
Yuval Ishai
Vincent Rijmen (Eds.)

 123

LN
CS

 1
14

76

38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part I

Advances in Cryptology –
EUROCRYPT 2019

Lecture Notes in Computer Science 11476

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Yuval Ishai • Vincent Rijmen (Eds.)

Advances in Cryptology –

EUROCRYPT 2019
38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Darmstadt, Germany, May 19–23, 2019
Proceedings, Part I

123

Editors
Yuval Ishai
Technion
Haifa, Israel

Vincent Rijmen
COSIC Group
KU Leuven
Heverlee, Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-17652-5 ISBN 978-3-030-17653-2 (eBook)
https://doi.org/10.1007/978-3-030-17653-2

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-17653-2

Preface

Eurocrypt 2019, the 38th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Darmstadt, Germany, during May
19–23, 2019. The conference was sponsored by the International Association for
Cryptologic Research (IACR). Marc Fischlin (Technische Universität Darmstadt,
Germany) was responsible for the local organization. He was supported by a local
organizing team consisting of Andrea Püchner, Felix Günther, Christian Janson, and
the Cryptoplexity Group. We are deeply indebted to them for their support and smooth
collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. The invited
talks and the talks presenting the best paper/best young researcher spanned over both
tracks.

We received a total of 327 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 58 Program Committee
members. Committee members were allowed to submit at most one paper, or two if
both were co-authored. Submissions by committee members were held to a higher
standard than normal submissions. The reviewing process included a rebuttal round for
all submissions. After extensive deliberations the Program Committee accepted 76
papers. The revised versions of these papers are included in these three volume pro-
ceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the paper “Quantum
Lightning Never Strikes the Same State Twice” by Mark Zhandry. The runner-up was
the paper “Compact Adaptively Secure ABE for NC1 from k Lin” by Lucas Kowalczyk
and Hoeteck Wee. The Best Young Researcher Award went to the paper “Efficient
Verifiable Delay Functions” by Benjamin Wesolowski. All three papers received
invitations for the Journal of Cryptology.

The program also included an IACR Distinguished Lecture by Cynthia Dwork,
titled “Differential Privacy and the People’s Data,” and invited talks by Daniele
Micciancio, titled “Fully Homomorphic Encryption from the Ground Up,” and
François-Xavier Standaert, titled “Toward an Open Approach to Secure Cryptographic
Implementations.”

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions can be very disappointing, especially rejections of very
good papers that did not find a slot in the sparse number of accepted papers. We
sincerely hope that these works eventually get the attention they deserve.

We are also indebted to the members of the Program Committee and all external
reviewers for their voluntary work. The committee’s work is quite a workload. It has
been an honor to work with everyone. The committee’s work was tremendously
simplified by Shai Halevi’s submission software and his support, including running the
service on IACR servers.

Finally, we thank everyone else—speakers, session chairs, and rump-session
chairs—for their contribution to the program of Eurocrypt 2019. We would also like to
thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2019 Yuval Ishai
Vincent Rijmen

vi Preface

Eurocrypt 2019

The 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research

May 19–23, 2019
Darmstadt, Germany

General Chair

Marc Fischlin Technische Universität Darmstadt, Germany

Program Co-chairs

Yuval Ishai Technion, Israel
Vincent Rijmen KU Leuven, Belgium and University of Bergen,

Norway

Program Committee

Michel Abdalla CNRS and ENS Paris, France
Adi Akavia University of Haifa, Israel
Martin Albrecht Royal Holloway, UK
Elena Andreeva KU Leuven, Belgium
Paulo S. L. M. Barreto University of Washington Tacoma, USA
Amos Beimel Ben-Gurion University, Israel
Alex Biryukov University of Luxembourg, Luxembourg
Nir Bitansky Tel Aviv University, Israel
Andrej Bogdanov Chinese University of Hong Kong, SAR China
Christina Boura University of Versailles and Inria, France
Xavier Boyen QUT, Australia
David Cash University of Chicago, USA
Melissa Chase MSR Redmond, USA
Kai-Min Chung Academia Sinica, Taiwan
Dana Dachman-Soled University of Maryland, USA
Ivan Damgård Aarhus University, Denmark
Itai Dinur Ben-Gurion University, Israel
Stefan Dziembowski University of Warsaw, Poland
Serge Fehr Centrum Wiskunde & Informatica (CWI) and Leiden

University, The Netherlands
Juan A. Garay Texas A&M University, USA
Sanjam Garg UC Berkeley, USA

Christina Garman Purdue University, USA
Siyao Guo New York University Shanghai, China
Iftach Haitner Tel Aviv University, Israel
Shai Halevi IBM Research, USA
Brett Hemenway University of Pennsylvania, USA
Justin Holmgren Princeton University, USA
Stanislaw Jarecki UC Irvine, USA
Dakshita Khurana Microsoft Research New England, USA
Ilan Komargodski Cornell Tech, USA
Gregor Leander Ruhr-Universität Bochum, Germany
Huijia Lin UCSB, USA
Atul Luykx Visa Research, USA
Mohammad Mahmoody University of Virginia, USA
Bart Mennink Radboud University, The Netherlands
Tal Moran IDC Herzliya, Israel
Svetla Nikova KU Leuven, Belgium
Claudio Orlandi Aarhus University, Denmark
Rafail Ostrovsky UCLA, USA
Rafael Pass Cornell University and Cornell Tech, USA
Krzysztof Pietrzak IST Austria, Austria
Bart Preneel KU Leuven, Belgium
Christian Rechberger TU Graz, Austria
Leonid Reyzin Boston University, USA
Guy N. Rothblum Weizmann Institute, Israel
Amit Sahai UCLA, USA
Christian Schaffner QuSoft and University of Amsterdam, The Netherlands
Gil Segev Hebrew University, Israel
abhi shelat Northeastern University, USA
Martijn Stam Simula UiB, Norway
Marc Stevens CWI Amsterdam, The Netherlands
Stefano Tessaro UCSB, USA
Mehdi Tibouchi NTT, Japan
Frederik Vercauteren KU Leuven, Belgium
Brent Waters UT Austin, USA
Mor Weiss Northeastern University, USA
David J. Wu University of Virginia, USA
Vassilis Zikas University of Edinburgh, UK

Additional Reviewers

Divesh Aggarwal
Shashank Agrawal
Gorjan Alagic
Abdelrahaman Aly
Andris Ambainis

Prabhanjan Ananth
Gilad Asharov
Tomer Ashur
Arash Atashpendar
Benedikt Auerbach

Christian Badertscher
Saikrishna

Badrinarayanan
Shi Bai
Josep Balasch

viii Eurocrypt 2019

Marshall Ball
James Bartusek
Balthazar Bauer
Carsten Baum
Christof Beierle
Fabrice Benhamouda
Iddo Bentov
Mario Berta
Ward Beullens
Ritam Bhaumik
Jean-François Biasse
Koen de Boer
Dan Boneh
Xavier Bonnetain
Charlotte Bonte
Carl Bootland
Jonathan Bootle
Joppe Bos
Adam Bouland
Florian Bourse
Benedikt Bünz
Wouter Castryck
Siu On Chan
Nishanth Chandran
Eshan Chattopadhyay
Yi-Hsiu Chen
Yilei Chen
Yu Long Chen
Jung-Hee Cheon
Mahdi Cheraghchi
Celine Chevalier
Nai-Hui Chia
Ilaria Chillotti
Chongwon Cho
Wutichai Chongchitmate
Michele Ciampi
Ran Cohen
Sandro Coretti
Ana Costache
Jan Czajkowski
Yuanxi Dai
Deepesh Data
Bernardo David
Alex Davidson
Thomas Debris-Alazard
Thomas De Cnudde

Thomas Decru
Luca De Feo
Akshay Degwekar
Cyprien Delpech de Saint
Guilhem
Ioannis Demertzis
Ronald de Wolf
Giovanni Di Crescenzo
Christoph Dobraunig
Jack Doerner
Javad Doliskani
Leo Ducas
Yfke Dulek
Nico Döttling
Aner Ben Efraim
Maria Eichlseder
Naomi Ephraim
Daniel Escudero
Saba Eskandarian
Thomas Espitau
Pooya Farshim
Prastudy Fauzi
Rex Fernando
Houda Ferradi
Dario Fiore
Ben Fisch
Mathias Fitzi
Cody Freitag
Georg Fuchsbauer
Benjamin Fuller
Tommaso Gagliardoni
Steven Galbraith
Nicolas Gama
Chaya Ganesh
Sumegha Garg
Romain Gay
Peter Gazi
Craig Gentry
Marios Georgiou
Benedikt Gierlichs
Huijing Gong
Rishab Goyal
Lorenzo Grassi
Hannes Gross
Jens Groth
Paul Grubbs

Divya Gupta
Felix Günther
Helene Haagh
Björn Haase
Mohammad Hajiabadi
Carmit Hazay
Pavel Hubáček
Andreas Huelsing
Ilia Iliashenko
Muhammad Ishaq
Joseph Jaeger
Eli Jaffe
Aayush Jain
Abhishek Jain
Stacey Jeffery
Zhengfeng Ji
Yael Kalai
Daniel Kales
Chethan Kamath
Nathan Keller
Eike Kiltz
Miran Kim
Sam Kim
Taechan Kim
Karen Klein
Yash Kondi
Venkata Koppula
Mukul Kulkarni
Ashutosh Kumar
Ranjit Kumaresan
Rio LaVigne
Virginie Lallemand
Esteban Landerreche
Brandon Langenberg
Douglass Lee
Eysa Lee
François Le Gall
Chaoyun Li
Wei-Kai Lin
Qipeng Liu
Tianren Liu
Alex Lombardi
Julian Loss
Yun Lu
Vadim Lyubashevsky
Fermi Ma

Eurocrypt 2019 ix

Saeed Mahloujifar
Christian Majenz
Rusydi Makarim
Nikolaos Makriyannis
Nathan Manohar
Antonio Marcedone
Daniel Masny
Alexander May
Noam Mazor
Willi Meier
Rebekah Mercer
David Mestel
Peihan Miao
Brice Minaud
Matthias Minihold
Konstantinos Mitropoulos
Tarik Moataz
Hart Montgomery
Andrew Morgan
Pratyay Mukherjee
Luka Music
Michael Naehrig
Gregory Neven
Phong Nguyen
Jesper Buus Nielsen
Ryo Nishimaki
Daniel Noble
Adam O’Neill
Maciej Obremski
Sabine Oechsner
Michele Orrù
Emmanuela Orsini
Daniel Ospina
Giorgos Panagiotakos
Omer Paneth
Lorenz Panny
Anat Paskin-Cherniavsky
Alain Passelègue
Kenny Paterson
Chris Peikert
Geovandro Pereira
Léo Perrin
Edoardo Persichetti
Naty Peter

Rachel Player
Oxana Poburinnaya
Yuriy Polyakov
Antigoni Polychroniadou
Eamonn Postlethwaite
Willy Quach
Ahmadreza Rahimi
Sebastian Ramacher
Adrián Ranea
Peter Rasmussen
Shahram Rasoolzadeh
Ling Ren
Joao Ribeiro
Silas Richelson
Thomas Ricosset
Tom Ristenpart
Mike Rosulek
Dragos Rotaru
Yann Rotella
Lior Rotem
Yannis Rouselakis
Arnab Roy
Louis Salvail
Simona Samardziska
Or Sattath
Guillaume Scerri
John Schanck
Peter Scholl
André Schrottenloher
Sruthi Sekar
Srinath Setty
Brian Shaft
Ido Shahaf
Victor Shoup
Jad Silbak
Mark Simkin
Shashank Singh
Maciej Skórski
Caleb Smith
Fang Song
Pratik Soni
Katerina Sotiraki
Florian Speelman
Akshayaram Srinivasan

Uri Stemmer
Noah

Stephens-Davidowitz
Alan Szepieniec
Gelo Noel Tabia
Aishwarya

Thiruvengadam
Sergei Tikhomirov
Rotem Tsabary
Daniel Tschudy
Yiannis Tselekounis
Aleksei Udovenko
Dominique Unruh
Cédric Van Rompay
Prashant Vasudevan
Muthu

Venkitasubramaniam
Daniele Venturi
Benoît Viguier
Fernando Virdia
Ivan Visconti
Giuseppe Vitto
Petros Wallden
Alexandre Wallet
Qingju Wang
Bogdan Warinschi
Gaven Watson
Hoeteck Wee
Friedrich Wiemer
Tim Wood
Keita Xagawa
Sophia Yakoubov
Takashi Yamakawa
Arkady Yerukhimovich
Eylon Yogev
Nengkun Yu
Yu Yu
Aaram Yun
Thomas Zacharias
Greg Zaverucha
Liu Zeyu
Mark Zhandry
Chen-Da Liu Zhang

x Eurocrypt 2019

Abstracts of Invited Talks

Differential Privacy and the People’s Data

IACR DISTINGUISHED LECTURE

Cynthia Dwork1

Harvard University
dwork@seas.harvard.edu

Abstract. Differential Privacy will be the confidentiality protection method
of the 2020 US Decennial Census. We explore the technical and social chal-
lenges to be faced as the technology moves from the realm of information
specialists to the large community of consumers of census data.

Differential Privacy is a definition of privacy tailored to the statistical anal-
ysis of large datasets. Roughly speaking, differential privacy ensures that any-
thing learnable about an individual could be learned independent of whether the
individual opts in or opts out of the data set under analysis. The term has come
to denote a field of study, inspired by cryptography and guided by theoretical
lower bounds and impossibility results, comprising algorithms, complexity
results, sample complexity, definitional relaxations, and uses of differential
privacy when privacy is not itself a concern.

From its inception, a motivating scenario for differential privacy has been the
US Census: data of the people, analyzed for the benefit of the people, to allocate
the people’s resources (hundreds of billions of dollars), with a legal mandate for
privacy. Over the past 4–5 years, differential privacy has been adopted in a
number of industrial settings by Google, Microsoft, Uber, and, with the most
fanfare, by Apple. In 2020 it will be the confidentiality protection method for the
US Decennial Census.

Census data are used throughout government and in thousands of research
studies every year. This mainstreaming of differential privacy, the transition
from the realm of technically sophisticated information specialists and analysts
into much broader use, presents enormous technical and social challenges. The
Fundamental Theorem of Information Reconstruction tells us that overly
accurate estimates of too many statistics completely destroys privacy. Differ-
ential privacy provides a measure of privacy loss that permits the tracking and
control of cumulative privacy loss as data are analyzed and re-analyzed. But
provably no method can permit the data to be explored without bound. How will
the privacy loss “budget” be allocated? Who will enforce limits?

More pressing for the scientific community are questions of how the mul-
titudes of census data consumers will interact with the data moving forward. The
Decennial Census is simple, and the tabulations can be handled well with
existing technology. In contrast, the annual American Community Survey,
which covers only a few million households yearly, is rich in personal details on
subjects from internet access in the home to employment to ethnicity, rela-
tionships among persons in the home, and fertility. We are not (yet?) able to

1 Supported in part by NSF Grant 1763665 and the Sloan Foundation.

offer differentially private algorithms for every kind of analysis carried out on
these data. Historically, confidentiality has been handled by a combination of
data summaries, restricted use access to the raw data, and the release of
public-use microdata, a form of noisy individual records. Summary statistics are
the bread and butter of differential privacy, but giving even trusted and trust-
worthy researchers access to raw data is problematic, as their published findings
are a vector for privacy loss: think of the researcher as an arbitrary
non-differentially private algorithm that produces outputs in the form of pub-
lished findings. The very choice of statistic to be published is inherently not
privacy-preserving! At the same time, past microdata noising techniques can no
longer be considered to provide adequate privacy, but generating synthetic
public-use microdata while ensuring differential privacy is a computationally
hard problem. Nonetheless, combinations of exciting new techniques give
reason for optimism.

xiv C. Dwork

Towards an Open Approach to Secure
Cryptographic Implementations

François-Xavier Standaert1

UCL Crypto Group, Université Catholique de Louvain, Belgium

Abstract. In this talk, I will discuss how recent advances in side-channel
analysis and leakage-resilience could lead to both stronger security properties
and improved confidence in cryptographic implementations. For this purpose, I
will start by describing how side-channel attacks exploit physical leakages such
as an implementation’s power consumption or electromagnetic radiation. I will
then discuss the definitional challenges that these attacks raise, and argue why
heuristic hardware-level countermeasures are unlikely to solve the problem
convincingly. Based on these premises, and focusing on the symmetric setting,
securing cryptographic implementations can be viewed as a tradeoff between the
design of modes of operation, underlying primitives and countermeasures.

Regarding modes of operation, I will describe a general design strategy for
leakage-resilient authenticated encryption, propose models and assumptions on
which security proofs can be based, and show how this design strategy
encourages so-called leveled implementations, where only a part of the com-
putation needs strong (hence expensive) protections against side-channel
attacks.

Regarding underlying primitives and countermeasures, I will first emphasize
the formal and practically-relevant guarantees that can be obtained thanks to
masking (i.e., secret sharing at the circuit level), and how considering the
implementation of such countermeasures as an algorithmic design goal (e.g., for
block ciphers) can lead to improved performances. I will then describe how
limiting the leakage of the less protected parts in a leveled implementations can
be combined with excellent performances, for instance with respect to the
energy cost.

I will conclude by putting forward the importance of sound evaluation
practices in order to empirically validate (by lack of falsification) the assump-
tions needed both for leakage-resilient modes of operation and countermeasures
like masking, and motivate the need of an open approach for this purpose. That
is, by allowing adversaries and evaluators to know implementation details, we
can expect to enable a better understanding of the fundamentals of physical
security, therefore leading to improved security and efficiency in the long term.

1 The author is a Senior Research Associate of the Belgian Fund for Scientific Research
(FNRS-F.R.S.). This work has been funded in part by the ERC Project 724725.

Fully Homomorphic Encryption
from the Ground Up

Daniele Micciancio

University of California, Mail Code 0404, La Jolla,
San Diego, CA, 92093, USA
daniele@cs.ucsd.edu

http://cseweb.ucsd.edu/*daniele/

Abstract. The development of fully homomorphic encryption (FHE), i.e.,
encryption schemes that allow to perform arbitrary computations on encrypted
data, has been one of the main achievements of theoretical cryptography of the
past 20 years, and probably the single application that brought most attention to
lattice cryptography. While lattice cryptography, and fully homomorphic
encryption in particular, are often regarded as a highly technical topic, essen-
tially all constructions of FHE proposed so far are based on a small number of
rather simple ideas. In this talk, I will try highlight the basic principles that make
FHE possible, using lattices to build a simple private key encryption scheme that
enjoys a small number of elementary, but very useful properties: a simple
decryption algorithm (requiring, essentially, just the computation of a linear
function), a basic form of circular security (i.e., the ability to securely encrypt its
own key), and a very weak form of linear homomorphism (supporting only a
bounded number of addition operations.)

All these properties are easily established using simple linear algebra and
the hardness of the Learning With Errors (LWE) problem or standard worst-case
complexity assumptions on lattices. Then, I will use this scheme (and its abstract
properties) to build in a modular way a tower of increasingly more powerful
encryption schemes supporting a wider range of operations: multiplication by
arbitrary constants, multiplication between ciphertexts, and finally the evalua-
tion of arithmetic circuits of arbitrary, but a-priory bounded depth. The final
result is a leveled1 FHE scheme based on standard lattice problems, i.e., a
scheme supporting the evaluation of arbitrary circuits on encrypted data, as long
as the depth of the circuit is provided at key generation time. Remarkably,
lattices are used only in the construction (and security analysis) of the basic
scheme: all the remaining steps in the construction do not make any direct use of
lattices, and can be expressed in a simple, abstract way, and analyzed using
solely the weakly homomorphic properties of the basic scheme.

Keywords: Lattice-based cryptography � Fully homomorphic encryption �
Circular security � FHE bootstrapping

1 The “leveled” restriction in the final FHE scheme can be lifted using “circular security” assumptions
that have become relatively standard in the FHE literature, but that are still not well understood.
Achieving (non-leveled) FHE from standard lattice assumptions is the main theoretical problem still
open in the area.

https://orcid.org/0000-0003-3323-9985

Contents – Part I

ABE and CCA Security

Compact Adaptively Secure ABE for NC1 from k-Lin. 3
Lucas Kowalczyk and Hoeteck Wee

Unbounded Dynamic Predicate Compositions
in Attribute-Based Encryption. 34

Nuttapong Attrapadung

(R)CCA Secure Updatable Encryption with Integrity Protection 68
Michael Klooß, Anja Lehmann, and Andy Rupp

Succinct Arguments and Secure Messaging

Aurora: Transparent Succinct Arguments for R1CS 103
Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward

The Double Ratchet: Security Notions, Proofs, and Modularization
for the Signal Protocol. 129

Joël Alwen, Sandro Coretti, and Yevgeniy Dodis

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging. 159
Daniel Jost, Ueli Maurer, and Marta Mularczyk

Obfuscation

Indistinguishability Obfuscation Without Multilinear Maps: New Methods
for Bootstrapping and Instantiation . 191

Shweta Agrawal

Sum-of-Squares Meets Program Obfuscation, Revisited 226
Boaz Barak, Samuel B. Hopkins, Aayush Jain, Pravesh Kothari,
and Amit Sahai

How to Leverage Hardness of Constant-Degree Expanding Polynomials
over R to build iO . 251

Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai

Block Ciphers

XOR-Counts and Lightweight Multiplication with Fixed Elements
in Binary Finite Fields . 285

Lukas Kölsch

DLCT: A New Tool for Differential-Linear Cryptanalysis 313
Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers:
Application to LowMC . 343

Itai Dinur, Daniel Kales, Angela Promitzer, Sebastian Ramacher,
and Christian Rechberger

Differential Privacy

Distributed Differential Privacy via Shuffling . 375
Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber,
and Maxim Zhilyaev

Lower Bounds for Differentially Private RAMs . 404
Giuseppe Persiano and Kevin Yeo

Bounds for Symmetric Cryptography

Beyond Birthday Bound Secure MAC in Faulty Nonce Model 437
Avijit Dutta, Mridul Nandi, and Suprita Talnikar

Tight Time-Memory Trade-Offs for Symmetric Encryption 467
Joseph Jaeger and Stefano Tessaro

Non-malleability

Non-Malleable Codes Against Bounded Polynomial Time Tampering 501
Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, Huijia Lin,
and Tal Malkin

Continuous Non-Malleable Codes in the 8-Split-State Model 531
Divesh Aggarwal, Nico Döttling, Jesper Buus Nielsen, Maciej Obremski,
and Erick Purwanto

Correlated-Source Extractors and Cryptography
with Correlated-Random Tapes . 562

Vipul Goyal and Yifan Song

Revisiting Non-Malleable Secret Sharing . 593
Saikrishna Badrinarayanan and Akshayaram Srinivasan

xviii Contents – Part I

Blockchain and Consensus

Multi-party Virtual State Channels . 625
Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse,
and Kristina Hostáková

Aggregate Cash Systems: A Cryptographic Investigation
of Mimblewimble . 657

Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

Proof-of-Stake Protocols for Privacy-Aware Blockchains 690
Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi

Consensus Through Herding. 720
T.-H. Hubert Chan, Rafael Pass, and Elaine Shi

Author Index . 751

Contents – Part I xix

Contents – Part II

Homomorphic Primitives

Homomorphic Secret Sharing from Lattices Without FHE 3
Elette Boyle, Lisa Kohl, and Peter Scholl

Improved Bootstrapping for Approximate Homomorphic Encryption 34
Hao Chen, Ilaria Chillotti, and Yongsoo Song

Minicrypt Primitives with Algebraic Structure and Applications 55
Navid Alamati, Hart Montgomery, Sikhar Patranabis, and Arnab Roy

Standards

Attacks only Get Better: How to Break FF3 on Large Domains 85
Viet Tung Hoang, David Miller, and Ni Trieu

Session Resumption Protocols and Efficient Forward Security
for TLS 1.3 0-RTT . 117

Nimrod Aviram, Kai Gellert, and Tibor Jager

An Analysis of NIST SP 800-90A . 151
Joanne Woodage and Dan Shumow

Searchable Encryption and ORAM

Computationally Volume-Hiding Structured Encryption 183
Seny Kamara and Tarik Moataz

Locality-Preserving Oblivious RAM . 214
Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass,
Ling Ren, and Elaine Shi

Private Anonymous Data Access. 244
Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs

Proofs of Work and Space

Reversible Proofs of Sequential Work . 277
Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof Pietrzak,
and Michael Walter

Incremental Proofs of Sequential Work . 292
Nico Döttling, Russell W. F. Lai, and Giulio Malavolta

Tight Proofs of Space and Replication . 324
Ben Fisch

Secure Computation

Founding Secure Computation on Blockchains . 351
Arka Rai Choudhuri, Vipul Goyal, and Abhishek Jain

Uncovering Algebraic Structures in the MPC Landscape 381
Navneet Agarwal, Sanat Anand, and Manoj Prabhakaran

Quantum I

Quantum Circuits for the CSIDH: Optimizing Quantum
Evaluation of Isogenies . 409

Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

A Quantum-Proof Non-malleable Extractor: With Application to Privacy
Amplification Against Active Quantum Adversaries 442

Divesh Aggarwal, Kai-Min Chung, Han-Hsuan Lin, and Thomas Vidick

Secure Computation and NIZK

A Note on the Communication Complexity of Multiparty Computation
in the Correlated Randomness Model . 473

Geoffroy Couteau

Degree 2 is Complete for the Round-Complexity of Malicious MPC 504
Benny Applebaum, Zvika Brakerski, and Rotem Tsabary

Two Round Information-Theoretic MPC with Malicious Security 532
Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel,
and Abhishek Jain

Designated-Verifier Pseudorandom Generators, and Their Applications 562
Geoffroy Couteau and Dennis Hofheinz

Reusable Designated-Verifier NIZKs for all NP from CDH 593
Willy Quach, Ron D. Rothblum, and Daniel Wichs

Designated Verifier/Prover and Preprocessing NIZKs
from Diffie-Hellman Assumptions . 622

Shuichi Katsumata, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa

xxii Contents – Part II

Lattice-Based Cryptography

Building an Efficient Lattice Gadget Toolkit: Subgaussian
Sampling and More . 655

Nicholas Genise, Daniele Micciancio, and Yuriy Polyakov

Approx-SVP in Ideal Lattices with Pre-processing. 685
Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé

The General Sieve Kernel and New Records in Lattice Reduction 717
Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova,
Eamonn W. Postlethwaite, and Marc Stevens

Misuse Attacks on Post-quantum Cryptosystems . 747
Ciprian Băetu, F. Betül Durak, Loïs Huguenin-Dumittan,
Abdullah Talayhan, and Serge Vaudenay

Author Index . 777

Contents – Part II xxiii

Contents – Part III

Foundations I

On ELFs, Deterministic Encryption, and Correlated-Input Security 3
Mark Zhandry

New Techniques for Efficient Trapdoor Functions and Applications 33
Sanjam Garg, Romain Gay, and Mohammad Hajiabadi

Symbolic Encryption with Pseudorandom Keys . 64
Daniele Micciancio

Efficient Secure Computation

Covert Security with Public Verifiability: Faster, Leaner, and Simpler 97
Cheng Hong, Jonathan Katz, Vladimir Kolesnikov, Wen-jie Lu,
and Xiao Wang

Efficient Circuit-Based PSI with Linear Communication 122
Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko,
and Avishay Yanai

An Algebraic Approach to Maliciously Secure Private Set Intersection 154
Satrajit Ghosh and Tobias Nilges

Quantum II

On Finding Quantum Multi-collisions . 189
Qipeng Liu and Mark Zhandry

On Quantum Advantage in Information Theoretic Single-Server PIR 219
Dorit Aharonov, Zvika Brakerski, Kai-Min Chung, Ayal Green,
Ching-Yi Lai, and Or Sattath

Verifier-on-a-Leash: New Schemes for Verifiable Delegated Quantum
Computation, with Quasilinear Resources. 247

Andrea Coladangelo, Alex B. Grilo, Stacey Jeffery, and Thomas Vidick

Signatures I

Ring Signatures: Logarithmic-Size, No Setup—from
Standard Assumptions . 281

Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak,
and Jonas Schneider

Group Signatures Without NIZK: From Lattices in the Standard Model 312
Shuichi Katsumata and Shota Yamada

A Modular Treatment of Blind Signatures from Identification Schemes 345
Eduard Hauck, Eike Kiltz, and Julian Loss

Best Paper Awards

Efficient Verifiable Delay Functions . 379
Benjamin Wesolowski

Quantum Lightning Never Strikes the Same State Twice 408
Mark Zhandry

Information-Theoretic Cryptography

Secret-Sharing Schemes for General and Uniform Access Structures 441
Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir,
and Naty Peter

Towards Optimal Robust Secret Sharing with Security Against
a Rushing Adversary . 472

Serge Fehr and Chen Yuan

Simple Schemes in the Bounded Storage Model . 500
Jiaxin Guan and Mark Zhandary

Cryptanalysis

From Collisions to Chosen-Prefix Collisions Application to Full SHA-1 527
Gaëtan Leurent and Thomas Peyrin

Preimage Attacks on Round-Reduced KECCAK-224/256 via
an Allocating Approach . 556

Ting Li and Yao Sun

BISON Instantiating the Whitened Swap-Or-Not Construction 585
Anne Canteaut, Virginie Lallemand, Gregor Leander, Patrick Neumann,
and Friedrich Wiemer

xxvi Contents – Part III

Foundations II

Worst-Case Hardness for LPN and Cryptographic Hashing
via Code Smoothing . 619

Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan,
and Daniel Wichs

New Techniques for Obfuscating Conjunctions . 636
James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry

Distributional Collision Resistance Beyond One-Way Functions 667
Nir Bitansky, Iftach Haitner, Ilan Komargodski, and Eylon Yogev

Signatures II

Multi-target Attacks on the Picnic Signature Scheme
and Related Protocols . 699

Itai Dinur and Niv Nadler

Durandal: A Rank Metric Based Signature Scheme 728
Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville,
and Gilles Zémor

SeaSign: Compact Isogeny Signatures from Class Group Actions 759
Luca De Feo and Steven D. Galbraith

Author Index . 791

Contents – Part III xxvii

ABE and CCA Security

Compact Adaptively Secure ABE for NC1

from k-Lin

Lucas Kowalczyk1(B) and Hoeteck Wee2

1 Columbia University, New York, USA
luke@cs.columbia.edu

2 CNRS, ENS, PSL, Paris, France
wee@di.ens.fr

Abstract. We present compact attribute-based encryption (ABE)
schemes for NC1 that are adaptively secure under the k-Lin assumption
with polynomial security loss. Our KP-ABE scheme achieves ciphertext
size that is linear in the attribute length and independent of the policy
size even in the many-use setting, and we achieve an analogous efficiency
guarantee for CP-ABE. This resolves the central open problem posed
by Lewko and Waters (CRYPTO 2011). Previous adaptively secure con-
structions either impose an attribute “one-use restriction” (or the cipher-
text size grows with the policy size), or require q-type assumptions.

1 Introduction

Attribute-based encryption (ABE) [17,31] is a generalization of public-key
encryption to support fine-grained access control for encrypted data. Here,
ciphertexts and keys are associated with descriptive values which deter-
mine whether decryption is possible. In a key-policy ABE (KP-ABE) scheme
for instance, ciphertexts are associated with attributes like ‘(author:Waters),
(inst:UT), (topic:PK)’ and keys with access policies like ((topic:MPC) OR
(topic:SK)) AND (NOT(inst:UCL)), and decryption is possible only when the
attributes satisfy the access policy. A ciphertext-policy (CP-ABE) scheme is
the dual of KP-ABE with ciphertexts associated with policies and keys with
attributes.

Over past decade, substantial progress has been made in the design and anal-
ysis of ABE schemes, leading to a large families of schemes that achieve various

L. Kowalczyk—Supported in part by an NSF Graduate Research Fellowship DGE-16-
44869; The Leona M. & Harry B. Helmsley Charitable Trust; ERC Project aSCEND
(H2020 639554); the Defense Advanced Research Project Agency (DARPA) and Army
Research Office (ARO) under Contract W911NF-15-C-0236; and NSF grants CNS-
1445424, CNS-1552932 and CCF-1423306. Any opinions, findings and conclusions or
recommendations expressed are those of the authors and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency, Army Research Office, the
National Science Foundation, or the U.S. Government.
H. Wee—Supported in part by ERC Project aSCEND (H2020 639554).

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 3–33, 2019.
https://doi.org/10.1007/978-3-030-17653-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_1

4 L. Kowalczyk and H. Wee

trade-offs between efficiency, security and underlying assumptions. Meanwhile,
ABE has found use as a tool for providing and enhancing privacy in a variety of
settings from electronic medical records to messaging systems and online social
networks. Moreover, we expect further deployment of ABE, thanks to the recent
standardization efforts of the European Telecommunications Standards Institute
(ETSI).

In this work, we consider KP-ABE schemes for access policies in NC1 that
simultaneously:

(1) enjoy compact ciphertexts whose size grows only with the length of the
attribute and is independent of the policy size, even for complex policies
that refer to each attribute many times;

(2) achieve adaptive security (with polynomial security loss);
(3) rely on simple hardness assumptions in the standard model;
(4) can be built with asymmetric prime-order bilinear groups.

We also consider the analogous question for CP-ABE schemes with compact
keys. In both KP and CP-ABE, all four properties are highly desirable from
both a practical and theoretical stand-point and moreover, properties (1), (2)
and (4) are crucial for many real-world applications of ABE. In addition, proper-
ties (2), (3) and (4) are by now standard cryptographic requirements pertaining
to speed and efficiency, strong security guarantees under realistic and natural
attack models, and minimal hardness assumptions. There is now a vast body
of works on ABE (e.g. [17,23,26,27], see Fig. 1) showing how different combina-
tions of (1)–(4), culminating in several unifying frameworks that provide a solid
understanding of the design and analysis of these schemes [1–3,6,34]. Nonethe-
less, prior to this work, it was not known how to even simultaneously realize
(1)–(3) for NC1 access policies1; indeed, this is widely regarded one of the main
open problems in pairing-based ABE.

Our Results. We present the first KP-ABE and CP-ABE schemes for NC1

that simultaneously realize properties (1)–(4). Our KP-ABE scheme achieves
ciphertext size that is linear in the attribute length and independent of the
policy size even in the many-use setting; the same holds for the key size in our
CP-ABE. Both schemes achieve adaptive security under the k-Lin assumption in
asymmetric prime-order bilinear groups with polynomial security loss. We also
present an “unbounded” variant of our compact KP-ABE scheme with constant-
size public parameters.

As an immediate corollary, we obtain delegation schemes for NC1 with public
verifiability and adaptive soundness under the k-Lin assumption [9,26,30].

1 Note that there exist constructions of ABE for more general access policies like
monotone span programs/Boolean formulas with threshold gates [17], and even
polynomial-sized Boolean circuits [14,16], but all such constructions sacrifice at least
one of the properties (1)–(3).

Compact Adaptively Secure ABE for NC1 from k-Lin 5

Our construction leverages a refinement of the recent “partial selectivization”
framework for adaptive security [20] (which in turn builds upon [12,13,18,21])
along with the classic dual system encryption methodology [26,33].

reference adaptive compact assumption unbounded
GPSW [17]

[22]

� static �
LOSTW [23,27] � static �
LW [26] � � q-type
OT [28] � 2-Lin � �
Att [3] � � q-type �
CGKW [7] � k-Lin � �
ours, Section 6 � � static �
ours, � � static � �

Fig. 1. Summary of KP-ABE schemes for NC1

1.1 Technical Overview

Our starting point is the Lewko-Waters framework for constructing compact
adaptively secure ABE [26] based on the dual system encryption methodology2

[23,25,33]. Throughout, we focus on monotone NC1 circuit access policies, and
note that the constructions extend readily to the non-monotone setting3. Let
(G1, G2, GT) be an asymmetric bilinear group of prime order p, where g, h are
generators of G1, G2 respectively.

Warm-Up. We begin with the prior compact KP-ABE for monotone NC1

[17,23,26]; this is an adaptively secure scheme that comes with the downside
of relying on q-type assumptions (q-type assumptions are assumptions of size
that grows with some parameter q. It is known that many q-type assumptions
become stronger as q grows [10], and in general such complex and dynamic
assumptions are not well-understood). The construction uses composite-order
groups, but here we’ll suppress the distinction between composite-order and
prime-order groups for simplicity. We associate ciphertexts ctx with attribute
vectors4 x ∈ {0, 1}n and keys skf with Boolean formulas f :
2 Essentially, the dual system proof method provides guidance for transforming

suitably-designed functional encryption schemes which are secure for one adversarial
secret key request to the multi-key setting where multiple keys may be requested
by the adversary. Our main technical contribution involves the analysis of the ini-
tial single-key-secure component, which we refer to later as our “Core 1-ABE”
component.

3 Most directly by pushing all NOT gates to the input nodes of each circuit and using
new attributes to represent the negation of each original attribute. It is likely that
the efficiency hit introduced by this transformation can be removed through more
advanced techniques à la [24,29], but we leave this for future work.

4 Some works associate ciphertexts with a set S ⊆ [n] where [n] is referred to as the
attribute universe, in which case x ∈ {0, 1}n corresponds to the characteristic vector
of S.

6 L. Kowalczyk and H. Wee

msk := (μ,w1, . . . , wn) (1)
mpk := (g, gw1 , . . . , gwn , e(g, h)μ),
ctx := (gs, {gswi}xi=1, e(g, h)μs · M)
skf := ({hμj+rjwρ(j) , hrj }j∈[m]), ρ : [m] → [n]

where μ1, . . . , μm are shares of μ ∈ Zp w.r.t. the formula f ; the shares satisfy
the requirement that for any x ∈ {0, 1}n, the shares {μj}xρ(j)=1 determine μ if
x satisfies f (i.e., f(x) = 1), and reveal nothing about μ otherwise; and ρ is a
mapping from the indices of the shares (in [m]) to the indices of the attributes (in
[n]) to which they are associated. For decryption, observe that we can compute
{e(g, h)μjs}xi=1, from which we can compute the blinding factor e(g, h)μs via
linear reconstruction “in the exponent”.

Here, m is polynomial in the formula size, and we should think of m =
poly(n) � n. Note that the ciphertext consists only of O(n) group elements and
therefore satisfies our compactness requirement.

Proving Adaptive Security. The crux of the proof of adaptive security lies in
proving that μ remains computationally hidden given just a single ciphertext and
a single key and no mpk (the more general setting with mpk and multiple keys
follows via what is by now a textbook application of the dual system encryption
methodology). In fact, it suffices to show that μ is hidden given just

ct′x := ({wi}xi=1) // “stripped down” ctx

skf := ({hμj+rjwρ(j) , hrj }j∈[m])

where x, f are adaptively chosen subject to the constraint f(x) = 0. Henceforth,
we refer to (ct′x, skf) as our “core 1-ABE component”. Looking ahead to our
formalization of adaptive security for this core 1-ABE, we actually require that
μ is hidden even if the adversary sees hw1 , . . . , hwn ; this turns out to be useful
for the proof of our KP-ABE (for improved concrete efficiency).

Core Technical Contribution. The technical novelty of this work lies in prov-
ing adaptive security of the core 1-ABE component under the DDH assumption.
Previous analysis either relies on a q-type assumption [1,2,4,26], or imposes the
one-use restriction (that is, ρ is injective and m = n, in which case security can
be achieved unconditionally) [23,34]. Our analysis relies on a piecewise guessing
framework which refines and simplifies a recent framework of Jafargholi et al.
for proving adaptive security via pebbling games [20] (which in turn builds upon
[12,13,18,21]).

Let G0 denote the view of the adversary (ct′x, skf) in the real game, and G1

denote the same thing except we replace {μj} in skf with shares of a random
value independent of μ. Our goal is to show that G0 ≈c G1. First, let us define
an additional family of games {HU} parameterized by U ⊆ [m]: HU is the same
as G0 except we replace {μj : j ∈ U} in skf with uniformly random values. In
particular, H∅ = G0.

Compact Adaptively Secure ABE for NC1 from k-Lin 7

We begin with the “selective” setting, where the adversary specifies x at the
start of the game. Suppose we can show that G0 ≈c G1 in this simpler setting
via a series of L + 1 hybrids of the form:

G0 = Hh0(x) ≈c Hh1(x) ≈c · · · ≈c HhL(x) = G1

where h0, . . . , hL : {0, 1}n → {U ⊆ [m] : |U | ≤ R′} are functions of the adver-
sary’s choices x. Then, the piecewise guessing framework basically tells us that
G0 ≈c G1 in the adaptive setting with a security loss roughly mR′ · L, where the
factor L comes from the hybrid argument and the factor mR′

comes from guess-
ing hi(x) (a subset of [m] of size at most R′). Ideally, we would want mR′ � 2n,
where 2n is what we achieve from guessing x itself.

First, we describe a straight-forward approach which achieves L = 2 and
R′ = m implicit in [26] (but incurs a huge security loss 2m � 2n) where

h1(x) = {j : xρ(j) = 0}.

That is, Hh1(x) is G0 with μj in skf replaced by fresh μ′
j ← Zp for all j satisfying

xρ(j) = 0. Here, we have

– G0 ≈c Hh1(x) via DDH, since hμj+wρ(j)rj , hrj computationally hides μj when-
ever xρ(j) = 0 and wρ(j) is not leaked in ctx;

– Hh1(x) ≈s G1 via security of the secret-sharing scheme since the shares {μj :
xρ(j) = 1} leak no information about μ whenever f(x) = 0.

This approach is completely generic and works for any secret-sharing scheme.
In our construction, we use a variant of the secret-sharing scheme for NC1 in

[20] (which is in turn a variant of Yao’s secret-sharing scheme [19,32]), for which
the authors also gave a hybrid argument achieving L = 8d and R′ = O(d log m)
where d is the depth of the formula; this achieves a security loss 2O(d log m).
Recall that the circuit complexity class NC1 is captured by Boolean formulas of
logarithmic depth and fan-in two, so the security loss here is quasi-polynomial
in n. We provide a more detailed analysis of the functions h0, h1, . . . , hL used in
their scheme, and show that the subsets of size O(d) output by these functions
can be described only O(d) bits instead of O(d log m) bits. Roughly speaking,
we show that the subsets are essentially determined by a path of length d from
the output gate to an input gate, which can be described using O(d) bits since
the gates have fan-in two. Putting everything together, this allows us to achieve
adaptive security for the core 1-ABE component with a security loss 2O(d) =
poly(n).

Our ABE Scheme. To complete the overview, we sketch our final ABE scheme
which is secure under the k-Linear Assumption in prime-order bilinear groups.

To obtain prime-order analogues of the composite-order examples, we rely
on the previous framework of Chen et al. [5,6,15] for simulating composite-
order groups in prime-order ones. Let (G1, G2, GT) be a bilinear group of prime
order p. We start with the KP-ABE scheme in (1) and carry out the following
substitutions:

8 L. Kowalczyk and H. Wee

gs
→ [s�A]1, hrj
→ [rj]2, wi
→ Wi ← Z
(k+1)×k
p , μ
→ v ← Z

k+1
p (2)

where A ← Z
k×(k+1)
p , s, rj ← Z

k
p, k corresponds to the k-Lin Assumption

desired for security5, and [·]1, [·]2 correspond respectively to exponentiations in
the prime-order groups G1, G2. We note that the naive transformation follow-
ing [6] would have required Wi of dimensions at least (k + 1) × (k + 1); here,
we incorporated optimizations from [5,15]. This yields the following prime-order
KP-ABE scheme for NC1:

msk := (v,W1, . . . ,Wn)
mpk := ([A]1, [AW1]1, . . . , [AWn]1, e([A]1, [v]2)),

ctx :=

(
[s�A]1, {[s�AWi]1}xi=1, e([s�A]1, [v]2) · M

)

skf := ({[vj + Wρ(j)rj]2, [rj]2}j∈[m])

where vj is the j’th share of v. Decryption proceeds as before by first computing

{e([s�A]1, [vj]2)}ρ(j)=0∨xρ(j)=1

and relies on the associativity relations AWi · rj = A · Wirj for all i, j [8].
In the proof, in place of the DDH assumption which allows us to argue

that (hwirj , hrj) is pseudorandom, we will rely on the fact that by the k-Lin
assumption, we have

(A,AWi, [Wirj]2, [rj]2) ≈c (A,AWi, [Wirj + δija⊥]2, [rj]2)

where A ← Z
k×(k+1)
p ,Wi ← Z

(k+1)×2k
p , rj ← Z

2k
p and a⊥ ∈ Z

k+1
p satisfies

A · a⊥ = 0.

Organization. We describe the piecewise guessing framework for adaptive secu-
rity in Sect. 3 and a pebbling strategy (used to define h0, . . . , hL) in Sect. 4. We
describe a secret-sharing scheme and prove adaptive security of the core 1-ABE
component in Sect. 5. We present our full KP-ABE scheme in Sect. 6, and present
a CP-ABE and unbounded KP-ABE scheme in the full version of this paper [22].

2 Preliminaries

Notation. We denote by s ← S the fact that s is picked uniformly at ran-
dom from a finite set S. By PPT, we denote a probabilistic polynomial-time
algorithm. Throughout this paper, we use 1λ as the security parameter. We use
lower case boldface to denote (column) vectors and upper case boldcase to denote
5 E.g.: k = 1 corresponds to security under the Symmetric External Diffie-Hellman

Assumption (SXDH), and k = 2 corresponds to security under the Decisional Linear
Assumption (DLIN).

Compact Adaptively Secure ABE for NC1 from k-Lin 9

matrices. We use ≡ to denote two distributions being identically distributed,
and ≈c to denote two distributions being computationally indistinguishable. For
any two finite sets (also including spaces and groups) S1 and S2, the notation
“S1 ≈c S2” means the uniform distributions over them are computationally
indistinguishable.

2.1 Monotone Boolean Formulas and NC1

Monotone Boolean Formula. A monotone Boolean formula f : {0, 1}n → {0, 1}
is specified by a directed acyclic graph (DAG) with three kinds of nodes: input
gate nodes, gate nodes, and a single output node. Input nodes have in-degree 0
and out-degree 1, AND/OR nodes have in-degree (fan-in) 2 and out-degree (fan-
out) 1, and the output node has in-degree 1 and out-degree 0. We number the
edges (wires) 1, 2, . . . ,m, and each gate node is defined by a tuple (g, ag, bg, cg)
where g : {0, 1}2 → {0, 1} is either AND or OR, ag, bg are the incoming wires,
cg is the outgoing wire and ag, bg < cg. The size of a formula m is the number
of edges in the underlying DAG and the depth of a formula d is the length of
the longest path from the output node.

NC1 and Log-Depth Formula. A standard fact from complexity theory tells us
that the circuit complexity class monotone NC1 is captured by monotone Boolean
formulas of log-depth and fan-in two. This follows from the fact that we can
transform any depth d circuit with fan-in two and unbounded fan-out into an
equivalent circuit with fan-in two and fan-out one (for all gate nodes) of the
same depth, and a 2d blow-up in the size. To see this, note that one can start
with the root gate of an NC1 circuit and work downward by each level of depth.
For each gate g considered at depth i, if either of its two input wires are coming
from the output wire of a gate (at depth i− 1) with more than one output wire,
then create a new copy of the gate at depth i−1 with a single output wire going
to g (note that this copy may increase the output wire multiplicity of gates at
depth strictly lower than i−1). This procedure preserves the functionality of the
original circuit, and has the result that at its end, each gate in the circuit has
input wires which come from gates with output multiplicity 1. The procedure
does not increase the depth of the circuit (any duplicated gates are added at a
level that already exists), so the new circuit is a formula (all gates have fan-out
1) of depth d with fan-in 2, so its size is at most 2d. d is logarithmic in the size of
the input for NC1 circuits, so the blowup from this procedure is polynomial in n.
Hence we will consider the class NC1 as a set of Boolean formulas (where gates
have fan-in 2 and fan-out 1) of depth O(log n) and refer to f ∈ NC1 formulas.

2.2 Secret Sharing

A secret sharing scheme is a pair of algorithms (share, reconstruct) where share
on input f : {0, 1}n → {0, 1} and μ ∈ Zp outputs μ1, . . . , μm ∈ Zp together with
ρ : [m] → {0, 1, . . . , n}.

10 L. Kowalczyk and H. Wee

– Correctness stipulates that for every x ∈ {0, 1}n such that f(x) = 1, we have

reconstruct(f, x, {μj}ρ(j)=0∨xρ(j)=1) = μ.

– Security stipulates that for every x ∈ {0, 1}n such that f(x) = 0, the shares
{μj}ρ(j)=0∨xρ(j)=1 perfectly hide μ.

Note the inclusion of ρ(j) = 0 in both correctness and security. All the secret
sharing schemes in this work will in fact be linear (in the standard sense):
share computes a linear function of the secret μ and randomness over Zp,
and reconstruct computes a linear function of the shares over Zp, that is,
μ =

∑
ρ(j)=0∨xρ(j)=1

ωjμj .

2.3 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme for a predicate pred(· , ·) consists
of four algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ,X ,Y,M) → (mpk,msk). The setup algorithm gets as input the secu-
rity parameter λ, the attribute universe X , the predicate universe Y, the
message space M and outputs the public parameter mpk, and the master
key msk.

Enc(mpk, x,m) → ctx. The encryption algorithm gets as input mpk, an attribute
x ∈ X and a message m ∈ M. It outputs a ciphertext ctx. Note that x is
public given ctx.

KeyGen(mpk,msk, y) → sky. The key generation algorithm gets as input msk
and a value y ∈ Y. It outputs a secret key sky. Note that y is public given
sky.

Dec(mpk, sky, ctx) → m. The decryption algorithm gets as input sky and ctx
such that pred(x, y) = 1. It outputs a message m.

Correctness. We require that for all (x, y) ∈ X × Y such that pred(x, y) = 1 and
all m ∈ M,

Pr[Dec(mpk, sky,Enc(mpk, x,m)) = m] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ,X ,Y,M), sky ←
KeyGen(mpk,msk, y), and the coins of Enc.

Security Definition. For a stateful adversary A, we define the advantage function

AdvabeA (λ) := Pr

⎡
⎢⎢⎣b = b′ :

(mpk,msk) ← Setup(1λ,X ,Y,M);
(x∗,m0,m1) ← AKeyGen(msk,·)(mpk);
b ←r {0, 1}; ctx∗ ← Enc(mpk, x∗,mb);
b′ ← AKeyGen(msk,·)(ctx∗)

⎤
⎥⎥⎦ − 1

2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfy
pred(x∗, y) = 0 (that is, sky does not decrypt ctx∗). An ABE scheme is adaptively
secure if for all PPT adversaries A, the advantage AdvabeA (λ) is a negligible
function in λ.

Compact Adaptively Secure ABE for NC1 from k-Lin 11

2.4 Prime-Order Bilinear Groups and the Matrix Diffie-Hellman
Assumption

A generator G takes as input a security parameter λ and outputs a group descrip-
tion G := (p,G1, G2, GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT

are cyclic groups of order p, and e : G1 × G2 → GT is a non-degenerate bilinear
map. We require that the group operations in G1, G2 and GT as well the bilinear
map e are computable in deterministic polynomial time with respect to λ. Let
g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators. We
employ the implicit representation of group elements: for a matrix M over Zp,
we define [M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is carried
out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T .

We define the matrix Diffie-Hellman (MDDH) assumption on G1 [11]:

Definition 1 (MDDHm
k,� Assumption). Let � > k ≥ 1 and m ≥ 1. We say

that the MDDHm
k,� assumption holds if for all PPT adversaries A, the following

advantage function is negligible in λ.

Adv
MDDHm

k,�

A (λ) :=
∣∣ Pr[A(G, [M]1, [MS]1) = 1] − Pr[A(G, [M]1, [U]1) = 1]

∣∣
where M ←r Z

�×k
p , S ←r Z

k×m
p and U ←r Z

�×m
p .

The MDDH assumption on G2 can be defined in an analogous way. Escala et
al. [11] showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHm

k,� ∀� > k,m ≥ 1

with a tight security reduction (that is, Adv
MDDHm

k,�

A (λ) = Advk-Lin
A′ (λ)). In fact,

the MDDH assumption is a generalization of the k-Lin Assumption, such that
the k-Lin Assumption is equivalent to the MDDH1

k,k+1 Assumption as defined
above.

Definition 2 (k-Lin Assumption). Let k ≥ 1. We say that the k-Lin Assump-
tion holds if for all PPT adversaries A, the following advantage function is neg-
ligible in λ.

Advk-Lin
A (λ) := Adv

MDDH1
k,k+1

A (λ)

Henceforth, we will use MDDHk to denote MDDH1
k,k+1. Lastly, we note that

the k-Lin Assumption itself is a generalization, where setting k = 1 yields the
Symmetric External Diffie-Hellman Assumption (SXDH), and setting k = 2
yields the standard Decisional Linear Assumption (DLIN).

3 Piecewise Guessing Framework for Adaptive Security

We now refine the adaptive security framework of [20], making some simplifica-
tions along the way to yield the piecewise guessing framework that will support
our security proof. We use 〈A,G〉 to denote the output of an adversary A in an
interactive game G, and an adversary wins if the output is 1, so that the winning
probability is denoted by Pr[〈A,G〉 = 1].

12 L. Kowalczyk and H. Wee

Suppose we have two adaptive games G0 and G1 which we would like to show
to be indistinguishable. In both games, an adversary A makes some adaptive
choices that define z ∈ {0, 1}R. Informally, the piecewise guessing framework
tells us that if we can show that G0,G1 are ε-indistinguishable in the selective
setting where all choices defining z are committed to in advance via a series
of L + 1 hybrids, where each hybrid depends only on at most R′ � R bits of
information about z, then G0,G1 are 22R′ ·L · ε-indistinguishable in the adaptive
setting.

Overview. We begin with the selective setting where the adversary commits to
z = z∗ in advance. Suppose we can show that G0 ≈c G1 in this simpler setting
via a series of L + 1 hybrids of the form:

G0 = Hh0(z
∗) ≈c Hh1(z

∗) ≈c · · · ≈c HhL(z∗) = G1

where h0, . . . , hL : {0, 1}R → {0, 1}R′
and {Hu}u∈{0,1}R′ is a family of games

where the messages sent to the adversary in Hu depend on u.6 In particular, the
�’th hybrid only depends on h�(z∗) where |h�(z∗)| � |z∗|.

Next, we describe how to slightly strengthen this hybrid sequence so that
we can deduce that G0 ≈c G1 even for an adaptive choice of z. Note that
{Hu}u∈{0,1}R′ is now a family of adaptive games where z is adaptively defined
as the game progresses. We have two requirements:

The first, end-point equivalence, just says the two equivalences

G0 = Hh0(z
∗), G1 = HhL(z∗)

hold even in the adaptive setting, that is, even if the adversary’s behavior defines
an z different from z∗. In our instantiation, h0 and hL are constant functions,
so this equivalence will be immediate.

The second, neighbor indistinguishability, basically says that for any � ∈ [L],
we have

Hu0 ≈c Hu1 , ∀u0, u1 ∈ {0, 1}R′

as long as the adversary chooses z such that h�−1(z) = u0 ∧h�(z) = u1 It is easy
to see that this is a generalization of Hh�−1(z

∗) ≈c Hh�(z
∗) if we require z = z∗. To

formalize this statement, we need to formalize the restriction on the adversary’s
choice of z by having the game output 0 whenever the restriction is violated.
That is, we define a pair of “selective” games Ĥ�,0(u0, u1), Ĥ�,1(u0, u1) for any
u0, u1 ∈ {0, 1}R′

, where
6 Informally, {Hu} describes the simulated games used in the security reduction, where

the reduction guesses R′ bits of information described by u about some choices z
made by the adversary; these R′ bits of information are described by h�(z) in the

�’th hybrid. In the �’th hybrid, the reduction guesses a u ∈ {0, 1}R′
and simulates

the game according to Hu and hopes that the adversary will pick an z such that
h�(z) = u; note that the adversary is not required to pick such an z. One way
to think of Hu is that the reduction is committed to u, but the adversary can do
whatever it wants.

Compact Adaptively Secure ABE for NC1 from k-Lin 13

Ĥ�,b(u0, u1) is the same as Hub , except we replace the output with 0 when-
ever (h�−1(z), h�(z)) �= (u0, u1).

That is, in both games, the adversary “commits” in advance to u0, u1. Proving
indistinguishability here is easier because the reduction knows u0, u1 and only
needs to handle adaptive choices of z such that (h�−1(z), h�(z)) = (u0, u1).

Adaptive Security Lemma. The next lemma tells us that the two require-
ments above implies that G0 ≈c G1 with a security loss 22R′ · L (stated in the
contra-positive). In our applications, 2R′

and L will be polynomial in the security
parameter.

Lemma 1 (adaptive security lemma). Fix G0,G1 along with h0, h1, . . . , hL :
{0, 1}R → {0, 1}R′

and {Hu}u∈{0,1}R′ such that

∀ z∗ ∈ {0, 1}R : Hh0(z
∗) = G0, HhL(z∗) = G1

Suppose there exists an adversary A such that Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 =
1] ≥ ε then there exists � ∈ [L] and u0, u1 ∈ {0, 1}R′

such that

Pr[〈A, Ĥ�,0(u0, u1)〉 = 1] − Pr[〈A, Ĥ�,1(u0, u1)〉 = 1] ≥ ε

22R′L

This lemma is essentially a restatement of the main theorem of [20, Theorem 2];
we defer a comparison to the end of this section.

Proof. For the proof, we need to define the game H�(z∗) for all � = 0, 1, . . . , L
and all z∗ ∈ {0, 1}R

H�(z∗) is the same as Hh�(z
∗), except we replace the output with 0 whenever

z �= z∗.

Roughly speaking, in H�(z∗), the adversary “commits” to making choices z = z∗

in advance.

– Step 1. We begin the proof by using “random guessing” to deduce that

Pr
z∗←{0,1}R

[〈A,H0(z∗)〉 = 1] − Pr
z∗←{0,1}R

[〈A,HL(z∗)〉 = 1] ≥ ε

2R

This follows from the fact that Hh0(z) = G0,H
hL(z) = G1 which implies

Pr
z∗←{0,1}R

[〈A,H0(z∗)〉 = 1] =
1
2R

Pr[〈A,G0〉 = 1]

Pr
z∗←{0,1}R

[〈A,HL(z∗)〉 = 1] =
1
2R

Pr[〈A,G1〉 = 1].

14 L. Kowalczyk and H. Wee

– Step 2. Via a standard hybrid argument, we have that there exists � such that

Pr
z∗←{0,1}R

[〈A,H�−1(z∗)〉 = 1] − Pr
z∗←{0,1}R

[〈A,H�(z∗)〉 = 1] ≥ ε

2RL

which implies that:∑
z′∈{0,1}R

[〈A,H�−1(z′)〉 = 1] −
∑

z′∈{0,1}R

[〈A,H�(z′)〉 = 1] ≥ ε

L

– Step 3. Next, we relate Ĥ�,0, Ĥ�,1 and H�−1,H�. First, we define the set

U� := {(h�−1(z′), h�(z′)) : z′ ∈ {0, 1}R} ⊆ {0, 1}R′ × {0, 1}R′
, � ∈ [L]

Observe that for all (u0, u1) ∈ U�, we have

Pr[〈A, Ĥ�,1(u0, u1)〉 = 1] =
∑

z′:(h�−1(z′),h�(z′))=(u0,u1)

Pr[〈A,H�(z′)〉 = 1]

Then, we have∑
z′∈{0,1}R

Pr[〈A,H�(z′)〉 = 1]

=
∑

(u0,u1)∈U�

⎛
⎝ ∑

z′:(h�−1(z′),h�(z′))=(u0,u1)

Pr[〈A,H�(z′)〉 = 1]

⎞
⎠

=
∑

(u0,u1)∈U�

Pr[〈A, Ĥ�,1(u0, u1)〉 = 1]

By the same reasoning, we also have∑
z′∈{0,1}R

Pr[〈A,H�−1(z′)〉 = 1] =
∑

(u0,u1)∈U�

Pr[〈A, Ĥ�,0(u0, u1)〉 = 1]

This means that∑
(u0,u1)∈U�

(
Pr[〈A, Ĥ�,0(u0, u1)〉 = 1] − Pr[〈A, Ĥ�,1(u0, u1)〉 = 1]

)

=
∑

z′∈{0,1}R

Pr[〈A,H�−1(z′)〉 = 1] −
∑

z′∈{0,1}R

Pr[〈A,H�(z′)〉 = 1] ≥ ε

L

where the last inequality follows from Step 2.
– Step 4. By an averaging argument, and using the fact that |U�| ≤ 22R′

, there
exists (u0, u1) ∈ U� such that

Pr[〈A, Ĥ�,0(u0, u1)〉 = 1] − Pr[〈A, Ĥ�,1(u0, u1)〉 = 1] ≥ ε

22R′L

This completes the proof. Note that 22R′
can be replaced by max� |U�|. ��

Compact Adaptively Secure ABE for NC1 from k-Lin 15

Comparison with [20]. Our piecewise guessing framework makes explicit the
game Hu which are described implicitly in the applications of the framework in
[20]. Starting from Hu and h0, . . . , hL, we can generically specify the intermediate
games Ĥ�,0, Ĥ�,1 as well as the games H0, . . . ,HL used in the proof of security.
The framework of [20] does the opposite: it starts with the games H0, . . . ,HL, and
the theorem statement assumes the existence of h0, . . . , hL and Ĥ�,0, Ĥ�,1 that
are “consistent” with H0, . . . ,HL (as defined via a “selectivization” operation).
We believe that starting from Hu and h0, . . . , hL yields a simpler and clearer
framework which enjoys the advantage of not having to additionally construct
and analyze Ĥ�,0, Ĥ�,1 and H� in the applications.

Finally, we point out that the sets U and W in [20, Theorem 2] corresponds
to U� and {0, 1}R over here (that is, we do obtain the same bounds), and the
i’th function hi corresponds to the �’th function h�−1 ◦ h� over here.

4 Pebbling Strategy for NC1

We now define a pebbling strategy for NC1 which will be used to define the
functions h0, . . . , hL we’ll use in the piecewise guessing framework. Fix a formula
f : {0, 1}n → {0, 1} of size m and an input x ∈ {0, 1}n for which f(x) = 0. A
pebbling strategy specifies a sequence of L subsets of [m], corresponding to
subsets of input nodes and gates in f that are pebbled. We refer to each subset
in the sequence as a pebbling configuration and the i’th term in this sequence is
the output of hi(f, x) (where the combination of f, x correspond to the adaptive
choices z made in our security game that will be later analyzed in the piecewise
guessing framework).

Our pebbling strategy is essentially the same as that in [20, Section 4]; the
main difference is that we provide a better bound on the size of the description
of each pebbling configuration in Theorem 1.

4.1 Pebbling Rules

Fix a formula f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n for which f(x) = 0.
We are allowed to place or remove pebbles on input nodes and gates in f , subject
to some rules. The goal of a pebbling strategy is to find a sequence of pebbling
instructions that follow the rules and starting with the initial configuration (in
which there are no pebbles at all), will end up in a configuration where only the
root gate has a pebble. Intuitively, the rules say that we can place a pebble a
node or a gate if we know that the out-going wire will be 0. More formally,

Definition 3. (Pebbling Rules)

1. Can place or remove a pebble on any AND gate for which (at least) one input
wire comes out of a node with a pebble on it.

2. Can place or remove a pebble on any OR gate for which all of the incoming
wires come out of nodes which have pebbles on them.

3. Can place or remove a pebble on any input node for which xi = 0.

16 L. Kowalczyk and H. Wee

Given (f, x), a pebbling strategy returns a sequence of pebbling instructions
of the form PEBBLE g or unPEBBLE g for some gate g, with the property that
each successively applied instruction follows the pebbling rules in Definition 3.

4.2 Pebbling Strategy

Given an NC1 formula f (recall Sect. 2.1) and an input x on which the formula
evaluates to 0, consider the pebbling instruction sequence returned by the fol-
lowing recursive procedure, which maintains the invariant that the output wire
evaluates to 0 for each gate that the procedure is called upon. The strategy is
described in Fig. 2 and begins by calling Pebble(f, x, g∗) on the root gate g∗. We
give an example in Fig. 3.

Pebble(f, x, g):
Input: A node g of an NC1 formula f with children gL and gR along with input x
defining values along the wires of f .

1. (Base Case) If g is an input node, Return “PEBBLE g”.
2. (Recursive Case) If g = OR, first call Pebble(f, x, gL) to get a list of operations ΛL,

then call Pebble(f, x, gR) to get a second list of operations λR.
Return ΛL ◦ ΛR◦ “PEBBLE g” ◦ Reverse(ΛR) ◦ Reverse(ΛL)

3. (Recursive Case) If g = AND, call Pebble(f, x, ·) on the first child gate whose
output wire evaluates to 0 on input x to get a list of operations Λ.
Return Λ◦ “PEBBLE g” ◦ Reverse(Λ)

Reverse(Λ):
Input: A list of instructions of the form “PEBBLE g” or “unPEBBLE g” for a gate g.

1. Return the list Λ in the reverse order, additionally changing each original
“PEBBLE ” instruction to “unPEBBLE ” and each original “unPEBBLE ” in-
struction to “PEBBLE ”.

Fig. 2. NC1 formula pebbling strategy.

Note that if this procedure is called on the root gate of a formula f with
an input x such that f(x) = 0, then every AND gate on which the Pebble()
procedure is called will have at least one child node with an output wire which
evaluates to 0, and every OR gate on which the Pebble() procedure is called will
have child nodes with output wires which both evaluate to 0. Furthermore, by
inspection, Pebble(f, x, g∗) returns a sequence of pebbling instructions for the
circuit that follows the rules in Definition 3.

4.3 Analysis

To be useful in the piecewise guessing framework, we would like for the sequence
of pebbling instructions to have the property that each configuration formed by

Compact Adaptively Secure ABE for NC1 from k-Lin 17

x1

0

x2

0

x1

0

x3

1

output

∨ ∧

∨

after step 5:

x1

0

x2

0

x1

0

x3

1

output

∨ ∧

∨

after step 6:

step move
1 pebble x1 (left)
2 pebble x2

3 pebble ∨ (left)
4 unpebble x2

5 unpebble x1 (left)
6 pebble x1 (right)
7 pebble ∧
8 unpebble x1 (right)
9 pebble ∨ (right)
10 pebble x1 (right)
11 unpebble ∧
12 unpebble x1 (right)
13 pebble x1 (left)
14 pebble x2

15 unpebble ∨ (left)
16 unpebble x2

17 unpebble x1 (left)

Fig. 3. Intermediate pebbling configurations on input x = 001. The thick black outline
around a node corresponds to having a pebble on the node. Note that steps 10–17
correspond to “undoing” steps 1–8 so that at the end of step 17, there is exactly one
pebble on the ∨ node leading to the output node.

successive applications of the instructions in the sequence is as short to describe
as possible (i.e., minimize the maximum representation size R′). One way to
achieve this is to have, at any configuration along the way, as few pebbles as
possible. An even more succinct representation can be obtained if we allow many
pebbles but have a way to succinctly represent their location. Additionally, we
would like to minimize the worst-case length, L, of any sequence produced. We
achieve these two goals in the following theorem.

Theorem 1 (pebbling NC1). For every input x ∈ {0, 1}n and any monotone
formula f of depth d and fan-in two for which f(x) = 0, there exists a sequence
of L(d) = 8d pebbling instructions such that every intermediate pebbling config-
uration can be described using R′(d) = 3d bits.

Proof. Follows from the joint statements of Lemmas 2 and 4 applied to the peb-
bling strategy in Fig. 2.

Comparison with [20]. Note that the strategy reproduced in Fig. 2 is essen-
tially the same as one analyzed by [20], which argued that every configuration
induced by the pebbling instruction sequence it produces can be described using
d(log m + 2) bits, where m is the number of wires in the formula. This follows
from the fact that each such pebbling configuration has at most d gates with
pebbled children, and we can specify each such gate using log m bits and the
pebble-status of its two children using an additional two bits. Our Lemma4 ana-
lyzes the same pebbling strategy but achieves a more succinct representation by

18 L. Kowalczyk and H. Wee

leveraging the fact that not all configurations of d pebbled gates are possible due
to the pebbling strategy used, so we don’t need the full generality allowed by
d · log m bits. Instead, Lemmas 3 and 4 show that every configuration produced
follows a pattern that can be described using only 3d bits.

Lemma 2 ([20]). The pebbling strategy in Fig. 2 called on the root gate g∗ for
a formula f of depth d with assignment x such that f(x) = 0, Pebble(f, x, g∗),
returns a sequence of instructions of length at most L(d) ≤ 8d.

This bound is a special case of that shown in [20, Lemma 2] for fan-in two
circuits.

Proof. This statement follows inductively on the depth of the formula on which
Pebble() is called.

For the base case, when d = 0 (and Pebble has therefore been called on an
input node) there is just one instruction returned, and: 1 ≤ 80

When Pebble() is called on a node at depth d > 0, the node is either an OR
gate or an AND gate.

When Pebble() is called on an OR gate, using our inductive hypothesis for the
instructions returned for the subformula of depth d − 1, notice that the number
of instructions returned is:

L(d−1)+L(d−1)+1+L(d−1)+L(d−1) = 8d−1+8d−1+1+8d−1+8d−1 = 4 ·8d−1+1 ≤ 8d

When Pebble() is called on an AND gate, using our inductive hypothesis
for the instructions returned for the subformula of depth d − 1, notice that the
number of instructions returned is:

L(d − 1) + 1 + L(d − 1) = 8d−1 + 1 + 8d−1 = 2 · 8(d−1) + 1 ≤ 8d ��
We note that the following lemma is new to this work and will be used to

bound the representation size R(d) of any configuration produced by application
of the instructions output by the pebbling strategy.

Lemma 3 (structure of pebbling configuration). Every configuration
induced by application of the instructions produced by the pebbling strategy in
Fig. 2 called on the root gate g∗ of a formula f of depth d with assignment x
such that f(x) = 0, Pebble(f, x, g∗), has the following property for all gates g in
f with children gL, gR:

If any node in the sub-tree rooted at gR is pebbled, then there exists at most
one pebble on the sub-tree rooted at gL, namely a pebble on gL itself

Proof. Call a node “good” if it satisfies the property above. First, we make the
following observation about the behavior of Reverse(): Applying Reverse() to a
list of instructions inducing a list of configurations for which all nodes are “good”

Compact Adaptively Secure ABE for NC1 from k-Lin 19

produces a new list for which this is true. This holds since Reverse() does not
change the configurations induced by a list of instructions, just the ordering
(which is reversed). This follows from a simple proof by induction on the length
of the input instruction list and the fact that for an input list of instructions
parsed as L1 ◦L2 for two smaller-length lists, we can implement Reverse(L1 ◦L2)
as Reverse(L2) ◦ Reverse(L1).

We proceed with our original proof via a proof by induction on the depth of
the formula upon which Pebble() is called.

Inductive Hypothesis: For formulas f of depth d − 1 with root gate g∗ and
assignment x such that f(x) = 0, Pebble(f, x, g∗) returns a sequence of instruc-
tions that induces a sequence of configurations that (1) end with a configuration
where g∗ is the only pebbled node, and satisfies: (2) in every configuration all
nodes are “good.”

Base Case: when Pebble(f, x, g∗) is called on a formula of depth 0, the formula
consists of just an input node g∗. The (single) returned instruction PEBBLE g∗

then satisfies that in both the initial and final configuration, the single node g∗ is
good. Also, the sequence ends in the configuration where g∗ is the only pebbled
node.

Inductive Step: when Pebble(f, x, g∗) is called on formula of depth d > 0. Let
g∗

L, g∗
R denote the children of the root gate g∗ (either an AND or OR gate). Note

that the sub-formulas fg∗
L

and fg∗
R

rooted at g∗
L and g∗

R have depth d − 1. We
proceed via a case analysis:

If g∗ is an AND gate, then suppose the sequence of instructions returned is

Pebble(fg∗
R
, x, g∗

R) ◦ PEBBLE g∗ ◦ Reverse(Pebble(fg∗
R
, x, gR))

(The case with g∗
L instead of g∗

R is handled analogously, even simpler). Suppose
Pebble(fg∗

R
, x, g∗

R) (and thus Reverse(Pebble(fg∗
R
, x, g∗

R))) produces L0 instruc-
tions. We proceed via a case analysis:

– Take any of the first L0 configurations (starting from 0’th). Here, all pebbles
are in the subformula rooted at g∗

R. We can then apply part (2) of the inductive
hypothesis to the subformula fg∗

R
rooted at g∗

R (of depth d−1) to deduce that
property “good” holds for all nodes in fg∗

R
. All nodes in fg∗

L
are unpebbled

in all configurations, so they are automatically good. Lastly, the root gate g∗

has no pebbled nodes in the subformula rooted at gL, so it is also good.
– For the (L0 + 1)’th configuration reached after PEBBLE g∗, there are only

two pebbles, one on g∗ (from the PEBBLE g∗ instruction) and another on
g∗

R (from part (1) of our inductive hypothesis applied to the (depth d − 1)
subformula fg∗

R
). It is clear that all nodes in this configuration are good.

– For the last L0 configurations, there is one pebble on g∗ and all remaining
pebbles are in the subformula rooted at g∗

R. Clearly, g∗ is good. All nodes
in fg∗

L
are unpebbled in all configurations, so they are also good. Moreover,

we can apply the inductive hypothesis to fg∗
R

combined with our observation
that Reverse preserves property (2) of this hypothesis to deduce that all nodes
in the subformula are also good for all configurations.

20 L. Kowalczyk and H. Wee

Lastly, notice that since the last L0 instructions undo the first L0 instructions,
the final configuration features a single pebble on g∗.

If g∗ is an OR gate, then the sequence of instructions returned is

Pebble(fg∗
L
, x, g∗

L) ◦ Pebble(fg∗
R
, x, g∗

R) ◦ PEBBLE g∗ ◦ Reverse(Pebble(fg∗
R
, x, g∗

R))
◦Reverse(Pebble(fg∗

L
, x, g∗

L))

Suppose Pebble(fg∗
R
, x, g∗

R),Pebble(fg∗
L
, x, g∗

L), and thus Reverse(Pebble(fg∗
R
,

x, g∗
R)), Reverse(Pebble(fg∗

L
, x, g∗

L)), produces L0, L1 instructions. We proceed via
a case analysis:

– Take any of the first L0 configurations (starting from 0’th). Here, all pebbles
are in the subformula fg∗

L
rooted at g∗

L. We can then apply part (2) of the
inductive hypothesis to (depth d − 1) fg∗

L
to deduce that property “good”

holds for all nodes in fg∗
L
. All nodes in the subformula rooted at g∗

R, fg∗
R
, are

unpebbled in all configurations, so they are automatically good. Lastly, the
root gate g∗ has no pebbled nodes in the subformula rooted at g∗

R, so it is
also good. Finally, by part (1) of this application of the inductive hypothesis,
we know that L0th configuration features a single pebble on g∗

L.
– Take any of the next L1 configurations (starting from the L0’th). Here, all

pebbles are in the subformula rooted at g∗
R except for the single pebble on

g∗
L. We can then apply part (2) of the inductive hypothesis to (depth d − 1)

fg∗
R

(of depth d − 1) to deduce that property “good” holds for all nodes in
fg∗

R
. All nodes in the subformula rooted at g∗

L have no pebbles in their own
subformulas, so they are automatically good. Lastly, the root gate g∗ may
have pebbled nodes in the subformula rooted at g∗

R but the only pebbled
node in the subformula rooted at g∗

L is g∗
L itself, so it is also good. Finally,

we know that the L0 + L1th configuration features two pebbles: a pebble on
g∗

L (from the first L0 instructions), and a pebble on g∗
R (by part (1) of this

application of the inductive hypothesis).
– For the (L0 + L1 + 1)’th configuration reached after PEBBLE g∗, there are

only three pebbles, one on g∗ (from the PEBBLE g∗ instruction), one on
g∗

L (from the first L0 instructions), and another on g∗
R (from the next L1

instructions). It is clear that all nodes in this configuration are good.
– For the next L1 configurations (reversing the instructions of the set of size

L1), there is one pebble on g∗, one pebble on g∗
L, and all remaining pebbles are

in the subformula rooted at g∗
R, fg∗

R
. g∗ is good, since it only has one pebble

in the subformula rooted at g∗
L, on g∗

L itself. All nodes in the subformula
rooted at g∗

L have no pebbles in their own subformulas, so they are also
good. Moreover, we can apply the inductive hypothesis to (depth d − 1) fg∗

R

combined with our observation that Reverse preserves property (2) of this
hypothesis to deduce that all nodes in fg∗

R
are also good for all configurations.

Note the final configuration in this sequence then contains two pebbles, one
of g∗ and one on g∗

L.
– For the final L0 configurations (reversing the instructions of the set of size L0),

there is one pebble on g∗, and all remaining pebbles are in the subformula

Compact Adaptively Secure ABE for NC1 from k-Lin 21

rooted at g∗
L. g∗ is good, since it has no pebbles in the subformula rooted

at g∗
R. Similarly, all nodes in the subformula rooted at g∗

R are also good.
Moreover, we can apply the inductive hypothesis to (depth d−1) fg∗

L
combined

with our observation that Reverse preserves property (2) of this hypothesis
to deduce that all nodes in fg∗

L
are also good for all configurations.

Lastly, notice that since the last L0 + L1 instructions undo the first L0 + L1

instructions, the final configuration features a single pebble on g∗. ��
Lemma 4 (R′(d) = 3d). Every configuration induced by application of the
instructions produced by the pebbling strategy in Fig. 2 for a formula f of depth
d with assignment x such that f(x) = 0 can be described using R′(d) = 3d bits.

Proof. We can interpret 3d bits in the following way to specify a pebbling: the
first d bits specify a path down the formula starting at the root gate (moving left
or right based on the setting of each bit), the next 2(d − 1) bits specify, for each
of the (d− 1) non-input nodes along the path, which of its children are pebbled.
Finally one of the last 2 bits is used to denote if the root node is pebbled.

From Lemma 3, we know that for all gates g with children gL, gR, if any node
in the sub-tree rooted at gR is pebbled, then there exists at most one pebble
on the sub-tree rooted at gL, namely a pebble on gL itself. So, given a pebbling
configuration, we can start at the root node and describe the path defined by
taking the child with more pebbles on its subtree using d bits. All pebbles in the
configuration are either on the root node or on children of nodes on this path
and therefore describable in the remaining 2d bits. ��

5 Core Adaptive Security Component

In this section, we will describe the secret-sharing scheme (share, reconstruct)
used in our ABE construction. In addition, we describe a core component of
our final ABE, and prove adaptive security using the pebbling strategy defined
and analyzed in Sect. 4 to define hybrids in the piecewise guessing framework of
Sect. 3.

Overview. As described in the overview in Sect. 1.1, we will consider the fol-
lowing “core 1-ABE component”:

ct′x := ({wi}xi=1) // “stripped down” ctx

skf := ({hμj }ρ(j)=0 ∪ {hμj+rjwρ(j) , hrj }ρ(j) �=0)

where ({μj}, ρ) ← share(f, μ). We want to show that under the DDH assumption,
μ is hidden given just (ct′x, skf) where x, f are adaptively chosen subject to the
constraint f(x) = 0. We formalize this via a pair of games G1-abe

0 ,G1-abe
1 and the

requirement G1-abe
0 ≈c G1-abe

1 . In fact, we will study a more abstract construction
based on any CPA-secure encryption with:

ct′x := ({wi}xi=1) // “stripped down” ctx

sk′
f := {μj}ρ(j)=0 ∪ {CPA.Enc(wρ(j), μj)}ρ(j) �=0 where ({μj}, ρ) ← share(f, μ)

22 L. Kowalczyk and H. Wee

5.1 Linear Secret Sharing for NC1

We first describe a linear secret-sharing scheme for NC1; this is essentially the
information-theoretic version of Yao’s secret-sharing for NC1 in [19,20,32]. It
suffices to work with Boolean formulas where gates have fan-in 2 and fan-out
1, thanks to the transformation in Sect. 2.1. We describe the scheme in Fig. 4,
and give an example in Fig. 5. Note that our non-standard definition of secret-
sharing in Sect. 2.2 allows the setting of ρ(j) = 0 for shares that are available for
reconstruction for all x. We remark that the output of share satisfies |{μj}| ≤ 2m
since each of the m nodes adds a single μj to the output set, except for OR gates
which add two: μja

and μjb
.

share(f, μ):
Input: A formula f : {0, 1}n → {0, 1} of size m and a secret μ ∈ Zp.

1. For each non-output wire j = 1, ..., m − 1, pick a uniformly random μ̂j ← Zp. For
the output wire, set μ̂m = μ

2. For each outgoing wire j from input node i, add μj = μ̂j to the output set of shares
and set ρ(j) = i.

3. For each AND gate g with input wires a, b and output wire c, add μc = μ̂c+μ̂a+μ̂b ∈
Zp to the output set of shares and set ρ(c) = 0.

4. For each OR gate g with input wires a, b and output wire c, add μca = μ̂c+ μ̂a ∈ Zp

and μcb = μ̂c + μ̂b ∈ Zp to the output set of shares and set ρ(ca) = 0 and ρ(cb) = 0.
5. Output {μj}, ρ.

Fig. 4. Information-theoretic linear secret sharing scheme share for NC1

The reconstruction procedure reconstruct of the scheme is essentially applying
the appropriate linear operations to get the output wire value μ̂c at each node
starting from the leaves of the formula to get to the root μ̂m = μ.

– Given μ̂a, μ̂b associated with the input wires of an AND gate, we recover
the gate’s output wire value μ̂c by subtracting their values from μc (which is
available since ρ(c) = 0).

– Given one of μ̂a, μ̂b associated with the input wires of an OR gate, we recover
the gate’s output wire value μ̂c by subtracting it from the appropriate choice
of μca

or μcb
(which are both available since ρ(ca) = ρ(cb) = 0).

Note that reconstruct(f, x, {μj}ρ(j)=0∨xρ(j)=1) computes a linear operation with
respect to the shares μj . This follows from the fact that the operation at each
gate in reconstruction is a linear operation, and the composition of linear oper-
ations is itself a linear operation. Therefore, reconstruct(f, x, {μj}ρ(j)=0∨xρ(j)=1)
is equivalent to identifying the coefficients ωj of this linear function, where
μ =

∑
ρ(j)=0∨xρ(j)=1

ωjμj .
As with any linear secret-sharing scheme, share and reconstruct can be

extended in the natural way to accommodate vectors of secrets. Specifically,
for a vector of secrets v ∈ Z

k
p, define:

Compact Adaptively Secure ABE for NC1 from k-Lin 23

x1 x2 x1 x3

output

∨ ∧

∨

1 2 3 4

5 6

7
j 1 2 3 4 5a
μj μ̂1 μ̂2 μ̂3 μ̂4 μ̂1 + μ̂5

ρ(j) 1 2 1 3 0

j 5b 6 7a 7b
μj μ̂2 + μ̂5 μ̂3 + μ̂4 + μ̂6 μ̂5 + μ μ̂6 + μ

ρ(j) 0 0 0 0

Fig. 5. Left: Formula (x1 ∨ x2) ∨ (x1 ∧ x3), where the wires are numbered 1, 2, . . . , 7.
Right: Shares (μ1, . . . , μ7b) and mapping ρ for the formula corresponding to secret
μ ∈ Zp

share(f,v) := ({vj := (v1,j , ..., vk,j))}, ρ) where ({vi,j}, ρ) ← share(f, vi)

(note that ρ is identical for all i). reconstruct can also be defined component-
wise:

reconstruct(f, x, {vj}ρ(j)=0∨xρ(j)=1) :=
∑

ρ(j)=0∨xρ(j)=1

ωjvj where ωj are computed as above

Our final ABE construction will use this extension.

5.2 Core 1-ABE Security Game

Definition 4 (core 1-ABE security G1-abe
0 ,G1-abe

1). For a stateful adversary
A, we define the following games G1-abe

β for β ∈ {0, 1}.

〈A,G1-abe
β 〉 := I

{
μ(0), μ(1) ← Zp;wi ← CPA.Setup(λ)
b′ ← AOF(·),OX(·),OE(·,·)(μ(0))

}

where the adversary A adaptively interacts with three oracles:

OF(f) := {sk′
f = {μj}ρ(j)=0 ∪ {CPA.Enc(wρ(j), μj)}ρ(j) �=0 where ({μj}, ρ) ← share(f, μ(β))

OX(x) := (ct′x = {wi}xi=1)

OE(i, m) := CPA.Encwi (m)

with the restrictions that (i) only one query is made to each of OF(·) and OX(·),
and (ii) the queries f and x to OF(·),OX(·) respectively, satisfy f(x) = 0.

24 L. Kowalczyk and H. Wee

To be clear, the β in G1-abe
β affects only the implementation of the oracle OF

(where μ(β) is shared). We will show that G1-abe
0 ≈c G1-abe

1 where we instantiate
share using the scheme in Sect. 5.1. That is, Theorem 2 will bound the quantity:

Pr[〈A,G1-abe
0 〉 = 1] − Pr[〈A,G1-abe

1 〉 = 1]

Comparison with [20]. Proving adaptive security for the core 1-ABE with
share is very similar to the proof for adaptive secret-sharing for circuits in [20].
One main difference is that in our case, the adaptive choices z correspond to
both (f, x), while in the adaptive secret-sharing proof of [20], f is fixed, and
the adaptive choices correspond to x, but revealed one bit at a time (that is,
OX(i, xi) returns wi if xi = 1). Another difference is the OE oracle included
in our core 1-ABE game, which enables the component to be embedded in a
standard dual-system hybrid proof for our full ABE systems. Lastly, we leverage
our improved analysis in Lemmas 3 and 4 to achieve polynomial security loss,
rather than the quasi-polynomial loss we would get from following their proof
more directly.

5.3 Adaptive Security for Core 1-ABE Component

We will show that G1-abe
0 ≈c G1-abe

1 as defined in Definition 4 using the piecewise
guessing framework. To do this, we need to first define a family of games {Hu}
along with functions h0, . . . , hL, using the pebbling strategy in Sect. 4. First, we
will describe shareu, which will be used to define Hu.

Defining shareu . Recall that Lemma 4 describes how to parse a u ∈ {0, 1}3d

as a pebbling configuration: a subset of the nodes of f . Further, note that each
node contains one output wire, so we can equivalently view u as a subset of [m]
denoting the output wires of pebbled gates. Given a pebbling configuration u
of an NC1 formula, the shares are generated as in the secret-sharing scheme in
Fig. 4, except for each pebbled node with output wire c, we replace μc with an
independent random μc ← Zp (in the case of a pebbled OR gate, we replace both
associated μca

and μcb
with independent random μca

, μcb
← Zp, i.e: both μca

, μcb

are associated with wire c.). In particular, we get the procedure shareu(f, μ)
defined in Fig. 6.

Hybrid Distribution Hu . We now define our hybrid games, and remark that
Sect. 3 used z ∈ {0, 1}R to denote the adaptive choices made by an adversary,
and the functions h� that define our hybrid games will depend on the adaptive
choices of both the f ∈ NC1 and x ∈ {0, 1}n chosen during the game, so in our
application of the piecewise guessing framework of Sect. 3, z will be (f, x). Note
that the conclusion of the framework is independent of the size of the adaptive
input (R = |f | + n), and the framework allows its x to be defined in parts over
time, though in our application, x will be defined in one shot.

Compact Adaptively Secure ABE for NC1 from k-Lin 25

shareu(f, μ):
Input: A formula f : {0, 1}n → {0, 1}, a secret μ ∈ Zp, and a pebbling configuration u
of the nodes of f .

1. Compute ({μ′
j}, ρ) ← share(f, μ) as defined in Figure 4

2. For each μ′
j , if j ∈ u (i.e: if j is the output wire of a pebbled node), then sample

μj ← Zp. Otherwise, set μj := μ′
j .

3. Output {μj}, ρ.

Fig. 6. Pebbling-modified secret sharing scheme shareu

Definition 5 (Hu and h�). Let Hu be G1-abe
0 with shareu (f, μ(0)) used in the

implementation of oracle OF(f) (replacing share (f, μ(0))). Let h� : NC1 ×
{0, 1}n → {0, 1}R′

denote the function that on formula f with root gate g∗

and input x ∈ {0, 1}n where f(x) = 0, outputs the pebbling configuration created
from following the first � instructions from Pebble(f, x, g∗) of Fig. 2.

Note that the first 0 instructions specify a configuration with no pebbles, so
h0 is a constant function for all f, x. Also, from the inductive proof in Lemma3,
we know that all sequences of instructions from Pebble(f, x, g∗) when f(x) = 0
result in a configuration with a single pebble on the root gate g∗, so hL is a
constant function for all f, x where f(x) = 0. Furthermore, note that for all such
f, x:

– Hh0(f,x) is equivalent to G1-abe
0 (since shareh0(f,x)(f, μ(0)) = share(f, μ(0)));

– HhL(f,x) is equivalent to G1-abe
1 (since sharehL(f,x)(f, μ(0)) = share(f, μ(1)) for

an independently random μ(1) which is implicitly defined by the indepen-
dently random value associated with the output wire of the pebbled root
gate: μm).

We now have a series of hybrids G1-abe
0 ≡ Hh0(f,x),Hh1(f,x), ...,HhL(f,x) ≡ G1-abe

1

which satisfy end-point equivalence and, according to the piecewise guessing
framework described in Sect. 3, define games Ĥ�,0(u0, u1), Ĥ�,1(u0, u1) for � ∈
[0, L].

Lemma 5 (neighboring indistinguishability). For all � ∈ [L] and u0, u1 ∈
{0, 1}R′

, Pr[〈A, Ĥ�,0(u0, u1)〉 = 1] − Pr[〈A, Ĥ�,1(u0, u1)〉 = 1] ≤ n · AdvCPA
B (λ).

Proof. First, observe that the difference between Ĥ�,0(u0, u1) and Ĥ�,1(u0, u1)
lies in OF(·): the former uses shareu0 and the latter uses shareu1 . Now, fix the
adaptive query f to OF. We consider two cases.

First, suppose there does not exist x′ ∈ {0, 1}n such that h�−1(f, x′) = u0

and h�(f, x′) = u1. Then, both 〈A, Ĥ�,0(u0, u1)〉 and 〈A, Ĥ�,1(u0, u1)〉 output 0
(i.e., abort) with probability 1 and then we are done.

In the rest of the proof, we deal with the second case, namely there exists
x′ ∈ {0, 1}n such that h�−1(f, x′) = u0 and h�(f, x′) = u1. This means that u0

26 L. Kowalczyk and H. Wee

and u1 are neighboring pebbling configurations in Pebble(f, x′, g∗), so they differ
by a pebbling instruction that follows one of the rules in Definition 3. We proceed
via a case analysis depending on what the instruction taking configuration u0 to
u1 is (the instruction is uniquely determined given u0, u1, f):

– pebble/unpebble input node with out-going wire j : Here, the only dif-
ference from shareu0(f, μ(0)) to shareu1(f, μ(0)) is that we change μj to a
random element of Zp (or vice-versa). The pebbling rule for an input node
requires that the input x to OX(·) in both Ĥ�,0(u0, u1) and Ĥ�,1(u0, u1) sat-
isfies xρ(j) = 0. Indistinguishability then follows from the CPA security of
(CPA.Setup,CPA.Enc,CPA.Dec) under key wρ(j); this is because xρ(j) = 0
and therefore wρ(j) will not need to be supplied in the answer to the query to
OX(x). In fact, the two hybrids are computationally indistinguishable even if
the adversary sees all {wi : i �= ρ(j)} (as may be provided by OX(x)).

– pebble/unpebble AND gate with out-going wire c and input wires a, b cor-
responding to nodes ga, gb. Here, the only difference from shareu0(f, μ(0)) to
shareu1(f, μ(0)) is that we change μc from an actual share μ̂a + μ̂b + μ̂c to
a random element of Zp (or vice-versa). The pebbling rules for an AND gate
require that there is a pebble on either ga or gb, say ga. Therefore, μa is
independent and uniformly random in both distributions shareu0(f, μ(0)) and
shareu1(f, μ(0)), and thus μ̂a is fresh and independently random in both distri-
butions (this uses the fact that ga has fan-out 1) and makes the distribution of
μc = μ̂a + μ̂b + μ̂c in hybrid �−1 independently random. We may then deduce
that shareu0(f, μ(0)) and shareu1(f, μ(0)) are identically distributed, and there-
fore so is the output OF(f). (This holds even if the adversary receives all of
{wi : i ∈ [n]} from its query to OX(x)).

– pebble/unpebble OR gate with out-going wire c and input wires a, b cor-
responding to nodes ga, gb. Here, the only difference from shareu0(f, μ(0)) to
shareu1(f, μ(0)) is that we change μca

, μcb
from actual shares (μ̂a+μ̂c, μ̂b+μ̂c)

to random elements of Zp (or vice-versa). The pebbling rules for an OR gate
require that there are pebbles on both ga and gb. Therefore, μa and μb are
independent and uniformly random in both distributions shareu0(f, μ(0)) and
shareu1(f, μ(0)), and thus μ̂a, μ̂b are fresh and independently random in both
distributions (using the fact that ga, gb have fan-out 1), and make the distri-
butions of μca

= μ̂a + μ̂c, μcb
= μ̂a + μ̂b in hybrid � − 1 both independently

random. We may then deduce that shareu0(f, μ(0)) and shareu1(f, μ(0)) are
identically distributed, and therefore so is the output OF(f). (This holds
even if the adversary receives all of {wi : i ∈ [n]} in its query to OX(x)).

In all cases, the simulator can return an appropriately distributed answer to
OX(x) = {wi}xi=1 since it has all wi except in the first case, where it is missing
only a wi such that xi = 0. Additionally, we note that in all cases, a simulator
can return appropriately distributed answers to queries to the encryption oracle
OE(i,m) = Encwi

(m), since only in the first case (an input node being pebbled
or unpebbled) is there a wi not directly available to be used to simulate the

Compact Adaptively Secure ABE for NC1 from k-Lin 27

oracle, and in that case, the simulator has oracle access to an Encwi
(·) function

in the CPA symmetric-key security game, and it can uniformly guess which of
the n variables is associated with the input node being pebbled and answer OE

requests to that variable with the CPA Encwi
(·) oracle (the factor of n due to

guessing is introduced here since the simulator may not know which variable is
associated with the input node at the time of the oracle request, e.g.: for requests
to OE made before OX, so the simulator must guess uniformly and take a security
loss of n).

In all but the input node case, the two distributions 〈A, Ĥ�,0(u0, u1)〉 and
〈A, Ĥ�,1(u0, u1)〉 are identical, and in the input node case, we’ve bounded the
difference by the distinguishing probability of the symmetric key encryption
scheme, the advantage function AdvCPA

B (λ), conditioned on a correct guess of
which of the n input variables corresponds to the pebbled/unpebbled input node.
Therefore, Pr[〈A, Ĥ�,0(u0, u1)〉 = 1]−Pr[〈A, Ĥ�,1(u0, u1)〉 = 1] ≤ n ·AdvCPA

B (λ) ��

5.4 CPA-Secure Symmetric Encryption

We will instantiate (CPA.Setup,CPA.Enc,CPA.Dec) in our Core 1-ABE of Defini-
tion 4 with a variant of the standard CPA-secure symmetric encryption scheme
based on k-Lin from [11] that supports messages [M]2 ∈ G2 of an asymmetric
prime-order bilinear group G:

CPA.Setup(1λ): Run G ← G(1λ). Sample M0 ← Z
k×k
p , m1 ← Z

k
p,

output sk = (sk0, sk1) := (M0,m�
1)

CPA.Enc(sk, [M]2): Sample r ← Z
k
p, output (ct0, ct1) := ([M + m�

1 r]2, [M0r]2)
CPA.Dec((sk0, sk1), (ct0, ct1)): Output ct0 · sk1 · sk−1

0 · ct1.

Correctness. Note that: ct0 · sk1 · sk−1
0 · ct1 = [M + m�

1 r − m�
1 r]2 = [M]2.

Lemma 6. AdvCPA
B (λ) ≤ Advk-LinB′ (λ).

Proof. Proof is contained in the full version of this paper [22] and omitted here
for brevity.

Theorem 2. The Core 1-ABE component of Definition 4 implemented with
(share, reconstruct) from Sect. 5.1 and the CPA-secure symmetric encryption
scheme (CPA.Setup,CPA.Enc,CPA.Dec) from Sect. 5.4 satisfies:

Pr[〈A,G1-abe
0 〉 = 1] − Pr[〈A,G1-abe

1 〉 = 1] ≤ 26d · 8d · n · Adv k-Lin
B∗ (λ)

Proof. Recall the hybrids G1-abe
0 ≡ Hh0(f,x),Hh1(f,x), ...,HhL(f,x) ≡ G1-abe

1 defined
in Sect. 5.3. Lemma 5 tells us that: for all � ∈ [L] and u0, u1 ∈ {0, 1}R′

,

Pr[〈A, Ĥ�,0(u0, u1)〉 = 1] − Pr[〈A, Ĥ�,1(u0, u1)〉 = 1] ≤ n · AdvCPA
B (λ)

These hybrids satisfy the end-point equivalence requirement, so Lemma1
then tells us that:

Pr[〈A,G1-abe
0 〉 = 1] − Pr[〈A,G1-abe

1 〉 = 1] ≤ 22R′ · L · n · AdvCPA
B (λ)

28 L. Kowalczyk and H. Wee

Lemma 4 tells us that R′ ≤ 3d, and Lemma 2 tells us that L ≤ 8d, where d is
the depth of the formula. Finally, Lemma6 tells us thatAdvCPA

B (λ) ≤ Advk-LinB∗ (λ).
So: Pr[〈A,G1-abe

0 〉 = 1] − Pr[〈A,G1-abe
1 〉 = 1] ≤ 26d · 8d · n · Adv k-Lin

B∗ (λ) ��

6 Our KP-ABE Scheme

In this section, we present our compact KP-ABE for NC1 that is adaptively secure
under the MDDHk assumption in asymmetric prime-order bilinear groups. For
attributes of length n, our ciphertext comprises O(n) group elements, indepen-
dent of the formula size, while simultaneously allowing attribute reuse in the
formula. As mentioned in the overview in Sect. 1.1, we incorporated optimiza-
tions from [5,15] to shrink Wi and thus the secret key, and hence the need for
the OE oracle in the core 1-ABE security game.

6.1 The Scheme

Our KP-ABE scheme is as follows:

Setup(1λ, 1n): Run G = (p,G1, G2, GT , e) ← G(1λ). Sample

A ← Z
k×(k+1)
p ,Wi ← Z

(k+1)×k
p ∀i ∈ [n],v ← Z

k+1
p

and output:

msk := (v,W1, . . . ,Wn)
mpk := ([A]1, [AW1]1, . . . , [AWn]1, e([A]1, [v]2))

Enc(mpk, x,M): Sample s ← Z
k
p. Output:

ctx = (ct1, {ct2,i}xi=1, ct3)

:=

(
[s�A]1, {[s�AWi]1}xi=1, e([s�A]1, [v]2) · M

)

KeyGen(mpk,msk, f): Sample ({vj}, ρ) ← share(f,v), rj ← Z
k
p. Output:

skf = ({sk1,j , sk2,j})
:= ({[vj + Wρ(j)rj]2, [rj]2})

where W0 = 0.
Dec(mpk, skf , ctx): Compute ωj such that v =

∑
ρ(j)=0∨xρ(j)=1

ωjvj as described in

Sect. 5.1. Output:

ct3 ·
∏

ρ(j)=0∨xρ(j)=1

(
e(ct2,ρ(j), sk2,j)

e(ct1, sk1,j)

)ωj

Compact Adaptively Secure ABE for NC1 from k-Lin 29

6.2 Correctness

Correctness relies on the fact that for all j, we have

e(ct1, sk1,j)
e(ct2,ρ(j), sk2,j)

= [s�Avj]T

which follows from the fact that

s�Avj = s�A︸︷︷︸
ct1

·(vj + Wρ(j)rj︸ ︷︷ ︸
sk1,j

) − s�AWρ(j)︸ ︷︷ ︸
ct2,ρ(j)

· rj︸︷︷︸
sk2,j

Therefore, for all f, x such that f(x) = 1, we have:

ct3 ·
∏

ρ(j)=0∨xρ(j)=1

(
e(ct2,ρ(j), sk2,j)

e(ct1, sk1,j)

)ωj

= M · [s�Av]T ·
∏

ρ(j)=0∨xρ(j)=1

[s�Avj]
−ωj

T

= M · [s�Av]T · [−s�A
∑

ρ(j)=0∨xρ(j)=1

ωjvj]T

= M · [s�Av]T · [−s�Av]T

= M

6.3 Adaptive Security

Description of Hybrids. To describe the hybrid distributions, it would be
helpful to first give names to the various forms of ciphertext and keys that will
be used. A ciphertext can be in one of the following forms:

– Normal: generated as in the scheme.
– SF: same as a Normal ciphertext, except s�A replaced with c� ← Z

k+1
p . That

is, ctx :=

(
[c�]1, {[c� Wi]1}xi=1, e([c�]1, [v]2) · M

)

A secret key can be in one of the following forms:

– Normal: generated as in the scheme.
– SF: same as a Normal key, except v replaced with v + δa⊥, where a fresh

δ ← Zp is chosen per SF key and a⊥ is any fixed a⊥ ∈ Z
k+1
p \ {0} such that

Aa⊥ = 0. That is, skf := ({[vj + Wρ(j)rj]2, [rj]2})

where ({vj}, ρ) ← share(f, v + δa⊥), rj ← Z
k
p.

SF stands for semi-functional following the terminology in previous works [25,33].

30 L. Kowalczyk and H. Wee

Hybrid Sequence. Suppose the adversary A makes at most Q secret key
queries. The hybrid sequence is as follows:

– H0: real game
– H1: same as H0, except we use a SF ciphertext.
– H2,�, � = 0, . . . , Q: same as H1, except the first � keys are SF and the remaining

Q − � keys are Normal.
– H3: replace M with random M̃ .

Proof Overview

– We have H0 ≈c H1 ≡ H2,0 via k-Lin, which tells us ([A]1, [s�A]1) ≈c

([A]1, [c�]1). Here, the security reduction will pick W1, . . . ,Wn and v so
that it can simulate the mpk, the ciphertext and the secret keys.

– We have H2,�−1 ≈c H2,�, for all � ∈ [Q]. The difference between the two is
that we switch the �’th skf from Normal to SF using the adaptive security of
our core 1-ABE component in G1-abe from Sect. 5. The idea is to sample

v = ṽ + μa⊥,Wi = W̃i + a⊥w�
i

so that mpk can be computed using ṽ,W̃i and perfectly hide μ,w1, . . . ,wn.
Roughly speaking: the reduction

• uses OX(x) in G1-abe to simulate the challenge ciphertext
• uses OF(f) in G1-abe to simulate �’th secret key
• uses μ(0) from G1-abe together with OE(i, ·) = Enc(wi, ·) to simulate the

remaining Q − � secret keys
– We have H2,Q ≡ H3. In H2,Q, the secret keys only leak v+δ1a⊥, . . . ,v+δQa⊥.

This means that c�v is statistically random (as long as c�a⊥ �= 0).

Theorem 3 (adaptive KP-ABE). The KP-ABE construction in Sect. 6.1 is
adaptively secure under the MDDHk assumption.

Proof. The detailed proof is contained in the full version of this paper [22] and
omitted here for brevity.

Acknowledgments. We thank Allison Bishop, Sanjam Garg, Rocco Servedio, and
Daniel Wichs for helpful discussions.

References

1. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-642-55220-5_31

Compact Adaptively Secure ABE for NC1 from k-Lin 31

3. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 20

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer
Society Press, May 2007

5. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 23

6. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

7. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part
I. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 19

8. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–
460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

9. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for Boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10879-7 16

10. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 1

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

12. Fuchsbauer, G., Jafargholi, Z., Pietrzak, K.: A Quasipolynomial Reduction for
Generalized Selective Decryption on Trees. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 601–620. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 29

13. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45608-8 5

14. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40084-1 27

15. Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to stan-
dard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 21

https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/11761679_1
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-662-47989-6_29
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-662-53890-6_21

32 L. Kowalczyk and H. Wee

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, New York (2013)

17. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati,
S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, New York (2006). Available as
Cryptology ePrint Archive Report 2006/309

18. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 6

19. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

20. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.:
Be Adaptive, Avoid Overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 5

21. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt,
M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 433–458. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 17

22. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k-Lin.
IACR Cryptology ePrint Archive, 2019:224 (2019)

23. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

24. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private
keys. In: IEEE Symposium on Security and Privacy, pp. 273–285. IEEE Computer
Society Press, May 2010

25. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

26. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

27. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

28. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

29. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F.
(eds.) ACM CCS 2007, pp. 195–203. ACM Press, New York (2007)

https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22

Compact Adaptively Secure ABE for NC1 from k-Lin 33

30. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28914-9 24

31. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

32. Vinod, V., Narayanan, A., Srinathan, K., Rangan, C.P., Kim, K.: On the power of
computational secret sharing. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT
2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-24582-7 12

33. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

34. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-540-24582-7_12
https://doi.org/10.1007/978-3-540-24582-7_12
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26

Unbounded Dynamic Predicate
Compositions in Attribute-Based

Encryption

Nuttapong Attrapadung(B)

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

n.attrapadung@aist.go.jp

Abstract. We present several transformations that combine a set of
attribute-based encryption (ABE) schemes for simpler predicates into a
new ABE scheme for more expressive composed predicates. Previous pro-
posals for predicate compositions of this kind, the most recent one being
that of Ambrona et al. at Crypto’17, can be considered static (or partially
dynamic), meaning that the policy (or its structure) that specifies a com-
position must be fixed at the setup. Contrastingly, our transformations
are dynamic and unbounded : they allow a user to specify an arbitrary and
unbounded-size composition policy right into his/her own key or cipher-
text. We propose transformations for three classes of composition policies,
namely, the classes of any monotone span programs, any branching pro-
grams, and any deterministic finite automata. These generalized policies
are defined over arbitrary predicates, hence admitting modular compo-
sitions. One application from modularity is a new kind of ABE for which
policies can be “nested” over ciphertext and key policies. As another appli-
cation, we achieve the first fully secure completely unbounded key-policy
ABE for non-monotone span programs, in a modular and clean manner,
under the q-ratio assumption. Our transformations work inside a generic
framework for ABE called symbolic pair encoding, proposed by Agrawal
and Chase at Eurocrypt’17. At the core of our transformations, we observe
and exploit an unbounded nature of the symbolic property so as to achieve
unbounded-size policy compositions.

1 Introduction

Attribute-based encryption (ABE), introduced by Sahai and Waters [32], is a
paradigm that generalizes traditional public key encryption. Instead of encrypt-
ing to a target recipient, a sender can specify in a more general way about who
should be able to view the message. In ABE for predicate P : X × Y → {0, 1},
a ciphertext encrypting message M is associated with a ciphertext attribute,
say, y ∈ Y, while a secret key, issued by an authority, is associated with a key
attribute, say, x ∈ X, and the decryption will succeed if and only if P (x, y) = 1.
From an application point of view, we can consider one kind of attributes as
policies, and the other kind as inputs to policies. In this sense, we have two basic
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 34–67, 2019.
https://doi.org/10.1007/978-3-030-17653-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_2

Unbounded Dynamic Predicate Compositions in ABE 35

forms of ABE called key-policy (KP) and ciphertext-policy (CP), depending on
which side has a policy associated to.

Predicate Compositions. A central theme to ABE has been to expand the
expressiveness by constructing new ABE for more powerful predicates (e.g.,
[12,20,21,28–30]). In this work, we continue this theme by focusing on how
to construct ABE for compositions of predicates. We are interested in devising
transformations that combine ABE schemes for based predicates to a new ABE
scheme for their composed predicate. To motivate that this can be powerful in
the first place, we introduce an example primitive called Nested-policy ABE.

Example: Nested-policy ABE. As the name suggests, it allows a key pol-
icy and a ciphertext policy to be nested to each other. This might be best
described by an example. Suppose there are three categories for attributes: Per-
son, Place, Content. Attached to a key, we could have attribute sets/policies
categorized to three categories, Person:{Trainee, Doctor}, Place:{Paris,
Zip:75001}, Content:‘(Kidney and Disease) or Emergency’, with a “com-
position policy” such as ‘Person or (Place and Content)’, which plays the
role of concluding the whole policy. A ciphertext could be associated to Per-

son:‘Senior and Doctor’, Place:‘Paris or London’, Content:{Kidney,
Disease, Cancer}. Now we argue that the above key can be used to decrypt the
ciphertext since the attribute set for Place satisfies the corresponding policy in
the ciphertext, while the policy for Content is satisfied by the corresponding
attribute sets in the ciphertext, and the concluding policy (attached to the key)
states that if both Place and Content categories are satisfied, then it can
decrypt.

We can consider this as a composition of two CP-ABE sub-schemes for the
first two categories and KP-ABE for the last category, while on the top of that,
a KP-ABE scheme over the three categories is then applied. To the best of our
knowledge, no ABE with nested-policy functionality has been proposed so far,
and it is not clear in the first place how to construct even for specific policies.

Our Design Goal. We aim at constructing unbounded, dynamic, and generic
transformations for predicate compositions. Dynamicity refers to the property
that one can choose any composition policy (defined in some sufficiently large
classes) when composing predicates. In the above example, this translates to
the property that the concluding policy is not fixed-once-and-for-all, where, for
instance, one might want to define it instead as ‘(Person and Content) or

Place’, when a key is issued. Moreover, we aim at modular compositions where
we can recursively define policies over policies, over and over again. Further-
more, for highest flexibility, we focus on unbounded compositions, meaning that
the sizes of composition policies and attribute sets are not a-priori bounded at
the setup. Generality refers to that we can transform any ABE for any based
predicates. This level of generality might be too ambitious, since this would
imply an attempt to construct ABE from ID-based Encryption (IBE), of which
no transformation is known. We thus confine our goal to within some well-defined
ABE framework and/or a class of predicates. Towards this, we first confine our

36 N. Attrapadung

attention to ABE based on bilinear groups, which are now considerably efficient
and have always been the main tool for constructing ABE since the original
papers [21,32].

Previous Work on Predicate Compositions. We categorize as follows.

– Static & Specific. Dual-policy ABE (DP-ABE), introduced in [4], is the
AND composition of KP-ABE and CP-ABE (both fixed for the Boolean for-
mulae predicate). The fixed AND means that it is static. The underlying ABE
schemes are also specific schemes, namely, those of [21,33].

– Static & Small-class & Generic. Attrapadung and Yamada [10] proposed
a more general conversion that can combine ABE for any predicates that can
be interpreted in the so-called pair encoding framework [1,2,5,6], but again,
fixed for only the AND connector. A generic DUAL conversion, which swaps
key and ciphertext attribute, was also proposed in [5,10]. All in all, only a
small class of compositions were possible at this point.

– Static/Partially-dynamic & Large-class & Generic. Most recently, at
Crypto’17, Ambrona, Barthe, and Schmidt [3] proposed general transfor-
mations for DUAL, AND, OR, and NOT connectors, hence complete any
Boolean formulation, and thus enable a large class of combinations. Their
scheme is generic and can combine ABE for any predicates in the so-called
predicate encoding framework [16,36]. However, their compositions are static
ones, where such a composition policy has to be fixed at the setup. A more
flexible combination (§2 of [3]), which we call partially dynamic, is also pre-
sented, where the structure of the boolean combination must be fixed.

Our Contributions: Dynamic & Large-Class & Generic. We propose
unbounded, dynamic, and generic transformations for predicate compositions
that contain a large class of policies. They are generic in the sense that applicable
ABE schemes can be any schemes within the generic framework of pair encoding,
see below. These transformation convert ABE schemes for a set of “atomic” pred-
icates P = {P1, . . . , Pk} to an ABE scheme for what we call policy-augmented
predicate over P. Both key-policy and ciphertext-policy augmentations are possi-
ble. In the key-policy case, the dynamicity allows a key issuer to specify a policy
over atomic predicates, like the concluding policy over three sub-schemes in the
above nested example. In the ciphertext-policy case, it allows an encryptor to
specify such a policy. Below, we focus on the key-policy variant for illustrating
purpose.

We propose the following four composition transformations.

1. Span Programs over Predicates. In this class, we let a composition
policy be dynamically defined as any monotone span program (MSP) [22]
where each of their Boolean inputs comes from each evaluation of atomic
predicate. This is illustrated in Fig. 1. A key attribute is a tuple M =
(A, (i1, x1), . . . , (im, xm)) depicted on the left, where A is a span program
(or, think of it as a boolean formula). A ciphertext attribute is a set

Unbounded Dynamic Predicate Compositions in ABE 37

Fig. 1. Span program over predicates Fig. 2. Branching program over predi-
cates

Y = {(j1, y1), . . . , (jt, yt)}. The indexes id and jh specify the index of predi-
cates in P, that is, id, jh ∈ [1, k]. To evaluate M on Y , we proceed as follows.
First, we evaluate a “link” between node (id, xd) and node (jh, yh) to on if
id = jh =: i and Pi(xd, yh) = 1. Then, if one of the edges adjacent to the
d-th node is on, then we input 1 as the d-th input to A, and evaluate A.
Our transformation is unbounded, meaning that m and t can be arbitrary.
Note that since span programs imply boolean formulae, we can think of it as
boolean formula over atomic predicates.

2. Branching Programs over Predicates. In this class, we let a composition
policy be dynamically defined as any branching program (BP) where each
edge is evaluated in a similar manner as in each link in the case of span
program composition above. This is depicted in Fig. 2. A branching program
is described by a direct acyclic graph (DAG) with labels. It accepts Y if the
on edges include a directed path from the start node to an accept node. A
direct application for this is a predicate that comprises if-then clauses. We
achieve this by a general implication from the first transformation, similarly
to the implication from ABE for span programs to ABE for BP in [6].

3. DFA over Predicates. In this class, a composition policy can be defined
as any deterministic finite automata (DFA) where each transition in DFA is
defined based on atomic predicates. Such a DFA has an input as a vector y =
((j1, y1), . . . , (jt, yt)) which it reads in sequence. It allows any direct graph,
even contains directed cycles and loops (as opposed to DAG for branching
programs), and can read arbitrarily long vectors y. This transformation fully
generalizes ABE for regular languages [5,35], which can deal only with the
equality predicate at each transition, to any predicates.

4. Bundling ABE with Parameter Reuse. We propose a generic way to
bundle ABE schemes (without a policy over them, and where each scheme
works separately) so that almost all of their parameters can be set to the same
set of values among those ABE schemes. This is quite surprising in the first
place since usually parameters for different schemes would play different roles
(in both syntax and security proof). Nevertheless, we show that they can be

38 N. Attrapadung

Fig. 3. DFA over predicates

reused. Loosely speaking, to combine k schemes where the maximum number
of parameters (i.e., public key size) among them is n, then the number of
parameters for the combined scheme is n + 2k. Trivially combining them
would yield O(nk) size. We call this as the direct sum with parameter reuse.

We denote the above first three key-policy-augmented predicates over P as
KP[P], KB[P], KA[P], respectively. For ciphertext-policy case, we use C instead
of K. Also, we call the generalized machines in the above classes as predicative
machines.

Scope of Our Transformations. Our conversions apply to ABE that can
be interpreted in the pair encoding framework, which is a generic framework for
achieving fully secure ABE from a primitive called Pair Encoding Scheme (PES),
proposed by Attrapadung [5]. PESs for many predicates have been proposed
[2,5,6,10], notably, including regular language functionality [5,35]. Agrawal and
Chase [2], at Eurocrypt’17, recently extended such a framework by introducing a
notion called symbolic security for PES, which greatly simplifies both designing
and security analysis of PES and ABE. A symbolically secure PES for predicate
P can be used to construct fully secure ABE for the same predicate under the
k-linear and the q-ratio assumption [2] in (prime-order) bilinear groups. Our
conversions indeed work by converting PESs for a set P of predicates to a PES
for KP[P], KB[P], and KA[P], that preserves symbolic security.

Applications. Among many applications, we obtain:

– ABE with multi-layer/multi-base functionalities and nested-policy. The gen-
erality of our transformations make it possible to augment ABE schemes
in a modular and recursive manner. This enables multi-layer functionalities
in one scheme, e.g., ABE for predicate KP[KB[KA[P]]], which can deal with
first checking regular expression (over predicates) via DFA, then inputting
to an if-clause in branching program, and finally checking the whole policy.
By skewing key and ciphertext policy, we can obtain a nested-policy ABE,
e.g., predicate KP[CP[P]]. Moreover, the fact that we combine a set of pred-
icates into a composed one enables multiple based functionalities, e.g., revo-
cation [3,37], range/subset membership [8], regular string matching [35], etc.
This level of “plug-and-play” was not possible before this work.

Unbounded Dynamic Predicate Compositions in ABE 39

– The first fully secure completely-unbounded KP-ABE for non-monotone span
programs (NSP) over large universe.1 Previous ABE for NSP is either only
selectively secure [9,28,38] or has some bounded attribute reuse [29,30]. See
Table 1 in Sect. 9.2 for a summary. Our approach is simple as we can obtain
this modularly. As a downside, we have to rely on the q-type assumption
inherited from the Agrawal-Chase framework [2]. Nevertheless, all the current
completely unbounded KP-ABE for even monotone span programs still need
q-type assumptions [2,5,31], even selectively secure one [31].

– Mixed-policy ABE. In nested-policy ABE, the nesting structure is fixed.
Mixed-policy ABE generalizes it so as to be able to deal with arbitrary nest-
ing structure in one scheme. The scheme crucially uses the direct sum with
parameter reuse, so that its parameter size will not blow up exponentially.

Comparing to ABS17 [3]. Here, we compare our transformations to those of
Ambrona et al. [3]. The most distinguished features of our transformations are
finite automata based, and branching program based compositions. Moreover,
all of our transformations are unbounded. For monotone Boolean formulae over
predicates, our framework allows dynamic compositions, as opposed to static
or partially-dynamic (thus, bounded-size) ones in ABS. As for applicability to
based predicates, ours cover a larger class due to the different based frameworks
(ours use symbolic pair encoding of [2], while ABS use predicate encoding of [16]).
Notable differences are that pair encodings cover unbounded ABE for MSP, ABE
for MSP with constant-size keys or ciphertexts, ABE for regular languages, while
these are not known for predicate encodings. One drawback of using symbolic
pair encoding is that we have to rely on q-type assumptions. A result in ABS also
implies (static) non-monotone Boolean formulae composition (via their negation
conversion). Although we do not consider negation conversion, we can use known
pair encoding for negation of some common predicates such as IBE and negated
of IBE (as we will do in Sect. 9). In this sense, non-monotone formulae com-
position can be done in our framework albeit in a semi-generic (but dynamic)
manner.

We provide more related works and some future directions in the full version.

2 Intuition and Informal Overview

This section provides some intuition on our approaches in an informal manner.

Pair Encoding. We first informally describe PES [5] as refined in [2]. It consists
of two encoding algorithms as the main components. The ciphertext encoding
EncCt encodes y ∈ Y to a vector c = c(s, ŝ,b) = (c1, . . . , cw3) of polynomials
in variables s = (s0, . . . , sw1), ŝ = (ŝ1, . . . , ŝw2), and b = (b1, . . . , bn). The key
encoding EncKey encodes x ∈ X to a vector k = k(r, r̂,b) = (k1, . . . , km3) of

1 For large-universe ABE, there is no known conversion from ABE for monotone span
programs. Intuitively, one would have to include negative attributes for all of the
complement of a considering attribute set, which is of exponential size.

40 N. Attrapadung

polynomials in variables r = (r1, . . . , rm1), r̂ = (α, r̂1, . . . , r̂m2), and b. The
correctness requires that if P (x, y) = 1, then we can “pair” c and k to to obtain
αs0, which refers to the property that there exists a linear combination of terms
ciru and kjst that is αs0. Loosely speaking, to construct ABE from PES, we use
a bilinear group G = (G1,G2) that conforms to dual system groups [1,2,17]. Let
g1, g2 be their generators. The public key is (gb2 , e(g1, g2)α), a ciphertext for y
encrypting a message M consists of gc2 , g

s
2, and e(g1, g2)αs0 · M , and a key for x

consists of gk1 , gr1. (In particular, the hatted variables are only internal to each
encoding.) Decryption is done by pairing c and k to obtain αs0 in the exponent.

Symbolic Security. In a nutshell, the symbolic security [2] of PES involves
“substitution” of scalar variables in PES to vectors/matrices so that all the
substituted polynomials in the two encodings c and k will evaluate to zero for
any pair x, y such that P (x, y) = 0. The intuition for zero evaluation is that,
behind the scene, there are some cancellations going on over values which cannot
be computed from the underlying assumptions. To rule out the trivial all-zero
substitutions, there is one more rule that the inner product of the substituted
vectors for special variables that define correctness, namely, α and s0, cannot
be zero. In some sense, this can be considered as a generalization of the already
well-known Boneh-Boyen cancellation technique for IBE [13].

Note that one has to prove two flavors of symbolic security: selective and
co-selective. The former allows the substitutions of variables in b, c to depend
only on y, while those in k to depend on both x, y. In the latter, those in b,k
can depend only on x, while those in c can depend on both x, y. Intuitively,
the framework of [2] uses each flavor in the two different phases—pre and post
challenge—in the dual system proof methodology [2,5,23,26,34,36].

Our Modular Approach. In constructing a PES for KP[P], we first look into
the predicate definition itself and decompose to simpler ones as follows. Instead
of dealing with predicates in the set P all at once, we consider its “direct sum”,
which allows us to view P as a single predicate, say P . Intuitively, this reduces
KP[P] of Fig. 1 to KP[P] of Fig. 4a. We then observe that KP[P] of Fig. 4a is,

Fig. 4. Simpler variants of span program over predicates, for modular approach

Unbounded Dynamic Predicate Compositions in ABE 41

in fact, already a nested predicate. It contains ciphertext-policy with the OR
policy in the lower layer, followed by key-policy augmentation in the upper layer,
as decomposed and shown in Fig. 4c and Fig. 4b, respectively. Hence, we can
consider a much simpler variant that deal with only one input at a time.

Our Starting Point: Agrawal-Chase Unbounded ABE. To illustrate the
above decomposition, we consider a concrete predicate, namely, unbounded KP-
ABE for monotone span program (MSP), along with a concrete PES, namely,
an instantiation by Agrawal and Chase [2], which is, in fact, our starting point
towards generalization. First we recall this PES (Appendix B.2 of [2])2:

cY =
(
b1s0 + (yjb2 + b3)s

(j)
1

)
j∈[q]

k(A,π) =
(
Air̂

� + r
(i)
1 b1, r

(i)
1 (π(i)b2 + b3)

)
i∈[m]

(1)

where (A, π) is an MSP with A ∈ Z
m×�
N , Ai is its i-th row, r̂ = (α, r̂1, . . . , r̂�−1),

and Y = {y1, . . . , yq}. (The exact definition for MSP is not important for now.)
We now attempt to view this as being achieved by two consecutive transforma-
tions. We view the starting PES as the following PES for IBE (P IBE(x, y) = 1
iff x = y):

cy = b1s0 + (yb2 + b3)s1
kx =

(
α + r1b1, r1(xb2 + b3)

) (2)

denoted as ΓIBE, which is first transformed to the following PES for IBBE
(ID-based broadcast encryption, P IBBE(x, Y) = 1 iff x ∈ Y), denoted as ΓIBBE:

cY =
(
b1s0 + (yjb2 + b3)s

(j)
1

)
j∈[q]

= (cj)j∈[q]

kx =
(
α + r1b1, r1(xb2 + b3)

) (3)

which is then finally transformed to the above PES for KP-ABE. We aim to
generalize this process to any PES for arbitrary predicate.

The two transformations already comprise a nested policy augmentation pro-
cess: the first (IBE to IBBE) is a ciphertext-policy one with the policy being
simply the OR policy, while the second (IBBE to KP-ABE for MSP) is a key-
policy one with policy (A, π). To see an intuition on a policy augmentation, we
choose to focus on the first one here which is simpler since it is the OR policy. To
see the relation of both PESs, we look into their matrix/vector substitutions in
showing symbolic property. We focus on selective symbolic property here. It can

2 This encoding or closed variants are utilized in many works, e.g., [5,18,25,31]. Rouse-
lakis and Waters [31] were the first to (implicitly) use this exact encoding. Attra-
padung [5] formalized it as PES. Agrawal and Chase [2] gave its symbolic proof.

42 N. Attrapadung

be argued by showing matrix/vector substitutions that cause zero evaluations in
all encodings, when x �= y. For the base PES ΓIBE, this is:3

cy : 1
0

B1 (s0)
�

↑
1 +

(
y 0−1

B2

+ −1
y

B3

)(s1)
�

↑
1 = 0

0

kx :
(
1 + −1, − 1

y−x
1
0 = 0, −1, − 1

y−x

(
x 0−1 + −1

y

)
= 0

)
(4)

where each rectangle box represents a matrix of size 1× 2 or 2× 1. On the other
hand, the selective symbolic property for the PES ΓIBBE can be shown below,
where we let 1j be the length-q row vector with 1 at the j-th entry and 11,1 be
the (q + 1) × q matrix with 1 at the entry (1, 1) (and all the other entries are 0).

cY :

B′
1↑

11,1

(s′
0)

�

↑
(11)� +

(

yj

⎛

⎜
⎜
⎜
⎝

0 · · · 0
−1

. . .
−1

⎞

⎟
⎟
⎟
⎠

B′
2

+

⎛

⎜
⎜
⎜
⎝

−1 · · · −1
y1

. . .
yq

⎞

⎟
⎟
⎟
⎠

B′
3

)(s
′(j)
1)�

↑
(1j)� = 0

kx : 11 +
(
−1, − 1

y1−x , . . . , − 1
yq−x

)
11,1 = 0,

(
−1, − 1

y1−x , . . . , − 1
yq−x

)

⎛

⎜
⎜
⎜
⎝

x

⎛

⎜
⎜
⎜
⎝

0 · · · 0
−1

. . .
−1

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−1 · · · −1
y1

. . .
yq

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

= 0.

(5)

Our Observation on Unboundedness. We now examine the relation of sub-
stituted matrices/vectors between the two PESs: we observe that those for ΓIBBE

contains those for ΓIBE as sub-matrices/vectors. For example, B3 for the substi-
tuted cy in Eq. (4) is “embedded” in B′

3 for the substituted cY in Eq. (5), for

y ∈ Y . We denote such a sub-matrix as B(j)
3 =

(−1
yj

)
.

We crucially observe that the unbounded property (of IBBE) stems from
such an ability of embedding all the matrices from the base PES—(B(j)

3)j∈[q]—
regardless of size q, into the corresponding matrix in the converted PES—B′

3 in
this case. Our aim is unbounded-size policy augmentation for any PES. We thus
attempt to generalize this embedding process to work for any sub-matrices.

Difficulty in Generalizing to Any PES. Towards generalization, we could
hope that such an embedding of sub-matrices/vectors has some patterns to fol-
low. However, after a quick thought, we realize that the embedding here is quite

3 As a convention throughout the paper, the substitution matrices/vectors are written
in the exact order of appearance in their corresponding encodings (here is Eq. (3)).

Unbounded Dynamic Predicate Compositions in ABE 43

specialized in many ways. The most obvious specialized form is the way that
sub-matrices B(j)

3 are placed in B′
3: the first row of B(j)

3 are placed in the same
row in B′

3, while the other row are placed in all different rows in B′
3. Now the

question is that such a special placement of sub-matrices into the composed
matrices also applies to any generic PES. An answer for now is that this seems
unlikely, if we do not restrict any structure of PES at all (which is what we aim).

We remark that, on the other hand, such a special embedding seems essential
in our example here since, in each cj , in order to cancel out the substitution of
b1s0, which is the same for all j, we must have the substitution for (yjb2+b3)s

(j)
1

to be the same for all j ∈ [q]. Therefore, we somehow must have a “projection”
mechanism; this is enabled exactly by the placement in the first row of B′

2,B
′
3.

Our First Approach: Layering. Our first approach is to modify the trans-
formed PES so that sub-matrices can be placed in a “generic” manner into the
composed matrices. (It will become clear shortly what we mean by “generic”.) In
the context of IBBE, we consider the following modified PES, denoted as Γ̄IBBE:

cY =
(
f2snew + f1s

(j)
0 , b1s

(j)
0 + (yjb2 + b3)s

(j)
1

)
j∈[q]

kx =
(
αnew + rnewf2, rnewf1 + r1b1, r1(xb2 + b3)

) (6)

This is modified from the PES in Eq. (3) by introducing one more layer involving
the first element in each encoding, where f1, f2 are two new parameters. The
main purpose is to modify the element b1s0 to b1s

(j)
0 so that it varies with j,

which, in turn, eliminating the need for “projection” as previously. This becomes
clear in the following assessment for its selective symbolic property:

cY : 1̂1,1(11)
� + F1(1j)

� = 0,
⎛
⎜⎜⎝

1
0

. . .
1
0

⎞
⎟⎟⎠ (1j)

� +

⎛
⎜⎜⎜⎝yj

⎛
⎜⎜⎝

0
−1

. . .
0

−1

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎝

−1
y1

. . .
−1
yq

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ (1j)

� = 0

kx :11 + (−1̂1)1̂1,1 = 0,

(−1̂1)F1 +
(

−1, − 1
y1−x , . . . , −1, − 1

yq−x

)
⎛
⎜⎜⎝

1
0

. . .
1
0

⎞
⎟⎟⎠ = 0,

(
−1, − 1

y1−x , . . . , −1, − 1
yq−x

)
⎛
⎜⎜⎜⎝x

⎛
⎜⎜⎝

0
−1

. . .
0

−1

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎝

−1
y1

. . .
−1
yq

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ = 0.

(7)

where we let 1̂1,1 be of size (2q) × q and 1̂1 be of length 2q (defined similarly
to 11,1,11, resp.), and let F1 be the (2q) × q matrix with all entries in the first

44 N. Attrapadung

row being −1 (and all the other entries are 0). Here, we observe that all the
composed matrices regarding the parameters (b1, b2, b3) of the PES ΓIBBE are
formed exactly by including the substituted matrices of the base PES in the
“diagonal blocks”, namely, we can now “generically” define, for i ∈ [n],

B′
i =

⎛

⎜
⎝

B(1)
i

. . .

B(q)
i

⎞

⎟
⎠ .

Moreover, arranging the vector substitutions in their corresponding slots will
result in exactly the zero evaluation of each substituted equation of the base
PES. This approach is naturally generalized to any base PES. Put in other
words, intuitively, we can obtain the proof of symbolic property of the composed
PES from that of the base PES generically, via this conversion. Such a con-
version, transforming any PES (cy,kx) for predicate P to its ciphertext-policy
augmentation (with OR policy), can be described by

c′
Y =

(
f2snew + f1s

(i)
0 , cyj

)

j∈[q]
, k′

x =
(
αnew + rnewf2, (kx)|α�→rnewf1

)
(8)

where the variables su in cyj
are superscripted as s

(j)
u , and “�→” denotes the

variable replacement. This PES is for the predicate of “ciphertext-OR-policy”
over P—returning true iff ∃j P (x, yj) = 1. In fact, one can observe that Eq. (8)
is a generalization of Eq. (6).

Our Second Approach: Admissible PES. One disadvantage with our first
approach is the inefficiency due to the additional terms. Comparing PES Γ̄IBBE

to ΓIBBE, the former requires 2q more elements than the latter (note that we
include also (s(j)0)j∈[q] when counting overall ciphertext elements). However, we
already knew that the additional terms are not necessary for some specific PESs
and predicates, notably our ΓIBE for IBE.

We thus turn to the second approach which takes the following two steps.
First, we find a class of “admissible” PESs where there exists a conversion for
ciphertext-policy augmentation without additional terms. Second, we provide a
conversion from any PES to a PES that is admissible.

As a result of our finding, the admissible class of PESs turns out to have a
simple structure: k consists of k1 = α + r1b1, and α, b1 do not appear elsewhere
in k, while in c, we allow b1, s0 only if they are multiplied—b1s0. Intuitively,
this “isolation” of b1, α, s0 somewhat provides a sufficient structure4 where the
“projection” can be enabled, but without mitigating to additional elements as
done in the above first approach. The ciphertext-OR-policy augmentation can
then be done by simply setting

c′
Y =

(
(cyj

)|
s
(j)
0 �→snew

)
j∈[q]

, k′
x = kx. (9)

4 Note that we indeed require a few more simple requirements in order for the proof
to go through: see Definition 4.

Unbounded Dynamic Predicate Compositions in ABE 45

One can observe that this is a generalization of Eq. (3), and that there is no
additional terms as in Eq. (8). Our conversion from any PES to an admissible
one (for the same predicate) is also simple: we set

c′
y =

(
f2snew + f1s0, cy

)
, k′

x =
(
αnew + rnewf2, (kx)|α�→rnewf1

)
(10)

where s0 is the variable in y, while snew is the new special variable (that defines
correctness). It is easy to see also that combining both conversions, that is,
Eq. (10) followed by Eq. (9), we obtain the conversion of the first approach
(Eq. (8)). But now, for any PES that is already admissible such as ΓIBE, we do
not have to apply the conversion of Eq. (10), which requires additional terms.

Towards General Policies. Up to now, we only consider the OR policy. It
ensures that P ′(x, Y) = 0 implies P (x, yj) = 0 for all j. However, for gen-
eral policies, this is not the case, that is, if we let P̄ be such a ciphertext-
policy augmented predicate over P (this will be formally given in Definition 5),
P̄ (x, (A, π)) = 0 may hold even if P (x, π(j)) = 1 for some j. Consequently,
we have no available substituted matrices/vectors for the key encoding for such
problematic j. Another important issue is how to embed the policy (A, π) with-
out knowledge of x (cf. the selective property), but be able to deal with any x
such that P̄ (x, (A, π)) = 0.

We solve both simultaneously by a novel way of embedding (A, π) so that,
intuitively, only the “non-problematic” blocks will turn “on”, whatever x will
be, together with a novel way of defining substituted vectors for k so that all
the “problematic” blocks will turn “off”. To be able to deal with any x, the
former has to be done in the “projection” part, while the latter is done in the
“non-projection” part of matrices. By combining both, we will have only the
non-problematic blocks turned on, and thus can use the base symbolic property.

Towards Other Predicative Machines: Automata. At the core of the above
mechanism is the existence of “mask” vectors which render problematic blocks
to 0. We crucially observe that such “mask” vectors depend on and only on
(x, (A, π)) and the sole fact that P̄ (x, (A, π)) = 0, i.e., the non-acceptance con-
dition of MSP. Notably, it does not depend on the actual PES construction. This
feature provides an insight to extend our approach to other types of predicative
machines—finite automata in particular—by finding appropriate combinatorial
vectors that encode non-acceptance conditions. (See more discussions in the full
version.)

Wrapping Up. Up to now, we mainly consider the selective symbolic property.
The co-selective property (for the ciphertext-policy case) is simpler to achieve,
since each substitution matrix of the converted PES is now required to embed
only one matrix from the base PES, as our modular approach allows to consider
one input at a time (for key attribute). The situation becomes reversed for the
key-policy case: the co-selective property is harder. Nonetheless, we can always
use the DUAL conversion to convert from ciphertext-policy to key-policy type.

46 N. Attrapadung

Comparing to Unboundedness Approach in CGKW [18]. Chen et al. [18]
recently proposed unbounded ABE for MSP. Their approach conceptually con-
verts a specific bounded scheme [27] to an unbounded one for the same specific
predicate—MSP. This is already semantically different to our conversion, which
takes any pair encoding for a predicate P and outputs another for a different
predicate—namely, the (unbounded) policy-augmented predicate over P .

3 Preliminaries

Notations. N denotes the set of positive integers. For a, b ∈ N such that
a ≤ b, let [a, b] = { a, . . . , b }. For m ∈ N, let [m] = { 1, . . . , m } and
[m]+ = { 0, 1, . . . , m }. For a set S, we denote by 2S the set of all subsets of S.
Denote by S∗ the set of all (unbounded-length) sequences where each element is
in S. For N ∈ N, we denote by Z

m×�
N the set of all matrices of dimension m × �

with elements in ZN . For a matrix M ∈ Z
m×�
N , its i-th row vector is denoted by

Mi: (in Z
1×�
N). Its (i, j)-element is Mi,j . Its transpose is denoted as M�. For vec-

tors a ∈ Z
1×c
N , b ∈ Z

1×d
N , we denote (a,b) ∈ Z

1×(c+d)
N as the concatenation. The

i-th entry of a is denoted as a[i]. For i < j, denote a[i, j] := (a[i],a[i+1], . . . ,a[j]).
Let M(ZN) be the set of all matrices (of any sizes) in ZN , and Mm(ZN) be the
set of those with m rows. For a set S of vectors of the same length (say, in
Z

�
N), we denote span(S) as the set of all linear combinations of vectors in S. For

polynomials p = p(x1, . . . , xn) and g = g(y1, . . . , yn), we denote a new polyno-
mial p|x1 �→g := p(g(y1, . . . , yn), x2, . . . , xn). Matrices and vectors with all 0’s are
simply denoted by 0, of which the dimension will be clear from the context. We
define some useful fixed vectors and matrices.

– 1�
i is the (row) vector of length � with 1 at position i where all others are 0.

– 1m×�
i,j is the matrix of size m × � with 1 at position (i, j) and all others are 0.

3.1 Definitions for General ABE

Predicate Family. Let P = { Pκ : Xκ × Yκ → {0, 1} | κ ∈ K } be a predicate
family where Xκ and Yκ denote “key attribute” and “ciphertext attribute”
spaces. The index κ or “parameter” denotes a list of some parameters such as
the universes of attributes, and/or bounds on some quantities, hence its domain
K will depend on that predicate. We will often omit κ when the context is clear.

General ABE Syntax. Let M be a message space. An ABE scheme5 for pred-
icate family P is defined by the following algorithms:

– Setup(1λ, κ) → (PK,MSK): takes as input a security parameter 1λ and a
parameter κ of predicate family P , and outputs a master public key PK and
a master secret key MSK.

5 It is also called public-index predicate encryption, classified in the definition of Func-
tional Encryption [15]. It is simply called predicate encryption in [2].

Unbounded Dynamic Predicate Compositions in ABE 47

– Encrypt(y,M,PK) → CT: takes as input a ciphertext attribute y ∈ Yκ, a
message M ∈ M, and public key PK. It outputs a ciphertext CT. We assume
that Y is implicit in CT.

– KeyGen(x,MSK,PK) → SK: takes as input a key attribute x ∈ Xκ and the
master key MSK. It outputs a secret key SK.

– Decrypt(CT,SK) → M : given a ciphertext CT with its attribute y and the
decryption key SK with its attribute x, it outputs a message M or ⊥.

Correctness. Consider all parameters κ, all M ∈ M, x ∈ Xκ, y ∈ Yκ such that
Pκ(x, y) = 1. If Encrypt(y,M,PK) → CT and KeyGen(x,MSK,PK) → SK where
(PK,MSK) is generated from Setup(1λ, κ), then Decrypt(CT,SK) → M .

Security. We use the standard notion for ABE, called full security. We omit it
here and refer to e.g., [5] (or the full version of this paper), as we do not work
directly on it but will rather infer the implication from pair encoding scheme
(cf. Sect. 3.3).

Duality of ABE. For a predicate P : X × Y → {0, 1}, we define its dual as
P̄ : Y×X → {0, 1} by setting P̄ (Y,X) = P (X,Y). In particular, if P is considered
as key-policy type, then its dual, P̄ , is the corresponding ciphertext-policy type.

3.2 Pair Encoding Scheme Definition

Definition 1. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family, indexed by κ = (N, par), where par specifies some parameters. A Pair
Encoding Scheme (PES) for a predicate family P is given by four deterministic
polynomial-time algorithms as described below.

– Param(par) → n. When given par as input, Param outputs n ∈ N that specifies
the number of common variables, which we denote by b := (b1, . . . , bn).

– EncCt(y,N) → (w1, w2, c(s, ŝ,b)). On input N ∈ N and y ∈ Y(N,par), EncCt
outputs a vector of polynomial c = (c1, . . . , cw3) in non-lone variables s =
(s0, s1, . . . , sw1) and lone variables ŝ = (ŝ1, . . . , ŝw2). For p ∈ [w3], the p-th
polynomial is given as follows, where ηp,z, ηp,t,j ∈ ZN :

∑

z∈[w2]

ηp,z ŝz +
∑

t∈[w1]+,j∈[n]

ηp,t,jbjst.

– EncKey(x,N) → (m1,m2,k(r, r̂,b)). On input N ∈ N and x ∈ X(N,par),
EncKey outputs a vector of polynomial k = (k1, . . . , km3) in non-lone variables
r = (r1, . . . , rm1) and lone variables r̂ = (α, r̂1, . . . , r̂m2). For p ∈ [m3], the
p-th polynomial is given as follows, where φp, φp,u, φp,v,j ∈ ZN :

φpα +
∑

u∈[m2]

φp,ur̂u +
∑

v∈[m1],j∈[n]

φp,v,jrvbj .

– Pair(x, y,N) → (E,E). On input N , and both x, and y, Pair outputs two
matrices E,E of sizes (w1 + 1) × m3 and w3 × m1, respectively. ♦

48 N. Attrapadung

Correctness. A PES is said to be correct if for every κ = (N, par), x ∈ Xκ and
y ∈ Yκ such that Pκ(x, y) = 1, the following holds symbolically:

sEk� + cEr� = αs0. (11)

The left-hand side is indeed a linear combination of stkp and cqrv, for t ∈
[w1]+, p ∈ [m3], q ∈ [w3], v ∈ [m1]. Hence, an equivalent (and somewhat sim-
pler) way to describe Pair and correctness together at once is to show such a
linear combination that evaluates to αs0. We will use this approach through-
out the paper. (The matrices E,E will be implicitly defined in such a linear
combination).

Terminology. In the above, following [2], a variable is called lone as it is not
multiplied with any bj (otherwise called non-lone). Furthermore, since α, s0
are treated distinguishably in defining correctness, we also often call them the
special lone and non-lone variable, respectively. In what follows, we use ct-enc
and key-enc as a shorthand for polynomials and variables output by EncCt
(ciphertext-encoding) and EncKey (key-encoding), respectively. We often omit
writing w1, w2 and m1,m2 in the output of EncCt and EncKey.

3.3 Symbolic Property of PES

We now describe the symbolic property of PES, introduced in [2]. As in [2], we
use a : b to denote that a variable a is substituted by a matrix/vector b.

Definition 2. A PES Γ = (Param,EncCt,EncKey,Pair) for predicate family P
satisfies (d1, d2)-selective symbolic property for some d1, d2 ∈ N if there exists
three deterministic polynomial-time algorithms EncB,EncS,EncR such that for
all κ = (N, par), x ∈ Xκ, y ∈ Yκ with Pκ(x, y) = 0,

– EncB(y) → B1, . . . ,Bn ∈ Z
d1×d2
N ;

– EncS(y) → s0, . . . , sw1 ∈ Z
1×d2
N , ŝ1, . . . , ŝw2 ∈ Z

1×d1
N ;

– EncR(x, y) → r1, . . . , rm1 ∈ Z
1×d1
N , a, r̂1, . . . , r̂m2 ∈ Z

1×d2
N ;

we have that:

(P1) as�
0 �= 0.

(P2) if we substitute, for all j ∈ [n], t ∈ [w1]+, z ∈ [w2], v ∈ [m1], u ∈ [m2],

ŝz : ŝ�
z , bjst : Bjs�

t , α : a, r̂u : r̂u, rvbj : rvBj ,

into all the polynomials output by EncCt(y) and EncKey(x), then they
evaluate to 0.

(P3) a = 1d2
1 .

Similarly, a PES satisfies (d1, d2)-co-selective symbolic property if there exists
EncB,EncS,EncR satisfying the above properties but where EncB and EncR
depends only on x, and EncS depends on both x and y.

Finally, a PES satisfies (d1, d2)-symbolic property if it satisfies both (d′
1, d

′
2)-

selective and (d′′
1 , d′′

2)-co-selective properties for some d′
1, d

′′
1 ≤ d1, d′

2, d
′′
2 ≤ d2.

♦

Unbounded Dynamic Predicate Compositions in ABE 49

Terminology. The original definition in [2] consists of only (P1) and (P2); we
refer to this as Sym-Prop, as in [2]. We newly include (P3) here, and refer to the
full definition with all (P1)–(P3) as Sym-Prop+. This is w.l.o.g. since one can
convert any PES with Sym-Prop to another with Sym-Prop+, with minimal cost.
Such a conversion, which we denote as Plus-Trans, also appears in [2]; we recap
it in the full version.

For convenience, for the case of selective property, we use EncBS(y) to simply
refer to the concatenation of EncB(y) and EncS(y). Similarly, we use EncBR(x)
for referring EncB(x) and EncR(x) for the case of co-selective property.

Implication to Fully Secure ABE. Agrawal and Chase [2] show that a PES
satisfying (d1, d2)-Sym-Prop implies fully secure ABE. They use an underlying
assumption called (D1,D2)-q-ratio, which can be defined in the dual system
groups [17] and can consequently be instantiated in the prime-order bilinear
groups. Note that parameter (D1,D2) are related to (d1, d2). Since their theorem
is not used explicitly in this paper, we recap it in the full version.

3.4 Definitions for Some Previous Predicates

ABE for Monotone Span Program. We recap the predicate definition for
KP-ABE for monotone span program (MSP) [21]. We will mostly focus on com-
pletely unbounded variant [2,5], where the family index is simply κ = N ∈ N,
that is, any additional parameter par is not required.6 Below, we also state a
useful lemma which is implicit in e.g., [21,27].

Definition 3. The predicate family of completely unbounded KP-ABE for
monotone span programs, PKP-MSP = { Pκ : Xκ × Yκ → {0, 1} }κ, is indexed by
κ = (N) and is defined as follows. Recall that Ai: denotes the i-th row of A.

– Xκ = { (A, π) | A ∈ M(ZN), π : [m] → ZN }.
– Yκ = 2(ZN).
– Pκ((A, π), Y) = 1 ⇐⇒ 1�

1 ∈ span(A|Y), where A|Y := { Ai: | π(i) ∈ Y }.

where m × � is the size of the matrix A. ♦

Proposition 1. Consider a matrix A ∈ Z
m×�
N . Let Q ⊆ [m] be a set of row

indexes. If 1�
1 �∈ span { Ai: | i ∈ Q }, then there exists ω = (w1, . . . , w�) ∈ Z

�
N

such that w1 = 1 and Ai:ω
� = 0 for all i ∈ Q.

Specific Policies. It is well known that ABE for MSP implies ABE for mono-
tone Boolean formulae [11,21]. The procedure of embedding a boolean formula
as a span program can be found in e.g., §C of [24]. We will be interested in
the OR and the AND policy, for using as building blocks later on. For the OR
6 Bounded schemes would use par for specifying some bounds, e.g., on policy or

attribute set sizes, or the number of attribute multi-use in one policy. The term
“Unbounded ABE” used in the literature [18,25,30] still allows to have a bound for
the number of attribute multi-use in one policy (or even a one-use restriction).

50 N. Attrapadung

policy, the access matrix is of the form AOR,m = (1, . . . , 1)� ∈ Z
m×1
N . For the

AND policy, it is AAND,m =
∑

i=1 1m×m
i,i − ∑

j=2 1m×m
1,j . For further use, we let

MOR(ZN) = { AOR,m | m ∈ N } and MAND(ZN) = { AAND,m | m ∈ N }.

Embedding Lemma. To argue that a PES for predicate P can be used to
construct a PES for predicate P ′, intuitively, it suffices to find mappings that
map attributes in P ′ to those in P , and argue that the predicate evaluation for
P ′ is preserved to that for P on the mapped attributes. In such a case, we say
that P ′ can be embedded into P . This is known as the embedding lemma, used
for general ABE in [7,14]. We prove the implication for the case of PES in the
full version.

4 Admissible Pair Encodings

We first propose the notion of admissible PES. It is a class of PESs where
a conversion to a new PES for its policy-augmented predicate exists without
additional terms, as motivated in the second approach in Sect. 2. We then provide
a conversion from any PES to an admissible PES of the same predicate (this,
however, poses additional terms).7 Together, these thus allow us to convert any
PES to a new PES for its policy-augmented predicate.

Definition 4. A PES is (d1, d2)-admissible if it satisfies (d1, d2)-Sym-Prop+

with the following additional constraints.

(P4) In the key encoding k, the first polynomial has the form k1 = α+r1b1 and
α, b1 do not appear elsewhere in k.

(P5) In the ciphertext encoding c, the variables b1 and s0 can only appear in
the term b1s0.8

(P6) In the symbolic property (both selective and co-selective), we have that
B1 = 1d1×d2

1,1 , s0 = 1d2
1 , and rv[1] �= 0 for all v ∈ [m1]. ♦

We will use the following for the correctness of our conversion in Sect. 5.

Corollary 1. For any admissible PES, let c,k, s, r,E,E be defined as in Defini-
tion 1 with Pκ(x, y) = 1. Let s̃ = (s1, . . . , sw1). There exists a PPT algorithm that
takes E and outputs a matrix Ẽ of size w1×m3 such that s̃Ẽk� +cEr� = −r1b1s0.

Proof. We re-write Eq. (11) as s0k1 + T + cEr� = αs0 (where T is a sum of
stkj with coefficients from E). Note that s0k1 has coefficient 1 since α appears
only in k1 and we match the monomial αs0 to the right hand side. Substituting
k1 = α+r1b1, we have T +cEr� = −r1b1s0. We claim that s0 is not in T , which
would prove the corollary. To prove the claim, we first see that k1 is not in T ,
since α is not in the right hand side. Thus b1 is also not in T (as b1 only appears
in k1). Hence, s0 is not in T , since otherwise bjs0 where j ≥ 2 appears in T , but
in such a case, it cannot be cancelled out since such term is not allowed in c. �
7 Interestingly, this conversion already appears in [2] but for different purposes.
8 That is, bjs0 and b1st for j ∈ [2, n], t ∈ [1, n] are not allowed in c.

Unbounded Dynamic Predicate Compositions in ABE 51

Construction 1. Let Γ be a PES construction for P . We construct another
PES Γ ′ for also the same P as follows. We denote this Γ ′ by Layer-Trans(Γ).

– Param′(par). If Param(par) returns n, then output n + 2. Denote b =
(b1, . . . , bn) and b′ = (f1, f2,b).

– EncCt′(y,N). Run EncCt(y,N) → c. Let s0 be the special variable in c. Let
snew be the new special variable. Output c′ = (f1snew + f2s0, c).

– EncKey′(x,N). Run EncKey(x,N) → k. Let rnew be a new non-lone variable
and αnew be the new special lone variable. Let k̃ be exactly k but with α
being replaced by rnewf2. Output (αnew + rnewf1, k̃).

Pair/Correctness. Suppose P (x, y) = 1. From the correctness of Γ we have a
linear combination that results in αs0 = rnewf2s0. From then, we have (αnew +
rnewf1)snew − rnew(f1snew + f2s0) + rnewf2s0 = αnewsnew, as required.

Lemma 1. Suppose that Γ for P satisfies (d1, d2)-Sym-Prop+. Then, the PES
Layer-Trans(Γ) for P is (d1 +1, d2)-admissible. (The proof is deferred to the full
version.)

5 Ciphertext-Policy Augmentation

We now describe the notion of ciphertext-policy-span-program-augmented predi-
cate over a single predicate family. We then construct a conversion that preserves
admissibility. The case for a set of predicate families will be described in Sect. 7.
The key-policy case will be in the next section Sect. 6.

Definition 5. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family. We define the ciphertext-policy-span-program-augmented predicate over
P as CP1[P] =

{
P̄κ

}
κ

where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting

– X̄κ = Xκ.
– Ȳκ = { (A, π) | A ∈ M(ZN), π : [m] → Yκ }.
– P̄κ(x, (A, π)) = 1 ⇐⇒ 1�

1 ∈ span(A|x), where A|x := { Ai: | Pκ(x, π(i)) = 1 }.

where m × � is the size of the matrix A. ♦

Construction 2. Let Γ be a PES construction for P satisfying admissibility.
We construct a PES Γ ′ for CP1[P] as follows. Denote this Γ ′ by CP1-Trans(Γ).

– Param′(par) = Param(par) = n. Denote b = (b1, . . . , bn).
– EncKey′(x,N) = EncKey(x,N).
– EncCt′((A, π), N). Parse A ∈ Z

m×�
N .

• For i ∈ [m], run EncCt(π(i), N) to obtain a vector c(i) = c(i)(s(i), ŝ(i),b) of
polynomials in variables s(i) = (s(i)0 , s

(i)
1 , . . . , s

(i)
w1,i), ŝ

(i) = (ŝ(i)1 , . . . , ŝ
(i)
w2,i),

and b. Denote s̃(i) = (s(i)1 , . . . , s
(i)
w1,i).

52 N. Attrapadung

• Let snew be the new special non-lone variable. Let v2, . . . , v� be new lone
variables. Denote v = (b1snew, v2, . . . , v�).

• For i ∈ [m], define a modified vector by variable replacement as

c′(i) := c(i)|
b1s

(i)
0 �→Ai:v� . (12)

Finally, output c′ = c′(s′, ŝ′,b′) as c′ =
(
c′(i))

i∈[m]
. It contains variables

s′ =
(
snew,

(
s̃(i)

)
i∈[m]

)
, ŝ′ =

(
v2, . . . , v�,

(
ŝ(i)

)
i∈[m]

)
, and b′.

Pair/Correctness. For proving correctness, we suppose P̄κ(x, (A, π)) = 1. Let
S := { i ∈ [m] | Pκ(x, π(i)) = 1 }. For i ∈ S, we can run Pair(x, π(i), N) →
(E,E). From the correctness of Γ , we derive Ẽ from E via Corollary 1, and
obtain a linear combination s̃(i)Ẽk� + c(i)Er� = −r1b1s

(i)
0 . With the variable

replacement in Eq. (12), this becomes s̃(i)Ẽk� + c′(i)Er� = −r1Ai:v�. Now
since 1�

1 ∈ span(A|x), we have linear combination coefficients { ti }i∈S such that∑
i∈S tiAi: = 1�

1. Hence we have the following linear combination, as required:9

k1snew +
∑

i∈S ti
(− r1Ai:v�)

= (α + r1b1)snew − r1b1snew = αnewsnew.

Theorem 1. Suppose a PES Γ for P is (d1, d2)-admissible. Then, CP1-Trans(Γ)
for CP1[P] is (� + m(d1 − 1), md2)-admissible, where m × � is the size of policy.

Proof. We prove symbolic property of Γ ′ from that of Γ as follows.

Selective Symbolic Property. We define the following algorithms.
EncBS′(A, π) : For each i ∈ [m], run

EncBS(π(i)) →
(
B(i)

1 , . . . ,B(i)
n ; s(i)0 , . . . , s(i)w1,i

; ŝ(i)1 , . . . , ŝ(i)w2,i

)
,

where B(i)
j ∈ Z

d1×d2
N , s(i)t ∈ Z

1×d2
N , ŝ(i)z ∈ Z

1×d1
N . For j ∈ [2, n], we parse B(i)

j =:
(

e(i)j

B̃
(i)

j

)

where e(i)j ∈ Z
1×d2
N and B̃

(i)

j ∈ Z
(d1−1)×d2
N (i.e., decomposing into the

first row and the rest). Let d′
1 = �+m(d1−1) and d′

2 = md2. Any vector of length
d′
2 can be naturally divided into m blocks, each with length d2. Any d′

1-length
vectors consists of the first � positions which are then followed by m blocks of
length d1 − 1.10 Let B′

1 = 1d′
1×d′

2
1,1 , snew = 1d′

2
1 , v′

ι = 1d′
1

ι for ι ∈ [2, �], and

9 Note that, since s′ does not contain s
(i)
0 , it is crucial that we use Corollary 1 where

the linear combination relies only on s̃(i) = (s
(i)
1 , . . . , s

(i)
w1,i).

10 That is, the i-th block of a vector h ∈ Z
1×d′

1
N is h[�+(d1 −1)(i−1)+1, �+(d1 −1)i].

Unbounded Dynamic Predicate Compositions in ABE 53

B′
j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e(1)j A1,1 · · · e(m)
j Am,1

...
...

e(1)j A1,� · · · e(m)
j Am,�

B̃
(1)

j

B̃
(2)

j
. . .

B̃
(m)

j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
d′
1×d′

2
N , (13)

s′(i)
t = (0, . . . , 0,

block i↓
s(i)t , 0, . . . , 0) ∈ Z

1×d′
2

N ,

ŝ′(i)
z =

(
ŝ(i)z [1]Ai:, 0, . . . , 0,

block i↓
ŝ(i)z [2, d1], 0, . . . , 0

) ∈ Z
1×d′

1
N , (14)

for j ∈ [2, n], i ∈ [m], t ∈ [w1,i], z ∈ [w2,i]. Output
((

B′
j

)
j∈[n]

; snew,
(
s′(i)
1 , . . . , s′(i)

w1,i

)
i∈[m]

; v′
2, . . . ,v

′
�,

(
ŝ′(i)
1 , . . . , ŝ′(i)

w2,i

)
i∈[m]

)
.

EncR′(x, (A, π)) : First note that we have the condition P̄κ(x, (A, π)) = 0. Let
S = { i ∈ [m] | Pκ(x, π(i)) = 1 }.

1. From P̄κ(x, (A, π)) = 0 and from Proposition 1, we can obtain a vector ω =
(ω1, . . . , ω�) ∈ Z

1×�
N such that ω1 = 1 and Ai:ω

� = 0 for all i ∈ S.

2. For each i �∈ S, we can run EncR(x, π(i)) →
(
r(i)1 , . . . , r(i)m1 ; a, r̂(i)1 , . . . , r̂(i)m2

)
,

where r(i)v ∈ Z
1×d1
N , r̂(i)u ∈ Z

1×d2
N , and a = 1d2

1 ∈ Z
1×d2
N .

3. For i ∈ [m], let gi = Ai:ω
�/r(i)v [1]. Note that r(i)v [1] �= 0 due to admissibility.

4. Let anew = 1d′
2

1 , and for v ∈ [m1], u ∈ [m2] let

r′
v = −

(
ω, g1r(1)v [2, d1], . . . , gmr(m)

v [2, d1]
)

∈ Z
1×d′

1
N , (15)

r̂′
u = −(g1r̂

(1)
u , . . . , gmr̂(m)

u) ∈ Z
1×d′

2
N . (16)

5. Output (r′
1, . . . , r

′
m1

; anew, r̂′
1, . . . , r̂

′
m2

).

Verifying Properties (sketch). Properties (P1), (P3)–(P6) are straightfor-
ward. Due to limited space, we provide a sketch in verifying (P2)—zero eval-
uation of substituted polynomials—here, and defer the full details to the full
version.

54 N. Attrapadung

In ct-enc c′, the p-th polynomial in c′(i) is

c′(i)
p =

∑

z∈[w2,i]

η(i)
p,z ŝ

′(i)
z + η

(i)
p,0,1(Ai,1b1snew +

�∑

ι=2

Ai,ιvι) +
∑

t∈[w1,i]
j∈[2,n]

η
(i)
p,t,jbjs

′(i)
t .

(17)

Substituting ŝ
′(i)
z : (ŝ′(i)

z)�, b1snew : B′
1(snew)�, vι : (v′

ι)
�, bjs

′(i)
t : B′

j(s
′(i)
t)�,

into c
′(i)
p will result in a column vector of length d′

1 = � + m(d1 − 1). We denote
it as w�. We claim that w� = 0. We use the symbolic property of the base
PES, Γ , which ensures that the substitution of c

(i)
p via EncBS(π(i)), denoted

u�, evaluates to 0. In fact, via elementary linear algebra, one can verify that
for j ∈ [�], w[j] is u[1] scaled by Ai,j , and that the i-th block of w is exactly
u[2, d1], while the rest of w is already 0 by construction. Hence the claim holds.

In key-enc k, the substitution for k1 is straightforward. For p ∈ [2,m3],
we have kp =

∑
u∈[m2]

φp,ur̂u +
∑

v∈[m1],j∈[2,n] φp,v,jrvbj . Substituting r̂u : r̂′
u,

rvbj : r′
vB

′
j into kp will result in a row vector of length d′

2 = md2. We denote
it as w. We claim that w = 0. Let ui be the substitution result for kp via
EncR(x, π(i)). One can eventually verify that the i-th block of w is giui, which
evaluates to 0 since, if i ∈ S we have gi = 0, while if i �∈ S we have ui = 0 due
to the symbolic property of the base PES. Hence the claim holds.

Co-selective Symbolic Property. Let EncBR′(x) = EncBR(x).

EncS′(x, (A, π)) : First note that we have the condition P̄κ(x, (A, π)) = 0. Let
S = { i ∈ [m] | Pκ(x, π(i)) = 1 }.

1. For each i �∈ S, we have Pκ(x, π(i)) = 0. Thus, we can run EncS(x, π(i)) →(
s(i)0 , . . . , s(i)w1,i ; ŝ(i)1 , . . . , ŝ(i)w2,i

)
, where s(i)t ∈ Z

1×d2
N , and ŝ(i)z ∈ Z

1×d1
N .

2. From P̄κ(x, (A, π)) = 0 and Proposition 1, we can obtain a vector ω =
(ω1, . . . , ω�) such that ω1 = 1 and Ai:ω

� = 0 for all i ∈ S. Let qi = Ai:ω
�.

3. Let snew = 1d2
1 , s′(i)

t = qis
(i)
t , ŝ′(i)

z = qiŝ
(i)
z , and v′

ι = ωι1d1
1 , for i ∈ [m],

t ∈ [w1,i], ι ∈ [2, �], z ∈ [w2,i].

4. Output
(
snew,

(
s′(i)
1 , . . . , s′(i)

w1,i

)

i∈[m]
; v′

2, . . . ,v
′
�,

(
ŝ′(i)
1 , . . . , ŝ′(i)

w2,i

)

i∈[m]

)
.

