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Abstract. We consider the problem of designing scalable, robust proto-
cols for computing statistics about sensitive data. Specifically, we look at
how best to design differentially private protocols in a distributed setting,
where each user holds a private datum. The literature has mostly consid-
ered two models: the “central” model, in which a trusted server collects
users’ data in the clear, which allows greater accuracy; and the “local”
model, in which users individually randomize their data, and need not
trust the server, but accuracy is limited. Attempts to achieve the accu-
racy of the central model without a trusted server have so far focused on
variants of cryptographic multiparty computation (MPC), which limits
scalability.

In this paper, we initiate the analytic study of a shuffled model for dis-
tributed differentially private algorithms, which lies between the local and
central models. This simple-to-implement model, a special case of the ESA
framework of [5], augments the local model with an anonymous channel
that randomly permutes a set of user-supplied messages. For sum queries,
we show that this model provides the power of the central model while
avoiding the need to trust a central server and the complexity of crypto-
graphic secure function evaluation. More generally, we give evidence that
the power of the shuffled model lies strictly between those of the central
and local models: for a natural restriction of the model, we show that shuf-
fled protocols for a widely studied selection problem require exponentially
higher sample complexity than do central-model protocols.

1 Introduction

The past few years has seen a wave of commercially deployed systems [17,29] for
analysis of users’ sensitive data in the local model of differential privacy (LDP).
LDP systems have several features that make them attractive in practice, and
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limit the barriers to adoption. Each user only sends private data to the data
collector, so users do not need to fully trust the collector, and the collector
is not saddled with legal or ethical obligations. Moreover, these protocols are
relatively simple and scalable, typically requiring each party to asynchronously
send just a single short message.

However, the local model imposes strong constraints on the utility of the
algorithm. These constraints preclude the most useful differentially private algo-
rithms, which require a central model where the users’ data is sent in the clear,
and the data collector is trusted to perform only differentially private compu-
tations. Compared to the central model, the local model requires enormous
amounts of data, both in theory and in practice (see e.g. [20] and the discus-
sion in [5]). Unsurprisingly, the local model has so far only been used by large
corporations like Apple and Google with billions of users.

In principle, there is no dilemma between the central and local models,
as any algorithm can be implemented without a trusted data collector using
cryptographic multiparty computation (MPC). However, despite dramatic recent
progress in the area of practical MPC, existing techniques still require large costs
in terms of computation, communication, and number of rounds of interaction
between the users and data collector, and are considerably more difficult for
companies to extend and maintain.

In this work, we initiate the analytic study of an intermediate model for dis-
tributed differential privacy called the shuffled model. This model, a special case
of the ESA framework of [5], augments the standard model of local differential
privacy with an anonymous channel (also called a shuffler) that collects messages
from the users, randomly permutes them, and then forwards them to the data
collector for analysis. For certain applications, this model overcomes the limita-
tions on accuracy of local algorithms while preserving many of their desirable
features. However, under natural constraints, this model is dramatically weaker
than the central model. In more detail, we make two primary contributions:

– We give a simple, non-interactive algorithm in the shuffled model for estimat-
ing a single Boolean-valued statistical query (also known as a counting query)
that essentially matches the error achievable by centralized algorithms. We
also show how to extend this algorithm to estimate a bounded real-valued sta-
tistical query, albeit at an additional cost in communication. These protocols
are sufficient to implement any algorithm in the statistical queries model [22],
which includes methods such as gradient descent.

– We consider the ubiquitous variable-selection problem—a simple but canon-
ical optimization problem. Given a set of counting queries, the variable-
selection problem is to identify the query with nearly largest value (i.e. an
“approximate argmax”). We prove that the sample complexity of variable
selection in a natural restriction of the shuffled model is exponentially larger
than in the central model. The restriction is that each user send only a single
message into the shuffle, as opposed to a set of messages, which we call this
the one-message shuffled model. Our positive results show that the sample
complexity in the shuffled model is polynomially smaller than in the local
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model. Taken together, our results give evidence that the central, shuffled,
and local models are strictly ordered in the accuracy they can achieve for
selection. Our lower bounds follow from a structural result showing that any
algorithm that is private in the one-message shuffled model is also private in
the local model with weak, but non-trivial, parameters.

In concurrent and independent work, Erlingsson et al. [16] give conceptu-
ally similar positive results for local protocols aided by a shuffler. We give a
more detailed comparison between our work and theirs after giving a thorough
description of the model and our results (Sect. 2.3)

1.1 Background and Related Work

Models for Differentially Private Algorithms. Differential privacy [14] is
a restriction on the algorithm that processes a dataset to provide statistical
summaries or other output. It ensures that, no matter what an attacker learns
by interacting with the algorithm, it would have learned nearly the same thing
whether or not the dataset contained any particular individual’s data [21]. Dif-
ferential privacy is now widely studied, and algorithms satisfying the criterion
are increasingly deployed [1,17,24].

There are two well-studied models for implementing differentially-private
algorithms. In the central model, raw data are collected at a central server
where they are processed by a differentially private algorithm. In the local model
[14,18,33], each individual applies a differentially private algorithm locally to
their data and shares only the output of the algorithm—called a report or
response—with a server that aggregates users’ reports. The local model allows
individuals to retain control of their data since privacy guarantees are enforced
directly by their devices. It avoids the need for a single, widely-trusted entity and
the resulting single point of security failure. The local model has witnessed an
explosion of research in recent years, ranging from theoretical work to deployed
implementations. A complete survey is beyond the scope of this paper.

Unfortunately, for most tasks there is a large, unavoidable gap between the
accuracy that is achievable in the two models. [4] and [8] show that estimating the
sum of bits, one held by each player, requires error Ω(

√
n/ε) in the local model,

while an error of just O(1/ε) is possible the central model. [12] extended this
lower bound to a wide range of natural problems, showing that the error must
blowup by at least Ω(

√
n), and often by an additional factor growing with the

data dimension. More abstractly, [20] showed that the power of the local model is
equivalent to the statistical query model [22] from learning theory. They used this
to show an exponential separation between the accuracy and sample complexity
of local and central algorithms. Subsequently, an even more natural separation
arose for the variable-selection problem [12,31], which we also consider in this
work.

Implementing Central-Model Algorithms in Distributed Models. In
principle, one could also use the powerful, general tools of modern cryptogra-
phy, such as multiparty computation (MPC), or secure function evaluation, to
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simulate central model algorithms in a setting without a trusted server [13], but
such algorithms currently impose bandwidth and liveness constraints that make
them impractical for large deployments. In contrast, Google [17] now uses local
differentially private protocols to collect certain usage statistics from hundreds
of millions of users’ devices.

A number of specific, efficient MPC algorithms have been proposed for dif-
ferentially private functionalities. They generally either (1) focus on simple
summations and require a single “semi-honest”/“honest-but-curious” server that
aggregates user answers, as in [6,9,26] ; or (2) allow general computations, but
require a network of servers, a majority of whom are assumed to behave honestly,
as in [11]. As they currently stand, these approaches have a number of drawbacks:
they either require users to trust that a server maintained by a service provided
is behaving (semi-)honestly, or they require that a coalition of service providers
collaborate to run protocols that reveal to each other who their users are and
what computations they are performing on their users’ data. It is possible to
avoid these issues by combining anonymous communication layers and MPC
protocols for universal circuits but, with current techniques, such modifications
destroy the efficiency gains relative to generic MPC.

Thus, a natural question—relevant no matter how the state of the art in
MPC evolves—is to identify simple (and even minimal) primitives that can be
implemented via MPC in a distributed model and are expressive enough to allow
for sophisticated private data analysis. In this paper, we show that shuffling is
a powerful primitive for differentially private algorithms.

