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Abstract. A threshold secret sharing scheme (with threshold t) allows
a dealer to share a secret among a set of parties such that any group
of t or more parties can recover the secret and no group of at most
t − 1 parties learn any information about the secret. A non-malleable
threshold secret sharing scheme, introduced in the recent work of Goyal
and Kumar (STOC’18), additionally protects a threshold secret sharing
scheme when its shares are subject to tampering attacks. Specifically,
it guarantees that the reconstructed secret from the tampered shares is
either the original secret or something that is unrelated to the original
secret.

In this work, we continue the study of threshold non-malleable secret
sharing against the class of tampering functions that tamper each share
independently. We focus on achieving greater efficiency and guaranteeing
a stronger security property. We obtain the following results:
– Rate Improvement. We give the first construction of a threshold

non-malleable secret sharing scheme that has rate > 0. Specifically,
for every n, t ≥ 4, we give a construction of a t-out-of-n non-malleable
secret sharing scheme with rate Θ( 1

t log2 n
). In the prior constructions,

the rate was Θ( 1
n logm

) where m is the length of the secret and thus,
the rate tends to 0 as m → ∞. Furthermore, we also optimize the
parameters of our construction and give a concretely efficient scheme.

– Multiple Tampering. We give the first construction of a threshold
non-malleable secret sharing scheme secure in the stronger setting
of bounded tampering wherein the shares are tampered by multiple
(but bounded in number) possibly different tampering functions. The
rate of such a scheme is Θ( 1

k3t log2 n
) where k is an apriori bound on

the number of tamperings. We complement this positive result by
proving that it is impossible to have a threshold non-malleable secret
sharing scheme that is secure in the presence of an apriori unbounded
number of tamperings.

– General Access Structures. We extend our results beyond thresh-
old secret sharing and give constructions of rate-efficient, non-
malleable secret sharing schemes for more general monotone access
structures that are secure against multiple (bounded) tampering
attacks.
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1 Introduction

A t-out-of-n threshold secret sharing scheme [Sha79,Bla79] allows a dealer to
share a secret among n parties such that any subset of t or more parties can
recover the secret but any subset of t − 1 parties learn no information about the
secret. Threshold secret sharing schemes are central tools in cryptography and
have several applications such as constructing secure multiparty computation
protocols [GMW87,BGW88,CCD88], threshold cryptographic systems [DF90,
Fra90,DDFY94] and leakage resilient circuit compilers [ISW03,FRR+10,Rot12]
to name a few.

Most of the threshold secret sharing schemes in literature are linear. This
means that if we multiply each share by a constant c, we get a set of shares that
correspond to a new secret that is c times the original secret. This property has
in fact, been crucially leveraged in most of the applications including designing
secure multiparty computation protocols and constructing threshold cryptosys-
tems. However, this highly desirable feature becomes undesirable if our primary
goal is to protect the shares against tampering attacks. More specifically, this
linearity property allows an adversary to tamper (or maul) each share indepen-
dently and output a new set of shares that reconstruct to a related secret (for
example, two times the original secret). Indeed, if the shares of the secret are
stored on a device such as a smart card, an adversary could potentially tamper
with the smart card and change the value of the share that is being stored by
overwriting it with a new value or maybe flipping a few bits. Notice that in the
above tampering attack, the adversary need not learn the actual secret. How-
ever, the adversary is guaranteed to produce a set of shares that reconstruct
to a related secret. Such an attack could be devastating when the shares, for
example, correspond to a cryptographic secret key (such as a signing key) as it
allows an adversary to mount related-key attacks (see [BDL01]). In fact, most of
the known constructions of threshold signatures use Shamir’s secret sharing to
distribute the signing key among the parties and hence they are all susceptible
to such attacks.

Non-Malleable Secret Sharing. To protect a secret sharing scheme against
such share tampering attacks, Goyal and Kumar [GK18a,GK18b] introduced
the notion of Non-Malleable Secret Sharing. Roughly, a secret sharing scheme
(Share,Rec) is non-malleable against a tampering function class F if for every
f ∈ F and every secret s, Rec(f(shares)) where shares ← Share(s) is either s or
something that is unrelated to s.1 Of course, we cannot hope to protect against
all possible tampering functions as a function can first reconstruct the secret
from the shares, multiply it by 2 and then share this value to obtain a valid
sharing of a related secret. Thus, the prior works placed restrictions on the set
of functions that can tamper the shares. A natural restricted family of tampering
functions that we will consider in this work is Find which consists of the set of
all functions that tamper each share independently.

1 See Sect. 3 for a precise definition.
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Connection to Non-Malleable Codes. Non-malleable secret sharing is related to
another cryptographic primitive called as Non-Malleable Codes which was intro-
duced in an influential work by Dziembowski, Pietrzak and Wichs [DPW10].2

A non-malleable code relaxes the usual notion of error correction by requir-
ing that the decoding procedure outputs either the original message or some-
thing that is independent of the message when given a tampered codeword
as input. A beautiful line of work, starting from [DPW10], has given sev-
eral constructions of non-malleable codes with security against various tam-
pering function classes [LL12,DKO13,FMNV14,FMVW14,ADL14,AGM+15,
FMNV15,JW15,CKR16,CGM+16,AAG+16,CGL16,BDKM16,Li17,KOS17,
CL17,KOS18,BDKM18,GMW17,OPVV18,KLT18,BDG+18].

We now elaborate on the connection between non-malleable codes and non-
malleable secret sharing. A tampering function family in the literature of non-
malleable codes that is somewhat similar to Find is the k-split-state function
family. A k-split-state function compartmentalizes a codeword into k-parts and
applies a tampering function to each part, independent of the other parts. Seeing
the similarity between Find and k-split-state functions, it might be tempting
to conclude that a non-malleable code against a k-split-state function family
is in fact a k-out-of-k non-malleable secret sharing. However, as demonstrated
in [GK18a], this might not be true in general. In particular, [GK18a] showed that
even a 3-split-state non-malleable code need not be a 3-out-of-3 non-malleable
secret sharing as non-malleable codes may not always protect the secrecy of the
message. In particular, the first few bits of the codeword could reveal some bits of
the message and still, this coding scheme could be non-malleable. Nevertheless,
for the special case of 2, Aggarwal et al. [ADKO15] showed that any 2-split-state
non-malleable code is indeed a 2-out-of-2 non-malleable secret sharing scheme.
In the other direction, we note that any k-out-of-k non-malleable secret sharing
scheme against Find is in fact a k-split-state non-malleable code.

Rate of Non-Malleable Secret Sharing. One of the main efficiency parameters in
any secret sharing scheme is its rate which is defined as the ratio between the
length of the secret and the maximum size of a share. In the prior work, Goyal
and Kumar [GK18a] gave an elegant construction of t-out-of-n non-malleable
secret sharing from any 2-split-state non-malleable code. However, the rate of
this scheme is equal to O( 1

n log m ) where m is the length of the secret. The rate
tends to 0 as the length of the secret m tends to ∞ and hence, a natural question
to ask is:

Can we obtain a construction of threshold non-malleable secret sharing with
rate > 0?

The problem of improving the rate was mentioned as an explicit open ques-
tion in [GK18a].
2 We refer the reader to [GK18a,GK18b] for a thorough discussion on the connection

between non-malleable secret sharing and related notions such as verifiable secret
sharing [CGMA85] and AMD codes [CDF+08].
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Multiple Tamperings. In the real world, a tampering adversary could poten-
tially mount more than one tampering attack. In particular, if each share of
a cryptographic secret key is stored on a small device (such as smart cards),
the adversary could potentially clone these devices to obtain multiple copies
of the shares. The adversary could then apply a different tampering func-
tion on each copy and obtain information about related secrets. Thus, a more
realistic security definition would be to consider multiple tampering functions
f1, . . . , fk ∈ F , and require that for every secret s, the joint distribution
(Rec(f1(shares)), . . . ,Rec(fk(shares))) where shares ← Share(s) is independent
of s.3 For the case of non-malleable codes, security against multiple tamperings
has already been considered in [FMNV14,JW15,CGL16,OPVV18]. However, for
the case of non-malleable secret sharing, the prior work [GK18a] only considered
a single tampering function and a natural question would be:

Can we obtain a construction of threshold non-malleable secret sharing against
multiple tamperings?