Verifying Properties. First we can verify that anews�
new = 1d2

1 (1d2
1)� = 1 �= 0,

as required. Next, since we define EncBR′(x) = EncBR(x), the substitution for
key-enc is trivially evaluated to 0, due to the co-selective symbolic property
of Γ . It remains to consider the substitution for ct-enc c′. For i ∈ [m], p ∈
[w3,i], the polynomial c

(i)
p is depicted in Eq. (17). We have that the middle

sum term Ai:v� is substituted and evaluated to qi(1d2
1)�. Let u�

i ∈ Z
d1×1
N

denote the substitution result for c
(i)
p (as a part of c(i)) via EncS(x, π(i)) (and

EncBR(x)). By our constructions of s′(i)
t and ŝ′(i)

z , it is straightforward to see that
the substitution for c

′(i)
p (as a part of c′(i)) via EncS′(x, (A, π)) (and EncBR′(x))

Unbounded Dynamic Predicate Compositions in ABE 55

is indeed qiu�
i . Note that u�

i contains B1s�
0 = 1d2

1 : this corresponds to the
substitution of Ai:v�. Finally, we can see that qiu�

i = 0 since if i ∈ S then
qi = 0, while if i �∈ S, we have u�

i = 0 due to the co-selective property of Γ . �
Intuition. Due to an abstract manner of our scheme, it might be useful to relate
the above selective proof to the idea described in Sect. 2. Intuitively, the upper
part of B′

j of Eq. (13) acts as a “projection”, generalizing B′
j of Eq. (5) in Sect. 2,

but now we also embed the policy A in a novel way. Consider the multiplication
r′

vB
′
j . Here, only “non-problematic” blocks (the i-th block where i �∈ S) are

turned “on” by ω from r′
v. All “problematic” blocks (i ∈ S) are turned “off” by

the “mask” vector (A1:ω
�, . . . ,Am:ω

�). We also note that this “mask” vector
encodes the non-acceptance condition as per Proposition 1. All in all, this gives
us the relation: r′

vB
′
j = −(

g1r
(1)
v B(1)

j , . . . , gmr(m)
v B(m)

j

)
, where we recover the

substitution vectors of the base PES, namely, r(i)v B(i)
j , and thus can use the base

symbolic property. We succeed in doing so despite having the “projection” part,
which seems to hinder the independency among blocks in the first place.

6 Key-Policy Augmentation

For a predicate family P , we define its key-policy-span-program-augmented
predicate—denoted as KP1[P]—as the dual of CP1[P ′] where P ′ is the dual
of P . Therefore, we can use the dual conversion [2,10]—applying two times–
sandwiching CP1-Trans, to obtain a PES conversion for KP1[P]. However, this
would incur additional elements for encodings (from dual conversions). Below,
we provide a direct conversion without additional elements.

Construction 3. Let Γ be a PES construction for a P satisfying admissibility.
We construct a PES Γ ′ for KP1[P] as follows. Denote this Γ ′ by KP1-Trans(Γ).

– Param′(par) = Param(par) = n. Denote b = (b1, . . . , bn).
– EncCt′(y,N) = EncCt(y,N) = c(s, ŝ,b).
– EncKey′((A, π), N). Parse A ∈ Z

m×�
N . Let v := (αnew, v2, . . . , v�) be new lone

variables. For all i ∈ [m], do as follows.
• Run EncKey(π(i), N) to obtain a vector k(i) = k(i)(r(i), r̂(i),b) of poly-

nomials in variables r(i) = (r(i)1 , . . . , r
(i)
m1,i), r̂(i) = (α(i), r̂

(i)
1 , . . . , r̂

(i)
m2,i),b.

• Define a modified vector by variable replacement as

k′(i) := k(i)|α(i) �→Ai:v� .

In fact, this only modifies k
(i)
1 = α(i) + r

(i)
1 b1 to k

′(i)
1 = Ai:v� + r

(i)
1 b1.

Finally, output k′ = k′(r′, r̂′,b) as k′ :=
(
k′(i))

i∈[m]
. It contains variables

r′ := (r(i))i∈[m], r̂′ := (αnew, v2, . . . , v�, (r̂
(i))i∈[m]), and b.

Pair/Correctness. For proving correctness, we suppose P̄κ((A, π), y) = 1. Let
S := { i ∈ [m] | Pκ(π(i), y) = 1 }. For i ∈ S, we can run Pair(π(i), y,N) → (E,E)

56 N. Attrapadung

and obtain a linear combination sE(k′(i))� + cE(r(i))� = α(i)s0 = Ai:v�s0.
Now since 1�

1 ∈ span(A|y), we have linear combination coefficients { ti }i∈S such
that

∑
i∈S tiAi: = 1�

1. Therefore, the above terms can be linearly combined to∑
i∈S ti(Ai:v�)s0 = αnews0, as required.

Theorem 2. Suppose a PES Γ for P is (d1, d2)-admissible. Then, the the PES
KP1-Trans(Γ) for KP1[P] satisfies (md1, m′d2)-Sym-Prop+, where m × � is the
size of policy and m′ = max{m, �}.
The proof is analogous to CP1-Trans, and is deferred to the full version. Note
that, unlike CP1-Trans, KP1-Trans does not preserve admissibility, by construc-
tion.

7 Direct Sum and Augmentation over Predicate Set

In this section, we explore policy augmentations over a set of predicate families.
We will also introduce the direct sum predicate as an intermediate notion, which
is of an independent interest in its own right.

Notation. Throughout this section, let P = {P (1), . . . , P (k)} be a set of pred-
icate families. Each family P (j) = {P

(j)
κj }κj

is indexed by κj = (N, parj).

The domain for each predicate is specified by P
(j)
κj : X

(j)
κj × Y

(j)
κj → { 0, 1 }.

Unless specified otherwise, we define the combined index as κ = (N, par) =
(N, (par1, . . . , park)). Let Xκ :=

⋃
i∈[k]({i} × X

(i)
κi) and Yκ :=

⋃
i∈[k]({i} × Y

(i)
κi).

Definition 6. We define the key-policy-span-program-augmented predicate over
set P as KP[P] =

{
P̄κ

}
κ

where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting

– X̄κ = { (A, π) | A ∈ M(ZN), π : [m] → Xκ }.
– Ȳκ = 2Yκ .
– P̄κ((A, π), Y) = 1 ⇐⇒ 1�

1 ∈ span(A|Y), where11

A|Y :=
{

Ai:

∣
∣
∣ ∃(π1(i), y) ∈ Y s.t. P (π1(i)) (π2(i), y) = 1

}
.

where π(i) = (π1(i), π2(i)) ∈ Xκ, and m × � is the size of the matrix A. ♦

Remark 1. When P has one element, say P = {P}, we abuse the notation and
write KP[P] := KP[{P}]. Note that KP[P] is still more powerful than KP1[P],
defined in Sect. 6, as it allows a ciphertext attribute to be a set.

Unbounded/Dynamic/Static/OR/AND. We consider (confined) variants
of the predicate KP[P] as follows. We will confine the domain of (A, π1), which
specifies a policy over predicates. Their full domain, inferred from Definition 6, is
D :=

⋃
m∈N

Mm(ZN)×Fm,k, where Fm,k denotes the set of all functions that map
[m] to [k]. For a class C ⊆ D, the predicate KP[P] with the domain of (A, π1)

11 In the bracket, we write P (π1(i)) instead of P
(π1(i))
κπ1(i) for simplicity.

Unbounded Dynamic Predicate Compositions in ABE 57

being confined to C is denoted by KPC [P] and is also called dynamic span-
program composition with class C. It is called unbounded if C = D. It is called
static if |C| = 1. We denote KPOR[P] as the shorthand for KPC [P] where C =⋃

m∈N
{AOR,m} × Fm,k, and call it the key-OR-policy-augmented predicate over

P. (Recall that AOR,m is the matrix for the OR policy, see Sect. 3.4.) Analogous
notations go for the cases of KP1OR, KPAND, CPOR, and so on.

Definition 7. We define the predicate called the direct sum of P as DS[P] ={
P̄κ

}
κ

where we let the predicate be P̄κ : Xκ × Yκ → { 0, 1 } with

P̄κ

(
(i, x), (j, y)

)
= 1 ⇐⇒ (

i = j
) ∧ (

P (j)
κj

(x, y) = 1
)
.

For notational convenience, we also denote it as P (1) � · · · � P (k) = DS[P]. ♦

We are now ready to state a lemma for constructing KP[P]. The implication is
quite straightforward from definitions. We defer the proof to the full version.

Lemma 2. KP[P] can be embedded into KP1[CP1OR[DS[P]]].

Constructing PES for KP[P]. Now, since DS[P] is a single predicate family
(rather than a set of them), we can apply the CP1-Trans and KP1-Trans to a
PES for DS[P] to obtain a PES for KP[P]. Note that we apply Layer-Trans for
admissibility if necessary.

Constructing PES for Direct Sum. In the next two subsections, we provide
two constructions of PESs for direct sum of a set P of predicate families. The first
is a simpler one that simply “concatenates” all the base PESs for each predicate
family in P. The second is superior as the same parameter variables b can be
“reused” for all predicate families in P.

7.1 Simple Direct Sum by Parameter Concatenation

Construction 4. Let Γ (j) be a PES for P (j). Also let Γ = (Γ (1), . . . , Γ (k)).
We construct a PES Γ ′ for DS[P], where P = {P (1), . . . , P (k)}, as follows. For
further use, we denote this Γ ′ by Concat-Trans(Γ).

– Param′(par). For j ∈ [k], run Param(j)(parj) to obtain nj . Denote b(j) =

(b(j)1 , . . . , b
(j)
nj). Output n = n1 + . . . + nk. Denote b′ = (b(1), . . . ,b(k)).

– EncCt′((j, y), N). Run EncCt(j)(y,N) → c = c(s, ŝ,b(j)) and output c.
– EncKey′((i, x), N). Run EncKey(i)(x,N) → k = k(r, r̂,b(i)) and output k.

Pair/Correctness. This is straightforward from the base schemes. More pre-
cisely, for proving correctness, we suppose P̄κ

(
(i, x), (j, y)

)
= 1. That is, i = j

and P
(j)
κj (x, y) = 1. Hence, we can run Pair(j)(x, y,N) → (E,E) and obtain a

linear combination sEk� + cEr� = αs0, as required.

58 N. Attrapadung

To prove symbolic security of Concat-Trans(Γ), we use one more intermediate
constraint for the underlying PESs, called Sym-Prop++, which, in turn, can be
converted from PES with normal Sym-Prop via Plus-Trans. We defer these proofs
to the full version. Below, we let ⊥ be a special symbol which is not in Yκ, Xκ,
and abuse notation by letting any predicate evaluate to 0 if at least one input is
the symbol ⊥.

Definition 8. A PES Γ for predicate family P satisfies (d1, d2)-Sym-Prop++ if
it satisfies (d1, d2)-Sym-Prop+ with the following further requirement.

(P7) In the selective symbolic property definition, the zero evaluation property
of key-enc (P2) also holds for EncB(⊥), EncR(x,⊥) for all x ∈ Xκ. ♦

Lemma 3. Suppose that, for all j ∈ [k], the PES Γ (j) for predicate family
P (j) satisfies (d1, d2)-Sym-Prop++. Then, the PES Concat-Trans(Γ) for predicate
family DS[P], where P = {P (1), . . . , P (k)}, satisfies (d1, d2)-Sym-Prop+.

7.2 Efficient Direct Sum with Parameter Reuse

Construction 5. Let Γ (j) be a PES for P (j). Also let Γ = (Γ(1), . . . , Γ (k)).
We construct a PES Γ ′ for DS[P], where P = {P (1), . . . , P (k)}, as follows. We
denote this scheme by Reuse-Trans(Γ). The intuition is to use two new parameters
gj , hj specific to Γ (j), where in the proof, their substituted matrices serve as the
“switches” that turn on only the j-th scheme, and that is why we can reuse the
same based parameters b (since the others are rendered zero by the switches).

– Param′(par). For j ∈ [k], run Param(j)(parj) to obtain nj . Let n = maxj∈[k] nj .
Output n′ = n + 2k. Denote b = (b1, . . . , bn, g1, . . . , gk, h1, . . . , hk). Also
denote bj = (b1, . . . , bnj

).
– EncCt′((j, y), N). Run EncCt(j)(y,N) → c = c(s, ŝ,bj). Let snew be the new

special non-lone variable. Output c′ =
(
c, gjs0 + hjsnew

)
.

– EncKey′((i, x), N). Run EncKey(i)(x,N) → k = k(r, r̂,bi). Let rnew be a new
non-lone variable and αnew be the new special lone variable. Let k̃ be exactly
k but with α being replaced by rnewgi. Output k′ =

(
k̃, αnew + rnewhi

)
.

Pair/Correctness. Suppose P̄κ

(
(i, x), (j, y)

)
= 1. Thus, i = j and P

(j)
κj (x, y) =

1. Hence, we can run Pair(j)(x, y,N) → (E,E) and obtain a linear combination
sEk� + cEr� = αs0 = (rnewgj)s0. Hence, we have the following, as required:(
αnew + rnewhj

)
snew − rnew

(
gjs0 + hjsnew

)
+ (rnewgj)s0 = αnewsnew.

Lemma 4. Suppose that PES Γ (j) for P (j) satisfies (d1, d2)-Sym-Prop+, for
all j ∈ [k]. Then, the PES Reuse-Trans(Γ) for predicate family DS[P], where
P = {P (1), . . . , P (k)}, satisfies (d1, d2)-Sym-Prop+. (The proof is deferred to the
full version.)

Unbounded Dynamic Predicate Compositions in ABE 59

8 Predicative Automata

This section presents an augmentation via DFA over predicates. Due to direct
sum transformations, it is again sufficient to consider a single predicate variant.

Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate family. A
Predicative Automata (PA) over Pκ is a 4-tuple (Q,T, q0, F) where Q is the set
of states, T ⊆ Q × Q × Xκ is the transition table, q0 ∈ Q is the start state, and
F ⊆ Q is the set of accept states. For simplicity and w.l.o.g., we can assume that
there is only one accept state, and it has no outgoing transition. An input to
such an automata is a sequence Y = (y1, . . . , y�) ∈ (Yκ)∗, where � is unbounded.
A predicative automata M = (Q = {q0, . . . , q,−1},T, q0, q−1) accepts Y if there
exists a sequence of states (q(1), . . . , q(�)) ∈ Q� such that for all i ∈ [1, �], it holds
that there exists (q(i−1), q(i), x(i)) ∈ T such that Pκ(x(i), yi) = 1, and that q(0) =
q0 and q(�) = q−1. Following the predicate for deterministic finite automata
(DFA) [2,5,35], we will assume determinism of such a predicative automata.
(So we may call it predicative DFA.) In our context, this is the restriction that
for any different transitions with the same outgoing state, namely (q, q′, x′) and
(q, q′′, x′′) with q′ �= q′′, we require that for all y ∈ Yκ, it must be that Pκ(x′, y) �=
Pκ(x′′, y). We can observe that if P is the equality predicate (IBE), then the
resulting predicative DFA over P is exactly the definition of DFA.

Example. We provide an example of languages. Suppose we have a list of words
which are considered bad. There exists a simple predicative DFA, depicted in
Fig. 5, that accepts exactly any sentences that start with a bad word and contain
an even number of the total bad words. This seems not possible with span
programs, since a sentence can be arbitrarily long.

Fig. 5. Predicative DFA for language of sentences that start with a bad word and have
an even number of the total bad words. Based predicates for testing membership/non-
membership can use IBBE, IBR, defined in Sect. 9.2, respectively.

Definition 9. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family, indexed by κ = (N, par). We define the Key-policy-Automata-augmented
predicate over P as KA1[P] =

{
P̄κ

}
κ

where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting

– X̄κ = { M | M is a predicative automata over Pκ }.
– Ȳκ = (Yκ)∗.
– P̄κ(M,Y) = 1 ⇐⇒ M accepts Y. ♦

60 N. Attrapadung

Intuition. The intuition for constructing PESs for DFA over predicates is sim-
ilar to that of span program over predicates in that we follow the blueprint of
generalizing PESs for X over IBE to X over any predicates, where X is either
DFA or span program. Note that this blueprint was explained in Sect. 2 for the
case of span programs. Here, for the DFA case, the starting PES is the ABE for
regular languages (which can be considered as DFA over IBE) of [5], of which
a symbolic proof was given in §B.5 of [2]. In our construction below, one may
notice that the structure of PES contains “two copies” of the underlying PES.
This feature is inherited from the PES for ABE for regular languages of [5],
which already utilizes two copies of IBE encodings.

We note some differences from the case of span programs. For the construc-
tions, while our conversions for span programs use the second approach in Sect. 2
(based on admissible PES), we will base our conversion for DFA instead on the
first approach (using the layering technique). This is done for simplicity. For the
proofs, we note that span programs and DFAs have completely different com-
binatorial properties and thus different kinds of substituted matrices. See more
discussions below.

Construction 6. Let Γ be a PES construction for P . We construct a PES Γ ′

for KA1[P] as follows. For further use, we denote this Γ ′ by KA1-Trans(Γ).

– Param′(par). If Param(par) returns n, then output 2n + 5. Denote b1 =
(b1,1, . . . , b1,n), b2 = (b2,1, . . . , b2,n), and b′ = (b1,b2, h0, g1, h1, g2, h2).

– EncCt′(Y,N). Parse Y = (y1, . . . , y�). For i ∈ [�], run EncCt(yi, N) to obtain
a vector c(i) of polynomials. We will use two copies of it, with two different
sets of variables, written as:

c(1,i) := c(i)(s(1,i), ŝ(1,i),b1), c(2,i) := c(i)(s(2,i), ŝ(2,i),b2),

and relate these two sets of variables via:

s
′(i)
0 :=

⎧
⎪⎨

⎪⎩

s
(1,i+1)
0 if i = 0

s
(1,i+1)
0 = s

(2,i)
0 if i = 1, . . . , � − 1

s
(2,i)
0 if i = �

. (18)

We then define c′
0 := h0s

(0)
new and, for i ∈ [�],

c′
i := h1s

(i−1)
new + g1s

′(i−1)
0 + h2s

(i)
new + g2s

′(i)
0 ,

where s
(0)
new, . . . , s

(�)
new are new non-lone variables with s

(�)
new being special.

Finally, it outputs c′ :=
(
c′
0, c

′
1, . . . , c

′
�, (c(1,i), c(2,i))i∈[�]

)
.

– EncKey′(M,N). Parse M = (Q,T, q0, q−1) and parse T = { (qυt
, qωt

, xt) }t∈[m]

where each υt, ωt ∈ [0,−1]. 12 Let u0, u1, . . . , u−1 be new lone variables with
u−1 being special. For all t ∈ [m], run EncKey(xt, N) to obtain a vector k(t)

12 υt, ωt indicate the “from” and the “to” state of the t-th transition in T, respectively.

Unbounded Dynamic Predicate Compositions in ABE 61

of polynomials. We use two copies of it, with two different sets of variables.
We then modify them via variable replacement as follows.

k(1,t) := k(t)(r(1,t), r̂(1,t),b1), k(2,t) := k(t)(r(2,t), r̂(2,t),b2),

k′(1,t) := k(1,t)|
α(1,t) �→ r

(t)
newg1

, k′(2,t) := k(2,t)|
α(2,t) �→ r

(t)
newg2

,

where r
(t)
new is a new non-lone variable (the same one for both). We then define

k̃0 := −u0 + r(0)newh0, k̃1,t := uυt
+ r(t)newh1, k̃2,t := −uωt

+ r(t)newh2.

for t ∈ [m]. Finally, it outputs k′ :=
(
k̃0,

(
k̃1,t, k̃2,t,k′(1,t),k′(2,t),

)
t∈[m]

)
.

Pair/Correctness. Suppose P̄κ(M,Y) = 1. That is, there exists a sequence
(q(1), . . . , q(�)) ∈ Q� such that for all i ∈ [1, �], it holds that Pκ(x(i), yi) = 1
and (q(i−1), q(i), x(i)) ∈ T, and that q(0) = q0, while q(�) = q−1. For i ∈ [�], we
proceed as follows. Denote ti ∈ [m] as the transition index that corresponds to
the i-th move; that is, let (qυti

, qωti
, xti

) = (q(i−1), q(i), x(i)). From this, we have
qυti

= qωti−1
for all i ∈ [�]. Now since Pκ(xti

, yi) = 1, we can run Pair(xti
, yi, N)

to obtain linear combinations that are equal to

D1,i := α(1,ti)s
(1,i)
0 =

(
r(ti)
newg1

)
s

′(i−1)
0 ,

D2,i := α(2,ti)s
(2,i)
0 =

(
r(ti)
newg2

)
s

′(i)
0 .

We have Qi := D1,i + D2,i + s
(i−1)
new k̃1,ti

+ s
(i)
newk̃2,ti

− c′
ir

(ti)
new = s

(i−1)
new uωti−1

−
s
(i)
newuωti

. Let Q0 := s
(0)
newk̃0 − r

(0)
newc′

0 = −s
(0)
newu0. Combining them, we obtain

−∑�
i=0 Qi = s

(�)
newu−1, as required.

Theorem 3. Suppose a PES Γ for P satisfies (d1, d2)-Sym-Prop++. Then,
the the PES KA1-Trans(Γ) for KA1[P] satisfies (ψ1d1, ψ2d2)-Sym-Prop+, where
ψ1 = max{� + 1,m}, ψ2 = max{� + 1, 2m}, where � is the size of ciphertext
attribute Y , and m is the size of transition table T for predicative automata M .

We defer the proof to the full version. At the core, we point out combinatorial
vectors that encode the non-acceptance condition of predicative DFA and use
them as the “mask” vectors in the proof. Since the combinatorial properties here
is richer than the KP1 case, the proof is somewhat more complex.

9 Applications

We provide applications from our framework. Due to limited space, we offer more
discussions in the full version, where we also motivate for real-world applications.

62 N. Attrapadung

9.1 ABE for New Predicates

Predicative Branching Program. This is similar to and might be less power-
ful than predicative DFA but may serve an independent interest, since its defini-
tion and construction are simpler. A Predicative Branching Program (PBP) over
a predicate Pκ : Xκ × Yκ → {0, 1} is a 4-tuple (Γ, q1, qσ, L) where Γ = (V,E) is
a directed acyclic graph (DAG) with a set of nodes V = {q1, . . . , qσ} and a set
of directed edges E ⊆ V 2, q1 is a distinguished terminal node (a node with no
outgoing edge) called the accept node, qσ is the unique start node (the node with
no incoming edge), and L : E → Xκ is an edge labelling function. An input to a
PBP M = (Γ, q1, qσ, L) is y ∈ Yκ. Let Γy be an induced subgraph of Γ that con-
tains exactly all the edges e such that Pκ(L(e), y) = 1. Such a PBP M accepts
y if Γy contains a directed path from the start node, qσ, to the accept node,
q1. Following the deterministic characteristic of boolean branching programs, we
will assume determinism of PBP: for any node v, for any two outgoing edges
e1, e2 from the same node v, we require that Pκ(L(e1), y) �= Pκ(L(e2), y) for
any y ∈ Yκ. We denote the key-policy-augmented predicate using PBP over P

as KB1[P]. We show that it can be embedded into KP1[P] by using almost the
same proof as in the case for the implication ABE for span programs to ABE
for BP in [6]. We provide this in the full version.

Nested-Policy/Mixed-Policy ABE. We can define new type of ABE that
nests policies. Nested-policy ABE is ABE for predicate CP[KP[P]] or KP[CP[P]],
or any arbitrarily hierarchically nested ones. In these schemes, however, the
structure of nesting is fixed. We define what we call Mixed-policy ABE to free
up this restriction altogether. It is defined in a recursive manner to make sure
that at level �, it includes all the possible nesting structures that have at most �
layers. To construct a transformation for this, we observe that a trivial scheme
using parameter concatenation would be inefficient as when going from level �−1
to �, the number of parameters will become at least d times of level � − 1, where
d is the number of transformations plus one (e.g., if we want only KP[·] and
CP[·], then d = 3). Hence, the overall size at level � would be O(d�). Fortunately,
thanks to our construction for direct sum with parameter reuse, Reuse-Trans, the
parameter size (which will correspond to the public key size for ABE) can be
kept small. For �-level scheme, the parameter size is O(n + k + d�), where n is
the maximum parameter size among k based predicates in P. We explore this in
more details in the full version.

9.2 Revisiting Known Predicates

Known Predicates and Modular Constructions. We describe some known
predicates and how they are related to more basic predicates via the policy aug-
mented predicate notions (e.g., KP1[·], KP[·]). These relations directly suggest
what transformations (e.g., KP1-Trans) can be used so as to achieve PES for
more expressive predicates from only PESs for basic predicates, namely, IBE
and its negation (NIBE), in a modular way. We note that the ciphertext-policy

Unbounded Dynamic Predicate Compositions in ABE 63

variants can be considered analogously, and can be obtained simply by applying
the dual conversion [2,5]. Let U = ZN be the attribute universe.

We consider the following predicates.

– P IBE : U × U → {0, 1} is defined as P IBE(x, y) = 1 ⇔ x = y.
– PNIBE : U × U → {0, 1} is defined as PNIBE(x, y) = 1 ⇔ x �= y.
– P IBBE : U × 2U → {0, 1} is defined as P IBBE(x, Y) = 1 ⇔ x ∈ Y .13

• It is clear that P IBBE can be embedded into CP1OR[P IBE].
– P IBR : U × 2U → {0, 1} is defined as P IBR(x, Y) = 1 ⇔ x �∈ Y .

• It is clear that P IBR can be embedded into CP1AND[PNIBE].
– PTIBBE : ({1, 2} × U) × 2U → {0, 1} is defined as PTIBBE((i, x), Y) = 1 ⇔

(i = 1 ∧ x ∈ Y) ∨ (i = 2 ∧ x �∈ Y).14

• It is clear that PTIBBE can be embedded into CP1OR[P IBBE � P IBR].
– The predicate for completely-unbounded KP-ABE for monotone span pro-

gram PKP-MSP (as defined in [5] and recapped in Sect. 3.4) is the same as
KP1[P IBBE], or equivalently, KP[P IBE].

– The predicate for completely-unbounded KP-ABE for non-monotone span
program PKP-NSP corresponds to exactly the definition of KP1[PTIBBE].

For self-containment, we provide PES constructions for P IBE and PNIBE in the
full version.

On ABE for Non-monotone Span Programs. To the best of our knowledge,
fully secure completely-unbounded large-universe KP-ABE for non-monotone
span program (NSP) had not been achieved before this work. We achieve a scheme
in prime-order groups, in a modular and clean manner from simple PESs for P IBE

and PNIBE. An explicit description of our PES for it is given in the full version. We
have to rely on the q-ratio assumption, inherited from the framework of [2]15; nev-
ertheless, all the current completely unbounded ABE for even monotone span pro-
grams still also need q-type assumptions [2,5,31], even selectively secure one [31].
We provide a comparison to known KP-ABE schemes for NSP in prime-order
groups in Table 1. We further discuss why large-universe ABE for NSP is gener-
ally a more difficult task to achieve than ABE for MSP in the full version.

For the CP-ABE case, a fully secure completely-unbounded scheme for NSP
was recently and independently reported in [39]. Their scheme is constructed
in composite-order groups. Our instantiated CP-ABE for NSP is in prime-order
groups, and unlike [39] of which proof is complex and specific, ours can be
obtained in a modular manner. We defer a comparison table for CP-ABE for
NSP to the full version.

On Constant-Size Schemes. One huge further advantage in using the sym-
bolic PES framework of [2] is that any symbolically secure PES can be trans-
formed to constant-size schemes (in ciphertext or key sizes) by bounding
13 IBBE is for ID-based broadcast encryption [19]; IBR is for ID-based revocation [9].
14 This is a unified notion for IBBE and IBR, and is called two-mode IBBE in [38].
15 In defense, we also provide a positive remark towards the q-ratio assumption in the

full version.

64 N. Attrapadung

corresponding terms and trading-off with the parameter size (n from Param).
In particular, any of our transformed PESs in this paper, e.g., KP[P], can be
made constant-size. We include such ABE for NSP in Table 1. More discussions
on their detail complexities are in the full version.

Table 1. Summary for KP-ABE for non-monotone span programs with large universe.

Schemes |PK| |SK| |CT| Unbounded Security Assumption

|policy| /multi-

use/

|attrib.
set|

OSW07 [28] I O(T) O(m) O(T) � � selective DBDH

II O(T) O(m log(T)) O(t) � � selective DBDH

OT10 [29] O(TR) O(m) O(tR) � full DLIN

OT12 [30] O(1) O(m) O(tR) � � full DLIN

ALP11 [9] O(T) O(Tm) O(1) � � selective T -DBDHE†

YAHK14 [38] I O(T) O(Tm) O(1) � � selective T -DBDHE†

II O(T) O(m) O(T) � � selective DBDH

III O(T) O(m log(T)) O(t) � � selective DBDH

IV O(1) O(m) O(t) � � � selective t-A†

Our KP-NSP I O(1) O(m) O(t) � � � full qratio†

II O(T2) O(T3m) O(1) � � full qratio†

III O(M2 + ML) O(1) O(t(M3 + M2L)) � � full qratio†

Note: t = |attribute set|, m × � is the span program size, R is the attribute multi-use bound, T, M, L are

the maximum bound for t, m, �, respectively (if required). Assumptions with † are q-type assumptions.

Revisiting the Okamoto-Takashima Definition. The Okamoto-Takashima
type ABE [29,30] for non-monotone span program was defined differently. We
recast it here in our terminology, and explain how to achieve a PES for it in a
modular manner in the full version.

Acknowledgement. This work was partially supported by JST CREST Grant No.
JPMJCR1688.

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol.
9563, pp. 259–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49099-0 10

2. Agrawal, S., Chase, M.: Simplifying Design and Analysis of Complex Predicate
Encryption Schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

3. Ambrona, M., Barthe, G., Schmidt, B.: Generic transformations of predicate encod-
ings: constructions and applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 36–66. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 2

https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-63688-7_2
https://doi.org/10.1007/978-3-319-63688-7_2

Unbounded Dynamic Predicate Compositions in ABE 65

4. Attrapadung, N., Imai, H.: Dual-policy attribute based encryption. In: Abdalla,
M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol.
5536, pp. 168–185. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01957-9 11

5. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

6. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 20

7. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 575–601.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 24

8. Attrapadung, N., Hanaoka, G., Ogawa, K., Ohtake, G., Watanabe, H., Yamada,
S.: Attribute-based encryption for range attributes. In: Zikas, V., De Prisco, R.
(eds.) SCN 2016. LNCS, vol. 9841, pp. 42–61. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44618-9 3

9. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

10. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg, K.
(ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16715-2 5

11. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

12. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE S&P 2007, pp. 321–334 (2007)

13. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random Oracles. J. Cryptol. 24(4), 659–693 (2011). Extended abstract in Euro-
crypt 2004. LNCS, pp. 223–238 (2004)

14. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 28

15. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

16. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

17. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

https://doi.org/10.1007/978-3-642-01957-9_11
https://doi.org/10.1007/978-3-642-01957-9_11
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-48797-6_24
https://doi.org/10.1007/978-3-319-44618-9_3
https://doi.org/10.1007/978-3-319-44618-9_3
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-540-89255-7_28
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-642-40084-1_25

66 N. Attrapadung

18. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 19

19. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 12

20. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC 2013, pp. 545–554 (2013)

21. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)

22. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eighth
Annual Structure in Complexity Theory Conference, pp. 102–111. IEEE (1993)

23. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

24. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

25. Lewko, A., Waters, B.: Unbounded HIBE and Attribute-Based Encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

26. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

27. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

28. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM CCS 2007, pp. 195–203 (2007)

29. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

30. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

31. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM CCS 2013, pp. 463–474 (2013)

32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

33. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 4

https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-19379-8_4

Unbounded Dynamic Predicate Compositions in ABE 67

34. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

35. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14

36. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

37. Yamada, K., Attrapadung, N., Emura, K., Hanaoka, G., Tanaka, K.: Generic con-
structions for fully secure revocable attribute-based encryption. In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017, Part II. LNCS, vol. 10493, pp.
532–551. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9 29

38. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0 16

39. Yang, D., Wang, B., Ban, X.: Fully secure non-monotonic access structure CP-ABE
scheme. In: KSII Transactions on Internet and Information Systems, pp. 1315–1329
(2018)

https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-319-66399-9_29
https://doi.org/10.1007/978-3-642-54631-0_16

(R)CCA Secure Updatable Encryption
with Integrity Protection

Michael Klooß1(B), Anja Lehmann2, and Andy Rupp1

1 Karlsruhe Institute for Technology, Karlsruhe, Germany
{michael.klooss,andy.rupp}@kit.edu

2 IBM Research – Zurich, Rüschlikon, Switzerland
anj@zurich.ibm.com

Abstract. An updatable encryption scheme allows a data host to
update ciphertexts of a client from an old to a new key, given so-
called update tokens from the client. Rotation of the encryption key
is a common requirement in practice in order to mitigate the impact
of key compromises over time. There are two incarnations of updat-
able encryption: One is ciphertext-dependent, i.e. the data owner has
to (partially) download all of his data and derive a dedicated token per
ciphertext. Everspaugh et al. (CRYPTO’17) proposed CCA and CTXT
secure schemes in this setting. The other, more convenient variant is
ciphertext-independent, i.e., it allows a single token to update all cipher-
texts. However, so far, the broader functionality of tokens in this set-
ting comes at the price of considerably weaker security: the existing
schemes by Boneh et al. (CRYPTO’13) and Lehmann and Tackmann
(EUROCRYPT’18) only achieve CPA security and provide no integrity
protection. Arguably, when targeting the scenario of outsourcing data
to an untrusted host, plaintext integrity should be a minimal security
requirement. Otherwise, the data host may alter or inject ciphertexts
arbitrarily. Indeed, the schemes from BLMR13 and LT18 suffer from
this weakness, and even EPRS17 only provides integrity against adver-
saries which cannot arbitrarily inject ciphertexts. In this work, we pro-
vide the first ciphertext-independent updatable encryption schemes with
security beyond CPA, in particular providing strong integrity protection.
Our constructions and security proofs of updatable encryption schemes
are surprisingly modular. We give a generic transformation that allows
key-rotation and confidentiality/integrity of the scheme to be treated
almost separately, i.e., security of the updatable scheme is derived from
simple properties of its static building blocks. An interesting side effect
of our generic approach is that it immediately implies the unlinkabil-
ity of ciphertext updates that was introduced as an essential additional
property of updatable encryption by EPRS17 and LT18.

1 Introduction

Updatable encryption was introduced by Boneh et al. [1] as a convenient solu-
tion to enable key rotation for symmetric encryption. Rotating secret keys is
considered good practice to realize proactive security: Periodically changing the
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 68–99, 2019.
https://doi.org/10.1007/978-3-030-17653-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_3

(R)CCA Secure Updatable Encryption with Integrity Protection 69

cryptographic key that is used to protect the data reduces the risk and impact
of keys being compromised over time. For instance, key rotation is mandated
when storing encrypted credit card data by the PCI DSS standard [21], and
several cloud storage providers, such as Google and Amazon, offer data-at-rest
encryption with rotatable keys [8].

The challenge with key rotation is how to efficiently update the existing
ciphertexts when the underlying secret key is refreshed. The straightforward
solution is to decrypt all old ciphertexts and re-encrypt them from scratch using
the new key. Clearly, this approach is not practical in the typical cloud storage
scenario where data is outsourced to a (potentially untrusted) host, as it would
require the full download and upload of all encrypted data.

An updatable encryption scheme is a better solution to this problem: it
extends a classic symmetric encryption scheme with integrated key rotation
and update capabilities. More precisely, these schemes allow to derive a short
update token from an old and new key, and provide an additional algorithm
that re-encrypts ciphertexts using such a token. A crucial property for updatable
encryption is that learning an update token does not impact the confidentiality
and also the integrity of the ciphertexts. Thus, the procedure for re-encrypting
all existing ciphertexts can be securely outsourced to the data host.

State of the Art. There are two different variants of updatable encryption,
depending on whether the update tokens are generated for a specific ciphertext
or are ciphertext-independent. The former type – called ciphertext-dependent
updatable encryption – has been introduced by Boneh et al. [2] and requires
the data owner to (partially) download all outsourced ciphertexts, derive a ded-
icated token for each ciphertext, and return all tokens to the host. Everspaugh
et al. [8] provide a systematic treatment for such schemes i.e., defining the desir-
able security properties and presenting provably secure solutions. Their focus
is on authenticated encryption schemes, and thus CCA security and ciphertext
integrity (CTXT) are required and achieved by their construction.

While ciphertext-dependent schemes allow for fine-grained control of which
ciphertexts should be re-encrypted towards the new key, they are clearly far less
efficient and convenient for the data owner than ciphertext-independent ones.
In ciphertext-independent schemes, the update token only depends on the new
and old key and allows to re-encrypt all ciphertexts. The idea of ciphertext-
independent schemes was informally introduced by Boneh et al. [1] and recently
Lehmann and Tackmann [17] provided a rigorous treatment of their formal
security guarantees. The broader applicability of update tokens in ciphertext-
independent schemes is an inherent challenge for achieving strong security prop-
erties though: as a single token can be used to update all ciphertexts, the cor-
ruption of such a token gives the adversary significantly more power than the
corruption of a ciphertext-dependent token. As a consequence, the ciphertext-
independent schemes proposed so far only achieve CPA security instead of CCA,
and did not guarantee any integrity protection [17].

70 M. Klooß et al.

Fig. 1. Overview of the core differences of our two main schemes and considered
settings.

Updatable Encryption Needs (Stronger) Integrity Protection. Given that updat-
able encryption targets a cloud-based deployment setting where encrypted data
is outsourced to an (untrusted) host, neglecting the integrity protection of the
outsourced data is a dangerous shortcoming. For instance, the host might hold
encrypted financial or medical data of the data owner. Clearly, a temporary secu-
rity breach into the host should not allow the adversary to create new and valid
ciphertexts that will temper with the owners’ records. For the targeted setting
of ciphertext-independent schemes no notion of (ciphertext) integrity was pro-
posed so far, and the encryption scheme presented in [17] is extremely vulnerable
to such attacks: their symmetric updatable encryption scheme (termed RISE) is
built from (public-key) ElGamal encryption, which only uses the public key in
the update token. However, a single corruption of the update token will allow
the data host to create valid ciphertexts of arbitrary messages of his choice.

For the ciphertext-dependent setting, the scheme by Everspaugh et al. [8]
does provide ciphertext-integrity, but only against a weak form of attacks: the
security definition for their CTXT notion does not allow the adversary to
obtain re-encryptions of maliciously formed ciphertexts. That is, the model
restricts queries to the re-encryption oracle to honestly generated ciphertexts
that the adversary has received from previous (re)encryption oracle queries.
Thus, integrity protection is only guaranteed against passive adversaries. Again,
given the cloud deployment setting in which updatable encryption is used in,
assuming that an adversary that breaks into the host will behave honestly and
does not temper with any ciphertexts is a critical assumption.

Our Contributions. In this work we address the aforementioned shortcom-
ings for ciphertext-independent updatable encryption and present schemes that
provide significantly stronger security than existing solutions. First, we formally
define the desirable security properties of (R)CCA security, ciphertext (CTXT)
and plaintext integrity (PTXT) for key-evolving encryption schemes. Our defini-
tions allow the adversary to adaptively corrupt the secret keys or update tokens
of the current and past epochs, as long as it does not empower him to trivially
win the respective security game. We then propose two constructions: the first
achieves CCA and CTXT security (against passive re-encryption attacks), and
the second scheme realizes RCCA and PTXT security against active attacks.
Both schemes make use of a generic (proof) strategy that derives the security of
the updatable scheme from simple properties of the underlying static primitives,

(R)CCA Secure Updatable Encryption with Integrity Protection 71

Fig. 2. Comparison of ciphertext-independent and -dependent updatable encryption
schemes. The second set of columns states the achieved security notions, and whether
security against arbitrary (opposed to honest) re-encryption attacks is achieved. For
EPRS, security against arbitrary re-encryption attacks is only considered for confiden-
tiality, not for integrity. For BLMR, it was shown that a security proof for confidentiality
is unlikely to exist [8], and the formal notion of unlinkability of re-encryptions was only
introduced later. The final set of columns states the efficiency in terms of ciphertext
size and costs for (re-)encryption and decryption in the number of exponentiations and
pairings. Tuples (x, y) specify x (resp. y) elements/exponentiations in G1 (resp. G2) in
case of underlying pairing groups, and a pairing is denoted by e. (Re)encryption and
decryption costs for NYUE and NYUAE are approximate. The ciphertext size is given
for messages represented as a single group element (in G or G1). BLMR and EPRS
support encryption of arbitrary size message with the ciphertext size growing linearly
with the message blocks.

which greatly simplifies the design for such updatable encryption schemes. In
more detail, our contributions are as follows:

CCA and CTXT Secure Ciphertext-Independent Updatable Encryption. Our first
updatable encryption applies the Encrypt-and-MAC (E&M) transformation to
primitives which are key-rotatable and achieves CCA and CTXT security. Using
Encrypt-and -MAC is crucial for the updatability as we need direct access to both
the ciphertext and the MAC. In order to use E&M, which is not a secure trans-
formation for authenticated encryption in general, we require a one-to-one map-
ping between message-randomness pairs and ciphertexts as well as the decryption
function to be randomness-recoverable. By applying a PRF on both, the message
and the encryption randomness, we obtain the desired ciphertext integrity. Inter-
estingly, we only need the underlying encryption and PRF to be secure w.r.t. their
standard, static security notions and derive security for the updatable version of
E&M from additional properties we introduce for the update token generation.

An essential property of this first scheme is that its re-encryptions are deter-
ministic. This enables us to define and realize a meaningful CCA security notion,
as the determinism allows the challenger to keep track of re-encryptions of the
challenge ciphertext and prevent decryption of such updates. Similar to the CCA-
secure (ciphertext-dependent) scheme of [8], we only achieve security against
passive re-encryption attacks, i.e., where the re-encryption oracle in the security
game can only be queried on honestly generated ciphertexts.

72 M. Klooß et al.

RCCA and PTXT Security Against Malicious Re-encryption Attacks. Our sec-
ond scheme then provides strong security against active re-encryption attacks. On
a high-level, we use the Naor-Yung approach [20] that lifts (public-key) CPA to
CCA security by encrypting each message under two public keys and appending a
NIZK that both ciphertexts encrypt the same message. The crucial benefit of this
approach is that it allows for public verifiability of ciphertexts, and thus for any
re-encryption it can first be checked that the provided ciphertext is valid — which
then limits the power of malicious re-encryption attacks. To lift the approach to an
updatable encryption scheme, we rely on the key-rotatable CPA-secure encryption
RISE [17] and GS proofs [5,12] that exhibit the malleability necessary for rotating
the associated NIZK proof.

A consequence of this approach is that re-encryptions are now probabilistic
(as in RISE) and ciphertexts are re-randomizable in general. Therefore, CCA
and CTXT are no longer achievable, and we revert to Replayable CCA (RCCA)
and plaintext integrity. Informally, RCCA is a relaxed variant of CCA security
that ensures confidentiality for all ciphertexts that are not re-randomization of
the challenge ciphertext [3]. Plaintext integrity is a weaker notion than cipher-
text integrity, as forging ciphertexts is now trivial, but still guarantees that an
adversary can not come up with valid ciphertexts for fresh messages.

In Fig. 1 we provide an overview of both solutions and their settings, and Fig. 2
gives a compact comparison between our new schemes and the existing ones.

Generic (Proof) Transformation & Unlinkability of Re-encryption. The security
models for updatable encryption are quite involved, which in turn makes proving
security in these models rather cumbersome [8,17]. A core contribution of our
work is a generic transformation that yields a surprisingly simple blueprint for
building updatable encryption: We show that it is sufficient to consider the
underlying encryption and the key-rotation capabilities (almost) separately. That
is, we only require the underlying scheme – provided by the Enc,Dec algorithms
in isolation – to satisfy standard security. In addition we need re-encryption to
produce ciphertexts that are indistinguishable from fresh encryption and token
generation to be simulatable. The latter allows us to produce “fake” tokens when
we are dealing with a static CCA/RCCA game, and the former is used to answer
re-encryption oracle calls in the security game with decrypt-then-encrypt calls.
Further, we leverage the fact that all ciphertext-independent schemes so far are
bi-directional, i.e., ciphertexts can also be downgraded. This property comes
in very handy in the security proof as it essentially allows to embed a static-
CCA/RCCA challenger in one epoch, and handle queries in all other epochs by
rotating ciphertexts back-and-forth to this “challenge” epoch.

The notion of indistinguishability of re-encryptions and fresh encryptions
(termed perfect re-encryption) that we define also has another very nice side-
effect: it implies the property of re-encryption unlinkability as introduced
in [8,17]. Both works propose a security notion that guarantees that a re-
encrypted ciphertext can no longer be linked to its old version, which captures
that the full ciphertext must get refreshed during an update. We adapt this
unlinkability notion to the CCA and RCCA setting of our work and show that

(R)CCA Secure Updatable Encryption with Integrity Protection 73

perfect re-encryption (in combination with CCA resp. CPA security) implies
such unlinkability. Both of our schemes satisfy this strong security notion.

Other Related Work. Recently, Jarecki et al. [14] proposed an updatable
and CCA secure encryption scheme in the context of an Oblivious Key Manage-
ment Systems (KMS). The KMS is an external service that hosts the secret key,
whereas the data owner stores all ciphertexts and adaptively decrypts them with
the help of the KMS. Thus, their setting is considerably different to our notion
of updatable encryption where the ciphertexts are outsourced, and the secret is
managed by the data owner.

Another primitive that is highly related to updatable encryption is proxy re-
encryption (PRE). In a recent work, Fuchsbauer et al. [10] show how to lift selec-
tively secure PRE to adaptive security without suffering from an exponential loss
when using straightforward approaches. Their overall idea is similar to our generic
transformation, as it also relies on additional properties of the re-encryption pro-
cedure that facilitate the embedding of the static challenger. The different over-
all setting makes their work rather incomparable to ours: we exploit bi-directional
behaviour of updates, whereas [10] focuses on uni-directional schemes, and we con-
sider a symmetric key setting whereas the PRE’s are public-key primitives. In fact,
our security proofs are much tighter (partially due to these differences). We con-
jecture that our techniques can be applied to obtain adaptive security with poly-
nomial security loss for a class of PRE schemes, cf. [16]. This would improve upon
the superpolynomial loss in [10].

Organisation. We start our paper by recalling the necessary standard building
blocks and the generic syntax of updatable encryption in Sect. 2. In Sect. 3, we then
present our formal definitions for CCA and CTXT secure updatable encryption,
tailored to our setting of schemes with deterministic re-encryption and covering
passive re-encryption attacks. This section also contains our generic transforma-
tion for achieving these notions from the static security of the underlying build-
ing blocks, and our Encrypt-and-MAC construction that utilizes this generic app-
roach. In Sect. 4 we then introduce RCCA and PTXT security against active re-
encryption attacks and present our Naor-Yung inspired scheme. Since our generic
transformation immediately implies the unlinkability property UP-REENC intro-
duced in [8,17] we refer the formal treatment of this notion to [16].

2 Preliminaries

In this section we introduce our notational conventions and all necessary (stan-
dard) building blocks along with their security definitions.

2.1 Notation

We denote the security parameter by κ. All schemes and building blocks in
this paper make use of some implicit PPT algorithm pp ← GenPP(1κ) which
on input of the security parameter 1κ outputs some public parameters pp.

74 M. Klooß et al.

The public parameters, e.g., include a description of the cyclic groups and gen-
erators we use. We assume for our security definitions that pp also contains
the security parameter. For the sake of simplicity, we omit GenPP in all defi-
nitions including security experiments. When composing building blocks as in
our Encrypt-and -MAC construction, for example, the same GenPP algorithm is
assumed for all those building blocks and the output pp is shared between them.

By G we denote a commutative group and by (e, G1, G2, GT) a pairing group.
All groups are of prime order p. The integers modulo p are denoted Fp. We use
additive notation for groups, in particular the well-established implicit repre-
sentation introduced in [6]. That is, we write [1] for the generator g ∈ G and
[x] = xg (in multiplicative notation, gx). For pairing groups, we write [1]1, [1]2
and [1]T and we require that e([1]1, [1]2) = [1]T . We define G

× := G \ {[0]}. By
supp(X) we denote the support of a random variable X, i.e. the set of outcomes
with positive probability.

2.2 Symmetric and Tidy Encryption

We use the following definition of a symmetric encryption scheme, where the
existence of a system parameter generation algorithm GenSP reflects the fact,
that we partially rely on primitives with public parameters (like a Groth-Sahai
CRS) for our constructions.

Definition 1. A symmetric encryption scheme SKE = (GenSP,GenKey,Enc,
Dec) is defined by the following PPT algorithms

SKE.GenSP(pp) returns system parameters sp. We treat sp as implicit inputs
for the following algorithms.

SKE.GenKey(sp) returns a key k.
SKE.Enc(k ,m; r) returns a ciphertext c for message m, key k and randomness r.
SKE.Dec(k , c) returns the decryption m of c. (m = ⊥ indicates failure.)

We assume that the system parameters fix not only the key space Ksp, but also
the ciphertext space Csp, message space Msp and randomness space Rsp . Also,
we assume that membership in Csp and Msp can be efficiently tested.

Tidy Encryption. Our construction of an updatable encryption scheme with
deterministic reencryption resorts to tidy encryption. For this purpose, we use
the following definition which is a slightly adapted version of the definition in [18].

Definition 2. A symmetric encryption scheme SKE is called randomness-
recoverable if there is an associated efficient deterministic algorithm RDec(k , c)
such that

∀k ,m, r : RDec(k ,Enc(k ,m; r)) = (m, r). (1)

(R)CCA Secure Updatable Encryption with Integrity Protection 75

We call a randomness-recoverable SKE tidy if

∀k , c : RDec(k , c) = (m, r) =⇒ Enc(k ,m; r) = c. (2)

In other words, SKE is tidy if Enc and RDec are bijections (for a fixed key)
between message-randomness pairs and valid ciphertexts (i.e. ciphertexts which
do not decrypt to ⊥).1

Indistinguishability Notions. For our constructions, we consider a number
of slight variations of the standard security notions IND-CPA and IND-CCA
security.

One such variation is IND-RCCA security [3] which relaxes IND-CCA in the
sense that it is not considered an attack if a ciphertext can be transformed into a
new ciphertext of the same message. Hence, the RCCA decryption oracle refuses
to decrypt any ciphertext containing one of the challenge messages.

Furthermore, we consider CPA, CCA, and RCCA security under key-leakage.
Here the adversary is additionally given leak(k) as input, where leak is some func-
tion on the key space. This leakage reflects the fact that in one of our construc-
tions (Sect. 4.2), that actually relies on public-key primitives, the corresponding
public keys need to be leaked to the adversary. So we would have k = (sk , pk)
and leak(k) = pk in this case. For the deterministic construction in Sect. 3.2 we
do not consider key-leakage, i.e., leak(k) = ⊥.

Finally, we can define (stronger) real or random variants (IND$-CPA/CCA)
of the former notions. Here, the adversary provides a single challenge message
and the challenger responds with either an encryption of this message or a ran-
domly chosen ciphertext.

Definition 3 compactly formalizes the security notions sketched above.

Definition 3. Let SKE be a secret key encryption scheme. Let leak : K → L be a
leakage function. We call SKE IND-X secure, where X ∈ {CPA,CCA,RCCA},
under key-leakage leak, if for every efficient PPT adversary A, the advantage

Advind-XSKE,A(κ) :=
∣
∣
∣Pr[Expind-XSKE,A(κ, 0) = 1] − Pr[Expind-XSKE,A(κ, 1) = 1]

∣
∣
∣

in the experiment described in Fig. 3 is negligible. Analogous to IND-X, we define
IND$-X security for X ∈ {CPA,CCA}, with the experiments also described in
Fig. 3. IND$-X is the strictly stronger notion, i.e., it implies IND-X.

Integrity Notions. We consider both plaintext (PTXT) and ciphertext
(CTXT) integrity. In the PTXT experiment, the adversary wins if it is able
to output a valid ciphertext for a fresh plaintext, i.e., a ciphertext that decrypts
to a plaintext for which it has not queried the encryption oracle before. In the
CTXT experiment, in order to win, the adversary just needs to output a valid

1 Since encryption of ⊥ also yields ⊥, Eq. 2 trivially holds for invalid ciphertexts.

76 M. Klooß et al.

Fig. 3. The encryption oracle Enc(m) returns c ←R Enc(k ,m). The decryption oracle
Dec(m) computes m ←R Dec(k , c) but then behaves differently depending on the
notion. For CPA, Dec(c) always returns ⊥. For CCA, Dec(c) returns m except if c = c∗,
in which case it returns ⊥. For RCCA, Dec(c) returns m except if m ∈ {m∗

0 ,m∗
1} in

which case it returns invalid. Note that invalid �= ⊥, i.e. A learns that (one of) the
challenge messages is encrypted in c. Everything else is unchanged.

and fresh ciphertext, i.e., one not resulting from a previous call to the encryp-
tion oracle. In both experiments, the adversary is equipped with a decryption
oracle instead of an oracle that just tests the validity of ciphertexts. For CTXT,
this actually makes no difference. For PTXT, however, there are (pathological)
insecure schemes which are only secure w.r.t. validity oracles. Again, we consider
variants of these integrity notions under key-leakage. Definition 4 formalizes these
notions.

Definition 4. Let SKE be a symmetric encryption scheme. Let leak : K → L be
a leakage function. The INT-CTXT as well as the INT-PTXT experiments are
defined in Fig. 4. We call SKE INT-CTXT secure under (key-)leakage leak if the
advantage Advint-ctxtSKE,A(κ) := Pr[Expint-ctxtSKE,A(κ) = 1] is negligible. Similarly, we call
SKE INT-PTXT secure under (key-)leakage leak if the advantage Advint-ptxtSKE,A (κ) :=
Pr[Expint-ptxtSKE,A (κ) = 1] is negligible.

Fig. 4. The INT-PTXT (left) and INT-CTXT (right) games. The encryption oracle
Enc(m) returns c ← Enc(k ,m) and adds m to the list of queried messages M and adds
c to the list of queried ciphertexts Q. The oracle Dec(c) returns Dec(k , c).

2.3 Updatable Encryption

Roughly, an updatable encryption scheme is a symmetric encryption scheme
which offers an additional re-encryption functionality that moves ciphertexts
from an old to a new key.

(R)CCA Secure Updatable Encryption with Integrity Protection 77

The encryption key evolves with epochs, and the data is encrypted with
respect to a specific epoch e, starting with e = 0. When moving from epoch e to
epoch e + 1, one first creates a new key ke+1 via the UE.GenKey algorithm and
then invokes the token generation algorithm UE.GenTok on the old and new key,
ke and ke+1, to obtain the update token Δe+1. The update token Δe+1 allows
to update all previously received ciphertexts from epoch e to e + 1 using the
re-encryption algorithm UE.ReEnc.

Definition 5 (Updatable Encryption). An updatable encryption
scheme UE is a tuple (GenSP,GenKey,GenTok,Enc,Dec,ReEnc) of PPT algo-
rithms defined as:

UE.GenSP(pp) is given the public parameters and returns some system parame-
ters sp. We treat the system parameters as implicit input to all other algo-
rithms.

UE.GenKey(sp) is the key generation algorithm which on input of the system
parameters outputs a key k ∈ Ksp.

UE.GenTok(ke, ke+1) is given two keys ke and ke+1 and outputs some update
token Δe+1.

UE.Enc(ke,m) is given a key ke and a message m ∈ Msp and outputs some
ciphertext ce ∈ Csp.

UE.Dec(ke, ce) is given a key ke and a ciphertext ce and outputs some message
m ∈ Msp or ⊥.

UE.ReEnc(Δe, ce−1) is given an update token Δe and a ciphertext ce−1 and
returns an updated ciphertext ce.

Given UE, we call SKE = (GenSP,GenKey,Enc,Dec) the underlying (stan-
dard) encryption scheme.

UE is called correct if SKE is correct and ∀sp ← GenSP(pp),∀kold, knew ←
GenKey(sp),∀Δ ← GenTok(kold, knew),∀c ∈ C : Dec(knew,ReEnc(Δ, c)) =
Dec(kold, c).

We will use both notations, i.e., ke, ke+1 and kold, knew synonymous through-
out the paper, where the latter omits the explicit epochs e whenever they are
not strictly necessary and we simply want to refer to keys for two consecutive
epochs.

In our first construction, the re-encryption algorithm UE.ReEnc will be a
deterministic algorithm, whereas for our second scheme the ciphertexts are
updated in a probabilistic manner. We define the desired security properties
(UP-IND-CCA, UP-INT-CTXT) for updatable encryption schemes with deter-
ministic re-encryption and (UP-IND-RCCA, UP-INT-PTXT) for schemes with
a probabilistic UE.ReEnc algorithm in the following sections.

RISE. In [17], Lehmann and Tackmann proposed an updatable encryption scheme
called RISE which is essentially (symmetric) ElGamal encryption with added
update functionality. We use RISE as a building block in our RCCA and PTXT
secure scheme. Please refer to [16] for a description of RISE in our setting.

78 M. Klooß et al.

3 CCA and CTXT Secure Updatable Encryption

In this section, we first introduce the considered confidentiality and integrity
definitions for updatable encryption with deterministic re-encryption (Sect. 3.1).
This is followed by a generic transformation that allows to realize these notions
from simple, static security properties (Sect. 3.2). Finally, we describe a Encrypt-
and-MAC construction that can be used in this transformation and give instan-
tiations of its building blocks (Sect. 3.3).

Fig. 5. Overview of oracles and their restrictions in our different security games. C∗ is
the set of challenge-equal epochs used in the CCA and RCCA games, c∗ denotes the
challenge ciphertext in the CCA game, and m0, m1 are the two challenge plaintexts
chosen by A in the RCCA game. Q is the set of queried (re)encryptions.

3.1 Security Model

We follow the previous work on updatable encryption and require confidentiality
of ciphertexts in the presence of temporary key and token corruption, cover-
ing both forward and post-compromise security. This is formalized through the
indistinguishability-based security notion UP-IND-CCA which can be seen as
the extension of the standard CCA game to the context of updatable encryption.
In addition to confidentiality, we also require integrity of ciphertexts, which we
formulate via our UP-INT-CTXT definition.

Both security notions are defined through experiments run between a chal-
lenger and an adversary A. Depending on the notion, the adversary may issue
queries to different oracles. At a high level, A is allowed to adaptively corrupt
arbitrary choices of secret keys and update tokens, as long as they do not allow
him to trivially win the respective security game.

(R)CCA Secure Updatable Encryption with Integrity Protection 79

Oracles and CCA Security. Our UP-IND-CCA notion is essentially the
regular IND-CCA definition where the adversary is given additional oracles that
capture the functionality inherent to an updatable encryption scheme.

These oracles are defined below and are roughly the same in all our security
definitions. We describe the oracles in the context of our UP-IND-CCA security
game, which needs some extra restrictions and care in order to prevent a decryp-
tion of the challenge ciphertext. When introducing our other security notions,
we explain the differences w.r.t. the oracles presented here. An overview of all
oracles and their differences in our security games is given in Fig. 5.

The oracles may access the global state (sp, ke,Δe,Q,K,T,C∗) which is
initialized via Init(pp) as follows:

Init(pp): This initializes the state of the challenger as (sp, k0,Δ0,Q,K,T,C∗)
where e ← 0, sp ←R UE.GenSP(pp) k0 ←R UE.GenKey(sp), Δ0 ← ⊥, Q ←
∅,K ← ∅, T ← ∅ and C∗ ← ∅.

The current epoch is denoted as e, and the list Q contains “honest” cipher-
texts which the adversary has obtained entirely through the Enc or ReEnc oracles.
The challenger also keeps sets K,T and C∗ (all initially set to ∅) that are used
to keep track of the epochs in which A corrupted a secret key (K), token (T),
or obtained a re-encryption of the challenge-ciphertext (C∗). These will later be
used to check whether the adversary has made a combination of queries that
trivially allow him to decrypt the challenge ciphertext. For our integrity notions
UP-INT-CTXT and UP-INT-PTXT we will omit the set C∗ that is related to
the challenge ciphertext. Moreover, the predicate isChallenge, which identifies
challenge-related ciphertexts, unnecessary for integrity notions. We implicitly
assume that the oracles only proceed when the input is valid, e.g., for the epoch
i it must hold that 0 ≤ i < e for re-encryption queries, and 0 ≤ i ≤ e for cor-
ruption queries. The decryption or re-encryption oracle will only proceed when
the input ciphertext is “valid” (which will become clear in the oracle definitions
given below). For incorrect inputs, the oracles return invalid.

Next(): Runs ke+1 ←R UE.GenKey(sp), Δe+1 ←R UE.GenTok(ke, ke+1), adds
(ke+1,Δe+1) to the global state and updates the current epoch to e ← e + 1.

Enc(m): Returns c ←R UE.Enc(ke,m) and sets Q ← Q ∪ {(e, c)}.
Dec(c): If isChallenge(ke, c) = false, it returns m ← UE.Dec(ke, c).
ReEnc(i, c): The oracle returns the re-encryption of c from the i-th into the

current epoch e. That is, it returns ce that is computed iteratively through
c� ← UE.ReEnc(Δ�, c�−1) for � = i + 1, . . . , e and ci ← c. The oracle accepts
only ciphertexts c that are honestly generated, i.e., either (i, c) ∈ Q or
isChallenge(ki, c) = true. It also updates the global state depending on
whether the query is a challenge ciphertext or not:
– If (i, c) ∈ Q, set Q ← Q ∪ {(e, ce)}.
– If isChallenge(ki, c) = true, set C∗ ← C∗ ∪ {e}.

Corrupt({key, token}, i): This oracle models adaptive and retroactive corruption
of keys and tokens, respectively:
– Upon input (key, i), the oracle sets K ← K ∪ {i} and returns ki.
– Upon input (token, i), the oracle sets T ← T ∪ {i} and returns Δi.

80 M. Klooß et al.

Finally, we define UP-IND-CCA security as follows, requesting the adversary
after engaging with the oracles defined above, to detect whether the challenge
ciphertext c∗ ←R UE.Enc(ke,mb) is an encryption of m0 or m1. The adversary
wins if he correctly guesses the challenge bit b and has not corrupted the secret
key in any challenge-equal epoch. In the following we explain how we define the
set of challenge-equal epochs Ĉ∗ and prevent trivial wins.

Definition 6. An updatable encryption scheme UE (with deterministic re-
encryption) is called UP-IND-CCA secure if for any PPT adversary A the
advantage

Advup-ind-ccaUE,A (pp) :=
∣
∣
∣Pr[Expup-ind-ccaUE,A (pp, 0) = 1] − Pr[Expup-ind-ccaUE,A (pp, 1) = 1]

∣
∣
∣

is negligible in κ.

Experiment Expup-ind-ccaUE,A (pp, b)
(sp, k0,Δ0,Q,K,T,C∗) ← Init(pp)
(m0,m1, state) ←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
proceed only if |m0| = |m1| and m0,m1 ∈ Msp

c∗ ←R UE.Enc(ke,mb), C∗ ← {e}, e∗ ← e
b′ ←R AEnc,Dec,Next,ReEnc,Corrupt(c∗, state)
return b′ if K ∩ Ĉ∗ = ∅, i.e. A did not trivially win. (Else abort.)

Preventing Decryption of an Updated Challenge Ciphertext. We use a predicate
isChallenge(ki, c) to detect attempts of decrypting the challenge ciphertext c∗

or a re-encryption thereof. Whether a given ciphertext is a re-encryption of the
challenge c∗ can be tested efficiently by exploiting the deterministic behaviour of
the re-encryption algorithm, and the fact that all secret keys and token are known
to the challenger. This approach has also been used to define CCA-security for
ciphertext-dependent schemes by Everspaugh et al. [8].

For the following definition, recall that c∗ is the challenge ciphertext obtained
in epoch e∗, or c∗ = ⊥ if the adversary has not made the challenge query yet.

isChallenge(ki, c) :
– If i = e∗ and c∗ = c, return true.
– If i > e∗ and c∗ �= ⊥, return true if c∗

i = c where c∗
i for epoch i is

computed iteratively as c∗
� ← UE.ReEnc(Δ�+1, c∗

�) for � = e∗, . . . , i.
– Else return false.

Defining Trivial Wins. A crucial part of the definition is to capture the infor-
mation the adversary has learned through his oracle queries. In particular, any
corruption of the token Δe+1 in an epoch after where the adversary has learned
the challenge ciphertext c∗

e (directly or via a re-encryption) will enable to adver-
sary to further update the challenge ciphertext into the next epoch e + 1. The
goal of capturing this inferable information, is to exclude adversaries following
a trivial winning strategy such as, e.g., corrupting a key under which a given
challenge ciphertext has been (re-)encrypted.

(R)CCA Secure Updatable Encryption with Integrity Protection 81

Fig. 6. Example of corrupted tokens, keys (boxed) and challenge-equal epochs (circled)
in a UP–IND–CCA game. Corrupting Δ3 and Δ8 is forbidden, as they would allow to
re-encrypt the challenge ciphertext into an epoch where A knows the secret key.

We use the notation from [17] to define the information the adversary may
trivially derive. We focus on schemes that are bi-directional, i.e., we assume up
and downgrades of ciphertexts. That is, we assume that a token Δe may enable
downgrades of ciphertexts from epoch e into epoch e − 1. While bi-directional
security and schemes are not preferable from a security point of view, all currently
known (efficient) solutions exhibit this additional property.2 Thus, for the sake
of simplicity we state all our definitions for this setting. As a consequence, it is
sufficient to consider only the inferable information w.r.t. ciphertexts: [17] also
formulate inference of keys, which in the case of bi-directional schemes has no
effect on the security notions though (Fig. 6).

For the (R)CCA game, we need to capture all the epochs in which the adver-
sary knows a version of the challenge ciphertext, which we define through the
set Ĉ∗ containing all challenge-equal epochs. Recall that C∗ denotes the set of
epochs in which the adversary has obtained an updated version of the ciphertext
via the challenge query or by updating the challenge ciphertext via the ReEnc
oracle. The set T contains all epochs in which the adversary has corrupted the
update tokens, and eend denotes the last epoch of the game. The set Ĉ∗ of all
challenge-equal ciphertexts is defined via the recursive predicate challenge-equal:

Ĉ∗ ← {e ∈ {0, . . . , eend} | challenge-equal(e) = true}
and true ← challenge-equal(e) iff: (e ∈ C∗) ∨

(challenge-equal(e − 1) ∧ e ∈ T) ∨ (challenge-equal(e + 1) ∧ e + 1 ∈ T)

Note that Ĉ∗ is efficiently computable (e.g. via fixpoint iteration).

Re-encryptions of the Challenge Ciphertext. Note that we allow ReEnc to skip
keys, as we let A give the starting epoch i as an additional parameter and
return the re-encryption from any old key ki to the current one. This is crucial
for obtaining a meaningful security model: any ReEnc query where the input
ciphertext is a derivation of the challenge ciphertext (that the adversary will
receive in the CCA game), marks the current target epoch e as challenge-equal by
adding e to C∗. In our UP-IND-CCA security game defined below we disallow the
adversary from corrupting the key of any challenge-equal epoch to prevent trivial
wins. Calling the ReEnc oracle for a re-encryption of the challenge ciphertext
from some epoch i to e will still allow A to corrupt keys between i and e.

2 Note that bi-directionality is a property of the security model, not the scheme per se.
That is, uni-directional schemes are evidently also bi-directional secure, even though
they do not allow ciphertext downgrades.

82 M. Klooß et al.

Ciphertext Integrity. Updatable encryption should also protect the integrity
of ciphertexts. That is, an adversary should not be able to produce a ciphertext
himself that correctly decrypts to a message m �= ⊥. Our definition adapts he
classic INT-CTXT notion to the setting of updatable encryption. We use the
same oracles as in the UP-IND-CCA game defined above, but where isChallenge
always returns false (as there is no challenge ciphertext). Again, the tricky part
of the definition is to capture the set of trivial wins – in this case trivial forgeries –
that the adversary can make given the secret keys and update tokens he corrupts.
For simplicity, we only consider forgeries that the adversary makes in the current
and final epoch eend, but not in the past. This matches the idea of updatable
encryption where the secret keys and update tokens of old epochs will (ideally)
be deleted, and thus a forgery for an old key is meaningless anyway.

Clearly, when the adversary corrupted the secret key at some previous epoch
and since then learned all update tokens until the final epoch eend, then all
ciphertexts in this last epoch can easily be forged. This is captured by the first
case in the definition of UP-INT-CTXT security.

Definition 7. An updatable encryption scheme UE is called UP-INT-CTXT
secure if for any PPT adversary A the following advantage is negligible in κ:
Advup-int-ctxtUE,A (pp) := Pr[Expup-int-ctxtUE,A (pp) = 1].

Experiment Expup-int-ctxtUE,A (pp)
(sp, k0,Δ0,Q,K,T) ← Init(pp)
c∗ ←R ANext,Enc,Dec,ReEnc,Corrupt(sp)
return 1 if UE.Dec(keend

, c∗) �= ⊥ and (eend, c∗) /∈ Q∗ and
�e ∈ K where i ∈ T for i = e to eend; i.e. A did not trivially win.

Defining Trivial Ciphertext Updates. When defining the set of trivial ciphertexts
Q∗ for the UP–INT–CTXT game defined above, we now move from general
epochs to concrete ciphertexts, i.e., we capture all ciphertexts that the adver-
sary could know, either through queries to the Enc or ReEnc oracle or through
updating such ciphertexts himself. We exploit that ReEnc is deterministic to
define the set of trivial forgeries Q∗ as narrow as possible. More precisely, Q∗ is
defined by going through the ciphertexts (e, c) ∈ Q the adversary has received
through oracle queries and iteratively update them into the next epoch e + 1
whenever the adversary has corrupted Δe+1. The latter information is captured
in the set T that contains all epochs in which the adversary learned the update
token. We start with Q∗ ← ∅ and amend the set as follows:

for each (e, c) ∈ Q:
set Q∗ ← Q∗ ∪ (e, c), and i ← e + 1, ci−1 ← c
while i ∈ T:

set Q∗ ← Q∗ ∪ (i, ci) where ci ← UE.ReEnc(Δi, ci−1), and i ← i + 1

(R)CCA Secure Updatable Encryption with Integrity Protection 83

On the Necessity of the “Queried Restriction”. Restricting ReEnc queries
to honestly generated ciphertexts seems somewhat unavoidable, as the ability of
ciphertext-independent key-rotation seems to require homomorphic properties
on the encryption. In our construction, an adversary could exploit this homomor-
phism to “blind” the challenge ciphertext before sending it to the ReEnc oracle,
and later “unblind” the re-encrypted ciphertext. This blinding would prevent us
from recognizing that the challenge ciphertext was re-encrypted, and thus the
target epoch would no longer be marked as challenge-equal, allowing the adver-
sary to corrupt the secret key in the new epoch and trivially win by decrypting
the re-encrypted challenge. A similar restriction is used in the CTXT definition
for ciphertext-dependent schemes in [8] as well3. In Sect. 4 we overcome this
challenge by making ciphertexts publicly verifiable. The above “blinding” trick
then no longer works as it would invalidate the proof of ciphertext correctness.

3.2 Generic Transformation for Secure Updatable Encryption

In the following we prove UP-IND-CCA and UP-INT-CTXT security for
a class of updatable encryption schemes satisfying some mild requirements.
The goal is that given an updatable encryption scheme UE = (Gen,GenKey,
GenTok,Enc,Dec,ReEnc), we can prove the security of UE based only on
classical security of the underlying encryption scheme SKE = (Gen,GenKey,
Enc,Dec) and simple properties satisfied by GenTok and ReEnc.

Properties of the (Re-)encryption and Token Generation. Now we define
the additional properties that are needed to lift static IND-CCA and INT-CTXT
security to their updatable version with adaptive key and token corruptions as
just defined.

Tidy Encryption & Strong CCA/CTXT. When re-encryptions are deterministic,
we need the underlying standard encryption scheme SKE of an updatable scheme
to be tidy (cf. Definition 2), so there is a one-to-one correspondence between
ciphertexts and message-randomness pairs. Further, we need slightly stronger
variants of the standard security definitions IND-CCA and INT-CTXT in the
deterministic setting where the encryption oracle additionally reveals the used
encryption randomness. We denote these stronger experiments by S-IND-CCA
and S-INT-CTXT, or simply by saying strong IND-CCA/INT-CTXT.

Definition 8. Strong IND-X, IND$-X and INT-Y notions are defined as
sketched above. (See also [16].)

Simulatable & Reverse Tokens. We need further properties (Definitions 9 and
10) that are concerned with the token generation of an updatable encryption
scheme. It should be possible to simulate perfectly indistinguishable tokens as
well as reverse tokens, inverting the effect of the former ones, without knowing
any key.
3 The CTXT definition in the proceedings version of their paper did not have such

a restriction, however the revised ePrint version [7] later showed that the original
notion is not achievable and a weaker CTXT definition is introduced instead.

84 M. Klooß et al.

Definition 9. We call a token Δ′ a reverse token of a token Δ if for every
pair of keys kold, knew ∈ K with Δ ∈ supp(UE.GenTok(kold, knew)) we have
Δ′ ∈ supp(UE.GenTok(knew, kold)).

Definition 10. Let UE be an updatable encryption scheme. We say that UE has
simulatable token generation if it has the following property: There is a PPT
algorithm SimTok(sp) which samples a pair (Δ,Δ′) of token and reverse token.
Furthermore, for arbitrary (fixed) kold ← UE.GenKey(sp) following distributions
of Δ are identical: The distribution of Δ

– induced by (Δ,) ←R SimTok(sp).
– induced by Δ ←R UE.GenTok(kold, knew) where knew ←R UE.GenKey(sp).

In other words, honest token generation and token simulation are perfectly indis-
tinguishable.

Re-encryption = decrypt-then-encrypt. The final requirement states that the
re-encryption of a ciphertext c = UE.Enc(kold,m; r) looks like a fresh encryp-
tion of m under knew where UE.Enc uses the same randomness r. To for-
malize this, we make use of UE.RDec, the randomness-recoverable decryption
algorithm of the underlying encryption scheme (Definition 2), where we have
(m, r) ← UE.RDec(k , c) for c ← UE.Enc(k ,m; r).

Definition 11. Let UE be an updatable encryption scheme with deterministic
re-encryption. We say that re-encryption (for UE) is randomness-preserving
if the following holds: First, as usually assumed, UE encrypts with uniformly
chosen randomness (i.e., UE.Enc(k ,m) and UE.Enc(k ,m; r) for uniformly chosen
r are identically distributed). Second, for all sp ←R UE.GenSP(pp), all keys
kold, knew ←R UE.GenKey(sp), tokens Δ ←R UE.GenTok(kold, knew), and all
valid ciphertexts c under kold, we have

UE.Enc(knew,UE.RDec(kold, c)) = UE.ReEnc(Δ, c).

More precisely, UE.Enc(knew,UE.RDec(kold, c)) is defined as UE.Enc(knew,m; r)
where (m, r) ← UE.RDec(kold, c).

In [16], we argue that this randomness-preserving property additionally guar-
antees unlinkability of re-encrypted ciphertexts (UP-REENC security) as consid-
ered by prior work [8,17].

UP-IND-CCA and UP-INT-CTXT Security. We are now ready to state
our generic transformation for achieving security of the updatable encryption
scheme. The proofs for both properties are very similar, and below we describe
the core ideas of our proof strategy. The detailed proofs are given in [16].

Theorem 1. Let UE = (Gen,GenKey,GenTok,Enc,Dec,ReEnc) be an updat-
able encryption scheme with deterministic re-encryption. Suppose that UE has
randomness-preserving re-encryption and simulatable token generation and the
underlying encryption scheme SKE = (Gen,GenKey,Enc,Dec) is tidy.

(R)CCA Secure Updatable Encryption with Integrity Protection 85

– If SKE is S-IND-CCA-secure, then UE is UP-IND-CCA-secure.
– If SKE is S-INT-CTXT-secure, then UE is UP-INT-CTXT-secure.

Proof (sketch). In the following, we illustrate the main challenges occurring in
our security proofs as well as how we can cope with these using the properties
we just introduced. Let us consider the problems that arise when we embed a
static challenge, say an IND-CCA challenge, into an UP-IND-CCA game. Let us
assume the UP-IND-CCA adversary A asks for its challenge under key ke∗ and
we want to embed our IND-CCA challenge there. Then ke∗ is unknown to us but
we can answer A’s encryption and decryption queries under ke∗ using our own
IND-CCA oracles.

However, the token Δe∗+1 might be corrupted by A. Note that in this case,
ke∗+1 cannot be corrupted, since A could trivially win. Now, the question is
how Δe∗+1 can be generated without knowing ke∗ . For this purpose, we make
use of the simulatable token generation property (Definition 10) that ensures
that well-distributed tokens can be generated even without knowing keys. So we
can hand over a simulated Δe∗+1 to A if it asks for it. But when simulating
tokens in this way, we do not know the corresponding keys. This is a potential
problem as we need to be able to answer encryption and decryption queries under
the unknown key ke∗+1. To cope with this problem, we use the corresponding
IND-CCA oracle for ke∗ and update or downgrade the ciphertexts from/to epoch
e∗. That means, if we are asked to encrypt under ke∗+1, we actually encrypt under
ke∗ and update the resulting ciphertext to epoch e∗ + 1 using Δe∗+1. Now, we
need to ensure that ciphertexts created in this way look like freshly encrypted
ciphertexts under key ke∗+1. This is what Definition 11 requires. Similarly, if we
are asked to decrypt under ke∗+1, we downgrade the ciphertext using the reverse
token Δ′

e∗+1 (Definition 9) that was generated along with Δe∗+1 (Definition 10).
Note that in this case, we do not need the downgraded ciphertext to look like a
fresh one as A never sees it. Assuming the next token Δe∗+2 gets also corrupted
we can do the same to handle encryption and decryption queries for epoch e∗ +2.

Now let us assume that not the token Δe∗+1 but the key ke∗+1 gets corrupted.
In this case we can neither generate Δe∗+1 regularly as we do not know ke∗ nor
simulate it as ke∗+1 is known to the adversary. As we know ke∗+1, we have no
problems in handling encryption and decryption queries for epoch e∗ + 1. But it
is not clear how we can re-encrypt a (non-challenge) ciphertext c freshly gener-
ated in epoch e∗ to e∗ + 1 without knowing Δe∗+1. As we called our IND-CCA
encryption oracle to generate c, we certainly know the contained message m. So
we could just encrypt m under key ke∗+1 yielding ciphertext c′. However, now
the freshly encrypted ciphertext c′ and a ciphertext c′′ resulting from regularly
updating c′ to epoch e∗ + 1 may look different as they involve different random-
ness. To circumvent this problem, we require the IND-CCA encryption oracle to
additionally output the randomness r which has been used to generate c. Com-
puting c′ using randomness r then yields perfect indistinguishability assuming
Definition 11. Hence, we need SKE to be S-IND-CCA (and S-INT-CTXT) and
not only IND-CCA (and INT-CTXT) secure.

86 M. Klooß et al.

Fig. 7. Encryption and decryption in the insulated region. The keys in the grey area
(k� to kr) are not known in the reduction. Encryption and decryption for other keys is
unchanged. The S-INT-CTXT resp. S-IND-CCA challenger C is embedded in epoch �.

Finally, let us consider how to handle queries to the left of the challenge
epoch. For this, let us assume that ke∗−1 gets corrupted and Δe∗ is uncorrupted
but unknown to us. Then again we can easily handle encrypt/decrypt queries
for epoch e∗ − 1 but cannot re-encrypt a ciphertext c from epoch e∗ − 1 to e∗ in
a straightforward manner. Now, as c needs to result from a previous query the
corresponding message-randomness pair (m, r) (due to tidyness there is only one
such pair) is known. So, as before, we would like to replace the re-encryption by a
fresh encryption under key ke∗ . Unfortunately, the S-IND-CCA encryption oracle
we would use for this purpose only accepts the message but not the randomness
as input. We cope with this as follows: when we are asked to encrypt a message
m under key ke∗−1 (or prior keys), we will always first call the S-IND-CCA oracle
to encrypt m yielding a ciphertext c′ and randomness r. Then we would encrypt
(m, r) under key ke∗−1 yielding c. The ciphertext c′ can then be stored until a re-
encryption of c is needed. Again Definition 11 ensures perfect indistinguishability
from a real re-encryption. (Here, we use that encryption randomness is chosen
uniformly, independent of the key.)

Note that the case that Δe∗ is corrupted could actually be handled analogous
to the case that Δe∗+1 is corrupted by additionally demanding randomness-
preserving re-encryption for reverse tokens but we can get around this.

Overall, this solves the main challenges when embedding an S-IND-CCA
challenge into an UP-IND-CCA game.

Key Insulation. Our key insulation technique aims at coping with the prob-
lems when embedding challenges and follows the ideas just described. However,
instead of guessing the challenge epoch and the region to the left and to the
right in which the adversary corrupted all of the tokens (and none of keys)
and embed our S-IND-CCA/S-INT-CTXT challenge there, we rather do the fol-
lowing: we only guess the boundaries of this region {�, . . . , r} (containing the
challenge epoch) and embed the S-IND-CCA/S-INT-CTXT challenge at epoch
�. Note that the tokens Δ� and Δr entering and leaving the boundaries of this
“insulated” region are not corrupted.

Now we change the inner workings in this region and the way it can be
entered from the left using the ideas described before. Namely, only key k� in the
region is generated. Recall, in the reduction we have S-IND-CCA/S-INT-CTXT

(R)CCA Secure Updatable Encryption with Integrity Protection 87

Fig. 8. Entering and leaving the insulated region. Re-encryption in the underbraced
regions is done using the known tokens. The two missing tokens are “emulated” by
decrypt-then-encrypt.

oracles at our disposal to replace this key. The tokens Δ�+1, . . . ,Δr+1 along with
corresponding reverse tokens are generated using SimTok (cf. Definition 10). For
encryption in the region, we encrypt under k� and update the ciphertext to the
desired epoch. For decryption, we the use reverse tokens to downgrade the cipher-
text to k� and decrypt with this key. This is illustrated in Fig. 7. Leaving and
entering the region which was originally done by re-encryption, is now essentially
done by retrieving the plaintext and randomness of the ciphertext that should be
reencrypted (so we sort of decrypt the queried ciphertext) and use it to generate
a fresh ciphertext inside or outside the region by encryption. This is depicted in
Fig. 8.

3.3 An Encrypt-and-MAC Construction

We construct an UE scheme with deterministic re-encryption that achieves
UP-IND-CCA, UP-REENC, and UP-INT-CTXT security. For this, we use
generic building blocks which can be securely instantiated from the DDH
assumption.

High-Level Idea. Our idea is to do a Encrypt-and-MAC (E&M) construction
with primitives which are key-rotatable. Using Encrypt-and -MAC instead of the
more standard Encrypt-then-MAC approach is crucial for the updatability as
we need “direct access” to both the ciphertext and the MAC.

It is well-known that, in general, E&M is not a secure transformation for
authenticated encryption, as the MAC could leak information about the plaintext
and does not authenticate the ciphertext. However, when using a tidy encryption
scheme SKE (cf. Definition 2) and a pseudorandom function PRF as MAC, then
E&M does provide (static) CCA and CTXT security. Recall that tidy encryption
means that decryption is randomness-recoverable, i.e., it also outputs the random-
ness r used in the encryption. This allows to apply the PRF on both, the message
and the randomness r, which then guarantees the integrity of ciphertexts.

We start with such tidy E&M for static primitives but also require that SKE
and PRF support key-rotation and updates of ciphertexts and PRF values. Then,
for yielding the updatable version of the E&M transform, one simply relies on
the key-rotation capabilities of SKE and PRF and updates the individual parts
of the authenticated ciphertext. Security of the UE scheme obtained in this way
follows since the properties from Sect. 3.2 are satisfied.

88 M. Klooß et al.

Encrypt-and-MAC. First we recall the E&M transformation and its security
for tidy (randomness recoverable) encryption. To make it clear that decryp-
tion recovers the encryption randomness we write RDec for decryption and
make the randomness chosen in the encryption explicit as Enc(k ,m; r). Let
SKE = (GenSP,GenKey,Enc,RDec) be a tidy encryption scheme and PRF =
(GenSP,GenKey,Eval) be a pseudorandom function, then the E&M transform of
SKE and PRF is defined as follows:

– AE.GenSP(pp) returns sp = (spSKE, spPRF) where spSKE ←R SKE.GenSP(pp)
and spPRF ←R PRF.GenSP(pp).

– AE.GenKey(sp) returns k = (kSKE, kPRF), where kSKE ←R SKE.GenKey(spSKE)
and kPRF ←R PRF.GenKey(spPRF).

– AE.Enc(k ,m; r) returns (c, τ) where c ← SKE.Enc(kSKE,m; r) and τ ←
PRF.Eval(kPRF, (m, r)).

– AE.RDec(k , (c, τ)) computes (m, r) ← SKE.RDec(kSKE, c). It returns (m, r) if
PRF.Eval(kPRF, (m, r)) = τ , and ⊥ otherwise.

Lemma 1 essentially follows from [18] where, however, a slightly different
definition of tidy was used. But the adaption to our setting is straightforward.

Lemma 1. If SKE is a tidy encryption scheme satisfying S-IND-CPA security,
and PRF is a secure pseudorandom function (with domain M × R), then AE as
defined above is a S-IND-CCA and S-INT-CTXT secure tidy encryption scheme.
The same holds for IND$ instead of IND.

Updatable Encrypt-and-MAC. To make this E&M construction a secure updat-
able encryption scheme, we need that both underlying primitives support
key-rotation satisfying certain properties. That means, for SKE we assume
that additional algorithms GenTok(kold, knew) and ReEnc(Δ, c) as in Defini-
tion 5 are given satisfying simulatable token generation [16] and randomness-
preserving re-encryption (Definition 11). Likewise, we need similar algorithms
GenTok(kold, knew) and Upd(Δ, τ) for the PRF satisfying similar properties, i.e.,
a straightforward adaption of simulatable token generation (see [16]) and cor-
rectness in the sense that Upd(Δ,Eval(kold, (m, r))) = Eval(knew, (m, r)).

We now obtain our secure UE scheme by extending the AE scheme defined
above with the following GenTok and ReEnc algorithms:

– AE.GenTok(kold, knew) computes ΔSKE ←R SKE.GenTok(kold
SKE, k

new
SKE) and

ΔPRF ←R PRF.GenTok(kold
PRF, k

new
PRF) and returns Δ := (ΔSKE,ΔPRF).

– AE.ReEnc(Δ, (c, τ)) computes c′ ← SKE.ReEnc(ΔSKE, c) and τ ′ ←
PRF.Upd(ΔPRF, τ) and returns (c′, τ ′).

UP-IND-CCA and UP-INT-CTXT security directly follows from Theorem 1
and UP-REENC-CCA follows from [16] (where we also state the definition for
UP-REENC security adapted to the CCA setting).

Corollary 1. Suppose AE is the E&M construction as in Lemma 1, in partic-
ular S-IND-CCA and S-INT-CTXT secure. Suppose AE supports randomness-
preserving reencryption and simulatable token generation as described above, i.e.

(R)CCA Secure Updatable Encryption with Integrity Protection 89

AE constitutes an updatable encryption scheme. Then AE is UP-IND-CCA and
UP-INT-CTXT secure. Moreover, if AE is S-IND$-CCA secure, then it is also
UP-REENC-CCA secure.

Instantiating the Key-Rotatable Building Blocks. We now show how the
key-rotatable building blocks SKE and PRF can be securely instantiated. First
we construct the encryption scheme which is S-IND$-CPA secure under the DDH
assumption and also tidy. Then we present the key-rotatable PRF that is secure
under the DDH assumption in the random oracle model.

SKEDDH. Since we need a tidy, and hence randomness recoverable encryption
scheme, we must pick the encryption randomness [r] ←R G from G if discrete
logarithms are hard. A straightforward choice is to use [r]sk instead of r[pk]
in RISE/ElGamal. However, our result which gives UP-REENC security (i.e.,
the unlinkability of re-encryptions) for free, c.f. [16], requires strong IND$-CCA
security. Thus, we instead use following variation of the mentioned approach:

SKEDDH.GenSP(pp) does nothing. That is, it returns sp = pp.
SKEDDH.GenKey(sp) returns k = (k1, k2) ←R F

∗
p × Fp = K.

SKEDDH.GenTok(kold, knew) returns Δ = (Δ1,Δ2) = (k
new
1
kold
1

,
knew
2 −kold

2
kold
1

) ∈ D = K.
SKEDDH.Enc(k , [m]; [r]) returns [c], encryption of a message [m] ∈ G with ran-

domness [r] ←R G as [c] = (k1[r], k2[r] + [m]) ∈ G
2 = C.

SKEDDH.RDec(k , [c]) returns ([r], [m])� via [r] = 1
k1

[c1], [m] = [c2] − k2[r].
SKEDDH.ReEnc(Δ, [cold]) returns [cnew] = [Δ1cold1 , Δ2cold1 + cold2].

It is easy to see that the scheme is correct with deterministic re-encryption.

Lemma 2. The scheme SKEDDH is tidy, has simulatable token generation, and
randomness-preserving deterministic re-encryption. The underlying encryption
of SKEDDH is strong IND$-CPA secure under the DDH assumption over G.

It is evident, that the scheme is tidy. Randomness-preserving re-encryption fol-
lows from straightforward calculations. For simulatable token generation, note
that any two of kold, Δ, knew, determine the third uniquely (and it is efficiently
computable). Moreover, if we define invert((Δ1,Δ2)) = (1

Δ1
,−Δ2

Δ1
) then invert(Δ)

is a token which downgrades ciphertexts from knew to kold With this, token
simulation is easy to see. S-IND$-CPA security follows from a straightforward
adaptation of the standard ElGamal security proof. Note that we do not allow
key-leakage, i.e. leak(k) = ⊥.

PRFDDH. Using a hash function H : {0, 1}∗ → G, we instantiate the key-rotatable
PRF as PRFDDH : F

×
p × {0, 1}∗ → G. The core part of the PRF is the classical

DDH-based construction from [2,19]. We show that it can also be extended to
allow for key-rotation for which it enjoys token simulation.

PRFDDH.GenSP(pp) does nothing, i.e. returns sp = pp.
PRFDDH.GenKey(sp) returns k ←R Fp = K.

90 M. Klooß et al.

PRFDDH.GenTok(kold, knew) returns Δ = knew

kold .
PRFDDH.Eval(k , x) returns [τ] = k H(x) ∈ G.
PRFDDH.Upd(Δ, [τ]) returns Δ[τ].

Lemma 3. The PRFDDH = (GenSP,GenKey,Eval) scheme defined above (with-
out GenTok and Upd) is secure under the DDH assumption on G if H is a
(programmable) random oracle. PRFDDH has simulatable token generation.

The security of PRFDDH was shown in [19], and the simulatable properties of
the token generation follow from the same observations as for SKEDDH.

4 RCCA and PTXT Secure Updatable Encryption

In this section, we first define RCCA and PTXT security for updatable encryp-
tion under active re-encryption attacks (Sect. 4.1). In Sect. 4.2 we then present
our Naor-Yung inspired scheme that satisfies these strong security notions.

4.1 Security Model

We now present our definitions for updatable encryption with Replayable CCA
(RCCA) security and plaintext integrity (PTXT). The oracles used in these
definitions are mostly equivalent to the ones introduced for CCA security in
Sect. 3.1, and thus we focus on the parts that have changed.

The most important difference is that the ReEnc oracle can be invoked on
arbitrary ciphertexts in both definitions, whereas our CCA and CTXT defini-
tions only allowed re-encryptions of ciphertexts that had been obtained through
oracle queries themselves. This strengthening to arbitrary inputs is much closer
to the reality of updatable encryption, where ciphertexts and the update proce-
dure are outsourced to potentially untrusted data hosts. All previous definitions
cover only passive corruptions of such a host, whereas our notions in this section
even guarantee security against active adversaries.

RCCA Security. Standard RCCA is a relaxed variant of CCA security which is
identical to CCA with the exception that the decryption oracle will not respond
with invalid whenever a ciphertext decrypts to either of the challenge messages
m0 or m1. This includes ciphertexts that are different from the challenge cipher-
text c∗ the adversary has obtained. RCCA is a suitable definition in particular
for schemes where ciphertexts can be re-randomized, and thus cannot achieve
the standard CCA notion. Our setting allows similar public re-randomization
as ciphertext updates are now probabilistic instead of deterministic. Thus, as
soon as the adversary has corrupted an update token we can no longer trace re-
encryptions of the challenge ciphertexts (as we did in the UP-IND-CCA defini-
tion for deterministic schemes) in order to prevent the adversary from decrypting
the challenge ciphertext.

Thus, instead of tracing the challenge ciphertext we now follow the RCCA
approach. Our definition of UP-IND-RCCA security is essentially the standard

(R)CCA Secure Updatable Encryption with Integrity Protection 91

RCCA definition adapted for updatable encryption by giving the adversary
access to a re-encryption oracle and allowing him to adaptively corrupt secret
keys and tokens in the current or any past epoch.

In Enc and ReEnc described below we still keep track of honestly generated
ciphertexts (and their plaintexts) which allows us to be less restrictive when a
ciphertext-query can be traced down to a non-challenge ciphertext. We explain
this modelling choice in more detail below.

Next(), Corrupt({key, token}, i): as in CCA game
Enc(m): Returns c ←R UE.Enc(ke,m) and sets Q ← Q ∪ {(e,m, c)}.
Dec(c): If isChallenge(ke, c) = false, the oracle returns m ← UE.Dec(ke, c).
ReEnc(c, i): The oracle returns ce which it iteratively computes as c� ←R

UE.ReEnc(Δ�, c�−1) for � = i + 1, . . . , e and ci ← c. It also updates the
global state depending on whether the queried ciphertext is the challenge
ciphertext or not:
– If (i,m, c) ∈ Q (for some m), then set Q ← Q ∪ {(e,m, ce)}.
– Else, if isChallenge(ki, c) = true, then set C∗ ← C∗ ∪ {e}.

As for UP-IND-CCA security, the challenge is to prevent trivial wins where
an adversary tries to exploit the update capabilities of such schemes. We again
achieve this by capturing the indirect knowledge of the adversary through the
recursive predicate that defines all challenge-equal epochs Ĉ∗. This set (which
is as defined in Sect. 3.1) contains all epochs in which the adversary triv-
ially knows a version of the challenge ciphertext, either through oracle queries
or by up/downgrading the challenge ciphertext himself. The adversary wins
UP-IND-RCCA if he can determine the challenge bit b used to compute c∗ ←R

UE.Enc(ke,mb) and does not corrupt the secret key in any challenge-equal epoch.

Definition 12. An updatable encryption scheme UE is called UP-IND-RCCA
secure if for any PPT adversary A the following advantage is negligible in κ :
Advup-ind-rccaUE,A (pp) :=

∣
∣
∣Pr[Expup-ind-rccaUE,A (pp, 0) = 1] − Pr[Expup-ind-rccaUE,A (pp, 1) = 1]

∣
∣
∣ .

Experiment Expup-ind-rccaUE,A (pp, b)
(sp, k0,Δ0,Q,K,T,C∗) ← Init(pp)
(m0,m1, state) ←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
proceed only if |m0| = |m1| and m0,m1 ∈ Msp

c∗ ←R UE.Enc(ke,mb), M∗ ← (m0,m1), C∗ ← {e}, e∗ ← e
b′ ←R AEnc,Dec,Next,ReEnc,Corrupt(c∗, state)
return b′ if K ∩ Ĉ∗ = ∅, i.e. A did not trivially win. (Else abort.)

Handling Queries of (Potential) Challenge Ciphertexts. As in the standard
RCCA definition, we do not allow any decryption of ciphertexts that decrypts
to either of the two challenge plaintexts m0, or m1. This is expressed via the
isChallenge predicate that is checked for every Dec and ReEnc query and is defined
as follows:

isChallenge(ki, c):
– If UE.Dec(ki, c) = mb where mb ∈ M∗, return true. Else, return false.

92 M. Klooß et al.

Whereas the decryption oracle will ignore any query where isChallenge
(ke, c) = true, the re-encryption oracle is more generous: When ReEnc is invoked
on (i, c) where isChallenge(ki, c) = true, it will still update the ciphertext into
the current epoch e. The oracle might mark the epoch e as challenge-equal
though, preventing the adversary from corrupting the secret key of epoch e.
However, this is only done when c is not a previous oracle response from an
encryption query (or re-encryption of such a response). That is, the re-encryption
oracle will treat ciphertexts normally when they can be traced down to a honest
encryption query, even when they encrypt one of the challenge messages. This
added “generosity” is crucial for re-encryptions, as otherwise an adversary would
not be able to see any re-encryption from a ciphertext that encrypts the same
message as the challenge and corrupt the secret key in such an epoch.

Plaintext Integrity. Another impact of having a probabilistic instead of a
deterministic ReEnc algorithm is that ciphertext integrity can no longer be guar-
anteed: When the adversary has corrupted an update token it can create various
valid ciphertexts by updating an old ciphertext into the new epoch. Thus, instead
we aim for the notion of plaintext integrity and request the adversary to produce
a ciphertext that decrypts to a message for which he does not trivially know an
encryption of.

The oracles used in this game are as in the UP-IND-RCCA definition above,
except that we no longer need the isChallenge predicate and the set of honest
queries Q only records the plaintexts but not the ciphertexts.

Next(), Corrupt({key, token}, i): as in CCA game
Enc(m): Returns c ←R UE.Enc(ke,m) and sets Q ← Q ∪ {(e,m)}.
Dec(c): Returns m ← UE.Dec(ke, c) and sets Q ← Q ∪ {(e,m)}.
ReEnc(c, i): Returns ce, the re-encryption of c from epoch i to the current

epoch e. It also sets Q ← Q ∪ {(e,m)} where m ← UE.Dec(ke, ce).

As in our definition of UP-INT-CTXT, we have to capture all plaintexts for
which the adversary can easily create ciphertexts, based on the information he
learned through the oracles and by exploiting his knowledge of some of the secret
keys and update tokens. Again, the first case in our definition of UP-INT-PTXT
security excludes adversaries that have corrupted a secret key and all tokens
from then on, as this allows to create valid ciphertexts for all plaintexts

Definition 13. An updatable encryption scheme UE is called UP-INT-PTXT
secure if for any PPT adversary A the following advantage is negligible in
κ:Advup-int-ptxtUE,A (pp) := Pr[Expup-int-ptxtUE,A (pp) = 1].

Experiment Expup-int-ptxtUE,A (pp)
(sp, k0,Δ0,Q,K,T) ← Init(pp)
c∗ ←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
return 1 if UE.Dec(keend

, c∗) = m∗ �= ⊥ and (eend,m∗) /∈ Q∗,
and �e ∈ K where i ∈ T for i = e to eend; i.e. if A does not trivially win.

(R)CCA Secure Updatable Encryption with Integrity Protection 93

Our definition of trivial plaintext forgeries Q∗ is to the one for CTXT security.
That is, when the adversary has received a ciphertext for a message m in epoch
e (which is recorded in Q) and the update token Δe+1 (which is recorded in T)
for the following epoch, then we (iteratively) declare m to be a trivial forgery
for epoch e + 1 as well. We start with Q∗ ← ∅ and amend the set as follows:

for each (e,m) ∈ Q:
set Q∗ ← Q∗ ∪ (e,m), and i ← e + 1
while i ∈ T: set Q∗ ← Q∗ ∪ (i,m) and i ← i + 1

4.2 RCCA and PTXT Secure Construction

We now present our construction with probabilistic re-encryption that achieves
our definition of RCCA and PTXT security (under leakage). The main idea is to
use the Naor-Yung (NY) CCA-transform [20] (for public-key schemes). That is, a
message is encrypted under two (public) keys of a CPA-secure encryption scheme
and accompanied with a NIZK proof that both ciphertexts indeed encrypt the
same message. By relying on building blocks that support key-rotation, we then
lift this approach into the setting of updatable encryption. For the key-rotatable
CPA-secure encryption we use the RISE scheme as presented in [17], and NIZKs
are realized with Groth–Sahai (GS) proofs which provide the malleability capa-
bilities that are necessary for key rotation. As in the case of our deterministic
scheme presented in Sect. 3, we prove the full security of the updatable scheme
based on static properties of the underlying building blocks and simulation-based
properties of their token generation and update procedures.

A downside of this NY approach is that it yields a public key encryption
scheme in disguise. That is, we expose the resulting public key scheme in a
symmetric key style and only use the “public key” for key rotation. However,
the corruption of an update token then allows the adversary to create valid
ciphertexts for messages of his choice. Thus, this scheme would not achieve
the desirable PTXT security yet. We therefore extend the NY approach and
let each encryption also contain a proof that one knows a valid signature on
the underlying plaintext. This combined scheme then satisfies both RCCA and
PTXT security.

The crucial feature of this overall approach is that it allows for public verifi-
ability of well-formedness of ciphertexts, and thus provides security under arbi-
trary (as opposed to queried) re-encryption attacks.

Structure of the Rest of This Section. We start with an overview of GS proofs
systems and their essential properties. We continue with perfect re-encryption, a
stronger definition than randomness-preserving. Then, we give the intuition and
definition of the basic NY-based RCCA-secure updatable encryption scheme.
Finally we describe how to add plaintext integrity.

Linearly Malleable Proofs. As our proof system, we use Groth–Sahai proofs
which is a so-called commit-and-prove system [5,12]. That is, one (first) commits

94 M. Klooß et al.

to a witness w (with randomness r) and then proves statement(s) stmt about the
committed witness by running π ← Prove(crs, stmt , w, r). The statement(s) stmt
are “quadratic” equations, e.g. pairing product equations. See [16] for details.

Groth–Sahai proofs are a so-called dual-mode proof system, which has two
setups: GS.SetupH(pp) (resp. GS.SetupB(pp)) generates a hiding (resp. binding)
crs for which commitments are perfectly hiding (resp. perfectly binding) and the
proof π is perfectly zero-knowledge (resp. perfectly sound). Moreover, binding
commitments to groups are extractable.

Groth–Sahai proofs offer extra-functionality. They are perfectly rerandomis-
able, i.e. the commitments and proofs can be re-randomised. Also, they are
linearly malleable. Roughly, given a set of “quadratic” equations, one can apply
(certain) linear transformations to the witness and statement (i.e. the constants
in the equation), which map satisfying assignments to satisfying assignments,
and compute adapted commitments and proofs. In particular, the commitments
are homomorphic. See [16] or [4,9] for more.

PerfectRe-encryption. Perfect re-encryption is a strengthening of randomness-
preserving re-encryption. It assures that decrypt-then-encrypt has the same dis-
tribution as re-encryption, without any exceptions. In particular, it does neither
require the encryption randomness, nor is it restricted to valid ciphertexts.

Definition 14. Let UE be an updatable encryption scheme where UE.ReEnc
is probabilistic. We say that re-encryption (of UE) is perfect, if for all
sp ←R UE.GenSP(pp), all keys kold, knew ←R UE.GenKey(sp), token Δ ←R

UE.GenTok(kold, knew), and all ciphertexts c, we have

UE.Enc(knew,UE.Dec(kold, c))
dist≡ UE.ReEnc(Δ, c).

Note that Enc(k ,⊥) = ⊥ by definition.

The General Idea: RCCA Security via NY Transform. Our first goal is to
build a UP-IND-RCCA-secure updatable encryption scheme. which we achieve
via the double-encryption technique of Naor-Yung [20] using key-rotatable build-
ing blocks: we use a linear encryption with a linearly malleable NIZK, namely
RISE (i.e. ElGamal-based updatable encryption) with Groth–Sahai proofs [12].
The malleability and re-randomizability of GS proofs allow for key rotation and
ciphertext re-randomisation (as part of the re-encryption procedure).

A double-encryption with a simulation sound consistency proof (as formal-
ized in [11,22]) is too rigid and yields CCA security. We must allow certain
transformations of the ciphertext, namely re-randomisation and re-encryption.
Thus, we weaken our security to RCCA and rely on a relaxation of simulation
soundness, which still ensures that the adversary cannot maul the message, but
allows re-randomisation and re-encryption.

We achieve this property by the following variation of a standard technique,
which was previously used in conjunction with Groth–Sahai proofs, e.g. in [13].

(R)CCA Secure Updatable Encryption with Integrity Protection 95

Our NIZK proves that either the NY statement holds, i.e., two ciphertexts c1 =
Enc(pk1,m1) and c2 = Enc(pk2,m2) encrypt the same message m1 = m2, or
m1,m2 (possibly being different) are signed under a signature verification key
which is part of the system parameters. In the security proof the simulator will be
privy of the signing key and thus can produce valid NIZK proofs for inconsistent
ciphertexts. Further, the signature scheme is structure-preserving, which allows
to hide the signature σ and its verification Verify(vk ,m1,m2, σ) in the NIZK
proof. Note that the signature scheme does not have to be key-rotatable as the
key is fixed throughout all epochs.

Definition 15 (NYUE). Our Naor–Yung-like transformation NYUE of the key-
rotatable encryption RISE, using GS proofs and a structure-preserving signature
SIG, is defined as:

NYUE.GenSP(pp): Run crsGS ←R GS.SetupH(pp), spEnc ←R RISE.GenSP(pp),
spSIG ←R SIG.GenSP(pp) and (, vkSIG) ←R SIG.GenKey(spSIG). Return sp =
(crsGS, spEnc, (spSIG, vkSIG)).

NYUE.GenKey(sp): Run ki ←R RISE.GenKey(spEnc) for i = 1, 2 and parse ki =
(sk i, pk i). Let sk = (sk1, sk2) and pk = (pk1, pk2). Return k = (sk , pk).

NYUE.Enc(k ,m; r1, r2): Parse k = (sk , pk). Compute ci = RISE.Enc(pk i,m; ri)
for i = 1, 2 and the following proof π ←R NIZK(OR(SNY,SSIG)) with common
input sp, pk1, pk2, c1, c2 where4

– SNY: ∃m̂, r̂1, r̂2 : RISE.Enc(pk1, m̂; r̂1) = c1, ∧ RISE.Enc(pk2, m̂; r̂2) = c2
– SSIG: ∃m̂1, m̂2, r̂1, r̂2, σ̂ : RISE.Enc(pk1, m̂1; r̂2) = c1 ∧ RISE.Enc(pk2,

m̂2; r̂2) = c2 ∧ SIG.Verify(vkSIG, (m̂1, m̂2), σ̂) = 1
Return (c1, c2, π).

NYUE.Dec(k , (c1, c2, π)): Parse k = (sk , pk) and verify the proof π w.r.t. pk =
(pk1, pk2). If π is valid, return RISE.Dec(sk1, c1), and ⊥ otherwise.

NYUE.GenTok(kold, knew): Compute Δi ←R RISE.GenTok(kold
i , knew

i) for i = 1, 2
where kold and knew is parsed as in NYUE.GenKey. Return Δ = (Δ1,Δ2).

NYUE.ReEnc(Δ, c): is sketched below.

We use a hiding crsGS in the above construction to attain perfect re-
encryption. just like RISE, c.f. [16].

For the ease of exposition, we use RISE for both encryptions in the NY
transform. If one follows the classical NY approach that immediately deletes sk2

(in epoch 0), it would be sufficient to require key-rotatable encryption only for
c1, whereas encryption for c2 merely needs to be re-randomizable (as we also
aim for UP-REENC security).

Re-encryption for NYUE. The high-level idea of the re-encryption is using
the linear malleability, and re-randomisability of RISE and GS proofs. For
NYUE.ReEnc(Δ, c) with c = (c1, c2, π) we proceed in four steps. Steps 2 and 3
constitute a computation of RISE.ReEnc, separated into key-rotation and re-
randomisation, c.f. [16].
4 Here we exploit the public key nature of the construction, i.e., we only need pk i (not
sk i) for verifying consistency proofs.

96 M. Klooß et al.

(1) Verify ciphertext. Note that the re-encryption tokens of RISE (and there-
fore NYUE) contain essentially the old and new public keys. We use this to
let NYUE.ReEnc first verify the consistency proof of a ciphertext before start-
ing the update procedure. Thus, re-encryption only works for well-formed,
decryptable ciphertexts.

(2) Key rotation. We use the key rotation of RISE on the ciphertexts parts
c1 and c2 of c = (c1, c2, π), but without the implicit re-randomisation. Addi-
tionally, we use malleability of GS proofs to adapt the proof π.

(3) Re-randomise c1, c2. We re-randomise the RISE (i.e. ElGamal) ciphertexts
c1, c2, thus completing the computation of RISE.ReEnc(Δi, ci) for i = 1, 2.
Additionally, we use malleability of GS proofs to adapt the proof π.

(4) Re-randomise π. We re-randomise the proof π using re-randomisability of
GS proofs.

Thus, we first switch to the new key, and then ensure that the ciphertext is dis-
tributed identically to a fresh encryption by re-randomising the RISE ciphertexts
and the GS proofs (both of which are perfectly re-randomisable).

UP-IND-RCCA Security of NYUE. We now argue how NYUE achieves our
notion of UP–IND–RCCA security that captures arbitrary re-encryption attacks.
First, we observe that NYUE has perfect re-encryption, i.e., a re-encrypted cipher-
text (c′

1, c
′
2, π

′) has the same distribution as a fresh encryption (Definition 14).
This follows because RISE has perfect re-encryption and GS proofs with hiding
CRS have perfect re-randomisation. Furthermore, NYUE satisfies simulatable
token generation under (key-)leakage, see [16].

Lemma 4. The updatable encryption scheme NYUE has perfect re-encryption
and simulatable token generation under leakage leak(k) = pk, c.f. [16].

Lemma 4 follows easily from token simulation for RISE, see [16]. The
UP-IND-RCCA security of NYUE is shown analogous to UP-IND-CCA secu-
rity in Theorem1. That is, we bootstrap the UP-IND-RCCA security from the
(static) IND-RCCA security of NYUE, perfect re-encryption and token simula-
tion. By a standard reduction, the underlying encryption of NYUE is IND-RCCA
secure (under leakage leak(k) = pk), see [16]. There are three major differences
compared to UP-IND-CCA:

First, NYUE.ReEnc uses the public verifiability of ciphertexts to reject invalid
inputs, i.e., it updates only ciphertexts for which NYUE.Dec will not return ⊥.
Hence, the decrypt-then-encrypt strategy (used in the proof of Theorem1) is not
impacted by allowing arbitrary requests in the ReEnc oracle. Consequently, the
queried restriction is not giving the adversary any additional advantage.

Second, re-encryption is perfect, which is stronger than randomness-preserving
re-encryption. This simplifies the proof strategy slightly. Third, leak(k) = pk is
non-trivial, unlike for the deterministic schemes. All in all, we obtain:

Proposition 1 ([16]). Suppose the SXDH assumption holds in (e, G1, G2, GT),
and SIG is (one-time) EUF-CMA secure. Then the updatable encryption scheme
NYUE from Definition 15 is UP-IND-RCCA secure.

(R)CCA Secure Updatable Encryption with Integrity Protection 97

The SXDH assumption guarantees the security of RISE and GS proofs.

NYUAE Construction: Adding PTXT Security. As discussed, NYUE is a
public key encryption scheme in disguise (with the public key “hidden” in the
update token). Thus, a (corrupt) data host can trivially create new ciphertext
to chosen messages, and thus we do not achieve the desired PTXT security yet.

To obtain such plaintext integrity, using a structure-preserving key-rotatable
MAC [15] on the plaintext seems a straightforward solution. However, for proving
security against arbitrary re-encryption attacks, we need that ciphertext valid-
ity is publicly verifiable. Thus, we use the signature from [15] instead (which is
constructed from the MAC). Furthermore, we hide the signature (and its verifi-
cation) behind a GS proof, to ensure confidentiality.

Updatable Signatures. Opposed to the signature SIG used in NYUE for the sim-
ulatability of the main GS proof, we need the signature scheme which ensures
integrity of the plaintext to be key-rotatable and updatable as well. The defini-
tion of an updatable signature scheme USIG is straightforward and given in [16].
We stress that we will not require USIG to be secure in the updatable setting, but
only need standard static (one-time) EUF-CMA security in combination with
generic properties of the token generation (c.f. Definition 10).

We now incorporate plaintext integrity into the NYUE construction using
such a key-rotatable signature USIG. For encryption, we additionally sign the
plaintext with USIG and include this signature in the main NY statement of the
GS proof π. That is, SNY+I now asserts that c1 and c2 encrypt the same USIG-
signed message. As before, we use concrete instantiations of all key-rotatable
building blocks to avoid a cumbersome abstraction of malleability properties.
We use the one-time signature OTS from [15, Fig. 2] for USIG with simulatable
token generation and malleable signature verification. In [16] we recall their
scheme, define its key-rotation capabilities, and show that it satisfies all required
properties (OTS is one-time EUF-CMA secure under the SXDH assumption).

In the following we describe our final construction NYUAE. For the sake of
brevity, we refer to the NYUE scheme whenever we use it in an unchanged way.

Definition 16 (NYUAE). The Naor-Yung transformation with plaintext
integrity from key-rotatable encryption RISE, GS proofs and structure-preserving
signature SIG (with RISE and SIG being abstracted away in the NYUE scheme),
and a key-rotatable structure-preserving signature OTS (c.f. [16]) is defined as
follows:

NYUAE.GenSP(pp): Run spNYUE ←R NYUE.GenSP(pp), and spOTS ←R

OTS.GenSP(pp). Return sp = (spNYUE, spOTS).
NYUAE.GenKey(sp): Run kNYUE ←R NYUE.GenKey(spNYUE), and (skOTS, vk)

←R OTS.GenKey(spOTS). Let sk = (skNYUE, skOTS), pk = (pkNYUE, vk).
Return k = (sk , pk).

NYUAE.Enc(k ,m; r1, r2): Parse k = ((skNYUE, skOTS), (pkNYUE, vk)) compute
c1, c2 as in NYUE, σ ← OTS.Sign(skOTS,m) and a proof π ←R

NIZK(OR(SNY+I,SSIG)) where

98 M. Klooß et al.

– SNY+I: ∃ m̂, r̂1, r̂2, σ̂ : OTS.Verify(pkOTS, m̂, σ̂) = 1 ∧ SNY

and with SNY,SSIG defined as in NYUE (Definition 15). Return (c1, c2, π).
NYUAE.Dec(k , (c1, c2, π)): If π is valid, return RISE.Dec(k1, c1), and ⊥ else.
NYUAE.GenTok(kold, knew): Run ΔNYUE ←R NYUE.GenTok(kold

NYUE, k
new
NYUE) and

ΔOTS ←R OTS.GenTok(kold
OTS, k

new
OTS). Return Δ = (ΔNYUE,ΔOTS).

NYUAE.ReEnc(Δ, c): is as NYUE.ReEnc (Definition 15), but also adapts the proof
of knowledge of an OTS-signature.

The details for generating, verifying and updating the proof π are given in
[16]. The proof of security as an updatable encryption scheme follows the usual
blueprint. As for NYUE, UP-REENC security follows from [16].

Theorem 2. Suppose SIG is unbounded EUF-CMA secure, and SXDH holds
in (G1, G2, GT , e). Then NYUAE is UP-IND-RCCA and UP-INT-PTXT secure.

Acknowledgments. We thank Kenny Paterson for fruitful discussions at early stages
of this work. We also thank the reviewers for helpful suggestions. The first author is
supported by the German Federal Ministry of Education and Research within the frame-
work of the project “Sicherheit kritischer Infrastrukturen (SKI)” in the Competence
Center for Applied Security Technology (KASTEL). The second author was supported
by the European Union’s Horizon 2020 research and innovation program under Grant
Agreement No. 786725 (OLYMPUS). The third author is supported by DFG grant RU
1664/3-1 and KASTEL.

References

1. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part
I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 23

2. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. Cryptology ePrint Archive, Report 2015/220 (2015). http://
eprint.iacr.org/2015/220

3. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

4. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. Cryptology ePrint Archive, Report 2012/012 (2012). http://
eprint.iacr.org/2012/012

5. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 36

6. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

7. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authen-
ticated encryption. Cryptology ePrint Archive, Report 2017/527 (2017). http://
eprint.iacr.org/2017/527

https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
http://eprint.iacr.org/2015/220
http://eprint.iacr.org/2015/220
https://doi.org/10.1007/978-3-540-45146-4_33
http://eprint.iacr.org/2012/012
http://eprint.iacr.org/2012/012
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
http://eprint.iacr.org/2017/527
http://eprint.iacr.org/2017/527

(R)CCA Secure Updatable Encryption with Integrity Protection 99

8. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenti-
cated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS,
vol. 10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 4

9. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 14

10. Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy re-
encryption. Cryptology ePrint Archive, Report 2018/426 (2018). https://eprint.
iacr.org/2018/426

11. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

12. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

13. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

14. Jarecki, S., Krawczyk, H., Resch, J.: Threshold partially-oblivious PRFs with appli-
cations to key management. Cryptology ePrint Archive, Report 2018/733 (2018).
https://eprint.iacr.org/2018/733

15. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 14

16. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. IACR ePrint 2019/222. http://eprint.iacr.org/2019/222

17. Lehmann, A., Tackmann, B.: Updatable Encryption with Post-Compromise Secu-
rity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol.
10822, pp. 685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78372-7 22

18. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–
274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 15

19. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 23

20. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: 22nd ACM STOC, May 1990

21. PCI Security Standards Council: Requirements and security assessment procedures.
PCI DSS v3.2 (2016)

22. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, October 1999

https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-642-20465-4_14
https://eprint.iacr.org/2018/426
https://eprint.iacr.org/2018/426
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-32009-5_35
https://eprint.iacr.org/2018/733
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
http://eprint.iacr.org/2019/222
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/3-540-48910-X_23

Succinct Arguments and Secure
Messaging

Aurora: Transparent Succinct
Arguments for R1CS

Eli Ben-Sasson1, Alessandro Chiesa2(B), Michael Riabzev1, Nicholas Spooner2,
Madars Virza3, and Nicholas P. Ward2

1 Technion/STARKWare, Haifa, Israel
{eli,mriabzev}@cs.technion.ac.il

2 UC Berkeley, Berkeley, USA
{alexch,nick.spooner,npward}@berkeley.edu

3 MIT Media Lab, Cambridge, USA
madars@mit.edu

Abstract. We design, implement, and evaluate a zero knowledge
succinct non-interactive argument (SNARG) for Rank-1 Constraint Sat-
isfaction (R1CS), a widely-deployed NP language undergoing standard-
ization. Our SNARG has a transparent setup, is plausibly post-quantum
secure, and uses lightweight cryptography. A proof attesting to the sat-
isfiability of n constraints has size O(log2 n); it can be produced with
O(n log n) field operations and verified with O(n). At 128 bits of secu-
rity, proofs are less than 250 kB even for several million constraints, more
than 10× shorter than prior SNARGs with similar features.

A key ingredient of our construction is a new Interactive Oracle Proof
(IOP) for solving a univariate analogue of the classical sumcheck problem
[LFKN92], originally studied for multivariate polynomials. Our protocol
verifies the sum of entries of a Reed–Solomon codeword over any sub-
group of a field.

We also provide libiop, a library for writing IOP-based arguments,
in which a toolchain of transformations enables programmers to write
new arguments by writing simple IOP sub-components. We have used
this library to specify our construction and prior ones, and plan to open-
source it.

Keywords: Zero knowledge · Interactive Oracle Proofs ·
Succinct arguments · Sumcheck protocol

1 Introduction

A zero knowledge proof is a protocol that enables one party (the prover) to
convince another (the verifier) that a statement is true without revealing any
information beyond the fact that the statement is true. Since their introduction
[49], zero knowledge proofs have become fundamental tools not only in the theory
of cryptography but also, more recently, in the design of real-world systems with
strong privacy properties.
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 103–128, 2019.
https://doi.org/10.1007/978-3-030-17653-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_4

104 E. Ben-Sasson et al.

For example, zero knowledge proofs are the core technology in Zcash [1,18], a
popular cryptocurrency that preserves a user’s payment privacy. While in Bitcoin
[65] users broadcast their private payment details in the clear on the public
blockchain (so other participants can check the validity of the payment), users
in Zcash broadcast encrypted transaction details and prove, in zero knowledge,
the validity of the payments without disclosing what the payments are.

Many applications, including the aforementioned, require that proofs are suc-
cinct, namely, that proofs scale sublinearly in the size of the witness for the
statement, or perhaps even in the size of the computation performed to check
the statement. This strong efficiency requirement cannot be achieved with sta-
tistical soundness (under standard complexity assumptions) [47], and thus one
must consider proof systems that are merely computationally sound, known as
argument systems [34]. Many applications further require that a proof consists of
a single non-interactive message that can be verified by anyone; such proofs are
cheap to communicate and can be stored for later use (e.g., on a public ledger).
Constructions that satisfy these properties are known as (publicly verifiable)
succinct non-interactive arguments (SNARGs) [46].

In this work we present Aurora, a zero knowledge SNARG for (an extension
of) arithmetic circuit satisfiability whose argument size is polylogarithmic in the
circuit size. Aurora also has attractive features: it uses a transparent setup, is
plausibly post-quantum secure, and only makes black-box use of fast symmetric
cryptography (any cryptographic hash function modeled as a random oracle).

Our work makes an exponential asymptotic improvement in argument size
over Ligero [4], a recent zero knowledge SNARG with similar features but where
proofs scale as the square root of the circuit size. For example, Aurora’s proofs
are 20× smaller than Ligero’s for circuits with a million gates (which already
suffices for representative applications such as Zcash).

Our work also complements and improves on Stark [13], a recent zero knowl-
edge SNARG that targets computations expressed as bounded halting problems
on random access machines. While Stark was designed for a different computa-
tion model, we can still study its efficiency when applied to arithmetic circuits.
In this case Aurora’s prover is faster by a logarithmic factor (in the circuit size)
and Aurora’s proofs are concretely much shorter, e.g., 15× smaller for circuits
with a million gates.

The efficiency features of Aurora stem from a new Interactive Oracle Proof
(IOP) that solves a univariate analogue of the celebrated sumcheck problem [61],
in which query complexity is logarithmic in the degree of the polynomial being
summed. This is an exponential improvement over the original multi-variate pro-
tocol,where communication complexity is (at least) linear in the degree of the poly-
nomial. We believe this protocol and its analysis are of independent interest.

1.1 The Need for a Transparent Setup

The first succinct argument is due to Kilian [57], who showed how to use collision-
resistant hashing to compile any Probabilistically Checkable Proof (PCP)
[5,6,9,43] into a corresponding interactive argument. Micali then showed how a

Aurora: Transparent Succinct Arguments for R1CS 105

similar construction, in the random oracle model, yields succinct non-interactive
arguments (SNARGs) [63]. Subsequent work [55] noted that if the underlying
PCP is zero knowledge then so is the SNARG. Unfortunately, PCPs remain
very expensive, and this approach has not led to SNARGs with good concrete
efficiency.

In light of this, a different approach was initially used to achieve SNARG
implementations with good concrete efficiency [19,67]. This approach, pioneered
in [29,45,50,60], relied on combining certain linearly homomorphic encodings
with lightweight information-theoretic tools known as linear PCPs [29,54,71];
this approach was refined and optimized in several works [22,23,30,40,51,52].
These constructions underlie widely-used open-source libraries [70] and deployed
systems [1], and their main feature is that proofs are very short (a few hundred
bytes) and very cheap to verify (a few milliseconds).

Unfortunately, the foregoing approach suffers from a severe limitation,
namely, the need for a central party to generate system parameters for the argu-
ment system. Essentially, this party must run a probabilistic algorithm, publish
its output, and “forget” the secret randomness used to generate it. This party
must be trustworthy because knowing these secrets allows forging proofs for false
assertions. While this may sound like an inconvenience, it is a colossal challenge
to real-world deployments. When using cryptographic proofs in distributed sys-
tems, relying on a central party negates the benefits of distributed trust and,
even though it is invoked only once in a system’s life, a party trusted by all users
typically does not exist !

The responsibility for generating parameters can in principle be shared across
multiple parties via techniques that leverage secure multi-party computation
[20,32,33]. This was the approach taken for the launch of Zcash [2], but it also
demonstrated how unwieldy such an approach is, involving a costly and logis-
tically difficult real-world multi-party “ceremony”. Successfully running such a
multi-party protocol was a singular feat, and systems without such expensive
setup are decidedly preferable.

Some setup is unavoidable because if SNARGs without any setup existed
then so would sub-exponential algorithms for SAT [81]. Nevertheless, one could
still aim for a “transparent setup”, namely one that consists of public random-
ness, because in practice it is cheaper to realize. Recent efforts have thus focused
on designing SNARGs with transparent setup (see discussion in Sect. 1.4).

1.2 Our Goal

The goal of this paper is to obtain transparent SNARGs that satisfy the following
desiderata.

– Post-quantum security. Practitioners, and even standards bodies [66], have a
strong interest in cryptographic primitives that are plausibly secure against
efficient quantum adversaries. This is motivated by the desire to ensure long-
term security of deployed systems and protocols.

106 E. Ben-Sasson et al.

– Concrete efficiency. We seek argument systems that not only exhibit good
asymptotics (in argument size and prover/verifier time) but also demonstrably
offer good efficiency via a prototype.

The second bullet warrants additional context. Most argument systems support
an NP-complete problem, so they are in principle equivalent under polynomial-
time reductions. Yet, whether such protocols can be efficiently used in practice
actually depends on: (a) the particular NP-complete problem “supported” by
the protocol; (b) the concrete efficiency of the protocol relative to this problem.
This creates a complex tradeoff.

Simple NP-complete problems, like boolean circuit satisfaction, facilitate sim-
ple argument systems; but reducing the statements we wish to prove to boolean
circuits is often expensive. On the other hand, one can design argument systems
for rich problems (e.g., an abstract computer) for which it is cheap to express
the desired statements; but such argument systems may use expensive tools to
support these rich problems.

Our goal is concretely-efficient argument systems for rank-1 constraint sat-
isfaction (R1CS), which is the following natural NP-complete problem: given a
vector v ∈ F

k and three matrices A,B,C ∈ F
m×n, can one augment v to z ∈ F

n

such that Az ◦ Bz = Cz? (We use “◦” to denote the entry-wise product.)
We choose R1CS because it strikes an attractive balance: it generalizes cir-

cuits by allowing “native” field arithmetic and having no fan-in/fan-out restric-
tions, but it is simple enough that one can design efficient argument systems for
it. Moreover, R1CS has demonstrated strong empirical value: it underlies real-
world systems [1] and there are compilers that reduce program executions to it
(see [80] and references therein). This has led to efforts to standardize R1CS
formats across academia and industry [3].

1.3 Our Contributions

In this work we study Interactive Oracle Proofs (IOPs) [21,69], a notion of
“multi-round PCPs” that has recently received much attention [12–15,17,25].
These types of interactive proofs can be compiled into non-interactive arguments
in the random oracle model [21], and in particular can be used to construct trans-
parent SNARGs. Building on this approach, we present several contributions:
(1) an IOP protocol for R1CS with attractive efficiency features; (2) the design,
implementation, and evaluation of a transparent SNARG for R1CS, based on
our IOP protocol; (3) a generic library for writing IOP-based non-interactive
arguments. We now describe each contribution.

(1) IOP for R1CS. We construct a zero knowledge IOP protocol for rank-1
constraint satisfaction (R1CS) with linear proof length and logarithmic query
complexity.

Given an R1CS instance C = (A,B,C) with A,B,C ∈ F
m×n, we denote by

N = Ω(m+n) the total number of non-zero entries in the three matrices and by
|C| the number of bits required to represent these; note that |C| = Θ(N log |F|).
One can view N as the number of “arithmetic gates” in the R1CS instance.

Aurora: Transparent Succinct Arguments for R1CS 107

Theorem 1 (informal). There is an O(log N)-round IOP protocol for R1CS
with proof length O(N) over alphabet F and query complexity O(log N). The
prover uses O(N log N) field operations, while the verifier uses O(N) field oper-
ations. The IOP protocol is public coin and is a zero knowledge proof.

The core of our result is a solution to a univariate analogue of the classical
sumcheck problem [61]. Our protocol (including zero knowledge and soundness
error reduction) is relatively simple: it is specified in a single page (see Fig. 12
in Sect. 6), given a low-degree test as a subroutine. The low degree test that we
use is a recent highly-efficient IOP for testing proximity to the Reed–Solomon
code [14].

(2) SNARG for R1CS. We design, implement, and evaluate Aurora, a zero
knowledge SNARG of knowledge (zkSNARK) for R1CS with several notable
features: (a) it only makes black-box use of fast symmetric cryptography (any
cryptographic hash function modeled as a random oracle); (b) it has a transpar-
ent setup (users merely need to “agree” on which cryptographic hash function to
use); (c) it is plausibly post-quantum secure (there are no known efficient quan-
tum attacks against this construction). These features follow from the fact that
Aurora is obtained by applying the transformation of [21] to our IOP for R1CS.
This transformation preserves both zero knowledge and proof of knowledge of
the underlying IOP.

In terms of asymptotics, given an R1CS instance C over F with N gates (and
here taking for simplicity F to have size 2O(λ) where λ is the security parameter),
Aurora provides proofs of length Oλ(log2 N); these can be produced in time
Oλ(N log N) and checked in time Oλ(N).

For example, setting our implementation to a security level of 128 bits over
a 192-bit finite field, proofs range from 50 kB to 250 kB for instances of up to
millions of gates; producing proofs takes on the order of several minutes and
checking proofs on the order of several seconds. (See Sect. 4 for details.)

Overall, as indicated in Fig. 2, we achieve the smallest argument size among
(plausibly) post-quantum non-interactive arguments for circuits, by more than an
order of magnitude. Other approaches achieve smaller argument sizes by relying
on (public-key) cryptography that is insecure against quantum adversaries.

(3) libiop :a library for non-interactive arguments. We provide libiop,
a codebase that enables the design and implementation of non-interactive argu-
ments based on IOPs. The codebase uses the C++ language and has three main
components: (1) a library for writing IOP protocols; (2) a realization of [21]’s
transformation, mapping any IOP written with our library to a corresponding
non-interactive argument; (3) a portfolio of IOP protocols, including Ligero [4],
Stark [13], and ours.

We plan to open-source libiop under a permissive software license for the
community, so that others may benefit from its portfolio of IOP-based argu-
ments, and may even write new IOPs tailored to new applications. We believe
that our library will serve as a powerful tool in meeting the increasing demand
by practitioners for transparent non-interactive arguments.

108 E. Ben-Sasson et al.

1.4 Prior Implementations of Transparent SNARGs

We summarize prior work that has designed and implemented transparent
SNARGs; see Fig. 2.1

Based on Asymmetric Cryptography. Bulletproofs [31,35] proves the satis-
faction of an N -gate arithmetic circuit via a recursive use of a low-communication
protocol for inner products, achieving a proof with O(log N) group elements.
Hyrax [79] proves the satisfaction of a layered arithmetic circuit of depth D
and width W via proofs of O(D log W) group elements; the construction applies
the Cramer–Damg̊ard transformation [41] to doubly-efficient Interactive Proofs
[39,48]. Both approaches use Pedersen commitments, and so are vulnerable to
quantum attacks. Also, in both approaches the verifier performs many expensive
cryptographic operations: in the former, the verifier uses O(N) group exponenti-
ations; in the latter, the verifier’s group exponentiations are linear in the circuit’s
witness size. (Hyrax allows fewer group exponentiations but with longer proofs;
see [79].)

Based on Symmetric Cryptography. The “original” SNARG construction of
Micali [55,63] has advantages beyond transparency. First, it is unconditionally
secure given a random oracle, which can be instantiated with extremely fast
symmetric cryptography.2 Second, it is plausibly post-quantum secure, in that
there are no known efficient quantum attacks. But the construction relies on
PCPs, which remain expensive.

IOPs are “multi-round PCPs” that can also be compiled into non-interactive
arguments in the random oracle model [21]. This compilation retains the fore-
going advantages (transparency, lightweight cryptography, and plausible post-
quantum security) and, in addition, facilitates greater efficiency, as IOPs have
superior efficiency compared to PCPs [12–15,17].

In this work we follow the above approach, by constructing a SNARG based
on a new IOP protocol. Two recent works have also taken the same approach, but
with different underlying IOP protocols, which have led to different features. We
provide both of these works as part of our library (Sect. 5), and experimentally
compare them with our protocol (Sect. 4). The discussion below is a qualitative
comparison.

– Ligero [4] is a non-interactive argument that proves the satisfiability of an
N -gate circuit via proofs of size O(

√
N) that can be verified in O(N) cryp-

tographic operations. As summarized in Fig. 1, the IOP underlying Ligero

1 We omit a discussion of prior works without implementations, or that study non-
transparent SNARGs; we refer the reader to the survey of Walfish and Blumberg [80]
for an overview of sublinear argument systems. We also note that recent work [11]
has used lattice cryptography to achieve sublinear zero knowledge arguments that
are plausibly post-quantum secure, which raises the exciting question of whether
these recent protocols can lead to efficient implementations.

2 Some cryptographic hash functions, such as BLAKE2, can process almost 1 GB/s
[8].

Aurora: Transparent Succinct Arguments for R1CS 109

achieves the same oracle proof length, prover time, and verifier time as our
IOP. However, we reduce query complexity from O(

√
N) to O(log N), which

is an exponential improvement, at the expense of increasing round complexity
from 2 to O(log N). The arguments that we obtain are still non-interactive,
but our smaller query complexity translates into shorter proofs (see Fig. 2).

– Stark [13] is a non-interactive argument for bounded halting problems on a
random access machine. Given a program P and a time bound T , it proves that
P accepts within T steps on a certain abstract computer (when given suitable
nondeterministic advice) via succinct proofs of size polylog(T). Moreover, ver-
ification is also succinct: checking a proof takes time only |P | + polylog(T),
which is polynomial in the size of the statement and much better than “naive
verification” which takes time Ω(|P |+T). The main difference between Stark
and Aurora is the computational models that they support. While Stark sup-
ports uniform computations specified by a program and a time bound, Aurora
supports non-uniform computations specified by an explicit circuit (or con-
straint system). Despite this difference, we can compare the cost of Stark and
Aurora with respect to the explicit circuit model, since one can reduce a given
N -gate circuit (or N -constraint system) to a corresponding bounded halting
problem with |P |, T = Θ(N).

In this case, Stark’s verification time is the same as Aurora’s, O(N); this is best
possible because just reading an N -gate circuit takes time Ω(N). But Stark’s
prover is a logarithmic factor more expensive because it uses a switching
network to verify a program’s accesses to memory. Stark’s prover uses an
IOP with oracles of size O(N log N), leading to an arithmetic complexity
of O(N log2 N). (See Figs. 1 and 2.) Both Stark and Aurora have argument
size O(log2 N), but additional costs in Stark (e.g., due to switching networks)
result in Stark proofs being one order of magnitude larger than Aurora proofs.
That said, we view Stark and Aurora as complementing each other: Stark
offers savings in verification time for succinctly represented programs, while
Aurora offers savings in argument size for explicitly represented circuits.

2 Techniques

Our main technical contribution is a linear-length logarithmic-query IOP for
R1CS (Theorem 1), which we use to design, implement, and evaluate a transpar-
ent SNARG for R1CS. Below we summarize the main ideas behind our protocol,
and postpone to Sects. 4 and 5 discussions of our system. In Sect. 2.1, we describe
our approach to obtain the IOP for R1CS; this approach leads us to solve the
univariate sumcheck problem, as discussed in Sect. 2.2; finally, in Sect. 2.3, we
explain how we achieve zero knowledge. In Sect. 2.4 we conclude with a wider
perspective on the techniques used in this paper.

110 E. Ben-Sasson et al.

2.1 Our Interactive Oracle Proof for R1CS

The R1CS relation consists of instance-witness pairs ((A,B,C, v), w), where
A,B,C are matrices and v, w are vectors over a finite field F, such that
(Az) ◦ (Bz) = Cz for z := (1, v, w) and “◦” denotes the entry-wise product.3

For example, R1CS captures arithmetic circuit satisfaction: A,B,C represent
the circuit’s gates, v the circuit’s public input, and w the circuit’s private input
and wire values.4

We describe the high-level structure of our IOP protocol for R1CS, which
has linear proof length and logarithmic query complexity. The protocol tests
satisfaction by relying on two building blocks, one for testing the entry-wise
vector product and the other for testing the linear transformations induced by
the matrices A,B,C. Informally, we thus consider protocols for the following
two problems.

– Rowcheck: given vectors x, y, z ∈ F
m, test whether x ◦ y = z, where “◦”

denotes entry-wise product.
– Lincheck: given vectors x ∈ F

m, y ∈ F
n and a matrix M ∈ F

m×n, test
whether x = My.

One can immediately obtain an IOP for R1CS when given IOPs for the
rowcheck and lincheck problems. The prover first sends four oracles to the veri-
fier: the satisfying assignment z and its linear transformations yA := Az, yB :=
Bz, yC := Cz. Then the prover and verifier engage in four IOPs in parallel:

– An IOP for the lincheck problem to check that “yA = Az”. Likewise for yB

and yC .
– An IOP for the rowcheck problem to check that “yA ◦ yB = yC”.

Fig. 1. Asymptotic comparison of the information-theoretic proof systems underlying
Ligero, Stark, and Aurora, when applied to an N -gate arithmetic circuit. † An IPCP [56]
is a PCP oracle that is checked via an Interactive Proof; it is a special case of an IOP.

3 Throughout, we assume that F is “friendly” to FFT algorithms, i.e., F is a binary
field or its multiplicative group is smooth.

4 The reader may be familiar with a standard arithmetization of circuit satisfaction
(used, e.g., in the inner PCP of [5]). Given an arithmetic circuit with m gates and n
wires, each addition gate xi ← xj +xk is mapped to the linear constraint xi = xj +xk

and each product gate xi ← xj ·xk is mapped to the quadratic constraint xi = xj ·xk.
The resulting system of equations can be written as A·((1, x)⊗(1, x)) = b for suitable

A ∈ F
m×(n+1)2 and b ∈ F

m. However, this reduction results in a quadratic blowup
in the instance size. There is an alternative reduction due to [45,62] that avoids this.

Aurora: Transparent Succinct Arguments for R1CS 111

Finally, the verifier checks that z is consistent with the public input v. Clearly,
there exist z, yA, yB , yC that yield valid rowcheck and lincheck instances if and
only if (A,B,C, v) is a satisfiable R1CS instance.

The foregoing reduces the goal to designing IOPs for the rowcheck and
lincheck problems.

As stated, however, the rowcheck and lincheck problems only admit “trivial”
protocols in which the verifier queries all entries of the vectors in order to check
the required properties. In order to allow for sublinear query complexity, we
need the vectors x, y, z to be encoded via some error-correcting code. We use the
Reed–Solomon (RS) code because it ensures constant distance with constant
rate while at the same time it enjoys efficient IOPs of Proximity [14].

Given an evaluation domain L ⊆ F and rate parameter ρ ∈ [0, 1], RS [L, ρ]
is the set of all codewords f : L → F that are evaluations of polynomials of
degree less than ρ|L|. Then, the encoding of a vector v ∈ F

S with S ⊆ F and
|S| < ρ|L| is v̂|L ∈ F

L where v̂ is the unique polynomial of degree |S|−1 such that
v̂|S = v. Given this encoding, we consider “encoded” variants of the rowcheck
and lincheck problems.

– Univariate rowcheck: given a subset H ⊆ F and codewords f, g, h ∈
RS [L, ρ], check that f̂(a) · ĝ(a) − ĥ(a) = 0 for all a ∈ H. (This is a spe-
cial case of the definition that we use later.)

– Univariate lincheck: given subsets H1,H2 ⊆ F, codewords f, g ∈ RS [L, ρ],
and a matrix M ∈ F

H1×H2 , check that f̂(a) =
∑

b∈H2
Ma,b ·ĝ(b) for all a ∈ H1.

Given IOPs for the above problems, we can now get an IOP protocol for
R1CS roughly as before. Rather than sending z,Az,Bz,Cz, the prover sends

Fig. 2. Comparison of some non-interactive zero knowledge arguments for proving
statements of the form “there exists a secret w such that C(x, w) = 1” for a given
arithmetic circuit C of N gates (and depth d) and public input x of size k. The table
is grouped by “technology”, and for simplicity assumes that the circuit’s underlying
field has size 2O(λ) where λ is the security parameter. Approximate argument sizes are
given for N = 106 gates over a cryptographically-large field, and a security level of 128
bits; some argument sizes may differ from those reported in the cited works because
size had to be re-computed for the security level and N used here; also, [83] reports
no implementation. † Given a per-circuit preprocessing step. ‡ A tradeoff between
argument size and verifier time is possible; see [79].

112 E. Ben-Sasson et al.

their encodings fz, fAz, fBz, fCz. The prover and verifier then engage in rowcheck
and lincheck protocols as before, but with respect to these encodings.

For these encoded variants, we achieve IOP protocols with linear proof length
and logarithmic query complexity, as required. We obtain a protocol for rowcheck
via standard techniques from the probabilistic checking literature [27]. As for
lincheck, we do not use any routing and instead use a technique (dating back at
least to [9]) to reduce the given testing problem to a sumcheck instance. However,
since we are not working with multivariate polynomials, we cannot rely on the
usual (multivariate) sumcheck protocol. Instead, we present a novel protocol
that realizes a univariate analogue of the classical sumcheck protocol, and use
it as the testing “core” of our IOP protocol for R1CS. We discuss univariate
sumcheck next.

Remark 1. The verifier receives as input an explicit (non-uniform) description
of the set of constraints, namely, the matrices A,B,C. In particular, the verifier
runs in time that is at least linear in the number of non-zero entries in these
matrices (if we consider a sparse-matrix representation for example).

2.2 A Sumcheck Protocol for Univariate Polynomials

A key ingredient in our IOP protocol is a univariate analogue of the classical
(multivariate) sumcheck protocol [61]. Recall that the classical sumcheck pro-
tocol is an IP for claims of the form “

∑
a∈Hm f(a) = 0”, where f is a given

polynomial in F[X1, . . . , Xm] of individual degree d and H is a subset of F. In
this protocol, the verifier runs in time poly(m, d, log |F|) and accesses f at a single
(random) location. The sumcheck protocol plays a fundamental role in compu-
tational complexity (it underlies celebrated results such as IP = PSPACE [72]
and MIP = NEXP [10]) and in efficient proof protocols [39,48,73–77,79,82,83].

We work with univariate polynomials instead, and need a univariate analogue
of the sumcheck protocol (see previous subsection): how can a prover convince
the verifier that “

∑
a∈H f(a) = 0” for a given polynomial f ∈ F[X] of degree d

and subset H ⊆ F? Designing a “univariate sumcheck” is not straightforward
because univariate polynomials (the Reed–Solomon code) do not have the tensor
structure used by the sumcheck protocol for multivariate polynomials (the Reed–
Muller code). In particular, the sumcheck protocol has m rounds, each of which
reduces a sumcheck problem to a simpler sumcheck problem with one variable
fewer. When there is only one variable, however, it is not clear to what simpler
problems one can reduce.

Using different ideas, we design a natural protocol for univariate sumcheck
in the cases where H is an additive or multiplicative coset in F (i.e., a coset of
an additive or multiplicative subgroup of F).

Theorem 2 (informal). The univariate sumcheck protocol over additive or
multiplicative cosets has a O(log d)-round IOP with proof complexity O(d) over
alphabet F and query complexity O(log d). The IOP prover uses O(d log |H|) field
operations and the IOP verifier uses O(log d + log2 |H|) field operations.

Aurora: Transparent Succinct Arguments for R1CS 113

We now provide the main ideas behind the protocol, when H is an additive
coset in F.

Suppose for a moment that the degree d of f is less than |H| (we remove this
restriction later). A theorem of Byott and Chapman [36] states that the sum
of f over (an additive coset) H is zero if and only if the coefficient of X |H|−1

in f is zero. In particular,
∑

a∈H f(a) is zero if and only if f has degree less
than |H| − 1. Thus, the univariate sumcheck problem over H when d < |H| is
equivalent to low-degree testing.

The foregoing suggests a natural approach: test that f has degree less than
|H| − 1. Without any help from the prover, the verifier would need at least |H|
queries to f to conduct such a test, which is as expensive as querying all of H.
However, the prover can help by engaging with the verifier in an IOP of Prox-
imity for the Reed–Solomon code. For this we rely on the recent construction of
Ben-Sasson et al. [14], which has proof length O(d) and query complexity
O(log d).

In our setting, however, we need to also handle the case where the degree d of
f is larger than |H|. For this case, we observe that we can split any polynomial
f into two polynomials g and h such that f(x) ≡ g(x) +

∏
α∈H(x − α) · h(x)

with deg(g) < |H| and deg(h) < d − |H|; in particular, f and g agree on H,
and thus so do their sums on H. This observation suggests the following extension
to the prior approach: the prover sends g (as an oracle) to the verifier, and
then the verifier performs the prior protocol with g in place of f . Of course, a
cheating prover may send a polynomial g that has nothing to do with f , and so
the verifier must also ensure that g is consistent with f . To facilitate this, we
actually have the prover send h rather than g; the verifier can then “query” g(x)
as f(x) − ∏

α∈H(x − α) · h(x); the prover then shows that f, g, h are all of the
correct degrees.

A similar reasoning works when H is a multiplicative coset in F. It remains
an interesting open problem to establish whether the foregoing can be extended
to any subset H in F.

2.3 Efficient Zero Knowledge from Algebraic Techniques

The ideas discussed thus far yield an IOP protocol for R1CS with linear proof
length and logarithmic query complexity. However these by themselves do not
provide zero knowledge.

We achieve zero knowledge by leveraging recent algebraic techniques [17].
Informally, we adapt these techniques to achieve efficient zero knowledge variants
of key sub-protocols, including the univariate sumcheck protocol and low-degree
testing, and combine these to achieve a zero knowledge IOP protocol for R1CS.

We summarize the basic intuition for how we achieve zero knowledge in our
protocols.

First, we use bounded independence. Informally, rather than encoding a vec-
tor z ∈ F

H by the unique polynomial of degree |H| − 1 that matches z on H,
we instead sample uniformly at random a polynomial of degree, say, |H| + 9
conditioned on matching z on H. Any set of 10 evaluations of such a polynomial

114 E. Ben-Sasson et al.

are independently and uniformly distributed in F (and thus reveal no informa-
tion about z), provided these evaluations are outside of H. To ensure this latter
condition, we choose the evaluation domain L of Reed–Solomon codewords to be
disjoint from H. Thus, for example, if H is a linear space (an additive subgroup
of F) then we choose L to be an affine subspace (a coset of some additive sub-
group), since the underlying machinery for low-degree testing (e.g., [14]) requires
codewords to be evaluated over algebraically-structured domains. All of our pro-
tocols are robust to these variations.

Bounded independence alone does not suffice, though. For example, in the
sumcheck protocol, consider the case where the input vector z ∈ F

H is all zeroes.
The prover samples a random polynomial f̂ of degree |H|+9, such that f̂(a) = 0
for all a ∈ H, and sends its evaluation f over L disjoint from H to the verifier. As
discussed, any ten queries to f result in ten independent and uniformly random
elements in F. Observe, however, that when we run the sumcheck protocol on
f , the polynomial g (the remainder of f̂ when divided by

∏
α∈H(x − α)) is the

zero polynomial: all randomness is removed by the division.
To remedy this, we use self-reducibility to reduce a sumcheck claim about

the polynomial f to a sumcheck claim about a random polynomial. The
prover first sends a random Reed–Solomon codeword r, along with the value
β :=

∑
a∈H r(a). The verifier sends a random challenge ρ ∈ F. Then the prover

and verifier engage in the univariate sumcheck protocol with respect to the new
claim “

∑
a∈H ρf(a)+r(a) = β”. Since r is uniformly random, ρf +r is uniformly

random for any ρ, and thus the sumcheck protocol is performed on a random
polynomial, which ensures zero knowledge. Soundness is ensured by the fact that
if f does not sum to 0 on H then the new claim is true with probability 1/|F|
over the choice of ρ.

2.4 Perspective on Our Techniques

A linear-length logarithmic-query IOP for a “circuit-like” NP-complete relation
like R1CS (Theorem 1) may come as a surprise. We wish to shed some light
on our IOP construction by connecting the ideas behind it to prior ideas in
the probabilistic checking literature, and use these connections to motivate our
construction.

A significant cost in all known PCP constructions with good proof length is
using routing networks to reduce combinatorial objects (circuits, machines, and
so on) to structured algebraic ones;5 routing also plays a major role in many IOPs
[12,13,15,17]. While it is plausible that one could adapt routing techniques to

5 Polishchuk and Spielman [68] reduce boolean circuit satisfaction to a trivariate alge-
braic coloring problem with “low-degree” neighbor relations, by routing the circuit’s
wires over an arithmetized routing network. Ben-Sasson and Sudan [27] reduce non-
deterministic machine computations to a univariate algebraic satisfaction problem
by routing the machine’s memory accesses over another arithmetized routing net-
work. Routing is again a crucial component in the linear-size sublinear-query PCPs
of [24].

Aurora: Transparent Succinct Arguments for R1CS 115

route the constraints of an R1CS instance (similarly to [68]), such an approach
would likely incur logarithmic-factor overheads, precluding linear -size IOPs.

A recent work [16] achieves linear-length constant-query IOPs for boolean
circuit satisfaction without routing the input circuit. Unfortunately, [16] relies on
other expensive tools, such as algebraic-geometry (AG) codes and quasilinear-
size PCPs of proximity [27]; moreover, it is not zero knowledge. Informally, [16]
tests arbitrary (unstructured) constraints by invoking a sumcheck protocol [61]
on a O(1)-wise tensor product of AG codes; this latter is then locally tested via
tools in [26,27].

One may conjecture that, to achieve an IOP for R1CS like ours, it would suf-
fice to merely replace the AG codes in [16] with the Reed–Solomon code, since
both codes have constant rate. But taking a tensor product exponentially dete-
riorates rate, and testing proximity to that tensor product would be expensive.

An alternative approach is to solve a sumcheck problem directly on the
Reed–Solomon code. Existing protocols are not of much use here: the multivari-
ate sumcheck protocol relies on a tensor structure that is not available in the
Reed–Solomon code, and recent IOP implementations either use routing [12,13]
or achieve only sublinear query complexity [4].

Instead, we design a completely new IOP for a sumcheck problem on the
Reed–Solomon code. We then combine this solution with ideas from [16] (to
avoid routing) and from [17] (to achieve zero knowledge) to obtain our linear-
length logarithmic-query IOP for R1CS. Along the way, we rely on recent efficient
proximity tests for the Reed–Solomon code [14].

3 Roadmap

In Sect. 4 we evaluate Aurora, and compare it to other IOP-based SNARGs.
In Sect. 5 we describe the implementation. In Sect. 6 we present the underlying
IOP for R1CS. Figure 3 summarizes the structure of this protocol. For details of
this construction, including proofs of theorems, we refer the reader to the full
version.

Throughout, we focus on the case where all relevant domains are additive
cosets (affine subspaces) in F. The case where domains are multiplicative cosets is
similar, with only minor modifications. Moreover, while for convenience we limit

Fig. 3. Structure of our IOP for R1CS in terms of key sub-protocols.

116 E. Ben-Sasson et al.

our discussions to establishing soundness, all protocols described in this paper
are easily seen to satisfy the stronger notion of proof of knowledge. Informally,
this is because we prove soundness by showing that oracles sent by convincing
provers can be decoded to valid witnesses.

4 Evaluation

In Sect. 4.1 we evaluate the performance of Aurora. Then, in Sect. 4.2 we com-
pare Aurora with Ligero [4] and Stark [13], two other IOP-based SNARGs. Our
experiments not only demonstrate that Aurora’s performance matches the the-
oretical predictions implied by the protocol but also that Aurora achieves the
smallest argument size of any IOP-based SNARG, by more than an order of
magnitude.

That said, there is still a sizable gap between the argument sizes of IOP-based
SNARGs and other SNARGs that use public-key cryptographic assumptions
vulnerable to quantum adversaries; see Fig. 2 for how argument sizes vary across
these. It remains an exciting open problem to close this gap.

Experiments ran on a machine with an Intel Xeon W-2155 3.30 GHz 10-core
processor and 64 GB of RAM.

4.1 Performance of Aurora

We consider Aurora at the standard security level of 128 bits, over the binary
field F2192 . We report data on key efficiency measures of a SNARG: the time
to generate a proof (running time of the prover), the length of a proof, and
the time to check a proof (running time of the verifier). We also indicate how
much of each cost is due to the IOP protocol, and how much is due to the BCS
transformation [21].

In Aurora, all of these quantities depend on the number of constraints m in
an R1CS instance.6 Our experiments report how these quantities change as we
vary m over the range {210, 211, . . . , 220}.

Prover Running Time. In Fig. 4 we plot the running time of the prover, as
absolute cost (top graph) and as relative cost when compared to native execu-
tion (bottom graph). For R1CS, native execution is the time that it takes to
check that an assignment satisfies the constraint system. The plot confirms the
quasilinear complexity of the prover; proving times range from fractions of a
second to several minutes. Proving time is dominated by the cost of running the
underlying IOP prover.

6 The number of variables n also affects performance, but it is usually close to m and
so we take n ≈ m in our experiments. The number of inputs k in an R1CS instance
is at most n, and in typical applications it is much smaller than n, so we do not
focus on it.

Aurora: Transparent Succinct Arguments for R1CS 117

Argument Size. In Fig. 5 we plot argument size, as absolute cost (top graph)
and as relative cost when compared to native witness size (bottom graph). For
R1CS, native witness size is the number of bytes required to represent an assign-
ment to the constraint system. The plot shows that compression (argument size
is smaller than native witness size) occurs for m ≥ 4000. The plot also shows
that argument size ranges from 50 kB to 250 kB, and is dominated by the cryp-
tographic digests to authenticate query answers.

Verifier Running Time. In Fig. 6 we plot the running time of the verifier, as
absolute cost (top graph) and as relative cost when compared to native execution
(bottom graph). The plot shows that verification times range from milliseconds
to seconds, and confirms that our implementation incurs a constant multiplica-
tive overhead over native execution.

4.2 Comparison of Ligero, Stark, and Aurora

In Figs. 7, 8 and 9 we compare costs (proving time, argument size, and verifi-
cation time) on R1CS instances for three IOP-based SNARGs: Ligero [4], Stark
[13], and Aurora (this work). As in Sect. 4.1, we plot costs as the number of
constraints m increases (and with n ≈ m variables as explained in Footnote 6);
we also set security to the standard level of 128 bits and use the binary field
F2192 .

Comparison of Ligero and Aurora. Ligero natively supports R1CS so a
comparison with Aurora is straightforward. Figure 8 shows that argument size
in Aurora is much smaller than in Ligero, even for a relatively small number of
constraints. The gap between the two grows bigger as the number of constraints
increases, as Aurora’s argument size is polylogarithmic while Ligero’s is only
sublinear (an exponential gap).

Comparison of Stark and Aurora. Stark does not natively support the NP-
complete relation R1CS but instead natively supports an NEXP-complete rela-
tion known as Algebraic Placement and Routing (APR). These two relations are
quite different, and so to achieve a meaningful comparison, we consider an APR
instance that simulates a given R1CS instance. We thus plot the costs of Stark
on a hand-optimized APR instance that simulates R1CS instances. Relying on
the reductions described in [13], we wrote an APR instance that realizes a simple
abstract computer that checks that a variable assignment satisfies each one of
the rank-1 constraints in a given R1CS instance.

Figure 8 shows that argument size in Aurora is much smaller than in Stark,
even if both share the same asymptotic growth. This is due to the fact that R1CS
and APR target different computation models (explicit circuits vs. uniform com-
putations), so Stark incurs significant overheads when used for R1CS. Figure 9
shows that verification time in Stark grows linearly with the number of con-
straints (like Ligero and Aurora); indeed, the verifier must read the description
of the statement being proved, which is the entire constraint system.

118 E. Ben-Sasson et al.

Fig. 4. Proving time in
Aurora.

Fig. 5. Argument size in
Aurora.

Fig. 6. Verification time
in Aurora.

Fig. 7. Proving time in
Aurora, Ligero, Stark.

Fig. 8. Argument size in
Aurora, Ligero, Stark.

Fig. 9. Verification time in
Aurora, Ligero, Stark.

5 libiop: A Library for IOP-Based Non-interactive
Arguments

We provide libiop, a codebase that enables the design and implementation
of IOP-based non-interactive arguments. The codebase uses the C++ language
and has three main components: (1) a library for writing IOP protocols; (2) a
realization of the [21] transformation, mapping any IOP written with our library

Aurora: Transparent Succinct Arguments for R1CS 119

to a corresponding non-interactive argument; (3) a portfolio of IOP protocols,
including our new IOP protocol for R1CS and IOP protocols from [4,13]. We
discuss each of these components in turn.

5.1 Library for IOP Protocols

We provide a library that enables a programmer to write IOP protocols. Infor-
mally, the programmer provides a blueprint of the IOP by specifying, for each
round, the number and sizes of oracle messages (and non-oracle messages) sent
by the prover, as well as the number of random bytes subsequently sent by
the verifier. For the prover, the programmer specifies how each message is to
be computed. For the verifier, the programmer specifies how oracle queries are
generated and, also, how the verifier’s decision is computed based on its random
choices and information received from the prover. Notable features of our library
include:

– Support for writing new IOPs by using other IOPs as sub-protocols. This
includes juxtaposing or interleaving selected rounds of these sub-protocols.
This latter feature not only facilitates reducing round complexity in complex
IOP constructions but also makes it possible to take advantage of optimiza-
tions such as column hashing (discussed in Sect. 5.2) when constructing a
non-interactive argument.

– A realization of the transformation described in the full version, which con-
structs an IOP by combining an ‘encoded’ IOP and a low-degree test. This
is a powerful paradigm (it applies to essentially all published IOP protocols)
that reduces the task of writing an IOP to merely providing suitable choices
of these two simpler ingredients.

5.2 BCS Transformation

We realize the transformation of [21], by providing code that maps any IOP
written in our library into a corresponding non-interactive argument (which
consists of a prover algorithm and a verifier algorithm).

We use BLAKE2b [8] to instantiate the random oracle in the [21] transfor-
mation (our code allows to conveniently specify alternative instantiations). This
hash function is an improvement to BLAKE (a finalist in the SHA-3 competi-
tion) [7], and its performance on all recent x86 platforms is competitive with the
most performant (and often hardware-accelerated) hash functions [42]. More-
over, BLAKE2b can be configured to output digests of any length between 1
and 64 bytes (between 8 and 512 bits in multiples of 8). When aiming for a
security level of λ bits, we only need the hash function to output digests of 2λ
bits, and our code automatically sets this length.

Our code incorporates additional optimizations that, while simple, are generic
and effective.

120 E. Ben-Sasson et al.

One is column hashing, which informally works as follows. In many IOP
protocols (essentially all published ones, including Ligero [4] and Stark [13]),
the prover sends multiple oracles over the same domain in the same round,
and the verifier accesses all of them at the same index in the domain. The
prover can then build a Merkle tree over columns consisting of corresponding
entries of the oracles, rather than building separate Merkle trees for each or
a single Merkle tree over their concatenation. This reduces a non-interactive
proof’s length, because the proof only has to contain a single authentication
path for the desired column, rather than authentication paths corresponding to
the indices across all the oracles.

Another optimization is path pruning. When providing multiple authentica-
tion paths relative to the same root (in the non-interactive argument), some
digests become redundant and can thus be omitted. For example, if one consid-
ers the authentication paths for all leaves in a particular sub-tree, then one can
simple provide the authentication path for the root of the sub-tree. A simple
way to view this optimization is to provide the smallest number of digests to
authenticate a set of leaves.

5.3 Portfolio of IOP Protocols and Sub-Components

We use our library to realize several IOP protocols:

– Aurora: our IOP protocol for R1CS (specifically, the one provided in Fig. 12
in Sect. 6).

– Ligero: an adaptation of the IOP protocol in [4] to R1CS. While the proto-
col(s) in [4] are designed for (boolean or arithmetic) circuit satisfiability, the
same ideas can be adapted to support R1CS at no extra cost. This simplifies
comparisons with R1CS-based arguments, and confers additional expressivity.

– Stark: the IOP protocol in [13] for Algebraic Placement and Routing (APR),
a language that is a “succinct” analogue of algebraic satisfaction problems
such as R1CS. (See [13] for details.)

Each of the above IOPs is obtained by specifying an encoded IOP and a low-
degree test. As explained in Sects. 5.1 and 5.2, our library compiles these into
an IOP protocol, and the latter into a non-interactive argument. This toolchain
enables specifying protocols with few lines of code (see Fig. 10), and also enhances
code auditability.

The IOP protocols above benefit from several algebraic components that our
library also provides.

– Finite field arithmetic. We support prime and binary fields. Our prime field
arithmetic uses Montgomery representation [64]. Our binary field arithmetic
uses the carryless multiplication instructions [53]; these are ubiquitous in x86
CPUs and, being used in AES-GCM computations, are highly optimized.

– FFT algorithms. The choice of FFT algorithm depends on whether the R1CS
instance (and thus the rest of the protocol) is defined over a prime or binary
field. In the former case, we use the radix-2 FFT (whose evaluation domain

Aurora: Transparent Succinct Arguments for R1CS 121

is a multiplicative coset of order 2a for some a) [38]. In the latter case, we
use an additive FFT (whose evaluation domain is an affine subspace of the
binary field) [28,37,44,58,59]. We also provide the respective inverse FFTs,
and variants for cosets of the base domains.