Mixnets. One way to realize the shuffling functionality is via a mixnet. A mix
network, or mixnet, is a protocol involving several computers that takes as input
a sequence of encrypted messages, and outputs a uniformly random permutation
of those messages’ plaintexts. Introduced by [10], the basic idea now exists in
many variations. In its simplest instantiation, the network consists of a sequence
of servers, whose identities and ordering are public information.1 Messages, each
one encrypted with all the servers’ keys, are submitted by users to the first server.
Once enough messages have been submitted, each server in turn performs a shuf-
fle in which the server removes one layer of encryption and sends a permutation
of the messages to the next server. In a verifiable shuffle, the server also pro-
duces a cryptographic proof that the shuffle preserved the multi-set of messages.
The final server sends the messages to their final recipients, which might be dif-
ferent for each message. A variety of efficient implementations of mixnets with
verifiable shuffles exist (see, e.g., [5,23] and citations therein).

Another line of work [19,30] shows how to use differential privacy in addi-
tion to mixnets to make communication patterns differentially private for the
purposes of anonymous computation. Despite the superficial similarly, this line
of work is orthogonal to ours, which is about how to use mixnets themselves to
achieve (more accurate) differentially private data analysis.

1 Variations on this idea based on onion routing allow the user to specify a secret path
through a network of mixes.
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Shufflers as a Primitive for Private Data Analysis. This paper studies
how to use a shuffler (e.g. a mixnet) as a cryptographic primitive to implement
differentially-private algorithms. Bittau et al. [5] propose a general framework,
dubbed encode-shuffle-analyze (or ESA), which generalizes the local and cen-
tral models by allowing a local randomized encoding step E performed on user
devices, a permutation step S in which encrypted encodings are shuffled, and a
final randomized process A that analyzes the permuted encodings. We ask what
privacy guarantee can be provided if we rely only on the local encoding E and
the shuffle S—the analyst A is untrusted. In particular, we are interested in pro-
tocols that are substantially more accurate than is possible in the local model
(in which the privacy guarantee relies entirely on the encoding E). This general
question was left open by [5].

One may think of the shuffled model as specifying a highly restricted MPC
primitive on which we hope to base privacy. Relative to general MPC, the use
of mixnets for shuffling provides several advantages: First, there already exist a
number of highly efficient implementations. Second, their trust model is simple
and robust—as long as a single one of the servers performs its shuffle honestly,
the entire process is a uniformly random permutation, and our protocols’ privacy
guarantees will hold. The architecture and trust guarantees are also easy to
explain to nonexperts (say, with metaphors of shuffled cards or shell games).
Finally, mixnets automatically provide a number of additional features that are
desirable for data collection: they can maintain secrecy of a company’s user
base, since each company’s users could use that company’s server as their first
hop; and they can maintain secrecy of the company’s computations, since the
specific computation is done by the analyst. Note that we think of a mixnet
here as operating on large batches of messages, whose size is denoted by n. (In
implementation, this requires a fair amount of latency, as the collection point
must receive sufficiently many messages before proceeding—see Bittau et al. [5]).

Understanding the possibilities and limitations of shuffled protocols for pri-
vate data analysis is interesting from both theoretical and practical perspectives.
It provides an intermediate abstraction, and we give evidence that it lies strictly
between the central and local models. Thus, it sheds light on the minimal cryp-
tographic primitives needed to get the central model’s accuracy. It also provides
an attractive platform for near-term deployment [5], for the reasons listed above.
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For the remainder of this paper, we treat the shuffler as an abstract service
that randomly permutes a set of messages. We leave a discussion of the many
engineering, social, and cryptographic implementation considerations to future
work.

2 Overview of Results

The Shuffled Model. In our model, there are n users, each with data xi ∈ X .
Each user applies some encoder R : X → Ym to their data and sends the
messages (yi,1, . . . , yi,m) = R(xi). In the one-message shuffled model, each user
sends m = 1 message. The n ·m messages yi,j are sent to a shuffler S : Y∗ → Y∗

that takes these messages and outputs them in a uniformly random order. The
shuffled set of messages is then passed through some analyzer A : Y∗ → Z to
estimate some function f(x1, . . . , xn). Thus, the protocol P consists of the tuple
(R,S,A). We say that the algorithm is (ε, δ)-differentially private in the shuffled
model if the algorithm MR(x1, . . . , xn) = S(∪n

i=1R(xi)) satisfies (ε, δ)-differential
privacy. For more detail, see the discussion leading to Definition 8.

In contrast to the local model, differential privacy is now a property of all n
users’ messages, and the (ε, δ) may be functions of n. However, if an adversary
were to inject additional messages, then it would not degrade privacy, provided
that those messages are independent of the honest users’ data. Thus, we may
replace n, in our results, as a lower bound on the number of honest users in
the system. For example, if we have a protocol that is private for n users, but
instead we have n

p users of which we assume at least a p fraction are honest, the
protocol will continue to satisfy differential privacy.

2.1 Algorithmic Results

Our main result shows how to estimate any bounded, real-valued linear statistic
(a statistical query) in the shuffled model with error that nearly matches the best
possible utility achievable in the central model.

Theorem 1. For every ε ∈ (0, 1), and every δ � εn2−εn and every function f :
X → [0, 1], there is a protocol P in the shuffled model that is (ε, δ)-differentially
private, and for every n and every X = (x1, . . . , xn) ∈ X n,

E

[∣∣∣∣∣P (X) −
n∑

i=1

f(xi)

∣∣∣∣∣
]

= O

(
1
ε

log
n

δ

)
.

Each user sends m = Θ(ε
√

n) one-bit messages.

For comparison, in the central model, the Laplace mechanism achieves (ε, 0)-
differential privacy and error O(1ε ). In contrast, error Ω( 1ε

√
n) is necessary in the

local model. Thus, for answering statistical queries, this protocol essentially has
the best properties of the local and central models (up to logarithmic factors).

In the special case of estimating a sum of bits (or a Boolean-valued linear
statistic), our protocol has a slightly nicer guarantee and form.
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Theorem 2. For every ε ∈ (0, 1), and every δ � 2−εn and every function f :
X → {0, 1}, there is a protocol P in the shuffled model that is (ε, δ)-differentially
private, and for every n and every X = (x1, . . . , xn) ∈ X n,

E

[∣∣∣∣∣P (X) −
n∑

i=1

f(xi)

∣∣∣∣∣
]

= O

(
1
ε

√
log

1
δ

)
.

Each user sends a single one-bit message.

The protocol corresponding to Theorem 2 is extremely simple:

1. For some appropriate choice of p ∈ (0, 1), each user i with input xi outputs
yi = xi with probability 1−p and a uniformly random bit yi with probability
p. When ε is not too small, p ≈ log(1/δ)

ε2n .
2. The analyzer collects the shuffled messages y1, . . . , yn and outputs

1
1 − p

(
n∑

i=1

yi − p
2

)
.

Intuition. In the local model, an adversary can map the set of observations
{y1, . . . , yn} to users. Thus, to achieve ε-differential privacy, the parameter p
should be set close to 1

2 . In our model, the attacker sees only the anonymized
set of observations {y1, . . . , yn}, whose distribution can be simulated using only∑

i yi. Hence, to ensure that the protocol is differentially private, it suffices to
ensure that

∑
i yi is private, which we show holds for p ≈ log(1/δ)

ε2n � 1
2 .

Communication Complexity. Our protocol for real-valued queries requires
Θ(ε

√
n) bits per user. In contrast, the local model requires just a single bit, but

incurs error Ω(1ε
√

n). A generalization of Theorem 1 gives error O(
√

n
r + 1

ε log r
δ )

and sends r bits per user, but we do not know if this tradeoff is necessary. Closing
this gap is an interesting open question.

2.2 Negative Results

We also prove negative results for algorithms in the one-message shuffled model.
These results hinge on a structural characterization of private protocols in the
one-message shuffled model.

Theorem 3. If a protocol P = (R,S,A) satisfies (ε, δ)-differential privacy in
the one-message shuffled model, then R satisfies (ε+ ln n, δ)-differential privacy.
Therefore, P is (ε + lnn, δ)-differentially private in the local model.