1.1 Our Results

In this work, we obtain the following results.

Rate Improvement. We give the first construction of a threshold non-
malleable secret sharing scheme that has rate > 0. Specifically, the rate of our
construction is Θ( 1

t log2 n
) where t is the threshold and n is the number of parties.

More formally,

Theorem 1. For any n, t ≥ 4 and any ρ > 0, there exists a construction of
t-out-of-n non-malleable secret sharing scheme against Find for sharing m-bit
secrets for any m > log n with rate Θ( 1

t log2 n
) and simulation error 2−Ω( m

log1+ρ m
)
.

The running times of the sharing and reconstruction algorithms are polynomial
in n and m.

Local Leakage Resilient Secret Sharing. One of the main tools used in proving
Theorem 1 (which may be of independent interest) is an efficient construction
of local leakage-resilient threshold secret sharing scheme [GK18a,BDIR18]. A t-
out-of-n secret sharing scheme is said to be local leakage-resilient (parameterized
by a leakage bound μ and set size s), if the secrecy holds against any adversary
who might obtain at most t − 1 shares in the clear and additionally, for any
set S ⊆ [n] of size at most s, the adversary obtains μ bits from each share
belonging to a party in the set S. Goyal and Kumar [GK18a] gave a construction
of a 2-out-of-n local leakage resilient secret sharing scheme. In this work, we
give an efficient construction of t-out-of-n local leakage resilient secret sharing
3 As in the case of single tampering, a tampering function could just output the same

shares and in which the reconstructed secret will be s. Our definition also captures
this property and we refer to Sect. 3 for a precise definition.
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scheme when t is a constant. This result must be contrasted with a recent result
by Benhamouda et al. [BDIR18] who showed that the Shamir’s secret sharing
scheme is local leakage resilient when the field size is sufficiently large and the
threshold t = n− o(log n). A more precise statement of our construction of local
leakage resilient secret sharing scheme appears below.

Theorem 2. For any ε > 0, t, n ∈ N, and parameters μ ∈ N, s ≤ n, there exists
an efficient construction of t-out-of-n secret sharing scheme for sharing m-bit
secrets that is (μ, s)-local leakage resilient with privacy error ε. The size of each
share when t is a constant is O ((m + sμ + log(log n/ε)) log n).

Concrete Efficiency. A major advantage of our result is its concrete efficiency. In
the prior work, the constant hidden inside the big-O notation was large and was
not explicitly estimated. We have optimized the parameters of our construction
and we illustrate the size of shares for various values of (n, t) in Table 1.4

Table 1. Share sizes for simulation error of at most 2−80.

(# of Parties, Threshold) Secret length (in bits) Share size (in KB)

(7, 4) 812 273.73

(9, 5) 812 399.85

(25, 13) 812 1757.53

(100, 51) 812 12.34 ×103

(7, 4) 1024 345.19

(9, 5) 1024 504.24

(25, 13) 1024 2216.40

(100, 51) 1024 15.56 ×103

Comparison with [GK18a]. When compared to the result of [GK18a] which could
support thresholds t ≥ 2, our construction can only support threshold t ≥ 4.
However, getting a rate > 0 non-malleable secret sharing scheme for threshold
t = 2 would imply a 2-split-state non-malleable code with rate > 0 which is a
major open problem. For the case of t = 3, though we know constructions of
3-split-state non-malleable codes with rate > 0 [KOS18,GMW17], they do not
satisfy the privacy property of a 3-out-of-3 secret sharing scheme. In particular,
given two states of the codeword, some information about the message is leaked.
Thus, getting a 3-out-of-n non-malleable secret sharing scheme with rate > 0
seems out of reach of the current techniques and we leave this as an open problem.

4 812 bits is the minimal message length that gives 80 bits of security.
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Multiple Tampering. We initiate the study of non-malleable secret sharing
under multiple tampering. Here, the shares can be subject to multiple (possibly
different) tampering functions and we require that the joint distribution of the
reconstructed secrets to be independent of s. For this stronger security notion, we
first prove a negative result that states that a non-malleable secret sharing cannot
exist when the number of tamperings (also called as the tampering degree) is
apriori unbounded. This result generalizes a similar result for the case of a split-
state non-malleable codes. Formally,

Theorem 3. For any n, t ∈ N, there does not exist a t-out-of-n non-malleable
secret sharing scheme against Find that can support an apriori unbounded tam-
pering degree.

When the tampering degree is apriori bounded, we get constructions of
threshold non-malleable secret sharing scheme. Formally,

Theorem 4. For any n, t ≥ 4, and K ∈ N, there exists a t-out-of-n non-
malleable secret sharing scheme with tampering degree K for sharing m-bit secrets
for a large enough5 m against Find with rate = Θ( 1

K3t log2 n
) and simulation

error 2−mΩ(1)
. The running time of the sharing and reconstruction algorithms

are polynomial in n and m.

General Access Structures. We extend our techniques used in the proof of
Theorems 1, 4 to give constructions of non-malleable secret sharing scheme for
more general monotone access structures rather than just threshold structures.
Before we state our result, we give some definitions.

Definition 1. An access structure A is said to be monotone if for any set S ∈ A,
any superset of S is also in A. A monotone access structure A is said to be
4-monotone if for any set S ∈ A, |S| ≥ 4.

We also give the definition of a minimal authorized set.

Definition 2. For a monotone access structure A, a set S ∈ A is a minimal
authorized set if any strict subset of S is not in A. We denote tmax to be max |S|
where S is a minimal authorized set of A.

We now state our extension to general access structures.

Theorem 5. For any n,K ∈ N and 4-monotone access structure A, if there
exists a statistically private (with privacy error ε) secret sharing scheme for
A that can share m-bit secrets for a large enough m with rate R, there exists a
non-malleable secret sharing scheme for sharing m-bit secrets for the same access
structure A with tampering degree K against Find with rate Θ( R

K3tmax log2 n
) and

simulation error ε + 2−mΩ(1)
.

Thus, starting with a secret sharing scheme for monotone span pro-
grams [KW93] or for more general access structures [LV18], we get non-malleable
secret sharing schemes for the same access structures with comparable rate.
5 See the main body for the precise statement.
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Comparison with [GK18b]. In the prior work [GK18b], the rate of the non-
malleable secret sharing for general access structures also depended on the length
of the message and thus, even when R is constant, their construction could
only achieve a rate of 0. However, unlike our construction, they could support
all monotone access structures (and not just 4-monotone) and they could even
start with a computational secret sharing scheme for an access structure A and
convert it to a non-malleable secret sharing scheme for A.

Concurrent Work. In a concurrent and independent work, Aggarwal et al.
[ADN+18] consider the multiple tampering model and give constructions of non-
malleable secret sharing for general access structures in this model. There are
three main differences between our work and their work. Firstly, the rate of their
construction asymptotically tends to 0 even for the threshold case. However, the
rate of our construction is greater than 0 when we instantiate the compiler with
a rate > 0 secret sharing scheme. Secondly, their work considers a stronger
model wherein each tampering function can choose a different reconstruction
set. We prove the security of our construction in a weaker model wherein the
reconstruction set is the same for each tampering function. We note that the
impossibility result for unbounded tampering holds even if the reconstruction
set is the same. Thirdly, their construction can give non-malleable secret sharing
scheme for any 3-monotone access structure whereas our construction can only
work for 4-monotone access structure. In another concurrent and independent
work, Kumar et al. [KMS18] gave a construction of non-malleable secret shar-
ing in a stronger model where the tampering functions might obtain bounded
leakage from the other shares.