Remark 2. Known techniques can be used to reduce given programs or general
machine computations to low-level representations such as R1CS and APR (see,
e.g., [13,23,78]). Such techniques have been compared in prior work, and our
library does not focus on these.

Fig. 10. Lines of code to express various sub-components in our library.

6 Aurora: An IOP for Rank-One Constraint Satisfaction
(R1CS)

We describe the IOP for R1CS that comprises the main technical contribution
of this paper, and also underlies the SNARG for R1CS that we have designed
and built (more about this in Sect. 5).

For the discussions below, we introduce notation about the low-degree test
in [14], known as “Fast Reed–Solomon IOPP” (FRI): given a subspace L of a
binary field F and rate ρ ∈ (0, 1), we denote by εFRI

i (F, L) and εFRI
q (L, ρ, δ) the

soundness error of the interactive and query phases in FRI (respectively) when
testing proximity of a δ-far function to RS [L, ρ].

We first provide a “barebones” statement with constant soundness error and
no zero knowledge.

Theorem 3. There is an IOP for the R1CS relation over binary fields F that,
given an R1CS instance having n variables and m constraints, letting ρ ∈ (0, 1)
be a constant and L be any subspace of F such that 2max(m,n + 1) ≤ ρ|L|, has
the following parameters:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

alphabet Σ = F

number of rounds k = O(log |L|)
proof length p = (5 + 1

3
)|L|

query complexity qπ = O(log |L|)
randomness (ri, rq) = (O(log |L| · log |F|), O(log |L|))
soundness error (εi, εq) =

(
m+1
|F| +

|L|
|F| + εFRI

i (F, L), εFRI
q (L, ρ, δ)

)

prover time tP = O(|L| · log(n + m) + ‖A‖ + ‖B‖ + ‖C‖) + 17 · FFT(F, |L|)
verifier time tV = O(‖A‖ + ‖B‖ + ‖C‖ + n + m + log |L|)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where δ := min(1−2(ρ/2)
2 , 1−(ρ/2)

3 , 1 − ρ).

122 E. Ben-Sasson et al.

Next, we provide a statement that additionally has parameters for controlling
the soundness error, is zero knowledge, and includes other (whitebox) optimiza-
tions; the proof is analogous except that we use zero knowledge components.
The resulting IOP protocol, fully specified in Fig. 12, underlies our SNARG for
R1CS (see Sect. 5).

Theorem 4. There is an IOP for the R1CS relation over binary fields F that,
given an R1CS instance having n variables and m constraints, letting ρ ∈ (0, 1)
be a constant and L be any subspace of F such that 2max(m,n+1)+2b ≤ ρ|L|,
is zero knowledge against b queries and has the following parameters:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

alphabet Σ = F

number of rounds k = O(log |L|)
proof length p = (4 + 2λi + λ′

iλ
FRI
i /3)|L|

query complexity qπ = O(λiλ
FRI
i λFRI

q log |L|)
randomness (ri, rq) =

(
O((λiλ

′
i + λFRI

i log |L|) log |F|), O(λFRI
q log |L|))

soundness error (εi, εq) =
(
(m+1

|F|)λi + (
|L|
|F|)λ′

i + εFRI
i (F, L)λFRI

i , εFRI
q (L, ρ, δ)λFRI

q

)

prover time tP = λi · (O(|L| · (log(n + m) + ‖A‖ + ‖B‖ + ‖C‖)
+18 · FFT(F, |L|)) + O(λ′

iλ
FRI
i |L|)

verifier time tV = λi · O(‖A‖ + ‖B‖ + ‖C‖ + n + m + log |L|)
+O(λ′

iλ
FRI
i λFRI

q log |L|)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where δ := min(1−2ρ
2 , 1−ρ

3 , 1 − ρ). Setting b ≥ qπ ensures honest-verifier zero
knowledge.

Fig. 11. Polynomials and codewords used in the IOP protocol given in Fig. 12.

Given an R1CS instance (F, k, n,m,A,B,C, v), we fix subspaces H1,H2 ⊆ F

such that |H1| = m and |H2| = n + 1 (padding to the nearest power of 2 if
necessary) with H1 ⊆ H2 or H2 ⊆ H1, and a sufficiently large affine subspace
L ⊆ F such that L ∩ (H1 ∪ H2) = ∅. We let t := |H1 ∪ H2| = max(m,n + 1).
Figure 11 below gives polynomials and codewords used in Fig. 12. We also define
ξ :=

∑
a∈H1∪H2

at−1.

Aurora: Transparent Succinct Arguments for R1CS 123

Fig. 12. Diagram of the zero knowledge IOP for R1CS that proves Theorem 4.

124 E. Ben-Sasson et al.

Acknowledgments. We thank Alexander Chernyakhovsky and Tom Gur for helpful
discussions, and Aleksejs Popovs for help in implementing parts of libiop. This work
was supported in part by: the Ethics and Governance of Artificial Intelligence Fund; a
Google Faculty Award; the Israel Science Foundation (grant 1501/14); the UC Berke-
ley Center for Long-Term Cybersecurity; the US-Israel Binational Science Foundation
(grant 2015780); and donations from the Interchain Foundation and Qtum.

References

1. ZCash Company (2014). https://z.cash/
2. The Zcash Ceremony (2016). https://z.cash/blog/the-design-of-the-ceremony.

html
3. Zero knowledge proof standardization (2017). https://zkproof.org/
4. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-

linear arguments without a trusted setup. In: Proceedings of the 24th ACM Con-
ference on Computer and Communications Security, CCS 2017, pp. 2087–2104
(2017)

5. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998). Prelimi-
nary version in FOCS 1992

6. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998). Preliminary version in FOCS 1992

7. Aumasson, J.-P., Meier, W., Phan, R.C.-W., Henzen, L.: The Hash Function
BLAKE. ISC. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44757-4

8. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5 (2013). https://blake2.net/blake2.pdf

9. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, STOC 1991, pp. 21–32 (1991)

10. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. Comput. Complex. 1, 3–40 (1991). Preliminary version
appeared in FOCS 1990

11. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.:
Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

12. Ben-Sasson, E., et al.: Computational integrity with a public random string from
quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 551–579. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 19

13. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018)

14. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon interactive
Oracle proofs of proximity. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming, ICALP 2018, pp. 14:1–14:17 (2018)

https://z.cash/
https://z.cash/blog/the-design-of-the-ceremony.html
https://z.cash/blog/the-design-of-the-ceremony.html
https://zkproof.org/
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-44757-4
https://blake2.net/blake2.pdf
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-319-56617-7_19

Aurora: Transparent Succinct Arguments for R1CS 125

15. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M.,
Spooner, N.: Zero knowledge protocols from succinct constraint detection. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 172–206. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 6

16. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive Ora-
cle Proofs with constant rate and query complexity. In: Proceedings of the 44th
International Colloquium on Automata, Languages and Programming, ICALP
2017, pp. 40:1–40:15 (2017)

17. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero knowl-
edge from linear-algebraic PCPs. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-
A. LNCS, vol. 9563, pp. 33–64. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49099-0 2

18. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from Bitcoin.
In: Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP 2014,
pp. 459–474 (2014)

19. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

20. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: Proceedings of the 36th
IEEE Symposium on Security and Privacy, S&P 2015, pp. 287–304 (2015)

21. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive Oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016-B. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

22. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 16. Extended version at http://eprint.iacr.org/2014/595

23. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Proceedings of the 23rd USENIX
Security Symposium, Security 2014, pp. 781–796 (2014). Extended version at
http://eprint.iacr.org/2013/879

24. Ben-Sasson, E., Kaplan, Y., Kopparty, S., Meir, O., Stichtenoth, H.: Constant rate
PCPs for Circuit-SAT with sublinear query complexity. In: Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp.
320–329 (2013)

25. Ben-Sasson, E., Kopparty, S., Saraf, S.: Worst-case to average case reductions for
the distance to a code. In: Proceedings of the 33rd ACM Conference on Computer
and Communications Security, CCS 2018, pp. 24:1–24:23 (2018)

26. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes.
Random Struct. Algorithms 28(4), 387–402 (2006)

27. Ben-Sasson, E., Sudan, M.: Short PCPs with Polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008). Preliminary version appeared in STOC 2005

28. Bernstein, D.J., Chou, T.: Faster binary-field multiplication and faster binary-field
MACs. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 92–111.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 6

29. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

https://doi.org/10.1007/978-3-319-70503-3_6
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879
https://doi.org/10.1007/978-3-319-13051-4_6
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18

126 E. Ben-Sasson et al.

30. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their appli-
cation to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 9

31. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

32. Bowe, S., Gabizon, A., Green, M.: A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. Cryptology ePrint Archive, Report
2017/602 (2017)

33. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017)

34. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

35. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: Proceedings of the 39th
IEEE Symposium on Security and Privacy, S&P 2018, pp. 315–334 (2018)

36. Byott, N.P., Chapman, R.J.: Power sums over finite subspaces of a field. Finite
Fields Appl. 5(3), 254–265 (1999)

37. Cantor, D.G.: On arithmetical algorithms over finite fields. J. Comb. Theor. Series
A 50(2), 285–300 (1989)

38. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19, 297–301 (1965)

39. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Proceedings of the 4th Symposium on Innovations
in Theoretical Computer Science, ITCS 2012, pp. 90–112 (2012)

40. Costello, C., et al.: Geppetto: versatile verifiable computation. In: Proceedings of
the 36th IEEE Symposium on Security and Privacy, S&P 2015, pp. 250–273 (2015)

41. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or:
can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

42. eBACS: ECRYPT Benchmarking of Cryptographic Systems: Measurements of hash
functions, indexed by machine (2017). https://bench.cr.yp.to/results-hash.html

43. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and
the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996). Preliminary
version in FOCS 1991

44. Gao, S., Mateer, T.: Additive fast Fourier transforms over finite fields. IEEE Trans.
Inf. Theory 56(12), 6265–6272 (2010)

45. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

46. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Proceedings of the 43rd Annual ACM Symposium on
Theory of Computing, STOC 2011, pp. 99–108 (2011)

47. Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett. 67(4), 205–214 (1998)

https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://bench.cr.yp.to/results-hash.html
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

Aurora: Transparent Succinct Arguments for R1CS 127

48. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for Muggles. J. ACM 62(4), 27:1–27:64 (2015)

49. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). Preliminary version
appeared in STOC 1985

50. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 19

51. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

52. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 20

53. Gueron, S.: Intel carry-less multiplication instruction and its usage for computing
the GCM mode (2011). https://software.intel.com/en-us/articles/intel-carry-less-
multiplication-instruction-and-its-usage-for-computing-the-gcm-mode

54. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.
In: Proceedings of the Twenty-Second Annual IEEE Conference on Computational
Complexity, CCC 2007, pp. 278–291 (2007)

55. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: lim-
itations, simplifications, and applications (2015). http://www.cs.virginia.edu/
∼mohammad/files/papers/ZKPCPs-Full.pdf

56. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 44

57. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp.
723–732 (1992)

58. Lin, S., Al-Naffouri, T.Y., Han, Y.S.: FFT algorithm for binary extension finite
fields and its application to Reed-Solomon codes. IEEE Trans. Inf. Theory 62(10),
5343–5358 (2016)

59. Lin, S., Chung, W.H., Han, Y.S.: Novel polynomial basis and its application to
Reed-Solomon erasure codes. In: Proceedings of the 55th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2014, pp. 316–325 (2014)

60. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-42033-7 3

61. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

62. Meir, O.: Combinatorial PCPs with short proofs. In: Proceedings of the 26th
Annual IEEE Conference on Computational Complexity, CCC 2012 (2012)

63. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). Preliminary version appeared in FOCS 1994

64. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

65. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.
bitcoin.org/bitcoin.pdf

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-642-42033-7_3
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

128 E. Ben-Sasson et al.

66. NIST: Post-quantum cryptography (2016). https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography

67. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 Proceedings of the 34th IEEE Symposium on Security
and Privacy, Oakland, pp. 238–252 (2013)

68. Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In: Proceed-
ings of the 26th Annual ACM Symposium on Theory of Computing, STOC 1994,
pp. 194–203 (1994)

69. Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs for
delegating computation. In: Proceedings of the 48th ACM Symposium on the The-
ory of Computing, STOC 2016, pp. 49–62 (2016)

70. SCIPR Lab: libsnark: a C++ library for zkSNARK proofs. https://github.com/
scipr-lab/libsnark

71. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the
conflict between generality and plausibility in verified computation. In: Proceedings
of the 8th EuoroSys Conference, EuroSys 2013, pp. 71–84 (2013)

72. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
73. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,

Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

74. Thaler, J.: A note on the GKR protocol (2015). http://people.cs.georgetown.edu/
jthaler/GKRNote.pdf

75. Thaler, J., Roberts, M., Mitzenmacher, M., Pfister, H.: Verifiable computation with
massively parallel interactive proofs. CoRR abs/1202.1350 (2012)

76. Wahby, R.S., Howald, M., Garg, S.J., Shelat, A., Walfish, M.: Verifiable ASICs. In:
Proceedings of the 37th IEEE Symposium on Security and Privacy, S&P ’16, pp.
759–778 (2016)

77. Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: Proceedings of
the 24th ACM Conference on Computer and Communications Security, CCS 2017,
pp. 2071–2086 (2017)

78. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and
control flow in verifiable outsourced computation. In: Proceedings of the 22nd
Annual Network and Distributed System Security Symposium, NDSS 2015 (2015)

79. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. Cryptology ePrint Archive, Report 2017/1132
(2017)

80. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015)

81. Wee, H.: On round-efficient argument systems. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 140–152. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 12

82. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: Proceedings
of the 38th IEEE Symposium on Security and Privacy, S&P 2017, pp. 863–880
(2017)

83. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of VSQL. Cryptology ePrint Archive, Report 2017/1146 (2017)

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://doi.org/10.1007/978-3-642-40084-1_5
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
https://doi.org/10.1007/11523468_12

The Double Ratchet: Security Notions,
Proofs, and Modularization for the Signal

Protocol

Joël Alwen2(B), Sandro Coretti1, and Yevgeniy Dodis1

1 New York University, New York, USA
{corettis,dodis}@nyu.edu

2 Wickr Inc., San Francisco, USA
jalwen@wickr.com

Abstract. Signal is a famous secure messaging protocol used by billions
of people, by virtue of many secure text messaging applications including
Signal itself, WhatsApp, Facebook Messenger, Skype, and Google Allo.
At its core it uses the concept of “double ratcheting,” where every mes-
sage is encrypted and authenticated using a fresh symmetric key; it has
many attractive properties, such as forward security, post-compromise
security, and “immediate (no-delay) decryption,” which had never been
achieved in combination by prior messaging protocols.

While the formal analysis of the Signal protocol, and ratcheting in
general, has attracted a lot of recent attention, we argue that none of
the existing analyses is fully satisfactory. To address this problem, we
give a clean and general definition of secure messaging, which clearly
indicates the types of security we expect, including forward security,
post-compromise security, and immediate decryption. We are the first
to explicitly formalize and model the immediate decryption property,
which implies (among other things) that parties seamlessly recover if a
given message is permanently lost—a property not achieved by any of
the recent “provable alternatives to Signal.”

We build a modular “generalized Signal protocol” from the follow-
ing components: (a) continuous key agreement (CKA), a clean primi-
tive we introduce and which can be easily and generically built from
public-key encryption (not just Diffie-Hellman as is done in the current
Signal protocol) and roughly models “public-key ratchets;” (b) forward-
secure authenticated encryption with associated data (FS-AEAD), which
roughly captures “symmetric-key ratchets;” and (c) a two-input hash
function that is a pseudorandom function (resp. generator with input) in
its first (resp. second) input, which we term PRF-PRNG. As a result, in
addition to instantiating our framework in a way resulting in the existing,

J. Alwen—Partially supported by the European Research Council under ERC
Consolidator Grant (682815 - TOCNeT).
S. Coretti—Supported by NSF grants 1314568 and 1319051.
Y. Dodis—Partially supported by gifts from VMware Labs, Facebook and Google, and
NSF grants 1314568, 1619158, 1815546.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 129–158, 2019.
https://doi.org/10.1007/978-3-030-17653-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_5

130 J. Alwen et al.

widely-used Diffie-Hellman based Signal protocol, we can easily get post-
quantum security and not rely on random oracles in the analysis.

1 Introduction

Signal [23] is a famous secure messaging protocol, which is—by virtue of
many secure text messaging applications including Signal itself, WhatsApp [29],
Facebook Messenger [11], Skype [21] and Google Allo [22]—used by billions of
people. At its core it uses the concept of double ratcheting, where every message
is encrypted and authenticated using a fresh symmetric key. Signal has many
attractive properties, such as forward security and post-compromise security,
and it supports immediate (no-delay) decryption. Prior to Signal’s deployment,
these properties had never been achieved in combination by messaging protocols.

Signal was designed by practitioners and was implemented and deployed well
before any security analysis was obtained. In fact, a clean description of Signal
has been posted by its inventors Marlinspike and Perrin [23] only recently. The
write-up does an excellent job at describing the double-ratchet protocol, gives
examples of how it is run, and provides security intuition for its building blocks.
However, it lacks a formal definition of the secure messaging problem that the
double ratchet solves, and, as a result, does not have a formal security proof.

Immediate decryption and its importance. One of the main issues any
messaging scheme must address is the fact that messages might arrive out of
order or be lost entirely. Additionally, parties can be offline for extended periods
of time and send and receive messages asynchronously. Given these inherent con-
straints, immediate decryption is a very attractive feature. Informally, it ensures
that when a legitimate message is (eventually) delivered to the recipient, the
recipient can not only immediately decrypt the message but is also able to place
it in the correct spot in relation to the other messages already received. Further-
more, immediate decryption also ensures an even more critical liveness property,
termed message-loss resilience (MLR) in this work: if a message is permanently
lost by the network, parties should still be able to communicate (perhaps real-
izing at some point that a message has never been delivered). Finally, even in
settings where messages are eventually delivered (but could come out of order),
giving up on immediate decryption seems cumbersome: should out-of-order mes-
sages be discarded or buffered by the recipient? If discarded, how will the sender
(or the network) know that it should resend the message later? If buffered,
how to prevent denial-of-service attacks and distinguish legitimate out-of-order
messages (which cannot be immediately decrypted) from fake messages? While
these questions could surely be answered (perhaps by making additional tim-
ing assumptions about the network), it appears that the simplest answer would
be to design a secure messaging protocol which support immediate decryption.
Indeed, to the best of our knowledge, all secure messaging services deployed in
practice do have this feature (and, hence, MLR).

The Double Ratchet 131

Additional properties. In practice, parties’ states might occasionally leak.
To address this concern, a secure messaging protocol should have the following
two properties:

– Forward secrecy (FS): if the state of a party is leaked, none of the previous
messages should get compromised (assuming they are erased from the state,
of course).

– Post-compromise security (PCS) (aka channel healing): once the exposure of
the party’s state ends, security is restored after a few communication rounds.

In isolation, fulfilling either of these desirable properties is well understood:
FS is achieved by using basic steam ciphers (aka pseudorandom generators
(PRGs)) [4], while PCS [8] is achieved by some form of key agreement executed
after the compromise, such as Diffie-Hellman. Unfortunately, these techniques,
both of which involve some form of key evolution, are clearly at tension with
immediate decryption when the network is fully asynchronous. Indeed, the main
elegance of Signal, achieved by its double-ratchet algorithm, comes from the fact
that FS and PCS are not only achieved together, but also without sacrificing
immediate decryption and MLR.

Goals of this work. One of the main drawbacks of all formal Signal-related
papers [3,10,16,26], following the initial work of [7], is the fact that they all
achieve FS and PCS by explicitly giving up not only on immediate decryption,
but also MLR. (This is not merely a definitional issue as their constructions
indeed cease any and all further functionality when, say, a single message is
dropped in transit.) While such a drastic weakening of the liveness/correctness
property considerably simplifies the algorithmic design for these provably secure
alternatives to Signal, it also made them insufficient for settings where message
loss is indeed possible. This can occur, in practice, due to a variety of reasons.
For example, the protocol may be using an unreliable transport mechanism such
as SMS or UDP. Alternatively, traffic may be routed (via more reliable TCP)
through a central back-end server so as to facilitate asynchronous communica-
tion between end-points (as is very common for secure messaging deployments
in practice). Yet, even in this setting, packet losses can still occur as the server
itself may end up dropping messages due to a variety of unintended events such
as due to outages or being subject to a heavy work/network load (say, because
of an ongoing (D)DOS attack, partial outages, or worse yet, an emergency event
generating sudden high volumes of traffic). With the goal of providing resilient
communication even under these and similar realistic conditions, the main objec-
tives of this work are to:

(a) propose formal definitions of secure messaging as a cryptographic primitive
that explicitly mandates immediate decryption and MLR; and

(b) to provide an analysis of Signal itself in a well-defined general model for
secure messaging.

Our work is the first to address either of these natural goals. Moreover, in order
to improve the general understanding of secure messaging and to develop alter-
native (e.g., post-quantum secure) solutions, this paper aims at

132 J. Alwen et al.

(c) generalizing and abstracting out the reliance on the specific Diffie-Hellman
key exchange (making the current protocol insecure in the post-quantum
world) as well as clarifying the role of various cryptographic hash functions
used inside the current Signal instantiation. That is, the idea is to build a
“generalized Signal” protocol of which the current instantiation is a special
case, but where other instantiations are possible, including those which are
post-quantum secure and/or do not require random oracles.

1.1 Our Results

Addressing the points (a)–(c) above, this paper’s main contributions are the
following:

– Providing a clean definition of secure messaging that clearly indicates the
expected types of security, including FS, PCS, and—for the first time—
immediate decryption.

– Putting forth a modular generalized Signal protocol from several simpler
building blocks:
(1) forward-secure authenticated encryption with associated data (FS-AEAD),

which can be easily built from a regular PRG and AEAD and roughly mod-
els the so-called symmetric-key ratchet of Signal;

(2) continuous key agreement (CKA), which is a clean primitive that can
easily be built generically from public-key encryption and roughly models
the so-called public-key ratchet of Signal;

(3) a two-input hash function, called PRF-PRNG, which is a pseudorandom
function (resp. generator) in its first (resp. second) input and helps to
“connect” the two ratchet types.

– Instantiating the framework such that we obtain the existing Diffie-Hellman-
based protocol and observing that one can easily achieve post-quantum secu-
rity (by using post-quantum-secure public-key encryption, such as [1,6,15])
and/or not rely on random oracles in the analysis.

– Extending the design to include other forms of “fine-grained state com-
promise” recently studied by Poettering and Rösler [26] and Jaeger and
Stepanovs [16] but, once more, without sacrificing the immediate decryption
property.

The secure messaging definition. The proposed secure messaging (SM)
definition encompasses, in one clean game, (Fig. 1) all desired properties, includ-
ing FS as well as PCS and immediate decryption. The attacker in the definition
is very powerful, has full control of the order of sending and receiving messages,
can corrupt parties’ state multiple times, and even controls the randomness used
for encryption.1 In order to avoid trivial and unpreventable attacks, a few restric-
tions need to be placed on an attacker A. In broad strokes, the definition requires
the following properties:
1 Namely, good randomness is only needed to achieve PCS, while all other security

properties hold even with the adversarially controlled randomness (when parties are
not compromised).

The Double Ratchet 133

– When parties are uncompromised, i.e., when their respective states are
unknown to A, the protocol is secure against active attacks. In particular,
the protocol must detect injected ciphertexts (not legitimately sent by one of
the parties) and properly handle legitimate ciphertexts delivered in arbitrary
order (capturing correctness and immediate decryption).

– When parties are uncompromised, messages are protected even against future
compromise of either the sender or the receiver, modeling forward security.

– When one or both parties are compromised and the attacker remains passive,
security is restored “quickly,” i.e., within a few rounds of back-and-forth,
which models PCS.

While the proposed definition is still rather complex, we believe it to be intuitive
and considerably shorter and easier to understand compared to the recent works
of [16,26], which are discussed in more detail in Sect. 1.2.

It should be stressed that the basic SM security in this paper only requires
PCS against a passive attacker. Indeed, when an active attacker compromises the
state of, say, party A, it can always send ciphertexts to the partner B in A’s name
(thereby even potentially hijacking A’s communication with B and removing A
from the channel altogether) or decrypt ciphertexts sent by B immediately fol-
lowing state compromise. As was observed by [16,26] at CRYPTO’18, one might
achieve certain limited forms of fine-grained security against active attacks. For
example, it is not a priori clear if the attacker should be able to decrypt cipher-
texts sent by A to B (if A uses good randomness) or forge legitimate messages
from B to A (when A’s state is exposed). We comment on these possible exten-
sions in the full version of this paper [2] but notice that they are still rather lim-
ited, given that the simple devastating attacks mentioned above are inherently
non-preventable against active attackers immediately following state compro-
mise. Thus, our main SM security notion simply disallows all active attacks for
ΔSM epochs immediately following state compromise where ΔSM is the number
of rounds of communication required to refresh a compromised state.

The building blocks. Since the original Signal protocol is quite subtle and
somewhat tricky to understand, one of the main contributions of this work is
to distill out three basic and intuitive building blocks used inside the double
ratchet.

The first block is forward-secure authenticated encryption with associated
data (FS-AEAD) and models secure messaging security inside a single so-called
epoch; an epoch should be thought of as a unidirectional stream of messages sent
by one of the parties, ending once a message from the other party is received.
As indicated by the name, an FS-AEAD protocol must provide forward secrecy,
but also immediate decryption. Capturing this makes the definition of FS-AEAD
somewhat non-trivial (cf. Fig. 3), but still simpler than that of general SM; in
particular, no PCS is required (which allows us to define FS-AEAD as a deter-
ministic primitive and not worry about poor randomness).

Building FS-AEAD turns out to be rather easy: in essence, one uses message
counters as associated data for standard AEAD and a PRG to immediately

134 J. Alwen et al.

refresh the secret key of AEAD after every message successfully sent or received.
This is exactly what is done in Signal.

The second block is a primitive called continuous key agreement (CKA) (cf.
Fig. 2), which could be viewed as an abstraction of the DH-based public-key
ratchet in Signal. CKA is a synchronous and passive primitive, i.e., parties A
and B speak in turns, and no adversarial messages or traffic mauling are allowed.
With each message sent or received, a party should output a fresh key such that
(with “sending” keys generated by A being equal to “receiving” keys gener-
ated by B and vice versa). Moreover, CKA guarantees its own PCS, i.e., after
a potential state exposure, security is restored within two rounds. Finally, CKA
must be forward-secure, i.e., past keys must remain secure when the state is
leaked. Forward security is governed by a parameter ΔCKA ≥ 0, which, infor-
mally, guarantees that all keys older than ΔCKA rounds remain secure upon
state compromise.

Not surprisingly, minimizing ΔCKA results in faster PCS for secure messag-
ing.2 Fortunately, optimal CKA protocols achieving optimal ΔCKA = 0 can be
built generically from key-encapsulation mechanisms. Interestingly, the elegant
DH-based CKA used by Signal achieves slightly sub-optimal ΔCKA = 1, which
is due to how long parties need to hold on to their secret exponents. However,
the Signal CKA saves about a factor of 2 in communication complexity, which
makes it a reasonable trade-off in practice.

The third and final component of the generalized Signal protocol is a two-
argument hash function P, called a PRF-PRNG, which is used to produce secret
keys for FS-AEAD epochs from an entropy pool refreshed by CKA keys. More
specifically, with each message exchanged using FS-AEAD, the parties try to run
the CKA protocol “on the side,” by putting the CKA messages as associated
data. Due to asynchrony, the party will repeat a given CKA message until it
receives a legitimate response from its partner, after which the CKA moves
forward with the next message. Each new CKA key is absorbed into the state
of the PRF-PRNG, which is then used to generate a new FS-AEAD key.

Informally, a PRF-PRNG takes as inputs a state σ and a CKA key I and
produces a new state σ′ and a (FS-AEAD) key k. It satisfies a PRF property
saying that if σ is random, then P(σ, ·) acts like a PRF (keyed by σ) in that
outputs (σ′, k) on adversarially chosen inputs I are random. Moreover, it also
acts like a PRNG in that, if the input I is random, then so are the resulting
state σ′ and key k. Observe that standard hash functions are assumed to satisfy
this notion; alternatively, one can also very easily build a PRF-PRNG from any
PRG and a pseudorandom permutation (cf. Sect. 4.3).

Generalized signal. Putting the above blocks together properly yields the
generalized Signal protocol (cf. Fig. 6). As a special case, one can easily obtain the
existing Signal implementation3 by using the standard way of building FS-AEAD

2 Specifically, the healing time of the generic Signal protocol presented in this work is
ΔSM = 2 + ΔCKA.

3 For syntactic reasons having to do with our abstractions, our protocol is a minor
variant of Signal, but is logically equivalent to Signal in every aspect.

The Double Ratchet 135

from PRG and AEAD, CKA using the Diffie-Hellman based public-key ratchet
mentioned above, and an appropriate cryptographic hash function in place of
PRF-PRNG. However, many other variants become possible. For example, by
using a generic CKA from DH-KEM, one may trade communication efficiency
(worse by a factor of 2) for a shorter healing period ΔSM (from 3 rounds to 2).
More interestingly, using any post-quantum KEM, such as [1,6,15] results in a
post-quantum secure variant of Signal. Finally, we also believe that our general-
ized double ratcheting scheme is much more intuitive than the existing DH-based
variant, as it abstracts precisely the cryptographic primitives needed, including
the two types ratchets, and what security is needed from each primitive.

Beyond double ratcheting to full signal. Following most of the prior
(and concurrent) work [3,10,16,26] (discussed in the next section), this paper
primarily concerned with formalizing the double-ratchet aspect of the Signal
protocol. This assumes that any set of two parties can correctly and securely
agree on the initial secret key. The latter problem is rather non-trivial, especially
(a) in the multi-user setting, when a party could be using a global public key
to communicate with multiple recipients, some of which might be malicious,
(b) when the initial secret key agreement is required to be non-interactive, and
(c) when state compromise (including that of the master secret for the PKI) is
possible, and even frequent. Some of those subtleties are discussed and analyzed
by Cohn-Gordon et al. [7], but, once again, in a manner specific to the existing
Signal protocol (rather than a general secure messaging primitive). Signal also
suggests using the X3DH protocol [24] as one particular way to generate the
initial shared key. Certainly, studying (and even appropriately defining) secure
messaging without idealized setup, and analyzing “full Signal” in this setting,
remains an important area for future research.

1.2 Related Work

The OTR (off-the-record) messaging protocol [5] is an influential predecessor of
Signal, which was the first to introduce the idea of the DH-based double ratchet
to derive fresh keys for each encrypted message. However, it was mainly suitable
for synchronous back-and-fourth conversations, so Signal’s double ratchet algo-
rithm had to make a number of non-trivial modifications to extend the beautiful
OTR idea into a full-fledged asynchronous messaging protocol.

Following the already discussed rigorous description of DH-based double
ratcheting by Marlinspike and Perrin [23], and the protocol-specific analysis
by Cohn-Gordon et al. [7], several formal analyses of ratcheting have recently
appeared [3,10,16,26]; they design definitions of various types of ratcheting and
provide schemes meeting these definitions. As previously mentioned, all these
works have the drawback of no longer satisfying immediate decryption.

Bellare et al. [3] looked at the question of unidirectional ratcheting. In this
simplified variant of double (or bidirectional) ratcheting, the receiver is never
corrupted, and never needs to update its state. Coupled with giving up imme-
diate decryption, this allowed the authors to obtain a rather simple solution

136 J. Alwen et al.

Unfortunately, extending their ideas to the case of bidirectional communication
appeared non-trivial and was left to future work.

Bidirectionality has been achieved in work by Jaeger and Stepanovs [16]
and Poettering and Rösler [26]. The papers differ in syntax (one treats secure
messaging while the other considers key exchange) and hence use different defi-
nitions. However, in spirit both papers attempt to model a bidirectional channel
satisfying FS and PCS (but not immediate decryption). Moreover, both consider
“fine-grained” PCS requirements which are not met by Signal’s double ratchet
protocol (and not required by the SM definition in this work). The extra secu-
rity appears to come at a steep price: both papers use growing (and potentially
unbounded) state as well as heavy techniques from public-key cryptography,
including hierarchical identity-based encryption [12] (HIBE). More discussion
can be found in the full version of this paper [2], including an (informally
stated) extension to Signal which achieves a slightly weaker form of fine-grained
compromise than [16,26], yet still using only constant sized states, bandwidth
and computation as well as comparatively lightweight primitives.

Finally, the notion of immediate decryption is reminiscent in spirit to the
zero round trip time (0-RTT) communication with forward secrecy which was
recently studied by [9,14]. However, the latter primitive is stateless on the sender
side, making it more difficult to achieve (e.g., the schemes of [9,14] use a heavy
tool called puncturable encryption [13]).

Concurrent and Independent Work. We have recently become aware of
two concurrent and independent works by Durak and Vaudenay [10] and Jost,
Maurer and Mularczyk [17]. Like other prior works, these works (1) designed
their own protocols and did not analyze Signal; and (2) do not satisfy imme-
diate decryption or even message-loss resilience (in fact, they critically rely on
receiving messages from one party in order). Both works also provide formal
notions of security, including privacy, authenticity, and a new property called
unrecoverability by [10] and post-impersonation authentication by [17]: if an
active attacker sends a fake message to the recipient immediately following state
compromise of the sender, the sender can, by design, never recover (and, thus,
will notice the attack by being unable to continue the conversation).

2 Preliminaries

2.1 Game-Based Security and Notation

All security definitions in this work are game-based, i.e., they consider games
executed between a challenger and an adversary. The games have one of the
following formats:

– Unpredictability games: First, the challenger executes the special init proce-
dure, which sets up the game. Subsequently, the attacker is given access to a
set of oracles that allow it to interact with the scheme in question. The goal
of the adversary is to provoke a particular, game-specific winning condition.

The Double Ratchet 137

The advantage of an adversary A against construction C in an unpredictabil-
ity game ΓC is

AdvC
Γ (A) := P[A wins ΓC] .

– Indistinguishability games: In addition to setting up the game, the init proce-
dure samples a secret bit b ∈ {0, 1}. The goal of the adversary is to determine
the value of b. Once more, upon completion of init, the attacker interacts
arbitrarily with all available oracles up to the point where it outputs a guess
bit b′. The adversary wins the game if b = b′. The advantage of an adversary
A against construction C in an indistinguishability game Γ is

AdvC
Γ (A) := 2 · ∣

∣P[A wins ΓC] − 1/2
∣
∣ .

With the above in mind, to describe a any security (or correctness) notion, one
need only specify the init oracle and the oracles available to A. The following
special keywords are used to simplify the exposition of the security games:

– req is followed by a condition; if the condition is not satisfied, the oracle/pro-
cedure containing the keyword is exited and all actions by it are undone.

– win is used to declare that the attacker has won the game; it can be used for
both types of games above.

– end disables all oracles and returns all values following it to the attacker.

Moreover, the descriptions of some games/schemes involve dictionaries. For ease
of notation, these dictionaries are described with the array-notation described
next, but it is important to note that they are to be implemented by a data struc-
ture whose size grows (linearly) with the number of elements in the dictionary
(unlike arrays):

– Initialization: The statement D[·] ← λ initializes an empty dictionary D.
– Adding elements: The statement D[i] ← v adds a value v to dictionary D

with key i, overriding the value previously stored with key i if necessary.
– Retrieval: The expression D[i] returns the value v with key i in the dictionary;

if there are no values with key i, the value λ is returned.
– Deletion: The statement D[i] ← λ deletes the value v corresponding to key i.

Finally, sometimes the random coins of certain probabilistic algorithms are made
explicit. For example, y ← A(x; r) means that A, on input x and with random
tape r, produces output y. If r is not explicitly stated, is assumed to be chosen
uniformly at random; in this case, the notation y ←$ A(x) is used.

138 J. Alwen et al.

2.2 Cryptographic Primitives

This paper makes use of the following cryptographic primitives:

AEAD. An authenticated encryption with associated data (AEAD) scheme is
a pair of algorithms AE = (Enc,Dec) with the following syntax:

– Encryption: Enc takes a key K, associated data a, and a message m and
produces a ciphertext e ← Enc(K, a,m).

– Decryption: Dec takes a key K, associated data a, and a ciphertext e and
produces a message m ← Dec(K, a, e).

All AEAD schemes in this paper are assumed to be deterministic, i.e., all ran-
domness stems from the key K.

KEMs. A key-encapsulation mechanism (KEM) is a public-key primitive con-
sisting of three algorithms KEM = (KG,Enc,Dec) with the following syntax:

– Key generation: KG takes a (implicit) security parameter and outputs a fresh
key pair (pk, sk) ←$ KG.

– Encapsulation: Enc takes a public key pk and produces a ciphertext and a
symmetric key (c, k) ←$ Enc(pk).

– Decapsulation: Dec takes a secret key sk and a ciphertext c and recovers the
symmetric key k ← Dec(sk, c).

3 Secure Messaging

A secure messaging (SM) scheme allows two parties A and B to communicate
securely bidirectionally and is expected to satisfy the following informal require-
ments:

– Correctness: If no attacker interferes with the transmission, B outputs the
messages sent by A in the correct order and vice versa.

– Immediate decryption and message-loss resilience (MLR): Messages must be
decrypted as soon as they arrive and may not be buffered; if a message is
lost, the parties do not stall.

– Authenticity: While the parties’ states are uncompromised (i.e., unknown to
the attacker), the attacker cannot change the messages sent by them or inject
new ones.

– Privacy: While the parties’ states are uncompromised, an attacker obtains no
information about the messages sent.

– Forward secrecy (FS): All messages sent and received prior to a state com-
promise of either party (or both) remain hidden to an attacker.

– Post-compromise security (PCS, aka “healing”): If the attacker remains pas-
sive (i.e., does not inject any corrupt messages), the parties recover from a
state compromise (assuming each has access to fresh randomness).

The Double Ratchet 139

– Randomness leakage/failures: While the parties’ states are uncompromised,
all the security properties above except PCS hold even if the attacker com-
pletely controls the parties’ local randomness. That is, good randomness is
only required for PCS.

This section presents the syntax of and a formal security notion for SM schemes.

3.1 Syntax

Formally, an SM scheme consists of two initialization algorithms, which are given
an initial shared key k, as well as a sending algorithm and a receiving algorithm,
both of which keep (shared) state across invocations. The receiving algorithm
also outputs a so-called epoch number and an index, which can be used to
determine the order in which the sending party transmitted their messages.

Definition 1. A secure-messaging (SM) scheme consists of four probabilistic
algorithms SM = (Init-A, Init-B,Send,Rcv), where

– Init-A (and similarly Init-B) takes a key k and outputs a state sA ← Init-A(k),
– Send takes a state s and a message m and produces a new state and a cipher-

text (s′, c) ←$ Send(s,m), and
– Rcv takes a state s and a ciphertext c and produces a new state, an epoch

number, an index, and a message (s′, t, i,m) ← Rcv(s, c).

3.2 Security

Basics. The security notion for SM schemes considered in this paper is intuitive
in principle. However, formalizing it is non-trivial and somewhat cumbersome
due to a number of subtleties that naturally arise and cannot be avoided if the
criteria put forth at the beginning of Sect. 3 are to be met. Therefore, before
presenting the definition itself, this section introduces some basic concepts that
will facilitate understanding of the definition.

Epochs. SM schemes proceed in so-called epochs, which roughly correspond
the “back-and-forth” between the two parties A and B. By convention, odd
epoch numbers t are associated with A sending and B receiving, and the other
way around for even epochs. Note, however, that SM schemes are completely
asynchronous, and, hence, epochs overlap to a certain extent. Correspondingly,
consider two epoch counters tA and tB for A and B, respectively, satisfying the
following properties:

– The two counters are never more than one epoch apart, i.e., |tA − tB| ≤ 1 at
all times.

– When A receives an epoch-t message from B for t = tA + 1, it sets tA ← t
(even). The next time A sends a message, tA is incremented again (to an odd
value).

– Similarly, when B receives an epoch-t message from A for t = tB + 1, it sets
tB ← t (odd). The next time B sends a message, tB is incremented again (to
an even value).

140 J. Alwen et al.

Message indices. Within an epoch, messages are identified by a simple
counter. To capture the property of immediate decryption and MLR, the receive
algorithm of an SM scheme is required to output the correct epoch number and
index immediately upon reception of a ciphertext, even when messages arrive
out of order.

Corruptions and their consequences. Since SM schemes are required to
be forward-secure and to recover from state compromise, any SM security game
must allow the attacker to learn the state of either party at any given time.
Moreover, to capture authenticity and privacy, the attacker should be given the
power to inject malicious ciphertexts and to call a (say) left-or-right challenge
oracle, respectively. These requirements, however, interfere as follows:

– When either party is in a compromised state, the attacker cannot invoke the
challenge oracle since this would allow him to trivially distinguish.

– When either party is in a compromised state, the attacker can trivially forge
ciphertexts and must therefore be barred from calling the inject oracle.

– When the receiver of messages in transmission is compromised, these mes-
sages lose all security, i.e., the attacker learns their content and can replace
them by a valid forgery. Consequently, while any challenge ciphertext is in
transmission, the recipient may not be corrupted. Similarly, an SM scheme
must be able to deal with forgeries of compromised messages (once the parties
have healed).

These issues require that the security definition keep track of ciphertexts in
transmission, of challenge ciphertexts, and of compromised ciphertexts; this will
involve some (slightly cumbersome) record keeping.

Natural SM schemes. For simplicity, SM schemes in this work are assumed
to satisfy the natural requirements below.4

Definition 2. An SM scheme SM = (Init-A, Init-B,Send,Rcv) is natural if the
following criteria are satisfied:

(A) Whenever Rcv outputs m = ⊥, the state remains unchanged.
(B) Any given ciphertext corresponds to an epoch t and an index i, i.e., the

values (t, i) output by Rcv are an (efficiently computable) function of c.
(C) Algorithm Rcv never accepts two messages corresponding to the same pair

(t, i).
(D) A party always rejects ciphertexts corresponding to an epoch in which the

party does not act as receiver
(E) If a party, say A, accepts a ciphertext corresponding to an epoch t, then

tA ≥ t − 1.

The Security Game. The security game, which is depicted in Fig. 1, consists
of an initialization procedure init and of

4 The reader may skip over this definition on first read. The properties are referenced
where they are needed.

The Double Ratchet 141

– two “send” oracles, transmit-A (normal transmission) and chall-A (chal-
lenge transmission);

– two “receive” oracles, deliver-A (honest delivery) and inject-A (for forged
ciphertexts); and

– a corrupt oracle corr-A

pertaining to party A, and of the corresponding oracles pertaining to B. More-
over, Fig. 1 also features an epoch-management function ep-mgmt, a func-
tion sam-if-nec explained below, and two record-keeping functions record
and delete; these functions cannot be called by the attacker. The game is
parametrized by ΔSM, which relates to how fast parties recover from a state
compromise. All components are explained in detail below, following the intu-
ition laid out above.

The advantage of A against an SM scheme SM is denoted by AdvSM
sm,ΔSM

(A).
The attacker is parameterized by its running time t, the total number of queries
q it makes, and the maximum number of epochs qep it runs for.

Definition 3. A secure-messaging scheme SM is (t, q, qep,ΔSM, ε)-secure if for
all (t, q, qep)-attackers A,

AdvSM
sm,ΔSM

(A) ≤ ε .

Initialization and state. The initialization procedure chooses a random key
and initializes the states sA and sB of A and B, respectively. Moreover, it defines
several variables to keep track of the execution: (1) tA and tB are the epoch
counters for A and B, respectively; (2) variables iA and iB count how many
messages have been sent by each party in their respective current epochs; (3) tL
records the last time either party’s state was leaked to the attacker and is used,
together with tA and tB, to preclude trivial attacks; (4) the sets trans, chall,
and comp will contain records and allow to track ciphertexts in transmission,
challenge ciphertexts, and compromised ciphertexts, respectively; (5) the bit b
is used to create the challenge.

Sampling if necessary. The send oracles transmit-A and chall-A allow the
attacker to possibly control the random coins r of Send. If r = ⊥, the function
samples r ←$ R (from some appropriate set R), and returns (r, good), where
good indicates that fresh randomness is used. If, on the other hand, r �= ⊥,
the function returns (r, bad), indicating, via bad, that adversarially controlled
randomness is used.

Epoch management. The epoch management function ep-mgmt advances
the epoch of the calling party if that party’s epoch counter has a “receiving
value” (even for A; odd for B) and resets the index counter. The flag argument
is to indicate whether fresh or adversarial randomness is used. If a currently
corrupted party starts a new epoch with bad randomness, the new epoch is
considered corrupted. However, if it does not start a new epoch, bad randomness
does not make the ciphertext corrupted. This captures that randomness should
only be used for PCS (but for none of the other properties mentioned above).

142 J. Alwen et al.

Fig. 1. Oracles corresponding to party A of the SM security game for a scheme SM =
(Init-A, Init-B, Send,Rcv); the oracles for B are defined analogously.

Record keeping. The game keeps track of ciphertexts in transmission, of
challenge ciphertexts, and of compromised ciphertexts. Records have the format
(P, tP, iP,m, c), where P is the sender, tP the epoch in which the message was
sent, iP the index within the epoch, m the message itself, and c the ciphertext.

Whenever record is called, the new record is added to the set trans. If a
party is not in a safe state, the record is also added to the set of compromised
ciphertexts comp. If the function is called with flag = chall, the record is added to

The Double Ratchet 143

chall. The function delete takes an epoch number and an index and removes the
corresponding record from all three record keeping sets trans, chall, and comp.

Sometimes, it is convenient to refer to a particular record (or a set thereof)
by only specifying parts of it. For example, the expression B /∈ chall is equivalent
to there not being any record (B, ∗, ∗, ∗, ∗) in the set chall. Similarly, trans(B) is
the set of all records of this type in trans.

Send oracles. Both send oracles, transmit-A and chall-A, begin with
sam-if-nec, which samples fresh randomness if necessary, followed by a call to
ep-mgmt. Observe that the flag argument is set to flag ← good by sam-if-nec
if fresh randomness is used, and to flag ← bad otherwise. Subsequently:

– transmit-A increments iA, executes Send, and creates a record using flag =
norm, indicating that this is not a challenge ciphertext. Observe that if A is
not currently in a safe state, the record is added to comp.

– chall-A works similarly to transmit-A, except that one of the two inputs
is selected according to b, and the record is saved with flag = chall, which
will cause it to be added to the challenges chall. Note that chall-A can only
be called when A is not in a compromised state, which is captured by the
statement req safe-chA.

The oracles for B are defined analogously.

Receive oracles. Two oracles are available by which the attacker can get A
to receive a ciphertext: deliver-A is intended for honest delivery, i.e., to deliver
ciphertexts created by B, whereas inject-A is used to inject forgeries. These
rules are enforced by checking (via req) the set trans.

– deliver-A: The ciphertext is first passed through Rcv, which must correctly
identify the values t, i, and m recorded when c was created; if it fails to do
so, the correctness property is violated and the attacker immediately wins
the game. In case c was a challenge, the decrypted message is replaced by
⊥ in order to avoid trivial attacks. Before returning the output of Rcv, tA is
incremented if t is larger than tA, and the record corresponding to c is deleted.

– inject-A: Again, the ciphertext is first passed through Rcv. Unless the cipher-
text corresponds5 to (t, i) ∈ comp, algorithm Rcv must reject it; otherwise,
authenticity is violated and the attacker wins the game. The final instructions
are as in deliver-A. Oracle inject-A may only be called if neither party is
currently recovering from state compromise, which is taken care of by flag
safe-inj.

The oracles for B are defined analogously.
By deleting records at the end of deliver-A and inject-A, the game enforces

that no replay attacks take place. For example, if a ciphertext c that at some
point is in trans is accepted twice, the second time counts as a forgery. Similarly,

5 cf. Property (B) in Definition 2.

144 J. Alwen et al.

if two forgeries for a compromised pair (t, i) are accepted, the attacker wins
as well. Note, however, that natural schemes do not allow replay attacks (cf.
Property (C) in Definition 2).

Corruption oracles. The corruption oracle for A, corr-A, can be called
whenever no challenges are in transit from B to A, i.e., when B /∈ chall. If cor-
ruption is allowed, all ciphertexts in transit sent by B become compromised.
Before returning A’s state, the oracle updates the time of the most recent cor-
ruption. The corruption oracle chall-B for B is defined similarly.

4 Building Blocks

The SM scheme presented in this work is a modular construction and uses
three components: continuous key-agreement (CKA), forward-secure authenti-
cated encryption with associated data (FS-AEAD) and—for lack of a better
name—PRF-PRNGs. These primitives are presented in isolation in this section
before combining them into an SM scheme in Sect. 5.

4.1 Continuous Key Agreement

This work distills out the public-ratchet part of the Signal protocol and casts it
as a separate primitive called continuous key agreement (CKA). This step is not
only useful to improve the intuitive understanding of the various components of
the Signal protocol and their interdependence, but it also increases modularity,
which, for example, would—once the need arises—allow to replace the current
CKA mechanism based on DDH by one that is post-quantum secure.

Defining CKA. At a high level, CKA is a synchronous two-party protocol
between A and B. Odd rounds i consist of A sending and B receiving a message
Ti, whereas in even rounds, B is the sender and A the receiver. Each round i
also produces a key Ii, which is output by the sender upon sending Ti and by
the receiver upon receiving Ti.

Definition 4. A continuous-key-agreement (CKA) scheme is a quadruple of
algorithms CKA = (CKA-Init-A,CKA-Init-B,CKA-S,CKA-R), where

– CKA-Init-A (and similarly CKA-Init-B) takes a key k and produces an initial
state γA ← CKA-Init-A(k) (and γB),

– CKA-S takes a state γ, and produces a new state, message, and key (γ′, T, I) ←
$ CKA-S(γ), and

– CKA-R takes a state γ and message T and produces new state and a key
(γ′, I) ← CKA-R(γ, T).

Denote by K the space of initialization keys k and by I the space of CKA keys I.

The Double Ratchet 145

Fig. 2. Oracles corresponding to party A of the CKA security game for a scheme CKA =
(CKA-Init-A,CKA-Init-B,CKA-S,CKA-R); the oracles for B are defined analogously.

Correctness. A CKA scheme is correct if in the security game in Fig. 2
(explained below), A and B always, i.e., with probability 1, output the same key
in every round.

Security. The basic property a CKA scheme must satisfy is that conditioned
on the transcript T1, T2, . . ., the keys I1, I2, . . . look uniformly random and inde-
pendent. An attacker against a CKA scheme is required to be passive, i.e., may
not modify the messages Ti. However, it is given the power to possibly (1) con-
trol the random coins used by the sender and (2) leak the current state of either
party. Correspondingly, the keys Ii produced under such circumstances need not
be secure. The parties are required to recover from a state compromise within 2
rounds.6

The formal security game for CKA is provided in Fig. 2. It begins with a call
to the init oracle, which samples a bit b, initializes the states of both parties,
and defines epoch counters tA and tB. Procedure init takes a value t∗, which
determines in which round the challenge oracle may be called.

Upon completion of the initialization procedure, the attacker gets to interact
arbitrarily with the remaining oracles, as long as the calls are in a “ping-pong”
order, i.e., a call to a send oracle for A is followed by a receive call for B, then
by a send oracle for B, etc. The attacker only gets to use the challenge oracle
for epoch t∗. No corruption or using bad randomness (send-A’ and send-B’)
is allowed less than two epochs before the challenge is sent (allow-corr).

6 Of course, one could also parametrize the number of rounds required to recover (all
CKA schemes in this work recover within two rounds, however).

146 J. Alwen et al.

The game is parametrized by ΔCKA, which stands for the number of epochs
that need to pass after t∗ until the states do not contain secret information
pertaining to the challenge. Once a party reaches epoch t∗ +ΔCKA, its state may
be revealed to the attacker (via the corresponding corruption oracle). The game
ends (not made explicit) once both states are revealed after the challenge phase.
The attacker wins the game if it eventually outputs a bit b′ = b.

The advantage of an attacker A against a CKA scheme CKA with ΔCKA = Δ
is denoted by AdvCKA

ror,Δ(A). The attacker is parameterized by its running time t.

Definition 5. A CKA scheme CKA is (t,Δ, ε)-secure if for all t-attackers A,

AdvCKA
ror,Δ(A) ≤ ε .

Instantiating CKA. This paper presents several instantiations of CKA: First,
a generic CKA scheme with Δ = 0 based on any key-encapsulation mechanism
(KEM). Then, by considering the ElGamal KEM and observing that an encap-
sulated key can be “reused” as public key, one obtains a CKA scheme based
on the decisional Diffie-Hellman (DDH) assumption, where the scheme saves a
factor of 2 in communication compared to a straight-forward instantiation of the
generic scheme. However, the scheme has Δ = 1.

CKA from KEMs. A CKA scheme with Δ = 0 can be built from a KEM in
natural way: in every epoch, one party sends a public key pk of a freshly generated
key pair and an encapsulated key under the key pk′ received from the other party
in the previous epoch. Specifically, consider a CKA scheme CKA = (CKA-Init-A,
CKA-Init-B,CKA-S,CKA-R) that is obtained from a KEM KEM as follows:

– The initial shared state k = (pk, sk) consists of a (freshly generated) KEM
key pair. The initialization for A outputs pk ← CKA-Init-A(k) and that for B
outputs sk ← CKA-Init-B(k).

– The send algorithm CKA-S takes as input the current state γ = pk and
proceeds as follows: It
1. encapsulates a key (c, I) ←$ Enc(pk);
2. generates a new key pair (pk, sk) ←$ KG;
3. sets the CKA message to T ← (c, pk);
4. sets the new state to γ ← sk; and
5. returns (γ, T, I).

– The receive algorithm CKA-R takes as input the current state γ = sk as well
as a message T = (c, pk) and proceeds as follows: It
1. decapsulates the key I ← Dec(sk, c);
2. sets the new state to γ ← pk; and
3. returns (γ, I).

The full version of this paper [2] shows that the above scheme is a secure CKA
protocol by reducing its security to that of the underlying KEM.

The Double Ratchet 147

CKA from DDH. Observe that if one instantiates the above KEM-based
CKA scheme with the ElGamal KEM over some group G, both the public key
and the encapsulated key are elements of G. Hence, the Signal protocol uses
an optimization of the ElGamal KEM where a single group element first serves
as an encapsulated key sent by, say, A and then as the public key B uses to
encapsulate his next key. Interestingly, this comes at the price of having Δ = 1
(as opposed to Δ = 0) due to the need for parties to hold on to their exponents
(which serve both as secret keys and encapsulation randomness) longer.

Concretely, a CKA scheme CKA = (CKA-Init-A,CKA-Init-B,CKA-S,CKA-R)
can be obtained from the DDH assumption7 in a cyclic group G = 〈g〉 as follows:

– The initial shared state k = (h, x0) consists of a (random) group element
h = gx0 and its discrete logarithm x0. The initialization for A outputs h ←
CKA-Init-A(k) and that for B outputs x0 ← CKA-Init-B(k).

– The send algorithm CKA-S takes as input the current state γ = h and proceeds
as follows: It
1. chooses a random exponent x;
2. computes the corresponding key I ← hx;
3. sets the CKA message to T ← gx;
4. sets the new state to γ ← x; and
5. returns (γ, T, I).

– The receive algorithm CKA-R takes as input the current state γ = x as well
as a message T = h and proceeds as follows: It
1. computes the key I = hx;
2. sets the new state to γ ← h; and
3. returns (γ, I).

The full version of this paper [2] shows that the above scheme is a secure CKA
protocol if the DDH assumption holds in group G.

4.2 Forward-Secure AEAD

Defining FS-AEAD. Forward-secure authenticated encryption with associated
data is a stateful primitive between a sender A and a receiver B and can be
considered a single-epoch variant of an SM scheme, a fact that is also evident
from its security definition, which resembles that of SM schemes.

Definition 6. Forward-secure authenticated encryption with associated data
(FS-AEAD) is a tuple of algorithms FS-AEAD = (FS-Init-S,FS-Init-R,FS-Send,
FS-Rcv), where

– FS-Init-S (and similarly FS-Init-R) takes a key k and outputs a state vA ←
FS-Init-S(k),

7 The DDH assumption states that it is hard to distinguish DH triples (ga, gb, gab) from
random triples (ga, gb, gc), where a, b, and c are uniformly random and independent
exponents.

148 J. Alwen et al.

– FS-Send takes a state v, associated data a, and a message m and produces a
new state and a ciphertext (v′, e) ← FS-Send(v, a,m), and

– FS-Rcv takes a state v, associated data a, and a ciphertext e and produces a
new state, an index, and a message (v′, i,m) ← FS-Rcv(v, a, e).

Observe that all algorithms of an FS-AEAD scheme are deterministic.

Memory management. In addition to the basic syntax above, it is useful to
define the following two functions FS-Stop (called by the sender) and FS-Max
(called by the receiver) for memory management:

– FS-Stop, given an FS-AEAD state v, outputs how many messages have been
received and then “erases” the FS-AEAD session corresponding to v form
memory; and

– FS-Max, given a state v and an integer �, remembers � internally such that
the session corresponding to v is erased from memory as soon as � messages
have been received.

These features will be useful in the full protocol (cf. Sect. 5) to be able to termi-
nate individual FS-AEAD sessions when they are no longer needed. Providing
a formal requirement for these additional functions is omitted. Moreover, since
an attacker can infer the value of the message counter from the behavior of
the protocol anyway, there is no dedicated oracle included in the security game
below.

Correctness and security. Both correctness and security are built into
the security game depicted in Fig. 3. The game is the single-epoch analogue of
the SM security game (cf. Fig. 1) and therefore has similarly defined oracles
and similar record keeping. A crucial difference is that as soon as the receiver
B is compromised, the game ends with a full state reveal as no more security
can be provided. If only the sender A is compromised, the game continues and
uncompromised messages must remain secure.

The advantage of an attacker A against an FS-AEAD scheme FS-AEAD is
denoted by the expression AdvFS-AEAD

fs-aead (A). The attacker is parameterized by its
running time t and the total number of queries q it makes.

Definition 7. An FS-AEAD scheme FS-AEAD is (t, q, ε)-secure if for all (t, q)-
attackers A,

AdvFS-AEAD
fs-aead (A) ≤ ε .

Instantiating FS-AEAD. An FS-AEAD scheme can be easily constructed
from two components:

– an AEAD scheme AE = (Enc,Dec), and
– a PRG G : W → W × K, where K is the key space of the AEAD scheme.

The Double Ratchet 149

Fig. 3. Oracles corresponding to party A of the FS-AEAD security game for a scheme
FS-AEAD = (FS-Init-S,FS-Init-R,FS-Send,FS-Rcv); the oracles for B are defined analo-
gously.

The scheme is described in Fig. 4. For simplicity the states of sender A and
receiver B are is not made explicit; it consists of the variables set during ini-
tialization. The main idea of the scheme, is that the A and B share the state
w of a PRG G. State w is initialized with a pre-shared key k ∈ W, which is
assumed to be chosen uniformly at random. Both parties keep local counters iA
and iB, respectively.8 A, when sending the ith message m with associated data
(AD) a, uses G to expand the current state to a new state and an AEAD key
(w,K) ← G(w) and computes an AEAD encryption under K of m with AD
h = (i, a).

Since B may receive ciphertext out of order, whenever he receives a cipher-
text, he first checks whether the key is already stored in a dictionary D. If the
index of the message is higher than expected (i.e., larger than iB + 1), B skips
the PRG ahead and stores the skipped keys in D. In either case, once the key is

8 For ease of description, the FS-AEAD state of the parties is not made explicit as a
variable v.

150 J. Alwen et al.

Fig. 4. FS-AEAD scheme based on AEAD and a PRG.

obtained, it is used to decrypt. If decryption fails, FS-Rcv throws an exception
(error), which causes the state to be rolled back to where it was before the call
to FS-Rcv.

In the full version of this work [2], it is shown that, based on the security of
the AEAD scheme and the PRG, the above yields a secure FS-AEAD scheme.

4.3 PRF-PRNGs

Defining PRF-PRNGs. A PRF-PRNG resembles both a pseudo-random
function (PRF) and a pseudorandom number generator with input (PRNG)—
hence the name. On the one hand, as a PRNG would, a PRF-PRNG (1) repeat-
edly accepts inputs I and uses them to refresh its state σ and (2) occasionally
uses the state, provided it has sufficient entropy, to derive a pseudo-random
pair of output R and new state; for the purposes of secure messaging, it suffices
to combine properties (1) and (2) into a single procedure. On the other hand,
a PRF-PRNG can be used as a PRF in the sense that if the state has high
entropy, the answers to various inputs I on the same state are indistinguishable
from random and independent values.

Definition 8. A PRF-PRNG is a pair of algorithms P = (P-Init,P-Up), where

– P-Init takes a key k and produces a state σ ← P-Init(k), and
– P-Up takes a state σ and an input I and produces a new state and an output

(σ′, R) ← P-Up(σ, I).

Security. The simple intuitive security requirement for a double-seed PRG is
that P-Init(σ, I) produce a pseudorandom value if the state σ is uncorrupted (i.e.,
has high entropy) or the input I is chosen uniformly from some set S. Moreover,
if the state is uncorrupted, it should have the PRF property described above.
This is captured by the security definition described by Fig. 5:

The Double Ratchet 151

Fig. 5. Oracles of the PRF-PRNG security game for a scheme P = (P-Init,P-Up).

– Initialization: Procedure init chooses a random bit b, initializes the PRF-
PRNG with a random key, and sets two flags prng and prf to false: the PRNG
and PRF modes are mutually exclusive and only one type of challenge may
be called; the flags keep track of which.

– PRNG mode: The oracle process can be called in two ways: either I is an
input specified by the attacker and is simply absorbed into the state, or I = ⊥,
in which case the game chooses it randomly (inside sam-if-nec) and absorbs
it into the state, which at this point becomes uncorrupted. Oracle chall-prng
is works in the same fashion but creates a challenge.

– PRF mode: Once the state is uncompromised the attacker can decide to
obtain PRF challenges by calling chall-prf , which simply evaluates the
(adversarially chosen) input on the current state without updating it and
creates a challenge.

– Corruption: At any time, except after asking for PRF challenges, the attacker
may obtain the state by calling corr.

The advantage of A in the PRF-PRNG game is denoted by AdvP
PP(A). The

attacker is parameterized by its running time t.

Definition 9. An PRF-PRG P is (t, ε)-secure if for all t-attackers A,

AdvP
PP(A) ≤ ε .

Instantiating PRF-PRNGs. Being a PRF-PRNG is a property the HKDF
function used by Signal is assumed to have; in particular, Marlinspike and Per-
rin [23] recommend the primitive be implemented with using HKDF [19] with
SHA-256 or SHA-512 [25] where the state σ is used as HKDF salt and I as

152 J. Alwen et al.

HKDF input key material. This paper therefore merely reduces the security of
the presented schemes to the PRF-PRNG security of whatever function is used
to instantiate it.

Alternatively, a simple standard-model instantiation (whose rather imme-
diate proof is omitted) can be based on a pseudorandom permutation (PRP)
Π : {0, 1}n × {0, 1}n → {0, 1}n and a PRG G : {0, 1}n → {0, 1}n × K by letting
the state be the PRP key s ∈ {0, 1}n and

(s′, R) ← P-Up(s, I) = G(Πs(I)) .

5 Secure Messaging Scheme

This section presents a Signal-based secure messaging (SM) scheme and estab-
lishes its security under Definition 3. The scheme suitably and modularly com-
bines continuous key-agreement (CKA), forward-secure authenticated encryp-
tion with associated data (FS-AEAD), and PRF-PRNGs; these primitives are
explained in detail in Sect. 4.

5.1 The Scheme

The scheme is inspired by the Signal protocol, but differs from it in a few points,
as explained in Sect. 5.2. The main idea of the scheme is that the parties A and
B keep track of the same PRF-PRG (aka the “root RNG”), which they use to
generate keys for FS-AEAD instances as needed. The root RNG is continuously
refreshed by random values output by a CKA scheme that is run “in parallel.”

State. Scheme SM keeps an internal state sA (resp. sB), which is initialized by
Init-A (resp. Init-B) and used as well as updated by Send and Rcv. The state sA
of SM consists of the following values:

– an ID field with id = A,
– the state σroot of the root RNG,
– states v[0], v[1], v[2], . . . of the various FS-AEAD instances,
– the state γ of the CKA scheme,
– the current CKA message Tcur, and
– an epoch counter tA.

In order to remove expired FS-AEAD sessions from memory, there is also a
variable �prv that remembers the number of messages sent in the second most
recent epoch . Recall (cf. Sect. 4.2) that once the maximum number of messages
has been set via FS-Max, a session “erases” itself from the memory, and similarly
for calling FS-Stop on a particular FS-AEAD session. For simplicity, removing
the corresponding v[t] from memory is not made explicit in either case. The state
sB is defined analogously.

The Double Ratchet 153

Fig. 6. Secure-messaging scheme based on a FS-AEAD, a CKA scheme, and a PRF-
PRNG.

The algorithms. The algorithms of scheme SM are depicted in Fig. 6 and
described in more detail below. For ease of description, the algorithms Send and
Rcv are presented as Send-A and Rcv-A, which handle the case where id = A;
the case id = B works analogously. Moreover, to improve readability, the state
sA is not made explicit in the description: it consists of the variables set by the
initialization algorithm.

– Initialization: The initialization procedure Init-A expects a key k shared
between A and B; k is assumed to have been created at some point before
the execution during a trusted setup phase and to consist of initialization
keys kroot and kCKA for the root RNG and the CKA scheme, respectively. In
a second step, the root RNG is initialized with k. Then, it is used to generate
a key for FS-AEAD epoch v[0]; A acts as receiver in v[0] and all subsequent
even epochs and as sender in all subsequent odd epochs. Furthermore, Init-A
also initializes the CKA scheme and sets the initial epoch tA ← 0 and Tcur to
a default value.9

As pointed out above, scheme SM runs a CKA protocol in parallel to sending its
messages. To that end, A’s first message includes the first message T1 output by
CKA-S. All subsequent messages sent by A include T1 until some message received
from B includes T2. At that point A would run CKA-S again and include T3 with
all her messages, and so on (cf. Sect. 4.1).

Upon either sending or receiving Ti for odd or even i, respectively, the CKA
protocol also produces a random value Ii, which A absorbs into the root RNG.
The resulting output k is used as key for a new FS-AEAD epoch.

9 B also starts in epoch tB ← 0.

154 J. Alwen et al.

– Sending messages: Procedure Send-A allows A to send a message to B. As a
first step, Send-A determines whether it is A’s turn to send the next CKA
message, which is the case if tA is even. Whenever it is A’s turn, Send-A runs
CKA-S to produce the her next CKA message T and key I, which is absorbed
into the root RNG. The resulting value k is used as a the key for a new
FS-AEAD epoch, in which A acts as sender. The now old epoch is terminated
by calling FS-Stop and the number of messages in the old epoch is stored in
�prv, which will be sent along inside the header for every message of the new
epoch.
Irrespective of whether it was necessary to generate a new CKA message and
generate a new FS-AEAD epoch, Send-A creates a header h = (tA, Tcur, �prv),
and uses the current epoch v[tA] to get a ciphertext for (h,m) (where h is
treated as associated data).

– Receiving messages: When a ciphertext c = (h, e, �) with header h = (t, T, �)
is processed by Rcv-A, there are two possibilities:

• t ≤ tA (and t even): In this case, ciphertext c pertains to an existing
FS-AEAD epoch, in which case FS-Send is simply called on v[t] to process
e. If the maximum number of messages has been received for session v[t],
the session is removed from memory.

• t = tA + 1 and tA odd: Here, the receiver algorithm advances tA by incre-
menting it and processes T with CKA-R. This produces a key I, which is
absorbed into the PRF-PRG to obtain a key k with which to initialize
a new epoch v[tA] as receiver. Then, e is processed by FS-Rcv on v[tA].
Note that Rcv also uses FS-Max to store � as the maximum number of
messages in the previous receive epoch.

Irrespective of whether a new CKA message was received and a new epoch
created, if e is rejected by FS-Rcv, the algorithm raises an exception (error),
which causes the entire state sA to be rolled back to what it was before Rcv-A
was called.

5.2 Differences to Signal

By instantiating the building blocks as shown below, one obtains an SM scheme
that is very close to the actual Signal protocol (cf. [23, Section 5.2] for more
details):

– CKA: the DDH-based CKA scheme from Sect. 4.1 using Curve25519 or
Curve448 as specified in [20];

– FS-AEAD: FS-AEAD scheme from Sect. 4.2 with HMAC [18] with SHA-256
or SHA-512 [25] for the PRG, and an AEAD encryption scheme based on
either SIV or a composition of CBC with HMAC [27,28];

– PRF-PRNG: HKDF [19] with SHA-256 or SHA-512 [25], used as explained
in Sect. 4.3.

The Double Ratchet 155

We now detail the main differences:

Deferred randomness for sending. Deployed Signal implementations gen-
erate a new CKA message and absorb the resulting key into the RNG in Rcv,
as opposed to taking care of this inside Send, as done here. The way it is done
here is advantageous in the sense that the new key is not needed until the Send
operation is actually initiated, so there is no need to risk its exposure unnec-
essarily (in case the state is compromised in between receiving and sending).
Indeed, this security enhancement to Signal was explicitly mentioned by Marlin-
spike and Perrin [23] (cf. Section 6.5), and we simply follow this suggestion for
better security.

Epoch indexing. In our scheme we have an explicit epoch counter t to index
a given epoch. In Signal, one uses the uniqueness of latest CKA message (of the
form gx) to index an epoch. This saves an extra counter from each party’s state,
but we find our treatment of having explicit epoch counters much more intuitive,
and not relying on any particular structure of CKA messages. In fact, indexing
a dictionary becomes slightly more efficient when using a simple counter than
the entire CKA message (which could be long for certain CKA protocols; e.g.,
post-quantum from lattices).

FS-AEAD abstraction. Unlike the SM proposed from this section, Signal
does not use the FS-AEAD abstraction. Instead, each party maintains a sending
and a receiving PRG that are kept in sync with the other party’s receiving
and sending PRG, respectively. Moreover, when receiving the first message of a
new epoch, the current receive PRG is skipped ahead appropriately depending
on the value �, and the skipped keys are stored in a single, global dictionary.
The state of the receive PRG is then overwritten with the new state output by
the root RNG. Then, upon the next send operation new randomness for the
CKA message is generated, and the sending RNG is also overwritten by the
state output from updating the root RNG again. This is logically equivalent to
our variant of Signal with the particular FS-AEAD implementation in Fig. 4,
except we will maintain multiple dictionaries (one for each epoch t). However,
merging these dictionaries into one global dictionary (indexed by epoch counter
in addition to the message count within epoch) becomes a simple efficiency
optimization of the resulting scheme. Moreover, once this optimization is done,
there is no need to store an array of FS-AEAD instances v[t]. Instead, we can
only remember the latest sending and receiving FS-AEAD instance, overwriting
them appropriately with each new epoch. Indeed, storing old message keys from
not-yet-delivered messages is the only information one needs to remember from
the prior FS-AEAD instances. So once this information is stored in the global
dictionary, we can simply overwrite the remaining information when moving to
the new epoch. With these simple efficiency optimizations, we arrive to (almost)
precisely what is done by Signal (cf. Fig. 7).

To sum up, blindly using the FS-AEAD abstraction results in a slightly less
efficient scheme, but (1) we feel our treatment is more modular and intuitive;
(2) when using a concrete FS-AEAD scheme from Sect. 4.2, getting actual Signal

156 J. Alwen et al.

Fig. 7. Signal scheme without the FS-AEAD abstraction, based on a CKA scheme, a
PRF-PRNG, authenticated encryption, and a regular PRG. The figure only shows the
algorithms for A; B’s algorithms are analogous, with the roles of iA and iB switched.

becomes a simple efficiency optimization of the resulting scheme. In particular,
the security of Signal itself still follows from our framework.

Initial key agreement. As mentioned in the introduction, our modeling
only addresses the double-ratchet aspect of the Signal protocol, and does not
tackle the challenging problem of the generation of the initial shared key k. One
thing this also allows us to do is to elegantly side-step the issue that natural
CKA protocols are unkeyed, and do not generate shared a shared key I0 from
the initial message T0. Instead, we model CKA as a secret key primitive, where
the initial key kCKA effectively generates the first message T0 of “unkeyed CKA”
protocol, but now shared keys I1, I2, . . . get generated right away from subse-
quent messages T1, T2, In other words, rather than having k only store the
root key kroot, in our protocol we let it store a tuple (kroot, kCKA), and then use
kCKA to solve the syntactic issue of having a special treatment for the first CKA
message T0.

In most actual Signal implementations, the initial shared key k will only
contain the value kroot, and it is the receiver B who stores several initial CKA
messages T0 (called “one-time prekeys”) on the Signal server for new potential
senders A. When such A comes along, A would take one such one-time prekey
value T0 from the Signal server, and (optionally) use it to generate the initial
shared key kroot using the X3DH Key Agreement Protocol [24]. This creates slight
circularity, and we leave it to the future work to properly model and analyze
such generation of the initial key kroot.

The Double Ratchet 157

5.3 Security of the SM Scheme

The proof of the following main theorem can be found in the full version of this
paper [2].

Theorem 1. Assume that

– CKA is a (t′,ΔCKA, εcka)-secure CKA scheme,
– FS-AEAD is a (t′, q, εfs-aead)-secure FS-AEAD scheme, and
– P is a (t′, εp)-secure PRF-PRNG.

Then, the SM construction above is (t, q, qep,ΔSM, ε)-SM-secure for t ≈ t′,
ΔSM = 2 + ΔCKA, and

ε ≤ 2q2
ep · (εcka + q · εfs-aead + εp) .

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S., (eds.) 25th USENIX Security Symposium,
pp. 327–343. USENIX Association (2016)

2. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs,
and modularization for the signal protocol. Cryptology ePrint Archive, Report
2018/1037 (2018). https://eprint.iacr.org/2018/1037

3. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 619–650. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9 21

4. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36563-X 1

5. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why
not to use PGP. In: Proceedings of the 2004 ACM Workshop on Privacy in the
Electronic Society, WPES 2004, 28 October 2004, pp. 77–84 (2004)

6. Bos, J., et al.: Crystals - kyber: a CCA-secure module-lattice-based KEM. Cryp-
tology ePrint Archive, Report 2017/634 (2017). https://eprint.iacr.org/2017/634

7. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A for-
mal security analysis of the signal messaging protocol. In: 2017 IEEE European
Symposium on Security and Privacy, EuroS&P 2017, pp. 451–466. IEEE (2017)

8. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
IEEE 29th Computer Security Foundations Symposium, CSF 2016, pp. 164–178.
IEEE Computer Society (2016)

9. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 425–455. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 14

10. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
without key-update primitives. Cryptology ePrint Archive, Report 2018/889
(2018). https://eprint.iacr.org/2018/889

https://eprint.iacr.org/2018/1037
https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/3-540-36563-X_1
https://eprint.iacr.org/2017/634
https://doi.org/10.1007/978-3-319-78372-7_14
https://eprint.iacr.org/2018/889

158 J. Alwen et al.

11. Messenger secret conversations: Technical whitepaper. https://fbnewsroomus.files.
wordpress.com/2016/07/secret conversations whitepaper-1.pdf

12. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

13. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, pp. 305–
320 (2015)

14. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward
secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS,
vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 18

15. Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-speed key encapsulation
from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529,
pp. 232–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4
12

16. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part I. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96884-1 2

17. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
LNCS, vol. 11476, pp. 159–188 (2019). https://eprint.iacr.org/2018/954

18. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: keyed-Hashing for Message
Authentication. RFC 2104, February 1997

19. Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). RFC 5869, May 2010

20. Langley, A., Hamburg, M., Turner, S.: Elliptic Curves for Security. RFC 7748,
January 2016

21. Lund, J.: Signal partners with Microsoft to bring end-to-end encryption to Skype.
https://signal.org/blog/skype-partnership/

22. Marlinspike, M.: Open whisper systems partners with Google on end-to-end
encryption for Allo. https://signal.org/blog/allo/

23. Marlinspike, M., Perrin, T.: The double Ratchet algorithm, November 2016.
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf

24. Marlinspike, M., Perrin, T.: The double Ratchet algorithm, November 2016.
https://signal.org/docs/specifications/x3dh/x3dh.pdf

25. National Institute of Standards and Technology (NIST). FIPS 180–4. secure hash
standard. Technical report, US Department of Commerce, August 2015

26. Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. Cryptology
ePrint Archive, Report 2018/296 (2018). https://eprint.iacr.org/2018/296

27. Rogaway, P.: Authenticated-encryption with associated-data. In: CCS 2002, Wash-
ington, DC, 18–22 November 2002, pp. 98–107 (2002)

28. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

29. Whatsapp encryption overview: Technical white paper, December 2017. https://
www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://eprint.iacr.org/2018/954
https://signal.org/blog/skype-partnership/
https://signal.org/blog/allo/
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://eprint.iacr.org/2018/296
https://doi.org/10.1007/11761679_23
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

Efficient Ratcheting: Almost-Optimal
Guarantees for Secure Messaging

Daniel Jost(B) , Ueli Maurer, and Marta Mularczyk

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{dajost,maurer,mumarta}@inf.ethz.ch

Abstract. In the era of mass surveillance and information breaches,
privacy of Internet communication, and messaging in particular, is a
growing concern. As secure messaging protocols are executed on the not-
so-secure end-user devices, and because their sessions are long-lived, they
aim to guarantee strong security even if secret states and local random-
ness can be exposed.

The most basic security properties, including forward secrecy, can be
achieved using standard techniques such as authenticated encryption.
Modern protocols, such as Signal, go one step further and additionally
provide the so-called backward secrecy, or healing from state exposures.
These additional guarantees come at the price of a moderate efficiency
loss (they require public-key primitives).

On the opposite side of the security spectrum are the works by Jaeger
and Stepanovs and by Poettering and Rösler, which characterize the
optimal security a secure-messaging scheme can achieve. However, their
proof-of-concept constructions suffer from an extreme efficiency loss com-
pared to Signal. Moreover, this caveat seems inherent.

This paper explores the area in between: our starting point are the
basic, efficient constructions, and then we ask how far we can go towards
the optimal security without losing too much efficiency. We present a
construction with guarantees much stronger than those achieved by Sig-
nal, and slightly weaker than optimal, yet its efficiency is closer to that
of Signal (only standard public-key cryptography is used).

On a technical level, achieving optimal guarantees inherently requires
key-updating public-key primitives, where the update information is
allowed to be public. We consider secret update information instead.
Since a state exposure temporally breaks confidentiality, we carefully
design such secretly-updatable primitives whose security degrades grace-
fully if the supposedly secret update information leaks.

M. Mularczyk—Research was supported by the Zurich Information Security and Pri-
vacy Center (ZISC).

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 159–188, 2019.
https://doi.org/10.1007/978-3-030-17653-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_6&domain=pdf
http://orcid.org/0000-0002-6562-9665
https://doi.org/10.1007/978-3-030-17653-2_6

160 D. Jost et al.

1 Introduction and Motivation

1.1 Motivation

The goal of a secure-messaging protocol is to allow two parties, which we from
now on call Alice and Bob, to securely exchange messages over asynchronous
communication channels in any arbitrary interleaving, without an adversary
being able to read, alter, or inject new messages.

Since mobile devices have become a ubiquitous part of our lives, secure-
messaging protocols are almost always run on such end-user devices. It is gener-
ally known, however, that such devices are often not very powerful and vulnerable
to all kinds of attacks, including viruses which compromise memory contents,
corrupted randomness generators, and many more [13,14]. What makes it even
worse is the fact that the sessions are usually long-lived, which requires storing
the session-related secret information for long periods of time. In this situation
it becomes essential to design protocols that provide some security guarantees
even in the setting where the memory contents and intermediate values of com-
putation (including the randomness) can be exposed.

The security guarantee which is easiest to provide is forward secrecy, which, in
case of an exposure, protects confidentiality of previously exchanged messages.
It can be achieved using symmetric primitives, such as stateful authenticated
encryption [2].

Further, one can consider healing (also known as post-compromise recovery
or backward secrecy). Roughly, this means that if after a compromise the par-
ties manage to exchange a couple of messages, then the security is restored.1

Providing this property was the design goal for some modern protocols, such as
OTR [5] and Signal [15]. The price for additional security is a loss of efficiency:
in both of the above protocols the parties regularly perform a Diffie-Hellman
key exchange (public-key cryptography is necessary for healing). Moreover, the
above technique does not achieve optimal post-compromise recovery (in partic-
ular, healing takes at least one full round-trip). The actual security achieved by
Signal was recently analyzed by Cohn-Gordon et al. [7].

This raises a more conceptual question: what security guarantees of secure mes-
saging are even possible to achieve? This question was first formulated by Bellare
et al. [4], who abstract the concept of ratcheting and formalize the notions of
ratcheted key exchange and communication. However, they only consider a very
limited setting, where the exposures only affect the state of one of the parties.
More recently, Jaeger and Stepanovs [11], and Poettering and Rösler [16] both for-
mulated the optimal security guarantees achievable by secure messaging. To this
end, they start with a utopian definition, which cannot be satisfied by any correct
scheme. Then, one by one, they disable all generic attacks, until they end with a
formalization for which they can provide a proof-of-concept construction. (One dif-
ference between the two formalizations is that [11] considers exposing intermediate
values used in the computation, while [16] does not.) The resulting optimal security

1 Of course, for the healing to take effect, the adversary must remain passive and not
immediately use the compromised state to impersonate a party.

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 161

implies many additional properties, which were not considered before. For exam-
ple, it requires post-impersonation security, which concerns messages sent after an
active attack, where the attacker uses an exposed state to impersonate a party (we
will say that the partner of the impersonated party is hijacked).

Unfortunately, these strong guarantees come at a high price. Both construc-
tions [11,16] use very inefficient primitives, such as hierarchical identity-based
encryption (HIBE) [9,10]. Moreover, it seems that an optimally-secure protocol
would in fact imply HIBE.

This leads to a wide area of mostly unexplored trade-offs with respect to
security and efficiency, raising the question how much security can be obtained
at what efficiency.

1.2 Contributions

In this work we contribute to a number of steps towards characterizing the
area of sub-optimal security. We present an efficient secure-messaging protocol
with almost-optimal security in the setting where both the memory and the
intermediate values used in the computation can be exposed.

Unlike the work on optimal security [11,16], we start from the basic tech-
niques, and gradually build towards the strongest possible security. Our final
construction is based on standard digital signatures and CCA-secure public-
key encryption. The ciphertext size is constant, and the size of the secret state
grows linearly with the number of messages sent since the last received message
(one can prove that the state size cannot be constant). We formalize the precise
security guarantees achieved in terms of game-based security definitions.

Intuitively, the almost-optimal security comes short of optimal in that in
two specific situations we do not provide post-impersonation security. The first
situation concerns exposing the randomness of one of two specific messages,2

and in the second, the secret states of both parties must be exposed at almost
the same time. The latter scenario seems rather contrived: if the parties were
exposed at exactly the same time, then any security would anyway be impossible.
However, one could imagine that the adversary suddenly loses access to one of
the states, making it possible to restore it. Almost-optimal guarantees mean that
the security need not be restored in this case.

It turns out that dealing with exposures of the computation randomness
is particularly difficult. For example, certain subtle issues made us rely on a
circularly-secure encryption scheme. Hence, we present our overall proof in the
random oracle model. We stress, however, that the random oracle assumption is
only necessary to provide additional guarantees when the randomness can leak.

1.3 Further Related Work

Most work on secure messaging [4,8,11,16], including this paper, considers the
situation where messages can only be decrypted in order (so out-of-order mes-
sages must be either buffered or dropped). In a recent work, Alwen, Coretti and
2 Namely, the messages sent right before or right after an active impersonation attack.

162 D. Jost et al.

Dodis [1] consider a different setting in which it is required that any honestly-
generated message can be immediately decrypted. The authors motivate this
property by practical aspects, as for example immediate decryption is neces-
sary to prevent certain denial-of-service attacks. Moreover, immediate decryp-
tion is actually achieved by Signal. This setting requires different definitions of
both authenticity and correctness. Moreover, requiring the ability to immediately
decrypt messages appears to incur a significant hit on the post-impersonation
security a protocol can guarantee.

We find it very interesting to analyze the optimal and sub-optimal security
guarantees in the setting of [1], and how providing them impacts the efficiency.
However, this is not the focus of this work. Note that most practical secure
messengers buffer the messages on a central server, so that even if parties are
intermittently offline, they receive all their messages once they go online. Hence,
not handling out-of-order messages should not significantly affect practicality.

In a recent concurrent and independent work, Durak and Vaudenay [8] also
present a very efficient asynchronous communication protocol with sub-optimal
security. However, their setting, in contrast to ours, explicitly excludes exposing
intermediate values used in computation, in particular, the randomness. Allowing
exposure of the randomness seems much closer to reality. Why would we assume
that the memory of a device can be insecure, but the sampled randomness is
perfect? Our construction provides strong security if the randomness fully leaks,
while [8] gives no guarantees even if a very small amount of partial information is
revealed. In fact, it is not clear how to modify the construction of [8] to work in
the setting with randomness exposures. We note that the proof of [8], in contrast
to ours, is in the standard model. On the other hand, we only need the random
oracle to provide the additional guarantees not considered in [8].

2 Towards Optimal Security Guarantees

In this section we present a high-level overview of the steps that take us from
the basic security properties (for example, those provided by Signal) towards
the almost-optimal security, which we later implement in our final construction.
We stress that all constructions use only standard primitives, such as digital
signatures and public-key encryption. The security proofs are in the random
oracle model.

2.1 Authentication

We start with the basic idea of using digital signatures and sequence numbers.
These simple techniques break down in the presence of state exposures: once a
party’s signing key is exposed, the adversary can inject messages at any time in
the future. To prevent this and guarantee healing in the case where the adversary
remains passive, we can use the following idea. Each party samples a fresh signing
and verification key with each message, sends along the new (signed) verification
key, and stores the fresh signing key to be used for the next message. If either of
the parties’ state gets exposed, say Alice’s, then Eve obtains her current signing

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 163

key that she can use to impersonate Alice towards Bob at this point in time.
If, however, Alice’s next message containing a fresh verification key has already
been delivered, then the signing key captured by the adversary becomes useless
thereby achieving the healing property.

The above technique already allows to achieve quite meaningful guarantees:
in fact, it only ignores post-impersonation security. We implement this idea and
formalize the security guarantees of the resulting construction in Sect. 3.

2.2 Confidentiality

Assume now that all communication is authentic, and that none of the parties
gets impersonated (that is, assume that the adversary does not inject messages
when he is allowed to do so). How can we get forward secrecy and healing?

Forward secrecy itself can be achieved using standard forward-secure authen-
ticated encryption in each direction (this corresponds to Signal’s symmetric
ratcheting layer). However, this technique provides no healing.

Perfectly Interlocked Communication. The first, basic idea to guarantee
healing is to use public-key encryption, with separate keys per direction, and con-
stantly exchange fresh keys. The protocol is sketched in Fig. 1. Note that instead of
using a PKE scheme, we could also use a KEM scheme and apply the KEM-DEM
principle, which is essentially what Signal does for its asymmetric ratcheting layer.

Let us consider the security guarantees offered by this solution. Assume for
the moment that Alice and Bob communicate in a completely interlocked man-
ner, i.e., Alice sends one message, Bob replies to that message, and so on. This
situation is depicted in Fig. 1. Exposing the state of a party, say Alice, right after
sending a message (dk1

A, ek0
B in the figure) clearly allows to decrypt the next mes-

sage (m2), which is unavoidable due to the correctness requirement. However, it
no longer affects the confidentiality of any other messages. Further, exposing the
state right after receiving a message has absolutely no effect (note that a party
can delete its secret key immediately after decrypting, since it will no longer
be used). Moreover, exposing the sending or receiving randomness is clearly no
worse than exposing both the state right before and after this operation. Hence,
our scheme obtains optimal confidentiality guarantees (including forward-secrecy
and healing) when the parties communicate in such a turn-by-turn manner.

The Unidirectional Case. The problems with the above approach arise when
the communication is not perfectly interlocked. Consider the situation when Alice
sends many messages without receiving anything from Bob. The straightforward
solution to encrypt all these messages with the same key breaks forward secrecy:
Bob can no longer delete his secret key immediately after receiving a message,
so exposing his state would expose many messages received by him in the past.
This immediately suggests using forward-secure public-key encryption [6], or the
closely-related HIBE [9,10] (as in the works by Jaeger et al. and Poettering et al.).
However, we crucially want to avoid using such expensive techniques.

164 D. Jost et al.

Fig. 1. Constantly exchanging fresh public-keys achieves optimal security when com-
munication is authenticated and in a strict turn-by-turn fashion.

The partial solution offered by Signal is the symmetric ratcheting. In essence,
Alice uses the public key once to transmit a fresh shared secret, which can then
be used with forward-secure authenticated encryption. However, this solution
offers very limited healing guarantees: when Alice’s state is exposed, all messages
sent by her in the future (or until she receives a new public key from Bob) are
exposed. Can we do something better?

The first alternative solution which comes to mind is the following. When
encrypting a message, Alice samples a fresh key pair for a public-key encryption
scheme, transmits the secret key encrypted along with the message, stores the
public key and deletes the secret key. This public key is then used by Alice to
send the next message. This approach is depicted in Fig. 2. However, this solution
totally breaks if the sending randomness does leak. In essence, exposing Alice’s
randomness causes a large part of Bob’s next state to be exposed, hence, we
achieve roughly the same guarantees as Signal’s symmetric ratcheting.

Fig. 2. First attempt to handle asynchronous messages, where one party (here Alice)
can send multiple messages in a row. This solution breaks totally when the randomness
can leak.

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 165

Hence, our approach will make the new decryption key depend on the pre-
vious decryption key, and not solely on the update information sent by Alice.
We note that, for forward secrecy, we still rely on the update information being
transmitted confidentially. This technique achieves optimal security up to imper-
sonation (that is, we get the same guarantees as for simple authentication). The
solution is depicted in Fig. 3. At a high level, we use the ElGamal encryption,
where a key pair of Bob is (b0, gb0) for some generator g of a cyclic group. While
sending a message, Alice sends a new secret exponent b1 encrypted under gb0 ,
the new encryption key is gb0gb1 , and the new decryption key is b0 + b1.3 This
idea is formalized in Sect. 4.

Fig. 3. Second attempt to handle asynchronous messages, where one party (here Alice)
can send multiple messages in a row.

2.3 A First Efficient Scheme

Combining the solutions for authentication and confidentiality from the previous
subsections already yields a very efficient scheme with meaningful guarantees.
Namely, we only give up on the post-impersonation security. That is, we achieve
the optimal guarantees up to the event that an adversary uses the exposed state
of a party to inject a message to the other party.

One may argue that such a construction is in fact the one that should be
used in practice. Indeed, the only guarantees we can hope for after such an active
impersonation concern the party that gets impersonated, say Alice, towards
the other one, say Bob: Alice should not accept any messages from Bob or
the adversary anymore, and the messages she sends should remain confidential.
Observe that the former guarantee potentially enables Alice to detect the attack
by the lack of replies to her messages. However, providing those guarantees to
their full extent seems to inherently require very inefficient tools, such as HIBE,
in contrast to the quite efficient scheme outlined above.

3 Looking ahead, it turns out that in order to prove the security of this construction,
we need circular-secure encryption. We achieve this in the random oracle model.

166 D. Jost et al.

In the next subsections we make further steps towards our final construc-
tion, which provides some, but not all, after-impersonation guarantees, thereby
compromising between efficiency and security.

2.4 Post-Impersonation Authentication

Consider the situation where the adversary exposes the state of Alice and uses
it to impersonate her towards Bob (that is, he hijacks Bob). Clearly, due to the
correctness requirement, the adversary can now send further messages to Bob.
For the optimal security, we would require that an adversary cannot make Alice
accept any messages from Bob anymore, even given Bob’s state exposed at any
time after the impersonation.

Note that our simple authentication scheme from Sect. 2.1 does not achieve
this property, as Bob’s state contains the signing key at this point. It does not
even guarantee that Alice does not accept messages sent by the honest Bob any-
more. The latter issue we can easily fix by sending a hash of the communication
transcript along with each message. That is, the parties keep a value h (initially
0), which Alice updates as h ← Hash(h ‖ m) with every message m she sends,
and which Bob updates accordingly with every received message. Moreover, Bob
accepts a message only if it is sent together with a matching hash h.

To achieve the stronger guarantee against an adversary obtaining Bob’s state,
we additionally use ephemeral signing keys. With each message, Alice generates
a new signing key, which she securely sends to Bob, and expects Bob to sign
his next message with. Intuitively, the adversary’s injection “overwrites” this
ephemeral key, rendering Bob’s state useless. Note that for this to work, we
need the last message received by Bob before hijacking to be confidential. This
is not the case, for example, if the sending randomness leaks.4 For this reason,
we do not achieve optimal security. In the existing optimal constructions [11,16]
the update information can be public, which, unfortunately, seems to require
very strong primitives, such as forward-secure signatures.

2.5 Post-Impersonation Confidentiality

In this section we focus on the case where the adversary impersonates Alice
towards Bob (since this is only possible if Alice’s state exposed, we now consider
her state to be a public value).

Consider once more the two approaches to provide confidentiality in the
unidirectional case, presented in Sect. 2.2 (Figs. 2 and 3). Observe that if we
assume that the randomness cannot be exposed, then the first solution from
Fig. 2, where Alice sends (encrypted) a fresh decryption key for Bob, already
achieves very good guarantees. In essence, during impersonation the adversary
has to choose a new decryption key (consider the adversary sending [m3, d̄k

3
B]ek2

B

in the figure), which overwrites Bob’s state. Hence, the information needed to
4 Note that this also makes the choice of abstraction levels particularly difficult, as we

need confidentiality, in order to obtain authentication.

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 167

decrypt the messages sent by Alice from this point on (namely, dk2
B) is lost.5

In contrast, the second solution from Fig. 3 provides no guarantees for post-
impersonation messages: after injecting a message and exposing Bob’s state, the
adversary can easily compute Bob’s state from right before the impersonation
and use it to decrypt Alice’s messages sent after the attack.

While the former idea has been used in [8] to construct an efficient scheme
with almost-optimal security for the setting where the randomness generator is
perfectly protected, we aim at also providing guarantees in the setting where the
randomness can leak. To achieve this, we combine the two approaches, using both
updating keys from the latter scheme and ephemeral keys from the former one,
in a manner analogous to how we achieved post-impersonation authentication.
More concretely, Alice now sends (encrypted), in addition to the exponent, a
fresh ephemeral decryption key, and stores the corresponding encryption key,
which she uses to additionally encrypt her next message. Now the adversary’s
injected message causes the ephemeral decryption key of Bob to be overwritten.

As was the case for authentication, this solution does not provide optimal
security, since we rely on the fact that the last message, say c, received before
impersonation, is confidential. Moreover, in order to achieve confidentiality we
also need the message sent by Alice right after c to be confidential.

2.6 The Almost-Optimal Scheme

Using the ideas sketched above, we can construct a scheme with almost-optimal
security guarantees. We note that it is still highly non-trivial to properly com-
bine these techniques, so that they work when the messages can be arbitrarily
interleaved (so far we only considered certain idealized settings of perfectly inter-
locked and unidirectional communication).

The difference between our almost-optimal guarantees and the optimal ones
[11,16] is in the imperfection of our post-impersonation security. As explained in
the previous subsections, for these additional guarantees we need two messages
sent by the impersonated party (Alice above) to remain confidential: the one
right before and the one right after the attack. Roughly, these messages are
not confidential either if the encryption randomness is exposed for one of them,
or if the state of the impersonated party is exposed right before receiving the
last message before the attack. Note that the latter condition basically means
that both parties are exposed at almost the same time. If they were exposed at
exactly the same time, any security would anyway be impossible.

In summary, our almost-optimal security seems a very reasonable guarantee
in practice.

5 We can assume that Alice sends this value confidentially. It makes no sense to con-
sider Bob’s state being exposed, as this would mean that both parties are exposed
at the same time, in which case, clearly, we cannot guarantee any security.

168 D. Jost et al.

3 Unidirectional Authentication

In this section we formalize the first solution for achieving authentication,
sketched informally in Sect. 2.1. That is, we consider the goal of providing
authentication for the communication from a sender (which we call the signer)
to a receiver (which we call the verifier) in the presence of an adversary who has
full control over the communication channel. Additionally, the adversary has the
ability to expose secrets of the communicating parties. In particular, this means
that for each party, its internal state and, independently, the randomness it chose
during operations may leak.

We first intuitively describe the properties we would like to guarantee:

– As long as the state and sampled randomness of the signer are secret, the
communication is authenticated (in particular, all sent messages, and only
those, can only be received in the correct order). We require that leaking the
state or the randomness of the verifier has no influence on authentication.

– If the state right before signing the i-th message or the randomness used for
this operation is exposed, then the adversary can trivially replace this message
by one of her choice. However, we want that if she remains passive (that is,
if she delivers sufficiently many messages in order), and if new secrets do not
leak, then the security is eventually restored. Concretely, if only the state
is exposed, then only the i-th message can be replaced, while if the signing
randomness is exposed, then only two messages (i and i+1) are compromised.

Observe that once the adversary decides to inject a message (while the signer is
exposed), security cannot be restored. This is because from this point on, she can
send any messages to the verifier by simply executing the protocol. We will say
that in such case the adversary hijacks the channel, and is now communicating
with the verifier.

The above requirements cannot be satisfied by symmetric primitives, because
compromising the receiver should have no effect on security. Moreover, in order
to protect against deleting and reordering messages, the algorithms need to be
stateful. Hence, in the next subsection, we define a new primitive, which we
call key-updating signatures. At a high level, a key-updating signature scheme
is a stateful signature scheme, where the signing key changes with each signing
operation, and the verification key changes with each verification. We require
that the verification algorithm is deterministic, so that leaking the randomness
of the verifier trivially has no effect.

3.1 Key-Updating Signatures

Syntax. A key-updating signature scheme KuSig consists of three
polynomial-time algorithms (KuSig.Gen,KuSig.Sign,KuSig.Verify). The proba-
bilistic algorithm KuSig.Gen generates an initial signing key sk and a corre-
sponding verification key vk. Given a message m and sk, the signing algorithm
outputs an updated signing key and a signature: (sk′, σ) ← KuSig.Sign(sk,m).
Similarly, the verification algorithm outputs an updated verification key and the
result v of verification: (vk′, v) ← KuSig.Verify(vk,m, σ).

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 169

Fig. 4. The strong unforgeability game for key-updating signatures.

Correctness. Let (sk0, vk0) be any output of KuSig.Gen, and let m1, . . . ,mk

be any sequence of messages. Further, let (ski, σi) ← KuSig.Sign(ski−1,mi)
and (vki, vi) ← KuSig.Verify(vki−1,mi, σi) for i = 1, . . . , k. For correctness, we
require that vi = 1 for all i = 1, . . . , k.

Security. The security of KuSig is formalized using the game KuSig-UF,
described in Fig. 4. For simplicity, we define the security in the single-user set-
ting (security in the multi-user setting can be obtained using the standard hybrid
argument).

The Game Interface. The game without the parts of the code marked by boxes
defines the interface exposed to the adversary.

At a high level, the adversary wins if he manages to set the internal flag win
to true by providing a message with a forged signature. To this end, he interacts
with three oracles: Sign, Verify and Expose. Using the oracle Sign, he can
obtain signatures and update the secret signing key, using the oracle Verify, he
can update the verification key (or submit a forgery), and the oracle Expose
reveals the secret signing key.

A couple of details about the above oracles require further explanation. First,
the verification key does not have to be kept secret. Hence, the updated key is
always returned by the verification oracle. Second, we extend the signing oracle
to additionally allow “insecure” queries. That is, the adversary learns not only
the signature, but also the randomness used to generate it.

170 D. Jost et al.

Disabling Trivial Attacks. Since the game described above can be trivially won
for any scheme, we introduce additional checks (shown in boxes), which disable
the trivial “wins”.

More precisely, the forgery of a message that will be verified using the key
vk, for which the signing key sk was revealed is trivial. The key sk can be
exposed either explicitly by calling the oracle Expose, or by leaking the signing
randomness using the call Sign(m, true). To disable this attack, we keep the
set Exposed, which, intuitively, keeps track of which messages were signed using
an exposed state. Then, in the oracle Verify, we check whether the adversary
decided to input a trivial forgery (this happens if the index r − 1 of currently
verified message is in Exposed). If so, the game can no longer be won (the variable
lost is set to true).6

Advantage. For an adversary A, let Advku-sufKuSig (A) denote the probability that
the game KuSig-UF returns true after interacting with A. We say that a key-
updating signature scheme KuSig is KuSig-UF secure if Advku-sufKuSig (A) is negligible
for any PPT adversary A.

3.2 Construction

We present a very simple construction of a KuSig, given any one-time signa-
ture scheme Sig, existentially-unforgeable under chosen-message attack. The con-
struction is depicted in Fig. 5. The high-level idea is to generate a new key pair
for Sig with each signed message. The message, together with the new verifica-
tion key and a counter,7 is then signed using the old signing key, and the new
verification key is appended to the signature. The verification algorithm then
replaces the old verification key by the one from the verified signature.

Theorem 1. Let Sig be a signature scheme. The construction of Fig. 5 is
KuSig-UF secure, if Sig is 1-SUF-CMA secure.

A proof of Theorem 1 is presented in the full version of this work [12].

3.3 Other Definitions of Key-Updating Signatures

Several notions of signatures with evolving keys are considered in the litera-
ture. For example, in forward-secure signatures [3] the signing key is periodically
updated. However, in such schemes the verification key is fixed. Moreover, the
goal of forward secrecy is to protect the past (for signatures, this means that
there exists some notion of time and exposing the secret key does not allow to
forge signatures for the past time periods). On the other hand, we are interested
in protecting the future, that is, the scheme should “heal” after exposure.
6 The adversary knows which states are exposed, and hence can check himself before

submitting a forgery attempt, whether this will make him lose the game.
7 In fact, the counter is not necessary to prove security of the construction, since every

message is signed with a different key. However, we find it cleaner to include it.

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 171

Fig. 5. The construction of key-updating signatures.

The notion closest to our setting is that of key-updateble digital signatures
[11]. Here the difference is that their notion provides stronger guarantees (hence,
the construction is also less efficient). In particular, in key-updateble digital
signatures the signing key can be updated with any (even adversarially chosen)
public information. In contrast, in our definition the secret key is updated secretly
by the signer, and only part of the information used to update it is published as
part of the signature.8

Relaxing the requirements of key-updateble digital signatures allows us to
achieve a very efficient construction ([11] uses rather inefficient forward-secure
signatures as a building block). On the other hand, the stronger guarantee seems
to be necessary for the optimal security of [11].

4 Unidirectional Confidentiality

In this section we formalize the second solution for achieving confidentiality in
the unidirectional setting, where the sender, which we now call the encryptor
generates some secret update information and communicates it (encrypted) to
the receiver, which we now call the decryptor. In the following, we assume that
the secret update information is delivered through an idealized secure channel.

The setting is similar to the one we considered for authentication: the secret
states and the randomness of the encryptor and of the decryptor can sometimes
be exposed. However, now we also assume that the communication is authen-
ticated. We assume authentication in the sense of Sect. 3, however, we do not
consider hijacking the channel. In this section we give no guarantees if the chan-
nel is hijacked.

8 For example, in our construction the public part of the update is a fresh verification
key, and the secret part is the corresponding signing key. This would not satisfy the
requirements of [11], since there is no way to update the signing key using only the
fresh verification key.

172 D. Jost et al.

At a high level, the construction presented in this section should provide the
following guarantees:

– Exposing the state of the encryptor should have no influence on confiden-
tiality. Moreover, leaking the encryption randomness reveals only the single
message being encrypted.

– Possibility of healing: if at some point in time the encryptor delivers to the
decryptor an additional (update) message through some out-of-band secure
channel, then any prior exposures of the decryption state should have no influ-
ence on the confidentiality of future messages. (Looking ahead, in our overall
construction such updates will indeed be sometimes delivered securely.)

– Weak forward secrecy: exposing the decryptor’s state should not expose mes-
sages sent before the last securely delivered update.

For more intuition about the last two properties, consider Fig. 6. The states 1
to 7 correspond to the number of updates applied to encryption or decryption keys.
The first two updates are not delivered securely (on the out-of-band channel), but
the third one is. Exposing the decryption key at state 5 (after four updates) causes
all messages encrypted under the public keys at states 4, 5 and 6 to be exposed.
However, the messages encrypted under keys at states 1 to 3 are not affected.

Fig. 6. Intuition behind the confidentiality guarantees.

To formalize the above requirements, we define a new primitive, which we
call secretly key-updatable public-key encryption (SkuPke).

4.1 Secretly Key-Updatable Public-Key Encryption

At a high level, a secretly key-updatable public-key encryption scheme is a
public-key encryption scheme, where both the encryption and the decryption key
can be (independently) updated. The information used to update the encryp-
tion key can be public (it will be a part of the encryptor’s state, whose exposure
comes without consequences), while the corresponding update information for
the decryption key should be kept secret (this update will be sent through the
out-of-band secure channel).

In fact, for our overall scheme we need something a bit stronger: the update
information should be generated independently of the encryption or decryption
keys. Moreover, the properties of the scheme should be (in a certain sense)
preserved even when the same update is applied to many independent key pairs.
The reason for these requirements will become more clear in the next section,
when we use the secretly key-updatable encryption to construct a scheme for
the sesqui-directional setting.

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 173

The security definition presented in this section is slightly simplified and it
does not consider the above additional guarantees. However, it is sufficient to
understand our security goals. In the proof of the overall construction we use the
full definition presented in the full version [12], which is mostly a straightforward
extension to the multi-instance setting.

Syntax. Formally, a secretly key-updatable public-key encryption scheme
SkuPke consists of six polynomial-time algorithms (SkuPke.Gen,SkuPke.Enc,
SkuPke.Dec, SkuPke.UpdateGen,SkuPke.UpdateEk,SkuPke.UpdateDk). The
probabilistic algorithm SkuPke.Gen generates an initial encryption key ek and a
corresponding decryption key dk. Then, the probabilistic encryption algorithm
can be used to encrypt a message m as c ← SkuPke.Enc(ek,m), while the deter-
ministic decryption algorithm decrypts the message: m ← SkuPke.Dec(dk, c).

Furthermore, the probabilistic algorithm SkuPke.UpdateGen generates pub-
lic update information ue and the corresponding secret update information ud,
as (ue, ud) ← SkuPke.UpdateGen. The former can then be used to update an
encryption key ek′ ← SkuPke.UpdateEk(ue, ek), while the latter can be used to
update the corresponding decryption key dk′ ← SkuPke.UpdateDk(ud, dk).

Correctness. Let (ek0, dk0) be the output of SkuPke.Gen, and let (ue1,
ud1), . . . , (uek, udk) be any sequence of outputs of SkuPke.UpdateGen.
For i = 1 . . . k, let eki ← SkuPke.UpdateEk(uei, ei−1) and dki ←
SkuPke.UpdateDk(udi, di−1). A SkuPke is called correct, if SkuPke.Dec(dkk,
SkuPke.Enc(ekk,m)) = m for any message m with probability 1.

Security. Figure 7 presents the single-instance security game for a SkuPke
scheme, which we describe in the following paragraphs.

The Game Interface. The interface exposed to the adversary is defined via the
part of the code not marked by boxes.

We extend the standard notion of IND-CPA for public-key encryption, where
the adversary gets to see the initial encryption key ek and has access to a left-or-
right Challenge oracle. Furthermore, the adversary can generate new update
information by calling the oracle UpdateGen, and later apply the generated
updates to the encryption and decryption key, by calling, respectively, the oracles
UpdateEk and UpdateDk. In our setting the adversary is allowed to expose
the randomness and the state of parties. The encryption state is considered
public information, hence, the key ek and the public update Ue[ind] are always
returned by the corresponding oracles. The decryption key dk can be revealed by
calling the Expose oracle9, and the secret decryption updates—by setting the
randomness for the oracle UpdateGen. Finally, the Challenge oracle encrypts
the message together with the previously generated secret update information,
chosen by the adversary (recall the idea sketched in Sect. 2.2).
9 For technical reasons, we only allow one query to the Expose oracle.

174 D. Jost et al.

Fig. 7. The single-instance confidentiality game for secretly key-updatable encryption.

Disabling Trivial Attacks. In essence, in the presence of exposures, it is not
possible to protect the confidentiality of all messages. As already explained, we
allow an exposure of the secret key to compromise secrecy of all messages sent
between two consecutive secure updates. Hence, the game keeps track of the
following events: generating a secure update (the set NLeak), exposing the secret
key (the variable exp), and asking for a challenge ciphertext (the set Chal). Then,
the adversary is not allowed to ask for a challenge generated using the encryption
key, corresponding to a decryption key, which is in the “exposed” interval (that
is, if all updates between the decryption key and the exposed state are insecure).
An analogous condition is checked by the Expose oracle.

Advantage. Recall that in this section we present the single-instance security
game, but in the proofs later we need the multi-instance version SkuPke-MI-CPA
defined in the full version [12]. Hence, we define security using the multi-instance
game. For an adversary A, let Advsku-cpaSkuPke(A) := 2Pr[ASkuPke-MI-CPA ⇒ true] − 1,
where Pr[ASkuPke-MI-CPA ⇒ true] denotes the probability that the game

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 175

Fig. 8. The construction of secretly key-updatable encryption.

SkuPke-MI-CPA returns true after interacting with an adversary A. We say that
a secretly key-updatable encryption scheme SkuPke is SkuPke-MI-CPA secure if
Advsku-cpaSkuPke(A) is negligible for any PPT adversary A.

4.2 Construction

We present an efficient construction of SkuPke, based on the ElGamal cryptosys-
tem. At a high level, the key generation, encryption and decryption algorithms
are the same as in the ElGamal encryption scheme. To generate the update
information, we generate a new ElGamal key pair, and set the public and private
update to, respectively, the new public and private ElGamal keys. To update the
encryption key, we multiply the two ElGamal public keys, while to update the
decryption key, we add the ElGamal secret keys. Finally, in order to deal with
encrypting previously generated update information, we need the hash function
Hashl(·), where l is the output length.

The construction is defined in Fig. 8. We let G be a group of prime order q,
generated by g. These parameters are implicitly passed to all algorithms.

A proof of the following theorem is presented in the full version [12].

Theorem 2. The construction of Fig. 8 is SkuPke-MI-CPA secure in the ran-
dom oracle model, if CDH is hard.

5 Sesquidirectional Confidentiality

The goal of this section is to define additional confidentiality guarantees in the
setting where also an authenticated back channel from the decryptor to the
encryptor exists (but we still focus only the properties of the unidirectional from
the encryptor to the decryptor). That is, we assume a perfectly-authenticated
back channel and a forward channel, authenticated in the sense of Sect. 3 (in
particular, we allow hijacking the decryptor).

176 D. Jost et al.

It turns out that in this setting we can formalize all confidentiality properties
needed for our overall construction of a secure channel. Intuitively, the properties
we consider include forward secrecy, post-hijack security, and healing through
the back channel.

Forward Secrecy. Exposing the decryptor’s state should not expose messages
which he already received.

Post-hijack Guarantees. Ideally, we would like to guarantee that if the commu-
nication to the decryptor is hijacked, then all messages sent by the encryptor
after hijacking are secret, even if the decryptor’s state is exposed (note that
these messages cannot be read by the decryptor, since the adversary caused his
state to be “out-of-sync”). However, this guarantee turns out to be extremely
strong, and seems to inherently require HIBE. Hence, we relax it by giving up
on the secrecy of post-hijack messages in the following case: a message is sent
insecurely (for example, because the encryption randomness is exposed), the
adversary immediately hijacks the communication, and at some later time the
decryptor’s state is exposed. We stress that the situation seems rather contrived,
as explained in the introduction.

Healing Through the Back Channel. Intuitively, the decryptor will update his
state and send the corresponding update information on the back channel. Once
the encryptor uses this information to update his state, the parties heal from past
exposures. At a high level, this means that we require the following additional
guarantees:

– Healing: messages sent after the update information is delivered are secret,
irrespective of any exposures of the decryptor’s state, which happened before
the update was generated.

– Correctness: in the situation where the messages on the back channel are
delayed, it should still be possible to read the messages from the forward
channel. That is, it should be possible to use a decryption key after i updates
to decrypt messages encrypted using an “old” encryption key after j < i
updates.

Challenges. It turns out that the setting with both the back channel, and the
possibility of hijacking, is extremely subtle. For example, one may be tempted
to use an encryption scheme which itself updates keys and provides some form
of forward secrecy, and then simply send on the back channel a fresh key pair for
that scheme. With this solution, in order to provide correctness, every generated
secret key would have to be stored until a ciphertext for a newer key arrives.
Unfortunately, this simple solution does not work. Consider the following situ-
ation: the encryptor sends two messages, one before and one after receiving an
update on the back channel, and these messages are delayed. Then, the adver-
sary hijacks the decryptor by injecting an encryption under the older of the two
keys. However, if now the decryptor’s state is exposed, then the adversary will

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 177

learn the message encrypted with the new key (which breaks the post-hijack
guarantees we wish to provide). Hence, it is necessary that receiving a message
updates all decryption keys, also those for future messages. Intuitively, this is
why we require that the same update for SkuPke can be applied to many keys.

5.1 Healable and Key-Updating Public-Key Encryption

To formalize the requirements sketched above, we define healable and key-
updating public-key encryption (HkuPke). In a nutshell, a HkuPke scheme is
a stateful public-key encryption scheme with additional algorithms used to gen-
erate and apply updates, sent on the back channel.

Syntax. A healable and key-updating public-key encryption scheme
HkuPke consists of five polynomial-time algorithms (HkuPke.Gen,HkuPke.Enc,
HkuPke.Dec, HkuPke.BcUpEk,HkuPke.BcUpDk).

The probabilistic algorithm HkuPke.Gen generates an initial encryption key
ek and a corresponding decryption key dk. Encryption and decryption algo-
rithms are stateful. Moreover, for reasons which will become clear in the overall
construction of a secure channel, they take as input additional data, which need
not be kept secret.10 Formally, we have (ek′, c) ← HkuPke.Enc(ek,m, ad) and
(dk′,m) ← HkuPke.Dec(dk, c,m), where ek′ and dk′ are the updated keys and
ad is the additional data. The additional two algorithms are used to handle heal-
ing through the back channel: the operation (dk′, upd) ← HkuPke.BcUpDk(dk)
outputs the updated decryption key dk′ and the information upd, which will be
sent on the back channel. Then, the encryption key can be updated by executing
ek′ ← HkuPke.BcUpEk(ek, upd).

Correctness. Intuitively, we require that if all ciphertexts are decrypted in
the order of encryption, and if the additional data used for decryption matches
that used for encryption, then they decrypt to the correct messages. Moreover,
decryption must also work if the keys are updated in the meantime, that is, if an
arbitrary sequence of HkuPke.BcUpDk calls is performed and the ciphertext is
generated at a point where only a prefix of the resulting update information has
been applied to the encryption key using HkuPke.BcUpEk. A formal definition
of correctness is given in the full version [12].

Security. The security of HkuPke is formalized using the game HkuPke-CPA,
described in Fig. 9. Similarly to the unidirectional case, we extend the IND-CPA
game.

10 Roughly, the additional data is needed to provide post-hijack security of the final
construction: changing the additional data means that the adversary decided to
hijack the channel, hence, the decryption key should be updated.

178 D. Jost et al.

Fig. 9. The confidentiality game for healable and key-updating encryption.

The Interface. Consider the (insecure) variant of our game without the parts
of the code marked in boxes. As in the IND-CPA game, the adversary gets
to see the encryption key ek and has access to a left-or-right Challenge oracle.
Since HkuPke schemes are stateful, we additionally allow the adversary to update
the decryption key through the calls to the Decrypt oracle (which for now only
returns ⊥). The encryption key is updated using the calls to the Encrypt oracle
(where the encrypted message is known) and to the Challenge oracle.

Furthermore, in our setting the adversary is allowed to expose the randomness
and the state. To expose the state (that is, the decryption key), he can query
the Expose oracle. To expose the randomness of any randomized oracle, he can
set the input flag leak to true.

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 179

Finally, the adversary can access two oracles corresponding to the back
channel: the oracle BcUpdateDk executes the algorithm HkuPke.BcUpDk and
returns the update information to the adversary (this corresponds to sending on
the back channel), and the oracle BcUpdateEk executes HkuPke.BcUpEk with
the next generated update (since the channel is authenticated, the adversary has
no influence on which update is applied).

Disabling Trivial Attacks. Observe that certain attacks are disabled by the con-
struction itself. For example, the randomness used to encrypt a challenge cipher-
text cannot be exposed.

Furthermore, the game can be trivially won if the adversary asks for a chal-
lenge ciphertext and, before calling Decrypt with this ciphertext, exposes the
decryption key (by correctness, the exposed key can be used to decrypt the
challenge). We disallow this by keeping track of when the adversary queried a
challenge in the set Challenges, and adding corresponding checks in the Expose
oracle. Similarly, in the Challenge oracle we return ⊥ whenever the decryp-
tion key corresponding to the current encryption key is known to the adversary.
Finally, the decryptor can be hijacked, which the game marks by setting hijacked
to true. Once this happens, the Decrypt oracle “opens up” and returns the
decrypted message.

Moreover, ideally, exposing the secret key after hijacking would not reveal
anything about the messages (the adversary gets to call Expose “for free”, with-
out setting exposed). However, as already mentioned, we relax slightly the secu-
rity. In particular, exposing is free only when hijacking did not occur immediately
after leaking encryption randomness. This is checked using the conditions vuln1
and vuln2.

Advantage. In the following, let Advhku-cpaHkuPke(A) := 2Pr[AHkuPke-CPA ⇒ true] − 1,
where Pr[AHkuPke-CPA ⇒ true] denotes the probability that the game HkuPke-
CPA returns true after interacting with an adversary A. We say that a heal-
able and key-updating encryption scheme HkuPke is HkuPke-CPA secure if
Advhku-cpaHkuPke(A) is negligible for any PPT adversary A.

5.2 Construction

To construct a HkuPke scheme, we require two primitives: a secretly key-
updatable encryption scheme SkuPke from Sect. 4, and an IND-CCA2 secure
public-key encryption scheme with associated data PkeAd. Intuitively, the lat-
ter primitive is a public-key encryption scheme, which additionally takes into
account non-secret associated data, such that the decryption succeeds if and
only if the associated data has not been modified. A bit more formally, in the
corresponding security game the decryption oracle is only blinded if the adver-
sary requests to decrypt the challenge ciphertext together with the associated
data provided with the challenge. It will decrypt the challenge for any other
associated data. A formal description of this notion, together with a simple con-
struction in the random oracle model, is presented in the full version [12].

180 D. Jost et al.

Fig. 10. The construction of healable and key-updating encryption.

At the core of our construction, in order to encrypt a message m, we generate
an update ue, dd for an SkuPke scheme and encrypt the secret update information
ud together with m. This update information is then used during decryption to
update the secret key.

Unfortunately, this simple solution has a few problems. First, we need the
guarantee that after the decryptor is hijacked, his state cannot be used to decrypt
messages encrypted afterwards. We achieve this by adding a second layer of
encryption, using a PkeAd. We generate a new key pair during every encryption,

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 181

and send the new decryption key along with m and ud, and store the corre-
sponding encryption key for the next encryption operation. The decryptor will
use his current such key to decrypt the message and then completely overwrite
it with the new one he just received. Therefore, we call those keys “ephemeral”.
The basic idea is of course that during the hijacking, the adversary has to pro-
vide a different ciphertext containing a new ephemeral key, which will then be
useless for him when exposing the receiver afterwards. In order to make this idea
sound, we have to ensure that this key is not only different from the previous
one, but unrelated. To achieve this, we actually do not send the new encryption
key directly, but send a random value z instead and then generate the key pairs
using Hash(tr ‖ z) as randomness. Here tr stands for a hash chain of ciphertexts
and associated data sent/received so far, including the current one. Overall, an
encryption of m is PkeAd.Enc(ekeph,SkuPke.Enc(ekupd, (m,ud, z2)), ad), for some
associated data ad.

Second, we need to provide healing guarantees through the back channel.
This is achieved by generating fresh key pairs for both, the updating and the
ephemeral, encryption schemes. For correctness, the encryptor however might
have to ignore the new ephemeral key, if he detects that it will be overwritten
by one of his updates in the meantime. He can detect this by the decryptor
explicitly acknowledging the number of messages he received so far as part of
the information transmitted on the backward-channel.

Third, observe that for correctness, the decryptor needs to store all decryp-
tion keys generated during the back-channel healing, until he receives a cipher-
text for a newer key (consider the back-channel messages being delayed). In
order to still guarantee post-hijack security, we apply the SkuPke update ud to
all secret keys he still stores. This also implies that the encryptor has to store
the corresponding public update information and apply them the new key he
obtains from the backward-channel, if necessary.

Theorem 3. Let SkuPke be a secretly key-updatable encryption scheme, and
let PkeAd be an encryption scheme with associated data. The scheme of Fig. 10
is HkuPke-CPA secure in the random oracle model, if the SkuPke scheme is
SkuPke-MI-CPA secure, and the PkeAd is IND-CCA2-AD secure.

A proof of Theorem 3 is presented in the full version of this work [12].

6 Overall Security

So far, we have constructed two intermediate primitives that will help us build
a secure messaging protocol. First, we showed a unidirectional authentication
scheme that provides healing after exposure of the signer’s state. Second, we
introduced a sesqui-directional confidentiality scheme that achieves forward
secrecy, healing after the exposure of the receiver’s state, and it also provides
post-hijack confidentiality.

182 D. Jost et al.

The missing piece, except showing that the schemes can be securely plugged
together, is post-hijack authentication: with the unidirectional authentication
scheme we introduced, exposing a hijacked party’s secret state allows an attacker
to forge signatures that are still accepted by the other party. This is not only
undesirable in practice (the parties lose the chance of detecting the hijack),
but it actually undermines post-hijack confidentiality as well. More specifically,
an attacker might trick the so far uncompromised party into switching over
to adversarially chosen “newer” encryption key, hence becoming a man-in-the-
middle after the fact.

In contrast to confidentiality, one obtains healing of authentication in the uni-
directional setting, but post-hijack security requires some form of bidirectional
communication: receiving a message must irreversibly destroy the signing key.
Generally, we could now follow the approach we took when dealing with the con-
fidentiality and define a sesqui-directional authentication game. We refrain from
doing so, as we believe that this does not simplify the exposition. As the reader
will see later, our solution for achieving post-hijack authentication guarantees
requires that the update information on the backward-channel is transmitted
confidentially. This breaks the separation between authentication and confiden-
tiality. More concretely, in order for a sesqui-directional authentication game to
serve as a useful intermediate abstraction on which one could then build upon, it
would now have to model the partial confidential channel of HkuPke in sufficient
details. Therefore, we avoid such an intermediate step, and build our overall
secure messaging scheme directly. First, however, we formalize the precise level
of security we actually want to achieve.

6.1 Almost-Optimal Security of Secure Messaging

Syntax. A secure messaging scheme SecMsg consists of the following triple
of polynomial-time algorithms (SecMsg.Init,SecMsg.Send,SecMsg.Receive). The
probabilistic algorithm SecMsg.Init generates an initial pair of states stA and stB
for Alice and Bob, respectively. Given a message m and a state stu of a party,
the probabilistic sending algorithm outputs an updated state and a ciphertext c:
(stu, c) ← SecMsg.Send(stu,m; z). Analogously, given a state and a ciphertext,
the receiving algorithms outputs an updated state and a message m: (stu,m) ←
SecMsg.Send(stu, c).

Correctness. Correctness of a secure messaging scheme SecMsg requires that if
all sent ciphertext are received in order (per direction), then they decrypt to the
correct message. More formally, we say the scheme is correct if no adversary can
win the correctness game SecMsg-Corr, depicted in Fig. 11, with non-negligible
probability. For simplicity, we usually consider perfect correctness, i.e., even an
unbounded adversary must have probability zero in winning the game.

Security. The security of SecMsg is formalized using the game SecMsg-Sec,
described in Fig. 12.

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 183

Fig. 11. The correctness game for a secure messaging scheme.

In general, the game composes the aspects of the security game for key-
updating signature scheme KuSig-UF, depicted in Fig. 4, with the sesqui-
directional confidentiality game HkuPke-CPA, depicted in Fig. 9. Nevertheless,
there are a few noteworthy points:

– The game can be won in two ways: either by guessing the bit b, i.e., breaking
confidentiality, or by setting the flag win to true, i.e., being able to inject
messages when not permitted by an appropriate state exposure. Note that
in contrast to the unidirectional authentication game, the game still has to
continue after a permitted injection, hence no lost flag exists, as we want to
guarantee post-hijack security.

– In contrast to the sesqui-directional confidentiality game, the Send oracle
takes an additional flag as input modeling whether the randomness used dur-
ing this operations leaks or not. This allows us to capture that a message
might not remain confidential because the receivers decryption key has been
exposed, yet it contributes to the healing of the reverse direction (which is
not the case if the freshly sampled secret key already leaks again).

– Observe that ru stops increasing the moment the user u is hijacked. Hence,
whenever hijackedu is true, ru corresponds to the number of messages he
received before.

– The two flags vuln1 and vuln2 correspond to the two situations in which we
cannot guarantee proper post-hijack security. First, vuln1 corresponds to the
situation that the last message from ū to u before u got hijacked was not
transmitted confidentiality. This can have two reasons: either the randomness
of the encryption of ū leaked, or u has been exposed just before receiving
that message. Observe that in order to hijack u right after that message, the
state of ū needs to be exposed right after sending that message. So in a model
where randomness does not leak, vuln1 implies that both parties’ state have
been compromised almost at the same time. Secondly, vuln2 implies that the
next message by ū was not sent securely either.

184 D. Jost et al.

Fig. 12. The game formalizing almost-optimal security of a secure messaging scheme.
The indicate the differences in comparison to the game with optimal security.

6.2 Construction

Our Basic Scheme. As the first step, consider a simplified version of our
scheme depicted in Fig. 13. This construction works by appropriately combining
one instance of our unidirectional key-updating signature scheme SkuSig, and
one instance of our healable and key-updating confidentiality scheme HkuPke,
per direction.

Adding Post-hijack Authenticity. The scheme depicted in Fig. 13 does not
provide any post-hijack authenticity, which we now add.

Observe that in order to achieve such a guarantee, we have to resort to
sesqui-directional techniques, i.e., we have to send some update information on
the channel from u to ū that affects the signing key for the other direction. Given
that this update information must “destroy” the signing key in case of a hijack,

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 185

Fig. 13. The scheme obtained by plugging our HkuPke and our SkuSig schemes
together. Note how the keys are only used for the corresponding direction, except
the update information for the encryption key of our sesqui-directional confidentiality
scheme, which is sent along the message.

we will use the following simple trick: the update information is simply a fresh
signing key under which the other party has to sign, whenever he acknowledges
the receipt of this message. Note that the signer only has to keep the latest
such signing key he received, and can securely delete all previous ones. Hence,

Fig. 14. Handling of the additional signature keys for the communication from Alice to
Bob. Each message additionally includes an index smsg, indicating the number of mes-
sages Alice received so far, which allows Bob to look up the corresponding verification
key. Moreover, they also maintain include a hash of the transcript in each signature.

186 D. Jost et al.

Fig. 15. The construction of an almost-optimally secure messaging scheme.

Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging 187

whenever he gets hijacked, the signing key that he previously stored, and that
he needs to sign his next message, gets irretrievably overwritten. This, of course,
requires that those signing keys are transmitted securely, and hence will be
included in the encryption in our overall scheme. However, the technique as
described so far does not heal properly. In order to restore the healing property,
we will simply ratchet this key as well in the usual manner: whenever we use it,
we sample a fresh signing key and send the verification key along. In short, the
additional signature will be produced with the following key:

– If we acknowledge a fresh message, i.e., we received a message since last
sending one, we use the signing key included in that message (only the last
one in case we received multiple messages).

– Otherwise, we use the one we generated during sending the last message.

To further strengthen post-hijack security, the parties also include a hash of
the communication transcript in each signature. This ensures that even if the
deciding message has not been transferred confidentially, at least the receiver will
not accept any messages sent by the honest but hijacked sender. A summary of
the additional signatures, the key handling, and the transcript involved in the
communication form Alice to Bob is shown in Fig. 14. Of course, the actual
scheme is symmetric and these additional signatures will be applied by both
parties. See Fig. 15 for the full description of our overall scheme.

Theorem 4. Let HkuPke be a healable and key-updating encryption scheme, let
KuSig be a key-updating signature scheme, and let Sig be a signature scheme. The
scheme SecChan of Fig. 15 is SecMsg-Sec secure, if HkuPke scheme is HkuPke-
CPA secure, KuSig is KuSig-UF secure, and Sig is 1-SUF-CMA secure.

A proof of Theorem 4 can be found in the full version [12].

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, LNCS, vol. 11476, pp. 129–158. Springer, Heidelberg (2019)

2. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the SSH
authenticated encryption scheme: a case study of the Encode-then-Encrypt-and-
MAC paradigm. ACM Trans. Inf. Syst. Secur. 7(2), 206–241 (2004)

3. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

4. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 21

5. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not to
use PGP. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic
Society, WPES 2004, pp. 77–84. ACM, New York (2004)

https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/978-3-319-63697-9_21

188 D. Jost et al.

6. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

7. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2nd IEEE European Sym-
posium on Security and Privacy, EuroS and P 2017, pp. 451–466 (2017)

8. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
without key-update primitives. Cryptology ePrint Archive, Report 2018/889
(2018). https://eprint.iacr.org/2018/889

9. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

10. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 31

11. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 2

12. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. Cryptology ePrint Archive, Report 2018/954 (2018).
https://eprint.iacr.org/2018/954. (full version of this paper)

13. Kaplan, D., Kedmi, S., Hay, R., Dayan, A.: Attacking the Linux PRNG on android:
weaknesses in seeding of entropic pools and low boot-time entropy. In: Proceedings
of the 8th USENIX Conference on Offensive Technologies, WOOT 2014, p. 14.
USENIX Association, Berkeley (2014)

14. Li, Y., Shen, T., Sun, X., Pan, X., Mao, B.: Detection, classification and char-
acterization of Android malware using API data dependency. In: Thuraisingham,
B., Wang, X.F., Yegneswaran, V. (eds.) SecureComm 2015. LNICST, vol. 164, pp.
23–40. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28865-9 2

15. Open Whisper Systems. Signal protocol library for java/android. GitHub
repository (2017). https://github.com/WhisperSystems/libsignal-protocol-java.
Accessed 01 Oct 2018

16. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 1

https://doi.org/10.1007/3-540-39200-9_16
https://eprint.iacr.org/2018/889
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/3-540-46035-7_31
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://eprint.iacr.org/2018/954
https://doi.org/10.1007/978-3-319-28865-9_2
https://github.com/WhisperSystems/libsignal-protocol-java
https://doi.org/10.1007/978-3-319-96884-1_1

Obfuscation

Indistinguishability Obfuscation Without
Multilinear Maps: New Methods

for Bootstrapping and Instantiation

Shweta Agrawal(B)

IIT Madras, Chennai, India
shweta.a@cse.iitm.ac.in

Abstract. Constructing indistinguishability obfuscation (iO) [17] is a
central open question in cryptography. We provide new methods to make
progress towards this goal. Our contributions may be summarized as
follows:
1. Bootstrapping. In a recent work, Lin and Tessaro [71] (LT) show

that iO may be constructed using (i) Functional Encryption (FE)
for polynomials of degree L, (ii) Pseudorandom Generators (PRG)
with blockwise locality L and polynomial expansion, and (iii) Learn-
ing With Errors (LWE). Since there exist constructions of FE for
quadratic polynomials from standard assumptions on bilinear maps
[16,68], the ideal scenario would be to set L = 2, yielding iO from
widely believed assumptions
Unfortunately, it was shown soon after [18,73] that PRG with block
locality 2 and the expansion factor required by the LT construction,
concretely Ω(n · 2b(3+ε)), where n is the input length and b is the
block length, do not exist. In the worst case, these lower bounds rule
out 2-block local PRG with stretch Ω(n · 2b(2+ε)). While [18,73] pro-
vided strong negative evidence for constructing iO based on bilinear
maps, they could not rule out the possibility completely; a tantaliz-
ing gap has remained. Given the current state of lower bounds, the
existence of 2 block local PRG with expansion factor Ω(n · 2b(1+ε))
remains open, although this stretch does not suffice for the LT boot-
strapping, and is hence unclear to be relevant for iO.
In this work, we improve the state of affairs as follows.
(a) Weakening requirements on Boolean PRGs: In this work, we

show that the narrow window of expansion factors left open
by lower bounds do suffice for iO. We show a new method to
construct FE for NC1 from (i) FE for degree L polynomials,
(ii) PRGs of block locality L and expansion factor Ω̃(n ·2b(1+ε)),
and (iii) LWE (or RLWE).

(b) Broadening class of sufficient randomness generators: Our boot-
strapping theorem may be instantiated with a broader class of
pseudorandom generators than hitherto considered for iO, and
may circumvent lower bounds known for the arithmetic degree of
iO-sufficient PRGs [18,73]; in particular, these may admit instan-
tiations with arithmetic degree 2, yielding iO with the additional

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 191–225, 2019.
https://doi.org/10.1007/978-3-030-17653-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_7

192 S. Agrawal

assumptions of SXDH on Bilinear maps and LWE. In more detail,
we may use the following two classes of PRG:

i. Non-Boolean PRGs: We may use pseudorandom generators
whose inputs and outputs need not be Boolean but may be
integers restricted to a small (polynomial) range. Addition-
ally, the outputs are not required to be pseudorandom but
must only satisfy a milder indistinguishability property (We
note that our notion of non Boolean PRGs is qualitatively
similar to the notion of Δ RGs defined in the concurrent
work of Ananth, Jain and Sahai [9]. We emphasize that the
methods of [9] and the present work are very different, but
both works independently discover the same notion of weak
PRG as sufficient for building iO.).

ii. Correlated Noise Generators: We introduce an even weaker
class of pseudorandom generators, which we call correlated
noise generators (CNG) which may not only be non-Boolean
but are required to satisfy an even milder (seeming) indis-
tinguishability property than Δ RG.

(c) Assumptions and Efficiency. Our bootstrapping theorems can
be based on the hardness of the Learning With Errors problem
or its ring variant (LWE/RLWE) and can compile FE for degree
L polynomials directly to FE for NC1. Previous work compiles
FE for degree L polynomials to FE for NC0 to FE for NC1 to iO
[12,45,68,72].
Our method for bootstrapping to NC1 does not go via random-
ized encodings as in previous works, which makes it simpler and
more efficient than in previous works.

2. Instantiating Primitives. In this work, we provide the first direct
candidate of FE for constant degree polynomials from new assump-
tions on lattices. Our construction is new and does not go via multi-
linear maps or graded encoding schemes as all previous constructions.
Together with the bootstrapping step above, this yields a completely
new candidate for iO (as well as FE for NC1), which makes no use of
multilinear or even bilinear maps. Our construction is based on the
ring learning with errors assumption (RLWE) as well as new untested
assumptions on NTRU rings.
We provide a detailed security analysis and discuss why previously
known attacks in the context of multilinear maps, especially zeroiz-
ing and annihilation attacks, do not appear to apply to our setting.
We caution that our construction must yet be subject to rigorous
cryptanalysis by the community before confidence can be gained in
its security. However, we believe that the significant departure from
known multilinear map based constructions opens up a new and
potentially fruitful direction to explore in the quest for iO.
Our construction is based entirely on lattices, due to which one may
hope for post quantum security. Note that this feature is not enjoyed
by instantiations that make any use of bilinear maps even if secure
instances of weak PRGs, as identified by the present work, the follow-
up by Lin and Matt [69] and the independent work by Ananth, Jain
and Sahai [9] are found.

Indistinguishability Obfuscation Without Multilinear Maps 193

1 Introduction

Indistinguishability Obfuscation. Program obfuscation aims to make a program
“unintelligible” while preserving its functionality. Indistinguishability obfusca-
tion [17] (iO) is a flavour of obfuscation, which converts a circuit C to an
obfuscated circuit O(C) such that any two circuits that have the same size and
compute the same function are indistinguishable to a computationally bounded
adversary.

While it is non-obvious at first glance what this notion is useful for, recent work
has demonstrated the tremendous power of iO. iO can be used to construct almost
any cryptographic object that one may desire – ranging (non-exhaustively) from
classical primitives such as one way functions [63], trapdoor permutations [22],
public key encryption [82] to deniable encryption [82], fully homomorphic encryp-
tion [31], functional encryption [45], succinct garbling schemes [20,30,64,70] and
many more.

The breakthrough work of Garg et al. [45] presented the first candidate con-
struction of iO from the beautiful machinery of graded encoding schemes [43].
This work heralded substantial research effort towards understanding iO: from
cryptanalysis to new constructions to understanding and weakening underlying
assumptions to applications. On the cryptanalysis front, unfortunately, all known
candidate graded encoding schemes [39,43,51] as well as several candidates of
iO have been broken [13,33–35,37,38,60,75]. Given the power of iO, a central
question in cryptography is to construct iO from better understood hardness
assumptions.

Functional Encryption. Functional encryption (FE) [80,81] is a generalization
of public key encryption in which secret keys correspond to programs rather
than users. In more detail, a secret key embeds inside it a circuit, say f , so
that given a secret key SKf and ciphertext CTx encrypting a message x, the
user may run the decryption procedure to learn the value f(x). Security of
the system guarantees that nothing beyond f(x) can be learned from CTx and
SKf . Recent years have witnessed significant progress towards constructing func-
tional encryption for advanced functionalities, even from standard assumptions
[4,5,19,24,26,27,32,36,45,46,52,57–59,62,66,83]. However, most constructions
supporting general functionalities severely restrict the attacker in the security
game: she must request only a bounded number of keys [8,55,56], or may request
unbounded number of keys but from a restricted space1 [2,58]. Schemes that may
be proven secure against a general adversary are restricted to compute linear or
quadratic functions [1,6,16,68].

Constructing iO from FE. Recent work [10,11,23] provided an approach for
constructing iO via FE. While we do not have any candidate constructions for FE
that satisfy the security and efficiency requirements for constructing iO (except
constructions that themselves rely on graded encoding schemes or iO [45,47]),
FE is a primitive that is closer to what cryptographers know to construct and
brings iO nearer the realm of reachable cryptography.
1 Referred to in the literature as “predicate encryption”.

194 S. Agrawal

An elegant sequence of works [12,67,68,71,72] has attempted to shrink the
functionality of FE that suffices for iO, and construct FE for this minimal func-
tionality from graded encoding schemes or multilinear maps. Concretely, the
question is: what is the smallest L such that FE supporting polynomials of degree
L suffices for constructing iO? At a high level, these works follow a two step app-
roach described below:

1. Bootstrapping FE to iO. The so called “bootstrapping” theorems have
shown that general purpose iO can be built from one of the following: (i)
sub-exponentially secure FE for NC1 [10,11,21,23], or (ii) sub-exponentially
secure FE for NC0 and PRG in NC0 [72] (iii) PRGs with locality L and FE for
computing degree L polynomials [68] or (iv) PRGs with blockwise locality L
and FE for computing degree L polynomials [71].

At a high level, all bootstrapping theorems make use of randomized encodings
[14,61] to reduce computation of a polynomial sized circuit to computation
of low degree polynomials.

2. Instantiating Primitives. Construct FE supporting degree L polynomials
based on graded encodings or multilinear maps [68,72].

1.1 Bootstrapping, The Ideal

Since we have candidates of FE for quadratic polynomials from standard assump-
tions on bilinear maps [16,68], a dream along this line of work would be to reduce
the degree required to be supported by FE all the way down to 2, yielding iO,
from bilinear maps and other widely believed assumptions (like LWE and PRG
with constant locality). The recent work of Lin and Tessaro [71] (LT) came clos-
est to achieving this, by leveraging a new notion of PRG they termed blockwise
local PRG. A PRG has blockwise locality L and block-size b, if when viewing
the input seed as a matrix of b rows and n columns, every output bit depends
on input bits in at most L columns. As mentioned above, they showed that
PRGs with blockwise locality L and certain polynomial stretch, along with FE
for computing degree L polynomials and LWE suffice for iO.

Unfortunately, it was shown soon after [18,73] that PRG with block locality
2 and the stretch required by the LT construction, concretely Ω(n · 2b(3+ε)), do
not exist. In the worst case, these lower bounds rule out 2-block local PRG with
stretch Ω(n · 2b(2+ε)). On the other hand, these works suggest that 3 block local
PRG are likely to exist, thus shrinking the iO-sufficient degree requirement on
FE to 3.

While [18,73] provided strong negative evidence for constructing iO based
on 2 block local PRG and hence bilinear maps, they could not rule out the
possibility completely; a tantalizing gap has remained. Roughly speaking, the
construction of candidate PRG (first suggested by Goldreich [53]) must choose
a hyper-graph with variables on vertices, then choose predicates that are placed
on each hyper-edge of the graph and output the values of the edge-predicates on
the vertex-variables. The lower bounds provided by [18,73] vary depending on

Indistinguishability Obfuscation Without Multilinear Maps 195

how the graph and predicates are chosen in the above construction: in particular
whether the graph is chosen randomly or could be constructed in some arbitrary
“worst case” way, whether the predicate is chosen randomly or arbitrarily, and
whether the same predicate is used for each hyper-edge or different predicates
may be used per hyper-edge or output bit. The following table by [73] sum-
marises our current understanding on the existence of 2 block local PRG:

Stretch Worst case versus
Random
Predicate

Worst case versus
Random Graph

Different versus
Same Predicate
per output bit

Reference

Ω̃(n · 2b(1+ε)) Random Random Different [18]

Ω̃(n · 2b(2+ε)) Worst case Worst case Different [18]

Ω̃(n · 2b(1+ε)) Worst case Worst case Same [73]

Ω̃(n · 2b(1+ε)) Worst case Worst case Different Open

As we see in the above table, the existence of 2 block local PRG with carefully
chosen graph and predicates with stretch Ω̃(n · 2b(1+ε)) is open. However, even
in the case that these exist, it is not clear whether its even useful, since the
Lin-Tessaro compiler requires larger stretch Ω(n · 2b(3+ε)), which is ruled out by
row 2 above. In the current version of their paper, [71] remark that “Strictly
speaking, our results leave a narrow window of expansion factors open where
block-wise PRGs could exist, but we are not aware whether our approach could
be modified to use such low-stretch PRGs.”

Bootstrapping: Our Results. In this work, we show that the narrow window of
expansion factors left open by lower bounds do suffice for iO. Moreover, we define
a larger class of pseudorandomness generators than those considered so far, which
may admit lower degree instantiations. We then show that these generators with
the same expansion suffice for iO. We discuss each of these contributions below.

Weakening requirements on PRGs: We show a new method to construct FE for
NC1 from FE for degree L polynomials, sub-exponentially secure PRGs of block
locality L and LWE (or RLWE). Since FE for NC1 implies iO for P/Poly [10,21,23],
this suffices for bootstrapping all the way to iO for P/Poly. Our transformation
requires the PRG to only have expansion n · 2b(1+ε) which is not ruled out as
discussed above. This re-opens the possibility of realizing 2 block local PRG with
our desired expansion factor (see below for a detailed discussion), which would
imply iO from 2 block local PRG, SXDH on Bilinear maps and LWE. A summary
of the state of art in PRG based bootstrapping is provided in Fig. 1.

Broadening class of sufficient PRGs : Our bootstrapping theorem may be instan-
tiated with a broader class of pseudorandom generators than hitherto consid-
ered for iO, and may circumvent lower bounds known for the arithmetic degree
of iO-sufficient PRGs [18,73]; in particular, these may admit instantiations with

196 S. Agrawal

arithmetic degree 2, yielding iO along with the additional assumptions of SXDH
on Bilinear maps and LWE. In more detail, we may use the following two classes of
PRG:

1. Non-Boolean PRGs: We may use pseudorandom generators whose inputs and
outputs need not be Boolean but may be integers restricted to a small (poly-
nomial) range. Additionally, the outputs are not required to be pseudorandom
but must only satisfy a milder indistinguishability property2. We tentatively
propose initializing these PRGs using the multivariate quadratic assumption
MQ which has been widely studied in the literature [41,74,84] and against
the general case of which, no efficient attacks are known.

2. Correlated Noise Generators: We introduce an even weaker class of pseudo-
random generators, which we call correlated noise generators (CNG) which
may not only be non-Boolean but are required to satisfy an even milder
(seeming) indistinguishability property.

Assumptions and Efficiency. Our bootstrapping theorems can be based on the
hardness of LWE or its ring variant RLWE and compiles FE for degree L poly-
nomials directly to FE for NC1. Our method for bootstrapping to NC1 does not
go via randomized encodings as in previous works. Saving the transformation to
randomized encodings makes bootstrapping to NC1 more efficient than in pre-
vious works. For instance, [71] require the encryptor to choose Q PRG seeds,

L block-local PRG FE for deg L poly

FE for NC0

FE for NC1

iO for P/Poly

Uses randomized
polys [AIK11, LV16]

[LT17, Lin17, AS17]

[AJ15, BV15, BNPW16]

Need PRG with
expansion Ω(n 2b(3+ε)),
LV17, BBKK17 rule out
2 block local PRG with
expansion Ω(n 2b(2+ε)).

Instantiable for L=2
assuming SXDH on
bilinear maps
[Lin17,BCFG17]

L block-local PRG FE for deg L poly

FE for NC1

iO for P/Poly

This. New proof
technique not using
randomizing polys.

[AJ15, BV15, BNPW16]

Need PRG with
expansion Ω(n 2b(1+ε)),
NOT ruled out for L=2
by LV17, BBKK17 in
worst case

Instantiable for L=2
assuming SXDH on
bilinear maps
[Lin17, BCFG17]

Lin-Tessaro, Crypto 17 This Work

Fig. 1. State of the Art in Bootstrapping FE to iO. In the present work, we may
bootstrap directly to FE for NC1 without going through NC0.

2 For the knowledgeable reader, we do not require the polynomials computing our
PRGs to be sparse and hence the general attack of [18] does not rule out existence
of degree 2 instantiations to the best of our knowledge.

Indistinguishability Obfuscation Without Multilinear Maps 197

where Q is the (polynomial) length of random tapes needed by the randomized
encodings. On the other hand we only need 2 PRG seeds, since we avoid using
randomized encodings, yielding a ciphertext that is shorter by a factor of Q, as
well as (significantly) simpler pre-processing.

1.2 Instantiation: The Ideal

To instantiate iO via FE for constant degree polynomials, [71] rely on the FE for
degree L polynomials constructed by Lin [68], which relies on SXDH on noiseless
algebraic multilinear maps of degree L, for which no candidates of degree greater
than 2 are known to exist. As discussed by [68], instantiating her construction
with noisy multilinear maps causes the proof to fail, in addition to the SXDH
assumption itself being false on existing noisy multilinear map candidates. We
refer the reader to [68,71] for a detailed discussion.

Evidently, one ideal instantiation for iO would be to construct noiseless mul-
tilinear maps of degree at least 33, on which the SXDH assumption is believed
to hold. At the moment, we have no evidence that such objects exist. Another
ideal instantiation would be to provide a direct construction of FE for constant
degree polynomials from well understood hardness assumptions, satisfying the
requisite compactness properties for implication to iO. Constructing FE from
well-understood hardness assumptions has received significant attention in recent
years, and for the moment we do not have any constructions that suffice for iO
excepting those that themselves rely on multilinear maps or iO.

Thus, at present, all concrete instantiations of the FE to iO compiler must
go via noisy multilinear maps on which SXDH fails.

Instantiation: Our Results. In our work, we take a different approach to the ques-
tion of instantiation. We propose to construct FE directly, without going through
multilinear maps or graded encoding schemes, and use this FE to instantiate the
transformation to iO. We believe this new approach has the following advantages:

1. May be Simpler: Construction of iO-sufficient FE might not need the full
power of asymmetric multilinear maps, since FE is not known to imply asym-
metric multilinear maps equipped with SXDH to the best of our knowledge4.
Hence, constructing FE directly may be simpler.

2. Yield New and Possibly More Robust Assumptions: Attempts to con-
struct FE directly for low degree polynomials yield new hardness assumptions
which are likely different from current assumptions on noisy multilinear maps.
This direction may yield more resilient candidates than those that go via mul-
tilinear maps.

3 Ideally degree 5, so as to remove the reliance on even blockwise local PRG and rely
directly on 5 local PRG which are better understood.

4 A line of work can traverse the route of FE to iO to PiO (probabilistic iO) to symmet-
ric multilinear maps (see [42] and references therein) using multiple complex subex-
ponential reductions, still not yielding asymmetric multilinear maps with SXDH.

198 S. Agrawal

In this work, we provide the first direct candidate of symmetric key FE for
constant degree polynomials from new assumptions on lattices. Let F be the class
of circuits with depth d and output length �. Then, for any f ∈ F , our scheme
achieves Time(KeyGen) = O

(
poly(κ, |f |)), and Time(Enc) = O(|x| · 2d · poly(κ))

where κ is the security parameter. This suffices to instantiate the bootstrap-
ping step above. Our construction is based on the ring learning with errors
assumption (RLWE) as well as new untested assumptions on NTRU rings. We
provide a detailed security analysis and discuss why currently known attacks in
the multilinear map setting do not appear to apply. We also provide a proof in
a restricted security game where the adversary is allowed to request only one
ciphertext, based on a new assumption. While such a security game is too limited
to be reasonable, we view this as a first step to provable security. We caution
that the assumptions underlying our construction must yet be subject to rigor-
ous cryptanalysis by the community. However, our approach is fundamentally
different and we hope it inspires other candidates.

1.3 Our Techniques: Bootstrapping

Let us start by restating the goal: we wish to construct FE for the function class
NC1 such that the size of the ciphertext depends only sublinearly on the size of
the function. Previous work [10,23] shows that such an FE suffices to construct
iO. At a high level, to compute f(x), our FE scheme will make use of a fully
homomorphic encryption scheme (FHE) to evaluate the function f on the FHE
ciphertext CTx of x to obtain a “functional” ciphertext CTf(x) and then perform
FHE decryption on CTf(x) to obtain f(x).

Agrawal and Rosen [8] show how to instantiate the above blueprint from the
LWE assumption, but incur large ciphertext size that does not suffice for boot-
strapping to iO. Their construction is the starting point of our work. Below, we
assume familiarity of the reader with RLWE and Regev’s public key encryption
scheme [52,79]. Although our bootstrapping can also be based on standard LWE,
we describe it using RLWE here since it is simpler.

“FE-compatible” Homomorphic Encryption by [8]. The main technical contribu-
tion of [8] may be seen as developing a special “FE-compatible” FHE scheme that
lends itself to the constrained decryption required by FE. Note that FHE enables
an evaluator to compute arbitrary functions on the ciphertext. In contrast, FE
requires that given a ciphertext CTx, decryption is constrained to some function
f for which the decyptor possess a secret key SKf . Thus, decryption must reveal
f(x) alone, and leak no other function of x.

To address this issue, [8] design new algorithms for FHE encryption and
ciphertext evaluation, inspired by an FHE by Brakerski and Vaikuntanathan
[29]. The evaluator/decryptor, given the encoding of some input x and some
(arithmetic) circuit f ∈ NC1 can execute the ciphertext evaluation algorithm,
which we denote by EvalCT, to compute a “functional” ciphertext CTf(x) that
encodes f(x). The functional ciphertext can then by decrypted by SKf alone, to
reveal f(x) and nothing else.

Indistinguishability Obfuscation Without Multilinear Maps 199

The encryption algorithm of [8] is “levelled” in that given input x, it outputs a
set of encodings Ci for i ∈ [d] where d is the depth of the circuit being computed.
The functional ciphertext CTf(x) = EvalCT(∪

i∈[d]
Ci, f) of [8] has the following

useful structure:

CTf(x) = 〈Linf , Cd〉 + Polyf (C1, . . . , Cd−1)

for some f -dependent linear function Linf and polynomial Polyf . Moreover, upon
decrypting CTf(x), we get

f(x) + noisef(x) = 〈Linf , Md〉 + Polyf (C1, . . . , Cd−1) (1.1)

where Md is the message vector encoded in level d encodings Cd. Here, f(x) ∈
Rp0 for some ring Rp0 and noisef(x) is the noise term that results from FHE
evaluation which may be removed using standard techniques to recover f(x) as
desired.

Using Linear FE and Noise Flooding. Given the above structure, an approach
to compute f(x) is to leverage functional encryption for linear functions [1,6],
denoted by LinFE to compute the term 〈Linf , Md〉. Recall the functionality of
LinFE: the encryptor provides a ciphertext CTz for some vector z ∈ Rn, the
key generator provides a key SKv for some vector v ∈ Rn and the decryptor
learns 〈z,v〉 ∈ R. Thus, we may use LinFE to enable the decryptor to compute
〈Linf , Md〉, let the decryptor compute Polyf (C1, . . . , Cd−1) herself to recover
f(x) + noisef(x). Surprisingly, constrained decryption of a linear function on
secret values suffices, along with additional public computation, to perform con-
strained decryption of a function in NC1.

Unfortunately, this approach is insecure as is, as discussed in [8]. For bounded
collusion FE, the authors achieve security by having the encryptor encode a fresh,
large noise term noisefld for each requested key f which “floods” noisef(x). This
noise is forcibly added to the decryption equation so that the decryptor recovers
f(x) + noisef(x) + noisefld, which by design is statistically indistinguishable from
f(x) + noisefld. [8] show that with this modification the scheme can be shown
to achieve strong simulation style security, by relying just on security of LinFE.
However, encoding a fresh noise term per key causes the ciphertext size to grow
at least linearly with the number of function keys requested, or in the case of
single key FE, with the output length of the function. As noted above, this
renders their FE insufficient for iO.

Noisy Linear Functional Encryption. In this work, we show that the approach
of [8] can be extended to construct a single key FE for NC1 with ciphertext size
sublinear in the output length, by replacing linear functional encryption LinFE
with noisy linear functional encryption, denoted by NLinFE. Noisy linear func-
tional encryption is like regular linear functional encryption [1,6], except that
the function value is recovered only up to some bounded additive error/noise,
and indistinguishability holds even if the challenge messages evaluated on any
function key are only “approximately” and not exactly equal. The functionality

200 S. Agrawal

of NLinFE is as follows: given a ciphertext CTz which encodes vector z ∈ Rn

and a secret key SKv which encodes vector v ∈ Rn, the decryptor recovers
〈z, v〉 + noisez,v where noisez,v is specific to the message and function being
evaluated.

Let f ∈ NC1 and let the output of f be of size �. Let f1, . . . , f� be the
functions that output the ith bit of f for i ∈ [�]. At a high level, our FE for NC1

will enable the decryptor to compute 〈Linfi
, Md〉+noisefldi as in [8] but instead

of having the encryptor encode � noise terms during encryption, we use NLinFE
to compute and add noise terms noisefldi into the decryption equation. Given
NLinFE with sublinear ciphertext size, we can then construct FE for NC1 with
sublinear ciphertext size, which suffices for bootstrapping to iO. In more detail,
we show:

Theorem 1.1. (Informal) There exists an FE scheme for the circuit class
NC1 with sublinear ciphertext and satisfying indistinguishability based security,
assuming:

– A noisy linear FE scheme NLinFE with sublinear ciphertext satisfying indis-
tinguishability based security.

– The Learning with Errors (LWE) Assumption.
– A pseudorandom generator (PRG).5

The formal theorem is provided in Sect. 4. Note that while [8] argue simu-
lation based security of FE for NC1 using simulation security of LinFE in the
bounded key setting, we must argue indistinguishability based security of FE for
NC1 assuming indistinguishability based security NLinFE. This is significantly
more complex and requires new proof techniques, which we develop in this work.
Please see Sect. 4 for details.

The key question that remains is how does NLinFE construct the noise term
to be added to the decryption equation? As discussed next, NLinFE is a primitive
flexible enough to admit multiple instantiations, which in turn yield FE for NC1

from diverse assumptions, improving the state of art.

Constructing NLinFE. Next, we discuss multiple methods to construct NLinFE,
which imply FE for NC1 from various assumptions. Together with the bootstrap-
ping of NLinFE to FE for NC1 described above, this suffices for applying the FE
to iO compiler of [10,23]. Before we describe our constructions, we provide a
summary via the following theorem:

Theorem 1.2. (Informal) Noisy linear functional encryption (NLinFE) with
sublinear ciphertext and satisfying indistinguishability based security may be con-
structed using:

1. (i) An FE scheme supporting evaluation of degree L polynomials and satisfy-
ing indistinguishability based security, (ii) sub-exponentially secure PRG with

5 We actually only need a randomness generator that is weaker than a standard PRG
but do not discuss this here. for the formal statement.

Indistinguishability Obfuscation Without Multilinear Maps 201

block locality L and expansion n · 2b(1+ε), where n is the input length and b is
the block length, and (iii) LWE (or RLWE).

2. (i) An FE scheme supporting evaluation of degree L polynomials and satisfy-
ing indistinguishability based security, (ii) sub-exponentially secure weak ran-
domness generators called “Correlated Noise Generators” (CNG) (iii) LWE
(or RLWE).

3. (i) An FE scheme supporting evaluation of degree L polynomials and sat-
isfying indistinguishability based security, (ii) sub-exponentially secure weak
randomness generators called “non-Boolean PRG” (iii) LWE (or RLWE).

4. New lattice assumptions on NTRU rings.

Note that the above instantiations of NLinFE have several desirable features
as discussed below:

1. The first instantiation uses a block local PRG with smaller expansion factor
than that required by the Lin-Tessaro compiler [71]. More importantly, 2-
local PRG with the above expansion factor is not ruled out in the worst case
by [18,73]. Thus, if PRG with block locality 2 and the above expansion factor
exist, we may instantiate FE for L = 2 using SXDH on bilinear maps [68].

2. The notion of correlated noise generators CNG is new to our work, and appears
significantly weaker than a standard Boolean PRG, as discussed below. Prior
to our work, the only notions of PRG that were used to construct iO are
standard Boolean PRG and block local PRG [71].

3. Our notion of non-Boolean PRG interpolates CNG and standard Boolean PRG.
This notion is qualitatively the same as the notion of Δ-RG discovered con-
currently and independently by [9].

4. Our direct construction of NLinFE makes no use of bi/multi-linear maps, and
provides a candidate for post quantum iO. We note that most (if not all)
candidates of iO are vulnerable in the post quantum setting [77].

The “Right” Abstraction. Noisy linear functional encryption provides the right
abstraction (in our opinion) for the smallest functionality that may be boot-
strapped to FE for NC1 using our methods. NLinFE captures the precise require-
ments on noise that is required for the security of FE for NC1 and integrates
seamlessly with our new proof technique. Moreover, as discussed above, NLinFE
may be constructed in different ways from different assumptions, and properties
such as ciphertext size and collusion resistance achieved by NLinFE are inher-
ited by FE for NC1. We remark that the follow up work by Lin and Matt [69]
also uses our notion of NLinFE in essentially the same manner for their overall
construction.

Put together, an overview of our transformation is provided in Fig. 2.

202 S. Agrawal

Fig. 2. Overview of our transformation. Above, FH refers to function hiding.

Weaker Requirements on PRG. Next, we discuss the requirements on the
PRG used by the first three instantiations of NLinFE discussed above.
PRG with smaller expansion factor. Our first method makes use of a compact
FE scheme which is powerful enough to compute PRG/blockwise local PRG [71].
Let PrgFE be a functional encryption scheme that supports evaluation of a PRG
with polynomial stretch. Then, we may construct NLinFE and hence FE for NC1

by leveraging PrgFE to compute the noise to be added by NLinFE as the output
of a PRG.

In more detail, by the discussion above, we would like the decryptor to com-
pute:

f(x) + noisef(x) + noisefld = 〈Linf , Md〉 + noisefld + Polyf (C1, . . . , Cd−1)

where noisef(x) + noisefld is indistinguishable from noisefld. Say that the norm
of noisef(x) may be bounded above by value Bnse. Then, it suffices to sample
a uniformly distributed noise term noisefld of norm bounded by Bfld, where Bfld

is superpolynomially larger than Bnse for the above indistinguishability to hold.
This follows from security of PRG and a standard statistical flooding argument.
We will use PrgFE to compute noisefld.

In more detail, let G be a PRG with polynomial stretch which outputs �
uniform ring elements of norm bounded by Bfld, and let Gi be the function that
selects the ith output symbol of G, namely Gi(seed) = G(seed)[i] where seed is
the seed of the PRG. Then,

1. The encryptor may provide PrgFE encryptions of (Md, seed) along with
encodings ∪

i∈[d−1]
Ci,

2. The key generator may provide a PrgFE secret key for polynomial Pi(z1, z2) =
〈Linfi

, z1〉 + Gi(z2)

Indistinguishability Obfuscation Without Multilinear Maps 203

3. The decryptor may compute 〈Linfi
, Md〉 + Gi(seed) as well as

Polyf (C1, . . . , Cd−1), to recover f(x) + noisef(x) + Gi(seed) by Eq. 1.1 as
desired.

It is crucial to note that the degree of the polynomial Pi is equal to the degree
required to compute Gi, because Linfi

is a linear function. Moreover, the degree
is unchanged even if we make use of a standard PRG with binary range. To
see this, take a binary PRG that requires degree L to compute, and apply the
standard (linear) powers of two transformation to convert binary output to larger
alphabet.

Thus, an FE scheme that supports polynomials of degree L, where L is the
degree required to compute a PRG, suffices to construct NLinFE and hence FE
for NC1. Moreover, we may pre-process the seed of the PRG as in [71] to leverage
“blockwise locality”; our construction allows the PRG to have smaller expansion
factor than that required by the Lin-Tessaro construction, as discussed next.