Using Theorem 3 (and a transformation of [7] from (ε, δ)-DP to (O(ε), 0)-DP
in the local model), we can leverage existing lower bounds for algorithms in the
local model to obtain lower bounds on algorithms in the shuffled model.
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Variable Selection. In particular, consider the following variable selection prob-
lem: given a dataset x ∈ {0, 1}n×d, output Ĵ such that

n∑
i=1

xi, ̂J ≥
(

max
j∈[d]

n∑
i=1

xi,j

)
− n

10
.

(The n
10 approximation term is somewhat arbitrary—any sufficiently small con-

stant fraction of n will lead to the same lower bounds and separations.)
Any local algorithm (with ε = 1) for selection requires n = Ω(d log d),

whereas in the central model the exponential mechanism [25] solves this prob-
lem for n = O(log d). The following lower bound shows that for this ubiquitous
problem, the one-message shuffled model cannot match the central model.

Theorem 4. If P is a (1, 1
n10 )-differentially private protocol in the one-message

shuffled model that solves the selection problem (with high probability) then n =
Ω(d1/17). Moreover this lower bound holds even if x is drawn iid from a product
distribution over {0, 1}d.

In Sect. 6, we also prove lower bounds for the well studied histogram problem,
showing that any one-message shuffled-model protocol for this problem must
have error growing (polylogarithmically) with the size of the data domain. In
contrast, in the central model it is possible to release histograms with no depen-
dence on the domain size, even for infinite domains.

We remark that our lower bound proofs do not apply if the algorithm sends
multiple messages through the shuffler. However, we do not know whether beat-
ing the bounds is actually possible. Applying our bit-sum protocol d times
(together with differential privacy’s composition property) shows that n = Õ(

√
d)

samples suffice in the general shuffled model. We also do not know if this bound
can be improved. We leave it as an interesting direction for future work to fully
characterize the power of the shuffled model.

2.3 Comparison to [16]

In concurrent and independent work, Erlingsson et al. [16] give conceptually
similar positive results for local protocols aided by a shuffler. Specifically, they
prove a general amplification result: adding a shuffler to any protocol satisfying
local differential privacy improve the privacy parameters, often quite significantly.
This amplification result can be seen as a partial converse to our transformation
from shuffled protocols to local protocols (Theorem 3).

Their result applies to any local protocol, whereas our protocol for bit-sums
(Theorem 2) applies specifically to the one-bit randomized response protocol.
However, when specialized to randomized response, their result is quantitatively
weaker than ours. As stated, their results only apply to local protocols that satisfy
ε-differential privacy for ε < 1. In contrast, the proof of Theorem 2 shows that,
for randomized response, local differential privacy ε ≈ ln(n) can be amplified
to ε′ = 1. Our best attempt at generalizing their proof to the case of ε 	 1
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does not give any amplification for local protocols with ε ≈ ln(n). Specifically,
our best attempt at applying their method to the case of randomized response
yields a shuffled protocol that is 1-differentially private and has error Θ(n5/12),
which is just slightly better than the error O(

√
n) that can be achieved without

a shuffler.

3 Model and Preliminaries

In this section, we define terms and notation used throughout the paper. We use
Ber(p) to denote the Bernoulli distribution over {0, 1}, which has value 1 with
probability p and 0 with probability 1 − p. We will use Bin(n, p) to denote the
binomial distribution (i.e. the sum of n independent samples from Ber(p).

3.1 Differential Privacy

Let X ∈ X n be a dataset consisting of elements from some universe X . We say
two datasets X,X ′ are neighboring if they differ on at most one user’s data, and
denote this X ∼ X ′.

Definition 5 (Differential Privacy [14]). An algorithm M : X ∗ → Z is
(ε, δ)-differentially private if for every X ∼ X ′ ∈ X ∗ and every T ⊆ Z

P [M(X) ∈ T ] ≤ eε
P [M(X ′) ∈ T ] + δ.

where the probability is taken over the randomness of M .

Differential privacy satisfies two extremely useful properties:

Lemma 6 (Post-Processing [14]). If M is (ε, δ)-differentially private, then
for every A, A ◦ M is (ε, δ)-differentially private.

Lemma 7 (Composition [14,15]). If M1, . . . ,MT are (ε, δ)-differentially pri-
vate, then the composed algorithm

M̃(X) = (M1(X), . . . , MT (X))

is (ε′, δ′ + Tδ)-differentially private for every δ′ > 0 and ε′ = ε(eε − 1)T +
ε
√

2T log(1/δ′).

3.2 Differential Privacy in the Shuffled Model

In our model, there are n users, each of whom holds data xi ∈ X . We will use
X = (x1, . . . , xn) ∈ X n to denote the dataset of all n users’ data. We say two
datasets X,X ′ are neighboring if they differ on at most one user’s data, and
denote this X ∼ X ′.
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The protocols we consider consist of three algorithms:

– R : X → Ym is a randomized encoder that takes as input a single users’ data
xi and outputs a set of m messages yi,1, . . . , yi,m ∈ Y. If m = 1, then P is in
the one-message shuffled model.

– S : Y∗ → Y∗ is a shuffler that takes a set of messages and outputs these mes-
sages in a uniformly random order. Specifically, on input y1, . . . , yN , S chooses
a uniformly random permutation π : [N ] → [N ] and outputs yπ(1), . . . , yπ(N).

– A : Y∗ → Z is some analysis function or analyzer that takes a set of messages
y1, . . . , yN and attempts to estimate some function f(x1, . . . , xn) from these
messages.

We denote the overall protocol P = (R,S,A). The mechanism by which we
achieve privacy is

ΠR(x1, . . . , xn) = S(∪n
i=1R(xi)) = S(y1,1, . . . , yn,m),

where both R and S are randomized. We will use P (X) = A ◦ ΠR(X) to denote
the output of the protocol. However, by the post-processing property of differen-
tial privacy (Lemma 6), it will suffice to consider the privacy of ΠR(X), which
will imply the privacy of P (X). We are now ready to define differential privacy
for protocols in the shuffled model.

Definition 8 (Differential Privacy in the Shuffled Model). A protocol
P = (R,S,A) is (ε, δ)-differentially private if the algorithm ΠR(x1, . . . , xn) =
S(R(x1), . . . , R(xn)) is (ε, δ)-differentially private (Definition 5).

In this model, privacy is a property of the entire set of users’ messages and
of the shuffler, and thus ε, δ may depend on the number of users n. When we
wish to refer to P or Π with a specific number of users n, we will denote this by
Pn or Πn.

We remark that if an adversary were to inject additional messages, then it
would not degrade privacy, provided that those messages are independent of the
honest users’ data. Thus, we may replace n, in our results, with an assumed
lower bound on the number of honest users in the system.

In some of our results it will be useful to have a generic notion of accuracy
for a protocol P .

Definition 9 (Accuracy of Distributed Protocols). Protocol P = (R,S,A)
is (α, β)-accurate for the function f : X ∗ → Z if, for every X ∈ X ∗, we have
P [d(P (X), f(X)) ≤ α] ≥ 1 − β where d : Z × Z → R is some application-
dependent distance measure.

As with the privacy guarantees, the accuracy of the protocol may depend on
the number of users n, and we will use Pn when we want to refer to the protocol
with a specific number of users.

Composition of Differential Privacy. We will use the following useful com-
position property for protocols in the shuffled model, which is an immediate
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consequence of Lemma 7 and the post-processing Lemma 6. This lemma allows
us to directly compose protocols in the shuffled model while only using the shuf-
fler once, rather than using the shuffler independently for each protocol being
composed.