2 Our Techniques

In this section, we give a high level overview of the techniques used to obtain
our results.

2.1 Rate Improvement

Goyal and Kumar [GK18a] Approach. We first give a brief overview of the con-
struction of threshold non-malleable secret sharing of Goyal and Kumar [GK18a]
and then explain why it could achieve only a rate of 0. At a high level, Goyal
and Kumar start with any 2-split-state non-malleable code and convert it into a
t-out-of-n non-malleable secret sharing scheme. We only explain their construc-
tion for the case when t ≥ 3, and for the case of t = 2, they gave a slightly
different construction. For the case when t ≥ 3, the sharing procedure does the
following. The secret is first encoded using a 2-split-state non-malleable code
to obtain the two states L and R. L is now shared using any t-out-of-n secret
sharing scheme, say Shamir’s secret sharing to get the shares SL1, . . . ,SLn and
R is shared using a 2-out-of-n local leakage resilient secret sharing scheme to get
the shares SR1, . . . ,SRn. The share corresponding to party i includes (SLi,SRi).
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To recover the secret given at least t shares, the parties first use the recovery pro-
cedures of the threshold secret sharing scheme and local leakage resilient secret
sharing scheme to recover L and R respectively. Later, the secret is obtained
by decoding L and R using the decoding procedure of the non-malleable code.
The correctness of the construction is straightforward and to argue secrecy, it
can been seen that given any set of t − 1 shares, L is perfectly hidden and this
follows from the security of Shamir’s secret sharing. Now, using the fact that
any 2-split-state non-malleable code is a 2-out-of-2 secret sharing scheme, it can
be shown that the right state R statistically hides the secret.

To argue the non-malleability of this construction, Goyal and Kumar showed
that any tampering attack on the secret sharing scheme can be reduced to a
tampering attack on the underlying 2-split-state non-malleable code. The main
challenge in designing such a reduction is that the tampering functions against
the underlying non-malleable code must be split-state, meaning that the tam-
pering function against L (denoted by f) must be independent of R and the
tampering function against R (denoted by g) must be independent of L. To
make the tampering function g to be independent of L, [GK18a] made use of
the fact that there is an inherent difference in the parameters used for secret
sharing L and R. Specifically, since R is shared using a 2-out-of-n secret sharing
scheme, the tampered right state ˜R can be recovered from any two tampered
shares, say ˜SR1, ˜SR2. Now, since L is shared using a t-out-of-n secret sharing
scheme and t ≥ 3, the shares SL1 and SL2 information theoretically provides no
information about L. This, in particular means that we can fix the shares SL1
and SL2 independent of L and the tampering function g could use these fixed
shares to output the tampered right state ˜R. Now, when f is given the actual L,
it can sample SL3, . . . ,SLn as a valid secret sharing of L that is consistent with
the fixed SL1,SL2. This allowed them to argue one-sided independence i.e., g is
independent of L. On the other hand, making the tampering function f to be
independent of R is a lot trickier. This is because any two shares information
theoretically fixes R and in order to recover ˜L, we need at least t (≥3) shares.
Hence, we may not be able to argue that f is independent of R. To argue this
independence, Goyal and Kumar used the fact that R is shared using a local leak-
age resilient secret sharing scheme. In particular, they made the size of SRi to
be much larger than the size of SLi and showed that even when we leak |SLi| bits
from each share SRi, R is still statistically hidden. This allowed them to define
leakage functions leak1, . . . , leakn where leaki had SLi hardwired in its descrip-
tion, it applies the tampering function on (SLi,SRi) and outputs the tampered
˜SLi. Now, from the secrecy of the local leakage resilient secret sharing scheme,
the distribution ˜SL1, . . . , ˜SLn (which completely determines ˜L) is independent
of R and thus ˜L is independent of R. This allowed them to obtain two-sided
independence.

A drawback of this approach is that the rate of this scheme is at least as
bad as that of the underlying 2-split-state non-malleable code. As mentioned
before, obtaining a 2-split-state non-malleable code with rate > 0 is a major
open problem. Thus, this construction could only achieve a rate of 0.
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Our Approach. While constructing 2-split-state non-malleable code with
rate >0 has been notoriously hard, significant progress has been made for the
case of 3-split-state non-malleable codes. Very recently, independent works of
Gupta et al. [GMW17] andKanukurthi et al. [KOS18] gave constructions of 3-split-
state non-malleable codes with an explicit constant rate. The main idea behind our
rate-improved construction is to use a constant rate, 3-split-state non-malleable
code instead of a rate 0, 2-split-state non-malleable code. To be more precise, we
first encode the secret using a 3-split-state non-malleable code to get the three
states (L,C,R). We then share the first state L using a t-out-of-n secret shar-
ing scheme to get (SL1, . . . ,SLn) as before. Then, we share C using a t1-out-of-n
secret sharing scheme to get (SC1, . . . ,SCn) and R using a t2-out-of-n secret shar-
ing scheme to get (SR1, . . . ,SRn). Here, t1, t2 are some parameters that we will
fix later. The share corresponding to party i includes (SLi,SCi,SRi). While the
underlying intuition behind this idea is natural, proving that this construction is
a non-malleable secret sharing scheme faces several barriers which we elaborate
below.

First Challenge. The first barrier that we encounter is, unlike a 2-split-state non-
malleable code which is always a 2-out-of-2 secret sharing scheme, a 3-split-state
non-malleable code may not be a 3-out-of-3 secret sharing scheme. In particular,
we will not be able use the [GK18a] trick of sharing the 3-states using secret
sharing schemes with different thresholds to gain one-sided independence. This
is because given t − 1 shares, complete information about two states will be
revealed, and we could use these two states to gain some information about the
underlying message. Thus, the privacy of the scheme breaks down. Indeed, as
mentioned in the introduction, the constructions of Kanukurthi et al. [KOS18]
and Gupta et al. [GMW17] are not 3-out-of-3 secret sharing schemes.

The main trick that we use to solve this challenge is that, while these
constructions [KOS18,GMW17] are not 3-out-of-3 secret sharing schemes, we
observe that there exist two states (let us call them C and R) such that these
two states statistically hide the message. This means that we can potentially
share these two states using secret sharing schemes with smaller thresholds and
may use it to argue one-sided independence.

Second Challenge. The second main challenge is in ensuring that the tampering
functions we design for the underlying 3-split-state non-malleable code are indeed
split-state. Let us call the tampering functions that tamper L,C, and R as f, g,
and h respectively. To argue that f, g and h are split-state, we must ensure f
is independent of C and R and similarly, g is independent of L and R and h is
independent of L and C. For the case of 2-split-state used in the prior work, this
independence was achieved by using secret sharing with different thresholds and
relying on the leakage resilience property. For the case of 3-split-state, we need
a more sophisticated approach of stratifying the three secret sharing schemes so
that we avoid circular dependence in the parameters. We now elaborate more
on this solution.
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To make g and h to be independent of L, we choose the thresholds t1 and
t2 to be less than t. This allows us to fix a certain number of shares indepen-
dent of L and use these shares to extract ˜C and ˜R. Similarly, to make h to be
independent of C, we choose the threshold t2 < t1. This again allows us to fix
certain shares C and use them to extract ˜R. Thus, by choosing t > t1 > t2,
we could achieve something analogous to one-sided independence. Specifically,
we achieved independence of g from L and independence of h from (L,C). For
complete split-state property, we still need to make sure that f is independent
of (C,R) and g is independent of R. To make the tampering function f to be
independent of C, we rely on the local leakage resilience property of the t1-out-
of-n secret sharing scheme. That is, we make the size of the shares SCi to be
much larger than SLi such that, in spite of leaking |SLi| bits from each share SCi,
the secrecy of C is maintained. We can use this to show that the joint distribu-
tion (˜SL1, . . . , ˜SLn) (which completely determines ˜L) is independent of C. Now,
to argue that both f and g are independent of R, we rely on the local leakage
resilience property of the t2-out-of-n secret sharing scheme. That is, we make
the shares of SRi to be much larger than (SLi,SCi) so that, in spite of leaking
|SLi| + |SCi| bits from each share SRi, the secrecy of R is maintained. We then
use this property to argue that the joint distribution (˜SL1, ˜SC1), . . . , (˜SLn, ˜SCn)
is independent of R. Thus, the idea of stratifying the three threshold secret shar-
ing schemes with different parameters as described above allows to argue that
f , g and h are split-state. As we will later see, this technique of stratification is
very powerful and it allows us to easily extend this construction to more general
monotone access structures.