Analyzing the Expansion Factor of the PRG. Above, the polynomial Pi we are
required to construct must compute a function that is degree 1 in the PRG output
plus an additional linear function of the encoded messages. By comparison, the
underlying degree L FE in [68,71,72] must natively compute a polynomial which
has degree 3 in output of a PRG. In more detail, the FE of [68,71] must compute
a randomizing polynomial [15], which contains terms of the form rirjrk where
ri, rj , rk are random elements, each computed using a PRG. Thus, if L is the
locality of the PRG, the total degree of the polynomial is 3L, which is reduced to
L using a clever precomputing trick developed by Lin [68]. In contrast, our FE
must compute a polynomial of the form 〈Linf , Md〉 + PRG(seed) as discussed
above, thus natively yielding a polynomial of degree L.

Further, Lin and Tessaro [71] construct a method to leverage the blockwise
locality L of the PRG, which is believed to be smaller than locality as discussed
above. Recall that the PRG seed is now a matrix of b rows and n columns, and
each output bit depends on input bits in at most L columns. Then, to begin, [71]
suggest computing all possible monomials in any block, for all blocks, resulting
in O(n·2b) total monomials. At this point, the output of a PRG can be computed
using a degree L polynomial. However, since the final polynomial has degree 3
in the PRG outputs, LT further suggest precomputing all degree 3 products of
the monomials constructed so far, leading to a total of O(n · 23b) terms. To
maintain ciphertext compactness then, the expansion of the PRG must be at
least Ω(n · 2b(3+ε)). We refer the reader to [18, Appendix B] for an excellent
overview of the LT construction, and to [71] for complete details.

Since the polynomial in our FE must compute has degree only 1 rather than 3
in PRG output, we need not compute degree 3 products in O(n·2b) monomials as
required by [71], thus requiring to encode a total number of O(n ·2b) monomials.
Hence, to maintain ciphertext compactness (which is necessary for implication
to iO [10,23]), the expansion of the PRG in our case must be Ω(n ·2b(1+ε)). Thus,
our transformation requires a lower expansion factor than that of [71]. Moreover,
by sidestepping the need to compute randomized encodings, our bootstrapping
becomes simpler and more efficient than that of [68,71,72].

204 S. Agrawal

Correlated Noise Generators. As discussed above, FE for implementing PRG
suffices to construct NLinFE and hence FE for NC1. However, examining carefully
the requirements on the noise that must be added to decryption by NLinFE,
reveals that using a PRG to compute the noise is wasteful; a weaker object
appears to suffice. Specifically, we observe that the noise terms noisefi(x) for
i ∈ [�], which must be flooded are low entropy, correlated random variables,
constructed as polynomials in O(L) noise terms where L = | ∪

k∈[d]
Ck|. A PRG

mimics � i.i.d noise terms where � > L, i.e. O(�) bits of entropy, whereas the
random variables that must be flooded have only O(L) bits of entropy.

Indeed, even to flood � functions on L noise terms statistically, only L fresh
noise terms are needed. For instance, let us say that we are required to flood
(fi(μ))i∈[�] for μ ∈ RL. Then, it suffices to choose β ∈ RL such that β is
superpolynomially larger than μ to conclude that

SD
(
β, β + μ

)
= negl(κ)

This implies that

SD
((

f1(β), . . . , f�(β)
)
,

(
f1(β + μ), . . . , f�(β + μ)

))
= negl(κ)

Considering that we must only generate O(L) bits of pseudoentropy, can we
make do with something weaker than a PRG?

To make this question precise, we define the notion of a correlated noise gen-
erator, denoted by CNG. A CNG captures computational flooding of correlated
noise, to mimic statistical flooding described above. In more detail, we will use
a CNG to generate flooding terms g1(β), . . . , g�(β) such that to any computa-
tionally bounded adversary Adv, it holds that

(
g1(β), . . . , g�(β)

) c≈ (
(g1(β) + f1(μ), . . . g�(β) + f�(μ)

)

Note that if we denote by gi the function for computing the ith element of the
PRG output, then by choosing the range of PRG superpolynomially larger than
|fi(μ)|, the above condition is satisfied. Thus, a PRG implies a CNG. However,
implication in the other direction does not hold, since CNG only generates strictly
fewer bits of pseudoentropy than a PRG.

Moreover, matters are even nicer in the case of CNG, because gi can be cho-
sen after seeing fi, and the distribution of μ is known at the time of choosing
gi. So each gi can be different depending on what it needs to “swallow”. Addi-
tionally, we may leverage the fact that a CNG posits that a distribution must
be indistinguishable from itself plus a fixed function, not indistinguishable from
uniform.

Our hope is that since a CNG appears weaker than a PRG, it may sidestep
the lower bounds known for the blockwise-locality of polynomial stretch PRGs,
thereby providing a new route to iO from bilinear maps. Suggesting candidates
for CNG that have lower degree than PRG is outside the scope of this work but we
believe it is useful to identify the weakest object that suffices for bootstrapping
to iO. For the precise definition of CNG, please see Sect. 3.

Indistinguishability Obfuscation Without Multilinear Maps 205

Non Boolean PRG. A notion of randomness generators that interpolates CNG
and Boolean PRG is that of non-Boolean PRG, which allows the inputs and
outputs to lie in a bounded (polynomial) sized interval over the integers and
must only satisfy the computational flooding property described above. Taking
a step back, we note that in prior work [12,68,71], Boolean PRGs were required
in order to compute the binary randomness needed for constructing randomizing
polynomials. In our case, the PRG output need not be binary since we do not
require these as input to randomized encodings. Additionally, they must satisfy a
much weaker property than indistinguishability to uniform i.i.d random variables
as discussed above. In more detail, say we can bound |fi(μ)| ≤ ε for i ∈ [�]. Then
we require the PRG output Gi(β) to computationally flood fi(μ) for i ∈ [�], i.e.
Gi(β) + fi(μ) must be computationally indistinguishable from Gi(β).

We note that the above notion of non Boolean PRGs is qualitatively the
same as the notion of ΔRGs defined in the concurrent work of Ananth et al. [9]
except that ΔRG are weaker, in that they allow the adversary to win the game
with 1/poly probability whereas we require that the adversary only wins with
standard negligible probability. By relying on the security amplification theorem
of [9], our notion can be weakened and made equivalent to ΔRG.

1.4 Related Work: Bootstrapping

In this section, we provide a detailed comparison with works that are most closely
related to ours.

Predicate encryption [2,28,58] and reusable garbled circuits [2,54]. A successful
approach to constructing functional encryption schemes from standard assump-
tions is the predicate encryption scheme by Gorbunov et al. [58] and its extensions
[2,28]. Roughly speaking, these schemes make use of an attribute based encryp-
tion (ABE) scheme for circuits [25,57] in conjunction with a fully homomorphic
encryption scheme to achieve a system where the input x is hidden only as long as
the adversary’s key requests obey a certain “one sided” restriction w.r.t the chal-
lenge messages. In more detail, security holds as long as the adversary does not
obtain keys SKf for any circuit f such that f(x) = 0. Given an adversary who
obeys this “one sided” restriction, functionality is general, i.e. the adversary may
request for a key corresponding to any polynomial sized circuit. However, in the
general “two sided” security game, the schemes are shown to be insecure [2,58].
The reusable garbled schemes of [2,54] satisfy general two sided security but do
not achieve compact ciphertext required for bootstrapping to iO.

The techniques of the aforementioned line of work and the present work
are fundamentally different. While [55,58] also use FHE in order to hide the
attributes in an FE scheme, the building block of ABE necessitates the restriction
of one sided security due to the basic structure of ciphertexts and secret keys.
As discussed in [2], if the predicate encryption scheme [58] is subject to a general
two sided adversary, the adversary may requests keys for related functions which
can lead to the recovery of a secret lattice basis, leading to a complete break in
security. We emphasize that this attack exploits the structure of the secret keys
and ciphertext in the underlying ABE scheme and is in distinct from the attack

206 S. Agrawal

implied by the leakage of the FHE noise learnt by the attacker upon decryption
– indeed, the follow-up work of [28] shows how to construct predicate encryption
that does not contain the FHE noise leakage. Thus, despite supporting powerful
functionality, current techniques for generalizing ABE to FE get stuck in the
quicksand of one sided security.

To overcome this challenge, we insist on a two sided adversary at any cost to
functionality. We follow the approach of [8] which starts with the modest function-
ality of linear functional encryption [1,6] satisfying two sided security, and makes
use of special properties of the FHE scheme of Brakerski and Vaikuntanathan [29]
to decompose function computation into a “deep” public computation performed
using FHE and a “shallow” (linear) private computation, performed using lin-
ear FE [1,6]. The public FHE computation is performed by the decryptor outside
any FE scheme, namely, without any guarantee of constrained decryption. This is
in contrast to [2,28,58] where the entire function evaluation is performed within
the confines of the ABE evaluation, which constrains decryption of the final FHE
ciphertext and renders futile any attempts to tamper with the functionality. How-
ever, in [8] the only constrained decryption is via the modest functionality of linear
FE but the authors argue that constraining a linear function suffices to constrain
computation in NC1, at the cost of non-compact ciphertext.

In the present work, to achieve security as well as succinct ciphertext, we
look at the mildest possible strengthening of this functionality, namely one that
supports computation of linear functions plus a noise term which satisfies a
relatively mild statistical property, as formalized via the notion of noisy linear
functional encryption (NLinFE). We then show that this notion of NLinFE may
be bootstrapped all the way to iO. Our bootstrapping uses NLinFE in a black
box way, and when NLinFE is instantiated using bilinear maps, the results in an
interesting “hybrid” scheme which uses FHE to perform deep computation in
the clear and then performs a careful FHE decryption in the exponent.

Comparison with [8]. Even though the present work uses the ciphertext and public
key evaluation algorithms developed by Agrawal and Rosen [8], our construction of
FE forNC1 and particularly our proof technique are quite different. Firstly, [8] is in
the bounded collusion setting with non-compact ciphertext, and achieves a simu-
lation based security which is known to be impossible in our setting where compact
ciphertext is crucial. Hence, we must give an indistinguishability style proof which
is significantly harder, and requires using a new proof technique developed in this
work. Moreover, [8] adds statistical large flooding noise which is oblivious of the
distribution of noise it needs to drown, whereas we will analyze and leverage the
distribution carefully. Most importantly, [8] can make do with linear FE whereas
we crucially need noisy linear FE6. Finally, we give many instantiations of NLinFE
using bilinear maps and weak randomness generators as well as directly using new
assumptions.
6 We remark that a weak version of NLinFE in the bounded collusion setting was devel-

oped in an earlier version of [8] (see [7]) but was found to be redundant and was sub-
sequently removed. The current, published version of [8] relies on LinFE alone. Our
definition of NLinFE is significantly more general.

Indistinguishability Obfuscation Without Multilinear Maps 207

Independent and concurrent work. In an independent and concurrent work,
Ananth, Jain and Sahai [9] also provide an approach to construct iO without
multilinear maps. They rely on (subexponentially-secure) bilinear maps, LWE,
block-locality 3 PRGs, and a new type of randomness generator, which they call
perturbation resilient generator, denoted as ΔRG. Their techniques and overall
construction are extremely different from ours. However, we find it very inter-
esting that both works intersect in identifying a very similar new type of PRG
as sufficing to fill the gap between assumptions we believe and iO. Their notion
of ΔRG is almost exactly the same as the non-Boolean PRG that (is one of the
types of PRGs) we identify – both notions require the generation of some noise
N such that N is indistinguishable from N + e for some bounded e. However,
they only require a weak form of indistinguishability, namely the adversary is
allowed to distinguish between N and N + e with 1/poly probability in their
case, whereas we require standard negligible distinguishing probability. They
also provide a generic security amplification theorem, which transforms FE for
NC1 which satisfies this weak indistinguishability to FE with standard indistin-
guishability. Their security amplification theorem can be used black box in our
construction to also rely on ΔRG (or the weaker notion of CNG) with similar
weak indistinguishability.

We may also use their security amplification theorem to weaken the require-
ment on the underlying quadratic FE scheme so that it can be instantiated using
existing constructions [16,68]. In more detail, we use quadratic FE to compute
a noise term which must be natively superpolynomial in size to argue secu-
rity. However, existing constructions of quadratic functional encryption schemes
[16,68] perform decryption “brute force”, by computing a discrete logarithm in
the end, restricting the space of decryptable values to be polynomial in size. To
align with known constructions of quadratic FE, we choose our flooding noise
to be polynomial in size – this overcomes the above issue but results in 1/poly
advantage to the adversary. This advantage can be made negligible by leveraging
the security amplification theorem of [9] in a black box manner.

Aside from significantly different techniques, the final results obtained by
the two works are also different. First, we define the abstraction of noisy linear
FE, and bootstrap this to iO. The instantiation of noisy linear FE using bilinear
maps and ΔRG is only one of the ways of achieving iO; we also define an even
weaker type of PRG, namely correlated noise generators (denoted by CNG, please
see Sect. 3) which suffices for iO. On the other hand, their security requirement
from their randomness generators is significantly weaker – they only require
1/poly security as discussed above. Moreover, they provide a general security
amplification theorem which we do not. The details of the techniques in the two
works are vastly different: [9] define and instantiate the notion of tempered cubic
encodings which do not have any analogue in our work. Also, we provide a direct
construction of NLinFE from new lattice assumptions, which they do not. In our
instantiation that uses bilinear maps, we rely on the SXDH assumption in the
standard model, whereas they argue security in the generic bilinear map model.

208 S. Agrawal

We remark that in [9], the special PRG, namely ΔRG needs to be computable
by a cubic polynomial that degree 1 in a public seed component and degree 2
in the secret seed components. In the present work, as well as [69], the special
PRG output must be computed using quadratic polynomials.

Follow-up work. In a follow-up work7, Lin and Matt [69] leverage our techniques
to provide a different construction of iO from bilinear maps, LWE and weak
pseudorandom objects, which they term Pseudo Flawed-smudging Generators
(PFG). The high level structure of their construction is very similar to ours: they
also use special properties of the FHE scheme of Brakerski and Vaikuntanathan
[29] to split the functional computation into a deep public computation and
a shallow private computation, the former being done by the decryptor in the
clear, and the latter being performed in the exponent of a bilinear group using
quadratic operations. To argue security, they must, similarly to us, perform noise
flooding in the exponent. The main difference from our work is that the choice
of noise in our setting is natively super-polynomial as discussed above, and we
must use security amplification to make do with polynomial noise. On the other
hand, [69] can make do with polynomial noise via their notion of Pseudo Flawed-
smudging Generators (PFG). We remark that in contrast to the present work,
[69] construct FE for NC0 and then rely on randomized encodings to bootstrap
this to FE for NC1, as in prior work [68,71,72]. On the other hand, we use
techniques from [29] in a non blackbox way to bootstrap all the way to NC1

directly.

1.5 Our Techniques: Direct Construction of NLinFE

Next, we provide a direct construction of NLinFE based on new (untested)
assumptions that strengthen ring learning with errors (RLWE) and NTRU. Our
construction is quite different from known constructions and does not rely on
multilinear maps or graded encoding schemes.

As discussed above, flooding correlated noise terms appears qualitatively
easier than generating uniform pseudorandom variables. Recall that � is the
output length of the function and L is sublinear in �. In this section, we discuss
a method to provide L encodings of a seed vector β in a way that the decryptor
can compute � encodings of {gi(β)}i∈[�] on the fly. The careful reader may suspect
that we are going in circles: if we could compute encodings of gi(β) on the fly,
could we not just compute encodings of fi(x) on the fly?

We resolve this circularity by arguing that the demands placed on noise in
lattice based constructions are significantly weaker than the demands placed on
messages. In particular, while computation on messages must maintain integrity,
noise need only create some perturbation, the exact value of this perturbation
is not important. Therefore if, in our attempt to compute an encoding gi(β),
we instead compute an encoding of g′

i(β
′), this still suffices for functionality.

Intuitively g′
i(β

′) will be a polynomial equation of β designed to flood fi(μ).

7 We had shared an earlier version with the authors several months ago.

Indistinguishability Obfuscation Without Multilinear Maps 209

In order to construct FE that supports the computation of noisy linear equa-
tions, we begin with an FE that supports computation of linear equations,
denoted by LinFE, provided by [1,6]. All our constructions use the blueprint
provided in [6] to support linear equations, and develop new techniques to add
noise. In order to interface with the LinFE construction of [6], we are required to
provide encodings of noise terms β such that:

1. Given encodings of β and gi the decryptor may herself compute on these to
construct an encoding of gi(β).

2. The functional encoding of gi(β) must have the form hg,i · s+ noiseg,i + gi(β)
where hg,i is computable by the key generator given only the public/secret key
and the function value. In particular, hg,i should not depend on the ciphertext.

In order to compute efficiently on encodings of noise, we introduce a strength-
ening of the RLWE and NTRU assumptions. Let R = Z[x]/〈xn + 1〉 and
Rp1 = R/(p1 · R), Rp2 = R/(p2 · R) for some primes p1 < p2. Then, the fol-
lowing assumptions are necessary (but not sufficient) for security of our scheme:

1. We assume that the NTRU assumption holds even if multiple samples have
the same denominator. This assumption has been discussed by Peikert [76,
4.4.4], denoted as the NTRU learning problem and is considered a reasonable
assumption. Moreover, this assumption is also used in the multilinear map
constructions [44] and has never been subject to attack despite extensive
cryptanalysis.
In more detail, for i ∈ {1, . . . , w}, sample f1i, f2i and g1, g2 from a discrete
Gaussian over ring R. If g1, g2 are not invertible over Rp2 , resample. Set

h1i =
f1i

g1
, h2i =

f2i

g2
∈ Rp2

We assume that the samples {h1i, h2j} for i, j ∈ [w] are indistinguishable
from random. Note that NTRU requires the denominator to be chosen afresh
for each sample, i.e. h1i (resp. h2i) should be constructed using denominator
g1i (resp. g2i), for i ∈ [w].

2. We assume that RLWE with small secrets remains secure if the noise terms
in RLWE samples live in some secret ideal. In more detail, for i ∈ [w], let
D̂(Λ2), D̂(Λ1) be discrete Gaussian distributions over lattices Λ2 and Λ1

respectively. Then, sample

e1i ← D̂(Λ2), where Λ2 � g2 · R. Let e1i = g2 · ξ1i ∈ small,

e2i ← D̂(Λ1), where Λ1 � g1 · R. Let e2i = g1 · ξ2i ∈ small,

Above, small is a place-holder term that implies the norm of the relevant
element can be bounded well below the modulus size, p2/5, say. We use it for
intuition when the precise bound on the norm is not important. Hence, for
i, j ∈ [w], it holds that:

h1i · e2j = f1i · ξ2j , h2j · e1i = f2j · ξ1i ∈ small

210 S. Agrawal

Now, sample small secrets t1, t2 and for i ∈ [w], compute

d1i = h1i · t1 + p1 · e1i ∈ Rp2

d2i = h2i · t2 + p1 · e2i ∈ Rp2

We assume that the elements d1i, d2j for i, j ∈ [w] are pseudorandom. The pow-
erful property that this assumption provides is that the product of the samples
d1i ·d2j do not suffer from large cross terms for any i, j ∈ [w] – since the error of
one sample is chosen to annihilate with the large element of the other sample,
the product yields a well behaved RLWE sample whose label is a product of the
original labels. In more detail,

d1i · d2j =
(
h1i · h2j

) · (t2 t2) + p1 · noise
where noise = p1 · (

f1i · ξ2j · t1 + f2j · ξ1i · t2 + p1 · g1 · g2 · ξ1i · ξ2j

) ∈ small

If we treat each d1i, d2j as an RLWE sample, then we may use these samples
to encode noise terms so that direct multiplication of samples is well behaved.
Note that the noise terms we wish to compute on, are the messages encoded by
the “RLWE sample” d1i, hence d1i must contain two kinds of noise: the noise
required for RLWE security and the noise that behaves as the encoded message.
This requires some care, but can be achieved by nesting these noise terms in
different ideals as:

d1i = h1i · t1 + p1 · ẽ1i + p0 · e1i ∈ Rp2

d2i = h2i · t2 + p1 · ẽ2i + p0 · e2i ∈ Rp2

Here, (p1 · ẽ1i, p1 · ẽ2i) behave as RLWE noise and (p0 · e1i, p0 · e2i) behave as
the encoded messages. Both ẽ1i, e1i as well as ẽ2i, e2i are chosen from special
ideals as before. Now, we may compute quadratic polynomials on the encodings
“on-the-fly” as

∑

i,j

d1id2j to obtain a structured-noise RLWE sample whose label is

computable by the key generator. If we treat this dynamically generated encoding
as an RLWE encoding of correlated noise, then we can use this to add noise to the
NLinFE decryption equation by generalizing techniques from [6]. The decryptor
can, using all the machinery developed so far, recover fi(x)+noisef(x) +noisefldi

where noisefldi is constructed as a quadratic polynomial of noise terms that live
in special ideals.

Mixing Ideals. While it suffices for functionality to choose the correlated noise
term as a polynomial evaluated on noise living in special ideals, the question of
security is more worrisome. By using the new “on-the-fly” encodings of noise, the
decryptor recovers noise which lives in special, secret ideals, and learning these
ideals would compromise security. In more detail, the noise term we constructed
above is a random linear combination of terms (g1 · g2), {f1i}i, {f2j}j , which
must be kept secret for semantic security of d1i, d2j to hold. Indeed, if we over-
simplify and assume that the attacker can recover noise terms that live in the

Indistinguishability Obfuscation Without Multilinear Maps 211

ideal generated by g1 · g2, then recovering g1 · g2 from these terms becomes an
instance of the principal ideal problem [40,50].

While the principal ideal problem has itself resisted efficient classical algo-
rithms so far, things in our setting can be made significantly better by breaking
the ideal structure using additional tricks. We describe these next.

1. Mixing ideals. Instead of computing a single set of pairs
((

h1i, d1i

)
,
(
h2i,

d2i

))
, we now compute k of them, for some polynomial k fixed in advance.

Thus, we sample f j
1i, f

j
2i and gj

1, g
j
2 for i ∈ {1, . . . , w}, j ∈ {1, . . . , k}, where

w, k are fixed polynomials independent of function output length �, and set

hj
1i =

f j
1i

gj
1

, hj
2i =

f j
2i

gj
2

∈ Rp2

The encoding of a noise term constructed corresponding to the (i, j)th mono-
mial is dii′ =

∑

j∈[k]

d1id2i′ . Thus, the resultant noise term that gets added to

the decryption equation looks like:

p0 ·
[

∑

j∈[k]

(

gj
2 · gj

1 ·
(
p0 · (ξj

1i · ξj
2i′)

)
+

(
f j
1i · ξj

2i′ · t1 + f j
2i′ · ξ�

1i · t2

)
)]

(1.2)

Thus, by adding together noise terms from multiple ideals, we “spread” it out
over the entire ring rather than restricting it to a single secret ideal. Also,
we note that it is only the higher degree noise terms that must live in special
ideals; if the polynomial contains linear terms, these may be chosen from the
whole ring without any restrictions. In more detail, above, we computed a
noise term corresponding to a quadratic monomial which required multiplying
and summing encodings. If we modify the above quadratic polynomial to
include a linear term, we will need to add a degree 1 encoding into the above
equation. The degree 1 encoding which does not participate in products, may
encode noise that is chosen without any restrictions, further randomizing the
resultant noise.

2. Adding noise generated collectively by ciphertext and key. Aside from com-
puting polynomials over structured noise terms encoded in the ciphertext,
we suggest an additional trick which forces noise terms into the decryption
equation. These noise terms are quadratic polynomials where each monomial
is constructed jointly by the encryptor and the key generator. This trick relies
on the structure of the key and ciphertext in our construction. We describe
the relevant aspects of the key and ciphertext here. The key for function fi

is a short vector k such that:

〈w, k〉 = ufi

where w is part of the master secret, and ufi
is computed by the key generator.

The encryptor provides an encoding

c = w · s + p1 · noise0

212 S. Agrawal

As part of decryption, the decryptor computes 〈k, c〉 to obtain ufi
· s + p1 ·

〈k, noise0〉. Moreover by running EvalCT(C1, . . . , Cd), she also obtains ufi
·s+

f(x) + p0 · noise + p1 · noise′. Subtracting these and reducing modulo p1 and
then modulo p0 yields f(x) as desired.

Intuitively, the structured noise computed above is part of the noise in the
sample computed by EvalCT, i.e. part of

(
p0 ·noise+p1 ·noise′)

in the notation
above. Our next trick shows how to add noise to 〈k, c〉.
We modify KeyGen so that instead of choosing a single k, it now chooses a
pair (k1,k2) such that:

〈w, k1〉 = ufi
+ p0 · Δ1 + p1 · Δ̃1

〈w, k2〉 = ufi
+ p0 · Δ2 + p1 · Δ̃2

Here, Δ1, Δ2, Δ̃1, Δ̃2 are discrete Gaussians sampled by the key generator
unique to the key for fi. Additionally, the encryptor splits c as:

c01 = w · s1 + p1 · ν1

c02 = w · s2 + p1 · ν2

where s1 + s2 = s and s1, s2 are small, then,

〈k1, c01〉 + 〈k2, c02〉 = ufi
· s + p0 · (

Δ1 · s1 + Δ2 · s2
)

+ p1 · (
Δ̃1 · s1 + Δ̃2 · s2

)
+ p1 · noise

Thus, we forced the quadratic polynomial p0 · (
Δ1 · s1 + Δ2 · s2

)
+ p1 · (

Δ̃1 ·
s1 + Δ̃2 · s2

)
into the noise, where Δ1,Δ2 and Δ̃1, Δ̃2 are chosen by the key

generator for the particular key request and the terms s1 and s2 are chosen
by the encryptor unique to that ciphertext. Note that w can be hidden from
the view of the adversary since it is not required for decryption, hence the
adversary may not compute 〈w, k1〉, 〈w, k2〉 in the clear. For more details,
please see the full version [3].

1.6 Related Work: Instantiation

To the best of our knowledge, all prior work constructing FE for degree L ≥ 3
polynomials rely on either iO itself [45] or multilinear maps [48] or bilinear maps
and weak pseudorandomness [12,68,71] as discussed above. Since our direct con-
struction also makes use of NTRU lattice assumptions, we discuss here some high
level differences between multilinear map based approaches and our approach.

Let us describe the main ideas behind the multilinear map construction of
[44]. Our description follows the summary of [65]. Similarly to us, the authors
consider the polynomial rings R = Z[x]/〈xn +1〉 and Rq = R/qR. They generate
a small secret g ∈ R and set I = 〈g〉 to be the principal ideal over R generated
by g. Next, they sample a uniform z ∈ Rq which stays secret. The “plaintext”

Indistinguishability Obfuscation Without Multilinear Maps 213

is an element of R/I, and is encoded via a division by z in Rq: to encode a coset
of R/I, give element [c/z]q where c is an arbitrary small coset representative.
Since g is hidden, the authors provide another public parameter y, which is an
encoding of 1 and the encoding of the coset is chosen as [e · y]q where e is a
small coset representative. At level i
= 1, the encoding has the form [c/zi]q.
The encodings are additively and multiplicatively homomorphic, and for testing
whether an element in the last level D (say) encodes 0, the authors provide
a “zero test parameter” pzt = hzDg−1 mod q where h is an element of norm
approximately

√
q. The parameters are set so that if an element encodes 0, its

product with this parameter is “small” otherwise it is “large”.
Known attacks against multilinear maps and obfuscators operate on the

following broad principle: (i) perform algebraic manipulations on some initial
encodings, (ii) apply the zero test to each top level encoding, (iii) perform an
algebraic computation on the results of the zero testing so as to obtain an ele-
ment in the ideal 〈g〉, (iv) use this somehow break the scheme. Once an element
in 〈g〉 is obtained, different attacks work in different ways, but in the “weak mul-
tilinear map model” [49], being able to recover an element in 〈g〉 is considered a
successful attack. Thus, the unique element g must crucially be kept secret.

In our work, decryption of the FE scheme also results in a high degree poly-
nomial containing secret elements f1ig1, f2ig2 for i ∈ [poly] along with fresh
random elements per ciphertext. However, unlike the multilinear map template
where there is a single secret g, there are a polynomial number of secret elements
that play (what appears to us) qualitatively the same role as g in our construc-
tion. Moreover, these are “spread out” in the recovered polynomial which makes
obtaining any term isolating any one secret element via algebraic manipulations
seem improbable. Additionally, annihilation attacks [75] crucially make use of
the fact that the unstructured elements that are unique to every encoding are
linear, which assists in the computation of the annihilation polynomial. In con-
trast, unstructured elements in our recovered polynomial that are unique to the
encoding are high degree and seem much harder to annihilate.

Our construction of NLinFE appears much simpler in design than the con-
struction of multilinear map based obfuscators, we refer the reader to [75,78] for
a clean description of an abstract obfuscator. Unlike current candidate obfus-
cators, we do not need to use straddling sets for handling mixed input attacks,
eliminating a vulnerability recently exploited by [78]. This is because mixed
input attacks seem very hard to launch in our construction, since we do not use
branching programs and all parts of a given input are tied together using an
LWE secret (albeit with a non-standard LWE assumption). Moreover, the func-
tion keys in our FE construction have a different structure than the ciphertext
and do not seem amenable to mix and match attacks.

2 Noisy Linear Functional Encryption

We refer the reader to the full version [3] for definitions and preliminaries. In
this section, we define the notion of noisy linear functional encryption. At a
high level, noisy linear functional encryption is like regular linear functional

214 S. Agrawal

encryption [1,6], except that the function value is recovered only up to some
bounded additive error (which we informally call noise), and indistinguishability
holds even if the challenge messages evaluated on all the function keys are only
“approximately” equal, i.e. they differ by an additive term of low norm.

On the noise added by NLinFE. Recall from Sect. 1.3, that NLinFE must add
a noise term noisefld which “floods” the noise term noisef(x) for security. Also
recall that in our setting, noisef(x) is the noise term that results from evaluating
the circuit f on the FHE encodings of x. We denote by D the distribution from
which the noise terms in FHE are sampled and by F the class of circuits that are
used to compute on the FHE noise terms, resulting in noisef(x). Thus, NLinFE
must add a noise term that wipes out the leakage resulting from the adversary
learning noisef(x). In general, F represents the class of functions that NLinFE
can be used to bootstrapped to. In more detail, if F = NC1, NLinFE enables
bootstrapping to FE for NC1, whereas when F = NC0, it enables bootstrapping
to FE for NC0.

Definition of NLinFE. In our constructions, R is a ring, instantiated either as
the ring of integers Z or the ring of polynomials Z[x]/f(x) where f(x) = xn + 1
for n a power of 2. We let Rq = R/qR for some prime q. Let D be a distribution
over R, F be a class of functions F : R� → R and B ∈ R

+ a bounding value on
the norm of the decryption error. In general, we require B << q. We are ready
for the formal definition.

Definition 2.1. A (D,F , B)-noisy linear functional encryption scheme FE
is a tuple FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) of four probabilistic
polynomial-time algorithms with the following specifications:

– FE.Setup(1κ, R�
q) takes as input the security parameter κ and the space of

message and function vectors R�
q and outputs the public key and the master

secret key pair (PK,MSK).
– FE.Keygen(MSK,v) takes as input the master secret key MSK and a vector

v ∈ R�
q and outputs the secret key SKv.

– FE.Enc(PK, z) takes as input the public key PK and a message z ∈ R�
q and

outputs the ciphertext CTz.
– FE.Dec(SKv,CTz) takes as input the secret key of a user SKv and the cipher-

text CTz, and outputs y ∈ Rq ∪ {⊥}.
Definition 2.2 (Approximate Correctness). A noisy linear functional
encryption scheme FE is correct if for all v, z ∈ R�

q,

Pr
[(PK,MSK) ← FE.Setup(1κ);
FE.Dec

(
FE.Keygen(MSK,v),FE.Enc(PK, z)

)
= 〈v, z〉 + noisefld

]
= 1 − negl(κ)

where noisefld ∈ R with ‖noisefld‖ ≤ B and the probability is taken over the coins
of FE.Setup, FE.Keygen, and FE.Enc.

Indistinguishability Obfuscation Without Multilinear Maps 215

Security. Next, we define the notion of Noisy-IND security.

Definition 2.3 (Noisy-INDSecurity Game). We define the security game
between the challenger and adversary as follows:

1. Public Key: Challenger returns PK to the adversary.
2. Pre-Challenge Queries: Adv may adaptively request keys for any functions

vi ∈ R�
q for i ∈ [k] for some polynomial k. Along with vi, Adv also submits

a function fi ∈ F which must satisfy some constraints discussed later. In
response, Adv is given the corresponding keys SK(vi).

3. Challenge Ciphertexts: Adv outputs the challenge message pairs (zi
0, z

i
1) ∈

R�
q×R�

q for i ∈ [Q], where Q is some polynomial, to the challenger. Along with
the challenger pair (zi

0, z
i
1), the adversary also outputs μi ← D�, which must

satisfy some constraints discussed later. The challenger chooses a random bit
b, and returns the ciphertexts {CT(zi

b)}i∈[Q].
4. Post-Challenge Queries: Adv may request additional keys for functions of

its choice and is given the corresponding keys. Adv may also output additional
challenge message pairs which are handled as above.

5. Guess. Adv outputs a bit b′, and succeeds if b′ = b.

The advantage of Adv is the absolute value of the difference between the adver-
sary’s success probability and 1/2.

In the selective game, the adversary must announce the challenge in the first
step, before receiving the public key. In the semi-adaptive game, the adversary
must announce the challenge after seeing the public key but before making any
key requests.

We next define the notion of admissible adversary.

Definition 2.4 (Admissible Adversary). We say an adversary is F-
admissible if for any pair of challenge messages z0, z1 ∈ R�

q and its corresponding
vector μi ← D�, any queried key vi ∈ R�

q and corresponding function fi ∈ F , it
holds that 〈vi, z0 − z1〉 = fi(μ).

Definition 2.5 (Noisy-IND security). A (D,F , B) noisy linear FE scheme
NLinFE is Noisy-IND secure if for all F-admissible probabilistic polynomial-time
adversaries Adv, the advantage of Adv in the Noisy-IND security game is negli-
gible in the security parameter κ.

Remark 2.6. In most of our constructions of NLinFE, the precise distribution of
fi(μ) will not be important, and it will suffice that ‖fi(μ)‖ < Bleak for some
bound Bleak, to perform the noise flooding. While it may appear strange to
restrict the adversary to choosing messages and functions that satisfy a strong
constraint such as the above, such a restricted adversary suffices for our main
application in Sect. 4.

216 S. Agrawal

3 Broader Classes of Randomness Generators

In this section we define broader classes of randomness generators that suffice
for our bootstrapping.

3.1 Correlated Noise Generators

In this section we define the notion of a correlated noise generator, which we
denote by CNG. We denote by R the ring of integers Z or the ring of poly-
nomials Z[x]/f(x) where f(x) = xd + 1. Let D1 be a distribution over R and
F : Rw → R be a set of deterministic functions. Let DomCng,RgCng be finite
subsets of R, let G : Domn

Cng → Rgm
Cng be a family of deterministic functions

and D2 be a distribution over DomCng. We require that n be linear in w, i.e.
n = O(w,poly(κ)).

Definition 3.1 ((D1,F)-Correlated Noise Generator). We say that
(D2,G) is a (D1,F)- Correlated Noise Generator (CNG) if the advantage of
any P.P.T adversary A is negligible in the following game:

1. Challenger chooses n i.i.d samples β ← Dn
2 .

2. The adversary A does the following:
(a) It chooses m functions f1, . . . , fm ∈ F .
(b) It samples μ ← Dw

1 .
(c) It returns ({fi}i∈[m],μ) to the challenger.

3. The challenger chooses m functions G1, . . . , Gm ∈ G. It tosses a coin b. If
b = 0, it returns {fi(μ) + Gi(β)}i∈[m], else it returns {Gi(β)}i∈[m].

4. The adversary outputs a guess for the bit b and wins if correct.

We will refer to β as the seed of the CNG. We say that an CNG has polynomial
stretch if m = n1+c for some constant c > 0.

3.2 Non Boolean Pseudorandom Generators

As discussed in Sect. 1, in prior work [68,71], Boolean PRGs were required
in order to compute the binary randomness needed for constructing random-
izing polynomials. In our case, the PRG output must satisfy a much weaker
property. Say we can bound ‖fi(μ)‖ ≤ ε for i ∈ [m]. Then we require
the PRG output Gi(β) to computationally flood fi(μ) for i ∈ [m], i.e.,
Gi(β) + fi(μ)

c≈ Gi(β), ∀i ∈ [m].

4 Functional Encryption for NC1

In this section, we construct a functional encryption scheme for NC1, denoted
by FeNC1, from a correlated noise generator CNG, the RLWE assumption and a
noisy linear functional encryption scheme NLinFE.

Indistinguishability Obfuscation Without Multilinear Maps 217

Background. Let R = Z[x]/(φ) where φ = xd + 1 and d is a power of 2. Let
Rp � R/pR for any large prime p satisfying p = 1 mod 2n.

We consider arithmetic circuits F : Rw
p0

→ Rp0 of depth d, consisting of
alternate addition and multiplication layers. For circuits with long output, say
�, we consider � functions, one computing each output bit. For k ∈ [d], layer k of
the circuit is associated with a modulus pk. For an addition layer at level k, the
modulus pk will be the same as the previous modulus pk−1; for a multiplication
layer at level k, we require pk > pk−1. Thus, we get a tower of moduli p1 <
p2 = p3 < p4 = . . . < pd. We define encoding functions Ek for k ∈ [d] such that
Ek : Rpk−1 → Rpk

. The message space of the scheme FeNC1 is Rp0 .
At level k, the encryptor will provide Lk encodings, denoted by Ck, for some

Lk = O(2k). For i ∈ [Lk] we define

Ek(yi) = uk
i · s + pk−1 · ηk

i + yi.

Here uk
i ∈ Rpk

is called the “label” or “public key” of the encoding, ηk
i is noise

chosen from some distribution χk, s ← Rp1 is the RLWE secret, and yi ∈ Rpk−1

is the message being encoded. We will refer to Ek(yi) as the Regev encoding of
yi. We denote:

PK
(Ek(yi)

)
� uk

i , Nse(Ck) � pk−1 · ηk
i

The messages encoded in level k encodings Ck are denoted by Mk.
Agrawal and Rosen [8] show that at level k, the decryptor is able to compute

a Regev encoding of functional message fk(x) where fk is the circuit f restricted
to level k. Formally:

Theorem 4.1 [8]. There exists a set of encodings Ci for i ∈ [d], such that:

1. Encodings have size sublinear in circuit. ∀i ∈ [d] |Ci| = O(2i).
2. Efficient public key and ciphertext evaluation algorithms. There exist

efficient algorithms EvalPK and EvalCT so that for any circuit f of depth d,
if PKf ← EvalPK(PK, f) and CT(f(x)) ← EvalCT(∪

i∈[d]
Ci, f), then CT(f(x)) is a

“Regev encoding” of f(x) under public key PKf . Specifically, for some LWE
secret s, we have:

CT(f(x)) = PKf · s + pd−1 · ηd−1
f + μf(x) + f(x) (4.1)

where pd−1 ·ηd−1
f is RLWE noise and μf(x) +f(x) is the desired message f(x)

plus some noise μf(x)
8.

3. Ciphertext and public key structure. The structure of the functional
ciphertext is as:

CTf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf , Cd〉 (4.2)

8 Here μf(x) is clubbed with the message f(x) rather than the RLWE noise pd−1 ·ηd−1
f

since μf(x) + f(x) is what will be recovered after decryption of CTf(x).

218 S. Agrawal

where Polyf (C1, . . . , Cd−1) ∈ Rpd−1 is a degree d polynomial and Linf ∈ RLd
pd

computed by EvalPK(PK, f) is a linear function. We also have

f(x) + μf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉 (4.3)

where Md are the messages encoded in Cd.
The public key for the functional ciphertext is structured as:

PK
(
CTf(x)

)
=

〈
Linf ,

(
PK(Cd

1), . . . ,PK(Cd
Ld

)
)〉

(4.4)

4. Noise Structure. The term μf(x) is the noise resulting from FHE evaluation
of function f on the encodings of x. Moreover, μf(x) can be expressed as a
linear combination of noise terms, each noise term being a multiple of pk for
k ∈ {0, . . . , d − 1}.

The Encodings. The encodings Ck for k ∈ [d] are defined recursively as:

1. C1 � {E1(xi), E1(s)}
2. If k is a multiplication layer, Ck = {Ek(Ck−1), Ek(Ck−1 · s), Ek(s2)}9. If k is

an addition layer, let Ck = Ck−1.

We will use NLinFE to enable the decryptor to compute 〈Linf ,Md〉 + Gf (β)
where Gf (β) is a large noise term that floods functional noise μf(x). She may
then compute Polyf (C1, . . . , Cd−1) herself and by Eq. 4.3 recover f(x) + μf(x) +
Gf (β).

4.1 Construction

Next, we proceed to describe the construction. The construction below supports
a single function of output length � or equivalently � functions with constant
size output (however, in this case � must be fixed in advance and input to all
algorithms).

FeNC1.Setup(1κ, 1w, 1d): Upon input the security parameter κ, the message
dimension w, and the circuit depth d, do:
1. For k ∈ [d], let Lk = |Ck| where Ck is as defined in Theorem 4.1. For

k ∈ [d − 1], i ∈ [Lk], choose uniformly random uk
i ∈ Rpk

. Denote uk =
(uk

i) ∈ RLk
pk

.
2. Invoke NLinFE.Setup(1κ, 1Ld , pd) to obtain PK = NLinFE.PK and MSK =

NLinFE.MSK.
3. Sample a CNG seed β ← Dn

seed. Sample t0, . . . , tLd
← Rpd−1 and let t =

(t0, . . . , tLd
).

4. Output PK = (u1, . . . ,ud−1,NLinFE.PK) and
MSK = (NLinFE.MSK,β, t).

9 Here, we use the same secret s for all RLWE samples, but this is for ease of exposition
– it is possible to have a different secret at each level so that circular security need
not be assumed. We do not describe this extension here.

Indistinguishability Obfuscation Without Multilinear Maps 219

FeNC1.KeyGen(MSK, f): Upon input the master secret key NLinFE.MSK, CNG
seed β and a circuit f : Rw

p0
→ Rp0

10 of depth d, do:
1. Let Linf ← EvalPK(PK, f) ∈ RLd

pd
as described in Eq. 4.4.

2. Let Gf denote the CNG chosen corresponding to function f as described
in the full version [3].

3. Compute keyf = 〈Linf , t〉 − Gf (β).
4. Let SKf = NLinFE.KeyGen(MSK, Linf‖keyf).

FeNC1.Enc(x,PK): Upon input the public key and the input x, do:
1. Compute the encodings Ck for k ∈ [d − 1] as defined in Theorem 4.1.

Denote by s the RLWE secret used for these encodings.
2. Define Md =

(Cd−1, Cd−1 · s, s2
) ∈ RLd

pd
. Compute Cd =

NLinFE.Enc(NLinFE.PK,Md).
3. Output CTx = ({Ck}k∈[d]).

FeNC1.Dec(PK,CTx,SKf): Upon input a ciphertext CTx for vector x, and a
secret key SKf for circuit f , do:
1. Compute CTf(x) = EvalCT({Ck}k∈[d−1], f). Express CTf(x) =

Polyf (C1, . . . , Cd−1) + 〈Linf , Cd〉 as described in Eq. 4.2.
2. Compute NLinFE.Dec(SKf , Cd) to obtain 〈Linf ,Md〉 + ηf for some noise

ηf added by NLinFE.
3. Compute Polyf (C1, . . . , Cd−1)+ 〈Linf ,Md〉+ηf mod pd mod pd−1, . . . ,

mod p0 and output it.

4.2 Correctness

Correctness follows from correctness of EvalPK, EvalCT and NLinFE. We have by
correctness of EvalPK, EvalCT that:

CTf(x) = 〈Linf , Cd〉 + Polyf (C1, . . . , Cd−1)

Polyf (C1, . . . , Cd−1) + NLinFE.Dec(SKf , Cd) = Polyf (C1, . . . , Cd−1) + 〈Linf , Md〉 + ηf

= f(x) + μf(x) + ηf by theorem 4.1

= f(x) mod pd mod pd−1, . . . , mod p0

where the last step follows since:

1. μf(x) and ηf are linear combinations of noise terms, each noise term being a
multiple of pk for k ∈ {0, . . . , d − 1}. For details regarding the structure of
the noise terms μf(x). The noise term ηf is chosen by NLinFE to flood μf(x)

as discussed in Sect. 2, and hence is also a linear combination of noise terms,
each noise term being a multiple of pk for k ∈ {0, . . . , d − 1}.

2. We set the parameters so that pi is sufficiently larger than pi−1 for i ∈ [d],
so that over Rpi

, any error term which is a multiple of pi−1 may be removed
by reducing modulo pi−1. Thus the successive computation of mod pi, for
i = d, . . . , 0, results in f(x) mod p0 in the end.

10 We will let the adversary request � functions.

220 S. Agrawal

4.3 Efficiency and Security

The size of the ciphertext is | ∪
k∈[d−1]

Ck| + |NLinFE.CT(Md)|. Note that

| ∪
k∈[d−1]

Ck| = O(2d) and |Md| = O(2d) by Theorem 4.1. All our construc-

tions of NLinFE will have compact ciphertext, hence the ciphertext of the above
scheme is also sublinear in circuit size. We refer the reader to the full version [3]
for our constructions of NLinFE.

In the full version [3], we prove the following security theorem:

Theorem 4.2. Assume the noisy linear FE scheme NLinFE satisfies semi-
adaptive indistinguishability based security as in Definition 2.5 and that G is a
secure CNG as defined in Definition 3.1. Then, the construction FeNC1 achieves
semi-adaptive indistinguishability based security.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple Functional Encryp-
tion Schemes for Inner Products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-
2 33

2. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and
attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401,
pp. 3–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 1

3. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. Cryptology ePrint Archive, Report 2018
(2018)

4. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

5. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 2

6. Agrawal, S., Libert, B., Stehle, D.: Fully secure functional encryption for linear
functions from standard assumptions, and applications. In: Crypto (2016)

7. Agrawal, S., Rosen, A.: Online offline functional encryption for bounded collusions.
Eprint/2016 (2016)

8. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 173–205.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 7

9. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilin-
ear maps: iO from LWE, bilinear maps, and weak pseudorandomness. Cryptology
ePrint Archive, Report 2018/615 (2018)

10. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 15

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-63688-7_1
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15

Indistinguishability Obfuscation Without Multilinear Maps 221

11. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: indistinguisha-
bility obfuscation from non-compact functional encryption. IACR Cryptol. ePrint
Arch. 2015, 730 (2015)

12. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 6

13. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over ggh13. eprint 2016 (2016)

14. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)

15. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, 22–25 October 2011, pp. 120–129 (2011)

16. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 3

17. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

18. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree
pseudorandom generators (or: sum-of-squares meets program obfuscation). In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp.
649–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 21

19. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

20. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encod-
ings and their applications. In: Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, 14–17 June 2015, pp.
439–448 (2015)

21. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016, Part II. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 15

22. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 20

23. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. FOCS 2015, 163 (2015). http://eprint.iacr.org/2015/163

24. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

25. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit abe and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

26. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-319-78375-8_21
https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-662-49096-9_20
http://eprint.iacr.org/2015/163
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-540-70936-7_29

222 S. Agrawal

27. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 17

28. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and More) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70500-2 10

29. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

30. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Port-
land, 14–17 June 2015, pp. 429–437 (2015)

31. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 19

32. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

33. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

34. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49890-3 20

35. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low level encoding of zero. Eprint 2016/139
(2016)

36. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

37. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 12

38. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistin-
guishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS,
vol. 10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8 3

39. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

https://doi.org/10.1007/11818175_17
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-49890-3_20
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26

Indistinguishability Obfuscation Without Multilinear Maps 223

40. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 20

41. Ding, J., Yang, B.Y.: Multivariate public key cryptography. In: Bernstein D.J.,
Buchmann J., Dahmen E. (eds) Post-Quantum Cryptography, pp. 193–241.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 6

42. Farshim, P., Hesse, J., Hofheinz, D., Larraia, E.: Graded encoding schemes
from obfuscation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS,
vol. 10770, pp. 371–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76581-5 13

43. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

44. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

45. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013). http://eprint.iacr.org/

46. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40084-1 27

47. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption
without obfuscation. In: IACR Cryptology ePrint Archive. vol. 2014, p. 666 (2014).
http://eprint.iacr.org/2014/666

48. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) Theory of Cryptography (2016)

49. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 10

50. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

51. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

52. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

53. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, New York (2000)

54. Goldwasser, S., Kalai, Y.T., Popa, R., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of STOC, pp.
555–564. ACM Press, New York (2013)

55. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: STOC, pp. 555–
564 (2013)

https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-540-88702-7_6
https://doi.org/10.1007/978-3-319-76581-5_13
https://doi.org/10.1007/978-3-319-76581-5_13
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-642-40084-1_27
http://eprint.iacr.org/2014/666
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-46497-7_20

224 S. Agrawal

56. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

57. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for cir-
cuits. In: STOC (2013)

58. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol.
9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 25

59. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

60. Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive: Report
2015/301 (2015)

61. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: FOCS (2000)

62. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

63. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: 55th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS, pp. 374–383 (2014)

64. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC, pp. 419–428 (2015)

65. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps
from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 239–256. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 14

66. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

67. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 2

68. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

69. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application
to indistinguishability obfuscation. Cryptology ePrint Archive, Report 2018/646
(2018)

70. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings
and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS,
vol. 9562, pp. 96–124. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 5

https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-662-49096-9_5

Indistinguishability Obfuscation Without Multilinear Maps 225

71. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 21

72. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: FOCS, pp. 11–20 (2016)

73. Lombardi, A., Vaikuntanathan, V.: On the non-existence of blockwise 2-local prgs
with applications to indistinguishability obfuscation. In: TCC (2018)

74. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., Brauer, W., Brinch Hansen,
P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller, G., Stoer, J.,
Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–
453. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8 39

75. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 22

76. Peikert, C.: A Decade of Lattice Cryptography, vol. 10, pp. 283–424, March 2016
77. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved

secure in the weak multilinear map model. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 153–183. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0 6

78. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved
secure in the weak multilinear map model. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 153–183. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0 6

79. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34 (2009). (extended abstract in STOC 2005)

80. Sahai, A., Waters, B.: Functional encryption:beyond public key cryptogra-
phy. Power Point Presentation (2008). http://userweb.cs.utexas.edu/∼bwaters/
presentations/files/functional.ppt

81. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

82. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014). http://eprint.iacr.org/2013/454.
pdf

83. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14

84. Wolf, C.: Multivariate Quadratic Polynomials In Public Key Cryptography. Ph.D.
thesis, katholieke universiteit leuven (2005)

https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-319-96878-0_6
https://doi.org/10.1007/978-3-319-96878-0_6
http://userweb.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://userweb.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
http://eprint.iacr.org/2013/454.pdf
http://eprint.iacr.org/2013/454.pdf
https://doi.org/10.1007/978-3-642-32009-5_14

Sum-of-Squares Meets Program
Obfuscation, Revisited

Boaz Barak1(B), Samuel B. Hopkins2, Aayush Jain3, Pravesh Kothari4,
and Amit Sahai3

1 Harvard University, Cambridge, USA
b@boazbarak.org

2 University of California, Berkeley, USA
hopkins@berkeley.edu

3 University of California, Los Angeles, USA
{aayushjain,sahai}@cs.ucla.edu

4 Princeton University and the Institute for Advanced Study, Princeton, USA
kothari@cs.princeton.edu

Abstract. We develop attacks on the security of variants of pseudo-
random generators computed by quadratic polynomials. In particular
we give a general condition for breaking the one-way property of map-
pings where every output is a quadratic polynomial (over the reals) of
the input. As a corollary, we break the degree-2 candidates for secu-
rity assumptions recently proposed for constructing indistinguishabil-
ity obfuscation by Ananth, Jain and Sahai (ePrint 2018) and Agrawal
(ePrint 2018). We present conjectures that would imply our attacks
extend to a wider variety of instances, and in particular offer experi-
mental evidence that they break assumption of Lin-Matt (ePrint 2018).

Our algorithms use semidefinite programming, and in particular,
results on low-rank recovery (Recht, Fazel, Parrilo 2007) and matrix
completion (Gross 2009).

1 Introduction

In this work, we initiate the algorithmic study of cryptographic hardness that
may exist in general expanding families of low-degree polynomials over R. As
a result, we obtain strong attacks on certain pseudorandom generators whose
output is a “simple” function of the input. Such “simple” pseudorandom gener-
ators are interesting in their own right, but have recently become particularly
important because of their role in candidate constructions for Indistinguishabily
Obfuscators.

The question of whether Indistinguishabily Obfuscators (iO) exist is one of
the most consequential open questions in cryptography. On one hand, a sequence
of works [14,29] has shown that iO, if it exists, would imply a huge variety of
cryptographic objects, several of which we know of no other way to achieve.
On the other hand, the current candidate constructions for iO’s are not based

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 226–250, 2019.
https://doi.org/10.1007/978-3-030-17653-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_8

Sum-of-Squares Meets Program Obfuscation, Revisited 227

on well-studied standard assumptions, and there have been several attacks on
several iO constructions as well as underlying primitives.

A promising line of works [3,19,20,22,23] has aimed at basing iOs on more
standard assumptions, and in particular Lin and Tessaro [22] reduced construct-
ing iO to the combination following three assumptions:

1. The learning with errors (LWE) assumption.
2. Existence of three local pseudorandom generators with sufficiently large super

linear stretch. These are pseudorandom generators G : {0, 1}n → {0, 1}n1+ε

(for arbitrarily small ε > 0) such that if we think of the input as split into n/k
blocks of length k each (for some k = no(1)) then every output of G depends
on at most three blocks of the input.

3. Existence of trilinear maps satisfying certain strengthening of the Decisional-
Diffie-Hellman assumption.

Of the three assumptions, the learning with errors assumption is well studied
and widely believed. The existence of local pseudorandom generators has also
been recently extensively studied; it also relates to questions on random con-
straint satisfaction problems that have been looked at by various communities.
Based on our current knowledge, it is reasonable to assume that such three-
local generators exist with stretch, say, n1.1 which would be sufficient for the
Lin-Tessaro construction.

The most problematic assumption is the existence of trilinear maps. Since the
seminal work of Garg, Gentry and Halevi [13], there have been some candidate
constructions for (noisy) k-linear maps for k > 2, but these are not based on
any standard assumption, and in fact there have been several attacks [6–10,17,
18,25,26] showing that these construction fail to satisfy natural analogs of the
Decisional Diffie Hellman assumption. This is in contrast to the k = 2 or bilinear
case, where we have had constructions for almost 20 years that are believed
to be secure (with respect to classical polynomial-time algorithms) based on
elliptic curve groups that admit certain pairing operations [5]. Thus a main
open question has been whether one can achieve iO based only on cryptographic
bilinear maps as well as local (or otherwise “simple”) pseudorandom generators
that can be reasonably conjectured to be secure.

1.1 Basing iO on Bilinear Maps and Our Results

In the first version of their manuscript, Lin and Tessaro [22] gave a construction
of iO based on two local generators with a certain stretch, and a candidate con-
struction for the latter object based on a random two-local map with a certain
nonlinear predicate. Alas, Barak, Brakerski, Komargodski and Kothari, [4], as
well as Lombardi and Vaikuntanathan [24] showed that the Lin-Tessaro candi-
date construction, as well as any generator with their required parameters, can
be broken using semidefinite programming, and specifically the degree two sum
of squares program [4].

Very recently, the work of Ananth, Jain, and Sahai [2], followed shortly by
the independent works of Agrawal [1] and Lin and Matt [21], proposed a way

228 B. Barak et al.

around that hurdle, obtaining constructions for iO where the role of the trilinear
map is replaced with objects that:

1. Satisfy security notions that are weaker than being a full fledged pseudoran-
dom generators.

2. Satisfy structural properties that are weaker than being two-local, and in
particular requiring the outputs only to be a degree two1 polynomial of the
input.

As such, these objects do not automatically fall under the attacks described
by [4,24]. However, in this work we show that:

– The specific candidate objects in all these three works (based on random
polynomials) can be broken using a distinguisher built on the same sum-of-
squares semidefinite program.

– Moreover, this results extends to other families of constructions, including
ones that are not based on random polynomials. In fact, we do not know of
any degree-2 construction that does not fall prey to a variant of the same
attack.

The Ananth-Jain-Sahai “Cubic Assumption”. The work of [2] also obtained a
construction of iO based on a (variant of a) pseudorandom generator where every
output is a cubic polynomial of the input, but where some information about
the input is “leaked” in a way “masked” using instances of LWE2. Our attacks
in their current form are not applicable to this new construction. The question
of whether secure degree-3 ΔRGs exist, or whether an extended form of the sum
of squares algorithm can be applied to it, is one that deserves further study.
More generally, understanding the structure of hard distributions for expanding
families of constant-degree polynomials over the integers, is a fascinating and
important area of study, which is strongly motivated by the problem of securely
constructing iO. Taking inspiration from SoS lower bounds [15,30], we also sug-
gest a candidate for the same. Our candidate is inspired by the hardness of
refuting random satisfiable 3SAT instances. For further details, see Sect. 7.

1.2 Our Results

We consider the following general hypothesis that, if true, would rule out not
just the three proposed approaches based on quadratic polynomials for obtaining
iO, but also a great many potential generalizations of them. Below we say that
an n-variate polynomial q is Λ-bounded if all of q’s coefficients are integers in
the interval [−Λ,+Λ]. We say that a distribution X over Z

n is Λ bounded if it
is supported over [−Λ,+Λ]n.

1 The work of Ananth, Jain, and Sahai [2] also considered degree-3 polynomials. We
do not have attacks on such degree-3 polynomials; we discuss this further below.

2 This cubic version of their assumption was made explicit in an update to [2].

Sum-of-Squares Meets Program Obfuscation, Revisited 229

Hypothesis 1 (No Expanding Weak Quadratic Pseudorandom Gener-
ators). For every ε > 0, polynomial Λ(n), sufficiently large n ∈ N, if:

– q1, . . . , qm : Rn → R are quadratic Λ(n)-bounded polynomials for m � n1+ε

– X is a Λ(n)-bounded distribution over Z
n

– For every i, Δi is a Λ(n) bounded distribution over Z such that P[Δi = z] <
0.9 for every z ∈ Z.

then there exists an algorithm A that can distinguish between the following
distributions with Ω(1) bias:

– (q1, . . . , qm, q1(x), . . . , qm(x)) for x ∼ X .
– (q1, . . . , qm, q1(x) + δ1, . . . , qm(x) + δm) where for every i, δi is drawn inde-

pendently from Δi.

Note that this hypothesis would be violated by the existence of a pseudoran-
dom generator G : {0, 1}n → {0, 1}n1+ε

whose outputs are degree two polynomi-
als. It would also be violated if the distribution G(x) is indistinguishable from
the distribution (G(x)+ δ′

1, . . . , G(x)+ δ′
m) where δ′

1, . . . , δ
′
m are drawn indepen-

dently from some distribution Δ over integers that satisfies P[Δ = 0] � 0.9.
An efficient algorithm to recover x from q1(x), . . . , qm(x) would allow to dis-

tinguish between the two distributions. However, generally speaking, it need
not even be information theoretically possible to recover x from this informa-
tion. Even if it is information-theoretically possible this can be computationally
intractable, as recovering x from q1(x), . . . , qm(x) is an instance of the NP hard
problem of Quadratic Equations.

In Hypothesis 1, the polynomials are arbitrary. However, the candidate con-
structions of pseudorandom generators considered so far used q1, . . . , qm that are
sampled independently from some distribution Q. This is natural, as intuitively
if we want q1(x), . . . , qm(x) to look like a product distribution, then the more
randomness in the choice of the qi’s the better.

However, in this work we give general attacks on candidates that have this
form. As these are some of the most natural approaches to refute Hypothesis 1,
our work can be seen as providing some (partial) evidence to its veracity. To
state our result, we need the following definition of “nice” distributions.

Definition 1 (Nice Distributions). Let Q be a distribution over n-variate
quadratic polynomials with integer coefficients. We say that Q is nice if it satis-
fies that:

– There is a constant C = C(Q) = O(1) such that Q is supported on homo-
geneous (i.e. having no linear term) degree-2 polynomials q with ‖q‖22 �
C E‖q‖22, where ‖q‖ is the �2-norm of the vector of coefficients of q.

– V ar(Qi,j) = 1 where Qi,j denotes the coefficient of xixj in a polynomial Q
sampled from Q.

– If {i, j} �= {k, �} then the random variables Qi,j and Qk,� are independent.

230 B. Barak et al.

Roughly speaking, a distribution over quadratic polynomials is nice if it sat-
isfies certain normalization properties as well as pairwise independence of the
vectors of coefficients. Many natural distributions on polynomials are nice, and
in particular random dense as well as random sparse polynomials are nice.

The following theorem shows that it is always possible to recover x from a
superlinear number of quadratic observations, if the latter are chosen from a nice
distribution.

Theorem 2 (Recover from Random Quadratic Observations). There
is a polynomial-time algorithm A (based on the sum of squares algorithm)
with the following guarantees. For every nice distribution Q and every t �
nO(1), for large-enough n, with probability at least 1 − n− log(n) over x ∼
{−t,−t + 1, . . . , 0, . . . , t − 1, t}n and q1, . . . , qm ∼ Q, if m � n(log n)O(1) then
A(q1, . . . , qm, q1(x), . . . , qm(x)) = x.

On “niceness”. The definition of “nice” distributions above is fairly natural, and
captures examples such as when the polynomials are chosen with all coefficients
as independent Gaussian or Bernoulli variables. In particular as a corollary of
Theorem 2 we break the candidate pseudorandom generator of Ananth et al (and
even its Δ-RG property). Moreover, we obtain such results even in the sparse
case where most of the coefficients of the polynomials q1, . . . , qm are zero.

At the moment however our theoretical analysis does not extend to the
“blockwise random” polynomials that were used by Lin and Matt which can
be thought of as a sum of random dense polynomial and a random sparse poly-
nomial. While this combination creates theoretical difficulty in the analysis, we
believe that it can be overcome and that it is possible to recover in this case as
well. In particular, we also have experimental results showing that we can break
the Lin-Matt generator as well.

Finally, we note that by Markov’s inequality for any Q we have P(‖q‖2 �
C E‖q‖2) � 1/C. Our niceness assumption just has the effect of restricting Q to
this relatively high-probability event. If Q is not pathological – that is, it is not
dominated by events with probability � 1/C for a large constant C – then this
kind of truncation will result in a nice distribution.3

3 Along the same lines, we note that if Q is nice and Eq∼Qq = 0 (as we observe later,
the latter can be enforced without loss of generality) then Q is also Λ(n)-bounded
for Λ(n) � O(n). The reason is that if Q is nice and has E q = 0 then

E‖q‖2 =
∑

i,j�n

EQ2
ij =

∑

i,j�n

V ar(Qij) = n2 .

For every i, j and every q in the support of Q, we have by niceness that |qij | �
‖q‖2 � Cn. Hence Q is O(n)-bounded.

One implication is that Q cannot be a distribution on where the all-zero polyno-
mial appears with probability, say, 1−1/n, as otherwise its support would also have
to contain polynomials with coefficients � n. Our main theorem could not apply
to such a distribution, since clearly at least Ω(n2) independent samples would be
needed to get enough information to recover x from {qi, qi(x)}, while we assume
m � n(log n)O(1) � n2.

Sum-of-Squares Meets Program Obfuscation, Revisited 231

On the distribution of x. For concreteness, we phrase Theorem 2 so that the
distribution of x is uniform over {−t, . . . , t}n. However, the proof of the theo-
rem allows x to be a more general Rn-valued random variable. In particular, x
may be any n-dimensional real-valued random vector which has Ex = 0 and is
O(E‖x‖2/n)-sub-Gaussian. The coordinates of x need not even be independent:
for instance, x may be drawn from the uniform distribution on the unit sphere.

Experiments. We implement the sum-of-squares attack and verify that indeed it
efficiently breaks random dense quadratic polynomials. Furthermore, we imple-
ment a variant of the attack that efficiently breaks the Lin-Matt candidate: the
Lin-Matt candidate is, roughly speaking, a sum of two independent polynomi-
als, where one is dense and one is sparse. Since the planted solution must be
composed of polynomially-bounded integers, we observe that it is possible to
efficiently guess the squared L2 norm of the portion of the planted solution that
corresponds to the sparse part of the polynomial. Given this guess, we can intro-
duce a new constraint into the semidefinite program that fixes the trace of the
portion of the semidefinite matrix that corresponds to the sparse matrix. We
show experimentally that this attack breaks the Lin-Matt candidate for mod-
erate values of n. In particular, in Fig. 1 we plot the correlation between the
recovered solution with the planted solution, where the x-axis is labeled by the
ratio m/n showing the expansion needed for the attack to work, for n = 60 total
variables. More details can be found in Sect. 6.

Fig. 1. Experimentally breaking Lin-Matt candidate. Graph shows quality of recovered
solution vs. planted solution, for various values of m/n shown in the x-axis. Let v be
the eigen vector with largest eigen value of the optimum matrix returned by the SDP.
Let x be the planted solution. Quality of solution is defined as 〈v,x〉

〈v,v〉
1
2 〈x,x〉

1
2

232 B. Barak et al.

In particular, we are not aware of any candidate construction of weak pseudo-
random generator computed by quadratic polynomials that is not broken exper-
imentally by our algorithms.

2 Our Techniques

Our algorithms use essentially the same semidefinite program constraints that
were used in the work of [4], namely the sum of squares program. However,
we use a different, simpler, objective function, and moreover we crucially use a
different analysis (which also inspired some tweaks to the algorithm that seem
to help in experiments). Specifically, consider the task of recovering an unknown
vector x ∈ R

n from the values (q1(x), . . . , qm(x)) where q1, . . . , qm are quadratic
polynomials. We focus on the case that the qi’s are homogenous polynomials,
which means that (thinking of x as a column vector), qi(x) = x�Qix for some
n × n matrix Qi. Another way to write this is that qi(x) = 〈Qi,X〉 where X is
the rank one matrix xx�.

In the above notation, our problem becomes the task of recovering a rank
one matrix X from the observations

〈Q1,X〉, . . . , 〈Qm,X〉 (1)

for some known n×n matrices Q1, . . . , Qm where m � n1+ε. Luckily, this task
has been studied in the literature and is known as the low rank recovery prob-
lem [28]. This can be thought of as a matrix version of the well known problem
of sparse recovery (a.k.a. compressed sensing) of recovering an k-sparse sparse
vector x ∈ R

n (for n
 k) from linear observations of the form A1x, . . . , Ak′x
where k′ is not much bigger than k.

While the low rank recovery problem is NP hard in the worst-case, for many
inputs of interest it can be solved by a semidefinite program minimizing the
nuclear norm of a matrix. This semidefinite program can be thought of as the
matrix analog of the L1 minimization linear program used to solve the sparse
recovery problem. In particular, it was shown by Recht, Fazel and Parrilo [28]
that if the Qi’s are random (with each entry independently chosen from, say, a
random Gaussian or Bernoulli distribution), then they would satisfy a condition
known as matrix restricted isoperimetry property (matrix RIP) that ensures that
the semidefinite matrix recovers X in our regime of m � n1+ε.

This already rules out certain candidates, but more general candidates have
been considered. In particular, the results of Recht et al are not applicable when
the Qi’s are sparse random matrices, which have been used in some of the iO
constructions such Lin-Matt’s. Luckily, this problem has been studied by the
optimization community as well. The extremely sparse case, where each of the
Qi’s has just a single nonzero coordinate, is particularly well studied. In this
case, recovering X from (1) corresponds to completing X using m observations
of its entries, and is known as the matrix completion problem.

Specifically, a beautiful paper of Gross [16] gave quite general bounds that in
some sense interpolate between these two extremes. Specifically, Gross showed

Sum-of-Squares Meets Program Obfuscation, Revisited 233

that it is possible to recover X from (1) as long as these observations Q1, . . . , Qm

are sampled independently from a collection {Q1, . . . , QN} that satisfies certain
“isotropy” and “incoherence with respect to X” properties. We show that under
the “niceness” conditions of Theorem 2, we can “massage” our input so that it
is of the form where Gross’s theorem applies. Once we do so we can appeal to
this theorem to obtain our result. A key property that we use in our proof is
that in the cryptographic setting, we do not need to recover X = xx� for every
x ∈ Z

n but rather only for most x’s. This allows us to achieve the incoherence
property even in settings where it would not hold for a worst-case choice of a
vector.

3 Preliminaries

For a matrix X, we write ‖X‖ for its operator norm: supv:‖v‖2=1 |〈v,Xv〉.
We use the standard inner product on the Hilbert space of n × n matrices:
〈A,B〉 = tr(AB). The nuclear norm of a matrix X is defined by ‖X‖∗ =
supA:‖A‖�1 〈A,X〉. For a positive semidefinite matrix X, ‖X‖∗ = tr(X).

For any matrix Q ∈ R
n×n, vec(Q) denotes “vectorization” of the matrix Q

as a n2 dimensional vector.
For a matrix M ∈ R

n×n, we define the operator norm (also called the spectral
norm) of M as maxx∈Rn ‖Mx‖/‖x‖. The Frobenius norm of M is ‖M‖F =√∑

ij�n M2
ij .

For a matrix M , we write M ∈ (1 ± ε)Id if ‖M − Id‖ � ε, where ‖ · ‖ is the
operator norm.

3.1 ΔRGs (Ananth-Jain-Sahai)

Ananth-Jain-Sahai proposed a variant of (integer valued) PRG such that it is
hard to distinguish between the output of a PRG and a small perturbation of
it. Specifically, the following definition describes the object they proposed.

Definition 2 ((n, λ,B, χ)-ΔRG). Let f : χn → Z
m be an integer valued func-

tion with the ith output described by fi : χn → Z and at any x ∈ χn, fi(x) = qi(x)
for quadratic polynomials qi for 1 � i � m.

f is said to be a ΔRG, if for distributions D1,D2 on Z
m defined below and

for any circuit A of size 2λ,

| P
z∼D1

[A(z) = 1] − P
z∼D2

[A(z) = 1]| < 1 − 2/λ

Distribution D1

Sample x ← χ. Output {qi, qi(x)}i∈[m]

Distribution D2

Sample x ← χ. Output {qi, qi(x) + δi}i∈[m]

Here δi ∈ Z are arbitrary perturbations such that |δi| < B for all i ∈ [m].

Concurrently and independently, [21] proposed Pseudo-Flawed Smudging
Generators which have similar security guarantees.

234 B. Barak et al.

4 Candidates for Quadratic PRGs

In this section we formally describe the candidate polynomial and input distri-
butions proposed by [1,2,21] to realize corresponding notions of pseudo-random
generators of Z.

Note that any algorithm that given the polynomials q1, . . . , qm and measure-
ments q1(x), . . . qm(x) when x, q1, .., qm are sampled from required distributions
of the pseudorandom generator, successfully recovers x, also breaks the corre-
sponding candidate for the pseudorandom generator.

To be precise, we describe the candidate polynomials and input distributions
proposed by:

– Ananth et al. [2] to instantiate ΔRGs.
– Lin-Matt [21] to instantiate Pseudo Flawed-Smudging Generators.
– Agarwal [1] to instantiate Non-boolean PRGs.

Along with assumptions on cryptographic bilinear maps, learning with error
assumption and PRGs with constant block locality, either of these three assump-
tions imply iO.

4.1 Candidate for ΔRG

Ananth-Jain-Sahai proposed the following candidate construction for a ΔRG.
Let χ be the uniform distribution in [−B1, B1]. Choose m = n1+ε for some
small enough constant ε > 0. Let C be some constant positive integer and B1

be a polynomial in λ, the security parameter.
Distribution Q: Sample each polynomial as follows. Let q(x1, ..., xn) = Σi	=jci,j ·
xi · xj , where each coefficient ci,j is chosen uniformly from [−C,C].

Distribution X: Inputs are sampled as follows. Sample xi for i ∈ [n] uni-
formly from [−B1, B1]. Output x = (x1, ..., xn). Implicitly, [1] also considered
these polynomials for their notion of a non-boolean PRG.

4.2 Candidate for Pseudo Flawed-Smudging Generators (Lin-Matt)

Lin and Matt [21] proposed a variant of pseudorandom generators with security
properties closely related to the notion of ΔRGs above. Here, we recall their
candidate polynomials.
Distribution Q: For each j ∈ [m],

qj(x1, ..., xn, x′
1, ..., x

′
n′) = Sj(x1, ..., xn) + MQj(x′

1, ..., x
′
n′)

Here we write more about polynomials Sj , MQj .

1. MQj Polynomials: MQj are random quadratic polynomials over
(x′

1, ..., x
′
n′), where the coefficients of each degree two monomial x′

ix
′
k and

degree one monomial x′
i are integers chosen independently at random from

[−C,C].

Sum-of-Squares Meets Program Obfuscation, Revisited 235

2. Sj Polynomials: Sj are random quadratic polynomials over (x1, ..., xn) of
the form:

Sj(x1, ..., xn) = Σ
n/2
i=1αixσj(2·i)xσj(2·i−1) + Σn

i=1βixi + γ

Here each coefficient αi, βi and γ are random integers chosen independently
from [−C,C]. Here, σj is a random permutation from [n] to [n].

Distribution X:

1. Each xi for i ∈ [n] is chosen as a random integer sampled independently from
the distribution χB1,B2 . χB1,B2 samples a random integer from [−B1, B1] with
probability 0.5 and from [−B2, B2] with probability 0.5.

2. Distribution of inputs x′
1, ..., x

′
n′ : Each x′

i is chosen as a random integer
sampled independently from the distribution χB′ . χB′ samples a random
integer from [−B′, B′].

Parameters: Set B1, B2, B
′, n, n′ as follows:

– Set n = n′ and m = n1+ε, for some ε > 0.
– B1, B′ and C are set arbitrarily.
– Set B2 = Ω(nB2 + nBB1).

Here B is some polynomial in the security parameter.
All the pseudorandom generators we consider are maps from Z

n into Z
m

where each of the m output is computed by a degree 2 polynomial with integer
coefficients in the input. Since any degree two polynomial in R

n can be seen
as a linear map on R

n×n4, one can equivalently think of such PRGs as linearly
mapping symmetric rank 1 matrices into R

m.

5 Inverting Linear Matrix Maps

In this section, we describe the main technical tool that we rely on in this work
- an algorithm based on semidefinite programming for inverting linear matrix
maps.

Definition 3 (Linear Matrix Maps). A linear matrix map A : Rn×n → R
m

described by a collection of n × n matrices Q1, Q2, . . . , Qm is a linear map that
maps any matrix X ∈ R

n×n to the vector A(X) ∈ R
m such that A(X)i =

〈Qi,X〉.
We will use calligraphic letters such as A and B to denote such maps.

We are interested in the algorithmic problem of inverting such maps, that is,
finding X given A(X). If Qis are linearly independent and m
 n2, then this
can be done by linear equation solvers. Our interest is in inverting such maps

4 For any q(x) =
∑

i,j qi�jxixj , we define Q : R
n×n → R by Qi,j = Qj,i = qi,j/2.

Then, Q(X) = tr(QX) = 〈Q, X〉 is a linear map on R
n×n.

236 B. Barak et al.

for low rank matrices X with the “number of measurements” m � n2. Indeed,
our results will show that for various classes of linear maps A, we can efficiently
find a low-rank solution to A(X) = z, whenever it exists, for m = Õ(n).

Such problems have been well-studied in the literature and rely on a primitive
based on semidefinite programming called “nuclear norm minimization”. We will
use this algorithm and rely on various known results about the success of this
algorithm in our analysis.

Algorithm 3 (Trace Norm Minimization).

Given: – A described by Q1, Q2, . . . , Qm ∈ R
n×n.

– z ∈ R
m.

Operation: Output X = arg min X
0
A(X)=z

tr(X).

In what follows, we will give an analysis of this algorithm for a class of linear
matrix maps.

5.1 Incoherent Linear Measurements

In this section we describe a remarkably general result due to Gross on a class of
instances x,Q1, . . . , Qm for which trace norm minimization recovers x [16]. These
instances are called incoherent. Gross’s result is the main tool in the proof of our
main theorem, which will ultimately show that “nice” distributions Q produce
incoherent instances of trace norm minimization.

We note that many other sufficient conditions for the success of trace norm
minimization have been discussed in the literature. One prominent condition
is matrix-RIP (Restricted Isometry Property), analyzed in [27]. The restricted
isometry property is not known to apply in many natural settings for which
we would like to apply our main theorem – for example, if Q1, . . . , Qm have
independent entries with on average 1 nonzero entry per row.

Definition 4 (Incoherent Overcomplete Basis). Let B = {B1, B2, . . . ,
BN} be a collection of matrices in R

n×n. For any rank 1 matrix X ∈ R
n×n,

B is said to be ν-incoherent basis for X if the following holds:

1. (1 − o(1))1/n2In2×n2 � 1/N
∑N

i=1 vec(Bi)vec(Bi)� � (1 + o(1))1/n2In2×n2 .
2. For each i � N , |〈X,Bi〉| � ν/n · ‖X‖F .

We can now define a ν-incoherent measurement.

Definition 5 (Incoherent Measurement). Let B be a ν-incoherent overcom-
plete basis for an n × n rank 1 matrix X, and suppose B has size N = poly(n).
Let A : Rn×n → R

m be a map obtained by choosing Qi for each i � m to be a
uniformly random and independently chosen element of B. Then, A is said to
be a ν-incoherent measurement of X.

Sum-of-Squares Meets Program Obfuscation, Revisited 237

The following result follows directly from the Proof of Theorem 3 in the
work of Gross [16]. While that work focuses on B being orthonormal - the proof
extends to approximately orthonormal basis (i.e., part 1 in the above definition)
in a straightforward way.

Theorem 4. Let B be a ν-incoherent basis for a rank 1 matrix X of size N =
poly(n). Let A : Rn×n → R

m be a map obtained by choosing Qi for each i � m
to be a uniformly random and independently chosen element of B. Then, for
large enough m = Θ(νn poly log n), Algorithm 3, when given input A and A(X)
recovers X, with probability at least 1 − n−10 log(n) over the choice of A.

5.2 Invertible Linear Matrix Maps

In this section we prove Theorem 2 on solving random quadratic systems.

Proof (Proof of Theorem 2). Fix t � nO(1) and a nice distribution Q.

Centering. We may assume that EQQ = 0. Otherwise, we can replace Q with
Q′ where Q′ = 1√

2
(Q0 −Q1) for independent draws Q0, Q1 ∼ Q. This is because

Q′ remains nice if Q is, clearly EQ′ = 0, and given q1, . . . , qm, q1(x), . . . , qm(x)
our algorithm can pair i to i + 1 (for even i) and instead consider m/2 samples
of the form (1/

√
2)(qi + qi+1), (1/

√
2)(qi(x) + qi+1(x)). Thus for the remainder

of the proof we assume EQ = 0.
Our goal is to establish that there is N � nO(1) such that if Q1, . . . , QN are

i.i.d. draws from Q, then (1/n)Q1, . . . , (1/n)QN are ν-incoherent with respect
to most x ∈ [−t, t]n.

Incoherence Part One: Orthogonal Basis. First observe that since EQ = 0
and EQ2

ij = 1 and our pairwise independence assumption, we have

E vec(Q)vec(Q)� = Idn2×n2 .

Also, by niceness, every |Qij | � O(n) with probability 1, for every i, j.
Fix i, j, k, � � n. By the Bernstein inequality, given N independent draws
Q(1), . . . , Q(N), for any s � 0,

P

⎧⎨
⎩

∣∣∣∣∣∣
1
N

∑
a�N

Q
(a)
ij Q

(a)
k� − EQijQk�

∣∣∣∣∣∣
> s

⎫⎬
⎭ � exp

(−CNs2

n4 + sn2

)

for some universal constant C. Take s = 1/n4 and N = n10, this probability is
at most exp(−O(n2)). Taking a union bound over i, j, k, � ∈ [n], we find that
with probability at least 1 − exp(−O(n2)),

(1 − o(1))Idn2×n2 � 1
N

∑
a�N

vec(Q(a))vec(Q(a))� � (1 + o(1))Idn2×n2 .

238 B. Barak et al.

Incoherence Part Two: Small Inner Products. Next we establish the other
part of incoherence: that 1

n2 〈x,Q(a)x〉 � ν/n for all a � N . The coordinates of
the vector x are independent, and each is bounded by t. Thus x is sub-Gaussian,
with variance proxy O(t2). Since the coordinates of x have Ex2

i � Ω(t2), the
random vector y with coordinates xi/

√
Ex2

i has sub-Gaussian norm O(1).
Consider a fixed matrix M ∈ R

n×n, where M has Frobenius norm ‖M‖F

and spectral norm ‖M‖. By the Hansen-Wright inequality, for any s � 0,

P
y

{|y�My − E y�My| > s
}

� exp
(−Cs2/(‖M‖2F + s‖M‖)

for some constant C.
If Q is any matrix in the support of Q, then ‖Q/n‖F � O(1) by niceness,

and ‖Q‖ � ‖Q‖F . So for any such Q,

P
y

{|y�(Q/n)y − E y�(Q/n)y| > s
}

� exp
(−Cs2/(1 + O(s))

)
.

Taking s = (log n)4, this probability is at most n−(log n)2 for large-enough n.
Taking a union bound over N � nO(1) samples Q(a), with probability at least
1 − n−(log n)1.5

over y (for large enough n), every Q(a) has
∣∣∣∣x� · Q(a)

n
· x

∣∣∣∣ � (log n)O(1)

n
· ‖xx�‖F .

Putting it together, for N = nO(1), with probability at least 1 − n−(log n)1.4

for big-enough n, if x ∼ {−t, . . . , t}n then Q(1)/n, . . . , Q(N)/n are a (log n)O(1)-
incoherent basis for x. Thus with probability at least 1 − n−10 log n over
Q(1), . . . , Q(N), we have Px(Q(1)/n, . . . , Q(N)/n is ν -incoherent for x) � 1 −
n−10 log n (again for large enough n).

From Incoherence to Recovery. We can simulate the procedure of sampling
Q1, . . . , Qm as in the theorem statement by first sampling Q1, . . . , QN , then
randomly subsampling m of the Q’s. If Q1, . . . , QN are (log n)O(1)-incoherent for
xx�, then Theorem 4 shows that with probability 1 − n− log n over the second
sampling step, trace norm minimization recovers x, so long as the number of
samples m is at least n(log n)O(1). This finishes the proof.

6 Experiments

In this section, we describe the experiments that we performed on various classes
of polynomials and how well do they perform in practice. All the codes were run
and analysed on a MacBook Air (2013) laptop with 4 GB 1600 Mhz DDR3
RAM and an intel i5 processor with clock speed of 1.3 Ghz. We used Julia as
our programming language and the package “Mosek” for the implementation of
an SDP solver.

Sum-of-Squares Meets Program Obfuscation, Revisited 239

6.1 Experimental Cryptanalysis of Dense or Sparse Polynomials

First, we describe the setting of multivariate quadratic polynomials over the inte-
gers where the coefficients of each monomial is chosen independently at random
from some distribution D. Such dense polynomials were considered in [1,2]. We
denote such polynomials by MQ.

The function genmatrixDMQ takes as input number of variables n and a coef-
ficient bound C, and does the following:

1. For every monomial xixj where i, j ∈ [n] and j � i, it samples a coefficient
as a uniformly random integer in [−C,C].

2. This coefficient is stored as V [i][j] inside the matrix V .
3. The entire coefficient matrix is then made symmetric by just computing sum

of itself with its transpose. Note that this quadratic form is the same as the
one obtained in step 2.

The code can be found in Sect.A
Having described how to sample a polynomial, now we turn to the procedure

to sample the input.
The function genxMQ on input number of variables n and a bound B, and

does the following:

1. It samples an input vector (x[1], ..., x[n]) where each x[i] is a sampled inde-
pendently as a random integer between [−B,B]

The code of this function can be found in Sect.A.
Once we know how to sample polynomials and inputs we generate observa-

tions.
The function genobsMQ takes as input the number of input variables n, num-

ber of random polynomials m, coefficient bound C and bound on the planted
input B. The function does the following:

1. It generates m polynomials randomly as per the distribution given by function
genmatrixDMQ and stores them inside the vector L.

2. Then, it samples a planted input vector x = (x1, ..., xn) given by the distri-
bution genxMQ.

3. Finally, it creates m observations of the form obs[i] = xT L[i]x for i ∈ [m]
where xT is the transpose of vector x.

4. It outputs polynomials, input and the observations.

This code can also be found in Sect. A
Once we have the observation we compute the function recoverMQ which

implements the attack.
This function recoverMQ takes as m input observations as a vector obs along

with the polynomial vector L. Then it finds a semi-definite matrix X constrained
to the linear constraints that Tr(L[i]∗X) = obs[i] for i ∈ [m], with the objective
to minimize Tr(X). Clearly, such an SDP is feasible as X = x · xT (product of
input vector with its transpose) satisfies the constraints.

240 B. Barak et al.

Our experiments support the theorems given earlier in this paper. Indeed,
for m > 3n, the SDP successfully recovers x for MQ polynomials. We similarly
conducted experiments for sparse polynomials, where again the SDP successfully
recovers x for m > 3n in all experiments. We omit details of the sparse case to
avoid redundancy.

6.2 Attacking [Lin-Matt18] Candidate Polynomials

In this section, we mount an attack on systems of quadratic polynomials with
special structure. In particular, we consider the quadratic polynomials conjec-
tured to provide security by [21]. Recall that the polynomials described in [21]
are of the following structure. For each j ∈ [m],

qj(x1, ..., xn, x′
1, ..., x

′
n′) = Sj(x1, ..., xn) + MQj(x′

1, ..., x
′
n′)

Here we write more about polynomials Sj , MQj as well as the input vector
(x1, ..., xn, x′

1, ..., x
′
n′).

1. MQj Polynomials: MQj are random quadratic polynomials over
(x′

1, ..., x
′
n′), where the coefficients of each degree two monomial x′

ix
′
k and

degree one monomial x′
i are integers chosen independently at random from

[−C,C].
2. Sj Polynomials: Sj are random quadratic polynomials over (x1, ..., xn) of

the form:

Sj(x1, ..., xn) = Σ
n/2
i=1αixσj(2∗i)xσj(2∗i−1) + Σn

i=1βixi + γ

Here each coefficient αi, βi and γ are random integers chosen independently
from [−C,C]. Here, σj is a random permutation from [n] to [n].

3. Distribution of inputs x1, ..., xn: Each xi is chosen as a random integer
sampled independently from the distribution χB1,B2 . χB1,B2 samples a ran-
dom integer from [−B1, B1] with probability 0.5 and from [−B2, B2] with
probability 0.5.

4. Distribution of inputs x′
1, ..., x

′
n′ : Each x′

i is chosen as a random integer
sampled independently from the distribution χB′ . χB′ samples a random
integer from [−B′, B′].

5. Set B1, B2, B
′, n, n′ as follows:

– Set n = n′ and m = n1+ε, for some ε > 0.
– B1, B′ and C are set arbitrarily.
– Set B2 = Ω(nB2 + nBB1).

Here B is some polynomial in the security parameter.

The function genmatrixsmq generates polynomials of the form S + MQ.
Then, we sample inputs using the function genxdiscsmq. Note that, this function
samples input of length n+n′ +2. Two special variables x[1] and x[n+2] are set
to 1 to achieve linear terms in the polynomials (as such xT V x is a homogeneous
degree two polynomial in x). Now we generate observation using the function
genobssmq, which is implemented similarly.

Sum-of-Squares Meets Program Obfuscation, Revisited 241

Changing the SDP. To attack these special polynomials, we modify the SDP
to introduce new constraints that help capture the structure of the polynomial.
Specifically, because we know that the values x1, . . . , xn take small polynomially
bounded values, we can enumerate over all possible “guesses” for Σi∈[n]x

2
i , and

be sure that one of these will be correct. Let val1 be this guess. As such, we
can add a constraint that Σi∈[n]X[i, i] = val1 to the SDP, where X is the SDP
matrix variable of size n + n′ by n + n′, and then solve. The code is formally
described in Sect. A.

The Fig. 2 shows the plot of the ratio m/n versus the correlation of the
recovered solution with the planted solution, for n + n′ = 60 total variables,
where n = n′ = 30. Larger values of n that were still experimentally feasible, such
as n+n′ = 120 yielded similar graphs. We also remark that similar experimental
observations can be made if we replace polynomials S with randomly generated
sparse polynomials with O(n) monomials. As before, for m > 3(n + n′), in our
experiments, we always recover the correct solution.

Fig. 2. Experimentally breaking Lin-Matt candidate. Graph shows quality of recovered
solution vs. planted solution, for various values of m/n shown in the x-axis. Let v be
the eigen vector with largest eigen value of the optimum matrix returned by the SDP.
Let x be the planted solution. Quality of solution is defined as 〈v,x〉

〈v,v〉
1
2 〈x,x〉

1
2

6.3 Attacking Polynomials of the Form S + S + MQ

Now we consider attacking a more general form of systems where each polynomial
qj(x1,x2,x3) is of the following form:

– qj takes as input three input vectors x� = (x�,1, . . . , x�,n) for � ∈ [3].
– Then, qj = Sj,1(x1) + Sj,2(x2) + MQj(x3)

242 B. Barak et al.

Inputs x� for � ∈ [3] are chosen as in the previous section. We observe that
when we constrain the sum Σ�∈[2],j∈[n]x

2
�,n, then SDP successfully recovers the

planted solution using about same number of samples (for the same size of input)
as for the previous case. This code of the recovery function recoverspecialssm
is given in Sect. A. Note that in the code, the sum val1 + val2 is used to
constrain this sum. This seems to generalise. If we consider a family where the
polynomials q are of the form S1+ . . .+Sk +MQ1+ . . .+MQk, for values of k we
could experimentally try (specifically k ∈ {1, 2, 3}) constraining the sum of trace
corresponding to inputs of S polynomials leads to a break with probability 1.

7 Cubic Assumption

In this section, we discuss the cubic assumption proposed by [2]. Let us first recall
the cubic version of the ΔRG assumption considered by [2]. First, we define a
notion of a polynomial sampler Q.

Definition 6. (Polynomial Sampler Q.) A polynomial sampler Q is a proba-
bilistic polynomial time algorithm that takes as input n,B,∈ N along with a
constant 1 > ε > 0 and outputs:

– Polynomials (q1, ..., q�n1+ε).
– Each polynomial qj(e1, ..., en, y1, ..., yn, z1, ..., zn) = Σi1,i2,i3∈[n]ci1,i2,i3ei1

yi2zi3 . Here, each coefficient ci1,i2,i3 are integers bounded in absolute value
by a polynomial in n and e1, ..., en, y1, .., yn, z1, ..., zn are the variables of the
polynomials.

Cubic ΔRG Assumption. There exists a polynomial sampler Q and a constant
ε > 0, such that for every large enough λ ∈ N, and every polynomial bound
B = B(λ) there exist large enough polynomial nB = λc such that for every
positive integer n > nB there exists an efficiently samplable bounded distribution
χ that is bounded by some polynomial in λ, n such that for every collection of
integers {δi}i∈[�n1+ε] with |δi| � B, the following holds for the two distributions
defined below:
Distribution dist1:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., q�n1+ε).
– (Sample Secret.) Sample a secret s ← Z

λ
p

– Sample ai ← Z
λ
p for i ∈ [n].

– (Sample LWE Errors.) For every i ∈ [n], sample ei, yi, zi ← χ. χ is a
bounded distribution with a bound poly(n) such that LWE assumption holds
with error distribution χ, modulus p and dimension λ.

– Output {ai, 〈ai, s〉 + ei mod p}i∈[n], {qj , qj(e1, .., en, y1, ..., yn, z1, ...,
zn)}j∈[�n1+ε]

Sum-of-Squares Meets Program Obfuscation, Revisited 243

Distribution dist2:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., q�n1+ε).
– (Sample Secret.) Sample a secret s ← Z

λ
p

– Sample ai ← Z
λ
p for i ∈ [n]

– (Sample LWE Errors). For every i ∈ [n], sample ei, yi, zi ← χ. χ is a
bounded distribution with a bound poly(λ) such that LWE assumption holds
with error distribution χ, modulus p and dimension λ.

– Output {ai, 〈ai, s〉 + ei mod p}i∈[n], {qj , qj(e1, .., en, y1, ..., yn, z1, ..., zn) +
δj}j∈[�n1+ε]

The assumption states that there exists a constant εadv > 0 such that for
any adversary A of size 2λεadv , the following holds:

|P[A(dist1) = 1] − P[A(dist2) = 1]| < 1 − 1/λ

Linearization Attack for n2 stretch. The assumption above is only required
to hold for stretch n1+ε for any small constant ε. However, we observe that the
assumption described above suffers from an attack if the stretch is O(λ ·n2). The
attack is simple and is described below.

Theorem 5. The cubic ΔRG assumption does not hold with m = O(λ · n2)
polynomials q1, . . . qm.

Proof. Here is the breaking algorithm. For notational convenience, we only con-
sider homogenous degree-3 polynomials. In this case, we can set m = n2(λ + 1).
However, the algorithm trivially generalizes to all degree-3 polynomials with
m = n2(λ + 3) + 2n + λ.

1. Consider a polynomial q�(e1, ..., en, y1, ..., yn, z1, ..., zn) = Σi,j,kci,j,k,�eiyjzk.
2. Rewrite q�(e1, ..., en, y1, ..., yn, z1, ..., zn) = Σi,j,kci,j,k,�(〈ai, s〉 + ei −

〈ai, s〉)yjzk. Now note that ai and bi = 〈ai, s〉 + ei is given. Set yjzk = wj,k

and sindyjzk = wind,j,k for ind ∈ [λ], j ∈ [n], k ∈ [n].
3. Note that since q�(e1, ..., en, y1, ..., yn, z1, ..., zn) = Σi,j,kci,j,k,�(bi−〈ai, s〉)yjzk

in Zp, the entire system of m = n1+ε samples can be written as a system of
linear equations over Zp in (λ + 1)n2 variables wind,j,k and wj,k. A simple
gaussian elimination then recovers the solution.

On the existence of hard degree-3 polynomials. Feige [12] conjectured that its
hard to distinguish a satisfiable random 3-SAT instance from a random 3-SAT
instance with C · n clauses. Each disjunction x1 ∨ x2 ∨ x3 corresponds to the
polynomial 1 − (1 − x1)(1 − x2)(1 − x3). This intuition gives rise to a set of can-
didate polynomials qi,j , which depends on three randomly chosen variables and
maps {0, 1}n to {0, 1}. Each qi,j has at most 8 monomials. Intuitively speaking,
to choose clauses, instead of choosing clauses at random – something that is
known to lead to weak RANDOM 3SAT instances – we first choose a planted
boolean solution x∗ ∈ {0, 1}n, and always choose clauses such that exactly one

244 B. Barak et al.

or all three literals in the clause evaluate to true. This has the property that
each clause individually induces a uniform constraint on any pair of variables xi

and xj . In the boolean case, this distribution of clauses is believed to give rise
to hard distributions, which suggests that the expanding polynomial systems
corresponding to these clauses should be hard to solve in general.

To construct obfuscation, we need the stretch to be at least n1+ε for any
constant ε > 0. All known algorithms take exponential time as long as n1.5−ε

clauses are given out. This leads to a conjecture, which is also related to the
work of [11]. As a result, we conjecture that the following candidate expanding
family of degree-3 polynomials is hard to solve.

3SAT Based Candidate. Let t = B2λ. Here, B(λ) is the magnitude of the
perturbations allowed. Sample each polynomial q′

i for i ∈ [η] as follows.
q′
i(x1, . . . ,xt,y1, . . . ,yt, z1, . . . , zt) = Σj∈[t]q

′
i,j(xj,yj, zj). Here xj ∈ χd×n and

yj , zj ∈ χn for j ∈ [t]. In other words, q′
i is a sum of t polynomials q′

i,j over t
disjoint set of variables. Let χ denote a discrete gaussian random variable with
mean 0 and standard deviation n. Now we describe how to sample q′

i,j for j ∈ [η].

1. Sample randomly inputs x∗,y∗, z∗ ∈ {0, 1}n.
2. To sample q′

i,j do the following. Sample three indices randomly and indepen-
dently i1, i2, i3 ← [n]. Sample three signs b1,i,j , b2,i,j , b3,i,j ∈ {0, 1} uniformly
such that b1,i,j ⊕ b2,i,j ⊕ b3,i,j ⊕ x∗[i1] ⊕ y∗[i2] ⊕ z∗[i3] = 1.

3. Set q′
i,j(xj,yj, zj) = 1− (b1,i,j ·xj[i1]+ (1− b1,i,j) · (1−xj[i1])) · (b2,i,j ·yj[i2]+

(1 − b2,i,j) · (1 − yj[i2])) · (b3,i,j · zj[i3] + (1 − b3,i,j) · (1 − zj[i3]))

Acknowledgements. Boaz Barak was supported by NSF awards CCF 1565264 and
CNS 1618026 and a Simons Investigator Fellowship. Samuel B. Hopkins was supported
by a Miller Postdoctoral Fellowship and NSF award CCF 1408673. Pravesh Kothari
was supported in part by Ma fellowship from the Schmidt Foundation and Avi Wigder-
son’s NSF award CCF-1412958. Amit Sahai and Aayush Jain were supported in part
from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, and NSF
grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty
Research Award, an equipment grant from Intel, and an Okawa Foundation Research
Grant. Aayush Jain was also supported by Google PhD Fellowship 2018, in the area
of Privacy and Security. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-
0205. The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense, the National Science Foundation, the U.S.
Government or Google.

A Julia Code

function genmatrixDMQ(n, C)

V = randn(n,n)

for i in 1:n

for j in 1:n

V[i,j] = 0

end

end

Sum-of-Squares Meets Program Obfuscation, Revisited 245

for i in 1:n

for j in i:n

V[i,j] = nr.randint(-C, high=C+1)

end

end

(V’+V)/2

end

function genxMQ(n ,B)

x = randn(n,1)

for i in 1:n

x[i] = nr.randint(-B, high=B+1)

end

x

end

function genobsMQ(n,m,C,B)

L = [genmatrixDMQ(n,C) for i in 1:m]

x = genxMQ(n,B)

obs = [x’*L[i]*x for i in 1:m]

L,obs,x

end

function recoverMQ(L,obs)

n = size(L[1])[1]

m = length(L)

model = Model(solver = MosekSolver())

@variable(model, X[1:n,1:n], SDP)

let’s maximize the trace

@objective(model, Min, trace(X))

this makes the constraints

for i in 1:m

@constraint(model, trace(L[i]*X).==obs[i])

end

this solves the problem

solve(model)

getvalue(X)

end

function genmatrixsmq(n, n2, nprime, C)

V = randn(n+nprime+2,n+nprime+2)

Z = randn(n+nprime+2,n+nprime+2)

246 B. Barak et al.

for i in 1:n+nprime+2

for j in 1:n+nprime+2

V[i,j] = 0

end

end

a=randperm(n)

#sparse monomials

for i in 1:n2

V[a[2*i-1]+1,a[2*i]+1] = rand(-C:C)

end

#MQ monomials

for i in n+3:n+nprime+2

for j in n+3:n+nprime+2

V[i,j] = rand(-C:C)

end

end

#Linear terms in S

for j in 2:n+1

V[1,j]=rand(-C:C)

end

#Linear terms in MQ

for j in n+3:n+nprime+2

V[n+2,j]=rand(-C:C)

end

Z=V’+V

Z

end

function genxdiscsmq(n,n2,nprime,B1,B2,Bprime)

x = randn(n+nprime+2,1)

x[1]=1

x[n+2]=1

for i in n+3:n+nprime+2

Sum-of-Squares Meets Program Obfuscation, Revisited 247

x[i] = rand(-Bprime:Bprime)

end

for i in 2:n+1

temp1=rand(-B1:B1)

temp2=rand(-B2:B2)

temp3=rand(0:1)

x[i] = (temp3*temp1+(1-temp3)*temp2)

end

x

end

function genobssmq(n,n2,nprime,m,C,B1,B2,Bprime)

L = [genmatrixsmq(n,n2,nprime,C) for i in 1:m]

x = genxdiscsmq(n,n2, nprime,B1,B2,Bprime)

obs = [x’*L[i]*x for i in 1:m]

L,obs,x

end

function recoverspecialsmq(L,obs,n,n2,nprime,m,val1)

model = Model(solver = MosekSolver())

@variable(model, X[1:nprime+n+2,1:nprime+n+2], SDP)

let’s maximize the trace

@objective(model, Min, trace(X))

this makes the constraints

for i in 1:m

@constraint(model, trace(L[i]*X).==obs[i])

end

@constraint(model, X[1,1]==1)

@constraint(model, X[n+2,n+2]==1)

@constraint(model, trace(X[1:n+1,1:n+1])=val1[1])

this solves the problem

solve(model)

getvalue(X)

end

function recoverspecialssm(L,obs,n,n2,nprime,m,val1, val2,val3)

model = Model(solver = MosekSolver())

@variable(model, X[1:nprime+2*n+3,1:nprime+2*n+3], SDP)

248 B. Barak et al.

let’s maximize the trace

@objective(model, Min, trace(X))

this makes the constraints

for i in 1:m

@constraint(model, trace(L[i]*X).==obs[i])

end

@constraint(model, X[1,1]==1)

@constraint(model, X[n+2,n+2]==1)

@constraint(model, X[n*2+3,2*n+3]==1)

@constraint(model, trace(X[1:n+1,1:n+1]) + trace(X[n+2:2*n+2,n+2:2*n+2])

>= val1[1] + val2[1])

this solves the problem

solve(model)

getvalue(X)

end

References

1. Agrawal, S.: New methods for indistinguishability obfuscation: Bootstrapping and
instantiation. IACR Cryptology ePrint Archive 2018, 633 (2018). https://eprint.
iacr.org/2018/633

2. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multi-
linear maps: iO from LWE, bilinear maps, and weak pseudorandomness. IACR
Cryptology ePrint Archive 2018, 615 (2018). https://eprint.iacr.org/2018/615

3. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 6

4. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree
pseudorandom generators (or: sum-of-squares meets program obfuscation). In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp.
649–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 21

5. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temp. Math. 324, 71–90 (2002)

6. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. IACR Cryptology ePrint Archive 2014, 930 (2014). http://eprint.iacr.
org/2014/930

7. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Crypt-
analysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report
2015/845 (2015). http://eprint.iacr.org/

https://eprint.iacr.org/2018/633
https://eprint.iacr.org/2018/633
https://eprint.iacr.org/2018/615
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-319-78375-8_21
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/

Sum-of-Squares Meets Program Obfuscation, Revisited 249

8. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

9. Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new clt multilinear maps.
Cryptology ePrint Archive, Report 2015/934 (2015). http://eprint.iacr.org/

10. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 12

11. Daniely, A., Linial, N., Shalev-Shwartz, S.: From average case complexity to
improper learning complexity. In: STOC, pp. 441–448. ACM (2014)

12. Feige, U.: Relations between average case complexity and approximation complex-
ity. In: STOC, pp. 534–543. ACM (2002)

13. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29
October, 2013, Berkeley, pp. 40–49 (2013)

15. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs
for the parity. Theor. Comput. Sci. 259(1–2), 613–622 (2001)

16. Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE
Trans. Inform. Theory 57(3), 1548–1566 (2011). https://doi.org/10.1109/TIT.
2011.2104999

17. Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptol. ePrint Archive
2015, 866 (2015)

18. Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptol. ePrint Archive 2015,
301 (2015)

19. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 2

20. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

21. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to
indistinguishability obfuscation. IACR Cryptology ePrint Archive 2018, 646 (2018).
https://eprint.iacr.org/2018/646

22. Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and block-
wise local PRGs. Cryptology ePrint Archive, Report 2017/250 (2017). http://
eprint.iacr.org/2017/250

23. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, 9–11 October 2016,
Hyatt Regency, New Brunswick, pp. 11–20 (2016)

24. Lombardi, A., Vaikuntanathan, V.: On the non-existence of blockwise 2-local
prgs with applications to indistinguishability obfuscation. IACR Cryptology ePrint
Archive 2017, 301 (2017). http://eprint.iacr.org/2017/301

https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1109/TIT.2011.2104999
https://doi.org/10.1109/TIT.2011.2104999
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://eprint.iacr.org/2018/646
http://eprint.iacr.org/2017/250
http://eprint.iacr.org/2017/250
http://eprint.iacr.org/2017/301

250 B. Barak et al.

25. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 22

26. Minaud, B., Fouque, P.A.: Cryptanalysis of the new multilinear map over the
integers. Cryptology ePrint Archive, Report 2015/941 (2015). http://eprint.iacr.
org/

27. Recht, B.: A simpler approach to matrix completion. J. Mach. Learn. Res. 12,
3413–3430 (2011)

28. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions oflinear
matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501
(2010). https://doi.org/10.1137/070697835

29. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing, STOC 2014, New York,
May 31 - June 03, 2014, pp. 475–484 (2014)

30. Schoenebeck, G.: Linear level lasserre lower bounds for certain k-CSPs. In: 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, 25–28
October 2008, Philadelphia, pp. 593–602 (2008)

https://doi.org/10.1007/978-3-662-53008-5_22
http://eprint.iacr.org/
http://eprint.iacr.org/
https://doi.org/10.1137/070697835

How to Leverage Hardness
of Constant-Degree Expanding
Polynomials over R to build iO

Aayush Jain1(B), Huijia Lin2, Christian Matt3, and Amit Sahai1

1 UCLA, Los Angeles, USA
{aayushjain,sahai}@cs.ucla.edu

2 University of Washington, Seattle, USA
rachel@cs.washington.edu

3 Concordium, Zurich, Switzerland
cm@concordium.com

Abstract. In this work, we introduce and construct D-restricted Func-
tional Encryption (FE) for any constant D ≥ 3, based only on the
SXDH assumption over bilinear groups. This generalizes the notion of
3-restricted FE recently introduced and constructed by Ananth et al.
(ePrint 2018) in the generic bilinear group model.

A D = (d + 2)-restricted FE scheme is a secret key FE scheme
that allows an encryptor to efficiently encrypt a message of the form
M = (x, y, z). Here, x ∈ F

d×n
p and y, z ∈ F

n
p. Function keys can be

issued for a function f = ΣI=(i1,..,id,j,k) cI · x[1, i1] · · · x[d, id] · y[j] · z[k]
where the coefficients cI ∈ Fp. Knowing the function key and the cipher-
text, one can learn f(x, y, z), if this value is bounded in absolute value by
some polynomial in the security parameter and n. The security require-
ment is that the ciphertext hides y and z, although it is not required to
hide x. Thus x can be seen as a public attribute.

D-restricted FE allows for useful evaluation of constant-degree
polynomials, while only requiring the SXDH assumption over bilinear
groups. As such, it is a powerful tool for leveraging hardness that exists
in constant-degree expanding families of polynomials over R. In partic-
ular, we build upon the work of Ananth et al. to show how to build
indistinguishability obfuscation (iO) assuming only SXDH over bilinear
groups, LWE, and assumptions relating to weak pseudorandom proper-
ties of constant-degree expanding polynomials over R.

1 Introduction

Program obfuscation transforms a computer program P into an equivalent pro-
gram O(P) such that any secrets present within P are “as hard as possible” to
extract from O(P). This property can be formalized by the notion of indistin-
guishability obfuscation (iO) [9,32]. Formally, iO requires that given any two

This paper is a merge of two independent works, one by Jain and Sahai, and the other
by Lin and Matt.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 251–281, 2019.
https://doi.org/10.1007/978-3-030-17653-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_9

252 A. Jain et al.

equivalent programs P1 and P2 of the same size, a computationally bounded
adversary cannot distinguish O(P1) from O(P2). iO has far-reaching applica-
tion [26,50], significantly expanding the scope of problems to which cryptography
can be applied [12,16,19,25,28,31,34,35,38,50].

The work of [26] gave the first mathematical candidate iO construction,
and since then several additional candidates have been proposed and studied
[3,5,7,8,13–15,17,18,20–24,29,33,36,39,43,44,46,47,49].

Constructing iO without MMaps. Until 2018, all known constructions relied on
multilinear maps [21,22,24,29]. Unfortunately, multilinear map constructions are
complex and surviving multilinear map security models [11,27,45] are themselves
complex and difficult to analyze, as they have had to be modified in light of a
sequence of attacks on multilinear map candidates [13,14,17,18,20,33,36,46,47].

This state of affairs is troubling scientifically, as we would like to be able to
reduce the security of iO to problems that are simple to state, and where the
underlying mathematics has a long history of study.

Everything old is new again: low-degree polynomials over the reals. Human-
ity has studied solving systems of (low-degree) polynomials over the reals for
hundreds of years. Is it possible to use hardness associated with polynomial sys-
tems over the reals cryptographically? Surprisingly, despite hundreds of years of
study, remarkably little is known about average-case hardness corresponding to
expanding polynomial systems, where the number of real variables is n, and the
polynomial equations over them is n1+ε for ε > 0.

The recent works of [1,4,42] introduced a new way constructing iO without
relying on multilinear maps, by looking to hardness that may be present in
degree two [1,4,42] or degree three [4] expanding polynomial systems over the
reals.

The primary goal of our work is to extend the approach proposed by [4] to
be able to use hardness associated with suitable expanding polynomial systems
of any constant degree.

Leveraging low degree pseudorandomness over Z to build iO. The key idea behind
the work of [4] is to posit the existence of weak pseudorandom objects that are
closely related to polynomials of degree 2 or 3 over the integers. They then
introduce the crucial notion of 3-restricted functional encryption, which is a
notion of functional encryption that allows for a restricted but still useful evalu-
ation of degree-3 polynomials. This notion allows for the natural application of
expanding families of degree-3 polynomials. (See below for further discussion on
restricted-FE and its uses.).

Departing from previous work [5,40,43] that required at least trilinear maps
to construct any meaningful FE for degree-3 functions, [4] show how to construct
3-restricted FE using only bilinear maps. Finally, by combining 3-restricted FE
with the weak pseudorandom objects mentioned above, they achieve iO (also
assuming LWE).

How to Leverage Hardness of Constant-Degree Expanding Polynomials 253

The goals of our present work are two-fold:

– To show how to extend the above approach beyond degree 3, to any constant
degree D for D ≥ 3. To do so, the key ingredient we construct is D-restricted
FE, again only using bilinear maps regardless of the constant D.

– Furthermore, we construct D-restricted FE assuming only the SXDH assump-
tion to hold over the bilinear map groups, instead of the generic bilinear model
that was needed in [4].

We now elaborate.

D-restricted FE. A D-restricted FE scheme naturally generalizes the notion of 3-
restricted FE scheme from [4]. We will write D = d+2 for notational convenience.
Such a scheme is a secret key FE scheme that allows an encryptor to encrypt a
message of the form M = (x,y,z), where x ∈ F

d×n and y,z ∈ F
n
p. Function keys

can be issued for a function f = ΣI=(i1,..,id,j,k) cI · x[1, i1] · · · x[d, id] · y[j] · z[k]
with coefficients cI ∈ Fp. Knowing the key and the ciphertext, one can learn
f(x,y,z), if this value is bounded in absolute value by some polynomial in the
security parameter and n. The security requirement is that the ciphertext hides
y and z, although it is not required to hide x. Thus x can be seen as a public
attribute. For implications to iO, we require that encryption complexity should
grow only linearly in n (up to a polynomial factor in the security parameter).

Observe that for a given family of degree-D polynomials Q fixed in a function
key, the notion of D-restricted FE allows an encryptor to choose the values of
all variables x,y,z at the time of encryption, and the decryptor will obtain
Q(x,y,z). This allows for the most natural use of degree-D polynomials. We
stress this point because other, less natural uses, are possible without using
D-restricted FE, but these are unsatisfactory: One example would be where along
with the polynomial Q the values of all variables x would also be fixed inside
the function key. This would reduce the degree-D polynomials Q to quadratic
polynomials, and just quadratic FE would then suffice (see, e.g., [1,42]). However,
again, this latter, less natural, approach would not allow x to be chosen freshly
with each encryption. With our notion of D-restricted FE, such an unnatural
setting – where some variables are fixed but others are freshly chosen with each
encryption – can be avoided completely.

Why is it important to go beyond degree 3? At the core of the new works that
construct iO without multilinear maps is the following key question: For some
constant D, do there exist “expanding” distributions of polynomials q1, . . . , qm

of degree D, where m = n1+ε with polynomially-bounded coefficients, such that
if one obtains x = (x1, . . . , xn) ∈ Z

n by sampling each xi from a “nice” distri-
bution with polynomially-bounded support, then is it hard to solve for x given
q1(x), . . . , qm(x)? Remarkably, even though this question has a many-hundred
year history within mathematics and nearly every branch of science, surprisingly
little is known about hardness in this setting! And yet the hardness of such inver-
sion problems is necessary (though not sufficient, see below) for this new line of
work on constructing iO.

254 A. Jain et al.

Recently, [10] gave evidence that such problems may not be hard for D = 2.
The case for D = 3 is less studied, and seems related to questions like the hard-
ness of RANDOM 3-SAT. However, it seems that increasing D to larger constants
should give us more confidence that hard distributions exist. For example, for
D = 5 and larger, this becomes related to the hardness of natural generalizations
of the Goldreich PRG [30,48]. It is also likely that as D grows, hardness “kicks
in” for smaller values of n, similar to how the hardness of RANDOM k-SAT for
constant k > 3 can be observed experimentally for much smaller values of n,
than for RANDOM 3-SAT. Thus, our study could impact efficiency, as well.

Since studying the hardness of solving expanding families of polynomial equa-
tions over R is an exciting new line of cryptanalytic research, it is particularly
important to study what values of D are cryptographically interesting. Before
our work, only D = 2 and D = 3 were known to lead to iO; our work shows that
hardness for any constant degree D is interesting and cryptographically useful.

We stress that ensuring the hardness of solving for x given q1(x), . . . , qm(x)
is just the first step. Our work also clarifies the actual hardness assumptions
that we need to imply iO as the following two assumptions. Since D > 2, let
D = d + 2 for the rest of the discussion.

Weak LWE with leakage. This assumption says that there exists distributions χ
over the integers and Q over families of multilinear degree-D polynomials such
that the following two distributions are weakly indistinguishable, meaning that
no efficient adversary can correctly identify the distribution from which a sample
arose with probability above 1

2 + 1/4λ.
Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n,B, ε) to obtain

polynomials (q1, ..., q�n1+ε�). Sample a secret s ← Z
λ
p and sample aj,i ← Z

λ
p for

j ∈ [d], i ∈ [n]. Finally, for every j ∈ [d], i ∈ [n], sample ej,i, yi, zi ← χ, and write
ej = (ej,1, . . . , ej,n), y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{aj,i, 〈aj,i, s〉 + ej,i mod p}j∈[d],i∈[n]

along with
{qk, qk(e1, . . . ,ed ,y,z)}k∈[n1+ε]

Distribution D2 is the same as D1, except that we additionally sample e′
j,i ←

χ for j ∈ [d], i ∈ [n]. The output is now

{aj,i, 〈aj,i, s〉 + e′
j,i mod p}j∈[d],i∈[n]

along with
{qk, qk(e1, . . . ,ed ,y,z)}k∈[n1+ε]

We can think of the polynomials qk(e1, . . . ,ed ,y,z) as “leaking” some infor-
mation about the LWE errors ej,i. The assumption above states that such leakage
provides only a limited advantage to the adversary. Critically, the fact that there
are n2 > n1+ε quadratic monomials involving just y and z above, which are not
used in the LWE samples at all, is crucial to avoiding linearization attacks over

How to Leverage Hardness of Constant-Degree Expanding Polynomials 255

Zp in the spirit of Arora-Ge [6]. For more discussion of the security of the above
assumption in the context of D = 3, see [10].

The second assumption deals only with expanding degree-D polynomials over
the reals, and requires that these polynomials are weakly perturbation resilient.

Weak Perturbation-Resilience. The second assumption is that there exists poly-
nomials that for the same parameters above the following two distributions are
weakly indistinguishable. By weakly indistinguishability we mean that no effi-
cient adversary can correctly identify the distribution from which a sample arose
with probability above 1 − 2/λ. Let δi ∈ Z be such that |δi| < B(λ, n) for some
polynomial B and i ∈ [n1+ε]:

Distribution D1 consists of the evaluated polynomial samples. That is, we output:

{qk, qk(e1, . . . ,ed ,y,z)}k∈[n1+ε]

Distribution D2 consists of the evaluated polynomial samples with added per-
turbations δi for i ∈ [n1+ε]. That is, we output:

{qk, qk(e1, . . . ,ed ,y,z) + δk}k∈[n1+ε]

These assumptions are sketched here informally; the formal definitions are
given in Sect. 5.

Our Results: Our results can be summarized as follows. First, we construct a
(d + 2) restricted FE scheme from the SXDH assumption.

Theorem 1. Assuming SXDH over bilinear maps, there is a construction of
a (d + 2) restricted FE scheme for any constant d ≥ 1.

Then, we give candidates of perturbation resilient generators that can be
implemented using a (d + 2) restricted FE scheme. Finally, using such a per-
turbation resilient generator and (d + 2) restricted FE, we construct iO via the
approach given by [4]. Here is our final theorem.

Theorem 2. For any constant integer d ≥ 1, two distinguishing gaps adv1, adv2,
if adv1 + adv2 ≤ 1 − 2/λ then assuming,

– Subexponentially hard LWE.
– Subexponentially hard SXDH.
– PRGs with

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0.
• Block locality d + 2.
• Security with distinguishing gap bounded by adv1 against adversaries of

sub-exponential size.
– dΔRG with distinguishing gap bounded by adv2 against adversaries of size 2λ.

Details about the notion of dΔRG can be found in Sects. 5 and 6.

there exists a secure iO scheme for P/poly.

256 A. Jain et al.

We additionally note that the work of [42] provides a construction of iO
from a different notion of weak randomness generators called pseudo flawed-
smudging generators, and a partially hiding FE scheme that can compute them.
Their notion of partially hiding FE is implied by our degree (d + 2) restricted
FE. Therefore, if using our candidates of perturbation resilient generators as
candidates of pseudo flawed-smudging generators, we can obtain iO via the the
approach of [42], as summarized in the theorem below.

Theorem 3. For any constant integer d ≥ 1, assuming,

– LWE,
– SXDH,
– PRGs with

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0,
• Constant locality and additional mild structural properties (see [42] for

details),
– Pseudo flawed-smudging generators with degree d public computation and

degree 2 private computation. Details about the notion of pseudo flawed-
smudging generators can be found in Sect. 5.2 and [42].

where all primitives are secure against adversaries of polynomial sizes with sub-
exponentially small distinguishing gaps. Then, there exists a subexponentially
secure iO scheme for P/poly.

For simplicity, we focus on working with the notion of ΔRG here and provide
more details on how to work with pseudo flawed-smudging generators in [37].

We now proceed with a more detailed, but still informal, technical overview
of our techniques.

2 Technical Overview

(d + 2)-restricted FE. The key technical tool constructed in this work is the
notion of (d + 2)−restricted FE (dFE for short) for any constant integer d ≥ 1.
We recall that a dFE scheme over Fp is a secret key functional encryption scheme
for the functions f of the following form: f : Fn×(d+2)

p → Fp. To be precise, f

takes as input (x,y,z) where x ∈ F
n×(d)
p and y,z ∈ F

n
p. Then it computes

f(x,y,z) = ΣI=(i1,..,id,j,k)cI ·x[1, i1] · · · x[d, id] ·y[j] ·z[k] where each coefficient
cI ∈ Fp. We require the decryption to be efficient only if the output is bounded
in norm by a polynomial bound B(λ, n). Security of a dFE scheme intuitively
requires that a ciphertext only reveals the d public components x and the output
of the decryption.

Before we describe our construction, we first recall the construction of
3-restricted FE from [4]:
3-restricted FE [4]. Before getting to 3 restricted FE, we first recap how secret
key quadratic functional encryption schemes [41] work at a high level. Let’s say
that the encryptor wants to encrypt y,z ∈ F

n
p. The master secret key consists

How to Leverage Hardness of Constant-Degree Expanding Polynomials 257

of two secret random vectors β,γ ∈ F
n
p that are used for enforcement of com-

putations done on y and z respectively. The idea is that the encryptor encodes
y and β using some randomness r, and similarly encodes z and γ together as
well. These encodings are created using bilinear maps in one of the two base
groups. These encodings are constructed so that the decryptor can compute an
encoding of [g(y,z)−rg(β,γ)]t in the target group for any quadratic function g.
The function key for the given function f is constructed in such a manner that
it allows the decryptor to compute the encoding [rf(β,γ)]t in the target group.
Thus the output [f(y,z)]t can be recovered in the exponent by computing the
sum of [rf(β,γ)]t and [f(y,z) − rf(β,γ)]t in the exponent. As long as f(y,z)
is polynomially small, this value can then be recovered efficiently.

Clearly the idea above only works for degree-2 computations, if we use bilin-
ear maps. However, the work of [4] built upon this idea nevertheless to construct
a 3-restricted FE scheme. Recall, in a 3-restricted FE one wants to encrypt three
vectors x,y,z ∈ F

n
p. While y and z are required to be hidden, x is not required

to be hidden.
In their scheme, in addition to β,γ ∈ F

n
p in case of a quadratic FE, another

vector α ∈ F
n
p is also sampled that is used to enforce the correctness of the x part

of the computation. As before, given the ciphertext one can compute [y[j]z[k]−
rβ[j]γ[k]]t for j, k ∈ [n]. But this is clearly not enough, as these encodings do
not involve x in any way. Thus, in addition, an encoding of r(x[i] − α[i]) is also
given in the ciphertext for i ∈ [n]. Inside the function key, there are corresponding
encodings of β[j]γ[k] for j, k ∈ [n] which the decryptor can pair with encoding
of r(x[i]−α[i]) to form the encoding [r(x[i]−α[i])β[j]γ[k]]t in the target group.

Now observe that,

x[i] · (y[j]z[k] − rβ[j]γ[k]
)

+ r(x[i] − α[i]) · β[j]γ[k]
=x[i]y[j]z[k] − rα[i]β[j]γ[k]

Above, since x[i] is public, the decryptor can herself take (y[j]z[k] −
rβ[j]γ[k]), which she already has, and multiply it with x[i] in the exponent.
This allows her to compute an encoding of [x[i]y[j]z[k] − rα[i]β[j]γ[k]]t. Com-
bining these encodings appropriately, she can obtain [g(x,y,z) − rg(α,β,γ)]t
for any degree-3 multilinear function g. Given the function key for f and the
ciphertext, one can compute [rf(α,β,γ)]t which can be used to unmask the
output. This is because the ciphertext contains an encoding of r in one of the
base groups and the function key contains an encoding of f(α,β,γ) in the other
group and pairing them results in [rf(α,β,γ)]t.

The work of [4] shows how to analyze the security of the construction above
in a generic bilinear group model.

Towards constructing (d+2)−restricted FE. Now let’s consider how we can extend
the approachdiscussed above for the case of d = 2. Suppose nowwewant to encrypt
u,x,y and z. Here y,z are supposed to be private while x and u are not required to
be hidden. Let’s now also have φ ∈ F

n
p to enforce u part of the computation. How

can we generalize the idea above to allow for degree-4 computations? One straight-
forward idea is to release encodings of r(u[i1]x[i2]−φ[i1]α[i2]) for i1, i2 ∈ [n] in the

258 A. Jain et al.

ciphertext instead of encodings of r(x[i2]−α[i2]) like before. Thiswould permit the
computation of [f(u,x,y,z)−rf(φ,α,β,γ)]t. However, such an approach would
not be efficient enough for our needs: we require the complexity of encryption to
be linear in n. However, the approach above would need to provide n2 encodings
corresponding to r(u[i1]x[i2] − φ[i1]α[i2]) for every i1, i2 ∈ [n].

Our first idea: A “ladder” of enforcement. Let’s now take a step back. Notice
that our 3-restricted FE scheme already allows one to compute [x[i2]y[j]z[k] −
rα[i2]β[j]γ[k]]t for any i2, j, k ∈ [n]. We want to leverage this existing capability
to bootstrap to degree-4 computations.

Suppose the decryptor is also able to generate the encoding [r(u[i1]−φ[i1]) ·
α[i2]β[j]γ[k]]t for any i1, i2, j, k ∈ [n]. Then, she can generate the encoding
[u[i1]x[i2]y[j]z[k] − φ[i1]α[i2]β[j]γ[k]]t as follows:

r(u[i1] − φ[i1])α[i2]β[j]γ[k] + u[i1] · (
x[i2]y[j]z[k] − rα[i2]β[j]γ[k]

)

=u[i1]x[i2]y[j]z[k] − rφ[i1]α[i2]β[j]γ[k]

Notice that u is public so the decryptor can herself take (x[i2]y[j]z[k] −
rα[i2]β[j]γ[k]), which she already has, and multiply it with u[i1] in the expo-
nent. To allow the computation of [r(u[i1]−φ[i1])α[i2]β[j]γ[k]]t we can provide
additionally encodings of (u[i1] − rφ[i1]) in the ciphertexts for i1 ∈ [n] and cor-
responding encodings of α[i2]β[j]γ[k] for i2, j, k ∈ [n] in the function key that
can be paired together.

What next? As before, the decryptor can homomorphically compute on these
encodings and learn [f(u,x,y,z) − rf(φ,α,β,γ)]t. Finally, the decryptor can
compute [rf(φ,α,β,γ)]t by pairing an encoding of r given in the ciphertext and
and encoding of f(φ,α,β,γ) given in the function key. Thus, the output can be
unmasked in the exponent.

Observe that this solution preserves linear efficiency of the ciphertext. As of
now we have not told anything about how security is argued. From computation
point of view, this solution indeed turns out to be insightful as this process can
now be generalized to form a ladder of enforcement for any constant degree-D
computations.

Laddered computations for any constant degree (d + 2). First let’s set up some
notation. Let x ∈ F

d×n
p be the public part of the plain-text and y,z ∈ F

n
p. Let

α ∈ F
d×n
p be the vector of random field elements corresponding to x. Similarly,

β and γ in F
n
p be the vector of random elements corresponding to y and z

respectively.
The next observation is the following. Suppose the decryptor can generate

the following terms by pairing encodings present in the ciphertext and encodings
present in the functional key, for every I = (i1, .., id, j, k) ∈ [n]D.

– [y[j]z[k] − rβjγk]t for j, k ∈ [n].
– [r(x[d, id] − α[d, id]) · β[j]γ[k]]t
– [r(x[d − 1, id−1] − α[d − 1, id−1]) · α[d, id]β[j]γ[k]]t

How to Leverage Hardness of Constant-Degree Expanding Polynomials 259

– . . .
– [r(x[1, i1] − α[1, i1]) · α[2, i2] · · · α[d, id]β[j]γ[k]]t

As before, the decryptor can also obtain an encoding [rf(α,β,γ)]t corre-
sponding to the degree-D multilinear function f in the function key.

The main observation to generalize the D = 4 case discussed above is then
the following. Consider the first two terms: [y[j]z[k] + rβjγk]t and [r(x[d, id] −
α[d, id])β[j]γ[k]]t and note that:

x[d, id](y[j]z[k] − rβjγk) + r(x[d, id] − α[d, id])β[j]γ[k]
=x[d, id]y[j]z[k] − rα[d, id]β[j]γ[k]

This observation allows the decryptor to compute an encoding

Intd = [x[d, id]y[j]z[k] − rα[d, id]β[j]γ[k]]t

using encodings of the first two types in the list above.
Next observe that using the encoding,

[r(x[d − 1, id−1] − α[d − 1, id−1]) · α[d, id]β[j]γ[k]]t

and encoding Intd one can compute

Intd−1 = [x[d − 1, id−1]x[d, id]y[j]z[k] − rα[d − 1, id−1]α[d, id]β[j]γ[k]]t

This is because,

x[d − 1, id−1] · (x[d, id]y[j]z[k] − rα[d, id]β[j]γ[k])
+ r(x[d − 1, id−1] − α[d − 1, id−1]) · α[d, id]β[j]γ[k]

=x[d − 1, id−1]x[d, id]y[j]z[k] − rα[d − 1, id−1]α[d, id]β[j]γ[k]

Continuing this way up a “ladder” the decryptor can compute

MonI = [Π�∈[d]x[�, i�]y[j]z[k] − rΠ�∈[d]α[�, i�]β[j]γ[k]]t

Observe that the term Π�∈[d]x[�, i�]y[j]z[k] − rΠ�∈[d]α[�, i�]β[j]γ[k] corre-
sponding to MonI can be generated as a linear combination of terms from the
list above. Once MonI is computed then the decryptor can do the following. Since
f = ΣI=(i1,..,id,j,k)cIx[1, i1] · · · x[d, id]y[j]z[k], the decryptor can then compute:

Monf = [f(x,y,z) − rf(α,β,γ)]t

Finally using [rf(α,β,γ)]t the decryptor can recover [f(x,y,z)]t.

260 A. Jain et al.

How to base security on SXDH? So far, we have just described a potential
computation pattern that allows the decryptor to obtain the function output
given a function key and a ciphertext. Any scheme that allows constructing the
terms described above in the ladder is guaranteed to satisfy correctness. But
how do we argue security?

We rely on a primitive called Canonical Function Hiding Inner Product
Encryption (cIPE for short). A cIPE scheme allows the decryptor to compute
the inner product of a vector encoded in the ciphertext, with a vector encoded
in the function key. Also, intuitively, cIPE guarantees that the vector embedded
in the function key is also hidden given the function key. More precisely, given
any vectors v,v′,u,u′ such that 〈u,v〉 = 〈u′,v′〉, no efficient adversary can dis-
tinguish between a ciphertext encoding u and a function key encoding v, from
a ciphertext encoding u′ and a function key encoding v′.

Furthermore, syntactically speaking, in a cIPE scheme, we will require the
following to be true:

– The encryption algorithm just computes exponentiation and multiplication
operations in G1. The encryption of a vector (a1, .., a4) can just be computed
knowing gai

1 for i ∈ [4] and the master secret key.
– Key generation algorithm just computes exponentiation and multiplication

operation in G2. The function key for a vector (b1, .., b4) can just be computed
knowing gbi

2 for i ∈ [4] and the master secret key.
– The decryption process just computes pairing operations and then computes

group multiplications over Gt. The output is produced in Gt. The element ga
t

is represented as [a]t for the rest of the paper.

Such a cIPE scheme was given by [40], where it was instantiated from SXDH
over bilinear maps. That work also used cIPE to build quadratic FE from SXDH.
We will also make use of cIPE in our construction of D-restricted FE. Note,
however, that unlike in the case of quadratic FE, our construction, and crucially
our proof of security, will also need to incorporate the “ladder” enforcement
mechanism sketched above. We are able to do so still relying only on the SXDH
assumption.

We note that the size of the vectors encrypted using a cIPE scheme cannot
grow with n, to achieve linear efficiency. In fact, we just use four-dimensional
vectors.

Realizing the Ladder: Warm-up Construction for d + 2 = 4. Here is a warm-up
construction for the case of d = 2 (i.e. D = 4).
Setup(1λ, 1n): On input security parameter 1λ and length 1n,

– Run cIPE setup as follows. sk0 ← cIPE.Setup(1λ, 14). Thus these keys are
used to encrypt vectors in F

4
p.

– Then run cIPE setup algorithm 2 · n times. That is, for every � ∈ [2] and
i� ∈ [n], compute sk(�,i�) ← cIPE.Setup(1λ, 14).

– Sample α ← F
2×n
p . Also sample β,γ ← F

n
p.

How to Leverage Hardness of Constant-Degree Expanding Polynomials 261

– For every set I = (i1, i2, j, k) in [n]4 do the following. Let I ′ = (i2, j, k) and
I

′′
= (j, k). Compute Key

(1,i1)
I ′ =

cIPE.KeyGen(sk(1,i1), (α[2, i2]β[j]γ[k],α[1, i1]α[2, i2]β[j]γ[k], 0, 0))

Similarly, compute Key
(2,i2)

I
′′ =

cIPE.KeyGen(sk(2,i2), (β[j]γ[k],α[2, i2]β[j]γ[k], 0, 0))

– Output MSK = ({sk(�,i�),Key
(�,i�)
I }�,i�,I ,α,β,γ, sk0)

Enc(MSK,x,y,z): The input message M = (x,y,z) consists of a public attribute
x ∈ F

2×n
p and private vectors y,z ∈ F

n
p. Perform the following operations:

– Parse MSK = ({sk(�,i�),Key
(�,i�)
I }�,i�,I ,α,β,γ, sk0).

– Sample r ← Fp.
– Compute CT0 = cIPE.Enc(sk0, (r, 0, 0, 0)).
– Sample sk′ ← cIPE.Setup(1λ, 14).
– Compute CTCj ← cIPE.Enc(sk, (y[j],β[j], 0, 0)) for j ∈ [n]
– Compute CTKk ← cIPE.KeyGen(sk, (z[k],−rγ[k], 0, 0)) for k ∈ [n].
– For every � ∈ [2], i� ∈ [n], compute CT(�,i�) = cIPE.Enc(sk(�,i�), (rx[�, i�],−r,

0, 0)).
– Output CT = (x,CT0, {CTCj ,CTKk,CT(�,i�)}�∈[2],i�∈[n],j∈[n],k∈[n])

KeyGen(MSK, f): On input the master secret key MSK and function f ,

– Parse MSK = ({sk(�,i�),Key
(�,i�)
I }�,i�,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– Compute Key0,f = cIPE.KeyGen(sk0, (θf , 0, 0, 0))

– Output skf = (Key0,f , {Key(�,i�)
I }�,i�,I).

Observe how the computation proceeds. This scheme allows to generate all
terms in the ladder described above as follows:

Consider all terms associated with the vector I = (i1, i2, j, k) ∈ [n]4.

– [y[j]z[k] − rβjγk]t = cIPE.Dec(CTKk,CTCj)
– [r(x[2, i2] − α[2, i2])β[j]γ[k]]t = cIPE.Dec(Key(2,i2)

I
′′ ,CT(2,i2)) where I

′′
=

(j, k).
– [r(x[1, i1] − α[1, i1])α[2, i2]β[j]γ[k]]t = cIPE.Dec(Key(1,i1)

I
′ ,CT(1,i1)) where

I
′′

= (i2, j, k)
– [rf(α,β,γ)]t = cIPE.Dec(Key0,f ,CT0).

Thus, we can compute [f(x,y,z)]t. We now briefly describe how security is
proven.

262 A. Jain et al.

Security Proof: Key Points. We use SXDH and function hiding property of the
cIPE scheme crucially to argue security. The hybrid strategy is the following.

1. First we switch y to 0 vector in the challenge ciphertext, changing one com-
ponent at a time.

2. To maintain correctness of output, we simultaneously introduce an offset in
the function key to maintain correctness of decryption.

3. Once y is switched, z can be switched to vector 0, due to the function hiding
property of the cIPE scheme. This is because the inner products remain the
same in both the case as y is always 0 and inner product of any vector with all
zero vector is 0. Finally, we are in the hybrid where the challenge ciphertext
just depends on x and in particular totally independent of y and z.

Step (1) is most challenging here, and requires careful pebbling and hard-
wiring arguments made using SXDH and function hiding security property of
cIPE. We point the reader to the full version for a detailed proof.

New ΔRG candidates: Our construction of D-restricted FE enables us to mean-
ingfully consider ΔRG candidates that are implementable by D-restricted FE
using degree-D polynomials. This enables a much richer class of potential ΔRG
candidates than those implementable by 3-restricted FE [4]. In Sect. 6, we
describe a few of the new avenues for constructing ΔRG candidates that we
open by our construction of D-restricted FE.

Reader’s Guide. The rest of the paper is organized as follows. In Sect. 3 we
recall the definition of indistinguishability obfuscation and other prerequisites
for the paper. In Sect. 4 we define formally the notions of (d + 2) restricted
FE. Thereafter, in Sect. 5 perturbation resilient generator (ΔRG for short) is
defined. Both primitives are central to this paper. In Sect. 6 we give candidate
constructions of ΔRG and show how to implement it using a (d+2) restricted FE
scheme. In Sect. 7 we show how to construct (d + 2) restricted FE using SXDH.
Finally, in Sect. 8 we stitch all these primitives to show how to build obfuscation.

3 Preliminaries

We denote the security parameter by λ. For a distribution X we denote by
x ← X the process of sampling a value x from the distribution X. Similarly,
for a set X we denote by x ← X the process of sampling x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}.
A function negl : N → R is negligible if for every constant c > 0 there exists an
integer Nc such that negl(λ) < λ−c for all λ > Nc.

By ≈c we denote computational indistinguishability. We say that two ensem-
bles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for
every probabilistic polynomial time adversary A there exists a negligible func-

tion negl such that
∣
∣
∣
∣ Prx←Xλ

[A(1λ, x) = 1] − Pry←Yλ
[A(1λ, y) = 1]

∣
∣
∣
∣ ≤ negl(λ)

for every sufficiently large λ ∈ N.

How to Leverage Hardness of Constant-Degree Expanding Polynomials 263

For a field element a ∈ Fp represented in [−p/2, p/2], we say that −B < a <
B for some positive integer B if its representative in [−p/2, p/2] lies in [−B,B].

Definition 1 (Distinguishing Gap). For any adversary A and two distribu-
tions X = {Xλ}λ∈N and Y = {Yλ}λ∈N, define A’s distinguishing gap in distin-
guishing these distributions to be |Prx←Xλ

[A(1λ, x) = 1]−Pry←Yλ
[A(1λ, y) = 1]|

By boldfaced letters such as v we will denote multidimensional matrices.
Whenever dimension is unspecified we mean them as vectors.

Throughout, we denote by an adversary an interactive machine that takes
part in a protocol with the challenger. Thus, we model such an adversary as a
tuple of circuits (C1, ..., Ct) where t is the number of messages exchanged. Each
circuit takes as input the state output by the previous circuit, among other
messages. The size of adversary is defined as sum of size of each circuit.

3.1 Indistinguishability Obfuscation (iO)

The notion of indistinguishability obfuscation (iO), first conceived by Barak
et al. [9], guarantees that the obfuscation of two circuits are computationally
indistinguishable as long as they both are equivalent circuits, i.e., the output of
both the circuits are the same on every input. Formally,

Definition 2 (Indistinguishability Obfuscator (iO) for Circuits). A uni-
form PPT algorithm iO is called an indistinguishability obfuscator for a circuit
family {Cλ}λ∈N, where Cλ consists of circuits C of the form C : {0, 1}n → {0, 1}
with n = n(λ), if the following holds:

– Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}n, we
have that

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– Indistinguishability: For any PPT distinguisher D, there exists a negligible
function negl(·) such that the following holds: for all sufficiently large λ ∈ N,
for all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all inputs
x ∈ {0, 1}n and |C0| = |C1|, we have:

∣
∣
∣Pr [D(λ, iO(λ,C0)) = 1] − Pr[D(λ, iO(λ,C1)) = 1]

∣
∣
∣ ≤ negl(λ)

– Polynomial Slowdown: For every λ ∈ N, every C ∈ Cλ, we have that
|iO(λ,C)| = poly(λ,C).

3.2 Bilinear Maps and Assumptions

Let PPGen be a probabilistic polynomial time algorithm that on input 1λ returns
a description (e,G1, G2, GT , g1, g2,p) of asymmetric pairing groups where G1,
G2 and GT are groups of order p for a 2λ bit prime p. g1 and g2 are

264 A. Jain et al.

generators of G1 and G2 respectively. e : G1 × G2 → GT is an efficiently com-
putable non-degenerate bilinear map. Define gt = e(g1, g2) as the generator
of GT .

Representation: We use the following representation to describe group ele-
ments. For any b ∈ {1, 2, T} define by [x]b for x ∈ Fp as gx

b . This notation will
be used throughout. We now describe SXDH assumption relative to PPGen.

Definition 3. (SXDH Assumption relative to PPGen.) We say that SXDH
assumption holds relative to PPGen, if (e,G1, G2, GT , g1, g2,p) ← PPGen, then
for any group g� for � ∈ {1, 2, t}, it holds that, for any polynomial time adversary
A:

| Pr
r,s,u←Fp

[A([r]�, [s]�, [r · s]�) = 1] − Pr
r,s,u←Fp

[A([r]�, [s]�, [u]�) = 1]| ≤ negl(λ)

Further, if negl(λ) is O(2−λc

) for some c > 0, then we say that subexponential
SXDH holds relative to PPGen.

3.3 Canonical Function Hiding Inner Product FE

We now describe the notion of a canonical function hiding inner product FE
proposed by [40]. A canonical function hiding scheme FE scheme consists of the
following algorithms:

– PPSetup(1λ) → pp. On input the security parameter, PPSetup, outputs
parameters pp, which contain description of the groups and the plain text
space Zp.

– Setup(pp, 1n) → sk. The setup algorithm takes as input the length of vector
1n and parameters pp and outputs a secret key sk. We assume that pp is
always implicitly given as input to this algorithm and the algorithms below
(sometimes we omit this for ease of notation).

– Enc(sk,x) → CT. The encryption algorithm takes as input a vector x ∈ Z
n
p

and outputs a ciphertext CT.
– KeyGen(sk,y) → sky . The key generation algorithm on input the master

secret key sk and a function vector y ∈ Z
n
p and outputs a function key sky .

– Dec(1B , sky ,CT) → m∗. The decryption algorithm takes as input a ciphertext
CT, a function key sky and a bound B and it outputs a value m∗. Further,
it is run in two steps. First step Dec0, computes [〈x,y〉]T (if the keys and
ciphertexts were issued for x and y) and then the second step, Dec1, computes
its discrete log, if this value lies in [−B,B]

A cIPE scheme satisfies linear efficiency, correctness, function hiding security
and a canonical structure requirement. All of these are described in the full
version.

How to Leverage Hardness of Constant-Degree Expanding Polynomials 265

4 Key Notion 1: (d + 2)−restricted FE

In this section we describe the notion of a (d+2)-restricted functional encryption
scheme (denoted by dFE). Let d denote any positive integer constant. Informally,
a dFE scheme is a functional encryption scheme that supports homogeneous
polynomials of degree d + 2 having degree 1 in d + 2 input vectors. d out of
those d + 2 vectors are public. This is a generalization of the notion of a three
restricted FE scheme proposed by [4].

Notation: Throughout, we denote by boldfaced letters (multi-dimensional)
matrices, where dimensions are either explicitly or implicitly defined.

Function class of interest: Consider a set of functions FdFE = FdFE,λ,p,n = {f :
F

n(d+2)
p → Fp} where Fp is a finite field of order p(λ). Here n is seen as a function

of λ. Each f ∈ Fλ,p,n takes as input d+2 vectors (x[1], ...,x[d],y,z) of length n
over Fp and computes a polynomial of the form Σci1,...,id,j,k ·x[1, i1] · ... ·x[d, id] ·
y[j] ·z[k], where ci1,..,id,j,k are coefficients from Fp for very i1, ..., id, j, k ∈ [n]d+2.

Syntax. Consider the set of functions FdFE,λ,p,n as described above. A (d +
2)−restricted functional encryption scheme dFE for the class of functions FdFE

(described above) consists of the following PPT algorithms:

– Setup, Setup(1λ, 1n): On input security parameter λ (and the number of
inputs n = poly(λ)), it outputs the master secret key MSK.

– Encryption, Enc(MSK,x[1], ...,x[d],y,z): On input the encryption key MSK
and input vectors x ∈ F

d×n
p , y and z (all in F

n
p) it outputs ciphertext CT.

Here x is seen as a public attribute and y and z are thought of as private
messages.

– Key Generation, KeyGen(MSK, f): On input the master secret key MSK
and a function f ∈ FdFE, it outputs a functional key sk[f].

– Decryption, Dec(sk[f], 1B ,CT): On input functional key sk[f], a bound B =
poly(λ) and a ciphertext CT, it outputs the result out.

We define the correctness property below.
B-Correctness. Consider any function f ∈ FdFE and any plaintext x,y,z ∈

Fp (dimensions are defined above). Consider the following process:

– sk[f] ← KeyGen(MSK, f).
– CT ← Enc(MSK,x,y,z)
– If f(x,y,z) ∈ [−B,B], set θ = f(x,y,z), otherwise set θ = ⊥.

The following should hold:

Pr
[
Dec(sk[f], 1B ,CT) = θ

] ≥ 1 − negl(λ),

for some negligible function negl.
Linear Efficiency: We require that for any message (x,y,z) where x ∈

F
d×n
p and y,z ∈ F

n
p the following happens:

266 A. Jain et al.

– Let MSK ← Setup(1λ, 1n).
– Compute CT ← Enc(MSK,x,y,z).

The size of encryption circuit computing CT is less than n × (d + 2) log2 p ·
poly(λ). Here poly is some polynomial independent of n.

4.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, f, θ): On input the master
secret key MSK, function f and a value θ, it computes the semi-functional key
sk[f, θ].

Semi-functional Encryption, sfEnc(MSK,x, 1|y |, 1|z |): On input the master
encryption key MSK, a public attribute x and length of messages y,z, it com-
putes a semi-functional ciphertext ctsf .

We define two security properties associated with the above two auxiliary algo-
rithms. We will model the security definitions along the same lines as semi-
functional FE.

Definition 4 (Indistinguishability of Semi-functional Ciphertexts). A
(d + 2)-restricted functional encryption scheme dFE for a class of functions
FdFE = {FdFE,λ,p,n}λ∈N is said to satisfy the indistinguishability of semi-
functional ciphertexts property if there exists a constant c > 0 such that
for sufficiently large λ ∈ N and any adversary A of size 2λc

, the probability that
A succeeds in the following experiment is 2−λc

.

Expt(1λ,b):

1. A specifies the following:
– Challenge message M∗ = (x,y,z). Here y,z is in F

n
p and x is in F

d×n
p .

– It can also specify additional messages {Mk = (xk,yk,zk)}k∈[q] Here
yk,zk is in F

n
p and xk is in F

d×n
p . Here q is a polynomial in n, λ.

– It also specifies functions f1, . . . , fη and hardwired values θ1, . . . , θη where
η is a polynomial in n, λ.

2. The challenger checks if θk = fk(x,y,z) for every k ∈ [η]. If this check fails,
the challenger aborts the experiment.

3. The challenger computes the following
– Compute sk[fk, θk] ← sfKG(MSK, fk, θk), for every k ∈ [η].
– If b = 0, compute CT∗ ← sfEnc(MSK,x, 1|y |, 1|z |). Else, compute CT∗ ←

Enc(MSK,x,y,z).
– CTi ← Enc(MSK,Mi), for every i ∈ [q].

4. The challenger sends
({CTi}i∈[q],CT

∗, {sk[fk, θk]}k∈[η]

)
to A.

5. The adversary outputs a bit b′.

How to Leverage Hardness of Constant-Degree Expanding Polynomials 267

We say that the adversary A succeeds in Expt(1λ,b) with probability ε if it out-
puts b′ = b with probability 1

2 + ε.

We now define the indistinguishability of semi-functional keys property.

Definition 5 (Indistinguishability of Semi-functional Keys). A (d + 2)-
restricted FE scheme dFE for a class of functions FdFE = {FdFE,λ,p,n}λ∈N is
said to satisfy the indistinguishability of semi-functional keys property
if there exists a constant c > 0 such that for all sufficiently large λ, any PPT
adversary A of size 2λc

, the probability that A succeeds in the following experi-
ment is 2−λc

.

Expt(1λ,b):

1. A specifies the following:
– It can specify messages Mj = {(xi,yi,zi)}j∈[q] for some polynomial q.

Here yi,zi is in F
n
p and xi is in F

d×n
p .

– It specifies functions f1, . . . , fη ∈ FdFE and hardwired values θ1, . . . , θη ∈
Fp. Here η is some polynomial in λ, n.

2. Challenger computes the following:
– If b = 0, compute sk[fi]∗ ← KeyGen(MSK, fi) for all i ∈ [η]. Otherwise,

compute sk[fi]∗ ← sfKG(MSK, fi, θi) for all i ∈ [η].
– CTi ← Enc(MSK,Mj), for every j ∈ [q].

3. Challenger then sends
({CTi}i∈[q], {sk[fi]∗}i∈[η]

)
to A.

4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability
1
2 + ε.

If a (d + 2)-restricted FE scheme satisfies both the above definitions, then it is
said to satisfy semi-functional security.

Definition 6 (Semi-functional Security). Consider a (d + 2)-restricted
FE scheme dFE for a class of functions F . We say that dFE satisfies semi-
functional security if it satisfies the indistinguishability of semi-functional
ciphertexts property (Definition 4) and the indistinguishability of semi-functional
keys property (Definition 5).

Remark: Two remarks are in order:

1. First, we define sub-exponential security here as that notion is useful for our
construction of iO. The definition can be adapted to polynomial security
naturally.

2. Semi-functional security implies the indistinguishability based notion
naturally. This is pointed out in [5].

268 A. Jain et al.

5 Key Notion 2: Perturbation Resilient Generator

Now we describe the notion of a Perturbation Resilient Generator (ΔRG for
short), proposed by [4]. A ΔRG consists of the following algorithms:

– Setup(1λ, 1n, B) → (pp,Seed). The setup algorithm takes as input a secu-
rity parameter λ, the length parameter 1n and a polynomial B = B(λ) and
outputs a seed Seed ∈ {0, 1}∗ and public parameters pp.

– Eval(pp,Seed) → (h1, ..., h�). The evaluation algorithm outputs a vector
(h1, ..., h�) ∈ Z

�. Here � is the stretch of ΔRG.

We have following properties of a ΔRG scheme.

Efficiency: We require for Setup(1λ, 1n, B) → (pp,Seed) and Eval(pp,Seed) →
(h1, ..., h�),

– |Seed| = n · poly(λ) for some polynomial poly independent of n. The size of
Seed is linear in n.

– For all i ∈ [�], |hi| < poly(λ, n). The norm of each output component hi in Z

is bounded by some polynomial in λ and n.

Perturbation Resilience: We require that for large enough security parame-
ter λ, for every polynomial B, there exists a large enough polynomial nB(λ)
such that for any n > nB , there exists an efficient sampler H such that for
Setup(1λ, 1n, B) → (pp,Seed) and Eval(pp,Seed) → (h1, ..., h�), we have that for
any distinguisher D of size 2λ and any a1, ..., a� ∈ [−B,B]�

|Pr[D(x $←− D1) = 1] − Pr[D(x $←− D2) = 1]| < 1 − 2/λ

Here D1 and D2 are defined below:

– Distribution D1: Compute Setup(1λ, 1n, B) → (pp,Seed) and Eval(pp,
Seed) → (h1, ..., h�). Output (pp, h1, ..., h�).

– Distribution D2: Compute Setup(1λ, 1n, B) → (pp,Seed) and H(pp,Seed) →
(h1, .., h�). Output (pp, h1 + a1, ..., h� + a�).

Remark: Note that one could view ΔRG as a candidate sampler H itself.
Now we describe the notion of Perturbation Resilient Generator imple-

mentable by a (d + 2)-restricted FE scheme (dΔRG for short.)

5.1 ΔRG Implementable by (d + 2)−Restricted FE

A ΔRG scheme implementable by (d + 2)-Restricted FE (dΔRG for short) is a
perturbation resilient generator with additional properties. We describe syntax
again for a complete specification.

How to Leverage Hardness of Constant-Degree Expanding Polynomials 269

– Setup(1λ, 1n, B) → (pp,Seed). The setup algorithm takes as input a
security parameter λ, the length parameter 1n and a polynomial B = B(λ)
and outputs a seed Seed and public parameters pp. Here, Seed = (Seed.pub(1),
Seed.pub(2), ...,Seed.pub(d),Seed.priv(1),Seed.priv(2)) is a vector on Fp for a
modulus p, which is also the modulus used in (d + 2)-restricted FE scheme.
There are d + 2 components of this vector, where d of the d + 2 compo-
nents are public and two components are private, each in F

npoly(λ)
p . Also

each part can be partitioned into subcomponents as follows. Seed.pub(j) =
(Seed.pub(j, 1), ...,Seed.pub(j, n)) for j ∈ [d], Seed.priv(j) = (Seed.priv(j, 1),
....,Seed.priv(j, n)) for j ∈ [2]. Here, each sub component is in F

poly(λ)
p for

some fixed polynomial poly independent of n. Also, pp = (Seed.pub(1), . . . ,
Seed.pub(d), q1, .., q�) where each qi is a degree d + 2 multilinear polyno-
mial described below. We require syntactically there exists two algorithms
SetupSeed and SetupPoly such that Setup can be decomposed follows:
1. SetupSeed(1λ, 1n, B) → Seed. The SetupSeed algorithm outputs the seed.
2. SetupPoly(1λ, 1n, B) → q1, ..., q�. The SetupPoly algorithm outputs

q1, .., q�.
– Eval(pp,Seed) → (h1, ..., h�). The evaluation algorithm outputs a vector

(h1, ..., h�) ∈ Z
�. Here for i ∈ [�], hi = qi(Seed) and � is the stretch of dΔRG.

Here qi is a homogeneous multilinear degree d + 2 polynomial where each
monomial has degree 1 in {pub(j)}j∈[d+2] and {priv(j)}j∈[2] components of
the seed.

The security and efficiency requirements are the same as before.
Remark: To construct iO we need the stretch of dΔRG to be equal to � = n1+ε

for some constant ε > 0.

5.2 Pseudo Flawed-Smudging Generators

Related to ΔRGs are pseudo flawed-smudging generators (PFGs) introduced by
Lin and Matt [42]. As ΔRGs, PFGs are geared for the purpose of generating a
smudging noise Y to hide a small polynomially bounded noise a. We first give
a high-level description of PFGs and then compare them to ΔRGs. For formal
definitions and a further discussion of PFGs, we refer the reader to [42].

Intuitively, the output of a PFG “hides” the noise vector a at all but a few
coordinates with noticeable probability. More formally, the output distribution
of a PFG is indistinguishable to a, so-called, flawed-smudging distribution Y.
A distribution Y is flawed-smudging if the following holds with some inverse
polynomial probability δ = 1/poly(λ) over the choice of Y ← Y: For some
polynomial B = poly(λ), every B-bounded noise vector distribution χ, and Y ←
Y, a ← χ, there is a random variable I correlated with a and Y , representing
a small, |I| = o(λ), subset of “compromised” coordinates, so that the joint
distribution of (I,a,Y + a) is statistically close to that of (I,a′,Y + a), where
a′ is a fresh sample from χ conditioned on agreeing with a at coordinates in I
(i.e., a′

i = ai for all i ∈ I).

270 A. Jain et al.

Compared to ΔRGs, there is a “good case” occurring with probability δ, in
which most coordinates of a are hidden. On the other hand, the output h of a
ΔRG guarantees that h and h + a are computationally indistinguishable up to
advantage 1 − δ. Hence, ΔRGs are weaker in this respect since the guarantee is
only computational instead of statistical as for PFGs. However, the output of
a PFG may in the good case still reveal a at a few coordinates (i.e., a and a′

agree at a few coordinates), whereas the output of a ΔRG hides a completely.
In that respect, PFGs are weaker.

Despite the technical differences discussed above, the core guarantees of
ΔRGs and PFGs are similar. All candidates discussed in the following are there-
fore candidates for both notions.

6 dΔRG Candidates

We now describe our candidate for dΔRG implementable by a (d + 2)− restricted
FE scheme. All these candidates use a large enough prime modulus p = O(2λ),
which is the same as the modulus used by (d + 2)−restricted FE. Then, let χ
be a distribution used to sample input elements over Z. Let Q denote a poly-
nomial sampler. Next we give candidate in terms of χ and Q but give concrete
instantiations later.

6.1 dΔRG Candidate

– Setup(1λ, 1n, B) → (pp,Seed). Sample a secret s ← F
1×nΔRG
p for nΔRG =

poly(λ) such that LWEnΔRG,n·d,p,χ holds. Here χ is a bounded distribution
with bound poly(λ). Let Q denote an efficiently samplable distribution of
homogeneous degree (d + 2) polynomials (instantiated later). Then proceed
with SetupSeed as follows:
1. Sample ai,j ← F

1×nΔRG
p for i ∈ [d], j ∈ [n].

2. Sample ei,j ← χ for i ∈ [d], j ∈ [n].
3. Compute ri,j = 〈ai,j , s〉 + ei,j mod p in Fp for i ∈ [d], j ∈ [n].
4. Define wi,j = (ai,j , ri,j) for i ∈ [d], j ∈ [d].
5. Set Seed.pub(j, i) = wj,i for j ∈ [d], i ∈ [n].
6. Sample yi, zi ← χ for i ∈ [n].
7. Set t = (−s, 1). Note that 〈wj,i, t〉 = ej,i for j ∈ [d], i ∈ [n].
8. Set y′

i = yi ⊗d t. (tensor t, d times)
9. Set Seed.priv(1, i) = y′

i for i ∈ [n].
10. Set Seed.priv(2, i) = zi for i ∈ [n].
Now we describe SetupPoly. Fix η = n1+ε.
1. Write ej = (ej,1, . . . , ej,n) for j ∈ [d], y = (y1, . . . , yn) and z = (z1, . . . ,

zn).
2. Sample polynomials q′

� for � ∈ [η] as follows.
3. q′

� = ΣI=(i1,..,id,j,k)cIe1,i1 · · · ed,id
yjzk where coefficients cI are bounded

by poly(λ). These polynomials are sampled according to Q.

How to Leverage Hardness of Constant-Degree Expanding Polynomials 271

4. Define qi to be a multilinear homogeneous degree d + 2 polynomial that
takes as input Seed = ({wj,i}j∈[d],i∈[n],y

′
1, . . . ,y

′
n,z). Then it computes

each monomial cIe1,i1 · · · ed,id
yjzk as follows and then adds all the results

(thus computes q′
i(e1, . . . ,ed,y,z)):

• Compute cI 〈w1,i1 , t〉 · · · 〈wd,id
, t〉yjzk. This step requires y′

i = yi ⊗d t
to perform this computation.

5. Output q1, ..., qη.
– Eval(pp,Seed) → (h1, ..., hη). The evaluation algorithm outputs a vector

(h1, ..., hη) ∈ Z
η. Here for i ∈ [η], hi = qi(Seed) and η is the stretch of dΔRG.

Here qi is a degree d + 2 homogenenous multilinear polynomial (defined
above) which is degree 1 in d public and 2 private components of the seed.

Efficiency:

1. Note that Seed contains n · d LWE samples wi,j for i ∈ [d], j ∈ [n] of dimension
nΔRG. Along with the samples, it contains elements y′

i = yi ⊗d t for i ∈ [n]
and elements zi for i ∈ [n]. Note that the size of these elements are bounded
by poly(λ) and is independent of n.

2. The values hi = qi(Seed) = ΣI=(i1,..,id,j,k)cIe1,i1 · · · ed,id
yjzk. Since χ is a

bounded distribution, bounded by poly(λ, n), and coefficients cI are also poly-
nomially bounded, each |hi| < poly(λ, n) for i ∈ [m].

6.2 Instantiations

We now give various instantiations of Q. Let χ be the discrete gaussian distribu-
tion with 0 mean and standard deviation n. The following candidate is proposed
by [10] based on the investigation of the hardness of families of expanding poly-
nomials over the reals.

Instantiation 1: 3SAT Based Candidate. Let t = B2λ. Sample each polynomial q′
i

for i ∈ [η] as follows. q′
i(x1, . . . ,xt,y1, . . . ,yt,z1, . . . ,zt) = Σj∈[t]q

′
i,j(xj ,yj ,zj).

Here xj ∈ χd×n and yj ,zj ∈ χn for j ∈ [t]. In other words, q′
i is a sum of t

polynomials q′
i,j over t disjoint set of variables. Let d = 1 for this candidate.

Now we describe how to sample q′
i,j for j ∈ [η].

1. Sample randomly inputs x∗,y∗,z∗ ∈ {0, 1}n.
2. To sample q′

i,j do the following. Sample three indices randomly and indepen-
dently i1, i2, i3 ← [n]. Sample three signs b1,i,j , b2,i,j , b3,i,j ∈ {0, 1} uniformly
such that b1,i,j ⊕ b2,i,j ⊕ b3,i,j ⊕ x∗[i1] ⊕ y∗[i2] ⊕ z∗[i3] = 1.

3. Set q′
i,j(xj ,yj ,zj) = 1−(b1,i,j ·xj [i1]+(1−b1,i,j) ·(1−xj [i1])) ·(b2,i,j ·yj [i2]+

(1 − b2,i,j) · (1 − yj [i2])) · ((b3,i,j · zj [i3] + (1 − b3,i,j) · (1 − zj [i3])).

Remark:

1. Note that any clause of the form a1 ∨ a2 ∨ a3 can be written as 1 − (1 −
a1)(1 − a2)(1 − a3) over integers where a1, a2, a3 are literals in first case and
take values in {0, 1}, and thus any random satisfiable 3SAT formula can be
converted to polynomials in this manner.

272 A. Jain et al.

2. Similarly, the above construction can be generalised to degree (d + 2)-SAT
style construction by considering (d + 2)−SAT for any constant positive
integer d and translating them to polynomials.

Instantiation 2: Goldreich’s One-way Function Based Candidate. Goldreich’s
one-way function [30] consists of a predicate P involving d + 2 variables and
computes a boolean function that can be expressed a degree d + 2 polynomial
over the integers. Our candidate q′

i,j(xj ,yj ,zj) consists of the following step.

1. Sample d + 2 indices i1, ..., id+2 ∈ [n].
2. Output q′

i,j = P (xj [1, i1], . . . ,xj [d, id],yj [id+1],zj [id+2]).

For d = 3, [48] provided with the following candidate.
P (a1, .., a5) = a1 ⊕ a2 ⊕ a3 ⊕ a4a5 where each ai ∈ {0, 1}. Note that

this can be naturally converted to a polynomial as follows. Rewrite a ⊕ b =
(1 − a)b + (1 − b)a and this immediately gives rise to a polynomial over the
integers.

