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In this work, we study privacy-preserving storage schemes involving a client and
an untrusted server. The goal is to enable the client to outsource the storage
of data to the server such that the client may still perform operations on the
stored data (e.g. retrieving and updating data). For privacy, the client wishes to
keep the stored data hidden from server. One way to ensure the contents of the
data remain hidden is for the client to encrypt all data before uploading to the
server. However, the server can still view how the encrypted data is accessed as
the client performs operations. Previous works such as [4,20] have shown that the
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Abstract. In this work, we study privacy-preserving storage primitives
that are suitable for use in data analysis on outsourced databases within
the differential privacy framework. The goal in differentially private data
analysis is to disclose global properties of a group without compromis-
ing any individual’s privacy. Typically, differentially private adversaries
only ever learn global properties. For the case of outsourced databases,
the adversary also views the patterns of access to data. Oblivious RAM
(ORAM) can be used to hide access patterns but ORAM might be exces-
sive as in some settings it could be sufficient to be compatible with dif-
ferential privacy and only protect the privacy of individual accesses.

We consider (¢, §)-Differentially Private RAM, a weakening of ORAM
that only protects individual operations and seems better suited for use
in data analysis on outsourced databases. As differentially private RAM
has weaker security than ORAM, there is hope that we can bypass the
2(log(nb/c)) bandwidth lower bounds for ORAM by Larsen and Nielsen
[CRYPTO ’18] for storing an array of n b-bit entries and a client with ¢
bits of memory. We answer in the negative and present an £2(log(nb/c))
bandwidth lower bound for privacy budgets of ¢ = O(1) and § < 1/3.

The information transfer technique used for ORAM lower bounds
does not seem adaptable for use with the weaker security guarantees of
differential privacy. Instead, we prove our lower bounds by adapting the
chronogram technique to our setting. To our knowledge, this is the first
work that uses the chronogram technique for lower bounds on privacy-
preserving storage primitives.
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leakage of patterns of access to encrypted data can be used to compromise the
privacy of the encrypted data. Therefore, a very important privacy requirement
is also to protect the access patterns.

The traditional way to define the privacy of access pattern is obliviousness. An
oblivious storage primitive ensures that any adversary that is given two sequences
of operations of equal length and observes the patterns of data access performed
by one of the two sequences cannot determine which of the two sequences induced
the observed access pattern. The most famous oblivious storage primitive is
Oblivious RAM (ORAM) that outsources the storage of an array and allows
clients to retrieve and update array entries. ORAM was first introduced by
Goldreich [16] who presented an ORAM with sublinear amortized bandwidth per
operation for clients with constant size memory. Goldreich and Ostrovsky [17]
give the first ORAM construction with polylogarithmic amortized bandwidth
per operation. In the past decade, ORAM has been the subject of extensive
research [18,19,21,27,28,31,32] as well as variants such as statistically secure
ORAMs [7,8], parallel ORAMs [2,5,6] and garbled RAMs [14,15,25]. The above
references are just a small subset of all the results for ORAM constructions.

Instead, we focus on a different definition of privacy using differential pri-
vacy [10-12]. The representative scenario for differential privacy is privacy-
preserving data analysis which considers the problem of disclosing properties
about an entire database while maintaining the privacy of individual database
records. A mechanism or algorithm is considered differentially private if any fixed
disclosure is almost as likely to be outputted for two different input databases
that only differ in exactly one record. As a result, an adversary that views the
disclosure is unable to determine whether an individual record was part of the
input used to compute the disclosure. We consider the scenario of performing
privacy-preserving data analysis on data outsourced to an untrusted server. By
viewing the patterns of access to the outsourced data, the adversarial server
might be able to determine which individual records were used to compute the
disclosure compromising differential privacy.

One way to protect the patterns of data access is to outsource the data using
an ORAM. However, in many cases, it turns out that the obliviousness guaran-
tees of ORAM may be stronger than required. For example, let’s suppose that
we wish to disclose a differentially private regression model over a sample of the
outsourced data. ORAM guarantees that the identity of all sampled database
records will remain hidden from the adversary. On the other hand, the differen-
tially private regression model only provides privacy about whether an individual
record was sampled or not. Instead of obliviousness, we want a weaker notion
of privacy for access patterns suitable for use with differentially private data
analytics. With a weaker notion of privacy, there is hope for a construction with
better efficiency than ORAM.

With this in mind, we turn to the notion of differentially private access which
provides privacy for individual operations but might reveal information about a
sequence of many operations. Differentially private access has been previously
considered in [33,34]. In particular, this privacy notion ensures that the patterns
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of data access caused by a fixed sequence of operations is almost as likely to
be induced by another sequence of operations of the same length with a sin-
gle different operation. We define (¢, §)-differentially private RAM as a storage
primitive that outsources the storage of an array in a manner that allows a
client to retrieve and update array entries while providing differentially private
access. As this privacy notion is weaker than obliviousness, the 2(log(n/c))
lower bounds for ORAMs that store n array entries and clients with ¢ bits of
storage by Larsen and Nielsen [23] do not apply. There is hope to achieve a dif-
ferentially private RAM construction with smaller bandwidth. In this work, we
answer in the negative and show that an 2(log(n/c)) bandwidth lower bound
also exists for differentially private RAM for typical privacy budgets of e = O(1)
and 6 < 1/3. As differential privacy with budgets of ¢ = O(1) and § < 1/3
provide weaker security than obliviousness, any ORAM is also a differentially
private RAM. Therefore, our lower bounds show that the ORAM constructions
by Patel et al. [27] and by Asharov et al. [1] are, respectively, asymptotically opti-
mal up to an O(loglogn) factor and asymptotically optimal (e, d)-differentially
private RAM for any constant € and § < 1/3 and any block size b. Our results
also prove that Path ORAM [32] is tight, for b = 2(log® n).

1.1 Our Results

In this section, we will present our contributions. We first describe the scenarios
where our lower bounds apply. Our lower bounds apply to differentially private
RAMs that process operations in an online fashion. The RAM must be both
read-and-write, that is, the set of permitted operations include both reading
and writing array entries. The server that stores the array is assumed to be
passive in that the server may not perform any computation beyond retrieving
and overwriting cells but no assumptions are made on the storage encoding of
the array. Finally, we assume that the adversary is computationally bounded. We
now go into detail about each of these requirements.

Differential Privacy. The goal of differential privacy is to ensure that the removal
or replacement of an individual in a large population does not significantly affect
the view of the adversary. Differential privacy is parameterized by two values
0 < eand § € [0,1]. The value € is typically referred to as the privacy budget.
When 6 = 0, the notion is known as pure differential privacy while, if § > 0, the
notion is known as approzimate differential privacy. In our context, an individual
is a single operation in a sequence (the population) of read (also called queries)
and write (also called updates) operations over an array of n entries stored on a,
potentially adversarial, remote server. For any implementation DS and for any
sequence @, we define Vpg(Q) to be the view of the server when sequence @
is executed by DS. A differentially private RAM, DS, is defined to ensure that
the adversary’s view on one sequence of operations should not be significantly
different when DS executes another sequence of operations which differs for only
one operation. We assume that our adversaries are computationally bounded.
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Formally, if DS is (e, 0)-differentially private, then for any two sequences Q1
and @2 that differ in exactly one operation, it must be that Pr[A(Vps(Q1)) =
1] < ef Pr[A(Vps(Q2)) = 1] + ¢ for any probabilistic polynomial time (PPT)
algorithm 4. The notion of computational differential privacy was studied by
Mironov et al. [26] where various classes of privacy were described. Our lower
bounds consider the weakest privacy class and, thus, apply to all privacy classes
in [26]. In the majority of scenarios, differential privacy is only considered use-
ful for the cases when e = O(1) and ¢ is negligible. This is exactly the scenario
where our lower bounds will hold. In fact, our lower bounds hold for any § < 1/3.
We note that differential privacy with e = O(1) and § < 1/3 is a weaker secu-
rity notion than obliviousness. Obliviousness is equivalent to differential privacy
when € = 0 and ¢ is negligible. Therefore, our lower bounds also hold for ORAM
and match the lower bounds of Larsen and Nielsen [23]. We refer the reader to
Sect. 2 for a formal definition of differential privacy.

Online RAMs. It is important that we discuss the notion of online vs. offline
processing of operations by RAMs. In the offline scenario, it is assumed that
all operations are given before the RAM must start processing updates and
answering queries. The first ORAM lower bound by Goldreich and Ostrovsky [17]
considered offline ORAMs with “balls-and-bins” encoding and security against
an all-powerful adversary. “Balls-and-bins” refers to the encoding where array
entries are immutable balls and the only valid operation is to move array entries
into various memory locations referred to as bins. Boyle and Naor [3] show that
proving an offline ORAM lower bound for non-restricted encodings is equivalent
to showing lower bounds in sorting circuits, which is a long-standing problem in
complexity. Instead, we consider online RAMs where operations arrive one at a
time and must be processed before receiving the next operation. The assumption
of online operations is realistic as the majority of RAM constructions consider
online operations and almost all applications of RAMs consider online opera-
tions. Our lower bounds only apply for online differentially private RAMs.

