r (it

is stable by addition and subtraction, and |Zr/ ker(fB)| = |ClK | = hK). Let
RB ∈ Z

r×r be a basis of this lattice, with column vectors. From this basis, we
can efficiently compute the Hermite Normal Form (HNF) of the lattice, which we
will write HB. This basis matrix is triangular, and each column corresponds to a
relation between the elements of B (each row corresponds to an ideal of B). So
we can remove from the set B any ideal whose row in HB has a 1 on the diagonal.
Indeed, if row i has a 1 on the diagonal, this means that we have a relation of
the form [pi ·

∏

j>i pj
ej ] = [R]. Hence the ideal class [pi] is in the group generated

by {[pj ]}j>i, and so it is not needed to generate the class group. But we know that
det(HB) = det(ker(fB)) = hK is the product of the diagonal elements (which
are integers). So we have at most log hK ideals with diagonal entries different
from 1. Hence, after removing from B all ideals whose corresponding row in HB

has a 1 on the diagonal, we obtain a set B′ of cardinality at most log hK and
which still generates the class group. This proof is an efficient algorithm if we
are given an initial basis RB, because we only need to compute an HNF basis,
which can be done in time polynomial in the size of the input matrix. ��

Theorem 2.6 states that the class group can be generated by integral ideals
of polynomially bounded norms, but this does not give us the existence of many
small-norm integral ideals. For instance, if the class group is trivial (i.e., all ideals
are principal), then it is generated by [R]. More generally, the class group could
be generated by a very small number of ideals. In the following, we will need the
existence of ˜Ω(log |Δ|) distinct integral ideals of polynomially bounded norms.

Theorem 2.8 (Theorem 8.7.4 of [BS96]). Assume the GRH. Let πK(x) be
the number of prime integral ideals of K of norm ≤ x. Then there exists an
absolute constant C (independent of K and x) such that

|πK(x) − li(x)| ≤ C · √x (n log x + log |Δ|) ,

where li(x) =
∫ x

2
dt
ln t ∼ x

lnx (and ln refers to the natural logarithm).
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Instantiating this theorem with x = (log |Δ|)κ for some constant κ > 4, we
obtain the following corollary. The bounds in this corollary can be improved,
but they suffice for our needs.

Corollary 2.9. Assume the GRH. Let κ > 4. For log |Δ| sufficiently large, there
are ≥ (log |Δ|)κ−2 distinct prime integral ideals of norm smaller than (log |Δ|)κ.

Proof. We apply Theorem 2.8 with x = (log |Δ|)κ. As li(x) ∼ x
ln x , we have that

li(x) ≥ (log |Δ|)κ−1 holds for log |Δ| sufficiently large. Recall that log |Δ| > cn
for some (explicit) constant c. Hence, the right hand side of the inequality of
Theorem 2.8 can be bounded as

C · √
x (n log x + log |Δ|) ≤ C(κ/c + 1) · (log |Δ|)κ/2+1 · log log |Δ|.

But, as we chose κ such that κ − 1 > κ/2 + 1, we have, for log |Δ| sufficiently
large:

(log |Δ|)κ−1 − C(κ/c + 1) · (log |Δ|)κ/2+1 · log log |Δ| ≥ (log |Δ|)κ−2,

hence proving the corollary. ��
We use Theorem 2.6, Corollary 2.9 and Lemma 2.7, to obtain the following.

Corollary 2.10. Assume the GRH. Then, for log |Δ| sufficiently large and for
any integer r ≥ log hK , there exists a set B = {p1, . . . , pr} of prime integral
ideals generating the class group, with N (pi) = poly(log |Δ|, r) for all i.

Proof. Combining Theorem 2.6 and Lemma 2.7, we know that there exists a set
B of cardinality at most r, generating the class group and containing only prime
ideals of norms ≤ 12 log2 |Δ|. We can then add prime ideals to this set B,
until its cardinality reaches r. Thanks to Corollary 2.9, we know that there are
enough prime ideals of norm smaller than poly(log |Δ|, r) (for some fixed poly)
to increase the cardinality of B up to r. ��

2.4 The Log-Unit Lattice

We define Log x = (log |σ1(x)|, . . . , log |σn(x)|)T ∈ R
n, for any x ∈ K \ {0}.

Observe that this is not the usual definition of the logarithmic embedding.
The function Log is often defined either as (log |σ1(x)|, . . . , log |σr1+r2(x)|)T ∈
R

r1+r2 [Sam13, Section 4.4] or as (log |σ1(x)|, . . . , log |σr1(x)|, 2 log |σr1+1(x)|,
2 log |σr1+r2(x)|)T ∈ R

r1+r2 [Coh13, Definition 4.9.6]. Indeed, for i > r1+r2, the
log |σi(x)|’s are redundant because |σi(x)| = |σi−r2(x)|. However, in our case, it
will be more convenient to work with the logarithms of all the embeddings.

Let E = {x ∈ R
n : xi = xi+r2 ,∀r1 < i ≤ r2}. We have Log(K \ {0}) ⊆ E.

We let H be the hyperplane of R
n defined by H = {x ∈ R

n :
∑n

i=1 xi = 0}
and 1 be the vector, orthogonal to H, defined as 1 = (1, . . . , 1)T ∈ R

n. We
write πH : Rn → H the orthogonal projection on H, parallel to 1. We define
Λ = {Log u, u ∈ R×}, which is a lattice of dimension r1 + r2 − 1 contained
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in H ∩ E (thanks to Dirichlet’s unit theorem), called the log-unit lattice. We
have the following upper bound:

det(Λ) · hK ≤ 2O(log |Δ|+n log log |Δ|) = 2 ˜O(log |Δ|). (2.6)

This upper bound comes from the relation between det(Λ), hK and the
residue of the zeta-function ζK at s = 1 (see [Lou00]). The latter is known
considering Λ defined by the logarithmic embedding (log |σ1(x)|, . . . , log |σr1(x)|,
2 log |σr1+1(x)|, 2 log |σr1+r2(x)|)T ∈ R

r1+r2 . However, it can be seen that if one

multiplies our lattice Λ by a matrix with blocks of the form
(

1 1
−1 1

)

(in order to

add and subtract log |σi(x)| and log |σi+r2(x)| for r1 < i ≤ r2), one obtains the
log-unit lattice defined by the logarithmic embedding considered in [Lou00]. As
multiplying by such a matrix increases the determinant by a factor 2r2 , Inequal-
ity (2.6) remains valid in our setup.

This bound, combined with a lower bound on det(Λ) also gives Eq. (2.5).
Indeed, using a result of Zimmert [Zim80], we have that det(Λ) > 0.02 · 2−r2

(handling again our unusual definition of Λ).
For any x ∈ K, there exists a unique vector h ∈ H ∩ E and a unique

real number a such that Log x = h + a1. In the following, we recall relation-
ships between (h, a) and x. These results are standard (e.g., they are used freely
in [CDPR16, Section 6]).

Lemma 2.11. Let r ∈ K. Then we have Log r = h + log |N (r)|
n 1, for some

h ∈ H ∩ E.

For the sake of completeness, and because we are using an unusual definition
of Log, we give a proof of this result below.

Proof. Write Log r = h + a1 for some h ∈ H ∩ E and a > 0. First, as 1
is orthogonal to H, we have that 〈1,Log r〉 = 〈1, a1〉 = a · n. But using the
definition of Log r, we also have that

〈1,Log r〉 =
∑

i

log |σi(r)| = log |N (r)|,

where we used the fact that N (r) =
∏

i σi(r). This completes the proof. ��
The following lemma gives a bound on the Euclidean norm of an element

r ∈ R in terms of its decomposition Log r = h + a1.

Lemma 2.12. For any r ∈ K, if Log r = h + a1 with h ∈ H ∩ E and a ∈ R,
then we have ‖r‖∞ ≤ 2a · 2‖h‖∞ . In particular, this implies that

‖r‖2 ≤ √
n · 2a · 2‖h‖2 =

√
n · |N (r)|1/n · 2‖h‖2 .

Proof. The second inequality follows from the first one by using Eqs. (2.1)
and (2.2) (and Lemma 2.11 for the equality). For the first inequality, recall that
by definition of Log, we have that (Log r)i = log |σi(r)| = hi + a for all i. So, by
definition of ‖r‖∞ = maxi |σi(r)|, we have ‖r‖∞ = maxi 2hi+a ≤ 2a · 2‖h‖∞ . ��
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2.5 Algorithmic Problems Related to Class Group Computations

Let B = {p1, . . . , pr} be a set of prime integral ideals generating the class group,
obtained for example using Corollary 2.10.

We will be interested in computing the lattice of all the relations between
the ideals of B, i.e., the kernel of the map

fB : e = (e1, . . . , er) ∈ Z
r → [

∏

i

pei
i ] ∈ ClK .

Recall that ker(fB) is a full-rank sub-lattice of Z
r of volume |Zr/ ker(fB)| =

|ClK | = hK . Let NB = maxi N (pi). We let Trel(NB, r) denote the time needed
to compute a basis of ker(fB), together with generators of the corresponding
principal ideals, given as input the set B. We write Tdecomp(N,NB, r) for the
time needed, given B and a fractional ideal I of norm N (I) = N , to find a
vector e ∈ Z

r and an element g ∈ K such that I =
∏

i p
ei
i · 〈g〉. Note that this

decomposition always exists but might not be unique (we only require that B
generates the class group). Finally, we let Tlog-unit be the time needed to compute
a basis of the log-unit lattice of K.

The three problems above are usually solved by computing S-units3 for a
well-chosen set S. This is why, in the following, the same cost bounds hold for
the three of them.

In the quantum setting, Biasse and Song [BS16] showed that these three
problems can be solved in polynomial time for any number field (under GRH).
More precisely, they showed that

• Trel(NB, r) = poly(log |Δ|, r, log NB);
• Tdecomp(N,NB, r) = poly(log |Δ|, log Nnum, log Ndenom, r, log NB);
• Tlog-unit = poly(log |Δ|);
where Nnum and Ndenom refer to the numerator and denominator of N (i.e.,
N = Nnum/Ndenom ∈ Q with Nnum, Ndenom in Z>0 and coprime).

In the classical setting, these three problems can be solved heuristically in
sub-exponential time (under GRH). The first sub-exponential algorithm for all
number fields (and which allows n to tend to infinity with log |Δ|) is due to
Biasse and Fieker [BF14]:

• Trel(NB, r) = poly(r, log NB) · 2 ˜O((log |Δ|)2/3);
• Tdecomp(N,NB, r) = poly(log Nnum, log Ndenom, r, log NB) · 2 ˜O((log |Δ|)2/3);
• Tlog-unit = 2 ˜O((log |Δ|)2/3).

Biasse and Fieker actually claim 2O((log |Δ|)2/3+ε) run-times. Tracing back the
source of this ε leads to Biasse’s [Bia14, Proposition 3.1]. A careful reading of the
proof of the latter shows that the (log |Δ|)ε term is actually a power of log log |Δ|,

3 Given a set S = {p1, . . . , pr} of prime integral ideals, the S-units are the elements
α ∈ K such that there exist e1, . . . , er ∈ Z with

∏

i p
ei
i = 〈α〉.
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hence, in our notations, it is absorbed by the ˜O notation. In addition to the
GRH, the algorithm of Biasse and Fieker requires two heuristic assumptions,
referred to as Heuristic 1 and Heuristic 3 in [BF14]. We recall these two heuristic
assumptions below (see [BF14] for more details).

Heuristic 2 ([BF14, Heuristic 1]). The probability P (x, y) that an integral
ideal of R produced by the Biasse-Fieker [BF14] algorithm, of norm bounded
by x, can be factored as a product of prime ideals of norms bounded by y
satisfies

P (x, y) ≥ e−(1+ox→∞(1))·u log u for u =
log x

log y
.

Heuristic 3 ([BF14, Heuristic 3]). Given a set of r elements generating the
class group, the algorithm only needs to find rO(1) relations between these ele-
ments to generate the full lattice of relations, with probability close to 1.

Smaller cost bounds are known for specific families of number fields. For
prime-power cyclotomic fields, the 2 ˜O((log |Δ|)2/3) bounds can be replaced by
2 ˜O((log |Δ|)1/2) [BEF+17]. This algorithm is again heuristic and relies on the same
assumptions as [BF14]. For real multiquadratic number fields, efficient classical
algorithms allow to solve these three problems [BBV+17,BV18]. Finally, we note
that the exponent 2/3 was recently lowered to 3/5 in [Gel17] and can even be
decreased further in some cases.

3 From Ideal SVP to CVP in a Fixed Lattice

The main idea of our algorithm is, given an input ideal I, to find a principal ideal
〈g〉 ⊆ I with a short generator g. This is very similar to [CDW17], where the
authors find a 2O(

√
n) approximation of a shortest non-zero vector of the ideal I

by computing a principal ideal contained in I and then finding a short generator
of this principal ideal. The limitation of this approach is that, if we consider any
principal ideal contained in I, we cannot hope to find a better approximation
than the 2O(

√
n) approximation obtained above in the worst case. This is due

to the fact that in some principal ideals (including for prime-power cyclotomic
fields), the shortest generator can be 2O(

√
n) times longer than a shortest non-zero

element of the ideal (see [CDPR16]). Instead of looking for any principal ideal
contained in I, we consider only those with a ‘good’ generator (i.e., a generator
which is also a very short element of the corresponding principal ideal).

In order to find such an ideal, we merge the two steps of [CDPR16,CDW17]
(consisting in first finding a principal multiple of I and then computing a small
generator of the principal ideal), by introducing a lattice L that is very similar
to the one used for class group computations. This lattice only depends on the
number field (and not on the ideal I). We describe it in the next subsection. We
then show how to express the problem of finding a principal multiple of I with
a small generator as a CVP instance for this fixed lattice.
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3.1 Definition of the Lattice L

In this subsection, we define the lattice L which we will use in order to transform
our ideal-SVP instance into a CVPP’ instance. We also give an algorithm to
compute a basis of L and analyze its run-time. The lattice L we are considering
is not new. It was already used in previous sub-exponential algorithms computing
the class group of a number field [HM89,Buc88,BF14,BEF+17,Gel17]. However,
these algorithms usually choose a sub-exponential set of ideals, hence resulting
in a lattice L of sub-exponential dimension. Our lattice L will have a dimension
which is polynomial in log |Δ|.

In the following, we fix some integer r such that log hK ≤ r and r ≤
poly(log |Δ|) (looking forward, the integer r will be related to the dimension
of the lattice in which we will solve CVPP’, so it would be undesirable to set it
too large). Let us also fix a set of prime integral ideals B = {p1, . . . , pr} as given
by Corollary 2.10. We consider the lattice L of dimension ν := r + r1 + r2 − 1,
generated by the columns of the following matrix:

c ·BΛ

0

c · ˜hg1 , . . . , c · ˜hgr

v1 v2 · · · vr

BL :=

r

r

ν

r1 + r2 − 1

r1 + r2 − 1

where:

• the scaling parameter c > 0 is to be chosen later;
• the matrix BΛ = (fH∩E(b1), . . . , fH∩E(br1+r2−1)) is a basis of fH∩E(Λ),

where Λ is the log-unit lattice and fH∩E : H ∩ E ⊂ R
n → R

r1+r2−1 is
an isometry;4

• the matrix consisting of the vectors vi = (v1i, . . . , vri)T is a basis of ker(fB)
(in particular, the ideals

∏

j p
vji

j are principal for all i);
• the column vectors ˜hgi

are of the form fH∩E(πH(Log gi)) for gi ∈ K a gen-
erator of the fractional principal ideal associated with the relation vi, i.e., we
have

∏

j p
vji

j = 〈gi〉.
We will explain how to construct L below. This lattice enjoys the following

property, which will be used later.

4 As Λ is not full rank in R
n, we change the ambient space such that fH∩E(Λ) becomes

full rank in H ∩ E = R
r1+r2−1. Note however that the �2-norm is preserved by this

transformation (this is not the case for the �1 and �∞ norms).
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Lemma 3.1. Let w be a vector of L and parse it as w = (h, v)T with h of
dimension r1 + r2 − 1 and v = (v1, . . . , vr) of dimension r. Then there exists an
element g ∈ K \ {0} such that h = c · fH∩E(πH(Log g)) and

∏

j p
vj

j = 〈g〉.
Proof. We first observe that the result holds for the vectors of the basis BL. For
the r vectors on the right of BL, this holds by construction. For the r1 + r2 − 1
vectors on the left, we have that

∏

j p
0
j = R = 〈u〉 for any unit u ∈ R. So by

definition of BΛ, the property of Lemma 3.1 also holds for the r1 + r2 − 1 first
vectors of BL.

To complete the proof, it suffices to observe that the property of Lemma 3.1
is preserved by addition (if g1 corresponds to a vector w1 and g2 corresponds to
a vector w2, then g1g2 corresponds to the vector v1 + v2) and by multiplication
by −1 (if g corresponds to a vector w, then g−1 corresponds to the vector −w).
All these elements g are invertible as they are obtained by multiplying and
inverting non-zero elements of K. ��

3.2 Computation of the Lattice L

The lattice L described above only depends on the number field we are working
on. A basis of it can then be computed in a pre-processing phase, before the
knowledge of the ideal in which we want to find a short non-zero vector. In this
subsection, we give an algorithm to compute the lattice L and we show that
this algorithm can be performed in time at most exponential in log |Δ|. As we
shall see, this will even be sub-exponential in log |Δ|. The costly part of the
pre-processing phase will be the pre-processing used for the CVPP algorithm.

Algorithm 3.1. Computes a basis BL as described above
Input: A number field K and an integer r = poly(log |Δ|) such that log hK ≤ r.
Output: The basis BL described in Section 3.1.
1: Compute the set B′ of all prime ideals of algebraic norm ≤ 12 log2 |Δ|.
2: Compute all the relations between the elements of B′ and the log-unit lattice Λ.
3: Use the relations to extract a set B′′ ⊆ B′ generating the class group with

|B′′| ≤ log hK .
4: Compute the set P of all prime ideals of norms smaller than some poly(log |Δ|)

(choose the bound so that |P| > r).
5: Create a set B by adding to B′′ ideals taken uniformly in P, until the cardinality

of B reaches r.
6: Compute a basis of ker(fB) and generators gi of the fractional principal ideals

corresponding to the relations computed.
7: Create the matrix BL from these r relations, the corresponding gi and the log-unit

lattice Λ computed at Step 2.
8: return BL.
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Lemma 3.2. Assume GRH. Then Algorithm3.1 outputs a matrix BL as
described above, in time at most

Tlog-unit + 2 · Trel(poly(log |Δ|),poly(log |Δ|)) + poly(log |Δ|).

Proof. We analyze the cost of each step of the algorithm, and provide some
details for the correctness when needed.

Step 1. We have already seen in Sect. 2 that computing all prime ideals of
norm ≤ 12 log2 |Δ| can be performed in time polynomial in log |Δ|. There are
poly(log |Δ|) such ideals.

Step 2. Computing all the relations between the elements of B′ and the log-unit
lattice Λ can be performed in time at most Trel(poly(log |Δ|),poly(log |Δ|)) +
Tlog-unit. The relations between the elements of B′ are represented as an invert-
ible matrix (whose columns span the kernel of the function fB′ defined in
Sect. 2.5).

Step 3. Extracting a generating set B′′ from B′ of cardinality at most log hK

can be done using Lemma 2.7. Because we already have the matrix of relations
between the elements of B′ (and because the size of this matrix is polynomial
in log |Δ|), this can be done in polynomial time (as stated in the lemma).

Step 4. As in Step 1, this can be done in polynomial time, because the bound
on the norms of the ideals is polynomial. We obtain a set P whose cardinality
is polynomial in log |Δ|.

Step 5. Picking uniform elements in a set of polynomial size can be done effi-
ciently, so this step can be performed in polynomial time (recall that r =
poly(log |Δ|)). Note that in the previous step, we had that the cardinality of B′

was at most log hK ≤ r, so we can indeed add ideals to it to reach a set of
cardinality r.

Step 6. As in Step 2, computing the kernel of fB can be done in time at most
Trel(poly(log |Δ|),poly(log |Δ|). Together with the relations, we also get genera-
tors of the corresponding principal ideals.

Step 7. Finally, to compute the matrix BL, we just need to compute the functions
πH and fH∩E on the gi’s computed in Step 6. We then put it together with the
matrix of relations computed in Step 6 and the log-unit lattice computed in
Step 2. This can be done in polynomial time. ��

3.3 From SVP in Ideal Lattices to CVP in L

We now explain how to transform the problem of finding a short non-zero vector
in a fractional ideal I of R, into solving a CVP instance with respect to the
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lattice L described in Sect. 3.1. As explained above, the main idea is to multiply
the ideal I by ideals of the set B, until we obtain a ‘good’ principal ideal (i.e.,
with a short generator). In terms of lattice operations in L, our initial lattice I
will give us a target vector in the real vector space spanned by L. Multiplying it
by ideals of B will be the same as adding to the target a vector of the lattice L.
Finally, checking whether the resulting ideal is a good principal ideal can be
done by checking whether the obtained vector is short. Overall, we are indeed
solving a CVP instance in L. We first describe the algorithm, and then prove its
correctness and bound its cost.

Algorithm 3.2. Solves ideal SVP using an oracle to solve CVP in L

Input: A non-zero fractional ideal I ⊆ R (given by some basis), the basis BL defined
above and some parameter β = β(n) > 0.

Output: A somehow short non-zero element in I.
1: Compute v1, . . . , vr ∈ Z and g ∈ K such that I =

∏

j p
vj

j · 〈g〉.
2: Let t = (−c · fH∩E(hg), v1 + β, . . . , vr + β)T , where hg = πH(Log g).
3: Compute w ∈ L such that ‖t − w‖∞ ≤ β (see Section 4).
4: Let g′ ∈ K be the element associated to w as in Lemma 3.1.
5: return g · g′.

Theorem 3.3. Let us fix c = n1.5/r. Let β = β(n) > 0. Then, for any non-zero
fractional ideal I of R, Algorithm3.2 runs in time at most

Tdecomp(N (I),poly(log |Δ|),poly(log |Δ|)) + TCVP(∞, L, β) + poly(log |Δ|)

and outputs a non-zero element x ∈ I such that ‖x‖2 ≤ 2O(
β·r·log log |Δ|

n ) ·N (I)1/n.

Observe that in the statement of the run-time, the term TCVP(∞, L, β) will
be infinite if β is smaller than μ(∞)(L) (no algorithm can find a point of L at
distance at most β given any target input). In this case, the run-time of our
algorithm might also be infinite (i.e. the algorithm fails).

Proof. Correctness. Let us define the fractional ideal J = 〈g · g′〉. This will
be our ‘good’ principal ideal, i.e., a principal ideal with a small generator, and
contained in I. Let us first prove that J is a multiple of I. By Lemma 3.1, we
have w = (c · fH∩E(πH(Log g′)), v′

1, . . . , v
′
r)

T with 〈g′〉 =
∏

j p
v′

j

j . We can then
write

J = I ·
∏

j

p
−vj

j · 〈g′〉 by definition of g and the v′
js

= I ·
∏

j

p
−vj

j ·
∏

j

p
v′

j

j by Lemma 3.1

= I ·
∏

j

p
v′

j−vj

j .
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Further, we know that ‖t − w‖∞ ≤ β, and hence we have vj ≤ v′
j ≤ vj + 2β

for all j. In particular, we have that v′
j − vj ≥ 0 and so the ideal

∏

j p
v′

j−vj

j is
an integral ideal. We conclude that J is contained in I, and in particular g · g′

is indeed an element of I. Also, because g′ �= 0 (see Lemma 3.1) and g �= 0 (we
chose I to be non-zero), then g · g′ is a non-zero element of I.