6.3 Simplifying Assumptions

In this section, we remark that the dΔRG assumption can be simplified from
being an exponential family of assumptions to two simpler assumptions as fol-
lows. We provide two sub-assumptions, which together imply dΔRG assumptions.

LWE with degree d + 2 leakage. There exists a polynomial sampler Q and a
constant ε > 0, such that for every large enough λ ∈ N, and every polynomial
bound B = B(λ) there exist large enough polynomial nB = λc such that for
every positive integer n > nB , there exists a poly(n)−bounded discrete gaussian
distribution χ such that the following two distributions are close (we define
closeness later). We define the following two distributions:

Distribution D1:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., q�n1+ε�).
– (Sample Secret.) Sample a secret s ← Z

λ
p .

– Sample aj,i ← Z
λ
p for j ∈ [d], i ∈ [n].

– (Sample LWE Errors.) For every j ∈ [d], i ∈ [n], sample ej,i, yi, zi ← χ.
Write ej = (ej,1, . . . , ej,n) for j ∈ [d], y = (y1, . . . , yn) and z = (z1, . . . , zn).

– Output {aj,i, 〈aj,i, s〉 + ej,i mod p}j∈[d],i∈[n] and
{qk, qk(e1, . . . ,ed,y,z)}k∈[�n1+ε�]

Distribution D2:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., q�n1+ε�).
– (Sample Secret.) Sample a secret s ← Z

λ
p .

– Sample aj,i ← Z
λ
p for j ∈ [d], i ∈ [n].

How to Leverage Hardness of Constant-Degree Expanding Polynomials 273

– (Sample independent LWE Errors.) For every j ∈ [d], i ∈ [n], sample
ej,i, e

′
j,i, yi, zi ← χ. 1 Write e′

j = (e′
j,1, . . . , e

′
j,n), ej = (ej,1, . . . , ej,n) for

j ∈ [d], y = (y1, . . . , yn) and z = (z1, . . . , zn).
– Output {aj,i, 〈aj,i, s〉 + e′

j,i mod p}j∈[d],i∈[n] and
{qk, qk(e1, . . . ,ed,y,z)}k∈[�n1+ε�]

The assumption states that there exists a constant εadv > 0 such that for
any adversary A of size 2λεadv , the following holds:

|Pr[A(D1) = 1] − Pr[A(D2) = 1]| < 1/2λ

Remark. This assumption says that to a bounded adversary, the advantage
of distinguishing the tuple consisting of polynomials samples, along with cor-
related LWE samples with tuple consisting of polynomials samples, along with
uncorrelated LWE samples is bounded by 1/2λ. Second assumption says that
the tuple of polynomial samples looks close to independent discrete gaussian
variables with a large enough variance and 0 mean. Below we define the notion
of a (B, δ)−smooth distribution.

Definition 7. (B, δ)−Smooth distribution N is an efficiently samplable distri-
bution over Z with the property that Δ(N , N + b) ≤ δ for any b ∈ [−B,B].

Weak Pseudo-Independence Generator Assumption [2,42]. For the parameters
defined above, the assumption states that there exists a constant εadv > 0 such
that for any adversary A of size 2λεadv , the following holds:

|Pr[A(D1) = 1] − Pr[A(D2) = 1]| < 1 − 3/λ

where distributions are defined below.
Distribution D1:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., q�n1+ε�).
– For every j ∈ [d], i ∈ [n], sample ej,i, yi, zi ← χ. Write ej = (ej,1, . . . , ej,n) for

j ∈ [d], y = (y1, . . . ,yn) and z = (z1, . . . , zn).
– Output {qk, qk(e1, . . . ,ed,y,z)}k∈[�n1+ε�]

Distribution D2:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., q�n1+ε�).
– Output {qk, hk ← N}k∈[�n1+ε�]

Here N is a (B, 1
n2λ)−smooth distribution.

Thus we have,

1 Thus, we can observe that χ should be a distribution such that LWE assumption
holds with respect to χ and parameters specified above.

274 A. Jain et al.

Claim. Assuming,

1. LWE with degree d + 2 leakage.
2. Weak Pseudo-Independence Generator Assumption

There exists a dΔRG scheme.

Proof. (Sketch.) This is immediate and the proof goes in three hybrids. First,
we use LWE with degree d + 2 leakage assumption with 1/2λ security loss. In
the next hybrid, we sample from N given to us by Weak Pseudo-Independence
Generator Assumption. With that, we have another 1 − 3/λ loss in the secu-
rity. Finally, we move to a hybrid where all perturbations are 0. This leads to a
security loss of n1+ε× 1

n2λ < 1
n1−ελ due to statistical distance. Adding these secu-

rity losses, we prove the claim. Thus H just uses N to sample each component
independently.

7 Constructing (d + 2) Restricted FE
from Bilinear Maps

In this section we describe our construction for a d + 2−restricted FE scheme.
We now describe our construction as follows:

7.1 Construction

Ingredients: Our main ingredient is a secret-key canonical function-hiding inner
product functional encryption scheme cIPE (see Sect. 3.3).

Notation: We denote by Fp the field on which the computation is done in slotted
encodings.

1. By boldfaced letters, we denote (multi-dimensional) matrices, where dimen-
sions are specified. Messages are of the form (x,y,z). Here, x ∈ F

d×n
p .

y,z ∈ F
n
p.

2. Function class of interest: We consider the set of functions FdFE =
FdFE,λ,p,n = {f : F

n(d+2)
p → Fp} where Fp is a finite field of order p(λ).

Here n is seen as a function of λ. Each f ∈ Fλ,p,n takes as input d + 2
vectors (x[1], . . . ,x[d],y,z) over Fp and computes a polynomial of the form
Σci1,...,id,j,k · x[1, i1] · · · x[d, id] · y[j] · z[k], where ci1,...,id,j,k are coefficients
from Fp.

Notation. For a secret key generated for the cIPE encryption algorithm, by using
primed variables such as sk′ we denote the secret key that is not generated during
the setup of the dFE scheme but during its encryption algorithm. We describe
the construction below.

How to Leverage Hardness of Constant-Degree Expanding Polynomials 275

Setup(1λ, 1n): On input security parameter 1λ and length 1n,

– Sample pp ← cIPE.PPSetup(1λ). We assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys are

used to encrypt vectors in F
4
p.

– Then run cIPE setup algorithm n · d times. That is, for every � ∈ [d] and
i� ∈ [n], compute sk(�,i�) ← cIPE.Setup(pp, 14).

– Sample α ← F
d×n
p . Also sample β,γ ← F

n
p.

– For � ∈ [d], i� ∈ [n] and every set I = (i�+1, . . . , id, j, k) ∈ [n]d−�+2,
compute Key

(�,i�)
I = cIPE.KeyGen(sk(�,i�), (α[� + 1, i�+1] · · · α[d, id]β[j]γ[k],

α[�, i�] · · · α[d, id]β[j]γ[k], 0, 0)).
– Output MSK = ({sk(�,i�),Key

(�,i�)
I }�,i�,I ,α,β,γ, sk0)

KeyGen(MSK, f): On input the master secret key MSK and function f ,

– Parse MSK = ({sk(�,i�),Key
(�,i�)
I }�,i�,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– Compute Key0,f = cIPE.KeyGen(sk0, (θf , 0, 0, 0))

– Output skf = (Key0,f , {Key(�,i�)
I }�,i�,I)

Enc(MSK,x,y,z): The input message M = (x,y,z) consists of a public attribute
x ∈ F

d×n
p and private vectors y,z ∈ F

n
p. Perform the following operations:

– Parse MSK = ({sk(�,i�),Key
(�,i�)
I }�,i�,I ,α,β,γ, sk0).

– Sample r ← Fp.
– Compute CT0 = cIPE.Enc(sk0, (r, 0, 0, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14).
– Compute CTCj ← cIPE.Enc(sk′, (y[j],β[j], 0, 0)) for j ∈ [n]
– Compute CTKk ← cIPE.KeyGen(sk′, (z[k],−rγ[k], 0, 0)) for k ∈ [n].
– For � ∈ [d], i� ∈ [n], compute CT(�,i�) = cIPE.Enc(sk(�,i�), (rx[�, i�],−r, 0, 0)).
– Output CT = (x,CT0, {CTCj ,CTKk,CT(�,i�)}�∈[d],i�∈[n],j∈[n],k∈[n])

Dec(1B , skf ,CT):

– Parse CT = (x,CT0, {CTCj ,CTKk,CT(�,i�)}�∈[d],i�∈[n],j∈[n],k∈[n]).
– Parse skf = {Key0,f ,Key

(�,i�)
I }�,i�,I .

– For every � ∈ [d] and I = (i�, . . . , id, j, k) ∈ [n]d−�+3 do the following. Let
I ′ be such that I = i�||I ′. In other words, I ′ has all but first element of I.
Compute Mon

(�,i�)
I ′ = cIPE.Dec(Key(�,i�)

I ′ ,CT(�,i�)) = [r(x[�, i�] − α[�, i�])α[� −
1, i�−1] · · · α[d, id]β[j]γ[k]]T .

– Compute Mon0 = cIPE.Dec(Key0,f ,CT0) = [rf(α,β,γ)]T .
– Compute Mon(j,k) = cIPE.Dec(CTKk,CTCj) = [y[j]z[k] − rβ[j]γ[k]]T .
– Let f = ΣI=(i1,...,id,j,k)cIx[1, i1] · · · x[d, id]y[j]z[k]. Now fix I = (i1, . . . ,

id, j, k). For the monomial corresponding to I compute IntI =
[x[1, i1] · · · x[d, id]y[j]z[k] − rα[1, i1] · · · α[d, id]β[j]γ[k]]T as follows.

276 A. Jain et al.

1. For v ∈ [d], denote Iv = (iv, . . . , id, j, k) and I ′
v = (iv+1, . . . , id, j, k).

2. Compute IntI = Πv∈[d]Mon(v,iv)
I ′

v

ρI v . We describe ρIv
shortly.

3. We want these coefficients ρIv
such that IntI = [Σv∈[d]ρv(x[v, iv]α[v +

1, iv+1] · · · α[d, id]β[j]γ[k] − rα[v, iv] · · · α[d, id]β[j]γ[k])]T .
4. This defines ρI1 = 1 and ρIv

= x[1, i1], . . . ,x[v − 1, iv−1] for v ∈ [d].
5. This can be verified for d = 2 as follows.

x[1, i1]x[2, i2](y[j]z[k] − rβ[j]γ[k]) + x[1, i1]r(x[2, i2]
−α[i2])β[j]γ[k] + r(x[1, i1] − α[1, i1])α[i2]β[j]γ[k]
=x[1, i1]x[2, i2]y[j]z[k] − rα[1, i1]α[2, i2]β[j]β[k]

In this way, the process holds for any d.
– Finally compute Int1 = ΠI=(i1,..,id)Int

cI

I = [f(x,y,z) − rf(α,β,γ)]T .
– Compute Int1 ·Mon0 = [f(x,y,z)]T . Using brute force, check if |f(x,y,z)| <

B. If that is the case, output f(x,y,z) otherwise output ⊥.

We now discuss correctness and linear efficiency:

Correctness: Correctness is implicit from the description of the decryption algo-
rithm.

Linear Efficiency: Note that a ciphertext is of the following form:

CT = (x,CT0, {CTCj ,CTKk,CT(�,i�)}�∈[d],i�∈[n],j∈[n],k∈[n])

Thus there are n × (d + 1) + 1 cIPE ciphertexts and n cIPE function keys for
vectors of length 4. Hence, the claim holds due to the efficiency of cIPE.

Due to lack of space we defer the security proof to the full version. Here is
our theorem statement.

Theorem 4. Assuming SXDH holds relative to PPGen, the construction
described in Sect. 7 satisfies semi-functional security.

8 Construction of iO
Following the template of [4] we prove the following theorems. The details can
be found in the full version.

Theorem 5. For any constant integer d ≥ 1, Assuming

– Subexponentially hard LWE.
– Subexponentially hard SXDH
– PRGs with

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0.
• Block locality d + 2.
• Security with negl distinguishing gap against adversaries of sub-

exponential size.

How to Leverage Hardness of Constant-Degree Expanding Polynomials 277

– dΔRG with a stretch of k1+ε′
for some constant ε′ > 02.

there exists an iO scheme for P/poly.

Here is the version with the tradeoff.

Theorem 6. For any constant integer d ≥ 1, two distinguishing gaps adv1, adv2,
if adv1 + adv2 ≤ 1 − 2/λ then assuming,

– Subexponentially hard LWE.
– Subexponentially hard SXDH.
– PRGs with

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0.
• Block locality d + 2.
• Security with distinguishing gap bounded by adv1 against adversaries of

sub-exponential size.
– dΔRG with distinguishing gap bounded by adv2 against adversaries of size 2λ

3.

there exists a secure iO scheme for P/poly.

Alternatively, the construction from Sect. 7 can also be used to instantiate a
partially hiding FE scheme as in [42]. Together with a pseudo flawed-smudging
generator (see Sect. 5.2) that can be computed by that FE scheme, we can follow
the approach from [42] to obtain the following theorem. See the full version for
details.

Theorem 7. For any constant integer d ≥ 1, assuming,

– LWE,
– SXDH,
– PRGs with

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0,
• Constant locality and additional mild structural properties (see [42] for

details),
– Pseudo flawed-smudging generators with degree d public computation and

degree 2 private computation.

where all primitives are secure against adversaries of polynomial sizes with sub-
exponentially small distinguishing gaps. Then, there exists a subexponentially
secure iO scheme for P/poly.

Acknowledgements. We would like to thank Prabhanjan Ananth for preliminary
discussions on the concept of a d + 2 restricted FE scheme. We would also like to
thank Pravesh Kothari, Sam Hopkins and Boaz Barak for many useful discussions
about our dΔRG Candidates. This work was done in part when both Huijia Lin and
Chrisitan Matt were at University of California, Santa Barbara.

2 Instantiations can be found in Sect. 6.2.
3 Instantiations can be found in Sect. 6.2.

278 A. Jain et al.

Aayush Jain and Amit Sahai are supported in part from a DARPA/ARL SAFE-
WARE award, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C- 0205. Aayush Jain is also supported
by a Google PhD Fellowship in Privacy and Security. Huijia Lin and Christian Matt
were supported by NSF grants CNS-1528178, CNS-1514526, CNS-1652849 (CAREER),
a Hellman Fellowship, the Defense Advanced Research Projects Agency (DARPA) and
Army Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcon-
tract No. 2017-002 through Galois. The views expressed are those of the authors and
do not reflect the official policy or position of the Department of Defense, the National
Science Foundation, Google, or the U.S. Government.

References

1. Agrawal, S.: New methods for indistinguishability obfuscation: bootstrapping and
instantiation. IACR Cryptol. ePrint Archive 2018, 633 (2018)

2. Ananth, P., Brakerski, Z., Khuarana, D., Sahai, A.: New approach against the
locality barrier in obfuscation: pseudo-independent generators. Unpublished Work
(2017)

3. Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Bar-
rington’s theorem. In: ACM CCS, pp. 646–658 (2014)

4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear
maps: iO from LWE, bilinear maps, and weak pseudorandomness. IACR Cryptol.
ePrint Archive 2018, 615 (2018)

5. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indis-
tinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 6

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

7. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfusca-
tion: new mathematical tools, and the case of evasive circuits. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 764–791.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 27

8. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

9. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

10. Barak, B., Hopkins, S., Jain, A., Kothari, P., Sahai, A.: Sum-of-squares meets
program obfuscation, revisited. Unpublished Work (2018)

11. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Preventing zeroizing attacks on
GGH15. IACR Cryptol. ePrint Archive 2018, 511 (2018)

12. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
nash equilibrium. In: FOCS, pp. 1480–1498 (2015)

https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

How to Leverage Hardness of Constant-Degree Expanding Polynomials 279

13. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. IACR Cryptology ePrint Archive 2014, 930 (2014). http://eprint.iacr.
org/2014/930

14. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Crypt-
analysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report
2015/845 (2015). http://eprint.iacr.org/

15. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

16. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 11

17. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

18. Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilinear maps.
Cryptology ePrint Archive, Report 2015/934 (2015). http://eprint.iacr.org/

19. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. SIAM J. Comput. 47(6), 2157–2202 (2018)

20. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 12

21. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

22. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp.
267–286. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 13

23. Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfuscation from low
noise multilinear maps. IACR Cryptol. ePrint Archive 2016, 599 (2016)

24. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

25. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

27. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 10

http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-662-44371-2_11
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-47989-6_13
https://doi.org/10.1007/978-3-662-47989-6_13
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10

280 A. Jain et al.

28. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
II. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 20

29. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

30. Goldreich, O.: Candidate one-way functions based on expander graphs. IACR
Cryptology ePrint Archive 2000, 63 (2000). http://eprint.iacr.org/2000/063

31. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

32. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-70936-7 11

33. Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptol. ePrint Archive
2015, 866 (2015)

34. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 24

35. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random Oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 12

36. Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptol. ePrint Archive 2015,
301 (2015)

37. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. arXiv (2019)

38. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC (2015)

39. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 2

40. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

41. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

42. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to
indistinguishability obfuscation. IACR Cryptol. ePrint Archive 2018, 646 (2018)

43. Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and block-
wise local prgs. Cryptology ePrint Archive, Report 2017/250 (2017). http://eprint.
iacr.org/2017/250

44. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: FOCS, pp. 11–20. IEEE
(2016)

https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-46497-7_20
http://eprint.iacr.org/2000/063
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-540-70936-7_11
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-642-55220-5_12
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
http://eprint.iacr.org/2017/250
http://eprint.iacr.org/2017/250

How to Leverage Hardness of Constant-Degree Expanding Polynomials 281

45. Ma, F., Zhandry, M.: New multilinear maps from CLT13 with provable security
against zeroizing attacks. IACR Cryptol. ePrint Archive 2017, 946 (2017)

46. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 22

47. Minaud, B., Fouque, P.A.: Cryptanalysis of the new multilinear map over the
integers. Cryptology ePrint Archive, Report 2015/941 (2015). http://eprint.iacr.
org/

48. Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: FOCS,
pp. 136–145 (2003)

49. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44371-2 28

50. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC
2014, New York, 31 May – 03 June 2014, pp. 475–484. ACM (2014). https://doi.
org/10.1145/2591796.2591825

https://doi.org/10.1007/978-3-662-53008-5_22
http://eprint.iacr.org/
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1145/2591796.2591825

Block Ciphers

XOR-Counts and Lightweight
Multiplication with Fixed Elements

in Binary Finite Fields

Lukas Kölsch(B)

University of Rostock, Rostock, Germany
lukas.koelsch@uni-rostock.de

Abstract. XOR-metrics measure the efficiency of certain arithmetic
operations in binary finite fields. We prove some new results about two
different XOR-metrics that have been used in the past. In particular, we
disprove a conjecture from [10]. We consider implementations of multi-
plication with one fixed element in a binary finite field. Here we achieve
a complete characterization of all elements whose multiplication matrix
can be implemented using exactly 2 XOR-operations, confirming a con-
jecture from [2]. Further, we provide new results and examples in more
general cases, showing that significant improvements in implementations
are possible.

Keywords: Lightweight cryptography · Linear layer · XOR-count ·
Multiplication · Finite fields

1 Introduction

In the past years, with the advent of the so called Internet of Things, new
challenges for cryptography have emerged. Many new devices usually do not
have a lot of computational power and memory, but are still required to offer
some security by encrypting sensitive data. Consequentially, lightweight cryptog-
raphy has become a major field of research in the past years, mostly focusing on
symmetric-key encryption (e.g. [1,5,8]). In particular, linear layers (e.g. [15,16])
and Sboxes (e.g. [3,17]) have been thoroughly investigated as they constitute
key components in classical symmetric-key ciphers like AES. The objective here
is to try to minimize the cost of storage and the number of operations needed to
apply a cryptographic function. Usually, the security properties of cryptographic
schemes using finite fields do not depend on a specific field representation (as
bit strings) in the actual implementation [4], so the choice of field implementa-
tion makes an impact on the performance of the scheme without influencing its
security. It is therefore an interesting question which representation minimizes
the number of operations needed.

In practice, linear layers are usually F2m -linear mappings on F
n
2m . Recall that

linear mappings are implemented as matrix multiplications. Note that we can
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 285–312, 2019.
https://doi.org/10.1007/978-3-030-17653-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_10

286 L. Kölsch

write every n×n matrix over F2m as an (mn)×(mn) matrix over F2. As elements
in F2m are usually represented as bit strings in computers, it is natural to con-
sider only matrices over F2. Measurements of implementation costs will then only
involve the number of bit-operations (XORs) needed. It is an interesting question
to evaluate the efficiency of a given matrix. For that purpose two different met-
rics have been introduced, the direct XOR-count (e.g. in [12,15,19,20]) and the
sequential XOR-count (e.g. [2,10,22]). Roughly speaking, the direct XOR-count
counts the number of non-zeros in the matrix, whereas the sequential XOR-count
counts the number of elementary row operations needed to transform the matrix
into the identity matrix (see Sect. 2 for more precise definitions). Although the
sequential XOR-count of a matrix is harder to compute, it often yields a better
estimation of the actual optimal number of XOR-operations needed [10], for a
simple example see Example 1 in this work. When implementing a linear layer,
a field representation can be chosen such that the respective matrix is optimal
according to these metrics. In this way, the performance of a given linear layer
can be improved (for example by choosing a field representation that results in
a sparse diffusion matrix).

Our Contributions. Our goal in this work is to explore some connections
and properties of the direct and sequential XOR-count metrics and then to apply
these to get some theoretical results regarding optimal implementations of matri-
ces that represent multiplication with a fixed field element α ∈ F2k . Optimal
choices of these matrices (called multiplication matrices) can then be used for
local optimizations of matrices over F2k (this approach was taken for example in
[2,10,15,16,19]). Recently, the focus has shifted to global optimization, as it has
become clear that local optimizations are not necessarily also globally optimal
[6,13]. However, global optimization techniques currently rely either on tools
that improve the XOR-counts of matrices already known to be efficient [13] or
exhaustive searches [6,18]. In particular, theoretical results on globally optimal
matrices seem to be very hard to obtain. Numerical data suggest that there is
a correlation between good local optimizations and good global optimizations
(see [13, Figures 2–6]). Because of this correlation, theoretical insights into local
optimization are valuable for the search of globally optimal matrices.

In the second section, we compare the direct XOR-count and sequential XOR-
count evaluation metrics. We prove some theoretical properties of the sequential
XOR-count that can be used to improve algorithms (e.g. an algorithm presented
in [2]). We also find an infinite family of matrices that have a lower direct XOR-
count than sequential XOR-count, disproving a conjecture in [10]. We want to
emphasize that the results presented in this section apply to all invertible matri-
ces, not just multiplication matrices.

In the third section we provide a complete characterisation of finite field
elements α where the mapping x �→ αx can be implemented with exactly 2
XOR-operations (Theorem 5), which proves a conjecture in [2]. This case is of
special interest, since for many finite fields (including the fields F2n with 8|n
that are particularly interesting for many applications) there are no elements for
which the mapping x �→ αx can be implemented with only 1 XOR-operation [2].

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 287

For these fields, our classification gives a complete list of elements α such that
multiplication with α can be implemented in the cheapest way possible.

In the fourth section we present some more general results for multiplication
matrices with higher XOR-counts. We prove that the number of XOR-operations
needed to implement the mapping x �→ αx depends on the number of non-zero
coefficients of the minimal polynomial of α. In particular, Theorem 6 shows that
the gap between the number of XORs used in an optimal implementation and the
number of XORs used in the “naive” implementation of a multiplication matrix
using the rational canonical form of the mapping x �→ αx grows exponentially
with the weight of the minimal polynomial of the element. This result shows that
there is a large potential for improvement in the implementation of multiplication
matrices. Propositions 2 and 3 imply that the bound found in Theorem 6 is
optimal.

We conclude our paper with several open problems.

2 XOR-Counts

An XOR-count metric for diffusion matrices was introduced in [12] and then
generalized for arbitrary matrices in [20]. It has then subsequently been studied
in several works, e.g. [15,19].

Definition 1. The direct XOR-count (d-XOR-count) of an invertible n × n
matrix M over F2, denoted by wtd(M) is

wtd(M) = ω(M) − n,

where ω(M) denotes the number of ones in the matrix M .

Note that the d-XOR-count of an invertible matrix is never negative as every
row of an invertible matrix needs to have at least one non-zero entry. Moreover,
wtd(M) = 0 if and only if M has exactly one ‘1’ in every row and column, i.e.
M is a permutation matrix. The d-XOR-metric only gives an upper bound to
the actual minimal implementation cost as the following example shows.

Example 1.
⎛
⎜⎜⎝

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a1

a1 + a2

(a1 + a2) + a3

((a1 + a2) + a3) + a4

⎞
⎟⎟⎠

The d-XOR-count of the matrix is 6 but it is easy to see that multiplication
with this matrix can actually be implemented with only 3 XOR operations
since the results of previous steps can be reused. A metric that allows this
was subsequently introduced in [10] and used in further work (e.g. [2,6,22]).
Let us introduce some notation at first: We denote by I the identity matrix and
by Ei,j the matrix that has exactly one ‘1’ in the i-th row and j-th column.

288 L. Kölsch

Then Ai,j := I + Ei,j for i �= j is called an addition matrix. Left-multiplication
with Ai,j adds the j-th row to the i-th row of a matrix, right-multiplication
adds the i-th column to the j-th column. Observe that the matrices Ai,j are
self-inverse over F2. Let further P(n) be the set of n × n permutation matrices
and A(n) the set of all n×n addition matrices Ai,j . We will omit the dimension
n unless necessary.

Definition 2. An invertible matrix M over F2 has a sequential XOR-count (s-
XOR-count) of t if t is the minimal number such that M can be written as

M = P
t∏

k=1

Aik,jk

where P ∈ P and Aik,jk
∈ A. We write wts(M) = t.

Note that every invertible matrix can be decomposed as a product of a permu-
tation matrix and addition matrices in the way Definition 2 describes. Indeed,
Gauss-Jordan-elimination gives a simple algorithm to do so.

In [22] a similar definition for the s-XOR-count was given that uses a repre-
sentation of the form M =

∏t
k=1 PkAik,jk

with permutation matrices Pk. Since
products of permutation matrices remain permutation matrices and

PAi,j = Aσ−1(i),σ−1(j)P (1)

where σ ∈ Sn is the permutation belonging to the permutation matrix P , this
definition is equivalent to our definition.

A representation of a matrix M as a product M = P
∏t

k=1 Aik,jk
is called an

s-XOR-representation of M and an s-XOR-representation with wts(M) addition
matrices is called an optimal s-XOR-representation. Note that optimal s-XOR-
representations are generally not unique. Observe that M = PAi1,j1 . . . Ait,jt

is
equivalent to MAit,jt

. . . Ai1,j1 = P , so the s-XOR-count measures the number of
column addition steps that are needed to transform a matrix into a permutation
matrix. Because of Eq. (1) the number of column additions needed is equal to
the number of row additions needed, so we may also speak about row additions.

Going back to Example 1, it is easy to find an s-XOR-representation with 3
XORs.

M =

⎛
⎜⎜⎝

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎞
⎟⎟⎠ = IA4,3A3,2A2,1.

It is clear that we need at least 3 addition matrices since all rows but the first
one need at least one update. Hence, the s-XOR-representation above is optimal
and wts(M) = 3.

Determining the s-XOR-count of a given matrix is generally not easy. Graph-
based algorithms to find an optimal s-XOR-count have been proposed in [22] and
(in a slightly different form) in [10]. The algorithms are based on the following
observation. Let G = (V,E) be a graph where G = GL(n,F2) and (M1,M2) ∈ E

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 289

if AM1 = M2 for an A ∈ A. Then wts(M) = minP∈P d(M,P), where d(M1,M2)
denotes the distance between M1 and M2 in the graph G. Thus, the evalua-
tion of the s-XOR-count can be reduced to a shortest-path-problem. Note that
because the elementary matrices in A are all involutory, G is undirected. As the
authors of [22] observe, it is possible to reduce the number of vertices by a factor
1/n! because matrices with permuted rows can be considered equivalent. Still
(1/n!)|GL(n,F2)| = (1/n!)(2n − 1)(2n − 2) . . . (2n − 2n−1) and every vertex has
|A(n)| = n2 − n neighbors, so both the number of vertices and the number of
edges grow exponentially. Hence, this approach is impractical unless n is small.

The problem of determining the s-XOR-count is linked with the problem of
optimal pivoting in Gauss-Jordan elimination since the number of additions in
an optimal elimination process is clearly an upper bound of the s-XOR-count.
Pivoting strategies for Gaussian elimination are a classical problem in numerical
linear algebra (among lots of examples, see [14]) and the number of steps needed
in a Gauss-Jordan elimination process can be used as a heuristic for the s-XOR-
count.

Example 1 gives an example of a matrix with lower s-XOR-count than d-
XOR-count. Considering this and the fact that the s-XOR-count of a given
matrix is generally much harder to determine than the d-XOR-count, it should
be clarified whether the s-XOR-count always gives a better estimation of the
actual number of XOR operations needed to implement the matrix. In [10] this
has been conjectured, i.e. wts(M) ≤ wtd(M) for all M ∈ GL(n,F2). However,
the following theorem gives a counterexample.

Theorem 1. Let M be as follows:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ GL(7,F2).

Then wts(M) > wtd(M).

Proof. M is invertible with wtd(M) = 8. Let wts(M) = t, i.e. there are matrices
Aik,jk

∈ A and P ∈ P such that
∏t

k=1 Aik,jk
· M = P . By construction, no two

rows and no three rows of M add up to a row with only one non-zero entry. Every
row has to be updated at least once to transform M into a permutation matrix.
Since no two row vectors add up to a vector with only one non-zero entry, the
first row that gets updated (row it) needs to get updated at least once more.
But as there is also no combination of three vectors adding up to a vector with
only one non-zero entry, the second row that is updated (row it−1) also needs to
be updated a second time. So two rows need to get updated at least twice, and
all other 5 rows need to get updated at least once, resulting in wts(M) ≥ 9. �	

290 L. Kölsch

Remark 1. Note that the structure of the counterexample can be extended to
all dimensions n ≥ 7, the middle ‘1’ in the last row can be in any j-th column
with 4 ≤ j ≤ n− 3. We conclude that there exists a matrix M ∈ GL(n,F2) with
wts(M) > wtd(M) for all n ≥ 7.

Studying the s-XOR-count is an interesting mathematical problem because
it has some properties that can be used to get upper bounds of the actual imple-
mentation cost of potentially a lot of matrices. The actual number of XOR-
operations needed is clearly invariant under permutation of rows and columns.
It is therefore desirable that this property is reflected in our XOR-metrics. Obvi-
ously, this is the case for the d-XOR-count, i.e. wtd(M) = wtd(PMQ) for all
matrices M and permutation matrices P,Q ∈ P. The following lemma shows
that this also holds for the s-XOR-count. The lemma is a slight modification
of a result in [2]. However the proof in [2] has a small gap, so we provide a
complete proof here. We denote permutation-similarity with ∼, i.e. M1 ∼ M2 if
there exists a P ∈ P so that M1 = PM2P

−1.

Lemma 1. Let M ∈ GL(n,F2). Then wts(M) = wts(PMQ) for P,Q ∈ P. In
particular, if M1 ∼ M2 then wts(M1) = wts(M2).

Proof. Let wts(M) = t and σ ∈ Sn be the permutation belonging to Q. Then,
by shifting Q to the left

PMQ = PP2

t∏
k=1

Aik,jk
Q = PP2Q

t∏
k=1

Aσ(ik),σ(jk) = P ′
t∏

k=1

Aσ(ik),σ(jk)

where P2, P
′ ∈ P, so wts(PMQ) ≤ wts(M). Since M = P−1(PMQ)Q−1 the

same argument yields wts(M) ≤ wts(PMQ). �	
Based on this result, the following normal form for permutation matrices

is proposed in [2]. We introduce a notation for block diagonal matrices. Let
M1, . . . ,Md be square matrices, then we denote the block matrix consisting of
these matrices by

d⊕
k=1

Mk :=

⎛
⎜⎜⎜⎝

M1 0
M2

. . .
0 Md

⎞
⎟⎟⎟⎠ .

We denote by Cp the companion matrix of a polynomial p = xn + an−1x
n−1 +

· · · + a1x + a0 ∈ F2[x], i.e.

Cp =

⎛
⎜⎜⎜⎝

0 . . . 0 a0

1 0 0 a1

0
.

...
0 . . . 1 an−1

⎞
⎟⎟⎟⎠ .

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 291

Lemma 2 ([2, Lemma 2]). Let P ∈ P(n). Then

P ∼
d⊕

k=1

Cxmk+1

for some mk with
∑d

k=1 mk = n and m1 ≥ · · · ≥ md ≥ 1.

A permutation matrix of this structure is said to be the cycle normal form of P .
We can then (up to permutation-similarity) always assume that the permutation
matrix of the s-XOR-decomposition is in cycle normal form.

Corollary 1 ([2, Corollary 2]).

P
t∏

k=1

Aik,jk
∼ P ′

t∏
k=1

Aσ(ik),σ(jk)

for some permutation σ ∈ Sn, where P ′ is the cycle normal form of P .

We say an s-XOR-representation is in cycle normal form if its permuta-
tion polynomial is in cycle normal form. Corollary 1 states that every s-XOR-
representation is pemutation-similar to exactly one s-XOR-representation in
cycle normal form.

The following theorem gives a connection between the s-XOR-count and opti-
mal s-XOR-representations of a given matrix and that of its inverse.

Theorem 2. Let M be an invertible matrix with wts(M) = t and

M = P

t∏
k=1

Aik,jk
with P =

d⊕
k=1

Cxmk+1.

Then wts(M−1) = t. Moreover,

M−1 = PAσ(it),σ(jt)Aσ(it−1),σ(jt−1) . . . Aσ(i1),σ(j1)

for some permutation σ ∈ Sn that depends only on P .

Proof. For the inverse matrix we have

M−1 = Ait,jt
. . . Ai1,j1P

−1 ∼ P−1Ait,jt
. . . Ai1,j1 ,

so wts(M−1) ≤ wts(M). By symmetry, we get wts(M−1) = wts(M). Observe
that P−1 = PT =

⊕d
k=1 CT

xmk+1 where PT denotes the transpose of P . Let Jr

be the r × r matrix with ones on the counterdiagonal, i.e. Ji,j = 1 if and only if
j = n−i+1. Let Q =

⊕d
k=1 Jmk

∈ P. A direct calculation yields QP−1Q−1 = P
and thus

M−1 ∼ QP−1
1∏

k=t

Aik,jk
Q−1 = P

1∏
k=t

Aσ(ik),σ(jk),

where σ ∈ Sn denotes the permutation that belongs to Q. �	

292 L. Kölsch

In particular, Theorem 2 implies that given an optimal s-XOR-representation
for a matrix M , an optimal s-XOR-representation of M−1 can be determined
with very little effort by calculation the permutation σ in the proof. Note that
the statement of Theorem 2 does not exist for the d-XOR-count. Indeed, sparse
matrices (i.e. matrices with low d-XOR-count) usually have dense inverse matri-
ces (i.e. high d-XOR-count).

The next result also holds for the s-XOR-count only.

Proposition 1. Let M,N be invertible matrices with wts(M) = t1 and
wts(N) = t2. Then wts(MN) ≤ t1 + t2. In particular, wts(Mk) ≤ |k|t1 for
all k ∈ Z.

Proof. Let M = P
∏t1

k=1 Aik,jk
and N = Q

∏t2
k=1 Bik,jk

. Then

MN = PQ

t1∏
k=1

Aσ(ik),σ(jk)

t2∏
k=1

Bik,jk
,

where σ ∈ Sn is the permutation belonging to Q. This implies wts(MN) ≤ t1+t2.
The statement wts(Mk) ≤ |k|t1 for k < 0 follows from Theorem 2. �	

3 Efficient Multiplication Matrices in Finite Fields

We can consider F2n as the n-dimensional vector space (F2)n over F2. By dis-
tributivity, the function x �→ αx for α ∈ F2n is linear, so it can be represented as
a (left-)multiplication with a matrix in GL(n,F2). This matrix obviously depends
on α, but also on the choice of the basis of (F2)n over F2. We denote the multi-
plication matrix that represents the function x �→ αx with respect to the basis
B by Mα,B . The XOR-count of Mα,B generally differs from the XOR-count of
Mα,B′ for different bases B,B′. Our objective here is to find the optimal basis B
for a given α, in the sense that the XOR-count of Mα,B is minimized. For this,
we define the XOR-count metrics from the previous section also for elements
from F2n .

Definition 3. Let α ∈ F2n . We define the s-XOR-count and d-XOR-count of α
as follows:

wts(α) = min
B

wts(Mα,B), wtd(α) = min
B

wtd(Mα,B),

where the minimum is taken over all bases of Fn
2 over F2. A basis B and matrix

Mα,B that satisfy the minimum are called s-XOR-optimal and d-XOR-optimal
for α, respectively.

In order to find the matrices that optimize the s-XOR-count-metric, an
exhaustive search on all matrices with low s-XOR-count is performed in [2].
In this way the s-XOR-count and an optimal s-XOR-matrix of every element
α ∈ F2n for n ≤ 8 was found. Using the results presented in the previous section,

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 293

the search was restricted to matrices where the permutation matrix is in cycle
normal form. The following result was used to determine whether a given matrix
is a multiplication matrix for some α ∈ F2n with respect to some basis B. From
here on, we denote by χ(M) = det(xI + M) the characteristic polynomial of a
matrix M and by mα the minimal polynomial of the finite field element α ∈ F2n .
Recall that mα is always irreducible.

Theorem 3 ([2, Theorem 1]). Let M ∈ GL(n,F2) and α ∈ F2n . Then M is a
multiplication matrix for α, i.e. M = Mα,B with respect to some basis B, if and
only if mα is the minimal polynomial of M .

Theorem 3 shows in particular that a matrix M is a multiplication for some
α ∈ F2n with respect to some basis B if and only if the minimal polynomial of
M is irreducible. Additionally, it is clear that two field elements with the same
minimal polynomial necessarily have the same XOR-counts.

Remark 2. A direct calculation of the minimal polynomial of the matrix M in
Theorem 1 yields mM = x7+x6+x5+x4+1 which is an irreducible polynomial.
According to Theorem 3 the matrix M is a multiplication matrix for an element
α ∈ F27 with respect to some basis. Hence, there are elements α ∈ F2n such
that wtd(α) < wts(α). Note that this case does not have to occur for every
value of n because the matrices provided in Theorem 1 might have a reducible
minimal polynomial. Indeed, an exhaustive search for the cases n = 4 and n = 8
was conducted in [10], resulting in wts(α) ≤ wtd(α) for all α in F24 and F28 ,
respectively. We tested the examples given in Theorem 1 for n = 16 without
finding any matrices with irreducible minimal polynomial. Hence, we conjecture
that wts(α) ≤ wtd(α) for all α ∈ F216 . It is an interesting question for which n
elements with lower d-XOR-count than s-XOR-count exist.

Corollary 2. Let M = P
∏t

k=1 Aik,jk
be in cycle normal form. Then M is a

multiplication matrix for α ∈ F2n if and only if M−1 is a multiplication matrix
for α−1 ∈ F2n . Moreover, M is an optimal s-XOR-matrix for α if and only if
M−1 is an optimal s-XOR-matrix for α−1.

Proof. Let p and q be the minimal polynomial of M and M−1, respectively. It is
well known that q is then the reciprocal polynomial of p, that is q(x) = xnp(1/x).
Moreover, p is the minimal polynomial of α if and only if q is the minimal
polynomial of α−1. The rest follows from Theorem 2. �	
Corollary 2 allows us to determine an s-XOR-optimal matrix for α−1 given an
s-XOR-optimal matrix M of α. Recall that the cycle normal form of M−1 was
directly computed in Theorem 2. This allows us to cut the search space (approx-
imately) in half for all algorithms that determine the s-XOR-count by traversing
all matrices in GL(n,F2).

It is now an interesting question which elements α ∈ F2n have multiplica-
tion matrices with low XOR-count. Obviously, the only element that can be
implemented with XOR-count 0 is α = 1. A simple upper bound on the s-XOR-
count and d-XOR-count for elements can be found by considering the rational

294 L. Kölsch

canonical form of a matrix. Recall that a matrix M ∈ GL(n,F2) is similar to its
(unique) rational canonical form. If M has an irreducible minimal polynomial
m with deg m = k then there exists a d ≥ 1 so that kd = n and the rational
canonical form is

⊕d
i=1 Cm. For a polynomial p we denote by wt(p) the weight

of p, that is the number of non-zero coefficients. Note that if 2|wt(p) then 1 is a
root of p so the only irreducible polynomial over F2 with even weight is x + 1.

Example 2. Let α be an element of F2n with minimal polynomial mα and
deg mα = k with kd = n and d ≥ 1. Then we can find a basis B so that
Mα,B is in rational canonical form, i.e. Mα,B =

⊕d
i=1 Cmα

. It is easy to check
that wts(Mα,B) = wtd(Mα,B) = d · (wt(mα) − 2).

This example shows in particular that all α ∈ F2n with deg mα = n and
wt(mα) = 3 can be implemented with only one XOR operation. A possible
basis for this case is the polynomial basis {1, α, α2, . . . , αn−1}.

As one row-addition on I only produces one extra ‘1’ in the matrix, wtd(M) =
1 if and only if wts(M) = 1, and equivalently, wtd(α) = 1 if and only if wts(α) =
1. In [2] all elements that can be implemented with exactly one XOR-operation
are characterized. It turns out, that these cases are exactly those covered by
Example 2.

Theorem 4 ([2, Theorem 2]). Let α ∈ F2n . Then wts(α) = 1 or wtd(α) = 1 if
and only if mα is a trinomial of degree n.

It is an open problem for which n irreducible trinomials of degree n exist. Among
other sporadic examples, it is known that there are no irreducible trinomials of
degree n if n ≡ 0 (mod 8) [21], so there are no elements α with d/s-XOR-
count 1 in these cases. As the case 8|n is especially important in practice, it is
natural to consider elements that can be implemented with 2 XOR operations.
In this case, s-XOR-count and d-XOR count do differ: By simply expanding the
product PAi1,j1Ai2,j2 = P (I + Ei1,j1)(I + Ei2,j2), it follows that every matrix
with wts(M) = 2 is of the following form:

M =

{
P + Eσ−1(i1),j1 + Eσ−1(i2),j2 , i2 �= j1

P + Eσ−1(i1),j1 + Eσ−1(i2),j2 + Eσ−1(i1),j2 , i2 = j1,
(2)

where σ is the permutation that belongs to P and i1 �= j1, i2 �= j2. In particular
Eq. (2) shows that wtd(M) = 2 implies wts(M) = 2, but there are some matrices
with wts(M) = 2 and wtd(M) = 3. In other words, the s-XOR-metric is a better
metric for these matrices. In [2] the authors conjecture that wts(α) = 2 implies
wt(mα) ≤ 5, i.e. the minimal polynomial is a trinomial or a pentanomial. We
confirm this conjecture by giving an exact characterization of all elements with
wts(α) = 2 and their optimal s-XOR-representation in cycle normal form in
Theorem 5.

In the proof the following concept from linear algebra is used. We refer the
reader to [9] for proofs and more background. Let V be a vector space over a field
F with dimension n, u ∈ V a vector and M an n × n-matrix over F. The monic

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 295

polynomial g(x) ∈ F[x] with the smallest degree such that g(M)u = 0 is called
the M -annihilator of u. This polynomial divides any polynomial h annihilating u
(i.e. h(M)u = 0), in particular the minimal polynomial of M . In the case that the
minimal polynomial of M is irreducible the M -annihilator of every vector u �= 0
is the minimal polynomial of M . So if we find a polynomial h that annihilates a
vector u �= 0 we know that the minimal polynomial divides h. In particular, if h
is monic and the degree of h and the minimal polynomial coincide we can infer
that h is the minimal polynomial of M .

Theorem 5. Let α ∈ F2n . Then wts(α) = 2 if and only if mα can be written in
the form of a pentanomial or the trinomial appearing in Table 1.

Table 1. Elements with minimal polynomials listed in the left column have s-XOR-
count 2. The second column gives an optimal multiplication matrix and the third
column points to the corresponding case in the proof.

mα optimal matrix representation Case

xn + xk1+k2 + xk1 + xk2 + 1,
k1 + k2 ≤ n − 2

Cxn+1 + Ei1,j1 + Ei2,j2 (1.3.)

xn+xn−k1+xk2+xk2−k1+1,
k2 > k1

Cxn+1 + Ei1,j1 + Ei2,j2 (1.4.)

xn + xk1+k2 + xk1 + xk2 + 1 Cxn+1 + Ei1,j1 + Ej1+1,j2 + Ei1,j2 (2.1.)

xn + xn1 + xn2 + xk + 1,
k ≤ n − 2

(Cxn1+1 ⊕Cxn2+1) +Ei1,j1 +Ei2,j2 (3.2.)

xn + xn1+k + xn2 + xn1 + 1,
0 < k < n2

(Cxn1+1 ⊕ Cxn2+1) + Ei1,j1

+Ej1+1 (mod n1),j2 + Ei1,j2

(4.)

xn/2 + xk + 1 (Cxn/2+1⊕Cxn/2+1)+Ei1,j1 +Ei2,j2 (3.1.)

Proof. Let Mα,B be a multiplication matrix for some α ∈ F2n and some basis
B = {b1, . . . , bn}. We can assume that Mα,B is in cycle normal form, M =
PAi1,j1Ai2,j2 with P =

⊕l
k=1 Cxmk+1. As a first step, we show that l ≤ 2.

Assume l > 2. As shown in Eq. (2) at most two rows of M have more than one
‘1’ in them. So, by possibly permuting the blocks, P is a triangular block matrix,
consisting of two blocks where one block is of the form Cxt+1. So χ(Cxt+1) =
xt + 1 divides χ(M). But as minimal polynomial and characteristic polynomial
share the same irreducible factors, this implies (x+1)|mα which contradicts the
irreducibility of mα. So l ≤ 2. We now deal with all possible matrices on a case
by case basis, where we differentiate the cases l ∈ {1, 2} and the two cases in
Eq. (2).

296 L. Kölsch

Case 1. M = Cxn+1 + Ei1,j1 + Ei2,j2 , j1 �= i2 − 1.
We investigate how the matrix operates on the basis B = {b1, . . . , bn}:

αb1 = b2

...
αbj1−1 = bj1

αbj1 = bj1+1 + bi1 (3)
αbj1+1 = bj1+2

...
αbj2−1 = bj2

αbj2 = bj2+1 + bi2 (4)
αbj2+1 = bj2+2

...
αbn = b1.

Define γ1 := bj1+1 and γ2 := bj2+1. Then

bj1 = αn+j1−j2−1γ2, bj2 = αj2−j1−1γ1. (5)

At first, we show that the minimal polynomial has degree n. Assume mα =
xm +

∑m−1
i=1 cix

i + 1 with ci ∈ F2 and md = n with d > 1. In particular,
m ≤ n/2. At least one of n+j1−j2 and j2−j1 are greater or equal n/2. Assume
j2−j1 ≥ n/2. Then αiγ1 = bj1+1+i for i < n/2. Furthermore, αn/2γ1 = bj1+1+n/2

if j2 − j1 > n/2 and αn/2γ1 = bj1+1+n/2 + bi2 if j2 − j1 = n/2. Consequently,
mα(α)γ1 = αmγ1 +

∑m−1
i=1 ciα

iγ1 + γ1 is a linear combination of at least one
basis element and thus cannot vanish. If n + j1 − j2 ≥ n/2 the same argument
holds with γ2 instead of γ1. So deg mα = n. Observe that with the Eqs. (3), (4)
and (5)

αn+j1−j2γ2 = γ1 + bi1 (6)

αj2−j1γ1 = γ2 + bi2 . (7)

By plugging γ2 into the first equation and γ1 into the second equation, we obtain

αnγ1 + αn+j1−j2bi2 + bi1 + γ1 = 0 (8)

αnγ2 + αj2−j1bi1 + bi2 + γ2 = 0. (9)

Case 1.1. i1 ∈ [j1 + 1, j2] and i2 ∈ [j1 + 1, j2].
Then bi1 = αt1γ1 and bi2 = αt2γ1 with t1 = i1 − j1 − 1 and t2 = i2 − j1 − 1

with t1 + t2 < n − 1. With Eq. (8), we have

αnγ1 + αn+j1−j2+t2γ1 + αt1γ1 + γ1 = 0

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 297

So the polynomial p = xn + xn+j1−j2+t2 + xt1 + 1 annihilates γ1. Hence, p is
the minimal polynomial of M . But 2|wt(p), so p is not irreducible. We conclude
that no matrix of this type can be a multiplication matrix.

Case 1.2. i1 /∈ [j1 + 1, j2] and i2 /∈ [j1 + 1, j2].
Then bi1 = αt1γ2 and bi2 = αt2γ2 with t1 = i1 − j2 − 1 (mod n) and t2 =

i2 − j2 − 1 (mod n) with t1 + t2 < n − 1. With Eq. (9), we have

αnγ2 + αj2−j1+t1γ2 + αt2γ2 + γ2 = 0

As before, the polynomial p = xn + xj2−j1+t1 + xt2 + 1 annihilates γ2, so there
is no multiplication matrix of this type.

Case 1.3. i1 ∈ [j1 + 1, j2] and i2 /∈ [j1 + 1, j2].
Then bi1 = αt1γ1 and bi2 = αt2γ2 with t1 = i1 − j1 − 1 and t2 = i2 − j2 − 1

(mod n) with t1 + t2 < n − 1. Then by Eq. (6)

γ2 = αj2−j1−nγ1 + αj2−j1−n+t1γ1

and
bi2 = αj2−j1−n+t2γ1 + αj2−j1−n+t1+t2γ1.

Using Eq. (8), we obtain

αnγ1 + αt1+t2γ1 + αt1γ1 + αt2γ1 + γ1 = 0,

so p = xn +xt1+t2 +xt1 +xt2 +1 is the minimal polynomial of M . Note that we
can choose i1, i2, j1, j2 in a way that t1 and t2 take any value from {1, . . . , n−3}
as long as t1 + t2 < n − 1, so every matrix with a minimal polynomial of the
form xn + xa+b + xa + xb + 1 with a + b ≤ n − 2 has a multiplication matrix of
this type for suitable values of i1, j1, i2, j2.

Case 1.4. i1 /∈ [j1 + 1, j2] and i2 ∈ [j1 + 1, j2].
Then bi1 = αt1γ2 and bi2 = αt2γ1 with t1 = i1 − j2 − 1 (mod n) and t2 =

i2 − j1 − 1 with t1 + t2 < n − 1. Similarly to Case 1.3, Eq. (6) yields

γ1 = αn+j1−j2γ2 + αt1γ2

and with Eq. (9)

αnγ2 + αj2−j1+t1γ2 + αn+j1−j2+t2γ2 + αt1+t2γ2 + γ2 = 0,

so p = xn +xj2−j1+t1 +xn+j1−j2+t2 +xt1+t2 +1 = xn +xn−k1 +xk2 +xk2−k1 +1
with k1 = j2−j1−t2 = j2−i2−1 > 0 and k2 = j2−j1+t1. Note that k2 > k1 for
any choice of i1, i2, j1, j2. Moreover, k1 can take on every value in {1, . . . , n − 3}
and k2 any value greater than k1.

Case 2. M = Cxn+1 + Ei1,j1 + Ej1+1,j2 + Ei1,j2 .
If j1 = j2 then wts(M) = 1, so we can assume j1 �= j2. Note that the matrix
operates on the basis B just as in Case 1, the only difference being that in Eq. (4)

298 L. Kölsch

we have bi1 + bj1+1 = bi1 + γ1 instead of bi2 on the right hand side. With the
same argument as in Case 1 we conclude that the minimal polynomial of M has
degree n.

Case 2.1. i1 ∈ [j1 + 1, j2].
Then bi1 = αtγ1 with t = i1 − j1 − 1. Similarly to Eq. (8), we obtain

αnγ1 + αn+j1−j2γ1 + αn+j1−j2bi1 + bi1 + γ1 = 0

and thus

αnγ1 + αn+j1−j2γ1 + αn+j1−j2+i1−j1−1γ1 + αi1−j1−1γ1 + γ1 = 0.

So the minimal polynomial of M is p = xn+xn+j1−j2 +xn−j2+i1−1+xi1−j1−1+1.
Set k1 = i1 − j1 − 1 and k2 = n + j1 − j2 then p = xn + xk1+k2 + xk1 + xk2 + 1
with k1, k2 ∈ {1, . . . , n − 1} and k1 + k2 < n.

Case 2.2. i1 /∈ [j1 + 1, j2].
Then bi1 = αtγ2 with t = i1 − j2 − 1 (mod n). Similarly to Eq. (7), we have

αj2−j1γ1 = γ2 + γ1 + αtγ2.

Using Eq. (6) we obtain

αnγ2 + αj2−j1+tγ2 + αn+j1−j2γ2 + γ2 = 0,

so the minimal polynomial of M , p = xn + xj2−j1+t + xn+j1−j2 + 1, is reducible.

Case 3. M = (Cxn1+1 ⊕ Cxn2+1) + Ei1,j1 + Ei2,j2 , j1 �= i2 − 1.
If both i1, i2 ≤ n1 or i1, i2 > n1 then M is a triangular block matrix with one
block being just a companion matrix. Then (x + 1)|χ(M) = mα, so this case
cannot occur. Similarly one of j1 and j2 must be less or equal n1 and the another
one greater than n1. We again investigate how M operates on the basis B:

αb1 = b2

...
αbj1−1 = bj1

αbj1 = bj1+1 + bi1

αbj1+1 = bj1+2

...
αbn1 = b1

αbn1+1 = bn1+2

...
αbj2−1 = bj2

αbj2 = bj2+1 + bi2

αbj2+1 = bj2+2

...
αbn = bn1+1.

We set again γ1 = bj1+1 and γ2 = bj2+1. Then

αn1γ1 = γ1 + bi1 and αn2γ2 = γ2 + bi2 . (10)

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 299

Case 3.1. i1 ∈ [1, n1] and i2 ∈ [n1 + 1, n].
Then bi1 = αt1γ1 with t1 = i1 − j1 − 1 (mod n1) and bi2 = αt2γ2 with t2 =
i2 − j2 − 1 (mod n2). M is a block diagonal matrix: M = (Cxn1+1 + Ei1,j1) ⊕
(Cxn2+1 + Ei2,j2) = B1 ⊕ B2. Let mM ,mB1 ,mB2 be the minimal polynomial
of M , B1 and B2. Then mM = lcm(mB1 ,mB2) and if mM is irreducible then
mM = mB1 = mB2 . This implies that B1 and B2 are multiplication matrices
with wts(B1) = wts(B2) = 1. From Theorem 4 we obtain that mB1 and mB2

are trinomials of degree n1 and n2, respectively. So n1 = n2 = n/2 and mM =
xn/2 + xt + 1. Using Eq. (10) we can determine the choice for i1, i2, j1, j2

αn/2γ1 = γ1 + αt1γ1 and αn/2γ2 = γ2 + αt2γ2.

Hence i1, i2, j1, j2 have to be chosen in a way that t1 = t2 = t. This is possible
for every t ∈ {1, . . . , n/2 − 1}.

Case 3.2. i1 ∈ [n1 + 1, n] and i2 ∈ [1, n1].
Then bi1 = αt1γ2 with t1 = i1 − j2 − 1 (mod n2) and bi2 = αt2γ1 with t2 = i2 −
j1 − 1 (mod n1). Similarly to Case 1 we can show that the minimal polynomial
of M has degree n. Applying Eq. (10) yields

γ1 = αn2−t2γ2 + α−t2γ2

and
αn−t2γ2 + αn1−t2γ2 + αn2−t2γ2 + αt1γ2 + α−t2γ2 = 0.

Multiplying this equation by αt2 we conclude that p = xn+xn1 +xn2 +xt1+t2 +1
annihilates γ2, so mα = p. Note that t1 ∈ {0, . . . , n2−1} and t1 ∈ {0, . . . , n1−1}
so t1 + t2 ∈ {0, . . . , n − 2}.

Case 4. M = (Cxn1+1 ⊕ Cxn2+1) + Ei1,j1 + Ej1+1 (mod n1),j2 + Ei1,j2 .
Again, we can assume j1 �= j2. Note that the matrix operates on the basis B just
as in Case 3, the only difference being that bi2 is substituted by bi1 + bj1+1 =
bi1 + γ1. This leads to

αn2γ2 = γ2 + γ1 + αtγ2. (11)

With the same argument as before we conclude that the minimal polynomial of
M has degree n. If i1 ∈ [1, n1] then M is again a block triangular matrix with
one block being a companion matrix, so this case cannot occur. So i1 ∈ [n1+1, n]
and bi1 = αtγ2 for t1 = i1 − j2 − 1 (mod n2). Similarly to Case 3.2 we get

γ2 = αn1−tγ1 + α−tγ1.

Combining this equation with Eq. (11) we have

αn−tγ1 + αn2−tγ1 + αn1γ1 + αn1−tγ1 + α−tγ1 = 0

and after multiplying with αt we conclude that mα = xn +xn1+t +xn2 +xn1 +1,
where t ∈ {1, . . . , n2 − 1}. �	

300 L. Kölsch

Cases 1 and 3 of Theorem 5 also provide all elements α with wtd(α) = 2.
Moreover, Theorem 4 in [2] is a slightly weaker version of Case 1.3. in Theorem 5.

Remark 3. A suitable choice for the values i1, j1, i2, j2 in the second column of
Table 1 can be found in the proof of the corresponding case.

The following example shows that the cycle normal forms of optimal s-XOR-
representations are generally not unique.

Example 3. Let α ∈ F24 with the irreducible minimal polynomial mα = x4 +
x3 + x2 + x + 1. Then, by Theorem 5, wts(α) = wtd(α) = 2 and M = Cx4+1 +
E2,2 + E3,4 and M ′ = (Cx3+1 ⊕ Cx+1) + E3,4 + E4,3 belong to two different
optimal representations, corresponding to Case 1.4. and Case 3.2 of Theorem 5,
respectively.

The following corollary is a direct result from Theorem 5 and Example 2.

Corollary 3. Let α ∈ F2n with wt(mα) = 5 and deg(mα) = n. Then wts(α) = 2
if f appears in Table 1 and wts(α) = 3 otherwise.

Corollary 3 shows that an implementation via the rational canonical form (as
in Example 2) is generally not the best way to implement multiplication in binary
finite fields. However, irreducible pentanomials that do not appear in the table in
Theorem 5 exist, the examples with the lowest degree are f = x8+x6+x5+x4+1
and its reciprocal polynomial (for a table of all s-XOR-counts of finite field
elements in F2n for n ≤ 8 see [2]). It is an interesting question for which field
elements the “naive” representation using the rational canonical form is optimal.

4 Quantifying the Gap Between the Optimal
Implementation and the Naive Implementation

It is now interesting to investigate the gap between the optimal implementation
and the “naive” implementation using the rational canonical form. We will give
a partial answer to this question in Theorem 6. First, we need some notation
and lemmas.

For a square matrix M = (mr,s) over F2 and two index sequences (ordered
sets) I = (i1, . . . , il1), J = (j1, . . . , jl2), l := min(l1, l2) we denote by M I,J =
(ar,s) the matrix that is constructed as follows: All rows in I and all columns
in J are filled with zeroes, except the entries ai1,j1 , . . . , ail,jl

which are set to 1.
More precisely:

ar,s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, r = ik, s �= jk for a k ∈ {1, . . . , l1}
0, r �= ik, s = jk for a k ∈ {1, . . . , l2}
1, r = ik, s = jk for a k ∈ {1, . . . , l}
mr,s, otherwise.

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 301

The following example illustrates our notation. Let I = {2, 4} and J = {1, 3}.

M =

⎛
⎜⎜⎝

1 1 0 1
0 1 1 1
1 1 1 0
0 1 0 1

⎞
⎟⎟⎠ , M I,J =

⎛
⎜⎜⎝

0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ .

In the case that l1 �= l2 the matrix M I,J has a zero row/column and is thus not
invertible. If l1 = l2, it is easy to see that det(M I,J) does not depend on the
ordering of the index sets I, J and is the same as the determinant of the matrix
that is created by deleting all rows of M in I and all columns of M in J . In
the case that we are only concerned with the determinant, we will thus just use
(unordered) index sets I, J and also talk about determinants of submatrices. If
I = {i} and J = {j} we will also write M (i,j). Moreover, we denote by AM the
characteristic matrix AM := xI + M of M .

Lemma 3. Let M = Cxn+1 ∈ GL(n,F2). Then we have wt(det(AI,J
M)) ≤ 1 for

all possible proper square submatrices AI,J
M .

Proof. The proof is by induction on the size of the submatrix. Clearly,
det(AI,J

M) ∈ {0, 1, x} if |I| = |J | = n − 1. Let now |I| < n − 1. We denote
by cij the entry in the i-th row and j-th column of AM . Then

cij =

⎧⎪⎨
⎪⎩

x, i = j,

1, i = j + 1 (mod n),
0, else.

Let i ∈ I. If i /∈ J , then AI,J
M has at most one non-zero entry in the i-th column.

Then, by Laplace expansion along the i-th column and use of the induction
hypothesis, we get wt(det(AI,J

M)) ≤ 1. If i ∈ J and i + 1 (mod n) /∈ I then the
i + 1 (mod n)-th row has at most one non-zero entry and Laplace expansion
along the i + 1 (mod n)-th row yields wt(det(AI,J

M)) ≤ 1. We conclude that
wt(det(AI,J

M)) ≤ 1 for all I with |I| < n. �	
Lemma 4. Let M = Cxn+1+

∑t
k=1 Eik,jk

where ik, jk can be chosen arbitrarily.
Then we have wt(det(AI,J

M)) ≤ 2t for all possible proper square submatrices AI,J
M .

Proof. The proof is by induction on t. The case t = 0 is covered by Lemma 3.
Let now t ≥ 1. Let M ′ = Cxn+1 +

∑t−1
k=1 Eik,jk

, so that M = M ′ + Ei,j with
i = ik, j = jk. If i ∈ I or j ∈ J we have AI,J

M = AI,J
M ′ and thus wt(det(AI,J

M)) =
wt(det(AI,J

M ′)) ≤ 2t−1. If i /∈ I and j /∈ J then AI,J
M = AI,J

M ′ +Ei,j and thus Laplace
expansion along the i-th row yields det(AI,J

M) ≤ det(AI,J
M ′) + det(AI∪{i},J∪{j}

M ′)
and thus

wt(det(AI,J
M)) ≤ wt(det(AI,J

M ′)) + wt(det(AI∪{i},J∪{j}
M ′)) ≤ 2t−1 + 2t−1 = 2t

by induction hypothesis. �	

302 L. Kölsch

Corollary 4. Let M = Cxn+1 +
∑t

k=1 Eik,jk
where ik, jk can be chosen arbi-

trarily. Then wt(χ(M)) ≤ 2t + 1.

Proof. The proof is by induction on t. The case t = 0 holds because χ(Cxn+1) =
xn +1 by definition of the companion matrix. Let now t ≥ 1 and M ′ = Cxn+1 +∑t−1

k=1 Eik,jk
. Laplace expansion along the it-th row yields χ(M) = det(AM) =

χ(M ′) + det(A(it,jt)
M ′). We conclude with Lemma 4 and the induction hypothesis

that wt(χ(M)) ≤ 2t−1 + 1 + 2t−1 = 2t + 1. �	
Theorem 6. Let α ∈ F2n be not contained in a proper subfield of F2n and
let Mα,B be a multiplication matrix of α with respect to some basis B. Then
wtd(Mα,B) = t implies wt(mα) ≤ 2t + 1.

Proof. Let B be an optimal (regarding the d-XOR-count) basis and M :=
Mα,B =

⊕l
k=1 Cxmk+1 +

∑t
r=1 Eir,jr

be an optimal multiplication matrix. The
case l = 1 is covered in Corollary 4, so we only consider l > 1 for the rest of
the proof. Since α is not contained in a proper subfield of F2n , the minimal
polynomial of M coincides with its characteristic polynomial. We call the sets

{1, . . . , m1}, {m1 + 1, . . . ,m2}, . . . , {
l−1∑
k=1

mk + 1, . . . ,

l∑
k=1

mk}

the l blocks of M . We can decompose M = M1 +M ′ with M1 =
⊕l

k=1 Cxmk+1 +∑t1
r=1 Eir,jr

and M ′ =
∑t2

r=1 Eir,jr
in a way that all pairs (ir, jr) in M1 are in

the same block and all pairs (ir, jr) in M ′ are in different blocks. M1 is a block
diagonal matrix and with Corollary 4 we get

wt(χ(M1)) ≤
l∏

k=1

(2sk + 1) with
l∑

k=1

sk = t1 (12)

where sk denotes the number of pairs (ir, jr) that are in the k-th block. We call
B1, . . . , Bl the l blocks of M1 and m1, . . . ,ml the size of these blocks. Note that
χ(M) is irreducible which implies that M is not a block triangular matrix and
thus t2 ≥ l. So we can write M ′ = M2 + M3 in a way that (after a suitable
permutation of blocks) M1 + M2 looks like this:

M1 + M2 =

⎛
⎜⎜⎜⎝

B1 0 . . . Eil,jl

Ei1,j1 B2 . . . 0
...

.
...

0 . . . Eil−1,jl−1 Bl

⎞
⎟⎟⎟⎠ . (13)

From this, we infer by Laplace expansion along the il-th row

χ(M1 + M2) = χ(M1) + det(A(il,v)
M1+M2

), (14)

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 303

where v =
∑l−1

k=1 mk + jl. We now determine wt(det(A(il,v)
M1+M2

)). We get

det(A(il,v)
M1+M2

) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B
(il,∅)
1 0 . . . 0 Eil,jl

Ei1,j1 B2 . . . 0 0
...

.
...

...

0
. . . Eil−2,jl−2 Bl−1 0

0 . . . 0 Eil−1,jl−1 B
(∅,jl)
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B
(il,∅)
1 0 . . . Eil−1,jl−1 ∗

Ei1,j1 B2 . . . 0 0
...

.
...

...

0
. . . Eil−2,jl−2 Bl−1 0

0 . . . 0 0 B
(il−1,jl)
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

by swapping the il−th row with the
∑l−1

k=1 mk + il−1-th row. This operation can
now be repeated for the upper-left l − 1 blocks, the result is the following block
diagonal matrix

det(A(il,v)
M1+M2

) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B
(il,j1)
1 ∗ . . . 0 0
0 B

(i1,j2)
2 . . . 0 0

...
.

...
...

0
. . . 0 B

(il−2,jl−1)
l−1 ∗

0 . . . 0 0 B
(il−1,jl)
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Lemma 4 then implies wt(det(A(il,v)
M1+M2

)) ≤ ∏l
k=1 2sk = 2t1 . Equations (12) and

(14) yield

wt(χ(M1 + M2)) ≤
l∏

k=1

(2sk + 1) + 2t1 . (15)

We now investigate the determinant of the square submatrices of M1 + M2. Let
I, J be index sets and set I =

⋃̇
rIr and J =

⋃̇
rJr where Ir and Jr contain the

indices that belong to the r-th block. Observe that |I| = |J |. Let us first look at
the case I = Ir and J = Jr for some r. Using Lemma 4

wt(det(AI,J
M1+M2

)) ≤ 2sr

∏
k∈{1,...,l}

k �=r

(2sk + 1) + 2t1 .

Similarly, if |Ir| = |Jr| for all 1 ≤ r ≤ l then

wt(det(AI,J
M1+M2

)) ≤
∏

r:Ir �=∅
2sr

∏
r:Ir=∅

(2sk + 1) + 2t1 . (16)

304 L. Kölsch

Let us now assume that there is a block r with |Ir| �= |Jr|. We can assume w.l.o.g.
that r = 1 and p := |I1| < |J1|. If i1+m1, il ∈ I or v, j1 ∈ J then Eq. (13) implies
det(AI,J

M1+M2
) = 0. We order I = (a1, . . . , at) and J = (b1, . . . , bt) in ascending

order. Then

det(AI,J
M1+M2

) = det
(

BI1,J1
1 A
C D

)
,

with A = (ar,s) ∈ F
m1×(n−m1)
2 , C = (cr,s) ∈ F

(n−m1)×m1
2 with

ar,s =

{
1, for (r, s) = (il, v),
0, else,

cr,s =

⎧⎪⎨
⎪⎩

1, for (r, s) = (ak, bk), k > p,

1, for (r, s) = (i1, j1),
0, else.

Swapping the il-th row with the ap+1-th row, we obtain

det(AI,J
M1+M2

) = det
(

B
I1∪{il},J1
1 0

∗ D′

)

and thus det(AI,J
M1+M2

) = det(BI1∪{il},J1
1) det(D′). Observe that det(AI,J

M1+M2
) =

0 if |I1| �= |J1| + 1. Moreover, det(D′) = det(CI′,J ′
M1+M2

) where {1, . . . , m1} is a
subset of I ′ and J ′. In particular, the number of indices in I ′ and J ′ belonging
to the first block is the same. By induction, Eq. (16) and Lemma 4, we get

wt(det(AI,J
M1+M2

)) = wt(det(BI1∪{il},J1
1) det(D′)) ≤ 2s1

l∏
k=2

(2sk + 1)+2t1 . (17)

Equations (16) and (17) imply that for arbitrary index sets I, J , there exists an
r ∈ {1, . . . , l} such that

wt(det(AI,J
M1+M2

)) ≤ 2sr

∏
k∈{1,...,l}

k �=r

(2sk + 1) + 2t1 . (18)

As in the proof of Lemma 4, for arbitrary index sets I, J and i, j ∈ {1, . . . , n}
there is an r ∈ {1, . . . , l} such that

wt(det(AI,J
M1+M2+Ei,j

)) ≤ wt(det(AI,J
M1+M2

)) + wt(det(AI∪{i},J∪{j}
M1+M2

))

≤ 2 ·

⎛
⎜⎜⎝2sr

∏
k∈{1,...,l}

k �=r

(2sk + 1) + 2t1

⎞
⎟⎟⎠

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 305

and, inductively, for an arbitrary matrix M3 =
∑z

k=1 Eik,jk
with z non-zero

entries

wt(det(AI,J
M1+M2+M3

)) ≤ 2z

⎛
⎜⎜⎝2sr

∏
k∈{1,...,l}

k �=r

(2sk + 1) + 2t1

⎞
⎟⎟⎠

< 2z

(
l∏

k=1

(2sk + 1) + 2t1

)
. (19)

We now show by induction that we have for z ≥ 1

wt(χ(M1 + M2 + M3)) < 2z

(
l∏

k=1

(2sk + 1) + 2t1

)
. (20)

The case z = 1 is dealt with using Eqs. (15) and (18):

wt(χ(M1 + M2 + M3)) ≤ wt(χ(M1 + M2)) + wt(det(Ai1,j1
M1+M2

))

< 2

(
l∏

k=1

(2sk + 1) + 2t1

)
.

Let now z > 1 and M ′
3 =

∑z−1
k=1 Eik,jk

. With the induction hypothesis and
Eq. (19) we conclude

wt(χ(M1 + M2 + M3)) ≤ wt(χ(M1 + M2 + M ′
3)) + wt(det(Ai1,j1

M1+M2+M ′
3
))

< 2z

(
l∏

k=1

(2sk + 1) + 2t1

)
,

proving Eq. (20). Note that the bound in Eq. (20) depends only on the parameters
l, t2 and sk, k = 1, . . . , l where

∑l
k=1 sk = t1 and t1 + t2 = t = wt(M). For t2 > l

we have

wt(χ(M1 + M2 + M3)) < 2t2−l

(
l∏

k=1

(2sk + 1) + 2t1

)
.

Using Eq. (15), a matrix N with values lN = t2 and sk = 0 for k > l yields

wt(χ(N)) ≤
lN∏

k=1

(2sk + 1) + 2t1

= 2t2−l
l∏

k=1

(2sk + 1) + 2t1 .

306 L. Kölsch

In particular, the upper bound given in Eq. (20) is always worse than the one
given in Eq. (15) and we can focus on the case M3 = 0 (or, equivalently, t2 = l)
for the rest of this proof. In other words, we just have to find the parameters
that give the maximum weight estimation in Eq. (15). A direct calculation yields

l∏
k=1

(2sk + 1) ≤ (2t1 + 1) · 2l−1,

i.e. the choice s1 = t1, si = 0 for i > 1 is optimal. Plugging these parameters
into Eq. (15), we get

wt(χ(M)) ≤ 2t1+l−1 + 2l−1 + 2t1 = 2t−1 + 2l−1 + 2t−l. (21)

Obviously, the maximum of 2l−1 + 2t−l for 2 ≤ l ≤ t is attained at l = t. The
result follows from Eq. (21). �	

We now show that the bound given in Theorem 6 is optimal by giving two
examples where the upper bound is attained. Note that the proof of Theorem 6
implies that this can only occur if the number of blocks of the optimal multipli-
cation matrix is 1 or t. We will give examples for both cases in Propositions 2
and 3.

Theorem 7 ([11, Theorem 3.5], [7, Theorem 4.3.9]). Let R be a (commuta-
tive) Euclidean domain and A ∈ Rn×n. Then A can be transformed into an
upper triangular matrix using elementary row operations (i.e. a sequence of left-
multiplications with matrices I + rEi,j with r ∈ R and i �= j).

Proposition 2. Let α ∈ F2n with an irreducible minimal polynomial f with
wt(f) = 2t + 1 of the form

f = xn +
t∏

j=1

(
xij + 1

)

for arbitrary values of ij ∈ N with
∑t

j=1 ij ≤ n − t. Then there exists a basis B
such that the matrix M := Mα,B satisfies wts(M) = wtd(M) = t.

Proof. We show that the matrix M = Cxn+1 +
∑t−1

k=1 Ejk+ik+1,jk
+ Eit+n−jt,jt

where the jk are chosen arbitrarily under the conditions that jk+1 ≥ ik + jk + 1
for all k = 1, . . . , t − 1 and it < j1 has the desired property. It is clear that

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 307

wts(M) = wtd(M) = t. Let B = {b1, . . . , bn} be some basis of (F2)n over F2. We
investigate how M (viewed as a transformation matrix) operates on this basis:

Mb1 = b2

...
Mbj1−1 = bj1

Mbj1 = bj1+1 + M i1bj1+1 (22)
Mbj1+1 = bj1+2

...
Mbj2−1 = bj2

Mbj2 = bj2+1 + M i2bj2+1 (23)
Mbj2+1 = bj2+2

...
Mbn = b1.

Set ni = ji − ji−1 for 2 ≤ i ≤ t and n1 = n + j1 − jt. Note that
∑t

i=1 ni = n
and Mbjk

= Mnibjk−1+1. With this and the equations of type (22) and (23) we
obtain the following set of equations:

⎛
⎜⎜⎜⎜⎜⎝

Mn2 M i1 + 1 0 . . . 0
0 Mn3 M i2 + 1 . . . 0

.
0 . . . 0 Mnt M it−1 + 1

M it + 1 0 . . . 0 Mn1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

bj1+1

bj2+1

...

...
bjt+1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0. (24)

We denote by A the matrix in Eq. (24). A is a matrix over F2[M]. It is clear that
F2[M] is isomorphic to the usual polynomial ring F2[x] and thus a Euclidean
domain. Using the Leibniz formula for determinants, we obtain det(A) = f(M).
By Theorem 7, we can transform A into an upper triangular matrix A′ using only
elementary row operations. In particular det(A′) =

∏n
i=1 a′

i,i = det(A) = f(M)
where the a′

i,i denote the entries on the diagonal of A′. Since f is irreducible, we
obtain ak,k = f(M) for one 1 ≤ k ≤ n and ai,i = 1 for all i �= k, i.e.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ∗
. . .

f(M) ∗ ∗
. . .

0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

bj1+1

...
bjk+1

...
bjt+1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.

It is clear that all entries a′
k,k+1, . . . , a

′
k,n can be eliminated by further row addi-

tions. Hence, we obtain f(M)bjk+1 = 0, i.e. f is the M -annihilator of bjk+1.

308 L. Kölsch

As f is irreducible this implies that the minimal polynomial of M is f and thus
M is a multiplication matrix of α.

�	
Proposition 3. Let α ∈ F2n with an irreducible minimal polynomial f with
wt(f) = 2t + 1 of the form

f =
t∏

j=1

(xnj + 1) + xk

for arbitrary values of nj and k ≤ n − t with
∑t

j=1 nj = n. Then there exists a
basis B such that the matrix M := Mα,B satisfies wts(M) = wtd(M) = t.

Proof. The proof is similar to the proof of the previous lemma. Define n̂l =∑l−1
u=1 nu for 1 ≤ l ≤ t. Let rl be chosen arbitrarily such that 1 ≤ rl ≤ nl for

1 ≤ l ≤ t and
∑t

l=1 rl = k. Further let jl := n̂l + rl for all 1 ≤ l ≤ t and
sl := il + rl+1 + 1 (mod nl+1) for l < t and st := it + r1 + 1 (mod n1).

Define now M =
⊕t

i=1 Cxni+1 +
∑t

k=1 En̂k+sk,jk
. Obviously, wts(M) =

wtd(M) = t. Let B = {b1, . . . , bn} be some basis of (F2)n over F2. We investigate
how M (viewed as a transformation matrix) operates on this basis:

Mb1 = b2

.

.

.

Mbj1−1 = bj1

Mbj1 = bj1+1 +M i1bj2+1

Mbj1+1 = bj1+2

.

.

.

Mbn1 = b1

Mbn1+1 = bn1+2

.

.

.

Mbj2−1 = bj2

Mbj2 = bj2+1 +M i2bj3+1

Mbj2+1 = bj2+2

.

.

.

Mbn2 = bn1+1

. . .

. . .

Mbnt−1+1 = bnt+2

.

.

.

Mbjt−1 = bjt

Mbjt = bjt+1 +M itbj1+1

Mbjt+1 = bjt+2

.

.

.

Mbn = bnt−1+1.

Clearly, Mbjk
= Mnkbjk+1, so we get the following set of equations:

⎛
⎜⎜⎜⎜⎜⎝

Mn1 + 1 M i1 0 . . . 0
0 Mn2 + 1 M i2 . . . 0

.
0 . . . 0 Mnt−1 + 1 M it−1

M it 0 . . . 0 Mnt + 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

bj1+1

bj2+1

...

...
bjt+1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.

The determinant of the matrix is exactly f(M). We can now repeat the argu-
ments from the proof of Proposition 2 and obtain that M is a multiplication
matrix for α. �	
Observe that the polynomials in Propositions 2 and 3 are generalizations of
Case 1.3. and Case 3.2. in Theorem 5.

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 309

Note that irreducible polynomials of the types mentioned in Propositions 2
and 3 do exist, examples up to t = 8, corresponding to polynomials of weight
2t + 1, are compiled in Table 2. The table lists in the second column values for
il and n that belong to an irreducible polynomial of the type of Proposition 2
and in the third column the values for nl and k that belong to an irreducible
polynomial of the type of Proposition 3. The values listed were found with a sim-
ple randomized algorithm. They generally do not correspond to the irreducible
polynomial of that type with the least degree. Propositions 2 and 3 together with
Theorem 6 show that the gap between the number of XORs used in the optimal
implementation and the number of XORs used in the naive implementation of
a multiplication matrix using the rational canonical form grows exponentially
with the weight of the minimal polynomial of the element.

Table 2. Irreducible polynomials of the form described in Propositions 2 and 3.

t Values for i1, . . . , it;n Values for n1, . . . , nt;k

2 1,2;5 2,4;1

3 1,2,4;10 4,5,6;1

4 3,5,6,12;30 2,3,6,10;1

5 1,2,4,9,17;39 12,13,15,19,23;9

6 1,12,16,24,31; 123 13,22,26,27,28,30;23

7 2,30,47,56,60,64,91; 357 25,114,174,231,279,281,331;196

8 23,28,41,59,62,106,141,153; 628 44,148,195,357,363,368,386,480;240

Propositions 2 and 3 show that there are elements α ∈ F2n with wt(mα) =
2t +1 and wts(α) = t. We believe that this upper bound is strict, i.e. the bound
is the same for s-XOR-count and d-XOR-count.

Conjecture 1. Let α ∈ F2n be not contained in a proper subfield of F2n and Mα,B

a multiplication matrix of α with respect to some basis B. Then wts(Mα,B) = t
implies wt(χ(M)) ≤ 2t + 1.

5 Open Problems

Our investigations open up many possibilities for future research. While
Theorem 1 shows that there is an infinite family of matrices with higher s-
XOR-count than d-XOR-count, a more precise classification of these cases as
well as finding upper/lower bounds is desirable. Because of the nature of the
s-XOR-count, answers to these problems would also give insight into optimal
Gauss elimination strategies over F2.

Problem 1. Classify the matrices M ∈ GL(n,F2) with wtd(M) < wts(M).

310 L. Kölsch

Problem 2. Find bounds c, C so that cwtd(M) ≤ wts(M) ≤ Cwtd(M) for all
matrices M ∈ GL(n,F2).

Finding out if/how the bounds c, C depend on n and wts(M) would greatly
improve the understanding of the two XOR-metrics.

As observed in Sect. 3, there are elements α ∈ F2 where the optimal imple-
mentation of the mapping x �→ αx is the rational canonical form in both of
the investigated metrics. These elements are (compared to elements with mini-
mal polynomials of the same weight) the most expensive to implement. A more
thorough understanding of these elements would be helpful.

Problem 3. Classify the minimal polynomials mα ∈ F2[x] for which the optimal
multiplication matrix is in rational canonical form.

We also want to repeat a problem about elements in subfields mentioned
in [2].

Problem 4. Let α ∈ F2n be contained in a subfield F2l with ld = n. Let Ml

be an optimal multiplication matrix of α regarding d- or s-XOR-count. Is M =⊕d
k=1 Ml then an optimal multiplication matrix of α ∈ F2n regarding d- or

s-XOR-count?

In Sects. 3 and 4 we limited ourselves to optimal XOR-implementations of
matrices that are multiplication matrices for a fixed field element (which are
exactly those with irreducible minimal polynomial). Investigating a more general
case is also an interesting problem.

Problem 5. Let f : Fn
2 → F

n
2 be a bijective linear mapping and Mf,B ∈ GL(n,F2)

the matrix that belongs to f with respect to the basis B. Find a basis B such
that the matrix Mf,B is the optimal d/s-XOR-count matrix.

In particular, finding optimal matrices Mf,B where f denotes the mapping
induced by a linear layer of a cryptographic scheme is a very interesting problem.

Acknowledgments. The author wishes to thank the anonymous referees for their
comments that improved especially the introduction considerably and helped to set
this work into context with existing literature.

I also thank Gohar Kyureghyan for many discussions and help with structuring
this paper.

References

1. Babbage, S., Dodd, M.: The MICKEY stream ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 191–209. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3 15

2. Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in GF (2n) with
applications to MDS matrices. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 625–653. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 23

https://doi.org/10.1007/978-3-540-68351-3_15
https://doi.org/10.1007/978-3-662-53018-4_23
https://doi.org/10.1007/978-3-662-53018-4_23

XOR-Counts and Lightweight Multiplication in Binary Finite Fields 311

3. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). https://doi.org/
10.1007/11545262 32

4. Daemen, J., Rijmen, V.: Correlation analysis in GF (2n). In: Junod, P., Canteaut,
A. (eds.) Advanced Linear Cryptanalysis of Block and Stream Ciphers. Cryptology
and Information Security, pp. 115–131. IOS Press (2011)

5. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68351-3 18

6. Duval, S., Leurent, G.: MDS matrices with lightweight cir-
cuits. IACR Trans. Symmetric Cryptol. 2018(2), 48–78 (2018).
https://doi.org/10.13154/tosc.v2018.i2.48-78

7. Hahn, A., O’Meara, T.: The Classical Groups and K-Theory. Springer, Heidelberg
(1989). https://doi.org/10.1007/978-3-662-13152-7

8. Hell, M., Johansson, T., Meier, W.: Grain; a stream cipher for constrained environ-
ments. Int. J. Wire. Mob. Comput. 2(1), 86–93 (2007). https://doi.org/10.1504/
IJWMC.2007.013798

9. Hoffman, K., Kunze, R.: Linear Algebra. Prentice-Hall, Englewood Cliffs (1961)
10. Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of

lightweight building blocks. IACR Trans. Symmetric Cryptol. 2017(4), 130–168
(2017)

11. Kaplansky, I.: Elementary divisors and modules. Trans. Amer. Math. Soc. 66,
464–491 (1949). https://doi.org/10.1090/S0002-9947-1949-0031470-3

12. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-
optimal SPN structures and components with a fair comparison. In: Batina, L.,
Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 433–450. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44709-3 24

13. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-
line programs for MDS matrices. IACR Trans. Symmetric Cryptol.
2017(4), 188–211 (2017). https://doi.org/10.13154/tosc.v2017.i4.188-211.
https://tosc.iacr.org/index.php/ToSC/article/view/813

14. LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite
fields. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 109–133. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-
3 8

15. Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS
matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 121–139. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 7

16. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin,
T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 101–120. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52993-5 6

17. Saarinen, M.-J.O.: Cryptographic analysis of all 4 × 4-bit S-boxes. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 118–133. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 7

18. Sajadieh, M., Mousavi, M.: Construction of lightweight MDS matrices from gen-
eralized feistel structures. IACR Cryptology ePrint Archive 2018, 1072 (2018)

19. Sarkar, S., Sim, S.M.: A deeper understanding of the XOR count distribution in
the context of lightweight cryptography. In: Pointcheval, D., Nitaj, A., Rachidi,
T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 167–182. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31517-1 9

https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.13154/tosc.v2018.i2.48-78
https://doi.org/10.1007/978-3-662-13152-7
https://doi.org/10.1504/IJWMC.2007.013798
https://doi.org/10.1504/IJWMC.2007.013798
https://doi.org/10.1090/S0002-9947-1949-0031470-3
https://doi.org/10.1007/978-3-662-44709-3_24
https://doi.org/10.13154/tosc.v2017.i4.188-211
https://tosc.iacr.org/index.php/ToSC/article/view/813
https://doi.org/10.1007/3-540-38424-3_8
https://doi.org/10.1007/3-540-38424-3_8
https://doi.org/10.1007/978-3-662-52993-5_7
https://doi.org/10.1007/978-3-662-52993-5_6
https://doi.org/10.1007/978-3-642-28496-0_7
https://doi.org/10.1007/978-3-319-31517-1_9

312 L. Kölsch

20. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48116-5 23

21. Swan, R.G.: Factorization of polynomials over finite fields. Pacific J. Math. 12(3),
1099–1106 (1962)

22. Zhao, R., Wu, B., Zhang, R., Zhang, Q.: Designing optimal implementations of
linear layers (full version). Cryptology ePrint Archive, Report 2016/1118 (2016)

https://doi.org/10.1007/978-3-662-48116-5_23

DLCT: A New Tool
for Differential-Linear Cryptanalysis

Achiya Bar-On1, Orr Dunkelman2(B), Nathan Keller1, and Ariel Weizman1

1 Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
2 Computer Science Department, University of Haifa, Haifa, Israel

orrd@cs.haifa.ac.il

Abstract. Differential cryptanalysis and linear cryptanalysis are the
two best-known techniques for cryptanalysis of block ciphers. In 1994,
Langford and Hellman introduced the differential-linear (DL) attack
based on dividing the attacked cipher E into two subciphers E0 and E1

and combining a differential characteristic for E0 with a linear approxi-
mation for E1 into an attack on the entire cipher E. The DL technique
was used to mount the best known attacks against numerous ciphers,
including the AES finalist Serpent, ICEPOLE, COCONUT98, Chaskey,
CTC2, and 8-round DES.

Several papers aimed at formalizing the DL attack, and formulating
assumptions under which its complexity can be estimated accurately.
These culminated in a recent work of Blondeau, Leander, and Nyberg
(Journal ofCryptology, 2017)which obtained an accurate expressionunder
the sole assumption that the two subciphers E0 and E1 are independent.

In this paper we show that in many cases, dependency between the
two subcipher s significantly affects the complexity of the DL attack, and
in particular, can be exploited by the adversary to make the attack more
efficient. We present the Differential-Linear Connectivity Table (DLCT)
which allows us to take into account the dependency between the two
subciphers, and to choose the differential characteristic in E0 and the
linear approximation in E1 in a way that takes advantage of this depen-
dency. We then show that the DLCT can be constructed efficiently using
the Fast Fourier Transform. Finally, we demonstrate the strength of the
DLCT by using it to improve differential-linear attacks on ICEPOLE
and on 8-round DES, and to explain published experimental results on
Serpent and on the CAESAR finalist Ascon which did not comply with
the standard differential-linear framework.

1 Introduction

1.1 Background and Previous Work

Cryptanalysis of Block Ciphers. A block cipher is an encryption scheme which
accepts an n-bit plaintext and transforms it into an n-bit ciphertext using a
k-bit secret key. Block ciphers are the most widely used class of symmetric
key primitives nowadays. Most of the modern block ciphers are iterative, i.e.,
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 313–342, 2019.
https://doi.org/10.1007/978-3-030-17653-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_11

314 A. Bar-On et al.

consist of a sequence of simple operations called rounds repeated multiple times
with small alterations. We denote a plaintext/ciphertext pair of a block cipher
by (P,C) and the n-bit state at the beginning of the r’th round of the encryption
process by Xr.

While the design of block ciphers is a well-developed field and various block
cipher designs (most notably, the AES [36]) are widely accepted to provide strong
security, there is no block cipher with a security proof that is fast enough for
being used in practice. Instead, our confidence in the security of block ciphers
stems from analyzing their resistance with respect to all known cryptanalytic
techniques. Thus, development of cryptanalytic techniques is the main means
for understanding the practical security of block ciphers.

Differential Cryptanalysis and Linear Cryptanalysis. The two central statisti-
cal techniques in cryptanalysis of block ciphers are differential cryptanalysis,
introduced by Biham and Shamir [8], and linear cryptanalysis, introduced by
Matsui [31].

Differential cryptanalysis studies the development of differences between two
encrypted plaintexts through the encryption process. An r-round differential
with probability p of a cipher is a property of the form Pr[Xi+r ⊕ X ′

i+r =
ΔO|Xi ⊕ X ′

i = ΔI] = p, denoted in short ΔI
p−→ ΔO. Differential attacks exploit

long (with many rounds) differentials with a non-negligible probability.
Linear cryptanalysis studies the development of parities of subsets of the

state bits through the encryption process of a single plaintext. An r-round linear
approximation with bias q is a property of the form Pr[Xi+r ·λO = Xi·λI] = 1

2+q,
denoted in short λI

q−→ λO. (Recall that the scalar product of x, y ∈ {0, 1}n

is defined as (
∑n

i=1 xiyi) mod 2.) Linear attacks exploit “long” approximations
with a non-negligible bias.

Differential and linear cryptanalysis were used to mount the best known
attacks on numerous block ciphers, most notably DES [35]. As a result, resis-
tance to these two cryptanalytic techniques, and in particular, non-existence of
high-probability differentials or high-bias linear approximations spanning many
rounds of the cipher, has become a central criterion in block cipher design.

Differential-Linear Cryptanalysis and Other Combined Attacks on Block
Ciphers. While precluding long differentials and linear approximations seems
to be sufficient for making the cipher immune to differential and linear attacks,
it turned out that in many cases, short characteristics and approximations can
also be exploited to break the cipher. The first cryptanalytic technique to demon-
strate this was differential-linear cryptanalysis (in short: DL technique), intro-
duced by Langford and Hellman [27] in 1994. Langford and Hellman showed
that if the cipher E can be decomposed as a cascade E = E1 ◦ E0, then a high-
probability differential for E0 and a high-bias linear approximation for E1 can
be combined into an efficient distinguisher for the entire cipher E. The DL tech-
nique was used to attack many block ciphers, and in particular, yields the best
known attacks on the AES finalist Serpent [20,30], the CAESAR [16] candidate
ICEPOLE [22], COCONUT98 [4], Chaskey [28], CTC2 [30], etc.

DLCT: A New Tool for Differential-Linear Cryptanalysis 315

Differential-linear cryptanalysis was followed by several other combined
attacks. In particular, boomerang [38], amplified boomerang [24], and rectan-
gle [3] attacks show that high-probability differentials in E0 an E1 can also
be combined into an attack on the entire cipher. Other combinations include
differential-bilinear, higher-order differential-linear, boomerang-linear attacks,
etc. [7]. These combined attacks make non-existence of high-probability short
differential and linear approximations a desirable (but harder to fulfill) criterion
in block cipher design.

An Informal Description of the Differential-Linear Attack. The DL attack works
as follows. Assume that we have a differential ΔI

p−→ ΔO for E0 and a linear
approximation λI

q−→ λO for E1. In order to distinguish E from a random per-
mutation, the adversary considers plaintext pairs with input difference ΔI and
checks, for each pair, whether the corresponding ciphertexts agree on the parity
of the mask λO.

Denote the plaintexts by P, P ′, the ciphertexts by C,C ′, and the intermediate
values between E0 and E1 by X,X ′, respectively. The attack combines three
approximations: The values C · λO and C ′ · λO are correlated to X · λI and
X ′ · λI , respectively, by the linear approximation for E1. The values X · λI and
X ′ · λI are correlated, as consequence of the differential for E0. Hence, C · λO is
correlated to C ′ · λO. Figure 1 depicts the relations.

P

ΩI

P ′

E0

X

ΩO

X ′

p

E1

C

C′

λI
q

λO

λI q λO

C · λOX · λI
1/2 + q

C′ · λOX ′ · λI 1/2 + q

1
/
2

+
p
/
2

E

Fig. 1. Differential-linear cryptanalysis

Computation shows that under some randomness assumptions to be dis-
cussed below, the equality C ·λO = C ′ ·λO holds with probability 1

2+2pq2. Hence,
if p, q are sufficiently large, then the adversary can distinguish E from a ran-
dom permutation using O(p−2q−4) chosen plaintexts. As usual, the distinguisher
can be transformed into a key recovery attack by guessing some key material,
performing partial encryption/decryption, and applying the distinguisher.

Randomness Assumptions Behind the DL Attack. The attack analysis described
above (initially presented in [4]) crucially depends on two assumptions:

1. Among the cases where the differential is not satisfied, X ′ · λI = X · λI holds
in half of the cases, as the cipher behaves randomly.

316 A. Bar-On et al.

2. There is independence between the two subciphers E0 and E1. In particular,
the bias of the linear approximations in E1 is not affected by the fact that
they are applied to two intermediate values which correspond to plaintexts
with a fixed difference.

As for the first assumption, already in [4] the authors noted that it may fail in
many cases, and suggested to check the overall bias of the approximation experi-
mentally whenever possible. Several subsequent papers aimed at formalizing the
assumption and at taking into consideration multiple linear approximations for
E1 instead of a single one. The first of those were by Liu et al. [29] and by Lu [30].
Recently, Blondeau et al. [10] presented a formal treatment of the DL attack,
based on a general link between differential and linear attacks introduced by
Chabaud and Vaudenay [13] and developed by Blondeau and Nyberg [11]. The
formal treatment provides an exact expression for the bias of the approximation
under the sole assumption that the two parts of the cipher are independent.

Independence Between the Subciphers in the Boomerang Attack. While the
assumption on independence between E0 and E1 was not studied in previous
works on the DL attack, it was studied for another combined attack – the
boomerang attack. In 2011, Murphy [33] showed that in various cases of interest,
the dependency between E0 and E1 may significantly affect the complexity and
even the possibility of success of the boomerang attack. Murphy’s claims were
supported by several concrete examples given in other papers. In particular, in [9]
and [21], dependency between the subciphers was used to significantly reduce the
complexity of the boomerang attacks on SAFER++ and on KASUMI, respec-
tively. On the other hand, it was shown in [25] that the boomerang attack on
KASUMI presented in [6] fails (i.e., never succeeds), due to dependency between
the subciphers. In [21], Dunkelman et al. proposed the sandwich framework in
order to take into account the dependency between the subciphers in the attack
analysis.

The Boomerang Connectivity Table (BCT). The inspiration to our work comes
from the boomerang connectivity table (BCT), proposed by Cid et al. [14] at
Eurocrypt’2018 as a new tool for the boomerang attack. The BCT allows com-
puting the complexity of the boomerang attack more accurately, and moreover,
enables the adversary to choose the differentials of E0 and E1 in a way that
exploits the dependency between the subciphers to amplify the overall proba-
bility of the boomerang distinguisher. Cid et al. applied the BCT to improve
the boomerang attack on the CAESAR finalist Deoxys [23] and to explain an
unsolved probability amplification for generating a quartet in the tweakable block
cipher SKINNY [2].

1.2 Our Results

In this paper we study the effect of dependency between the subciphers on
differential-linear cryptanalysis.

DLCT: A New Tool for Differential-Linear Cryptanalysis 317

Inaccuracy of Previous Analysis Due to Dependency Between the Subciphers.
We show that in differential-linear attacks on several cryptosystems, due to the
effect of dependency, complexity analysis using the standard DL framework led to
incorrect estimates, which sometimes were very far from the correct value found
experimentally. One concrete example is the attack of Dobraunig et al. [19] on a
5-round variant of the CAESAR finalist Ascon [18]. The authors of [19] state that
while by the theory of the DL attack, the overall bias of their approximation
is expected to be 2−20, experiments show that the bias is significantly larger:
2−2. The discrepancy is attributed in [19] to multiple linear approximations that
affect the overall bias. We show that the huge discrepancy comes mainly from
dependency between the two subciphers, and in fact, when we take dependency
into account using our new tool presented below, the bias estimate is increased
from 2−20 all the way to 2−5. (The rest of the difference is indeed explained by
the effect of other approximations, as claimed in [19]).

The Differential-Linear Connectivity Table. In order to (partially) take the
effects of dependency into account, we introduce a new tool: the differential-
linear connectivity table (DLCT). For a vectorial Boolean function S : {0, 1}n →
{0, 1}m (e.g., an n-to-m bit S-box in a block cipher), the DLCT of S is an 2n×2m

table whose rows correspond to input differences to S and whose columns cor-
respond to bit masks of outputs of S. The value in the cell (Δ,λ), where Δ is a
difference and λ is a mask, is

DLCTS(Δ,λ) = |{x : S(x) · λ = S(x ⊕ Δ) · λ}| − 2n−1.

We replace the decomposition E = E1 ◦ E0 used in the standard DL attack by
the decomposition E = E′

1 ◦ Em ◦ E′
0, where E′

0 is covered by the differential,
Em is covered by the DLCT, and E′

1 is covered by the remainder of the linear
approximation. Usually, Em covers the first round of E1 and thus consists of
several DLCTs of individual S-boxes applied in parallel. In this case, when com-
puting the overall bias of the DL distinguisher, we replace the biases computed
in the first round of the linear approximation by the entries of the DLCT in the
corresponding S-boxes. Thus, the DLCT fully addresses the issue of dependency
in the switch between E0 and E1. Note however that it does not resolve the
possible effect of other characteristics and approximations, which still has to be
handled using the framework of Blondeau et al. [10] (see Sect. 2).

Relation of the DLCT to the Fourier Transform. We show that each row of the
DLCT is equal (up to normalization) to the Fourier transform of the Boolean
function represented by the corresponding row of the Differential Distribution
Table (DDT) constructed in differential cryptanalysis.

As a result, the DLCT can be computed efficiently using the Fast Fourier
Transform. Specifically, each row of the DLCT can be constructed in time O(2n+
m2m) operations (instead of the trivial 2m+n), and thus, the entire DLCT can
be computed in time O(22n + m2m+n) operations. This makes computation of
the DLCT feasible even for larger encryption units (e.g., when one wants to
compute a single row of the 32-bit Super S-box of AES [36]).

318 A. Bar-On et al.

Applications of the DLCT. While the basic use of the DLCT is obtaining a
more accurate complexity analysis of the DL attack, it can be used to obtain
improved DL attacks as well. Indeed, the adversary can use the DLCT to choose
the differential for E0 and the linear approximation for E1 in a way that exploits
the dependency between the subciphers in her favor. We demonstrate this on
two concrete ciphers.

Improved DL Attack on ICEPOLE. ICEPOLE [32] is a hardware-oriented
authenticated cipher designed by Morawiecki et al. in 2014 and submitted as
a candidate to the CAESAR competition. In [22], Huang et al. presented a
state-recovery attack in the repeated-nonce settings on 128-bit ICEPOLE with
data and time complexity of about 246, using differential-linear cryptanalysis.
This attack is the best known attack on ICEPOLE.

We show that by using better differentials which exploit the dependency
between the two underlying subciphers, one can reduce the complexity of the
attack to 242. Furthermore, by exploiting using a better method for choosing the
plaintexts, the complexity can be further reduced 236. We have fully implemented
and verified our attack.

Improved DL Attack on 8-round DES. One of the first applications of the DL
technique is an attack on 8-round DES [35] presented by Biham et al. [4]. The
attack is based on a 7-round differential-linear distinguisher with bias 2−5.91.
By analyzing the DLCT of the DES S-boxes, we show that the differential and
the linear approximation used in the attack can be replaced which leads to an
improved bias of 2−5.6, thus reducing the complexity of the attack from about
30,000 plaintexts to about 20,000 plaintexts.

As in the case of ICEPOLE, we have fully implemented and verified the
attack. While the improvement of our attack over the result of [4] is rather
modest, it is another clear example of the applicability of the DLCT and of its
ability to exploit dependency in favor of the adversary.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Sect. 2 we give an overview of
the DL attack, and then we present the DLCT and prove that it can be com-
puted efficiently. We use the newly introduced tool to revisit the cryptanalytic
results on Ascon [19] in Sect. 3 and on Serpent [5,20] in Sect. 4, and explain
the discrepancy between the theoretical estimate and the experimental results
in these two works. In Sects. 5 and 6 we present improved DL attacks on ICE-
POLE and reduced-round DES, respectively. We conclude the paper with a few
open problems for future research in Sect. 7.

DLCT: A New Tool for Differential-Linear Cryptanalysis 319

2 The Differential-Linear Connectivity Table

In this section we introduce and discuss the DLCT. We begin with an overview
of the DL attack, then we present the DLCT and obtain a new formula for the
bias of the DL distinguisher, and finally, we discuss the relation of the DLCT to
the Fourier transform and its implications on the DL technique.

2.1 The Differential-Linear Attack

Let E be a cipher that can be decomposed into a cascade E = E1 ◦ E0. Assume
that we have a differential ΔI

p−→ ΔO for E0, i.e., an input difference ΔI to
E0 leads to an output difference ΔO from E0 with probability p, and a linear
approximation λI

q−→ λO for E1, i.e., for 1/2+q of the input/output pairs (Ii, Oi)
of E1 satisfy λI · Ii = λO · Oi. Denote plaintexts by P, P ′, ciphertexts by C,C ′,
and intermediate values between E0 and E1 by X,X ′, respectively.

The Procedure of the DL Attack. As mentioned above, the attack procedure is
very simple. In order to distinguish E from a random permutation, the adversary
considers plaintext pairs (P, P ′) such that P ⊕ P ′ = ΔI and checks whether
the corresponding ciphertext pairs (C,C ′) satisfy C · λO = C ′ · λO. Following
Blondeau et al. [10], we denote the overall bias of the DL distinguisher by

EΔI ,λO
= Pr[C · λO = C ′ · λO|P ⊕ P ′ = ΔI]. (1)

Naive Analysis of the Attack Complexity. The attack uses a combination of three
approximations:

1. We have Pr[C · λO = X · λI] = 1
2 + q, by the linear approximation for E1.

2. We have Pr[X ′ · λI = X · λI] = 1
2 ± p

2 (where the sign depends on the
parity of ΔO · λI). This is because by the differential for E0, for fraction p
of the plaintext pairs we have X ⊕ X ′ = ΔO, and in particular, X ′ · λI =
X · λI ⊕ ΔO · λI , and we assume that among the rest of the plaintext pairs,
X ′ · λI = X · λI holds in half of the cases.

3. We have Pr[C ′ · λO = X ′ · λI] = 1
2 + q, by the linear approximation for E1.

Note that the equality C · λO = C ′ · λO holds if among the three equalities
(1),(2), (3), either all three hold or exactly one holds. Using Matsui’s Piling-up
lemma [31] (similar analysis holds also when using correlation matrices [17]),
we have

EΔI ,λO
= Pr[C · λO = C ′ · λO] =

1
2

+ 2pq2. (2)

Hence, if p, q are sufficiently large, then the adversary can distinguish E from
a random permutation using O(p−2q−4) chosen plaintexts (see [10,37] for the
exact relation between the data complexity and the success probability of the
distinguisher). As usual, the distinguisher can be transformed into a key recovery
attack by guessing some key material, performing partial encryption/decryption,
and applying the distinguisher.

320 A. Bar-On et al.

The Exact Complexity Analysis of Blondeau et al. [10]. As mentioned above, the
naive complexity analysis crucially depends on two randomness assumptions.
The first is that the equality X ′ · λI = X · λI holds in approximately half of
the cases in which the differential in E0 fails; the second is that E0 and E1

are independent. Blondeau et al. [10] provided an exact expression for EΔI ,λO
,

relying only on the latter assumption. In order to present their result, we need
a few more notations (adapted from [10]).

Consider an encryption function E′ and denote its inputs by Z,Z ′ and its
outputs by W,W ′. We use the notation ΔI −→

E′
ΔO for the differential transition

ΔI → ΔO through E′, and the notation λI −→
E′

λO for the linear transition

λI → λO through E′. For an input difference ΔI and an output mask λ, we
denote

εE′
ΔI ,λ = Pr[W · λ = W ′ · λ|Z ⊕ Z ′ = ΔI] − 1

2
,

and for two masks λI , λO, we denote

cE′
λI ,λO

= 2
(

Pr[W · λO = W ′ · λO

∣
∣
∣Z · λ = Z ′ · λ] − 1

2

)

.

Note that cE′
λI ,λO

/2 is the bias of the linear approximation λI −→
E′

λO.

By [10, Theorem 2], assuming only independence between E0 and E1,
we have:

EΔI ,λO
=

∑

λI

εE0
ΔI ,λI

(cE1
λI ,λO

)2. (3)

Of course, the expression (3) is usually hard to evaluate, and thus, in practice
one mostly has to rely (at least partially) on randomness assumptions and verify
the results experimentally.

2.2 The Differential-Linear Connectivity Table and Its Properties

Definition of the DLCT. Let S : {0, 1}n → {0, 1}m be a vectorial Boolean
function. The DLCT of S is an 2n × 2m table whose rows correspond to input
differences to S and whose columns correspond to bit masks of outputs of S.
Formally, for Δ ∈ {0, 1}n and λ ∈ {0, 1}m, the DLCT entry (Δ,λ) is

DLCTS(Δ,λ) �
∣
∣
∣
{

x
∣
∣
∣λ · S(x) = λ · S(x ⊕ Δ)

}∣
∣
∣ − 2n−1.

Sometimes it will be more convenient for us to use the normalized DLCT entry

DLCTS(Δ,λ) � DLCTS(Δ,λ)
2n

= Pr[λ · S(x) = λ · S(x ⊕ Δ)] − 1
2

instead of DLCTS(Δ,λ). The DLCT of Serpent’s S-box S0 is given in Table 1.
A natural interpretation of the DLCT is the following. Assume that S is

equal to the entire encryption function E. Then DLCTS(Δ,λ) is equal (up to
normalization) to the bias we obtain when we apply to E a DL distinguisher

DLCT: A New Tool for Differential-Linear Cryptanalysis 321

Table 1. The DLCT of Serpent’s S0

Δ \λ 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1x 8 0 −4 0 −4 −4 0 4 0 −4 0 0 0 4 0 0

2x 8 0 0 0 −4 0 0 −4 −8 0 0 0 4 0 0 4

3x 8 −4 0 0 4 −4 0 −4 0 0 −4 0 0 4 0 0

4x 8 0 0 −8 0 0 0 0 −8 0 0 8 0 0 0 0

5x 8 4 0 0 0 0 −4 0 0 0 4 0 −4 0 −4 −4

6x 8 −4 −4 0 0 0 0 0 8 −4 −4 0 0 0 0 0

7x 8 0 4 0 0 0 −4 0 0 4 0 0 −4 0 −4 −4

8x 8 −4 0 0 −4 0 −4 4 0 0 −4 0 0 0 4 0

9x 8 0 0 −8 0 0 0 0 0 0 0 0 0 0 0 0

Ax 8 0 −4 0 4 0 −4 −4 0 −4 0 0 0 0 4 0

Bx 8 0 0 0 −4 0 0 −4 0 0 0 −8 4 0 0 4

Cx 8 0 4 0 0 −4 0 0 0 4 0 0 −4 −4 0 −4

Dx 8 −4 −4 8 0 4 4 0 0 −4 −4 0 0 −4 −4 0

Ex 8 4 0 0 0 −4 0 0 0 0 4 0 −4 −4 0 −4

Fx 8 0 0 0 0 4 4 0 0 0 0 −8 0 −4 −4 0

with ΔI = Δ and λO = λ (that is, to the bias EΔ,λ). Thus, if we could construct
a DLCT for the entire encryption scheme E, then the DLCT would completely
capture the DL attack. As such a construction is mostly infeasible, we construct
the DLCT for small components of the cryptosystem (usually, single S-boxes or
Super S-boxes) that lie on the boundary between E0 and E1, in order to obtain
accurate analysis of the transition between the two subciphers.1

The DLCT Framework. Like in the sandwich [21] and the BCT [14] frameworks
of the boomerang attack, when we use the DLCT, we divide the cipher E into
three subciphers: E = E′

1 ◦ Em ◦ E′
0, where E′

0 is covered by the differential
ΔI → Δ, Em is covered by the DLCT (or by several DLCTs applied in parallel),
and E′

1 is covered by the remainder of the linear approximation λ → λO. Usually,
Em covers the first round of E1 and thus it consists of several DLCTs of single
S-boxes applied in parallel. However, if it is feasible to cover by the DLCT a
larger part of the cipher, this is advantageous, as the DLCT gives the exact
result for the part of the cipher it covers. For example, we construct such a
(partial) DLCT for three rounds in our improved DL attack on 8-round DES
presented in Sect. 6.

1 An important independence assumption on the transition is that the active S-boxes
(with non-zero input difference and non-zero output) of the transition are indepen-
dent of each other.

322 A. Bar-On et al.

Complexity Analysis. Assume that we have a differential ΔI
p−→ Δ for E′

0 and a

linear approximation λ
q′
−→ λO for E′

1. (Note that since E′
1 is typically a subcipher

of E1, it is expected that |q′| > |q|). Denote the intermediate values after E′
0 by

X,X ′ and the intermediate values after Em by Y, Y ′.
Adapting the naive analysis of the DL attack complexity presented above

(i.e., Eq. (2)), we obtain

EΔI ,λO
= 4p · DLCTEm

(Δ,λ)
2n

· (q′)2 = 4p · DLCTEm
(Δ,λ) · (q′)2. (4)

Note that in the degenerate case where Em = Id, we have DLCTEm
(Δ,λ) =

2n−1 for all (Δ,λ) and q′ = q, and thus, we obtain EΔI ,λO
= 2pq2 which is

equivalent to Eq. (2) above. Interestingly, when E′
1 = Id, the resulting bias is

EΔI ,λO
= p · DLCTEm

(Δ,λO).
In order to adapt the exact analysis of [10] (i.e., Eq. (3)), a bit more compu-

tation is needed. Note that for any λ, we have

ε
Em◦E′

0
ΔI ,λ =

∑

Δ

(Pr[ΔI −−→
E′

0

Δ] Pr[Y · λ = Y ′ · λ|X ⊕ X′ = Δ]) − 1

2

=
1

2n

∑

Δ

Pr[ΔI −−→
E′

0

Δ] · DLCTEm(Δ, λ) =
∑

Δ

Pr[ΔI −−→
E′

0

Δ] · DLCTEm (Δ, λ).

Plugging this expression into Eq. (3) (where E′
1 is used instead of E1 and Em◦E′

0

is used instead of E0), we obtain that the exact bias of the DL distinguisher is

EΔI ,λO
=

∑

Δ,λ

Pr[ΔI −−→
E′

0

Δ] · DLCTEm
(Δ,λ)(cE′

1
λ,λO

)2. (5)

Note that Eq. (5) is still not free of randomness assumptions; e.g., it relies
on round independence within E′

0 and E′
1 (see [10]). However, it is the most

accurate expression for the bias of the DL distinguisher obtained so far. On the
other hand, Eq. (5) is usually hard to evaluate, and in the actual applications of
the DLCT we do rely on some randomness assumptions and verify our results
experimentally.

Properties of the DLCT. A trivial property of the DLCT is that for any S, we
have DLCTS(0, λ) = 2n−1 for all λ. Indeed, if two inputs to S are equal then
the corresponding outputs agree on any bit mask. This means that in the DL
attack, if for some S-box in the first round of E1, the difference ΔO is zero in
the entire S-box, then the linear approximation in that S-box holds for sure,
while without the dependency between the intermediate values X,X ′ it was
anticipated to hold only probabilistically. This trivial property corresponds to
the middle round S-box trick used in [9] to speed up the boomerang attack and
covered by the BCT [14]. Surprisingly, this feature was not noted before explicitly
in the context of the DL attack. For example, even if we take into account only
this trivial type of dependency, the bias of the DL distinguisher of Dobraunig
et al. [19] on Ascon increases from 2−20 to 2−8. Interestingly, the authors of [19]

DLCT: A New Tool for Differential-Linear Cryptanalysis 323

chose the linear approximation deliberately in such a way that the active S-boxes
in its first round correspond to inactive S-boxes in Δ. However, they did not take
this dependency into account in the computation of the bias, as it is neglected
in the classical DL model.

Another trivial property of the DLCT is that for any S, we have
DLCTS(Δ, 0) = 2n−1 for all Δ’s. Indeed, if the the input mask is zero
(i.e., no output bits are approximated), then their actual value (and by proxy,
their input difference), is of no importance.

Inspection of the DLCT of Serpent’s S-box S0 presented in Table 1 shows
that it contains the value ±2n−1 not only in the trivial entries of the form
DLCTS(0, λ) or DLCTS(Δ, 0), but also in 9 additional places. Moreover, it
contains many very high/very low values that can be used by an adversary,
if she can adjust the differential and the linear approximation such that these
high/low values are used. The existence of such high/low value entries is not
surprising, as current design of S-boxes does not take the DLCT into account.
Hence, the DLCT can serve as a new design criterion for S-boxes, partially
measuring immunity of the cipher with respect to DL attacks.

2.3 Relation of the DLCT to the Fourier Transform

We now show that the DLCT is closely related to the Fourier transform of the
DDT and that this relation can be used to efficiently compute the DLCT. We
begin with a few preliminaries.

The Fourier-Walsh Transform of Boolean Functions. Let f : {0, 1}m → R be a
Boolean function. (Note that f does not have to be two-valued.) The Fourier-
Walsh transform of f is the function f̂ : {0, 1}m → R defined by

f̂(y) =
1

2m

∑

x∈{0,1}m

f(x) · (−1)x·y =
1

2m

⎛

⎝
∑

{x:x·y=0}
f(x) −

∑

{x:x·y=1}
f(x)

⎞

⎠ .

The DDT and the LAT. The DLCT resembles in its structure the two cen-
tral tools used in differential and linear cryptanalysis – the Difference Distri-
bution Table (DDT) and the Linear Approximation Table (LAT). For a vec-
torial Boolean function S : {0, 1}n → {0, 1}m, the DDT of S is an 2n × 2m

table whose rows correspond to input differences to S and whose columns corre-
spond to output differences of S. Formally, for ΔI ∈ {0, 1}n and ΔO ∈ {0, 1}m,
we have

DDTS(ΔI ,ΔO) =
∣
∣
∣
{

x
∣
∣
∣S(x) ⊕ S(x ⊕ ΔI) = ΔO

}∣
∣
∣ .

Similarly, the LAT of S is an 2n × 2m table whose rows correspond to bit masks
of inputs to S and whose columns correspond to bit masks of outputs of S.
Formally, for λI ∈ {0, 1}n and λO ∈ {0, 1}m, we have

LATS(λI , λO) =
∣
∣
∣
{

x
∣
∣
∣λO · S(x) = λI · x

}∣
∣
∣ − 2n−1.

324 A. Bar-On et al.

Relation of the DLCT to the Fourier-Walsh Transform of the DDT. We assert
that each row of the DLCT is equal (up to normalization) to the Fourier-Walsh
transform of the corresponding row of the DDT. Formally, for each Δ ∈ {0, 1}n,
denote the Boolean function which corresponds to the Δ’s row of the DDT by
fΔ. That is, fΔ : {0, 1}m → R is defined by

fΔ(Δ′) = DDTS(Δ,Δ′) =
∣
∣
∣{x ∈ {0, 1}n

∣
∣
∣S(x) ⊕ S(x ⊕ Δ) = Δ′}

∣
∣
∣ .

Proposition 1. For any λ ∈ {0, 1}m, we have DLCT (Δ,λ) = 2m−1f̂Δ(λ).

Proof. By the definitions of the DLCT and of the Fourier-Walsh transform,
we have

DLCTS(Δ,λ) =
∣
∣
∣
{

x
∣
∣
∣λ · S(x) = λ · S(x ⊕ Δ)

}∣
∣
∣ − 2n−1

=
1
2

(∣
∣
∣
{

x
∣
∣
∣λ · S(x) = λ · S(x ⊕ Δ)

}∣
∣
∣ −

∣
∣
∣
{

x
∣
∣
∣λ · S(x) �= λ · S(x ⊕ Δ)

}∣
∣
∣
)

=
1
2

(∣
∣
∣
{

x
∣
∣
∣λ · (S(x) ⊕ S(x ⊕ Δ)) = 0

}∣
∣
∣ −

∣
∣
∣
{

x
∣
∣
∣λ · (S(x) ⊕ S(x ⊕ Δ)) = 1

}∣
∣
∣
)

=
1
2

⎛

⎝
∑

{Δ′:Δ′·λ=0}
fΔ(Δ′) −

∑

{Δ′:Δ′·λ=1}
fΔ(Δ′)

⎞

⎠ = 2m−1f̂Δ(λ),

as asserted. �

A Theoretical Implication. The relation of the DLCT to the Fourier-Walsh trans-
form of the DDT yields an interesting theoretical insight on the differential-linear
attack.

It is well-known that the DDT and the LAT have the following mathematical
interpretations.

– The DDT: If we model the evolution of differences through the encryption
process of a plaintext pair as a Markov chain, then the DDT is simply the
transition matrix of the chain (see, e.g., [26]). In this regard, a differential
attack utilizes a classical probability-theoretic tool for cryptanalysis.

– The LAT: For each mask λ, the λ’s column of the LAT is equal (up to
normalization) to the Fourier-Walsh transform of the Boolean function x �→
λ·S(x) (see, e.g., [15]). In this regard, linear cryptanalysis studies the function
S via its Fourier transform, as is commonly done in Boolean function analysis
(see, e.g., [34]).

Proposition 1 shows that each row of the DLCT is equal (up to normalization)
to the Fourier-Walsh transform of the corresponding row of the DDT. Since
the DLCT of the entire encryption scheme E completely captures DL attacks as
shown above, this implies that the differential-linear attack utilizes an interesting
combination of probabilistic and Fourier-analytic techniques: it considers the
probability-theoretic transition matrix of a Markov chain associated with the
function, and studies it via its Fourier-Walsh transform.

DLCT: A New Tool for Differential-Linear Cryptanalysis 325

A Practical Implication. It is well-known that the Fourier-Walsh transform of a
function f : {0, 1}m → R can be computed in time O(m · 2m) operations. Since
each row of the DDT of S can be easily constructed in time O(2n) operations,
Proposition 1 implies that each row of the DLCT can be computed in time O(2n+
m2m) operations, and that the entire DLCT can be computed in time O(22n +
m2m+n) operations. This significantly improves over the trivial algorithm which
requires O(22n+m) operations.

This speedup is practically important as it allows us to compute the DLCT
for larger parts of the cipher, and thus, obtain a more accurate estimate of
the complexity of the DL attack. For example, in the attack on 8-round DES
presented in Sect. 6, we compute one DLCT entry for three rounds of DES as a
single unit, and so the ability to compute the DLCT efficiently is crucial.

3 Differential-Linear Cryptanalysis of Ascon, Revisited

Ascon [18] is an authenticated encryption algorithm that was recently selected
to the final round of the CAESAR [16] competition. In [19], Dobraunig et al. pre-
sented a practical differential-linear attack on up to 5 rounds of the Ascon per-
mutation, based on a 4-round DL distinguisher. The authors of [19] stated that
while by the theory of the DL attack, the overall bias of the approximation is
expected to be 2−20, experiments show that the bias is significantly higher – 2−2.
They attributed the difference between practice and the theoretical estimate to
multiple linear approximations that affect the overall bias, and used the correct
value in their attack. We recompute the bias of the distinguisher using the DLCT
and show that a large part of the discrepancy results from dependency between
the two subciphers.

In order to recompute the bias, we have to provide some more details on the
specific distinguisher used in [19]. We present the distinguisher only schematically.

The Theoretical Analysis of [19]. The DL distinguisher of [19] targets a 4-round
reduced variant of Ascon denoted by E and decomposed as E = E1 ◦ E0, where
E0 consists of rounds 1–2 and E1 consists of rounds 3–4. For E0, the distinguisher
uses a differential characteristic of the form

Δ0
p0 =2−2

−−−−−→
L◦S

Δ1
p1 =2−3

−−−−−→
L◦S

Δ2,

where Δ2 is a truncated difference. For E1, the distinguisher uses a linear approx-
imation of the form

λ0
q0 =2−7

−−−−−→
L◦S

λ1
q1 =2−2

−−−−−→
L◦S

λ2,

where λ2 consists of a single bit, and all nonzero bits of the mask λ0 are included
in S-boxes in which the all the input bits are known to be zero in Δ2. Using the
naive complexity analysis of the DL attack (i.e., Eq. (2) above), the authors
of [19] concluded that the theoretical estimate for the overall bias of the approx-
imation is 2 · 2−5 · (2−8)2 = 2−20. On the other hand, they found experimentally
that the bias is as high as 2−2.2

2 We emphasize that the results of [19] were not affected by the theoretical estimate,
since the authors of [19] used the experimentally verified value instead of the theo-
retically computed value.

326 A. Bar-On et al.

Partial Explanation of the Discrepancy Using Only the Trivial Property of the
DLCT. As mentioned above, the linear approximation of E1 was chosen by
Dobraunig et al. in such a way that all nonzero bits of the mask λ0 are included
in S-boxes in which all the input bits are known to be zero in Δ2. By the
trivial property of the DLCT presented in Sect. 2, this implies that the linear
approximation in round 3 holds with bias 1/2, instead of the theoretical bias
q0 = 2−7. Therefore, the estimated bias of the approximation is increased to
2 · 2−5 · (2−2)2 = 2−8, which is already much higher than 2−20.

Analysis Using the DLCT. We now obtain a higher bias of 2−5 by revisiting
the analysis using the DLCT. Let us decompose E into E = E2 ◦ Em ◦ E0,
where E0 consists of rounds 1–3, Em consists of round 4, and E2 = Id. Note
that since in the DL distinguisher of [19], the output mask λ2 consists of the
MSB in the output of S-box no. 9, we are only interested in the entries of
the DLCT of that S-box (which we denote by S). For E0, we use a differen-

tial of the form Δ0
p=2−3

−−−−−−→
3 rounds

Δ3, where Δ0 is the input difference of the DL

distinguisher of [19]. In our value of Δ3, three of the input bits to S-box no. 9
are known to be zero; specifically, the input is of the form ?0?00. (Note that the
S-box is from 5 bits to 5 bits). The relevant normalized entries of the DLCT of
S satisfy:

DLCTS(16, 16) = 0,DLCTS(4, 16) = 0,

DLCTS(20, 16) = 2−1, and DLCTS(0, 16) = 2−1.

Hence, assuming that each input difference of S occurs in Δ3 with the same
probability 2−2 and using Eq. (4), we obtain the estimate

4 · 2−3 · 2−2(0 + 0 + 2−1 + 2−1) · (2−1)2 = 2−5

for the overall bias of the DL distinguisher of [19]. This value is, of course, much
lower than the experimentally obtained bias of 2−2 (which may be explained by
the effect of other differentials and linear approximations). On the other hand,
it is significantly higher than the value 2−20 which follows from the classical DL
framework. This demonstrates the importance of taking the dependency between
subciphers into account, which the DLCT facilitates in an easy manner.

4 Differential-Linear Cryptanalysis of Serpent, Revisited

One of the first applications of the DL technique is an attack on the AES finalist
Serpent [1] presented in [5]. The attack is based on a 9-round DL distinguisher
with bias of 2−59 and targets an 11-round variant of the cipher. An improved
attack was presented in [20]. The authors of [20] performed experiments with
reduced round variants of Serpent, and concluded that the actual bias of the
approximation is 2−57.75 and not 2−59. Using the improved bias, they extended
the attack to 12 rounds of Serpent (out of its 32 rounds) yielding the best
currently known attack on the cipher.

DLCT: A New Tool for Differential-Linear Cryptanalysis 327

In [20], the increased bias was attributed to the existence of other approx-
imations that affect the overall bias. In this section we recompute the bias of
the distinguisher using the DLCT and obtain the value 2−57.68, which is very
close to the experimental value. Thus, we conclude that the increased bias in the
experiment results mostly from the dependency between the two subciphers.

In order to recompute the bias, we have to provide some more details on the
specific distinguisher used in [5]. For sake of clarity, we present it only schemat-
ically, and refer the reader to [5] for the exact difference and mask values.

The Analysis of [5]. The DL distinguisher of [5] targets a 9-round reduced variant
of Serpent that starts with round 2 of the cipher. This variant is denoted by E
and decomposed as E = E1◦E0, where E0 consists of rounds 2–4 and E1 consists
of rounds 5–10. For E0, the distinguisher uses a differential characteristic of
the form

Δ0
p0 =2−5

−−−−−→
L◦S2

Δ1
p1 =2−1

−−−−−→
L◦S3

Δ2
p2 =1−−−−→
L◦S4

Δ3,

where Δ2,Δ3 are truncated differences. For E1, the distinguisher uses a linear
approximation of the form

λ0
q0 =2−5

−−−−−→
L◦S5

λ1
q1 =2−23

−−−−−−→
5 rounds

λ7,

where all nonzero bits of the mask λ0 are included in the bits that are known to
be zero in Δ3. Using the naive complexity analysis of the DL attack (i.e., Eq. (2)
above), the authors of [5] concluded that the overall bias of the approximation
is 2 · 2−6 · (2−27)2 = 2−59. (Actually, in their attack they used the lower value of
2−60 due to the effect of other differentials.)

The Experimental Results of [20]. The authors of [20] checked experimentally the
first 4 rounds of the DL distinguisher of [5] (i.e., a 4-round distinguisher which
starts with the difference Δ0 and ends with the mask λ1) and found that its
bias is 2−13.75, instead of the theoretical estimate 2 · 2−6 · (2−5)2 = 2−15. They
concluded that the overall bias of the 9-round distinguisher is 2−57.75 instead of
2−59, and used the conclusion to extend the key-recovery attack based on the
distinguisher from 11 rounds to 12 rounds.

Analysis Using the DLCT. We considered a 3-round variant of Serpent that
starts at round 3, denoted it by E′, and computed the normalized DLCT entry
DLCTE′(Δ1, λ1). (Note that computing the entire DLCT for E′ is infeasible.
However, due to the low diffusion of Serpent, one can compute efficiently part
of the entries, including the entry we needed). We obtained DLCTS(Δ1, λ1) =
2−8.68.

Using Eq. (4) (for the case of E′
1 = Id) we conclude that the bias of the

4-round distinguisher examined in [20] is p1 · DLCTS(Δ1, λ1) = 2−5 · 2−8.68 =
2−13.68, which is very close to the experimental result 2−13.75 of [20].

Note that we obtained an estimate which is very close to the actual value,
using only the naive Eq. (4) and not the more accurate Eq. (5) that takes into
account the effect of other differentials. This shows that the increased bias found

328 A. Bar-On et al.

experimentally in [20] follows almost solely from dependency between the subci-
phers, and demonstrates how the DLCT methodology can be used for obtaining
an accurate estimate of the DL attack complexity.

5 Improved Differential-Linear Attack on ICEPOLE

ICEPOLE is an authenticated encryption cipher based on the duplex construc-
tion proposed by Morawiecki et al. submitted to the CAESAR competition [32].
The main two versions, ICEPOLE128 and ICEPOLE128a are initialized with a
128-bit key. In addition ICEPOLE128 accepts 128-bit nonce and 128-bit secret
message number, in comparison, ICEPOLE128a accepts 96-bit nonce and 0-bit
secret message number (to serve as a drop-in replacement for AES-128-GCM).3

After initialization, the associated data is absorbed into the 1280-bit state. For
the processing of the plaintext (encryption and authentication), a block of 1024
bits is extracted (to be XORed to the plaintext) and the plaintext is XORed into
1024 bits of the state.4 This state is then updated using 6-round Permutation
P6 which iterates a round function P 6 times over 1280 bits. After the entire
plaintext has been encrypted, a tag is produced by extracting bits of the internal
state. The entire process is depicted in Fig. 2.5

In
it

ia
l
co

ns
ta

nt

P12

⊕

key||nonce

Initialization

P6 P6 P6 P6 P6

⊕
pad

σSMN

⊕

cSMN

⊕
pad

σAD
0

· · ·

· · ·

⊕
pad

σAD
m

⊕
pad

σP
0

⊕

c0

· · ·

· · ·

⊕
pad

σP
n

⊕

cn

Processing phase

T

Tag generation

Fig. 2. General structure of ICEPOLE

After ICEPOLE has been introduced, Huang et al. presented a differential-
linear attack against ICEPOLE-128 and ICEPOLE-128a [22]. The attack recov-
ers the internal state using a differential-linear attack, where the bias of the
differential-linear depends on the value of some bits. Hence, observing the bias
in the output allows identifying internal state bits. After full recovery of the inter-
nal state, one can extract the secret key (as long as the scheme is not using secret
message numbers) or forge new messages (when using secret message numbers).
3 We note that ICEPOLE256a is a variant designed to serve as a drop-in replacement

for AES-256-GCM, thus it has the same parameters as AES-256-GCM.
4 Actually, two additional bits are appended – the frame bit which is set to 0 in

all blocks but the last authenticated data block and the last message block, and a
padding bit, but their rule and effect on the attack are negligible.

5 We disregard the exact initialization and the handling of associated data which are
of no relevance to this paper. The interested reader is referred to [32] for more
information.

DLCT: A New Tool for Differential-Linear Cryptanalysis 329

5.1 A Short Description of ICEPOLE-128

We first note that there are three variants of ICEPOLE (ICEPOLE-128,
ICEPOLE-128a, and ICEPOLE-256), but our attacks and description concern
only the 128-bit variants, ICEPOLE-128 and ICEPOLE-128a.

The internal state of ICEPOLE, denoted by S is composed of 20 64-bit
words organized in a 4-by-5 matrix. We follow [32] notations: the bit S[x][y][z]
is the z’th bit of the word at position (x, y) where 0 ≤ x ≤ 3, 0 ≤ y ≤ 4, and
0 ≤ z ≤ 63. This bit is considered to be bit 64(x + 4y) + z of the state. The first
n bits of S are denoted by by S�n�. The z’th slice of S is a 4-by-5 binary matrix
(S[x][y][z])x,y. When z and x are fixed, the 5-bit vector S([x][y][z])y is called a
row.

The round function P is composed of five operations, P = κ ◦ ψ ◦ π ◦ ρ ◦ μ
which are:
– μ operates on each of the 64 slices independently by treating each 20-bit slice

as a vector (Z0, Z1, Z2, Z3) ∈ GF (25) and multiplying this vector by the MDS
matrix

M =

⎛

⎜⎜⎝

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

⎞

⎟⎟⎠ .

The multiplication is done over GF (25) (with the irreducible polynomial
x5 + x2 + 1).

– ρ is a cyclic rotation applied to each of the 20 64-bit words of S. Each word
(x, y) is rotated by a different constant, i.e., S[x][y] = S[x][y] ≪ offsets[x][y]
where the table of offsets[x][y] can be found in [32].

– π reorders the words in S by moving the word S[x][y] into S[x′][y′] according
to the formula:

{
x′ = (x + y) mod 4
y′ = (((x + y) mod 4) + y + 1) mod 5

– ψ applies a 5-bit S-box to each of the 256 rows of the state.
– κ adds a round constant (constant[round]) to S[0][0]. The constants are gen-

erated by an LFSR and can be found in [32].

For the sake of clarity, we shall denote the linear parts of the round function by
L = π ◦ ρ ◦ μ.

As mentioned before, the internal state S is initialized using a constant which
is XORed with (key||nonce) value. After than P12 (12 rounds of P are used to
mix the key and nonce into the state). If secret message numbers are used, they
are encrypted using the duplex operation. The associated data is chopped into
blocks of 1026-bit each (after padding). They are absorbed into the state S, and
then the encryption/authentication of the plaintext takes place following the
duplex operation using P6. After the entire plaintext is processed, P6 is applied
to the internal state (or P12 in ICEPOLEv2), and the 128-bit tag is computed
as T0 = S[0][0], T1 = S[1][0].

In the followings, we use ei to denote a 64-bit word which is 0 in all bits,
besides the i’th bit.

330 A. Bar-On et al.

5.2 Huang et al.’s Differential-Linear Attack
on ICEPOLE-128/ICEPOLE-128a

Huang et al. have presented a differential-linear attack against ICEPOLE-128
and ICEPOLE-128a in the repeated nonce settings [22]. As the attack recovers
the internal state, if the scheme is not using a secret message number, then one
can obtain the key by inverting the internal state. Otherwise, the recovery of the
internal state allows encrypting/authenticating any data.

The attack targets the first application of P6 after the plaintext is introduced
by injecting differences through the plaintext block σ0 and observing biases in
the key stream used to encrypt σ1. Its general structure is depicted in Fig. 3. For
the sake of its description, we denote by I the input to P6 (after the XOR with
the plaintext) and by O the output of P6. Moreover, we denote by ψi, Li, and
κi the ψ, L, and κ of the i’th round.

IS L1 ψ1 f L6 ψ6 κ6
⊕
pad

σP
0

⊕
c0

⊕
pad

σP
1

⊕
c1

X Y Z W V

P6I O

Δ ΔL−1(Δ) Ω Ω′
p = 1 bi =? Char p = 1 pL

f = P ◦ P ◦ P ◦ P ◦ κ

Fig. 3. Differential-linear attack on the “First” P6 of ICEPOLE

The attack of [22] uses the 1024 bits of I and O which can be easily obtained
by knowing the plaintext and ciphertext blocks for a 2-block long message. The
attack introduces differences in the first plaintext block, which does not affect the
fifth column of I. This difference is transformed into an input difference Δ after
the application of the linear layer L (i.e., the introduced difference into the state is
L−1(Δ)). Due to the MDS property of μ and the zero difference in the fifth column,
Δ must have at least two active S-boxes. The behavior of these two active S-boxes,
namely, the probability of the differential transition through them highly depends
on the actual value of some bit bi (or two bits). Hence the input difference Δ∗ of the
differential-linear approximation appears with different probabilities, depending
on the value of this bit. Luckily for us, this bit (or pair of bits) is the outcome
of XORing an unknown input bit (from the fifth column of I) with known bits
(which are controlled by the adversary). This allows the adversary to partition
the plaintext pairs into sets according to the possible values of bi, where for the
“correct” set, we expect a significantly higher bias.

The differential-linear approximation Δ∗ → λ covers the 4 rounds until
round 6, and can be extended until the end of the linear layer L6. We note
that in ψ1, the differential characteristic in use is Δ∗ → Δ = Δ∗. Interestingly,

DLCT: A New Tool for Differential-Linear Cryptanalysis 331

ψ has a very useful property – given the 4 least significant bits of the output,
one can partially recover the input. Table 2 suggests the values, and the prob-
ability that partial information can be found given these 4 output bits. Hence,
any differential-linear whose output mask can be deduced from the partial infor-
mation can be used with some probability, which we denote by pL.

Table 2. Deducing input bits of ψ from the four LSBs of the output

Output Input

MSB Bit 3 Bit 2 Bit 1 LSB

?0000 1 ? 1 ? 1

?0001 ? ? ? ? ?

?0010 ? 0 ? 1 0

?0011 ? ? ? ? 1

?0100 ? ? ? 0 ?

?0101 ? 0 ? 0 ?

?0110 ? 0 ? 1 0

?0111 ? ? ? 1 1

?1000 ? 1 0 1 0

?1001 ? ? 0 ? 1

?1010 ? 1 0 0 0

?1011 ? ? 0 ? 1

?1100 ? ? 1 0 1

?1101 ? 1 1 0 0

?1110 ? 1 1 1 0

?1111 0 0 ? ? ?

Probability (pL) 1/8 1/2 1/2 5/8 3/4

? – unknown value

Due to the structure of ICEPOLE, any differential characteristic and any lin-
ear approximation can be rotated (by rotating each word, respectively). Hence,
the attack is repeated with the 64 rotated versions of the differential-linear
approximation. Each time, it recovers the bit bi (which affects bias of the approx-
imation). This is done by encrypting multiple pairs of plaintexts with input
difference Δ with two active S-boxes (and covering all possible values of the
recovered bit bi), and observing the set which has the highest bias.

Actually, instead of taking all ciphertext pairs, only the pairs which can be
used to predict the input of ψ6 from their 1024-bit outputs O are considered (as
each ciphertext can be used with probability, this is actually probability p2L). The
different approach of extending the differential-linear approximation to cover ψ6

leads to much worse performance (as there are many active S-boxes in the ψ6

layer).

332 A. Bar-On et al.

After studying the differentials and linear approximations that can be
used for the attack, Huang et al. [22] identified 5 input difference patterns
Δ1,Δ2, . . . ,Δ5 that after L activate only two S-boxes, as well as two good linear
approximations λmid

1 → λ1 and λmid
2 → λ2. Given the word-oriented nature of

the permutation P , one can rotate the differences (or masks) by rotating each
word of the mask/difference. Hence, for each bit position it is possible to con-
sider all the combinations of Δi and λj and experimentally calculate the bias of
the resulting differential-linear.

The actual attack tries to find the last column of I (as the first four can be
trivially deduced). Denote this fifth column by the four words (U0, U1, U2, U3).
The first phase recovers U0 and U3, the second phase recovers U2, and finally
the third phase recovers U1. All phases follow an essentially similar process – a
differential-linear approximation is built from a differential characteristic which
probability (in the first round) depends on the value of some specific (unknown)
bits. Then, by observing enough plaintext/ciphertext pairs and evaluating the
bias, one can determine the unknown bits, from which corresponding bits of Ui

are computed.
Following the above steps, we give detailed explanation on how to find the

first bits of U0 and U3 in the attack. For that phase, Huang et al. propose to use
the following Δ2:

Δ2 =

⎛

⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 e10 e41 0 0

⎞

⎟
⎟
⎠

which under L−1 has differences in the LSBs of the words S[0][2], S[1][0], S[1][1],
S[1][2], S[1][3], S[2][1], S[2][3], S[3][0], and S[3][2]. Another technicality is that
the adversary fixes 18 bits (by knowing the first four columns of I she can select
the corresponding σ0), then the probability of the differential transition depends
on two unknown bits – for one of the four possibilities it is significantly higher
probability than for the rest, as presented in Table 3. The specific fixed bits and
their values is given in [22].

The linear mask in use ends with the mask

λ1 =

⎛

⎜
⎜
⎝

0 0 0 0 0
0 e33 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎠

L6−−→ λ′
1 =

⎛

⎜
⎜
⎝

e18 e0 0 e43 0
0 e2 0 0 0
0 e21 e61 0 0
0 0 e41 e56 0

⎞

⎟
⎟
⎠ .

Using Table 2, this suggests that with probability pL = 2−6.45 one can compute
the output mask from a given output O. As each pair requires the evaluation of
two O’s, the probability that a pair can be used for the analysis is p2L = 2−11.9.

For the specific differential-linear characteristics presented above the two
unknown at the entrance of ψ1 which can be recovered are b1 = U31

3 ⊕ a0

and b3 = U43
0 ⊕ U43

3 ⊕ a1, where a0 and a1 can be computed from the four

DLCT: A New Tool for Differential-Linear Cryptanalysis 333

known columns of I. Table 3 offers the different biases as a function of b1 and b3.
These biases were experimentally computed in [22] by taking 230 plaintexts pairs
with the required values fixed.

To conclude, given the above differential-linear characteristic, the recovery
of two bits b1 and b3 is as follows:

1. Collect N plaintext pairs with the required input difference and the 18 bits
fixed.

2. For each pair, check whether one can deduce the bits that enter the linear
mask of ψ6 for both ciphertexts.

3. Divide the remaining pairs into four sets according to the value of unknown
values of b1 and b3.6

4. Find the set with the maximal bias (which suggests the correct values of b1
and b3). Compute from b1, b3 and the known bits the value of the unknown
bits.

The analysis shows that when taking N = 233.9 plaintext pairs (with 18 bits
fixed) we obtain about 233.9 · p2L = 221 pairs which can be analyzed (as we know
the input linear mask to ψ6). These pairs can be divided into four sets of about
219 pairs each, one of which with a bias of 2−7.3, which is significantly higher
than the rest, and thus can be easily detected. The data complexity is thus
233.9 pairs of 2-block messages for each pair of bits b1, b3 recovered, or a total
of 64 · 2 · 2 · 233.9 = 241.9 1024-bit data blocks. We list in Table 3 the different
bits recovered in each phase, the relevant pL, and the data complexity. The full
details are available at [22].

5.3 Our New Results on ICEPOLE-128/ICEPOLE-128a

The main reason the attack of [22] used a single-bit mask for the output is
to ensure a low hamming weight mask. This was chosen to optimize the two
conflicting effects of λ on the complexity of the attack – the more active bits
in L6(λ) there are (which translates to more active bits in λ when λ is of low
hamming weight), the lower pL is. At the same time, λ affects the bias as it sets
the output mask of ψ5, suggesting that constraints on λ may lead to sub-optimal
linear approximations.

Moreover, as the actual biases were measured experimentally (rather than
analytically) we decided to pick a slightly different approach. Instead of studying
single-bit λ we decided to try output masks with a single active S-box. This
allowed raising the bias of the transition in ψ5 from at most 3/16 to 4/16 (which is
significant due to the quadratic effect on the bias, which translates to a quadratic
effect on the data and time complexities).

The increase in the number of possible output masks carries with it a com-
putational problem – one needs to cover more masks in the process of computing
the bias, by a factor of almost 6, for any chosen input difference. Hence, instead
6 We remind the reader that these bits are the XOR of a fixed unknown bits from U0

and U3 with already known bits.

334 A. Bar-On et al.

Table 3. The different phases of the attack of [22]

Phase Recovered bits Value/log2(bias) pL Data complexity

1
bi1 = U31+i

3 , bi2 = U43+i
0 ⊕ U43+i

3
i ∈ {0, 1, . . . 63}

(b1 = 0, b3 = 0) −13

(b1 = 0, b3 = 1) −7.3

(b1 = 1, b3 = 0) −13.9

(b1 = 1, b3 = 1) −11.9

2−6.45 64 · 2 · 2 · 233.9 = 241.9

2
bi2 = U24+i

2
i ∈ {0, 1, . . . 63}

b2 = 0 −11

b2 = 1 −15.4
2−5.86 64 · 2 · 2 · 236.7 = 244.7

3
bi0,3 = U12+2i

1 , bi1,1 = U13+2i
1

i ∈ {0, 1, . . . 31}

(b0,3 = 0, b1,1 = 0) −11.2

(b0,3 = 0, b1,1 = 1) −15.2

(b0,3 = 1, b1,1 = 0) −16.4

(b0,3 = 1, b1,1 = 1) −14.8

2−5.86 32 · 2 · 2 · 237.7 = 244.7

Total 245.8

of relying on multiple time consuming experiments for each input difference Δ,
we use the DLCT of ψ to obtain estimates for the bias of the differential-linear
approximation. This is done by taking the input difference Δ and computing for
each S-box in ψ5 the distribution of input differences (i.e., if the input difference
is δ, determining pδ). Then, for all the active S-boxes in the mask leaving ψ5, for
each S-box’ mask ω we compute

∑
δ pδ · DLCT (δ, ω) to evaluate the probability

of the differential-linear transition in ψ5. As the evaluation of pd for each S-box
is independent of the mask ω, and as the DLCT is computed once, this offers a
very efficient procedure.

The result is the discovery of better differential-linear approximation for the
second and third phase. We give in Table 4 the new differential-linear approxi-
mations used in the second and third phase. Due to the reduced data required
in the later phases, we also reduce the data complexity in the first round (to
reduce the total data complexity) and change a bit the constraints on the actual
values (but they serve the same purpose as in the original attack). One main
difference is that the constraints are not on the values, but rather on the parity
of some subsets of bits. We list these subsets in Table 5.

Table 4. Our new different-linear approximations for phases 2 and 3 of the attack

Phase Δ λ λ′ pL Bias

2

⎛

⎜⎜⎜⎜⎝

e8 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 e0 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

0 e49 e49 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

e3 e49 0 0 0

0 e51 0 0 0

0 0 e46 0 0

0 0 e26 e41 0

⎞

⎟⎟⎟⎟⎠
2−4.77 2−8.88

3

⎛

⎜⎜⎜⎜⎝

0 0 e0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 e1 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

0 e43 e43 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

e61 e43 0 0 0

0 e45 0 0 0

0 0 e40 0 0

0 0 e20 e35 0

⎞

⎟⎟⎟⎟⎠
2−4.77 2−9.49

DLCT: A New Tool for Differential-Linear Cryptanalysis 335

Using the new differential-linear approximations (and bit-fixing) we obtain
an attack on the full ICEPOLE in complexity of 241.58 data and time. Its phases
are listed in Table 6. We note that the first phase has a slightly lower success rate.
After presenting a new approach for generating the data that further reduces
the data and time (to 235.85) we discuss how to mitigate this slightly lower
success rate.

Table 5. Bit subsets fixed for our attack

Phase Subset Parity (Subset) Subset Parity (Subset)

1

⎛

⎜⎜⎜⎜⎝

0 e4 0 0 0

e4 0 0 0 0

0 e4 0 0 0

e4 0 e4 0 0

⎞

⎟⎟⎟⎟⎠
1

⎛

⎜⎜⎜⎜⎝

0 e35 0 0 0

e35 0 0 0 0

0 e35 0 0 0

e35 0 e35 0 0

⎞

⎟⎟⎟⎟⎠
1

⎛

⎜⎜⎜⎜⎝

0 0 e33 0 0

0 0 0 e33 0

0 0 0 e33 0

0 0 0 e33 0

⎞

⎟⎟⎟⎟⎠
0

⎛

⎜⎜⎜⎜⎝

0 0 e0 0 0

0 0 0 e0 0

0 0 0 e0 0

0 0 0 e0 0

⎞

⎟⎟⎟⎟⎠
0

2

⎛

⎜⎜⎜⎜⎝

0 0 0 e27 0

0 0 0 e27 0

0 0 0 0 0

0 0 e27 0 0

⎞

⎟⎟⎟⎟⎠
1

⎛

⎜⎜⎜⎜⎝

0 e17 0 0 0

e17 0 e17 0 0

e17 0 0 0 0

0 e17 0 0 0

⎞

⎟⎟⎟⎟⎠
1

⎛

⎜⎜⎜⎜⎝

0 e58 0 0 0

e58 0 0 0 0

0 e58 0 0 0

e58 0 e58 0 0

⎞

⎟⎟⎟⎟⎠
1

⎛

⎜⎜⎜⎜⎝

0 0 0 0 e8

e8 0 0 0 0

e8 0 0 0 0

e8 0 0 0 0

⎞

⎟⎟⎟⎟⎠
0

⎛

⎜⎜⎜⎜⎝

0 0 e23 0 0

0 0 0 e23 0

0 0 0 e23 0

0 0 0 e23 0

⎞

⎟⎟⎟⎟⎠
0

3

⎛

⎜⎜⎜⎜⎝

0 0 0 0 e0

e0 0 0 0 0

e0 0 0 0 0

e0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
1

⎛

⎜⎜⎜⎜⎝

0 0 0 e19 0

0 0 0 e19 0

0 0 0 0 e19

0 0 e19 0 0

⎞

⎟⎟⎟⎟⎠
1

⎛

⎜⎜⎜⎜⎝

0 0 e24 0 0

0 0 0 e24 0

0 0 0 e24 0

0 0 0 e24 0

⎞

⎟⎟⎟⎟⎠
1

⎛

⎜⎜⎜⎜⎝

0 0 e21 0 0

0 e21 0 0 0

0 0 e21 0 0

0 0 0 e21 0

⎞

⎟⎟⎟⎟⎠
0

⎛

⎜⎜⎜⎜⎝

0 0 e55 0 0

0 0 e55 0 0

0 0 0 e55 0

0 e55 0 0 e55

⎞

⎟⎟⎟⎟⎠
0

336 A. Bar-On et al.

Efficient Data Generation. We note that each of the three phases of the
attack is composed of 64 applications of the same attack up to rotating the
differences/masks. Hence, if each such attack requires about N plaintext pairs,
a trivial implementation requires 64N plaintext pairs. Luckily, there is a more
efficient way to do so.

Our key observation is that one can select Pi in advance to satisfy all the
conditions of the 64 possible rotations. This can be easily done when there is at
least one word which has no conditions/restrictions. For such a Pi we test for
each of the 64 rotations whether one can deduce the needed bits at the input of
ψ6. If so, we generate its counterpart P ∗

i which satisfies the required difference,
and apply the attack as before (with probability of pL that P ∗

i allows recovering
the input of ψ6).

This reduces the data complexity of Phase 1 from 2 · 2 · 64 · 232.8 plaintexts
to 2 · (232.8 + 64 · 232.8−6.45) = 234.6 plaintexts (as for each of the 64 rotations of
the differential-linear approximation there is probability of pL that Pi is useful).
Similar analysis reduces the data complexity of the second phase to 2 · (231.33 +
64 · 231.33−4.77) = 234.07 which is the same also for the third phase. Hence, the
total data complexity of the attack is 235.85 chosen plaintexts.

We note that the reduced data complexity of the first phase may negatively
affect the success rate. Moreover, an error in the first phase is expected to cause
errors in the next phases. However, we note that one can easily test the obtained
values for correctness. If the recovered internal state is not accurate, the adver-
sary can exhaustively test internal states of hamming distance up to 5 from the

extracted one in time of
(

256
5

)

≈ 233.1 recomputations (using simple linear

algebra). In other words, as long as the attack has at most 5 wrong bits, the
correct internal value can be extracted.

5.4 Experimental Verification of Our Attack

We have experimentally verified our attack. We run the full attack 16 times,
using a random key and nonce. The machine was a virtual machine on the
Azure infrastructure (instance Standard F64s v2). The machine has 64 vCPUs
(Intel Xeon 8168 processor) with 128 GB RAM running Ubuntu 18.04.1 TLS.

Table 6. The different phases of the new attack

Phase Recovered Bits Value/log2(bias) pL Data Complexity

1
bi1 = U31+i

3 , bi2 = U43+i
0 ⊕ U43+i

3

i ∈ {0, 1, . . . 63}

(b1 = 0, b3 = 0) −13

(b1 = 0, b3 = 1) −7.3

(b1 = 1, b3 = 0) −13.9

(b1 = 1, b3 = 1) −11.9

2−6.45 64 · 2 · 2 · 232.8 = 240.8

2
bi4 = U27+i

2

i ∈ {0, 1, . . . 63}
b4 = 0 −14.32

b4 = 1 −8.8
2−4.77 64 · 2 · 2 · 231.33 = 239.33

3
bi3 = U21+i

1

i ∈ {0, 1, . . . 63}
b3 = 0 −9.49

b3 = 1 −13
2−4.77 64 · 2 · 2 · 231.33 = 239.33

Total 241.58

DLCT: A New Tool for Differential-Linear Cryptanalysis 337

We have used the official ICEPOLE code (written in C), while our attack was
written in C++. Compiling with gcc-7.3.0 using the optimization flag -O3, each
of the attack’s instances took about an hour. Its code is available at https://
github.com/cryptobiu.

Out of the 16 experiments, 11 recovered the exact internal state. In 4 of
them, a single-bit error took place in phase 3 of the attack (resulting in a single-
bit error in the proposed internal state). Finally, in one experiment, a single-bit
error took place in the first phase, resulting in three bits error (single-bit error
in the second phase and in the third-phase). Of course, once the single-bit error
in the first phase is fixed, then the errors in the other phases are resolved as well.
Hence, we conclude that all experiments succeeded to recover the internal state
(or were sufficiently close to the correct one) using 234.85 2-block plaintexts.

6 Improved Differential-Linear Attack on 8-Round DES

refined analysis of the DLCT, we found out that the attack can be improved
by replacing the differential characteristic and the linear approximation with
another combination of a characteristic and an approximation, which leads to a
higher bias due to dependency between the two underlying subciphers. First we
briefly recall the structure of DES and describe the attack of [4], and then we
present our improved attack.

In this section we use the DLCT methodology to revisit the DL attack on
8-round DES [35] presented by Biham et al. [4]. We show that the attack can be
improved by replacing the differential characteristic and the linear approximation
with another combination of a characteristic and an approximation, which leads
to a higher bias due to dependency between the two underlying subciphers.

6.1 The DL Attack of [4] on 8-Round DES

The attack of [4] is based on a 7-round DL distinguisher. Denote a 7-round variant
of DES by E. The distinguisher uses the decomposition E = E1 ◦ E0, where E0

consists of rounds 1–4 and E1 consists of rounds 5–7. For E0, it uses the truncated
differential

0x00808200 60000000 = ΔI
p= 14

64−−−−→
E0

ΔO = 0x????M??? 00W0XY 0Z,

where M ∈ {0, 1, 2, . . . , 7},W,X ∈ {0, 8}, and Y,Z ∈ {0, 2}. The characteristic is
composed of a 1-round characteristic with probability 14

64 and a 3-round truncated
characteristic with probability 1.

For E1 (rounds 5–7), it uses the linear approximation

0x21040080 00008000 = λI
q =2·(−20

64)2−−−−−−−−→
E1

λI .

Note that all nonzero bits of λI are included in the bits that are known to be
0 in ΔO. Using the naive complexity analysis of the DL attack (i.e., Eq. (2)
above), the authors of [4] concluded that the overall bias of the approximation
is 2pq2 = 2−5.91.

https://github.com/cryptobiu
https://github.com/cryptobiu

338 A. Bar-On et al.

6.2 Our Improved DL Attack on 8-Round DES

At a first glance, it seems unlikely that the distinguisher of [4] can be improved.
Indeed, the linear approximation it uses is known to be the best 3-round lin-
ear approximation of DES, and the only round in the differential characteristic
whose probability is less than 1, is almost the best possible (the highest possi-
ble probability being 16

64). In fact, we verified experimentally that for any other
combination of a differential with probability p′ and a linear approximation with
bias q′, we have 2p′(q′)2 < 2−5.91.

Nevertheless, we obtain a higher bias, using the dependency between the
subciphers. We decompose E as E = E′

1 ◦ Em ◦ E′
0, where E′

0 consists of rounds
1–2, Em consists of rounds 3–5, and E′

1 consists of rounds 6–7. For E′
0, we use

the differential

0x00200008 00000400 = ΔI
p′ = 16

64−−−−→
E′

0

ΔO = 0x60000000 00000000.

For E′
1, we use the linear approximation

0x00808202 00000000 = λI
q′ = −18

64−−−−−→
E′

1

λO = 00808202 80000000.

For Em, we use the DLCT entry7

DLCTEm
(0x60000000 00000000, 0x00808202 00000000) ≈ 0.26.

Using Eq. (4) above, we find that the overall bias of our approximation is

4p′ · DLCTEm
(ΔO, λI) · (q′)2 = 4 ·

(
16
64

)2

· 0.26 ·
(−18

64

)2

= 2−5.6. (6)

Since the data complexity of the DL attack is quadratic in the bias, the improve-
ment from 2−5.91 to 2−5.6 reduces the data complexity of the attack of [4] on
8-round DES by a factor of about 1.5.

Comparison Between our Distinguisher and the Distinguisher of [4]. In
order to compare our distinguisher to that of [4], we present the lat-
ter within the DLCT framework. It is composed of the differential

0x00200008 00000400
p′ = 14

64−−−−→ 0x00000400 00000000 for E0, the linear approx-

imation 0x21040080 00000000
q′ = −18

64−−−−−→ 0x21040080 00008000 for E2, and the
DLCT entry DLCTEm

(0x00000400 00000000, 0x21040080 00000000) ≈ 0.24.
Using Eq. (4), its overall bias is 2−5.81. Note that while the value p′(q′)2 in the
distinguisher of [4] is larger than the corresponding value in our distinguisher,
the overall bias we obtain is higher due to the larger value in the DLCT. This
emphasizes that the advantage of our new DL distinguisher stems mainly from
dependency between the two subciphers, reflected in the DLCT.
7 This entry was computed by looking at all 3-round differential characteristics starting

at input difference 0x60000000 00000000, computing their output difference δi (and
probability), and evaluating the bias of λI · δi. After summing over all differential
characteristics, we have experimentally verified that this DLCT entry is indeed about
0.26.

DLCT: A New Tool for Differential-Linear Cryptanalysis 339

Experimental Verification. We experimentally verified the bias of our DL distin-
guisher, using 100 different keys and 500,000 plaintext pairs for each key. The
average bias found in the experiments was 2−5.58, and the standard deviation
was 2−10.43. This shows that the theoretical estimate of the bias using Eq. (4)
is tight in our case, and thus, demonstrates the strength of the DLCT as a tool
for accurate evaluation of the DL attack complexity.

For sake of completeness, we verified experimentally also the distinguisher of
Biham et al. We checked 100 different keys and 500,000 plaintext pairs for each
key. The average bias found in the experiments was 2−5.72, and the standard
deviation was 2−10.56. In addition, we verified that our DL distinguisher has the
maximal bias among all 7-round DL distinguishers that start and end with a
single active S-box. While we could not check 7-round DL distinguishers with
more than one active S-box in the input difference or in the output bias, it seems
highly unlikely that such a distinguisher will have a higher bias, even if it exploits
the dependency between the subciphers.

Another 7-round DL Distinguisher Used in [4]. The authors of [4] present another
7-round DL distinguisher of DES, which they use in the key recovery attack on
9-round DES. (Its bias is somewhat lower, but it activates less S-boxes in the
round before the distinguisher). We checked this distinguisher using the DLCT
framework and found that its bias is 2−5.95, instead of 2−6.13 computed in [4].
We verified experimentally this result as well, and obtained average bias of 2−5.94

and standard deviation of 2−10.53. This slightly improved bias reduces the data
complexity of the attack of [4] on 9-round DES by a factor of about 1.3.

7 Summary and Conclusions

In this paper we studied the effect of the dependency between the subciphers
on the differential-linear attack. We showed that in various cases of interest,
including previously published DL attacks on Ascon and Serpent, the depen-
dency significantly affects the attack’s complexity. We presented a new tool –
the differential-linear connectivity table (DLCT) – which allows to (partially)
take the dependency into account and to use it for making DL attacks more effi-
cient. We showed a relation of the DLCT to the Fourier transform and deduced
from it a new theoretical insight on the differential-linear attack. Finally, we
demonstrated the strength of our new tool, by improving previously published
DL attacks against ICEPOLE and 8-round DES.

Our objective in this paper was to introduce the DLCT and to present a few
initial applications. Thus, several natural research directions are left for future
work. The first is formalizing the relation of the DLCT with consideration of
multiple linear approximations, as was done for the basic DL framework by
Blondeau, Leander, and Nyberg [10]. The second is finding a way to extend the
DLCT methodology so that it will cover more rounds at the boundary between
E0 and E1. The third direction is studying properties of the DLCT, in a similar

340 A. Bar-On et al.

way to the way the properties of the BCT were recently studied by Boura and
Canteaut [12]. The fourth direction is finding other applications of the DLCT.
We believe that the DLCT is a useful generic tool, and so, we expect more
applications to be found.

Acknowledgements. The research was partially supported by European Research
Council under the ERC starting grant agreement n. 757731 (LightCrypt) and by the
BIU Center for Research in Applied Cryptography and Cyber Security in conjunction
with the Israel National Cyber Bureau in the Prime Minister’s Office. Orr Dunkelman
was supported in part by the Israel Ministry of Science and Technology, the Center
for Cyber, Law, and Policy in conjunction with the Israel National Cyber Bureau
in the Prime Minister’s Office and by the Israeli Science Foundation through grant
No. 880/18.