Third Challenge. The third and the more subtle challenge is the following. To
reduce the tampering attack on the secret sharing scheme to a tampering attack
on the underlying non-malleable code, we must additionally ensure consistency
i.e., the tampered message output by the split-state functions must be statisti-
cally close to the message output by the tampering experiment of the underlying
secret sharing scheme. To illustrate this issue in some more detail, let us consider
the tampering functions f and g in the construction of Goyal and Kumar [GK18a]
for the simple case when n = t = 3. Recall that the tampering function g sam-
ples SR1,SR2 such that it is a valid 2-out-of-n secret sharing of R and uses the
fixed SL1,SL2 (independent of L) to extract the tampered ˜R from (˜SR1, ˜SR2).
However, note that g cannot use any valid secret sharing of SR1,SR2 of R. In
particular, it must also satisfy the property that the tampering function applied
on SL1,SR1 gives the exact same ˜SL1 that f uses in the reconstruction (a similar
condition for position 2 must be satisfied). This is crucial, as otherwise there
might be a difference in the distributions of the tampered message output by
the split-state functions and the message output in the tampering experiment of
the secret sharing scheme. In case there is a difference, we cannot hope to use
the adversary against the non-malleable secret sharing to break the underlying
non-malleable code. This example illustrates this issue for a simple case when
t = n = 3. To ensure consistency for larger values of n and t, Goyal and Kumar
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fixed (SL1, . . . ,SLt−1) (instead of just fixing SL1,SL2) and the function g ensures
consistency of each of the tampered shares ˜SL1, . . . , ˜SLt−1. However, this app-
roach completely fails when we move to 3 states. For the case of 3-states, the
tampering function, say h, must sample SR1, . . . ,SRn such that it is consistent
with ˜SL1, . . . , ˜SLt−1 used by f . However, even to check this consistency, h would
need the shares SC1, . . . ,SCt−1 which completely determines C. In this case, we
cannot argue that h is independent of C.

To tackle this challenge, we deviate from the approach of Goyal and
Kumar [GK18a] and have a new proof strategy that ensures consistency and
at the same time maintains the split-state property. In this strategy, we only fix
the values (SL1,SL2,SL3) for the first secret sharing scheme, (SC1,SC2) for the
second secret sharing scheme and fix SR3 for the third secret sharing scheme.
Note that we consider t ≥ 4, t1 ≥ 3 and t2 ≥ 2 and thus, the fixed shares are
independent of L, C, and R respectively.6 We design our split-state functions in
such a way that the tampering function f need not do any consistency checks,
the tampering function g has to do the consistency check only on ˜SL3 (which it
can do since SL3 and SR3 are fixed) and the function h needs to do a consis-
tency check only on {˜SLi, ˜SCi}i∈[1,2] (which it can do since SL1,SC1,SL2,SC2 are
fixed). This approach of reducing the number of checks to maintain consistency
helps us in arguing independence between the tampering functions. However, this
approach creates additional problems in extracting ˜L as the tampering function
f needs to use the shares (SR4, . . . ,SRn) and (SC4, . . . ,SCn) (which completely
determines C and R respectively). We solve this by letting f extract ˜L using
shares of some arbitrary values of C and R and we then use the leakage resilience
property to ensure that the outputs in the split-state tampering experiment and
the secret sharing tampering experiment are statistically close.

Completing the Proof. This proof strategy helps us in getting a rate > 0 con-
struction of a t-out-of-n non-malleable secret sharing scheme for t ≥ 4. However,
there is one crucial block that is still missing. Goyal and Kumar [GK18a] only
gave a construction of 2-out-of-n local leakage resilient secret sharing scheme.
And, for this strategy to work we also need a construction of t1-out-of-n local
leakage resilient secret sharing scheme for some t1 > 2. As mentioned in the
introduction, the recent work by Benhamouda et al. [BDIR18] only gives a con-
struction of local leakage resilient secret sharing when the threshold value is
large (in particular, n− o(log n)). To solve this, we give an efficient construction
of a t-out-of-n local leakage resilient secret sharing scheme when t is a constant.
This is in fact sufficient to get a rate > 0 construction of non-malleable secret
sharing scheme. We now give details on the techniques used in this construction.

Local Leakage Resilient Secret Sharing Scheme. The starting point of our con-
struction is the 2-out-of-2 local leakage resilient secret sharing from the work
of Goyal and Kumar [GK18a] based on the inner product two-source extrac-
tor [CG88]. We first extend it to a k-out-of-k local leakage resilient secret sharing
6 This is the reason why we could only achieve thresholds t ≥ 4.



604 S. Badrinarayanan and A. Srinivasan

scheme for any arbitrary k. Let us now illustrate this for the case when k is even
i.e., k = 2p. To share a secret s, we first additively secret share s into s1, . . . , sp

and we encode each si using the 2-out-of-2 leakage resilient secret sharing scheme
to obtain the shares (share2i−1, share2i). We then give sharei to party i for each
i ∈ [k]. Note that given t − 1 shares, at most p − 1 additive secret shares can
be revealed. We now rely on the local leakage resilience property of the 2-out-
of-2 secret sharing to argue that the final additive share is hidden even when
given bounded leakage from the last share. This helps us in arguing the k-out-k
local leakage resilience property. The next goal is to extend this to a k-out-of-n
secret sharing scheme. Since we are interested in getting good rate, we should
not increase the size of the shares substantially. A näıve way of doing this would
be to share the secret

(

n
k

)

times (one for each possible set of k-parties) using the
k-out-of-k secret sharing scheme and give the respective shares to the parties.
The size of each share in this construction would blow up by a factor

(

n
k−1

)

when
compared to the k-out-of-k secret sharing scheme. Though, this is polynomial
in n when k is a constant, this is clearly sub-optimal when n is large and would
result in bad concrete parameters. We note that Goyal and Kumar [GK18a] used
a similar approach to obtain a 2-out-of-n local leakage resilient secret sharing.

In this work, we use a very different approach to construct a k-out-of-n
local leakage resilient secret sharing from a k-out-of-k local leakage resilient
secret sharing. The main advantage of this transformation is that it is substan-
tially more rate efficient than the näıve solution. Our transformation makes use
of combinatorial objects called as perfect hash functions [FK84].7 A family of
functions mapping {1, . . . , n} to {1, . . . , k} is said to be a perfect hash func-
tion family if for every set S ⊆ [n] of size at most k, there exists at least one
function in the family that is injective on S. Let us now illustrate how this prim-
itive is helpful in extending a k-out-of-k secret sharing scheme to a k-out-of-n
secret sharing scheme. Given a perfect hash function family {hi}i∈[�] of size �,
we share the secret s independently � times using the k-out-of-k secret sharing
scheme to obtain (sharei

1, . . . , share
i
k) for each i ∈ [�]. We now set the shares

corresponding to party i as (share1h1(i), . . . , share
�
h�(i)

). To recover the secret from
some set of k shares given by S = {s1, . . . , sk}, we use the following strategy.
Given any subset S of size k, perfect hash function family guarantees that there
is at least one index i ∈ [�] such that hi is injective on S. We can now use
{sharei

hi(s1), . . . , share
i
hi(sk)