Let us now show that g · g′ is short. We will do so by using Lemma 2.12. Let
Log g = hg + ag1 and Log g′ = hg′ + ag′1 with hg and hg′ ∈ H ∩ E (note that
because g, g′ ∈ K, we do not necessarily have ag, ag′ > 0). We then have that
Log(gg′) = (hg +hg′)+(ag +ag′)1. By Lemma 2.12, we know that ‖gg′‖2 ≤ √

n ·
|N (gg′)|1/n ·2‖hg+hg′‖2 . Therefore, it suffices to bound the two terms |N (gg′)|1/n

and ‖hg + hg′‖2.
Let us start by |N (gg′)|1/n. By multiplicativity of the algebraic norm, we

have that |N (gg′)|1/n = N (J)1/n = N (I)1/n · ∏

j N (pj)
v′

j−vj

n . We have chosen
the ideals pj with polynomially bounded algebraic norms, and we have seen that

0 ≤ v′
j − vj ≤ 2β. Thus, we obtain that N (pj)

v′
j−vj

n = 2O(
β log log |Δ|

n ). By taking
the product of the r ideals pj , we obtain

|N (gg′)|1/n = N (I)1/n · 2O(
β·r·log log |Δ|

n ).

We now consider the term ‖hg + hg′‖2. Recall that ‖w − t‖∞ ≤ β, so in
particular, if we consider only the first r1 + r2 − 1 coefficients of the vectors, we
have that ‖c · fH∩E(hg′) + c · fH∩E(hg)‖∞ ≤ β. And if we consider the �2-norm,
we obtain ‖fH∩E(hg′) + fH∩E(hg)‖2 ≤ √

nβ/c. Using the fact that the �2-norm
is invariant by fH∩E , we conclude that ‖hg′ + hg‖2 ≤ √

nβ/c.
Finally, combining the two upper bounds above and replacing c by n1.5/r,

we obtain that
‖gg′‖2 ≤ √

n · 2O(
β·r·log log |Δ|

n ) · N (I)1/n.

Cost. Step 1 canbe performed in timeTdecomp(N (I),poly(log |Δ|),poly(log |Δ|)).
Step 2 can be performed in polynomial time. Step 3 uses a CVP solver and can
be done in time TCVP(∞, L, β). Finally, Step 4 only consists in recovering g′

from the vector w, it can be done in polynomial time. Note that for this last
step, if we only have the vector w, then we know πH(Log g′), but it might not be
possible to recover g′ from it. On the other hand, the lower part of the vector w
also gives us the ideal 〈g′〉, but then computing g′ from it would be costly. In
order to perform this step in polynomial time, when creating the matrix BL we
keep in memory the elements gi corresponding to the different columns. Then,
when we obtain w, we only have to write it as a linear combination of the vectors
of BL and we can recover g′ as a product of the gi’s. This can also be done in
polynomial time. ��

Combining Algorithm3.2 with the pre-processing phase (i.e., computing BL

with Algorithm 3.1 and pre-processing it for approx-CVPP’), we obtain the fol-
lowing theorem.
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Theorem 3.4. Let K be any number field of dimension n and discriminant Δ.
Let α ∈ [0, 1], r = poly(log |Δ|) be such that log hK ≤ r, and ν := r+r1 +r2 −1.
Then, under GRH, there exist two algorithms Apre-proc and Aquery such that

• Algorithm Apre-proc takes as inputs the field K and a basis of its ring of
integers R, runs in time

T pre-proc
CVP (∞, L, να)+Tlog-unit+2·Trel(poly(log |Δ|),poly(log |Δ|))+poly(log |Δ|)

and outputs a hint w of bit-size at most T query
CVP (∞, L, να);

• Algorithm Aquery takes as inputs the hint w output by Apre-proc and any frac-
tional ideal I of R such that the numerator and denominator of N (I) have
bit-sizes bounded by poly(log |Δ|); it runs in time

Tdecomp(N (I),poly(log |Δ|),poly(log |Δ|)) + T query
CVP (∞, L, να) + poly(log |Δ|)

and outputs a non-zero element x ∈ I such that

‖x‖2 ≤ 2O(
να·r·log log |Δ|

n ) · λ
(2)
1 (I).

The lattice L is as defined in Sect. 3.1 and only depends on the field K. The
memory consumption of both algorithms is bounded by their run-times.

Note that we used the fact that λ
(2)
1 (I) ≥ λ

(∞)
1 (I) ≥ N (I)1/n (see Inequal-

ity (2.4)) to replace the N (I)1/n term in Theorem 3.3 by λ
(2)
1 (I).

4 Solving CVP’ with Pre-processing

In this section, we describe a possible way of solving approx-CVP’ in the lattice L
defined previously. Even if our lattice L has some structure, it does not seem easy
to solve approx-CVP’ in it (not necessarily easier than solving the approx-SVP
instance directly for the initial lattice I). However, the lattice L only depends
on the field K and not on the ideal I. Hence, in this section, we focus on solving
approx-CVP’ with pre-processing on the lattice (to which we refer as CVPP’).
Combining it with the result of Sect. 3, this will provide an algorithm to solve
approx-SVP in ideals, with pre-processing on the field K.

4.1 Properties of the Lattice L

Recall that our lattice L is given by the basis matrix BL =
(

c · BΛ AB

0 RB

)

∈
R

ν×ν , where we let AB denote the top-right block of BL consisting of the vec-
tors c · ˜hgi

, and RB be the bottom-right block of BL containing the relations of
the elements of B. Recall that RB is a basis of the kernel of fB : (e1, . . . , er) ∈
Z

r → [
∏

j p
ej

j ] ∈ ClK . Hence we have det(RB) = |Zr/ ker(fB)| = hK .
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Equation (2.6) gives that det(Λ) ·hK ≤ 2O(log |Δ|+n log log |Δ|). Hence, we have
that det(L) = cr1+r2−1 · 2O(log |Δ|+n log log |Δ|). We chose c = n1.5/r in Theo-
rem 3.3. We then obtain the following upper bound on det(L):

det(L) =
(

n1.5

r

)r1+r2−1

· 2O(log |Δ|+n log log |Δ|) = 2O(log |Δ|+n log log |Δ|).

We still have some freedom for the choice of the parameter r (and hence the
dimension ν = r + r1 + r2 − 1 of the lattice L), as long as log hK ≤ r. We will
choose it sufficiently large to ensure that the root determinant of L is at most
constant. On the other hand, the dimension of L should be as small as possible
as it impacts the cost of the CVP computations. We fix

r = max(log hK , log |Δ| + n log log |Δ|).
This choice of r satisfies r ≥ log hK and det(L)1/ν ≤ O(1). Note that as log hK =
˜O(log |Δ|) (see Eq. (2.5)), we have r ≤ ˜O(log |Δ|).

In the following, we view the lattice L as random, where the randomness
comes from the choice of the set B (the initial set B′′ in Algorithm 3.1 is fixed,
but then we add to it random prime ideals of polynomially bounded norms to
create the set B). If the created lattice L does not satisfy the conditions we
want, we can try another lattice by sampling a new set B. As we chose r so that
det(L)1/ν = O(1), we know by Minkowski’s inequality that λ

(∞)
1 (L) = O(1).

Then, because L is somehow random, we also expect that all successive minima
λ
(∞)
i (L) and the covering radius in infinity norm are constant. Hence, we expect

to be able to take β as small as O(1) in Algorithm 3.2. We summarize this
assumption below.

Heuristic 4. With good probability over the choice of B, the �∞-norm covering
radius of L satisfies μ(∞)(L) = O(1) (and hence μ(2)(L) = O(

√
ν)).

This heuristic calls for a few comments. First, it is better analyzed as two
separate conjectures, one on the log-unit lattice, the other one on the class group
lattice. Concerning the latter, assume that the class number is a prime p. Then
we can choose p1 to be a generator of the class group, and the relation matrix
is of the form

⎛

⎜

⎜

⎜

⎜

⎜

⎝

p a1 a2 . . . ar

0 1 0 . . . 0
0 0 1 0
...

...
. . .

...
0 0 0 . . . 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where the ai’s in [0, p − 1] characterize the elements of the ideal class group.
In our setting where each pi (for i ≥ 2) is picked randomly among small prime
ideals, we can thus reasonably assume that the ai’s are uniformly distributed
in [0, p − 1]. Hence, for (ei)2≤i≤r ∈ [−B,B]r−1 for some constant B ≥ 1, we
can expect that one among the (2B + 1)r−1 = pc (with c > 1) fractional ideals



708 A. Pellet-Mary et al.

∏

i≥2 p
ei
i is in a class [p1]a for some a = O(1), which implies that the �∞-norm

covering radius is O(1).
The general case is analogous to this first intuition. Let B = {p1, . . . , ps,

ps+1, . . . , pr} with {p1, . . . , ps} the prime ideals coming from the set B′′ (hence
fixed) and {ps+1, . . . , pr} the ideals uniformly chosen among prime ideals of norm
bounded by some polynomial. Because the set B′′ generates the class group, we
can find a basis of L of the following form, by taking the HNF matrix for the
bottom-right part of BL.

c ·BΛ

0

c · ˜hg1 , . . . , c · ˜hgr

vs+1 · · · vrB′
L := RB′′

1
. . .

1

r

r

s

r1 + r2 − 1

r1 + r2 − 1

In this matrix, the block matrices BΛ and RB′′ are fixed, as well as the vec-
tors ˜hgi

for i in {1, . . . , s}. However, the vectors vi and ˜hgi
for s < i ≤ r depend

on our choices of {ps+1, . . . , pr}. The vectors of Z
s/RB′′ are in bijection with

the elements of the ideal class group (because B′′ generates the class group).
So if we assume that the class of a uniform prime ideal of norm polynomially
bounded is uniform in the class group, then we would have that the vectors vi

of the matrix above are uniform in Z
s/RB′′ . In a similar way, we will assume

that the vectors ˜hgi
are somehow uniform in R

r1+r2−1/Λ (recall that they corre-
spond to the projection over H of Log gi for gi a generator of the principal ideal
associated with the lower part of the vector). Let us now explain why, given any
target vector t ∈ R

ν , we expect to find a vector v ∈ L at distance O(1) from t.
Write t = (c · ˜h, v, w)T with ˜h of dimension r1 + r2 − 1, v of dimension s and w
of dimension r − s. We can assume, without loss of generality, that |wi| < 1/2
for all i (using the last r − s columns of B′

L to reduce t if needed). By taking the
subset sums of the last r − s columns of B′

L, we obtain 2r−s vectors of L of the
form t′ = (c · ˜h′, v′, w′)T , with w′ ∈ {0, 1}r−s. Because we assumed that the vi

and ˜hgi
for s < i ≤ r were somehow uniform modulo RB′′ and Λ respectively, we

also expect the vectors ˜h′ and v′ created above to be somehow uniform modulo
RB′′ and Λ. Recall that we chose r so that (det(cΛ) · det(RB′′))1/r = O(1),
hence the volume of cΛ and RB′′ satisfies det(cΛ) · det(RB′′) ≤ 2O(r). We can
then assume that we have 2r−s > det(cΛ) · det(RB′′) (if needed, we can multi-
ply r by a constant factor, which will not change the asymptotics). This means
that we expect to find one of the 2r−s vector t′ = (c · ˜h′, v′, w′)T satisfying
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‖(c ·˜h, v)− (c · ˜h′, v′)‖∞ = O(1). And because |wi| < 1/2 and w′
i ∈ {0, 1} we also

have ‖t − t′‖∞ = O(1).
We experimentally computed the lattice L for some cyclotomic fields (using

Algorithm 3.1). For each lattice L, we then computed an empirical covering
radius. To do so, we picked 21 random target vectors ti in the real span of
the lattice. These vectors were sampled from a continuous Gaussian distribution
with standard deviation σ = 100. We then solved the CVP instances in L for
these target vectors ti and let vi be a closest vector in L (for the �2-norm). We
defined μ̃(2)(L) to be maxi ‖ti − vi‖2 and μ̃(∞)(L) to be maxi ‖ti − vi‖∞.5 The
approximated values of μ(2)(L) and μ(∞)(L) are given in Fig. 3. We observe that,
while μ̃(2)(L) increases with the dimension (we expect that it increases as

√
ν),

the approximate covering radius in �∞-norm μ̃(∞)(L) seems to remain constant
around 1. These experimental results are consistent with Heuristic 4. The code
is available as supplementary material.

Conductor of K Dimension of L µ̃(2)(L) µ̃(∞)(L)
18 9 1.13 0.755
16 16 1.50 0.899
36 28 1.79 0.795
40 41 2.15 0.893
48 42 2.19 0.840
32 44 2.26 0.794
27 49 2.36 0.901
66 54 2.47 0.989
44 57 2.53 0.815
70 67 2.72 1.03
84 68 2.74 1.27
90 68 2.71 0.814
78 70 2.81 0.882
72 73 2.90 1.00

Fig. 3. Approximate covering radii in �2 and �∞ norms for the lattice L, for cyclotomic
number fields of different conductors.

4.2 Using Laarhoven’s Algorithm

We now consider Laarhoven’s algorithm, which solves approx-CVPP in
Euclidean norm (we only found algorithms for CVPP with Euclidean norm in the
literature, and not for infinity norm). Recall from Sect. 2 that, for a ν-dimensional
lattice L, Laarhoven’s (heuristic) algorithm gives, for any α ∈ [0, 1/2]:

5 As we solved CVP in L for the �2-norm, the quantity μ(∞)(L) may be over-estimated,
but this should not be over-estimated by too much. Further, as we want an upper
bound on μ(∞)(L), this is not an issue.
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T pre-proc
CVP (2, L,O(να) · μ(2)(L)) = 2O(ν),

T query
CVP (2, L,O(να) · μ(2)(L)) = 2 ˜O(ν1−2α).

As we have assumed (Heuristic 4) that μ(2)(L) = O(
√

ν) with good probability
over the choice of L, this implies that Laarhoven’s algorithm achieves

T pre-proc
CVP (2, L,O(ν1/2+α)) = 2O(ν) and T query

CVP (2, L,O(ν1/2+α)) = 2 ˜O(ν1−2α).

We now have an algorithm that, given any input t ∈ Span(L), outputs a
vector v ∈ L such that ‖t − v‖2 ≤ O(ν1/2+α), while we would like to have
‖t − v‖∞ ≤ O(να). But when we take a random vector of Euclidean norm
bounded by O(ν1/2+α), we expect that with good probability, its coefficients
are somehow balanced. Hence we expect its infinity norm to be approximately√

ν times smaller than its Euclidean norm. This is the meaning of the following
heuristic assumptions.

First, because we want the output of Laarhoven’s algorithm to be some-
how random, we argue that we can randomize the input vector of the CVPP
algorithm.

Heuristic 5. We assume that in our algorithm, the target vector t given as
input to Laarhoven’s algorithm behaves like a random vector sampled uniformly
in Span(L)/L.

This assumption that t is distributed uniformly in Span(L)/L may be justified
by the fact that, in Algorithm3.2, we can somehow randomize our target vector t
by multiplying our initial fractional ideal I by an integral ideal of small algebraic
norm (statistically independent of the pi’s chosen for B).

Heuristic 6. With non-negligible probability over the input target vector t, dis-
tributed uniformly in Span(L)/L, the vector v output by Laarhoven’s algorithm
satisfies ‖t − v‖∞ ≤ ˜O(‖t − v‖2/

√
ν).

In order to motivate Heuristic 6, we recall that if a vector is drawn uniformly
at random on a sphere, then its �∞-norm is smaller than its �2-norm by a factor
O(log n/

√
n), with good probability.

Lemma 4.1. Let x be sampled uniformly on the unit sphere Sn−1 in R
n. Then

Pr(‖x‖∞ ≥
√
8 lnn√

n
) ≤ O( 1√

lnn
).

Proof. Sampling x uniformly in Sn−1 is the same as sampling y from a cen-
tered spherical (continuous) Gaussian distribution of parameter 1 and then nor-
malizing it by setting x = y

‖y‖2
. So we have ‖x‖∞ = ‖y‖∞

‖y‖2
, and it is suffi-

cient to find an upper bound on ‖y‖∞ and a lower bound on ‖y‖2. We know
that for a centered spherical Gaussian distribution of parameter 1, we have
Pr(‖y‖∞ > 2 ln n) = Pr(∃i : |yi| > 2 ln n) ≤ 1

2
√
2π lnn

. Moreover, we also have

that Pr(‖y‖2 <
√

n/2) ≤ e−n/8 (see for instante [LM00, Lemma 1]). By the
union bound, we finally obtain that Pr(‖y‖∞/‖y‖2 >

√
8 lnn√

n
) ≤ O( 1√

lnn
). ��



Approx-SVP in Ideal Lattices with Pre-processing 711

Note that the proof also shows that for a continuous Gaussian vector y of
dimension n, ‖y‖∞/‖y‖2 = O(log n/

√
n) with good probability. We also have

experimental results corroborating Heuristic 6. We implemented our algorithm
in Magma, both the generation of the lattice L and the CVP phase using
Laarhoven’s algorithm (the code is available as supplementary material). We
tested our implementation for different cyclotomic fields. The maximum conduc-
tor achieved was 90. The maximum dimension of the lattice L that we achieved
was 73, for a cyclotomic field of conductor 72. For these cyclotomic fields, we
computed the lattice L. Then, we sampled target vectors t in the real span of L,
using a Gaussian distribution of parameter σ = 100, and we ran Laarhoven’s
CVP algorithm to obtain a vector v ∈ L. We then computed the ratios ‖t−v‖2

‖t−v‖∞
,

which we expect to be around O(
√

ν/ log ν). Because we are working in small
dimensions, the log ν term has a non-negligible impact. So, instead of plotting
log( ‖t−v‖2

‖t−v‖∞
) as a function of log ν, we compared our ratios with the ones we

would have obtained if the vectors were Gaussian vectors. On Fig. 4, the blue
dots represent the logarithms of the ratios ‖t−v‖2

‖t−v‖∞
obtained when choosing a

random Gaussian vector t as input of our algorithm. For every fixed conductor,
we have several vertically aligned points, because we tried Laarhoven’s algo-
rithm for different approximation factors (i.e., different choices of α). The green
‘+’ are obtained by computing log(‖x‖2/‖x‖∞) for some Gaussian vectors of
dimension ν. The red crosses are obtained by taking the median point of a large
number of green ‘+’ (not all of them are plotted on the figure).

We observe that the ratios obtained with our algorithm are well aligned with
the red crosses. Moreover, even if we have some variance within the blue dots,
it is comparable to the variance observed within the green ‘+’. So Heuristic 6
seems consistent with our empirical experiments (recall that Gaussian vectors
provably satisfy Heuristic 6 with good probability).

We conclude that, under Heuristics 4, 5 and 6, and Heuristic 1 present in
[Laa16], for any α ∈ [0, 1/2], Laarhoven’s algorithm solves approx-CVPP’ with

T pre-proc
CVP (∞, L, να) = 2O(ν) and T query

CVP (∞, L, να) = 2 ˜O(ν1−2α). (4.1)

5 Summary

We now instantiate Theorem 3.4 with ν = ˜O(log Δ) and the values given in
Sect. 2 and in Eq. (4.1) for Tlog-unit, Tdecomp, Trel, T

pre-proc
CVP and T query

CVP .

Theorem 5.1. Let K be any number field of dimension n and discriminant Δ.
Let α ∈ [0, 1/2]. Then, under GRH and Heuristics 1–6, there exist two algorithms
Apre-proc and Aquery such that

• Algorithm Apre-proc takes as inputs the field K and a basis of its integer
ring R, runs in time 2 ˜O(log |Δ|) and outputs a hint w of bit-size at most
2 ˜O((log |Δ|)1−2α),
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Fig. 4. Comparison of log(‖x‖2/‖x‖∞) as a function of log ν for x a Gaussian vector or
x = t−v with t a random target and v the approx-CVP solution output by Laarhoven’s
algorithm (on our lattice L, in selected cyclotomic fields). (Color figure online)

• Algorithm Aquery takes as inputs the hint w output by Apre-proc and any frac-
tional ideal I of R such that the numerator and denominator of N (I) have bit-
sizes bounded by poly(log |Δ|). It runs in classical time 2 ˜O((log |Δ|)max(2/3,1−2α))

or in quantum time 2 ˜O((log |Δ|)1−2α) and outputs an element x ∈ I such that

0 < ‖x‖2 ≤ 2 ˜O(
(log |Δ|)α+1

n ) · λ
(2)
1 (I).

The memory consumption of both algorithms is bounded by their run-times.

In the case where log |Δ| = ˜O(n), we can replace log |Δ| by n in all the equa-
tions of Theorem 5.1, and we obtain an element x which is a 2 ˜O(nα) approxima-
tion of a shortest non-zero vector of I (see Fig. 6). On the other hand, if log |Δ|
becomes significantly larger than n, then both the run-time and the approxima-
tion factor degrade. The cost of the pre-computation phase also becomes larger
than 2O(n). However, the query phase still improves upon the BKZ algorithm,
for some choices of α, as long as log |Δ| = ˜O(n12/11) in the classical setting or
log |Δ| = ˜O(n4/3) in the quantum setting (see Fig. 7). In Figs. 5, 6 and 7, we plot
the ratios between time and approximation factor for the BKZ algorithm and
the query phase of our algorithm, in the different regimes log |Δ| = ˜O(n) and
log |Δ| = ˜O(n1+ε) for some ε > 0.

In the case of prime-power cyclotomic fields, we know that log |Δ| = ˜O(n).
Moreover, there is a heuristic algorithm of Biasse et al. [BEF+17] satisfying
Trel, Tdecomp, Tlog-unit ≈ 2 ˜O(n1/2). Hence, we obtain the trade-offs shown in Fig. 2
(in the introduction) when applying our algorithm to prime-power cyclotomic
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Time

Approximation
factor

classical
and quantum

2
˜O(n)poly

2
˜O(n)

poly

Fig. 5. Prior time/approximation
trade-offs for approx-SVP in ideal
lattices in any number field of degree
n (using the BKZ algorithm).

Time

Approximation
factor

quantum

classical

2
˜O(n)2

˜O(n0.5)poly

2
˜O(n)

2
˜O(n2/3)

poly

Fig. 6. New trade-offs for ideal lattices
in number fields satisfying log |Δ| =
˜O(n) (with a pre-processing of cost

exp( ˜O(n))).

Time

Approximation
factor

quantum

classical

11+7ε
6

1+3ε
2

1 + 3ε

1

2(1+ε)
3

Fig. 7. New trade-offs for ideal lattices in number fields satisfying log |Δ| = ˜O(n1+ε)

for some ε > 0 (with a pre-processing of cost exp( ˜O(n1+ε))).

fields. Recall that in this special case, we already had an improvement upon
the BKZ algorithm in the quantum setting, using the results of [CDPR16]
and [CDW17], see Fig. 1.
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tions à la cryptologie. Ph.D. thesis, Paris 6 (2017)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing,
pp. 169–178. ACM Press, May/June 2009

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 1

[HM89] Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for com-
putation of class groups. J. Am. Math. Soc. 2(4), 837–850 (1989)

[HWB17] Holzer, P., Wunderer, T., Buchmann, J.A.: Recovering short generators of
principal fractional ideals in cyclotomic fields of conductor pαqβ . In: Patra,
A., Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 346–368.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71667-1 18

[Laa16] Laarhoven, T.: Sieving for closest lattice vectors (with preprocessing). In:
Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 523–542.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 28

[LM00] Laurent, B., Massart, P.: Adaptive estimation of a quadratic functional by
model selection. Ann. Stat. 28(5), 1302–1338 (2000)

[Lou00] Louboutin, S.: Explicit bounds for residues of Dedekind zeta functions,
values of l-functions at s = 1, and relative class numbers. J. Number Theory
85(2), 263–282 (2000)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1
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Abstract. We propose the General Sieve Kernel (G6K, pronounced
/ e.si.ka/), an abstract stateful machine supporting a wide variety of
lattice reduction strategies based on sieving algorithms. Using the basic
instruction set of this abstract stateful machine, we first give concise
formulations of previous sieving strategies from the literature and then
propose new ones. We then also give a light variant of BKZ exploiting
the features of our abstract stateful machine. This encapsulates several
recent suggestions (Ducas at Eurocrypt 2018; Laarhoven and Mariano
at PQCrypto 2018) to move beyond treating sieving as a blackbox SVP
oracle and to utilise strong lattice reduction as preprocessing for sieving.
Furthermore, we propose new tricks to minimise the sieving computation
required for a given reduction quality with mechanisms such as recycling
vectors between sieves, on-the-fly lifting and flexible insertions akin to
Deep LLL and recent variants of Random Sampling Reduction.