References

1. Anderson, R., Biham, E., Knudsen, L.R.: Serpent: a proposal for the advanced
encryption standard. In: NIST AES Proposal (1998)

2. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

3. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 21

4. Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 16

5. Biham, E., Dunkelman, O., Keller, N.: Differential-linear cryptanalysis of Serpent.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39887-5 2

6. Biham, E., Dunkelman, O., Keller, N.: A related-key rectangle attack on the full
KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 24

7. Biham, E., Dunkelman, O., Keller, N.: New combined attacks on block ciphers.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 126–144.
Springer, Heidelberg (2005). https://doi.org/10.1007/11502760 9

8. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

9. Biryukov, A., De Cannière, C., Dellkrantz, G.: Cryptanalysis of Safer++. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 195–211. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 12

10. Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis revisited.
J. Cryptol. 30(3), 859–888 (2017)

11. Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
388–404. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 24

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-36178-2_16
https://doi.org/10.1007/978-3-540-39887-5_2
https://doi.org/10.1007/11593447_24
https://doi.org/10.1007/11502760_9
https://doi.org/10.1007/978-3-540-45146-4_12
https://doi.org/10.1007/978-3-642-38348-9_24
https://doi.org/10.1007/978-3-642-38348-9_24

DLCT: A New Tool for Differential-Linear Cryptanalysis 341

12. Boura, C., Canteaut, A.: On the boomerang uniformity of cryptographic S-boxes.
IACR Trans. Symmetric Cryptol. 3, 2018 (2018)

13. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0053450

14. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table:
a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 22

15. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of
Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS,
vol. 4817, pp. 77–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76788-6 7

16. The CAESAR committee: CAESAR: competition for authenticated encryption:
security, applicability, and robustness (2014). http://competitions.cr.yp.to/caesar.
html

17. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-60590-8 21

18. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission to the
CAESAR competition (2014). http://ascon.iaik.tugraz.at

19. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Cryptanalysis of Ascon.
In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 371–387. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 20

20. Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on 12-round
Serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89754-5 24

21. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the
KASUMI cryptosystem used in GSM and 3G telephony. J. Cryptol. 27(4), 824–849
(2014)

22. Huang, T., Tjuawinata, I., Wu, H.: Differential-linear cryptanalysis of ICEPOLE.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 243–263. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48116-5 12

23. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. Submission to the CAE-
SAR competition (2016)

24. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and Serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier,
B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44706-7 6

25. Kim, J., Hong, S., Preneel, B., Biham, E., Dunkelman, O., Keller, N.: Related-key
boomerang and rectangle attacks: theory and experimental analysis. IEEE Trans.
Inf. Theory 58(7), 4948–4966 (2012)

26. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 2

27. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48658-5 3

https://doi.org/10.1007/BFb0053450
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-540-76788-6_7
https://doi.org/10.1007/978-3-540-76788-6_7
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/3-540-60590-8_21
https://doi.org/10.1007/3-540-60590-8_21
http://ascon.iaik.tugraz.at
https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/978-3-540-89754-5_24
https://doi.org/10.1007/978-3-540-89754-5_24
https://doi.org/10.1007/978-3-662-48116-5_12
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/3-540-48658-5_3

342 A. Bar-On et al.

28. Leurent, G.: Improved differential-linear cryptanalysis of 7-round chaskey with
partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 14

29. Liu, Z., Gu, D., Zhang, J., Li, W.: Differential-multiple linear cryptanalysis. In:
Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp.
35–49. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 3

30. Jiqiang, L.: A methodology for differential-linear cryptanalysis and its applications.
Des. Codes Cryptogr. 77(1), 11–48 (2015)

31. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

32. Morawiecki, P., et al.: ICEPOLE: high-speed, hardware-oriented authenticated
encryption. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
392–413. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-
3 22

33. Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theory
57(4), 2517–2521 (2011)

34. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cam-
bridge (2014)

35. US National Bureau of Standards. Data Encryption Standard, Federal Information
Processing Standards publications no. 46 (1977)

36. US National Institute of Standards and Technology. Advanced Encryption Stan-
dard, Federal Information Processing Standards publications no. 197 (2001)

37. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2008)

38. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8 12

https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/978-3-642-16342-5_3
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-662-44709-3_22
https://doi.org/10.1007/978-3-662-44709-3_22
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12

Linear Equivalence of Block Ciphers
with Partial Non-Linear Layers:

Application to LowMC

Itai Dinur1(B), Daniel Kales2, Angela Promitzer3, Sebastian Ramacher2,
and Christian Rechberger2

1 Department of Computer Science, Ben-Gurion University, Beersheba, Israel
dinuri@cs.bgu.ac.il

2 Graz University of Technology, Graz, Austria
3 Graz, Austria

Abstract. LowMC is a block cipher family designed in 2015 by Albrecht
et al. It is optimized for practical instantiations of multi-party computa-
tion, fully homomorphic encryption, and zero-knowledge proofs. LowMC

is used in thePicnic signature scheme, submitted toNIST’s post-quantum
standardization project and is a substantial building block in other novel
post-quantum cryptosystems. Many LowMC instances use a relatively
recent design strategy (initiated by Gérard et al. at CHES 2013) of apply-
ing the non-linear layer to only a part of the state in each round, where the
shortage of non-linear operations is partially compensated by heavy linear
algebra. Since the high linear algebra complexity has been a bottleneck in
several applications, one of the open questions raised by the designers was
to reduce it, without introducing additional non-linear operations (or com-
promising security).

In this paper, we consider LowMC instances with block size n, par-
tial non-linear layers of size s ≤ n and r encryption rounds. We redesign
LowMC’s linear components in a way that preserves its specification, yet
improves LowMC’s performance in essentially every aspect. Most of our
optimizations are applicable to all SP-networks with partial non-linear
layers and shed new light on this relatively new design methodology.

Our main result shows that when s < n, eachLowMC instance belongs
to a large class of equivalent instances that differ in their linear layers. We
then select a representative instance from this class for which encryption
(and decryption) can be implemented much more efficiently than for an
arbitrary instance. This yields a new encryption algorithm that is equiva-
lent to the standard one, but reduces the evaluation time and storage of the
linear layers from r · n2 bits to about r · n2 − (r − 1)(n − s)2. Additionally,
we reduce the size of LowMC’s round keys and constants and optimize
its key schedule and instance generation algorithms. All of these optimiza-
tions give substantial improvements for small s and a reasonable choice
of r. Finally, we formalize the notion of linear equivalence of block ciphers
and prove the optimality of some of our results.

Comprehensive benchmarking of our optimizations in various LowMC

applications (such as Picnic) reveals improvements by factors that typi-
cally range between 2x and 40x in runtime and memory consumption.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 343–372, 2019.
https://doi.org/10.1007/978-3-030-17653-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_12

344 I. Dinur et al.

Keywords: Block cipher · LowMC · Picnic signature scheme ·
Linear equivalence

1 Introduction

LowMC is a block cipher family designed by Albrecht et al. [2], and is heavily
optimized for practical instantiations of multi-party computation (MPC), fully
homomorphic encryption (FHE), and zero-knowledge proofs. In such applica-
tions, non-linear operations incur a higher penalty in communication and compu-
tational complexity compared to linear ones. Due to its design strategy, LowMC

is a popular building block in post-quantum designs that are based on MPC
and zero-knowledge protocols (cf. [6,7,9,10,14]). Most notably, it is used in the
Picnic signature algorithm [8] which is a candidate in NIST’s post-quantum
cryptography standardization project.1

Instances of LowMC are designed to perform well in two particular met-
rics that measure the complexity of non-linear operations over GF(2). The first
metric is multiplicative complexity (MC), which simply counts the number of
multiplications (AND gates in our context) in the circuit. The second metric is
the multiplicative (AND) depth of the circuit.

The relevance of each metric depends on the specific application. For example,
in the context of MPC protocols, Yao’s garbled circuits [20] with the free-XOR
technique [16] (and many of their variants) have a constant number of commu-
nication rounds. The total amount of communication depends on the MC of the
circuit as each AND gate requires communication, whereas XOR operations can
be performed locally. In an additional class of MPC protocols (e.g., GMW [13]),
the number of communication rounds is linear in the ANDdepth of the evalu-
ated circuit. The performance of these protocols depends on both the MC and
ANDdepth of the circuit.

In order to reduce the complexity of non-linear operations for a certain level
of security, LowMC combines very dense linear layers over GF(2)n (where n is
the block size) with simple non-linear layers containing 3×3 Sboxes of algebraic
degree 2. The LowMC block cipher family includes a huge number of instances,
where for each instance, the linear layer of each round is chosen independently
and uniformly at random from all invertible n × n matrices.

The design strategy of LowMC attempts to offer flexibility with respect to
both the MC and ANDdepth metrics. In particular, some LowMC instances
minimize the MC metric by applying only a partial non-linear layer to the state
of the cipher at each round, while the linear layers still mix the entire state.
In general, this approach requires to increase the total number of rounds in the
scheme in order to maintain a certain security level, but this is compensated by
the reduction in the size of the non-linear layers and the total AND count is
generally reduced. The global parameters of LowMC that are most relevant for

1 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-
Submissions.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 345

this paper are (1) the block size of n bits, (2) the number of rounds r (which is
determined according to the desired security level), and (3) a parameter s which
denotes the domain length of each non-linear layer, namely, the number of bits
on which it operates (which may be smaller than n).2

While LowMC’s design aims to minimize the non-linear complexity of the
scheme at the expense of using many linear algebra (XOR) operations, in several
practical applications, XORs do not come for free and may become a bottleneck
in the implementation. This phenomenon was already noted and demonstrated
in the original LowMC paper. Indeed, due to the large computational cost of
LowMC’s dense linear layers, one of the open problems raised by its designers
was to reduce their computational cost, presumably by designing more specific
linear layers that offer the same security level with improved efficiency.

More recently, the high cost of LowMC’s linear operations influenced the
design of the Picnic signature algorithm, where the most relevant metric is
the MC that affects the signature size. In order to minimize the AND count
(and the signature size), the LowMC instances used by Picnic should have a
very small partial non-linear layer in each round (perhaps using only a single
3× 3 Sbox). However, such an instance has a large number of rounds r and each
encryption requires computation of r matrix-vector products that increase the
signing and verification times. Consequently, the Picnic designers settled for
non-linear layers of intermediate size in order to balance the signature size on
one hand and the signing and verification times on the other.

In fact, in Picnic there is another source of inefficiency due to the heavy
cost of the linear operations in LowMC’s key schedule: the computation of
LowMC inside Picnic involves splitting the LowMC instance to 3 related
instances which are evaluated with a fresh share of the key in each invocation.
Therefore, in contrast to standard applications, the key schedule has to be run
before each cipher invocation and it is not possible to hard-code the round keys
into the LowMC instance in this specific (and very important) application. In
LowMC, each of the r + 1 round keys is generated by applying an independent
n×κ random linear transformation to the κ-bit master key. Therefore, the total
complexity of the key schedule is (r + 1) · n · κ in both time and memory, which
is a substantial overhead on the signing and verification processes in Picnic.

Our Contribution. In this paper we revisit the open problem of the LowMC

designers to reduce the complexity of its linear operations, focusing on instances
with partial non-linear layers (i.e., s < n). We consider a generalized LowMC

construction in which the r linear layers are selected uniformly at random from
the set of all invertible matrices and the non-linear layers are arbitrary and
applied to s bits of the n-bit internal state in each of the r rounds. Our results
are divided into several parts.

1. The round keys and constants of a generalized LowMC cipher require mem-
ory of (r + 1) · n bits. We compress them to n + r · s bits. We then consider

2 The LowMC specification denotes by m the number of 3 × 3 Sboxes in each non-
linear layer and therefore s = 3m in our context.

346 I. Dinur et al.

LowMC’s linear key schedule (with a master key of size κ bits) and reduce
its complexity from (r + 1) · n · κ to n · κ + r · (s · κ). This has a substantial
effect on the performance of Picnic, as described above.

2. The linear algebra of the encryption (and decryption) algorithm requires
matrices of size r ·n2 bits and performs matrix-vector products with about the
same complexity. We describe a new algorithm that uses matrices requiring
only r · n2 − (r − 1)(n − s)2 bits of storage and about the same linear algebra
time complexity (using standard matrix-vector products3).

3. We consider the complexity of generating a generalized LowMC instance,
assuming its linear layers are sampled at random. We devise a new sampling
algorithm that reduces this complexity4 from about r ·n3 to n3 +(r−1) · (s2 ·
n). Our sampling algorithm further reduces the number of uniform (pseudo)
random bits required to sample the linear layers from about r · n2 to n2 +
(r − 1) · (n2 − (n − s)2). These optimizations are useful in applications that
require frequent instance generation, e.g. for the RASTA design strategy [11].

4. We address the question of whether the linear layer description we use during
encryption is optimal (i.e., minimal) or can be further compressed. Indeed, it
may seem that the formula n2 +(r − 1)(n2 − (n− s)2) is suboptimal, and the
formula n2 +(r − 1) · s ·n2 is more reasonable, as it is linear in s (similarly to
the reduction in the size of the round keys). However, we prove (under two
assumptions which we argue are natural) that no further optimizations that
reduce the linear layer sizes are possible without changing their functionality.

Table 1 summarizes our improvements and the assumptions under which they can
be applied to an SP-network with partial non-linear layers. Surprisingly, although
the open problem of the LowMC designers presumably involved changing the
specification of LowMC’s linear layers to reduce its linear algebra complexity,
our improvements achieve this without any specification change. All of these
improvements are significant for s � n and r that is not too small.

We stress that our optimized encryption algorithm is applicable to any SP-
network with partial non-linear layers (such as Zorro5 [12]) since it does not
assume any special property of the linear or non-linear layers. Yet, if the lin-
ear layers are not selected uniformly at random, the question of whether our
algorithm is more efficient compared to the standard one depends on the spe-
cific design. On the other hand, when designing new SP-networks with partial
non-linear layers, one may use our optimized linear layers as a starting point
for additional improvements. We further note that the reduced complexity of
the linear layer evaluation during encryption is also useful for adversaries that
attempt to break LowMC instances via exhaustive search.

3 Optimizations in matrix-vector multiplications (such as the “method of four Rus-
sians” [1]) can be applied to both the standard and to our new encryption algorithm.

4 Using asymptotically fast matrix multiplication and invertible matrix sampling algo-
rithms will reduce the asymptotic complexity of both the original and our new
algorithm. Nevertheless, it is not clear whether they would reduce their concrete
complexity for relevant choices of parameters.

5 Although Zorro is broken [3,18,19], its general design strategy remains valid.

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 347

Table 1. Improvements in time/memory/randomness (T/M/R) and assumptions
under which they are applicable (RK = round keys, RC = round constants, KS =
key schedule, LL = linear layer).

Metric Unoptimized Optimized Sect. Assumption

RK and RC M (r + 1) · n n + s · r 3.1 None

KS T/M (r + 1) · (n · κ) n · κ + r · (s · κ) 3.2 Linear KS

LL evaluation T/M r · n2 n2 + (r − 1) · (n2 − (n − s)2) 5 None

LL sampling
T r · n3 n3 + (r − 1) · (s2 · n)

7
Random LL

R r · n2 n2 + (r − 1) · (n2 − (n − s)2) sampling

Table 2. Multiplicative gains (previous/new) in memory consumption and in runtimes
for LowMC encryption and Picnic signing and verification.

Parameters Memory Runtime

n s r LowMC Picnic

128 30 20 2.38x 1.41x 1.34x

192 30 30 3.99x 2.48x 1.72x

256 30 38 4.84x 2.82x 2.01x

128 3 182 16.51x 6.57x 4.74x

192 3 284 31.85x 11.50x 7.97x

256 3 363 39.48x 16.18x 10.83x

Table 2 compares6 the size of LowMC’s linear layers in previous implemen-
tations to our new encryption algorithm for several instances. The first three
instances are the ones used by the Picnic signature algorithm and for them we
obtain a multiplicative gain of between 2.38x and 4.84x in memory consumption.
Runtime-wise we obtain an improvement of a factor between 1.41x to 2.82x for
LowMC encryption and by a factor between 1.34x to 2.01x for Picnic.

Even more importantly, prior to this work, reducing s (in order to optimize
the MC metric) while increasing r (in order to maintain the same security level
for a LowMC instance) increased the linear algebra complexity proportionally
to the increase in the number of rounds, making those instances impractical.
One of the main consequences of this work is that such a reduction in s now also
reduces the linear algebra complexity per round, such that the larger number
of rounds is no longer a limiting factor. In particular, the last three instances
in Table 2 correspond to a choice of parameters with a minimal value of s that
minimizes signature sizes in Picnic. For those instances, we reduce the size of
the linear layers by a factor between 16.51x to 39.48x and improve runtimes
by up to a factor of 16x. Moreover, compared to the original Picnic instances
that use s = 30, using our optimizations, instances with s = 3 reduce memory
consumption and achieve comparable runtime results.

6 For key size and the allowed data complexity, we refer to the full version.

348 I. Dinur et al.

Our Techniques. The first step in reducing the size of the round keys and
constants is to exchange the order of the key and constant additions with the
application of the linear layer in a round of the cipher. While this is a com-
mon technique in symmetric cryptography, we observe that in case s < n, after
reordering, the constant and key additions of consecutive rounds can be merged
through the n − s bits of the state that do not go through the non-linear trans-
formation. Applying this process recursively effectively eliminates all the key
and constant additions on n − s bits of the state (except for the initial key and
constant additions). We then exploit the linear key schedule of LowMC and
compute the reduced round keys more efficiently from the master key.

In order to derive our new encryption algorithm, we show that each (gen-
eralized) LowMC instance belongs to a class of equivalent instances which is
of a very large size when s � n. We then select a representative member of
the equivalence class that can be implemented efficiently using linear algebra
optimizations which apply matrices with a special structure instead of random
matrices (yet the full cipher remains equivalent). This requires a careful exami-
nation of the interaction between linear operations in consecutive rounds which
is somewhat related to (but more complex than) the way that round keys and
constants of consecutive rounds interact. After devising the encryption algo-
rithm, we show how to sample a representative member of an equivalence class
more efficiently than a random member. Our new sampling algorithm breaks
dependencies among different parts of the linear layers in a generalized LowMC

cipher, shedding further light on its internal structure.
Finally, we formalize the notion of linear equivalence among generalized

LowMC ciphers. This allows us to prove (based on two natural assumptions)
that we correctly identified the linear equivalence classes and hence our descrip-
tion of the linear layers is optimal in size and we use the minimal amount of
randomness to sample it. The formalization requires some care and the proof of
optimality is somewhat non-standard (indeed, the claim that we prove is non-
standard).

Related Work. Previous works [4,5] investigated equivalent representations of
AES and other block ciphers obtained by utilizing the specific structure of their
Sboxes (exploiting a property called self-affine equivalence [5]). On the other
hand, our equivalent representation and encryption algorithm is independent of
the non-linear layer and can be applied regardless of its specification. Yet we
only deal with block ciphers with partial non-linear layers in this paper.

Paper Organization. The rest of the paper is organized as follows. We describe
some preliminaries in Sect. 2. Our first optimizations regarding round keys, con-
stants, and the key schedule are described in Sect. 3. In Sect. 4, we prove basic
linear algebra properties, which are then used in our optimized encryption algo-
rithm, described in Sect. 5. Our evaluation of LowMC implementations that
make use of these optimization are detailed in Sect. 6. Next, our optimized
instance generation algorithm for sampling the linear layers is given in Sect. 7.

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 349

Finally, we prove the optimality of our description of the linear layers in Sect. 8
and conclude in Sect. 9.

2 Preliminaries

2.1 Notation

Given a string of bits x ∈ {0, 1}n, denote by x[|d] its d most significant bits
(MSBs) and by x[d|] its d least significant bits (LSBs). Given strings x, y, denote
by x‖y their concatenation. Given a matrix A, denote by A[∗, i] its i’th column,
by A[∗, d|] its first d columns and by A[∗, |d] its last d columns. Given two matri-
ces A ∈ GF(2)d1×d2 and B ∈ GF(2)d1×d3 denote by A‖B ∈ GF(2)d1×(d2+d3)

their concatenation. Denote by Id ∈ GF (2)d×d the identity matrix.
Throughout this paper, addition x + y between bit strings x, y ∈ {0, 1}n is

performed bit-wise over GF(2)n (i.e., by XORing them).

2.2 Generalized LowMC Ciphers

We study generalized LowMC (GLMC) ciphers where the block size is n bits,
and each non-linear layer operates on s ≤ n bits of the state. Each instance is
characterized by a number of rounds r, round keys ki for i ∈ {0, . . . , r} and round
constants Ci, for i ∈ {0, . . . , r}. The cipher consists of r (partial) invertible non-
linear layers Si : {0, 1}s → {0, 1}s and r invertible linear layers Li ∈ GF(2)n×n

for i ∈ {1, . . . , r}.
A GLMC instance is generated by choosing each Li independently and uni-

formly at random among all invertible n × n matrices.7 However, we note that
the main encryption algorithm we devise in Sect. 5 is applicable regardless of the
way that the linear layers are chosen. We do not restrict the invertible non-linear
layers.

The encryption procedure manipulates n-bit words that represent GLMC
states, while breaking them down according to their s LSBs (which we call
“part 0 of the state”) and n − s MSBs (which we call “part 1 of the state”).
To simplify our notation, given any n-bit string x, we denote x(0) = x[s|] and
x(1) = x[|n − s].

The basic GLMC encryption procedure is given in Algorithm 1. Decryption
is performed by applying the inverse operations to a ciphertext.

Key Schedule. The key schedule optimization of Sect. 3.2 assumes that round
keys are generated linearly from the master key (as in LowMC) and we now
define appropriate notation. The master key k is of length κ bits. It is used to
generate round key ki for i ∈ {0, 1, . . . , r} using the matrix Ki ∈ GF (2)n×κ,
namely, ki = Ki · k. During instance generation, each matrix {Ki}r

i=0 is chosen
uniformly at random among all n × κ matrices.
7 Alternatively, they can be selected in a pseudo-random way from a short seed, as in
LowMC.

350 I. Dinur et al.

Input : x0

Output : xr+1

begin
x1 ← x0 + k0 + C0

for i ∈ {1, 2, . . . , r} do

yi ← Si(x
(0)
i)‖x

(1)
i

xi+1 ← Li(yi) + ki + Ci

end
return xr+1

end
Algorithm 1: Basic encryption.

2.3 Breaking Down the Linear Layers

Given Li (which is an n × n matrix), we partition its n-bit input into the first
s LSBs (part 0 of the state that is output by Si) and the remaining n − s bits
(part 1 of the state). Similarly, we partition its n-bit output into the first s LSBs
(that are inputs of Si+1) and the remaining n− s bits. We define 4 sub-matrices
of Li that map between the 4 possible pairs of state parts:

L00
i ∈ GF(2)s×s, L01

i ∈ GF(2)s×(n−s),

L10
i ∈ GF(2)(n−s)×s, L11

i ∈ GF(2)(n−s)×(n−s).

Thus, in our notation Lab
i for a, b ∈ {0, 1} maps the part of the state denoted by

b to the part of the state denoted by a.

Li =
[

L00
i L01

i

L10
i︸︷︷︸
s

L11
i︸︷︷︸

n−s

]} s
} n − s

We extend our notation Lab
i by allowing a, b ∈ {0, 1, ∗}, where the symbol ‘∗’

denotes the full state. Therefore,

L0∗
i ∈ GF(2)s×n, L1∗

i ∈ GF(2)(n−s)×n, L∗0
i ∈ GF(2)n×s, L∗1

i ∈ GF(2)n×(n−s),

are linear transformations which are sub-matrices of Li, as shown below.

Li =
[

L0∗
i

L1∗
i

]
, Li =

[
L∗0

i L∗1
i

]

2.4 Complexity Evaluation

In this paper, we analyze the complexity of the linear layers of generalized
LowMC schemes. We will be interested in the two natural measures of time
complexity (measured by the number of bit operations) and memory complexity
(measured by the number of stored bits) of a single encryption (or decryption)
of an arbitrary plaintext (or ciphertext). The linear layers are naturally repre-
sented by matrices, and thus evaluating a linear layer on a state is a simply a

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 351

matrix-vector product. Since the time and memory complexities of evaluating
and storing the linear layers are proportional in this paper, we will typically refer
to both as the linear algebra complexity of the linear layers. For algorithms that
generate GLMC instances, we will be interested in time complexity and in the
number of random bits (or pseudo-random bits) that they use.

3 Optimized Round Key Computation and Constant
Addition

In this section we optimize the round key computation and constant addition in
a GLMC cipher. First, we show how to compress the round keys and constants
and then we optimize the key schedule of the cipher, assuming it is linear. These
optimizations are significant in case we need to run the key schedule for every
cipher invocation (which is the case in Picnic).

3.1 Compressing the Round Keys and Constants

We combine the last two linear operations in encryption Algorithm 1 and obtain
xi+1 ← Li(yi)+ki+Ci. Moreover, yi ← Si(x

(0)
i)‖x

(1)
i , namely Si only operates on

the first s bits of the state and does not change x
(1)
i . Based on this observation,

we perform the following:

– Modify xi+1 ← Li(yi) + ki + Ci to xi+1 ← Li(yi + L−1
i · ki) + Ci.

– Split L−1
i · ki into the lower s bits (the “non-linear part”, i.e., (L−1

i · ki)(0))
and the upper n − s bits (the “linear part”, i.e., (L−1

i · ki)(1)) and move the
addition of the upper n − s bits before the Sbox layer.

Figure 1 demonstrates one round of the cipher with the above modifications
(which do not change its output).

Next, we observe that the addition of (L−1
i · ki)(1) at the beginning of the

round can be combined with the addition of ki−1 in the previous round. We can
now perform similar operations to round i − 1 and continue recursively until all
additions to the linear part of the state have been moved to the start of the
algorithm. In general, starting from the last round and iterating this procedure
down to the first, we eliminate all additions of the linear parts of the round keys
and move them before the first round. For each round i ≥ 1, we are left with a
reduced round key of size s.

In total, the size of the round keys is reduced from n · (r + 1) to n + s · r. We
remark that the same optimization can be performed to the constant additions,
reducing their size by the same amount. We denote the new reduced round key
of round i by k′

i and the new reduced round constant by C ′
i. The new encryption

procedure is given in Algorithm 2. Observe that all the values {k′
i + C ′

i}r
i=0 can

be computed and stored at the beginning of the encryption and their total size
is n + s · r.

352 I. Dinur et al.

xi

Si

· Li

Ci

ki

xi+1

xi

(L−1
i · ki)(1)

Si

(L−1
i · ki)(0)

· Li

Ci

xi+1

Fig. 1. One round before (left) and after (right) splitting the round key addition.

Input : x0

Output : xr+1

begin
x1 ← x0 + k′

0 + C′
0

for i ∈ {1, 2, . . . , r} do

yi ← (Si(x
(0)
i) + k′

i + C′
i)‖x

(1)
i

xi+1 ← Li(yi)
end
return xr+1

end
Algorithm 2: Encryption with reduced round keys and constants.

3.2 Optimizing the Key Schedule

We now deal with optimizing the round key computation of Algorithm 2, assum-
ing a linear key schedule. The original key schedule applies r + 1 round key
matrices Ki to the κ-bit key k in order to compute the round keys ki = Ki ·k. It
therefore has a complexity of (r+1) · (n ·κ) (using a similar amount of memory).
We show how to reduce this complexity to n · κ + r · (s · κ).

The main observation is that all transformations performed in Sect. 3.1 in
order to calculate the new round keys from the original ones are linear. These
linear transformations can be composed with the linear transformations Ki in
order to define linear transformations that compute the new round keys directly
from the master key k. Since the total size of the round keys is n + s · r bits, we
can define matrices of total size n · κ + r · (s · κ) that calculate all round keys
from the master κ-bit key.

More specifically, we define the matrix L−1
i which is the inverse of the linear

layer matrix Li, with the first s rows of this inverse set to 0. Applying the
iterative procedure defined in Sect. 3.1 from round r down to round i, we obtain

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 353

PN,i =
r∑

j=i

(
j∏

�=i

L−1
�

)
· Kj .

For i ≥ 1, the new round key k′
i (for the non-linear part of the state) is computed

by taking the s least significant bits of PN,i · k. Using the notation of Sect. 2.3,
we have

k′
i = (PN,i)0∗ · k.

Observe that the total size of all {(PN,i)0∗}r
i=1 is r · (s · κ) bits. Finally, the new

round key k′
0 is calculated by summing the contributions from the linear parts

of the state, using the matrix

PL = K0 +
r∑

j=1

(
j∏

�=1

L−1
�

)
· Kj .

Therefore, we have k′
0 = PL · k, where PL is an n × κ matrix. All matrices

{(PN,i)0∗}r
i=1, PL can be precomputed after instance generation and we do not

need to store the original round key matrices Ki.

4 Linear Algebra Properties

In this section we describe the linear algebra properties that are relevant for the
rest of this paper. We begin by describing additional notational conventions.

4.1 General Matrix Notation

The superscript of Lab
i introduce in Sect. 2.3 has a double interpretation, as spec-

ifying both the dimensions of the matrix and its location in Li. We will use this
notation more generally to denote sub-matrices of some n × n matrix A, or sim-
ply to define a matrix with appropriate dimensions (e.g., A01 ∈ GF(2)s×(n−s)

may be defined without defining A and this should be clear from the context).
Therefore, dimensions of the matrices in the rest of the paper will be explicitly
specified in superscript as Aab, where a, b ∈ {0, 1, ∗} (we do not deal with matri-
ces of other dimensions). In case the matrix Aab is a sub-matrix of a larger matrix
A, the superscript has a double interpretation as specifying both the dimensions
of Aab and its location in A. When no superscript is given, the relevant matrix
is of dimensions n × n. There will be two exceptions to this rule which will be
specified separately.

4.2 Invertible Binary Matrices

Denote by αn the probability that an n × n uniformly chosen binary matrix is
invertible. We will use the following well-known fact:

354 I. Dinur et al.

Fact 1 [[15], page 126, adapted] The probability that an n × n uniform binary
matrix is invertible is αn =

∏n
i=1(1 − 1/2i) > 0.2887. More generally, for pos-

itive integers d ≤ n, the probability that a d × n binary matrix, chosen uni-
formly at random, has full row rank of d is

∏n
i=n−d+1(1 − 1/2i) =

(∏n
i=1(1 −

1/2i)
)
/
(∏n−d

i=1 (1 − 1/2i)
)

= αn/αn−d.

We will be interested in invertibility of matrices of a special form, described in
the following fact (which follows from basic linear algebra).

Fact 2 An n × n binary matrix of the form[
A00 A01

A10 In−s

]

is invertible if and only if the s× s matrix B00 = A00 +A01A10 is invertible and
its inverse is given by[

(B00)−1 −(B00)−1 · A01

−A10 · (B00)−1 In−s − A10 · (B00)−1 · A01

]
.

Finally, we prove (in the full version) a simple proposition regarding random
matrices.

Proposition 1. Let A ∈ GF(2)n×n be an invertible matrix chosen uniformly at
random and let B11 ∈ GF(2)(n−s)×(n−s) be an arbitrary invertible matrix (for
s ≤ n) that is independent from A. Then the matrix

C =
[

A00 A01 · B11

A10 A11 · B11

]

is a uniform invertible matrix.

4.3 Normalized Matrices

Definition 1. Let A1∗ be a Boolean matrix with full row rank of n − s (and
therefore it has n−s linearly independent columns). Let COL(A) denote the first
set of n−s linearly independent columns of A1∗ in a fixed lexicographic ordering
of columns sets. Then, these columns form an (n− s)× (n− s) invertible matrix
which is denoted by Ȧ, while the remaining columns form an (n − s) × s matrix
which is denoted by Ä. Moreover, denote Â = Ȧ−1 · A1∗ ∈ GF(2)(n−s)× (in this
matrix Â, the columns of COL(A) form the identity matrix).

Remark 1. The only exception to the rule of Sect. 4.1 has to do with Definition
1 (and later with the related Definition 2). In this paper, the decomposition of
Definition 1 is always applied to matrices A1∗ ∈ GF(2)(n−s)×n (in case A1∗ is a
sub-matrix of A, it contains the bottom n − s rows of A). Hence the resulting
matrices Ȧ ∈ GF(2)(n−s)×(n−s), Ä ∈ GF(2)(n−s)×s and Â ∈ GF(2)(n−s)×n have
fixed dimensions and do not need any superscript. On the other hand, we will
use superscript notation to denote sub-matrices of these. For example Â10 ∈
GF(2)(n−s)×s is a sub-matrix of Â, consisting of its first s columns.

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 355

It will be convenient to consider a lexicographic ordering in which the columns
indices of A1∗ are reversed, i.e., the first ordered set of n − s columns is {n, n −
1, . . . , s+1}, the second is {n, n−1, . . . , s+2, s}, etc. To demonstrate the above
definition, assume that COL(A) = {n, n − 1, . . . , s + 1} is a consecutive set of
linearly independent columns. Then, the matrix A1∗ is shown below.

A1∗ =
[

Ä︸︷︷︸
s

Ȧ︸︷︷︸
n−s

] }
n − s

We can write A = (Ȧ · Ȧ−1) · A = Ȧ · (Ȧ−1 · A) = Ȧ · Â, where

Â = Ȧ−1 · A1∗ =
[
Ȧ−1 · Ä︸ ︷︷ ︸

s

In−s︸︷︷︸
n−s

] }
n − s. (1)

Normalized Equivalence Classes. Given an invertible matrix A ∈ GF(2)n×n,
define

N(A) =
[

A0∗

Â

]
=

[
A0∗

Ȧ−1 · A1∗

]
=

[
Is 001

010 Ȧ−1

]
· A.

The transformation N(·) partitions the set of invertible n × n boolean matrices
into normalized equivalence classes, where A,B are in the same normalized equiv-
alence class if N(A) = N(B). We denote A ↔N B the relation N(A) = N(B).

Proposition 2. Two invertible n × n boolean matrices A,B satisfy A ↔N B if
and only if there exists an invertible matrix C11 such that

A =
[

Is 001

010 C11

]
· B.

For the proof of Proposition 2, we refer the reader to the full version.
Let Φ = {N(A) | A ∈ GF(2)n×n is invertible} contain a representative from

each normalized equivalence class. Using Fact 1 and Proposition 2, we deduce
the following corollary.

Corollary 1. The following properties hold for normalized equivalence classes:

1. Each member of Φ represents a normalized equivalence class whose size is
equal to the number of invertible (n − s) × (n − s) matrices C11, which is
αn−s · 2(n−s)2 .

2. The size of Φ is

|Φ| =
αn · 2n2

αn−s · 2(n−s)2
= αn/αn−s · 2n2−(n−s)2 .

4.4 Matrix-Vector Product

Definition 2. Let A1∗ and B∗1 be two Boolean matrices such that A1∗ has full
row rank of n − s. Define B̌A = B · Ȧ ∈ GF(2)n×(n−s).

When A is understood from the context, we simply write B̌ instead of B̌A.

356 I. Dinur et al.

Remark 2. The notational conventions that apply to Definition 1 also apply Def-
inition 2 (see Remark 1), as it is always applied to matrices A1∗ ∈ GF(2)(n−s)×n

and B∗1 ∈ GF(2)n×(n−s), where B̌ ∈ GF(2)n×(n−s) (and its sub-matrices are
denoted using superscript).

Proposition 3. Let A1∗ and B∗1 be two Boolean matrices such that A1∗ has full
row rank of n−s. Let C = B∗1 ·A1∗ ∈ GF(2)n×n. Then, after preprocessing A1∗

and B∗1, C can be represented using b = n2 − s2 + n bits. Moreover, given x ∈
GF(2)n, the matrix-vector product Cx can be computed using O(b) bit operations.

Note that the above representation of the n×n matrix C is more efficient than
the trivial representation that uses n2 bits (ignoring the additive lower order term
n). It is also more efficient than a representation that uses the decomposition
C = B∗1 · A1∗ which requires 2n(n − s) = (n2 − s2) + (n − s)2 ≥ n2 − s2 bits.

Proof. The optimized representation is obtained by “pushing” linear algebra
operations from A1∗ into B∗1, which “consumes” them, as formally described
next. Note that since A1∗ has full row rank of n − s, we use Definitions 1 and 2,
and write C = B∗1·A1∗ = B∗1·(Ȧ·Ȧ−1)·A1∗ = (B∗1·Ȧ)·(Ȧ−1·A1∗) = B̌·Â, where
B̌ and Â can be computed during preprocessing. Let us assume that the last n−s
columns of A1∗ are linearly independent (namely, COL(A1∗) = {n, n−1, . . . , s+
1}). Then due to (1), Â can be represented using s(n − s) bits and the matrix-
vector product Cx can be computed using O(s(n − s) + n(n − s)) = O(n2 − s2)
bit operations by computing Âx = (Ȧ−1 · Ä) · x[s|] + x[|n − s].

We assumed that the last n − s columns of A1∗ are linearly independent.
If this is not the case, then COL(A1∗) can be specified explicitly (to indicate
the columns of Â that form the identity) using at most n additional bits. The
product Âx is computed by decomposing x according to COL(A1∗) (rather than
according to its s LSBs). �

Remark 3. Consider the case that A1∗ is selected uniformly at random among
all matrices of full row rank. Then, using simple analysis based on Fact 1, n − s
linearly independent columns of A1∗ are very likely to be found among its n−s+3
last columns. Consequently, the additive low-order term n in the representation
size of C can be reduced to an expected size of about 3 log n (specifying the 3
indices among are final n − s + 3 that do not belong in COL(A1∗)). Moreover,
computing the product Âx requires permuting only 3 pairs of bits of x on average
(and then decomposing it as in the proof above).

5 Optimized Linear Layer Evaluation

In this section, we describe our encryption algorithm that optimizes the linear
algebra of Algorithm 2. We begin by optimizing the implementation of a 2-round
GLMC cipher and then consider a general r-round cipher.

It will be convenient to further simplify Algorithm 2 by defining k′′
0 = k′

0+C ′
0.

For i > 0, we move the addition of k′
i + C ′

i into Si by redefining S′′
i (x(0)

i) =
Si(x

(0)
i) + k′

i + C ′
i. This makes the Sbox key-dependent, which is not important

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 357

Input : x0

Output : xr+1

begin
x1 ← x0 + k0

for i ∈ {1, 2, . . . , r} do

yi ← Si(x
(0)
i)‖x

(1)
i

xi+1 ← Li(yi)
end
return xr+1

end
Algorithm 3: Simplified encryption.

for the rest of the paper. Finally, we abuse notation for simplicity and rename
k′′
0 and S′′

i back to k0 and Si, respectively. The outcome is given in Algorithm 3.

5.1 Basic 2-Round Encryption Algorithm

We start with a basic algorithm that attempts to combine the linear algebra
computation of two rounds. This computation can be written as(

x
(0)
3

x
(1)
3

)
=

[
L00
2 L01

2

L10
2 L11

2

] (
y
(0)
2

y
(1)
2

)
,

(
x
(0)
2

x
(1)
2

)
=

[
L00
1 L01

1

L10
1 L11

1

] (
y
(0)
1

y
(1)
1

)
.

Note that x
(0)
2 and y

(0)
2 are related non-linearly as y

(0)
2 = S2(x

(0)
2). On the

other hand, since x
(1)
2 = y

(1)
2 we can compute the contribution of y

(1)
2 to x3 at

once from y1 by partially combining the linear operations of the two rounds as(
t
(0)
3

t
(1)
3

)
=

[
L01
2 L10

1 L01
2 L11

1

L11
2 L10

1 L11
2 L11

1

] (
y
(0)
1

y
(1)
1

)
. (2)

The linear transformation of (2) is obtained from the product L2 ·L1 by ignoring
the terms involving L00

2 and L10
2 (that operate on y

(0)
2). Note that (2) defines an

n × n matrix that can be precomputed.
We are left to compute the contribution of y

(0)
2 to x3, which is done directly

as in Algorithm 3 by

x
(0)
2 ← L0∗

1 (y1), y
(0)
2 ← S2(x

(0)
2), t′3 ← L∗0

2 (y(0)
2). (3)

This calculation involves s × n and n × s matrices. Finally, combining the con-
tributions of (2) and (3), we obtain

x3 ← t3 + t′3.

Overall, the complexity of linear algebra in the two rounds is n2 + 2sn instead
of 2n2 of Algorithm 3. This is an improvement provided that s < n/2, but is
inefficient otherwise.

358 I. Dinur et al.

5.2 Optimized 2-Round Encryption Algorithm

The optimized algorithm requires a closer look at the linear transformation of (2).
Note that this matrix can be rewritten as the product

(
t
(0)
3

t
(1)
3

)
=

[
L01
2

L11
2

] [
L10
1 L11

1

](
y
(0)
1

y
(1)
1

)
. (4)

More compactly, this n × n linear transformation is decomposed as L∗1
2 · L1∗

1 ,
namely, it is a product of matrices with dimensions (n − s) × n and n × (n − s).
In order to take advantage of this decomposition, we use Proposition 3 which
can be applied since L1∗

1 has full row rank of n − s. This reduces linear algebra
complexity of L∗1

2 · L1∗
1 from n2 to n(n − s) + n(n − s) − (n − s)2 = n2 − s2,

ignoring an additive low order term of 3 log n, as computed in Remark 3.

Input : x0

Output: x3

begin
x1 ← x0 + k0
y1 ← S1(x

(0)
1)‖x

(1)
1

x
(0)
2 ← L0∗

1 (y1)
y
(0)
2 ← S2(x

(0)
2)

x3 ← L∗0
2 (y(0)

2)
x3 ← x3 + Ľ2(L̂1(y1))
return x3

end
Algorithm 4: Optimized 2-round
encryption.

Input : x0

Output: x3

begin
x1 ← x0 + k0
y1 ← S1(x

(0)
1)‖x

(1)
1

x
(0)
2 ← L0∗

1 (y1)
z
(1)
2 ← L̂1(y1)

y
(0)
2 ← S2(x

(0)
2)

x3 ← L∗0
2 (y(0)

2)
x3 ← x3 + Ľ2(z

(1)
2)

return x3

end
Algorithm 5: Refactored 2-round
encryption.

Algorithm 4 exploits the decomposition L∗1
2 · L1∗

1 = Ľ2 · L̂1. Altogether, the
linear algebra complexity of 2 rounds is reduced to

n2 + 2sn − s2 = 2n2 − (n − s)2

(or 2n2 − (n − s)2 + 3 log n after taking Remark 3 into account). This is an
improvement by an additive factor of about s2 compared to the basic 2-round
algorithm above and is an improvement over the standard complexity of 2n2 for
essentially all s < n.

5.3 Towards an Optimized r-Round Encryption Algorithm

The optimization applied in the 2-round algorithm does not seem to generalize
to an arbitrary number of rounds in a straightforward manner. In fact, there is
more than one way to generalize this algorithm (and obtain improvements over
the standard one in some cases) using variants of the basic algorithm of Sect. 5.1

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 359

which directly combines more that two rounds. These variants are sub-optimal
since they do not exploit the full potential of Proposition 3.

The optimal algorithm is still not evident since the structure of the rounds
of Algorithm 4 does not resemble their structure in Algorithm 3 that we started
with. Consequently, we rewrite it in Algorithm 5 such that z

(1)
2 = L̂1(y1) is

computed already in round 1 instead of round 2. The linear algebra in round 2
of Algorithm 5 can now be described using the n × n transformation(

x
(0)
3

x
(1)
3

)
=

[
L00
2 Ľ01

2

L10
2 Ľ11

2

] (
y
(0)
2

z
(1)
2

)
.

Note that z
(1)
2 is a value that is never computed by the original Algorithm 3.

When we add additional encryption rounds, we can apply Proposition 3 again
and “push” some of the linear algebra of round 2 into round 3, then “push” some
of the linear algebra of round 3 into round 4, etc. The full algorithm is described
in detail next.

5.4 Optimized r-Round Encryption Algorithm

In this section, we describe our optimized algorithm for evaluating r rounds of
a GLMC cipher. We begin by defining the following sequence of matrices.

For i = 1 : R1∗
1 = L1∗

1

R̂1 = (Ṙ1)−1 · R1∗
1 .

For 2 ≤ i ≤ r − 1 : Ťi = L∗1
i · Ṙi−1

R1∗
i = L10

i ‖Ť 11
i .

R̂i = (Ṙi)−1 · R1∗
i .

For i = r : Ťr = L∗1
r · Ṙr−1.

Basically, the matrix Ťi combines the linear algebra of round i with the linear
algebra that is pushed from the previous round (represented by Ṙi−1). The
matrix R̂i is the source of optimization, computed by normalizing the updated
round matrix (after computing Ťi). The byproduct of this normalization is Ṙi,
which is pushed into round i + 1, and so forth.

Before we continue, we need to prove the following claim (the proof is given
in the full version).

Proposition 4. The matrix R1∗
i has full row rank of n−s for all i ∈ {1, . . . , r−

1}, hence (Ṙi)−1 exists.

The general optimized encryption algorithm is given in Algorithm 6. At a
high level, the first round can be viewed as mapping the “real state” (y(0)

1 , y
(1)
1)

into the “shadow state” (x(0)
2 , z

(1)
2) using the linear transformation(

x
(0)
2

z
(1)
2

)
=

[
L00
1 L01

1

R̂10
1 R̂11

1

] (
y
(0)
1

y
(1)
1

)
.

360 I. Dinur et al.

Input : x0

Output : xr+1

begin
x1 ← x0 + k0

y1 ← S1(x
(0)
1)‖x

(1)
1 � Round 1

x
(0)
2 ← L0∗

1 (y1)

z
(1)
2 ← R̂1(y1)
for i ∈ {2, . . . , r − 1} do

y
(0)
i ← Si(x

(0)
i) � Round i

x
(0)
i+1 ← L00

i (y
(0)
i) + Ť 01

i (z
(1)
i)

z
(1)
i+1 ← R̂i(y

(0)
i ‖z

(1)
i)

end

y
(0)
r ← Sr(x

(0)
r) � Round r

xr+1 ← L∗0
r (y

(0)
r) + Ťr(z

(1)
r)

return xr+1

end
Algorithm 6: Optimized r-round encryption.

In rounds i ∈ {2, . . . , r − 1}, the shadow state (y(0)
i , z

(1)
i) (obtained after

applying Si(x
(0)
i)) is mapped to the next shadow state (x(0)

i+1, z
(1)
i+1) using the

linear transformation (
x
(0)
i+1

z
(1)
i+1

)
=

[
L00

i Ť 01
i

R̂10
i R̂11

i

] (
y
(0)
i

z
(1)
i

)
.

Finally, in round r, the shadow state (y(0)
r , z

(1)
r) is mapped to the final real

state (x(0)
r+1, x

(1)
r+1) using the linear transformation

(
x
(0)
r+1

x
(1)
r+1

)
=

[
L00

r Ť 01
r

L10
r Ť 11

r

](
y
(0)
r

z
(1)
r

)
.

Complexity Evaluation. As noted above, Algorithm 6 applies r linear transfor-
mation, each of dimension n × n. Hence, ignoring the linear algebra optimiza-
tions for each R̂i, the linear algebra complexity of each round is n2, leading
to a total complexity of r · n2. Taking the optimizations into account, for each
i ∈ {1, . . . , r−1}, the actual linear algebra complexity of R̂i is reduced by (n−s)2

to n2 − (n− s)2 (as R̂i contains the (n− s)× (n− s) identity matrix). Therefore,
the total linear algebra complexity is

r · n2 − (r − 1)(n − s)2.

Taking Remark 3 into account, we need to add another factor of 3(r − 1) log n.

Remark 4. Note that Algorithm 6 is obtained from Algorithm 3 independently
of how the instances of the cipher are generated. Hence, Algorithm 6 is applicable
in principle to all SP-networks with partial non-linear layers.

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 361

Correctness. We now prove correctness of Algorithm 6 by showing that its output
value is identical to a standard implementation of the scheme in Algorithm 3.
For each i ∈ {0, 1, . . . , r + 1}, denote by x̄i the state value at the beginning of
round i in a standard implementation and by ȳi the state after the application
of Si. The proof of Proposition 5 are given in the full version.

Proposition 5. For each i ∈ {1, . . . , r − 1} in Algorithm 6, y
(0)
i = ȳ

(0)
i , x

(0)
i+1 =

x̄
(0)
i+1 and z

(1)
i+1 = (Ṙi)−1(x̄(1)

i+1).

Proposition 6. Algorithm 6 is correct, namely xr+1 = x̄r+1.

Proof. By Algorithm 6 and using Proposition 5,

xr+1 =L∗0
r (y(0)

r) + Ťr(z(1)r) = L∗0
r (ȳ(0)

r) + L∗1
r · Ṙr−1

(
(Ṙr−1)−1(x̄(1)

r)
)

=L∗0
r (ȳ(0)

r) + L∗1
r (ȳ(1)

r) = Lr(ȳr) = x̄r+1.

�

6 Applications to LowMC in Picnic and Garbled Circuits

To verify the expected performance and memory improvements, we evaluate
both suggested optimizations in three scenarios: LowMC encryption, the digital
signature scheme Picnic, and in the context of Yao’s garbled circuits. We discuss
the details on the choice of LowMC instances and how LowMC is used in
Picnic and garbled circuits and their applications in the full version. Throughout
this section, we benchmark LowMC instances with block size n, non-linear layer
size s and r rounds and simply refer to them as LowMC-n-s-r. For the evaluation
in the context of Picnic, we integrated our optimizations in the SIMD-optimized
implementation available on GitHub.8 For the evaluation in a garbled circuit
framework, we implement it from scratch. All benchmarks presented in this
section were performed on an Intel Core i7-4790 running Ubuntu 18.04.

6.1 LowMC

We first present benchmarking results for encryption of LowMC instances
selected for the Picnic use-case, i.e., with data complexity 1, and s = 3, as
well as the instances currently used in Picnic with s = 30. While the optimized
round key computation and constant addition (ORKC, Sect. 3) already reduces
the runtime of a single encryption by half, which we would also obtain by pre-
computing the round keys (when not used inside Picnic), the optimized linear
layer evaluation (OLLE, Sect. 5) significantly reduces the runtime even using a
SIMD optimized implementation. For s = 30, we achieve improvements by a fac-
tor up to 2.82x and for s = 3 up to a factor of 16.18x, bringing the performance
of the instances with only one Sbox close to ones with more Sboxes.
8 See https://github.com/IAIK/Picnic for the integration in Picnic and https://

github.com/IAIK/Picnic-LowMC for the matrix generation.

https://github.com/IAIK/Picnic
https://github.com/IAIK/Picnic-LowMC
https://github.com/IAIK/Picnic-LowMC

362 I. Dinur et al.

Table 3. Benchmarks (R) of LowMC-n-s-r instances using SIMD, without optimiza-
tion, with ORKC, and OLLE (in μs). Sizes (S) of matrices and constants stored in
compiled implementation (in KB).

LowMC-n-s-r w/o opt. With ORKC With OLLE Improv. (old/new)

128-30-20
R 3.29 2.36 2.33 1.41x

S 84.2 55.0 35.4 2.38x

192-30-30
R 10.03 5.64 4.04 2.48x

S 369.8 211.2 92.8 3.99x

256-30-38
R 16.41 9.21 5.81 2.82x

S 620.8 353.5 128.3 4.84x

128-3-182
R 30.93 17.13 4.71 6.57x

S 749.9 383.9 45.4 16.51x

192-3-284
R 90.99 47.32 7.91 11.50x

S 3449.5 1743.2 108.3 31.85x

256-3-363
R 167.05 78.64 10.32 16.18x

S 5861.4 2963.7 148.5 39.48x

Table 4. Benchmarks of Picnic-n-s-r using SIMD without optimizations, with ORKC,
and OLLE (in ms).

Parameters w/o opt. With ORKC With OLLE Improv. (old/new)

Sign Verify Sign Verify Sign Verify Sign Verify

Picnic-128-30-20 3.56 2.41 2.71 1.89 2.65 1.87 1.34x 1.29x

Picnic-192-30-30 10.91 7.76 7.52 5.22 6.33 4.44 1.72x 1.75x

Picnic-256-30-38 22.80 15.63 15.41 10.82 11.37 7.88 2.01x 1.98x

Picnic-128-3-182 20.49 14.23 11.78 8.28 4.32 3.11 4.74x 4.57x

Picnic-192-3-284 80.76 58.23 42.85 29.94 10.13 7.29 7.97x 7.99x

Picnic-256-3-363 192.65 139.62 91.77 64.45 18.47 12.89 10.43x 10.83x

Memory-wise we observe huge memory reductions for the instances used in
Picnic. While ORKC reduces the required storage for the LowMC matrices
and constants to about a half, OLLE further reduces memory requirements sub-
stantially. As expected, the instances with a small number of Sboxes benefit most
significantly from both optimizations. For example, for LowMC-256-10-38 the
matrices and constants shrink from 620.8 KB to 128.3 KB, a reduction by 79%,
whereas for LowMC-256-1-363 instead of 5861.4 KB encryption requires only
148.5 KB, i.e., only 2.5% of the original size. The full benchmark results and
sizes of the involved matrices and constants are given in Table 3.

6.2 Picnic

We continue with evaluating our optimizations in Picnic itself. In Table 4 we
present the numbers obtained from benchmarking Picnic with the original

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 363

Table 5. Benchmarks of LowMC-n-s-r instances with standard linear layer using
method of four Russians (M4RM) and OLLE (in seconds for 210 circuit evaluations).

Parameters w/o opt. With M4RM With OLLE Improv. (old/new)

LowMC-128-3-287 8.46 8.01 0.69 12.26x

LowMC-192-3-413 25.26 20.59 1.54 16.40x

LowMC-256-3-537 66.50 40.88 2.69 24.72x

LowMC instances, as well as those with s = 3.9 For instances with 10 Sboxes
we achieve an improvement of up to a factor of 2.01x. For the extreme case
using only 1 Sbox, even better improvements of up to a factor of 10.83x are pos-
sible. With OLLE those instances are close to the performance numbers of the
instances with 10 Sboxes, reducing the overhead from a factor 8.4x to a factor
1.6x. Thus those instances become practically useful alternatives to obtain the
smallest possible signatures.

6.3 Garbled Circuits

Finally, we evaluated LowMC in the context of garbled circuits, where we com-
pare an implementation using the standard linear layer and round-key com-
putation (utilizing the method of four Russians to speed up the matrix-vector
products) to an implementation using our optimizations. In Table 5 we present
the results of our evaluation. We focus on LowMC instances with 1 Sbox, since
in the context of garbled circuits, the number of AND gates directly relates to
the communication overhead. Instances with only 1 Sbox thus minimize the size
of communicated data. In terms of encryption time, we observe major improve-
ments of up to a factor of 24.72x when compared to an implementation without
any optimizations, and a factor of 15.9x when compared to an implementation
using the method of four Russians. Since in this type of implementation we have
to operate on a bit level instead of a word or 256-bit register as in Picnic, the
large reduction of XORs has a greater effect in this scenario, especially since
up to 99% of the runtime of the unoptimized GC protocol is spent evaluating
the LowMC encryption circuit.

7 Optimized Sampling of Linear Layers

In this section we optimize the sampling of linear layers of generalized LowMC

ciphers, assuming they are chosen uniformly at random from the set of all invert-
ible matrices. Sampling the linear layers required by Algorithm 6 in a straight-
forward manner involves selecting r invertible matrices and applying additional
9
Picnic instances may internally use the Fiat-Shamir (FS) or Unruh (UR) trans-
forms. However, as both evaluate LowMC exactly in the same way, only numbers
for Picnic instances using the FS transform are given. Namely, improvements to
LowMC encryption apply to Picnic-FS and Picnic-UR in the same way.

364 I. Dinur et al.

linear algebra operations that transform them to normalized form. This increases
the complexity compared to merely sampling these r matrices in complexity
O(r · n3) using a simple rejection sampling algorithm (or asymptotically faster
using the algorithm of [17]) and encrypting with Algorithm 3.

We show how to reduce the complexity from O(r · n3) to10

O(n3 + (r − 1)(s2 · n)).

We also reduce the amount of (pseudo) random bits requires to sample the linear
layers from about r ·n2 to about r ·n2−(r−1)

(
(n−s)2−2(n−s)

)
. We note that

similar (yet simpler) optimizations can be applied to sampling the key schedule
matrices of the cipher (in case it is linear and its matrices are selected at random,
as considered in Sect. 3.2).

The linear layer sampling complexity is reduced in three stages. The first
stage breaks the dependency between matrices of different rounds. The second
stage breaks the dependency in sampling the bottom part of each round matrix
(containing n−s rows) from its top part. Finally, the substantial improvement in
complexity for small s is obtained in the third stage that optimizes the sampling
of the bottom part of the round matrices. Although the first two stages do not
significantly reduce the complexity, they are necessary for applying the third
stage and are interesting in their own right.

7.1 Breaking Dependencies Among Different Round Matrices

Recall that for i ∈ {2, . . . , r}, the linear transformation of round i is generated
from the matrix [

L00
i Ť 01

i

L10
i Ť 11

i

]
(5)

where
Ťi = L∗1

i · Ṙi−1.

For i = r, this gives the final linear transformation, while for i < r, the final
transformation involves applying the decomposition of Definition 1 to L10

i ‖Ť 11
i .

Since Ťi depends on the invertible (n−s)×(n−s) matrix Ṙi−1 (computed in the
previous round), a naive linear transformation sampling algorithm would involve
computing the linear transformations in their natural order by computing Ṙi−1

in round i−1 and using it in round i. However, this is not required, as the linear
transformation of each round can be sampled independently. Indeed, by using
Proposition 1 with the invertible matrix B11 = Ṙi−1, we conclude that in round i
we can simply sample the matrix given in (5) as a uniform invertible n×n matrix
without ever computing Ṙi−1. Therefore, the linear transformation sampling for
round r simplifies to selecting a uniform invertible n × n matrix, Lr. For rounds
i ∈ {1, . . . , r − 1}, we can select a uniform invertible n × n matrix, Li, and then
normalize it and discard Ṙi after the process. This simplifies Algorithm 6, and
it can be rewritten as in Algorithm 7. Note that we have renamed the sequence
{z

(1)
i } to {x

(1)
i } for convenience.

10 Further asymptotic improvements are possible using fast matrix multiplication.

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 365

Input : x0

Output : xr+1

begin
x1 ← x0 + k0

for i ∈ {1, . . . , r − 1} do

yi ← Si(x
(0)
i)‖x

(1)
i � Round i

xi+1 ← L0∗
i (yi)‖L̂i(yi)

end

yr ← Sr(x
(0)
r)‖x

(1)
r � Round r

xr+1 ← Lr(yr)
return xr+1

end
Algorithm 7: Simplified and optimized r-round encryption.

7.2 Reduced Sampling Space

We examine the sample space of the linear layers more carefully.
For each of the first r − 1 rounds, the sampling procedure for Algorithm 7

involves selecting a uniform invertible matrix and then normalizing it according
to Definition 1. However, by Corollary 1, since each normalized equivalence class
contains the same number of αn−s · 2(n−s)2 invertible matrices, this is equiva-
lent to directly sampling a uniform member from Φ to represent its normalized
equivalence class. If we order all the matrices in Φ, then sampling from it can be
done using log |Φ| uniform bits. However, encrypting with Algorithm 7 requires
an explicit representation of the matrices and using an arbitrary ordering is not
efficient in terms of complexity. In the rest of this section, our goal is to optimize
the complexity of sampling from Φ, but first we introduce notation for the full
sampling space.

Let the set Λr contain r-tuples of matrices defined as

Λr = Φr−1 × {A ∈ GF(2)n×n is invertible},

where Φr−1 = Φ × Φ . . . × Φ︸ ︷︷ ︸
r−1 times

.

The following corollary is a direct continuation of Corollary 1.

Corollary 2. The following properties hold:

1. Each r-tuple (L1, . . . , Lr−1, Lr) ∈ Λr represents a set of size (αn−s)r−1 ·
2(r−1)(n−s)2 containing r-tuples of matrices (L′

1, . . . , L
′
r−1, L

′
r) such that

(
N(L′

1), . . . , N(L′
r−1), L

′
r

)
= (L1, . . . , Lr−1, Lr).

2. Λr contains

|Λr| =
(αn)r · 2n2

(αn−s)r−1 · 2(r−1)(n−s)2
= (αn)r/(αn−s)r−1 · 2r·n2−(r−1)(n−s)2

r-tuples of matrices.

366 I. Dinur et al.

As noted above, sampling from Λr reduces to sampling the first r−1 matrices
uniformly from Φ and using a standard sampling algorithm for the r’th matrix.

7.3 Breaking Dependencies Between Round Sub-Matrices

We describe how to further simplify the algorithm for sampling the linear layers
by breaking the dependency between sampling the bottom and top sub-matrices
in each round. From this point, we will rename the round matrix Li to a general
matrix A ∈ GF(2)n×n for convenience. In order to sample from Φ, the main
idea is to sample the bottom n − s linearly independent rows of A first, apply
the decomposition of Definition 1 and then use this decomposition in order to
efficiently sample the remaining s linearly independent rows of A. Therefore, we
never directly sample the larger n × n matrix, but obtain the same distribution
on output matrices as the original sampling algorithm.

Sampling the Bottom Sub-Matrix. We begin by describing in Algorithm 8
how to sample and compute B̂ (which will be placed in the bottom n − s rows
of A) and COL(B1∗) using simple rejection sampling. It uses the sub-procedure
GenRand(n1, n2) that samples an n1 × n2 binary matrix uniformly at random.

Correctness of the algorithm follows by construction. In terms of complexity,
we keep track of the span of Ḃ using simple Gaussian elimination. Based on
Fact 1, the expected complexity of (a naive implementation of) the algorithm
until it succeeds is O((n − s)3 + s2(n − s)) due to Gaussian elimination and
matrix multiplication.

The Optimized Round Matrix Sampling Algorithm. Let us first assume
that after application of Algorithm 8, we obtain B̂,COL(B1∗) such that
COL(B1∗) includes the n − s last columns (which form the identity matrix in
B̂). The matrix A is built by placing B̂ in its bottom n − s columns, and in this
case it will be of the block form considered in Fact 2. There is a simple formula
(stated in Fact 2) that determines if such matrices are invertible, and we can use
this formula to efficiently sample the top s rows of A, while making sure that
the full n × n matrix is invertible. In case COL(B1∗) does not include the n − s
last columns, then a similar idea still applies since A would be in the special
form after applying a column permutation determined by COL(B1∗). Therefore,
we assume that A is of the special form, sample the top s rows accordingly and
then apply the inverse column permutation to these rows. Algorithm 9 gives
the details of this process. It uses a column permutation matrix, denoted by P
(computed from COL(B1∗), such that B̂ ·P =

(
(Ḃ)−1 ·B̈)‖In−s is of the required

form. The algorithm also uses two sub-procedures:

1. GenRand(n1, n2) samples an n1 × n2 binary matrix uniformly at random.
2. GenInv(n1) samples a uniform invertible n1 × n1 matrix.

The complexity of the algorithm is O((n−s)3+s2(n−s)+s3+s2(n−s)+sn) =
O((n − s)3 + s2(n − s) + s3) (using naive matrix multiplication and invertible

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 367

Output : B̂, COL(B1∗)
begin

B1∗ ← 0(n−s)×n, Ḃ ← 0(n−s)×(n−s)

COL(B1∗) ← ∅, rank ← 0
for i ∈ {n, n − 1, . . . , 1} do

B1∗[∗, i] ← GenRand(n − s, 1)
if rank = n − s or
B1∗[∗, i] ∈ span(Ḃ) then

continue
end
rank ← rank + 1
COL(B1∗) ← COL(B1∗) ∪ {i}
Ḃ[∗, rank] ← B1∗[∗, i]

end
if rank = n − s then

B̂ ← (Ḃ)−1 · B1∗

return B̂, COL(B1∗)
else

return FAIL
end

end

Algorithm 8: SampleBottom() iteration

Output : Round matrix for
Algorithm 7

begin

B̂, COL(B1∗) ←
SampleBottom()
A1∗ ← B̂
C00 ← GenInv(s)
A′01 ← GenRand(s, n − s)
D10 ← (B̂ · P)10

A′00 ← C00 + A′01 · D10

A0∗ ← (A′00‖A′01) · P −1

return A
end

Algorithm 9: Optimized round
matrix sampling.

matrix sampling algorithms), where the dominant factor for small s is (n − s)3.
The algorithm requires about sn + n(n − s) = n2 random bits.

Proposition 7. Algorithm 9 selects a uniform matrix in Φ, namely, the distri-
bution of the output A is identical to the distribution generated by sampling a
uniform invertible n × n matrix and applying the transformation of Definition 1
to its bottom n − s rows.

For the proof of Proposition 7 we refer the reader to the full version.

7.4 Optimized Sampling of the Bottom Sub-Matrix

For small values of s, the complexity of Algorithm 9 is dominated by Algorithm 8
(SampleBottom()), whose complexity is O((n − s)3 + s2(n − s)). We now show
how to reduce this complexity to O(s(n−s)) on average. Thus, the total expected
complexity of Algorithm 9 becomes

O(s2(n − s) + s3) = O(s2 · n)

(using naive matrix multiplication and invertible matrix sampling algorithms).
Moreover, the randomness required by the algorithm is reduced from about
sn + n(n − s) = n2 to about

sn + (s + 2)(n − s) = n2 − (n − s)2 + 2(n − s).

368 I. Dinur et al.

Below, we give an overview of the algorithm. Its formal description and analysis
are given in the full version.

Recall that the output of SampleBottom() consists of B̂,COL(B1∗), where
B̂ contains In−s and s additional columns of n − s bits. The main idea is to
directly sample B̂ without ever sampling the full B1∗ and normalizing it. In
order to achieve this, we have to artificially determine the column set COL(B1∗)
(which contains the identity matrix in B̂), and the values of the remaining s
columns. The optimized algorithm simulates SampleBottom() (Algorithm 8).
This is performed by maintaining and updating the COL(B1∗) and rank vari-
ables as in SampleBottom() and sampling concrete vectors only when necessary.
For example, the columns of COL(B1∗) are not sampled at all and will simply
consist of the identity matrix in the output of the algorithm. There are 3 impor-
tant cases to simulate in the optimized algorithm when considering column i:

1. In SampleBottom(), full rank is not reached (i.e., rank < n − s) and col-
umn i is added to COL(B1∗). Equivalently, the currently sampled vector in
SampleBottom() is not in the subspace spanned by the previously sampled
vectors (whose size is 2rank). This occurs with probability 1 − 2rank/2n−s =
1 − 2(n−s)−rank and can be simulated exactly by (at most) (n − s) − rank
coin tosses in the optimized algorithm (without sampling any vector).

2. In SampleBottom(), full rank is not reached (i.e., rank < n − s) and col-
umn i is not added to COL(B1∗). This is the complementary event to
the first, which occurs with probability 2(n−s)−rank. In SampleBottom(),
such a column i is sampled uniformly from the subspace spanned by the
previously sampled vectors whose size is 2rank. The final multiplication
with (Ḃ)−1 is a change of basis which transforms the basis of the pre-
viously sampled columns to the last rank vectors in the standard basis
e(n−s)−rank+1, e(n−s)−rank+2, . . . , en−s. Hence, column i is a uniform vector in
the subspace spanned by e(n−s)−rank+1, e(n−s)−rank+2, . . . , en−s and the opti-
mized algorithm samples a vector from this space (using rank coin tosses).

3. In SampleBottom(), full rank is reached (i.e., rank = n − s). The optimized
algorithm samples a uniform column using n − s coin tosses. This can be
viewed as a special case of the previously considered one, for rank = n − s.

Note that no linear algebra operations are performed by the optimized algorithm
and it consists mainly of sampling operations.

8 Optimality of Linear Representation

In this section, we prove that the representation of the linear layers used by
Algorithm 7 for a GLMC cipher is essentially optimal. Furthermore, we show
that the number of uniform (pseudo) random bits used by the sampling algo-
rithm derived in Sect. 7 is close to optimal. More specifically, we formulate two
assumptions and prove the following theorem under these assumptions, recalling
the value of |Λr| from Corollary 2.

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 369

Theorem 1. Sampling an instance of a GLMC cipher with uniform linear lay-
ers must use at least

b = log |Λr| = log
(
(αn)r/(αn−s)r−1 · 2r·n2−(r−1)(n−s)2

)
≥ r · n2 − (r − 1)(n − s)2 − 3.5r.

uniform random bits and its encryption (or decryption) algorithm requires at
least b bits of storage on average. Moreover, if a secure PRG is used to generate
the randomness for sampling, then it must produce at least b pseudo-random bits
and the encryption (and decryption) process requires at least b bits of storage on
average, assuming that it does not have access to the PRG.

We mention that the theorem does not account for the storage required by
the non-linear layers. The theorem implies that the code size of Algorithm 7 is
optimal up to an additive factor of about r · (3.5 + 3 log n), which is negligible
(less than 0.01 · b for reasonable choices of parameters).

8.1 Basic Assumptions

The proof relies on the following two assumptions regarding a GLMC cipher,
which are further discussed in the full version.

1. If a PRG is used for the sampling process, it is not used during encryption.
2. The linear layers are stored in a manner which is independent of the spec-

ification of the non-linear layers. Namely, changing the specification of the
non-linear layers does not affect the way that the linear layers are stored.

8.2 Model Formalization

We now define our model which formalizes the assumptions above and allows to
prove the optimality of our representation.

Definition 3. Given a triplet of global parameters (n, s, r), a (simplified) stan-
dard representation of a GLMC cipher is a triplet R = (k0,S,L) such that
k0 ∈ {0, 1}n, S = (S1, S2, . . . , Sr) is an r-tuple containing the specifications of r
non-linear invertible layers Si : {0, 1}s → {0, 1}s and L = (L1, L2, . . . , Lr) is an
r-tuple of invertible matrices Li ∈ GF(2)n×n. The r-tuple L is called a standard
linear representation.

To simplify notation, given a standard representation R = (k0,S,L), we denote
the encryption algorithm defined by Algorithm 3 as ER : {0, 1}n → {0, 1}n.

Definition 4. Two standard cipher representations R,R′ are equivalent
(denoted R ≡ R′) if for each x ∈ {0, 1}n, ER(x) = ER′(x).

Definition 5. Two standard linear representations L,L′ are equivalent (denoted
L ≡ L′) if for each tuple of non-linear layers S, and key k0, (k0,S,L) ≡
(k0,S,L′).

370 I. Dinur et al.

The requirement that (k0,S,L) ≡ (k0,S,L′) for any S, k0 captures the sec-
ond assumption of Sect. 8.1 that a standard representation of the linear layers is
independent of the non-linear layers (and the key).

Clearly, the linear equivalence relation partitions the r-tuples of standard
linear representations into linear equivalence classes. It is important to mention
that Theorem 1 does not assume that the encryption algorithm uses Algorithm 3
or represents the linear layers as an r-tuple of matrices. These definitions are
merely used in its proof, as shown next.

8.3 Proof of Theorem 1

We will prove the following lemma regarding linear equivalence classes, from
which Theorem 1 is easily derived.

Lemma 1. For any L �= L′ ∈ Λr, L �≡ L′.

The lemma states that each r-tuple of Λr is a member of a distinct equivalence
class, implying that we have precisely identified the equivalence classes.

Proof (of Theorem 1). Lemma 1 asserts that there are at least |Λr| linear equiva-
lence classes. Corollary 2 asserts that each r-tuple in Λr represents a set of linear
layers of size (αn−s)r−1 · 2(r−1)(n−s)2 , hence every r-tuple in Λr has the same
probability weight when sampling the r linear layers uniformly at random. The
theorem follows from the well-known information theoretic fact that sampling
and representing a uniform string (an r-tuple in Λr) chosen out of a set of 2t

strings requires at least t bits on average (regardless of any specific sampling or
representation methods). �

The proof of Lemma 1 relies on two propositions which are implications of
the definition of equivalence of standard linear representations (Definition 5).

Proposition 8. Let L ≡ L′ be two equivalent standard linear representations.
Given k0,S, let R = (k0,S,L) and R′ = (k0,S,L′). Fix any x ∈ {0, 1}n and
i ∈ {0, 1, . . . , r + 1}, and denote by xi (resp. x′

i) the value ER(x) (resp. ER′(x))
at the beginning of round i. Then x

(0)
i = x

′(0)
i .

Namely, non-linear layer inputs (and outputs) have to match at each round
when encrypting the same plaintext with ciphers instantiated with equivalent
standard linear representations (and use the same key and non-linear layers).

Proposition 9. Let L ≡ L′ be two equivalent standard linear representations.
Given k0,S, let R = (k0,S,L) and R′ = (k0,S,L′). Fix any x ∈ {0, 1}n and
i ∈ {0, 1, . . . , r + 1}, and denote by xi (resp. x′

i) the value ER(x) (resp. ER′(x))
at the beginning of round i. Moreover, fix x̄ �= x such that x̄i = x̄

(0)
i , x̄

(1)
i , where

x̄
(0)
i �= x

(0)
i , but x̄

(1)
i = x

(1)
i . Then, x̄

′(1)
i = x

′(1)
i .

Linear Equivalence of Block Ciphers with Partial Non-Linear Layers 371

The proposition considers two plaintexts x and x̄ whose encryptions under
the first cipher in round i differ only in the 0 part of the state. We then look at
the second cipher (formed using equivalent standard linear representations) and
claim that the same property must hold for it as well. Namely, the encryptions
of x and x̄ under the second cipher in round i differ only on the 0 part of the
state. For the proofs of Propositions 8 and 9 and Lemma 1, we refer the reader
to the full version.

9 Conclusions

SP-networks with partial non-linear layers (i.e., s < n) have shown to be benefi-
cial in several applications that require minimizing the AND count of the cipher.
Initial cryptanalytic results analyzing ciphers built with this recent design strat-
egy contributed to our understanding of their security. In this paper, we con-
tribute to the efficient implementation of these SP-networks. In particular, we
redesign the linear layers of LowMC instances with s < n in a way that does
not change their specifications, but significantly improves their performance. We
believe that our work will enable designing even more efficient SP-networks with
s < n by using our optimizations as a starting point, allowing to use this design
strategy in new applications.

Acknowledgements. We thank Tyge Tiessen for interesting ideas and discussions
on optimizing LowMC’s round key computation. I. Dinur has been supported by the
Israeli Science Foundation through grant n◦573/16 and by the European Research
Council under the ERC starting grant agreement n◦757731 (LightCrypt). D. Kales has
been supported by IOV42. S. Ramacher, and C. Rechberger have been supported by EU
H2020 project Prismacloud, grant agreement n◦644962. S. Ramacher has additionally
been supported by A-SIT. C. Rechberger has additionally been supported by EU H2020
project PQCRYPTO, grant agreement n◦645622.

References

1. Albrecht, M.R., Bard, G.V., Hart, W.: Algorithm 898: efficient multiplication of
dense matrices over GF(2). ACM Trans. Math. Softw. 37(1), 9:1–9:14 (2010)

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

3. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 315–342. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 13

4. Barkan, E., Biham, E.: In how many ways can you write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36178-2 10

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_13
https://doi.org/10.1007/3-540-36178-2_10

372 I. Dinur et al.

5. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanal-
ysis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39200-9 3

6. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum group signatures from sym-
metric primitives. IACR ePrint 2018, 261 (2018)

7. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: CCS, pp. 1825–1842. ACM (2017)

8. Chase, M., et al.: The picnic signature algorithm specification (2017). https://
github.com/Microsoft/Picnic/blob/master/spec.pdf

9. Derler, D., Ramacher, S., Slamanig, D.: Generic double-authentication preventing
signatures and a post-quantum instantiation. In: Baek, J., Susilo, W., Kim, J. (eds.)
ProvSec 2018. LNCS, vol. 11192, pp. 258–276. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01446-9 15

10. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives.
In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 419–
440. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 20

11. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: a cipher with low ANDdepth and few ANDs per
bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp.
662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 22

12. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987)

14. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: CCS, pp. 525–537. ACM (2018)

15. Kolchin, V.F.: Random Graphs. Cambridge University Press, Cambridge (1999)
16. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and

applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

17. Randall, D.: Efficient generation of random nonsingular matrices. Random Struct.
Algorithms 4(1), 111–118 (1993)

18. Rasoolzadeh, S., Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Total break of Zorro
using linear and differential attacks. ISeCure ISC Int. J. Inf. Secur. 6(1), 23–34
(2014)

19. Wang, Y., Wu, W., Guo, Z., Yu, X.: Differential cryptanalysis and linear distin-
guisher of full-round Zorro. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 308–323. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-07536-5 19

20. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167. IEEE Computer Society (1986)

https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/3-540-39200-9_3
https://github.com/Microsoft/Picnic/blob/master/spec.pdf
https://github.com/Microsoft/Picnic/blob/master/spec.pdf
https://doi.org/10.1007/978-3-030-01446-9_15
https://doi.org/10.1007/978-3-030-01446-9_15
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-319-07536-5_19
https://doi.org/10.1007/978-3-319-07536-5_19

Differential Privacy

Distributed Differential
Privacy via Shuffling

Albert Cheu1(B), Adam Smith2, Jonathan Ullman1,
David Zeber3, and Maxim Zhilyaev4

1 Khoury College of Computer Sciences, Northeastern University, Boston, USA
cheu.a@husky.neu.edu, jullman@ccs.neu.edu

2 Computer Science Department, Boston University, Boston, USA
ads22@bu.edu

3 Mozilla Foundation, Mountain View, USA
dzeber@mozilla.com

4 Mountain View, USA

Abstract. We consider the problem of designing scalable, robust proto-
cols for computing statistics about sensitive data. Specifically, we look at
how best to design differentially private protocols in a distributed setting,
where each user holds a private datum. The literature has mostly consid-
ered two models: the “central” model, in which a trusted server collects
users’ data in the clear, which allows greater accuracy; and the “local”
model, in which users individually randomize their data, and need not
trust the server, but accuracy is limited. Attempts to achieve the accu-
racy of the central model without a trusted server have so far focused on
variants of cryptographic multiparty computation (MPC), which limits
scalability.

In this paper, we initiate the analytic study of a shuffled model for dis-
tributed differentially private algorithms, which lies between the local and
central models. This simple-to-implement model, a special case of the ESA
framework of [5], augments the local model with an anonymous channel
that randomly permutes a set of user-supplied messages. For sum queries,
we show that this model provides the power of the central model while
avoiding the need to trust a central server and the complexity of crypto-
graphic secure function evaluation. More generally, we give evidence that
the power of the shuffled model lies strictly between those of the central
and local models: for a natural restriction of the model, we show that shuf-
fled protocols for a widely studied selection problem require exponentially
higher sample complexity than do central-model protocols.

1 Introduction

The past few years has seen a wave of commercially deployed systems [17,29] for
analysis of users’ sensitive data in the local model of differential privacy (LDP).
LDP systems have several features that make them attractive in practice, and

The full version of this paper is accessible on arXiv.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 375–403, 2019.
https://doi.org/10.1007/978-3-030-17653-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_13&domain=pdf
https://arxiv.org/abs/1808.01394
https://doi.org/10.1007/978-3-030-17653-2_13

376 A. Cheu et al.

limit the barriers to adoption. Each user only sends private data to the data
collector, so users do not need to fully trust the collector, and the collector
is not saddled with legal or ethical obligations. Moreover, these protocols are
relatively simple and scalable, typically requiring each party to asynchronously
send just a single short message.

However, the local model imposes strong constraints on the utility of the
algorithm. These constraints preclude the most useful differentially private algo-
rithms, which require a central model where the users’ data is sent in the clear,
and the data collector is trusted to perform only differentially private compu-
tations. Compared to the central model, the local model requires enormous
amounts of data, both in theory and in practice (see e.g. [20] and the discus-
sion in [5]). Unsurprisingly, the local model has so far only been used by large
corporations like Apple and Google with billions of users.

In principle, there is no dilemma between the central and local models,
as any algorithm can be implemented without a trusted data collector using
cryptographic multiparty computation (MPC). However, despite dramatic recent
progress in the area of practical MPC, existing techniques still require large costs
in terms of computation, communication, and number of rounds of interaction
between the users and data collector, and are considerably more difficult for
companies to extend and maintain.

In this work, we initiate the analytic study of an intermediate model for dis-
tributed differential privacy called the shuffled model. This model, a special case
of the ESA framework of [5], augments the standard model of local differential
privacy with an anonymous channel (also called a shuffler) that collects messages
from the users, randomly permutes them, and then forwards them to the data
collector for analysis. For certain applications, this model overcomes the limita-
tions on accuracy of local algorithms while preserving many of their desirable
features. However, under natural constraints, this model is dramatically weaker
than the central model. In more detail, we make two primary contributions:

– We give a simple, non-interactive algorithm in the shuffled model for estimat-
ing a single Boolean-valued statistical query (also known as a counting query)
that essentially matches the error achievable by centralized algorithms. We
also show how to extend this algorithm to estimate a bounded real-valued sta-
tistical query, albeit at an additional cost in communication. These protocols
are sufficient to implement any algorithm in the statistical queries model [22],
which includes methods such as gradient descent.

– We consider the ubiquitous variable-selection problem—a simple but canon-
ical optimization problem. Given a set of counting queries, the variable-
selection problem is to identify the query with nearly largest value (i.e. an
“approximate argmax”). We prove that the sample complexity of variable
selection in a natural restriction of the shuffled model is exponentially larger
than in the central model. The restriction is that each user send only a single
message into the shuffle, as opposed to a set of messages, which we call this
the one-message shuffled model. Our positive results show that the sample
complexity in the shuffled model is polynomially smaller than in the local

Distributed Differential Privacy via Shuffling 377

model. Taken together, our results give evidence that the central, shuffled,
and local models are strictly ordered in the accuracy they can achieve for
selection. Our lower bounds follow from a structural result showing that any
algorithm that is private in the one-message shuffled model is also private in
the local model with weak, but non-trivial, parameters.

In concurrent and independent work, Erlingsson et al. [16] give conceptu-
ally similar positive results for local protocols aided by a shuffler. We give a
more detailed comparison between our work and theirs after giving a thorough
description of the model and our results (Sect. 2.3)

1.1 Background and Related Work

Models for Differentially Private Algorithms. Differential privacy [14] is
a restriction on the algorithm that processes a dataset to provide statistical
summaries or other output. It ensures that, no matter what an attacker learns
by interacting with the algorithm, it would have learned nearly the same thing
whether or not the dataset contained any particular individual’s data [21]. Dif-
ferential privacy is now widely studied, and algorithms satisfying the criterion
are increasingly deployed [1,17,24].

There are two well-studied models for implementing differentially-private
algorithms. In the central model, raw data are collected at a central server
where they are processed by a differentially private algorithm. In the local model
[14,18,33], each individual applies a differentially private algorithm locally to
their data and shares only the output of the algorithm—called a report or
response—with a server that aggregates users’ reports. The local model allows
individuals to retain control of their data since privacy guarantees are enforced
directly by their devices. It avoids the need for a single, widely-trusted entity and
the resulting single point of security failure. The local model has witnessed an
explosion of research in recent years, ranging from theoretical work to deployed
implementations. A complete survey is beyond the scope of this paper.

Unfortunately, for most tasks there is a large, unavoidable gap between the
accuracy that is achievable in the two models. [4] and [8] show that estimating the
sum of bits, one held by each player, requires error Ω(

√
n/ε) in the local model,

while an error of just O(1/ε) is possible the central model. [12] extended this
lower bound to a wide range of natural problems, showing that the error must
blowup by at least Ω(

√
n), and often by an additional factor growing with the

data dimension. More abstractly, [20] showed that the power of the local model is
equivalent to the statistical query model [22] from learning theory. They used this
to show an exponential separation between the accuracy and sample complexity
of local and central algorithms. Subsequently, an even more natural separation
arose for the variable-selection problem [12,31], which we also consider in this
work.

Implementing Central-Model Algorithms in Distributed Models. In
principle, one could also use the powerful, general tools of modern cryptogra-
phy, such as multiparty computation (MPC), or secure function evaluation, to

378 A. Cheu et al.

simulate central model algorithms in a setting without a trusted server [13], but
such algorithms currently impose bandwidth and liveness constraints that make
them impractical for large deployments. In contrast, Google [17] now uses local
differentially private protocols to collect certain usage statistics from hundreds
of millions of users’ devices.

A number of specific, efficient MPC algorithms have been proposed for dif-
ferentially private functionalities. They generally either (1) focus on simple
summations and require a single “semi-honest”/“honest-but-curious” server that
aggregates user answers, as in [6,9,26] ; or (2) allow general computations, but
require a network of servers, a majority of whom are assumed to behave honestly,
as in [11]. As they currently stand, these approaches have a number of drawbacks:
they either require users to trust that a server maintained by a service provided
is behaving (semi-)honestly, or they require that a coalition of service providers
collaborate to run protocols that reveal to each other who their users are and
what computations they are performing on their users’ data. It is possible to
avoid these issues by combining anonymous communication layers and MPC
protocols for universal circuits but, with current techniques, such modifications
destroy the efficiency gains relative to generic MPC.

Thus, a natural question—relevant no matter how the state of the art in
MPC evolves—is to identify simple (and even minimal) primitives that can be
implemented via MPC in a distributed model and are expressive enough to allow
for sophisticated private data analysis. In this paper, we show that shuffling is
a powerful primitive for differentially private algorithms.

Mixnets. One way to realize the shuffling functionality is via a mixnet. A mix
network, or mixnet, is a protocol involving several computers that takes as input
a sequence of encrypted messages, and outputs a uniformly random permutation
of those messages’ plaintexts. Introduced by [10], the basic idea now exists in
many variations. In its simplest instantiation, the network consists of a sequence
of servers, whose identities and ordering are public information.1 Messages, each
one encrypted with all the servers’ keys, are submitted by users to the first server.
Once enough messages have been submitted, each server in turn performs a shuf-
fle in which the server removes one layer of encryption and sends a permutation
of the messages to the next server. In a verifiable shuffle, the server also pro-
duces a cryptographic proof that the shuffle preserved the multi-set of messages.
The final server sends the messages to their final recipients, which might be dif-
ferent for each message. A variety of efficient implementations of mixnets with
verifiable shuffles exist (see, e.g., [5,23] and citations therein).

Another line of work [19,30] shows how to use differential privacy in addi-
tion to mixnets to make communication patterns differentially private for the
purposes of anonymous computation. Despite the superficial similarly, this line
of work is orthogonal to ours, which is about how to use mixnets themselves to
achieve (more accurate) differentially private data analysis.

1 Variations on this idea based on onion routing allow the user to specify a secret path
through a network of mixes.

Distributed Differential Privacy via Shuffling 379

Shufflers as a Primitive for Private Data Analysis. This paper studies
how to use a shuffler (e.g. a mixnet) as a cryptographic primitive to implement
differentially-private algorithms. Bittau et al. [5] propose a general framework,
dubbed encode-shuffle-analyze (or ESA), which generalizes the local and cen-
tral models by allowing a local randomized encoding step E performed on user
devices, a permutation step S in which encrypted encodings are shuffled, and a
final randomized process A that analyzes the permuted encodings. We ask what
privacy guarantee can be provided if we rely only on the local encoding E and
the shuffle S—the analyst A is untrusted. In particular, we are interested in pro-
tocols that are substantially more accurate than is possible in the local model
(in which the privacy guarantee relies entirely on the encoding E). This general
question was left open by [5].

One may think of the shuffled model as specifying a highly restricted MPC
primitive on which we hope to base privacy. Relative to general MPC, the use
of mixnets for shuffling provides several advantages: First, there already exist a
number of highly efficient implementations. Second, their trust model is simple
and robust—as long as a single one of the servers performs its shuffle honestly,
the entire process is a uniformly random permutation, and our protocols’ privacy
guarantees will hold. The architecture and trust guarantees are also easy to
explain to nonexperts (say, with metaphors of shuffled cards or shell games).
Finally, mixnets automatically provide a number of additional features that are
desirable for data collection: they can maintain secrecy of a company’s user
base, since each company’s users could use that company’s server as their first
hop; and they can maintain secrecy of the company’s computations, since the
specific computation is done by the analyst. Note that we think of a mixnet
here as operating on large batches of messages, whose size is denoted by n. (In
implementation, this requires a fair amount of latency, as the collection point
must receive sufficiently many messages before proceeding—see Bittau et al. [5]).

Understanding the possibilities and limitations of shuffled protocols for pri-
vate data analysis is interesting from both theoretical and practical perspectives.
It provides an intermediate abstraction, and we give evidence that it lies strictly
between the central and local models. Thus, it sheds light on the minimal cryp-
tographic primitives needed to get the central model’s accuracy. It also provides
an attractive platform for near-term deployment [5], for the reasons listed above.

380 A. Cheu et al.

For the remainder of this paper, we treat the shuffler as an abstract service
that randomly permutes a set of messages. We leave a discussion of the many
engineering, social, and cryptographic implementation considerations to future
work.

2 Overview of Results

The Shuffled Model. In our model, there are n users, each with data xi ∈ X .
Each user applies some encoder R : X → Ym to their data and sends the
messages (yi,1, . . . , yi,m) = R(xi). In the one-message shuffled model, each user
sends m = 1 message. The n ·m messages yi,j are sent to a shuffler S : Y∗ → Y∗

that takes these messages and outputs them in a uniformly random order. The
shuffled set of messages is then passed through some analyzer A : Y∗ → Z to
estimate some function f(x1, . . . , xn). Thus, the protocol P consists of the tuple
(R,S,A). We say that the algorithm is (ε, δ)-differentially private in the shuffled
model if the algorithm MR(x1, . . . , xn) = S(∪n

i=1R(xi)) satisfies (ε, δ)-differential
privacy. For more detail, see the discussion leading to Definition 8.

In contrast to the local model, differential privacy is now a property of all n
users’ messages, and the (ε, δ) may be functions of n. However, if an adversary
were to inject additional messages, then it would not degrade privacy, provided
that those messages are independent of the honest users’ data. Thus, we may
replace n, in our results, as a lower bound on the number of honest users in
the system. For example, if we have a protocol that is private for n users, but
instead we have n

p users of which we assume at least a p fraction are honest, the
protocol will continue to satisfy differential privacy.

2.1 Algorithmic Results

Our main result shows how to estimate any bounded, real-valued linear statistic
(a statistical query) in the shuffled model with error that nearly matches the best
possible utility achievable in the central model.

Theorem 1. For every ε ∈ (0, 1), and every δ � εn2−εn and every function f :
X → [0, 1], there is a protocol P in the shuffled model that is (ε, δ)-differentially
private, and for every n and every X = (x1, . . . , xn) ∈ X n,

E

[∣∣∣∣∣P (X) −
n∑

i=1

f(xi)

∣∣∣∣∣
]

= O

(
1
ε

log
n

δ

)
.

Each user sends m = Θ(ε
√

n) one-bit messages.

For comparison, in the central model, the Laplace mechanism achieves (ε, 0)-
differential privacy and error O(1ε). In contrast, error Ω(1ε

√
n) is necessary in the

local model. Thus, for answering statistical queries, this protocol essentially has
the best properties of the local and central models (up to logarithmic factors).

In the special case of estimating a sum of bits (or a Boolean-valued linear
statistic), our protocol has a slightly nicer guarantee and form.

Distributed Differential Privacy via Shuffling 381

Theorem 2. For every ε ∈ (0, 1), and every δ � 2−εn and every function f :
X → {0, 1}, there is a protocol P in the shuffled model that is (ε, δ)-differentially
private, and for every n and every X = (x1, . . . , xn) ∈ X n,

E

[∣∣∣∣∣P (X) −
n∑

i=1

f(xi)

∣∣∣∣∣
]

= O

(
1
ε

√
log

1
δ

)
.

Each user sends a single one-bit message.

The protocol corresponding to Theorem 2 is extremely simple:

1. For some appropriate choice of p ∈ (0, 1), each user i with input xi outputs
yi = xi with probability 1−p and a uniformly random bit yi with probability
p. When ε is not too small, p ≈ log(1/δ)

ε2n .
2. The analyzer collects the shuffled messages y1, . . . , yn and outputs

1
1 − p

(
n∑

i=1

yi − p
2

)
.

Intuition. In the local model, an adversary can map the set of observations
{y1, . . . , yn} to users. Thus, to achieve ε-differential privacy, the parameter p
should be set close to 1

2 . In our model, the attacker sees only the anonymized
set of observations {y1, . . . , yn}, whose distribution can be simulated using only∑

i yi. Hence, to ensure that the protocol is differentially private, it suffices to
ensure that

∑
i yi is private, which we show holds for p ≈ log(1/δ)

ε2n � 1
2 .

Communication Complexity. Our protocol for real-valued queries requires
Θ(ε

√
n) bits per user. In contrast, the local model requires just a single bit, but

incurs error Ω(1ε
√

n). A generalization of Theorem 1 gives error O(
√

n
r + 1

ε log r
δ)

and sends r bits per user, but we do not know if this tradeoff is necessary. Closing
this gap is an interesting open question.

2.2 Negative Results

We also prove negative results for algorithms in the one-message shuffled model.
These results hinge on a structural characterization of private protocols in the
one-message shuffled model.

Theorem 3. If a protocol P = (R,S,A) satisfies (ε, δ)-differential privacy in
the one-message shuffled model, then R satisfies (ε+ ln n, δ)-differential privacy.
Therefore, P is (ε + lnn, δ)-differentially private in the local model.

Using Theorem 3 (and a transformation of [7] from (ε, δ)-DP to (O(ε), 0)-DP
in the local model), we can leverage existing lower bounds for algorithms in the
local model to obtain lower bounds on algorithms in the shuffled model.

382 A. Cheu et al.

Variable Selection. In particular, consider the following variable selection prob-
lem: given a dataset x ∈ {0, 1}n×d, output Ĵ such that

n∑
i=1

xi, ̂J ≥
(

max
j∈[d]

n∑
i=1

xi,j

)
− n

10
.

(The n
10 approximation term is somewhat arbitrary—any sufficiently small con-

stant fraction of n will lead to the same lower bounds and separations.)
Any local algorithm (with ε = 1) for selection requires n = Ω(d log d),

whereas in the central model the exponential mechanism [25] solves this prob-
lem for n = O(log d). The following lower bound shows that for this ubiquitous
problem, the one-message shuffled model cannot match the central model.

Theorem 4. If P is a (1, 1
n10)-differentially private protocol in the one-message

shuffled model that solves the selection problem (with high probability) then n =
Ω(d1/17). Moreover this lower bound holds even if x is drawn iid from a product
distribution over {0, 1}d.

In Sect. 6, we also prove lower bounds for the well studied histogram problem,
showing that any one-message shuffled-model protocol for this problem must
have error growing (polylogarithmically) with the size of the data domain. In
contrast, in the central model it is possible to release histograms with no depen-
dence on the domain size, even for infinite domains.

We remark that our lower bound proofs do not apply if the algorithm sends
multiple messages through the shuffler. However, we do not know whether beat-
ing the bounds is actually possible. Applying our bit-sum protocol d times
(together with differential privacy’s composition property) shows that n = Õ(

√
d)

samples suffice in the general shuffled model. We also do not know if this bound
can be improved. We leave it as an interesting direction for future work to fully
characterize the power of the shuffled model.

2.3 Comparison to [16]

In concurrent and independent work, Erlingsson et al. [16] give conceptually
similar positive results for local protocols aided by a shuffler. Specifically, they
prove a general amplification result: adding a shuffler to any protocol satisfying
local differential privacy improve the privacy parameters, often quite significantly.
This amplification result can be seen as a partial converse to our transformation
from shuffled protocols to local protocols (Theorem 3).

Their result applies to any local protocol, whereas our protocol for bit-sums
(Theorem 2) applies specifically to the one-bit randomized response protocol.
However, when specialized to randomized response, their result is quantitatively
weaker than ours. As stated, their results only apply to local protocols that satisfy
ε-differential privacy for ε < 1. In contrast, the proof of Theorem 2 shows that,
for randomized response, local differential privacy ε ≈ ln(n) can be amplified
to ε′ = 1. Our best attempt at generalizing their proof to the case of ε 	 1

Distributed Differential Privacy via Shuffling 383

does not give any amplification for local protocols with ε ≈ ln(n). Specifically,
our best attempt at applying their method to the case of randomized response
yields a shuffled protocol that is 1-differentially private and has error Θ(n5/12),
which is just slightly better than the error O(

√
n) that can be achieved without

a shuffler.

3 Model and Preliminaries

In this section, we define terms and notation used throughout the paper. We use
Ber(p) to denote the Bernoulli distribution over {0, 1}, which has value 1 with
probability p and 0 with probability 1 − p. We will use Bin(n, p) to denote the
binomial distribution (i.e. the sum of n independent samples from Ber(p).

3.1 Differential Privacy

Let X ∈ X n be a dataset consisting of elements from some universe X . We say
two datasets X,X ′ are neighboring if they differ on at most one user’s data, and
denote this X ∼ X ′.

Definition 5 (Differential Privacy [14]). An algorithm M : X ∗ → Z is
(ε, δ)-differentially private if for every X ∼ X ′ ∈ X ∗ and every T ⊆ Z

P [M(X) ∈ T] ≤ eε
P [M(X ′) ∈ T] + δ.

where the probability is taken over the randomness of M .

Differential privacy satisfies two extremely useful properties:

Lemma 6 (Post-Processing [14]). If M is (ε, δ)-differentially private, then
for every A, A ◦ M is (ε, δ)-differentially private.

Lemma 7 (Composition [14,15]). If M1, . . . ,MT are (ε, δ)-differentially pri-
vate, then the composed algorithm

M̃(X) = (M1(X), . . . , MT (X))

is (ε′, δ′ + Tδ)-differentially private for every δ′ > 0 and ε′ = ε(eε − 1)T +
ε
√

2T log(1/δ′).

3.2 Differential Privacy in the Shuffled Model

In our model, there are n users, each of whom holds data xi ∈ X . We will use
X = (x1, . . . , xn) ∈ X n to denote the dataset of all n users’ data. We say two
datasets X,X ′ are neighboring if they differ on at most one user’s data, and
denote this X ∼ X ′.

384 A. Cheu et al.

The protocols we consider consist of three algorithms:

– R : X → Ym is a randomized encoder that takes as input a single users’ data
xi and outputs a set of m messages yi,1, . . . , yi,m ∈ Y. If m = 1, then P is in
the one-message shuffled model.

– S : Y∗ → Y∗ is a shuffler that takes a set of messages and outputs these mes-
sages in a uniformly random order. Specifically, on input y1, . . . , yN , S chooses
a uniformly random permutation π : [N] → [N] and outputs yπ(1), . . . , yπ(N).

– A : Y∗ → Z is some analysis function or analyzer that takes a set of messages
y1, . . . , yN and attempts to estimate some function f(x1, . . . , xn) from these
messages.

We denote the overall protocol P = (R,S,A). The mechanism by which we
achieve privacy is

ΠR(x1, . . . , xn) = S(∪n
i=1R(xi)) = S(y1,1, . . . , yn,m),

where both R and S are randomized. We will use P (X) = A ◦ ΠR(X) to denote
the output of the protocol. However, by the post-processing property of differen-
tial privacy (Lemma 6), it will suffice to consider the privacy of ΠR(X), which
will imply the privacy of P (X). We are now ready to define differential privacy
for protocols in the shuffled model.

Definition 8 (Differential Privacy in the Shuffled Model). A protocol
P = (R,S,A) is (ε, δ)-differentially private if the algorithm ΠR(x1, . . . , xn) =
S(R(x1), . . . , R(xn)) is (ε, δ)-differentially private (Definition 5).

In this model, privacy is a property of the entire set of users’ messages and
of the shuffler, and thus ε, δ may depend on the number of users n. When we
wish to refer to P or Π with a specific number of users n, we will denote this by
Pn or Πn.

We remark that if an adversary were to inject additional messages, then it
would not degrade privacy, provided that those messages are independent of the
honest users’ data. Thus, we may replace n, in our results, with an assumed
lower bound on the number of honest users in the system.

In some of our results it will be useful to have a generic notion of accuracy
for a protocol P .

Definition 9 (Accuracy of Distributed Protocols). Protocol P = (R,S,A)
is (α, β)-accurate for the function f : X ∗ → Z if, for every X ∈ X ∗, we have
P [d(P (X), f(X)) ≤ α] ≥ 1 − β where d : Z × Z → R is some application-
dependent distance measure.

As with the privacy guarantees, the accuracy of the protocol may depend on
the number of users n, and we will use Pn when we want to refer to the protocol
with a specific number of users.

Composition of Differential Privacy. We will use the following useful com-
position property for protocols in the shuffled model, which is an immediate

Distributed Differential Privacy via Shuffling 385

consequence of Lemma 7 and the post-processing Lemma 6. This lemma allows
us to directly compose protocols in the shuffled model while only using the shuf-
fler once, rather than using the shuffler independently for each protocol being
composed.

Lemma 10 (Composition of Protocols in the Shuffled Model). If Π1 =
(R1, S), . . . , ΠT = (RT , S) for Rt : X → Ym are each (ε, δ)-differentially private
in the shuffled model, and R̃ : X → YmT is defined as

R̃(xi) = (R1(xi), . . . , RT (xi))

then, for every δ′ > 0, the composed protocol Π̃ = (R̃, S) is (ε′, δ′ + Tδ)-
differentially private in the shuffled model for ε′ = ε2 + 2ε

√
T log(1/δ′).

Local Differential Privacy. If the shuffler S were replaced with the identity
function (i.e. if it did not randomly permute the messages) then we would be left
with exactly the local model of differential privacy. That is, a locally differentially
private protocol is a pair of algorithms P = (R,A), and the output of the protocol
is P (X) = A(R(x1), . . . , R(xn)). A protocol P is differentially private in the local
model if and only if the algorithm R is differentially private. In Sect. 6 we will
see that if P = (R,S,A) is a differentially private protocol in the one-message
shuffled model, then R itself must satisfy local differential privacy for non-trivial
(ε, δ), and thus (R,A ◦ S) is a differentially private local protocol for the same
problem.

4 A Protocol for Boolean Sums

In this section we describe and analyze a protocol for computing a sum of {0, 1}
bits, establishing Theorem 2 in the introduction.

4.1 The Protocol

In our model, the data domain is X = {0, 1} and the function being computed is
f(x1, . . . , xn) =

∑n
i=1 xi. Our protocol, Pλ, is specified by a parameter λ ∈ [0, n]

that allows us to trade off the level of privacy and accuracy. Note that λ may be
a function of the number of users n. We will discuss in Sect. 4.3 how to set this
parameter to achieve a desired level of privacy. For intuition, one may wish to
think of the parameter λ ≈ 1

ε2 when ε is not too small.
The basic outline of Pλ is as follows. Roughly, a random set of λ users will

choose yi randomly, and the remaining n − λ will choose yi to be their input
bit xi. The output of each user is the single message yi. The outputs are then
shuffled and the output of the protocol is the sum

∑n
i=1 yi, shifted and scaled

so that it is an unbiased estimator of
∑n

i=1 xi.
The protocol is described in Algorithm 1. The full name of this protocol is

P
0/1
λ , where the superscript serves to distinguish it with the real sum protocol

386 A. Cheu et al.

PR

λ,r (Sect. 5). Because of the clear context of this section, we drop the superscript.
Since the analysis of both the accuracy and utility of the algorithm will depend
on the number of users n, we will use Pn,λ, Rn,λ, An,λ to denote the protocol
and its components in the case where the number of users is n.

Algorithm 1. A shuffled protocol P
0/1
n,λ = (R0/1

n,λ, S,A
0/1
n,λ) for computing

the sum of bits
// Local Randomizer

R
0/1
n,λ(x):
Input: x ∈ {0, 1}, parameters n ∈ N, λ ∈ (0, n).
Output: y ∈ {0, 1}
Let b ← Ber(λ

n
)

If b = 0 : Return y ← x ;
ElseIf b = 1 : Return y ← Ber

(
1
2

)
;

// Analyzer

A
0/1
n,λ(y1, . . . , yn):
Input: (y1, . . . , yn) ∈ {0, 1}n, parameters n ∈ N, λ ∈ (0, n).
Output: z ∈ [0, n]

Return z ← n
n−λ

· (∑n
i=1 yi − λ

2

)

4.2 Privacy Analysis

In this section we will prove that Pλ satisfies (ε, δ)-differential privacy. Note that
if λ = n then the each user’s output is independent of their input, so the protocol
trivially satisfies (0, 0)-differential privacy, and thus our goal is to prove an upper
bound on the parameter λ that suffices to achieve a given (ε, δ).

Theorem 11 (Privacy of Pλ). There are absolute constants κ1, . . . , κ5 such
that the following holds for Pλ. For every n ∈ N, δ ∈ (0, 1) and κ2 log(1/δ)

n ≤ ε ≤ 1,
there exists a λ = λ(n, ε, δ) such that Pn,λ is (ε, δ) differentially private and,

λ ≤
⎧⎨
⎩

κ4 log(1/δ)
ε2 if ε ≥

√
κ3 log(1/δ)

n

n − κ5εn3/2√
log(1/δ)

otherwise

In the remainder of this section we will prove Theorem 11.
The first step in the proof is the observation that the output of the shuffler

depends only on
∑

i yi. It will be more convenient to analyze the algorithm
Cλ (Algorithm 2) that simulates S(Rλ(x1), . . . , Rλ(xn)). Claim 12 shows that
the output distribution of Cλ is indeed the same as that of the output

∑
i yi.

Therefore, privacy of Cλ carries over to Pλ.

Distributed Differential Privacy via Shuffling 387

Algorithm 2. Cλ(x1 . . . xn)
Input: (x1 . . . xn) ∈ {0, 1}n, parameter λ ∈ (0, n).
Output: y ∈ {0, 1, 2, . . . , n}
Sample s ← Bin

(
n, λ

n

)

Define Hs = {H ⊆ [n] : |H| = s} and choose H ← Hs uniformly at random
Return y ← ∑

i/∈H xi + Bin
(
s, 1

2

)

Claim 12. For every n ∈ N, x ∈ {0, 1}n, and every r ∈ {0, 1, 2, . . . , n},

P [Cλ(X) = r] = P

[
n∑

i=1

Rn,λ(xi) = r

]

Proof. Fix any r ∈ {0, 1, 2, . . . , n}.

P [Cλ(X) = r] =
∑

H⊆[n]

P [Cλ(X) = r ∩ H = H]

=
∑

H⊆[n]

P

[∑
i/∈H

xi + Bin
(

|H|, 1
2

)
= r

]
·
(

λ

n

)|H|(
1 − λ

n

)n−|H|

=
∑

H⊆[n]

P

[∑
i/∈H

xi +
∑
i∈H

Ber
(

1
2

)
= r

]
·
(

λ

n

)|H|(
1 − λ

n

)n−|H|

(1)

Let G denote the (random) set of people for whom bi = 1 in Pλ. Notice that

P

[
n∑

i=1

Rn,λ(xi) = r

]
=
∑

G⊆[n]

P

[∑
i

Rn,λ(xi) = r ∩ G = G

]

=
∑

G⊆[n]

P

[∑
i/∈G

xi +
∑
i∈G

Ber
(

1
2

)
= r

]

·
(

λ

n

)|G|(
1 − λ

n

)n−|G|

which is the same as (1). This concludes the proof. ��
Now we establish that in order to demonstrate privacy of Pn,λ, it suffices to

analyze Cλ.

Claim 13. If Cλ is (ε, δ) differentially private, then Pn,λ is (ε, δ) differentially
private.

Proof. Fix any number of users n. Consider the randomized algorithm T :
{0, 1, 2, . . . , n} → {0, 1}n that takes a number r and outputs a uniformly random

388 A. Cheu et al.

string z that has r ones. If Cλ is differentially private, then the output of T ◦Cλ

is (ε, δ) differentially private by the post-processing lemma.
To complete the proof, we show that for any X ∈ X n the output of (T ◦

Cλ)(X) has the same distribution as S(Rλ(x1), . . . Rλ(xn)). Fix some vector
Z ∈ {0, 1}n with sum r

P
T,Cλ

[T (Cλ(X)) = Z] = P [T (r) = Z] · P [Cλ(X) = r]

=
(
n
r

)−1 · P [Cλ(X) = r]

=
(
n
r

)−1 · P [f(Rn,λ(X)) = r] (Claim 12)

=
(
n
r

)−1 ·
∑

Y ∈{0,1}n:|Y |=r

P [Rn,λ(X) = Y]

=
∑

Y ∈{0,1}n:|Y |=r

P [Rn,λ(X) = Y] · P [S(Y) = Z]

= P
Rn,λ,S

[S(Rn,λ(X)) = Z]

This completes the proof of Claim 13. ��
We will analyze the privacy of Cλ in three steps. First we show that for any

sufficiently large H, the final step (encapsulated by Algorithm 3) will ensure dif-
ferential privacy for some parameters. When then show that for any sufficiently
large value s and H chosen randomly with |H| = s, the privacy parameters actu-
ally improve significantly in the regime where s is close to n; this sampling of H
is performed by Algorithm 4. Finally, we show that when s is chosen randomly
then s is sufficiently large with high probability.

Algorithm 3. CH(x1 . . . xn)
Input: (x1 . . . xn) ∈ {0, 1}n, parameter H ⊆ [n].
Output: yH ∈ {0, 1, 2, . . . , n}
Let B ← Bin

(|H|, 1
2

)

Return yH ← ∑
i/∈H xi + B

Claim 14. For any δ > 0 and any H ⊆ [n] such that |H| > 8 log 4
δ , CH is

(ε, δ
2)-differentially private for

ε = ln

⎛
⎝1 +

√
32 log 4

δ

|H|

⎞
⎠ <

√
32 log 4

δ

|H|

Proof. Fix neighboring datasets X ∼ X ′ ∈ {0, 1}n, any H ⊆ [n] such that
|H| > 8 log 4

δ , and any δ > 0. If the point at which X,X ′ differ lies within

Distributed Differential Privacy via Shuffling 389

H, the two distributions CH(X), CH(X ′) are identical. Hence, without loss of
generality we assume that xj = 0 and x′

j = 1 for some j �∈ H.

Define u :=
√

1
2 |H| log 4

δ and Iu :=
(
1
2 |H| − u, 1

2 |H| + u
)

so that by

Hoeffding’s inequality, P [B ∈ Iu] < 1
2δ. For any W ⊆ {0, 1, 2, . . . , n} we have,

P [CH(X) ∈ W] = P [CH(X) ∈ W ∩ B ∈ Iu] + P [CH(X) ∈ W ∩ B /∈ Iu]

≤ P [CH(X) ∈ W ∩ B ∈ Iu] +
1
2
δ

=
∑

r∈W∩Iu

P

[
B +
∑
i/∈H

xi = r

]
+

1
2
δ

Thus to complete the proof, it suffices to show that for any H and r ∈ W ∩ Iu

P
[
B +
∑

i/∈H xi = r
]

P
[
B +
∑

i/∈H x′
i = r

] ≤ 1 +

√
32 log 4

δ

|H| (2)

Because xj = 0, x′
j = 1 and j /∈ H, we have

∑
i/∈H xi =

∑
i/∈H x′

i − 1. Thus,

P
[
B +
∑

i/∈H xi = r
]

P
[
B +
∑

i/∈H x′
i = r

] =
P
[
B +
∑

i/∈H x′
i − 1 = r

]
P
[
B +
∑

i/∈H x′
i = r

]
=

P
[
B =

(
r −∑i/∈H x′

i

)
+ 1
]

P
[
B =

(
r −∑i/∈H x′

i

)]
Now we define k = r −∑i/∈H x′

i so that

P
[
B =

(
r −∑i/∈H x′

i

)
+ 1
]

P
[
B =

(
r −∑i/∈H x′

i

)] =
P [B = k + 1]
P [B = k]

.

Then we can calculate
P [B = k + 1]
P [B = k]

=
|H| − k

k + 1
(B is binomial)

≤ |H| − (12 |H| − u)
1
2 |H| − u + 1

(r ∈ Iu so k ≥ 1
2 |H| − u)

<
1
2 |H| + u
1
2 |H| − u

=
u2/(log 4

δ) + u

u2/(log 4
δ) − u

(u =
√

1
2 |H| log 4

δ)

=
u + log 4

δ

u − log 4
δ

= 1 +
2 log 4

δ

u − log 4
δ

= 1 +
2 log 4

δ√
1
2 |H| log 4

δ − log 4
δ

≤ 1 +
4 log 4

δ√
1
2 |H| log 4

δ

= 1 +

√
32 log 4

δ

|H| (|H| > 8 log 4
δ)

which completes the proof. ��

390 A. Cheu et al.

Next, we consider the case where H is a random subset of [n] with a fixed
size s. In this case we will use an amplification via sampling argument [20,27] to
argue that the randomness of H improves the privacy parameters by a factor of
roughly (1 − s

n), which will be crucial when s ≈ n.

Algorithm 4. Cs(x1, . . . , xn)
Input: (x1, . . . , xn) ∈ {0, 1}n, parameter s ∈ {0, 1, 2, . . . , n}.
Output: ys ∈ {0, 1, 2, . . . , n}
Define Hs = {H ⊆ [n] : |H| = s} and choose H ← Hs uniformly at random
Return ys ← CH(x)

Claim 15. For any δ > 0 and any s > 8 log 4
δ , Cs is (ε, 1

2δ) differentially private
for

ε =

√
32 log 4

δ

s
·
(
1 − s

n

)
Proof. As in the previous section, fix X ∼ X ′ ∈ {0, 1}n where xj = 0, x′

j = 1.
Cs(X) selects H uniformly from Hs and runs CH(X); let H denote the realiza-

tion of H. To enhance readability, we will use the shorthand ε0(s) :=
√

32 log 4
δ

s .
For any W ⊂ {0, 1, 2, . . . , n}, we aim to show that

P
H,CH

[CH(X) ∈ W] − 1
2δ

P
H,CH

[CH(X ′) ∈ W]
≤ exp

(
ε0(s) ·

(
1 − s

n

))

First, we have

P
H,CH

[CH(X) ∈ W] − 1
2δ

P
H,CH

[CH(X ′) ∈ W]

=
P

H,CH

[CH(X) ∈ W ∩ j ∈ H] + P
H,CH

[CH(X) ∈ W ∩ j /∈ H] − 1
2δ

P
H,CH

[CH(X ′) ∈ W ∩ j ∈ H] + P
H,CH

[CH(X ′) ∈ W ∩ j /∈ H]

=
(1 − p)γ(X) + pζ(X) − 1

2δ

(1 − p)γ(X ′) + pζ(X ′)
(3)

where p := P [j /∈ H] = (1 − s/n),

γ(X) := P
CH

[CH(X) ∈ W | j ∈ H] and ζ(X) := P
CH

[CH(X) ∈ W | j /∈ H] .

When user j outputs a uniformly random bit, their private value has no impact
on the distribution. Hence, γ(X) = γ(X ′), and

(3) =
(1 − p)γ(X) + pζ(X) − 1

2δ

(1 − p)γ(X) + pζ(X ′)
(4)

Distributed Differential Privacy via Shuffling 391

Since s = |H| is sufficiently large, by Claim 14 we have ζ(X) ≤ (1 + ε0(s)) ·
min{ζ(X ′), γ(X)} + 1

2δ.

(4) ≤ (1 − p)γ(X) + p · (1 + ε0(s)) · min{ζ(X ′), γ(X)} + δ) − 1
2δ

(1 − p)γ(X) + pζ(X ′)

≤ (1 − p)γ(X) + p · (1 + ε0(s)) · min{ζ(X ′), γ(X)}
(1 − p)γ(X) + pζ(X ′)

=
(1 − p)γ(X) + p · min(ζ(X ′), γ(X)) + p · ε0(s) · min{ζ(X ′), γ(X)}

(1 − p)γ(X) + pζ(X ′)

≤ (1 − p)γ(X) + pζ(X ′) + p · ε0(s) · min{ζ(X ′), γ(X)}
(1 − p)γ(X) + pζ(X ′)

= 1 +
p · ε0(s) · min{ζ(X ′), γ(X)}

(1 − p)γ(X) + pζ(X ′)
(5)

Observe that min{ζ(X ′), γ(X)} ≤ (1 − p)γ(X) + pζ(X ′), so

(5) ≤ 1 + p · ε0(s) = 1 + ε0(s) ·
(
1 − s

n

)
≤ exp

(
ε0(s) ·

(
1 − s

n

))

= exp

(√
32 log(4/δ)

s
·
(
1 − s

n

))

which completes the proof. ��
We now come to the actual algorithm Cλ, where s is not fixed but is random.

The analysis of Cs yields a bound on the privacy parameter that increases with
s, so we will complete the analysis of Cλ by using the fact that, with high
probability, s is almost as large as λ.

Claim 16. For any δ > 0 and n ≥ λ ≥ 14 log 4
δ , Cλ is (ε, δ) differentially

private where

ε =

√√√√ 32 log 4
δ

λ −
√

2λ log 2
δ

·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠

The proof is in the full version of the paper.
From Claim 13, Cλ and Pn,λ share the same privacy guarantees. Hence, Claim

16 implies the following:

Corollary 17. For any δ ∈ (0, 1), n ∈ N, and λ ∈ [14 log 4
δ , n
]
, Pn,λ is (ε, δ)

differentially private, where

ε =

√√√√ 32 log 4
δ

λ −
√

2λ log 2
δ

·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠

392 A. Cheu et al.

4.3 Setting the Randomization Parameter

Corollary 17 gives a bound on the privacy of Pn,λ in terms of the number of users
n and the randomization parameter λ. While this may be enough on its own,
in order to understand the tradeoff between ε and the accuracy of the protocol,
we want to identify a suitable choice of λ to achieve a desired privacy guarantee
(ε, δ). To complete the proof of Theorem 11, we prove such a bound.

For the remainder of this section, fix some δ ∈ (0, 1). Corollary 17 states
that for any n and λ ∈ [14 log 4

δ , n
]
, Pn,λ satisfies (ε∗(λ), δ)-differential privacy,

where

ε∗(λ) =

√√√√ 32 log 4
δ

λ −
√

2λ log 2
δ

·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠

Let λ∗(ε) be the inverse of ε∗, i.e. the minimum λ ∈ [0, n] such that ε∗(λ) ≤ ε.
Note that ε∗(λ) is decreasing as λ → n while λ∗(ε) increases as ε → 0. By
definition, Pn,λ satisfies (ε, δ) privacy if λ ≥ λ∗(ε); the following Lemma gives
such an upper bound:

Lemma 18. For all δ ∈ (0, 1), n ≥ 14 log 4
δ , ε ∈

(√
3456
n log 4

δ , 1
)
, Pn,λ is (ε, δ)

differentially private if

λ =

⎧⎨
⎩

64
ε2 log 4

δ if ε ≥
√

192
n log 4

δ

n − εn3/2√
432 log(4/δ)

otherwise
(6)

We’ll prove the lemma in two claims, each of which corresponds to one of the
two cases of our bound on λ∗(ε). The first bound applies when ε is relatively large.

Claim 19. For all δ ∈ (0, 1), n ≥ 14 log 4
δ , ε ∈

(√
192
n log 4

δ , 1
)
, if λ = 64

ε2 log 4
δ

then Pn,λ is (ε, δ) private.

Proof. Let λ = 64
ε2 log 4

δ as in the statement. Corollary 17 states that Pn,λ satisfies
(ε∗(λ), δ) privacy for

ε∗(λ) =

√√√√ 32 log 4
δ

λ −
√

2λ log 2
δ

·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠

≤
√√√√ 32 log 4

δ

λ −
√

2λ log 2
δ

(λ ≤ n)

≤
√

64 log 4
δ

λ
(λ ≥ 8 log 2

δ)

= ε

This completes the proof of the claim. ��

Distributed Differential Privacy via Shuffling 393

The value of λ in the previous claim can be as large as n when ε approaches
1/

√
n. We now give a meaningful bound for smaller values of ε.

Claim 20. For all δ ∈ (0, 1), n ≥ 14 log 4
δ , ε ∈

(√
3456
n log 4

δ ,
√

192
n log 4

δ

)
, if

λ = n − εn3/2√
432 log(4/δ)

then Pn,λ is (ε, δ) private.

Proof. Let λ = n − εn3/2/
√

432 log(4/δ) as in the statement. Note that for this
ε regime, we have n/3 < λ < n. Corollary 17 states that Pn,λ satisfies (ε∗(λ), δ)
privacy for

ε∗(λ) =

√√√√ 32 log 4
δ

λ −
√

2λ log 2
δ

·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠

≤
√

64 log 4
δ

λ
·
⎛
⎝1 −

λ −
√

2λ log 2
δ

n

⎞
⎠ (λ ≥ 8 log 2

δ)

=

√
64 log 4

δ

λ
·
⎛
⎝ ε

√
n√

432 log(4/δ)
+

√
2λ log 2

δ

n

⎞
⎠

≤
√

64 log 4
δ

λ
·
⎛
⎝ ε

√
n√

432 log(4/δ)
+

√
2 log 2

δ

n

⎞
⎠ (λ ≤ n)

≤
√

192 log 4
δ

n
·
⎛
⎝ ε

√
n√

432 log(4/δ)
+

√
2 log 2

δ

n

⎞
⎠ (λ ≥ n/3)

=
2
3
ε +

√
384 log 4

δ log 2
δ

n
<

2
3
ε +

√
384
n

log
4
δ

<
2
3
ε +

1
3
ε = ε (ε >

√
3456
n log 4

δ)

which completes the proof. ��

4.4 Accuracy Analysis

In this section, we will bound the error of Pλ(X) with respect to
∑

i xi. Recall
that, to clean up notational clutter, we will often write f(X) =

∑
i xi. As with

the previous section, our statements will at first be in terms of λ but the section
will end with a statement in terms of ε, δ.

394 A. Cheu et al.

Theorem 21. For every n ∈ N, β > 0, n > λ ≥ 2 log 2
β , and x ∈ {0, 1}n,

P

[∣∣∣∣∣Pn,λ(x) −
∑

i

xi

∣∣∣∣∣ >
√

2λ log(2/β) ·
(

n

n − λ

)]
≤ β

Observe that, using the choice of λ specified in Theorem 11, we conclude that
for every 1

n � ε � 1 and every δ the protocol Pλ satisfies

P

[∣∣∣∣∣Pn,λ(x) −
∑

i

xi

∣∣∣∣∣ > O

(√
log(1/δ) log(1/β)

ε

)]
≤ β

To see how this follows from Theorem 21, consider two parameter regimes:

1. When ε 	 1/
√

n then λ ≈
√

log(1/δ)

ε2 � n, so the bound in Theorem 21 is
O(
√

λ log(1/β)), which yields the desired bound.
2. When ε � 1/

√
n then n − λ ≈ εn3/2/

√
log(1/δ) � n, so the bound in

Theorem 21 is O

(
n3/2

√
log(1/β)

n−λ

)
, which yields the desired bound.

Theorem 2 in the introduction follows from this intuition; a formal proof can
be found in the full version.

5 A Protocol for Sums of Real Numbers

In this section, we show how to extend our protocol to compute sums of bounded
real numbers. In this case the data domain is X = [0, 1], but the function we wish
to compute is still f(x) =

∑
i xi. The main idea of the protocol is to randomly

round each number xi to a Boolean value bi ∈ {0, 1} with expected value xi.
However, since the randomized rounding introduces additional error, we may
need to round multiple times and estimate several sums. As a consequence, this
protocol is not one-message.

5.1 The Protocol

Our algorithm is described in two parts, an encoder Er that performs the ran-
domized rounding (Algorithm 5) and a shuffled protocol PR

λ,r (Algorithm 6) that

is the composition of many copies of our protocol for the binary case, P
0/1
λ . The

encoder takes a number x ∈ [0, 1] and a parameter r ∈ N and outputs a vector
(b1, . . . , br) ∈ {0, 1}r such that E

[
1
r

∑
j bj

]
= xj and Var

[
1
r

∑
j bj

]
= O(1/r2).

To clarify, we give two examples of the encoding procedure:

– If r = 1 then the encoder simply sets b = Ber(x). The mean and variance of
b are x and x(1 − x) ≤ 1

4 , respectively.
– If x = .4 and r = 4 then the encoder sets b = (1,Ber(.6), 0, 0). The mean and

variance of 1
4 (b1 + b2 + b3 + b4) are .4 and .015, respectively.

Distributed Differential Privacy via Shuffling 395

After doing the rounding, we then run the bit-sum protocol P
0/1
λ on the bits

b1,j , . . . , bn,j for each j ∈ [r] and average the results to obtain an estimate of the
quantity ∑

i

1
r

∑
j

bi,j ≈
∑

i

xi

To analyze privacy we use the fact that the protocol is a composition of bit-
sum protocols, which are each private, and thus we can analyze privacy via the
composition properties of differential privacy.

Much like in the bit-sum protocol, we use PR

n,λ,r, R
R

n,λ,r, A
R

n,λ,r to denote the
real-sum protocol and its components when n users participate.

Algorithm 5. An encoder Er(x)
Input: x ∈ [0, 1], a parameter r ∈ N.
Output: (b1, . . . ,br) ∈ {0, 1}r

Let μ ← �x · r� and p ← x · r − μ + 1
For j = 1, . . . , r

bj =

⎧
⎪⎨

⎪⎩

1 j < μ

Ber(p) j = μ

0 j > μ

Return (b1, . . . ,br)

Algorithm 6. The protocol PR

λ,r = (RR

λ,r, S,AR

λ,r)

// Local randomizer

RR

n,λ,r(x):
Input: x ∈ [0, 1], parameters n, r ∈ N, λ ∈ (0, n).
Output: (y1, . . .yr) ∈ {0, 1}r

(b1, . . .br) ← Er(x)

Return (y1, . . .yr) ←
(
R

0/1
n,λ(b1), . . . , R

0/1
n,λ(br)

)

// Analyzer

AR

n,λ,r(y1,1, . . . , yn,r):
Input: (y1,1, . . . , yn,r) ∈ {0, 1}n·r, parameters n, r ∈ N, λ ∈ (0, n).
Output: z ∈ [0, n]

Return z ← 1
r

· n
n−λ

((∑
j

∑
i yi,j

)
− λ·r

2

)

396 A. Cheu et al.

Theorem 22. For every δ = δ(n) such that e−Ω(n1/4) < δ(n) < 1
n and

poly(log n)
n < ε < 1 and every sufficiently large n, there exists parameters

λ ∈ [0, n], r ∈ N such that PR

n,λ,r is both (ε, δ) differentially private and for
every β > 0, and every X = (x1, . . . , xn) ∈ [0, 1]n,

P

[∣∣∣∣∣PR

n,λ,r(X) −
n∑

i=1

xi

∣∣∣∣∣ > O

(
1
ε

log
1
δ

√
log

1
β

)]
≤ β

5.2 Privacy Analysis

Privacy will follow immediately from the composition properties of shuffled pro-
tocols (Lemma 10) and the privacy of the bit-sum protocol Pn,λ. One technical
nuisance is that the composition properties are naturally stated in terms of ε,
whereas the protocol is described in terms of the parameter λ, and the relation-
ship between ε, λ, and n is somewhat complex. Thus, we will state our guarantees
in terms of the level of privacy that each individual bit-sum protocol achieves
with parameter λ. To this end, define the function λ∗(n, ε, δ) to be the minimum
value of λ such that the bit-sum protocol with n users satisfies (ε, δ)-differential
privacy. We will state the privacy guarantee in terms of this function.

Theorem 23. For every ε, δ ∈ (0, 1), n, r ∈ N, define

ε0 =
ε√

8r log(2/δ)
δ0 =

δ

2r
λ∗ = λ∗(n, ε0, δ0)

For every λ ≥ λ∗, PR

n,λ,r is (ε, δ)-differentially private.

5.3 Accuracy Analysis

In this section, we bound the error of PR

λ,r(X) with respect to
∑

i xi. Recall that
f(X) =

∑
i xi.

Observe that there are two sources of randomness: the encoding of the input
X = (x1, . . . xn) as bits and the execution of R

0/1
n,λ on that encoding. We first show

that the bit encoding lends itself to an unbiased and concentrated estimator of
f(X). Then we show that the output of Pn,λ,r is concentrated around any value
that estimator takes.

Theorem 24. For every β > 0, n ≥ λ ≥ 16
9 log 2

β , r ∈ N, and X ∈ [0, 1]n,

P

[∣∣PR

n,λ,r(X) − f(X)
∣∣ ≥ √

2
r

√
n log 2

β + n
n−λ ·

√
2λ

r log 2
β

]
< 2β

The analysis can be found in the full version of the paper, which also argues
that setting r ← ε · √

n suffices to achieve the bound in Theorem 22.

Distributed Differential Privacy via Shuffling 397

6 Lower Bounds for the Shuffled Model

In this section, we prove separations between central model algorithms and shuf-
fled model protocols where each user’s local randomizer is identical and sends
one indivisible message to the shuffler (the one-message model).

Theorem 25 (Shuffled-to-Local Transformation). Let PS be a protocol in
the one-message shuffled model that is

– (εS , δS)-differentially private in the shuffled model for some εS ≤ 1 and δS =
δS(n) < n−8, and

– (α, β)-accurate with respect to f for some β = Ω(1).

Then there exists a protocol PL in the local model that is

– (εL, 0)-differentially private in the local model for εL = 8(εS + lnn), and
– (α, 4β)-accurate with respect to f (when n is larger than some absolute con-

stant)

This means that an impossibility result for approximating f in the local
model implies a related impossibility result for approximating f in the shuffled
model. In Sect. 6.2 we combine this result with existing lower bounds for local dif-
ferential privacy to obtain several strong separations between the central model
and the one-message shuffled model.

The key to Theorem 25 is to show that if PS = (RS , S,AS) is a protocol
in the one-message shuffled model satisfying (εS , δS)-differential privacy, then
the algorithm RS itself satisfies (εL, δS)-differential privacy without use of the
shuffler S. Therefore, the local protocol PL = (RS , AS ◦ S) is (εL, δS)-private in
the local model and has the exact same output distribution, and thus the exact
same accuracy, as PS . To complete the proof, we use (a slight generalization
of) a transformation of Bun, Nelson, and Stemmer [7] to turn R into a related
algorithm R′ satisfying (8(εS + ln n), 0)-differential privacy with only a slight
loss of accuracy. We prove the latter result in the full version of the paper.

6.1 One-Message Randomizers Satisfy Local Differential Privacy

The following lemma is the key step in the proof of Theorem 25, and states that
for any symmetric shuffled protocol, the local randomizer R must satisfy local
differential privacy with weak, but still non-trivial, privacy parameters.

Theorem 26. Let P = (R,S,A) be a protocol in the one-message shuffled model.
If n ∈ N is such that Pn satisfies (εS , δS)-differential privacy, then the algorithm
R satisfies (εL, δL)-differential privacy for εL = εS + lnn. Therefore, the sym-
metric local protocol PL = (R,A ◦ S) satisfies (εL, δL)-differential privacy.

Proof. By assumption, Pn is (εS , δS)-private. Let ε be the supremum such that
R : X → Y is not (ε, δS)-private. We will attempt to find a bound on ε. If R is
not (ε, δS)-differentially private, there exist Y ⊂ Y and x, x′ ∈ X such that

P [R(x′) ∈ Y] > exp(ε) · P [R(x) ∈ Y] + δS

398 A. Cheu et al.

For brevity, define p := P(R(x) ∈ Y) and p′ := P(R(x′) ∈ Y) so that we have

p′ > exp(ε)p + δS (7)

We will show that if ε is too large, then (7) will imply that Pn is not (εS , δS)-
differentially private, which contradicts our assumption. To this end, define the
set W := {W ∈ Yn | ∃i wi ∈ Y }. Define two datasets X ∼ X ′ as

X := (x, . . . , x︸ ︷︷ ︸
n times

) and X ′ := (x′, x, . . . , x︸ ︷︷ ︸
n−1 times

)

Because Pn is (εS , δS)-differentially private

P [Pn(X ′) ∈ W] ≤ exp(εS) · P [Pn(X) ∈ W] + δS (8)

Now we have

P [Pn(X) ∈ W]

= P

⎡
⎣S(R(x), . . . , R(x)︸ ︷︷ ︸

n times

) ∈ W
⎤
⎦

= P

⎡
⎣(R(x), . . . , R(x)︸ ︷︷ ︸

n times

) ∈ W
⎤
⎦ (W is symmetric)

= P [∃i R(x) ∈ Y] ≤ n · P [R(x) ∈ Y] (Union bound)
= np

where the second equality is because the set W is closed under permutation,
so we can remove the random permutation S without changing the probability.
Similarly, we have

P [Pn(X ′) ∈ W] = P

⎡
⎣(R(x′), R(x) . . . , R(x)︸ ︷︷ ︸

n−1 times

) ∈ W
⎤
⎦

≥ P [R(x′) ∈ Y] = p′

> exp(ε)p + δS (By (7))

Now, plugging the previous two inequalities into (8), we have

exp(ε)p + δS < P [Pn(X ′) ∈ W]
≤ exp(εS) · P [Pn(X) ∈ W]
≤ exp(εS)np + δS

By rearranging and canceling terms in the above we obtain the conclusion

ε ≤ εS + lnn

Therefore R must satisfy (εS + lnn, δS)-differential privacy. ��

Distributed Differential Privacy via Shuffling 399

Claim 27. If the shuffled protocol PS = (R,S,A) is (α, β)-accurate for some
function f , then the local protocol PL = (R,A ◦ S) is (α, β)-accurate for f ,
where

(A ◦ S)(y1, . . . , yN) = A(S(y1, . . . , yN))

We do not present a proof of Claim 27, as it is immediate that the distribution
of PS(x) and PL(x) are identical, since A ◦ S incorporates the shuffler.

We conclude this section with a slight extension of a result of Bun, Nelson,
and Stemmer [7] showing how to transform any local algorithm satisfying (ε, δ)-
differential privacy into one satisfying (O(ε), 0)-differential privacy with only a
small decrease in accuracy. Our extension covers the case where ε > 2/3, whereas
their result as stated requires ε ≤ 1/4.

Theorem 28 (Extension of [7]). Suppose local protocol PL = (R,A) is (ε, δ)
differentially private and (α, β) accurate with respect to f . If ε > 2/3 and

δ <
β

8n ln(n/β)
· 1
exp(6ε)

then there exists another local protocol P ′
L = (R′, A) that is (8ε, 0) differentially

private and (α, 4β) accurate with respect to f .

The proof can be found in the full version of the paper. Theorem 25 now
follows by combining Theorem 26 and Claim 27 with Theorem 28.

6.2 Applications of Theorem 25

In this section, we define two problems and present known lower bounds in the
central and local models. By applying Theorem 25, we derive lower bounds in
the one-message shuffled model. These bounds imply large separations between
the central and one-message shuffled models.

The Selection Problem. We define the selection problem as follows. The data
universe is X = {0, 1}d where d is the dimension of the problem and the main
parameter of interest. Given a dataset x = (x1, . . . , xn) ∈ X n, the goal is to
identify a coordinate j such that the sum of the users’ j-th bits is approximately
as large as possible. That is, a coordinate j ∈ [d] such that

n∑
i=1

xi,j ≥ max
j′∈[d]

n∑
i=1

xi,j′ − n

10
(9)

We say that an algorithm solves the selection problem with probability 1 − β if
for every dataset x, with probability at least 1 − β, it outputs j satisfying (9).

400 A. Cheu et al.

Table 1. Comparisons Between Models. When a parameter is unspecified, the reader
may substitute ε = 1, δ = 0, α = β = .01. All results are presented as the
minimum dataset size n for which we can hope to achieve the desired privacy
and accuracy as a function of the relevant parameter for the problem.

Function
(Parameters)

Differential privacy model

Central Shuffled (this paper) Local

One-Message General

Mean, X = {0, 1}
(Accuracy α)

Θ
(

1
αε

)
O

(√
log(1/δ)

αε

)
Θ

(
1

α2ε2

)

Mean, X = [0, 1]
(Accuracy α)

O

(
1

α2 +

√
log(1/δ)

αε

)
O

(
log(1/δ)

αε

)

Selection
(Dimension d)

Θ(log d) Ω(d
1
17) Õ(

√
d log d

δ
) Θ(d log d)

Histograms
(Domain Size D)

Θ
(
min

{
log 1

δ
, log D

})
Ω(log

1
17 D) O(

√
log D) Θ(log D)

We would like to understand the minimum n (as a function of d) such that
there is a differentially private algorithm that can solve the selection problem
with constant probability of failure. We remark that this is a very weak notion
of accuracy, but since we are proving a negative result, using a weak notion of
accuracy only strengthens our results.

The following lower bound for locally differentially private protocols for selec-
tion is from [31], and is implicit in the work of [12].2

Theorem 29. If PL = (RL, AL) is a local protocol that satisfies (ε, 0)-differen-
tial privacy and PL solves the selection problem with probability 9

10 for datasets

x ∈ ({0, 1}d)n, then n = Ω
(

d log d
(eε−1)2

)
.

By applying Theorem 25 we immediately obtain the following corollary.

Corollary 30. If PS = (RS , S,AS) is a (1, δ)-differentially private protocol in
the one-message shuffled model, for δ = δ(n) < n−8, and PS solves the selection
problem with probability 99

100 , then n = Ω((d log d)1/17).

Using a multi-message shuffled protocol3, we can solve selection with Õ(1ε
√

d)
samples. By contrast, in the local model n = Θ(1

ε2 d log d) samples are necessary
and sufficient. In the central model, this problem is solved by the exponential mech-
anism [25] with a dataset of size just n = O(1ε log d), and this is optimal [2,28].
These results are summarized in Table 1.
2 These works assume that the dataset x consists of independent samples from some

distribution D, and define accuracy for selection with respect to mean of that distri-
bution. By standard arguments, a lower bound for the distributional version implies
a lower bound for the version we have defined.

3 The idea is to simulate multiple rounds of our protocol for binary sums, one round
per dimension.

Distributed Differential Privacy via Shuffling 401

Histograms. We define the histogram problem as follows. The data universe is
X = [D] where D is the domain size of the problem and the main parameter of
interest. Given a dataset x = (x1, . . . , xn) ∈ X n, the goal is to build a vector of
size D such that for all j ∈ [D] the j-th element is as close to the frequency of
j in x. That is, a vector v ∈ [0, n]D such that

max
j∈[D]

∣∣∣∣∣vj −
n∑

i=1

1(xi = j)

∣∣∣∣∣ ≤ n

10
(10)

where 1(conditional) is defined to be 1 if conditional evaluates to true and
0 otherwise.

Similar to the selection problem, an algorithm solves the histogram problem
with probability 1 − β if for every dataset x, with probability at least 1 − β it
outputs v satisfying (10). We would like to find the minimum n such that a
differentially private algorithm can solve the histogram problem; the following
lower bound for locally differentially private protocols for histograms is from [3].

Theorem 31. If PL = (RL, AL) is a local protocol that satisfies (ε, 0) differ-
ential privacy and PL solves the histogram problem with probability 9

10 for any

x ∈ [D]n then n = Ω
(

log D
(eε−1)2

)
By applying Theorem 25, we immediately obtain the following corollary.

Corollary 32. If PS = (RS , S,AS) is a (1, δ)-differentially private protocol in
the one-message shuffled model, for δ = δ(n) < n−8, and PS solves the histogram
problem with probability 99

100 , then n = Ω
(
log1/17 D

)
In the shuffled model, we can solve this problem using our protocol for bit-

sums by having each user encode their data as a “histogram” of just their
value xi ∈ [D] and then running the bit-sum protocol D times, once for each

value j ∈ [D], which incurs error O(1ε
√

log 1
δ log D).4 But in the central model,

this problem can be solved to error O(min{log 1
δ , log D}), which is optimal (see,

e.g. [32]). Thus, the central and one-message shuffled models are qualitatively
different with respect to computing histograms: D may be infinite in the former
whereas D must be bounded in the latter.

Acknowledgements. AC was supported by NSF award CCF-1718088. AS was sup-
ported by NSF awards IIS-1447700 and AF-1763786 and a Sloan Foundation Research
Award. JU was supported by NSF awards CCF-1718088, CCF-1750640, CNS-1816028
and a Google Faculty Research Award.

4 Note that changing one user’s data can only change two entries of their local his-
togram, so we only have to scale ε, δ by a factor of 2 rather than a factor that grows
with D.

402 A. Cheu et al.

References

1. Abowd, J.M.: The U.S. census bureau adopts differential privacy. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining KDD 2018, pp. 2867–2867. ACM, New York (2018)

2. Bafna, M., Ullman, J.: The price of selection in differential privacy. In: Conference
on Learning Theory, pp. 151–168 (2017)

3. Bassily, R., Smith, A.: Local, private, efficient protocols for succinct histograms.
In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, pp. 127–135. ACM (2015)

4. Beimel, A., Nissim, K., Omri, E.: Distributed private data analysis: simultaneously
solving how and what. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
451–468. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 25

5. Bittau, A., et al.: PROCHLO: strong privacy for analytics in the crowd. In: Pro-
ceedings of the Symposium on Operating Systems Principles (SOSP) (2017)

6. Bonawitz, K., et al.: Practical secure aggregation for privacy preserving machine
learning. IACR Cryptology ePrint Archive (2017)

7. Bun, M., Nelson, J., Stemmer, U.: Heavy hitters and the structure of local privacy.
In: ACM SIGMOD/PODS Conference International Conference on Management
of Data (PODS 2018) (2018)

8. Chan, T.-H.H., Shi, E., Song, D.: Optimal lower bound for differentially private
multi-party aggregation. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS,
vol. 7501, pp. 277–288. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33090-2 25

9. Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with
fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 15

10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

11. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation
of aggregate statistics. In: Proceedings of the 14th USENIX Conference on Net-
worked Systems Design and Implementation NSDI 2017, pp. 259–282. USENIX
Association, Berkeley, CA, USA (2017)

12. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 429–438. IEEE (2013)

13. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://
doi.org/10.1007/11761679 29

14. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

15. Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In:
FOCS, pp. 51–60. IEEE (2010)

16. Erlingsson, U., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta,
A.: Amplification by shuffling: From local to central differential privacy by
anonymity. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SODA 2019 (2019)

https://doi.org/10.1007/978-3-540-85174-5_25
https://doi.org/10.1007/978-3-540-85174-5_25
https://doi.org/10.1007/978-3-642-33090-2_25
https://doi.org/10.1007/978-3-642-33090-2_25
https://doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14

Distributed Differential Privacy via Shuffling 403

17. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: ACM Conference on Computer and Com-
munications Security (CCS) (2014)

18. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy pre-
serving data mining. In: PODS, pp. 211–222. ACM (2003)

19. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private
messaging resistant to traffic analysis. In: Proceedings of the 25th Symposium on
Operating Systems Principles SOSP 2015, pp. 137–152. ACM, New York (2015)

20. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? In: Foundations of Computer Science (FOCS). IEEE (2008)

21. Kasiviswanathan, S.P., Smith, A.: On the ‘semantics’ of differential privacy: A
bayesian formulation. CoRR arXiv:0803.39461 [cs.CR] (2008)

22. Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. In: STOC,
pp. 392–401. ACM, 16–18 May 1993

23. Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: an efficient communication
system with strong anonymity. PoPETs 2016(2), 115–134 (2016)

24. McMillan, R.: Apple tries to peek at user habits without violating privacy. Wall
Street J. (2016)

25. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: IEEE
Foundations of Computer Science (FOCS) (2007)

26. Shi, E., Chan, T.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: Proceedings of the Network and Distributed System
Security Symposium (NDSS 2011) (2011)

27. Smith, A.: Differential privacy and the secrecy of the sample (2009)
28. Steinke, T., Ullman, J.: Tight lower bounds for differentially private selection. In:

2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 552–563. IEEE (2017)

29. Thakurta, A.G., et al.: Learning new words. US Patent 9,645,998, 9 May 2017
30. Tyagi, N., Gilad, Y., Leung, D., Zaharia, M., Zeldovich, N.: Stadium: a distributed

metadata-private messaging system. In: Proceedings of the 26th Symposium on
Operating Systems Principles SOSP 2017, pp. 423–440. ACM, New York (2017)

31. Ullman, J.: Tight lower bounds for locally differentially private selection. CoRR
abs/1802.02638 (2018)

32. Vadhan, S.: The complexity of differential privacy (2016). http://privacytools.seas.
harvard.edu/publications/complexity-differential-privacy

33. Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965)

http://arxiv.org/abs/0803.39461
http://privacytools.seas.harvard.edu/publications/complexity-differential-privacy
http://privacytools.seas.harvard.edu/publications/complexity-differential-privacy

Lower Bounds for Differentially
Private RAMs

Giuseppe Persiano1,2 and Kevin Yeo1(B)

1 Google LLC, Mountain View, USA
giuper@gmail.com, kwlyeo@google.com
2 Università di Salerno, Salerno, Italy

Abstract. In this work, we study privacy-preserving storage primitives
that are suitable for use in data analysis on outsourced databases within
the differential privacy framework. The goal in differentially private data
analysis is to disclose global properties of a group without compromis-
ing any individual’s privacy. Typically, differentially private adversaries
only ever learn global properties. For the case of outsourced databases,
the adversary also views the patterns of access to data. Oblivious RAM
(ORAM) can be used to hide access patterns but ORAM might be exces-
sive as in some settings it could be sufficient to be compatible with dif-
ferential privacy and only protect the privacy of individual accesses.

We consider (ε, δ)-Differentially Private RAM, a weakening of ORAM
that only protects individual operations and seems better suited for use
in data analysis on outsourced databases. As differentially private RAM
has weaker security than ORAM, there is hope that we can bypass the
Ω(log(nb/c)) bandwidth lower bounds for ORAM by Larsen and Nielsen
[CRYPTO ’18] for storing an array of n b-bit entries and a client with c
bits of memory. We answer in the negative and present an Ω(log(nb/c))
bandwidth lower bound for privacy budgets of ε = O(1) and δ ≤ 1/3.

The information transfer technique used for ORAM lower bounds
does not seem adaptable for use with the weaker security guarantees of
differential privacy. Instead, we prove our lower bounds by adapting the
chronogram technique to our setting. To our knowledge, this is the first
work that uses the chronogram technique for lower bounds on privacy-
preserving storage primitives.

1 Introduction

In this work, we study privacy-preserving storage schemes involving a client and
an untrusted server. The goal is to enable the client to outsource the storage
of data to the server such that the client may still perform operations on the
stored data (e.g. retrieving and updating data). For privacy, the client wishes to
keep the stored data hidden from server. One way to ensure the contents of the
data remain hidden is for the client to encrypt all data before uploading to the
server. However, the server can still view how the encrypted data is accessed as
the client performs operations. Previous works such as [4,20] have shown that the

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 404–434, 2019.
https://doi.org/10.1007/978-3-030-17653-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_14

Lower Bounds for Differentially Private RAMs 405

leakage of patterns of access to encrypted data can be used to compromise the
privacy of the encrypted data. Therefore, a very important privacy requirement
is also to protect the access patterns.

The traditional way to define the privacy of access pattern is obliviousness. An
oblivious storage primitive ensures that any adversary that is given two sequences
of operations of equal length and observes the patterns of data access performed
by one of the two sequences cannot determine which of the two sequences induced
the observed access pattern. The most famous oblivious storage primitive is
Oblivious RAM (ORAM) that outsources the storage of an array and allows
clients to retrieve and update array entries. ORAM was first introduced by
Goldreich [16] who presented an ORAM with sublinear amortized bandwidth per
operation for clients with constant size memory. Goldreich and Ostrovsky [17]
give the first ORAM construction with polylogarithmic amortized bandwidth
per operation. In the past decade, ORAM has been the subject of extensive
research [18,19,21,27,28,31,32] as well as variants such as statistically secure
ORAMs [7,8], parallel ORAMs [2,5,6] and garbled RAMs [14,15,25]. The above
references are just a small subset of all the results for ORAM constructions.

Instead, we focus on a different definition of privacy using differential pri-
vacy [10–12]. The representative scenario for differential privacy is privacy-
preserving data analysis which considers the problem of disclosing properties
about an entire database while maintaining the privacy of individual database
records. A mechanism or algorithm is considered differentially private if any fixed
disclosure is almost as likely to be outputted for two different input databases
that only differ in exactly one record. As a result, an adversary that views the
disclosure is unable to determine whether an individual record was part of the
input used to compute the disclosure. We consider the scenario of performing
privacy-preserving data analysis on data outsourced to an untrusted server. By
viewing the patterns of access to the outsourced data, the adversarial server
might be able to determine which individual records were used to compute the
disclosure compromising differential privacy.

One way to protect the patterns of data access is to outsource the data using
an ORAM. However, in many cases, it turns out that the obliviousness guaran-
tees of ORAM may be stronger than required. For example, let’s suppose that
we wish to disclose a differentially private regression model over a sample of the
outsourced data. ORAM guarantees that the identity of all sampled database
records will remain hidden from the adversary. On the other hand, the differen-
tially private regression model only provides privacy about whether an individual
record was sampled or not. Instead of obliviousness, we want a weaker notion
of privacy for access patterns suitable for use with differentially private data
analytics. With a weaker notion of privacy, there is hope for a construction with
better efficiency than ORAM.

With this in mind, we turn to the notion of differentially private access which
provides privacy for individual operations but might reveal information about a
sequence of many operations. Differentially private access has been previously
considered in [33,34]. In particular, this privacy notion ensures that the patterns

406 G. Persiano and K. Yeo

of data access caused by a fixed sequence of operations is almost as likely to
be induced by another sequence of operations of the same length with a sin-
gle different operation. We define (ε, δ)-differentially private RAM as a storage
primitive that outsources the storage of an array in a manner that allows a
client to retrieve and update array entries while providing differentially private
access. As this privacy notion is weaker than obliviousness, the Ω(log(n/c))
lower bounds for ORAMs that store n array entries and clients with c bits of
storage by Larsen and Nielsen [23] do not apply. There is hope to achieve a dif-
ferentially private RAM construction with smaller bandwidth. In this work, we
answer in the negative and show that an Ω(log(n/c)) bandwidth lower bound
also exists for differentially private RAM for typical privacy budgets of ε = O(1)
and δ ≤ 1/3. As differential privacy with budgets of ε = O(1) and δ ≤ 1/3
provide weaker security than obliviousness, any ORAM is also a differentially
private RAM. Therefore, our lower bounds show that the ORAM constructions
by Patel et al. [27] and by Asharov et al. [1] are, respectively, asymptotically opti-
mal up to an O(log log n) factor and asymptotically optimal (ε, δ)-differentially
private RAM for any constant ε and δ ≤ 1/3 and any block size b. Our results
also prove that Path ORAM [32] is tight, for b = Ω(log2 n).

1.1 Our Results

In this section, we will present our contributions. We first describe the scenarios
where our lower bounds apply. Our lower bounds apply to differentially private
RAMs that process operations in an online fashion. The RAM must be both
read-and-write, that is, the set of permitted operations include both reading
and writing array entries. The server that stores the array is assumed to be
passive in that the server may not perform any computation beyond retrieving
and overwriting cells but no assumptions are made on the storage encoding of
the array. Finally, we assume that the adversary is computationally bounded. We
now go into detail about each of these requirements.

Differential Privacy. The goal of differential privacy is to ensure that the removal
or replacement of an individual in a large population does not significantly affect
the view of the adversary. Differential privacy is parameterized by two values
0 ≤ ε and δ ∈ [0, 1]. The value ε is typically referred to as the privacy budget.
When δ = 0, the notion is known as pure differential privacy while, if δ > 0, the
notion is known as approximate differential privacy. In our context, an individual
is a single operation in a sequence (the population) of read (also called queries)
and write (also called updates) operations over an array of n entries stored on a,
potentially adversarial, remote server. For any implementation DS and for any
sequence Q, we define VDS(Q) to be the view of the server when sequence Q
is executed by DS. A differentially private RAM, DS, is defined to ensure that
the adversary’s view on one sequence of operations should not be significantly
different when DS executes another sequence of operations which differs for only
one operation. We assume that our adversaries are computationally bounded.

Lower Bounds for Differentially Private RAMs 407

Formally, if DS is (ε, δ)-differentially private, then for any two sequences Q1

and Q2 that differ in exactly one operation, it must be that Pr[A(VDS(Q1)) =
1] ≤ eε Pr[A(VDS(Q2)) = 1] + δ for any probabilistic polynomial time (PPT)
algorithm A. The notion of computational differential privacy was studied by
Mironov et al. [26] where various classes of privacy were described. Our lower
bounds consider the weakest privacy class and, thus, apply to all privacy classes
in [26]. In the majority of scenarios, differential privacy is only considered use-
ful for the cases when ε = O(1) and δ is negligible. This is exactly the scenario
where our lower bounds will hold. In fact, our lower bounds hold for any δ ≤ 1/3.
We note that differential privacy with ε = O(1) and δ ≤ 1/3 is a weaker secu-
rity notion than obliviousness. Obliviousness is equivalent to differential privacy
when ε = 0 and δ is negligible. Therefore, our lower bounds also hold for ORAM
and match the lower bounds of Larsen and Nielsen [23]. We refer the reader to
Sect. 2 for a formal definition of differential privacy.

Online RAMs. It is important that we discuss the notion of online vs. offline
processing of operations by RAMs. In the offline scenario, it is assumed that
all operations are given before the RAM must start processing updates and
answering queries. The first ORAM lower bound by Goldreich and Ostrovsky [17]
considered offline ORAMs with “balls-and-bins” encoding and security against
an all-powerful adversary. “Balls-and-bins” refers to the encoding where array
entries are immutable balls and the only valid operation is to move array entries
into various memory locations referred to as bins. Boyle and Naor [3] show that
proving an offline ORAM lower bound for non-restricted encodings is equivalent
to showing lower bounds in sorting circuits, which is a long-standing problem in
complexity. Instead, we consider online RAMs where operations arrive one at a
time and must be processed before receiving the next operation. The assumption
of online operations is realistic as the majority of RAM constructions consider
online operations and almost all applications of RAMs consider online opera-
tions. Our lower bounds only apply for online differentially private RAMs.

Read-and-Write RAMs. Traditionally, all ORAM results consider the scenario
where the set of valid operations include both reading and writing array entries.
A natural relaxation would be to consider read-only RAMs where the only valid
operation is reading array entries. Any lower bound on read-only RAMs would
also apply to read-and-write RAMs. However, in a recent work by Weiss and
Wichs [36], it is shown that any lower bounds for read-only ORAMs would imply
very strong lower bounds for either sorting circuits and/or locally decodable
codes (LDCs). Proving lower bounds for LDCs has, like sorting circuits, been
an open problem in the world of complexity theory for more than a decade. As
differential privacy is weaker than obliviousness, any lower bounds on read-only,
differentially private RAMs also imply lower bounds on read-only ORAMs. To
get around these obstacles, our work focuses only on proving lower bounds for
read-and-write differentially private RAMs.

408 G. Persiano and K. Yeo

Passive Server. In our work, we will assume that the server storing the array is
passive, which means that the server will not any perform computation beyond
retrieving and overwriting the contents of the local memory cell to satisfy the
client’s requests. This assumption is necessary as there are ORAM construc-
tions that use server computation to achieve constant bandwidth operations [9].
Therefore, our lower bounds on bandwidth only apply to differentially private
RAMs with a passive server. For active servers we can reinterpret our results
as lower bounds on the amount of server computation required to guarantee
differential privacy.

We now informally present our main contribution.

Theorem 1 (informal). Let DS be any online, read-and-write RAM that
stores n array entries each of size b bits on a passive server without any restric-
tions on storage encodings. Suppose that the client has c bits of storage. Assume
that DS provides (ε, δ)-differential privacy against a computational adversary
that views all cell probes performed by the server. If ε = O(1) and 0 ≤ δ ≤ 1/3,
then the amortized bandwidth of both reading and writing array entries by DS is
Ω(b log(nb/c)) bits or Ω(log(nb/c)) array entries. In the natural scenario where
c ≤ b · nα for some 0 ≤ α < 1, then Ω(log n) array entries of bandwidth are
required.

1.2 Previous Works

In this section, we present a small survey of previous works on data structure
lower bounds. We also describe the first lower bound for data structures that
provide privacy guarantees.

The majority of data structure lower bounds are proved using the cell probe
model introduced by Yao [37], which only charges for accessing memory and
allows unlimited computation. In the case for passive servers that only retrieve
and overwrite memory, the costs of the cell probe model directly imply costs in
bandwidth. The chronogram technique was introduced by Fredman and Saks [13]
which can be used to prove Ω(log n/ log log n) lower bounds. Pǎtraşcu and
Demaine [30] presented the information transfer technique which could be used
to prove Ω(log n) lower bounds. Larsen [22] presented an Ω̃(log2 n) lower bound
for two-dimensional dynamic range counting, which remains the highest lower
bound proven for any log n output data structures. Recently, Larsen et al. [24]
presented an Ω̃(log1.5 n) lower bound for data structures with single bit outputs
which is the highest lower bound for decision query data structures.

For ORAM, Goldreich and Ostrovsky [17] presented an Ω(logc n) lower bound
for clients with storage of c array entries. However, Boyle and Naor [3] showed that
this lower bound came with the cavaets that the lower bound only for statisti-
cal adversaries and constructions in “balls-and-bins” model where array entries
could only be moved between memory and not encoded in a more complex man-
ner. Furthermore, Boyle and Naor [3] show that proving lower bounds for offline
ORAMs and arbitrary storage encodings imply sorting circuit lower bounds.

Lower Bounds for Differentially Private RAMs 409

In their seminalwork, Larsen andNielsen [23] presented anΩ(log(n/c)) bandwidth
lower bound removing the cavaets such that lower bounds applies to any types of
storage encodings and computational adversaries. Recently, Weiss and Wichs [36]
show that lower bounds for online, read-only ORAMs would imply lower bounds
for either sorting circuits and/or locally decodable codes.

We present a brief overview of the techniques used by Larsen and Nielsen [23],
which uses the information transfer technique. We also describe why information
transfer does not seem to be of use for differentially private RAM lower bounds.
Information transfer first builds a binary tree over Θ(n) operations where the
first operation is assigned to the leftmost leaf, the second operation is assigned
to the second leftmost leaf and so forth. Each cell probe is assigned to at most
one node of the tree as follows. For a cell probe, we identify the operation that is
performing the probe as well as the most recent operation that overwrote the cell
that is being probed. The cell probe is assigned to the lowest common ancestor
of the leaves associated with the most recent operation to overwrite the cell and
the operation performing the probe. Let us fix any node of the tree and consider
the subtree rooted at the fixed node. It can be shown that the probes assigned to
the root is the entirety of information that can be transferred from the updates
of the left subtree to be used to answer queries in the right subtree. Consider
the sequence of operations where all leaves in the left subtree write a randomly
chosen b-bit string to unique array entries and all leaves in the right subtree
read an unique, updated array entry. For any DS to return the correct b-bit
strings asked by the queries in the right subtree, a large amount of information
must be transferred from the left subtree to the right subtree. Thus, many probes
should be assigned to the root of this subtree. Suppose that for another sequence
of operations, DS assigns significantly less probes to the root of this subtree.
Then, a computational adversary can count the probes and distinguish between
the worst case sequence and any other sequence contradicting obliviousness. As
a result, there must be many probes assigned to each node of the information
transfer tree. Each cell probe is assigned to at most one node. So, summing up
the tree provides a lower bound on the number of cell probes required.

Unfortunately, we are unable to use the information transfer technique to
prove lower bounds for differentially private RAMs. The main issue comes from
the fact that differentially private RAMs have significantly weaker privacy guar-
antees compared to ORAMs. When ε = Θ(1), the probabilistic requirements
of the adversary’s view when DS processes two sequences Q1 and Q2 degrade
exponentially in the number of operations that Q1 and Q2 differ in. On the other
hand, the privacy requirements of obliviousness do not degrade when consider-
ing two sequences that differ in many operations. Larsen and Nielsen [23] use
obliviousness to argue that the adversary’s view for the worst case sequence of
any subtree cannot differ significantly from any other sequence. However, for any
fixed sequence of operations, the worst case sequence for the majority of subtrees
differ in many operations (on the order of the number of leaves of the subtree).
Applying differential privacy will not yield strong requirements for the number
of cell probes assigned to the majority of the nodes in the information transfer

410 G. Persiano and K. Yeo

binary tree. As a result, we could not adapt the information transfer technique
for differentially private RAM lower bounds and resort to other techniques.

1.3 Overview of Our Proofs

In this section, we present an overview of the proof techniques used in Sects. 3
and 4. Our lower bounds use ideas from works by Pǎtraşcu and Demaine [30] and
Pǎtraşcu [29]. However, we begin by reviewing the original chronogram technique
of Fredman and Saks [13].

Consider an ORAM that stores n b-bit array entries in a cell probe model
with w-bit cells. We make the reasonable assumption that w = Ω(log n) so
that a cell can hold the index of an entry. Let tw and tr denote the number of
cell probes of an update (write) and of a query (read) operation, respectively,
and consider a sequence of Θ(n) update operations followed by a single query.
Starting from the query and going backwards in time, updates are partitioned
into exponentially increasing epochs at some rate r, so that the i-th epoch will
have �i = ri update operations. Epochs are indexed in reverse time, so the
smallest epoch closest to the query is epoch 1. The goal of the chronogram is
to prove that there exists a query that requires information from many of the
epochs simultaneously. To do this, we first observe that if each update writes a
randomly and independently chosen b-bit entry, an update operation preceding
epoch i cannot encode any information about epoch i. Therefore, all information
about entries updated in epoch i can only be found in cells that have been
written as part of the update operations of epoch i or any following epochs,
that is epochs i − 1, . . . , 1. Since each update stores b random bits, epoch i
encodes �i · b bits in total. On the other hand, the write operations of epochs
i−1, i−2, . . . , 1 can probe at most tw(ri−1 + . . .+ r) and by setting r = (tww)2,
we obtain that O(�i/(tww2)) cells can be probed and O(�i/(tww)) bits can be
written. As a result, the majority of the bits encoded by updates in epoch i
remain in cells last written in epoch i. Thus, if we construct a random query
such that Ω(b) bits must be transferred from each epoch, then we obtain that
max{tw, tr} = Ω((b/w) logr n) = Ω((b/w) log n/ log log n).

This lower bound can be improved to Ω((b/w) log n) by using an improve-
ment of the chronogram technique by Pǎtraşcu [29]. In the original chronogram
technique, the epochs are fixed since the query’s location and the number of
updates are fixed. An algorithm may attempt to target an epoch i by having
all future update operations encode information only about epoch i. To coun-
teract this, we consider a harder update sequence where epoch locations cannot
be predicted by the algorithm. Specifically, we consider a sequence that consists
of a random number of update operations followed by a single query operation.
For such a sequence, even if an algorithm attempts to target epoch i, it cannot
pinpoint the location of epoch i (remember that epochs are indexed starting
from the query operation and going back in time) and may only prepare over
all possible query locations. We show that any update operation may now only
encode O(tww/ logr n) about epoch i where logr n is the number of epochs. As a
result, future update operations can only encode a O(1/ logr n) fraction as much

Lower Bounds for Differentially Private RAMs 411

information about epoch i as the previous lower bound attempt. This allows us
to fix r = 2 which increases the number of epochs log n. If we can find a query
that requires Ω(b) bits of information transfer from the majority of epochs, we
can prove that max{tw, tr} = Ω((b/w) log n).