} = {sharei
1, . . . , share

i
k} to recover the secret using

the reconstruction procedure of the k-out-of-k secret sharing.
We show that this transformation additionally preserves local leakage

resilience. In particular, if we start with a k-out-of-k local leakage resilient secret
sharing scheme then we obtain a k-out-of-n local leakage resilient secret sharing.
The size of each share in our k-out-of-n leakage resilient secret sharing scheme
is � times the share size of k-out-of-k secret sharing scheme. Thus, to minimize

7 We note that using perfect hash function families for constructing threshold secret
sharing scheme is not new (see [Bla99,SNW01] for a comprehensive discussion).
However, to the best of our knowledge, this is the first application of this technique
to construct local leakage resilient secret sharing scheme.
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rate we must minimize the size of the perfect hash function family. Constructing
perfect hash function family of minimal size for all k ∈ N is an interesting and
a well-known open problem in combinatorics. In this work, we give an efficient
randomized construction (with good concrete parameters) of a perfect hash func-
tion family for a constant k with size O(log n + log(1/ε)) where ε is the error
probability. Alternatively, we can also use the explicit construction (which is
slightly less efficient when compared to the randomized construction) of size
O(log n) (when k is a constant) given by Alon et al. [AYZ95]. Combining either
the randomized/explicit construction of perfect hash function family with a con-
struction of k-out-of-k local leakage resilient secret sharing scheme, we get an
efficient construction of k-out-of-n local leakage resilient secret sharing scheme
when k is a constant.

2.2 Multiple Tampering

We also initiate the study of non-malleable secret sharing under multiple tam-
perings. As discussed in the introduction, this is a much stronger model when
compared to that of a single tampering.

Negative Result. We first show that when the number of tampering functions that
can maul the secret sharing scheme is apriori unbounded, there does not exist
any threshold non-malleable secret sharing scheme. This generalizes a similar
result for the case of split-state non-malleable code (see [GLM+04,FMNV14] for
details) and the main idea is inspired by these works. The underlying intuition
behind the negative result is simple: we come up with a set of tampering functions
such that each tampering experiment leaks one bit of a share. Now, given the
outcomes of t · s such tampering experiments where s is the size of the share,
the distinguisher can clearly learn every bit of t shares and thus, learn full
information about the underlying secret and break non-malleability.

For the tampering experiment to leak one bit of the share of party i, we
use the following simple strategy. Let us fix an authorized set of size t say,
{1, . . . , t}. We choose two sets of shares: {share1, . . . , sharei, . . . , sharet} and
{share1, . . . , share′

i, . . . , sharet} such that they reconstruct to two different secrets.
Note that the privacy of a secret sharing scheme guarantees that such shares
must exist. Whenever the particular bit of the share of party i is 1, the tamper-
ing function fi outputs share′

i whereas the other tampering functions, say fj will
output sharej . On the other hand, if the particular bit is 0 then the tampering
function fi outputs sharei and the other tampering functions still output sharej .
Observe that the reconstructed secret in the two cases reveals the particular bit
of the share of party i. We can use a similar strategy to leak every bit of all the
t shares which completely determine the secret.

Positive Result. We complement the negative result by showing that when the
number of tamperings is apriori bounded, we can obtain an efficient construction
of a threshold non-malleable secret sharing scheme. A natural approach would
be to start with a split-state non-malleable code that is secure against bounded
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tamperings and convert it into a non-malleable secret sharing scheme. To the
best of our knowledge, the only known construction of split-state non-malleable
code that is secure in the presence of bounded tampering is that of Chattopad-
hyay et al. [CGL16]. However, the rate of this code is 0 even when we restrict
ourselves to just two tamperings. In order to achieve a better rate, we modify
the constructions of Kanukurthi et al. [KOS18] and Gupta et al. [GMW17] such
that we obtain a 3-split-state non-malleable code that secure in the setting of
bounded tampering. The rate of this construction is O( 1

k ) where k is the apriori
bound on the number of tamperings. Fortunately, even in this construction, we
still maintain the property that there exists two states that statistically hide the
message. We then prove that the same construction described earlier is a secure
non-malleable secret sharing under bounded tampering when we instantiate the
underlying code with a bounded tampering secure 3-split-state non-malleable
codes.

2.3 General Access Structures

To obtain a secret sharing scheme for more general access structures, we start
with any statistically secure secret sharing scheme for that access structure, and
use it to share L instead of using a threshold secret sharing scheme. We require
that the underlying access structure to be 4-monotone so that we can argue
the privacy of our scheme. Recall that a 4-monotone access structure is one in
which the size of every set in the access structure is at least 4. Even in this more
general case, the technique of stratifying the secret sharing schemes allows us
to prove non-malleability in almost an identical fashion to the case of threshold
secret sharing. We remark that the work of [GK18b] which gave constructions
of non-malleable secret sharing scheme for general monotone access structures
additionally required their local leakage resilient secret sharing scheme to satisfy
a security property called as strong local leakage resilience. Our construction
does not require this property and we show that “plain” local leakage resilience
is sufficient for extending to more general monotone access structures.

Organization. We give the definitions of non-malleable secret sharing and non-
malleable codes in Sect. 3. In Sect. 4, we present the construction of the k-out-
of-n leakage resilient secret sharing scheme. In Sect. 5, we describe our rate-
efficient threshold non-malleable secret sharing scheme for the single tampering.
We give the impossibility result for unbounded many tamperings in the full
version. Finally, in Sect. 6, we describe our result on non-malleable secret sharing
for general access structures against multiple bounded tampering. Note that the
result in Sect. 6 implicitly captures the result for threshold non-malleable secret
sharing against bounded tampering. We present this more general result for ease
of exposition.
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3 Preliminaries

Notation. We use capital letters to denote distributions and their support, and
corresponding lowercase letters to denote a sample from the same. Let [n] denote
the set {1, 2, . . . , n}, and Ur denote the uniform distribution over {0, 1}r. For
any i ∈ [n], let xi denote the symbol at the i-th co-ordinate of x, and for any
T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates indexed
by T . We write ◦ to denote concatenation. We give the standard definitions of
min-entropy, statistical distance and seeded extractors in the full version.

3.1 Threshold Non-Malleable Secret Sharing Scheme

We first give the definition of a sharing function, then define a threshold secret
sharing scheme and finally give the definition of a threshold non-malleable secret
sharing. These three definitions are taken verbatim from [GK18a]. We define non-
malleable secret sharing for more general access structures in the full version.

Definition 3 (Sharing Function). Let [n] = {1, 2, . . . , n} be a set of identities
of n parties. Let M be the domain of secrets. A sharing function Share is a
randomized mapping from M to S1×S2×. . .×Sn, where Si is called the domain of
shares of party with identity i. A dealer distributes a secret m ∈ M by computing
the vector Share(m) = (S1, . . . ,Sn), and privately communicating each share Si

to the party i. For a set T ⊆ [n], we denote Share(m)T to be a restriction of
Share(m) to its T entries.

Definition 4 ((t, n, εc, εs)-Secret Sharing Scheme). Let M be a finite set of
secrets, where |M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of
n parties. A sharing function Share with domain of secrets M is a (t, n, εc, εs)-
secret sharing scheme if the following two properties hold:

– Correctness: The secret can be reconstructed by any t-out-of-n parties. That
is, for any set T ⊆ [n] such that |T | ≥ t, there exists a deterministic recon-
struction function Rec : ⊗i∈T Si → M such that for every m ∈ M,

Pr[Rec(Share(m)T ) = m] = 1 − εc

where the probability is over the randomness of the Share function. We will
slightly abuse the notation and denote Rec as the reconstruction procedure that
takes in T and Share(m)T where T is of size at least t and outputs the secret.