Moreover, we provide a highly optimised, multi-threaded and tweak-
able implementation of this machine which we make open-source. We
then illustrate the performance of this implementation of our sieving
strategies by applying G6K to various lattice challenges. In particu-
lar, our approach allows us to solve previously unsolved instances of
the Darmstadt SVP (151, 153, 155) and LWE (e.g. (75, 0.005)) chal-
lenges. Our solution for the SVP-151 challenge was found 400 times faster
than the time reported for the SVP-150 challenge, the previous record.
For exact-SVP, we observe a performance crossover between G6K and
FPLLL’s state of the art implementation of enumeration at dimension 70.
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1 Introduction

Sieving algorithms have seen remarkable progress over the last few years. Briefly,
these algorithms find a shortest vector in a lattice by considering exponentially
many lattice vectors and searching for sums and differences that produce shorter
vectors. Since the introduction of sieving algorithms in 2001 [AKS01], a long
series of works, e.g. [MV10b,BGJ15,HK17], have proposed asymptotically faster
variants; the asymptotically fastest of which has a heuristic time complexity of
20.292d+o(d), with d the dimension of the lattice [BDGL16].

Such algorithms for finding short vectors are used in lattice reduction algo-
rithms. These improve the “quality” of a lattice basis (see Sect. 2) and are used
in the cryptanalysis of lattice-based cryptography.

On the other hand, lattice reduction libraries such as [dt18a,AWHT16] imple-
ment enumeration algorithms, which also find a shortest vector in a lattice. These
algorithms perform an exhaustive search over all lattice points within a given
target radius by exploiting the properties of projected sublattices. Enumeration
has a worst-case time complexity of d

1
2e d+o(d) [Kan83,HS07] but requires only

polynomial memory.
While, with respect to running time, sieving already compares favourably

in relatively low dimensions to simple enumeration1 (Fincke–Pohst enumera-
tion [FP85] without pruning), the Darmstadt Lattice Challenge Hall of Fame for
both approximate SVP [SG10] and LWE [FY15] challenges has been dominated
by results obtained using enumeration. Sieving has therefore not, so far, been
competitive in practical dimensions when compared to state of the art enumer-
ation with heavy preprocessing [Kan83,MW15] and (extreme) pruning [GNR10]
as implemented in e.g. FPLLL/FPyLLL [dt18a,dt18b]. Here, “pruning” means
to forego exploring the full search space in favour of focussing on likely can-
didates. The extreme pruning variant proceeds by further shrinking the search
space, and rerandomising the input and restarting the search on failure. In this
context “heavy preprocessing” means running strong lattice reduction, such as
the BKZ algorithm [Sch87,CN11], which in turn runs enumeration in smaller
dimensions, before performing the full enumeration. In short, enumeration cur-
rently beats sieving “in practice” despite having asymptotically worse running
time. Thus [MW15], relying on the then state of the art, estimated the crossover
point between sieving and enumeration for solving the Shortest Vector Problem
(SVP) as dimension d = 146 (or in the thousands, assuming extreme pruning
can be combined with heavy preprocessing without loss of performance).

Contribution. In this work, we report performance records for achieving var-
ious lattice reduction tasks using sieving. For exact-SVP, we are able to out-
perform the pruned enumeration of FPLLL/FPyLLL by dimension 70. For the
Darmstadt SVP Challenges (1.05-Hermite-SVP) we solve previously unsolved
challenges in dimensions {151, 153, 155} (see Fig. 1 and Table 2), and our running

1 For example, the Gauss sieve implemented in FPLLL (latsieve) beats its unpruned
SVP oracle (fplll -a svp) in dimension 50.
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Raw data (see Supplementary material).
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is  only  reported  in  the HoF. It  reports a  computation time of  800K  CPU-hours.
According  to  personal communications  with the authors, this translates to 36 · 800

RSR; G6K:  with -sieve (this work). “HoF”K = 28.8  Mcore-hours.),

Fig. 1. New Darmstadt SVP challenge records.

times are at least 400 times smaller than the previous records for comparable
instances.

We also solved new instances (n, α) ∈ {(40, 0.005), (50, 0.015), (55, 0.015),
(60, 0.01), (65, 0.01), (75, 0.005)} of the Darmstadt LWE challenge (see Table 3).
For this, we adapted the strategy of [LN13], which consists of running one large
enumeration after a BKZ tour of small enumerations, to G6K. This improves
slightly upon the prediction of [ADPS16,AGVW17].

Our sieving performance is enabled by building on, generalising and extend-
ing previous works. In particular, the landscape of enumeration and sieving
started to change recently with [Duc18a,LM18]. For example, [Duc18a] spec-
ulated that the crossover point, for solving SVP, between the SubSieve proposed
there and pruned enumeration would be around d = 90 if combined with faster
sieving than [MV10b]. A key ingredient for this performance gain was the reali-
sation of several “dimensions for free” by utilising heavy preprocessing and Babai
lifting (or size reduction) in said free dimensions. This may be viewed as a hybrid
of pruned enumeration with sieving, and is enabled by strong lattice reduction
preprocessing. In other words, we may consider these improvements as applying
lessons learnt from enumeration to sieving algorithms. It is worth recalling here
that the fastest enumeration algorithm relies on the input basis being quasi-
HKZ reduced [Kan83], but prior to [Duc18a,LM18] sieving was largely oblivi-



720 M. R. Albrecht et al.

ous to the quality of the input basis. Furthermore, both [Duc18a,LM18] suggest
exploiting the fact that sieving algorithms hold a database of many short vectors,
for example by recycling them in future sieving steps. Thus, instead of treating
sieving as an SVP oracle outputting a single vector, they implicitly treat it as a
stateful machine where the state comprises the current basis and a database of
many relatively short vectors.

G6K, an abstract stateful machine. In this work, we embrace and push forward
in this direction. After some preliminaries in Sect. 2, we propose the General
Sieve Kernel (G6K, pronounced / e.si.ka/) in Sect. 3, an abstract machine for
running sieving algorithms, and driving lattice reduction. We define several basic
instructions on this stateful machine that not only allow new sieving strategies
to be simply expressed and easily prototyped, but also lend themselves to the
easy inclusion and extension of previous works. For example, the progressive
sieves from [Duc18a,LM18] can be concisely written as

Reset0,0,0, (ER, S)d, I0

where S means to sieve, I0 means to insert the shortest vector found into the
basis, ER means to increase the sieving dimension and Reset initialises the
machine.

Beyond formalising previous techniques, our machine provides new instruc-
tions, namely EL, which allows one to increase the sieving dimension “towards the
left” (of the basis), and an insertion instruction I which is no longer terminal: it
is possible to resieve after an insertion, contrary to [Duc18a]. These instructions
increase the range of implementable strategies and we make heavy use of them
to achieve the above results.

The General Sieve Kernel also introduces new tricks to further improve effi-
ciency. First, all vectors encountered during the sieve can be lifted “on the fly”
(as opposed to only the final set of vectors in [Duc18a]) offering a few extra
dimensions for free and thus improved performance. Additionally, G6K keeps
insertion candidates for many positions so as to allow a posteriori choices of
the most reducing insertion, akin to Deep LLL [SE94] and the latest variants of
Random Sampling Reduction (RSR) [TKH18], enabling stronger preprocessing.

Lattice reduction with G6K. Using these instructions, in Sect. 4 we then create
reduction strategies for various tasks (SVP, BKZ-like reduction). These strategies
encapsulate and extend the contributions and the suggestions made in [Duc18a,
LM18], further exploiting the features of G6K. Using the instructions of our
abstract stateful machine, our fundamental operation, named the Pump, may be
written as

Resetκ,κ+β,κ+β , (EL, S)β−f
, (I, Ss)β−f

.

While previous works mostly focus on recursive lattice reduction within siev-
ing, we also explicitly treat and test utilising sieving within the BKZ algorithm.
Here, we report both negative and positive results. On the one hand, we report
that, at least in our implementation, the elegant idea of a sliding-window sieve
for BKZ [LM18] performs poorly and offer a discussion as to why. We also find
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that the strategy from [Duc18a], consisting of “overshooting” the block size β of
BKZ by a small additive factor combined with “jumping” over the same number
of indices in a BKZ tour, does not provide a beneficial quality vs. time trade-off.
On the other hand, we find that from the second block of a BKZ tour onwards,
or always in the progressive BKZ case, cheaper sieving calls (involving less pre-
processing) suffice. We also find that opportunistically increasing the number
of dimensions for free beyond the optimal values for solving SVP improves the
quality vs. time trade-off. Thus, we vindicate the suggestion to move beyond
treating sieving merely as an SVP oracle in BKZ.

Implementation. In Sect. 5, we then propose and describe an open-source, tweak-
able, multi-threaded, low-level optimised implementation of G6K, featuring sev-
eral sieve variants [MV10b,BGJ15,HK17].2 Our implementation is carefully opti-
mised to support multiple cores in all time consuming operations, is highly
parameterised and makes heavy use of the SimHash test [Cha02,FBB+15,
Duc18a]. It combines a C++ kernel with a Python control module. Thus, our
higher level algorithms are all implemented in Python for easy experimenta-
tion. Our implementation is written with a view towards being extensible and
reusable and comes with documentation and tests. We consider hackable and
usable software a contribution in its own right.

Performance and Records. Using and tuning our implementation of G6K then
allows us to obtain the variety of performance records for solving lattice chal-
lenges as described above. We describe our approach in Sect. 6. There, we also
describe our experiments for the aforementioned BKZ strategies.

Complementary information on the performance of our implementation is
provided in the full version.

Discussion. A natural question is how our results affect the security of lattice-
based schemes, especially the NIST PQC candidates. Most candidates have been
extremely conservative, and thus we do not expect the classical security claim
of any scheme to be directly affected by our results. We note, however, that our
results on BKZ substantiate further the prediction made in several analyses of
NIST PQC candidates that the cost of the SVP oracle can be somewhat amortised
in BKZ [PAA+17, Sec 4.2.6]. Thus, our results provide further evidence that the
8 d·CSV P cost model [ACD+18] is an over-estimate,3 but they nevertheless do not
reach the lower bound given by the “core-hardness” estimates. However, we stress
that our work justifies the generally conservative approach and we warn against
security estimates based on a state of the art that is still in motion.

On the other hand, the memory consumption of sieving eventually becomes
a difficult issue for implementation, and could incur slowdowns due to memory
access delays and bandwidth constraints. Though, it is not so clear that these
2 Our implementation is available at https://github.com/fplll/g6k/.
3 Note that, in addition, this already follows in the enumeration regime from [LN13]

which we adapt to the sieving regime in Sect. 6.

https://github.com/fplll/g6k/
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difficulties are insurmountable, especially to an attacker having access to custom
hardware. For example Kirchner claimed [Kir16] that simple sieving algorithms
such as the Nguyen–Vidick sieve are implementable by a circuit with Area =
Time = 20.2075n+o(n). Ducas further conjectured [Duc18b] that bgj1 (a simplified
version of [BGJ15]) can be implemented with Area = 20.2075n+o(n) and Time
= 20.142n+o(n). More concretely, the algorithms that we have implemented mostly
consider contiguous streams of data, making the use of disks instead of RAM
plausibly not so penalising.

One may also argue that such an area requirement on its own is already
unreasonable. Yet, such arguments should also account for what amount of wall-
time is considered reasonable. For example, the walltime of a bruteforce search
costing 2128 CPU-cycles on 264 cores at 4GHz runs for 264 cycles = 232 s ≈ 134
years; larger walltimes with fewer cores can arguably be considered irrelevant
for practical attacks.

2 Preliminaries

2.1 Notations and Basic Definitions

We start counting at zero. All vectors are denoted by bold lower case letters and
are to be read as column vectors. Matrices are denoted by bold capital letters.
We write a matrix B as B = (b0, . . . ,bn−1) where bi is the i-th column vector
of B. We may also denote bi by B[i] and the j-th entry of bi by B[i, j]. If
B ∈ R

d×n has full column rank n, the lattice L generated by the basis B is
denoted by L(B) = {Bx |x ∈ Z

n}. We denote by (b∗
0, . . . ,b

∗
n−1) the Gram–

Schmidt orthogonalisation of the matrix B = (b0, . . . ,bn−1). That is, we define

μi,j =

〈
b∗

j ,bi

〉

〈
b∗

j ,b
∗
j

〉 and b∗
i = bi −

i−1∑

j=0

μi,j · b∗
j .

The process of updating bi ← bi −�μij�bj , for j ∈ {i−1, . . . , s} with 0 ≤ s < i,
is known as “size reduction” or “Babai’s Nearest Plane” algorithm. We also define
b◦

i = b∗
i / 〈b∗

i ,b
∗
i 〉 and extend this to B◦ column wise. For i ∈ {0, . . . , n − 1}, we

denote the projection orthogonally to the span of (b0, . . . ,bi−1) by πi. For 0 ≤
� < r ≤ n, we denote by B[�:r] the local projected basis, (π�(b�), . . . , π�(br−1)).
When the basis is clear from context L[�:r] denotes the lattice generated by
B[�:r]. We refer to the left (resp. the right) of a context [� : r] and by “the
context [� : r]” implicitly refer also to L[�:r] and B[�:r]. More generally, we speak
of the left (resp. the right) as a direction to refer to smaller (resp. larger) indices
and of contexts becoming larger as r − l grows.

The Euclidean norm of a vector v is denoted by |v|. The volume of a lattice
L(B) is Vol(L(B)) =

∏
i |b∗

i |, an invariant of the lattice. The first minimum of
a lattice L is the length of a shortest non zero vector, denoted by λ1(L). We use
the abbreviations Vol(B) = Vol(L(B)) and λ1(B) = λ1(L(B)).
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2.2 Sieving, Lattice Reduction and Heuristics

Sieving algorithms build databases of lattice vectors, exponentially sized in the
lattice dimension. In the simplest sieves, it is checked whether the sums or dif-
ferences of any pair of database vectors is shorter than one of the summands or
differands. More importantly for G6K as an abstract stateful machine is the prop-
erty of sieving [NV08,MV10b] that, after sieving in some L, this database con-
tains a constant fraction, which we are able to set, of {w ∈ L : |w| ≤ R · gh(L)}.
Here gh(L) is the expected length of the shortest vector of a lattice L (see Defi-
nition 2), and R is a small constant determined by the sieve (see Sect. 5.1). It is
this information that G6K will leverage when changing context and inserting.

Lattice reduction is the process of taking a basis for a given L and find-
ing subsequent bases of L with shorter and closer to orthogonal vectors. Two
important notions of reduction are HKZ and BKZ-β reduction. The BKZ algo-
rithm [SE94,CN11] takes as input a lattice basis of L and a block size β and
outputs a BKZ-β reduced basis of L.

Definition 1 (Hermite–Korkine–Zolotarev, Block-Korkine–Zolota-
rev). A size-reduced basis B = (b0, . . . ,bd−1) of a lattice L is Hermite–Korkine–
Zolotarev (HKZ) reduced if |b∗

i | = λ1(L[i:d]),∀ i < d. It is Block-Korkine–
Zolotarev with block size β (BKZ-β) reduced if |b∗

i | = λ1(L[i:min{i+β,d}]),∀ i < d.

Intuitively BKZ reduction requires that a given index in the basis is as short
as possible when considering only a local projected sublattice, with the local-
ity parameterised by β. The cost of BKZ increases with β. The LLL algo-
rithm [LLL82] can be thought of as BKZ-2 and is often used as a cheap starting
point for lattice reduction. Equally, HKZ reduction can be thought of as BKZ-d
and is a strong notion of reduction.

The BKZ algorithm internally calls an SVP oracle in dimension ≤ β, i.e. an
algorithm that solves the Shortest Vector Problem (or an approximate variant
of it) in dimension β.

The Gaussian heuristic predicts that the number, |L ∩ B|, of lattice points
inside a measurable body B ⊂ R

n is approximately Vol(B)/Vol(L). Applied to
Euclidean n-balls, it leads to the following prediction of λ1(L) for a given L.

Definition 2 (Gaussian Heuristic). We denote by gh(L) the expected first
minimum of a lattice L according to the Gaussian heuristic. For a full rank
lattice L ⊂ R

d, it is given by

gh(L) =
√

d/2πe · Vol(L)1/d
. (1)

The quality of a basis after lattice reduction can be measured by a quantity
called the root Hermite factor.

Definition 3 (Root Hermite Factor). For a basis B of a d-dimensional lat-
tice, the root Hermite factor is defined as

δ =
( |b0| /Vol (B)1/d)1/d

. (2)
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For BKZ-β, the root Hermite factor is a well behaved quantity. For small block-
sizes the root Hermite factor is experimentally calculated [GN08b] and for larger
blocksizes [Che13] it follows the asymptotic formula

δ(β)2(β−1) = (β/(2πe))(βπ)
1
β , (3)

which tends towards 1. Finally we reproduce the Geometric Series Assumption
(GSA) [Sch03] which, given β, heuristically determines the lengths of consecutive
Gram–Schmidt basis vectors. It is reasonably accurate for β > 50 and β 
d [Ngu10,CN11,YD17].

Definition 4 (Geometric Series Assumption). Let B be a BKZ-β reduced
basis, then the Geometric Series Assumption states that |b∗

i | ≈ δ(β)−2 ∣
∣b∗

i−1

∣
∣.

3 The General Sieve Kernel

3.1 Design Principles

In this section we propose the General Sieve Kernel (Version 1.0), an abstract
machine supporting a wide variety of lattice reduction strategies based on sieving
algorithms. It minimises the sieving computation effort for a given reduction
quality by:

– offering a mechanism to recycle short vectors from one context to somewhat
short vectors in an overlapping context, therefore already starting the sieve
closer to completion. This formalises and generalises some of the ideas pro-
posed in [Duc18a,LM18].

– being able to lift vectors to a larger context than the one currently consid-
ered. These vectors are considered for insertion at earlier positions. But as an
extension to [Duc18a], which only lifted the final database of vectors, G6K is
able to lift-and-compare all vectors encountered during the sieve. From this,
we expect a few extra dimensions for free.4

– deferring the decision of where to insert a short vector until after the search
effort. This is contrary to formal definitions of more standard reduction algo-
rithms, e.g. BKZ or Slide [GN08a] reduction, and inspired by Deep LLL and
recent RSR variants [TKH18].

The underlying computations per vector are reasonably cheap, typically linear
or quadratic in the dimension of the vector currently being considered. The most
critical operation, namely the SimHash test [Cha02,FBB+15,Duc18a] may be
asymptotically sublinear or even polylogarithmic; in practice it consists of about
a dozen x86 non vectorised instructions for vectors of dimension roughly one
hundred.
4 Lifting is somewhat more expensive than considering a pair of vectors. We are there-

fore careful to only lift a fraction of all considered vectors, namely only the considered
vectors below a certain length of, say,

√
1.8 · gh(L[�:r]).
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3.2 Vectors, Contexts and Insertion

All vectors considered by G6K live in one of the projected lattices L[�:r] of
a lattice L. More specifically, they are represented in basis B[�:r] as integral
vectors v ∈ Z

n where n = r − �, i.e. we have w = B[�:r] · v for some w ∈ R
d.

Throughout, we may represent the (projected) lattice vector w by the vector v.
It is convenient, and efficient, to also keep a representation, v◦ ∈ R

n, of w in
the orthonormalised basis B◦

[�:r]. This conversion costs O(n2).
Below we list the three operations that extend or shrink a vector to the left

or to the right.

– Extend Right (inclusion) er : L[�:r] → L[�:r+1]

(v0, . . . vn−1) �→ (v0, . . . vn−1, 0)
(v◦

0 , . . . v
◦
n−1) �→ (v◦

0 , . . . v
◦
n−1, 0)

– Shrink Left (projection) sl : L[�:r] → L[�+1:r]

(v0, . . . vn−1) �→ (v1, . . . vn−1)
(v◦

0 , . . . v
◦
n−1) �→ (v◦

1 , . . . v
◦
n−1)

– Extend Left (Babai-lift) el : L[�:r] → L[�−1:r]

(v0, . . . , vn−1) �→ (−�c�, v0, . . . , vn−1)

(v◦
0 , . . . , v

◦
n−1) �→ ((c − �c�) · ∣∣b∗

�−1

∣∣ , v◦
0 , . . . v

◦
n−1),

where c =
n−1∑

j=0

μ�+j,�−1 · vj .

These operations maintain, somewhat, the shortness of vectors. Indeed,

|er(w)| = |w| , |sl(w)| ≈
√
(r − � − 1)/(r − �) · |w| , |el(w)|2 ≤ |w|2 + ∣

∣b∗
�−1

∣
∣2 /4.

More properly, “shortness” should be considered relative to the Gaussian heuris-
tic of a context, gh(L[�:r]). For BKZ-β reduced bases, and growing in accuracy
as r − � → ∞,

gh(L[�:r])
gh(L[�:r+1])

and
gh(L[�:r])

gh(L[�+1:r])
≈ δ(β),

gh(L[�:r])
gh(L[�−1:r])

≈ δ(β)−1
.

We may then calculate an approximate growth factor, relative to the Gaussian
heuristics of the contexts, for each of the three operations

|er(w)| · gh(L[�:r])
|w| · gh(L[�:r+1])

≈ δ(β),
|sl(w)| · gh(L[�:r])
|w| · gh(L[�+1:r])

≈
√

r − � − 1
r − �

· δ(β),

|el(w)| · gh(L[�:r])
|w| · gh(L[�−1:r])

≤ δ(β)−1

(

1 +

∣
∣b∗

�−1

∣
∣2

4 · |w|2
)1/2

.

While it would seem natural to also define a Shrink Right operation, we have
not found a geometrically meaningful way of doing so. Moreover, we have no
algorithmic purpose for it.
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Insertion. Performing an insertion (the elementary lattice reduction operation)
of a vector is less straightforward. For i ≤ � < r, n′ = r−i, n = r−� an insertion
of a vector w at position i is a local change of basis making w = B[i:r] · v the
first vector of the new local projected basis, i.e. applying a unimodular matrix
U ∈ Z

n′×n′
to B[i:r] such that (B[i:r] ·U)[0] = w. While doing so, we would like

to recycle a database of vectors currently living in the context [� : r].
In the case i = �, this causes no difficulties, and one could apply any change

of basis U to the database. But to exploit dimensions for free, we will typically
have i < �, which is more delicate. If we can ensure that

Span((B · U)[i:�+1]) = Span(B[i:�] ∪ {w}) (4)

then one can simply project all the database vectors orthogonally to w, to end
up with a database in a new smaller context [�+1 : r]. If it holds that v[j] = ±1
for some j ∈ {�, . . . , r − 1} an appropriate matrix U can be constructed as

U =

(
Ij×j 0

v 0 0
0 In′−j−1×n′−j−1

)

. (5)

However, it is important that the local projected bases remain somewhat
reduced. If not, numerical stability issues may occur. Moreover, the condition
that v contains a ±1 in the context [� : r] is often not satisfied without sufficient
reduction. While we must be careful to not alter the vector space inside the siev-
ing context, we can nevertheless perform a full size reduction (upper triangular
matrix T with unit diagonal) on the whole of B[i:r], as well as two local LLL
reductions UL and UR on B[i:�+1] and B[�+1:r].