For differentially private RAMs, the update operations enable overwriting a
b-bit array entry while the query operations allow retrieving an array entry. We
choose our update operations to overwrite unique array entries and each entry is
overwritten with a value that is independently and uniformly chosen at random
from {0, 1}b. Focus on an epoch i and consider picking a random query from
the �i array indices updated in epoch i. The majority of these queries must read
Ω(b) bits from cells last written in epoch i as future operations cannot encode
all �i · b bits encoded by epoch i. As a result, there exists some query such
that Ω(b) bits must be transferred from epoch i for all sufficiently large epochs.
We use differential privacy to show that Ω(b) bits must be transferred from all
sufficiently large epochs. Consider two sequences of operations that only differ in
the final query operation and suppose that the first query requires Ω(b) bits from
epoch i. If the latter query transfers o(b) bits from epoch i, the adversary can
distinguish between the two sequences with high probability and this contradicts
differential privacy as the two sequences only differ in one operations. Therefore,
we can prove that Ω(b) bits have to be transferred from most epochs and thus
max{tw, tr} = Ω((b/w) log n). The proof of this lower bound is found in Sect. 3.

A stronger lower bound is obtained in Sect. 4 using more complex epoch
constructions, adapting ideas from [30] and [29]. The lower bound outlined above
shows that max{tw, tr} = Ω((b/w) log n) but it does not preclude the case where
tw = Θ((b/w) log n) and tr = O(1), for example. We show this cannot be the
case. In particular, we show that if max{tw, tr} = O((b/w) log n), then it must
be the case that tw = Θ((b/w) log n) and tr = Θ((b/w) log n). The idea is to
consider different epoch constructions for the cases when tw and tr are small,
respectively. When tw = o((b/w) log n), we know that operations in future epochs
cannot encode too much information. We consider an epoch construction where
epochs grow by a rate of ω(1) every r epochs thus increasing the number of epochs
to ω(log n). In exchange, there are many operations after an epoch i. Since tw is
small, the future operations may not encode too much information about epoch i
ensuring most of the information about epoch i remain in cells last written during
epoch i. As a result, it can be shown again that Ω(b) bits must be read from
many epochs implying an tr = ω((b/w) log n) lower bound. On the other hand,
consider the case when tr = o((b/w) log n). We consider epoch constructions that
increase exponentially with rate r = ω(1). As a result, the number of operations
after epoch i is a factor of O(1/r) smaller than the �i operations in epoch i and
there are Θ(logr n) epochs. If tr = o((b/w) logr n), then a query operation may
not read Ω(b) from each of the epochs. Instead, update operations must encode
a large amount of information about previous epochs to compensate for tr being
so small. As a result, it can be shown that tw = ω((b/w) log n). Combining
the above two statements implies that if max{tw, tr} = O((b/w) log n), then
tw = Θ((b/w) log n) and tr = Θ((b/w) log n).

412 G. Persiano and K. Yeo

2 Differentially Private Cell Probe Model

We start by formalizing the model for which we prove our lower bounds. We rely
on the cell probe model, first described by Yao [37], and typically used to prove
lower bounds for data structures without any requirements for privacy of the
stored data and/or the operations performed. In a recent work by Larsen and
Nielsen [23], the oblivious cell probe model was introduced and used to prove a
lower bound for oblivious RAM. The oblivious cell probe model was defined for
any data structures where the patterns of access to memory should not reveal
any information about the operations performed. We generalize the oblivious
cell probe model and present the (ε, δ)-differentially private cell probe model. In
this new model, all data structures are assumed to provide differential privacy
for the operations performed with respect to memory accesses viewed by the
adversary. The differentially private cell probe model is a generalization of the
oblivious cell probe model as obliviousness is equivalent to differential privacy
with ε = 0 and δ = negl(n), that is, any function negligible in the number of
items stored in the data structure.

The cell probe model is an abstraction of the interaction between CPUs and
word-RAM memory architectures. Memory is defined as an array of cells such that
each cell contains exactly w bits. Any operation of a data structure is allowed to
probe cells where a probe can consist of either reading the contents of a cell or over-
writing the contents of a cell. The running time or cost for any operation of a data
structure is measured by the number of cell probes performed. An algorithm is free
to do unlimited amounts of computation based on the contents of probed cells.

In this paper we are interested in data structures that provide privacy of the
operations performed in a scenario involving two parties denoted the client and
the server. The client outsources the storage of data to the server while main-
taining the ability to perform some set of operations over the data efficiently. In
addition, the client wishes to hide the operations performed from the adversar-
ial server that views the contents of all cells in memory as well as the sequence
of cells probed in memory. The crucial privacy requirement is that the server
does not learn about the contents and the sequence of accesses performed by the
client’s storage. To properly capture the above setting, Larsen and Nielsen [23]
defined the oblivious cell probe model and proved lower bounds for oblivious
RAMs. We introduce the differentially private cell probe model that is identical
to the oblivious cell probe model of Larsen and Nielsen, except for the simple
replacement of obliviousness with differential privacy as the privacy requirement.
For a full description of the oblivious cell probe model, we refer the reader to
Sect. 2 of [23]. To formally define the differentially private cell probe model, we
first describe a data structure problem as well as a differentially private cell probe
data structure for any data structure problem.

Definition 1. A data structure problem P is defined by a tuple (U,Q,O, f)
where

1. U is the universe of all update operations;
2. Q is the universe of all query operations;

Lower Bounds for Differentially Private RAMs 413

3. O is domain of all possible outputs for all queries;
4. f : U∗ × Q → O is a function that describes the desired output of any query

q ∈ Q given the history of all updates, (u1, u2, . . . , um) ∈ U∗.

A differentially private cell probe data structure DS for the data structure
problem P consists of a randomized algorithm implementing update and query
operations for P . DS is parameterized by the integers c and w denoting the client
storage and cell size in bits respectively. Additionally, DS is given a random
string R of finite length r containing all randomness that DS will use. Note that
R can be arbitrarily large and, thus, contain all the randomness of a random
oracle. Given the random string, our algorithms can be viewed as deterministic.
Each algorithm is viewed as a finite decision tree executed by the client that
probes (read or overwrite) memory cells owned by the server. For each q ∈ Q
and u ∈ U , there exists a (possibly) different decision tree. Each node in the
decision tree is labelled by an index indicating the location of the server-held
memory cell to be probed. For convenience, we will assume that a probe may
both read and overwrite cell contents. This only reduces the number of cell
probes by a factor of at most 2. Additionally, all leaf nodes are labelled with an
element of O indicating the output of DS after execution.

Each edge in the tree is labelled by four bit strings. The first bit-string of length
w represents the contents of the cell probed. The next w-bit string represents the
new cell contents after overwriting.There are two c-bit strings representing the cur-
rent client storage and the new client storage after performing the probe. Finally,
there is a r-bit string representing the random string. The client executes DS by
traversing the decision tree starting from the root. At each node, the client reads
the indicated cell’s contents. Using the random string, the current client storage
and the cell contents, it finds the edge to the next node and updates the probed
cell’s contents and client storage accordingly. When reaching a leaf, DS outputs
the element of O denoted at the leaf.

Note, DS is only permitted to use the contents of the previously probed cell,
current client storage and the random string as input to generate the next cell
probe or produce an output. The running time of DS is related to the depth
of the decision tree as each edge corresponds to a cell probe. Furthermore, as
the servers are passive, the server can only either update or retrieve a cell for
the client. As a result, the running time (number of cell probes) multiplied by
w (the cell size) gives us the bandwidth of the algorithm in bits. We now define
the failure probability of DS.

Definition 2. A DS for data structure problem P = (U,Q,O, f) has failure
probability 0 ≤ α ≤ 1 if for every sequence of updates u1, . . . , um ∈ U∗ and
query q ∈ Q:

Pr[DS(u1, . . . , um, q) �= f(u1, . . . , um, q)] ≤ α

where randomness is over the choice of R.

414 G. Persiano and K. Yeo

As R is finite, it might seem that we do not consider algorithms whose failure
probability decreases in the running time but may never terminate. Instead, we
can consider a variant of the algorithm that may run for an arbitrary long
time but must provide an answer once its failure probability is small enough
(for example, negligible in the number of item stored). Therefore, by sacrificing
failure probability, we can convert such possibly infinitely running algorithms
into finite algorithms with slightly larger failure probabilities. As we will prove
our lower bounds for DS with failure probabilities at most 1/3, we may also
consider these kind of algorithms with vanishing failure probabilities and no
termination guarantees.

We now move to privacy requirements and define the random variable
VDS(Q) as the adversary’s view of DS processing a sequence of operations Q
where randomness is over the choice of the random string R. The adversary’s
view contains the sequence of probes performed by DS to server-held memory
cells. We stress that the view does not include the accesses performed by DS to
client storage. We now define differentially private access.

Definition 3. DS provides (ε, δ)-differentially private access against compu-
tational adversaries if for any two sequences Q = (op1, . . . , opm) and Q′ =
(op′

1, . . . , op
′
m) such that |{i ∈ {1, . . . , m} | opi �= op′

i}| = 1 and any PPT
algorithm A, it holds that

Pr[A(VDS(Q)) = 1] ≤ eε · Pr[A(VDS(Q′)) = 1] + δ.

Our results focus on online data structures where each cell probe may be
assigned to a unique operation.

Definition 4. A DS is online if for any sequence Q = (op1, . . . , opm), the
adversary’s view can be split up as:

VDS(Q) = (VDS(op1), . . . ,VDS(opm))

where each cell probe in VDS(opi) is performed after receiving opi and before
receiving opi+1.

Finally, we present the definition of an (ε, δ)-differentially private cell probe
data structure. We present a diagram of the model in Fig. 1.

Definition 5. A DS for problem P is an (ε, δ)-differentially private cell probe
data structure if DS has failure probability 1/3, provides (ε, δ)-differentially
private access and is online.

We comment that the failure probability of 1/3 does not seem to be rea-
sonable for any scenario. However, proving a lower bound for DS with failure
probability 1/3 results in stronger lower bounds as they also hold for more rea-
sonable situations with zero or negligibly small failure probabilities.

We now present the array maintenance problem introduced by Wang
et al. [35], which crisply defines the online RAM problem.

Lower Bounds for Differentially Private RAMs 415

Fig. 1. Diagram of differentially private cell probe model.

Definition 6. The array maintenance problem AM is parameterized by two inte-
gers n, b > 0 and defined by the tuple (UAM, QAM, OAM, fAM) where

– UAM = {write(i, B) : i = 0, . . . , n − 1, B ∈ {0, 1}b};
– QAM = {read(i) : i = 0, . . . , n − 1};
– OAM = {0, 1}b;

and, for a sequence Q = (u1, . . . , um) where u1, . . . , um ∈ U∗, fAM is:

fAM(Q, read(i)) =

{
B, where j is largest index such that qj = write(i, B);
0b, if there exists no such j.

In words, the array maintenance problem requires that a data structure to store
an array of n entries each of b bits. Each array location is uniquely identified by
a number in [n]. Typically, it is assumed that a cell is large enough to contain
an index. In this case, w = Ω(log n). However, in our lower bounds, we will only
assume that w = Ω(log log n) to achieve a stronger lower bound. An update
operation (also called a write) takes as input an integer i ∈ [n] and a b-bit string
B and overwrites the array entry associated with i with the string B. For conve-
nience, we denote a write operation with inputs i and B as write(i, B). A query
operation (also called a read) takes as input an integer i ∈ [n] and returns the
current b-bit string of the array entry associated with i. We denote a read oper-
ation with input i as read(i). We will prove lower bounds for (ε, δ)-differentially
private RAMs which are differentially private cell probe data structures for the
AM problem.

3 First Lower Bound

Let DS be a (ε, δ)-differentially private RAM storing n b-bit entries indexed by
the integers from 0 to n−1. For any sequence of operations Q = (op1, . . . , opm),

416 G. Persiano and K. Yeo

we denote tw(Q) as the worst case number of cell probes on a write operation
and tr(Q) as the expected amortized number of cell probes on a read operation.
Both expectations are over the choice of the random string R used by DS. We
write tw and tr as the largest value of tw(Q) and tr(Q) respectively over all
sequences Q. We assume that cells are of size w bits and the client has c bits
of storage. In this section, we will prove the following preliminary result. The
result will be strengthened in Sect. 4 where we present our main result.

Theorem 2. Let ε > 0 and 0 ≤ δ ≤ 1/3 be constants and let DS be an (ε, δ)-
differentially private RAM for n b-bit entries implemented over w-bit cells that
uses c bits of local storage. If DS has failure probability at most 1/3 and w =
Ω(log log n), then tw + tr = Ω

(
b
w · log

(
nb
c

))
.

In terms of block bandwidth, this implies that at least one of read and write
has an expected amortized Ω(log(nb/c)) block bandwidth overhead. The above
theorem will be shown when DS has to process a sequence Q sampled according
to distribution Q(0). For index idx ∈ {0, . . . , n−1}, distribution Q(idx) is defined
by the following probabilistic process:

1. Pick m uniformly at random from {n/2, n/2 + 1, . . . , n − 1}.
2. Draw B1, . . . , Bm independently and uniformly at random from {0, 1}b.
3. Construct the sequence U = write(1, B1), . . . , write(m,Bm).
4. Output Q = (U, read(idx)).

Thus Q(idx) assigns positive probability to sequences Q = (U, read(idx)) that
consist of a sequence U of m write operation of m b-bit blocks one for each index
1, 2, . . . ,m, followed by a single read to index idx. It will be useful to define U
to be the distribution of U as determined by the first three steps of the process
described above.

In particular, we prove the above theorem using Q(0), which for convenience,
will be denoted by Q from now on. If privacy is not a concern, sequences in the
support of Q do not seem to require many probes as index 0 is not overwritten.
However, the lower bound will, critically, use the fact that the view of any
computational adversary cannot differ significantly from the view of sequences
whose last operation attempts to read a previously overwritten index idx ∈
{1, . . . , m}.

We prove the lower bound using the chronogram technique first introduced
by Fredman and Saks [13] along with the modifications by Pǎtraşcu [29]. The
strategy employed by the chronogram technique when applied to a sequence
sampled according to Q goes as follows. For any choice of m, we consider the n/2
write operations that immediately precede the read(0) operation and we split
them into consecutive and disjoint groups, which we denote as epochs. The epochs
will grow exponentially in size and are indexed going backwards in time (order
of operations performed). That is, the epoch consisting of the write operations
immediately preceding the read operation will have the smallest index, while
the epoch furthest in the past will have the largest index. Note that, when the
sequence of operations is sampled according to Q or, more generally, according

Lower Bounds for Differentially Private RAMs 417

to Q(idx), the set of indices overwritten by the write operations that fall into
epoch i is a random variable which we denote by U i and that depends on the
value of m.

To prove Theorem 2, we consider a simple epoch construction. For i > 0,
epoch i consists of �i = 2i write operations and thus there will be k = log2(n/2+
2)−1 epochs. We also define si to be the total size of epochs 1, . . . , i. In the epoch
construction of this section, we have si = 2i+1−2. See Fig. 2 for a diagram of the
layout of the epochs with regards to a sequence of operations. In Sect. 4, we will
derive stronger lower bounds by considering more complex epoch constructions
with different parameters.

Fig. 2. Diagram of epoch construction of Sect. 3. Operations are performed from left
to right.

Defining Random Variables. Since we are considering online data structures,
each cell probe performed by DS while processing a sequence Q can be uniquely
associated to a read or a write operation of Q. Random variable Tw(Q) is
defined as the set of cell probes performed by DS while processing the write
operations of the sequence Q. Similarly, we define Tr(Q) as the random variable
of the set of cell probes performed by DS when processing the read operations
of Q. The probability spaces of the two variables are over the choice of R.

The following random variables are specifically defined for sequences Q =
(U, read(idx)) in the support of distribution Q(idx), for some idx. We remind
the reader that these sequences perform a sequence U consisting of m write
operations followed by a single read(idx) operation. The m write operations
overwrite entries 1, . . . , m with random b-bit strings. We denote by T j

w(Q) the
random variable of the cells that are probed during the execution of a write
operation of epoch j in Q. We further partition the cell probes in T j

w(Q) accord-
ing to the epoch the cell was last overwritten before being probed in epoch j.
Specifically, for i ≥ j, we define T i,j

w (Q) as the random variable of the sub-
set of the probes of T j

w(Q) performed to a cell that was last overwritten by an
operation in epoch i. Note that the sets T i,j

w (Q) for all pairs (i, j) with i ≥ j
constitute a partition of Tw(Q). It will be convenient in the proof to define
T <i

w (Q) = T i,1
w (Q) ∪ . . . ∪ T i,i−1

w (Q) as the set of probes that are performed
by an operation in any of epochs {1, . . . , i − 1} to a cell that was last over-
written by an operation in epoch i. Note that if two sequences Q1 = (U, idx1)
and Q2 = (U, idx2) share the same initial sequence U of write operations, then,
clearly, T <i

w (Q1) = T <i
w (Q2) if they both use the same random string R.

418 G. Persiano and K. Yeo

Finally, we denote the random variable T i
r (Q) as the set of probes performed

by the read operation of Q to cells that were last overwritten by an operation
in epoch i. In Fig. 3, we show a diagram of T <i

w (Q) and T i
r (Q).

Fig. 3. Diagram of T <i
w (Q) and T i

r (Q).

We extend the definitions above to distributions of sequences in a natural
way. For example, Tw(Q(idx)) is defined by first picking sequence Q accord-
ing to Q(idx) and then sampling a set according to Tw(Q). Note that, since
T <i

w (Q(idx)) does not depend on the read operation, we have that for all idx1, idx2
T <i

w (Q(idx1)) = T <i
w (Q(idx2)) = T <i

w (U).

3.1 A Tradeoff Between T <i
w (Q) and T i

r (Q)

From a high level, the proof of Theorem 2 is based on the fact that T <i
w (Q) and

T i
r (Q) cannot be both small for all epochs i. To see why this must be intuitively

true consider distribution Qi over query sequences where the last read operation
to the 0-th index is replaced with an index chosen uniformly at random from
U i (remember U i are the indices of the array entries that are overwritten by
write operations in epoch i). Since each write operation overwrites a distinct
entry with a uniformly chosen b-bit string, a sufficiently large number of bits
that were encoded by write operations in epoch i must be retrieved by the read
operation. There are only three ways that these bits can be retrieved by the read
operation. The first way is to probe cells that were last overwritten by any write
operation of epoch i which corresponds to T i

r (Qi). Another way is to probe cells

Lower Bounds for Differentially Private RAMs 419

that were last overwritten by operations that occurred after epoch i; that is, in
any epoch 1 ≤ j < i. However, the total number of bits encoded by operations in
epochs 1 ≤ j < i is upper bounded by the number of probes performed in epochs
1 ≤ j < i to cells that were last overwritten by an operation in epoch i, which
corresponds to T <i

w (Qi). The final way to retrieve information from the write
operations of epoch i is to encode information in the client’s storage of c bits.
However, if we consider the case when the number of entries overwritten in epoch
i, �i, is significantly larger than c, then the client’s storage is too small to encode
any significantly large amount of information compared to the total number of
write operations of epoch i. As a result, the total combined size of T <i

w (Qi)
and T i

r (Qi) or, better, a function of the two quantities, can be lower bounded.
However, recall that we wish to lower bound the values when processing the
random sequence Q and not Qi. The only difference between Q and Qi is the
index of the read operation performed at the end. By computational differential
privacy, any random event that can be verified by a PPT adversary cannot occur
with significantly different probabilities when DS processes Q as opposed to Qi.
Since the sets of cell probes can easily be computed in polynomial time, a lower
bound on the sum of |T <i

w (Qi)| + |T i
r (Qi)| also implies a lower bound on the

|T <i
w (Q)| + |T i

r (Q)| for a differentially private DS.
As explained above, the technical crux of the lower bound on |T <i

w (Qi)| +
|T i

r (Qi)| is an encoding argument that is captured by the following lemma that
shows that a certain random variable Zi(Q(j)) is “large” with probability at
least 1/2. We say that an epoch i is large if li ≥ max{√n, c2/b}.

Lemma 1. Assume that DS has failure probability at most 1/3. Then, for any
large epoch i, there exists an index idx ∈ {1, . . . , n − 1} such that

Pr[Zi(Q(idx)) ≥ b/8)] ≥ 1/2

where Zi(Q(idx)) is

1

�i

(
|T <i

w (Q(idx))|w + log
(twsi−1

|T <i
w (Q(idx))|

))
+

(
|T i

r (Q(idx))|w + log
(tr

|T i
r (Q(idx))|

))
+

c

�i
.

The proof of Lemma 1 is found in Sect. 3.4. Zi(Q(idx)) can be viewed as the
total average information that the read(idx) operation at the end of Q(idx)
retrieves from the write operations of epoch i. Let us explain the meaning of
each term of the value Zi(Q(idx)). The first term of Zi(Q(idx)) measures the
average amount of information pertaining to each of the �i write operations
of epoch i that are read by cell probes performed in epochs following epoch i.
Each of the cell probes in T <i

w (Q(j)) reads exactly w bits in a cell. In addition,
the choice of which cell probes performed in epochs following epoch i actually
belong to T <i

w (Q(j)) also encodes some information. As there are si−1 write
operations epochs following epoch i, there are at most twsi−1 cell probes and at
most

(twsi−1

|T <i
w (Q(j))|

)
choices of the cells to probe leading to log

(twsi−1

|T <i
w (Q(j))|

)
bits.

Similarly, each probe in T i
r (Q(j)) reads w bits in each cell and there are at most(

tr
|T i

r (Q(j))

)
choices of probes when performing read(j) that belong to T i

r (Q(j)).

420 G. Persiano and K. Yeo

The last term of Zi(Q(j)) considers the average amount of information for each
of the �i operations in epoch i that are encoded in the client’s storage of c bits.
Now, observe that the expected total amount of information that need to be
transferred if all �i possible read operations of Qi are performed is �i · b bits. As
a result, by taking idx to be the index which requires the most bit transferred
of the �i indices overwritten in epoch i leads us to the above lemma. A formal
proof of these ideas is presented in Sect. 3.4.

3.2 Using Differential Privacy

We note that Lemma 1 does not suffice to prove that tw + tr = ω(1). Typically,
chronogram lower bounds will find a single sequence that forces a large amount
of information transfer from all epochs simultaneously. Instead, Lemma 1 states,
that for each epoch, there exists some sequence that forces a large information
transfer that the sequences are possibly different for each epoch. In fact, without
assuming privacy about a data structure, there can be no single sequence that
requires large information from many epochs as there are trivial Θ(1) data struc-
tures that solve the array maintenance problem without any privacy guarantees.
As Lemma 1 does not assume privacy for DS, we will need to incorporate the
fact that DS is differentially private to achieve a statement that there exists a
single sequence that forces large information transfer from many epochs simul-
taneously.

Let us now assume that DS provides differential privacy against compu-
tational adversaries with parameters ε = O(1) and 0 ≤ δ ≤ 1/3. For any fixed
sequence Q, we consider any probabilistic event E(Q) over the randomness of the
choice of the random string R such that there exists a probabilistic polynomial
time algorithm that can verify E(Q) being true or false. Then, computational
differential privacy implies that, for any fixed sequence Q1 and Q2 that differ in
exactly one operation, Pr[E(Q1) is true] ≤ eε Pr[E(Q2) is true] + δ. In particu-
lar, we can consider the event E(Q) = “Zi(Q) ≥ b/8′′. Note that Zi(Q) can be
computed by any computational adversary by simply assigning each cell probe
performed by DS over Q into one of {T <i

w (Q)}i=1,...,k or {T i
r (Q)}i=1,...,k where

assigning a cell probe depends only on the last time the cell was overwritten and
the current operation of Q. As a result, we know that for any two fixed sequences
Q1 and Q2 that differ in exactly one operation, then

Pr[Zi(Q1) ≥ b/8] ≤ eε Pr[Zi(Q2) ≥ b/8] + δ.

Note that Q and Q(idx) only differ in the input index to the read operation
at the end of the sequence. We use this fact to prove the following lemma that
Zi(Q) cannot differ significantly from Zi(Q(idx)) for any idx.

Lemma 2. Let DS be an (ε, δ)-differentially private RAM and let i be a large
epoch. Then,

Pr[Zi(Q) ≥ b/8] ≥ 1/(6eε).

Lower Bounds for Differentially Private RAMs 421

Proof. By Lemma 1, there exists an index idx such that Pr[Zi(Q(idx)) ≥ b/8]
≥ 1/2. We define Q(idx, B1, . . . , Bm) = (write(1, B1), . . . , write(m,Bm),
read(idx)). Then,

Pr[Zi(Q) ≥ b/8] =
n−1∑

m=n/2

∑
B1,...,Bm∈{0,1}b

1
m2bm

Pr[Zi(Q(0, B1, . . . , Bm)) ≥ b/8]

≥
n−1∑

m=n/2

∑
B1,...,Bm∈{0,1}b

1
m2bm

(
Pr[Zi(Q(idx, B1, . . . , Bm)) ≥ b/8] − δ

eε

)

=
Pr[Zi(Q(idx)) ≥ b/8] − δ

eε
≥ 1/2 − 1/3

eε
=

1
6eε

.

3.3 Completing the Proof of Theorem 2

Lemma 2 resembles the typical desired statement for data structure lower bounds
as it guarantees existence of a distribution of query sequences, Q, that forces a
large amount of information transfer from all epochs in expectation.

Recall that we consider epoch i consisting of �i = 2i write operation for a
total of si = 2i+1 − 2 write operation in epochs 1, . . . , i. We refer the reader to
Fig. 2 for a visual reminder of our epoch construction. Using Lemma 2, we will
show that Ω(b/w) bits must be transferred from the majority of large epochs. In
particular, we focus on epochs i for which the number of blocks, �i, written by the
write operations is much larger than the number of blocks that can be stored in
client’s memory, c/b. For otherwise, the blocks written by the write operations
in epoch i may be entirely encoded into client’s storage of c bits and thus no
information from epoch i is required to be transferred by cell probes of future
operations. Concretely, we say that an epoch is large if �i ≥ max{√n, c2/b} and
note that, by our definition of epochs, we have k̂ := Θ(log(nb/c)) large epochs.
We will show that for many large epochs Ω(b/w) bits must be transferred by
cell probes of either write operations of future epochs or the read operation.

To achieve our lower bound, we will analyze the expectation of Zi(Q) based
on our epoch construction. We will provide a high-level overview of the steps of
our analysis in this paragraph before performing a formal analysis. Recall that
tw and tr are an upper bound on the expected amortized number of cells probed
per write and read operation for any sequence. For the majority of epochs i, we
cannot expect the read operation of Q to probe more than tr/k̂ cells containing
information about the write operations of epoch i. This provides an upper bound
on |T i

r (Q)| for the majority of epochs. We want a similar upper bound on the
value of |T <i

w (Q)|. Recall that this number corresponds to the number of probes
performed by write operations that read cells that encode information about
the write operations of epoch i. Our argument will critically use the fact that
the sequence Q is chosen at random. Recall that Q is chosen to have m write
operations where m is chosen uniformly at random from {n/2, n/2+1, . . . , n−1}.
The data structure DS is unable to predict the point in time when the read
operation will occur. Instead, the best that DS can achieve is to prepare for

422 G. Persiano and K. Yeo

all possible epoch configurations. Since there are k̂ epochs with size at least
max{√n, c2}, each update should be only able to encode tw·w

k̂
about each of

these epochs. As a result, we can prove the majority of epochs cannot have very
large values of |T <i

w (Q)| in expectation.
As the two bounds above hold for the majority of epochs, we can show there

exists at least one large epoch i such that both the values of |T <i
w (Q)| and

|T i
r (Q)| are small. In particular, we show the following:

Lemma 3. There exists a large epoch i for which E
[
|T <i

w (Q)|/�i

]
=

O (tw/ log(nb/c)) and E
[
|T i

r (Q)|
]

= O (tr/ log(nb/c)).

Proof. The lemma is derived from the following two statements:

1. There exists k̂/2 + 1 large epochs i such that E[|T <i
w (Q)|/�i] =

O(tw/ log(nb/c)).
2. There exists k̂/2 + 1 large epochs i such that E[|T i

r (Q)|] = O(tr/ log(nb/c)).

Since there are only k̂ large epochs, there must exist at least one large epoch
where both inequalities hold. We now show the two statements are true.

Let us pick epoch i uniformly at random amongst the k̂ large epochs and
fix the random string R as well as the n − 1 block values B1, . . . ,Bn−1. We
now fix a cell probe probe of the execution of DS over the write operations
write(1,B1), . . . , write(n − 1,Bn−1) and consider the probability that probe
contributes to T <i

w (Q) from which we derive a bound on E[|T <i
w (Q)|/�i]. Note

that, having fixed R and the values Bj ’s, the probability space is over the choice
of m from {n/2, n/2 + 1, . . . , n − 1} and of i. We denote pr as the index of the
write operation in U when probe is performed. The value pw is denoted as the
index of the write operation in U when the cell of probe was last overwritten.
Using pr and pw, we can attempt to upper bound the probability that the probe
belongs to T <i

w (Q). First, let e be the smallest integer such that pr − pw ≤ se.
Note that probe cannot contribute to T <j

w (Q) for any epoch j ≤ e − 1, since
there are only sj operations between the beginning of epoch k and the read
operation. Since sj ≤ se−1 < pr − pw, either the read operation has to occur
after the read operation or the last operation to overwrite the cell probe occurs
before the j-th epoch. We remind the reader that the exact locations of epochs
is determined by m. The boundary denoting the end of epoch j has to occur
after pw and before pr meaning there are at most se choices from the position of
the read operation such that this cell probe contributes to T <j

w (Q). There are
n/2 choices for m, so the probability is at most 2se/n. We now compute

E[|T <i
w (Q)|/�i] =

1

k̂

∑
j:�j≥max{√

n,c2}

E[|T <j
w (Q)|/�j].

The probe only contributes to epochs j ≥ e. Note, there are at most (in expec-
tation) tw · (n − 1) cell probes performed when processing the write operations
of Q. By linearity of expectation,

∑
j:�j≥max{√

n,c2/b}
E

[
|T <j

w (Q)|
�j

]
≤ tw · n

∑
j≥e

2 · se

n · lj
≤ 2tw ·

(
se

le
+

se

le+1
+ . . .

)
≤ 4tw.

Lower Bounds for Differentially Private RAMs 423

As a result, there exists k̂/2 + 1 fixed epochs i such that their expectation over
the m is at most 12tw.

We know that
∑

i E[|T i
r (Q)|] ≤ tr. Therefore, there exists k̂/2+1 large epochs

i such that E[|T i
r (Q)|] ≤ 3tr completing the proof.

We can now achieve our goal of proving Theorem 2 that gives a lower bound
on the sum tw + tr by plugging the inequalities in Lemma 3 into the expectation
of Zi(Q) and then using the bound from Lemma 2.

Proof (Theorem 2). First, we analyze the expectation of Zi(Q). Note that, for
every x, y, log

(
y
x

)
= O(x log(y/x)). Moreover, for every y, x log(y/x) is a convex

function over x, so we can write the E[x log(y/x)] ≤ E[x] log(y/E[x]) where the
expectation is over the choice of x. We now apply this observation to E[Zi(Q)]

O

(
E[|T <i

w (Q)|]
�i

(
w + log

twsi−1

E[|T <i
w (Q)|]

)
+ E[|T i

r (Q)|]
(

w + log
tr

E[|T i
r (Q)|]

)
+

c

�i

)
.

By Lemma 2, we know that E[Zi(Q)] = Ω(b). We now pick our epoch i as
the one chosen by Lemma 3 and plug in the inequalities to get

tw

log(nb/c)

(
w + log

twsi−1

�itw/ log(nb/c)

)
+

tr

log(nb/c)

(
w + log

tr

tr/ log(nb/c)

)
= Ω(b).

Here we have used the fact that epoch i is large and thus c
�i

= O(b), since
�i ≥ c2/b. Also, note that si−1 = Θ(�i). Therefore, we can simplify and get that
tw + tr = Ω ((b/(w + log log n)) log(nb/c)). If we assume that w = Ω(log log n),
we can simplify and get the following result tw + tr = Ω ((b/w) log(nb/c)) which
completes the proof.

Therefore, the lower bound of tw + tr described in Theorem 2 can be entirely
derived from Lemma 1. It remains to prove Lemma 1, which we do next.

3.4 An Encoding Argument Using T <i
w (Q) and T i

r (Q)

In this section, we prove Lemma 1. We first give a high level description of the
proof. The main idea involves converting any DS that solves the array mainte-
nance problem into a one-way communication problem between two parties, for
which we have a lower bound on the number of bits that must be sent.

Specifically, we consider the case in which for a fixed epoch i ∈ {1, . . . , k}
and for a sequence drawn according to Q, one party, Alice, receives the m values
B1, . . . ,Bm and a random string R and the other party, Bob, receives the same
random string R as well as m − �i values; that is, all of B1, . . . ,Bm except for
the �i values updated in epoch i of sequence Q. The goal of the protocol is to
let Bob obtain the missing �i values.

As the �i b-bit values are generated uniformly and independently at random,
Alice’s input has �i · b bits of entropy conditioned on Bob’s input and R. By
Shannon’s Source Coding Theorem, any protocol for the above problem must

424 G. Persiano and K. Yeo

have expected communication of at least �i · b bits. We show that if Lemma 1
does not hold, then Shannon’s Theorem is contradicted by giving an encoding
constructed by simulating DS that beats Shannon’s bound.

Recall that, for any idx, Q(idx) is constructed by picking m uniformly at ran-
dom from {n/2, n/2 + 1, . . . , n − 1} and constructing the sequence of m updates
U = write(1,B1), . . . , write(m,Bm) where each B1, . . . ,Bm is drawn indepen-
dently and uniformly at random from {0, 1}b. We also denote by U i the set of
write of epoch i, for i = 1, . . . , k.

Consider the following protocol. Alice and Bob locally execute all write
operations in epochs k, k − 1, . . . , i + 1 using the random string R. Bob keeps a
snapshot snapB of DS at this point. Now Bob can learn each of the �i values Bidx

for idx ∈ U i written during epoch i, by simulating epoch j, for j = i, i − 1, . . . , 1
followed by the read(idx) operation. To do this, Bob uses the snapshot snapB ,
that gives the state of DS before any write operations of epoch i are executed,
and the following information that can be transferred by Alice.

1. The c bits of client storage of DS after the write operations of epoch i have
been processed.

2. The location and contents of the cells that are probed by the write operations
of epochs j = i − 1, . . . , 1 and by the read(idx) operation.

Given this information as well as the random string R, Bob can simulate DS
by starting from snapB and executing all the write operations of U occurring
after epoch i as well as read(idx) and thus recover Bidx. To encode all �i block
values updated in epoch i, Alice and Bob can repeat the simulation of the read
operation �i times with idx ranging over the set of the �i indices that are updated
in epoch i. The number of bits that need to be transferred to Bob by Alice
depends on the following three values:

1. The number of bits of the client storage, c.
2. The number of probes performed in epochs j = i−1, . . . , 1 to cells last written

in epoch i.
3. The number of probes performed by the �i read operations to the �i indices

updated in epoch i.

By Shannon’s source coding theorem, we have a lower bound on the number of
bits that can be transferred and, consequently, a lower bound on the number of
probes performed by DS. The rough description above only works for DS that
never fails but it only requires some small changes to work for failure probability
1/3. In particular, Alice can indicate the indices idx for which DS fails to return
Bidx and explicitly transfer the b bits of Bidx to Bob in addition to the above
protocol. We now present the formal proof of Lemma 1.

Proof (Lemma 1). In our proof, we consider DS that have failure probability at
most 1/512. Note that any DS with failure probability 1/3 implies the existence
of a DS with failure probability 1/512 as one can execute DS a constant number
of times with independently chosen randomness and return the most popular
result to answer any read operation. In fact, proving a lower bound for DS

Lower Bounds for Differentially Private RAMs 425

with failure probability 1/512 implies any DS with failure probability that is a
constant greater than 1/2 using the above method.

Recall that U i denotes the set of all �i indices that are updated by write oper-
ations in epoch i. It suffices to prove that Pr[

∑
idx∈Ui Zi(Q(idx)) ≥ �ib/8] ≥ 1/2.

Since U i contains �i indices, the previous statement implies that there must exist
some idx ∈ U i such that Pr[Zi(Q(idx)) ≥ b/8] ≥ 1/2 which would complete the
proof. Therefore, towards a contradiction, assume that Pr[

∑
idx∈Ui Zi(Q(idx)) ≥

�ib/8] < 1/2 for some data structure DS that solves the array maintenance
problem with failure probability at most 1/512. We will present an encoding of
�i · b random bits from Alice and Bob using DS that uses strictly less than �i · b
bits in expectation contradicting Shannon’s source coding theorem.

In computing the encoding, Alice receives the m b-bit random values used
by the sequence of write operations, U , and a random string R.

Alice’s Encoding

1. Alice executes DS on the sequence U using the random string R up to the
final write operation of epoch i. The content of the c bits of client storage
after epoch i is completed are added to the encoding.

2. Alice then executes the remaining si−1 write operations of U of epochs i −
1, i − 2, . . . , 1. While processing these write operations, Alice records the
subset T <i

w (U) of probes to cells that were last written in epoch i as well as
their contents. This information is encoded as follows. First the size |T <i

w (U)|
(at most log(tw · si−1) bits) is added to the encoding. Then Alice adds an
encoding of which |T <i

w (U)| probes of the at most tw(n − 1) probes over the
entire sequence belong to T <i

w (this costs log
(tw·(n−1)

|T <i
w (U)|

)
bits). Finally, for each

such probe, w bits are added to the encoding to specify the content of the
cell probed (for additional |T <i

w (U)| · w bits).
3. Alice stores a snapshot snapA of the DS after processing all write operations

of U . Alice will use this snapshot to simulate the read operations for the �i

entries written in epoch i.
4. For each of the �i indices idx ∈ U i, Alice executes read(idx) on snapA. Let

F be the number of read(idx) operations that return a wrong value (that is,
they return a value other than Bidx). Alice adds the value F to the encoding
costing log n bits and an encoding of the subset of the F failing indices costing
log

(
�i
F

)
expected bits.

5. For each of the F failing indices idx ∈ U i, Alice adds Bidx to the encoding
costing a total of F · b bits.

6. For each non-failing index idx ∈ U i (that is, for which read(idx) executed
on snapA with R successfully returns Bidx), Alice adds the subset of probes
performed during read(idx) to the cells in T i

r (Q(idx)) (these are the cells last
written in epoch i) as well as their content to the encoding. This costs w bits
for each cell in T i

r (Q(idx)) as well as log
(

tr
|T i

r (Q(idx))|
)

bits to encode the subset
T i

r (Q(idx)) of the at most tr probes in read(idx).

426 G. Persiano and K. Yeo

7. Alice checks whether either of
∑

idx∈Ui Zi(Q(idx)) > �ib/8 or F > �i/64. If
either are true, Alice stops and returns an encoding consisting of a 0 bit
followed by �i · b bits of the �i blocks updated by the write operations in U i.

8. Otherwise, when both
∑

idx∈Ui Zi(Q(idx)) ≤ �ib/8 and F ≤ �i/64, Alice
prepends a 1 bit to the encoding computed in Steps 1–6 and returns it.

In decoding the message sent by Alice, Bob receives the random string R
but does not receive the entirety of U . Instead, Bob receives U except all block
values that are updated in epoch i.

Bob’s Decoding

1. Bob checks the first bit of Alice’s encoding. If the first bit is a 0, then Bob
parses the next �i · b bits as the contents of the �i block values updated in U
completing the decoding.

2. If the encoding begins with a 1, Bob will execute the write operations in
epochs j = k, k−1, . . . , i−1 using random string R. Note that this is straight-
forward as Bob received all the needed values as input and the indices of the
write are fixed.

3. Note that Bob does not have access to the updated array entries of epoch i,
and thus will skip it.

4. Next, Bob sets the client storage as specified in the encoding and starts sim-
ulating the write operations for epochs j = i−1, . . . , 1. As long as the write
operations do not require probing a cell that was last written in epoch i,
Bob can simulate DS in the exact same way as done by Alice to compute
the encoding (note Bob has access to the same R). Whenever DS requires
probing a cell last written in epoch i, Bob will use the encoding of the cell
contents found in the encoding to continue simulation. As a result, Bob can
simulate all write operations of U after epoch i identically to Alice. Bob will
now take a (partial) snapshot of DS including all cell locations and contents
that Bob is aware of.

5. Next, Bob obtains F , the number of failing read, from the encoding along
with the indices idx ∈ U i where read(idx) fails to return Bidx. For each of
these F indices, Bob obtains the corresponding value Bidx from the encoding.

6. For the remaining �i−F indices idx ∈ U i such that read(idx) returns Bidx, Bob
will execute read(idx) on the snapshot of DS. From the encoding, Bob knows
which of the (at most, in expectation) tr probes performed by read(idx) are
to cells last written in epoch i. Bob simulates read(idx) on his snapshot with
R using the cell contents encoded by Alice to retrieve Bidx.

Analysis. It remains to analyze the expected length of Alice’s encoding. Recall
that we know from Shannon’s source coding theorem that Alice’s encoding has
to be at least �i · b bits long in expectation.

There are two cases to consider. In the first case, when the first bit is a 0,
the encoding will be 1+�i ·b bits long. Let us now consider the case in which the
first bit is 1 and thus F ≤ li/64 and

∑
idx∈Ui Zi(Q(idx)) ≤ �ib/8. The encoding

of the failed indices has expected length

Lower Bounds for Differentially Private RAMs 427

log n + E

[
log

(
�i

F

)]
+ b · E[F] ≤ log n + E

[
log

(
�i
�i
64

)]
+ b · �i

64

≤ log n +
�i

64
· (b + log(64 · e)) ≤ log n +

9

64
(�i · b).

The second inequality uses Stirling’s approximation which states that
(
x
y

)
≤

(ex/y)y. We know Alice’s encoding of client storage will always be c bits. We
know the expected bits of encoding T <i

w (U) is

log(tw · si−1) + E

[
log

(
tw · si−1

|T <i
w (U)|

)
+ |T <i

w (U)| · w

]
.

Note, log(tw · si−1) ≤ 2 log n. Similarly, for all idx ∈ U i that successfully return
Bidx, we know that the encoding requires

E

[
|T i

r (Q(idx))|w + log
(

tr
|T i

r (Q(idx))|

)]
.

Note that

E

⎡
⎣log

(tw · si−1

|T <i
w (U)|

)
+ |T <i

w (U)|w +
∑

idx∈Ui

|T i
r (Q(idx))|w + log

(tr

|T i
r (Q(idx))|

)⎤
⎦ + c

≤
∑

idx∈Ui

Zi(Q(idx)) ≤ 1

8
(�i · b).

Summing over all parts of the encoding, we get that

3 log n +
9
64

(�i · b) +
∑

idx∈Ui

Zi(Q(idx)) ≤ 3 log n +
17
64

(�i · b).

Finally, we compute the probabilities that Alice places a 0 or a 1 as the first
bit of the encoding. By Markov’s inequality, Pr[F ≥ �i/64] ≤ 1/8 and we know
that Pr[

∑
idx∈Ui Zi(Q(idx)) ≥ �ib/8] < 1/2 by our initial assumption towards a

contradiction. As a result, we know that Pr[F ≥ �i/64 or
∑

idx∈Ui Zi(Q(idx)) ≥
b/8] < 5/8. So, Alice’s expected encoding size is at most

1 + 3 log n +
5
8
(�i · b) +

17
64

(�i · b) < �i · b

contradicting Shannon’s source coding theorem when �i ≥ √
n.

4 Main Result

In Sect. 3, we presented a lower bound on the sum of tw, the worst case band-
width for write operations, and tr, the worst case expected amortized band-
width for read operations that implies that max{tw, tr} = Ω((b/w) log(nb/c)).
However, this lower bound does not preclude the existence of a differentially

428 G. Persiano and K. Yeo

private RAM with tw = Θ((b/w) log(nb/c)) and tr = o((b/w) log(nb/c)) or
tr = Θ((b/w) log(nb/c)) and tw = o((b/w) log(nb/c)). In this section, we
strenghten our lower bound and prove the following two statements, for (ε, δ)-
differentially private RAM, for any constant ε and δ ≤ 1/3,

1. If tw = o((b/w) log(nb/c)), then tr = ω((b/w) log(nb/c));
2. If tr = o((b/w) log(nb/c)), then tw = ω((b/w) log(nb/c)).

Therefore, since max{tw, tr} = O((b/w) log(nb/c)), then it must be the case
that both tw = Θ((b/w) log(nb/c)) and tr = Θ((b/w) log(nb/c)) showing that
imbalanced running times for write and read operations cannot improve the
asymptotic efficiency of differentially private RAM constructions.

To achieve these tradeoffs, we revisit our epoch construction of Sect. 3. Let
us, first, focus our attention on the first statement where we show that tr =
ω((b/w) log(nb/c)) when tw = o((b/w) log(nb/c)). Recall that we constructed
epochs that grew exponentially by a factor of 2 for a total of Θ(log n) epochs
and the number of large epochs (that is with at least max{√n, c2/b} write
operations) is Θ(log(nb/c)). In the techniques used in Sect. 3, we are only able
to show that Ω(b/w) cells must be probed from the majority of the epochs.
As there are only Θ(log(nb/c)) large epochs, there is no hope for us to prove a
stronger lower bound tr with this epoch construction.

Instead, we will use a different epoch construction that is suitable for the
scenario where we know that tw is small. In Lemma 3, we show that, on average,
for any large epoch i any write operations of future epochs j ∈ {1, . . . , i−1} can
only encode O(tww/k̂) bits about epoch i where k̂ is the number of large epochs.
It is important that future write operations cannot encode a lot of information
about epoch i as it forces the final read operation to read sufficient information
from epoch i directly. However, as we are assuming that tw is already small, we
may increase the number of future operations after epoch i while simultaneously
ensuring that future epochs cannot encode too much information about epoch i.
With this observation, we hope that we can increase the number of total epochs
which allows us to prove ω((b/w) log(nb/c)) lower bounds on tr as desired. We
now materialize these ideas in the next section.

4.1 First Epoch Construction

In this section, we consider an epoch construction where epochs grow by the rate
r every r epochs, with r = ω(1) and r = O(log n). That is, the first r epochs
will each have r write operations; the next r epochs will each have r2 write
operations; the next r epochs will each have r3 write operations and so forth.
See Fig. 4 for a diagram of this epoch construction. Once again, we define �i

to be the number of write operations of the i-th epoch and si to be the total
number of write operations of epochs 1, . . . , i. We note that, by writing �i = rf

for some f ≥ 1, we have

si−1 ≤ r · (rf + rf−1 + . . . + r) ≤ 2r · �i.

Lower Bounds for Differentially Private RAMs 429

The new epoch construction will potentially give us, for each epoch, r times
more future operations in comparison to the epoch construction of Sect. 3. On
the other hand, we note that the number of large epochs (that is, with at least
max{√n, c2/b} write operations) is k̂ = Θ(r logr(nb/(rc2))) = Θ(r logr(nb/c)),
which is larger by a super-constant factor of Θ(r/ log r) than the number of
epochs in the construction of Sect. 3. As a result, this epoch construction matches
exactly the requirements that we wanted there to be more epochs which are
required to be read by the read operation while only sacrificing that there are
more future write operations for any epoch i. We now present a generalization
of Lemma 3 which can be applied for the new epoch constructions that are
introduced here and in Sect. 4.2.

Fig. 4. Diagram of epoch construction of Sect. 4.1.

Lemma 4. There exists a large epoch i such that E[|T <i
w (Q)|] =

O

(
tw
k̂

· maxe

∑
j≥e

se

lj

)
and E[|T i

r (Q)|] = O
(

tr
k̂

)
.

Proof. Using the same ideas of Lemma 3, we will show that there exists k̂/2 + 1
epochs that satisfy the first statement and k̂/2+1 epochs that satisfy the second
statement. As a result, there exists at least one epoch satisfying both statements.

Pick an epoch i uniformly at random from the k̂ large epochs. Fix
B1, . . . ,Bn−1 and R arbitrarily. We will prove an upper bound on E[|T <i

w (Q)|]
over the randomness of the location of the read operation and the randomly cho-
sen i. As a result, the expectation’s upper bound will hold over any distribution
of B1, . . . ,Bn−1 and R. Fix any cell probe performed by DS when processing
write(1,B1), . . . , write(n − 1,Bn−1) and suppose that probe occurs when pro-
cessing the pr-th write operation to a cell that was last written by the pw-th
write operation. Once again, we pick the smallest e such that pr − pw ≤ se.
Consider any epoch j where j ≤ e − 1. Note that there are only sj operations
between the read operation and the beginning of epoch j. But, since j ≤ e − 1,
we know that sj ≤ se−1 < pr − pw meaning that either the probe occurs after
the read operation or the cell was last written before epoch j. When we fix the
location of the read operation, we fix the epoch construction. As the boundary
of the j-th epoch must occur after the pw-th operation and before the pr-th
operation, there are at most se good locations for the read out of n/2 total
locations. For any j ≥ e, this cell probe has probability 2se/n of contributing to
T <j

w (Q). Therefore, by linearity of expectation over the (n − 1)tw expected cell
probes:

430 G. Persiano and K. Yeo

E

[
|T <i

w (Q)|
�i

]
=

1

k̂

∑
epoch j is large

E

[
|T <j

w (Q)|
�j

]
≤ tw

k̂

⎛
⎝max

e

∑
j≥e

2se

�j

⎞
⎠ .

Therefore, there exists k̂/2 + 1 fixed epochs i such that E[|T <i
w (Q)|/�i] over the

choice of the read location is at most 3 times the above bound.
As

∑
i E[|T i

r (Q)|] ≤ tr, there exists k̂/2 + 1 epochs i where E[|T i
r (Q)|] ≤ 3tr

completing the proof.

Theorem 3. Let DS be an (ε, δ)-differentially private RAM for n b-bit array
entries implemented over w-bit cells. Assuming that ε = O(1) and 0 ≤ δ ≤ 1/3,
DS has failure probability at most 1/3 and w = Ω(log log n), then

tw = o((b/w) log(nb/c)) =⇒ tr = ω((b/w) log(nb/c)).

Proof. Recall we get the following inequality by applying convexity to the
inequality of Lemma 2 and noting that c/�i = O(1) for our choices i:

E[|T <i
w (Q)|]
�i

(
w + log

twsi−1

E[|T <i
w (Q)|]

)
+ E[|T i

r (Q)|]
(

w + log
tr

E[|T i
r (Q)|]

)
= Ω(b).

By applying Lemma 4, we get that E[|T i
r (Q)|] = O(tr log r/(r log(nb/c))) and

E[|T <i
w (Q)|/�i] = O(tw log r/ log(nb/c)) since(

sj

�j
+

sj

�j+1
+ . . .

)
≤ 2r

∑
j≥0

1
rj

= O(r).

Plugging into the inequality above and assuming that w = Ω(log log n),

tw + (tr/r) = Ω((b/w) log(nb/c)/ log r) =⇒ tr = Ω((b/w) log(nb/c)r/ log r)

as tw = o(b/w) log(nb/c). Since r/ log r = ω(1), we complete the proof.

4.2 Second Epoch Construction

In this section, we deal with the opposite scenario when we assume that tr =
o((b/w) log(nb/c)) and want to show that tw = ω((b/w) log(nb/c)). The same
intuition from the previous section can be used for this situation: to show that
tw has to be very large, we will need to require that for any epoch i, the total
number of future write operations in epochs j ∈ {1, . . . , i − 1} is small. If for
any epoch i, the number of future write operations after epoch i is small and
the read operation also cannot perform many cell probes into epoch i, then each
future write operation must encode a large amount of information about epoch
i which will be used by the read operation. As a result, we can prove a large
lower bound on tw.

Lower Bounds for Differentially Private RAMs 431

Specifically, we consider an epoch construction in which the number of write
operations in an epoch is larger by a super-constant factor r = O(log n) com-
pared with the number in the previous epoch. So, the first epoch will have r
write operations, the second epoch will have r2 write operations, etc. So,

si−1 = �i−1 + �i−2 + . . . ≤ 1
r
(�i + �i−1 + . . .) ≤ 2�i/r.

As a result, the number of future operations is Θ(1/r) times smaller than the
epoch construction of Sect. 3. The number of large epochs, that is with at least
max{√n, c2/b} write, is k̂ = Θ(logr nb/c).

Theorem 4. Let DS be an (ε, δ)-differentially private RAM for n b-bit array
entries implemented over w-bit cells. Assuming that ε = O(1) and 0 ≤ δ ≤ 1/3,
DS has failure probability at most 1/3 and w = Ω(log log n), then

tr = o((b/w) log(nb/c)) =⇒ tw = ω((b/w) log(nb/c)).

Proof. By applying Lemma 4, we get that E[|T i
r (Q)|] = O(tr log r/ log(nb/c))

and E[|T <i
w (Q)|/�i] = O(tw log r/r log(nb/c)) since(

sj

�j
+

sj

�j+1
+ . . .

)
≤ 2

∑
j≥0

1
rj

= O(1).

Plugging into the inequality of Lemma 2 after applying convexity and noting
that w = Ω(log log n) and that, for large epochs, c/�i = O(1), we obtain

(tw/r) + tr = Ω((b/w) log(nb/c)/ log r) =⇒ tw = Ω((b/w) log(nb/c)r/ log r)

since tr = o((b/w) log(nb/c)). Noting that r/ log r = ω(1) completes our proof.

5 Discussion

We now discuss three extensions that follow from our lower bound techniques.
Our techniques only enforce the requirements of differential privacy for a

single read operation. Therefore, our lower bounds would also apply differentially
private-read RAMs where differential privacy is guaranteed only for sequences of
operations that differ in exactly one read operation. This might be important
in scenarios where the indices of write operations are not sensitive (or may
be public) but only the indices of read operations need to be protected. Once
again, this weakening of security does not suffice to get around the Ω(log(nb/c))
bandwidth overhead lower bounds.

The lower bounds of Sects. 3 and 4 hold for δ ≤ 1/3. Most practical scenarios
require that δ must be negligible in n, so the above results suffice. For theoretical
exploration, we note that our results can be extended to any constant δ < 1. In
particular, for any ρ < 1, by picking a sufficiently large enough constant C, we
can prove that Pr[Zi(Q(idx)) ≥ b/C] ≥ ρ which is a variation of Lemma 1.

432 G. Persiano and K. Yeo

By using ρ > δ we can extend Lemma 2 and prove that for all epochs i,
Pr[Zi(Q) ≥ b/C] ≥ (ρ − δ)/eε. This will suffice to extend Theorem 2 to any
δ < 1. The main result of Sect. 4 can be similarly extended.

Finally, our lower bound assumes DS has worst time case cost on update
operations, but may be extended to worst case amortized update costs. In par-
ticular, we only apply Lemma 1 to epochs whose sum of probed cells by update
operations is not too much larger than expected. By an averaging argument, it
can be shown that a constant fraction of all epochs satisfy this property.

In this work, we show that the Ω(log(nb/c)) bandwidth overhead lower bound
for the array maintenance problem with obliviousness extends to the weaker
notion of differential privacy with reasonable privacy budgets of ε = O(1) and δ ≤
1/3. The result is surprising as differentially private RAM provides significantly
weaker privacy. This leads to the following natural open question: Does there
exist a natural, weaker notion of privacy that enables o(log(nb/c)) bandwidth
overhead for the array maintenance problem?

References

1. Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi, E.:
OptORAMa: Optimal oblivious RAM. ePrint Report 2018/892

2. Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM and applications.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 175–204.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 7

3. Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: ITCS 2016, pp.
357–368 (2016)

4. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: CCS 2015, pp. 668–679 (2015)

5. Chan, T.-H.H., Guo, Y., Lin, W.-K., Shi, E.: Oblivious hashing revisited, and appli-
cations to asymptotically efficient ORAM and OPRAM. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 660–690. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 23

6. Chen, B., Lin, H., Tessaro, S.: Oblivious parallel RAM: improved efficiency and
generic constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9563, pp. 205–234. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49099-0 8

7. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(log2 n) over-
head. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
62–81. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 4

8. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 10

9. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion
ORAM: a constant bandwidth blowup oblivious RAM. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 145–174. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 6

10. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1),
86–95 (2011)

https://doi.org/10.1007/978-3-662-49099-0_7
https://doi.org/10.1007/978-3-319-70694-8_23
https://doi.org/10.1007/978-3-662-49099-0_8
https://doi.org/10.1007/978-3-662-49099-0_8
https://doi.org/10.1007/978-3-662-45608-8_4
https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/978-3-662-49099-0_6

Lower Bounds for Differentially Private RAMs 433

11. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

12. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci. 9, 211–407 (2014)

13. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. In:
STOC 1989, pp. 345–354 (1989)

14. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions.
In: STOC 2015, pp. 449–458 (2015)

15. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 23

16. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC 1987, pp. 182–194 (1987)

17. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. JACM 43(3), 431–473 (1996)

18. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22012-8 46

19. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA
2012, pp. 157–167 (2012)

20. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS 2012 (2012)

21. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in) security of hash-based oblivious
RAM and a new balancing scheme. In: SODA 2012, pp. 143–156 (2012)

22. Larsen, K.G.: The cell probe complexity of dynamic range counting. In: STOC
2012, pp. 85–94 (2012)

23. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound!. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 523–542.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 18

24. Larsen, K.G., Weinstein, O., Yu, H.: Crossing the logarithmic barrier for dynamic
boolean data structure lower bounds. In: STOC 2018, pp. 978–989 (2018)

25. Lu, S., Ostrovsky, R.: Black-Box parallel garbled RAM. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 66–92. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 3

26. Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential pri-
vacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 8

27. Patel, S., Persiano, G., Raykova, M., Yeo, K.: PanORAMa: oblivious RAM with
logarithmic overhead. In: FOCS 2018, pp. 871–882 (2018)

28. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7 27

29. Pǎtraşcu, M.: Lower bound techniques for data structures. Ph.D. thesis. MIT
(2008)

30. Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput. 35(4), 932–963 (2006)

https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-63715-0_3
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1007/978-3-642-14623-7_27
https://doi.org/10.1007/978-3-642-14623-7_27

434 G. Persiano and K. Yeo

31. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM. arXiv:1106.3652
(2011)

32. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol.
In: CCS 2013, pp. 299–310 (2013)

33. Toledo, R.R., Danezis, G., Goldberg, I.: Lower-cost ε-private information retrieval.
Proc. Priv. Enhancing Technol. 2016(4), 184–201 (2016)

34. Wagh, S., Cuff, P., Mittal, P.: Root ORAM: a tunable differentially private obliv-
ious RAM. arXiv:1601.03378 (2016)

35. Wang, X.S., et al.: Oblivious data structures. In: CCS 2014, pp. 215–226 (2014)
36. Weiss, M., Wichs, D.: Is there an Oblivious RAM lower bound for online reads?

ePrint report 2018/619
37. Yao, A.C.-C.: Should tables be sorted? JACM 28(3), 615–628 (1981)

http://arxiv.org/abs/1106.3652
http://arxiv.org/abs/1601.03378

Bounds for Symmetric Cryptography

Beyond Birthday Bound Secure
MAC in Faulty Nonce Model

Avijit Dutta(B), Mridul Nandi, and Suprita Talnikar

Indian Statistical Institute, Kolkata, India
avirocks.dutta13@gmail.com, mridul.nandi@gmail.com, suprita45@gmail.com

Abstract. Encrypt-then-MAC (EtM) is a popular mode for authenti-
cated encryption (AE). Unfortunately, almost all designs following the
EtM paradigm, including the AE suites for TLS, are vulnerable against
nonce misuse. A single repetition of the nonce value reveals the hash
key, leading to a universal forgery attack. There are only two authenti-
cated encryption schemes following the EtM paradigm which can resist
nonce misuse attacks, the GCM-RUP (CRYPTO-17) and the GCM/2+

(INSCRYPT-12). However, they are secure only up to the birthday
bound in the nonce respecting setting, resulting in a restriction on
the data limit for a single key. In this paper we show that nEHtM, a
nonce-based variant of EHtM (FSE-10) constructed using a block cipher,
has a beyond birthday bound (BBB) unforgeable security that grace-
fully degrades under nonce misuse. We combine nEHtM with the CENC
(FSE-06) mode of encryption using the EtM paradigm to realize a nonce-
based AE, CWC+. CWC+ is very close (requiring only a few more xor
operations) to the CWC AE scheme (FSE-04) and it not only provides
BBB security but also gracefully degrading security on nonce misuse.

Keywords: Graceful security · Faulty nonce · Mirror theory ·
Extended mirror theory · Expectation method · CWC · GCM

1 Introduction

Message Authentication Code. It is important to authenticate any digital
message or packet transmitted over an insecure communication channel by some
cryptographic algorithm. This is achieved by a MAC (Message Authentication
Code), a popular primitive in symmetric key cryptography, which enables two
legitimate parties (say, Alice and Bob) having access to a shared secret key to
authenticate their transmissions. When Alice wants to send a message M , she com-
putes a MAC function that accepts M and the shared secret key K, and possibly
an auxiliary variable called IV (initial vector), and obtains an authentication tag
T as an output. Then she sends (IV,M, T) to Bob. Upon receiving, Bob verifies the
authenticity of (IV,M, T) by computing the MAC using (IV,M) and K to obtain
the local tag T ′, and checks whether T ′ matches T . If the IV is a nonce (e.g., a
counter) this nonce-based MAC is said to be stateful.
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 437–466, 2019.
https://doi.org/10.1007/978-3-030-17653-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_15

438 A. Dutta et al.

Nonce Misuse Resistance Security. The Wegman-Carter (WC) MAC [40]
is the first nonce-based MAC that masks the hash value of the message with an
encrypted nonce to generate the tag. Although this scheme is optimally secure
when the nonce never repeats, the consequences are catastrophic if the nonce
repeats even once (as it can leak the hash key). Nonce-based MAC schemes
that guarantee security against nonce misuse are therefore desirable, because it
becomes challenging in some contexts to maintain the uniqueness of the nonce,
e.g., on implementations in a stateless device or in cases where the nonce is
chosen randomly from a small set. The nonce may also repeat due to a faulty
implementation of the scheme or an occurrence of some other fault (for exam-
ple, a reset of the nonce). After making an internet-wide scan, Böck et al.
[9] found 184 devices that used a duplicate nonce. Encrypted Wegman-Carter-
Shoup (EWCS) [13] guarantees such security but it only gives a PRF security
up to the birthday bound in a nonce-respecting setting, as an adversary making
2n/2 nonce-respecting queries with the same message will observe no collision
in the tag. Encrypted Wegman-Carter with Davies-Meyer [13] (or EWCDM) and
Decrypted Wegman-Carter with Davies-Meyer [16] (or DWCDM) have been pro-
posed with a view to achieve a beyond the birthday bound nonce-respecting
security and a reasonable nonce misuse security. However, the security of these
constructions falls to the birthday bound with only a single misuse of the nonce.
There are other known constructions such as Dual Encrypted Wegman-Carter
with Davies-Meyer (or EWCDMD) [27,32], Encrypted Wegman-Carter-Shoup [13]
(or EWCS) and single hash-key variants of CLRW2 [25]. However, these con-
structions also provide only birthday bound PRF security in nonce-respecting
settings.

AE Scheme as application of MAC. An authenticated encryption (AE)
mode is a cryptographic scheme that guarantees the privacy and authenticity
of a message concurrently. Authenticated encryption has received much atten-
tion from the cryptographic community mostly due to its application to TLS
and many other protocols. The ongoing CAESAR competition [1] which aims to
identify a portfolio of authenticated encryption schemes has drafted three use
cases, namely lightweight, high-performance, and defense-in-depth. The compe-
tition considers GCM [26] as the baseline algorithm as it is widely adopted (e.g.
in TLS 1.2 and in its variant RGCM [6], which shall soon be considered in TLS
1.3 [11]) and standardized. ChaCha20+Poly1305 [7] is a popular alternative for
settings where AES-NI is not implemented.

Encrypt-then-MAC. Both ChaCha20+Poly1305 and GCM follow the Encrypt-
then-MAC (EtM) paradigm [5]. Some other popular AE designs following the
same paradigm are CWC [24], GCM/2+ [3], CHM [22], CIP [23], GCM-RUP [4],
OGCM1 [41], OGCM2 [41] etc. EtM is a popular design paradigm due to its
generic security guarantee. Authors of [12] showed that (stating informally) if
E is a secure symmetric encryption scheme and I is a secure MAC family then
EtM results in secure channels. This has later also been analyzed by [5,31].
However, it turns out that by Joux’s “forbidden attack” [2], GCM leaks the hash
key whenever an encryption query with a repeated nonce is executed. A similar

BBB Secure MAC in Faulty Nonce Model 439

forgery attack can be applied against all aforementioned AE except GCM-RUP
and GCM/2+, as they use some variants of the WC MAC. GCM-RUP resists this
attack as it uses the XEX [38] construction to define the tag. However, in nonce-
respecting settings it gives up to birthday bound security. GCM/2+ resists the
birthday bound attack by using the EWCS construction.

1.1 Beyond Birthday Bound Security with Graceful Degradation

Achieving a beyond the birthday bound security would provide a larger data
limit for a single key. GCM-RUP can be proven to have at most �q2

m/2n forging
advantage (in the nonce-respecting model), where qm is the number of encryption
queries and � is the maximum number of data blocks a message and an asso-
ciated data can possess. For example, the GCM-RUP based on AES, which can
process a data of size at most � = 232 blocks should have a data limit qm ≤ 232

so as to allow an advantage of at most 2−32, a tolerance level much smaller
than that provided by beyond birthday security. Therefore, a natural quest is
to come up with a nonce-based MAC scheme that provides beyond the birthday
bound security that degrades in a graceful manner when the nonce repeats. As
a direct application of such a MAC scheme, one can design a nonce-based AE
that provides beyond the birthday bound security when repetition of the nonce
is limited.

Goal of the paper. The main goal of this paper is to find an efficient MAC
which is BBB (beyond birthday bound) secure both as a PRF and a MAC. More-
over, it should provide graceful security degradation in a nonce-misuse setting.
It must be mentioned here that there are some deterministic MAC construc-
tions (not requiring any nonce) that provide BBB security. These mainly follow
a double-block hash-then-sum approach [14,15] and hence require the computa-
tion of two blocks of algebraic hashes (or one pass of block cipher or tweakable
block cipher executions). However, a single-block hash (which would be definitely
faster than two blocks of hash and require a smaller hash-key size) would be a
better option. So, this paper focuses on getting a design based on a single-block
algebraic hash (e.g. a single-call of the polynomial hash [30]).

Graceful Degradation of Security on Nonce Misuse. The most popu-
lar measure of nonce misuse is the maximum number of multicollisions in nonce
values amongst all queries [37]. To the best of our knowledge, none of the existing
block cipher-based nonce-based MACs adhere to this notion with BBB security
guarantee. We have also explored many other variants of MAC constructions
using at most two block cipher calls and a single hash function call. Unfortu-
nately, we found that none of them give beyond birthday bound security in terms
of multicollision nonce misuse, even with multicollisions of size 2.

In this paper we instead consider another natural definition of nonce misuse, called
the number of faulty nonces. An authentication query is said to be a faulty query
if there exists a previous MAC query such that their corresponding nonces match.
The nonce in a faulty query is called a faulty nonce. The notion of a faulty nonce is

440 A. Dutta et al.

weaker than multicollision of nonces since although aμ-multicollision also givesμ−
1 faulty nonces, an occurrence of μ faulty nonces does not mean μ-multicollisions
have occurred. When a counter is implemented in an aperiodic manner (e.g. timely
nonce [9] used in TLS 1.2), a simple reset does not give a large number of faulty
nonces; there are easy countermeasures to prevent a large number of faulty nonce
encryptions.

1.2 Our Contribution

Our contribution in this paper is threefold, which we outline as follows:
1. Multicollision on Universal Hash. We study the probability of

occurrence of multicollisions in a universal hash function. In particular, we have
shown that the probability of obtaining a (ξ + 1)-multicollision tuple amongst
q inputs is at most q2ε/ξ (see Sect. 5). This is clearly an improved bound as
compared to a straightforward application of the union bound. We believe that
this problem can have independent interest in the cryptographic community and
can be used to get improved bounds for other constructions also.

2. BBB Secure MAC with Graceful Security. In [29], a probabilistic
MAC EHtM has been analyzed and shown to have roughly 3n/4-bit MAC secu-
rity which is also tight [18]. This paper analyzes a construction, which shall
be denoted as nEHtM, where (1) the random salt is replaced by the nonce and
(2) the two independent pseudorandom functions are replaced by a single-keyed
block cipher. Given a data D and a nonce N the tag is computed as follows (see
Fig. 1(b)):

nEHtMK,Kh
(N,D) Δ= EK(0‖N) ⊕ EK(1‖HKh

(D) ⊕ N).

N

EK

D

EK

HKh

⊕
T

N

EK

0
⊕

D

EK

1

HKh

n − 1

n − 1

⊕
T

Fig. 1. (a) On the left is the CWC MAC (MAC algorithm used in CWC); (b) on the
right is the domain separation variant of nonce-based Enhanced Hash-then-Mask.

BBB Secure MAC in Faulty Nonce Model 441

We have shown that nEHtM is secure roughly up to 22n/3 authentication
queries and 2n verification queries in the nonce-respecting setting. Moreover, this
security degrades in a graceful manner on introduction of faults in the nonce.
The unforgeability of this construction shall be shown through an extended dis-
tinguishing game. We apply the expectation method (as it shall later be shown to
give a better bound than the coefficients-H technique) to bound the distinguish-
ing advantage of two worlds. In the ideal world, once we realize the random
tags Ti, we need to sample the hash key. This would determine all inputs of
the underlying block cipher. The equality patterns amongst the nonce values
are deterministic and we bound the number of faulty nonces by a parameter μ.
However, the equality patterns among other inputs of the form X

Δ= HKh
(D)⊕N

are probabilistic due to randomness of the hash key. As there may not be suf-
ficient entropy in the hash-key (which could be n-bit for polynomial hash), the
number of multicollisions amongst the values of X may not be easy to compute.
We have tackled this problem using the multicollision result (as stated in the
first contribution) of the underlying hash function.

After we limit the multicollisions in the values of both X and N , we shall be in
a position to apply mirror theory to show a beyond birthday bound security on the
distinguishing advantage of nEHtM. Note that mirror theory cannot give a beyond
birthday bound security without restricting the number of multicollisions.

It must be noted here that nEHtM (like all other candidates) is not secure
beyond the birthday bound under the notion of multicollision nonce misuse secu-
rity and the corresponding attack is discussed in the full version of the paper [19].

3. Application to a CWC-like AE Construction. We propose CWC+,
which is an instance of the EtM composition based on the CENC type encryption
with maximum width parameter and the nEHtM MAC. Moreover, we apply
an appropriate domain separation to make it a single-keyed construction (even
the hash key is generated from the block cipher). The construction is a very
close variant of CWC as it requires a few additional xor computations, without
requiring any extra calls to the block cipher. Furthermore, CWC+ gives both (1)
BBB security and (2) graceful security degradation in the faulty nonce misuse
model. In particular, we have the following forging advantage of CWC+:

Auth[CWC+] =
105σ3�

22n
+

6σ�

2n
+

2qd

2ρ
+

2qd�

2n
+

(2qe + qd)2�μ

2n
+
(

5σ�μ

2n

)2

,

where qe and qd denote the number of encryption and decryption queries, ρ
the tag size, � the maximum number of message blocks queried including the
associated data blocks, σ the total number of message blocks queried and μ
the total number of faulty queries. Moreover, the security of CWC+ gracefully
drops to birthday bound when �μ is about 2n/2. However, when � ≤ 2n/4, then
the security bound of CWC+ caps at roughly 27n/12, which is strictly greater
than the birthday bound. A better bound can be obtained if we assume some
restrictions over all the message lengths.

442 A. Dutta et al.

(3) Another notable feature of CWC+ is that the scheme remains secure even
with short tag lengths. In GCM, if the tag length is only 32 bits, then an adversary
forges the construction with just 1024 verification attempts by querying with
a single message consisting of 222 blocks. However, for the same tag size, the
authenticity advantage of CWC+ is 2−21 when adversary forges the construction
with 1024 verification attempts.

2 Preliminaries

Basic Notations: For a set X , X ←$ X denotes that X is sampled uniformly at
random from X and is independent to all other random variables defined so far.
{0, 1}n denotes the set of all binary strings of length n and {0, 1}∗ denotes the
set of all binary strings of finite arbitrary length. We denote 0n (i.e., n-bit string
of all zeroes) by 0. For any element X ∈ {0, 1}∗, |X| denotes the number of bits
in x. For any two elements X,Y ∈ {0, 1}∗, X‖Y denotes the concatenation of
X followed by Y . For X,Y ∈ {0, 1}n, X ⊕ Y denotes the addition modulo 2 of
X and Y . For any X ∈ {0, 1}∗, parse X as X = X1‖X2‖ . . . ‖Xl where for each
i = 1, . . . , l − 1, Xi is an element of {0, 1}n and 1 ≤ |Xl| ≤ n. We call each Xi

a block. For a sequence of elements (X1,X2, . . . , Xs) ∈ {0, 1}∗, Xi
a denotes the

a-th block of i-th element Xi.
The set of all functions from X to Y is denoted as Func(X ,Y) and the set

of all permutations over X is denoted as Perm(X). Func(X) denotes the set of
all functions from X to {0, 1}n and Perm denotes the set of all permutations
over {0, 1}n. We often write Func instead of Func(X) when the domain of the
functions is understood from the context. For integers 1 ≤ b ≤ a, (a)b denotes
a(a−1) . . . (a−b+1), where (a)0 = 1 by convention. [q] refers to the set {1, . . . , q}
and [q1, q2] to the set {q1, q1 + 1 . . . , q2 − 1, q2}.

2.1 Security Definitions

Pseudo Random Function (PRF) and Psuedo Random Permutation

(PRP). A keyed function F : K × X → Y with key space K, domain X and
range Y is a function for which F(K,X) shall be denoted by FK(X). Given an
oracle algorithm A that has oracle access to a function from X to Y, makes at
most q queries in time at most t, and returns a single bit, the prf-advantage of
A against the family of keyed functions F is defined as

AdvPRF
F (A) Δ=

∣∣∣Pr
[
K ←$ K : AFK(·) = 1

]
− Pr

[
RF ←$ Func(X ,Y) : ARF(·) = 1

]∣∣∣ .
F is said to be a (q, �, σ, t, ε)-secure PRF if AdvPRF

F (q, �, σ, t) Δ=
maxA AdvPRF

F (A) ≤ ε, where the maximum is taken over all adversaries A that
make q queries, with a maximum of � data blocks in a single query and the total
number of data blocks at most σ, with maximum running time t. Similarly, the
prp-advantage of A against a family of keyed permutations E is defined as

AdvPRP
E (A) Δ=

∣∣∣Pr
[
K ←$ K : AEK(·) = 1

]
− Pr

[
Π ←$ Perm(X) : AΠ(·) = 1

]∣∣∣ .

BBB Secure MAC in Faulty Nonce Model 443

E is said to be a (q, t, ε)-secure PRP if AdvPRP
E (q, t) Δ= maxA AdvPRP

E (A) ≤ ε,
where maximum is taken over all adversaries A that make q queries and have
running time at most t.

Message Authentication Code (MAC). Let K,N ,M and T be four non-
empty finite sets, F : K × N × M → T be a nonce-based MAC. For K ∈ K, let
AuthK be the authentication oracle, which takes as input (N,M) ∈ N × M and
outputs T = F(K,N,M) and let VerK be the verification oracle, which takes as
input (N,M, T) ∈ N × M × T and outputs 1 if F(K,N,M) = T and otherwise
outputs 0. An authentication query (N,M) by an adversary A is called a faulty
query if A has already queried to the first oracle with the same nonce but with
a different message.

A (μ, qm, qv, t)-adversary against the unforgeability of F is an adversary A
with oracle access to AuthK and VerK such that it makes at most μ faulty
authentication queries out of at most qm authentication queries and qv verifi-
cation queries, with running time at most t. The adversary is said to be nonce
respecting if μ = 0 and nonce misusing if μ ≥ 1. However, the adversary may
repeat nonces in its verification queries. A is said to forge F if for any of its
verification queries (not obtained through a previous authentication query), the
verification oracle returns 1. The advantage of A against the unforgeability of F
is defined as

AdvMAC
F (A) Δ= Pr

[
K ←$ K : AAuthK(·,·),VerK(·,·,·) forges

]
.

We write AdvMAC
F (μ, qm, qv, t) Δ= maxA AdvMAC

F (A) where the maximum is
taken over all (μ, qm, qv, t)-adversaries. In all of these definitions, we skip the
parameter t, whenever we maximize over all unbounded adversaries.

Almost XOR Universal (AXU) Hash Function. Let K and X be two non-
empty finite sets and H be a keyed function H : Kh × X → {0, 1}n. Then, H is
said to be an ε-almost xor universal hash function if for any distinct X,X ′ ∈ X
and for any Y ∈ {0, 1}n,

Pr [Kh ←$ Kh : HKh
(X) ⊕ HKh

(X ′) = Y] ≤ ε.

We say that (X,X ′) is a colliding pair for a function HKh
if HKh

(X) = HKh
(X ′).

H is said to be an ε-universal hash function if for any distinct X,X ′ ∈ X ,

Pr [Kh ←$ Kh : HKh
(X) = HKh

(X ′)] ≤ ε.

Polyhash Function. A general algebraic hash function is a multivariate poly-
nomial. Polyhash [30], one of the most popular examples of an algebraic hash
function, is a univariate polynomial over the hash key Kh and its coefficients are
the message blocks. For an n-bit hash key Kh, a message M ∈ {0, 1}∗ is first
padded with 10∗ such that the number of bits in the padded message becomes
a multiple of n. Let the padded message be M∗ = M1‖M2‖ . . . ‖Ml, where for
each i = 1, . . . , l, |Mi| = n. Then the PolyHash function is defined as follows:

PHKh
(M) = MlKh ⊕ Ml−1K

2
h ⊕ . . . ⊕ M1K

l
h,

444 A. Dutta et al.

where l is the number of n-bit blocks of the padded message M∗. It is a well
known result [17] that PolyHash is �/2n-universal hash function, where � is the
maximum number of message blocks and the hash key is an element of the field
GF(2n).

2.2 A Brief Revisit to the Expectation Method

System and Distinguisher. Consider a computationally unbounded distin-
guisher A (hence assumed deterministic) that interacts with either of the pos-
sibly randomized stateful systems Sre or Sid, after which it returns a sin-
gle bit 0 or 1. For any such system Sre or Sid, the interaction between A
and the system defines an ordered sequence of queries and responses, τ =
((X1, Y1), (X2, Y2), . . . , (Xq, Yq)) called a transcript, where Xi is the i-th query
of A and Yi is the corresponding response from the system. Let Xre (resp. Xid)
be the random variable that takes a transcript resulting from the interaction
between A and Sre (resp. A and Sid). Then the advantage of A in distinguishing
Sre from Sid is bounded from above by the statistical distance between the two
random variables Xre and Xid, which is

Δ(Xre,Xid) Δ=
∑

τ

max {0,Pr [Xid = τ] − Pr [Xre = τ]} .

In the following, we briefly state the main result of the Expectation Method
and show that the coefficients-H technique [33] is a special case of the expectation
method. Both these techniques are used for bounding the information theoretic
distinguishing advantage of two random systems as defined above.

expectation method. The expectation method was introduced by Hoang
and Tessaro to derive a tight multi-user security bound of the key-alternating
cipher [20]. Subsequently, this technique has been used for proving the multi-user
security of the double encryption method in [21] and recently by Bose et al. to
bound the multi-user security of AES-GCM-SIV [10]. This method is a generaliza-
tion of coefficients-H technique. Let φ : Θ → [0,∞) be a non-negative function
which maps any attainable transcript to a non-negative real value. Suppose there
is a set of good transcripts such that for any good transcript τ ,

Pr [Xre = τ]
Pr [Xid = τ]

≥ 1 − φ(τ). (1)

The statistical distance between the two random variables Xre and Xid can then
be bounded as

Δ(Xre,Xid) ≤ E[φ(Xid)] + Pr[Xid ∈ Θbad], (2)

where Θbad is the set of all bad transcripts. In other words, the advantage of
A in distinguishing Sre from Sid is bounded by E[φ(Xid)] + Pr[Xid ∈ Θbad].
coefficients-H technique can be seen as a simple corollary of the expectation
method when φ is taken to be a constant function.

BBB Secure MAC in Faulty Nonce Model 445

3 Design and Security Result of nEHtM and CWC+

In this section we discuss the design and the security result of our proposed
nonce-based message authentication code, called nEHtM and a nonce-based
authenticated encryption scheme, called CWC+. We begin our discussion with
the EtM composition result that combines a standard encryption and a MAC
scheme to achieve authenticated encryption.

3.1 Encrypt-then-MAC: Generic Composition Result

Bellare and Namprempre in [5] and Canetti and Krawczyk in [12] explored ways
to combine standard encryption schemes with MACs to achieve authenticated
encryption schemes. Their results yield three different types of combinations:
(a) Encrypt-and-MAC (E&M), (b) MAC-then-Encrypt (MtE) and (c) Encrypt-
then-MAC (EtM). In this paper we focus only on EtM.

Let E = (E .KGen, E .Enc, E .Dec) be a nonce-based symmetric key encryption
scheme and I = (I.KGen, I.Tag, I.Ver) be a nonce-based message authentication
code. The function E .Enc : Ke × N × M → C maps a tuple (Ke, N,M) to a
ciphertext C and the decryption function E .Dec : Ke × N × C → M ∪ {⊥} maps
a legitimate tuple (Ke, N,C) to the corresponding message M and otherwise
returns the error symbol ⊥.

For the message authentication code I, I.Tag : Km × N × D → T maps a
tuple (Km, N,D) to a tag T and the verification function I.Ver : Km ×N ×M×
T → {�,⊥} maps a quadruple (Ke, N,D, T) to one of the two symbols {�,⊥}
such that if T is the valid tag for the tuple (Kn, N,D) then the verification
functions returns � (i.e., accept the message), otherwise it returns ⊥ (i.e., reject
the message).

Based on these two schemes, we define the EtM authenticated encryption
scheme AEE,I = (AE.KGen,AE.Enc,AE.Dec) where the key-generation algorithm
generates a random pair of keys (Ke,Km) ∈ Ke × Km. The encryption and
decryption algorithms are defined as follows:

AE.Enc(Ke‖Km, N,A,M) =

{
C ← E .Enc(Ke, N,M)
T ← I.Tag(Km, N,A‖C)

AE.Dec(Ke‖Km, N,A,C, T) =

{
M ← E .Dec(Ke, N,C), if Z = �
⊥, if Z = ⊥

for Z ← I.Ver(Km, N,A‖C, T). We consider two security notions for the AE
scheme: privacy and authenticity. The privacy advantage of AE is defined as
follows:

Advpriv
AE (A) Δ= Pr[(Ke × Km) ←$ (Ke × Km) : AAE.Enc(Ke,Km) = 1] − Pr[A$ = 1],

where the random oracle $ takes (N,A,M) as input and returns
(C, T) ←$ {0, 1}|M |+ρ. We assume that the adversary A is nonce respecting, that
is it does not make two queries with the same nonce.

446 A. Dutta et al.

If an adversary A interacts with the encryption and the decryption oracles of
the AE, then the authenticity advantage of the AE is defined as follows:

Advauth
AE (A) Δ= Pr[(Ke ×Km) ←$ (Ke ×Km) : AAE.Enc(Ke,Km),AE.Dec(Ke,Km) forges],

where we say that the adversary A forges if the AE.Dec oracle returns a bit string
(which is not ⊥) for a query (N,A,C, T) such that (C, T) was not returned by
the AE.Enc oracle as a result of the encryption query (N,A,M). Moreover, we
assume that A can repeat nonces in decryption queries and can also use the
nonces used in encryption queries.

The security of an AE scheme refers to the sum of its privacy and authenticity
advantages. The privacy advantage of a nonce-based encryption scheme E that
forms an AE with a MAC I is bound by the PRF advantage E and I, while
its authenticity advantage is bound by the forging advantage of the underlying
I. The achievement of a beyond birthday bound secure nonce-based AE scheme
following the EtM paradigm thus requires a nonce respecting BBB secure nonce-
based encryption scheme and a MAC mode that gives beyond birthday bound
security for PRF-distinguishability and unforgeability (possibly in the nonce
misuse model).

3.2 Encryption Modes Used in Encrypt-then-MAC-based AE

A symmetric encryption scheme is generally defined through a pseudorandom
number generator (PRNG) that takes a short master key K and an initial value
or nonce N that generates a key stream (S1, S2, . . .). Then the ciphertext is gen-
erated from the plaintext and the key stream by applying the one time padding
technique.

The counter mode of encryption (CTR) is a popular symmetric key encryp-
tion scheme, which gives birthday bound security in terms of the number of
blocks, and is used as the underlying encryption scheme in AE constructions such
as CWC [24], GCM [26], GCM/2+ [3], GCM-RUP [4]. On the other hand Multi-
EDM [41] and Multi-EDMD [41], which give an almost n-bit security, are used as
the underlying encryption scheme in OGCM1 [41] and OGMC2 [41] respectively.

Cipher-Based Encryption. Cipher-based encryption [22] (CENC) is param-
eterized by a fixed non-negative integer w and so can be denoted as CENCw.
The PRNG of CENCw takes a key K, a nonce ctr and a length l as input and
outputs a sequence of fixed length key stream blocks, where the i-th key stream
block is defined as

Si
Δ= EK(ctr + j(w + 1)) ⊕ EK(ctr + j(w + 1) + i), j ∈ [0, l′ − 1], i ∈ [1, w],

where l′ = l/w. The optimal security of CENCw has been shown in [8] and it is
used as the underlying encryption scheme of CHM and CIP AE constructions.
An optimally secure nonce-based encryption mode CENCmax [8], in which w is
set to the maximum number of message blocks, is applied as the underlying
encryption scheme of mGCM [8].

BBB Secure MAC in Faulty Nonce Model 447

3.3 MACs Used in Encrypt-then-MAC-based AEs

Wegman-Carter MAC. The Wegman-Carter (WC) MAC [40] is an early
and popular nonce-based MAC that authenticates a message by masking its
hash value with a random number generated through a pseudorandom function
applied on a nonce i.e.

WC[F,H](N,M) Δ= FK(N) ⊕ Hkh
(M).

The WC MAC provides O(εqv) security when nonces are never reused, where ε
is the hash differential probability and qv is the number of verification attempts.
However, the construction has no security when the nonce repeats even once.
For some constructions, the hash key is revealed and for others, a simple forgery
is possible. Different instantiations of the pseudorandom function and hash func-
tion gives different instances of the WC MAC. The Wegman-Carter-Shoup (WCS)
MAC [39] is a popular instantiation of WC MAC, where the pseudorandom func-
tion is replaced by a block cipher. WCS has been used as the underlying MAC in
GCM, CHM and CIP. EDM and EDMD are used as instantiations of the PRF in
WC MAC and the resultant MACs are used as the underlying MAC algorithms
in OGCM1 and OGCM2 respectively. CWC MAC [24] (used as the MAC function
in the CWC AE construction) is an another variant of the WC MAC where the
pseduorandom function is replaced by a block cipher and the hash function is
defined as EK2(HKh

(M)).

Encrypted Wegman-Carter-Shoup. The Encrypted Wegman-Carter-
Shoup (EWCS) MAC [13] has been proposed as a remedy to the problem of
nonce misuse security over the WC MAC. The EWCS MAC encrypts the out-
put of the WCS MAC to generate the tag, and it is then used as the underlying
MAC of GCM/2+ construction. EWC gives a security of around 2n/2 when nonces
do not repeat. An attacker can make approximately 2n/2 queries with distinct
nonces but the same message and observe no collisions in the tag.

Xor-Encrypt-Xor. Xor-Encrypt-Xor (XEX) was originally proposed as a
mode of designing a tweakable block cipher [38]. Luykx et al. [4] used it as
the underlying MAC in GCM-RUP. For a nonce N and a message M , XEX works
as follows

XEX[E,H](N,M) Δ= EK(N ⊕ HKh
(M)) ⊕ HKh

(M).

XEX is secure upto the birthday bound when nonces do no repeat. It can be
easily seen that a collision amongst the values of N ⊕HKh

(M) leads to a forgery
which can be easily detected by finding collision in the values N ⊕ T .

EWCDM [13] and a single-keyed hash variant of CLRW2 [25] are some possible
alternatives of nonce-based MACs that can potentially be applied as the MAC
function of any EtM-based AE mode. EWCDM has been proven to be secure upto
approximately 22n/3 queries when nonces do not repeat [13], and the single-keyed
hash variant of CLRW2 can be shown to be birthday bound secure in the nonce
respecting setting.

448 A. Dutta et al.

It is to be noted that all these constructions has birthday bound PRF security
as an attacker can make 2n/2 queries with distinct nonces but same message and
observes no collision in the tag.

3.4 Security Result of nEHtM: A Nonce-Based Version of EHtM

The previous section demonstrates that the MACs used in the existing AE
modes are not secure beyond the birthday bound when nonces repeat just once,
making them unsuitable for use in designing an AE that is resilient in the
faulty nonce model. This section introduces the nonce-based Enhanced Hash-
then-Mask nEHtM and gives upto 2n/3-bit unforgeability in faulty nonce model.
The Enhanced Hash-then-Mask (EHtM) proposed by Minematsu [29], is the first
BBB secure PRF-based probabilistic MAC that uses only an n-bit random salt
and an n-bit PRF. nEHtM is structurally similar to EHtM, except that the ran-
dom salt is replaced by a nonce and the PRF by a block cipher. Moreover, for the
purpose of domain separation, we consider an (n − 1)-bit nonce and an (n − 1)-
bit keyed hash function. For any message M and nonce N , nEHtM is defined as
follows

nEHtM[E,HKh
](N,M) Δ= EK(0‖N) ⊕ EK(1‖(N ⊕ HKh

(M))).

We now state Theorem 1, which bounds the unforgeability of nEHtM in the faulty
nonce model. We also demonstrate a birthday bound forging attack on nEHtM
when the number of faulty nonces reaches an order of 2n/2. The underlying idea
of the attack is to form an alternating cycle of length 4 in the input of the block
cipher; details may be found in [19].

Theorem 1. Let M,K and Kh be finite and non-empty sets. Let E : K ×
{0, 1}n → {0, 1}n be a block cipher and H : Kh × M → {0, 1}n−1 be an ε-axu
(n − 1)-bit ε-AXU hash function. Let μ be a fixed parameter. Then the forg-
ing advantage for any (μ, qm, qv, t)-adversary against nEHtM[E,H] that makes
authentication queries with at most μ faulty nonces is given by

AdvMAC
nEHtM[E,H](μ, qm, qv, t) ≤ AdvPRP

E (μ, qm + qv, t′) +
48q3

m

22n
+

12q4
mε

22n
+

12μ2q2
m

22n

+
qm + 2qv

2n
+

4q3
mε

2n
+ (2qm + qv)με + qvε,

where the time parameter t′ is of the order of t + (qm + qv)tH and tH is the time
required for computing the hash function. Assuming ε ≈ 2−(n−1) and qm ≤ ε−1

simplifies this bound to

AdvMAC
nEHtM[Perm,H](μ, qm, qv, t) ≤ 80q3

m

22n
+

(
12μ2q2

m

22n
+

(4qm + 2qv)μ

2n

)
+

(
qm + 4qv

2n

)
.

The proof of this theorem is deferred until Sect. 6. The forging advantage of
nEHtM for μ ≤ 2n/3 and qm ≤ 22n/3/9 is thus given by

AdvMAC
nEHtM[Perm,H](qm, qv, t) ≤ 18qm

22n/3
+

4qv

22n/3
.

BBB Secure MAC in Faulty Nonce Model 449

Remark 1. EHtM offers 3n/4-bit security [18], whereas its nonce-based variant
offers 2n/3-bit security. This is because of the need to bound the number of
multicollisions in the underlying hash function, for which the only source of
randomness present in nEHtM is the hash key whereas EHtM also involves the
random salts as an additional source of entropy.

3.5 CWC+: A Beyond Birthday Bound Variant of CWC

We have already seen that CENCmax is a highly efficient optimally secure nonce
respecting encryption scheme and nEHtM is a nonce-based MAC that is secure
beyond the birthday bound in the faulty nonce model. Glueing them together
using the EtM paradigm, we realize an authenticated encryption scheme, called
CWC+, which gives a beyond the birthday bound security in the faulty nonce
model. The encryption and decryption functions of CWC+ are shown in Fig. 2.
The privacy and the authenticity advantages of CWC+ are stated in the following
theorem, the proof of which is deferred until Sect. 7.

Theorem 2 (Privacy and Authenticity Bound of CWC+). Let E : K ×
{0, 1}n → {0, 1}n be a block cipher and Poly : {0, 1}n × {0, 1}∗ → {0, 1}n−1

be the (n − 1)-bit truncated PolyHash function which truncates the first bit of
the PolyHash output. Let ρ and μ be two fixed parameters. Then the privacy
advantage for any (qe, qd, �, σ, t)-nonce respecting adversary against CWC+[E, ρ]
is given by

Advpriv
CWC+[E,ρ](qe, qd, �, σ, t) ≤ AdvPRP

E (σ + 2q, t′) +
105σ3�

22n
+

6σ�

2n
+

2qd

2ρ
+

2qd�

2n
.

The authenticity advantage for any (μ, qe, qd, �, σ, t)-adversary against
CWC+[E, ρ] is given by

Advauth
CWC+[E,ρ](μ, qe, qd, �, σ, t) ≤ AdvPRP

E (σ + 2q, t′) +
105σ3�

22n
+

6σ�

2n
+

2qd

2ρ
+

2qd�

2n

+
(2qe + qd)2�μ

2n
+

(
5σ�μ

2n

)2

.

We denote q = qe + qd, the total number of encryption and decryption queries
and t′ = O(t + qtH + σ + 2q), where tH denotes the time for computing the hash
function and μ denotes the total number faulty encryption queries. The authenticity
advantage of CWC+ for μ ≤ 2n/3, σ ≤ 22n/3 and σ ≈ qe� is simplified to

Advauth
CWC+[E,ρ](μ, qe, qd, �, σ, t) ≤ AdvPRP

E (σ + 2q, t′) +
112σ�

22n/3
+

2qd

2ρ
+

4qd�

22n/3
.

450 A. Dutta et al.

Algorithm CWC+.EncK(N,A,M)

1. L ← EK(0); N ′ ← N‖0n/4−1;
2. l ← �|M |/n�;
3. S ← CENCmax(K, 0‖N ′, l);
4. C ← M ⊕ first(S, |M |);
5. T̃ ← nEHtM[E,PolyEK(0)](N

′, C‖A);

6. T ← chopρ(T̃);
7. return (C, T)

Algorithm CWC+.DecK(N,A,C, T)

1. L = EK(0); N ′ ← N‖0n/4−1;
2. l ← �|C|/n�;
3. T̃ ′ ← nEHtM[E,PolyEK(0)](N

′, C‖A);

4. if chopρ(T̃ ′) �= T then return ⊥;
5. S ← CENCmax(K,N ′, l);
6. M ← C ⊕ first(S, |C|);
7. return M

Fig. 2. Encryption and Decryption functions of CWC+. PolyEK(0) denotes the Polyhash
function with its n-bit hash key set to the encrypted value of 0. first(S, |M |) denotes
the first |M | bits in the sequence S. chopρ is a function that truncates the last n − ρ
bits of its input.

4 Mirror Theory

Mirror theory, introduced by Patarin in [34], is a technique to provide a lower
bound for the number of solutions to a given system of linear (more precisely,
affine) bivariate equations and non-equations in a finite field (e.g., GF(2n)).
Solving a system of linear or affine equations is straightforward and a common
problem in linear algebra. However, the problem starts complicating when non-
equations are included. A special form of problems involving non-equations is to
find distinct solutions to all the variables present in the system. If Y1, . . . , Ys are
the variables, the system of non-equations Yi ⊕ Yj �= 0 for all i �= j essentially
restricts the solutions to those in which all variables take distinct values. We
call such a solution an injective solution. However, Patarin did not consider any
other forms of non-equations [34–36]. This has been considered and termed as
extended mirror theory in a recent work of Datta et al. [16]. In [16], the authors
provided a lower bound on the number of injective solutions when the maximum
component size wmax (a parameter that shall be defined soon) is three or less.
This paper extends their analysis for an arbitrary wmax.

Injective Solution of Equations. Let G = (V Δ= {Y1, . . . , Yα},S) be a
simple acyclic graph with an edge-labelling function L : S → {0, 1}n. For an
edge {Yi, Yj} ∈ S, we write L({Yi, Yj}) = λij (and so λij = λji). The system of
equations induced by G, denoted EG, is then defined as:

EG
Δ= {Yi ⊕ Yj = λij ; {Yi, Yj} ∈ S}. (3)

That is, each vertex of G denotes a variable in the system of equations and each
edge of G denotes an equation in EG. We denote the set of components in G by
comp(G) = (C1, . . . , Ck), where k is the number of components in G. wi denotes

BBB Secure MAC in Faulty Nonce Model 451

the size of (i.e. the number of vertices in) the component Ci, wmax denotes the
quantity max{w1, . . . , wk} (also commonly denoted as ξ in Patarin’s papers) and
σi the sum (w1 + · · · + wi) with the convention that σ0 = 0.

Definition 1. With respect to the system of equations EG (as defined above),
an injective function Φ : V → {0, 1}n is said to be an injective solution if
Φ(Yi) + Φ(Yj) = λij for all {Yi, Yj} ∈ S.

As the graph G is acyclic, there exists a unique path in the graph between any two
vertices Ys and Yt in the same connected component, which shall be denoted by
Pst. Adding all equations induced by the edges of any such path Pst gives

L(Pst) :=
∑

e∈Pst

L(e) = Ys ⊕ Yt.

So, for an injective solution to exist, the graph G (along with the label func-
tion) must satisfy the following property:

NPL (non-zero path label): For all paths P in graph G, L(P) �= 0.

It may be noted here that the NPL condition formalizes the notion of non-
degeneracy as mentioned in [28,34]. The restriction on the graph to be acyclic
implies that the equations are linearly independent (since otherwise, there is a
possibility that the system becomes inconsistent).

Having identified the necessary condition for the existence of an injective
solution to EG corresponding to any simple edge-labeled undirected acyclic graph
G, we now state the following claim due to Patarin [34], which gives a lower
bound on the number of injective solutions to EG. Suppose G has α vertices and
q edges. Patarin claimed that the number of injective solutions to EG is at least
(2n)α

2nk , provided σk(wmax − 1) ≤ 2n/64. Unfortunately, the proof of this claim
is unverifiable. [16] gives a detailed proof for the following lower bound on the
number of injective solutions: (2n)α

2nk · (1 − ε), with ε ≈ 0 and σ3
kw2

max � 22n.

Injective Solution to a System of Equations and Non-Equations.
An extended system involving a system of non-equations along with a system
of equations shall now be examined. Let G = (V Δ= {Y1, . . . , Yα},S � S ′,L)
be a simple undirected edge-labelled graph (L is a label function), whose edge
set is partitioned into two disjoint sets S and S ′. As before, we simply write
L({Yi, Yj}) = λij for all {Yi, Yj} ∈ S and L({Yi, Yj}) = λ′

ij for all {Yi, Yj} ∈ S ′.
Let such a graph G induce a system of equations and non-equations EG as follows:

Yi ⊕ Yj = λij ∀ {Yi, Yj} ∈ S, (4)
Yi ⊕ Yj �= λ′

ij ∀ {Yi, Yj} ∈ S ′, (5)

For a system of equations and non-equations EG, an injective function Φ : V →
{0, 1}n is said to be an injective solution function if Φ(Yi) ⊕ Φ(Yj) = λij for all
{Yi, Yj} ∈ S and Φ(Yi) ⊕ Φ(Yj) �= λ′

ij for all {Yi, Yj} ∈ S ′.

452 A. Dutta et al.

Y1

Y2 Y3

λ1

λ1 + λ2

λ2

Fig. 3. EG
Δ
= {Y1 ⊕ Y2 = λ1, Y1 ⊕ Y3 = λ2, Y2 ⊕ Y3 �= λ1 ⊕ λ2}. The continuous red

edges represent equations and the dashed blue edges represent non-equations. Clearly,
the system of equations and non-equations is inconsistent. (Color figure online)

Good Graphs. We shall first investigate the case when EG has at least one solu-
tion. To ensure this, the subgraph G= Δ= (V,S,L|S), where L|S is the function
L restricted over the set S, must

(i) be acyclic (i.e. No Cycle or NC)
(ii) satisfy the NPL condition and

(iii) satisfy the NCL (non-zero cycle label) property which says that for all
cycles C in G such that the edge set of C contains exactly one non-equation
edge e′ ∈ S ′, L(C) �= 0 (see Fig. 3 for an example).

If a graph G satisfies the above three conditions (i)-(iii), it is said to be a good
graph. In [16], authors have proved the following lower bound for wmax = 3.
Let G = (V,S � S ′,L) be a good graph with |V| = α, |S| = qm, |S ′| = qv. Let
comp(G=) = (C1, . . . , Ck) with |Ci| = wi (≤ 3) and σi = (w1 + · · · + wi). Let
Z ⊆ {0, 1}n such that |{0, 1}n \ Z| = c. The total number of injective solutions
(each solution is chosen from the set Z) for the induced system of equations and
non-equations EG is at least:

(2n)α

2nk

(
1 − 5k3

22n
− qv + cα

2n−1

)
. (6)

Observe that qv +cα is the number of non-equations, considering univariate non-
equations arising from the constraint of each solution being from the set of size
2n − c. Now we state our theorem, which generalizes this result for any wmax.

Theorem 3. Let G = (V,S � S ′,L) be a good graph with α vertices such that
|S| = qm, |S ′| = qv. Let comp(G=) = (C1, . . . , Ck) and |Ci| = wi, σi = (w1 + · · ·+
wi). Then the total number of injective solutions chosen from a set Z of size
2n − c, for some c ≥ 0, for the induced system of equations and non-equations
EG is at least:

(2n)α

2nq

(
1 −

k∑
i=1

6σ2
i−1

(
wi

2

)
22n

− 2(qv + cα)
2n

)
, (7)

provided σkwmax ≤ 2n/4.

BBB Secure MAC in Faulty Nonce Model 453

Proof. We give here a brief sketch of the proof. A detailed proof of the theorem
can be found in [19]. The proof proceeds by counting the number of solutions
in each of the k components. We denote w̃ij to be the number of edges from
S ′ connecting vertices between i-th and j-th component of G= and w′

i to be
the number of edges in S ′ incident on vi ∈ V \ G=(V). It is easy to see that
the number of solutions for the first component is exactly (2n − cw1). We fix a
solution and count the number of solutions for the second component which is
(2n − w1w2 − w̃1,2 − cw2) as it must discard (i) w1 values (yi1 , . . . , yiw1

) from
the first component, (ii) w1(w2 − 1) values (yi1 ⊕ L(Pj), . . . , yiw1

⊕ L(Pj)) for
all possible paths Pj from a fixed vertex to any other vertex in the second
component and (iii) cw2 + w̃12 values to compensate for the fact that the set
of values is no longer a group. In general, the total number of solutions for the

i-th component is at least
k∏

i=1

(
2n − σi−1wi −

i−1∑
j=1

w̃ij − cwi

)
. Suppose there are

k′ vertices that do not belong to the set of vertices of the subgraph G=. Fix
such a vertex Yσk+i and let us assume that w′

σk+i blue dashed edges are incident
on it. If yσk+i is a valid solution to the variable Yσk+i, then we must have (a)
yσk+i should be distinct from the previous σk assigned values, (b) yσk+i should
be distinct from the (i − 1) values assigned to the variables that do not belong
to the set of vertices of the subgraph G=(V) and (c) yσk+i should not take those
w′

σk+i values.

Therefore, the total number of solutions is at least

hα ≥
k∏

i=1

(
2n − σi−1wi −

i−1∑
j=1

w̃ij − cwi

)
·
∏

i∈[k′]

(2n − σk − i + 1 − w′
σk+i). (8)

Let us denote (w̃i1 + . . . + w̃i,i−1) by pi and (w′
σk+1 + . . . + w′

σk+k′) by q′′
v . After

a simple algebraic calculation on Eq. (8), we obtain

hα
2nqm

(2n)α
≥

k∏
i=1

(2n − σi−1wi − pi − cwi)2n(wi−1)

(2n − σi−1)wi︸ ︷︷ ︸
D.1

(
1 − 2q′′

v

2n

)
. (9)

Let us denote the expression
((

wi

2

)
σ2

i−1 +
(
wi

2

)
(wi − 1)σi−1 +

(
wi

2

)
(wi−2)(3wi−1)

12

)
by Ai. Expanding (2n − σi−1)wi

along with some simple compu-

tations on D.1 gives

454 A. Dutta et al.

D.1 ≥
k∏

i=1

(
1 − Ai

22n − 2n(σi−1wi +
(

wi
2

)
) + Ai

− 2n(pi + cwi)

22n − 2n(σi−1wi +
(

wi
2

)
) + Ai

)

(4)

≥
k∏

i=1

(
1 − 2Ai

22n
− 2(pi + cwi)

2n

)
(5)

≥
(

1 −
k∑

i=1

6σ2
i−1

(
wi
2

)
22n

−
k∑

i=1

2(pi + cwi)

2n

)

(6)

≥
(

1 −
k∑

i=1

6σ2
i−1

(
wi
2

)
22n

− 2q′
v

2n
− 2cα

2n

)
, (10)

where (4) follows from the fact that 2n(σi−1wi +
(
wi

2

)
)−Ai ≤ 22n/2, which holds

true when σkwmax ≤ 2n/4, (5) holds true due to the fact that Ai ≤ 3σ2
i−1

(
wi

2

)
and (6) holds true as we denote (p1 + . . . + pk) = q′

v, the total number of blue
dashed edges across the components of G= and w1 + . . .+wk ≤ α. Finally, from
Eqs. (9), (10) and qv = q′

v + q′′
v , the result follows. ��

5 Mutlicollision in Universal Hash Function

In this section, we study the muticollision advantage of a universal hash func-
tion. Suppose HKh

is an ε universal hash function where the hash key Kh is cho-
sen uniformly at random from the hash-key space. For any q distinct messages
M1, . . . ,Mq, the probability that there exist i �= j, such that Mi and Mj collide
under the hash function HKh

is at most ε
(
q
2

)
(by the union bound). Extend-

ing this result for multicollisions, we say that (M1, . . . ,Mξ) is a ξ-multicollision
tuple for HKh

if HKh
(M1) = HKh

(M2) = · · · = HKh
(Mξ). When HKh

is a ξ-wise
independent hash function [40] the probability that a ξ-tuple (M1, . . . ,Mξ) is a
ξ-multicollision tuple for HKh

is 1/2n(ξ−1). Clearly, this cannot be concluded for
a universal hash function. In fact, one can easily construct a ξ-tuple of messages
such that the multicollision probability under the PolyHash function is �/2n.

In the following, we now provide a bound (better than ε
(
q
2

)
) on the existence

of a multicollision tuple for any given q messages.

Theorem 4 (Multicollision Theorem). Let X1, . . . , Xq be q distinct mes-
sages and HKh

be an ε-universal hash function. Then for ξ ∈ N, the probabil-
ity that a (ξ + 1)-multicollision tuple exists in this set of messages is no more
than q2ε/2ξ.

Proof. Let us denote the required probability by P and set Zi = HKh
(Xi),

i ∈ [q]. Also let X denote a (ξ + 1)-tuple (X1, . . . , Xξ+1) ∈ Vξ+1. Consider
the graph G = (V,S) whose vertex set V contains each of the q messages.
An edge between two nodes exists in S if and only if the hash values of the cor-
responding messages collide. Therefore, the event HKh

(X1) = . . . = HKh
(Xξ+1)

boils down to the existence of a clique of size ξ + 1 in G. Due to Lemma 1, if G
has q2/2ξ edges, then any collection of ξ + 1 vertices of the q vertices in V must
contain at least one pair which is in S. i.e. there must exist {v1, . . . , vs} ⊆ [q],
for s = q2/ξ, such that

Zi1 = Zi2 = . . . = Ziξ+1 ⇒ Zv1 = Zv2 ∨ Zv3 = Zv4 ∨ . . . ∨ Zvs−1 = Zvs
, (11)

BBB Secure MAC in Faulty Nonce Model 455

Therefore, the probability P is:

max
X

Pr
[
Kh ←$ {0, 1}n : ∃i1, · · · , iξ ∈ [q],HKh

(Xi1) = · · · = HKh
(Xiξ

)
]

≤ Pr[Zv1 = Zv2 ∨ . . . ∨ Zvs−1 = Zvs
]≤

s/2∑
i=1

Pr[Zv2i−1 = Zv2i
]≤sε

2
=

q2ε

2ξ
.

Lemma 1. Let q, ξ ∈ N. Then for any set V with |V| = q, there exists a graph
G = (V,S) with |S| =

⌈
q2

2ξ

⌉
such that any collection C of ξ + 1 vertices has at

least one edge in S joining two vertices in C.

Proof. Divide the q vertices into ξ subcollections of size
⌈

q
ξ

⌉
each, the last

subcollection possibly containing a lesser number of vertices. Construct S by
adding in it, all the edges required to form a clique Ci, i ∈ [ξ] out of each of the

ξ subcollections. Thus, there are at most ξ ·
(� q

ξ �−1

2

)
edges in all the ξ cliques.

Observe that,

ξ ·
(⌈ q

ξ

⌉
− 1

2

)
< ξ ·

(q
ξ

2

)
≤ q2

2ξ
≤
⌈

q2

2ξ

⌉
.

Hence, S must contain more edges, distinct from those involved in the ξ cliques,
which must exist between at least one pair of vertices in different cliques Ci and
Cj (i �= j). Since there are ξ + 1 vertices in C and a total of ξ cliques Ci formed
so far in G, it can thus be inferred from the pigeonhole principle that at least
one clique Ci contains more than one edge from S, making clear the existence
of an edge from S in C. ��

6 Proof of Theorem 1

In this section, we prove Theorem 1. We shall often refer to the construction
nEHtM[E,H] as simply nEHtM when the underlying primitives are assumed to
be understood.

The first step of the proof is the standard switch from the computational
setting to the information theoretic one by replacing the block cipher EK with
an n-bit uniform random permutation Π at the cost of AdvPRP

E (qm + qv, t′),
where t′ = O(t + (qm + qv)tH) and tH is the time required for computing the
hash function. Let us denote this modified construction as nEHtM∗[Π,H]. Hence,

AdvMAC
nEHtM(qm, qv, t) ≤ AdvPRP

E (qm + qv, t′) + AdvMAC
nEHtM∗(qm, qv, t)︸ ︷︷ ︸

δ∗

. (12)

To get an upper bound for δ∗, we consider a perfect random oracle Rand, which
on input (N,M) returns T , sampled uniformly at random from {0, 1}n, and an

456 A. Dutta et al.

oracle Rej which always returns ⊥ (i.e., rejects) for all inputs (N,M, T). Now,
due to [13,16,18] we have

δ∗ ≤ max
D

Pr[DTG[Π,HKh
],VF[Π,HKh

] = 1] − Pr[DRand,Rej = 1],

where the maximum is taken over all non-trivial distinguishers D. This formu-
lation allows us to apply the expectation method [10,20] to prove that

δ∗ ≤ 48q3
m

22n
+

12q4
mε

22n
+

12μ2q2
m

22n
+

qm + 2qv

2n
+

4q3
mε

2n
+ (2qm + qv)με + qvε. (13)

Attack Transcript. Henceforth, we fix a deterministic non-trivial (i.e., one
that makes no repeated queries) distinguisher D that interacts with either (1)
the real oracle (TG[Π,HKh

],VF[Π,HKh
]) for a uniform random permutation Π

and a random hashing key Kh or (2) the ideal oracle (Rand,Rej) making at most
qm queries to its left (authentication) oracle with at most μ faulty nonces and
at most qv queries to its right (verification) oracle, and returning a single bit.
Then

Adv(D) =
∣∣∣Pr

[
DTG[Π,HKh

],VF[Π,HKh
] = 1

]
− Pr

[
DRand,Rej = 1

]∣∣∣ .
Let τm

Δ= {(N1,M1, T1), (N2,M2, T2), . . . , (Nqm
,Mqm

, Tqm
)}

be the list of authentication queries made by D and the corresponding responses
it receives. Also let

τv
Δ= {(N ′

1,M
′
1, T

′
1, b

′
1), (N

′
2,M

′
2, T

′
2, b

′
2), . . . , (N

′
qv

,M ′
qv

, T ′
qv

, b′
qv

)}

be the list of verification queries made by D and the corresponding responses
it receives, where for all j, b′

j ∈ {�,⊥} denotes the set of accept (b′
j = �) and

reject (b′
j = ⊥) responses. The pair τ = (τm, τv) constitutes the query transcript

of the attack. For convenience, we slightly modify the experiment to reveal to
the distinguisher (after it made all its queries and obtained the corresponding
responses, but before it outputs its decision) the hashing key Kh, if D interacts
with the real world, or a uniformly random dummy key Kh if D interacts with
the ideal world. Hence, the extended transcript of the attack is τ ′ = (τ,Kh) where
τ = (τm, τv), τm and τv being the tuples of the authentication and verification
queries respectively. We shall often simply name a tuple (N,M, T) ∈ τm an
authentication query, and a tuple (N ′,M ′, T ′, b′) ∈ τv a verification query.

A transcript τ ′ is said to be an attainable transcript (with respect to D) if the
probability of realizing this transcript in the ideal world is non-zero. It must be
noted that since attainability is with respect to the ideal world, any verification
query (N ′

i ,M
′
i , T

′
i , b

′
i) even in an attainable transcript τ ′ = (τ,Kh) is such that

b′
i = ⊥. We denote Θ to be the set of all attainable transcripts and Xre and Xid

to be the random variables that take an extended transcript τ ′ induced by the
real world and the ideal world respectively.

BBB Secure MAC in Faulty Nonce Model 457

6.1 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the
ideal world. For notational simplicity, we denote Ni ⊕HKh

(Mi) as Xi. Note that
Xi is an n − 1 bit string.

Definition 2 (Bad Transcript). Given a parameter ξ ∈ N, where ξ ≥ μ, an
attainable transcript τ ′ = (τm, τv,Kh) is called a bad transcript if any one of
the following holds:

– B1 : ∃ i ∈ [qm] such that Ti = 0.
– B2 : ∃ i �= j, j �= k such that Ni = Nj and Xj = Xk.
– B3 : {i1, . . . , iξ+1} ⊆ [qm] such that Xi1 = Xi2 = . . . = Xiξ+1 (the optimal

value of ξ shall be determined later in the proof).
– B4 ∃ a ∈ [qv], ∃ i ∈ [qm] such that Ni = N ′

a, Xi = X ′
a and Ti = T ′

a.

We denote by Θbad (resp. Θgood) the set of bad (resp. good) transcripts. We
bound the probability of bad transcripts in the ideal world as follows.

Lemma 2. Let Xid and Θbad be defined as above. Then

Pr[Xid ∈ Θbad] ≤ εbad =
qm

2n
+

q2
mε

2ξ
+ (2qm + qv)με + qvε.

Proof. By the union bound,

Pr[Xid ∈ Θbad] ≤ Pr[B1] + Pr[B2] + Pr[B3] + Pr[B4]. (14)

In the following, we bound the probabilities of all the bad events individually.
The lemma will follow by adding the individual bounds. Clearly,

Pr[B1] ≤ qm

2n
. (15)

Bounding B2. Let F be the set of all query indices i for which there is a j �= i
such that Ni = Nj . It is easy to see that |F| ≤ 2μ. Event B2 occurs if for some
j ∈ F , HKh

(Mj) = Nk ⊕ HKh
(Mk) for some k �= j. For any such fixed i, j, k, the

probability of the event is at most ε. The number of such choices of (j, k) is at
most 2μqm. Hence,

Pr[B2] ≤ 2μqmε. (16)
Bounding B3. Event B3 occurs if there exist ξ + 1 distinct authentication
query indices {i1, . . . , iξ+1} ⊆ [qm] such that Xi1 = . . . = Xiξ+1 . This event is
thus a (ξ +1)-multicollision on the ε universal hash function mapping (N,M) to
HKh

(M) ⊕ N (as HKh
is an ε-almost-xor universal). Therefore, by Theorem 4:

Pr[B3] ≤ q2
mε/2ξ. (17)

Bounding B4. For some a ∈ [qv] and i ∈ [qm], if Ni = N ′
a, Xi = X ′

a and Ti = T ′
a,

then Mi �= M ′
a (as the adversary does not make any trivial query). Hence the

probability that Xi = X ′
a holds is at most ε. Now, for any a, there can be at

most (μ + 1) indices i such that Ni = N ′
a. Hence, the required probability is

bounded as
Pr[B4] ≤ (μ + 1)qvε. (18)

The proof follows from Eqs. (14)–(18). ��

458 A. Dutta et al.

6.2 Analysis of Good Transcripts

In this section, we show that for a good transcript τ ′ = (τ,Kh), realizing τ ′ is
almost as likely in the real world as in the ideal world.
Consider a good transcript τ ′ = (τm, τv,Kh). Since in the ideal world the authen-
tication oracle is perfectly random and the verification oracle always rejects,

Pr[Xid = τ ′] =
1

|Kh| · 1
2nqm

(19)

We must now lower bound Pr[Xre = τ ′] i.e., the probability of getting τ ′ in the
real world. We say that a permutation Π is compatible with τm (respectively with
τv) if (A) (respectively (B)) holds.

(A) ∀i ∈ [qm],Π(N̂i) ⊕ Π(X̂i) = Ti, (B) ∀a ∈ [qv],Π(N̂ ′
a) ⊕ Π(X̂ ′

a) �= T ′
a,

where N̂i = 0‖Ni, X̂i = 1‖Xi, N̂ ′
a = 0‖N ′

a and X̂ ′
a = 1‖X ′

a. We simply say that
Π is compatible with τ = (τm, τv) if it is compatible with τm and τv. We denote
by Comp(τ) the set of permutations Π that are compatible with τ . Therefore,

Pr[Xid = τ ′] =
1

|Kh| · Pr[Π ←$ Perm : Π ∈ Comp(τ)]

=
1

|Kh| · Pr[Π(N̂i) ⊕ Π(X̂i) = Ti,Π(N̂ ′
a) ⊕ Π(X̂ ′

a) �= T ′
a]︸ ︷︷ ︸

Pmv

. (20)

We refer to the system of equations as “authentication equations” as they
involve only the authentication queries and to the system of non-equations
as“verification non-equations” as they involve only the verification queries. We
denote the system of authentication equations by Em and the system of verifica-
tion non-equations by Ev.

(Em) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Π(N̂1) ⊕ Π(X̂1) = T1

Π(N̂2) ⊕ Π(X̂2) = T2

...
Π(N̂qm

) ⊕ Π(X̂qm
) = Tqm

(Ev) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Π(N̂ ′
1) ⊕ Π(X̂ ′

1) �= T ′
1

Π(N̂ ′
2) ⊕ Π(X̂ ′

2) �= T ′
2

...
Π(N̂ ′

qv
) ⊕ Π(X̂ ′

qv
) �= T ′

qv

Equation and Non-Equation Inducing Graph. From the above system of
bivariate affine equations and non-equations, we induce the edge-labeled undi-
rected graph Gτ ′ = (V,S � S ′), where the set of nodes V is the set of variables
{Y1, . . . , Yα}, S is the set of edges corresponding to each authentication equation
and S ′ is the set of edges corresponding to each verification non-equation. More-
over, if there is an authentication equation Ys ⊕Yt = Ti, then the corresponding
edge {Ys, Yt} ∈ S is labeled Ti. Similarly, if there is a verification non-equation
Ys ⊕Yt �= T ′

i , then the corresponding edge {Ys, Yt} ∈ S ′ is labeled T ′
i . Moreover,

G=
τ ′ = (V,S) is the subgraph of Gτ ′ .

The proof of the following claim can be found in the full version of the paper [19].

BBB Secure MAC in Faulty Nonce Model 459

Claim 1. If the transcript τ ′ is good, then the induced graph Gτ ′ is valid.

Suppose there are k components in the subgraph G=
τ ′ and the size of the i-th

component is Wi. Thus, Wi is a random variable, and so is Wmax, which denotes
the size of the largest component. It is easy to see that Wmax ≤ ξ. As the graph
Gτ ′ is valid (follows from Claim 1), we assume ξ ≤ 2n/8qm (from the condition
of Theorem 3), which allows us to apply Theorem 3 with c = 0 to obtain,

Pmv ≥ 1
2nqm

·
(

1 −
k∑

i=1

6σ2
i−1

(
Wi

2

)
22n

− 2qv

2n

)
. (21)

Therefore, Eqs. (19)–(21) imply that the ratio Pr[Xre=τ ′]
Pr[Xid=τ ′] is no less than

(
1 −

k∑
i=1

6σ2
i−1

(
Wi

2

)
22n

− 2qv

2n

)
(1)

≥ 1 −
(k∑

i=1

24q2
m

(
Wi

2

)
22n

+
2qv

2n

︸ ︷︷ ︸
φ(τ ′)

)
, (22)

where (1) follows due to the inequality σi−1 ≤ 2qm.
We now compute the expectation of φ(Xid) as follows.

E
[(k∑

i=1

24q2
m

(
Wi

2

)
22n

+
2qv

2n

)]
=
(

2qv

2n
+

24q2
m

22n
E
[k∑

i=1

(
Wi

2

)])
. (23)

Let W̃i = Wi − 1 and therefore,

E
[k∑

i=1

(
Wi

2

)]
= E

[k∑
i=1

(
W̃i

2

)]
+ E

[k∑
i=1

W̃i

]
(2)

≤ E
[k∑

i=1

(
W̃i

2

)]
+ 2qm,(24)

where (2) holds as (W̃1 + . . . W̃k) = σk − k ≤ 2qm. Let us consider the following
two indicator random variables

Iij =

{
1, if Xi = Xj

0, otherwise
Ĩij =

{
1, if Ni = Nj

0, otherwise.

460 A. Dutta et al.

Therefore,

E
[k∑

i=1

(
W̃i

2

)]
(3)
=

qm∑
i�=j

E[Iij] +

µ∑
i�=j

E[Ĩij]

(4)
=

qm∑
i�=j

Pr[HKh
(Mi) ⊕ HKh

(Mj) = Ni ⊕ Nj] + μ2/2

(5)

≤
(

qm

2

)
ε + μ2/2 ≤ q2

mε/2 + μ2/2, (25)

where (3) holds due to the linearity of expectation, (4) holds from the definition
of the indicator random variable and (5) holds from the ε-almost-xor universal
probability of the underlying hash function. Therefore, from Eqs. (23)–(25), we
have

E[φ(Xid)] ≤
(

12q4
mε

22n
+

12μ2q2
m

22n
+

48q3
m

22n
+

2qv

2n

)
. (26)

Finalizing the proof. We have assumed that ξ ≥ μ and from the condition
of Theorem 3, we have ξ ≤ 2n/8qm. By assuming μ ≤ 2n/8qm (otherwise the
bound becomes vacuously true) we choose ξ = 2n/8qm. Hence, the result follows
by applying Eq. (2), Lemma 2, Eq. (26) and ξ = 2n/8qm. ��

6.3 Security Bound Using the Coefficients-H Technique

We instantiate the underlying hash function of nEHtM by a truncated n-bit
PolyHash function that truncates the first bit of the PolyHash output which
is 2�/2n-axu hash function [14], where � is the maximum number of message
blocks. Therefore, from Lemma 2, Eq. (22) and the inequality

∑k
i=1

(
Wi

2

)
≤ ξqm,

we obtain the following bound using the coefficients-H technique.

δhc ≤ qm + 2qv

2n
+

q2
m�

2nξ
+

(2qm + qv)2�μ

2n
+

2qv�

2n
+

24q3
mξ

22n
. (27)

We choose the optimal value of ξ such that the right hand side of the Eq. (27)
gets maximized. To obtain such a value of ξ, we must have q2

m	
2nξ = 24q3

mξ
22n . By

solving the equality for ξ, we obtain ξopt =
(

	2n

24qm

) 1
2

. Plugging-in this optimal

value of ξopt into Eq. (27) gives

δhc ≤ qm + 2qv

2n
+

(2qm + qv)2�μ

2n
+

2qv�

2n
+ 10

(
q5
m�

23n

) 1
2

.

The above bound holds true as long as q ≤ 23n/5/�1/5 ≈ O(23n/5), which is
weaker than the bound O(22n/3) that we obtained using the expectation method.

BBB Secure MAC in Faulty Nonce Model 461

7 Proof of Theorem 2

In this section we prove Theorem 2. Instead of separately proving the privacy and
the authenticity result of the construction, we bound the distinguishing advan-
tage of the two random systems: (i) the pair of oracles (CWC+.Enc,CWC+.Dec)
for a random permutation Π, which is called the real system or the real world and
(ii) the pair of oracles (Rand,Rej), which is called the ideal system or the ideal
world. The privacy and authenticity bounds of CWC+ then follow as a simple
corollary of this result. We prove the following information theoretic bound of
CWC+.

δ∗ ≤ 97σ3�

22n
+

5σ

2n
+

σ�

2n
+

8σ3

22n
+

2qd

2ρ

(
1+

�

2n−ρ

)
+

(2qe + qd)2�μ

2n
+
(

5σ�μ

2n

)2

, (28)

where δ∗ is the maximum advantage in distinguishing the real world from the
ideal world and we assume qe� ≈ σ, σ ≤ 2n/48. Due to limitations in space, we
provide here only a sketch of the proof, and details may be found in [19].

Description of the ideal world. We begin with the asumption that all the
queried messages of an adversary are of length multiple of n and the number
of blocks of i-th message is li. Now, we consider a deterministic distinguisher
A that interacts either with the real world or with the ideal world. Rej simply
rejects all the verification attempts of A whereas Rand, on the i-th encryption
query (Ni,Mi, Ai) works as shown in Fig. 4.

Algorithm Rand(Ni, Ai,Mi)

1. if Ni ∈ D, let Ni = N
2. if li = lN , then Si L(N)
3. if li < lN , then Si L(N)[1, nli]
4. if li > lN , then
5. R $ ({0, 1}n)li−lN , Si L(N)‖R
6. lN = li
7. else
8. Si $ ({0, 1}n)li , L(Ni) Si, lNi = li
9. D D ∪ {Ni}

10. ˜Ti $ {0, 1}n; Ti chopρ(˜Ti)
11. return (Si, Ti)

Fig. 4. Random oracle for the ideal world. lN denotes the updated number of keystream
blocks for nonce N and L(N) denotes the updated keystream blocks for nonce N of
length lN . D denotes the domain of the nonce. chopρ is a function that truncates the
last n − ρ bits of its input.

462 A. Dutta et al.

Attack Transcript. Let D be a fixed non-trivial computationally unbounded
deterministic distinguisher that interacts with either the real world or the ideal
world, making at most qe queries to the left (encryption) oracle with at most
μ faulty nonces and at most qd queries to its right (decryption) oracle, and
returning a single bit.

Let τe
Δ= {(N1,M1, A1, S1, T1), . . . , (Nqe

,Mqe
, Aqe

, Sqe
, Tqe

)} be the list of

encryption queries and τd
Δ= {(N ′

1, A
′
1, C

′
1, T

′
1, Z1), . . . , (N ′

qd
, A′

qd
, C ′

qd
, T ′

qd
, Zqd

)}
be the list of decryption queries, where Zi = Mi ∪{⊥}. Note that the encryption
oracle in both the worlds releases the keystream as it determines the ciphertext
uniquely. For convenience, we reveal the hash key Kh, which is EK(0), if D
interacts with the real world or a uniform random element from {0, 1}n, if D
interacts with the ideal world, and also the n-bit tag (without truncating) i.e.,
T Δ= (T̃1, . . . , T̃qe

) to the distinguisher after it made all its queries and obtains
corresponding responses but before it output its decision and thus the extended
query transcript of the attack is τ ′ = (τ,Kh, T̃), which is called the extended
transcript.

Bad Transcripts. Recall that Ni is a 3n/4-bit string. We denote 0‖Ni‖0n/4−1

as N̂i and 1‖Xi as X̂i, where Xi
Δ= Ni‖0n/4−1 ⊕ PolyKh

(Mi). Moreover, Si[j]
denotes the j-th keystream block for i-th message. With these notations, we
define the bad transcript as follows: a transcript τ ′ = (τe, τd,Kh, T̃) is called
bad if any one of the following holds:

– B.1 : ∃ i ∈ [qe] and j ∈ [li] such that Si[j] = Kh.
– B.2 : ∃ i ∈ [qe] and j ∈ [li] such that Si[j] = 0.
– B.3 : ∃ i ∈ [qe] and j, j′ ∈ [li] such that Si[j] = Si[j′].
– B.4 : ∃ i ∈ [qe] such that T̃i = 0.
– B.5 : ∃i �= j, j �= k such that N̂i = N̂j and X̂j = X̂k.
– B.6 : {i1, . . . , iξ+1} ⊆ [qe] such that X̂i1 = X̂i2 = . . . = X̂iξ+1 for some

parameter ξ ≥ μ.
– B.7 ∃ a ∈ [qd], ∃ i ∈ [qe] such that N̂i = N̂ ′

a, X̂i = X̂ ′
a and T̃i = T ′

a.

Θbad (resp. Θgood) denotes the set of bad (resp. good) transcripts. Moreover, Xre

and Xid denotes the probability distribution of realizing an extended transcript
τ ′ in the real and the ideal world respectively. We bound the probability of bad
transcripts in the ideal world as follows.

Lemma 3. Let Xid and Θbad be defined as above. Then

Pr[Xid ∈ Θbad] ≤ εbad =
2σ

2n
+

qe�
2

2n
+

qe

2n
+

q2
e�

ξ2n
+

(2qe + qd)2�μ

2n
+

2qd�

2n
.

Proof of the lemma can be found in [19].

Good Transcripts. Let τ ′ = (τe, τd,Kh, T̃) be a good transcript. Since in the
ideal world the encryption oracle is perfectly random and the decryption oracle
always rejects, one simply has

BBB Secure MAC in Faulty Nonce Model 463

Pr[Xid = τ ′] =
1
2n

·
r∏

t=1

1
2nlt

· 1
2nqe

(29)

where r is the number of groups of nonces and lt be the updated number of
generated keystream blocks for group t.

Real Interpolation Probability. To bound the probability of getting τ ′ in
the real world from below, we model the system of equations and non-equations
into the graph theoretic setting to obtain the graph Gτ ′ , where we have σ + qe

equations and 2n−ρqd non-equations. Similar to the analysis of good transcripts
in the proof of Theorem 1, one can argue that as τ ′ is good, Gτ ′ is valid (i.e.,
it satisfies NC, NPL and NCL conditions). Thus, we assume ξ ≤ 2n/8σ� (from
the condition of Theorem 3), which allows us to apply Theorem 3 with c = 1,
σi−1 ≤ σk ≤ 2σ and α ≤ σ and then dividing by Eq. (29) we have,

Pr[Xre = τ ′]
Pr[Xid = τ ′]

≥ 1 −
(k∑

i=1

24σ2
(
W ′

i
2

)
22n

+
2qd

2ρ
+

2σ

2n

)

︸ ︷︷ ︸
φ(τ ′)

, (30)

where k is the number of components of Gτ ′ and W ′
i denotes the size of the i-th

component. Note that there are 2n−ρqd non-equations as the adversary forges
with ρ bit tags T ′

a and there are 2n−ρ tags T̃ s whose first ρ bits match with T ′
a.

Moreover, we consider c = 1 due to the fact that we choose elements from the
set {0, 1}n excluding the hash key.

Finalizing the proof. We calculate the expectation of φ(τ ′) as follows:

E[φ(Xid)] =
(

2qd

2ρ
+

2σ

2n
+

24σ2

22n
E
[k∑

i=1

(
W ′

i

2

)])
. (31)

It is easy to see that
(
W ′

i
2

)
≤
(
Wi

2

)(
2	
2

)
, where Wi is defined in the proof of Theo-

rem 1. Therefore from Eqs. (24) and (25),

E
[k∑

i=1

(
W ′

i

2

)]
≤ 2q2

e�3

2n
+ μ2�2 + 4qe�

2, (32)

where the almost xor universal probability of the truncated PolyHash is at most
2�/2n. Finally, from Eqs. (31) and (32) we obtain

E[φ(Xid)] ≤
(

2qd

2ρ
+

2σ

2n
+

48σ4�

23n
+
(

5σ�μ

2n

)2

+
96σ3�

22n

)
, (33)

where we assume that �qe ≈ σ, the total number of message blocks queried.

464 A. Dutta et al.

Finalization. We have assumed that ξ ≥ μ and from the condition of The-
orem 3, we have ξ ≤ 2n/8σ�. By assuming μ ≤ 2n/8σ� (otherwise the bound
becomes vacuously true) we choose ξ = 2n/8σ�. Hence, the bound stated in
Eq. (28) follows by applying Eq. (2), Lemma 3, Eq. (33), ξ = 2n/8σ� and
σ ≤ 2n/48. ��
Concluding the proof of theorem 2. The privacy bound of CWC+ is
derived from Eq. (28) by setting μ = 0 and the bound stated in Eq. (28) is itself
the authenticity bound of CWC+.

Acknowledgements. Authors would like to thank all the reviewers of Eurocrypt,
2019.

References

1. CAESAR: Competition for authenticated encryption: Security, applicability, and
robustness

2. Joux, A.: Comments on the draft GCM specification - authentication failures in
NIST version of GCM

3. Aoki, K., Yasuda, K.: The security and performance of “GCM” when short mul-
tiplications are used instead. In: Kuty�lowski, M., Yung, M. (eds.) Inscrypt 2012.
LNCS, vol. 7763, pp. 225–245. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38519-3 15

4. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63697-9 1

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

6. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 247–276. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 10

7. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760 3

8. Bhattacharya, S., Nandi, M.: Revisiting variable output length XOR pseudoran-
dom function. IACR Trans. Symmetric Cryptol. 2018(1), 314–335 (2018)

9. Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-disrespecting
adversaries: practical forgery attacks on GCM in TLS. In: 10th USENIX Workshop
on Offensive Technologies WOOT 16, Austin, TX, USA, 8–9 August 2016

10. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user secu-
rity, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 18

11. Smith, B.: Pull request: Removing the AEAD explicit IV. mail to IETF TLS
working group (2015)

https://doi.org/10.1007/978-3-642-38519-3_15
https://doi.org/10.1007/978-3-642-38519-3_15
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/978-3-319-78381-9_18

BBB Secure MAC in Faulty Nonce Model 465

12. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

13. Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-
misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 121–149. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 5

14. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: a
paradigm for constructing BBB secure PRF. IACR Trans. Symmetric Cryptol.
2018(3), 36–92 (2018)

15. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of
PMAC plus. IACR Trans. Symmetric Cryptol. 2017(4), 268–305 (2017)

16. Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? to make a
single-key beyond birthday secure nonce-based MAC. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 631–661. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96884-1 21

17. Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? to make a single-
key beyond birthday secure nonce-based MAC. Cryptology ePrint Archive, Report
2018/500 (2018)

18. Dutta, A., Jha, A., Nandi, M.: Tight security analysis of EHtM MAC. IACR Trans.
Symmetric Cryptol. 2017(3), 130–150 (2017)

19. Dutta, A., Nandi, M., Talnikar, S.: Beyond birthday bound secure MAC in faulty
nonce model. Cryptology ePrint Archive, Report 2019/127 (2019)

20. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 1

21. Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 381–411.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 13

22. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006). https://doi.org/10.1007/11799313 20

23. Iwata, T.: Authenticated encryption mode for beyond the birthday bound secu-
rity. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 9

24. Kohno, T., Viega, J., Whiting, D.: CWC: a high-performance conventional authen-
ticated encryption mode. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol.
3017, pp. 408–426. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-25937-4 26

25. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 2

26. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30556-9 27

27. Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: towards optimal
security using mirror theory. Cryptology ePrint Archive, Report 2017/473 (2017)

https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-319-96884-1_21
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-319-56614-6_13
https://doi.org/10.1007/11799313_20
https://doi.org/10.1007/978-3-540-68164-9_9
https://doi.org/10.1007/978-3-540-25937-4_26
https://doi.org/10.1007/978-3-540-25937-4_26
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27

466 A. Dutta et al.

28. Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: towards optimal
security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 556–583. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9 19

29. Minematsu, K.: How to Thwart birthday attacks against MACs via small ran-
domness. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 230–249.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 13

30. Minematsu, K., Iwata, T.: Building blockcipher from tweakable blockcipher:
extending FSE 2009 proposal. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp.
391–412. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25516-
8 24

31. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 15

32. Nandi, M.: Birthday attack on dual EWCDM. Cryptology ePrint Archive, Report
2017/579 (2017). https://eprint.iacr.org/2017/579

33. Patarin, J.: The “Coefficients H” Technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

34. Patarin, J.: Introduction to mirror theory: Analysis of systems of linear equali-
ties and linear non equalities for cryptography. IACR Cryptology ePrint Archive,
2010:287 (2010)

35. Jacques, P.: Security in o(2n) for the xor of two random permutations – proof with
the standard H technique. IACR Cryptology ePrint Archive, 2013:368 (2013)

36. Patarin, J.: Mirror theory and cryptography. IACR Cryptology ePrint Archive,
2016:702 (2016)

37. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for
tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 33–63. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 2

38. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2 2

39. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 24

40. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

41. Zhang, P., Hu, H., Yuan, Q.: Close to optimally secure variants of GCM. Secur.
Commun. Netw. 2018, 9715947:1–9715947:12 (2018)

https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-642-13858-4_13
https://doi.org/10.1007/978-3-642-25516-8_24
https://doi.org/10.1007/978-3-642-25516-8_24
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://eprint.iacr.org/2017/579
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/3-540-68697-5_24

Tight Time-Memory Trade-Offs
for Symmetric Encryption

Joseph Jaeger1(B) and Stefano Tessaro2

1 University of California, San Diego, La Jolla, USA
jsjaeger@eng.ucsd.edu

2 University of Washington, Seattle, USA
tessaro@cs.washington.edu

Abstract. Concrete security proofs give upper bounds on the attacker’s
advantage as a function of its time/query complexity. Cryptanalysis
suggests however that other resource limitations – most notably, the
attacker’s memory – could make the achievable advantage smaller, and
thus these proven bounds too pessimistic. Yet, handling memory limita-
tions has eluded existing security proofs.

This paper initiates the study of time-memory trade-offs for basic sym-
metric cryptography. We show that schemes like counter-mode encryp-
tion, which are affected by the Birthday Bound, become more secure (in
terms of time complexity) as the attacker’s memory is reduced.

One key step of this work is a generalization of the Switching Lemma:
For adversaries with S bits of memory issuing q distinct queries, we prove
an n-to-n bit random function indistinguishable from a permutation as
long as S×q � 2n. This result assumes a combinatorial conjecture, which
we discuss, and implies right away trade-offs for deterministic, stateful
versions of CTR and OFB encryption.

We also show an unconditional time-memory trade-off for the secu-
rity of randomized CTR based on a secure PRF. Via the aforementioned
conjecture, we extend the result to assuming a PRP instead, assuming
only one-block messages are encrypted.

Our results solely rely on standard PRF/PRP security of an under-
lying block cipher. We frame the core of our proofs within a general
framework of indistinguishability for streaming algorithms which may
be of independent interest.

Keywords: Provable security · Symmetric cryptography ·
Time-memory trade-offs

1 Introduction

Concrete security proofs upper bound the adversarial advantage ε as a function
of the adversary’s resources. A scheme is deemed secure if the advantage is small
for all feasible resource amounts. The classical approach captures such resources
in terms of running time and/or description size.
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 467–497, 2019.
https://doi.org/10.1007/978-3-030-17653-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_16

468 J. Jaeger and S. Tessaro

Time is however not the only resource to determine feasibility of an attack.
In particular, the memory costs also matter – in the context of provable security,
these were first studied by Auerbach et al. [4] and Wang et al. [26], who con-
sidered the tightness of reductions with respect to memory usage. Memory-tight
reductions lift an assumed time-memory trade-off for the assumption to one for
the scheme, and this is particularly important when the underlying assumption
does not admit low-memory attacks (e.g., this is true for the LPN problem).

Earlier work on time-memory tradeoffs in symmetric cryptography focused
on cryptanalytic attacks [5,15] or precomputation attacks against primitives like
hash functions [6].

Symmetric cryptography. Memory tightness is less useful for symmetric
cryptography: A typical assumption here is that AES is a PRP for attackers with
large time complexity, e.g., T = 2100, but the best generic attack is memoryless,
so there is generally no trade-off to be assumed.

Still, time-memory trade-offs may affect the actual modes of operation. For
example, it is well known that (randomized) counter mode (CTR$) allows to
encrypt no more than q =

√
N plaintexts when using an n-bit block cipher

(here, N = 2n), yet restricting memory to only store S bits may help. Indeed,
let the i-th message mi be encrypted as (ri, ci = AESK(ri) ⊕ mi), where ri is
a random string. The optimal distinguishing attack waits for ri = rj to occur
for i �= j, in which case ci ⊕ cj = mi ⊕ mj – which is unlikely to hold if ci

and cj are random. But this also requires remembering approximately
√

N ri’s.
If we can only store fewer of them, then we need a collision with one of the
ri’s we remember, and the attack advantage decrease to Sq

N when q messages
are encrypted. However, is this attack the optimal one? – a proof would have to
argue over all possible adversarial strategies storing S bits of partial information.

Remarkably, despite schemes like CTR$ being decades old, the question of
proving bounds that take memory into account has remained open.

Our results: Overview. This paper takes a ground-up approach to proving
time-memory trade-offs. To this end, we start with exactly those simple symmet-
ric encryption schemes like CTR$ and OFB we ought to understand, and develop
proofs and proof techniques – mostly relying on information-theoretic and com-
binatorial tools – aimed at showing that conjectured trade-offs are optimal.

A common trait of basic encryption schemes is that they are only secure
up to the Birthday Bound. For stateless, randomized schemes, this is because
inputs to the block cipher are otherwise going to repeat. Also, even when inputs
are distinct, non-repeating block-cipher outputs become easily distinguishable
from random. We will show that this fact is no longer valid if the adversary’s
memory capacity does not exceed

√
N , and more generally, we show a trade-off

between the number of encryptions and the attacker’s memory.
For example, we revisit the well-known Switching Lemma in the memory-

bounded setting: under a combinatorial conjecture (see details below), we show
that an adversary making T distinct queries to a random function or a random
permutation cannot tell them apart with advantage larger than O(

√
ST/N).

The special case S = T is the original switching lemma. This gives us bounds

Tight Time-Memory Trade-Offs for Symmetric Encryption 469

Fig. 1. Encryption schemes we analyze. Schemes with a $ are randomized, otherwise
they are deterministic. If Conjecture 1 holds then Osl(T, S, N) ∈ O(

√
ST/N). Bounds

are for INDR security. S is the memory bound of the adversary, T is the number of
blocks encrypted, and N is the domain size of the family of functions.

for stateful CTR and OFB, assuming the underlying block cipher is a sufficiently
secure PRP. We consider the question fundamental enough to justify a partial
answer even under a conjecture – moreover, the reduction to this conjecture
is highly non-trivial, and a failure of the conjecture is likely to only minimally
impact this bound.

We also show a bound of O(
√

ST�/N) for randomized CTR$ based on a
pseudorandom function (PRF), where � is a bound on the number of blocks
per encrypted message. This result does not need any conjecture, beyond PRF
security. For the case � = 1, we show that under the aforementioned conjecture,
the result holds when the scheme is based on a PRP, instead of a PRF.

An overview of our results for encryptions schemes is given in Fig. 1. We
discuss them in more detail below, but first address an important piece of recent
related work.

Related work. It is worth noting that our work complements a recent paper
by Tessaro and Thiruvengadam [25]. Their goal are schemes with security as high
as possible, well beyond 2n (where n is the block length of the cipher), provided
the cipher is secure enough (e.g., it has a long key), and adversarial memory is
bounded. In their work, neither tightness nor practical efficiency is a concern.
Here, in contrast, we focus on tightness for simple, deployed cryptography. As
a result of this, we end up facing different, and somewhat more technically
challenging problems.

A framework: Streaming indistinguishability. The common denomina-
tor of our security proofs is that they reduce to a new, yet natural, setting of
memory-bounded streaming algorithms which we refer to as streaming indis-
tinguishability. In essence, a memory-bounded algorithm A is given access, one
value at a time, to one of two streams

X1,X2, . . . or Y1, Y2, . . . ,

with different distributions. The goal is to distinguish them.

470 J. Jaeger and S. Tessaro

To the best of our knowledge, the existing literature on streaming algorithms
does not consider this problem explicitly. Rather, the focus is mostly on worst-
case complexity (we care about average-case), and search problems. However,
one can cast classical problems like building PRGs against space-bounded read-
once branching programs (cf. e.g. [21]), as a special case of this setting, where
the Xi’s are the output bits of the PRG and the Yi’s are random bits.

The Switching Lemma. Let us first address our generalized Switching Lemma.
It is well known that the advantage of a T -query distinguisher A trying to tell
apart a truly random permutation P from a truly random function F (both from
n bits to n bits) is at most T 2/N , which is tight. Also, an optimal distinguisher
making T ≈ √

N can be implemented to only use S � √
N bits, e.g., with

the help of a memory-less collision-finding algorithms (e.g., using Pollard’s ρ-
method [23,24]). One uses the fact that when accessing P , the algorithm will
never succeed in finding a collision.

One observation, however, is that in many useful scenarios, the resulting A
never queries the same input twice and it is not hard to see that any memory-less
collision-finding strategy will query the same input twice.

We show that, assuming the validity of a conjecture we explain next, under
non-repeating queries, the Switching Lemma indeed holds with a tradeoff of the
form S ×T = N . In fact, we prove a more general (and also fundamental) state-
ment about the advantage of distinguishing two streams: The first, X1,X2, . . .
samples n-bit values with replacement, the second, Y1, Y2, . . ., without.

A conjecture. A proof of a non-trivial bound appears out of reach. Instead,
we give a proof that relies on a (plausible) combinatorial conjecture involving
hypergraphs.

Recall that a k-hypergraph with N vertices is a collection H = {e1, . . . , em},
where the ei’s are distinct size-k subsets of [N] = {1, 2, . . . , N}. The degree dH(i)
of i ∈ [N] is the number of ej ’s such that i ∈ ej . Then, we look at the maximum
D2(m), over all m-edge hypergraphs H, of the function

D2(H) =
N∑

i=1

dH(i)2.

Estimating D2(m) is challenging: The only known upper bound [9] is loose, and
the general question is believed to be out of reach [16]. This is because degree
sequences of hypergraphs are poorly understood, even more so when restricted
to m edges. Only for the special case of graphs (i.e., k = 2) is the question well
understood (cf. e.g. [1,10,14,20]), though far from trivial.

Our conjecture will be on the value of D2(m) when k > N/2 for specific
values of m. We will assume in particular that if m =

(
A
k

)
, then the complete

hypergraph containing all k-element subsets of {1, . . . , A} achieves D2(m). We
stress that even a slight relaxation of this conjecture would only affect our proof
slightly.

Randomized counter mode. The above switching lemma for distinct inputs
only applies to stateful schemes. Let us look now instead at randomized CTR$

Tight Time-Memory Trade-Offs for Symmetric Encryption 471

described above and, for simplicity, let us assume that we encrypt single-block
plaintexts. Assuming the underlying block cipher is a PRF, the resulting security
game can again be cast as a streaming (in)distinguishability setting with

Xi = (Ri, Zi), Yi = (Ri, F (Ri)),

where F is a random function from n bits to n bits and the Ri, Zi’s are random,
independent n-bit strings. We will show a bound of O(

√
ST/N). Interesting,

once cast in the right language, the proof is fairly elementary and uses only
simple properties of Shannon entropies – what is novel here is the usage of these
tools to prove the security of symmetric cryptography, and the fact that they
are robust to dealing with memory restrictions.

In practice, of course, F is more likely to be a permutation, as it is built
from a block cipher. However, our proof techniques seems not to extend directly
to random permutations. We also cannot apply the Switching Lemma directly,
because Ri’s will not be distinct.

We will however do something different – we will apply the streaming indis-
tinguishability result underlying the Switching Lemma to the Ri’s first, telling
us they can be replaced by random, distinct ones when encrypting single-block
plaintexts. This will allow us to ultimately to replace F with a permutation –
again by the Switching Lemma – but for a concrete bound, we will need to resort,
again to our conjecture. (This can be thought, more generally, as extending the
Switching Lemma to the case of random inputs.)

We could of course build a beyond-birthday secure PRF from a block cipher
directly, e.g., using the xor construction [7,12,22], but this would require two
block-cipher calls per block, or Iwata’s CENC [17,18] for better amortized effi-
ciency. We note that we also apply these techniques to analyze the confidentiality
of Encrypt-then-PRF.

Outline of this paper. Section 2 introduces notation and provides necessary
information theoretic and cryptographic background. Section 3.1 introduces our
general streaming setting. Sections 3.2 and 4.1 introduce our main streaming
theorems which are proven in Sects. 3.3 and 4.2, respectively. In Sects. 3.4 and 4.3
we apply these respective theorems to cryptographic reductions. We emphasize
that while the analysis in Sect. 3 requires a conjecture, the results of Sect. 4 are
unconditional.

2 Definitions

Let N = {0, 1, 2, . . . }. For N ∈ N let [N] = {1, 2, . . . , N}. If S and S′ are finite
sets, then Fcs(S, S′) denotes the set of all functions F : S → S′ and Perm(S)
denotes the set of all permutations on S. The set of size k subsets of S is

(
S
k

)
.

Picking an element uniformly at random from S and assigning it to s is denoted
by s

$← S. The set of finite vectors with entries in S is (S)∗ or S∗. Thus {0, 1}∗

is the set of finite length strings.

472 J. Jaeger and S. Tessaro

If M ∈ {0, 1}∗ is a string, then |M | denotes its bitlenth. If m ∈ N and
M ∈ ({0, 1}m)∗, then |M |m = |M |/m denotes the blocklength of M and Mi

denote the i-th m-bit block of M . When using the latter notation, m will be
clear from context. The empty string is ε.

Algorithms are randomized when not specified otherwise. If A is an algo-
rithm, then y ← AO1,...(x1, . . . ; r) denotes running A on inputs x1, . . . and
coins r with access to oracles O1, . . . to produce output y. The notation y

$←
AO1,...(x1, . . .) denotes picking r at random then running y ← AO1,...(x1, . . . ; r).
The set of all possible outputs of A when run with inputs x1, . . . is [A(x1, . . .)].
Adversaries and distinguishers are algorithms. The notation y ← O(x1, . . .) is
used for calling oracle O with inputs x1, . . . and assigning its output to y (even
if the value assigned to y is not deterministically chosen).

Our cryptographic reductions will use pseudocode games (inspired by the
code-based framework of [8]). See Fig. 2 for some example games. We let Pr [G]
denote the probability that game G outputs true. The model underlying this
pseudocode is the following formalism.

2.1 Model of Computation

Computational Model. Our model is based on those of [2,3,25]. We consider
a space-bounded adversary interacting with an oracle O.

The interaction between an adversary and oracle occurs over q stages. In the
i-th stage, the adversary deterministically computes, as a function of the state
σi−1 and stage number i, a query xi to O.1 Then the adversary is give yi = O(xi)
(with the same inputs as before) based on which it computes the next state σi.
The state σ0 is fixed and defined by A. The final output of A is σq. In code, stage
i behaves as follows, Stage i: xi ← A(i, σi−1); yi ← O(xi); σi

$← A(i, σi−1, yi).

Complexity Measures. An adversary A is S-bounded if |σi| � S holds for all
i. The running time of A is T if it queries at most T bits to its oracle. These
complexity measures do not count the local state or time used by A during
a round. This strengthens our main proofs which are information theoretic in
nature and only require that the states σi and T are bounded in size.

Our applications of these main proofs will involve cryptographic reductions.
These complexity measures are not appropriate for this because they could hide
a weakness in a reduction that “cheats” by using much more local state or
computation time during a round. None of our reductions have such a weakness
so we leave reduction efficiency claims informal. See [4] for discussion of what
conventions should be used for measuring the memory complexity of a reduction.
Our reductions are given via explicit pseudocode so their complexity with respect
to particular conventions can easily be extracted.

1 We insist on this computation being deterministic for convenience and because we
can think of xi having been included as part of σi−1.

Tight Time-Memory Trade-Offs for Symmetric Encryption 473

2.2 Information-Theoretic Preliminaries

Entropies and KL-divergence. For probability distributions P,Q : X →
[0, 1] where Q(x) > 0 for all x ∈ X , the Shannon and collision entropies are

H(P) = −
∑

x∈X
P (x) log(P (x)) and H2(P) = − log

(
∑

x∈X
P (x)2

)

.

Statistical distance and KL-divergence are defined by

SD(P,Q) =
1
2

∑

x∈X
|P (x) − Q(x)| and KL(P‖Q) =

∑

x∈X
P (x) log

(
P (x)
Q(x)

)
.

Pinsker’s inequality says that SD(P,Q) �
√
KL(P‖Q)/2.

As usual, for two random variables X and Y with distributions PX and PY ,
we write KL(X‖Y) for KL(PX‖PY) (and the analogous notation for H and H2).

Lemma 1. Let X,Y be random variables with range X with Pr [X = x] > 0 for
all x ∈ X . Let F : X → {0, 1}∗ be a (possibly randomized) function. Then,

KL(F (X)‖F (Y)) � KL(X‖Y).

Proof. For compactness, denote PZ(x) = Pr [Z = x] for any random variable Z.
First, we note that we can consider without loss of generality deterministic F ’s.
Indeed, by convexity (cf. e.g. [11]),

KL(F (X)‖F (Y)) �
∑

f

Pr [F = f] · KL(f(X)‖f(Y)).

Now fix a function f : X → {0, 1}∗. From the log-sum inequality we obtain

KL(F (X)‖F (Y)) =
∑

z

PF (X)(z) log
(
PF (X)(z)
PF (Y)(z)

)

=
∑

z

⎛

⎝
∑

x∈f−1(z)

PX(x)

⎞

⎠ · log

(∑
x∈f−1(z) PX(x)

∑
x∈f−1(z) PY (x)

)

�
∑

z

∑

x∈f−1(z)

PX(x) log
(
PX(x)
PY (x)

)

=
∑

x∈X
PX(x) log

(
PX(x)
PY (x)

)
.

The last equality follows because every x is the pre-image of exactly one z. ��

474 J. Jaeger and S. Tessaro

Fig. 2. Security games for PRF/PRP security of a family of functions (Left/Middle)
and INDR security of an encryption scheme (Right).

2.3 Cryptographic Preliminaries

Family of functions. A family of functions F specifies algorithms F.K and
F.Ev (where the latter of these is deterministic) and sets F.Dom and F.Rng.
Key generation algorithm F.K takes no input and outputs a key K. Evaluation
algorithm takes as input key K and X ∈ F.Dom to return Y ∈ F.Rng. We write
K

$← F.K and Y ← F.Ev(K,X).
A blockcipher is a family of functions F for which F.Dom = F.Rng and for all

K ∈ [F.K] the function F.Ev(K, ·) is a permutation with inverse F.Inv(K, ·).
Pseudorandomness security. For security we will consider both pseudoran-
dom function (PRF) and pseudorandom permutation (PRP) security.

Let F be a family of functions. PRF security requires that F.Ev(K, ·) looks
like a truly random function to somebody who does not know K. Consider the
game Gprf

F,b(A) shown on the left side of Fig. 2. It parameterized by F, a bit
b ∈ {0, 1}, and an adversary. The adversary is given access to an oracle Ror

which on input X either returns F applied to X (b = 1) or the output of a
random function on X (b = 0). The advantage of A against F is defined by
AdvprfF (A) = Pr[Gprf

F,1(A)] − Pr[Gprf
F,0(A)].

PRP security of a blockcipher F is defined analogously by the game Gprp
F,b(A)

shown in the middle of Fig. 2. This is essentially the same except the random
function F ∈ Fcs(F.Dom,F.Rng) has been replaced by a random permutation
P ∈ Perm(F.Dom). The advantage of A against F is defined by AdvprpF (A) =
Pr[Gprp

F,1(A)] − Pr[Gprp
F,0(A)].

Symmetric encryption. A symmetric encryption scheme SE specifies
algorithms SE.Sg, SE.E, and SE.D (where the last of these is deterministic) and
set SE.M. State generation algorithm takes no input and outputs state σ which
will be used as the initial encryption state σe and decryption state σd. Encryp-
tion algorithm SE.E takes as input σe and message M ∈ SE.M. It outputs updated

Tight Time-Memory Trade-Offs for Symmetric Encryption 475

state σe and ciphertext C. We assume there exists a constant expansion length
SE.xl ∈ N such that |C| = |M | + SE.xl. Decryption algorithm SE.D takes as input
σd and ciphertext C. It outputs updated state σd and M ∈ SE.M∪ {⊥}. We write
σ

$← SE.Sg, (σe, C) $← SE.E(σe,M), and (σd,M) ← SE.D(σd, C).
Correctness requires for all states σe

0 = σd
0 ∈ [SE.Sg] and all sequences of

messages M ∈ (SE.M)∗ that Pr[∀i : M i = M ′
i] = 1 where the probability is

over the coins of encryption in the operations (σe
i ,C i)

$← SE.E(σe
i−1,M i) and

(σd
i ,M ′

i) ← SE.D(σd
i−1,C i) for i = 1, . . . , |M |.

This non-standard syntax is used to simultaneously capture stateful deter-
ministic encryption and stateless probabilistic encryption. For the first of these
SE.E is a deterministic algorithm. For the latter, σe and σd are equal to some
key K which is never updated.

Encryption security. For security we will require that the output of encryp-
tion look like a random string. Consider the game Gindr

SE,b(A) shown on the right
side of Fig. 2. It is parameterized by a symmetric encryption scheme SE, adver-
sary A, and bit b ∈ {0, 1}. The adversary is given access to an oracle Enc which,
on input a message M , returns either the encryption of that message or a random
string of the appropriate length according to the secret bit b. The advantage of
A against SE is defined by AdvindrSE (A) = Pr[Gindr

SE,1(A)] − Pr[Gindr
SE,0(A)].

3 The Switching Lemma

How hard is it for a memory-bounded distinguisher to tell apart a random func-
tion from a random permutation [N] → [N]? It is easy to do so in a near-
memory-less strategy with roughly

√
N queries, where N is the domain size: The

distinguisher, given access to an oracle [N] → [N], mounts a classical memory-
less collision finding attack – if the attack succeeds, the distinguisher is highly
certain it is interacting with a random function.

However, this attack requires querying the random function at the same
point twice. It is not clear if a distinguisher which never repeats a query can still
succeed with low memory and roughly

√
N queries. We will show that it can-

not. This boils down to bounding how well a memory-bounded can distinguish
between a sequence of random values and a sequence of random values without
repetition.

3.1 Streaming Indistinguishability

We consider a streaming setting, where a sequence of random variables

X1,X2, . . . , Xq

476 J. Jaeger and S. Tessaro

with range [N] is given, one by one, to a (memory-bounded) distinguisher A,
which is otherwise computationally unbounded. The distinguisher will need to
tell apart this setting from another one, where it is given (Y1, Y2, . . . , Yq) instead.
We are interested in its distinguishing advantage. This is a very natural setting,
but we are not aware of this having been considered explicitly.

The streaming model. More formally, in the i-th step (for i ∈ [q]), the dis-
tinguisher A has a state σi−1 and stage number i. Then it asks for the value
Vi ∈ {Xi, Yi} based on which it updates its state to σi. We write for notational
convenience A(i, σi−1, Vi) = σi, noting that this mapping can be randomized.
We denote in particular Σ0, Σ1, . . . , Σq the states during the execution with Xq

and Γ0, Γ1, . . . , Γq the states during the execution with Y q. Here Σ0 = Γ0 is some
a priori fixed value. For the final state (Σq or Γq) A outputs a bit, which we
denote by A(Xq) and A(Y q), respectively, and we are interested in its advantage

AdvdistXq,Y q (A) = Pr [A(Xq) ⇒ 1] − Pr [A(Y q) ⇒ 1] .

It will sometime be convenient to think of this as an interaction between A
and an oracle Samp which returns Vi’s according to one of these distributions
(written as b

$← ASamp).
We will use the following lemma below, for the case where the Xi’s are

individually uniformly distributed.

Lemma 2. Let Xq = X1, . . . , Xq be independent and uniformly distributed.
Then for any Y q = Y1, . . . , Yq,

AdvdistXq,Y q (A) � 1√
2

√√√√q log N −
q∑

i=1

H(Yi | Γi−1).

Proof. Since the final output bit is Σq and Γq, respectively, we can always upper
bound the advantage by the statistical distance of these states, i.e.,

AdvdistXq,Y q (A) � SD(Σq, Γq) = SD(Γq, Σq).

We will work in the regime of KL-divergence, and thus we also have

AdvdistXq,Y q (A) � 1√
2

√
KL(Γq‖Σq).

We note now that for all i ∈ [q], by Lemma 1,

KL(Γi‖Σi) = KL(A(i, Γi−1, Yi)‖A(i, Σi−1,Xi)) � KL((Γi−1, Yi)‖(Σi−1,Xi)).