– Statistical Privacy: Any collusion of less than t parties should have
“almost” no information about the underlying secret. More formally, for any
unauthorized set U ⊆ [n] such that |U | < t, and for every pair of secrets
m0,m1 ∈ M , for any distinguisher D with output in {0, 1}, the following
holds:

|Pr[D(Share(m0)U ) = 1] − Pr[D(Share(m1)U ) = 1]| ≤ εs
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We define the rate of the secret sharing scheme as

lim
|m|→∞

|m|
maxi∈[n] |Share(m)i|

Definition 5 (Threshold Non-Malleable Secret Sharing [GK18a]). Let
(Share,Rec) be a (t, n, εc, εs)-secret sharing scheme for message space M. Let F
be some family of tampering functions. For each f ∈ F , m ∈ M and authorized
set T ⊆ [n] containing t indices, define the tampered distribution Tamperf,T

m as
Rec(f(Share(m))T ) where the randomness is over the sharing function Share. We
say that the (t, n, εc, εs)-secret sharing scheme, (Share,Rec) is ε′-non-malleable
w.r.t. F if for each f ∈ F and any authorized set T consisting of t indices, there
exists a distribution Df,T over M ∪ {same�} such that:

|Tamperf,T
m − copy(Df,T ,m)| ≤ ε′

where copy is defined by copy(x, y) =

{

x if x �= same�

y if x = same�
.

Many Tampering Extension. We now extend the above definition to capture
multiple tampering attacks. Informally, we say that a secret sharing scheme
is non-malleable w.r.t. family F with tampering degree K if for any set of K
functions f1, . . . , fK ∈ F , the output of the following tampering experiment is
independent of the shared message m: (i) we first share a secret m to obtain the
corresponding shares, (ii) we tamper the shares using f1, . . . , fK, (iii) we finally,
output the K-reconstructed tampered secrets. Note that in the above experiment
the message m is secret shared only once but is subjected to K (possibly different)
tamperings. We refer to the full version for the formal definition.

3.2 Non-Malleable Codes

Dziembowski, Pietrzak and Wichs [DPW10] introduced the notion of non-
malleable codes which generalizes the usual notion of error correction. In par-
ticular, it guarantees that when a codeword is subject to tampering attack, the
reconstructed message is either the original one or something that is independent
of the original message.

Definition 6 (Non-Malleable Codes [DPW10]). Let Enc : {0, 1}m → {0, 1}n

and Dec : {0, 1}n → {0, 1}m ∪ {⊥} be (possibly randomized) functions, such that
Dec

(

Enc(s)
)

= s with probability 1 for all s ∈ {0, 1}m. Let F be a family of
tampering functions and fix ε > 0. We say that (Enc,Dec) is ε−non-malleable
w.r.t. F if for every f ∈ F , there exists a random variable Df on {0, 1}m ∪
{same�}, such that for all s ∈ {0, 1}m,

|Dec(f(Xs)) − copy(Df , s)| ≤ ε

where Xs ← Enc(s) and copy is defined by copy(x, y) =

{

x if x �= same�

y if x = same�
. We

call n the length of the code and m/n the rate.
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Chattopadhyay, Goyal and Li [CGL16] defined a stronger notion of non-
malleability against multiple tampering. We recall this definition in the full
version of the paper.

Split-state Tampering Functions. We focus on the split-state tampering model
where the encoding scheme splits s into c states: Enc(s) = (S1, . . . ,Sc) ∈ S1 ×
S2 . . . × Sc and the tampering family is Fsplit =

{

(f1, . . . , fc)
∣

∣fi : Si → Si

}

. We
will call such a code as c-split-state non-malleable code.

Augmented Non-Malleable Codes. We recall the definition of augmented, 2-split-
state non-malleable codes [AAG+16].

Definition 7 (Augmented Non-Malleable Codes [AAG+16]). A coding
scheme (Enc,Dec) with code length 2n and message length m is an augmented
2-split-state non-malleable code with error ε if for every function f, g : {0, 1}n →
{0, 1}n, there exists a random variable D(f,g) on {0, 1}n × ({0, 1}m ∪ {same�})
such that for all messages s ∈ {0, 1}m, it holds that

|(L,Dec(f(L), g(R))) − S(D(f,g), s)| ≤ ε

where (L,R) = Enc(s), (L, m̃) ← Df,g and S((L, m̃), s) outputs (L, s) if m̃ =
same� and otherwise outputs (L, m̃).

Explicit Constructions. We now recall the constructions of split-state non-
malleable codes.

Theorem 6 ([Li17]). For any n ∈ N, there exists an explicit construction of
2-split-state non-malleable code with efficient encoder/decoder, code length 2n,
rate O( 1

log n ) and error 2−Ω( n
log n ).

Theorem 7 ([KOS18,GMW17]). For every n ∈ N and ρ > 0, there
exists an explicit construction of 3-split-state non-malleable code with efficient
encoder/decoder, code length (3+ o(1))n, rate 1

3+o(1) and error 2−Ω(n/ log1+ρ(n)).

Theorem 8 ([CGL16]). There exists a constant γ > 0 such that for every
n ∈ N and t ≤ nγ , there exists an explicit construction of 2-split-state non-
malleable code with an efficient encoder/decoder, tampering degree t, code length
2n, rate 1

nΩ(1) and error 2−nΩ(1)
.

Theorem 9 ([GKP+18]). There exists a constant γ > 0 such that for every
n ∈ N and t ≤ nγ , there exists an explicit construction of an augmented, split-
state non-malleable code with an efficient encoder/decoder, tampering degree t,
code length 2n, rate 1

nΩ(1) and error 2−nΩ(1)
.

Theorem 10. There exists a constant γ > 0 such that for every n ∈ N and
t ≤ nγ , there exists an explicit construction of 3-split-state non-malleable code
with an efficient encoder/decoder, tampering degree t, code length 3n, rate Θ(1t )
and error 2−nΩ(1)

.

We give the proof of this theorem in the full version.
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Additional Property. We show in the full version that the construction given in
[KOS18,GMW17] satisfies the property that given two particular states of the
codeword, the message remains statistically hidden.

4 k-out-of-n Leakage Resilient Secret Sharing Scheme

In this section, we give a new, rate-efficient construction of k-out-of-n leakage
resilient secret sharing scheme for a constant k. Later, in Sect. 5, we will use this
primitive along with a 3-split-state non-malleable code with explicit constant
rate (see Theorem 7) from the works of Kanukurthi et al. [KOS18] and Gupta
et al. [GMW17] to construct a t-out-of-n non-malleable secret sharing scheme
with the above mentioned rate.

We first recall the definition of a leakage resilient secret sharing scheme from
[GK18a].

Definition 8 (Leakage Resilient Secret Sharing [GK18a]). A (t, n, εc, εs)
(for t ≥ 2) secret sharing scheme (Share,Rec) for message space M is said to be
ε-leakage resilient against a leakage family F if for all functions f ∈ F and for
any two messages m0,m1 ∈ M:

|f(Share(m0)) − f(Share(m1))| ≤ ε

Leakage Function Family. We are interested in constructing leakage resilient
secret sharing schemes against the specific function family Fk,k,−→μ = {fK,K,−→μ :
K ⊆ [n], |K| = k,K ⊆ K, |K| ≤ k} where fK,K,−→μ on input (share1, . . . , sharen)
outputs sharei for each i ∈ K in the clear and outputs fi(sharei) for every
i ∈ K \ K such that fi is an arbitrary function outputting μi bits. When we
just write μ (without the vector sign), we mean that every function fi outputs
at most μ bits.

Organization. The rest of this section is organized as follows: we first construct
a k-out-of-k leakage resilient secret sharing scheme against Fk,k−1,μ (in other
words, k − 1 shares are output in the clear and μ bits are leaked from the
k-th share) in Sect. 4.1. In Sect. 4.2, we recall the definition of a combinatorial
object called as perfect hash function family and give a randomized construction
of such a family. Next, in Sect. 4.3, we combine the construction of k-out-of-k
leakage resilient secret sharing scheme and a perfect hash function family to
give a construction of k-out-of-n leakage resilient secret sharing scheme (for a
constant k).