U′ = U · T ·
(
UL 0
0 UR

)
. (6)

Note that Span((B · U′)[i:�+1]) = Span((B · U)[i:�+1]), so that condition (4) is
preserved.

3.3 G6K: A Stateful Machine

The General Sieve Kernel is defined by the following internal states and instruc-
tions.

State

– A lattice basis B ∈ Z
d×d, updated each time an insert is made (Sect. 3.2).

Associated with it is its Gram–Schmidt Orthonormalisation basis B◦.
– Positions 0 ≤ κ ≤ � ≤ r ≤ d. We refer to the context [� : r] as the sieving
context, and [κ : r] as the lifting context. We define n = r − � (the sieving
dimension).

– A database db of N vectors in L[�:r] (preferably short).
– Insertion candidates cκ, . . . , c� where ci ∈ L[i:r] or ci = ⊥.
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Instructions

– Initialisation (InitB): initialise the machine with a basis B ∈ Z
d×d.

– Reset (Resetκ,�,r): empty database, and set (κ, �, r).
– Sieve (S): run some chosen sieving algorithm. During execution of the algo-

rithm, well chosen visited vectors are lifted from L[�:r] to L[κ:r] (by iterating
el just on these vectors). If such a lift improves (i.e. is shorter than) the best
insertion candidate ci at position i, then it replaces ci. We call this optional5
feature on-the-fly lifting.

– Extend Right, Shrink Left, Extend Left (ER, SL, EL): increase or decrease �
or r and apply er, sl or el to each vector of the database. All three operations
maintain the insertion candidates (except for EL which drops c�).

– Insert (I): choose the best insertion candidate ci for κ ≤ i ≤ �, according to
a score function, and insert it at position i. The sieving context changes to
[�+1 : r] and the database is updated as described in Sect. 3.2. If no insertion
candidate is deemed suitable, then we simply run SL so as to ensure that the
sieving context will end up as expected.6 When we write Ii, we mean that
insertion is only considered at position i.

– Grow or Shrink (ResizeN ): change the database to a given size N . When
shrinking, remove the longest vectors from the database. When growing,
sample new vectors (using some unspecified sampling algorithm7). Typically,
we will not explicate the calls to these operations, and assume that calling
a sieve includes resizing the database to the appropriate size, for example
N = O(

√
4/3

n
) for the 2-sieves of [NV08,MV10b,BGJ15].

Our implementation of this machine offers more functionality, such as the ability
to monitor its state and therefore the behaviour of the internal sieve algorithm,
and to tune the underlying algorithms.

4 Reduction Algorithms Using G6K

Equipped with this abstract machine, we can now reformulate, improve and gen-
eralise strategies for lattice reduction with sieving algorithms. In the following
we will assume that the underlying sieve algorithm has a time complexity pro-
portional to Cn, with n the dimension of the SVP instance, and we also define
C ′ = 1/(1 − 1/C). This second constant approximates the multiplicative over-
head

∑n
i=1 Ci/Cn encountered on iterating sieves in dimensions 1 to n. Note

that this overhead grows when C decreases. More concretely, depending on the
sieve, C can range from 4/3 down to

√
3/2, giving C ′ = 4 up to C ′ ≈ 5.45.

5 The alternative being to only consider the vectors of the final database for lifting.
6 Note that sl can be viewed as the trivial insertion of the vector vκ = (1, 0, . . . , 0).
7 When possible we prefer to sample by summing random pairs of vectors from the

database.
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4.1 The Pump

In this section we propose a sequence of instructions called the Pump. They
encompass the progressive sieving strategy proposed in [Duc18a,LM18] as well
as the dimensions for free and multi-insertion tricks of [Duc18a]. The original
progressive sieving strategy can be written as

Reset0,0,0, (ER, S)d, I0. (7)

Similarly, a SubSievef which attempts a partial HKZ reduction using sieving
with f dimensions for free can be written as8

SubSievef : Reset0,f,f , (ER, S)d−f
, I0, I1, . . . , Id−f−1. (8)

We note that due to the newly introduced EL operation, it is also possible to
perform the progressive sieving right to left

Reset0,d,d, (EL, S)d−f
, I0, I1, . . . , Id−f−1. (9)

Perhaps surprisingly, experimentally the left variant of progressive sieving per-
forms substantially better. In combination with certain sieving methods, the
right variant even fails completely, this will be discussed in more detail in
Sect. 4.5.

To arrive at Pump, note first that G6K maintains insertion candidates at
many positions. We can therefore relax the insertion positions of (9) and choose
those that appear to be optimal. The choice of insertion position is discussed in
Sect. 4.4.

Secondly, due to on-the-fly lifting, we note that the sequence (9) considers
many more insertion candidates for the first insertion than for subsequent inser-
tions. Moreover, we noticed that after several insertions, the database contained
vectors much longer than recent inserts. By sieving also during the “descent
phase”, i.e. when inserting and shrinking the sieve context, we remedy this imbal-
ance and expect to obtain a more strongly reduced basis, ideally obtaining an
HKZ reduced context.

In summary, we define the parameterised Pumpκ,f,β,s as the following sequence

Pumpκ,f,β,s : Resetκ,κ+β,κ+β ,

pump-up︷ ︸︸ ︷
(EL, S)β−f

,

pump-down︷ ︸︸ ︷
(I, Ss)β−f

. (10)

where 0 ≤ κ ≤ κ + β ≤ d, 0 ≤ f ≤ β, and where s ∈ {0, 1} controls whether we
sieve during pump-down. One may expect the cost of these extra sieves to be
close to a multiplicative factor of 2, but experimentally the factor can reach 3 for
certain sieves (e.g. bgj1), as more collisions9 seem to occur during the descent
phase. This feature is mostly useful for weaker reduction tasks such as BKZ, see
PumpNJumpBKZTour below.
8 This sequence refers to SubSieve +(L, f) with Sieve being progressive [Duc18a].
9 A collision is when a new vector v to be inserted in the database equals ±v2 for

some v2 already present in the database.
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4.2 SVP

To solve the shortest vector problem on the full lattice, starting from an LLL
reduced basis B, we proceed as in [Duc18a], that is, we iterate Pump0,f,d,s for
decreasing values of f . While only the last Pump delivers the shortest vector, the
previous iterations provide a strongly reduced basis (near HKZ reduced), which
allows more dimensions for free to be achieved. We expect to obtain further
dimensions for free due to on-the-fly lifting.

Similarly, for solving SVP in context [κ : κ+ β] (e.g. as a block inside BKZ),
we instead make iterative calls to Pumpκ,f,β,s.

Note that we can decrease f in larger increments than 1 to balance the
cost of the basis reduction effort and the search for the shortest vector itself.
Indeed, with increments of 1, the overhead factor C ′ for C =

√
3/2 is C ′ ≈ 4.45.

Decreasing f by 2 gives an overhead of C ′ = 1/(1 − C−2) = 3 and by 3 gives
C ′ = 1/(1− C−3) ≈ 2.19. Such speed-ups are worth losing 1 or 2 dimensions for
free.

We therefore define WorkOut as the following sequence of Pump

WorkOutκ,β,f,f+,s : Pumpκ,β−f+,β,s, Pumpκ,β−2f+,β,s,

Pumpκ,β−3f+,β,s, . . . Pumpκ,f,β,s,
(11)

where f+ is the increment mentioned above. From experiments on exact-SVP
and SVP Challenges, we found it worthwhile to deactivate sieving in the descent
phase (s = 0), though activating it (s = 1) is preferable in other contexts, or to
use less memory at a larger time cost. Similarly, for certain tasks (e.g. the SVP
Challenges, i.e. 1.05-Hermite-SVP) we found the optimal increment, f+, to be 2
or 3. This parameter also drives a time-memory trade-off; setting f+ to 1 saves
on memory by allowing for a larger f , but at a noticeable cost in time.

For solving exact-SVP, it is not clear when to stop this process because we
are never certain that a vector is indeed the shortest vector of a lattice (except
maybe by running a very costly non pruned enumeration). In these cases, one
should therefore guess, from experimental data, a good number f of dimensions
for free. Note that it is rarely critical to achieve exact-SVP, and lattice reduction
algorithms such as BKZ tolerate approximations.

In some cases, such as the Darmstadt SVP Challenge, we do not have to solve
exact-SVP, but rather find a vector of a prescribed norm, near the Gaussian
heuristic. In this case we do not need to predetermine f and simply iterate the
Pump until satisfaction. As a consequence, we also add an extra option to the
Pump to allow early aborts when it finds a satisfying candidate cκ. In practice we
observe significant savings from this feature, i.e. we observe the Pump aborting
before reaching its topmost dimension, or at the beginning of the descent phase.

4.3 BKZ

Having determined the appropriate parameters f, f+, s for solving SVP-β (made
implicit in the following), the naïve implementation of BKZ is given by the
following program
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NaiveTourβ : WorkOut0,β , WorkOut1,β+1, . . .

WorkOutd−β,d, . . . , WorkOutd−1,d.
(12)

Several strategies to amortise the cost of sieving inside BKZ were suggested
in [Duc18a,LM18]. These aimed to reduce the cost of a tour of BKZ-β below
d (or d − β) times the cost of SVP in dimension β. Again, these strategies are
implementable as a sequence of G6K instructions.

Namely, the sliding-window strategy of [LM18] can be expressed as

SlidingWindowTourβ : Reset0,0,0, (ER, S)β , (I�, S, ER, S)d−β
, (I�, S)β . (13)

It is also possible to combine this strategy with the dimensions for free
of [Duc18a]. However, there are two caveats. First, it relies on extend right,
which is currently problematic in our implementation of G6K, see Sect. 4.5.
Secondly, even if this issue is solved, we remark that inside a BKZ tour it is
preferable to run LLL on the full basis periodically. From the sandpile point of
view [MV10a,HPS11], not doing so implies that a “bump” accumulates at the
right of the reduced blocks, as we try to push the sand to the right. We see no
clear strategies to recycle the vectors of a block when calling a full LLL.

Alternatively, [Duc18a] identified two other potential amortisations. First, it
is noted that the WorkOut (or even just a Pump) in a block [κ : κ + β] leaves the
next block [κ + 1 : κ + β + 1] already quite well reduced. It may therefore not
be necessary to do a full WorkOut, but simply run the last Pump of this WorkOut,
therefore saving up to a factor of C ′ in the running time.

The second suggestion of [Duc18a] consists of overshooting the blocksize β,
so that a Pump in dimension β′ > β attempts to HKZ reduce a larger block. In
particular for parameter j, let β′ = β + j − 1 and after a Pumpκ,f,β′ jump by
j blocks. This decreases the number of calls to the Pump to d/j and may also
slightly improve the quality of the reduction, but increases the cost of the Pump
calls by a factor of Cj−1. It is argued that such a strategy could give a speed-up
factor ranging from 2.2 to 3.6 for a fixed basis reduction quality. In this case we
therefore perform the following sequence

PumpNJumpTourβ′,f,j : Pump0,f,β′ , Pumpj,f,β′ , Pump2j,f,β′ , . . . (14)

We alter the version above to allow for more opportunism. Since choosing f to
almost certainly solve exact-SVP in blocks is costly, we instead embrace the idea
of achieving the most basis reduction from a given sieving context. Extending
the lift context makes the lift operation more expensive, but gives more insertion
candidates, and therefore a new trade-off to be optimised over. Note that while
Pumpκ′,f+κ−κ′,β+κ−κ′ for κ′ < κ takes more dimensions for free than Pumpκ,f,β ,
it still provides the same insertion candidates, cκ, . . . , cκ+f . It also provides new
insertion candidates cκ′ , . . . , cκ−1. This is because the sieving contexts do not
shrink, and so, provided we take care in the first few blocks, the quality cannot
decrease. To achieve this start with Pumps with f = 0 and move the sieving
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context right until the desired f is attained, then continue as before. Set f ′ > f ,
β = β + f ′ − f (i.e. to fix the sieve context sizes), β′ = β + j − 1,10 and perform

PumpNJumpTourβ′,f ′,j : Pump0,0,β′−f ′ , Pump0,j,β′−f ′+j , . . . , Pump0,f ′,β′ ,

Pumpj,f ′,β′ , Pump2j,f ′,β′ , . . .
(15)

4.4 Scoring for Inserts

The issue of deciding where in a basis to insert given candidates throughout
reduction has already been discussed in [TKH18], in the context of the SVP
Challenges. Until the actual shortest vector is found, these insertions have the
purpose of improving the basis quality. Inserting at an early position may degrade
quality at later positions, because we do not know a priori how inserting ci will
affect B[�:r] for i ≤ � < r. Therefore one must find a good trade-off between
making long lasting yet weak improvements at early positions, and strong yet
fragile improvements at later positions.

One way to achieve this is to use the scoring proposed in [TKH18], a function
over the whole basis which measures the global effect of each potential insert,
i.e. checking exactly how inserting ci affects the B[�:r]. We use a simplified variant
of this scoring which scores the improvement of each potential insert according
to the following local condition

ς(i) =
{
0, if ci = ⊥
θ−i · |b∗

i |2 / |ci|2 , otherwise
(16)

for some constant θ ≥ 1 and take the maximum over the valid indices. Setting
θ = 1 corresponds to always choosing the “most improving” candidate, while
setting θ quite large (say 10) corresponds to always inserting at the earliest
position.

To optimise θ, we ran WorkOut0,d,f for f = 30 and d = 110, measured
γ = gh(L)/ gh(L[f :d]), and chose θ = 1.04 which minimised this quantity γ. We
recall [Duc18a] that γ must be below a certain threshold to guarantee the success
of exact-SVP in dimension d with f dimensions for free.

The optimal value of θ may differ depending on other parameters, e.g. dimen-
sion, approximation factor, and the context, e.g. exact-SVP, 1.05-Hermite-SVP,
BKZ, and the question of optimising insertion strategies requires more theoret-
ical and experimental attention. We hope that our open source implementation
will ease such future research.

4.5 Issue with Extend Right

As mentioned earlier, our current implementation does not support the ER oper-
ation very well. In more detail, the issue is that after running a sieve in the

10 For Fig. 4 we choose yet more opportunism and do not increase β to β′.
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context [� : r], and applying ER, the vectors in the database are padded with
0 to be defined over the context [� : r + 1]; geometrically, these vectors remain
in the context [� : r], and so will all their potential combinations considered by
the sieve. While we do add some fresh vectors to increase the database size, the
fraction of those fresh vectors in the database is rather small: 1− √

3/4 ≈ 13%.
This alone seems to slow down the Gauss sieve when used in right-progressive
sieving compared to left-progressive sieving.

The situation is even worse in the faster sieves we implement. Indeed, apart
from the reference Gauss sieve, our sieves are not guaranteed to maintain the
full-rankness of the database. This is because, for performance purposes, we
relax the replacement condition. In the standard Gauss sieve, x ± y may only
replace x or y if it is shorter. We relax this and allow x ± y to replace the
current longest vector z in the database. Fresh vectors are much longer than the
recycled ones, therefore they are quickly replaced by combinations of recycled
vectors, effectively meaning there is little representation of the newly introduced
basis vector after an ER.

While we tried to implement countermeasures to avoid losing rank, they
had a noticeable impact on performance, and were not robust. For this work,
we therefore avoid the use of extend right, as reductions based on extend left
already perform well. We leave it as an open problem to develop appropriate
variants of fast sieve algorithms that avoid this issue.

5 Implementation Details

5.1 Sieving

We implemented several variants of sieving, namely: a Gauss sieve [MV10b],
a relaxation of the Nguyen–Vidick sieve [NV08], a restriction of the Becker–
Gama–Joux sieve [BGJ15] and a 3-sieve [BLS16,HK17]. All exploit the SimHash
speed-up [Cha02,FBB+15,Duc18a].

The first two were mostly implemented for reference and testing purposes,
and therefore are not multi-threaded. Nevertheless, we fall back to Gauss sieve in
small dimensions for efficiency and robustness; as discussed earlier, Gauss sieve
is immune to loss of rank, which we sometimes experienced with other sieves in
small dimensions (say, n < 50), even when not using extend right.

The termination condition for the sieves follows [Duc18a], namely, they stop
when we have obtained a given ratio of the expected number of vectors of norm
less than R · gh(L[�:r]). The saturation radius is dictated by the asymptotics
of the algorithm at hand, namely, R is such that the sieve uses a database of
N = O(Rn) vectors. In particular R =

√
4/3 for all implemented sieves, except

for the 3-sieve for which one can choose R2 ∈ [
3
√
3/4, 4/3

] ≈ [1.299, 1.333].

Nguyen–Vidick Sieve (nv) and Gauss Sieve (Gauss). The Nguyen–Vidick
sieve finds pairs of vectors (v1,v2) from the database, whose sum or difference
gives a shorter vector, i.e. |v1 ± v2| < max{|v| : v ∈ db}. Once such a pair is
found, the longest vector from the database gets replaced by v1 ±v2. The size of
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the database is a priori fixed to the asymptotic heuristic minimum 20.2075n+o(n)

required to find enough such pairs. The running time of the Nguyen–Vidick sieve
is quadratic in the database size.

The Gauss sieve algorithm, similar to the Nguyen–Vidick sieve, searches for
pairs with a short sum, but the replacement and the order in which we process the
database vectors differ. More precisely, the database now is (implicitly) divided
into two parts, the so called “list” part and the “queue” part. This separation is
encoded in the ordering, with the list part being the first τ vectors. Both parts
are kept separately sorted. The list part has the property that the shortness of
v1 ± v2 has been checked for all pairs of vectors v1,v2 in the list. We then only
check pairs (v1,v2), where v1 comes from the queue part and v2 from the list
part. As opposed to Nguyen–Vidick sieve, once a reduction is found, the longer
vector from the pair (v1,v2) gets replaced by v1 ± v2, not the longest in the
database. In the case where the list vector v2 gets replaced, the result of the
reduction v1 ± v2 is put into the “queue” part and the search is continued with
the same “queue” vector v1. Otherwise, if the queue vector v1 was the longest
and is replaced, we restart comparing v1 with all list vectors. A vector is moved
from the “queue” to the “list” part once no reduction with the “list” vectors
can be found. Asymptotically, the running time and the database size for the
Gauss sieve is the same as for the Nguyen–Vidick sieve, but it performs better
in practice.

Becker–Gama–Joux Sieve (bgj1). The sieve algorithm from [BGJ15] accel-
erates the Nguyen–Vidick sieve [NV08] from 20.415n+o(n) down to 20.311n+o(n)

by using locality sensitive filters, while keeping the memory consumption to its
bare minimum for a 2-sieve, namely 20.2075n+o(n).

This optimal complexity is reached using recursive filtering, however we only
implemented a variant of this algorithm with a single level of filtration (hence
the name bgj1). We leave it to future work to implement the full algorithm and
determine when the second level of filtration becomes interesting.

We briefly describe our simplified version. The algorithm finds reducing pairs
in the database by successively filling buckets according to a filtering rule, and
doing all pairwise tests inside a bucket. Concretely, it chooses a uniform direction
d ∈ R

n, |d| = 1, and puts in the bucket all database vectors taking (up to sign)
a small angle with d, namely all v such that |〈v,d〉| > α · |v|.

We choose α so that the size of the buckets is about the square root of the
size of the database (asymptotically, α2 → 1−√

3/4 ≈ 0.3662). This choice bal-
ances the cost of populating the bucket (through testing the filtering condition)
and exploring inside the bucket (checking for pairwise reductions). Both cost
O(N) = 20.2075n+o(n); though in practice we found it faster to make the buckets
slightly larger, namely around 3.2

√
N . Also note that we can apply a SimHash

prefiltering before actually computing the inner product 〈v,d〉, but using a larger
threshold for the bucketing prefilter than for the reduction prefilter.

Following the heuristic arguments from the literature, and in particular
the wedge volume formula [BDGL16, Lemma 2.2], we conclude that this sieve
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succeeds after about (2/
√
3 − 1/3)

−n/2 ≈ 20.142n+o(n) buckets, for a total com-
plexity of 20.349n+o(n).

3-sieve (triple_sieve). In its original versions [BLS16,HK17], the 3-sieve algo-
rithm aims to reduce memory consumption at the cost of a potential increase
in the running time. The 3-sieve algorithm searches not for pairs, but for triples
of vectors, whose sum gives a shorter vector (hence, the name 3-sieve). Clearly,
for a fixed size list of vectors, there are more possible triples than pairs and,
therefore, we can start with a shorter list and still find enough reductions. How-
ever, a (naïve) search now costs three iterations over the list. To speed-up the
naïve search, we can apply filtering techniques similar to the ones used for bgj1.
In particular, the 3-sieve algorithm with filtering described in [HK17] requires
memory 20.1788n+o(n) and runs in time 20.396n+o(n).

For any vector x from the database, the 3-sieve algorithm of [HK17] filters the
database by collecting all vectors v with a large enough inner product |〈x,v〉|.
For all pairs of these collected vectors (v1,v2), 3-sieve checks if |x ± v1 ± v2|
gives a short(er) vector. Such an inner product test, as in bgj1, helps to identify
“promising” vectors which are likely to result in a length reduction. The only
subtlety lies in the fact that in order for a triple to give a reduction, the vectors
x,v1,v2 should be far apart, not close to each other as in 2-sieve. We handle
this by adjusting the inner product test and choosing the ± signs appropriately.

The version of the 3-sieve implemented in G6K splits the database into “list”
and “queue” parts in the same way as the Gauss sieve above. Further, it combines
2- and 3-sieves. Notice that the filtering process of 3-sieve is basically the same
as bucketing in bgj1, with a bucket centre defined by a database11 vector x.
When processing the bucket, we check not only whether a pair (v1,v2) from
the bucket gives a shorter vector, but also whether a triple (x,v1,v2) may. This
additional check has no noticeable impact on performance (we know in which
case we potentially are from the signs of the scalar products alone), but has the
potential to find more shorter vectors.

As a result, in this combined version of the sieve, we can find more reductions
than in 2-sieve if we keep the same database size as for 2-sieve. In such a memory
regime, most of the reductions will come from 2-reductions. Setting a smaller
database makes the algorithm look for more 3-reductions as 2-reductions become
less likely.

As triple_sieve finds more reductions than bgj1 with the same database
sizes, we may decrease the size of the database and check how the running time
degrades. The results of these experiments are shown in Fig. 2. The leftmost
point corresponds to the minimal memory regime for 3-sieve, namely when the
database size is set to 20.1788n+o(n), while the rightmost point is for the bgj1
memory regime, that is the database size is set to 20.2075n+o(n). It turns out that
in moderate dimensions (i.e. 80–110), triple_sieve performs slightly better if
the database size is a bit less than 20.2075n+o(n). Furthermore, these experiments
11 This relies on the fact that we do not use recursive filtering in bgj1: the asymp-

totically optimal choice from [BGJ15] mandates choosing the buckets centres in a
structured way, which is not compatible with choosing them as db elements.
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Fig. 2. Time-memory trade-off for our implementation of the 3-sieve algorithm.

are consistent with theoretical results on the high memory regime for 3-sieve:
in [HKL18] it was proven that the running time of 3-sieve quickly drops down if
allowed slightly more memory, as Fig. 2 shows.

5.2 The Three Layers: C++/Cython/Python

Our implementation consists of three layers.