Lemma 10 (Composition of Protocols in the Shuffled Model). If Π1 =
(R1, S), . . . , ΠT = (RT , S) for Rt : X → Ym are each (ε, δ)-differentially private
in the shuffled model, and R̃ : X → YmT is defined as

R̃(xi) = (R1(xi), . . . , RT (xi))

then, for every δ′ > 0, the composed protocol Π̃ = (R̃, S) is (ε′, δ′ + Tδ)-
differentially private in the shuffled model for ε′ = ε2 + 2ε

√
T log(1/δ′).

Local Differential Privacy. If the shuffler S were replaced with the identity
function (i.e. if it did not randomly permute the messages) then we would be left
with exactly the local model of differential privacy. That is, a locally differentially
private protocol is a pair of algorithms P = (R,A), and the output of the protocol
is P (X) = A(R(x1), . . . , R(xn)). A protocol P is differentially private in the local
model if and only if the algorithm R is differentially private. In Sect. 6 we will
see that if P = (R,S,A) is a differentially private protocol in the one-message
shuffled model, then R itself must satisfy local differential privacy for non-trivial
(ε, δ), and thus (R,A ◦ S) is a differentially private local protocol for the same
problem.

4 A Protocol for Boolean Sums

In this section we describe and analyze a protocol for computing a sum of {0, 1}
bits, establishing Theorem 2 in the introduction.

4.1 The Protocol

In our model, the data domain is X = {0, 1} and the function being computed is
f(x1, . . . , xn) =

∑n
i=1 xi. Our protocol, Pλ, is specified by a parameter λ ∈ [0, n]

that allows us to trade off the level of privacy and accuracy. Note that λ may be
a function of the number of users n. We will discuss in Sect. 4.3 how to set this
parameter to achieve a desired level of privacy. For intuition, one may wish to
think of the parameter λ ≈ 1

ε2 when ε is not too small.
The basic outline of Pλ is as follows. Roughly, a random set of λ users will

choose yi randomly, and the remaining n − λ will choose yi to be their input
bit xi. The output of each user is the single message yi. The outputs are then
shuffled and the output of the protocol is the sum

∑n
i=1 yi, shifted and scaled

so that it is an unbiased estimator of
∑n

i=1 xi.
The protocol is described in Algorithm 1. The full name of this protocol is

P
0/1
λ , where the superscript serves to distinguish it with the real sum protocol
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PR

λ,r (Sect. 5). Because of the clear context of this section, we drop the superscript.
Since the analysis of both the accuracy and utility of the algorithm will depend
on the number of users n, we will use Pn,λ, Rn,λ, An,λ to denote the protocol
and its components in the case where the number of users is n.

Algorithm 1. A shuffled protocol P
0/1
n,λ = (R0/1

n,λ, S,A
0/1
n,λ) for computing

the sum of bits
// Local Randomizer

R
0/1
n,λ(x):
Input: x ∈ {0, 1}, parameters n ∈ N, λ ∈ (0, n).
Output: y ∈ {0, 1}
Let b ← Ber( λ

n
)

If b = 0 : Return y ← x ;
ElseIf b = 1 : Return y ← Ber

(
1
2

)
;

// Analyzer

A
0/1
n,λ(y1, . . . , yn):
Input: (y1, . . . , yn) ∈ {0, 1}n, parameters n ∈ N, λ ∈ (0, n).
Output: z ∈ [0, n]

Return z ← n
n−λ

· (∑n
i=1 yi − λ

2

)

4.2 Privacy Analysis

In this section we will prove that Pλ satisfies (ε, δ)-differential privacy. Note that
if λ = n then the each user’s output is independent of their input, so the protocol
trivially satisfies (0, 0)-differential privacy, and thus our goal is to prove an upper
bound on the parameter λ that suffices to achieve a given (ε, δ).

Theorem 11 (Privacy of Pλ). There are absolute constants κ1, . . . , κ5 such
that the following holds for Pλ. For every n ∈ N, δ ∈ (0, 1) and κ2 log(1/δ)

n ≤ ε ≤ 1,
there exists a λ = λ(n, ε, δ) such that Pn,λ is (ε, δ) differentially private and,

λ ≤
⎧⎨
⎩

κ4 log(1/δ)
ε2 if ε ≥

√
κ3 log(1/δ)

n

n − κ5εn3/2√
log(1/δ)

otherwise

In the remainder of this section we will prove Theorem 11.
The first step in the proof is the observation that the output of the shuffler

depends only on
∑

i yi. It will be more convenient to analyze the algorithm
Cλ (Algorithm 2) that simulates S(Rλ(x1), . . . , Rλ(xn)). Claim 12 shows that
the output distribution of Cλ is indeed the same as that of the output

∑
i yi.

Therefore, privacy of Cλ carries over to Pλ.
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Algorithm 2. Cλ(x1 . . . xn)
Input: (x1 . . . xn) ∈ {0, 1}n, parameter λ ∈ (0, n).
Output: y ∈ {0, 1, 2, . . . , n}
Sample s ← Bin

(
n, λ

n

)

Define Hs = {H ⊆ [n] : |H| = s} and choose H ← Hs uniformly at random
Return y ← ∑

i/∈H xi + Bin
(
s, 1

2

)

Claim 12. For every n ∈ N, x ∈ {0, 1}n, and every r ∈ {0, 1, 2, . . . , n},

P [Cλ(X) = r] = P

[
n∑

i=1

Rn,λ(xi) = r

]

Proof. Fix any r ∈ {0, 1, 2, . . . , n}.

P [Cλ(X) = r] =
∑

H⊆[n]

P [Cλ(X) = r ∩ H = H]

=
∑

H⊆[n]

P

[∑
i/∈H

xi + Bin
(

|H|, 1
2

)
= r

]
·
(

λ

n

)|H|(
1 − λ

n

)n−|H|

=
∑

H⊆[n]

P

[∑
i/∈H

xi +
∑
i∈H

Ber
(

1
2

)
= r

]
·
(

λ

n

)|H|(
1 − λ

n

)n−|H|

(1)

Let G denote the (random) set of people for whom bi = 1 in Pλ. Notice that

P

[
n∑

i=1

Rn,λ(xi) = r

]
=
∑

G⊆[n]

P

[∑
i

Rn,λ(xi) = r ∩ G = G

]

=
∑

G⊆[n]

P

[∑
i/∈G

xi +
∑
i∈G

Ber
(

1
2

)
= r

]

·
(

λ

n

)|G|(
1 − λ

n

)n−|G|

which is the same as (1). This concludes the proof. ��
Now we establish that in order to demonstrate privacy of Pn,λ, it suffices to

analyze Cλ.

Claim 13. If Cλ is (ε, δ) differentially private, then Pn,λ is (ε, δ) differentially
private.

Proof. Fix any number of users n. Consider the randomized algorithm T :
{0, 1, 2, . . . , n} → {0, 1}n that takes a number r and outputs a uniformly random
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string z that has r ones. If Cλ is differentially private, then the output of T ◦Cλ

is (ε, δ) differentially private by the post-processing lemma.
To complete the proof, we show that for any X ∈ X n the output of (T ◦

Cλ)(X) has the same distribution as S(Rλ(x1), . . . Rλ(xn)). Fix some vector
Z ∈ {0, 1}n with sum r

P
T,Cλ

[T (Cλ(X)) = Z] = P [T (r) = Z] · P [Cλ(X) = r]

=
(
n
r

)−1 · P [Cλ(X) = r]

=
(
n
r

)−1 · P [f(Rn,λ(X)) = r] (Claim 12)

=
(
n
r

)−1 ·
∑

Y ∈{0,1}n:|Y |=r

P [Rn,λ(X) = Y ]

=
∑

Y ∈{0,1}n:|Y |=r

P [Rn,λ(X) = Y ] · P [S(Y ) = Z]

= P
Rn,λ,S

[S(Rn,λ(X)) = Z]

This completes the proof of Claim 13. ��
We will analyze the privacy of Cλ in three steps. First we show that for any

sufficiently large H, the final step (encapsulated by Algorithm 3) will ensure dif-
ferential privacy for some parameters. When then show that for any sufficiently
large value s and H chosen randomly with |H| = s, the privacy parameters actu-
ally improve significantly in the regime where s is close to n; this sampling of H
is performed by Algorithm 4. Finally, we show that when s is chosen randomly
then s is sufficiently large with high probability.