Read-and-Write RAMs. Traditionally, all ORAM results consider the scenario
where the set of valid operations include both reading and writing array entries.
A natural relaxation would be to consider read-only RAMs where the only valid
operation is reading array entries. Any lower bound on read-only RAMs would
also apply to read-and-write RAMs. However, in a recent work by Weiss and
Wichs [36], it is shown that any lower bounds for read-only ORAMs would imply
very strong lower bounds for either sorting circuits and/or locally decodable
codes (LDCs). Proving lower bounds for LDCs has, like sorting circuits, been
an open problem in the world of complexity theory for more than a decade. As
differential privacy is weaker than obliviousness, any lower bounds on read-only,
differentially private RAMs also imply lower bounds on read-only ORAMs. To
get around these obstacles, our work focuses only on proving lower bounds for
read-and-write differentially private RAMs.
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Passive Server. In our work, we will assume that the server storing the array is
passive, which means that the server will not any perform computation beyond
retrieving and overwriting the contents of the local memory cell to satisfy the
client’s requests. This assumption is necessary as there are ORAM construc-
tions that use server computation to achieve constant bandwidth operations [9].
Therefore, our lower bounds on bandwidth only apply to differentially private
RAMSs with a passive server. For active servers we can reinterpret our results
as lower bounds on the amount of server computation required to guarantee
differential privacy.

We now informally present our main contribution.

Theorem 1 (informal). Let DS be any online, read-and-write RAM that
stores n array entries each of size b bits on a passive server without any restric-
tions on storage encodings. Suppose that the client has c bits of storage. Assume
that DS provides (e,0)-differential privacy against a computational adversary
that views all cell probes performed by the server. If e = O(1) and 0 < 6 < 1/3,
then the amortized bandwidth of both reading and writing array entries by DS is
N2(blog(nb/c)) bits or 2(log(nb/c)) array entries. In the natural scenario where
¢ <b-n* for some 0 < a < 1, then 2(logn) array entries of bandwidth are
required.

1.2 Previous Works

In this section, we present a small survey of previous works on data structure
lower bounds. We also describe the first lower bound for data structures that
provide privacy guarantees.

The majority of data structure lower bounds are proved using the cell probe
model introduced by Yao [37], which only charges for accessing memory and
allows unlimited computation. In the case for passive servers that only retrieve
and overwrite memory, the costs of the cell probe model directly imply costs in
bandwidth. The chronogram technique was introduced by Fredman and Saks [13]
which can be used to prove 2(logn/loglogn) lower bounds. Patragcu and
Demaine [30] presented the information transfer technique which could be used
to prove £2(logn) lower bounds. Larsen [22] presented an £2(log? n) lower bound
for two-dimensional dynamic range counting, which remains the highest lower
bound proven for any logn output data structures. Recently, Larsen et al. [24]
presented an f?(logl"r) n) lower bound for data structures with single bit outputs
which is the highest lower bound for decision query data structures.

For ORAM, Goldreich and Ostrovsky [17] presented an 2(log, n) lower bound
for clients with storage of ¢ array entries. However, Boyle and Naor [3] showed that
this lower bound came with the cavaets that the lower bound only for statisti-
cal adversaries and constructions in “balls-and-bins” model where array entries
could only be moved between memory and not encoded in a more complex man-
ner. Furthermore, Boyle and Naor [3] show that proving lower bounds for offline
ORAMSs and arbitrary storage encodings imply sorting circuit lower bounds.
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In their seminal work, Larsen and Nielsen [23] presented an £2(log(n/c)) bandwidth
lower bound removing the cavaets such that lower bounds applies to any types of
storage encodings and computational adversaries. Recently, Weiss and Wichs [36]
show that lower bounds for online, read-only ORAMs would imply lower bounds
for either sorting circuits and/or locally decodable codes.

We present a brief overview of the techniques used by Larsen and Nielsen [23],
which uses the information transfer technique. We also describe why information
transfer does not seem to be of use for differentially private RAM lower bounds.
Information transfer first builds a binary tree over ©(n) operations where the
first operation is assigned to the leftmost leaf, the second operation is assigned
to the second leftmost leaf and so forth. Each cell probe is assigned to at most
one node of the tree as follows. For a cell probe, we identify the operation that is
performing the probe as well as the most recent operation that overwrote the cell
that is being probed. The cell probe is assigned to the lowest common ancestor
of the leaves associated with the most recent operation to overwrite the cell and
the operation performing the probe. Let us fix any node of the tree and consider
the subtree rooted at the fixed node. It can be shown that the probes assigned to
the root is the entirety of information that can be transferred from the updates
of the left subtree to be used to answer queries in the right subtree. Consider
the sequence of operations where all leaves in the left subtree write a randomly
chosen b-bit string to unique array entries and all leaves in the right subtree
read an unique, updated array entry. For any DS to return the correct b-bit
strings asked by the queries in the right subtree, a large amount of information
must be transferred from the left subtree to the right subtree. Thus, many probes
should be assigned to the root of this subtree. Suppose that for another sequence
of operations, DS assigns significantly less probes to the root of this subtree.
Then, a computational adversary can count the probes and distinguish between
the worst case sequence and any other sequence contradicting obliviousness. As
a result, there must be many probes assigned to each node of the information
transfer tree. Each cell probe is assigned to at most one node. So, summing up
the tree provides a lower bound on the number of cell probes required.

Unfortunately, we are unable to use the information transfer technique to
prove lower bounds for differentially private RAMs. The main issue comes from
the fact that differentially private RAMs have significantly weaker privacy guar-
antees compared to ORAMs. When ¢ = ©(1), the probabilistic requirements
of the adversary’s view when DS processes two sequences Q1 and )2 degrade
exponentially in the number of operations that Q1 and > differ in. On the other
hand, the privacy requirements of obliviousness do not degrade when consider-
ing two sequences that differ in many operations. Larsen and Nielsen [23] use
obliviousness to argue that the adversary’s view for the worst case sequence of
any subtree cannot differ significantly from any other sequence. However, for any
fixed sequence of operations, the worst case sequence for the majority of subtrees
differ in many operations (on the order of the number of leaves of the subtree).
Applying differential privacy will not yield strong requirements for the number
of cell probes assigned to the majority of the nodes in the information transfer
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binary tree. As a result, we could not adapt the information transfer technique
for differentially private RAM lower bounds and resort to other techniques.

1.3 Overview of Our Proofs

In this section, we present an overview of the proof techniques used in Sects. 3
and 4. Our lower bounds use ideas from works by Patragcu and Demaine [30] and
Patragcu [29]. However, we begin by reviewing the original chronogram technique
of Fredman and Saks [13].

Consider an ORAM that stores n b-bit array entries in a cell probe model
with w-bit cells. We make the reasonable assumption that w = 2(logn) so
that a cell can hold the index of an entry. Let ¢,, and ¢, denote the number of
cell probes of an update (write) and of a query (read) operation, respectively,
and consider a sequence of ©(n) update operations followed by a single query.
Starting from the query and going backwards in time, updates are partitioned
into exponentially increasing epochs at some rate r, so that the i-th epoch will
have ¢; = r* update operations. Epochs are indexed in reverse time, so the
smallest epoch closest to the query is epoch 1. The goal of the chronogram is
to prove that there exists a query that requires information from many of the
epochs simultaneously. To do this, we first observe that if each update writes a
randomly and independently chosen b-bit entry, an update operation preceding
epoch i cannot encode any information about epoch i. Therefore, all information
about entries updated in epoch i can only be found in cells that have been
written as part of the update operations of epoch i or any following epochs,
that is epochs ¢ — 1,...,1. Since each update stores b random bits, epoch i
encodes ¢; - b bits in total. On the other hand, the write operations of epochs
i—1,i—2,...,1 can probe at most t,,(r*~! +...+7) and by setting r = (t,w)?,
we obtain that O(¢;/(t,w?)) cells can be probed and O(¢;/(t,,w)) bits can be
written. As a result, the majority of the bits encoded by updates in epoch 7
remain in cells last written in epoch i. Thus, if we construct a random query
such that §2(b) bits must be transferred from each epoch, then we obtain that
max{ty,t.} = 2((b/w)log, n) = 2((b/w)logn/loglogn).

This lower bound can be improved to 2((b/w)logn) by using an improve-
ment of the chronogram technique by Patragcu [29]. In the original chronogram
technique, the epochs are fixed since the query’s location and the number of
updates are fixed. An algorithm may attempt to target an epoch ¢ by having
all future update operations encode information only about epoch i. To coun-
teract this, we consider a harder update sequence where epoch locations cannot
be predicted by the algorithm. Specifically, we consider a sequence that consists
of a random number of update operations followed by a single query operation.
For such a sequence, even if an algorithm attempts to target epoch i, it cannot
pinpoint the location of epoch i (remember that epochs are indexed starting
from the query operation and going back in time) and may only prepare over
all possible query locations. We show that any update operation may now only
encode O(t,w/log, n) about epoch ¢ where log, n is the number of epochs. As a
result, future update operations can only encode a O(1/log, n) fraction as much
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information about epoch i as the previous lower bound attempt. This allows us
to fix 7 = 2 which increases the number of epochs logn. If we can find a query
that requires £2(b) bits of information transfer from the majority of epochs, we
can prove that max{t,, t.} = 2((b/w)logn).