C++11. The lowest level routines are implemented in C++11. In particular, at
this level we define a Siever class which realises G6K for all sieves considered
in this work: Gauss, NV, BGJ1 and 3-sieve. The general design is similar to
FPLLL where algorithms are objects operating on matrices and Gram–Schmidt
objects. In particular, different sieves are realised as methods on the same object
(and thus the same database) allowing the caller to pick which sieve to run in
a given situation. For example, in small dimensions it is beneficial to run the
Gauss sieve and this design decision allows the database to be reused between
different sieves. Our C++ layer does not depend on any third party libraries
(except pthreads). On the other hand, our C++ layer is relatively low level.

Cython. Cython is a glue language for interfacing between CPython (the C
implementation of the Python programming language) and C/C++. We use
Cython for this exact purpose. Our Cython layer is relatively thin, mainly mak-
ing our C++ objects available to the Python layer and translating to and from
FPyLLL data structures [dt18b]. The most notable exception is that we imple-
mented the basis change computation of the insert instruction I (Eqs. (5) and
(6)) in Cython instead of C++. The reason being that we call LLL on the lifting
context when inserting (the Cython function split_lll) which is realised by
calling FPyLLL. That is, while our C++ layer has no external dependencies,
the Cython layer depends on FPyLLL.
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Python. All our high level algorithms are implemented in (C)Python (2). Our
code does not use the functional-style abstractions from Sect. 3, but a more
traditional object-oriented approach where methods are called on objects which
hold the state. We do provide some syntactic sugar, though, enabling a user
to construct new instructions from basic instructions in a function-composition
style similar to the notation in Sect. 3. Nevertheless, this simplified abstraction
is not able to fully exploit all the features of our implementation, and significant
savings may be achieved by using the full expressivity of our library.

5.3 Vector Representation and Data Structures

The data structures of G6K have been designed for high performance sieving
operations and we have tried to minimise memory usage where possible. For
high performance we retain the following information about each vector v as an
entry e in the sieve database db:

– e.x: the vector v itself as 16-bit integer coordinates in basis B[�:r];
– e.yr: a 32-bit floating point vector to efficiently compute 〈v,v2〉, this is a

renormalised version of v◦;
– e.cv (compressed vector): a 256-bit SimHash of v;
– e.uid (unique identifier): a 64-bit hash of v;
– e.len: the squared length |v| as a 64-bit floating point number.

The entire database db is stored contiguously in memory, although unordered.
This memory is preallocated for the maximum database size within each Pump, to
avoid additional memory usage caused by reallocations of the database whenever
it grows.

To be able to quickly determine whether a potential new vector is already in
the database we additionally maintain a C++ unorderedset (i.e. a hash table)
uiddb containing 64-bit hashes uid of all vectors in db.12 This hash uid = H(x)
of x is simply computed as the inner product of x with a global random vector
in the ring Z/264Z, which has the additional benefit that H(x1 ± x2) can be
computed more efficiently as H(x1) ± H(x2). This allows us to cheaply discard
collisions without even having to compute x1 ± x2.

To maintain a sorted database we utilise a compressed database cdb that
only stores the 256-bit SimHash, 32-bit floating point length, and the 32-bit db-
index of each vector. This requires only 40 bytes per vector and everything is
also stored contiguously in memory. It is optimised for traversing the database
in order of increasing length and applying the SimHash as a prefilter, since
accessing the full entry in db only occurs a fraction of the time.

For the multi-threaded bgj1-sieve, the compressed database cdb is main-
tained generally sorted in order of increasing length. Initially cdb is sorted, then,
during sieving, vectors are replaced one-by-one starting from the back of cdb. It
is only resorted when a certain fraction of entries have been replaced. Since we
12 This unorderedset is in fact split into many parts to eliminate most blocking locks

during a multi-threaded sieve.
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only insert a new vector if its length is below the minimum length of the range
of to-be-replaced vectors in cdb, this approach ensures that we always replace
the largest vector in db. In the sieve variants that split the database into queue
and list ranges, we regularly sort the individual ranges. In our multi-threaded
triple_sieve, the vectors removed during a replacement are chosen iteratively
from the backs of the two ranges.

Most sieving operations use buckets that are filled based on locality sensitive
filters. In bgj1, we use the same datastructure as cdb for the buckets, and thus
copy those compressed entries in contiguous memory reserved for that bucket.
For triple_sieve, we also store information about the actual scalar product
〈x,v〉 of the bucket elements v with the bucket centre x inside the bucket.

5.4 Multi-threading

G6K is able to efficiently use multi-threading for nearly all operations; a detailed
efficiency report can be found in the full version. Global per-entry operations
such as EL, ER, SL and I-postprocessing are simply distributed over all available
threads in the global threadpool.

During multi-threaded sieving we guarantee all write operations to entries
in db, cdb and the best lift database to be executed in a thread-safe manner
using atomic operations and write locks. (The actual locking strategies differ
per implementation.) We always perform all heavy computations before locking
and let each thread locally buffer pending writes and execute these writes in
batches to avoid bottlenecks in exclusive access of these global resources.

Threads reading entries in db and cdb do not use locking and can thus poten-
tially read partially overwritten entries. While this may result in some wasted
computations, no faulty vectors will be inserted in the db: for every new vector
we completely recompute its full entry e from e.x including its length and verify
it is actually shorter than the length of the to-be-replaced vector before actually
replacing it.

Safely resorting cdb during sieving is the most complicated, since threads
do not block on reading cdb. Our implementations in G6K resolve this as fol-
lows. We let one thread resort cdb and use locking to prevent any insertions
(or concurrent resorting) by other threads. We keep the old cdb untouched as a
shadow copy for other threads, while computing a new sorted version that we
then atomically publish. Afterwards, other threads will then eventually switch
to the newer version. Insertions are always performed using cdb and never using
a shadow copy, even if e.g. a thread is still using a shadow copy for its main
operations, e.g. when building a bucket.

6 New Lattice Reduction Records

The experiments reported in this section are based on bgj1-sieving, except those
on BKZ and LWE which are based on triple_sieve, in the high memory regime
(N = Θ((4/3)n/2)). The switch occurred when improvements to the latter made
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Table 1. Details of the machines used for experiments.

Machine CPUs base freq. cores threads HTC∗ RAM
L 4xIntel Xeon E7-8860v4 2.2Ghz 72 72 No 512GiB
S 2xIntel Xeon Gold 6138 2.0Ghz 40 80 Yes 256GiB
C 2xIntel Xeon E5-2650v3 2.3Ghz 20 40 Yes 256GiB
A 2xIntel Xeon E5-2690v4 2.6Ghz 28 56 Yes 256GiB
∗ HTC: Hyperthreading Capable.

it faster than the former (especially with pump-down sieve, s = 1). While it
seemed wasteful to rerun all the experiments, we nevertheless now recommend
triple_sieve over bgj1 for optimal performance within our library. The details
of the machines used for our various experiments are given in Table 1.

6.1 Exact-SVP

We first report on the efficiency of our implementation of G6K’s WorkOut (s = 0,
f+ = 1) when solving exact-SVP. The comparison with pruned enumeration
is given in Fig. 3a. While fitted curves are provided, we highlight that they
are significantly below asymptotic predictions of 20.349d+o(d) for bgj1 and thus
unreliable for extrapolation.13 Based on these experiments, we report a crossover
with enumeration around dimension 70. Note that we significantly outperform
the guesstimates of a crossover at dimension 90 made in [Duc18a].

While our improved speed compared to [Duc18a] is mostly due to having
implemented a faster sieving algorithm, the new features of G6K also contribute
to this improved efficiency (see the full version for a detailed comparison). In
particular the on-the-fly lifting strategy offers a few extra dimensions for free as
depicted in Fig. 3b. That is, our new implementation is not only faster but also
consumes less memory.

6.2 1.05-Hermite-SVP (a.k.a. Darmstadt SVP Challenges)

The detailed performance of our implementation when solving Darmstadt SVP
Challenges is given in Table 2. We also compare the running time of our exper-
iments with prior works in Fig. 1. We warn the reader that the experiments of
Table 2 are rather heterogeneous – different machines, different software versions,
and different parametrisations were used – and therefore discourage extrapola-
tions. Moreover the design decisions below and the probabilistic nature of the
algorithm explain the non monotonic time and space requirements.

The parameters were optimised towards speed by trial and error on many
smaller instances (d ≈ 100). More specifically we ran WorkOut with parameters
f = 16 + d/12, f+ = 3, s = 1; choosing f+ = 1 or 2 would cost more time
13 This mismatch with theory can be explained by various kinds of overheads, but

mostly by the dimensions for free trick: as f = Θ(d/ log d) is quasilinear, the slope
will only very slowly converge to the asymptotic prediction.
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(a) Average time in seconds to solve exact-SVP.
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(20thread/20cores, not hyperthreaded) on machine C. Raw data (see Supplementary material).

Fig. 3. Performance for exact-SVP.

and less memory.14 The loop was set to exit as soon as a vector of the desired
length was found, and if it reached the minimal value of f , it would repeat
this largest Pump until success (this repetition rarely happened more than three
times). The sieve max dim column reports the actual dimension d − flast of the
last Pump.

6.3 BKZ

To test PumpNJumpTour we compare its quality vs. time performance against
BKZ 2.0 [CN11] in FPyLLL and against NaiveTour (see Fig. 4). We generate
random q-ary lattice bases, of dimension 180 with 90 equations modulo q = 230.
We prereduce the bases using one FPyLLL BKZ tour for each blocksize from 20

14 The number f = 16 + d/12 of dimensions for free is only meant to be a local
approximation, as we asymptotically expect f = Θ(d/ log d) even for O(1)-approx-
SVP [Duc18a].
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Table 2. Performance on the Darmstadt SVP challenges.

SVP Hermite Sieve Total Memory
dim Norm factor max dim Wall time CPU time usage Machine

155 3165 1.00803 127 14 d 16 h 1056 d † 246 GiB L
153 3192 1.02102 123 11 d 15 h 911 d † 139 GiB S
151 3233 1.04411 124 11 d 19 h 457.5 d † 160 GiB C
149 3030 0.98506 117 60 h 7m 4.66 kh † 59 GiB S
147 3175 1.03863 118 123 h 29m 4.79 kh 67.0 GiB C
145 3175 1.04267 114 39 h 3m 1496 h 37.7 GiB C
143 3159 1.04498 110 17 h 23m 669 h 21.3 GiB C
141 3138 1.04851 105 4 h 59m 190 h 10.6 GiB C
139 3111 1.04303 108 9 h 56m 380 h 16.2 GiB C
137 3093 1.04472 107 9 h 26m 362 h 14.1 GiB C
136 3090 1.04937 108 9 h 16m 354 h 16.2 GiB C
135 3076 1.04968 108 7 h 21m 277.4 h 16.1 GiB C
133 3031 1.04133 103 1 h 59m 71.7 h 8.0 GiB C
131 2959 1.02362 100 1 h 11m 41.5 h 5.3 GiB C
129 2988 1.03813 98 54m 33.2 h 4.2 GiB C
128 3006 1.04815 102 2 h 32m 94.9 h 7.6 GiB C
127 2972 1.04244 101 2 h 17m 85.0 h 6.0 GiB C
126 2980 1.04976 100 31m 19.2 h 5.6 GiB C
125 2948 1.04393 99 1 h 18m 47.6 h 5.2 GiB C
124 2937 1.04032 98 39m 23.9 h 4.4 GiB C
123 2950 1.04994 93 7m 4.0 h 2.2 GiB C

†: Not measured, estimate.

to 59 and then report the cumulative time taken by further progressive tours of
several BKZ variants.

Contrary to exact-SVP, we find it beneficial for the running time to activate
sieving during pump-down for all G6K based BKZ experiments. We further
find that triple_sieve is noticeably faster than bgj1; it seems that the former
suffers fewer collisions than the latter when sieving during the pump-down phase.

For all G6K based BKZ experiments we choose the number of dimensions
for free following the experimental fit of Fig. 3b, that is f = 11.5 + 0.075β. We
also introduce a parameter e = f ′ − f to concretise the more opportunistic
PumpNJumpTour variant discussed at the end of Sect. 4.3.

To measure quality we use an averaged quality measurement, namely, the
slope metric of FPyLLL. This slope, ρ, is a least squares fit of the log |b∗

i |2.
For comparison this metric is preferable to the typical root Hermite factor as
it displays much less variance. In the GSA model, the slope ρ relates to the
root Hermite factor by δ = exp(−ρ/4). We also provide the predictions for
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The time and slope are averaged over 8 instances for each algorithm. Each instance was
monothreaded, but ran in parallel (40threads/40cores, not hyperthreaded) on machine
S. We label the point by β for all multiples of 5. Raw data (see Supplementary material).

Fig. 4. Performance of BKZ-like algorithms.

progressive tours given by the BKZ simulator of [CN11,Wal16]. We note that the
simulator is optimistic compared to even the most “textbook” variants, BKZ2.0
and NaiveTour, a phenomenon already documented in [YD17,BSW18].

Conclusion. These experiments confirm that it is possible to outperform a naïve
application of an SVP-β oracle to obtain a quality equivalent to BKZ-β in less
time. Indeed, PumpNJumpTourβ,f,1 is about 4 times faster than NaiveTourβ,f for
the same reduction quality. Furthermore, the opportunistic variant with e = 12
gives even better quality per time, and also only requires a smaller β for the
same quality, therefore decreasing memory consumption. These experiments also
suggest that jumps j > 1 are not beneficial, they require similar running time
per quality, but with a larger memory consumption.

6.4 LWE

The Darmstadt LWE challenges [FY15] are labeled by (n, α), where n denotes
the dimension of the secret in Zq, for some q, and α is a noise rate. Concretely
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the challenges are given as (A,b) where As + e ≡ b mod q with A ∈ Z
m×n
q

for some m, s ∈ Z
n
q , e ∈ Z

m and b ∈ Z
m
q . Each entry of e, the error, is sampled

independently from the Gaussian distribution over the integers with mean μ = 0
and standard deviation σ = α · q, while the entries of A and s are sampled
independently and uniformly from Zq. Both q and m are constant for a given n,
but increase with n.

Our method for solving LWE is via embedding e into a uSVP instance
[Kan87,BG14] but using the success condition originally given in [ADPS16] and
experimentally justified in [AGVW17]. We also use the embedding coefficient
t = 1 following [ADPS16,AGVW17]. We choose the minimal β such that after
BKZ-β reduction, |πd−β(e)| < gh(L[d−β:d]). Therefore πd−β(e) will be inserted
at index d−η. It is shown in [AGVW17] that size reduction (here lifting) is then
enough to lift πd−β(e) to e. The success condition in [ADPS16,AGVW17] is

√
β · σ < δ(β)2β−d · Vol (L)1/d

. (17)

There is no a priori reason why the β used for BKZ reduction and the dimension
of the SVP call (the last full block in some BKZ-β tour) which first finds πd−β(e),
should be equal. For enumeration based algorithms it is customary to run one
large enumeration after the smaller enumerations inside BKZ, see [LN13]. To
apply this to sieving we alter the above inequality to allow a “decoupling” of
these quantities and then balance the expected total time cost.

Let β continue to denote the BKZ block size and η denote the dimension of
an SVP call on the lattice L[d−η:d]. We obtain the following inequality

√
η · σ < δ(η)η−1 · δ(β)η−d+1 · Vol (L)1/d

. (18)

The left hand side is an approximation of the length πd−η(e) and the right hand
side an approximation of the Gaussian heuristic of L[d−η:d]. Indeed

gh(L[d−η:d]) =
√

η/2πe · Vol (L[d−η:d])
1/η =

√
η/2πe ·

⎛

⎝
d−1∏

i=d−η

|b∗
i |

⎞

⎠

1/η

, (19)

and further δ(η)η−1 ∼ √
η/2πe in increasing η. By combining the GSA and the

estimate the root Hermite factor gives for |b0|, (18) may be derived from (19).

Implemented Strategy and Performance. To solve LWE instances in prac-
tice we implemented code which returns triples (β, η, d) that satisfy (18), and
choose the number of LWE samples accordingly. We then run PumpNJumpTour
with s = 1, j = 1, e = 12 and triple_sieve as the underlying sieve, and
increase β progressively (choosing f as the experimental fit of Fig. 3b). After each
tour, we measure the walltime T elapsed since the beginning of the reduction,
and predict the maximal dimension ν reachable by pumping up within time T .
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Table 3. Performances on Darmstadt LWE challenges.

(n, α) Estimated(β, η, d) Successful(β, ν, ν′) CPU time Wall time M.

(65, 0.010) (108, 137, 244) (112, 124, 120) 2553 h 60 h A
(55, 0.015) (106, 135, 219) (110, 125, 103) 2198 h 34 h 50m S
(40, 0.030) (102, 133, 179) (108, 120, 111) 1116 h 17 h 43m S
(75, 0.005) (88, 118, 252) (88, 112, 107)‡ 591 h 12 h 26m S
(60, 0.010) (92, 122, 222) (94, 112, 106)† 579 h 11 h 59m S
(50, 0.015) (87, 118, 194) (81, 111, 95) 8 h 36m 1 h 23m S
†: There was also a failed search after β = 90, with ν = 115.
‡: There was also a failed search after β = 84, with ν = 115.

We predict whether we expect to find the projected short vector in this pump
(ignoring on-the-fly lifting), following the reasoning of [Duc18a]. That is, we
check the inequality √

ν · σ ≤
√

4/3 · gh(L[d−ν:d]). (20)

If this condition is satisfied, we proceed with searching for the LWE solution
with this Pump (κ, f = ν − κ, β = d − κ, s = 0)15 otherwise, we continue BKZ
reduction with larger β. If this search is triggered but fails, we also go back to
reducing the basis with progressive BKZ, and reset the timer T . The search may
also succeed before reaching the pump dimension ν, in which case we denote by
ν′ the dimension at which it stops.

Details of the six new Darmstadt LWE records are in Table 3. It should
be noted that the CPU-time/walltime ratio can be quite far from e.g. 80, the
number of threads on machine S. This is because parallelism only kicks in for
sieves in large dimensions (see the full version), while the walltimes of some of
the computations were dominated by BKZ tours with medium blocksizes. One
could tailor the parameterisation to improve the walltime further, but this would
be in vain as we are mostly interested in the more difficult instances, which suffer
very little from this issue.

Acknowledgements. We thank Kenny Paterson for discussing a previous version of
this draft. We also thank Pierre Karpman for running some of our experiments.

15 One could choose κ = 0 to be entirely sure not to miss the solution during the
lifting phase, but this increases the cost of lifting. Instead, we can choose κ such
that

√
κσ < gh(L[d−κ:d]), with a small margin of, say, five dimensions.
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Abstract. Many post-quantum cryptosystems which have been pro-
posed in the National Institute of Standards and Technology (NIST)
standardization process follow the same meta-algorithm, but in different
algebras or different encoding methods. They usually propose two con-
structions, one being weaker and the other requiring a random oracle.
We focus on the weak version of nine submissions to NIST. Submit-
ters claim no security when the secret key is used several times. In this
paper, we analyze how easy it is to run a key recovery under multiple
key reuse. We mount a classical key recovery under plaintext checking
attacks (i.e., with a plaintext checking oracle saying if a given ciphertext
decrypts well to a given plaintext) and a quantum key recovery under
chosen ciphertext attacks. In the latter case, we assume quantum access
to the decryption oracle.

1 Introduction

By anticipating that quantum computers will eventually compute discrete log-
arithms and integer factorization [22], all public key cryptosystems which are
being used today will break down. There is an urgent need to replace them. For
this purpose, the US National Institute of Standards and Technology (NIST)
initiated a standardization process for post-quantum algorithms. The call for
proposals expired in 2017 resulting with many submissions. Among these, only
a very few types of algorithms are proposed such as lattice-based, code-based,
hash-based, or isogeny-based. One of the most promising algorithms is lattice-
based.

Many of the lattice-based cryptosystems are inspired by the Regev cryp-
tosystem [20] such as the Lyubashevsky-Peikert-Regev cryptosystem [18]. We
can easily extract a common pattern in proposals which followed them. All pro-
posed constructions require never to reuse the secret key because of possible
attacks. In other words, the proposed cryptosystems are ephemeral in the sense
that the secret key is meant to be used only once. The approach of designers is to
start from this ephemeral construction and then to transform it into a strongly
secure (i.e. with reusable keys) key encapsulation mechanism (KEM) by using

c© International Association for Cryptologic Research 2019
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the Fujisaki-Okamoto transformation or one of its variants [12,13,15,25]. What
transformations share in common is that they imply a computation overhead.
Concretely, after normal decryption, a re-encryption is made to check if the
ciphertext was correctly formed. This re-encryption does not seem so useful to
non-experts. Additionally, these transformations need a random oracle which
has no practical existence.

When there is a cryptosystem which is practical but comes with a warning
and an extension which looks only motivated by academic people, we believe
that users will eventually try to use the weakly secure cryptosystems and pay
little attention to the warning, or even misunderstand the strengthened version,
just because the threat is not clear. For this reason, we should understand what
are the risks under misuse of keys.

Another observation was made by Lepoint [17]. He checked that several
implementations of the strongly secure KEM have side channels leaking the
result of the decryption under the weak cryptosystem. It comes from a mis-
implementation of the Fujisaki-Okamoto (FO) transform. In the FO transfor-
mation, the decryption is done, then the verification checks that the ciphertext
is well-formed. The result is released only if the test passes. However, Lepoint
has shown that side channels in implementations were leaking the result in any
case, no matter whether the ciphertext was well-formed or not.

In 2015, the NSA [16] reported some concerns about recurring problems with
key leakage in key agreement protocols. They suggested to explicitly check that
ciphertexts are well-formed by using the FO transform. This recommendation
was followed by designers, as mentioned above.

In 2016, Fluhrer [11] published an attack based on the key reuse. In his attack,
an adversary encrypts a message by deviating a bit from the protocol. Then, he
sends the ciphertext for decryption and checks if the decryption matches what
he expected. After a few trials, the adversary recovers the secret key. The attack
applies to all protocols using a special signaling (a.k.a. error-reconciliation) func-
tion. In 2017, Ding et al. [10] expanded this attack to a class of key agreement
protocols based on ring-LWE with signaling. Our goal is to apply the Fluhrer
attack model to more protocols and to minimize the number of key reuse to
recover the key and to be able to assess how weak those protocols are under key
reuse.

At CT-RSA’2019, Bauer et al. [5] presented an attack on the weak version
of NewHope-CPA-PKE [1]. For n = 1024, they recover the secret with high
probability using 214 queries to a key mismatch oracle, what we herein call a
plaintext checking oracle (PCA).

Our contribution. In this paper, we first define the meta-structure of construc-
tions with ephemeral keys. Then, we formalize the noise learning problem which
is required to break these constructions. We identify optimal bounds in terms of
the number of oracle calls to solve this problem. Then, we mount a classical key
recovery under plaintext checking attack (KR-PCA), which is also the model of
Fluhrer attacks [11]. This model makes sense when an adversary can play with
a server with a modified ciphertext and check if it still decrypts to the same
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plaintext as before. Compared to Fluhrer [11], we apply it to different classes
of protocols, we optimize the number of oracle calls, and we identify the link
with the noise learning problem. We give optimal lower bounds for the number
of oracle calls to solve this problem. We finally propose a quantum variant of
the attack in an “imaginary” model where the adversary has quantum access
to a decryption oracle. This is a key recovery under chosen ciphertext attack
(KR-CCA). Our quantum attack is based on the GKZ algorithm [14] to solve
LWE from a superposition of inputs. We also adapt the AJOP attack [2] based
on the Bernstein-Vazirani algorithm [7] to solve the LPN problem from a super-
position of inputs.1 The AJOP-based attack has better performances but is more
restrictive. It only works for cryptosystems of a special form and it also assumes
a quantum decryption oracle working with addition in a special group instead of
the XOR. Our result shows that a single use of the key leads to a full or partial
key recovery with a probability of success proving the attacks are a big threat.