Algorithm 3. CH(x1 . . . xn)
Input: (x1 . . . xn) ∈ {0, 1}n, parameter H ⊆ [n].
Output: yH ∈ {0, 1, 2, . . . , n}
Let B ← Bin

(|H|, 1
2

)

Return yH ← ∑
i/∈H xi + B

Claim 14. For any δ > 0 and any H ⊆ [n] such that |H| > 8 log 4
δ , CH is

(ε, δ
2 )-differentially private for

ε = ln

⎛
⎝1 +

√
32 log 4

δ

|H|

⎞
⎠ <

√
32 log 4

δ

|H|

Proof. Fix neighboring datasets X ∼ X ′ ∈ {0, 1}n, any H ⊆ [n] such that
|H| > 8 log 4

δ , and any δ > 0. If the point at which X,X ′ differ lies within
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H, the two distributions CH(X), CH(X ′) are identical. Hence, without loss of
generality we assume that xj = 0 and x′

j = 1 for some j �∈ H.

Define u :=
√

1
2 |H| log 4

δ and Iu :=
(
1
2 |H| − u, 1

2 |H| + u
)

so that by

Hoeffding’s inequality, P [B ∈ Iu] < 1
2δ. For any W ⊆ {0, 1, 2, . . . , n} we have,

P [CH(X) ∈ W ] = P [CH(X) ∈ W ∩ B ∈ Iu] + P [CH(X) ∈ W ∩ B /∈ Iu]

≤ P [CH(X) ∈ W ∩ B ∈ Iu] +
1
2
δ

=
∑

r∈W∩Iu

P

[
B +
∑
i/∈H

xi = r

]
+

1
2
δ

Thus to complete the proof, it suffices to show that for any H and r ∈ W ∩ Iu

P
[
B +
∑

i/∈H xi = r
]

P
[
B +
∑

i/∈H x′
i = r

] ≤ 1 +

√
32 log 4

δ

|H| (2)

Because xj = 0, x′
j = 1 and j /∈ H, we have

∑
i/∈H xi =

∑
i/∈H x′

i − 1. Thus,

P
[
B +
∑

i/∈H xi = r
]

P
[
B +
∑

i/∈H x′
i = r

] =
P
[
B +
∑

i/∈H x′
i − 1 = r

]
P
[
B +
∑

i/∈H x′
i = r

]
=

P
[
B =

(
r −∑i/∈H x′

i

)
+ 1
]

P
[
B =

(
r −∑i/∈H x′

i

)]
Now we define k = r −∑i/∈H x′

i so that

P
[
B =

(
r −∑i/∈H x′

i

)
+ 1
]

P
[
B =

(
r −∑i/∈H x′

i

)] =
P [B = k + 1]
P [B = k]

.

Then we can calculate
P [B = k + 1]
P [B = k]

=
|H| − k

k + 1
(B is binomial)

≤ |H| − ( 12 |H| − u)
1
2 |H| − u + 1

(r ∈ Iu so k ≥ 1
2 |H| − u)

<
1
2 |H| + u
1
2 |H| − u

=
u2/(log 4

δ ) + u

u2/(log 4
δ ) − u

(u =
√

1
2 |H| log 4

δ )

=
u + log 4

δ

u − log 4
δ

= 1 +
2 log 4

δ

u − log 4
δ

= 1 +
2 log 4

δ√
1
2 |H| log 4

δ − log 4
δ

≤ 1 +
4 log 4

δ√
1
2 |H| log 4

δ

= 1 +

√
32 log 4

δ

|H| (|H| > 8 log 4
δ )

which completes the proof. ��
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Next, we consider the case where H is a random subset of [n] with a fixed
size s. In this case we will use an amplification via sampling argument [20,27] to
argue that the randomness of H improves the privacy parameters by a factor of
roughly (1 − s

n ), which will be crucial when s ≈ n.

Algorithm 4. Cs(x1, . . . , xn)
Input: (x1, . . . , xn) ∈ {0, 1}n, parameter s ∈ {0, 1, 2, . . . , n}.
Output: ys ∈ {0, 1, 2, . . . , n}
Define Hs = {H ⊆ [n] : |H| = s} and choose H ← Hs uniformly at random
Return ys ← CH(x)

Claim 15. For any δ > 0 and any s > 8 log 4
δ , Cs is (ε, 1

2δ) differentially private
for

ε =

√
32 log 4

δ

s
·
(
1 − s

n

)
Proof. As in the previous section, fix X ∼ X ′ ∈ {0, 1}n where xj = 0, x′

j = 1.
Cs(X) selects H uniformly from Hs and runs CH(X); let H denote the realiza-

tion of H. To enhance readability, we will use the shorthand ε0(s) :=
√

32 log 4
δ

s .
For any W ⊂ {0, 1, 2, . . . , n}, we aim to show that

P
H,CH

[CH(X) ∈ W ] − 1
2δ

P
H,CH

[CH(X ′) ∈ W ]
≤ exp

(
ε0(s) ·

(
1 − s

n

))

First, we have

P
H,CH

[CH(X) ∈ W ] − 1
2δ

P
H,CH

[CH(X ′) ∈ W ]

=
P

H,CH

[CH(X) ∈ W ∩ j ∈ H] + P
H,CH

[CH(X) ∈ W ∩ j /∈ H] − 1
2δ

P
H,CH

[CH(X ′) ∈ W ∩ j ∈ H] + P
H,CH

[CH(X ′) ∈ W ∩ j /∈ H]

=
(1 − p)γ(X) + pζ(X) − 1

2δ

(1 − p)γ(X ′) + pζ(X ′)
(3)

where p := P [j /∈ H] = (1 − s/n),

γ(X) := P
CH

[CH(X) ∈ W | j ∈ H] and ζ(X) := P
CH

[CH(X) ∈ W | j /∈ H] .

When user j outputs a uniformly random bit, their private value has no impact
on the distribution. Hence, γ(X) = γ(X ′), and

(3) =
(1 − p)γ(X) + pζ(X) − 1

2δ

(1 − p)γ(X) + pζ(X ′)
(4)
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Since s = |H| is sufficiently large, by Claim 14 we have ζ(X) ≤ (1 + ε0(s)) ·
min{ζ(X ′), γ(X)} + 1

2δ.

(4) ≤ (1 − p)γ(X) + p · (1 + ε0(s)) · min{ζ(X ′), γ(X)} + δ) − 1
2δ

(1 − p)γ(X) + pζ(X ′)

≤ (1 − p)γ(X) + p · (1 + ε0(s)) · min{ζ(X ′), γ(X)}
(1 − p)γ(X) + pζ(X ′)

=
(1 − p)γ(X) + p · min(ζ(X ′), γ(X)) + p · ε0(s) · min{ζ(X ′), γ(X)}

(1 − p)γ(X) + pζ(X ′)

≤ (1 − p)γ(X) + pζ(X ′) + p · ε0(s) · min{ζ(X ′), γ(X)}
(1 − p)γ(X) + pζ(X ′)

= 1 +
p · ε0(s) · min{ζ(X ′), γ(X)}

(1 − p)γ(X) + pζ(X ′)
(5)

Observe that min{ζ(X ′), γ(X)} ≤ (1 − p)γ(X) + pζ(X ′), so

(5) ≤ 1 + p · ε0(s) = 1 + ε0(s) ·
(
1 − s

n

)
≤ exp

(
ε0(s) ·

(
1 − s

n

))

= exp

(√
32 log(4/δ)

s
·
(
1 − s

n

))

which completes the proof. ��
We now come to the actual algorithm Cλ, where s is not fixed but is random.