For differentially private RAMs, the update operations enable overwriting a
b-bit array entry while the query operations allow retrieving an array entry. We
choose our update operations to overwrite unique array entries and each entry is
overwritten with a value that is independently and uniformly chosen at random
from {0,1}°. Focus on an epoch i and consider picking a random query from
the ¢; array indices updated in epoch i. The majority of these queries must read
£2(b) bits from cells last written in epoch 7 as future operations cannot encode
all £; - b bits encoded by epoch i. As a result, there exists some query such
that £2(b) bits must be transferred from epoch i for all sufficiently large epochs.
We use differential privacy to show that (2(b) bits must be transferred from all
sufficiently large epochs. Consider two sequences of operations that only differ in
the final query operation and suppose that the first query requires 2(b) bits from
epoch 4. If the latter query transfers o(b) bits from epoch i, the adversary can
distinguish between the two sequences with high probability and this contradicts
differential privacy as the two sequences only differ in one operations. Therefore,
we can prove that §2(b) bits have to be transferred from most epochs and thus
max{ty,tr} = 2((b/w)logn). The proof of this lower bound is found in Sect. 3.

A stronger lower bound is obtained in Sect.4 using more complex epoch
constructions, adapting ideas from [30] and [29]. The lower bound outlined above
shows that max{t,,, t.} = 2((b/w)logn) but it does not preclude the case where
ty = O((b/w)logn) and t, = O(1), for example. We show this cannot be the
case. In particular, we show that if max{t,,t.} = O((b/w)logn), then it must
be the case that t,, = O((b/w)logn) and ¢, = O((b/w)logn). The idea is to
consider different epoch constructions for the cases when t,, and t, are small,
respectively. When t,, = o((b/w) log n), we know that operations in future epochs
cannot encode too much information. We consider an epoch construction where
epochs grow by a rate of w(1) every r epochs thus increasing the number of epochs
to w(logn). In exchange, there are many operations after an epoch i. Since t,, is
small, the future operations may not encode too much information about epoch ¢
ensuring most of the information about epoch ¢ remain in cells last written during
epoch i. As a result, it can be shown again that £2(b) bits must be read from
many epochs implying an ¢, = w((b/w)logn) lower bound. On the other hand,
consider the case when ¢, = o((b/w) logn). We consider epoch constructions that
increase exponentially with rate r = w(1). As a result, the number of operations
after epoch 7 is a factor of O(1/r) smaller than the ¢; operations in epoch ¢ and
there are ©(log, n) epochs. If ¢, = o((b/w)log, n), then a query operation may
not read 2(b) from each of the epochs. Instead, update operations must encode
a large amount of information about previous epochs to compensate for ¢, being
so small. As a result, it can be shown that ¢, = w((b/w)logn). Combining
the above two statements implies that if max{t,,t,} = O((b/w)logn), then
ty = O((b/w)logn) and t, = O((b/w) logn).
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2 Differentially Private Cell Probe Model

We start by formalizing the model for which we prove our lower bounds. We rely
on the cell probe model, first described by Yao [37], and typically used to prove
lower bounds for data structures without any requirements for privacy of the
stored data and/or the operations performed. In a recent work by Larsen and
Nielsen [23], the oblivious cell probe model was introduced and used to prove a
lower bound for oblivious RAM. The oblivious cell probe model was defined for
any data structures where the patterns of access to memory should not reveal
any information about the operations performed. We generalize the oblivious
cell probe model and present the (¢, §)-differentially private cell probe model. In
this new model, all data structures are assumed to provide differential privacy
for the operations performed with respect to memory accesses viewed by the
adversary. The differentially private cell probe model is a generalization of the
oblivious cell probe model as obliviousness is equivalent to differential privacy
with € = 0 and 0 = negl(n), that is, any function negligible in the number of
items stored in the data structure.

The cell probe model is an abstraction of the interaction between CPUs and
word-RAM memory architectures. Memory is defined as an array of cells such that
each cell contains exactly w bits. Any operation of a data structure is allowed to
probe cells where a probe can consist of either reading the contents of a cell or over-
writing the contents of a cell. The running time or cost for any operation of a data
structure is measured by the number of cell probes performed. An algorithm is free
to do unlimited amounts of computation based on the contents of probed cells.

In this paper we are interested in data structures that provide privacy of the
operations performed in a scenario involving two parties denoted the client and
the server. The client outsources the storage of data to the server while main-
taining the ability to perform some set of operations over the data efficiently. In
addition, the client wishes to hide the operations performed from the adversar-
ial server that views the contents of all cells in memory as well as the sequence
of cells probed in memory. The crucial privacy requirement is that the server
does not learn about the contents and the sequence of accesses performed by the
client’s storage. To properly capture the above setting, Larsen and Nielsen [23]
defined the oblivious cell probe model and proved lower bounds for oblivious
RAMs. We introduce the differentially private cell probe model that is identical
to the oblivious cell probe model of Larsen and Nielsen, except for the simple
replacement of obliviousness with differential privacy as the privacy requirement.
For a full description of the oblivious cell probe model, we refer the reader to
Sect. 2 of [23]. To formally define the differentially private cell probe model, we
first describe a data structure problem as well as a differentially private cell probe
data structure for any data structure problem.

Definition 1. A data structure problem P is defined by a tuple (U,Q,O, f)
where

1. U is the universe of all update operations;
2. Q is the universe of all query operations;
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8. O is domain of all possible outputs for all queries;
4. f:U*xQ — O is a function that describes the desired output of any query
q € Q given the history of all updates, (uy,us, ..., uy) € U*.

A differentially private cell probe data structure DS for the data structure
problem P consists of a randomized algorithm implementing update and query
operations for P. DS is parameterized by the integers ¢ and w denoting the client
storage and cell size in bits respectively. Additionally, DS is given a random
string R of finite length r containing all randomness that DS will use. Note that
R can be arbitrarily large and, thus, contain all the randomness of a random
oracle. Given the random string, our algorithms can be viewed as deterministic.
Each algorithm is viewed as a finite decision tree executed by the client that
probes (read or overwrite) memory cells owned by the server. For each ¢ € @
and u € U, there exists a (possibly) different decision tree. Each node in the
decision tree is labelled by an index indicating the location of the server-held
memory cell to be probed. For convenience, we will assume that a probe may
both read and overwrite cell contents. This only reduces the number of cell
probes by a factor of at most 2. Additionally, all leaf nodes are labelled with an
element of O indicating the output of DS after execution.

Each edge in the tree is labelled by four bit strings. The first bit-string of length
w represents the contents of the cell probed. The next w-bit string represents the
new cell contents after overwriting. There are two c-bit strings representing the cur-
rent client storage and the new client storage after performing the probe. Finally,
there is a r-bit string representing the random string. The client executes DS by
traversing the decision tree starting from the root. At each node, the client reads
the indicated cell’s contents. Using the random string, the current client storage
and the cell contents, it finds the edge to the next node and updates the probed
cell’s contents and client storage accordingly. When reaching a leaf, DS outputs
the element of O denoted at the leaf.

Note, DS is only permitted to use the contents of the previously probed cell,
current client storage and the random string as input to generate the next cell
probe or produce an output. The running time of DS is related to the depth
of the decision tree as each edge corresponds to a cell probe. Furthermore, as
the servers are passive, the server can only either update or retrieve a cell for
the client. As a result, the running time (number of cell probes) multiplied by
w (the cell size) gives us the bandwidth of the algorithm in bits. We now define
the failure probability of DS.

Definition 2. A DS for data structure problem P = (U,Q, O, f) has failure
probability 0 < a < 1 if for every sequence of updates uq,...,u, € U* and
query q € Q:

Pr[DS(uh <y Um, Q) 7é f(uh ceey Um, Q)] <a

where randomness is over the choice of R.
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As R is finite, it might seem that we do not consider algorithms whose failure
probability decreases in the running time but may never terminate. Instead, we
can consider a variant of the algorithm that may run for an arbitrary long
time but must provide an answer once its failure probability is small enough
(for example, negligible in the number of item stored). Therefore, by sacrificing
failure probability, we can convert such possibly infinitely running algorithms
into finite algorithms with slightly larger failure probabilities. As we will prove
our lower bounds for DS with failure probabilities at most 1/3, we may also
consider these kind of algorithms with vanishing failure probabilities and no
termination guarantees.

We now move to privacy requirements and define the random variable
Vps(Q) as the adversary’s view of DS processing a sequence of operations @
where randomness is over the choice of the random string R. The adversary’s
view contains the sequence of probes performed by DS to server-held memory
cells. We stress that the view does not include the accesses performed by DS to
client storage. We now define differentially private access.