Table 1. Attacks on post-quantum cryptosystems. For two types of attacks (classical
KR-PCA and quantum KR-CCA), we report the number of oracle calls as O, the
probability of success as P , the number of collected linear equations in Zq as E, and
the number of unknowns in Zq as U . We also indicate for information the expected
total number T = OU

PE
of oracle calls obtained to recover the full key with probability

1 by iterating the attacks.

classical GKZ-based quantum AJOP-based quantum

KR-PCA attack KR-CCA attack KR-CCA attack

U O P E (T ) O P E (T ) O P E (T )

EMBLEM128 210 29 1 25 (214) 2 2−16 210 (217) 1 1 210 (1)

R.EMBLEM128 29 213 1 29 (213) 2 2−24 29 (225) 1 2−1 29 (2)

Frodo-640 212 210 1 26 (216) 2 2−13 29 (217) 1 2−2 212 (22)

KINDI256 210 212 1 28 (214) 2 2−14 210 (215) 1 2−1 210 (2)

Lepton Light I 213 213 1 212 (214) - - - - - - - -

LIMA227-2p 210 214 1 210 (214) 2 2−17 210 (218) 1 2−1 210 (2)

LIMA152-sp 210 215 1 210 (215) 2 2−24 210 (225) 1 2−1 210 (2)

Lizard536 217 - - - - 2 2−9 29 (218) 1 2−1 29 (29)

RLizard536 210 - - - - 2 2−8 210 (29) 1 2−1 210 (2)

LOTUS128 216 211 1 27 (220) 2 2−13 29 (221) 1 2−1 29 (28)

NewHope512 29 - - - - 2 2−28 29 (229) 1 2−1 29 (2)

TitaniumStd128 211 212 1 28 (215) 2 2−16 210 (218) 1 2−1 210 (22)

We report our results for both types of attacks in Table 1. For information
only, the table indicates the total number of oracle calls we need, by iterating,
to recover the full key with probability 1. We should, however, take this mea-
surement with care. This is because running a single instance of the attack may
1 The AJOP attack was released after we submitted this paper. For completeness, we

include its adaptation here.
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be enough to decrease the security of the cryptosystem and to recover the secret
by other means.

2 A Meta-PKC Construction

We define a cryptosystem as follows.

Definition 1 (Public-key cryptosystem). A public-key cryptosystem (PKC)
with security parameter λ consists of four algorithms:

– PKC.setup(1λ; coinS) $−→ pp

– PKC.gen(pp; coinA) $−→ (sk, pk)

– PKC.enc(pp, pk, pt; coinB) $−→ ct
– PKC.dec(pp, sk, ct) → pt′

Correctness implies that for any pt, by running all these algorithms, we obtain
pt = pt′ with probability 1 − negl(λ), over the random selection of the coins.

In this paper, we consider two types of security notions.

Definition 2 (KR-PCA and KR-CCA). We use the key recovery game with
oracle O of Fig. 1. We consider two types of oracles: PCO and DecO which are
defined on the figure. The KR-PCA game uses O = PCO. The KR-CCA game
uses O = DecO.

PCO(ct, pt) is a plaintext checking oracle which receives ct and pt, runs the
decryption and only returns one bit saying if it decrypts to pt. KR-PCA is an
adaptive key recovery attack. Security against KR-PCA is implied by IND-CCA
security. KR-PCA attacks are not in the IND-CPA security framework. Hence,
a PKC could be IND-CPA secure but still vulnerable to a KR-PCA attack.

Game KRO
A(λ):

1: pick coinS, coinA
2: setup(1λ; coinS) → pp
3: gen(pp; coinA) → (sk, pk)
4: AO(·)(pp, pk) → sk
5: return 1sk=sk

Oracle PCO(ct, pt):
1: dec(pp, sk, ct) → pt
2: return 1pt =pt

Oracle DecO(ct):
3: return dec(pp, sk, ct)

Fig. 1. KR-PCA and KR-CCA games.

The PCA model makes sense in several cases. For instance, in the client-server
protocol where the encryption is used to transport a symmetric key to start
secure messaging, an adversary can try to encrypt a symmetric key by deviating
from the protocol. He generates malformed ciphertexts which may decrypt to the
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chosen symmetric key or not. By sending the malformed ciphertext to the server,
the adversary can easily see if secure messaging with the server is possible, hence
simulate a PCO oracle. Clearly, it is devastating that such an attack would lead
to a key recovery.

We define the following algebra. We consider six additive Abelian groups Ssk,
SA, SB , St, SU , and SV and four bilinear mappings which are all denoted with
×. The four bilinear mappings have domains SA × Ssk → SB , SU × Ssk → SV ,
St × SA → SU , and St × SB → SV . We assume associativity in the sense that

(t × A) × sk = t × (A × sk)

for all t ∈ St, A ∈ SA, and sk ∈ Ssk. Hence, multiplication works as in the
diagram on Fig. 2.

St

× SB

× SA SV×

SU ×

Ssk

Fig. 2. Algebra: the four bilinear functions on the six spaces. For instance, one element
of St multiplied by one element of SA gives one element of SU .

We also assume that there is a norm ‖ · ‖ on Ssk, SB , St, SU , and SV (i.e.
all spaces except SA for which we need no norm). By definition, the norm is
positive and satisfies the triangular inequality. We assume that we can upper
bound ‖x × y‖ in terms of ‖x‖ and ‖y‖ for the four bilinear functions.

Finally, we assume two functions encode : M → SV and decode : SV → M
such that encode is injective. The image set C = encode(M) is called a code.
Elements of the code are codewords. The packing radius of C is denoted as ρ−
and the covering radius of C is denoted as ρ+. Around every W ∈ SV , balls of
radius ρ− contain no more than one codeword and balls of radius ρ+ contain at
least one codeword:

∀V, V ′ ∈ C ∀W ∈ SV (‖V − W‖ ≤ ρ− ∧ ‖V ′ − W‖ ≤ ρ−) =⇒ V = V ′

∀W ∈ SV ∃V ∈ C ‖V − W‖ ≤ ρ+

Additionally,

∀W ∈ SV decode(W ) = arg min
pt

‖W − encode(pt)‖
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in the sense that encode(decode(W )) is one closest codeword to W (which may
be ambiguous if there is no unique closest codeword). This implies

∀W ∈ SV ∀pt ‖W − encode(pt)‖ ≤ ρ− =⇒ decode(W ) = pt
∀W ∈ SV ‖W − encode(decode(W ))‖ ≤ ρ+

An element δ such that ‖δ‖ ≤ ρ− will be called sparse. In what follows, we use
small letters to designate sparse elements.

Algorithm setup(1λ):
1: set up the algebra and define pp
2: return pp

Algorithm gen(pp; coinA):
3: pick a random A ∈ SA and random

sparse sk ∈ Ssk and d ∈ SB by us-
ing coinA

4: B ← A × sk+ d
5: pk ← (A, B)
6: return (sk, pk)

Algorithm enc(pp, pk, pt; coinB):
1: parse pk = (A, B)
2: pick random sparse t ∈ St, e ∈ SU ,

and f ∈ SV by using coinB
3: U ← t × A + e
4: V ← t × B + f + encode(pt)
5: return ct = (U, V )

Algorithm dec(pp, sk, ct):
6: parse ct = (U, V )
7: W ← V − U × sk
8: pt ← decode(W ).
9: return pt

Fig. 3. The meta-cryptosystem defined on the algebra.

We define a PKC as on Fig. 3 in which the choice of the algebra, norm,
encoding/decoding, and the probability distributions are left free. Thanks to
bilinearity and associativity, we have W = δ + encode(pt) with

δ = t × d + f − e × sk (1)

This value δ will be called the noise. By controlling the size of t, d, f , e, sk (with
their respective probability distribution), we can make sure that the noise δ is
sparse. Hence, decode(W ) = pt.

In what follows, for an element X ∈ Zq, |X| is the absolute value of X ∈ Zq

when represented modulo q such that − q
2 ≤ X ≤ q

2 . As an example of norm over
Zn

q , we can consider the L∞ norm ‖X‖ = max(|X1|, . . . , |Xn|), or the L1 norm
‖X‖ = |X1| + · · · + |Xn|, or a combination of both ‖X‖ = maxi

∑
j |Xi,j |.

As an example of encode/decode with the L∞ norm, we could consider M =
{0, 1, . . . , z −1}n (z is the alphabet size) and encode(pt) = L ·pt in SV = Zn

q , for
a positive integer L such that L > 2ρ− and zL ≤ q. We define decode(X) =

⌊
X
L

⌉

component-wise when the coordinates of X are taken modulo q.
We only give three examples below. More are provided in Appendix A.
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Example 3 (Frodo). FrodoPKE [8] works with Ssk = SB = Znn̄
q , SA = Zn2

q ,
St = SU = Zm̄n

q , and SV = Zm̄n̄
q with the L∞ norm and M = {0, 1}�m̄n̄. It

uses q = 215, � = 2, m̄ = n̄ = 8, and n = 640 (for the Frodo-640 parameters).
The bilinear mappings are matrix multiplications. I.e., elements of Ssk = SB are
n × n̄ matrices, elements of SA are n × n matrices, elements of St = SU are
m̄ × n matrices, and elements of SV are m̄ × n̄ matrices. Frodo uses the L∞
norm (when considering elements as vectors). Encoding � bits per Zq elements is
done by taking them as an integer and multiplying them by L = q2−�. Decoding
takes the � most significant bits. So, each Zq element is at a distance up to
ρ+ = ρ− = q2−�−1 to a codeword. Elements of t, d, f , e, sk, are sampled in
{−11, . . . ,+11} with Gaussian-looking distribution.

Example 4 (NewHope). NewHope-CPA-PKE [1] defines Ssk = SA = SB = St =
SU = SV = Zn

q . Elements are considered as polynomials in variable X modulo
Xn + 1. Bilinear mappings are simply multiplications of polynomials in this
structure. Message bits are encoded by multiplication to L = q/2 and represented
twice in NewHope512-CPA-PKE. Namely, if Y = encode(pt), the bit pti of the
message appears at position i and i + 256 of Y by Yi = Yi+256 = pti

q
2 . How

decoding works is also important. Namely, if Y ∈ SV , the algorithm decodes
b = (decode(Y ))i to the value b minimizing |Yi − b q

2 | + |Yi+256 − b q
2 |, i.e. the L1

distance. For this reason, it uses an L1 norm on pairs of components at position
i and i + 256 and the L∞ norm over all i. Namely,

‖Y ‖ = max
i

(|Yi| + |Yi+256|)
Hence, ρ− = q

2 and ρ+ = q
2 . For t, d, f , e, sk, sparse elements of Zq are sampled

by taking the difference of the Hamming weight of two uniformly distributed
random bytes. Hence, they are in {−8, . . . ,+8}. NewHope deviates a bit from
our meta-construction in the sense that encryption replaces V by its compression
V̄ = 
p

q V � and decryption replaces V̄ by V ′ = 
 q
p V̄ �. This adds an error bounded

by q
p in δ. In NewHope512-CPA-PKE, the parameters are n = 512, q = 12 289,

and p = 8.

Example 5 (Lepton). Lepton.CPA [26] defines Ssk = SA = SB = St = SU = Zn
2

and SV = Z�
2 with the Hamming weight norm. All bilinear functions are the

GF(2n) multiplications represented with the trinomial Xn + Xm + 1, except for
St ×SB → SV which does the multiplication then truncate to � bits. For t, d, f ,
e, and sk, of weight bounded by k, it is proven that δ has a weight bounded by
4k2 + k + 2m − 2. Encoding uses a BCH code and a repetition code to correct
at least this amount of error. The Light I version of Lepton.CPA uses n = 8100,
k = 16, m = 9, and � = 4572. The BCH code is a [508, 256] binary code which
can decode up to 30 errors. After BCH-encoding, it uses a repetition code with
9 repetitions. By design, ‖δ‖ ≤ 1 056.

3 The Noise Learning Problem

In this section, we will introduce a noise learning problem with examples for
different metrics. Solving it is the heart of the KR-PCA attack that we describe
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in the next section. We prove lower bounds for the number of oracle calls to
solve this problem.

3.1 Definition

We consider a sampling algorithm S generating a sparse δ (which we call noise),
a threshold ρ, and an algorithm learnBOO(·) which makes r queries to a bounded
offset oracle BOO. We will later give a few instances of the learning problem.
We define Adv(LEARNρ

S(λ)) as the probability that the game on Fig. 4 gives 1.

Game LEARNρ
S(λ):

1: pick coinS
2: setup(1λ; coinS) → pp
3: pick the noise δ using the sampling

algorithm S
4: learnBOO(·)(pp) → δ
5: return 1δ=δ

Oracle BOO(x):
1: return 1 δ+x ρ

Fig. 4. The noise learning game with threshold ρ.

In all cases, the idea of the learning algorithm is to start with x = 0 and to
gradually increase ‖x‖ (i.e. reduce the sparsity of δ +x) until the decoding is no
longer the same. This is a hill-climbing method. Then, we can explore the top
of the hill with small modifications of this critical x and analyze the decoding
algorithm to deduce the value of δ.

3.2 Lower Bounds for the Noise Learning Problem

Theorem 6. Given a probability distribution for δ, we assume that an algorithm
learn has an advantage of 1 in the LEARN game, using r queries. We have

E(r) ≥ H(δ)

where H is the Shannon entropy.

Proof. Since we do not consider the running time, we assume without loss of
generality that learn uses the random coins minimizing E(r). Hence, we consider
it as deterministic. We let C(δ) be the sequence of answers from the oracle BOO
when δ is sampled. When running learn alone with oracle answers simulated by
the sequence b1, . . . , br, we let D(b1 · · · br) = δ′ be the output from learn. We let
rδ be the length of C(δ). Due to the hypothesis that the advantage is 1, we have
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D(C(δ)) = δ for all δ. Thanks to this property, the Kraft Inequality says that∑
δ 2−rδ ≤ 1. We have

E(rδ) − H(δ) =
∑

δ

Pr[δ] log2(2
rδ Pr[δ])

≥ 1
ln 2

∑

δ

Pr[δ]
(

1 − 1
2rδ Pr[δ]

)

=
1

ln 2

(

1 −
∑

δ

2−rδ

)

≥ 0

by using lnx ≥ 1 − 1
x . �

Theorem 7. Given a probability distribution for δ, we assume that an algorithm
learn has an advantage of p in the LEARN game, using r queries. We have

E(r|success) ≥ H∞(δ) + log2 p

where H∞ is the min-entropy and success is the event that LEARN returns 1.

Proof. As in Theorem 6, we assume without loss of generality that learn is deter-
ministic. Let S be the distribution of δ and we define S̄ = [S|δ′ = δ], i.e. the
distribution S conditioned to δ′ = δ. The advantage with δ of distribution S̄ is
1. Due to the previous result, we have that ES̄(r) ≥ H(S̄). We have

H(S̄) = −
∑

δ=δ′

Pr[δ]
p

log2
Pr[δ]

p
≥

∑

δ=δ′

Pr[δ]
p

(H∞(δ) + log2 p) = H∞(δ) + log2 p

and
ES̄(r) = ES(r|δ = δ′) = ES(r|success)

therefore, E(r|success) ≥ H∞(δ) + log2 p. �

3.3 Example: Learning a Small Integer

We consider the learning problem over Zq. We assume that ρ and p are defined
parameters. If ρ = � q

2�, the BOO oracle always answers 1 and the problem is
unsolvable. Hence, we assume that ρ < � q

2�. We design a learning algorithm with
parameter p by a cut-and-choose algorithm as shown on Fig. 5. We first assume
that ρ is known.

Theorem 8. Assume that ρ < � q
2�. The algorithm on Fig. 5 succeeds with prob-

ability at least p. The number r of oracle calls satisfies

E(r) ≤ 1.41 + 2.41 × (H(δ) + log2 p) + rmax
1

with rmax
1 = 2ρ

� q
2 �−ρ if ρ > q

6 − 1
3 and rmax

1 = 0 otherwise. When δ is uniform in
[−ρ,+ρ], we have

E(r) ≤ H(δ) + log2 p + 1 + rmax
1
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Algorithm learn(pp):
1: define q from pp
2: set a = −ρ we have BOO(−a − ρ) = 1
3: set b = ρ
4: if ρ > q

6
− 1

3
then

5: = q
2

− ρ −ρ ≤ a ≤ δ ≤ b
6: while maxδ∈[a,b] Pr[δ] < p · Pr[δ ∈ [a, b]] and b − a ≥ do
7: b = a + − 1
8: if BOO(−b − 1 − ρ) = 1 then a ← b + 1 else b ← b
9: end while
10: end if we have BOO(−b − 1 − ρ) = 0 and b − a ≤ − 1
11: while maxδ∈[a,b] Pr[δ] < p · Pr[δ ∈ [a, b]] do we have a ≤ δ ≤ b
12: cut [a, b] = [a, c] ∪ [c + 1, b] which minimizes

max (Pr[δ ∈ [a, c]],Pr[δ ∈ [c + 1, b]])

the median of (δ|[a ≤ δ ≤ b]) is either c or c + 1
13: if BOO(−c − 1 − ρ) = 1 then a ← c + 1 else b ← c
14: end while
15: pick δ = argmaxδ∈[a,b] Pr[δ]
16: return δ

Fig. 5. Learning an integer with probability p.

For ρ ≈ q
4 , rmax

1 is typically 2. If we neglect this overhead, we deduce that
the learning algorithm is optimal up to a factor of 2.41 in general. It is further
optimal for a uniform distribution.

Proof. Let � = � q
2� − ρ and b′ = a + � − 1. If −ρ ≤ a ≤ δ ≤ b, we have

δ−b′−1−ρ = δ−a−�−ρ ≥ −�−ρ = −� q
2� and δ−b′−1−ρ = δ−a−�−ρ ≤ δ−� ≤ ρ

thus ‖δ − b′ − 1 − ρ‖ ≤ ρ is equivalent to δ − b′ − 1 − ρ ≥ −ρ. This means that
BOO(−b′ − 1 − ρ) = 1 is equivalent to δ ≥ b′ + 1. This shows that the condition
−ρ ≤ a ≤ δ ≤ b is preserved in the loop in Step 6–9.

The loop in Step 6–9 terminates as soon as soon as BOO(−b′ − 1 − ρ) = 0.
The previous argument shows that the loop terminates when δ ≤ b′. Hence, the
number r1 of iterations of this loop is bounded by r1 ≤ 2ρ

� which is rmax
1 .

The purpose of both loops is to find an interval [a, b] containing δ such that
maxδ∈[a,b] Pr[δ] < p · Pr[δ ∈ [a, b]]. The loop in Step 6–9 either directly finds this
interval or finds one containing δ such that b − a ≤ � − 1. If ρ ≤ q

6 − 1
3 , this loop

is skipped but we already have b − a = 2ρ ≤ � − 1.
We can repeat the previous argument: if δ and c belong to [a, b], b−a ≤ �−1,

and b − a ≤ 2ρ, then δ − c − 1 − ρ ≥ δ − a − � − ρ ≥ −� − ρ = −� q
2� and

δ−c−1−ρ ≤ b−a−ρ ≤ ρ thus ‖δ−c−1−ρ‖ ≤ ρ is equivalent to δ−c−1−ρ ≥ −ρ.
This means that BOO(−c − 1 − ρ) = 1 is equivalent to δ ≥ c + 1. Hence, we
prove by induction that at every step of the loop in Step 11–14, δ belongs to
[a, b], b − a ≤ � − 1, and b − a ≤ 2ρ.
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When the algorithm terminates, it returns δ in the interval with maximal
likelihood. The loop enforces that Pr[δ|a ≤ δ ≤ b] ≥ p for all δ in the interval.
Hence, the probability that the best δ in the interval is correct is at least p.

Let r2 be the number of iterations. Let a1, bi, ci be the values of a, b, c in the
ith iteration. In the ith iteration, we let pi = Pr[ai ≤ δ ≤ bi], xi ∈ {ci, ci + 1}
be the median point in the [ai, bi] interval, mi = Pr[δ = xi], and we set di =
1xi∈[ai+1,bi+1]. We have a0 = −ρ, b0 = ρ, p0 = 1.

When cutting [ai, bi] in two intervals [ai, ci] and [ci + 1, bi], we let xi in the
most probable of these two intervals. Hence, pi+1 ≤ pi+dimi

2 .
Another property of the xi is that when di = 1, it becomes one border of

the next interval. Hence, if it is taken in a further iteration as a median point,
it can only be the final iteration reducing the interval to the point xi, which is
the r2th iteration. We deduce that the sequence of xi is non-repeating until the
r2th iteration. One consequence is that mi + mi+1 + · · · + mr2−1 ≤ pi for any
i < r2.

Let Si = dimi +di+1mi+1+ · · ·+dr2−1mr2−1. We have Si ≤ pi. We also have

pi+1 ≤ pi + Si − Si+1

2

for all i < r2. By induction, we prove

pi ≤ 2−i + 2−i−1S0 +
i−1∑

j=0

2−i+j−1Sj − 1
2
Si

for all i < r2. We deduce

2ipi ≤ 3
2

+
1
2

i−1∑

j=0

2jpj

and hence 2ipi ≤ (
3
2

)i+1 by induction. Therefore, pi ≤ 3
2

(
3
4

)i for i < r2.

For i ≥ log( 2 Pr[δ]
3p )

log 3
4

, we have Pr[δ] ≥ 3
2

(
3
4

)i
p ≥ pip. So, any δ with probability

of occurrence Pr[δ] makes r2 ≤ log( 2 Pr[δ]
3p )

log 3
4

iterations. Hence,

E(r2) ≤ log 2
3

log 3
4

+
1

log2
3
4

E

(

log2
Pr[δ]

p

)

=
log 2

3

log 3
4

− 1
log2

3
4

(H(δ) + log2 p)

≤ 1.41 + 2.41(H(δ) + log2 p)

We treat the uniform case similarly. We let �i = bi−ai+1. We have �0 = 2ρ+1.
We have �i+1 ≤ �i+1

2 . Hence, �i ≤ 21−iρ + 1. For i ≥ log2(2ρ) + log2 p, we have
�ip ≤ 1 + p. The �i sequence is strictly decreasing until i = r2. Hence, if i < r2,
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then �i+1 ≤ �i − 1 so �i+1p ≤ 1 which implies i + 1 = r2. Therefore r2 ≤ i + 1.
Hence,

E(r2) ≤ log2(2ρ) + log2 p + 1 ≤ H(δ) + log2 p + 1

The number of oracle calls is r = r1 + r2. �
In Zn

q with the L∞ norm, we can run this algorithm for each coordinate and
use r ≤ 1.41 + 2.41 × n log2(2ρ + 1) queries to learn δ (using that the entropy of
a single component is bounded by log2(2ρ + 1)).

Learning an integer with unknown threshold. The previous algorithm does not
work if the threshold ρ is unknown. However, we could learn the offset x such
that δ + x reaches this unknown threshold, either +ρ or −ρ, by using an upper
bound ρ′ on this threshold. We write the algorithm on Fig. 6 for the uniform
distribution and ρ′ ≤ q

6 − 1
3 , for simplicity. (For ρ′ > q

6 − 1
3 , we apply the same

strategy as previously to first find a small interval and run the algorithm on this
interval.) The algorithm first learns ρ − δ on Step 8. Similarly, it learns −ρ − δ
on Step 15. Finally, it deduces both δ and ρ.

Algorithm learn(pp):
1: define q from pp
2: set a = 0 we have BOO(a) = 1
3: set b = 2ρ + 1 we have BOO(b) = 0
4: while b > a + 1 do we have a ≤ ρ − δ < b
5: set c = a+b

2

6: if BOO(c) = 1 then a ← c else b ← c
7: end while
8: x ← a = ρ − δ
9: set a = −2ρ − 1 we have BOO(a) = 0
10: set b = 0 we have BOO(b) = 1
11: while b > a + 1 do we have a < −ρ − δ ≤ b
12: set c = a+b

2

13: if BOO(c) = 0 then a ← c else b ← c
14: end while
15: y ← b = −ρ − δ
16: return −x+y

2
we deduce ρ = x−y

2
as well

Fig. 6. Learning an integer with a bound ρ′ ≤ q
6

− 1
3

on the unknown threshold ρ.