The analysis of Cs yields a bound on the privacy parameter that increases with
s, so we will complete the analysis of Cλ by using the fact that, with high
probability, s is almost as large as λ.

Claim 16. For any δ > 0 and n ≥ λ ≥ 14 log 4
δ , Cλ is (ε, δ) differentially

private where

ε =

√√√√ 32 log 4
δ

λ −
√

2λ log 2
δ

·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠

The proof is in the full version of the paper.
From Claim 13, Cλ and Pn,λ share the same privacy guarantees. Hence, Claim

16 implies the following:

Corollary 17. For any δ ∈ (0, 1), n ∈ N, and λ ∈ [14 log 4
δ , n
]
, Pn,λ is (ε, δ)

differentially private, where

ε =

√√√√ 32 log 4
δ

λ −
√

2λ log 2
δ

·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠
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4.3 Setting the Randomization Parameter

Corollary 17 gives a bound on the privacy of Pn,λ in terms of the number of users
n and the randomization parameter λ. While this may be enough on its own,
in order to understand the tradeoff between ε and the accuracy of the protocol,
we want to identify a suitable choice of λ to achieve a desired privacy guarantee
(ε, δ). To complete the proof of Theorem 11, we prove such a bound.

For the remainder of this section, fix some δ ∈ (0, 1). Corollary 17 states
that for any n and λ ∈ [14 log 4

δ , n
]
, Pn,λ satisfies (ε∗(λ), δ)-differential privacy,

where

ε∗(λ) =

√√√√ 32 log 4
δ

λ −
√

2λ log 2
δ

·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠

Let λ∗(ε) be the inverse of ε∗, i.e. the minimum λ ∈ [0, n] such that ε∗(λ) ≤ ε.
Note that ε∗(λ) is decreasing as λ → n while λ∗(ε) increases as ε → 0. By
definition, Pn,λ satisfies (ε, δ) privacy if λ ≥ λ∗(ε); the following Lemma gives
such an upper bound:

Lemma 18. For all δ ∈ (0, 1), n ≥ 14 log 4
δ , ε ∈

(√
3456
n log 4

δ , 1
)
, Pn,λ is (ε, δ)

differentially private if

λ =

⎧⎨
⎩

64
ε2 log 4

δ if ε ≥
√

192
n log 4

δ

n − εn3/2√
432 log(4/δ)

otherwise
(6)

We’ll prove the lemma in two claims, each of which corresponds to one of the
two cases of our bound on λ∗(ε). The first bound applies when ε is relatively large.

Claim 19. For all δ ∈ (0, 1), n ≥ 14 log 4
δ , ε ∈

(√
192
n log 4

δ , 1
)
, if λ = 64

ε2 log 4
δ

then Pn,λ is (ε, δ) private.

Proof. Let λ = 64
ε2 log 4

δ as in the statement. Corollary 17 states that Pn,λ satisfies
(ε∗(λ), δ) privacy for

ε∗(λ) =

√√√√ 32 log 4
δ

λ −
√

2λ log 2
δ

·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠

≤
√√√√ 32 log 4

δ

λ −
√

2λ log 2
δ

(λ ≤ n)

≤
√

64 log 4
δ

λ
(λ ≥ 8 log 2

δ )

= ε

This completes the proof of the claim. ��
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The value of λ in the previous claim can be as large as n when ε approaches
1/

√
n. We now give a meaningful bound for smaller values of ε.

Claim 20. For all δ ∈ (0, 1), n ≥ 14 log 4
δ , ε ∈

(√
3456
n log 4

δ ,
√

192
n log 4

δ

)
, if

λ = n − εn3/2√
432 log(4/δ)

then Pn,λ is (ε, δ) private.

Proof. Let λ = n − εn3/2/
√

432 log(4/δ) as in the statement. Note that for this
ε regime, we have n/3 < λ < n. Corollary 17 states that Pn,λ satisfies (ε∗(λ), δ)
privacy for

ε∗(λ) =

√√√√ 32 log 4
δ

λ −
√

2λ log 2
δ

·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠

≤
√

64 log 4
δ

λ
·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠ (λ ≥ 8 log 2

δ )

=

√
64 log 4

δ

λ
·
⎛
⎝ ε

√
n√

432 log(4/δ)
+

√
2λ log 2

δ

n

⎞
⎠

≤
√

64 log 4
δ

λ
·
⎛
⎝ ε

√
n√

432 log(4/δ)
+

√
2 log 2

δ

n

⎞
⎠ (λ ≤ n)

≤
√

192 log 4
δ

n
·
⎛
⎝ ε

√
n√

432 log(4/δ)
+

√
2 log 2

δ

n

⎞
⎠ (λ ≥ n/3)

=
2
3
ε +

√
384 log 4

δ log 2
δ

n
<

2
3
ε +

√
384
n

log
4
δ

<
2
3
ε +

1
3
ε = ε (ε >

√
3456
n log 4

δ )

which completes the proof. ��

4.4 Accuracy Analysis

In this section, we will bound the error of Pλ(X) with respect to
∑

i xi. Recall
that, to clean up notational clutter, we will often write f(X) =

∑
i xi. As with

the previous section, our statements will at first be in terms of λ but the section
will end with a statement in terms of ε, δ.
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Theorem 21. For every n ∈ N, β > 0, n > λ ≥ 2 log 2
β , and x ∈ {0, 1}n,

P

[∣∣∣∣∣Pn,λ(x) −
∑

i

xi

∣∣∣∣∣ >
√

2λ log(2/β) ·
(

n

n − λ

)]
≤ β

Observe that, using the choice of λ specified in Theorem 11, we conclude that
for every 1

n � ε � 1 and every δ the protocol Pλ satisfies

P

[∣∣∣∣∣Pn,λ(x) −
∑

i

xi

∣∣∣∣∣ > O

(√
log(1/δ) log(1/β)

ε

)]
≤ β

To see how this follows from Theorem 21, consider two parameter regimes:

1. When ε 	 1/
√

n then λ ≈
√

log(1/δ)

ε2 � n, so the bound in Theorem 21 is
O(
√

λ log(1/β)), which yields the desired bound.
2. When ε � 1/

√
n then n − λ ≈ εn3/2/

√
log(1/δ) � n, so the bound in

Theorem 21 is O

(
n3/2

√
log(1/β)

n−λ

)
, which yields the desired bound.

Theorem 2 in the introduction follows from this intuition; a formal proof can
be found in the full version.

5 A Protocol for Sums of Real Numbers

In this section, we show how to extend our protocol to compute sums of bounded
real numbers. In this case the data domain is X = [0, 1], but the function we wish
to compute is still f(x) =

∑
i xi. The main idea of the protocol is to randomly

round each number xi to a Boolean value bi ∈ {0, 1} with expected value xi.
However, since the randomized rounding introduces additional error, we may
need to round multiple times and estimate several sums. As a consequence, this
protocol is not one-message.

5.1 The Protocol

Our algorithm is described in two parts, an encoder Er that performs the ran-
domized rounding (Algorithm 5) and a shuffled protocol PR

λ,r (Algorithm 6) that

is the composition of many copies of our protocol for the binary case, P
0/1
λ . The

encoder takes a number x ∈ [0, 1] and a parameter r ∈ N and outputs a vector
(b1, . . . , br) ∈ {0, 1}r such that E

[
1
r

∑
j bj

]
= xj and Var

[
1
r

∑
j bj

]
= O(1/r2).

To clarify, we give two examples of the encoding procedure:

– If r = 1 then the encoder simply sets b = Ber(x). The mean and variance of
b are x and x(1 − x) ≤ 1

4 , respectively.
– If x = .4 and r = 4 then the encoder sets b = (1,Ber(.6), 0, 0). The mean and

variance of 1
4 (b1 + b2 + b3 + b4) are .4 and .015, respectively.
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After doing the rounding, we then run the bit-sum protocol P
0/1
λ on the bits

b1,j , . . . , bn,j for each j ∈ [r] and average the results to obtain an estimate of the
quantity ∑

i

1
r

∑
j

bi,j ≈
∑

i

xi

To analyze privacy we use the fact that the protocol is a composition of bit-
sum protocols, which are each private, and thus we can analyze privacy via the
composition properties of differential privacy.