Definition 3. DS provides (¢, d)-differentially private access against compu-
tational adversaries if for any two sequences @ = (opy,...,0p,,) and Q' =
(op},...,o0pl,) such that |{i € {1,...,m} | op; # op,}| = 1 and any PPT
algorithm A, it holds that

PrlA(Vps(Q)) = 1] < e - Pr[A(Vps(Q')) = 1] + .

Our results focus on online data structures where each cell probe may be
assigned to a unique operation.

Definition 4. A DS is online if for any sequence Q = (opy,...,0p,,), the
adversary’s view can be split up as:

Vps(Q) = (Vps(op;),-- -, Vps(op,,))

where each cell probe in Vpg(op,) is performed after receiving op; and before
Tecetving op; 1 -

Finally, we present the definition of an (e, §)-differentially private cell probe
data structure. We present a diagram of the model in Fig. 1.

Definition 5. A DS for problem P is an (e, §)-differentially private cell probe
data structure if DS has failure probability 1/3, provides (e, d)-differentially
private access and is online.

We comment that the failure probability of 1/3 does not seem to be rea-
sonable for any scenario. However, proving a lower bound for DS with failure
probability 1/3 results in stronger lower bounds as they also hold for more rea-
sonable situations with zero or negligibly small failure probabilities.

We now present the array maintenance problem introduced by Wang
et al. [35], which crisply defines the online RAM problem.
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Fig. 1. Diagram of differentially private cell probe model.

Definition 6. The array maintenance problem AM is parameterized by two inte-
gers n,b > 0 and defined by the tuple (Uam, @am, Oam, fam) where

~ Uam = {write(i,B) :i=0,...,n—1,B € {0,1}%};
~ Qam = {read(i):i=0,...,n —1};
~ Oam = {0,1}°;

and, for a sequence Q = (U1, ..., Uy) where uy, ..., Uy € U, fam is:

B

0%, if there exists no such j.

,  where j is largest index such that q¢; = write(i, B);

fam(Q,read(i)) = {

In words, the array maintenance problem requires that a data structure to store
an array of n entries each of b bits. Each array location is uniquely identified by
a number in [n]. Typically, it is assumed that a cell is large enough to contain
an index. In this case, w = 2(logn). However, in our lower bounds, we will only
assume that w = {2(loglogn) to achieve a stronger lower bound. An update
operation (also called a write) takes as input an integer ¢ € [n] and a b-bit string
B and overwrites the array entry associated with ¢ with the string B. For conve-
nience, we denote a write operation with inputs ¢ and B as write(i, B). A query
operation (also called a read) takes as input an integer ¢ € [n] and returns the
current b-bit string of the array entry associated with i. We denote a read oper-
ation with input ¢ as read(i). We will prove lower bounds for (¢, 0)-differentially
private RAMs which are differentially private cell probe data structures for the
AM problem.

3 First Lower Bound

Let DS be a (¢, §)-differentially private RAM storing n b-bit entries indexed by
the integers from 0 to n — 1. For any sequence of operations @ = (opy, ..., 0p,,);
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we denote t,,(Q) as the worst case number of cell probes on a write operation
and t,.(Q) as the expected amortized number of cell probes on a read operation.
Both expectations are over the choice of the random string R used by DS. We
write t,, and ¢, as the largest value of ¢, (Q) and ¢,.(Q) respectively over all
sequences ). We assume that cells are of size w bits and the client has ¢ bits
of storage. In this section, we will prove the following preliminary result. The
result will be strengthened in Sect. 4 where we present our main result.

Theorem 2. Let € > 0 and 0 < § < 1/3 be constants and let DS be an (e, 0)-
differentially private RAM for n b-bit entries implemented over w-bit cells that
uses ¢ bits of local storage. If DS has failure probability at most 1/3 and w =
2(loglogn), then t,, +t, = 2 (% -log (%)) .

In terms of block bandwidth, this implies that at least one of read and write
has an expected amortized {2(log(nb/c)) block bandwidth overhead. The above
theorem will be shown when DS has to process a sequence Q) sampled according
to distribution Q(0). For index idx € {0,...,n—1}, distribution Q(idx) is defined
by the following probabilistic process:

1. Pick m uniformly at random from {n/2,n/2+1,...,n —1}.

2. Draw Bj,..., B,, independently and uniformly at random from {0, 1}°.
3. Construct the sequence U = write(1, By),...,write(m, By,).

4. Output Q = (U, read(idx)).

Thus Q(idx) assigns positive probability to sequences ) = (U,read(idx)) that
consist of a sequence U of m write operation of m b-bit blocks one for each index
1,2,...,m, followed by a single read to index idx. It will be useful to define U
to be the distribution of U as determined by the first three steps of the process
described above.

In particular, we prove the above theorem using Q(0), which for convenience,
will be denoted by Q from now on. If privacy is not a concern, sequences in the
support of @ do not seem to require many probes as index 0 is not overwritten.
However, the lower bound will, critically, use the fact that the view of any
computational adversary cannot differ significantly from the view of sequences
whose last operation attempts to read a previously overwritten index idx &
{1,...,m}.

We prove the lower bound using the chronogram technique first introduced
by Fredman and Saks [13] along with the modifications by Patragcu [29]. The
strategy employed by the chronogram technique when applied to a sequence
sampled according to Q goes as follows. For any choice of m, we consider the n/2
write operations that immediately precede the read(0) operation and we split
them into consecutive and disjoint groups, which we denote as epochs. The epochs
will grow exponentially in size and are indexed going backwards in time (order
of operations performed). That is, the epoch consisting of the write operations
immediately preceding the read operation will have the smallest index, while
the epoch furthest in the past will have the largest index. Note that, when the
sequence of operations is sampled according to @ or, more generally, according
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to Q(idx), the set of indices overwritten by the write operations that fall into
epoch i is a random variable which we denote by U* and that depends on the
value of m.

To prove Theorem 2, we consider a simple epoch construction. For ¢ > 0,
epoch i consists of ¢; = 2 write operations and thus there will be k = log,(n/2+
2)—1 epochs. We also define s; to be the total size of epochs 1, .. ., 4. In the epoch
construction of this section, we have s; = 21 —2. See Fig. 2 for a diagram of the
layout of the epochs with regards to a sequence of operations. In Sect. 4, we will
derive stronger lower bounds by considering more complex epoch constructions
with different parameters.

Epoch k Epoch 2 Epoch 1
= 2% l,=4 =2

Fig. 2. Diagram of epoch construction of Sect.3. Operations are performed from left
to right.

Defining Random Variables. Since we are considering online data structures,
each cell probe performed by DS while processing a sequence () can be uniquely
associated to a read or a write operation of (). Random variable 7,(Q) is
defined as the set of cell probes performed by DS while processing the write
operations of the sequence (). Similarly, we define 7,.(Q) as the random variable
of the set of cell probes performed by DS when processing the read operations
of Q. The probability spaces of the two variables are over the choice of R.

The following random variables are specifically defined for sequences @ =
(U,read(idx)) in the support of distribution Q(idx), for some idx. We remind
the reader that these sequences perform a sequence U consisting of m write
operations followed by a single read(idx) operation. The m write operations
overwrite entries 1,...,m with random b-bit strings. We denote by 7.J(Q) the
random variable of the cells that are probed during the execution of a write
operation of epoch j in Q. We further partition the cell probes in 77 (Q) accord-
ing to the epoch the cell was last overwritten before being probed in epoch j.
Specifically, for i > j, we define 7,/7(Q) as the random variable of the sub-
set of the probes of 77(Q) performed to a cell that was last overwritten by an
operation in epoch i. Note that the sets 7,:7(Q) for all pairs (4, j) with i > j
constitute a partition of 7,,(Q). It will be convenient in the proof to define
T5HQ) = TEHQ) U ... UTH1(Q) as the set of probes that are performed
by an operation in any of epochs {1,...,i — 1} to a cell that was last over-
written by an operation in epoch i. Note that if two sequences @)1 = (U, idx;)
and Q2 = (U, idx2) share the same initial sequence U of write operations, then,
clearly, 7,<4(Q1) = 7,54(Q2) if they both use the same random string R.
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Finally, we denote the random variable 7,*(Q) as the set of probes performed
by the read operation of @ to cells that were last overwritten by an operation
in epoch i. In Fig. 3, we show a diagram of 7,~(Q) and 7,'(Q).

Epoch i Epoch i-1 Epoch 1
=2 |, =2"" =2

write write write . write

Virtual Array I- [ [

Client

Server

Server Memory Cells

T,(Q T(Q

Fig. 3. Diagram of 7,/(Q) and 7,/(Q).

We extend the definitions above to distributions of sequences in a natural
way. For example, 7,,(Q(idx)) is defined by first picking sequence @ accord-
ing to Q(idx) and then sampling a set according to 7, (Q). Note that, since
7.51(Q(idx)) does not depend on the read operation, we have that for all idx; , idxa
7,71 (Qlidx1)) = T,5"(Qidx2)) = 75" (U).