3.4 Example: Learning a Vector Which Is L1-Small

When δ is a vector with components in Zq and the norm is the L1 norm, we can
learn δ easily when ρ ≤ q

6 − 1
3 . The idea is first to learn δ1 and ρ−|δ2|−· · ·−|δn|.
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Then we can iterate and learn every δi. We can easily see that the number of
oracle calls is roughly (2n − 1) log2 ρ.

This is more complicated when ρ > q
6 − 1

3 . Below, we study the ρ = q
2 case

in dimension n = 2 which is significant for NewHope [1].

Lemma 9. We consider the LEARN game over Z2
q with the L1 norm and ρ = q

2 .
Given c ∈ [−ρ, ρ], we have BOO(c − ρ, 0) = 1 ⇐⇒ |δ1 + c| ≥ |δ2|.

Similarly, BOO(0, c − ρ) = 1 ⇐⇒ |δ2 + c| ≥ |δ1|.
Proof. If δ1 + c − ρ ≥ − q

2 , we observe that δ1 + c − ρ ≤ q
2 since c ≤ ρ, so

‖δ + (c − ρ, 0)‖ = |δ1 + c − ρ| + |δ2|. Hence, BOO(c − ρ, 0) = 1 is equivalent to
|δ2| − ρ ≤ δ1 + c − ρ ≤ −|δ2| + ρ. The second inequality is always true because
‖δ‖ ≤ ρ and c ≤ ρ. BOO(c−ρ, 0) = 1 is therefore equivalent to |δ2|−ρ ≤ δ1+c−ρ,
thus to |δ2| ≤ δ1 + c. Furthermore, δ1 + c−ρ ≥ − q

2 implies that δ1 + c ≥ 0 (since
ρ = q

2 ). Hence, BOO(c − ρ, 0) = 1 is equivalent to |δ2| ≤ |δ1 + c|.
If δ1 + c − ρ ≤ − q

2 , we observe that δ1 + c − ρ ≥ − 3q
2 , so ‖δ + (c − ρ, 0)‖ =

|δ1 + c−ρ+q|+ |δ2|. Hence, BOO(c−ρ, 0) = 1 is equivalent to |δ2|−ρ ≤ δ1 + c−
ρ+q ≤ −|δ2|+ρ. The first inequality is always granted, hence BOO(c−ρ, 0) = 1
is equivalent to δ1 + c ≤ −|δ2|. Furthermore, δ1 + c − ρ ≤ − q

2 implies that
δ1 + c ≤ 0, therefore BOO(c− ρ, 0) = 1 is equivalent to −|δ1 + c| ≤ −|δ2| as well.

The equivalence between BOO(0, c− ρ) = 1 and |δ2 + c| ≥ |δ1| is obtained by
swapping the two coordinates of the BOO oracle and of δ. �
Theorem 10. We consider the LEARN game over Z2

q with the L1 norm and
ρ = q

2 . There exists a learning algorithm making up to 3 log2 ρ + 2 oracle calls.

Proof. Using Lemma 9 with c = 0, we can first learn if |δ1| ≤ |δ2| by making
an oracle call BOO(0,−ρ). We assume without loss of generality that |δ1| < |δ2|.
(If not, we flip the pair of entries in the BOO oracle and learn a flipped δ; the
|δ1| = |δ2| case will solve by itself.) Hence, the inequality |δ1 + c| ≥ |δ2| is not
satisfied for c = 0 but it may be for c = ρ or c = −ρ, or even both. By two
cut-and-choose algorithms, we find a threshold c making it an equality in both
intervals [−ρ, 0] and [0, ρ], if there exists one. This requires up to 2 log2 ρ oracle
calls. If there are two, the smallest one has the same sign as δ1. If there is one, it
has the same sign as δ1. The |δ1| = |δ2| case gives c = 0 and any oracle query with
c �= 0 gives the sign of δ1. In all cases, we learn the sign of δ1 and the smallest
value c such that |δ1 + c| = |δ2|. We can also learn if δ1 is null and isolate this
case as we already learned δ1 = 0 and |δ2| = |c|. For δ1 �= 0, we continue with
Lemma 9 again. We have BOO(0,−|c| − 1 − ρ) = 1 ⇐⇒ |δ2 − |c| − 1| ≥ |δ1|,
which is equivalent to δ2 < 0. Hence, we learn the sign of δ2 too with one oracle
call. So far, with 2 log2 ρ + 2 oracle calls, we found the sign of δ1 and δ2, and a
smallest c such that |δ1 + c| = |δ2| = 1

2‖δ + (c, 0)‖.
Let εi ∈ {−1,+1} such that εiδi ≥ 0 for i = 1, 2. Let d ∈ [0, ρ]. We consider

oracle calls of form BOO(c + ε1
d
2 , ε2

d
2 ). We have |δ1 + c| = ‖δ+(c,0)‖

2 ≤ ρ
2 so

|δ1 + c + ε1
d
2 | ≤ ρ and similarly, |δ2 + ε2

d
2 | ≤ ρ. Hence,

∥
∥
∥
∥δ +

(

c + ε1
d

2
, ε2

d

2

)∥
∥
∥
∥ =

∣
∣
∣
∣δ1 + c + ε1

d

2

∣
∣
∣
∣ +

∣
∣
∣
∣δ2 + ε2

d

2

∣
∣
∣
∣ = ‖δ‖ + d
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By cut-and-choose, we learn d ∈ [0, ρ] such that ‖δ‖ + d = ρ. We deduce ‖δ‖
then δ completely. �

3.5 Example: Learning a String of Small Hamming Weight

As another example, consider that δ lives in {0, 1}n and that ‖x‖ is the Hamming
weight of x. We consider ⊕, the bitwise XOR, as an addition. We assume ρ ≤ n

2 .

Algorithm learn(pp):
1: define n from pp
2: set x = (0, 0, . . . , 0) we have BOO(x) = 1
3: set y = (1, 1, . . . , 1) we have BOO(x ⊕ y) = 0
4: while y > 1 do during the loop, BOO(x) = 1 and BOO(x ⊕ y) = 0
5: split at random y = u⊕v with u∧v = 0, u = y

2
, and v = y

2
,

6: if BOO(x ⊕ u) = 1 then
7: x ← x ⊕ u
8: y ← v
9: else
10: y ← u
11: end if
12: end while
13: z ← x we know that δ ⊕ x = ρ
14: set idone such that yidone = 1
15: for i = 1 to n except i = idone do
16: set y to x with the i-th bit flipped
17: if BOO(y) = 1 then in z, flip the i-th bit
18: end for
19: return z

Fig. 7. Learning a bitstring.

We can have a learning algorithm by a cut-and-choose algorithm.

Theorem 11. The algorithm on Fig. 7 succeeds with probability 1. The number
of iterations r satisfies

r ≤ n + log2 n

The analysis is similar as before.
When δ is uniformly distributed among the strings of Hamming weight at

most ρ, the entropy is

H(δ) = log2

(
ρ∑

w=0

( n

w

)
)

≤ nH
( ρ

n

)

where H is the binary entropy function.
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For ρ = n
2 , we obtain H(δ) ≤ n. The number of queries is asymptotically

equivalent to n and it is nearly optimal.
For ρ = n

4 , we obtain H(δ) ≤ 0.82n, meaning that the algorithm is not
optimal.

4 Key-Recovery with a Plaintext Checking Oracle

With the meta-PKC construction, there is a fixed sk and the adversary can play
with an oracle PCO(U, V, pt) checking if the noise is sparse, i.e. if encode(pt) is
the closest codeword to V − U × sk. One strategy consists of learning the noise
δ = t × d + f − e × sk by playing with PCO. Actually, by defining O(x) =
PCO(U, V +x, pt), we simulate a bounded offset oracle to run the LEARN game.

Learning δ gives a linear equation with unknown d and sk. We can eliminate
d using the known relation B = A× sk+ d. With a few equations (depending on
the selected algebra), we deduce sk.

More precisely, if we can learn δ sampled by S which generates δ like δ =
t×d+f −e×sk, we assume that for some k (typically, k = 1 if all sets are equal),
there exists an algorithm such that given k equations of form (ti ×A+ei)× sk =
ti × B + fi − δi with sk unknown, it solves sk. We use the algorithm on Fig. 8.

We obtain the following result.

Theorem 12. Let t, d, f , e, sk follow the random distributions of the cryp-
tosystem. We define

δ = t × d + f − e × sk

With probability 1, the algorithm of Fig. 8 gives at every iteration of the for loop,
one linear equation over SV with unknown sk ∈ Ssk, using the same number of
oracle calls as learn with the distribution of δ.

In the case that Ssk = Znsk
q , SA = ZnA

q , SB = ZnB
q , St = Znt

q , SU = ZnU
q ,

SV = ZnV
q , when the considered norm is the L∞ norm, this means that we

obtain nV linear equations over Zq with nsk unknowns. We use H(δ) oracle calls
and we can approximate H(δ) ≈ nV log2(2ρ+). (This can only over-estimate the
entropy.)

One difficulty is to know what happens when the distance of V − U × sk to
the code is between ρ− and ρ+. If ρ− = ρ+, there is no problem. If decryption
aborts when the number of errors exceeds ρ−, then ρ− becomes de facto the
threshold to be used in the LEARN game. Otherwise, the learn algorithm must
be refined.

Example 13 (Frodo continued). The Frodo-640 parameters are nsk = nB = nn̄ =
640 × 8 and nV = m̄n̄ = 8 × 8. Since ρ+ = ρ− = q2−�−1 = 212, we need about
210 oracle calls to recover 26 equations in 212 unknowns. (By iterating, we have
a full key recovery using 216 oracle calls.)
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Algorithm APCO(·)(pp, pk):
1: parse pk = (A, B)
2: for i = 1 to k do
3: pick pti at random
4: run enc(pp, pk, pti) → cti this defines ti, ei, fi

5: parse cti = (Ui, Vi)
6: run learnO(·)(pp) → δi deduce (ti × A + ei) × sk = ti × B + fi − δi

7: end for

8: solve

⎛
⎜⎝

t1 × A + e1
...

tk × A + ek

⎞
⎟⎠ sk =

⎛
⎜⎝

t1 × B + f1 − δ1
...

tk × B + fk − δk

⎞
⎟⎠

9: return sk

Oracle O(x):
10: return PCO(Ui, Vi + x, pti)

Fig. 8. KR-PCA attack based on learning.

Example 14 (NewHope continued). NewHope512 defines nsk = nB = nV = n =
512, ρ− = q

4 , ρ+ = q
2 , and p = 8. Decoding in NewHope is based on the

cumulative distance. We should rather apply the algorithm in Theorem 10 for
the L1 norm in dimension two to learn each pair of components of δ. However,
the use of compression of V into V̄ in NewHope makes the attack learning an
approximation of δ instead of δ completely. Essentially, we learn 
p

q δ� (i.e., the
log2 p most significant bits of each of the nV components of δ). However, we
already know that δ is sparse, so we learn zero bits only. The attack does not
work but we can adopt another strategy of well selecting (U, V̄ ) to progressively
learn the bits of sk. This was done by Bauer et al. [5].

Example 15 (Lepton continued). With Lepton.CPA Light I, δ is a string of length
� = 4572 of Hamming weight bounded by 1 056. Encoding consists of d = 9
repetitions of a BCH code which can correct up to 30 errors. One problem is
that decoding fails if decoding the repetition code results in more than t = 30
errors in BCH decoding. Nevertheless, we can adapt the attack based on the
learn algorithm of Fig. 7. In learn, instead of considering a string of � bits, we
consider a string of �

d packets of d bits in which the packet 1 represents the
packet of d bits set to 1, and flipping a packet means xoring it to the packet 1.
Thus, we learn which packets of δ have an error using up to �

d + log2
�
d queries.

Then, for each packet, we modify δ to have exactly t − 1 incorrect other packets
and we apply the learn algorithm of Fig. 7 at the bit level. For each packet, we
need up to d + log2 d oracle calls. In total, the number of oracle calls is bounded
by � + �

d log2 d + �
d + log2

�
d ≈ 213. This gives 4 572 equations in 8 100 unknowns.

So we use k = 2 and recover the entire sk using 214 oracle calls.
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5 Quantum Key-Recovery with a Decryption Oracle

5.1 GKZ-Based Attack

We build a KR-CCA attack which is inspired by the quantum LWE solving
algorithm from Grilo, Kerenidis, and Zijlstra (GKZ) [14]. This algorithm works
with a quantum superposition of LWE entries. In this attack, we consider an
adversary with quantum access to a decryption oracle. More precisely, we assume
that the oracle makes the following mapping:

|ct x Z〉 �→ |ct (x ⊕ Dec(sk, ct)) Z〉
Instead of calling this oracle on a chosen ct, we will call it on a superposition of
ct states.

We denote ωq = e
2iπ

q , a qth primitive root of unity.
We consider our meta PKC construction in which all groups are powers of

Zq for simplicity: Ssk = Znsk
q , SA = ZnA

q , SB = ZnB
q , St = Znt

q , SU = ZnU
q ,

SV = ZnV
q .

We let I ⊆ {1, . . . , nV } be a set of indices i.
We split the quantum state into several registers:

– one register U ∈ SU ;
– one register V ∈ SV ;
– a plaintext in M;
– one register Z ∈ ZI

q .

We assume that we have an operator L mapping

|U V pt Z〉 �→ |U V pt (Z ⊕ (V − encode(pt))I)〉
where VI denotes the restriction of the vector V on indices in I. This means that
we compute the ith coordinates of V − encode(pt) and XOR it to the working
register Z.

We run the algorithm on Fig. 9. Steps 6–7 of our attack are equivalent to the
GKZ algorithm [14]. As usual quantum algorithms, the algorithm is deterministic
until we perform a measurement (in Step 7). What follows the measurement in
Step 7 is done by a classical computer.

We define WU = V − U × sk, ptU = decode(WU ), ZU = (V − encode(ptU ))I ,
δU = WU − encode(ptU ). Due to the property of the encoding/decoding algo-
rithms,2 we have ‖δU‖ ≤ ρ+. We define

ψU = (δU )I = (WU − encode(decode(WU )))I (2)

Hence, ZU = (U × sk)I + ψU with ψU small. Hence, the state after Step 4
resembles a quantum superposition of LWE entries, but with a spurious register
pt. This spurious register has a dramatic impact on the probability of later
measurements, as it will be shown below. It was noticed by Ambainis, Magnin,
2 We recall that we assume that decoding is defined over the entire SV space.
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Input: I ⊆ {1, . . . , nV } and V ∈ SV

Decryption oracle: |U V x Z U V x ⊕ Dec(sk, (U, V )) Z
1: set the quantum state to |0 V 0 0
2: make a quantum Fourier transform on the first register and obtain

q− nU
2

U |U V 0 0
3: make a decryption oracle call and obtain q− nU

2
U |U V ptU 0

4: apply the L operator and obtain q− nU
2

U |U V ptU ZU

5: make a decryption oracle call again and obtain q− nU
2

U |U V 0 ZU

6: make a quantum Fourier transform on the U and Z registers and obtain

q−nU− #I
2

U,α,β

ω(α·U)+(β·ZU )
q |α V 0 β

7: measure the two active registers to get (α, β)
8: solve the linear system αj + (β · (ej × sk)I) = 0, j = 1, . . . , nU , where ej is

the U vector with coordinates set to 0 except the jth bit which is set to 1
9: if not solvable then abort
10: set s to the solution
11: if s not sparse then abort
12: return s

Fig. 9. GKZ-based key recovery with quantum access to a decryption oracle.

Roetteler, and Roland [3] that getting rid of it is hard in general. Fortunately,
we can call the decryption oracle again to clear pt completely. Step 5 is doing it.
This is why we need a double query to the decryption oracle.

We call a pair (α, β) ∈ SU × ZI
q good if β �= 0 and α satisfies the property

αj + (β · (ej × sk)I) = 0 for j = 1, . . . , nU . For all β �= 0, we have a unique α
such that (α, β) is good. When this property is satisfied, since U =

∑
j Ujej , we

have (U × sk)I =
∑

j Uj(ej × sk)I , thus

(α · U) + (β · ZU ) = (α · U) + (β · (U × sk)I) + (β · ψU )

= (β · ψU ) +
∑

j

Uj ((α · ej) + (β · (ej × sk)I))

= (β · ψU )

We compute the probability pg to measure a good (α, β) pair. We have

pg =
∑

(α,β) good

∣
∣
∣
∣
∣
q−nU −#I

2

∑

U

ω(α·U)+(β·ZU )
q

∣
∣
∣
∣
∣

2

=
∑

β

1
q2nU+#I

∣
∣
∣
∣
∣

∑

U

ωβ·ψU
q

∣
∣
∣
∣
∣

2

− q−#I
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where the q−#I term cancels the β = 0 term in the sum. By using |z|2 = z × z
over complex numbers, we have

pg =
∑

β

1
q2nU+#I

(
∑

U

ωβ·ψU
q

) (
∑

U ′
ω−β·ψU′

q

)

− q−#I

=
∑

β

1
q2nU+#I

∑

U,U ′
ωβ·(ψU −ψU′ )

q − q−#I

=
1

q2nU

∑

U,U ′

1
q#I

∑

β

ωβ·(ψU −ψU′ )
q − q−#I

=
1

q2nU

∑

U,U ′
1ψU=ψU′ − q−#I

= Pr[ψU = ψU ′ ] − q−#I

= 2−H2(ψU ) − q−#I

where H2 is the collision entropy (or Rényi of degree 2).
Without the second decryption call, with the same method, we would have

obtained pg = 2−H2(ψU ,ptU ) − q−#I2−H2(ptU ) which is too small. This shows
the importance of this second call, just to clear one register, although it works
against intuition when we are used to classical computing.

Our analysis is based on the decode function being defined on the entire
domain SV . However, instances of our construction may rely on a partially
defined decode algorithm. In that case, we may have Dec(sk, ct) = ⊥. By con-
vention, we set encode(⊥) = 0. The same analysis gives

pg = Pr[ψU = ψU ′ ] − q−#I

≈ Pr[ptU �= ⊥]2
(
Pr[ψU = ψU ′ |ptU �= ⊥, ptU ′ �= ⊥] − q−#I

)

This may be too small if Pr[ptU �= ⊥] is small. This is the case with Lepton.
One crucial thing is that the distribution of ψU comes from (2), where U is

uniform, sk comes from the key generation algorithm, and V is fixed. In par-
ticular, ψU does not follow the normal distribution defined by (1) from the
encryption/decryption process which would have a lower H2(ψU ). If we had a
way to sample ψ from (1) without any spurious register, we would have a better
attack.

What we obtain is the following result:

Theorem 16. Let I ⊆ {1, . . . , nV } be a set of indices, let V ∈ SV be arbitrarily
fixed, let sk ∈ Ssk following the random distribution of the cryptosystem, and let
U ∈ SU be uniformly distributed. We define

ψU = (V − U × sk − encode(decode(V − U × sk)))I

The algorithm of Fig. 9 gives a pair (α, β) at Step 7 such that β �= 0 and

∀j ∈ {1, . . . , nU} αj + (β · (ej × sk)I) = 0
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with probability 2−H2(ψU ) − q−#I and using 2 oracle calls. This is a set of nU

linear equations with nsk unknowns over Zq.

For #I = 1 and ψU uniform in [−ρ+,+ρ+], we can assume that H2(ψU ) =
log2(2ρ++1). We obtain that the success probability is roughly 1

2ρ+
− 1

q . Clearly,
it requires ρ+ < q

2 .
Note that when this fails (with probability 1−pg) and nsk ≤ nU , we can easily

filter out those cases because we can eliminate the cases when the equations have
no solution or when the solution is not sparse. Hence, either we recover part of
sk, or we abort. Therefore, we can iterate this attack to recover (at least some
part of) sk with a better probability.

For nsk = nU , we iterate 1/pg times on average until one sparse equation is
found.

For nsk > nU , we should, in general, treat the problem on a case-by-case
basis by studying the structure of the equations we obtain but there are some
general methods we can apply when nsk/nU is small. We could indeed iterate

nsk

pgnU
times to be sure to get enough sets of nU equations to recover the nsk

unknowns. To recover them, we can try all the
(

nsk

pgnU

) nsk
nU combinations of nsk

nU

sets. Each combination gives nsk equations. We can solve each combination until
one sparse sk is found.

However, for each j, the equation αj + (β · (ej × sk)I) = 0 typically depends
on a fixed subset of coordinates of sk and we should better apply those methods
for each of these subset separately.

We assume nsk ≤ nU . If there is a single coordinate i of U ×sk which depends
on all coordinates of sk, by using I = {i}, we recover the entire sk with probability
p or abort. Hence, iterating p−1

g times fully recover sk with 2p−1
g decryption calls.

It is not always possible to find a coordinate i which depends on the entire
sk. For instance, in the case of Frodo, U × sk is a matrix multiplication so each
coordinate i depends on one column of sk only.

Interestingly, H2(ψU ) ≤ H(ψU ) so the number of queries when iterating is
lower bounded by 21+H(ψU ). This is a big difference with the previous classical
attack, which recovers one Zq element within only H(ψU ) queries. However, it
is hard to compare an attack finding a piece of the key using two oracle calls
and with probability p to an attack finding linear equations using many oracle
calls and succeeding with probability 1. For applications where the number of
key reuse is strictly limited, the former is more devastating.

Example 17 (Frodo continued). The Frodo-640 parameters are nsk = nU but we
need to recover each of the n̄ = 8 columns separately if we take #I = 1. We
approximate 2−H2(ψU ) ≈ 1

2ρ+
. Since ρ+ = q2−�−1 = 212 and q = 215, by using

two oracle calls, we recover one column of 640 values with probability 2−13.
(By iterating, we need 217 oracle calls to fully recover sk.) We can recover two
columns at the same time with #I = 2 in two oracle calls, but with probability
2−26.
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Example 18 (NewHope continued). With NewHope512, ψU on a single compo-
nent has no information (this is due to ρ+ = q

2 which does not characterize ψU

compared to any other Zq element). Indeed, we obtain p = 0 with #I = 1. We
can use #I = 2 with I = {i, i + 256}. This uses two positions encoding the
same bit. We can see that ψU encodes two values which are either both smaller
than q

4 (with probability 1
2 ) or with exactly one being smaller than q

4 . Hence,

two ψU pairs collide with probability 1
4

(
2
q

)2

+ 1
8

(
2
q

)2

= 3
2q2 . It gives pg ≈ 1

2q2 .
This means that with two oracle calls we recover the full secret with probability
2−28. (By iterating, we need 4q2 decryption calls, i.e. 229.) Compressing V in
NewHope does not modify our attack as V is constant.

Example 19 (Lepton continued). Lepton.CPA Light I considers q = 2. With
#I = 1, we obtain p = 0. The encoding function in Lepton is obtained by
first applying a BCH encoding, then using a repetition code. We can focus on
the repetition code and take two repeating bits in the set I with #I = 2. The
distribution of ψU from (2) should be of form Pr[ψU = 00] = 1

2 , Pr[ψU = 01] =
Pr[ψU = 10] = 1

4 . Hence, Pr[ψU = ψU ′ ] = 3
8 and we obtain p = 1

8 . Hence, we
could recover sk with probability 1

8 .3 Unfortunately, decode is partially defined,
due to the BCH code, and we have Pr[ptU �= ⊥] ≈ 2−93 which is too low. That
is why the attack does not work for Lepton.