Much like in the bit-sum protocol, we use PR

n,λ,r, R
R

n,λ,r, A
R

n,λ,r to denote the
real-sum protocol and its components when n users participate.

Algorithm 5. An encoder Er(x)
Input: x ∈ [0, 1], a parameter r ∈ N.
Output: (b1, . . . ,br) ∈ {0, 1}r

Let μ ← �x · r� and p ← x · r − μ + 1
For j = 1, . . . , r

bj =

⎧
⎪⎨

⎪⎩

1 j < μ

Ber(p) j = μ

0 j > μ

Return (b1, . . . ,br)

Algorithm 6. The protocol PR

λ,r = (RR

λ,r, S,AR

λ,r)

// Local randomizer

RR

n,λ,r(x):
Input: x ∈ [0, 1], parameters n, r ∈ N, λ ∈ (0, n).
Output: (y1, . . .yr) ∈ {0, 1}r

(b1, . . .br) ← Er(x)

Return (y1, . . .yr) ←
(
R

0/1
n,λ(b1), . . . , R

0/1
n,λ(br)

)

// Analyzer

AR

n,λ,r(y1,1, . . . , yn,r):
Input: (y1,1, . . . , yn,r) ∈ {0, 1}n·r, parameters n, r ∈ N, λ ∈ (0, n).
Output: z ∈ [0, n]

Return z ← 1
r

· n
n−λ

((∑
j

∑
i yi,j

)
− λ·r

2

)
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Theorem 22. For every δ = δ(n) such that e−Ω(n1/4) < δ(n) < 1
n and

poly(log n)
n < ε < 1 and every sufficiently large n, there exists parameters

λ ∈ [0, n], r ∈ N such that PR

n,λ,r is both (ε, δ) differentially private and for
every β > 0, and every X = (x1, . . . , xn) ∈ [0, 1]n,

P

[∣∣∣∣∣PR

n,λ,r(X) −
n∑

i=1

xi

∣∣∣∣∣ > O

(
1
ε

log
1
δ

√
log

1
β

)]
≤ β

5.2 Privacy Analysis

Privacy will follow immediately from the composition properties of shuffled pro-
tocols (Lemma 10) and the privacy of the bit-sum protocol Pn,λ. One technical
nuisance is that the composition properties are naturally stated in terms of ε,
whereas the protocol is described in terms of the parameter λ, and the relation-
ship between ε, λ, and n is somewhat complex. Thus, we will state our guarantees
in terms of the level of privacy that each individual bit-sum protocol achieves
with parameter λ. To this end, define the function λ∗(n, ε, δ) to be the minimum
value of λ such that the bit-sum protocol with n users satisfies (ε, δ)-differential
privacy. We will state the privacy guarantee in terms of this function.

Theorem 23. For every ε, δ ∈ (0, 1), n, r ∈ N, define

ε0 =
ε√

8r log(2/δ)
δ0 =

δ

2r
λ∗ = λ∗(n, ε0, δ0)

For every λ ≥ λ∗, PR

n,λ,r is (ε, δ)-differentially private.

5.3 Accuracy Analysis

In this section, we bound the error of PR

λ,r(X) with respect to
∑

i xi. Recall that
f(X) =

∑
i xi.

Observe that there are two sources of randomness: the encoding of the input
X = (x1, . . . xn) as bits and the execution of R

0/1
n,λ on that encoding. We first show

that the bit encoding lends itself to an unbiased and concentrated estimator of
f(X). Then we show that the output of Pn,λ,r is concentrated around any value
that estimator takes.

Theorem 24. For every β > 0, n ≥ λ ≥ 16
9 log 2

β , r ∈ N, and X ∈ [0, 1]n,

P

[∣∣PR

n,λ,r(X) − f(X)
∣∣ ≥ √

2
r

√
n log 2

β + n
n−λ ·

√
2λ

r log 2
β

]
< 2β

The analysis can be found in the full version of the paper, which also argues
that setting r ← ε · √

n suffices to achieve the bound in Theorem 22.
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6 Lower Bounds for the Shuffled Model

In this section, we prove separations between central model algorithms and shuf-
fled model protocols where each user’s local randomizer is identical and sends
one indivisible message to the shuffler (the one-message model).

Theorem 25 (Shuffled-to-Local Transformation). Let PS be a protocol in
the one-message shuffled model that is

– (εS , δS)-differentially private in the shuffled model for some εS ≤ 1 and δS =
δS(n) < n−8, and

– (α, β)-accurate with respect to f for some β = Ω(1).

Then there exists a protocol PL in the local model that is

– (εL, 0)-differentially private in the local model for εL = 8(εS + lnn), and
– (α, 4β)-accurate with respect to f (when n is larger than some absolute con-

stant)

This means that an impossibility result for approximating f in the local
model implies a related impossibility result for approximating f in the shuffled
model. In Sect. 6.2 we combine this result with existing lower bounds for local dif-
ferential privacy to obtain several strong separations between the central model
and the one-message shuffled model.

The key to Theorem 25 is to show that if PS = (RS , S,AS) is a protocol
in the one-message shuffled model satisfying (εS , δS)-differential privacy, then
the algorithm RS itself satisfies (εL, δS)-differential privacy without use of the
shuffler S. Therefore, the local protocol PL = (RS , AS ◦ S) is (εL, δS)-private in
the local model and has the exact same output distribution, and thus the exact
same accuracy, as PS . To complete the proof, we use (a slight generalization
of) a transformation of Bun, Nelson, and Stemmer [7] to turn R into a related
algorithm R′ satisfying (8(εS + ln n), 0)-differential privacy with only a slight
loss of accuracy. We prove the latter result in the full version of the paper.

6.1 One-Message Randomizers Satisfy Local Differential Privacy

The following lemma is the key step in the proof of Theorem 25, and states that
for any symmetric shuffled protocol, the local randomizer R must satisfy local
differential privacy with weak, but still non-trivial, privacy parameters.

Theorem 26. Let P = (R,S,A) be a protocol in the one-message shuffled model.
If n ∈ N is such that Pn satisfies (εS , δS)-differential privacy, then the algorithm
R satisfies (εL, δL)-differential privacy for εL = εS + lnn. Therefore, the sym-
metric local protocol PL = (R,A ◦ S) satisfies (εL, δL)-differential privacy.

Proof. By assumption, Pn is (εS , δS)-private. Let ε be the supremum such that
R : X → Y is not (ε, δS)-private. We will attempt to find a bound on ε. If R is
not (ε, δS)-differentially private, there exist Y ⊂ Y and x, x′ ∈ X such that

P [R(x′) ∈ Y ] > exp(ε) · P [R(x) ∈ Y ] + δS
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For brevity, define p := P(R(x) ∈ Y ) and p′ := P(R(x′) ∈ Y ) so that we have

p′ > exp(ε)p + δS (7)

We will show that if ε is too large, then (7) will imply that Pn is not (εS , δS)-
differentially private, which contradicts our assumption. To this end, define the
set W := {W ∈ Yn | ∃i wi ∈ Y }. Define two datasets X ∼ X ′ as

X := (x, . . . , x︸ ︷︷ ︸
n times

) and X ′ := (x′, x, . . . , x︸ ︷︷ ︸
n−1 times

)

Because Pn is (εS , δS)-differentially private

P [Pn(X ′) ∈ W] ≤ exp(εS) · P [Pn(X) ∈ W ] + δS (8)

Now we have

P [Pn(X) ∈ W]