3.1 A Tradeoff Between Tw<i(Q) and TTl(Q)

From a high level, the proof of Theorem 2 is based on the fact that 7,<%(Q) and
7,5(Q) cannot be both small for all epochs i. To see why this must be intuitively
true consider distribution Q; over query sequences where the last read operation
to the 0-th index is replaced with an index chosen uniformly at random from
U' (remember U’ are the indices of the array entries that are overwritten by
write operations in epoch 7). Since each write operation overwrites a distinct
entry with a uniformly chosen b-bit string, a sufficiently large number of bits
that were encoded by write operations in epoch ¢ must be retrieved by the read
operation. There are only three ways that these bits can be retrieved by the read
operation. The first way is to probe cells that were last overwritten by any write
operation of epoch i which corresponds to 7,°(Q;). Another way is to probe cells
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that were last overwritten by operations that occurred after epoch i; that is, in
any epoch 1 < j < 4. However, the total number of bits encoded by operations in
epochs 1 < 7 < ¢ is upper bounded by the number of probes performed in epochs
1 < j <1 to cells that were last overwritten by an operation in epoch i, which
corresponds to 7,~%(Q;). The final way to retrieve information from the write
operations of epoch ¢ is to encode information in the client’s storage of ¢ bits.
However, if we consider the case when the number of entries overwritten in epoch
i, {;, is significantly larger than c, then the client’s storage is too small to encode
any significantly large amount of information compared to the total number of
write operations of epoch i. As a result, the total combined size of 7,°%(Q;)
and 7,}(Q;) or, better, a function of the two quantities, can be lower bounded.
However, recall that we wish to lower bound the values when processing the
random sequence @ and not Q;. The only difference between Q and Q; is the
index of the read operation performed at the end. By computational differential
privacy, any random event that can be verified by a PPT adversary cannot occur
with significantly different probabilities when DS processes Q as opposed to Q;.
Since the sets of cell probes can easily be computed in polynomial time, a lower
bound on the sum of |7,54(Q;)| + |7,:(Q;)| also implies a lower bound on the
|7.54(Q)| + |7,/(Q)] for a differentially private DS.

As explained above, the technical crux of the lower bound on |7,5%(Q;)| +
|7,{(Q;)| is an encoding argument that is captured by the following lemma that
shows that a certain random variable Z;(Q(j)) is “large” with probability at
least 1/2. We say that an epoch i is large if I; > max{/n,c?/b}.

Lemma 1. Assume that DS has failure probability at most 1/3. Then, for any
large epoch i, there exists an index idx € {1,...,n — 1} such that

PrZ.(Q(id)) > b/8)] > 172
where Z;(Q(idx)) is

1 twSi—1

. (|Tw<i(g(idx))|w + log <|Tw<i(g(idx))\)) + (\T;’(Q(idx))m + log (m(gtzidx))\)) T éﬁ

The proof of Lemma 1 is found in Sect.3.4. Z;(Q(idx)) can be viewed as the
total average information that the read(idx) operation at the end of Q(idx)
retrieves from the write operations of epoch i. Let us explain the meaning of
each term of the value Z;(Q(idx)). The first term of Z;(Q(idx)) measures the
average amount of information pertaining to each of the ¢; write operations
of epoch i that are read by cell probes performed in epochs following epoch i.
Each of the cell probes in 7,~/(Q(j)) reads exactly w bits in a cell. In addition,
the choice of which cell probes performed in epochs following epoch i actually
belong to 7,~%(Q(j)) also encodes some information. As there are s;_; write
operations epochs following epoch i, there are at most t,,s;_1 cell probes and at

twSi_1 . . twSi—1 .
most (lTwQ(Q(j))‘) choices of the cells to probe leading to log (lTwQ-(Q(j))‘) bits.

Similarly, each probe in 7,°(Q(j)) reads w bits in each cell and there are at most
(|Ti(té(j))) choices of probes when performing read(j) that belong to Z,:(Q(j)).
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The last term of Z;(Q(j)) considers the average amount of information for each
of the ¢; operations in epoch ¢ that are encoded in the client’s storage of ¢ bits.
Now, observe that the expected total amount of information that need to be
transferred if all ¢; possible read operations of Q; are performed is ¢; - b bits. As
a result, by taking idx to be the index which requires the most bit transferred
of the ¢; indices overwritten in epoch ¢ leads us to the above lemma. A formal
proof of these ideas is presented in Sect. 3.4.

3.2 Using Differential Privacy

We note that Lemma 1 does not suffice to prove that ¢,, + ¢, = w(1). Typically,
chronogram lower bounds will find a single sequence that forces a large amount
of information transfer from all epochs simultaneously. Instead, Lemma 1 states,
that for each epoch, there exists some sequence that forces a large information
transfer that the sequences are possibly different for each epoch. In fact, without
assuming privacy about a data structure, there can be no single sequence that
requires large information from many epochs as there are trivial ©(1) data struc-
tures that solve the array maintenance problem without any privacy guarantees.
As Lemma 1 does not assume privacy for DS, we will need to incorporate the
fact that DS is differentially private to achieve a statement that there exists a
single sequence that forces large information transfer from many epochs simul-
taneously.

Let us now assume that DS provides differential privacy against compu-
tational adversaries with parameters e = O(1) and 0 < § < 1/3. For any fixed
sequence @, we consider any probabilistic event £(Q) over the randomness of the
choice of the random string R such that there exists a probabilistic polynomial
time algorithm that can verify £(Q) being true or false. Then, computational
differential privacy implies that, for any fixed sequence )1 and @5 that differ in
exactly one operation, Pr[€(Q1) is true] < e Pr[€(Q2) is true] 4+ §. In particu-
lar, we can consider the event £(Q) = “Z;(Q) > b/8". Note that Z;(Q) can be
computed by any computational adversary by simply assigning each cell probe
performed by DS over @ into one of {7,54(Q)}i=1,.. k or {Z,}(Q)}i=1,.. r where
assigning a cell probe depends only on the last time the cell was overwritten and
the current operation of Q. As a result, we know that for any two fixed sequences
@1 and @9 that differ in exactly one operation, then

Pr[Z:(Q1) > b/8] < ¢ Pr[Z;(Qs) > b/8] + 6.

Note that Q and Q(idx) only differ in the input index to the read operation
at the end of the sequence. We use this fact to prove the following lemma that
Z;(Q) cannot differ significantly from Z;(Q(idx)) for any idx.

Lemma 2. Let DS be an (¢,0)-differentially private RAM and let i be a large
epoch. Then,
Pr(Z;(Q) = b/8] = 1/(6¢°).
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Proof. By Lemma 1, there exists an index idx such that Pr[Z;(Q(idx)) > b/8]
> 1/2. We define Q(idx,By,...,By) = (write(l,Bi),...,write(m, B,,),
read(idx)). Then,

Pr[Z;(Q) > b/8] = Z > ﬁPr[Zi(Q(O,Bh.WBm))2b/8]

m=n/2 By,...,B,, €{0,1}b

iy 1 [Pr[Z/(Q(idx, Bi,...,Bm)) > b/8] — &
3 5 mzm([(( = ) > b/8] )

m=n/2 By,...,B, €{0,1}?
Pr[ (Q(idx)) > b/8] — 4 S 1/2-1/3 _ 1

e - ec Gec’

3.3 Completing the Proof of Theorem 2

Lemma 2 resembles the typical desired statement for data structure lower bounds
as it guarantees existence of a distribution of query sequences, Q, that forces a
large amount of information transfer from all epochs in expectation.

Recall that we consider epoch i consisting of ¢; = 2 write operation for a
total of s; = 2'T! — 2 write operation in epochs 1,...,i. We refer the reader to
Fig. 2 for a visual reminder of our epoch construction. Using Lemma 2, we will
show that 2(b/w) bits must be transferred from the majority of large epochs. In
particular, we focus on epochs i for which the number of blocks, ¢;, written by the
write operations is much larger than the number of blocks that can be stored in
client’s memory, ¢/b. For otherwise, the blocks written by the write operations
in epoch ¢ may be entirely encoded into client’s storage of ¢ bits and thus no
information from epoch i is required to be transferred by cell probes of future
operations. Concretely, we say that an epoch is large if ¢; > max{\/n, c*/b} and
note that, by our definition of epochs, we have k := O(log(nb/c)) large epochs.
We will show that for many large epochs £2(b/w) bits must be transferred by
cell probes of either write operations of future epochs or the read operation.