5.2 AJOP-Based Attack

We let a and b be two integers. We partition [a, a + q − 1] into c intervals
Ik = [a+kb, a+kb+ b−1] for k = 0, . . . , c−2 and Ic−1 = [a+(c−1)b, a+q −1],
with b = 
 q

c �. We define RF(x) = k such that x ∈ Ik modulo q. Hence, we can
consider RF as a function from Zq to Zc.

Lemma 20. Given f ∈ Zn
q such that {u · f ;u ∈ Zn

q } = Zq (we call such f
regular),4 we define

pq,c = q−2n

∣
∣
∣
∣
∣
∣

∑

u∈Zn
q

ω−RF(v−u·f)
c ωu·(−f)

q

∣
∣
∣
∣
∣
∣

2

We write ε = b − q
c . For c = O(1) and q → +∞, we have

pq,c ≥ q−2

(∣
∣
∣
∣
∣

sin πcε
q

sin πε
q

×
sin πb

q

sin π
q

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣

sin πcε
q

sin π
q

∣
∣
∣
∣
∣

)2

=
c2

π2
sin2 πb

q
− o

(
1
q

)

If c divides q, we have pq,c ≥ c2

π2 sin2 π
c .

3 In this computation, we took the worst case for ambiguous decoding (e.g. when both
01 and 10 decode to 00). If now 01 decode to 00 and 10 decode to 11, the distribution
of ψU becomes Pr[ψU = 00] = Pr[ψU = 01] = 1

2
and we obtain p = 1

4
.

4 For q prime, every nonzero f is regular. For q = 2n, every f with at least one odd
component is regular.
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Proof. Due to the fact that u �→ v − u · f being balanced, we have

pq,c = q−2

∣
∣
∣
∣
∣
∣

∑

x∈Zq

ω−RF(x)
c ωx−v

q

∣
∣
∣
∣
∣
∣

2

= q−2

∣
∣
∣
∣
∣
∣

∑

x∈Zq

ω−RF(x)
c ωx

q

∣
∣
∣
∣
∣
∣

2

= q−2

∣
∣
∣
∣
∣

∑

k∈Zc

∑

x∈Ik

ω−k
c ωx

q

∣
∣
∣
∣
∣

2

Hence,

pq,c ≥ q−2

⎛

⎝

∣
∣
∣
∣
∣

∑

k∈Zc

a+b−1∑

x=a

ω−k
c ωx+kb

q

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣
∣

a+b−1∑

x=a+q−(c−1)b

ω−c+1
c ωx+(c−1)b

q

∣
∣
∣
∣
∣
∣

⎞

⎠

2

= q−2

(∣
∣
∣
∣
∣

∑

k∈Zc

b−1∑

x=0

ω−k
c ωx+kb

q

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣

b−1∑

x=b−cε

ωx
q

∣
∣
∣
∣
∣

)2

= q−2

(∣
∣
∣
∣
∣

∑

k∈Zc

b−1∑

x=0

ωkε
q ωx

q

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣

b−1∑

x=b−cε

ωx
q

∣
∣
∣
∣
∣

)2

= q−2

(∣
∣
∣
∣
∣

sin πcε
q

sin πε
q

×
sin πb

q

sin π
q

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣

sin πcε
q

sin π
q

∣
∣
∣
∣
∣

)2

by using ωq = e
2iπ

q and ωc = e
2iπ

c . We have 0 ≤ ε < 1, c = O(1). When q → +∞,
this bound tends towards c2

π2 sin2 πb
q with a o( 1q ) difference. �

In Fig. 10, we adapt the AJOP algorithm to make a KR-CCA attack using
a single query to a quantum oracle making

|U V z〉 �→ |U V z + Dec(sk, U, V )〉

where the addition is in ZnV
c . It works assuming a special form of the cryptosys-

tem. Compared to our GKZ-based attack, this is more restrictive but it uses a
single oracle call and has a better success probability.

Theorem 21. We consider meta-PKC constructions of the following form. We
assume that M = ZnV

c , decode(W )j = RF(Wj), and that we can write U =

(U1, . . . , Um) ∈ Zn1
U

q × · · ·Znm
U

q , (U × sk)j = Ug(j) · fj(sk) for some functions
g and fj, for j = 1, . . . , nV . Given a subset J over which g is injective, the
algorithm on Fig. 10 recovers all fj(sk) for j ∈ J with probability p ≥ p#J

q,c with
pq,c defined in Lemma 20, when they are regular.
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Proof. We compute the probability Pr[α]:

Pr[α] = q−2nU c−nV

∥
∥
∥
∥
∥
∥

∑

U,z

⎛

⎝
∏

j∈J

ωzj−(ptU )j
c

⎞

⎠ ωU ·α
q |α V z〉

∥
∥
∥
∥
∥
∥

2

= q−2nU c−nV

∑

z

∣
∣
∣
∣
∣
∣

∑

U

⎛

⎝
∏

j∈J

ωzj−(ptU )j
c

⎞

⎠ ωU ·α
q

∣
∣
∣
∣
∣
∣

2

= q−2nU

∣
∣
∣
∣
∣
∣

∑

U

⎛

⎝
∏

j∈J

ω−(ptU )j
c

⎞

⎠ ωU ·α
q

∣
∣
∣
∣
∣
∣

2

= q−2nU

∣
∣
∣
∣
∣
∣

∑

U

⎛

⎝
∏

j∈J

ω
−RF(Vj−Ug(j)·fj(sk))
c

⎞

⎠ ωU ·α
q

∣
∣
∣
∣
∣
∣

2

= q−2nU

∣
∣
∣
∣
∣
∣

∑

U

∏

j∈J

(
ω

−RF(Vj−Ug(j)·fj(sk))
c ω

Ug(j)·αg(j)
q

) ∏

j 	∈g(J)

ωUj ·αj
q

∣
∣
∣
∣
∣
∣

2

For α such that αg(j) = −fj(sk) for all j ∈ J and αj = 0 for j �∈ g(J), we have
Pr[α] = p#J

q,c when the fj(sk) are regular. �

Example 22 (Frodo continued). Frodo has c = 2�. We regroup U by rows, i.e.,
Ug(j) is the g(j)th row of U and fj(sk) is the g(j)th column of sk. We have m̄

columns in sk. We recover #J columns with probability at least p#J
q,c . The Frodo-

640 parameters are q = 215, � = 2, and m̄ = 8. This gives ε = 0 and pq,c ≥ 81%.
We can be greedy with #J = m̄ and fully recover sk with probability greater
than 18% which we approximate as 2−2 in the table.

Example 23 (NewHope continued). To adapt the attack to NewHope, we observe

decode(W )j = RF(|Wj | + |Wj+256|) = 1|Wj |+|Wj+256|≤ q
2

and we cut an interval of 2q values into c = 2 intervals. We use #J = 1. For
simplicity, we use J = {0} so j = 0. We modify the algorithm by sampling V̄0 and
V̄256 and letting all other components of V̄ constant, and by making the Fourier
transform on the V̄0 and V̄256 registers as well. We obtain that we measure the
final state

q−nU p−2
∑

α,U∈SU
V̄0,V̄256,β1,β2∈Zp

c− nV
2

∑

z∈Z
nV
c

(−1)z0−(ptU )0ωU ·α
q ωV̄ ·β

p |α β z〉

where V̄ · β means V̄0β1 + V̄256β2. By similar computation as before, we obtain

Pr[α, β] = q−2nU p−4

∣
∣
∣
∣
∣
∣

∑

U,V̄0,V̄256

(−1)(ptU )0ωU ·α
q ωV̄ ·β

p

∣
∣
∣
∣
∣
∣

2
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Input: J ⊆ {1, . . . , nV } and V ∈ SV

Decryption oracle: |U V z U V z + Dec(sk, (U, V ))
1: prepare the state |0 V (1j∈J)j=1,...,nV in ZnU

q × ZnV
q × ZnV

c

2: make a quantum Fourier transform on all registers except V and obtain

q− nU
2

U∈SU

c− nV
2

z ∈Z
nV
c

j∈J

ω
zj
c |U V z

3: apply the decryption oracle and get (by writing z = z + ptU )

q− nU
2

U∈SU

c− nV
2

z∈Z
nV
c

j∈J

ω
zj−(ptU )j
c |U V z

4: make a quantum Fourier transform on the first register and obtain

q−nU

α,U∈SU

c− nV
2

z∈Z
nV
c

j∈J

ω
zj−(ptU )j
c ωU·α

q |α V z

5: measure the first register and obtain α with some probability Pr[α]

Fig. 10. AJOP-based key recovery with quantum access to a decryption oracle.

Let s be such that U · s = (U × sk)0. Clearly, there is a one-to-one mapping
between sk and s. The probability that α = −s, β1 = 1, β2 = 0 is

Pr[−s, 1, 0] = q−2nU p−4

∣
∣
∣
∣
∣
∣

∑

U,V̄0,V̄256

(−1)(ptU )0ω−(U×sk)0
q ωV̄0

p

∣
∣
∣
∣
∣
∣

2

= q−4p−4

∣
∣
∣
∣
∣
∣

∑

u,v∈Zq,V̄0,V̄256∈Zp

(
1 − 2 · 1|u|+|v|≤ q

2

)
ω

u−V ′
0

q ωV̄0
p

∣
∣
∣
∣
∣
∣

2

= 4q−4p−2

∣
∣
∣
∣
∣
∣
∣
∣

∑

u,v∈Zq

|u|+|v|≤ q
2

ωu
q

∑

V̄0∈Zp

ω
−V ′

0
q ωV̄0

p

∣
∣
∣
∣
∣
∣
∣
∣

2

with V ′
j = 
 q

p V̄j�, u = V ′
0 − (U × sk)0, and v = V ′

256 − (U × sk)256. We can
compute experimentally this sum as Pr[−s, 1, 0] ≈ 16.4%. We can also compute
literally for p = q (i.e., we ignore compression). The terms of the inner sum are
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1. We have

Pr[−s, 1, 0] = 4q−4

∣
∣
∣
∣
∣
∣
2

q−1
2∑

v=0

q−1
2 −v∑

u=− q−1
2 +v

ωu
q −

q−1
2∑

u=− q−1
2

ωu
q

∣
∣
∣
∣
∣
∣

2

= 4q−4

∣
∣
∣
∣
∣
∣
2

q−1
2∑

v=0

ω
q
2 −v
q − ω

− q
2+v

q

ω
1
2
q − ω

− 1
2

q

− ω
q
2
q − ω

− q
2

q

ω
1
2
q − ω

− 1
2

q

∣
∣
∣
∣
∣
∣

2

= 4q−4

∣
∣
∣
∣
∣
∣
∣
2

(
ω

q+1
4

q − ω
− q+1

4
q

)2

(
ω

1
2
q − ω

− 1
2

q

)2 − ω
q
2
q − ω

− q
2

q

ω
1
2
q − ω

− 1
2

q

∣
∣
∣
∣
∣
∣
∣

2

Since ω
q
2
q = −1 and ω

q
4
q = i, we obtain

Pr[−s, 1, 0] = 16q−4

∣
∣
∣
∣
∣

ω
1
4
q + ω

− 1
4

q

ω
1
2
q − ω

− 1
2

q

∣
∣
∣
∣
∣

4

=

∣
∣
∣
∣
∣
∣

2

q
(
ω

1
4
q − ω

− 1
4

q

)

∣
∣
∣
∣
∣
∣

4

=
1

q4 sin4 π
2q

∼
(

2
π

)4

which is also 16.4%. We also have Pr[s,−1, 0] = Pr[−s, 1, 0]. Similarly, let s′

be such that U · s′ = (U × sk)256. We have Pr[∓s′, 0,±1] = Pr[s, 1, 0] and all
four cases reveal sk. Hence, we recover sk with probability about 66%. The
compression of V in NewHope does not modify the attack.

6 Conclusion

We have shown how to make efficient key recovery attacks against the weak ver-
sion of many post-quantum cryptosystems under classical PCA mode or quan-
tum CCA mode, even with one or two CCA queries.

When trying to adapt this attack strategy to various algorithms, we observed
that a binary code followed by an encoding in the high bits in Zq makes the attack
more difficult. However, the repetition code helps the attacker quite a lot.

Our attacks do not work for some algorithms. For instance, KINDI does not
encode the plaintext but rather a seed (our attack only works because decryption
outputs the seed for some reason). Compressing V does not harm quantum
attacks but makes our classical attack impossible. Compressing U sometimes
makes the quantum attack harder (this is the case in Kyber [6] but not in
Lizard [9]). Lepton does not decode on the entire domain. We let as future work
to investigate if attacks are still possible in those cases. Attacking other NIST
applications is also left as an open problem.

A Post-quantum Cryptosystems

We list here several algorithms for which we could adapt our attacks. The algo-
rithms are available from
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https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-
submissions

For the KR-PCA attack, we estimate to (logq #SV ) log2(2ρ++1) the number
of oracle calls. For the GKZ-based attack, the probability of success is estimated
to 1

(2ρ+)#I − 1
q#I . For the AJOP-based attack, the probability of success is p#J

q,c .

EMBLEM. EMBLEM-CPA [21] works with SA = Z
m×n
q , Ssk = Z

n×k
q , SB =

Z
m×k
q , St = Z

v×m
q , SU = Z

v×n
q and SV = Z

v×k
q . The bilinear mappings are

matrix multiplications. The message space is {0, 1}� and a message is encoded
by t-bit chunks. Each block of t-bits is padded with a 1 bit and 0 bits to match
a length of log2(q) bits. Then, all �

t blocks are arranged in a v × k matrix. Thus,
for a message pt, each log2(q)-bits element of the matrix M = encode(pt) is
pti,j‖1‖00 . . . 0, where pti,j is a t-bit block of the original message. Decoding
takes the t most significant bits of each element and concatenate them to obtain
the original message. Therefore, we have ρ− = ρ+ = q2−t−1. Components of
sk, t are sampled in [−B,B] uniformly at random and components of d, e, f are
sampled from the discrete Gaussian distribution on Z with standard deviation
σ. This is similar to Frodo. Hence, we have nk unknowns and each δ gives
vk equations. The GKZ-based attack with #I = 1 recovers one column of n
unknowns. The AJOP-based attack uses ε = 0, c = 2t, and #J = k. For 128-
bit security, the following parameters are used: m = 1003, n = 770, � = 256,
q = 224, σ = 25, t = 8, B = 1, v and k can be tuned such that v×k×t = � = 256,
typically v = 32, k = 1. We compute pq,c ≈ 1.

R.EMBLEM-CPA is a variant of EMBLEM where the variables are con-
sidered as polynomials in X modulo Xn + 1 with coefficients in Zq. It has
Ssk = SA = SB = St = SU = Z

n
q and SV = Z

�/t
q with L∞ norm. The bilin-

ear mappings are polynomial multiplications. A message m ∈ {0, 1}� is encoded
as in EMBLEM-CPA, except that now the �

t encoded blocks are polynomial
coefficients and not matrix entries. As before, we have ρ− = ρ+ = q2−t−1. There
is a small subtlety at encryption and decryption: since encode(m) ∈ Z

�/t
q , we

compute V = trunc(t×B + f, �/t)+ encode(m) and W = V − trunc(U × sk, �/t),
where trunc(x, l) takes only the first � components of a vector x. Coefficients of
sk, t are sampled in [−B,B] uniformly at random and coefficients of d, e, f are
sampled from a discrete Gaussian distribution on Z with standard deviation σ.
For 128-bit security, the following parameters are proposed: n = 463, � = 256,
q = 225, σ = 25, t = 1, B = 1. We have n unknowns and each δ give them
all. The number of oracle calls is about n(log2 q − t) in the classical attack. The
probability of success in the quantum attack is 2t

q for the GKZ-based one, and
pq,c for the AJOP-based one.

KINDI. KINDI-CPA [4] works with the ring Rq = Zq[X]/(Xn +1). It has SA =
R�2

q , Ssk = SB = St = SU = R�
q and SV = Rq. The norm is L∞. The bilinear

mappings are matrix multiplications and scalar product when the elements are
vectors, where elements are considered as polynomials in Rq. The public key B
is compressed by dropping the k least significant bits of all coefficients.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
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The encoding of a message pt is more complex than in other LWE schemes.
A random polynomial s1 with binary coefficients is uniformly sampled from R2.
This polynomial is used as a seed for a PRNG function (Shake) that returns a
one time-pad ū and the value t. The message is encrypted into u = ū ⊕ pt by
one-time pad and encoded in a value e ∈ R�

q and f ∈ Rq. The ciphertexts are
computed as (U, V ) = (t×A+e, t×B+f +encode(s1)) where encode(s1) = L ·s1
with L = q

2 . Then, the decryption V − U × sk recovers s1 thus t then e and
f , then u. The value of s1 also gives ū which decrypts u into pt. We have
ρ− = ρ+ = q

4 . Elements of A are sampled uniformly at random from Rq, elements
of sk, d, t and the one-time pad are sampled uniformly at random from Rq where
the coefficients of the polynomials are in [−p, p) and e, f are derived from the
message xored with the one-time pad. For KINDI256-CPA, the parameters used
are n = 256, � = 3, p = 4, k = 2, q = 214. In our KR-PCA attack, we have to be
aware that tampering V results in having junk decryption in the last bits, so we
must assume that the PCO oracle ignores those last bits. Adapting the quantum
attacks may not be possible because they need s1 and we cannot recover s1 from
pt. Surprisingly, the decryption in KINDI kindly returns s1 in addition to the
plaintext. So, the quantum attacks work well, with ε = 0, c = 2, #I = #J = 1.

LIMA. LIMA-CPA [23] has Ssk = SA = SB = St = SU = SV = Z
n
q with the L∞

norm. Elements are considered as polynomials in Zq[X]/〈g〉. LIMA-CPA comes
in two variants, namely LIMA-2p and LIMA-sp. In LIMA-2p, the polynomial
g is Xn + 1 with q ≡ 1 mod 2n and in LIMA-sp, g is a trinomial of degree
n = p − 1 and p is a safe prime (i.e. p = 2q + 1 for a prime q). Each bit of a
message is encoded into a 0 or q/2. Therefore, we have ρ− = ρ+ = q

4 . The sparse
elements sk, d, t, e, f are sampled in {−B, . . . , B} from an approximation of a
centered discrete Gaussian distribution of standard deviation σ =

√
(B + 1)/2.

A subtlety is that a pair (t, e) is accepted only if for yi = ti + ei, it has
∣
∣
∣
∣
∣

n−1∑

i=0

yi

∣
∣
∣
∣
∣
≤ 11 × √

2 × n × σ

for LIMA-2p and
∣
∣
∣
∣
∣

k∑

i=0

yi +
n−1∑

i=1

yi +
n−1∑

i=k+2

yi

∣
∣
∣
∣
∣
≤ 11 × √

4 × n × σ

for LIMA-sp and any k ∈ {0, . . . , n − 1}. For a classical 227-bit security LIMA-
2p-CPA, the parameters used are B = 19, n = 1024, q = 133 121. For a classical
152-bit security, LIMA-sp-CPA uses B = 19, n = 1018 and q = 12 521 473. The
quantum attacks work with c = 2, #I = #J = 1, and pq,c = 41%.

Lizard. Lizard-CPA [9] has SA = Z
m×n
q , Ssk = {−1, 0, 1}n×�, SB = Z

m×�
q ,

St = {−1, 0, 1}m, SU = Z
n
p , and SV = Z

�
p. The norm is L∞. Bilinear mappings

are matrix multiplications in these structures. Each bit of a message is encoded
into 0 or q/2 but U, V are scaled by a p/q factor, then pt ∈ {0, 1}� is encoded
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into 0 or p/2. Therefore, we have ρ− = ρ+ = p/4. Actually, encryption is based
on the LWR problem, hence with deterministic e and f . Decryption has form
Dec(sk, U, V ) = 
 2

p (V − U × sk)�, which fits the quantum attacks. Elements of
sk are sampled from the distribution Pr[x = 1] = Pr[x = −1] = γ/2, Pr[x =
0] = 1−γ, elements of d are sampled in Zq from a discrete Gaussian distribution
of parameter σ = αq, t is sampled uniformly at random in {x ∈ {−1, 0, 1}m :
HW(x) = h}, where HW(x) counts the number of non-zero elements of x, and
e, f are zero. Proposed parameters are n = 544, m = 840, q = 1024, p = 256,
� = 256, γ = 1

2 , α = 1
171 , and h = 128. The quantum attacks work with ε = 0,

c = 2, #I = #J = 1.
RLizard-CPA is a variant of Lizard which works with rings. It has SA = SB =

Z
n
q , SU = SV = Z

n
p , and Ssk = St = {−1, 0, 1}n. Elements are considered as poly-

nomials in these structures and bilinear mappings are polynomial multiplications
in the corresponding ring. Messages are encoded similarly as in Lizard-CPA. Ele-
ments sk, t are sampled uniformly at random in {x ∈ {−1, 0, 1}m : HW(x) = h}
with h = hsk and h = ht, respectively. Coefficients of d are sampled according
to a discrete Gaussian distribution of parameter σ in Zq. Proposed parameters
are n = 1024, q = 1024, p = 256, α = 1

154 and hsk = ht = 128.

LOTUS. LOTUS-PKE-CPA [19] is the same as Lindner-Peikert scheme. We
have SA = Z

n×n
q , Ssk = SB = Z

n×�
q , St = SU = Z

n
q , and Sv = Z

�
q with the L∞

norm. Each bit of a message is multiplied by � q
2�. Elements of sk, d, t, e, f are

sampled from a centered discrete Gaussian distribution of standard deviation
σ. Therefore, we have ρ+ = ρ− = � q

4�. For LOTUS128-CPA, we have n = 576,
q = 8192, � = 128, σ = 3. For key recovery, we have n × � unknowns and �
equations for each sample δi, hence we need n samples. The quantum attacks
work with ε = 0, c = 2, #I = #J = 1.

Titanium. Let Rq,n be the set of polynomials in X with degree less than n and
coefficients in Zq. Titanium has SA = Rm

q,n, Ssk = Rq,n+d+k−1, SB = Rm
q,d+k,

St = Rm
q,k+1, SU = Rq,n+k and SV = Rq,d with the L∞ norm. The bilinear

mappings use the middle product � defined as follows: Let a ∈ Rq,da
and b ∈

Rq,db
s.t. da + db − 1 = d + 2k for some integers da, db, d, k. The middle product

�d : Rq,da
× Rq,db

→ Rq,d is the map

a �d b =
⌊

(a × b) mod Xk+d

Xk

⌋

i.e. we take the d terms of a × b of degree k, k + 1, . . . , k + d − 1 and divide by
Xk. Titanium extends it to vector multiplication as the dot product with �d

for component multiplications and to polynomial-vector multiplication as the
component-wise middle product with the polynomial. All bilinear mappings are
middle products as described above, except for the St × SA → SU , which is the
dot product with polynomial multiplication in Zq[X]. A message pt is encoded
as a polynomial in R2,d with each coefficient scaled by � q

p�. Therefore, we have
ρ− = ρ+ = � q

p�/2. The secret key sk is sampled uniformly at random in St and
d is sampled by taking the difference of the Hamming weight of two uniformly
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distributed η-bits values, this approximates a discrete Gaussian distribution.
For t, Nt = (k + 1) × m coefficients need to be sampled in Zq. In order to tune
the variance, N1 of them are sampled uniformly in {−B1/2, . . . , B1/2} \ {0}
and Nt − N1 of them are sampled uniformly in {−B2/2, . . . , B2/2} \ {0}. The
elements e, f are null. For TitaniumStd128-CPA [24] with NIST security level
I, the parameters are n = 1024, k = 511, d = 256, m = 9, q = 86 017, p = 2,
η = 4, N1 = 3816, B1 = 26, B2 = 27. The quantum attacks work with c = p
and #I = #J = 1.
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