4.1 k-out-of-k Leakage Resilient Secret Sharing

In this subsection, we will construct a k-out-k leakage resilient secret sharing
scheme against Fk,k−1,μ for an arbitrary k ≥ 2 (and not just for a constant
k). As a building block, we will use a 2-out-of-2 leakage resilient secret sharing
which was constructed in [GK18a]. We first recall the lemma regarding this
construction.
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Lemma 1 ([GK18a]). For any ε > 0 and μ,m ∈ N, there exists a con-
struction of (2, 2, 0, 0) secret sharing scheme for sharing m-bit secrets that is
ε-leakage resilient against F2,1,μ such that the size of each share is O(m +
μ + log 1

ε ). The running time of the sharing and reconstruction procedures are
poly(m,μ, log(1/ε)).

Let us denote the secret sharing scheme guaranteed by Lemma 1 as
(LRShare(2,2), LRRec(2,2)). We will use this to construct a k-out-of-k leakage
resilient secret sharing scheme for k > 2.

Lemma 2. For any ε > 0, k ≥ 2 and μ,m ∈ N, there exists a con-
struction of (k, k, 0, 0) secret sharing scheme for sharing m-bit secrets that is
ε-leakage resilient against Fk,k−1,μ such that the size of each share is O(m+μ+
log 1

ε ). The running time of the sharing and the reconstruction procedures are
poly(m,μ, k, log(1/ε)).

We give the proof of this Lemma in the full version.

4.2 Perfect Hash Function Family

In this subsection, we recall the definition of the combinatorial objects called as
perfect hash function family and give an efficient randomized construction for
constant k.

Definition 9 (Perfect Hash Function Family [FK84]). For every n, k ∈ N,
a set of hash functions {hi}i∈[�] where hi : [n] → [k] is said to be (n, k)-perfect
hash function family if for each subset S ⊆ [n] of size k there exists an i ∈ [�]
such that hi is injective on S.

Before we give the randomized construction, we will state and prove the
following useful lemma.

Lemma 3. For every ε > 0, n, k ∈ N, the set of functions {hi}i∈[�] where each hi

is chosen randomly from the set of all functions mapping [n] → [k] is a perfectly

hash function family with probability 1 − ε when � =
log (n

k)+log 1
ε

log 1
1− k!

kk

. Specifically,

when k is constant, we can set � = O(log n + log 1
ε ).

Proof. Let us first fix a subset S ⊆ [n] of size k. Let us choose a function h
uniformly at random from the set of all functions mapping [n] → [k].

Pr[h is not injective over S] = 1 − k!
kk

Let us now choose h1, . . . , h� uniformly at random from the set of all functions
mapping [n] → [k].

Pr[∀ i ∈ [�], hi is not injective over S] = (1 − k!
kk

)�
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By union bound,

Pr[∃ S s.t.,∀ i ∈ [�], hi is not injective over S] =
(

n

k

)

(1 − k!
kk

)�

We want
(

n
k

)

(1 − k!
kk )� = ε. We get the bound for � by rearranging this equation.

Randomized Construction for Constant k. For any k, n and some error parameter
ε, set � as in Lemma 3. Choose a function hi : [n] → [k] uniformly at random for
each i ∈ [�]. From Lemma 3, we infer that {hi}i∈[�] is a perfect hash function
family except with probability ε. The construction is efficient since the number
of random bits needed for choosing each hi is n log k which is polynomial in n
when k is a constant.

Explicit Construction. Building on the work of Schmidt and Siegal [SS90], Alon
et al. [AYZ95] gave an explicit construction of (n, k)-perfect hash function family
of size 2O(k) log n. We now recall the lemma from [AYZ95].

Lemma 4 ([AYZ95,SS90]). For every n, k ∈ N, there exists an explicit and
efficiently computable construction of (n, k)-perfect hash function family {hi}i∈[�]

where � = 2O(k) log n.

The explicit construction is obtained by brute forcing over a small bias proba-
bility space [NN93] and finding such a family is not as efficient as our randomized
construction. On the positive side, the explicit construction is error-free unlike
our randomized construction.

4.3 Construction of k-out-n Leakage Resilient Secret Sharing

In this subsection, we will use a k-out-of-k leakage resilient secret sharing scheme
from Sect. 4.1 and a perfect hash function family from Sect. 4.2 to construct a
k-out-of-n leakage resilient secret sharing scheme against Ft,k−1,−→μ for an arbi-
trary t ≤ n (recall the definition of Fk,k,−→μ from Definition 8). We give the
description in Fig. 1.

Theorem 11. For every εc, εs > 0, n, k,m ∈ N and −→μ ∈ N
n, the con-

struction given in Fig. 1 is a (k, n, εc, 0) secret sharing scheme for sharing
m-bit secrets that is εs-leakage resilient against leakage functions Ft,k−1,−→μ for
any t ≤ n. The running times of the sharing and reconstruction algorithms
are poly(n,m,

∑

i μi, log(1/εcεs)) when k is a constant. In particular, when
εs = εc = 2−m, the running times are poly(n,m,

∑

i μi). The size of each share
when k is a constant is O((m + maxT

∑

i∈T,T⊆[n],|T |=t μi + log(log n/εs)) log n).

We give the proof of this theorem in the full version.

Remark 1. In Fig. 1, we cannot directly set the size � = O(log n + log 1
εc

) and
perform a single sampling to find a perfect hash function family. This is because
when we want εc = 2−m, the size of the function family grows with m and this
affects the rate significantly. That is why, it is important to set ε = 1/2 and do
log 1

εc
independent repetitions in the LRShare(k,n) function to reduce the error

to εc.
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Fig. 1. (k, n, εc, 0) Leakage resilient secret sharing scheme

5 Non-Malleable Secret Sharing for Threshold Access
Structures

In this section, we give a construction of t-out-of-n (for any t ≥ 4) Non-Malleable
Secret Sharing scheme with rate Θ( 1

t log2 n
) against tampering function family

Find that tampers each share independently. We first give the formal description
of the tampering function family.

Individual Tampering Family Find. Let Share be the sharing function of the secret
sharing scheme that outputs n-shares in S1 × S2 . . . × Sn. The function family
Find is composed of functions (f1, . . . , fn) where each fi : Si → Si.

5.1 Construction

Building Blocks. The construction uses the following building blocks. We instan-
tiate them with concrete schemes later:

– A 3-split-state non-malleable code (Enc,Dec) where Enc : M → L × C × R
and the simulation error of the scheme is ε1. Furthermore, we assume that for
any two messages m,m′ ∈ M, (C,R) ≈ε2 (C′,R′) where (L,C,R) ← Enc(m)
and (L′,C′,R′) ← Enc(m′).

– A (t, n, 0, 0) secret sharing scheme (SecShare(t,n),SecRec(t,n)) with perfect pri-
vacy for message space L. We will assume that the size of each share is m1.
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– A (3, n, ε′
3, 0) secret sharing scheme (LRShare(3,n), LRRec(3,n)) that is ε3-

leakage resilient against leakage functions Ft,2,m1
8 for message space C. We

assume that the size of each share is m2.
– A (2, n, ε′

4, 0) secret sharing scheme (LRShare(2,n), LRRec(2,n)) for message
space R that is ε4-leakage resilient against leakage functions Ft,1,−→μ where
maxT

∑

i∈T,T⊆[n],|T |=t μi = O(m2 + tm1). We assume that the size of each
share is m3.