To achieve our lower bound, we will analyze the expectation of Z;(Q) based
on our epoch construction. We will provide a high-level overview of the steps of
our analysis in this paragraph before performing a formal analysis. Recall that
t. and t, are an upper bound on the expected amortized number of cells probed
per write and read operation for any sequence. For the majority of epochs ¢, we
cannot expect the read operation of Q to probe more than ¢,/ k cells containing
information about the write operations of epoch ¢. This provides an upper bound
on |7,(Q)| for the majority of epochs. We want a similar upper bound on the
value of |7,~%(Q)|. Recall that this number corresponds to the number of probes
performed by write operations that read cells that encode information about
the write operations of epoch 7. Our argument will critically use the fact that
the sequence Q is chosen at random. Recall that Q is chosen to have m write
operations where m is chosen uniformly at random from {n/2,n/2+1,...,n—1}.
The data structure DS is unable to predict the point in time when the read
operation will occur. Instead, the best that DS can achieve is to prepare for
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all possible epoch configurations. Since there are k epochs with size at least
max{/n, c?}, each update should be only able to encode “* about each of
these epochs. As a result, we can prove the majority of epochs cannot have very
large values of |7,~*(Q)| in expectation.

As the two bounds above hold for the majority of epochs, we can show there
exists at least one large epoch i such that both the values of |7,~%(Q)| and
|7,¢(Q)| are small. In particular, we show the following:

Lemma 3. There exists a large epoch i for which E[|T59(Q)|/t;] =
O (t/ log(nb/c)) and E[|Ti(Q)[] = O (¢, /log(nb/c)).

Proof. The lemma is derived from the following two statements:

1. There exists k/2 + 1 large epochs i such that E[|Z.54(Q)|/4] =

O(tw/log(nb/c)).
2. There exists k/2 + 1 large epochs i such that E[|7,}(Q)|] = O(t,./ log(nb/c)).

Since there are only k large epochs, there must exist at least one large epoch
where both inequalities hold. We now show the two statements are true.

Let us pick epoch ¢ uniformly at random amongst the k large epochs and
fix the random string R as well as the n — 1 block values By,...,B,-1. We
now fix a cell probe probe of the execution of DS over the write operations
write(1,B),...,write(n — 1,B,_1) and consider the probability that probe
contributes to 7,°%(Q) from which we derive a bound on E[|7,%(Q)|/¢;]. Note
that, having fixed R and the values B;’s, the probability space is over the choice
of m from {n/2,n/2+1,...,n — 1} and of i. We denote p, as the index of the
write operation in &/ when probe is performed. The value p,, is denoted as the
index of the write operation in U when the cell of probe was last overwritten.
Using p, and p,,, we can attempt to upper bound the probability that the probe
belongs to 7,54(Q). First, let e be the smallest integer such that p, — p,, < se.
Note that probe cannot contribute to 7,57(Q) for any epoch j < e — 1, since
there are only s; operations between the beginning of epoch k£ and the read
operation. Since s; < s._1 < P — puw, either the read operation has to occur
after the read operation or the last operation to overwrite the cell probe occurs
before the j-th epoch. We remind the reader that the exact locations of epochs
is determined by m. The boundary denoting the end of epoch j has to occur
after p,, and before p, meaning there are at most s, choices from the position of
the read operation such that this cell probe contributes to 7,57(Q). There are
n/2 choices for m, so the probability is at most 2s./n. We now compute

i 1 j

E[|7(Q)1/t:] = 7 > E[17.57(Q)1/¢;].
gty >max{y/n,c?}

The probe only contributes to epochs j > e. Note, there are at most (in expec-

tation) t,, - (n — 1) cell probes performed when processing the write operations

of Q. By linearity of expectation,

T<jQ 2.8 S Se
wz()l} Stw~nzre<2tw'(i+ . +) < At

E |:| i — l l
ji; >max{y/n,c?/b} J j>e J € etl
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As a result, there exists k /2 + 1 fixed epochs i such that their expectation over
the m is at most 12¢,,.

We know that Y, E[|7,(Q)|] < t,. Therefore, there exists k:/2+1 large epochs
i such that E[|Z,¥(Q)|] < 3t, completing the proof.

We can now achieve our goal of proving Theorem 2 that gives a lower bound
on the sum t,, +t, by plugging the inequalities in Lemma 3 into the expectation
of Z;(Q) and then using the bound from Lemma 2.

Proof (Theorem 2). First, we analyze the expectation of Z;(Q). Note that, for
every z,y, log (V) = O(zlog(y/x)). Moreover, for every y, log(y/z) is a convex
function over x, so we can write the E[xlog(y/z)] < E[x]log(y/E[z]) where the
expectation is over the choice of . We now apply this observation to E[Z;(Q)]

o (S (v os iy ) + B @ (o gy ) + )

By Lemma 2, we know that E[Z;(Q)] = 2(b). We now pick our epoch i as
the one chosen by Lemma 3 and plug in the inequalities to get

lw twsi—1 r r _
log(nb/c) (w +log Litw/ log(nb/c)) + log(nb/c) (w +log tr/ log(nb/c)) = 20)-

Here we have used the fact that epoch ¢ is large and thus 12% = O(b), since
¢; > c%/b. Also, note that s;_; = ©(¢;). Therefore, we can simplify and get that
ty +t. = 2((b/(w +loglogn))log(nb/c)). If we assume that w = 2(loglogn),
we can simplify and get the following result ¢,, + ¢, = 2 ((b/w) log(nb/c)) which
completes the proof.

Therefore, the lower bound of ¢,, + ¢, described in Theorem 2 can be entirely
derived from Lemma 1. It remains to prove Lemma 1, which we do next.

3.4 An Encoding Argument Using Tw<i(Q) and 'Z;f(Q)

In this section, we prove Lemma 1. We first give a high level description of the
proof. The main idea involves converting any DS that solves the array mainte-
nance problem into a one-way communication problem between two parties, for
which we have a lower bound on the number of bits that must be sent.

Specifically, we consider the case in which for a fixed epoch i € {1,...,k}
and for a sequence drawn according to Q, one party, Alice, receives the m values
Bi,...,B, and a random string R and the other party, Bob, receives the same
random string R as well as m — ¢; values; that is, all of By, ..., B, except for
the ¢; values updated in epoch ¢ of sequence (). The goal of the protocol is to
let Bob obtain the missing ¢; values.

As the £; b-bit values are generated uniformly and independently at random,
Alice’s input has ¢; - b bits of entropy conditioned on Bob’s input and R. By
Shannon’s Source Coding Theorem, any protocol for the above problem must
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have expected communication of at least ¢; - b bits. We show that if Lemma 1
does not hold, then Shannon’s Theorem is contradicted by giving an encoding
constructed by simulating DS that beats Shannon’s bound.

Recall that, for any idx, Q(idx) is constructed by picking m uniformly at ran-
dom from {n/2,n/2+1,...,n—1} and constructing the sequence of m updates
U = write(1,By),...,write(m, B,,) where each By,...,B,, is drawn indepen-
dently and uniformly at random from {0, 1}°. We also denote by U’ the set of
write of epoch i, fori=1,... k.

Consider the following protocol. Alice and Bob locally execute all write
operations in epochs k,k — 1,...,7 4+ 1 using the random string R. Bob keeps a
snapshot snapg of DS at this point. Now Bob can learn each of the ¢; values Bigx
for idx € U* written during epoch %, by simulating epoch j, for j =i,i—1,...,1
followed by the read(idx) operation. To do this, Bob uses the snapshot snapg,
that gives the state of DS before any write operations of epoch ¢ are executed,
and the following information that can be transferred by Alice.

1. The c bits of client storage of DS after the write operations of epoch i have
been processed.

2. The location and contents of the cells that are probed by the write operations
of epochs j =4 —1,...,1 and by the read(idx) operation.

Given this information as well as the random string R, Bob can simulate DS
by starting from snapp and executing all the write operations of U occurring
after epoch i as well as read(idx) and thus recover Bigx. To encode all £; block
values updated in epoch ¢, Alice and Bob can repeat the simulation of the read
operation ¢; times with idx ranging over the set of the ¢; indices that are updated
in epoch i. The number of bits that need to be transferred to Bob by Alice
depends on the following three values:

1. The number of bits of the client storage, c.

2. The number of probes performed in epochs j =i—1,...,1 to cells last written
in epoch 1.

3. The number of probes performed by the ¢; read operations to the ¢; indices
updated in epoch 1.

By Shannon’s source coding theorem, we have a lower bound on the number of
bits that can be transferred and, consequently, a lower bound on the number of
probes performed by DS. The rough description above only works for DS that
never fails but it only requires some small changes to work for failure probability
1/3. In particular, Alice can indicate the indices idx for which DS fails to return
Bigx and explicitly transfer the b bits of Bjgx to Bob in addition to the above
protocol. We now present the formal proof of Lemma 1.

Proof (Lemma 1). In our proof, we consider DS that have failure probability at
most 1/512. Note that any DS with failure probability 1/3 implies the existence
of a DS with failure probability 1/512 as one can execute DS a constant number
of times with independently chosen randomness and return the most popular
result to answer any read operation. In fact, proving a lower bound for DS
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with failure probability 1/512 implies any DS with failure probability that is a
constant greater than 1/2 using the above method.