= P

⎡
⎣S(R(x), . . . , R(x)︸ ︷︷ ︸

n times

) ∈ W
⎤
⎦

= P

⎡
⎣(R(x), . . . , R(x)︸ ︷︷ ︸

n times

) ∈ W
⎤
⎦ (W is symmetric)

= P [∃i R(x) ∈ Y ] ≤ n · P [R(x) ∈ Y ] (Union bound)
= np

where the second equality is because the set W is closed under permutation,
so we can remove the random permutation S without changing the probability.
Similarly, we have

P [Pn(X ′) ∈ W] = P

⎡
⎣(R(x′), R(x) . . . , R(x)︸ ︷︷ ︸

n−1 times

) ∈ W
⎤
⎦

≥ P [R(x′) ∈ Y ] = p′

> exp(ε)p + δS (By (7))

Now, plugging the previous two inequalities into (8), we have

exp(ε)p + δS < P [Pn(X ′) ∈ W]
≤ exp(εS) · P [Pn(X) ∈ W]
≤ exp(εS)np + δS

By rearranging and canceling terms in the above we obtain the conclusion

ε ≤ εS + lnn

Therefore R must satisfy (εS + lnn, δS)-differential privacy. ��
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Claim 27. If the shuffled protocol PS = (R,S,A) is (α, β)-accurate for some
function f , then the local protocol PL = (R,A ◦ S) is (α, β)-accurate for f ,
where

(A ◦ S)(y1, . . . , yN ) = A(S(y1, . . . , yN ))

We do not present a proof of Claim 27, as it is immediate that the distribution
of PS(x) and PL(x) are identical, since A ◦ S incorporates the shuffler.

We conclude this section with a slight extension of a result of Bun, Nelson,
and Stemmer [7] showing how to transform any local algorithm satisfying (ε, δ)-
differential privacy into one satisfying (O(ε), 0)-differential privacy with only a
small decrease in accuracy. Our extension covers the case where ε > 2/3, whereas
their result as stated requires ε ≤ 1/4.

Theorem 28 (Extension of [7]). Suppose local protocol PL = (R,A) is (ε, δ)
differentially private and (α, β) accurate with respect to f . If ε > 2/3 and

δ <
β

8n ln(n/β)
· 1
exp(6ε)

then there exists another local protocol P ′
L = (R′, A) that is (8ε, 0) differentially

private and (α, 4β) accurate with respect to f .

The proof can be found in the full version of the paper. Theorem 25 now
follows by combining Theorem 26 and Claim 27 with Theorem 28.

6.2 Applications of Theorem 25

In this section, we define two problems and present known lower bounds in the
central and local models. By applying Theorem 25, we derive lower bounds in
the one-message shuffled model. These bounds imply large separations between
the central and one-message shuffled models.

The Selection Problem. We define the selection problem as follows. The data
universe is X = {0, 1}d where d is the dimension of the problem and the main
parameter of interest. Given a dataset x = (x1, . . . , xn) ∈ X n, the goal is to
identify a coordinate j such that the sum of the users’ j-th bits is approximately
as large as possible. That is, a coordinate j ∈ [d] such that

n∑
i=1

xi,j ≥ max
j′∈[d]

n∑
i=1

xi,j′ − n

10
(9)

We say that an algorithm solves the selection problem with probability 1 − β if
for every dataset x, with probability at least 1 − β, it outputs j satisfying (9).



400 A. Cheu et al.

Table 1. Comparisons Between Models. When a parameter is unspecified, the reader
may substitute ε = 1, δ = 0, α = β = .01. All results are presented as the
minimum dataset size n for which we can hope to achieve the desired privacy
and accuracy as a function of the relevant parameter for the problem.

Function
(Parameters)

Differential privacy model

Central Shuffled (this paper) Local

One-Message General

Mean, X = {0, 1}
(Accuracy α)

Θ
(

1
αε

)
O

(√
log(1/δ)

αε

)
Θ

(
1

α2ε2

)

Mean, X = [0, 1]
(Accuracy α)

O

(
1

α2 +

√
log(1/δ)

αε

)
O

(
log(1/δ)

αε

)

Selection
(Dimension d)

Θ(log d) Ω(d
1
17 ) Õ(

√
d log d

δ
) Θ(d log d)

Histograms
(Domain Size D)

Θ
(
min

{
log 1

δ
, log D

})
Ω(log

1
17 D) O(

√
log D) Θ(log D)

We would like to understand the minimum n (as a function of d) such that
there is a differentially private algorithm that can solve the selection problem
with constant probability of failure. We remark that this is a very weak notion
of accuracy, but since we are proving a negative result, using a weak notion of
accuracy only strengthens our results.

The following lower bound for locally differentially private protocols for selec-
tion is from [31], and is implicit in the work of [12].2

Theorem 29. If PL = (RL, AL) is a local protocol that satisfies (ε, 0)-differen-
tial privacy and PL solves the selection problem with probability 9

10 for datasets

x ∈ ({0, 1}d)n, then n = Ω
(

d log d
(eε−1)2

)
.

By applying Theorem 25 we immediately obtain the following corollary.

Corollary 30. If PS = (RS , S,AS) is a (1, δ)-differentially private protocol in
the one-message shuffled model, for δ = δ(n) < n−8, and PS solves the selection
problem with probability 99

100 , then n = Ω((d log d)1/17).

Using a multi-message shuffled protocol3, we can solve selection with Õ( 1ε
√

d)
samples. By contrast, in the local model n = Θ( 1

ε2 d log d) samples are necessary
and sufficient. In the central model, this problem is solved by the exponential mech-
anism [25] with a dataset of size just n = O(1ε log d), and this is optimal [2,28].
These results are summarized in Table 1.
2 These works assume that the dataset x consists of independent samples from some

distribution D, and define accuracy for selection with respect to mean of that distri-
bution. By standard arguments, a lower bound for the distributional version implies
a lower bound for the version we have defined.

3 The idea is to simulate multiple rounds of our protocol for binary sums, one round
per dimension.
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Histograms. We define the histogram problem as follows. The data universe is
X = [D] where D is the domain size of the problem and the main parameter of
interest. Given a dataset x = (x1, . . . , xn) ∈ X n, the goal is to build a vector of
size D such that for all j ∈ [D] the j-th element is as close to the frequency of
j in x. That is, a vector v ∈ [0, n]D such that

max
j∈[D]

∣∣∣∣∣vj −
n∑

i=1

1(xi = j)

∣∣∣∣∣ ≤ n

10
(10)

where 1(conditional) is defined to be 1 if conditional evaluates to true and
0 otherwise.

Similar to the selection problem, an algorithm solves the histogram problem
with probability 1 − β if for every dataset x, with probability at least 1 − β it
outputs v satisfying (10). We would like to find the minimum n such that a
differentially private algorithm can solve the histogram problem; the following
lower bound for locally differentially private protocols for histograms is from [3].

Theorem 31. If PL = (RL, AL) is a local protocol that satisfies (ε, 0) differ-
ential privacy and PL solves the histogram problem with probability 9

10 for any

x ∈ [D]n then n = Ω
(

log D
(eε−1)2

)
By applying Theorem 25, we immediately obtain the following corollary.

Corollary 32. If PS = (RS , S,AS) is a (1, δ)-differentially private protocol in
the one-message shuffled model, for δ = δ(n) < n−8, and PS solves the histogram
problem with probability 99

100 , then n = Ω
(
log1/17 D

)
In the shuffled model, we can solve this problem using our protocol for bit-

sums by having each user encode their data as a “histogram” of just their
value xi ∈ [D] and then running the bit-sum protocol D times, once for each

value j ∈ [D], which incurs error O( 1ε
√

log 1
δ log D).4 But in the central model,

this problem can be solved to error O(min{log 1
δ , log D}), which is optimal (see,

e.g. [32]). Thus, the central and one-message shuffled models are qualitatively
different with respect to computing histograms: D may be infinite in the former
whereas D must be bounded in the latter.
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