Construction. We give the formal description of the construction in Fig. 2 and
give an informal overview below. To share a secret s, we first encode s to (L,C,R)
using the 3-split-state non-malleable code. We first encode L to (SL1, . . . ,SLn)
using the t-out-of-n threshold secret sharing scheme. We then encode C into
(SC1, . . . ,SCn) using the 3-out-of-n leakage resilience secret sharing scheme
LRShare(3,n). We finally encode R into (SR1, . . . ,SRn) using the 2-out-of-n leak-
age resilient secret sharing scheme LRShare(2,n). We set the i-th share sharei

to be the concatenation of SLi,SCi and SRi. In order to reconstruct, we using
the corresponding reconstruction procedures SecRec, LRRec(3,n) and LRRec(2,n)

to compute L, C and R respectively. We finally use the decoding procedure of
3-split-state non-malleable code to reconstruct the secret s from L,C and R.

Theorem 12. For any arbitrary n ∈ N and threshold t ≥ 4, the construction
given in Fig. 2 is a (t, n, ε′

3 + ε′
4, ε2) secret sharing scheme. Furthermore, it is

(ε1 + ε3 + ε4)-non-malleable against Find.

We give the proof of this theorem in the full version.

5.2 Rate Analysis

We now instantiate the primitives and provide the rate analysis.

1. We instantiate the three split state non-malleable code from the works
of [KOS18,GMW17] (see Theorem 7). Using their construction, the |L| =
|C| = |R| = O(m) bits and the error ε1 = 2−Ω(m/ log1+ρ(m)) for any ρ > 0.

2. We use Shamir’s secret sharing [Sha79] as the t-out-of-n secret sharing scheme.
We get m1 = O(m) whenever m > log n.

3. We instantiate (LRShare(3,n), LRRec(3,n)) and (LRShare(2,n), LRRec(2,n)) from
Theorem 11. We get m2 = O(mt log n) and m3 = O(mt log2 n) by setting ε3
and ε4 to be 2−Ω(m/ log m).

Thus the rate of our construction is Θ( 1
t log2 n

) and the error is

2−Ω(m/ log1+ρ(m)).
We defer the concrete optimization of the rate of our construction to the full

version of the paper.

8 Recall that this denotes that the function can choose to leak at most m1 bits from
each share in a set of size t − 2 apart from the two that are completely leaked.
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Fig. 2. Construction of t-out-of-n non-malleable secret sharing scheme

6 NMSS for General Access Structures with Multiple
Tampering

We first define non-malleable secret sharing for general access structures in the
next subsection and then give the construction in the subsequent subsection.

6.1 Definitions

First, we recall the definition of a secret sharing scheme for a general monotone
access structure A - a generalization of the one defined for threshold access
structures in Definition 4.

Definition 10 ((A, n, εc, εs)-Secret Sharing Scheme). Let M be a finite set
of secrets, where |M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of
n parties. A sharing function Share with domain of secrets M is a (A, n, εc, εs)-
secret sharing scheme with respect to monotone access structure A if the following
two properties hold:

– Correctness: The secret can be reconstructed by any set of parties that are
part of the access structure A. That is, for any set T ∈ A, there exists a
deterministic reconstruction function Rec : ⊗i∈T Si → M such that for every
m ∈ M,

Pr[Rec(Share(m)T ) = m] = 1 − εc
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where the probability is over the randomness of the Share function. We will
slightly abuse the notation and denote Rec as the reconstruction procedure that
takes in T ∈ A and Share(m)T as input and outputs the secret.

– Statistical Privacy: Any collusion of parties not part of the access struc-
ture should have “almost” no information about the underlying secret. More
formally, for any unauthorized set U ⊆ [n] such that U /∈ A, and for every
pair of secrets m0,m1 ∈ M , for any distinguisher D with output in {0, 1}, the
following holds:

|Pr[D(Share(m0)U ) = 1] − Pr[D(Share(m1)U ) = 1]| ≤ εs

We define the rate of the secret sharing scheme as |m|
maxi∈[n] |Share(m)i|

We now define the notion of a non-malleable secret sharing scheme for general
access structures which is a generalization of the definition for threshold access
structures given in Definition 5.

Definition 11 (Non-Malleable Secret Sharing for General Access
Structures [GK18b]). Let (Share,Rec) be a (A, n, εc, εs)-secret sharing scheme
for message space M and access structure A. Let F be a family of tampering
functions. For each f ∈ F , m ∈ M and authorized set T ∈ A, define the tam-
pered distribution Tamperf,T

m as Rec(f(Share(m))T ) where the randomness is over
the sharing function Share. We say that the (A, n, εc, εs)-secret sharing scheme,
(Share,Rec) is ε′-non-malleable w.r.t. F if for each f ∈ F and any authorized
set T ∈ A, there exists a distribution Df,T over M ∪ {same�} such that:

|Tamperf,T
m − copy(Df,T ,m)| ≤ ε′

where copy is defined by copy(x, y) =

{

x if x �= same�

y if x = same�
.

Many Tampering Extension. Similar to the threshold case, in the full version,
we extend the above definition to capture multiple tampering attacks.

6.2 Construction

In this section, we show how to build a one-many non-malleable secret sharing
scheme for general access structures.

First, let (SecShare(A,n),SecRec(A,n)) be any statistically private secret shar-
ing scheme with rate R for a 4-monotone access structure A over n parties. We
refer the reader to [KW93,LV18] for explicit constructions.

Let tmax denote the maximum size of a minimal authorized set of A.9 We give
a construction of a Non-Malleable Secret Sharing scheme with tampering degree
K for a 4-monotone access structure A with rate O( R

K3tmax log2 n
) with respect to

a individual tampering function family Find.
9 We refer the reader to Definition 1, Definition 2 for definitions of 4-monotone access

structures and minimal authorized set.
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Building Blocks. The construction uses the following building blocks. We instan-
tiate them with concrete schemes later:

– A one-many 3-split-state non-malleable code (Enc,Dec) where Enc : M → L×
C×R, the simulation error of the scheme is ε1 and the scheme is secure against
K tamperings. Furthermore, we assume that for any two messages m,m′ ∈ M,
(C,R) ≈ε2 (C′,R′) where (L,C,R) ← Enc(m) and (L′,C′,R′) ← Enc(m′).

– A (A, n, 0, 0) (where A is 4-monotone) secret sharing scheme (SecShare(A,n),
SecRec(A,n)) with perfect privacy for message space L.10 We will assume that
the size of each share is m1.

– A (3, n, ε′
3, 0) secret sharing scheme (LRShare(3,n), LRRec(3,n)) that is ε3-

leakage resilient against leakage functions Ftmax,2,Km1 for message space C.
We assume that the size of each share is m2.

– A (2, n, ε′
4, 0) secret sharing scheme (LRShare(2,n), LRRec(2,n)) for message

space R that is ε4-leakage resilient against leakage functions Ftmax,1,−→μ where
maxT

∑

i∈T,T∈A,|T |=tmax
μi = O(Km2 + Ktmaxm1). We assume that the size of

each share is m3.

Fig. 3. Construction of non-malleable secret sharing scheme for general access struc-
tures against multiple tampering

10 We note that our proof of security goes through even if this secret sharing scheme
only has statistical privacy.
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Construction. The construction is very similar to the construction of non-
malleable secret sharing for threshold access structures given in Sect. 5 with
the only difference being that we now use the (A, n, 0, 0) secret sharing scheme.
Note that in the construction we additionally need a procedure to find a mini-
mal authorized set from any authorized set. This procedure is efficient if we can
efficiently test the membership in A. We point the reader to [GK18b] for details
of this procedure. We give the formal description of the construction in Fig. 3
for completeness.

Theorem 13. There exists a constant γ > 0 such that, for any arbitrary
n,K ∈ N and 4-monotone access structure A, the construction given in Fig. 3 is a
(A, n, ε′

3 + ε′
4, ε2) secret sharing scheme for messages of length m where m ≥ Kγ .

Furthermore, it is (ε1 + ε3 + ε4) one-many non-malleable with tampering degree
K with respect to tampering function family Find.

We give the proof of this theorem and the rate analysis in the full version.
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