Recall that U* denotes the set of all #; indices that are updated by write oper-
ations in epoch i. It suffices to prove that Pr[} "y o, Zi(Q(idx)) > £;0/8] > 1/2.
Since U* contains ¢; indices, the previous statement implies that there must exist
some idx € U* such that Pr[Z;(Q(idx)) > b/8] > 1/2 which would complete the
proof. Therefore, towards a contradiction, assume that Pr[} 4 o, Zi(Q(idx)) >
£;b/8] < 1/2 for some data structure DS that solves the array maintenance
problem with failure probability at most 1/512. We will present an encoding of
£; - b random bits from Alice and Bob using DS that uses strictly less than £; - b
bits in expectation contradicting Shannon’s source coding theorem.

In computing the encoding, Alice receives the m b-bit random values used
by the sequence of write operations, U, and a random string K.

Alice’s Encoding

1. Alice executes DS on the sequence U using the random string R up to the
final write operation of epoch i. The content of the ¢ bits of client storage
after epoch i is completed are added to the encoding.

2. Alice then executes the remaining s;_; write operations of U of epochs i —
1,4 — 2,...,1. While processing these write operations, Alice records the
subset 7,~'(U) of probes to cells that were last written in epoch i as well as
their contents. This information is encoded as follows. First the size |Z7,~%(U)|
(at most log(t, - s;—1) bits) is added to the encoding. Then Alice adds an
encoding of which |7,~%(U)| probes of the at most t,,(n — 1) probes over the

T;él’(;)f) bits). Finally, for each
such probe, w bits are added to the encoding to specify the content of the
cell probed (for additional |7,~*(U)| - w bits).

3. Alice stores a snapshot snap 4 of the DS after processing all write operations
of U. Alice will use this snapshot to simulate the read operations for the ¢;
entries written in epoch 3.

4. For each of the ¢; indices idx € U*, Alice executes read(idx) on snap,. Let
F be the number of read(idx) operations that return a wrong value (that is,
they return a value other than Bigy). Alice adds the value F' to the encoding
costing log n bits and an encoding of the subset of the F' failing indices costing
log (%) expected bits.

5. For each of the F' failing indices idx € U*, Alice adds Bi4x to the encoding
costing a total of F' - b bits.

6. For each non-failing index idx € U* (that is, for which read(idx) executed
on snap, with R successfully returns Bigx), Alice adds the subset of probes
performed during read(idx) to the cells in 7,*(Q(idx)) (these are the cells last
written in epoch 7) as well as their content to the encoding. This costs w bits
for each cell in 7,*(Q(idx)) as well as log (|T;~'(Qt?idx))|) bits to encode the subset

7,:(Q(idx)) of the at most ¢, probes in read(idx).

entire sequence belong to 7,<% (this costs log (
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Alice checks whether either of » .\ o i Zi(Q(idx)) > £;/8 or F > {;/64. If
either are true, Alice stops and returns an encoding consisting of a 0 bit
followed by ¢; - b bits of the ¢; blocks updated by the write operations in I/*.
Otherwise, when both » ., - Zi(Q(idx)) < £;b/8 and F < ¢;/64, Alice
prepends a 1 bit to the encoding computed in Steps 1-6 and returns it.

In decoding the message sent by Alice, Bob receives the random string R

but does not receive the entirety of . Instead, Bob receives U except all block
values that are updated in epoch 1.

Bob’s Decoding

1.

Bob checks the first bit of Alice’s encoding. If the first bit is a 0, then Bob
parses the next ¢; - b bits as the contents of the ¢; block values updated in U
completing the decoding.

If the encoding begins with a 1, Bob will execute the write operations in
epochs j =k, k—1,...,i—1 using random string R. Note that this is straight-
forward as Bob received all the needed values as input and the indices of the
write are fixed.

Note that Bob does not have access to the updated array entries of epoch i,
and thus will skip it.

Next, Bob sets the client storage as specified in the encoding and starts sim-
ulating the write operations for epochs j =i—1,...,1. As long as the write
operations do not require probing a cell that was last written in epoch i,
Bob can simulate DS in the exact same way as done by Alice to compute
the encoding (note Bob has access to the same R). Whenever DS requires
probing a cell last written in epoch i, Bob will use the encoding of the cell
contents found in the encoding to continue simulation. As a result, Bob can
simulate all write operations of U after epoch ¢ identically to Alice. Bob will
now take a (partial) snapshot of DS including all cell locations and contents
that Bob is aware of.

Next, Bob obtains F', the number of failing read, from the encoding along
with the indices idx € U® where read(idx) fails to return Big,. For each of
these F' indices, Bob obtains the corresponding value Bigx from the encoding.
For the remaining ¢; — F" indices idx € U* such that read(idx) returns B4y, Bob
will execute read(idx) on the snapshot of DS. From the encoding, Bob knows
which of the (at most, in expectation) ¢, probes performed by read(idx) are
to cells last written in epoch 7. Bob simulates read(idx) on his snapshot with
R using the cell contents encoded by Alice to retrieve Bigy.

Analysis. It remains to analyze the expected length of Alice’s encoding. Recall
that we know from Shannon’s source coding theorem that Alice’s encoding has
to be at least ¢; - b bits long in expectation.

There are two cases to consider. In the first case, when the first bit is a 0,

the encoding will be 1+ /; - b bits long. Let us now consider the case in which the
first bit is 1 and thus F' < 1;/64 and ), o, Zi(Q(idx)) < £;6/8. The encoding
of the failed indices has expected length
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log é
64

< logn—|— é— (b+log(64-e)) < logn—|— (€ b).

+bo b

I E
ogn + ol

+b-E[F] <logn+E

log <Z1>
F

The second inequality uses Stirling’s approximation which states that (‘/;) <
(ez/y)?. We know Alice’s encoding of client storage will always be c bits. We
know the expected bits of encoding 7.~ (U) is

t'w' i— i
log(ty - 8i-1) + E {log <|T<’S(Z/{)1|> + 750 (U))| w} .

Note, log(t,, - 5;_1) < 2logn. Similarly, for all idx € * that successfully return
Bigx, we know that the encoding requires

e [T @t 108 (17, )

Note that

E[log (t”'.si—l)ﬂzfi(u)\w > 1T (Q(idx)) w + log ( +e

tr
175 )| = m(Q(idx)))}

<Y = Q(ndx))<f(é b).

idxeld®

Summing over all parts of the encoding, we get that

3logn + = (z b) + ZZi(Q(idx))<3logn+ (z b).
idxeu’?

Finally, we compute the probabilities that Alice places a 0 or a 1 as the first
bit of the encoding. By Markov’s inequality, Pr[F > ¢;/64] < 1/8 and we know
that Pr[} iy oy Zi(Q(idx)) > £;b/8] < 1/2 by our initial assumption towards a
contradiction. As a result, we know that Pr[F > £;/64 or ) .y i Zi(Q(idx)) >
b/8] < 5/8. So, Alice’s expected encoding size is at most

contradicting Shannon’s source coding theorem when ¢; > \/n.

4 Main Result

In Sect. 3, we presented a lower bound on the sum of ¢,,, the worst case band-
width for write operations, and t,, the worst case expected amortized band-
width for read operations that implies that max{t,,, ¢} = 2((b/w)log(nb/c)).
However, this lower bound does not preclude the existence of a differentially
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private RAM with ¢, = O((b/w)log(nb/c)) and t. = o((b/w)log(nb/c)) or
t, = O((b/w)log(ndb/c)) and t, = o((b/w)log(nb/c)). In this section, we
strenghten our lower bound and prove the following two statements, for (e, d)-
differentially private RAM, for any constant ¢ and 6 < 1/3,

1. If t,, = o((b/w)log(nb/c)), then t, = w((b/w)log(nb/c));
2. If t, = o((b/w) log(nb/c)), then t,, = w((b/w)log(nb/c)).

Therefore, since max{t,,t.} = O((b/w)log(nb/c)), then it must be the case
that both t,, = O((b/w)log(nb/c)) and t, = O((b/w)log(nb/c)) showing that
imbalanced running times for write and read operations cannot improve the
asymptotic efficiency of differentially private RAM constructions.

To achieve these tradeoffs, we revisit our epoch construction of Sect. 3. Let
us, first, focus our attention on the first statement where we show that ¢, =
w((b/w)log(ndb/c)) when t,, = o((b/w)log(nb/c)). Recall that we constructed
epochs that grew exponentially by a factor of 2 for a total of ©(logn) epochs
and the number of large epochs (that is with at least max{y/n,c®/b} write
operations) is ©(log(nb/c)). In the techniques used in Sect.3, we are only able
to show that 2(b/w) cells must be probed from the majority of the epochs.
As there are only ©(log(nb/c)) large epochs, there is no hope for us to prove a
stronger lower bound ¢, with this epoch construction.

Instead, we will use a different epoch construction that is suitable for the
scenario where we know that ¢,, is small. In Lemma 3, we show that, on average,
for any large epoch ¢ any write operations of future epochs j € {1,...,i—1} can
only encode O(t,,w/k) bits about epoch i where k is the number of large epochs.
It is important that future write operations cannot encode a lot of information
about epoch i as it forces the final read operation to read sufficient information
from epoch ¢ directly. However, as we are assuming that t,, is already small, we
may increase the number of future operations after epoch ¢ while simultaneously
ensuring that future epochs cannot encode too much information about epoch i.
With this observation, we hope that we can increase the number of total epochs
which allows us to prove w((b/w)log(nb/c)) lower bounds on ¢, as desired. We
now materialize these ideas in the next section.

4.1 First Epoch Construction

In this section, we consider an epoch construction where epochs grow by the rate
r every r epochs, with »r = w(1) and r = O(logn). That is, the first r epochs
will each have r write operations; the next r epochs will each have 72 write
operations; the next r epochs will each have r3 write operations and so forth.
See Fig.4 for a diagram of this epoch construction. Once again, we define ¢;
to be the number of write operations of the i-th epoch and s; to be the total
number of write operations of epochs 1,...,i. We note that, by writing ¢; = r/
for some f > 1, we have

sia<r-(rl il ) <2r 4
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The new epoch construction will potentially give us, for each epoch, r times
more future operations in comparison to the epoch construction of Sect.3. On
the other hand, we note that the number of large epochs (that is, with at least
max{/n, ¢2/b} write operations) is k = O(rlog, (nb/(rc?))) = O(rlog, (nb/c)),
which is larger by a super-constant factor of ©(r/logr) than the number of
epochs in the construction of Sect. 3. As a result, this epoch construction matches
exactly the requirements that we wanted there to be more epochs which are
required to be read by the read operation while only sacrificing that there are
more future write operations for any epoch i. We now present a generalization
of Lemma 3 which can be applied for the new epoch constructions that are
introduced here and in Sect. 4.2.

Epoch 2r Epoch r+1 Epochr Epoch 1

L, =2 I,

=r? l=r l,=r
N. read

Fig. 4. Diagram of epoch construction of Sect. 4.1.

Lemma 4. There exists a large epoch i such that E[|7.59(Q)|] =

0 (tk “max, Y l) and E[|TH(Q)]] = O (%)

jze

Proof. Using the same ideas of Lemma 3, we will show that there exists k /2+1
epochs that satisfy the first statement and k /241 epochs that satisfy the second
statement. As a result, there exists at least one epoch satisfying both statements.

Pick an epoch ¢ uniformly at random from the k large epochs. Fix
Bi,...,B,_1 and R arbitrarily. We will prove an upper bound on E[|7,~%(Q)|]
over the randomness of the location of the read operation and the randomly cho-
sen i. As a result, the expectation’s upper bound will hold over any distribution
of By,...,B,—1 and R. Fix any cell probe performed by DS when processing
write(1,B),...,write(n — 1,B,,_1) and suppose that probe occurs when pro-
cessing the p,-th write operation to a cell that was last written by the p,-th
write operation. Once again, we pick the smallest e such that p, — p, < se.
Consider any epoch j where j < e — 1. Note that there are only s; operations
between the read operation and the beginning of epoch j. But, since j < e —1,
we know that s; < s._; < pr — pu meaning that either the probe occurs after
the read operation or the cell was last written before epoch j. When we fix the
location of the read operation, we fix the epoch construction. As the boundary
of the j-th epoch must occur after the p,-th operation and before the p,-th
operation, there are at most s, good locations for the read out of n/2 total
locations. For any j > e, this cell probe has probability 2s./n of contributing to
7,59(Q). Therefore, by linearity of expectation over the (n — 1)t,, expected cell
probes:
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[

|Tw<J(Q)| b 2s¢
E|l =" < =
2 Z { 7 =7 mj‘xz ‘;

epoch j islarge j>e

| =

Therefore, there exists k/2 + 1 fixed epochs i such that E[|7,%(Q)|/¢;] over the
choice of the read location is at most 3 times the above bound.

As 3 E[|7/(Q)|] < t,, there exists k/2 + 1 epochs i where E[|7/(Q)]] < 3t,
completing the proof.

Theorem 3. Let DS be an (e, d)-differentially private RAM for n b-bit array
entries implemented over w-bit cells. Assuming that e = O(1) and 0 < 6 < 1/3,
DS has failure probability at most 1/3 and w = 2(loglogn), then

tw = o((b/w)log(ndb/c)) = t,. = w((b/w)log(nb/c)).

Proof. Recall we get the following inequality by applying convexity to the
inequality of Lemma 2 and noting that ¢/¢; = O(1) for our choices i:

E[Z5(Q)]

l; (“’ log E[twsl> +EIT/(Q)] (w +log Et> = 02(b).

5] 17X
By applying Lemma 4, we get that E[|Z{(Q)|] = O(t,logr/(rlog(nb/c))) and
E[|7.5(Q)] /4] = O(ty logr/log(nb/c)) since

Sj Sj 1 o
(gj++...> gzrzﬁ_O(r).

b 7>0
Plugging into the inequality above and assuming that w = 2(loglogn),
ty + (/1) = 2((b/w) log(nb/c)/logr) = t,. = 2((b/w) log(nb/c)r/logr)

as t,, = o(b/w)log(nb/c). Since r/logr = w(1l), we complete the proof.

4.2 Second Epoch Construction

In this section, we deal with the opposite scenario when we assume that ¢, =
o((b/w)log(nb/c)) and want to show that t,, = w((b/w)log(nd/c)). The same
intuition from the previous section can be used for this situation: to show that
t, has to be very large, we will need to require that for any epoch i, the total
number of future write operations in epochs j € {1,...,7 — 1} is small. If for
any epoch i, the number of future write operations after epoch i is small and
the read operation also cannot perform many cell probes into epoch i, then each
future write operation must encode a large amount of information about epoch
7 which will be used by the read operation. As a result, we can prove a large
lower bound on t,,.
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Specifically, we consider an epoch construction in which the number of write
operations in an epoch is larger by a super-constant factor » = O(logn) com-
pared with the number in the previous epoch. So, the first epoch will have r
write operations, the second epoch will have 72 write operations, etc. So,

Si—1 :£i71+€i72+...§ (€Z+€z—1+)§2€l/’r

S|

As a result, the number of future operations is ©(1/r) times smaller than the
epoch construction of Sect. 3. The number of large epochs, that is with at least
max{/n,c?/b} write, is k = O(log, nb/c).

Theorem 4. Let DS be an (e,0)-differentially private RAM for n b-bit array
entries implemented over w-bit cells. Assuming that e = O(1) and 0 < § < 1/3,
DS has failure probability at most 1/3 and w = 2(loglogn), then

t, = o((b/w)log(nb/c)) = t, = w((b/w)log(nb/c)).

Proof. By applying Lemma 4, we get that E[|7,(Q)|] = O(t,logr/log(nb/c))
and E[|7,54(Q)|/4;] = O(ty logr/rlog(nb/c)) since

5y S PP
<€j+ +"')—22w’ O(1).

[,
g+l >0

Plugging into the inequality of Lemma 2 after applying convexity and noting
that w = 2(loglogn) and that, for large epochs, ¢/¢; = O(1), we obtain

(tw/r) +t = 2((b/w)log(nb/c)/logr) = t, = 2((b/w)log(nb/c)r/logr)

since t, = o((b/w)log(nb/c)). Noting that r/logr = w(1) completes our proof.

5 Discussion

We now discuss three extensions that follow from our lower bound techniques.

Our techniques only enforce the requirements of differential privacy for a
single read operation. Therefore, our lower bounds would also apply differentially
private-read RAMs where differential privacy is guaranteed only for sequences of
operations that differ in exactly one read operation. This might be important
in scenarios where the indices of write operations are not sensitive (or may
be public) but only the indices of read operations need to be protected. Once
again, this weakening of security does not suffice to get around the 2(log(nb/c))
bandwidth overhead lower bounds.

The lower bounds of Sects. 3 and 4 hold for 6 < 1/3. Most practical scenarios
require that § must be negligible in n, so the above results suffice. For theoretical
exploration, we note that our results can be extended to any constant § < 1. In
particular, for any p < 1, by picking a sufficiently large enough constant C', we
can prove that Pr[Z;(Q(idx)) > b/C] > p which is a variation of Lemma 1.
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By using p > 0 we can extend Lemma 2 and prove that for all epochs i,
Pr[Z;(Q) > b/C] > (p — d)/ec. This will suffice to extend Theorem 2 to any
0 < 1. The main result of Sect.4 can be similarly extended.

Finally, our lower bound assumes DS has worst time case cost on update
operations, but may be extended to worst case amortized update costs. In par-
ticular, we only apply Lemma 1 to epochs whose sum of probed cells by update
operations is not too much larger than expected. By an averaging argument, it
can be shown that a constant fraction of all epochs satisfy this property.

In this work, we show that the £2(log(nb/c)) bandwidth overhead lower bound
for the array maintenance problem with obliviousness extends to the weaker
notion of differential privacy with reasonable privacy budgets of e = O(1) and § <
1/3. The result is surprising as differentially private RAM provides significantly
weaker privacy. This leads to the following natural open question: Does there
exist a natural, weaker notion of privacy that enables o(log(nb/c)) bandwidth
overhead for the array maintenance problem?
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