Tight Time-Memory Trade-Offs for Symmetric Encryption 477

Write P (s, x) = Pr [(Σi−1,Xi) = (s, x)], P (s) = Pr [Σi−1 = s] and P (x|s) =
Pr

[
Xi = x

∣∣ Σi−1 = s
]
. Also define analogously Q(s, x), Q(s) and Q(x|s) replac-

ing (Σi−1,Xi) with (Γi−1, Yi). Then,

KL((Γi−1, Yi)‖(Σi−1,Xi)) =
∑

s,x

Q(s, x) log
(

Q(s, x)
P (s, x)

)

=
∑

s,x

Q(s, x) log
(

Q(s)
P (s)

)
+

∑

s,x

Q(s, x) log
(

Q(x|s)
P (x|s)

)

= KL(Γi−1 ‖ Σi−1) + log N −
∑

s

Q(s) log
(

1
Q(x|s)

)

= KL(Γi−1 ‖ Σi−1) + log N − H(Yi | Γi−1).

Therefore, KL(Γq | Sq) � KL(Γ0 ‖ S0) + q log N − ∑q
i=1 H(Yi ‖ Γi−1), and the

lemma follows since KL(Γ0 ‖ S0) = 0. ��

3.2 Sampling with and Without Replacement

Consider the streaming indistinguishability of the following natural distributions:

– Sampling with replacement. In the distribution Xq = (X1,X2, . . . , Xq)
the Xi’s are independent and uniformly distributed over [N].

– Sampling without replacement. In the distribution Y q = (Y1, . . . , Yq)
the Yi’s are sampled uniformly without repetition from [N] (thus q � N).

We want to upper bound the advantage in distinguishing these two streams for
a memory-bounded distinguisher A which receives these values one by one. We
are going to show a time-memory trade-off for any distinguisher A, assuming
a conjecture that we now state. We will discuss the conjecture (and why this
requires a conjecture) later in Sect. 3.5.

A conjecture on hypergraphs. A k-uniform simple hypergraph (or hence-
forth, simply, a k-hypergraph) with N vertices and m edges is a collection
H = {e1, e2, . . . , em} of distinct subsets ei ⊆ [N], each of size k. Conventional
graphs correspond to the case k = 2. The degree dH(i) of a vertex i ∈ [N] is

dH(i) = |{j ∈ [m] : i ∈ ej}| ,

i.e., the number of edges ej containing i. By a double-counting argument we
have

∑N
i=1 dH(i) = k · m. We will be interested in the following function of the

degrees of a hypergraph,

D2(H) =
N∑

i=1

dH(i)2.

For example, if H is the complete k-hypergraph, i.e., it contains all
(
N
k

)
possible

edges, dH(i) =
(
N−1
k−1

)
for all i ∈ [N], and thus D2(H) = N · (N−1

k−1

)2
.

478 J. Jaeger and S. Tessaro

Let HN,k(m) be the set of all k-hypergraphs with N vertices and m edges.
We define in particular,

D2
N,k(m) = max

H∈HN,k(m)
D2(H).

The behavior of D2
N,2(m) is fully characterized by a series of papers [1,10,14,20].

However, very little is known about D2
N,k(m) for general k. We will need the

following conjecture.

Conjecture 1 (Main conjecture). Let k > N/2 and assume further that m =
(
A
k

)

for some A � k. Then, the graph H = {e1, ..., em}, where e1, . . . , em are all size
k subsets of {1, . . . , A}, maximizes D2

N,k(m).

We refer the reader to Sect. 3.5 for an in-depth discussion of why we believe
Conjecture 1 to be true, and why it is however hard to provide a full proof.
We stress however that even weaker form of the conjecture (e.g., assuming that
D2

N,k(m) is at most (1 + 1/k) higher than the value achieved by the complete
H) would not invalidate our bound below. Weakening even further would also
simply result in a somewhat weaker bound.

Indistinguishability. We are going to now prove the following theorem.

Theorem 1. Let N be given, q < N/2, and 20 log(e) � S � N/4. Further, let
Xq be sampled with replacement and Y q be sampled without replacement from
[N]. Then, if Conjecture 1 holds, for every S-bounded distinguisher A, we have

AdvdistXq,Y q (A) �
√

S · q

N
.

Let Osl(q, S,N) denote the best possible advantage over all S-bounded adver-
saries. The above result tells us that Osl ∈ O(

√
S · q/N). For the sake of gener-

ality our results which use Theorem1 are stated in terms of Osl.

3.3 Proof of Theorem1

We are going to use Lemma 2, and therefore we are going to be concerned solely
with showing a lower bound on H(Yi ‖ Γi−1) for all i ∈ [q]. This involves in
particular a random experiment where (1) Y1, . . . , Yi are sampled, and (2) the
state Γi−1 is going to be produced, as a function of Y1, . . . , Yi−1 only (which
however, also of course depend on Yi by being distinct from it).

Intermediate experiment. We note that in the actual random experiment
A has, when outputting Γi−1, information about Y1, . . . , Yi−1 which is poten-
tially incomplete, especially if Γi−2 does not allow completely to remember
Y1, . . . , Yi−2, and so on. As a first simplification, we will remove this, and allow
an adversary full information about Y1, . . . , Yi−1 when attempting to produce a
state Γi−1 with the sole intent of making H(Yi | Γi−1) as small as possible. A
second simplification is that, intuitively, the only information Y1, . . . , Yi−1 give
about Yi is its range, i.e., the set of values Yi can take.

Tight Time-Memory Trade-Offs for Symmetric Encryption 479

In particular, for an adversary B, consider the following experiment, produc-
ing variables (Yi, Γi−1):

– Sample Y $← (
[N]

N−i+1

)

– Let Γi−1
$← B(Y)

– Yi
$← Y

– Return (Yi, Γi−1)

The additional constraint here is that |Γi−1| � S. Define now Hi(B) =
H(Yi | Γi−1). We will show the following.

Lemma 3. For all i, and S-bounded adversary A, there exists a deterministic
B outputting at most S bits such that

H(Yi | Γi−1) � Hi(B),

where H(Yi | Γi−1) is with respect to the original experiment.

Proof. We first build a randomized adversary A′ which given Y first samples
a random shuffling Y1, . . . , Yi−1 of the i − 1 elements not in Y, and then runs
A over i − 1 rounds feeding Y1, . . . , Yi−1 to it, to produce Γi−1, which is then
output by A′. Clearly, by construction, H(Yi | Γi−1) = Hi(B).

To make B deterministic, let R be the random coins used by A′, and observe
that

H(Yi | Γi−1) � H(Yi | Γi−1, R) = E
r

$←R

[H(Yi | Γi−1, R = r)] .

Define B by fixing the coins of A′ to those minimizing H(Yi | Γi−1, R = r). ��

Collision entropy and probabilities. We take an extra final step to sim-
plify our lower bound, and its connection with Conjecture 1. Namely, we will
lower bound

Hi
2(B) = E

γ
$←Γi−1

[H2(Yi | Γi−1 = γ)]

since clearly Hi(B) � Hi
2(B). Also define

Colli(B) = E
γ

$←Γi−1

[
∑

y

Pr
[
Yi = y

∣∣ Γi−1 = γ
]2

]

.

We note here that by Jensen’s inequality,

Hi
2(B) = E

γ
$←Γi−1

[

− log

(
∑

y

Pr
[
Yi = y

∣∣ Γi−1 = γ
]2

)]

� − logColli(B),

because x �→ − log(x) is a convex function. Therefore, the rest of the section will
be devoted to proving an upper bound for Colli(B). Specifically, we show:

480 J. Jaeger and S. Tessaro

Lemma 4. For all adversaries B outputting at most S bits, if Conjecture 1 is
true,

Colli(B) �
(

1 +
2
N

)
· 1
N − S

.

Before we turn to a proof, let us see how this implies the desired result. First
off, it immediately implies by the above

H(Yi | Γi−1) � − logColli(B)

� − log
(

1 +
2
N

)
+ log(N − S)

= − log
(

1 +
2
N

)
+ log(N) + log

(
1 − S

N

)
.

Now note that log(1+x) � log(ex) = x log(e). On the other hand, using the fact
that x = S/N � 0.25, we have

log(1 − x) =
1

ln 2
ln(1 − x) � 1

ln 2
(−x − x2/2 − x3/2

)
� −21x

16 ln 2
� −1.9x

Plugging in gives,

q∑

i=1

H(Yi | Γi−1) � q

(
−2 log(e)

N
+ log(N) − 1.9S

N

)
.

Then using Lemma 2 we can complete the proof via

AdvdistXq,Y q (A) � 1√
2

√√√√q log N −
q∑

i=1

H(Yi | Γi)

� 1√
2

√

q

(
2 log(e)

N
+

1.9S

N

)

� 1√
2

√

q

(
0.1S

N
+

1.9S

N

)
=

√
S · q

N
.

Proof of Lemma 4. We first introduce some more notation. For a k-hypergraph
H = {e1, . . . , em} with vertex set [N] where k := N − i + 1, consider the distri-
bution pH which samples a y ∈ [N] by first picking a random edge ei, and then
letting y be a random element of the set. In particular, pH(y) = dH(y)/m · k.
We also define

Coll(H) =
∑

y

pH(y)2 =
1

m2k2
D2(H).

Also, let CollN,k(m) = maxH∈HN,k(m) Coll(H).
Note now that B assigns sets of size k to every S-bit output γ. For a given

γ, we can think of the sets assigned to it as a k-hypergraph, which we denote

Tight Time-Memory Trade-Offs for Symmetric Encryption 481

B−1(γ). Letting mγ denote the number of edges in B−1(γ) (and thus
∑

γ mγ =
(
N
k

)
), we have

Coll(B) =
1

(
N
k

)
∑

γ∈{0,1}S

mγ · Coll(B−1(γ)) � 1
(
N
k

)
∑

γ∈{0,1}S

mγ · CollN,k(mγ).

(1)
We are going to now maximize the right-hand-side of the above inequality over
all sets {mγ}γ∈{0,1}S , where

∑
γ mγ =

(
N
k

)
, using Conjecture 1.2 We need the

following helping lemma, that CollN,k(mγ) is a non-increasing function. Its proof
is deferred to the full version of this paper [19].

Lemma 5. For all m � 1, CollN,k(m + 1) � CollN,k(m).

Unfortunately, the function CollN,k(m) is not “smooth”, due to its discrete
nature, making our maximization of the RHS of (1) difficult. We will now replace
it with a continuous version without too much loss. Concretely, we define

AN,k(m) =
1
α

,

where α ∈ [k,N] is the (unique) real number such that
(

α

k

)
=

α(α − 1) · · · (α − k + 1)
k!

= m.

We can now use the following lemma.

Lemma 6. Assume Conjecture 1. For all m ∈ {1, 2, . . . ,
(
N
k

)}, we have

CollN,k(m) �
(

1 +
1
k

)
· AN,k(m).

Proof. Pick m, and let m0 � m � m1 such that m0 =
(
A
k

)
and m1 =

(
A+1

k

)
for

a natural number A � k. Then, AN,k(m) = 1
α for some α ∈ [A,A+1], and using

Lemma 5 and Conjecture 1,

CollN,k(m) � CollN,k(m0) =
1
A

=
α

A
AN,k(m) � 1 + A

A
AN,k(m).

The claim follows, because 1+A
A � 1 + 1

k . ��
Therefore, we can now adapt this to (1) as

Coll(B) �
(

1 +
1
k

)
1

(
N
k

)
∑

γ∈{0,1}S

mγ · AN,k(mγ)

=
(

1 +
1
k

)
1

(
N
k

)
∑

γ∈{0,1}S

BN,k(mγ),
(2)

where BN,k(m) = m · AN,k(m). To conclude the proof, we use the following two
lemmas, whose proofs are deferred to the full version of this paper [19].
2 Note that applying this conjecture requires k > N/2 which holds because k =

N − i + 1 � N − q + 1 > N − N/2 + 1.

482 J. Jaeger and S. Tessaro

Lemma 7. The function BN,k(m) is concave.

Lemma 8. For N/2 � k ≤ N − S, we have
(
N
k

)
/2S �

(
N−S

k

)
.

Lemma 7 can now be applied to (2) to yield

Coll(B) �
(

1 +
1
k

)
2S

(
N
k

)
1
2S

∑

γ∈{0,1}S

BN,k(mγ)

�
(

1 +
1
k

)
2S

(
N
k

)BN,k

⎛

⎝ 1
2S

∑

γ∈{0,1}S

mγ

⎞

⎠

=
(

1 +
1
k

)
2S

(
N
k

)BN,k

((
N

k

)
/2S

)

=
(

1 +
1
k

)
· AN,k

((
N

k

)
/2S

)

�
(

1 +
1
k

)
· AN,k

((
N − S

k

))
=

(
1 +

1
k

)
1

N − S
,

(3)

where for the last inequality we have used Lemma 8 and the fact that AN,k(·) is
a non-increasing function.

3.4 Application: The Switching Lemma and Counter-Mode
Encryption

The switching lemma. A classic result in cryptography is the switching lemma
which says roughly that for any blockcipher F and adversary A making at most
q oracle queries,

∣
∣∣AdvprfF (A) − AdvprpF (A)

∣
∣∣ < q2/N where N = |F.Dom|. The stan-

dard proof works by bounding the ability of A to distinguish a random function
from a random permutation by analyzing the probability that the output of a
random function repeats. When A does not repeat its oracle queries we can
reduce this to the streaming problem we just analyzed this.

Lemma 9. Let F be a blockcipher with F.Dom = [N]. Let A be an S-bounded
adversary which makes at most q non-repeating queries to its oracle. Then

|AdvprfF (A) − AdvprpF (A)| � Osl(q, S,N).

If Conjecture 1 holds, then we can in turn bound Osl(q, S,N) by
√

S · q/N
using Theorem 1. This would make the bound (and others in the section) essen-
tially tight. If an attacker stores S outputs from its oracle, we expect it to see
one of these outputs again from a random function after T ≈ N/S queries. For
a random permutation such a repeat is impossible. In the full version of this
paper [19] we provide the (simple) analysis for this attack.

Tight Time-Memory Trade-Offs for Symmetric Encryption 483

Proof. Without loss of generality, assume that AdvdistXq,Y q (A) is positive. We claim
that Pr[Gprf

F,0(A)] = Pr [A(Xq) ⇒ 1] and Pr[Gprp
F,0(A)] = Pr [A(Y q) ⇒ 1]. Then the

following calculation establishes the result.

|AdvprfF (A) − AdvprpF (A)| = |Pr[Gprp
F,0(A)] − Pr[Gprf

F,0(A)]|
= |Pr [A(Y q) ⇒ 1] − Pr [A(Xq) ⇒ 1]|
= AdvdistXq,Y q (A)

� Osl(q, S,N).

The first equality used that games Gprf
F,1(A) and Gprp

F.1(A) are identical. ��

Counter-mode encryption. Let F be a family of functions with F.Dom = [N]
for some N ∈ N and F.Rng = {0, 1}F.ol for some F.ol ∈ N. One classic example of
an encryption mode constructed using F is stateful counter-mode. Formally this
is the encryption scheme CTR[F] with CTR[F].M = ({0, 1}F.ol)∗ and algorithms
defined as shown below.

CTR[F].Sg
K

$← F.K
Return (0,K)

CTR[F].E(σe,M)
(i,K) ← σe

For j = 0, . . . , |M |F.ol

Cj ← Mj ⊕ F.Ev(K, i + j)
i ← i + |M |F.ol

Return ((i,K), C)

CTR[F].D(σd, C)
(i,K) ← σd

For j = 0, . . . , |C|F.ol

Mj ← Cj ⊕ F.Ev(K, i + j)
i ← i + |C|F.ol

Return ((i,K),M)

Here addition is mod N . It is trivial to show that if F is a good PRF then,
CTR[F] is a secure encryption scheme. Consider the following theorem. For sim-
plicity we focus on the case that the attacker queries only 1 block messages.

Theorem 2. Let F be given with F.Dom = [N] and F.Rng = {0, 1}F.ol. Let A be
an adversary making at most q < N queries to its Enc oracle where each is F.ol
bits long. Then we can build an adversary Aprf (Fig. 3) such that

AdvindrCTR[F](A) = AdvprfF (Aprf).

Adversary Aprf is roughly as efficient as A.

Proof. Let Aprf be the adversary shown in Fig. 3. It uses its Ror oracle to
simulate the view of A. We claim that Pr[Gindr

CTR[F],1(A)] = Pr[Gprf
F,1(A)] and

Pr[Gindr
CTR[F],0(A)] = Pr[Gprf

F,0(A)] from which the stated advantage relationship fol-
lows. The former equality holds because in both A is seeing CTR[F] encryptions of
M . For the latter equality note that the total block-length of all of A’s queries is
less than N so the input to the random function will never repeat. Consequently
each value returned by Ror in Gprf

F,0(A) (and thus each Cj = Mj ⊕ Ror(i + j))
is a fresh random string. This is identical to the distribution on C returned to
A in Gindr

CTR[F],0(A).
The efficiency of Aprf can be verified by examining its pseudocode. ��

484 J. Jaeger and S. Tessaro

Fig. 3. Adversary for Theorem 2.

Suppose F is a blockcipher (where we identify [N] with {0, 1}F.ol in the obvious
way). If q ∈ Ω(

√
N), then we cannot generically hope that AdvprfF (Aprf) is small

because an attacker with unbounded state can remember the outputs of F for
every query it made and check if they ever repeated. However, if S is o(

√
N) then

we can still meaningfully hope for security because Aprf cannot remember ever
query it made. In particular, by combining Theorem2 and Lemma 9 we obtain
the following corollary.

Corollary 1. Let F be a blockcipher with F.Rng = {0, 1}F.ol. Let A be an
S-bounded adversary making at most q � 2F.ol queries to its Enc oracle each
of which are F.ol bits long. Then we can build an adversary Aprf (Fig. 3) such
that

AdvindrCTR[F](A) � AdvprpF (Aprf) + Osl(q, S, 2F.ol).

Adversary Aprf is roughly as efficient as A.

Proving this requires only observing that Aprf is S-bounded. Examining the
code of Aprf it may seem like it needs to remember the counter i and M in
addition to the state of A. However, as per the computation model in Sect. 2.1,
the stage number is given to an adversary during each stage and the i-th message
Mi can be deterministically recomputed from A’s state σi−1.

Output-feedback mode encryption. In the full version of this paper [19] we
apply our streaming results to analyze the security of stateful output-feedback
mode. This mode starts with Y0 = 0F.ol and the encrypts each Mi via Yi ←
F.Ev(K,Yi−1); Ci ← Mi ⊕Yi where F is a blockcipher. The analysis of the mode
is more involved than the CTR$ analysis because we cannot a priori assume that
the inputs to F will not repeat.

The crux of the proofs lies in considering the streaming problem of distin-
guishing 1, F (1), F (F (1)), . . . from random where F is a random permutation
[N] → [N]. This is exactly what arises from the standard reduction to replace
the PRF with a truly random function. In analyzing this streaming problem we
first bound the statistical distance between the stated distribution and sampling
without replacement. This gives a O(q/N) term corresponding to the probability
that 1 is chosen as the output of F for any of first q samples in the distribution.
Having done this we can now simply apply a bound on the streaming problem we
have been studying in this section. Putting everything together, the reduction
from security of the encryption scheme to this new streaming problem is straight-
forward and gives a bound AdvindrOFB[F](A) = AdvprpF (Aprp)+Osl(q, S, 2F.ol)+4q/N .

Tight Time-Memory Trade-Offs for Symmetric Encryption 485

Surprisingly, this result cannot hold for output-feedback mode with a PRF
instead of a PRP. In the full version of this paper [19] we note a low memory
attack that with high success probability when the number of encrypted blocks
is Ω(

√
N). The critical difference allowing this attack is that random functions

have much shorter cycle lengths than random permutations. The importance of
cycle lengths for OFB was first noted by Davies and Parkin [13].

Nonce-based encryption. A standard way of constructing nonce-based
encryption from a randomized encryption scheme is to apply a PRF to the
nonce to obtain coins for the underlying encryption scheme. Because nonce rep-
etitions are disallowed in the most basic security definitions for nonce-based
encryption we can use Lemma 9 to replace the PRF with a PRP. The proof of
this is straightforward and we omit a formalization.

3.5 Validity of Conjecture 1

We now discuss Conjecture 1. First off, we point out that the problem is well
understood for the case of graphs, that correspond to k = 2.

Additionally, note that the conjecture is not true for all k. For example, take
k = 2, m =

(
4
2

)
= 6 and N � 7. The complete graph over 4 vertices gives

D2(K4) = 4 × 9 = 36. Yet the star S6 with edges {1, 2}, {1, 3}, . . . , {1, 7} has
D2(S6) = 62 + 6 × 1 = 42. In fact, one can show that S6 is optimal (see below).

The case k > N/2. However, this is different for k > N/2, and we briefly
explain the intuition, by giving an equivalent formulation of our conjecture. The
first observation here is that for any k-hypergraph H = {e1, . . . , em}, we can
define its complement as the (N − k)-hypergraph H ′ = {e′

1, . . . , e
′
m}, where

e′
i = [N] \ ei. Now, note that

D2(H) =
N∑

i=1

dH(i)2 =
N∑

i=1

(m − dH′(i))2

= N · m2 − 2m ·
N∑

i=1

dH′(i) +
N∑

i=1

dH′(i)2

= N · m2 − 2m2(N − k) + D2(H ′).

This in particular implies directly the following: H maximizes D2(H) over
k-hypergraphs with m edges iff H ′ maximizes D2(H ′) over (N −k)-hypergraphs
with m edges.

In general, if m =
(
A
k

)
for N/2 < k � A � N , then our conjecture says that

the complete k-hypergraph over [A], denoted KA,k, maximizes D2(H). We note
that the complement of KA,k is (isomorphic to) SN,N−A,N−k, where SN,R,k′ for
k′ > R is the k′-hypergraph with edges

{1, . . . , R} ∪ e,

486 J. Jaeger and S. Tessaro

and e is any subset of size k′ − R of {R + 1, . . . , N}. Our conjecture is then
equivalent to the statement that for any k′ < N/2 and m =

(
A

N−k′
)
, the graph

H = SN,R,k′ for R = N − A maximizes D2(H).

Example 1. The conjecture is easily seen to be true for k = N − 2, and we are
given m =

(
N−1
N−2

)
edges (this is the only non-trivial m). Then, k′ = 2, and thus

SN,N−A,N−k = SN,1,2 = SN , the graph which contains exactly all edges {i,N}
for i ∈ [N − 1].

Now, we can see that H = SN maximizes D2(H). This is because for any
k′-hypergraph H = (e1, . . . , em), let v1, . . . ,vm ∈ {0, 1}N be the characteristic
vectors of the edges, then

D2(H) =

(
m∑

i=1

vi

)T (
m∑

i=1

vi

)

=
m∑

i=1

vT
i vi + 2

∑

i,j

vT
i vj

= m · k′ + 2
∑

i,j

|ei ∩ ej |.

Clearly, for edges of size k′ = 2, |ei ∩ ej | is at most 1, and SN has the property
that it is exactly one for any i �= j.

The above example, showing the optimality of one simple special case, also
shows our intuition. Namely, to maximize m · k′ + 2

∑
i,j |ei ∩ ej |, we make

every pair of vertices share the highest number of possible vertices, i.e., N − A.
The number of edges then exactly corresponds to the completion of all edges
consisting of all subsets of size A of the remaining vertices.

Dual graph. We can repeat an analogous analysis of the dual graph of H =
{e1, . . . , em}. We define this to be the k-hypergraph H =

(
[N]
k

) \ H. Now, note
that

D2(H) =
N∑

i=1

dH(i)2 =
N∑

i=1

((
N

k

)
− dH′(i)

)2

= N ·
(

N

k

)2

− 2
(

N

k

)2

(N − k) + D2(H ′).

This implies that H maximizes D2(H) over k-hypergraphs with m edges iff H ′

maximizes D2(H ′) over k-hypergraphs with
(
N
k

) − m edges.
The complement of a k-hypergraph KA,k is isomorphic to ZN,N−A,k, where

ZN,R,k is the k-hypergraph with all edges e ∈ (
[N]
k

)
such that

{1, . . . , R} ∩ e �= ∅.

Our conjecture is then equivalent to the statement that for any k > N/2 and
m =

(
A
k

)
, the graph H = ZN,R,k for R = N − A maximizes D2(H). Note

Tight Time-Memory Trade-Offs for Symmetric Encryption 487

when k = 2, the only S graphs are isomorphic to SN,1,2 = ZN,1,2. Furthermore,
when k = 2 for an appropriate generalization of complete graphs and Z graphs
(covering when they do not “fits” perfectly for a given m) D2(H) is always
maximized by a complete or Z graph.

Complete, S, and Z graphs are very natural ways to try to “pack” a hyper-
graph. Complete graphs create a uniform packing over a subset of the nodes
with no overflow. Both S and Z graphs create very biased packings by making a
small subset of the nodes have particularly high degree at the expense of a long
tail of nodes that have low, but non-zero degree.

Why proving it is hard? One reason why proving the conjecture is hard is
that we are maximizing a function over degree sequences (d1, . . . , dN) of hyper-
graphs. The structure of this set is however not well understood, even when
dropping the restriction that we must have exactly m edges.

4 Randomized Encryption

The general streaming setting introduced in Sect. 3.1 can be used to derive time-
memory tradeoff bounds for other encryption schemes by considering other dis-
tributions for Xq and Y q. In this section we study randomized stateless encryp-
tion schemes (the only state is an unchanging secret key K). Our main positive
result is for randomized counter-mode (CTR$) with a good PRF. Towards this
we start by (in Sect. 4.1) specifying the necessary streaming distribution for
analyzing CTR$. Analyzing this requires different techniques than those used in
Sect. 3.3 and is done unconditionally (i.e. we do not rely on Conjecture 1).

Note that, unlike in the case of stateful counter-mode, security with a PRF is
not trivial because the input to the function may repeat across different encryp-
tion queries. We show a O(

√
Spq/N) bound on the adversary’s advantage where

p is the length of the messages encrypted and q is the number of messages. Note
that the running time of an adversary, T , upper bounds p · q.

Beyond this we show a generic “switching lemma” between two notions
of weak PRF security. In the first an adversary tries to distinguish between
(R,F.Ev(K,R)) and (R,F (R)) for randomly sampled R and F a random func-
tion [N] → [N]. In the other notion, the latter distribution is replaced with
(R, Y) where Y is chosen at random. The latter of these is more useful for secu-
rity, but the former is more plausible achieved with good bounds. We show that
there can be at most an O(

√
ST/N) difference between an adversary’s advan-

tage in these two games. As an example application of this result we note this
can be used to provide a time-memory tradeoff for the INDR security of the
Encrypt-then-PRF generic composition.

All of these bounds are essentially tight. If an attacker stores S input-output
examples for F, we expect it to see one of these inputs again (allowing it to
trivially distinguish from random) after T ≈ N/S queries.

488 J. Jaeger and S. Tessaro

4.1 Streaming Distributions for CTR$

Consider the streaming indistinguishability of the following two distributions.

– Rand[N,M, p, q]. The distribution Xq = (X1,X2, . . . , Xq) is such that the
Xi’s are independent and uniformly distributed over [N] × [M]p.

– CTR$[N,F , p, q]. For the distribution Y q = (Y1, . . . , Yq) first a function F is
sampled at random from F . Then Yi = (Ri, F (Ri + 1), . . . , F (Ri + p)) where
Ri’s are are independent and uniformly distributed over [N] and addition is
modulo N .

To analyze CTR$ with a good PRF we will let F = Fcs(N,M). Security with
a good PRP could be modeled by letting N = M and F = Perm(N).

Indistinguishability. We are going to now prove the following theorem.

Theorem 3. Let N , M , p, q, and S be given such that p|N . Furthermore, let
Xq = Rand[N,M, p, q] and Y q = CTR$[N,Fcs(N,M), p, q]. Then for every
S-bounded distinguisher A, we have

AdvdistXq,Y q (A) � 1√
2

√
S · p · q

N
.

Note that unlike Theorem 1 we prove this result uncategorically, without requir-
ing any conjectures.

For notational convenience we use bold-face to indicate vectors obtained by
adding 1 through p to some value. For example, if R ∈ [N] we will let R =
(R + 1, . . . , R + p). Further, we let F (R) = (F (R + 1), . . . , F (R + p)).

In the proof we will use the chain rule which says H(X,Y) = H(X|Y)+H(Y).
We also use that H(X,Y | Z) � H(X | Z)+H(Y | Z) and H(X) � log X where
X is the support of X with equality when X is uniformly distributed over X .
These are standard facts about entropy.

4.2 Proof of Theorem3

Associating the set [N] × [M]p with [N · Mp] we can use Lemma 2 to obtain a
bound of,

AdvdistXq,Y q (A) � 1√
2

√√
√√q log(N · Mp) −

q∑

i=1

H(Yi | Γi).

Therefore we are going to be concerned solely with showing a lower bound
on H(Yi | Γi) for all i ∈ [q]. Recall that Yi is the tuple (Ri, F (Ri)). The chain
rule gives that H(Yi | Γi) = H(F (Ri) | Ri, Γi) + H(Ri | Γi).

Tight Time-Memory Trade-Offs for Symmetric Encryption 489

Note that Ri is independent of Γi and uniformly sampled from [N] so
H(Ri | Γi) = log N . Conditioning over all possible values of Ri gives

H(F (Ri) | Ri, Γi) = N−1 ·
∑

r∈[N]

H(F (r) | Γi−1).

Observe that because p divides N the vectors r can be divided into p different
partitions of [N]. That is for every j ∈ [p],

⊔
k∈[N/p]{j +kp+1, . . . , j +kp+p} =

[N]. This observation allows us to continue our calculations as follows,

H(F (Ri) | Ri, Γi) = N−1 ·
∑

j∈[p]

∑

k∈[N/p]

H(F (j + kp) | Γi−1)

� N−1 · p · H(F | Γi−1)

� N−1 · p · (H(F) − H(Γi−1))

� N−1 · p · (N log M − S)

Thence
q∑

i=1

H(Yi | Γi) =
q∑

i=1

H(F (Ri) | Ri, Γi) + H(Ri | Γi)

�
q∑

i=1

N−1 · p · (N log M − S) + log N

= q log(N · Mp) − Spq/N,

from which the result follows. ��

4.3 Application: CTR$ with a PRF and Weak PRFs

Randomized counter-mode. We can use Theorem 3 to prove a security
result for randomized counter-mode encryption. Let F be a family of functions
with F.Dom = [N] and F.Rng = {0, 1}F.ol. Then randomized counter-mode
with F is the encryption scheme CTR$[F] with state generation algorithm
CTR$[F].Sg = F.K, message space CTR$[F].M = ({0, 1}F.ol)∗, and encryp-
tion/decryption algorithms defined as shown below.

CTR$[F].E(K,M)
R

$← [N]
For i = 1, . . . , |M |F.ol

Ci ← Mi ⊕ F.Ev(K,R + i)
Return (K, (R,C))

CTR$[F].D(K, (R,C))
For i = 1, . . . , |C|F.ol

Mi ← Ci ⊕ F.Ev(K,R + i)
Return (K,M)

Here R + i is addition mod N . The standard security theorem for CTR$[F]
tells us (roughly) that given an adversary A making q oracle queries we can
construct a PRF adversary Aprf such that AdvindrSE (A) � AdvprfF (Aprf) + p2q2/N .
Below is our theorem which takes space into account to provide a better bound
when the amount of space used is much less than pq.

490 J. Jaeger and S. Tessaro

Fig. 4. Adversary for Theorem 4.

Theorem 4. Let F be a family of functions with F.Dom = [N] and F.Rng =
{0, 1}F.ol. Let A be an S-bounded adversary making at most q queries with lengths
at most p · F.ol bits to its oracle. Assume p|N . Then we can build an adversary
Aprf (Fig. 4) such that

AdvindrCTR$[F](A) � AdvprfF (Aprf) +
1√
2

√
S · p · q

N
.

Adversary Aprf is roughly as efficient as A.

Proof. (of Theorem 4) Our proof begins with the PRF adversary Aprf on the left
side of Fig. 4. It simulates the view of A using its own oracle to provide A with
the encryption of messages. Similarly the distinguisher Adist shown on the right
side of Fig. 4 uses its sample oracle to simulate the view of A.

The claim on the efficiency of Aprf follow from examination of its code. Note
that distinguisher Adist is S-bounded because it only needs to store the state of
A during its oracle query (because M can be recomputed from this state).

We claim that the following equalities hold

(i) Pr[Gprf
F,1(Aprf)] = Pr[Gindr

CTR$[F],1(A)],
(ii) Pr[Gprf

F,0(Aprf)] = Pr[Adist(Y q) ⇒ 1],
(iii) Pr[Adist(Xq) ⇒ 1] = Pr[Gindr

CTR$[F],0(A)].

Here we let Xq = Rand[N, 2F.ol, p, q] and Y q = CTR$[N,Fcs(N, 2F.ol), p, q].
Claim (i) holds because in both games A is seeing encryptions of M using

CTR$[F]. Claim (ii) holds because in both games A is seeing randomized counter-
mode encryption of M using a random function F . Claim (iii) holds because in
both games A is seeing random strings.

Tight Time-Memory Trade-Offs for Symmetric Encryption 491

Fig. 5. Games defining weak pseudorandom function security of a family of functions.

The calculations are then as follows.

AdvindrCTR$[F](A) = Pr[Gindr
CTR$[F],1(A)] − Pr[Gindr

CTR$[F],0(A)]

= Pr[Gprf
F,1(Aprf)] − Pr [Adist(Xq) ⇒ 1]

= AdvprfF (Aprf) − AdvdistXq,Y q (Adist)

� AdvprfF (Aprf) +
1√
2

√
S · p · q

N
.

The final inequality follows by applying Theorem3 with the distinguisher that
outputs the bit 1 ⊕ ASamp

dist . ��
Weak prf. Weak PRF security is a variant of PRF security where the game
picks the input to the PRF at random for the adversary. Consider the game
Gwprf
F,b (A) shown in Fig. 5 when b ∈ {0, 1}. The standard definition of WPRF

security is AdvwprfF (A) = Pr[Gwprf
F,1 (A)] − Pr[Gwprf

F,0 (A)]. It asks that an adversary
cannot distinguish between F.Ev(K,X) and F (X) when X is picked at random
and F is a random function.

For proofs a different version of WPRF security is preferable. Consider the
game Gprf

F,−1(A). It differs from Gwprf
F,0 (A) because the Ror oracle returns a fresh

random Y even if X’s repeat. We define the advantage of A by Advwprf2F (A) =
Pr[Gprf

F,1(A)] − Pr[Gprf
F,−1(A)]. We call this WPRF2 security.

A family of functions is deterministic so its output will necessarily repeat
on repeated inputs. Thus we can expect better security for the first definition.
It is then useful to assume good WPRF security and have a generic proof that
WPRF2 security cannot differ from it too much. It is straightforward to show,
for example, that |AdvwprfF (A) − Advwprf2F (A)| � q2/N . Using our space-bounded
techniques we can show the following theorem which improves the bound when
the space used by A is less than the number of queries it makes.

Lemma 10. Let F be a family of functions with F.Dom = [N]. Let A be an
S-bounded adversary making at most q queries to its oracle. Then

∣
∣∣AdvwprfF (A) − Advwprf2F (A)

∣
∣∣ � 1√

2

√
S · q

N
.

492 J. Jaeger and S. Tessaro

Proof. First note that |AdvwprfF (A)−Advwprf2F (A)| = |Pr[Gwprf
F,−1]−Pr[Gwprf

F,0 (A)]| and
suppose without loss of generality that this difference in probabilities is positive.
Identify F.Rng with [M]. In game Gwprf

F,−1 the adversary is being given uniformly

random samples (X,Y) $← [N] × [M] and in game Gwprf
F,0 (A) it is seeing the same

subject to the fact that Y will repeat whenever X does. These views are exactly
identical to the view of a distinguisher in the setting of Theorem3. Applying
that result gives the state bound. ��

4.4 CTR$ with a PRP and Weak PRPs

In practice most encryption uses AES - a blockcipher with domain {0, 1}128
which is thus best modeled as a PRP. We do not know how to extend our CTR$
analysis for this case. Our streaming analysis with a random function F used that
H(F) = log(MN). If F is a random permutation then H(F) = log(N !) which is
not sufficiently large. However, when only one block messages are encrypted, we
can using the streaming problem addressed in Sect. 3 to bound the advantage
by O(Osl).

Security of CTR$ for one block messages corresponds closely to the WPRF2
security of the underlying blockcipher. Thus we divide the CTR$ proof into
three steps. First we use Theorem 1 to obtain a bound in the streaming setting
naturally induced by this problem. Next we use this to prove a generic “switch-
ing lemma” between Weak PRP (WPRP) security (defined momentarily) and
WPRF2 security analogous to Lemma 10. The security of CTR$ for one block
messages follows from this lemma in a straightforward way. The streaming anal-
ysis will be presented in full here. The WPRP and CTR$ results are stated, but
the (straightforward) proofs are deferred to the full version of this paper [19].

Weak prp. WPRP security is defined via the games Gwprp
F,b shown in Fig. 6. The

advantage of an adversary A against blockcipher F is defined by AdvwprpF (A) =
Pr[Gwprp

F,1 (A)] − Pr[Gwprp
F,0 (A)]. The notion is essentially the same as for WPRF

security, except the random function has been replaced with a random permu-
tation.

The following lemma bounds the difference between an adversary’s WPRP
and WPRF2 advantages, allowing one to generically switch between the two. It
is an almost immediate implication of the coming streaming analysis.

Lemma 11. Let F be a family of functions with F.Dom = F.Rng = [N]. Let A
be an S-bounded adversary making at most q queries to its oracle. Then

∣∣∣AdvwprpF (A) − Advwprf2F (A)
∣∣∣ � 3Osl(q, S,N).

Randomized counter-mode. The following theorem (proved using Lemma11)
bounds the advantage of an attacker against CTR$ with a blockcipher by the
WPRP security of the blockcipher when only one block messages are encrypted.

Tight Time-Memory Trade-Offs for Symmetric Encryption 493

Fig. 6. Games for weak pseudorandom permutation security of a family of functions.

Theorem 5. Let F be a blockcipher with F.Dom = F.Rng = {0, 1}n. Let A be
an S-bounded adversary making at most q queries of length n to its oracle. Then
we can build an adversary Awprp such that

AdvindrCTR$[F](A) � AdvwprpF (Awprp) + 3Osl(q, S, 2n).

Adversary Awprp is roughly as efficient as A.

Steaming analysis. In the streaming setting we now analyze A is given
repeated samples (Ri, Pi) where Pi is either random or F (Ri) for a random
F ∈ Perm(N). We first use Osl to switch to Ri being picked without replace-
ment. Now Pi = F (Ri) can be viewed as random samples without replacement;
we use Osl again to switch Pi to being sampled with replacement. Then we use
Osl a final time to switch Ri back to being picked with replacement.

Lemma 12. Let N , q, and S be given. Further, let W q = Rand[N,N, 1, q] and
V q = CTR$[N,Perm(N), 1, q]. Then for every S-bounded distinguisher A, we
have

AdvdistW q,V q (A) � 3Osl(q, S,N).

Proof. Consider the sequence of game G0 through G4 shown in Fig. 7.
In game G0, each Ri is uniformly and independently sampled and Pi =

F (Ri) where F is a random permutation. This is exactly the distribution V q

so Pr [G0] = Pr [A(V q) ⇒ 1]. In game G4, each Ri and each Pi are uniformly
and independently sampled. This is exactly the distribution W q so Pr [G4] =
Pr [A(W q) ⇒ 1]. We can then see that,

AdvdistW q,V q (A) =
4∑

i=1

Pr [Gi] − Pr [Gi−1]

Let Xq be sampling with replacement and Y q be sampling without replace-
ment from [N]. We will bound the difference between G0 and G4 by using a
sequence of distinguishers for (Xq, Y q), whose advantages we bound with Osl.

The distinguishers are shown below, where R<i = {R1, . . . , Ri−1}. As writ-
ten, distinguishers A0,1 and A1,2 store large amounts of space. The former stores
an entire random permutation F : [N] → [N]. The latter stores a list of q dif-
ferent Ri values. Used naively, this would result in useless advantage bounds.

494 J. Jaeger and S. Tessaro

Fig. 7. Games for proof of Lemma 12. Commented lines of code are only included in
the indicated games.

However, note that the stored state is sampled before any oracle queries are
made. Thus we can use a standard coin-fixing argument to upper bound the
advantage of these distinguishers by the advantage of distinguishers A∗

0,1 and
A∗

1,2 for which the best choices of F and the Ri values are hardcoded.
The description size of a distinguisher is not included in the bound of their state

so we can see that A∗
0,1 is S-bounded, A∗

1,2 is S-bounded, and A3,4 is S-bounded.
Note that A∗

1,2 does not need to store the stage counter i for itself because this is
provided as input as part of our streaming.

Distinguisher ASamp

0,1

F
$← Perm(N)

b′ $← ASimSamp

Return 1 ⊕ b′

SimSamp()
R ← Samp

P ← F (R)
Return (R,P)

Distinguisher ASamp

1,2

For i = 1, . . . , q do
Ri

$← [N] � R<i

i ← 1
b′ $← ASimEnc

Return b′

SimSamp()
P ← Samp

i ← i + 1
Return (Ri, P)

Distinguisher ASamp

3,4

b′ $← ASimEnc

Return b′

SimSamp()
R ← Samp

P
$← [N]

Return (R,P)

Now consider the transition from G0 to G1. They differ in whether Ri is sam-
pled with or without replacement. Distinguisher A0,1 tries to use this difference
to distinguish between Xq and Y q using its samples to set Ri and simulating
P = F (R) for itself. We have Pr [G1]−Pr [G0] = AdvdistXq,Y q (A0,1). Note that A0,1

outputs the bit 1 ⊕ b′ to give the order we want.
Games G1 and G2 differ only in whether F is a random permutation or

random function. Because they are being fed non-repeating input the values
Pi = F (Ri) are distributed according to Y q in the former case and Xq in the
latter. Consequently, we can see that Pr [G2] − Pr [G1] = AdvdistXq,Y q (A1,2).

Games G2 and G3 are equivalent. They differ in whether each Pi is by Pi
$←

[N] or as F (Ri) for a random function F . Because the Ri values are non-repeating
these are the same distribution, giving Pr [G3] − Pr [G2] = 0.

Tight Time-Memory Trade-Offs for Symmetric Encryption 495

Finally, G3 and G4 differ in whether Ri is sampled with or without replace-
ment. Via A3,4 we again reduce this to distinguishing between Xq and Y q. We
have Pr [G4] − Pr [G3] = AdvdistXq,Y q (A3,4).

Plugging in to Sect. 4.4 and bounding with A∗
0,1 and A∗

1,2 gives

AdvdistW q,V q (A) � AdvdistXq,Y q (A∗
0,1) + AdvdistXq,Y q (A∗

1,2) + AdvdistXq,Y q (A3,4).

The result follows by bounding these advantages with Osl. ��

4.5 Other Results

Encrypt-then-prf. In the full version of this paper [19] we apply the above
result to the proving the security of the encrypt-then-PRF construction of an
authenticated encryption scheme (for fixed length messages).

Nonce-based encryption. We note that our CTR$ and encrypt-then-prf the-
orems composes correctly with the standard way of constructing nonce-based
encryption from a randomized encryption scheme by applying a PRF to the
nonce to obtain coins for the underlying encryption scheme.

Other encryption schemes. In the full version of this paper [19] we look at
streaming models induced by other randomized encryption schemes (CTR$ with
a permutation, OFB$, CBC$, and CFB$). We exhibit straightforward attacks
which distinguish length p ∈ Θ(

√
N) samples from random with low state, q = 1,

and good advantage.
Our streaming proof for the model induced by CTR$ with a random function

implies such an attack is not possible against it. However, to be clear, these
attacks do not rule out good time-memory tradeoffs for these other schemes.
Instead these very weak attacks indicate that if such bounds are possible, their
proofs will require new insights/models. See the full version of this paper [19]
for more discussion.

5 Open Questions

Our work leaves open a number of important questions - most directly resolv-
ing validity of Conjecture 1 (or a relaxed version thereof which suffices for our
final statement). More generally, there is the question of which other encryption
schemes admit proofs of tight time-memory trade-offs. Furthermore, we do not
know how to prove trade-offs for more complex security games which do not fit
within the streaming model, e.g., security in the presence of decryption oracles.

Acknowledgements. We thank Aishwarya Thiruvengadam for insightful discussions
in the initial stage of this project. Jaeger was supported in part by NSF grants CNS-
1717640 and CNS-1526801, and by NSF grant CNS-1553758 while visiting UC Santa
Barbara.

Stefano Tessaro’s work was partially supported by NSF grants CNS-1553758
(CAREER), CNS-1719146, CNS-1528178, and IIS-1528041, and by a Sloan Research
Fellowship.

496 J. Jaeger and S. Tessaro

References

1. Abrego, B.M., Fernandez-Merchant, S., Neubauer, M.G., Watkins, W.: Sum of
squares of degrees in a graph. J. Inequalities Pure Appl. Math. 10(3) (2009)

2. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally
memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 33–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 2

3. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 595–603. ACM
Press, June 2015

4. Auerbach, B., Cash, D., Fersch, M., Kiltz, E.: Memory-tight reductions. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 101–132. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 4

5. Babbage, S.H.: Improved “exhaustive search” attacks on stream ciphers. In: Euro-
pean Convention on Security and Detection, pp. 161–166, May 1995

6. Barkan, E., Biham, E., Shamir, A.: Rigorous bounds on cryptanalytic
time/memory tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 1–21. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 1

7. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: increasing security
by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054132

8. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

9. Bey, C.: An upper bound on the sum of squares of degrees in a hypergraph. Discrete
Math. 269(1–3), 259–263 (2003)

10. Cioab, S.M.: Note: sums of powers of the degrees of a graph. Discrete Math.
306(16), 1959–1964 (2006)

11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York
(2006)

12. Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguishability via
the chi-squared method. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 497–523. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 17

13. Davies, D.W., Parkin, G.I.P.: The average cycle size of the key-stream in output
feedback encipherment. In: Beth, T. (ed.) EUROCRYPT 1982. LNCS, vol. 149, pp.
263–279. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-39466-4 19

14. de Caen, D.: An upper bound on the sum of squares of degrees in a graph. Discrete
Math. 185(1–3), 245–248 (1998)

15. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 17

16. Gruslys, V., Letzter, S., Morrison, N.: Hypergraph Lagrangians: resolving the
Frankl-Füredi conjecture. arXiv preprint arXiv:1807.00793 (2018)

17. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006). https://doi.org/10.1007/11799313 20

https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-63688-7_4
https://doi.org/10.1007/11818175_1
https://doi.org/10.1007/BFb0054132
https://doi.org/10.1007/BFb0054132
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/3-540-39466-4_19
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
http://arxiv.org/abs/1807.00793
https://doi.org/10.1007/11799313_20

Tight Time-Memory Trade-Offs for Symmetric Encryption 497

18. Iwata, T., Mennink, B., Vizár, D.: CENC is optimally secure. Cryptology ePrint
Archive, Report 2016/1087 (2016). http://eprint.iacr.org/2016/1087

19. Jaeger, J., Tessaro, S.: Tight time-memory trade-offs for symmetric encryp-
tion. Cryptology ePrint Archive, Report 2019/??? (2019). https://eprint.iacr.org/
2019/???

20. Nikiforov, V.: Note: the sum of the squares of degrees: sharp asymptotics. Discrete
Math. 307(24), 3187–3193 (2007)

21. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1992)

22. Patarin, J.: Mirror theory and cryptography. Cryptology ePrint Archive, Report
2016/702 (2016). http://eprint.iacr.org/2016/702

23. Pollard, J.M.: A monte carlo method for factorization. BIT Numer. Math. 15(3),
331–334 (1975)

24. Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search. New results and
applications to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
408–413. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 38

25. Tessaro, S., Thiruvengadam, A.: Provable time-memory trade-offs: symmetric cryp-
tography against memory-bounded adversaries. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 3–32. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03807-6 1

26. Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K.: Memory lower bounds of reduc-
tions revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 61–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 3

http://eprint.iacr.org/2016/1087
https://eprint.iacr.org/2019/???
https://eprint.iacr.org/2019/???
http://eprint.iacr.org/2016/702
https://doi.org/10.1007/0-387-34805-0_38
https://doi.org/10.1007/978-3-030-03807-6_1
https://doi.org/10.1007/978-3-030-03807-6_1
https://doi.org/10.1007/978-3-319-78381-9_3
https://doi.org/10.1007/978-3-319-78381-9_3

Non-malleability

Non-Malleable Codes Against Bounded
Polynomial Time Tampering

Marshall Ball1(B), Dana Dachman-Soled2, Mukul Kulkarni2, Huijia Lin3,
and Tal Malkin1

1 Columbia University, New York, USA
{marshall,tal}@cs.columbia.edu

2 University of Maryland, College Park, USA
danadach@ece.umd.edu, mukul@umd.edu
3 University of Washington, Seattle, USA

rachel@cs.washington.edu

Abstract. We construct efficient non-malleable codes (NMC) that are
(computationally) secure against tampering by functions computable in
any fixed polynomial time. Our construction is in the plain (no-CRS)
model and requires the assumptions that (1) E is hard for NP circuits of
some exponential 2βn (β > 0) size (widely used in the derandomization
literature), (2) sub-exponential trapdoor permutations exist, and (3) P-
certificates with sub-exponential soundness exist.

While it is impossible to construct NMC secure against arbitrary
polynomial-time tampering (Dziembowski, Pietrzak, Wichs, ICS ’10),
the existence of NMC secure against O(nc)-time tampering functions
(for any fixed c), was shown (Cheraghchi and Guruswami, ITCS ’14) via
a probabilistic construction. An explicit construction was given (Faust,
Mukherjee, Venturi, Wichs, Eurocrypt ’14) assuming an untamperable
CRS with length longer than the runtime of the tampering function.
In this work, we show that under computational assumptions, we can
bypass these limitations. Specifically, under the assumptions listed above,
we obtain non-malleable codes in the plain model against O(nc)-time
tampering functions (for any fixed c), with codeword length independent
of the tampering time bound.

Our new construction of NMC draws a connection with non-
interactive non-malleable commitments. In fact, we show that in the
NMC setting, it suffices to have a much weaker notion called quasi
non-malleable commitments—these are non-interactive, non-malleable
commitments in the plain model, in which the adversary runs in O(nc)-
time, whereas the honest parties may run in longer (polynomial) time.
We then construct a 4-tag quasi non-malleable commitment from any
sub-exponential OWF and the assumption that E is hard for some
exponential size NP-circuits, and use tag amplification techniques to
support an exponential number of tags.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 501–530, 2019.
https://doi.org/10.1007/978-3-030-17653-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_17

502 M. Ball et al.

1 Introduction

Non-Malleable Codes (NMC) were introduced by Dziembowski, Pietrzak, and
Wichs [25] as a modification of error correcting codes, with the goal of achieving
security against adversarial tampering functions, that may change every part of
a codeword. Informally, a NMC against a class F guarantees that if a codeword
is tampered via the application of a function f ∈ F , then the decoding of the
tampered codeword will either be exactly the original message, or completely
unrelated to the original message. As noted in [25], it is impossible to construct
NMC against arbitrary tampering functions, since non-malleability can always
be broken by a tampering function which first decodes the codeword to learn
the underlying message, then re-encodes a related message. In particular, there
can be no efficient NMC against arbitrary polynomial time tampering. Thus, to
achieve feasibility, we must restrict the class of tampering functions.

A natural way to restrict tampering adversaries is via well-studied compu-
tational complexity measures. Several recent works have followed this approach
and have developed strong connections between NMC and techniques from
computational complexity. For example, Ball et al. [5] constructed NMC against
bounded depth circuits with constant fan-in (which includes NC0), several
works [3,6,13] constructed NMC against AC0 relying on different complexity
theoretic techniques, and some works considered (restricted variants of) NMC
against space-bounded tampering [6,26]. Specifically, the work of Faust et al. [26]
considers space-bounded tampering adversaries in the random oracle model and
achieves the security notion of leaky continuous non-malleability. The work of Ball
et al. [6] is information-theoretic, considers streaming, space-bounded tampering
adversaries and achieves standard non-malleability. The current work continues
this line of research.

In this paper, we focus on the task of constructing NMC against bounded
polynomial time tampering, namely tampering functions that are computable in
an arbitrary fixed polynomial time. This is a very natural class to consider given
the impossibility result for (unbounded) polynomial time, and indeed, some of
the first works in this line of research have already considered this class. We
discuss these next, along with the motivation and goals for our current work.

Cheraghchi and Guruswami [14] gave probabilistic constructions of efficient
codes for circuits of size O(nc) (where an efficient randomized procedure outputs
a “good” code with high probability). Faust et al. [27] gave an improved (in
terms of the dependence on the error bound) construction against the same
class, which is explicit, but relies on a model including an untamperable CRS
(common reference string). The presence of CRS is undesirable, as not only must
the CRS be generated by a trusted party, the CRS is also a non-tamperable
component of the scheme. Moreover, both of these works can be viewed
as using limited (t-wise) independence to partially derandomize probabilistic
constructions. This approach inherently leads to a CRS whose length is at
least as long as the bound on the size of the tampering circuits—meaning
the tampering circuits cannot even read the entire CRS. We additionally note
that if we allowed other size parameters, in particular the codeword size, to

Non-Malleable Codes Against Bounded Polynomial Time Tampering 503

be as large as the runtime of the tampering function, then achieving non-
malleability would become trivial. Finally, we note that constructions of NMC
against bounded polynomial-time adversaries are trivial in the ideal permutation
model, where it is assumed that all parties have access to an ideal, invertible
permutation. Since Feistel-based constructions in the random oracle model are
indifferentiable from ideal permutations (and indeed ideal cipher) [18–20], the
above results hold in the random oracle model as well and can be instantiated
in practice based on e.g. SHA-3. However, whereas in the random oracle/ideal
permutation/ideal cipher model, non-malleability comes for free, in this work we
seek constructions that are based solely on hardness assumptions that do not
have a non-malleability flavor.

This motivates the following question:

Can we construct efficient NMC against bounded polynomial time
adversaries, in the plain model (i.e. without CRS or random oracles)?
Ideally, with codeword length that is independent of the runtime of the
adversarial tampering function?

As we elaborate next, we achieve this by moving to computational security and
restricting our attention to uniform adversaries (while [14,27] gave statistical
guarantees against non-uniform adversaries). In addition, as explained shortly
below, we allow uniform bounded polynomial time tampering adversaries to have
an inverse polynomial advantage (as in [14]) as opposed to having only negligible
advantage (as in [27]). We emphasize that to the best of our knowledge, there
is no transformation that either (a) eliminates the CRS in the NMC of [27]
to achieve security against uniform (or non-uniform) adversaries or (b) fully
derandomizes the monte carlo construction of [14], even under derandomization
assumptions. Our techniques highlight interesting new connections to complexity
theory.

1.1 Our Results

Our construction requires a complexity theoretic assumption that some language
in the complexity class E (the class of languages that can be decided by Turing
machines running in time 2O(n)) is hard for NP circuits of some exponential 2βn

(for β > 0) size. As surveyed later, such assumptions are widely used in the
derandomization literature, often referred to as derandomization assumptions,
and have connection with cryptography. Our construction also relies on the
following cryptographic assumptions: the existence of subexponential trapdoor
permutations andP-certificates (P-cert) with sub-exponential soundness.P-certs
(introduced by [15]) are “succinct” non-interactive arguments for languages L ∈
P, with proof length which is a fixed polynomial, independent of the time it takes
to decide L (see full version of this paper [4] for a formal definition). We provide
more background on these assumptions in Sect. 1.2 below.

504 M. Ball et al.

Theorem 1 (Informal). Assuming

– E is hard for NP circuits with some exponential size (namely 2βn for some
constant β > 0)

– Existence of sub-exponential trapdoor permutation
– Existence of P-cert with sub-exponential soundness

for every constant cA, there is an efficient construction of NMC in the
plain (no-CRS) model against uniform, bounded polynomial ncA-time tampering
adversaries, with inverse polynomial indistinguishability (for any polynomial
time non-uniform distinguisher). Furthermore, the codeword size is a fixed
polynomial independent of ncA .

A few remarks are in order. First, to formalize that a tampered codeword, if
not copied from the orginal codeword, must decode to an independent value,
the definition of non-malleability requires that the decoded values, u1 and u2,
obtained from tampering codewords of different values, v1 and v2 respectively,
must be indistinguishable (ub is replaced by same in the case of copying). Our
NMC achieves inverse polynomial distinguishing advantage against polynomial-
time non-uniform distinguishers

Second, as mentioned before, it is important that the length of the codeword
is smaller than the time-bound ncA of the tampering functions; otherwise,
achieving non-malleability becomes trivial. Here, we achieve the ideal case, where
the length of the codeword is bounded by a fixed polynomial, independent of
ncA . As the adversarial time bound grows, the only parameter that grows is the
run time of encode/decode. Moreover, this dependence is necessary as discussed
earlier, since non-malleability is trivially impossible when the class of tampering
functions includes the encode/decode functions.

Finally, we note that the assumption of the existence of sub-exponential
trapdoor permutation in Theorem 1, can be replaced with the assumption
of the existence of ZAPs (public coin, two message witness indistinguishable
protocols) [24] with witness indistinguishability against sub-exponential
adversaries and the existence of sub-exponential one-way functions (OWF). Note
that ZAPs can be constructed from bilinear maps [39], which are not known to
imply trapdoor permutations.

Connection between NMC and Non-Malleable Commitments. Our construction
of NMC draws a connection with another important notion of non-malleability
– non-malleable commitments [21,51]. The only difference between NMC and
non-interactive non-malleable commitments is that the former can be decoded
efficiently, whereas decommitment of the latter cannot be done efficiently. A
few prior works leverage this connection, showing that NMC can be used to
obtain improved non-malleable commitments [11,37], and using techniques from
the non-malleable commitment literature to obtain NMC [12,58]. However, the
latter direction—tapping into the wealth of techniques from the non-malleable
commitment literature to construct NMC—has been largely unexplored, perhaps
due to the fact that NMCs are typically unconditionally secure.

Non-Malleable Codes Against Bounded Polynomial Time Tampering 505

In our NMC construction, we begin with the framework of Ball et al. [6],
which provides a generic way to construct NMC against tampering classes F for
which sufficiently strong average-case hardness results are known, but requires a
CRS. We show how to remove the CRS for particular tampering classes, including
the class of bounded, poly-time adversaries. One modification is replacing the
public key encryption scheme in the framework of [6] (whose pubic keys are
contained in the CRS) with a non-interactive, non-malleable commitment scheme
NMCom in the plain model.

At a very high(and overly simplified) level, our NMC, like [6], follows the
Naor-Yung [56] paradigm that achieves CCA security of encryption, by composing
two instances Encrypt(pk, v),Encrypt(pk′, v) of a public key encryption scheme,
followed by a NIZK proof of the equality of encrypted values. In the context
of NMC, we replace one instance of encryption with an encoding E(v) that
is decodable in some polynomial t time, but has certain complexity theoretic
hardness (specified shortly) against the class of circuits of smaller t′ < t size. We
further replace the other instance of encryption with a non-malleable commitment
c to v. Following [6,56], we provide a reduction that can turn any successful
tampering adversary A against NMC, into an adversary B able to “maul” an
encoding E(v) of v into a non-malleable commitment c̃ to a related value ṽ.
The challenge lies in ensuring that the reduction is “simple”, namely, can be
implemented by a circuit of size t′. Then the complexity theoretic hardness that
we rely on is that it is impossible for such a circuit to compress an encoding
E(v) into a much shorter string c̃ correlated to v (despite that the correlation
may take exponential time to verify). Such an encoding, E, can be based on the
incompressible functions of Applebaum et al. [1], which can be constructed based
on assumptions that are widely used in the derandomization literature. (For more
details on the NMC construction see the technical overview in Sect. 1.3).

Connection between Complexity Theory and Non-Malleable Commitments.
Another contribution of this work, is to develop new connections between
complexity theory and non-malleable cryptography. We show that derandom-
ization assumptions can be employed to build a new primitive we call Quasi
Non-Malleable Commitments, which is weaker than standard non-malleable
commitments, but nevertheless suffices for constructing NMC. This allows us to
avoid adding the assumptions needed for standard non-interactive NMCom such
as time-lock puzzles or hardness amplifiable injective one-way functions [10,50].

Recall that in the non-malleable codes setting, encode/decode can be in a larger
complexity class than the adversary, and so standard non-interactive NMCom is
an overkill. This motivates our definition of Quasi Non-Malleable Commitments
in which the adversary runs in O(nccom)-time, whereas the honest parties may
run in longer (polynomial) time. To construct Quasi-NMCom from assumptions
widely used in the derandomization literature, observe that these assumptions
allow us to construct polynomial-time computable functions ψ for which non-
deterministic advice does not help speed up the computation. This stands in stark
contrast to the case of inversion of a one-way function ρ, which becomes easy with
non-deterministic advice (as the advice can contain a pre-image). Following the

506 M. Ball et al.

framework of [50], we construct two types of commitments that are harder than
each other in different hardness “axes”—namely “BP-time” (corresponding to
probabilistic Turing machines) and “non-deterministic (ND)-size” (corresponding
to NP-circuits–see Sects. 1.2 and 2.4). Specifically, one type of commitment com1

are the standard schemes based on one-way functions ρ, and the other com2 is
based on the function ψ given by derandomization assumptions. The com1 is much
harder to break than com2 in the axis of “BP-time”, as inverting one-way function
ρ is much harder than computing ψ using probabilistic Turing machines. On other
hand, com2 is much harder to break than com1 in the axis of “ND-size”, where
both inverting ρ and computing ψ can be done in poly-size, but computing ψ is
significantly harder.

From such mutually harder commitment schemes, we obtain a 4-tag Quasi-
NMCom. Then, based on tag-amplification techniques in the literature [10,46],
we increase the number of tags supported to an exponential. It turns out that
the quasi-setting makes amplification hard, which requires us to introduce a
notion of “Double-Agent” adversaries. Informally, double-agent adversaries are
probabilistic uniform Turing machines with “large” time complexity, that can
also be represented as a distribution over circuits with “small” size complexity
(see Sect. 2.1 for additional details). Post-amplification, our final Quasi-NMCom
construction employs the same assumptions as Theorem 1. We believe these
techniques may be useful for other applications in similar quasi-settings.

1.2 Background on Assumptions

In this section we provide some background on the assumptions that we use.

On P-certificates. P-certificates were introduced by [15] in pursuit of constant-
round concurrent zero-knowledge. Loosely, a P-certificate is a non-interactive
proof system that allows a prover to convince an efficient verifier of the validity
of any statement in P via a short proof. In particular, both the proof length
and the run-time of the verifier are bounded by some fixed polynomial, but
the system should work any language in P (the prover’s efficiency should be
comparable to the statement). CS-proofs [54] imply P-certificates, but unlike
the former, the latter assumption is falsifiable.

On “E requires circuits of exponential size”. A fundamental family of questions
in theoretical computer science is when and where randomness helps (vs strictly
deterministic procedures). While it is widely believed that BPP = P (i.e.,
any efficient, randomized decision procedure can be efficiently simulated by a
deterministic procedure), whether the equality indeed holds is still an open
problem. This particular question (BPP = P?) and others in the domain of
derandomization have deep connections to cryptography.

In the 1980s, Yao [70] showed that one-way permutations suffice to create
pseudorandom generators (PRG) for poly-time computation. PRGs expand a
small sequence of uniform random bits to a long sequence of pseudorandom bits
that “fool” classes of procedures in the sense their behavior is essentially the same
as if they were given truly random bits. In this sense, PRGs give a canonical

Non-Malleable Codes Against Bounded Polynomial Time Tampering 507

technique for derandomizing decision procedures: running the procedure on
multiple outputs of the PRG in parallel and taking majority of the obtained
result. Later, it was shown that essentially minimal cryptographic assumptions
(one-way functions) suffice for constructing PRGs [42].

However, while most cryptography implies non-trivial derandomization, there
seem to be inherent barriers to statements of the converse form. In fact, the
so-called “cryptographic” PRG’s yield, in two aspects, much more than what
is required for derandomization since (a) the output of such PRGs fool any
polynomial time procedure (including procedures that run in much more time
than the PRG itself) and (b) such PRGs guarantee that the behavior of poly-time
procedures is only negligibly different from their behavior on true randomness.
On the other hand, one-way functions are not known to imply P = BPP because
known constructions only “stretch” random bits into polynomially many random
bits (whereas exponential stretch is required for canonical simulation).

Capitalizing on these observations, Nisan and Wigderson [57] gave a generic
means of constructing PRGs which “fool” a certain class of circuits C, from
any function that is hard-on-average for a slightly enlarged class of circuits. In
particular, this in some sense reduces the problem of explicit derandomization
to proving strong circuit lower bounds on explicit functions. To this end, later
work showed that, in fact, simply assuming there is a language in E that does
not have circuits size 2βn for some β > 0 (for almost all n), is sufficient
to derandomize BPP [43,67]. Moreover, because E has complete problems,
this yields explicit pseudorandom generators. However, for reasons alluded to
above, this assumption is, to best of our knowledge, incomparable to standard
cryptographic assumptions.

This latter (worst-case) conjecture and its generalization has appeared
in a variety of contexts pertaining to derandomization and other questions
in computational complexity [2,22,29,35,40,41,43,47,53,55,57,64–68]. The
conjectures we are concerned with in this work take the following form
(following [1]):

Assumption 1 (E is hard for exponential size X-circuit). There exists
a problem L in E = DTIME(2O(n)) and a constant β > 0, such that for every
sufficiently large n, X-circuits of size 2βn fail to compute the characteristic of L
on inputs of length n.

where X-circuits can be circuits of type, {non-deterministic, co-non-
deterministic, NP, Σi }. See Sect. 2.4, for definitions of these types of circuits.
While these types of assumptions are independently interesting, in this work we
will utilize some surprising implications outside of derandomization.

Recently, Applebaum et al. [1] presented (explicit) constructions of poly-
time computable incompressible functions based on the assumption that E is
hard for exponential size non-deterministic circuits (based on the extractors
for samplable distributions of Trevisan and Vadhan [68]). Loosely, a function,
ψ is incompressible for a class if no procedure in that class can “shrink” an
input to the function, x, such that ψ(x) can later be recovered. Note that, to

508 M. Ball et al.

our knowledge, it is not known how to construct incompressible functions from
standard cryptographic assumptions (unlike the case of derandomization).

Barak et al. [8] observed that similar assumptions can be used to construct
cryptographic primitives. In particular, they showed that if E = DTIME(2O(n))
contains a function with co-non-deterministic circuit complexity 2Ω(n), then
there exists (explicit) non-interactive witness indistinguishable proof systems for
L ∈ NP (additionally assuming the existence of trapdoor permutations). They
also showed that the same assumption can be used to construct a non-interactive
bit commitment scheme from a one-way function.

In this work, we use the above results and demonstrate new connections
between these assumptions and non-malleable cryptography. In particular we
show that if Assumption 1 holds for NP-circuits and (sub-exponential) one-
way functions exist, then we can construct quasi-non-malleable commitment
schemes. We combine our construction of such commitment schemes along with
NIZK proofs based on the NIWI of [8], as well as the incompressible functions
of [1], to obtain our main result: a family of efficient non-malleable codes secure
against tampering by uniform algorithms running in time O(nc).

1.3 Technical Overview

We begin by recalling (a simplified version of) the template for constructing
non-malleable codes against complexity class F (based on the Naor-Yung double
encryption paradigm [56]) introduced in the work of Ball et al. [6]:

The CRS contains a public key pk for an encryption scheme E =
(Gen,Encrypt,Decrypt), and a CRS crs for a simulation-sound, non-interactive
zero knowledge proof (NIZK). For b ∈ {0, 1}, let Db denote disjoint distributions
over x1 . . . xn ∈ {0, 1}n such that ψ(x1 . . . xn) = b, where ψ is poly-time
computable, yet every f ∈ F has low correlation with ψ.

To encode a bit b:

1. Randomly choose string x1 . . . xn from Db

2. Compute c ← Encryptpk(b).
3. Compute a NIZK proof T of “consistency”: ∃b′ ∈ {0, 1} s.t. x1 . . . xn is in the

support of Db′ and b′ is the plaintext underlying c.
4. Output (x1 . . . xn, c, T).

To decode (x1 . . . xn, c, T):

1. Verify the NIZK proof T .
2. If it accepts, output ψ(x1 . . . xn).

The proof of [6] proceeds (loosely) as follows: In the first hybrid they switch
to simulated proof T ′. Then they switch c, in the “challenge” encoding to an
encryption of garbage c′, and next switch to an alternative decoding algorithm in
F , which requires the trapdoor sk (corresponding to the public key pk which is
contained in the CRS). If, in the final hybrid, decodings of tampered encodings

Non-Malleable Codes Against Bounded Polynomial Time Tampering 509

depend on b, a circuit in F can be constructed, whose output is correlated
with the hard function ψ, reaching a contradiction. While [6] do in fact show
that the CRS can be removed for constructions against certain classes F of
tampering, naively, their approach requires a CRS in two seemingly inherent
ways: First, the CRS allows the use of the secret key trapdoor sk in the alternate
decoding algorithm and second, it allows the use of a simulation-sound NIZK,
which requires CRS.

In this work, we make two crucial observations that allow us to eliminate
the CRS from the above construction. First, we consider a stronger notion
of hardness for ψ, known as incompressibility (in fact, this hardness notion
was already implicitly used in [6] for their multi-bit construction). Briefly, if
a function ψ is incompressible by circuit class C, it means that for t � n, for
any (computationally unbounded) Boolean function F : {0, 1}t → {0, 1} and
any C : {0, 1}n → {0, 1}t ∈ C, the output of F ◦ C(x1, . . . , xn) is uncorrelated
with ψ(x1, . . . , xn) (over uniform choice of x1, . . . , xn). Now, since F is allowed
to be computationally unbounded, we may consider an F that decrypts the
ciphertext c = Encryptpk(b) by brute force search. To elaborate, instead of
using sk to efficiently decrypt c in complexity class C, the alternate decoding
algorithm D′ is split into two parts D′ = D′

2 ◦D′
1, where D′

1 can be implemented
in F , but has short output length, whereas D′

2 is computationally unbounded.
Specifically, D′

1 checks the proof T and then outputs the entire ciphertext c
(which is fine so long as the length of c is sufficiently smaller than n), and,
due to the incompressibility property of ψ, we must still have that the output
of D′ = D′

2 ◦ D′
1 is uncorrelated with ψ(x1, . . . , xn). This eliminates the need

of providing a trapdoor to the alternate decoding algorithm and so instead of
using a public key encryption scheme, we may use a non-interactive statistically
binding commitment scheme, which can be constructed from injective one-way
function or from derandomization assumptions and any one-way function [8].1

Next, we note that it is possible to construct a NIZK proof system in the
plain (no-CRS) model (i.e. “One-Message Zero Knowledge”), with soundness
against uniform adversaries. To do so, one first constructs a non-interactive
witness indistinguishable proof system (NIWI) in the plain model (based on
standard cryptographic assumptions and derandomization assumptions [8]) and
then converts from witness indistinguishability to full zero knowledge using
the well-known FLS paradigm [28]. Specifically, the simulator will be given
a trapdoor witness based on a problem that is computationally hard for
uniform PPT adversaries such as finding a collision in a keyless collision
resistant hash function. The problem with this approach is that in the proof
sketch outlined above, we actually require simulation-sound NIZK, as opposed
to regular NIZK. In simulation-sound NIZK, the soundness properties must

1 As we will see, in our setting of non-malleable codes against polynomially-bounded
adversaries, our construction requires such derandomization assumptions in any case
and so only standard one-way function is required in addition. However, for simplicity
we will assume injective one-way function in the remainder of the exposition in this
section.

510 M. Ball et al.

hold, even after the adversary sees a simulated proof of a false statement.
Whereas various constructions of (one-time) simulation-sound NIZK rely on
embedding a trapdoor within the CRS (cf. [52,63]), our approach to achieve
the simulation-soundness property without CRS is to replace the commitment
c (which replaced the encryption Encryptpk(b) as described above) with a non-
interactive, non-malleable commitment scheme. Unfortunately, currently known
non-interactive, non-malleable commitment schemes require somewhat non-
standard assumptions such as time-lock puzzles or hardness amplifiable injective
one-way functions [10,50], whereas our goal is to minimize assumptions. As
we will see, the fact that our commitment scheme is only required to be non-
malleable against adversaries in a restricted circuit class F , allows us to obtain
non-interactive, non-malleable commitments, while reducing assumptions.

Instantiating the Paradigm. In this work we construct non-malleable codes
against the class F of uniform, polynomial-bounded tampering functions.
Crucially, we will do so (1) without relying on CRS (2) with codeword length
that is independent of the polynomial time bound (note that if the codeword
length is longer than the polynomial time bound then the adversary does not
even get to read the entire input, also it’s trivial to construct these) and (3)
while reducing computational assumptions, to the extent possible.

Specifically, in addition to standard cryptographic assumptions, we will
assume standard derandomization-type assumptions such as those discussed in
the previous section. We also require the notion of P-certificates, which seem to
be necessary to implement the above high-level paradigm, as we discuss next.
To see why this is so, note that the statement proved in NIZK proof T , involves
proving that ψ(x1, . . . , xn) is equal to some value. Note that ψ is a polynomial-
time computable function, but that intrinsic in the approach is choosing ψ that
is hard to compute in the specific polynomial time bound T (n) corresponding
to tampering class F . Moreover, we require that the size of the proof T be
independent of the polynomial time bound T (n), and so in particular the size
of the proof T must be independent of the time required to compute ψ. This is
now exactly the notion of a P-certificate.

We also note that given the above paradigm for encoding of a single bit,
it is straightforward to obtain a scheme for the encoding of multiple bits (by
individually encoding each bit and then using a single proof T to “wrap” together
the individual encodings). The only restriction will be that the number of bits,
m, that are encoded, multiplied by the length of a bit commitment, λ, should
be sufficiently smaller than n, the input length of the function ψ. See Sect. 3 for
additional details.

Instantiation of ψ. Recall that for the above approach to work, we must
instantiate ψ with a function that is incompressible against polynomially-
bounded adversaries. Fortunately, such a construction was given by [1], based
on a derandomization-type assumption. See Sect. 4 for additional details.

Instantiation of NMCom. In fact, as discussed previously, we note that we do not
need full-fledged NMCom, but only Quasi NMCom, i.e. NMCom with the following

Non-Malleable Codes Against Bounded Polynomial Time Tampering 511

two relaxations: (1) The commitment scheme is only secure against bounded-
poly (in fact “Double-Agent”) adversary and distinguisher (2) The complexity of
the honest sender/receiver may be greater than the complexity of the adversary.
To construct Quasi-NMCom, we adopt the approach of [50] to initially construct
a commitment scheme with small number of tags, and use the fact that the
derandomization assumptions that we employ in this work are believed to hold
even against non-deterministic adversaries. In particular, we employ the well-
studied assumption that E is hard for adversaries represented as exponential size
NP-circuits—or circuits with access to a SAT oracle (See Sects. 1.2 and 2.4 for
further discussions on these assumptions). To construct our NMCom scheme, we
start off with two different types of commitments, Type 0 and Type 1 such that if
we get a Type 0 on left, we can extract from Type 1 on the right without breaking
the security of Type 0 and vice versa. Each commitment consists of an input x to a
Boolean function ψ′ (with logarithmic input length) that is hard for NP-circuits
of size 2ε3·input length to compute as well as the output y of an injective OWF ρ,

which is hard for ppt adversaries running in time 2input lengthε′
3 .2 Each of these

can be considered as a commitment to a bit (given x, the output of ψ′(x) is the
committed value and given y, a hardcore bit of ρ) and the final committed value
is the xor of the two bits committed.

Type 0: input length c1 log(n) to ψ′, input length nε′
1 to ρ.

Type 1: input length c2 log(n) to ψ′, input length nε′
2 to ρ.

Set c2 > c1 > ε′
1 > ε′

2 so that (1) nc1 < nε3·c2 and (2) 2nε′
2 < 2nε′

3·ε′
1 . We now

consider the two possible cases:

Type 0 on left, Type 1 on right. Extract by inverting the injective OWF ρ in
deterministic time 2nε′

2 and computing ψ′ in deterministic time nc2 . Note that
this does not allow breaking injective OWF ρ with input length nε′

1 , which is
secure against time 2nε′

3·ε′
1 > 2nε′

2 .
Type 1 on left, Type 0 on right. Extract by computing ψ′ in deterministic time

nc1 and inverting the injective OWF ρ with an NP-circuit of size nε′
1 . Note

that this does not allow breaking hardness of ψ′ with input length c2 log(n),
which is secure against NP-circuits of size nε3·c2 > nc1 .

See Fig. 1 for a summary and [4] for additional details.
The above 2-tag commitment scheme can then be straightforwardly extended

to work for 4 tags, at which point amplification techniques from [46] can be
applied to obtain NMCom with number of tags exponential in the security
parameter. The analysis of the amplified scheme is somewhat different than

2 For this exposition, we assume for simplicity that ψ′ can be computed in deterministic

time 2input length and that the injective OWF has linear circuit size. Recall that
we do not require injective OWF and that any statistically binding, non-interactive
commitment scheme is sufficient, but that for simplicity we assuming injective OWF
in this exposition.

512 M. Ball et al.

Input length to ψ′ Hardness of ψ′ Input length to ρ Hardness of ρ
D ND D ND

Type 0 c1 · log(n) nε3·c1 nε3·c1 nε′
1 2nε′

3·ε′
1 nε′

1

Type 1 c2 · log(n) nε3·c2 nε3·c2 nε′
2 2nε′

3·ε′
2 nε′

2

Fig. 1. ψ′ and ρ are the functions described in the paragraph above. D stands for
deterministic and ND stands for “non-deterministic” hardness. We set parameters so
that c2 > c1 > ε′

1 > ε′
2.

in prior work, since our analysis must carefully take into account that some
assumptions are inherently uniform (One-Message Zero Knowledge) and some
assumptions (hardness of ψ′) are inherently non-uniform (the adversary in the
proof is so limited that it does not have time to generate new commitments on
its own and therefore must receive them as non-uniform advice when reducing
security to the hardness of computing ψ′). To solve this problem, we introduce
the notion of “Double Agent” adversaries (as discussed in the introduction) and
provide a proof of security of our amplified NMCom scheme against this class of
adversaries. See [4] for additional details.

1.4 Related Work

Non-Malleable Codes. Non-malleable codes (NMC) were introduced by Dziem-
bowski, Pietrzak and Wichs in their seminal work [25]. While there has been a long
line of important results for various tampering classes, due to space limitations, we
discuss here only the results most relevant to this work.

As discussed extensively in the introduction, Faust et al. [27] constructed
efficient information-theoretically secure NMC in the CRS model, resilient
against tampering function classes F which can be represented as circuits of size
poly(n). Another important result by Cheraghchi and Guruswami [14] showed
the existence of information theoretically secure NMC against tampering families
F of size |F| ≤ 22αn

with optimal rate 1−α. They achieve error ε ∈ O(1/poly(n))
as the run-time of the encoding and decoding algorithms is proportional to
poly(1/ε) where ε is the error probability.

Ball et al. [5] constructed efficient information theoretic secure NMC against
nδ-local tampering functions, for any constant δ > 0. This class includes
tampering functions, which can be represented as constant depth circuits
with bounded fan-in i.e NC0 circuits. Chattopadhyay and Li [13] constructed
NMC against AC0 tampering functions from seedless non-malleable extractors,
although the codeword length of this construction is super-polynomial in the
message length n. Faust et al. [26] considered non-malleable codes against space
bounded tampering adversaries in the random oracle model. The construction
achieves a new notion of leaky continuous non-malleable codes (with self-destruct
property), where the adversary is allowed to learn some bounded log(|m|) bits
of information about the underlying message m.

Non-Malleable Codes Against Bounded Polynomial Time Tampering 513

Recently, Ball et al. [6] presented a generic framework to construct NMC
against tampering function classes for which average-case hardness bounds are
known. They also instantiated their framework to construct the first efficient,
computationally secure multi-bit NMC against tampering functions which can be
represented as constant-depth circuits with unbounded fan-in (AC0 tampering),
as well as against tampering functions which can be represented as bounded
depth decision tree. Additionally, they showed that the framework can be
used to construct information-theoretic NMC against space-bounded streaming
tampering. Information-theoretic secure, efficient NMC against AC0 tampering
were subsequently constructed by [3].

Derandomization and Cryptography. The connection between derandomization
techniques with cryptography was first explored by Barak et al. [8], who con-
structed one-message witness indistinguishable proof systems (non-interactive
commitment scheme) in the plain model based on trapdoor permutations
(one-way functions) in addition to the derandomization assumptions. Recently,
Applebaum et al. [1] constructed incompressible functions against the class of
bounded polynomial time functions from similar assumptions.

Non-Malleable Commitments. Non-malleable commitments have been studied
extensively since their introduction by [21] in their seminal paper. Great
progress has been made in reducing the interaction between the sender
and the receiver, while minimizing computational assumptions. We list just
some of the results in this line of work [7,16,17,36–38,45,48,49,59–61].
Recently, Lin, Pass, and Soni [50] gave a construction of a non-interactive,
fully-concurrent, non-malleable commitment scheme secure against uniform
adversaries based on sub-exponential non-interactive commitment schemes, non-
interactive witness indistingushable proof systems (NIWI), uniform collision
resistant hash functions, and time-lock puzzles [62]. When replacing the uniform
collision resistant hash functions with a family of collision resistant hash
functions, their protocol becomes 2-round. Khurana and Sahai [46] constructed
2-round non-malleable commitments with bounded concurrency from standard
sub-exponential assumptions. Bitansky, and Lin [10] gave a construction of
a non-interactive, fully-concurrent, non-malleable commitment scheme from
multi-collision-resistant keyless hash functions, sub-exponentially-secure time-
lock puzzles, and other standard assumptions.

2 Definitions

2.1 Notation

When comparing distribution ensembles D = {Dn}n∈N,D′ = {D′
n}n∈N, we use

the notation D G,S≈ D′, where G, S are sets, to indicate that for sufficiently large
n, every distinguisher D ∈ G distinguishes Dn from D′

n with probability at most
p(n), for some p(·) ∈ S. When comparing functions p, p′, we use the notation

p(n)
S≈ p′(n), where S is a set, to indicate that |p(n) − p′(n)| ∈ S.

514 M. Ball et al.

We consider “Double-Agent” adversaries A in computational classes denoted
by BPtime(T (n))

⋂
SIZE(t(n)), for some functions T (·), t(·). Intuitively, this

computational class contains probabilistic uniform Turing machines A with
“large” time complexity T (n), that can also be represented as a distribution
over circuits with “small” size complexity t(n). Informally, this is possible since
A can be split into subroutines in such a way that subroutines that require
“large” time complexity can all be replaced with non-uniform advice. Formally,
A ∈ BPtime(T (n))

⋂
SIZE(t(n)) if the following hold:

– A = (A1, A2).
– A1 ∈ BPtime(T (n)), A2 ∈ BPtime(t(n)).
– A1 receives only security parameter 1n as input and produces output of length

at most t(n).
– A2 receives the input of A as its input, along with the output of A1.

Note that, since A1 takes only security parameter as input, the output of
A1, can be viewed as non-uniform advice to A2. Thus, we can convert such a
uniform adversary A = (A1, A2) into a distribution over non-uniform circuits of
size t(n) with identical behavior to A.

2.2 Non-Malleable Codes

Definition 1 (Coding Scheme). Let Σ, Σ̂ be sets of strings, and κ, κ̂ ∈ N be
some parameters. A coding scheme consists of two algorithms (E,D) with the
following syntax:

– The encoding algorithm (perhaps randomized) takes input a message in Σ
and outputs a codeword in Σ̂.

– The decoding algorithm takes input a codeword in Σ̂ and outputs a message
in Σ.

We require that for any message msg ∈ Σ, Pr[D(E(msg)) = msg] = 1.

Definition 2 (O(1/p(n))-Non-malleability [25]). Let n be the security
parameter, F be some family of functions. For each function f ∈ F , and
msg ∈ Σ, define the tampering experiment:

Tamperf
msg

def=
{

c ← E(msg), c̃ := f(c), m̃sg := D(c̃).
Output : m̃sg.

}

,

where the randomness of the experiment comes from the encoding algorithm.
We say a coding scheme (E,D) is O(1/p(n))-non-malleable with respect to F if
for each f ∈ F , there exists a PPT simulator Sim such that for any message
msg ∈ Σ, we have

Tamperf
msg

PPT,O(1/p(n))≈ IdealSim,msg
def
=

⎧
⎨

⎩

m̃sg ∪ {same∗} ← Simf(·).
Output :msg if output of Sim is same∗;

otherwise m̃sg.

⎫
⎬

⎭

Non-Malleable Codes Against Bounded Polynomial Time Tampering 515

Definition 3 (O(1/p(n))-Medium Non-malleability). Let n be the security
parameter, F be some family of functions. Fix msg ∈ Σ. Let c ← E(msg) and
let g(·, ·) be a predicate such that for every f ∈ F ,

Pr[g(c, f(c)) = 1] ∧ D(f(c)) �= msg] ≤ negl(n).

For g as above, each function f ∈ F , and msg ∈ Σ, define the tampering
experiment

MediumNMf
msg,g

def=
{

c ← E(msg), c̃ := f(c), m̃sg := D(c̃)
Output : same∗ if g(c, c̃) = 1, and m̃sg otherwise.

}

The randomness of this experiment comes from the randomness of the
encoding algorithm. We say that a coding scheme (E,D) is O(1/p(n))-medium
non-malleable with respect to F if there exists a g as above and for any
msg,msg′ ∈ Σ and for each f ∈ F , we have:

{MediumNMf
msg,g}n∈N

PPT,O(1/p(n))≈ {MediumNMf
msg′,g}n∈N

It is straightforward to check that medium non-malleability implies standard
non-malleability.

2.3 Non-Interactive Commitment Scheme

Definition 4 (Commitment Scheme). A (non-interactive) commitment
scheme for the message space {0, 1}m, is a pair (Com,Open) such that:

– For all msg ∈ {0, 1}m, (c, d) ← Com(m) is the commitment/opening pair for
the message msg.

– Open(msg, c, d) → {0, 1}, where 1 indicates that d is a valid opening of c to
msg and 0 is returned otherwise.

The commitment scheme must satisfy the standard correctness requirement,

∀m ∈ N,∀msg ∈ {0, 1}m, Pr [Open(msg,Com(msg)) = 1] = 1

where the probability is taken over the randomness of Com.

We will consider statistically binding commitment schemes. For the formal
definitions of the Hiding and Binding properties, see [4].

Well-formed Commitments: Let val(·) be a function which takes an arbitrary
commitment c as an input. val outputs msg if ∃ unique msg such that
Open(msg, c, ·) = 1, and outputs ⊥ otherwise.

Definition 5 (Tag-based Commitment Scheme [50]). A commitment
scheme (Com,Open) is a tag-based commitment scheme with τ(m) number of
tags if, in addition to the the message msg, the sender (committer) and receiver
also receive a “tag” of length poly(log(τ(m))) as common input.

If τ(m) is exponential in security parameter m, we omit the prefix τ(m) and
refer to the commitment scheme as simply a tag-based commitment scheme.

516 M. Ball et al.

Man In The Middle Execution (MIM): Let (Com,Open) be a tag-based
commitment scheme, and A an adversary. For security parameter m, consider
the following interactions by A(1m):

– Left interaction: A(1m) interacts with the sender and receives commitment
to a message msg of length m using identity tag as c ← Com(msg, tag).

– Right interaction: A(1m) interacts with the receiver and tries to commit
to related message m̃sg using identity ˜tag of its choice. Specifically, for the
commitment c̃ sent to the receiver, let m̃sg = val(c̃). Furthermore, if ˜tag = tag,
then we set m̃sg = ⊥.

Let mimA
C (msg) denote the random variable that describes m̃sg that A

commits to in the right interaction along with its output in the MIM execution
MIMA

C (msg) as described above.

Definition 6 (O(1/p(m))-Non-Malleability against G [50]). A tag-based
commitment scheme C = (Com,Open) is said to be O(1/p(m))-non-malleable
against G if ∀A ∈ G, the following ensembles are indistinguishable,

{
mimA

C (msg0)
}

m∈N,msg0∈{0,1}m

G,O(1/p(m))≈ {
mimA

C (msg1)
}

m∈N,msg1∈{0,1}m .

2.4 Incomputable and Incompressible Functions

Definition 7 (Incomputable Function [1]). A function ψ : {0, 1}n →
{0, 1}m is incomputable by a function class C if ψ is not contained in C. We say
that f is ε -incomputable by C if for every function C : {0, 1}n → {0, 1}m in C,
Pr [C(x) = f(x)] ≤ 1

2m + ε for uniform random x ← {0, 1}n.

Definition 8 (Incompressible Function [23]). A function f : {0, 1}n →
{0, 1}m is incompressible by a function C : {0, 1}n → {0, 1}� if for every function
D : {0, 1}� → {0, 1}m, there exists x ∈ {0, 1}n such that D(C(x)) �= f(x). We
say that f is ε -incompressible by C if for every function D : {0, 1}� → {0, 1}m,
Pr [D(C(x)) = f(x)] ≤ 1

2m + ε for uniform random x ← {0, 1}n. We say
that f is -incompressible (resp. (, ε)-incompressible) by a class C if for every
C : {0, 1}n → {0, 1}� in C, f is incompressible (resp. ε-incompressible) by C.

Definition 9 (Non-deterministic Circuits and NP Circuits [1]). A non-
deterministic circuit C has additional “non-deterministic input wires”. We say
that the circuit C evaluates to 1 on x if and only if there exists an assignment
to the non-deterministic wires that makes C output 1 on x. An oracle circuit
C(·) is a circuit which in addition to the standard gates uses an additional gate
(potentially with large fan-in). When instantiated with specific boolean function
A, CA is the circuit in which the additional gate is A. Given boolean function
A(x), an A-circuit is a circuit that is allowed to use A gates in addition to the
standard gates. An NP-circuit is a SAT -circuit (where SAT is the satisfiability
function).

The size of all circuits is the total number of wires and gates.

Non-Malleable Codes Against Bounded Polynomial Time Tampering 517

We now present commonly used assumptions in the derandomization
literature to explicitly construct pseudorandom generators. [2,8,22,29,35,40,47,
55,57,64–68]:

Assumption 2 (E is hard for exponential size X-circuits). There
exists a problem L in E = DTIME(2O(n)) and a constant β > 0,
such that for every sufficiently large n, X-circuits of size 2βn fail to
compute the characteristic function of L on inputs of length n, where X ∈
{non-deterministic, co-non-deterministic, NP}.
Theorem 2 (Theorem 1.3, 1.10 [1]). If E is hard for exponential
size X-circuits, where X ∈ {non-deterministic, co-non-deterministic, NP}
(Assumption 2), then for every constant c > 1 there exists a constant a > 1
such that for every sufficiently large n, and every r such that a log n ≤ r ≤ n
there is a function ψ : {0, 1}r → {0, 1} that is n−c-incomputable for size nc

X-circuits, Furthermore, ψ is computable in time poly(nc) (or poly(n)).

We define NIZK without CRS against uniform adversaries and NIWI in [4]. In
the remainder of this section, we focus on instantiations of the above primitives.

Theorem 3 ([8]). Assume that E is hard for exponential size co-non-
deterministic circuits and that (subexponentially secure) trapdoor permutations
(resp. one-way functions) exist. Then every language in NP has a (sub-
exponentially indistinguishable) NIWI proof system (resp. non-interactive
commitment scheme).

Moreover, by correctly setting the output length of the commitment scheme
in terms of the security parameter n, we obtain a non-interactive perfectly
binding and computationally hiding commitment scheme, such that given a
commitment c, the committed message (i.e., val(c)) can be computed by a
2nε

-time algorithm, where n is the security parameter and ε is some constant.
To go from NIWI to NIZK, one can apply the well-known FLS technique [28].

The simulator is provided with a trapdoor via non-uniform advice, which is not
known to the uniform adversary in the real world. Note that we choose the
trapdoor such that it can be obtained by a uniform adversary running in super-
polynomial (sub-exponential) time. Formally, [9] show how to construct NIZK
without CRS against uniform adversaries under the following assumptions:

Assumption A: There exists a NIWI proof system for every language L ∈ NP
with WI against sub-exponential adversaries.

Assumption B: There exists a non-interactive perfectly binding and
computationally hiding commitment scheme, such that given a commitment,
the message can be computed by a 2nε

-time algorithm, where n is the security
parameter and ε is some constant.

518 M. Ball et al.

Assumption C: There exists a language Δ ∈ P and constants ε1 < ε2 < 1 such
that:
Δ is hard to sample in time 2nε1 : For every probabilistic 2nε1 -time algorithm

A, the probability that A(1n) ∈ Δ ∩ {0, 1}n is negligible.
Δ is easy to sample in time 2nε2 : There exists a 2nε2 algorithm SΔ such that

for every n ∈ N , Pr[SΔ(1n) ∈ Δ ∩ {0, 1}n] = 1.

Theorem 4 ([9]). Under Assumptions A, B and C, there exists a NIZK
argument system without CRS for NP with soundness against sub-exponential
uniform adversaries and zero-knowledge against sub-exponential adversaries.

Lemma 1. If E is hard for exponential size non-deterministic circuits and P-
cert with soundness against sub-exponential adversaries exists, then Assumption
C is true.

The proof of the lemma can be found in [4].

Corollary 1. Assuming that E is hard for exponential size (co-)non-
deterministic circuits, the existence of sub-exponential trapdoor permutations,
and the existence of P-cert with soundness against sub-exponential adversaries,
there exists a NIZK argument system without CRS for NP with soundness
against sub-exponential uniform adversaries and zero knowledge against sub-
exponential adversaries.

3 Construction for Multi-Bit Messages

Let C = (Com,Open) be a tag-based, non-interactive commitment scheme
that is perfectly binding (see Definition 2.3). Let ΠNI = (PNI,VNI,SimNI) be
a non-interactive simulatable proof system. Let S = (Gen,Sign,Ver) be a one-
time signature scheme. Let D0,D1 be disjoint distributions over {0, 1}n. For
b := b1, . . . , bm ∈ {0, 1}m, Db denotes a draw from the product distribution
(Db1 , . . . , Dbm). We define the following language:

Language L: s := ([xi]i∈[m], c, tag) ∈ L iff ∃b := b1, . . . , bm ∈ {0, 1}m such that
for i ∈ [m], xi = (xi

1, . . . , x
i
n) is in the support of Dbi and c is a commitment to

b under tag.
The construction is presented in Fig. 2:
Let Ψ(p, x, y, z) be defined as a function that takes as input a predicate p,

and variables x, y, z. If p(x, y) = 1, then Ψ outputs the m-bit string 0. Otherwise,
Ψ outputs z.

Theorem 5. Let (E,D), E1, E2, D′ and g be as defined in Figs. 2, 3, 4, 5 and 6.
Let F be a computational class. If, for every pair of m-bit messages b0, b1 and
for every tampering function f ∈ F , all of the following hold:

– Simulation of proofs.

1. Pr[g(CW0, f(CW0)) = 1]
negl(n)≈ Pr[g(CW1, f(CW1)) = 1],

Non-Malleable Codes Against Bounded Polynomial Time Tampering 519

E(b := b1, . . . , bm):

1. Choose (vk, sk) ← Gen(1n
′
), where n′ � n. We assume WLOG |vk| = n′.

2. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi
1, . . . , x

i
n.

3. Compute (c,d) ← Com(b, tag := vk).
4. Compute a non-interactive, simulatable proof T proving ([xi]i∈[m], c, vk) ∈ L.
5. Compute σ ← Sign(sk, ([xi]i∈[m], c, T)).
6. Output CW := (vk, [xi]i∈[m], c, T, σ).

D(CW):

1. Parse CW := (vk, [xi]i∈[m], c, T, σ)
2. Check that Ver(vk, σ, ([xi]i∈[m], c, T)) = 1.
3. Check that VNI outputs 1 on proof T .
4. If yes, output [bi]i∈[m] such that for all i ∈ [m], xi

1, . . . , x
i
n is in the support of

Dbi . If not, output 0.

Fig. 2. Non-malleable code (E,D), secure against F tampering.

E1(td, b := b1, . . . , bm):

1. Choose (vk, sk) ← Gen(1n
′
)

2. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi
1, . . . , x

i
n.

3. Compute (c,d) ← Com(b, tag := vk).
4. Simulate, using td, a non-interactive proof T ′ proving

s := ([xi]i∈[m], c, vk) ∈ L.
5. Compute σ ← Sign(sk, ([xi]i∈[m], c, T

′)).
6. Output CW := (vk, [xi]i∈[m], c, T

′, σ).

Fig. 3. Encoding algorithm with simulated proof.

2. Ψ(g,CW0, f(CW0),D(f(CW0)))
PPT,negl(n)≈

Ψ(g,CW1, f(CW1),D(f(CW1))),
where f ∈ F , CW0 ← E(b0) and CW1 ← E1(td, b0).

– Simulation of Commitments.

1. Pr[g(CW1, f(CW1)) = 1]
negl(n)≈ Pr[g(CW2, f(CW2)) = 1],

2. Ψ(g,CW1, f(CW1),D(f(CW1)))
PPT,negl(n)≈

Ψ(g,CW2, f(CW2),D(f(CW2))),
where f ∈ F , CW1 ← E1(td, b0) and CW2 ← E2(td, b0).

– Simulation Soundness.

Pr[D(f(CW2)) �= D′(f(CW2)) ∧ g(CW2, f(CW2)) = 0] ∈ O(1/nc),

520 M. Ball et al.

E2(td, b := b1, . . . , bm):

1. Choose (vk, sk) ← Gen(1n
′
)

2. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi
1, . . . , x

i
n.

3. Compute (c′,d′) ← Com(0, tag := vk).
4. Simulate, using td, a non-interactive proof T ′ proving s := ([xi]i∈[m], c

′, vk) ∈
L.

5. Compute σ ← Sign(sk, ([xi]i∈[m], c
′, T ′)).

6. Output CW := (vk, [xi]i∈[m], c
′, T ′, σ).

Fig. 4. Encoding algorithm with simulated proof and commitments.

D′(CW) := D′
2(D′

1(CW)):

D′
1(CW):

1. Parse CW := (vk, [xi]i∈[m], c, T, σ)
2. Check that Ver(vk, σ, ([xi]i∈[m], c, T)) = 1.
3. Check that VNI outputs 1 on proof T
4. If not, output ⊥, where ⊥ is a special symbol.
5. If yes, output (c, tag := vk).

D′
2(c, tag := vk):

1. If c = ⊥, output [0]i∈[m] and terminate.
2. Otherwise, check if there exists a string d and a string ˜b such that

Open(d, c, vk,˜b) = 1. If yes, output ˜b. Otherwise, output [0]i∈[m].

Fig. 5. Alternate decoding procedure D′.

g(CW,CW∗):

1. Parse CW = (vk, [xi]i∈[m], c, T, σ), CW∗ = (vk∗, [x∗i]i∈[m], c
∗, T ∗, σ∗).

2. If vk = vk∗ and Ver(vk∗, σ∗, ([x∗i]i∈[m], c
∗, T ∗)) = 1 then output 1. Otherwise

output 0.

Fig. 6. The predicate g(CW,CW∗).

Non-Malleable Codes Against Bounded Polynomial Time Tampering 521

where f ∈ F , CW2 ← E2(td, b0).
– Hardness of Db relative to Alternate Decoding.

1. Pr[g(CW2, f(CW2)) = 1]
PPT,O(1/nc)≈ Pr[g(CW3, f(CW3)) = 1],

2. For every Boolean function, represented by a circuit F over m variables,

F ◦ D′(f(CW2))
stat,O(1/nc)≈ F ◦ D′(f(CW3)),

where CW2 ← E2(td, b0), and CW3 ← E2(td, b1).

Then the construction presented in Fig. 2 is a O(1/nc)-non-malleable code
for class F .

We present the proof of Theorem 5 in the full version [4].

4 Multi-Bit NMC Against Bounded Poly Adversaries

We describe the underlying components required to instantiate the generic
construction. The tampering class F corresponds to (uniform) tampering
functions that run in time O(ncA), where n is security parameter. The length of
the encoding is L := O(nc�), for some fixed constant c�. Therefore, the tampering
function is allowed to run in time LcA/c� with respect to the input length L.

Let n be the input length for the hard distribution described in Sect. 4.1.
We fix polynomials tψ(n) = ncψ , tcom(n) = nccom where cψ, ccom are constants
(both greater than cA) and superpolynomial time bounds Tcom(n), T ′

NIZK(n),
TZK(n). such that

– cψ � ccom,
– T ′

NIZK(n) � Tcom(n),
– TZK(n) is subexponential.

The distribution described in Sect. 4.1 is hard for tψ(n)-time adversaries.
m · λ � n is the length of the m-bit commitment using the commitment scheme
described in Sect. 4.2, n is set such that m · λ + n′ ≤ (m + 1) · λ ∈ o(n) (so n is
asymptotically larger than the length of the commitment–m · λ–plus the length
of the tag–n′.). These commitments are hiding for polynomial-time adversaries
and quasi-non-malleable for adversaries in BPtime(Tcom(n))

⋂
SIZE(tcom(n)).

The non-interactive simulatable proof system in Sect. 4.3 has soundness against
uniform, poly-time adversaries and zero knowledge against TZK(n) time
adversaries.

4.1 The Hard Distribution Db (instance length n, hard against
tψ (n)-time adversaries)

Theorem 6 ([1]). If E is hard for exponential size nondeterministic circuits,
then for every constant cψ > 1, there exists a constant d > 1 such that for every
sufficiently large n, there is a function ψ : {0, 1}n → {0, 1} that is (, n−cψ)-
incompressible for size ncψ circuits, where = n − d · log n. Furthermore, ψ is
computable in time poly(ncψ) ∈ O(nccom).

522 M. Ball et al.

Setting parameters n, cψ, d as above, we let Db be the uniform distribution over
x ← {0, 1}n, conditioned on ψ(x) = b. The theorem above immediately implies
the following:

Claim. Let n, cψ, d, ψ be as above, let F̃ be any Boolean function over (m+1)·λ ≤
n−d · log n < (1−α)n variables, and let C be a size ncψ circuit with input length
n and output length m. Then, over random choice of x ← {0, 1}n, F̃ ◦ C(x) has
correlation at most 1/n−cψ with ψ(x).

4.2 Commitment scheme C = (Com,Open) (length λ � n, hiding
for poly-time adversaries, and quasi non-malleable against
adversaries in BPtime(Tcom(n))

⋂
SIZE(tcom(n)))

We instantiate the commitment scheme C = (Com,Open) with the scheme
presented in [4]. Recall that the scheme has the following properties:

– Non-interactive with no-CRS.
– Perfectly binding,
– Quasi-non-malleable against in BPtime(Tcom(n))

⋂
SIZE(tcom(n)).

4.3 Non-Interactive Simulatable Proof System (Sound against
uniform ppt adversaries, ZK against adversaries running in
time TZK (n))

Let Π = (P,V,Sim) be a NIZK proof system for NP with no CRS (Construction
given in [4]) with soundness against uniform adversaries running in time
TNIZK(n). We additionally require that the trapdoor can be extracted by
uniform adversaries running in time T ′

NIZK(n).
Let C′ = (Com′,Open′) be a non-interactive, perfectly binding, commitment

scheme with no CRS that can be extracted in time TNIZK(n) and is hiding
against adversaries running in time TZK(n).

We also assume the existence of P-certificates with soundness against
adversaries running in time TNIZK(n).

We define the proof system ΠNI = (PNI,VNI,SimNI) for language L defined in
Sect. 3 as follows:

PNI: Recall that a witness w for statement s := ([xi]i∈[m], c, tag) ∈ L consists of
a string b = b1, . . . , bm and an opening d such that (1) Open(c, b, tag) = 1
and (2) for all i ∈ [m], ψ(xi) = bi. Given a statement s and witness w, let P
be a P-certificate that (1) and (2) hold.
Invoke P from proof system Π with the statement s′ = (s, com) ∈ L′ using
proof system Π, where L′ is the language consisting of strings (s, com) such
that com is a commitment to (w,P) and P is a P-certificate that (1) and (2)
hold for (s, w). P outputs a proof π′. PNI outputs proof π = com||π′.

Non-Malleable Codes Against Bounded Polynomial Time Tampering 523

VNI: On input statement s, proof π and language L: Parse π := com||π′. Run
the underlying verifier V on π′ for statement (s, com) and language L′ and
output whatever it does.

SimNI: On input (td, x), and language L: Set com to a commitment to 0 and
invoke the underlying Sim for Π with input (td, (s, com)) and language L′.

Note that given the P-certificate P , computing the NIZK proof using ΠNI

can be done in fixed polynomial time in the length of the statement (s, com).
Moreover, given the trapdoor td, a simulated proof can also be computed in fixed
polynomial time. The following claim is straightforward.

Claim. Given the above assumptions, ΠNI = (PNI,VNI,SimNI) is a NIZK
argument system for language L with zero knowledge against adversaries running
in time TZK(n) and trapdoor that can be extracted in time T ′

NIZK(n).

4.4 Main Theorem

Theorem 7. For any constant cA > 1, Π = (E,D) (presented in Fig. 2) is a
multi-bit, non-malleable code against (uniform) tampering functions that run in
time O(ncA), if parameters cψ, ccom, Tcom(n), T ′

NIZK(n), TZK(n) are chosen as
described above and the underlying components are instantiated in the following
way:

– For b ∈ {0, 1}, Db is the distribution from Sect. 4.1.
– C := (Com,Open) is the commitment scheme from Sect. 4.2.
– ΠNI := (PNI,VNI,SimNI) the simulatable proof system from Sect. 4.3.
– S := (Gen,Sign,Ver) is any one-time signature scheme secure against PPT

adversaries.

Proof. To prove the theorem, we need to show that the necessary properties
from Theorem 5 hold. We next go through these one by one.

Simulation of proofs.

1. Pr[g(CW0, f(CW0)) = 1]
negl(n)≈ Pr[g(CW1, f(CW1)) = 1],

2. Ψ(g,CW0, f(CW0),D(f(CW0)))
PPT,negl(n)≈ Ψ(g,CW1, f(CW1),D(f(CW1))),

where f ∈ F , CW0 ← E(b0) and CW1 ← E1(td, b0).
This follows by ZK property of ΠNI.

Simulation of Commitment.

1. Pr[g(CW1, f(CW1)) = 1]
negl(n)≈ Pr[g(CW2, f(CW2)) = 1],

2. Ψ(g,CW1, f(CW1),D(f(CW1)))
PPT,negl(n)≈ Ψ(g,CW2, f(CW2),D(f(CW2))),

where f ∈ F , CW1 ← E1(td, b0) and CW2 ← E2(td, b0).
This follows from hiding property of the commitment scheme C.

524 M. Ball et al.

Simulation Soundness.

Pr
r

[D(f(CW2)) �= D′(f(CW2)) ∧ g(CW2, f(CW2)) = 0] ∈ O(1/nccom),

where f ∈ F , CW2 ← E2(td, b0).
We begin by defining the following:

P0(n) := Pr[D(f(CW0)) �= D′(f(CW0)) ∧ g(CW0, f(CW0)) = 0],

where f ∈ F , CW0 ← E(b0)

P1(n) := Pr
r

[D(f(CW1)) �= D′(f(CW1)) ∧ g(CW1, f(CW1)) = 0],

where f ∈ F , CW1 ← E1(td, b0)

P2(n) := Pr
r

[D(f(CW2)) �= D′(f(CW2)) ∧ g(CW2, f(CW2)) = 0],

where f ∈ F , CW2 ← E2(td, b0).
We prove the following sequence of claims, which immediately imply the

simulation soundness property.

Claim. P0(n) ∈ negl(n).

Since D(f(CW1)) �= D′(f(CW1)) can only occur if the NIZK proof verifies,
but the statement being proved is false, this follows from the soundness of the
NIZK proof system ΠNI.

Claim. |P1(n) − P0(n)| ∈ negl(n).

This holds due to complexity leveraging–i.e. by appropriately setting
parameters, one can check whether the statement being proved is true or false
(by deciding whether x is in the support of D0 or D1 and by extracting from the
commitment scheme) without distinguishing a real from simulated proof since
TZK(n) is subexponential.

Claim. |P2(n) − P1(n)| ∈ O(1/nccom).

Proof. Assume |P2(n) − P1(n)| /∈ O(1/nccom), we will construct an adver-
sary/distinguisher (A,D) in BPtime(Tcom(n))

⋂
SIZE(tcom(n)) that breaks

the O(1/nccom)-non-malleability of commitment scheme C. Specifically, we must
show an adversary A, distinguisher D in BPtime(Tcom(n))

⋂
SIZE(tcom(n))

such that D distinguishes the output of mimA
C (b0) from mimA

C (0) with advantage
a(n) /∈ O(1/nccom).

A = (A1, A2) is specified as follows:
On input security parameter 1n, A1 does as follows:

– A1 generates keys (vk, sk) ← Gen(1n)
– A1 runs in uniform time T ′

NIZK(n) ≤ Tcom(n) to recover the trapdoor td of
the NIZK.

Non-Malleable Codes Against Bounded Polynomial Time Tampering 525

– A1 outputs tag := vk to its challenger as the desired tag and outputs td, sk
to A2.

On input td, sk, vk, c, A2 does as follows:

– For i ∈ [m], sample xi ∼ Dbi (in time m · poly(ncψ) ∈ O(nccom), where poly
is a fixed polynomial.

– Use td to generate a simulated proof T in fixed polynomial time and compute
σ ← Sign(sk, ([xi]i∈[m], c, T)) in fixed polynomial time.

– Compute f(vk, [xi]i∈[m], c, T, σ) = [vk′,x
′i]i∈[m], c

′, T ′, σ′).
– If the predicate g evaluates to 1, the signature σ′ or proof T does not verify,

output ⊥ (this computation takes fixed polynomial time).
– Otherwise, output (c′, out := [x

′i]i∈[m]). Note that in this case, vk′ �= vk
(corresponding to the tag of the commitment) since g evaluates to 0 and σ
verifies.

Distinguisher D receives the committed value v′ = v′
1, . . . , v

′
m underlying c′

(or receives ⊥) as well as out (the additional output of adversary A). D outputs
0 if for all i ∈ [m], v′

i = ψ(xi) (or if its input is ⊥) and outputs 1 otherwise
(computed in time m · poly(ncψ) ∈ O(nccom)).

Clearly,
Pr

c←Com(b0,vk)
[D(v′, out) = 1] = P2(n), and

Pr
c←Com(0,vk)

[D(v′, out) = 1] = P1(n)

Thus, we have that
∣
∣
∣
∣ Pr
c←Com(b0,vk)

[D(v′, out) = 1] − Pr
c←Com(0,vk)

[D(v′, out) = 1]
∣
∣
∣
∣ /∈ O(1/nccom).

Moreover, A,D are in BPtime(Tcom(n))
⋂

SIZE(tcom(n)). Thus, we obtain a
contradiction to the O(1/nccom) non-malleability of the commitment scheme
against adversaries, distinguishers in BPtime(Tcom(n))

⋂
SIZE(tcom(n)).

Hardness of Db relative to Alternate Decoding.

1. Pr[g(CW2, f(CW2)) = 1]
O(1/ncψ)≈ Pr[g(CW3, f(CW3)) = 1],

2. For every Boolean function, represented by a circuit F over m variables,

F ◦ D′(f(CW2))
stat,O(1/ncψ)≈ F ◦ D′(f(CW3)),

where f ∈ F , CW2 ← E2(td, b0) and CW3 ← E2(td, b1).
We consider a sequence of distributions where we switch the internal random

variables of E2 from xi ← Dbi
0
, for all i ∈ [m] to xi ← Dbi

1
, for all i ∈ [m].

Namely, for each i ∈ {0, . . . , m} we consider a distribution where for j ≤ i,
xj ← Dbi

1
and for j > i, xj ← Dbi

0
.

526 M. Ball et al.

We must show that (1) and (2) hold for each consecutive pair of distributions.
When considering the i-th consecutive pair, fix all random variables except the i-
th variable Xi to values x1, . . . ,xi−1,xi+1, . . . ,xm. Let Xi be a random variable
such that with probability 1/2, Xi ← Dbi

0
and with probability 1/2, Xi ← Dbi

1
.

Xi = Xi,γ where γ ← {0, 1}, and let random variable CWi denote the output
of E2 when using random variables x1, . . . ,xi−1,Xi,xi+1, . . . ,xm.

Since proving (1) is similar, but more straightforward than proving (2), we
defer the proof of (1) to [4] and proceed to prove (2) next.

To show (2), assume D′(f(CW2)) and D′(f(CW3)) have greater than 1/ncψ

statistical distance. This implies that there exists a distinguisher F (represented
by an m-bit Boolean function) such that F ◦D′(f(CW2)) is more than 1/ncψ -far
from F ◦ D′(f(CW3)). This implies that, for some i ∈ [m], the output of F ◦
D′(f(CWi)) is a(n) /∈ O(1/ncψ)-correlated with ψ(Xi). Note that, by definition,
F ◦D′(f(CWi)) = F ◦D′

2 ◦D′
1(f(CWi)), where D′

1 has output length (m + 1) · λ
(m · λ for the size of the non-malleable commitment and λ for the length of the
tag of the non-malleable commitment). We will show that D′

1(f(CWi)) can be
computed by a circuit C of size O(ncψ) (drawn from some distribution C over
circuits) with input Xi. We then use Claim 4.1, which says that if C is a size
O(ncψ) circuit taking inputs of length n bits and producing outputs of length
(m + 1) · λ < (1 − α)n-bits and F̃ is any (m + 1) · λ < (1 − α)n-bit input
Boolean function then the output of F̃ (C(Xi)) is at most O(1/ncψ)-correlated
with ψ(Xi), instantiating F̃ := F ◦D′

2. This yields a contradiction. Details follow.
Given non-uniform advice td, f , we construct the distribution of circuits C2

f,td.
A draw C ∼ C2

f,td as follows:

1. Sample signature keys (vk, sk) ← Gen(1n),
2. Sample random commitment to 0m: (c′,d′) ← Com(0m, tag := vk),
3. Sample x1, . . . ,xi−1 from Dbi

0
, and xi+1, . . . ,xm from Dbi

1
.

4. Output the following circuit C that has the following structure:
– hardcoded variables: f , x1, . . . ,xi−1, c′, [T

′β,i
j]β∈{0,1},i∈[m],j∈[n],

x1, . . . ,xi−1,xi+1, . . . ,xm.
– input: Xi.
– computes and outputs: D′

1(f(CWi)).
Given all the hardwired variables, computing CWi can be done in time O(ncψ)
since it only requires computing the simulated proof T and signature σ, which
can both be done in fixed polynomial time less than ncψ . Additionally, f can
be computed in time ncA < ncψ , and D′

1 can be computed in fixed polynomial
time less than ncψ , since it only involves verifying the signature σ and proof
T , which both take fixed polynomial time.

Acknowledgments. The first and fifth authors are supported in part by NSF grant
#CCF1423306 and the Leona M. & Harry B. Helmsley Charitable Trust. The first
author is additionally supported in part by an IBM Research PhD Fellowship.The
second and third authors are supported in part by NSF grants #CNS-1840893, #CNS-
1453045 (CAREER), by a research partnership award from Cisco and by financial
assistance award 70NANB15H328 from the U.S. Department of Commerce, National

Non-Malleable Codes Against Bounded Polynomial Time Tampering 527

Institute of Standards and Technology. The fourth author is supported by NSF grants
#CNS-1528178, #CNS-1514526, #CNS-1652849 (CAREER), a Hellman Fellowship,
the Defense Advanced Research Projects Agency (DARPA) and Army Research Office
(ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002
through Galois. The views expressed are those of the authors and do not reflect
the official policy or position of the Department of Defense, the National Science
Foundation, or the U.S. Government. This work was performed, in part, while the
first author was visiting IDC Herzliya’s FACT center and supported in part by ISF
grant no. 1790/13 and the Check Point Institute for Information Security.

References

1. Applebaum, B., Artemenko, S., Shaltiel, R., Yang, G.: Incompressible functions,
relative-error extractors, and the power of nondeterministic reductions. Comput.
Complex. 25(2), 349–418 (2016). https://doi.org/10.1007/s00037-016-0128-9

2. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time
simulations unlessexptime has publishable proofs. Comput. Complex. 3(4), 307–
318 (1993). https://doi.org/10.1007/BF01275486

3. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable codes
for small-depth circuits. FOCS IEEE Computer Society Press, October 2018 (to
appear). https://eprint.iacr.org/2018/207

4. Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-
malleablecodes against bounded polynomial time tampering. Cryptology ePrint
Archive, Report 2018/1015 (2018). https://eprint.iacr.org/2018/1015

5. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codesfor
bounded depth, bounded fan-in circuits. In: Fischlin and Coron [30], pp. 881–908

6. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes
from average-case hardness: AC0, decision trees, and streaming space-bounded
tampering. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III.
LNCS, vol. 10822, pp. 618–650. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7 20

7. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: 43rd FOCS, pp. 345–355. IEEE Computer Society
Press, November 2002

8. Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007). https://doi.org/10.1137/050641958

9. Barak, B., Pass, R.: On the possibility of one-message weak zero-knowledge. In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 121–132. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24638-1 7

10. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. Cryptology ePrint Archive, Report 2018/613 (2018). https://eprint.iacr.
org/2018/613

11. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y.,
Sangiorgi, D. (eds.) ICALP 2016. LIPIcs, vol. 55, pp. 31:1–31:14. Schloss Dagstuhl
(2016)

12. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes,
withtheir many tampered extensions. In: Wichs and Mansour [69], pp. 285–298

https://doi.org/10.1007/s00037-016-0128-9
https://doi.org/10.1007/BF01275486
https://eprint.iacr.org/2018/207
https://eprint.iacr.org/2018/1015
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1137/050641958
https://doi.org/10.1007/978-3-540-24638-1_7
https://eprint.iacr.org/2018/613
https://eprint.iacr.org/2018/613

528 M. Ball et al.

13. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th
ACM STOC, pp. 1171–1184. ACM Press, June 2017

14. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M.
(ed.) ITCS 2014, pp. 155–168. ACM, January 2014

15. Chung, K.M., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
P-certificates. In: FOCS 2013 [32] , pp. 50–59

16. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 10

17. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrentnon-
malleable commitments from one-way functions. In: Katz and Shacham [44], pp.
127–157

18. Coron, J.S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How to
build an ideal cipher: the indifferentiability of the Feistel construction. J. Cryptol.
29(1), 61–114 (2016)

19. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel isindifferen-
tiable from an ideal cipher. In: Fischlin and Coron [30], pp. 649–678

20. Dai, Y., Steinberger, J.: Indifferentiability of 8-round feistel networks. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 95–
120. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 4

21. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Rev. 45(4),
727–784 (2003)

22. Drucker, A.: Nondeterministic direct product reductions and the success
probability of SAT solvers. In: FOCS 2013 [32], pp. 736–745

23. Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In:
Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 711–720. ACM Press, May 2006

24. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS 2000 [31], pp. 283–293
25. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C.

(ed.) ICS 2010, pp. 434–452. Tsinghua University Press, January 2010
26. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleablecodes for space-

bounded tampering. In: Katz and Shacham [44], pp. 95–126
27. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and

key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 7

28. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

29. Feige, U., Lund, C.: On the hardness of computing the permanent of random
matrices. Comput. Complex. 6(2), 101–132 (1997)

30. Fischlin, M., Coron, J.-S. (eds.): EUROCRYPT 2016, Part II. LNCS, vol. 9666.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5

31. 41st FOCS. IEEE Computer Society Press, November 2000
32. 54th FOCS. IEEE Computer Society Press, October 2013
33. 58th FOCS. IEEE Computer Society Press (2017)
34. Fortnow, L., Vadhan, S.P. (eds.): 43rd ACM STOC. ACM Press, June 2011
35. Goldreich, O., Wigderson, A.: Derandomization that is rarely wrong from short

advice that is typically good. In: Rolim, J.D.P., Vadhan, S. (eds.) RANDOM 2002.
LNCS, vol. 2483, pp. 209–223. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45726-7 17

https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-662-49896-5
https://doi.org/10.1007/3-540-45726-7_17
https://doi.org/10.1007/3-540-45726-7_17

Non-Malleable Codes Against Bounded Polynomial Time Tampering 529

36. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Fortnow and Vadhan [34], pp. 695–704

37. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Wichs and Mansour [69], pp. 1128–1141

38. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: 55th FOCS, pp. 41–50. IEEE Computer Society Press, October
2014

39. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

40. Gutfreund, D., Shaltiel, R., Ta-Shma, A.: Uniform hardness versus randomness
tradeoffs for Arthur-Merlin games. Comput. Complex. 12(3–4), 85–130 (2003)

41. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic
applications. SIAM J. Comput. 39(5), 1667–1713 (2010)

42. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

43. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits:
derandomizing the XOR lemma. In: 29th ACM STOC, pp. 220–229. ACM Press,
May 1997

44. Katz, J., Shacham, H. (eds.): CRYPTO 2017, Part II. LNCS, vol. 10402. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0

45. Khurana, D.: Round optimal concurrent non-malleability from polynomial
hardness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp.
139–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 5

46. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In:
FOCS 2017 [33], pp. 564–575

47. Klivans, A.R., Van Melkebeek, D.: Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput. 31(5),
1501–1526 (2002)

48. Lin, H., Pass, R.: Non-malleability amplification. In: Mitzenmacher, M. (ed.) 41st
ACM STOC, pp. 189–198. ACM Press, May/June 2009

49. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: Fortnow and Vadhan [34], pp. 705–714

50. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: FOCS 2017 [33], pp. 576–587

51. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 31

52. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
241–254. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 15

53. Lipton, R.J.: New directions in testing. In: Feigenbaum, J., Merritt, M. (eds.)
Distributed Computing and Cryptography, Proceedings of a DIMACS Workshop,
Princeton, New Jersey, USA, 4–6 October 1989, pp. 191–202 (1989)

54. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

55. Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin games using
hitting sets. Comput. Complex. 14(3), 256–279 (2005)

56. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-319-63715-0
https://doi.org/10.1007/978-3-319-70503-3_5
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/3-540-39200-9_15

530 M. Ball et al.

57. Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2),
149–167 (1994). https://doi.org/10.1016/S0022-0000(05)80043-1

58. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable
codes in the split-state model from minimal assumptions. Cryptology ePrint
Archive, Report 2018/542 (2018). https://eprint.iacr.org/2018/542

59. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: 46th FOCS, pp.
563–572. IEEE Computer Society Press, October 2005

60. Pass, R., Rosen, A.: New and improved constructions of non-malleable
cryptographic protocols. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp.
533–542. ACM Press, May 2005

61. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 638–655. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13190-5 32

62. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

63. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press,
October 1999

64. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new
pseudorandom generator. J. ACM (JACM) 52(2), 172–216 (2005)

65. Shaltiel, R., Umans, C.: Pseudorandomness for approximate counting and
sampling. Comput. Complex. 15(4), 298–341 (2006)

66. Shaltiel, R., Umans, C.: Low-end uniform hardness versus randomness tradeoffs
for AM. SIAM J. Comput. 39(3), 1006–1037 (2009)

67. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR
Lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001). http://www.sciencedirect.
com/science/article/pii/S0022000000917306

68. Trevisan, L., Vadhan, S.P.: Extracting randomness from samplable distributions.
In: FOCS 2000 [31], pp. 32–42

69. Wichs, D., Mansour, Y. (eds.): 48th ACM STOC. ACM Press, June 2016
70. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In:

23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3–5 November 1982, pp. 80–91. IEEE Computer Society (1982). https://doi.
org/10.1109/SFCS.1982.45

https://doi.org/10.1016/S0022-0000(05)80043-1
https://eprint.iacr.org/2018/542
https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1007/978-3-642-13190-5_32
http://www.sciencedirect.com/science/article/pii/S0022000000917306
http://www.sciencedirect.com/science/article/pii/S0022000000917306
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45

Continuous Non-Malleable Codes
in the 8-Split-State Model

Divesh Aggarwal1, Nico Döttling2, Jesper Buus Nielsen3(B), Maciej Obremski1,
and Erick Purwanto1

1 National University of Singapore, Singapore, Singapore
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

3 Aarhus University, Aarhus, Denmark
jbn@cs.au.dk

Abstract. Non-malleable codes (NMCs), introduced by Dziembowski,
Pietrzak and Wichs [20], provide a useful message integrity guarantee in
situations where traditional error-correction (and even error-detection) is
impossible; for example, when the attacker can completely overwrite the
encoded message. NMCs have emerged as a fundamental object at the
intersection of coding theory and cryptography. In particular, progress in
the study of non-malleable codes and the related notion of non-malleable
extractors has led to new insights and progress on even more fundamental
problems like the construction of multi-source randomness extractors.
A large body of the recent work has focused on various constructions
of non-malleable codes in the split-state model. Many variants of NMCs
have been introduced in the literature, e.g., strong NMCs, super strong
NMCs and continuous NMCs. The most general, and hence also the most
useful notion among these is that of continuous non-malleable codes,
that allows for continuous tampering by the adversary. We present the
first efficient information-theoretically secure continuously non-malleable
code in the constant split-state model. We believe that our main technical
result could be of independent interest and some of the ideas could in
future be used to make progress on other related questions.

1 Introduction

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [20],
provide a useful message integrity guarantee in situations where traditional
error-correction (and even error-detection) is impossible; for example, when the
attacker can completely overwrite the encoded message. Non-malleable codes
have emerged as a fundamental object at the intersection of coding theory and
cryptography.

Informally, given a tampering family F , a non-malleable code (Enc,Dec)
against F encodes a given message m into a codeword c ← Enc(m) in a way

This research was further partially funded by the Singapore Ministry of Education and
the National Research Foundation under grant R-710-000-012-135.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 531–561, 2019.
https://doi.org/10.1007/978-3-030-17653-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_18

532 D. Aggarwal et al.

that, if the adversary modifies c to c′ = f(c) for some f ∈ F , then the the mes-
sage m′ = Dec(c′) is either the original message m, or a completely “unrelated
value”. Formally, we require that if m′ �= m, then m′ can be simulated using just
the tampering function f , but without knowing anything about the tampered
codeword c′.

As has been shown by the recent progress [1,3–6,11–14,19–21,23,27] [2,7–
9,26], non-malleable codes aim to handle a much larger class of tampering func-
tions F than traditional error-correcting or error-detecting codes, at the expense
of potentially allowing the attacker to replace a given message m by an unrelated
message m′. Non-malleable codes are useful in situations where changing m to an
unrelated m′ is not useful for the attacker (for example, when m is the secret key
for a signature scheme.)

Continuous Non-malleable Codes. It is clearly realistically possible that the
attacker repeatedly tampers with the device and observes the outputs. The def-
inition in [20] allows the adversary to tamper the codeword only once. We call this
one-shot tampering. Faust et al. [21] consider a stronger model where the adver-
sary can iteratively submit tampering functions fi and learn mi = Dec(fi(c)). We
call this the continuous tampering model. This stronger security notion is needed
in many settings, for instance when using non-malleable codes to make tamper
resilient computations on von Neumann architectures [22]. As mentioned in [25],
non-malleable codes can provide protection against these kind of attacks if the
device is allowed to freshly re-encode its state after each invocation to make sure
that the tampering is applied to a fresh codeword at each step. After each execution
the entire content of the memory is erased. While such perfect erasures may be fea-
sible in some settings, they are rather problematic in the presence of tampering.
Due to this reason, Faust et al. [21] introduced an even stronger notion of non-
malleable codes called continuous non-malleable codes where security is achieved
against continuous tampering of a single codeword without re-encoding. Some
additional restrictions are, however, necessary in the continuous tampering model.
If the adversary was given an unlimited budget of tampering queries, then, given
that the class of tampering functions is sufficiently expressive (e.g. it allows to over-
write single bits of the codeword), the adversary can efficiently learn the entiremes-
sage just by observing whether tampering queries leave the codeword unmodified
or lead to decoding errors, see e.g. [24].

To overcome this general issue, [21] assume a self-destruct mechanism which
is triggered by decoding errors. In particular, once the decoder outputs a spe-
cial symbol ⊥ the device self-destructs and the adversary loses access to his
tampering oracle. This model still allows an adversary many tamper attempts,
as long as his attack remains covert. Jafargholi and Wichs [25] considered the
additional aspect of whether tampering is persistent in the sense that the tam-
pering is always applied to the current version of the tampered codeword, and
all previous versions of the codeword are lost. The alternative definition con-
siders non-persistent tampering where the device resets after each tampering,
and the tampering always occurs on the original codeword. In this work, we
will exclusively focus on continuous non-malleable codes in the non-persistent

Continuous Non-Malleable Codes in the 8-Split-State Model 533

self-destruct model. We shorthand such codes by sdCNMC. Note that in the
split-state model discussed below, persistent tampering can be simulated by
non-persistent tampering by using the tampering function which first repro-
duces previous tampering and then applies the new tampering function. Hence
non-persistent tampering is a strictly stronger model in the split-state model.

Split-State Model. Although any kind of non-malleable codes do not exist if the
family of “tampering functions” F is completely unrestricted,1 they are known
to exist for many large classes of tampering families F .

In [20] the authors considered one such natural family of tampering functions.
They gave a construction of an efficient code which is non-malleable with respect
to independent, bit-wise tampering. Later works [1,3–6,12–14,19,21,26,27] pro-
vided efficient constructions in a stronger model called the t-split state model
where the codeword is split into t parts called states, which can each be tampered
arbitrarily but independently of the other states. If the codeword has length n,
then the result of [20] can be seen as a result for the n-state model. The physical
motivation for this model is that one might place the different states on physi-
cally separated memories and hope this makes it impossible to tamper with one
part in a way which depends on the value of the other part. Clearly, one would
like t to be as small as possible.

While some of the above-mentioned results achieve security only against
computationally bounded adversaries, we focus on security in the information-
theoretic setting, i.e., security against unbounded adversaries. The known results
in the information-theoretic setting can be summarized as follows. First, [20]
showed the existence of (strong) non-malleable codes, and this result was
improved by [13] who showed that the optimal rate of these codes is 1/2. Faust
et al. [21] showed the impossibility of continuous non-malleable codes against
non-persistent 2-split-state tampering. Later [25] showed that continuous non-
malleable codes exist in the split-state model if the tampering is persistent,
and [7] gave an efficient construction of such codes.

There have been a series of recent results culminating in constructions of
efficient non-malleable codes in the split-state model [4,5,11,12,19,26].

Continuous Non-Malleable Codes in the Split-State Model and Our Result. Faust
et al. [21] constructed an sdCNMC in the 2-state model which is secure against
computationally bounded adversaries. A recent result [7] gave a construction
of non-malleable codes secure against persistent continuous tampering. It was
shown in [21] that it is impossible to construct an information theoretic sdCNMC
for the much more interesting 2-state model with non-persistent tampering. This
leaves the following question open.

Question 1. Does there exist a code that is non-malleable in the t-split non-
persistent continuous tampering model for some constant t > 2?
1 In particular, F should not include “re-encoding functions” f(c) = Enc(f ′(Dec(c)))

for any non-trivial function f ′, as m′ = Dec(f(Enc(m))) = f ′(m) is obviously related
to m.

534 D. Aggarwal et al.

In [16] an sdCNMC was constructed in the bit-wise tampering model, which
can be seen as an n-state model. However, very little progress has been made
towards resolving Question 1. The only result that achieves some sort of non-
malleable codes secure against persistent continuous tampering is the result by
Chattopadhyay, Goyal, and Li [11]. They achieve this by constructing a so-called
many-many non-malleable code in the 2-split state model. Their construction
achieves non-malleability as long as the number of rounds of tampering is at
most nγ for some constant γ < 1, where n is the length of the codeword. Their
result has a natural barrier and it is unlikely that their ideas can be used to
achieve a construction that allows more than O(n) rounds of tampering. This
is both because their construction does not allow self-destruct and is for the
2-split state model, and it is known [7,21] that continuous non-malleable codes
with ω(n) rounds of tampering is impossible both for the two split-state model
and for the constant split-state model that does not allow self-destruct.

We construct an information-theoretic sdCNMC for the 8-state model.

Theorem 1 (Informal). Let k be the security parameter. There exists an
efficient, explicit construction of non-persistent self-destruct continuous non-
malleable codes which encodes messages of length k bits into 8 states, each of
size O(k log k). The code tolerates 2Ω(k) tampering attempts and is secure except
with probability 2−Ω(k).

Overview of the Construction and Techniques. In this section, we will provide
an overview of our construction and the main ideas for its security proof. Our
construction combines two Hadamard extractors with a 3-source non-malleable
extractor. The construction is given as follows.

Our Construction. Let K be a finite field of size 2n, which is an extension
field F of size 2n/� for an appropriately chosen divisor � of n. Our construction
uses the following:

– A three source non-malleable extractor nmExt : K
3 → {0, 1}3k with k =

Θ(n/ log n), where the min-entropy for each source is required to be at least
(1 − δ)n, for some constant δ,

– A 2-source Hadamard extractor 〈·, ·〉 : (K3) × (K3) → K, and
– A 2-source Hadamard extractor 〈·, ·〉 : (F3�) × (F3�) → F.

Let ‖ denote concatenation of strings. We define

nmExt′ : ({0, 1}n)3 → {0, 1}3k ∪ {⊥}
as nmExt′(x1, x2, x3) = nmExt(x1, x2, x3) if nmExt(x1, x2, x3) = 02k‖y for some
y ∈ {0, 1}k, and ⊥, otherwise.

Encoding: Our encoding procedure takes as input a message m ∈ {0, 1}k, and
does the following.

– Sample X = (X1,X2,X3) from (K \ {0})3 uniformly such that
nmExt(X) = 02k‖m.

Continuous Non-Malleable Codes in the 8-Split-State Model 535

– Sample S = (S1, S2, S3) from (K \ {0})3 uniformly such that nmExt(S) =
02k‖r for some r in {0, 1}k.

– V = 〈X,S〉K.
– W = 〈X,S〉F.
– Output the eight parts (X1,X2,X3, S1, S2, S3, V,W).

Decoding: The decoding procedure is canonical, i.e., on input (x, s, v, w), we
first check if x and s pass the two inner product checks and are in the correct
domains (i.e. all components non-zero), we try to decode x and s and if neither
reports an error we return the decoded value of x.

The adversary, in each round, will choose some functions, f1, f2, f3, g1, g2,
g3, h1 : K → K, h2 : F → F and will apply these functions to the eight
respective parts. Let f(X) denote (f1(X1), f2(X2), f3(X3)) and g(S) denote
(g1(S1), g2(S2), g3(S3)) In order to prove (continuous) non-malleability of the
construction, we need to show that even if we collect all the messages obtained
after decoding the tampered codewords in multiple rounds excluding any round
where all the chosen functions are identity functions (in this case decoding the
tampered codeword yields the original message), this should not reveal any useful
information about the original message. To formalize this, we define the tam-
pering experiment to output a special symbol same whenever all functions are
identity functions. Then, it is required to prove that for any two messages, the
output distributions of the corresponding tampering experiments are statisti-
cally close to each other. In fact, in this work, we consider a stronger notion
of continuous non-malleable codes called super-strong continuous non-malleable
codes in which every time the adversary tampers (c → c′), c′ �= c, and c′ decodes
to a valid message, the adversary will learn the whole tampered codeword c′.

Proof Ideas. Before looking at the ideas behind the security of our construc-
tion, it is instructive to revisit the reason behind the impossibility of construc-
tions for 2-state information-theoretic continuous non-malleable codes [21]. The
main idea behind the attack given in [21] was to find a triple �, r0, r1 such that
Dec(�, r0),Dec(�, r1) �= ⊥. Given �, r0 and r1, the attack proceeds by overwriting
the first state with �, while the second state is overwritten by rb where b is the
first bit of the second state, thereby revealing one bit of information. Repeating
this idea for different bits of the codeword, after a linear number of rounds, the
adversary will recover the entire codeword.

In our construction, if the adversary decides to preserve a significant amount
of entropy of the original codeword when tampering, i.e., the tampering function
is close to being bijective, then the non-malleability of nmExt should be sufficient
to achieve not just non-malleability but error detection: nmExt(f(X)) is close to
being uniform and independent of nmExt(X) by the non-malleability of nmExt,
and hence the tampered codeword decodes to ⊥ with high probability. However,
if the adversary decides to carry only a very small amount of entropy into the
tampered codeword, there is nothing preventing him from learning some small
amount of information as in the attack by [21] described above. It is not possible

536 D. Aggarwal et al.

to reliably detect such low entropy tampering. But we can show that its prob-
ability of learning information is always associated with a probability of being
detected. Understanding this relation is at the core of the proof.

As mentioned above, the tampering experiment for our code is of the super-
strong type, i.e., every time the adversary tampers (C → C ′), C ′ �= C, and
C ′ decodes to a valid message, the adversary will learn the whole tampered
codeword C ′. Notice that given

C ′ = (f1(X1), f2(X2), f3(X3), g1(S1), g2(S2), g3(S3), h1(V), h2(W))

all the adversary learns is that

– Xi ∈ Xi for i = 1, 2, 3
– Si ∈ Si for i = 1, 2, 3
– V ∈ V
– W ∈ W,

where X × S × V × W is the preimage of c′ for the function
(f1, f2, f3, g1, g2, g3, h1, h2). In round r of the tampering experiment the adver-
sary will learn that the codeword belongs to some domain X (r) × S(r) × V(r) ×
W(r), and will progressively try to make these sets as small as possible. In the [21]
attack described above, the domain size is reduced by a factor of two each time,
eventually revealing the entire codeword. As long as we can make sure that the
domain doesn’t become too small, we will be able to argue that if the adversary
wants to learn more information (make the set smaller) there is a significant
risk of getting detected. We sketch below the idea for showing this for the first
round r = 1. The argument for the following rounds follows by a slightly tricky
inductive argument.

Depending on the functions f1, f2, f3, g1, g2, g3, we partition each of
X1,X2,X3, S1,S2,S3 which induces a partition on the whole domain. For instance
X1 is partitioned into � + 1 parts for some parameter � = ω(1), as follows.

– X1,0 is the part where the function f1 is identity, i.e., {x ∈ X1 : f1(x) = x}.
– For i = 1, . . . , �, X1,i is defined such that f1 has between 2n(i−1)/� and 2n·i/�

preimages.

This implies that for each partition, the entropy of X1 conditioned on f1(X1) is
nearly fixed (upto an additive term n/� = o(n)). The other sets X2,X3,S1,S2,S3

are partitioned similarly. Each partition is of the form

X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j2 ,S3,j3 ,V,W .

Type−1 corresponds to i1 = i2 = i3 = j1 = j2 = j3 = 0.
Type−2 contains all partitions for which the following is true: (f(X) �= X or

g(S) �= S) and (f(X), g(S)) contains almost full information about (X,S),
i.e., all tampering functions are close to bijective or identity, but at least one
tampering function is not the identity.

Continuous Non-Malleable Codes in the 8-Split-State Model 537

Type−3 contains all partitions which do not fall into any of above classes (in
particular it means that (f(X), g(S)) lost quite a bit information about the
original (X,S)), but (f(X), g(S)) still carries a substantial/medium amount
of information/entropy about (X,S).

Type−4 contains all partitions which do not fall into any of above classes but
only at least one of the (fi(Xi), gj(Sj)) still carries some entropy.

Type−5 contains the partition where (f(X), g(S)) is close to constant, i.e.,
i1 = i2 = i3 = j1 = j2 = j3 = �.

Analysis of the tampering for each type of partition. In this section, we often
implicitly assume that X is independent of S in order to simplify the informal
argument, even though there is some limited dependence introduced by the fact
that 〈X,S〉K ∈ V, etc. The full proofs shows how to handle the dependence. We
show that when the codeword c falls into either class 2, 3 or 4, the tampering
will be detected with probability 1 − ε for a negligible ε:

In Type−2: On this part of the domain the adversary will attempt to apply
close to bijective tampering functions. Either this part of the domain will have
negligible size, or the adversary will be detected by the check for nmExt′.

In Type−3: We will argue that the check 〈f(X), g(S)〉F = h2(W) will fail.
To see this, notice that the adversary applied non-bijective tampering, and
the vectors f(X), g(S) have a substantial amount of entropy. The argument
below follows from the strong extraction properties of the inner-product
extractor: The vectors f(X) and g(S) do not carry enough information
about X,S, i.e., one of ˜H∞(X|f(X)) or ˜H∞(S|g(S)) is not too small. Thus
〈X,S〉F and 〈f(X), g(S)〉F are almost independent. However f(X), g(S) have
enough entropy to keep 〈f(X), g(S)〉F uniform. The adversary will not be
able to guess 〈f(X), g(S)〉F even given 〈X,S〉F. Thus he will fail at the check
h2(〈X,S〉F) = 〈f(X), g(S)〉F and this tampering will be detected.

In Type−4: The reasoning is quite similar to Type−3, but we use the check on
〈f(X), g(S)〉K = h1(V). The adversary applied far-from-bijective tampering,
and the vectors f(X), g(S) still have some small amount of entropy. The argu-
ment below follows from the strong extraction properties of the inner product
extractor: The vectors f(X) and g(S) only carry a very small amount of infor-
mation about X,S. Thus 〈X,S〉K and 〈f(X), g(S)〉K are almost independent.
However f(X), g(S) still have enough entropy to keep 〈f(X), g(S)〉K unpre-
dictable (not uniform, but with substantial min-entropy). The adversary will
not be able to guess 〈f(X), g(S)〉K even given 〈X,S〉K, thus he will fail at the
check h1(〈X,S〉K) = 〈f(X), g(S)〉K and this tampering will be detected.

This leads to the conclusion that the only way that the adversary can learn
something and survive (i.e. not get detected) is if the original codeword falls into
Type−1 or Type−5. If the codeword was in Type−1, the tampering experiment
will output same (unless one of the inner product checks fails and the tampered
codeword decodes to ⊥). If the codeword was in Type−5, then the output will be
some codeword c′, and the adversary will learn whether the codeword is Type−1
or Type−5 with respect to the choice of functions f and g. Moreover, on Type−5

538 D. Aggarwal et al.

there might be close-to-constant but non-constant functions (which, if he does
not get detected, potentially provide additional knowledge to the adversary).

Even if the adversary is in a Type−1 or Type−5 partition and succeeds to
go to the next round without causing self-destruct, this is not a reason to worry
as long as the size of the domain remains large enough. On the other hand, if
the adversary can manage to land himself in a small enough domain, this means
that the adversary already obtained a lot of information about the codeword,
and might be able to recover the message. However, if such small domains are
few and scarce, then the probability that the adversary lands in such a domain is
quite small. The main cause of concern is if there are many such small domains
that cover a significant fraction of the ambient space. In the following, we show
that this is not possible.

Type−1 or Type−5: Notice that the adversary is in a Type−1 or a Type−5
partition if either each of i1, i2, i3, j1, j2, j3 is 0, or each is equal to �. Since the
indices i1, i2, i3, j1, j2, j3 are independently distributed random variables, a
simple application of the Cauchy-Schwarz inequality shows that

√
p1+

√
p5 ≤

1, where p1 is the probability of being in a Type−1 partition, and p5 is the
probability of being a Type−5 partition.

Type−5: Just like in the case of Type−4 partitions, we have that the vectors
f(X) and g(S) only carry a very small amount of information about X,S.
Thus 〈X,S〉K and 〈f(X), g(S)〉K are nearly independent. The Type−5 parti-
tion corresponds to the domain where each of f1, f2, f3, g1, g2, g3 is close to a
constant and can be further subdivided such that for each of these subparti-
tions, each of f1, f2, f3, g1, g2, g3 output a fixed value. Intuitively speaking, if
say, each of these functions takes two different values then there are poten-
tially 64 different values of 〈f(X), g(S)〉K (although some of these 64 values
could be the same), and so the function h1 cannot guess this value with suffi-
ciently large probability, unless all the inner products magically become equal.
Formally, we show in this case that p

7/8
5,1 +· · ·+p

7/8
5,d ≤ p

7/8
5 , where p5,1, . . . , p5,d

are the respective probabilities of being in various subpartitions of Type−5
such that h1(〈X,S〉K) = 〈f(X), g(S)〉K holds within these subpartitions.

Together, these results imply that

q
7/8
1 + q

7/8
2 + · · · + q

7/8
d+1 ≤ 1, (1)

where q1, . . . , qd+1 is a renaming of p1, p5,1, . . . , p5,d. A simple application of
Hölder’s inequality implies that for any ε ≥ 0,

∑

qi≤ε

qi =
∑

qi≤ε

q
7/8
i · q

1/8
i ≤

∑

qi≤ε

q
7/8
i · ε1/8 ≤ ε1/8.

For an appropriately chosen ε, this implies that it is not possible that there
are many small domains on which the decoder does not self-destruct, and their
union is large. This concludes the intuitive overview of our proof.

Continuous Non-Malleable Codes in the 8-Split-State Model 539

Conclusions and Open Questions. We give a construction of a 2−Ω(k)-non-
malleable code from k bit messages to O(k log k) bit codewords in the 8-split
state model secure against continuous tampering. The main building block of
our construction is a non-malleable 3-source extractor construction from [26],
and the Hadamard 2-source extractor.

Prior results achieved continuous non-malleability only for a sublinear num-
ber of rounds [11]. The main reason for difficulty in achieving non-malleable
codes against continuous tampering is that the adversary can potentially obtain
useful information in each round, and even if one bit of information about the
codeword is obtained in each round, this is already catastrophic and does not
allow non-malleability beyond a linear number of rounds.

Our idea of proving that our construction achieves non-malleability for a
large number of rounds is that we ensure that whenever the adversary tampers
to gain useful information about the codeword, there is a risk of a decoding error
resulting in self-destruct. Central to our proof strategy is what we believe a very
novel technique where we obtained and used an inequality of the form (1) to
bound the statistical distance between two random experiments. In particular,
our main technical result in Theorem 5 where we bound the statistical distance
between two random variables by (ρ

q)c + ε, where q is proportional to the size of
the domain, c is a constant, and ρ, ε are appropriately chosen parameters, might
seem very unusual, but appears naturally in our proof. This, we believe, might
be of independent interest.

The following are natural questions left open by our work.

1. Improve the rate of our code.
2. Improve the number of split states to a number smaller than 8.

The first of these questions can be resolved immediately by a non-malleable
extractor with parameters (output length) better than the one given in [26]. As
for the second question, our construction has a natural barrier and the number
of states can likely not be improved by any simple modification. However, we
hope that our techniques can lead to new insights that might help resolve this
question.

Lastly, in the recent years, progress related to non-malleable codes has led
to useful ideas for solving even more fundamental problems like constructing
better two-source or multi-source extractors. We hope that our construction
and/or techniques can find other similar applications.

2 Preliminaries

All logarithms are to the base 2. For any function h : X → Y, we define h−1(y) :=
{x ∈ X : h(x) = y}. For a set S, we let US denote the uniform distribution over
S. For an integer m ∈ N, we let Um denote the uniform distribution over {0, 1}m.
We denote two independent bitstrings of length m by Um, U ′

m. For a distribution
or random variable X we write x ← X to denote the operation of sampling a
random x according to X. For a set S, we write s ← S as shorthand for s ← US .

540 D. Aggarwal et al.

For a random variable Z, f(Z)|Z∈C denotes the distribution f(Z) conditioned
on the event that Z ∈ C.

2.1 Entropy and Statistical Distance

The min-entropy of a random variable X is defined as H∞(X) def=
− log(maxx Pr[X = x]). We say that X is an (n, k)-source if X ∈ {0, 1}n and
H∞(X) ≥ k. For X ∈ {0, 1}n, we define the entropy rate of X to be H∞(X)/n.
We also define average (aka conditional) min-entropy of a random variable X
conditioned on another random variable Z as

˜H∞(X|Z) def= − log
(

Ez←Z

[

max
x

Pr[X = x|Z = z]
])

= − log
(

Ez←Z

[

2−H∞(X|Z=z)
])

where Ez←Z denotes the expected value over z ← Z. We have the following
lemma.

Lemma 1 ([18]). Let (X,W) be some joint distribution. Then,

– For any s > 0, Prw←W [H∞(X|W = w) ≥ ˜H∞(X|W) − s] ≥ 1 − 2−s.
– If Z has at most 2� possible values, then ˜H∞(X|(W,Z)) ≥ ˜H∞(X|W) − �.

Lemma 2. Let Z be distributed over a set Z and let h be an arbitrary function.
If |h−1(h(z)) ∩ Z| ≤ m then H∞(h(Z)) ≥ log |Z|

m .

Proof. Since for any h(z), for z ∈ Z, the number of z′ ∈ Z that maps to h(z)
is at most m, we get that the number of distinct h(z) is ≥ |Z|

|h−1(h(z))∩Z| ≥ |Z|
m .

Thus, H∞(h(Z)) ≥ log |Z|
m . ��

The statistical distance between two random variables W and Z distributed over
some set S is

Δ(W ;Z) := max
T⊆S

(|W (T) − Z(T)|) =
1
2

∑

s∈S

|W (s) − Z(s)|.

Note that Δ(W ;Z) = maxD(Pr[D(W) = 1] − Pr[D(Z) = 1]), where D is a
probabilistic function. We say W is ε-close to Z, denoted W ≈ε Z, if Δ(W ;Z) ≤
ε. We write Δ(W ;Z|Y) as shorthand for Δ((W,Y); (Z, Y)). The following is
folklore, and is easy to see.

Lemma 3. For any two random variables X,Y , and any randomized function
f , we have that Δ(f(X); f(Y)) ≤ Δ(X;Y).

Continuous Non-Malleable Codes in the 8-Split-State Model 541

2.2 Extractors

An extractor [28] can be used to extract uniform randomness out of a weakly-
random value which is only assumed to have sufficient min-entropy. Our defini-
tion follows that of [18], which is defined in terms of conditional min-entropy.

Definition 1 (Extractors). An efficient function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is an (average-case, strong) (k, ε)-extractor, if for all X,Z such that X

is distributed over {0, 1}n and ˜H∞(X|Z) ≥ k, we get

Δ((Z, Y,Ext(X;Y)) ; (Z, Y, Um)) ≤ ε

where Y ≡ Ud denotes the coins of Ext (called the seed). The value L = k − m
is called the entropy loss of Ext, and the value d is called the seed length of Ext.

Definition 2 (Two-Source Extractors). A function Ext : X1 × X2 → Z is
called a (k, ε)-two-source extractor, if it holds for all tuples ((X1, Y1), (X2, Y2))
for which (X1, Y1) is independent of (X2, Y2) and ˜H∞(X1|Y1)+ ˜H∞(X2|Y2) ≥ k
that

Δ(Ext(X1,X2) ; UZ | Y1, Y2) ≥ ε.

A well-known flexible two-source extractor is the Hadamard extractor or inner-
product extractor.

Lemma 4 ([5,15]). For any finite field Fq of cardinality q and any positive
integer n, the function Ext : Fn

q × F
n
q → Fq given by

Ext(X1,X2) := 〈X1,X2〉 = X1,1 · X2,1 + · · · + X1,n · X2,n

is a (k, ε)-two-source extractor for any k ≥ (n + 1) log q + 2 log
(

1
ε

)

.

We denote the above inner product by 〈X1,X2〉Fq
. We will drop the subscript if

the field is clear from the context.
We will also use non-malleable t-source extractor.

Definition 3 (Non-Malleable t-Source Extractor). A function nmExt :
(X)t → Z is called a t-source (k, ε)-non-malleable extractor if the following
property holds. For all independently distributed tuples ((X1, Y1), (X2, Y2), . . . ,
(Xt, Yt)) such that ˜H∞(Xi|Yi) ≥ k, and for any split-state tampering function
f = (f1, . . . , ft), fi : X → X such that there exists fi without fixed points, it
holds that

Δ
(

nmExt(X) ; UZ | nmExt(f(X)), Y1, . . . , Yt

) ≤ ε,

where X = (X1, . . . , Xt), and f(X) = (f1(X1), . . . , ft(Xt)).

The following result gives the best known 2-source non-malleable extractor.

Theorem 2 ([26]). For any finite field K of cardinality 2n, there exists a con-
stant δ� ∈ (0, 1/3), and a function nmExt2 : K

2 → {0, 1}3k such that the
function nmExt2 is a 2-source ((1 − δ�)n, 2−1000k) non-malleable extractor with
k = Θ(n/ log n). Moreover, it is efficiently pre-image sampleable.

542 D. Aggarwal et al.

For this paper, we need a 3-source non-malleable extractor. The construction
from the above result can be easily modified to obtain a 3-source non-malleable
extractor.

Theorem 3. For any finite field K of cardinality 2n, there exists a constant
δ ∈ (0, 1/3), and a function nmExt : K3 → {0, 1}3k such that the function nmExt
is a 3-source ((1 − δ)n, 2−1000k) non-malleable extractor with k = Θ(n/ log n).
Moreover, it is efficiently pre-image sampleable.

Proof. Let (X1, Y1), (X2, Y2), (X3, Y3) be as in Definition 3. Consider the follow-
ing construction.

nmExt(X1,X2,X3) := nmExt2(X1,X2) ⊕ nmExt2(X2,X3),

where by ⊕, we mean the bitwise XOR function. Let the functions applied to
the three parts be f1, f2, f3, one of which has no fixed points. Without loss
of generality, let f1 or f2 be the function with no fixed points. We have that
˜H∞(X1 | Y1) ≥ n(1 − δ�), and

˜H∞(X2|Y2, nmExt2(X2,X3), nmExt2(f2(X2), f3(X3))) ≥ n−n·δ−6k ≥ n(1−δ�),

where we assumed that δ = δ�/2, and δn ≥ 12k. Thus, the statistical dis-
tance between nmExt2(X1,X2) and U3k conditioned on nmExt2(f1(X1), f2(X2)),
Y1, Y2, nmExt2(X2,X3), and nmExt2(f2(X2), f3(X3)) is at most 2−1000k, which
implies using Lemma 3 that

Δ (nmExt(X1, X2, X3) ; U3k | nmExt(f1(X1), f2(X2), f3(X3)) Y1, Y2, Y3) ≤ 2−1000k.

Note that we can sample the pre-image of nmExt efficiently using the sampling
procedure of [26]. In order to sample a preimage of μ ∈ {0, 1}3k, we first sample
X1,X2 uniformly at random from K, and then X3 is sampled conditioned on
the fact that nmExt2(X2,X3) = nmExt2(X1,X2)⊕μ. In particular, by using the
randomness of the first sampling procedure in picking X2 as the first source on
the sampling procedure from [26], X3 is a randomized function of X2 and the
output of the non-malleable extractor. Furthermore, they still satisfy the linear
constraints and can be computed and sampled efficiently. ��

2.3 Trace Function

We use the following standard fact about trace functions. For a finite field A =
F2m , and for its extension field B = F2n , and the trace function trB→A : B → A
there is a group isomorphism from ψ : B� → An�/m such that 〈ψ(x), ψ(y)〉A =
trB→A(〈x, y〉B). We will need this result on many occasions. Using a slight abuse
of notation, we will denote 〈ψ(x), ψ(y)〉A by 〈x, y〉A. More details appears in the
full version.

Continuous Non-Malleable Codes in the 8-Split-State Model 543

2.4 Definitions Related to Non-Malleable Codes

Definition 4 (Coding Schemes). A coding scheme is a pair (Enc,Dec), where
Enc : M → C is a randomized function and Dec : C → M∪{⊥} is a deterministic
function, such that it holds for all M ∈ M that Dec(Enc(M)) = M .

We will now define the continuous super strong tampering experiment. In this
experiment the adversary is provided with the tampered codeword C ′ (instead of
the output of the decoder) whenever C ′ �= C and the decoder does not output ⊥.

Definition 5 ((Continuous-) Super Strong Tampering Experiment).
We will define continuous non-persistent self-destruct non-malleable codes anal-
ogously to [25]. Fix a coding scheme (Enc,Dec) with message space M and code-
word space C. Also fix a family of functions F : C → C. We will first define the
tampering oracle TampstateC (f), for which initially state = alive. For a tampering
function f ∈ F and a codeword c ∈ C define the tampering oracle by

Tampstatec (f) :
If state = dead output ⊥
c′ ← f(c)
If c′ = c output same
m′ ← Dec(c′)
If m′ = ⊥ set state ← dead and output ⊥
Otherwise output c′

Fix a codeword c ∈ C. We define the continuous tampering experiment CTr
C

by

CTr
C :
state ← alive
For i = 1 to r

Choose functions f
v ← Tampstatec (f)
Output v

Definition 6. Let (Enc,Dec) be a coding scheme and CT be its corresponding
continuous tampering experiment for a class F of tampering functions. We say
that (Enc,Dec) is an ε-secure r-round continuously non-malleable code against F ,
if it holds for all tampering adversaries A and all pairs of messages m0,m1 ∈ M
that CTr

C0
(A) ≈ε CTr

C1
(A), where C0 ← Enc(m0) and C1 ← Enc(m1).

The only family of tampering functions we are concerned with in this work
are split state tampering functions.

Definition 7 (Split State Tampering). Let C = C1 × · · · × Cs. The class
of spit state tampering functions Fs consists of all functions f of the form f =
(f1, . . . , fs) where f(c1, . . . , cs) = (f1(c1), . . . , fs(cs)) for all (c1, . . . , cs) ∈ C1 ×
· · · × Cs. Here the fi are arbitrary functions Ci → Ci.

544 D. Aggarwal et al.

2.5 Some Useful Results

Lemma 5 (Deathzone Generation Lemma [10]). Let F be a finite field.
Let A1, . . . , At, B1, . . . , Bt be independent, non-zero random variables. Denote
A = (A1, . . . , At) and B = (B1, . . . , Bt). Then

max
c∈F

∑

a,b∈Ft:〈a,b〉F=c

(

Pr
[

(A,B) = (a, b)
])

2t−1
2t ≤ 1.

Proof. Let us begin with Young’s inequality for convolution:

||f1 ∗ f2 ∗ · · · ∗ ft||r ≤
t

∏

i=1

||fi||pi

whenever
∑t

i=1
1
pi

= 1
r + t − 1 and +∞ ≥ p1, . . . , pt, r ≥ 1. We will identify

random variable Ai with its distribution Ai(.) where Ai(x) = Pr[Ai = x]. We
define two convolutions:

(Ai ∗× Bi)(z) =
∑

x,y : xy=z

Ai(x)Bi(y),

(Ai ∗+ Bi)(z) =
∑

x,y : x+y=z

Ai(x)Bi(y).

Notice that for every i, via Young’s inequality, we get

1 = ||Aα
i (.)|| 1

α
· ||Bα

i (.)|| 1
α

≥ ||Aα
i (.) ∗× Bα

i (.)|| 1
2α−1

for 1/2 ≤ α ≤ 1. Notice again via Young’s inequality, we get

1 ≥
t

∏

i=1

||Aα
i (.) ∗× Bα

i (.)|| 1
2α−1

≥ ||[Aα
1 (.) ∗× Bα

1 (.)] ∗+ · · · ∗+ [Aα
t (.) ∗× Bα

t (.)]|| 1
2tα−(2t−1)

,

for 2t−1
2t ≤ α ≤ 1. Now we take α = 2t−1

2t and we get

1 ≥ ||[Aα
i (.) ∗× Bα

i (.)] ∗+ · · · ∗+ [Aα
t (.) ∗× Bα

t (.)]||∞. ��

Lemma 6. Suppose 2Δ(P ;Q) =
∑m

i=1 |pi − qi| = ε, where pi = Pr[P = xi] and
qi = Pr[Q = xi]; and

∑m
i=1 p r

i ≤ α, for r < 1. Then
∑m

i=1 q r
i ≤ α + εr ·m1−r.

Proof.
m

∑

i=1

q r
i =

m
∑

i=1

(pi + |pi − qi|) r ≤
m

∑

i=1

(p r
i + |pi − qi| r)

=
m

∑

i=1

p r
i +

m
∑

i=1

|pi − qi| r ≤ α +
m

∑

i=1

|pi − qi| r

≤ α +

(

m
∑

i=1

|pi − qi|
) r

·
(

m
∑

i=1

1

) 1−r

= α + εr · m1−r,

where inequality 2 follows from Hölder’s inequality. ��

Continuous Non-Malleable Codes in the 8-Split-State Model 545

Lemma 7 ([14]). Let D and D′ be distributions over the same finite space Ω,
and suppose they are ε-close to each other. Let E ⊆ Ω be any event such that
D(E) =p. Then, the conditional distributions D|E and D′|E are (ε/p)-close.

3 The New Construction

Let K be a finite field of size 2n. By Theorem 3, we have that there exists a
constant c, such that for all n, and k ≤ c·n

log n , there is a function

nmExt : K3 → {0, 1}3k

that is a (1−δ, 2−1000k)-non-malleable 3-source extractor. We choose the largest
such k = Θ(n/ log n) such that � = n

100k = O(log n) is an integer. Also, define

nmExt′ : K3 → {0, 1}3k ∪ {⊥}

as nmExt′(x1, x2, x3) = nmExt(x1, x2, x3) if nmExt(x1, x2, x3) = 02k‖y for some
y ∈ {0, 1}k, and ⊥, otherwise.

Let F be a finite field of size 250k. Notice that there is a natural bijection
between K and F

�. We further assume that k ≤ min
(

δn
1000 , n

5000

)

.

Encoding: Our encoding procedure Enc takes as input a message m ∈ {0, 1}k,
and does the following.

– Sample X from (K \ {0})3 uniformly such that nmExt(X) = 02k‖m.
– Sample S from (K\{0})3 uniformly such that nmExt(S) = 02k‖r for some

r in {0, 1}k.
– V = 〈X,S〉K.
– W = 〈X,S〉F.
– Output (X,S, V,W).

Decoding: Our decoding procedure Dec takes as input some x, s, v, w and does
the following.

– If (x, s, v, w) /∈ (K \ {0})6 × K × F, then output ⊥.
– If nmExt′(x) = ⊥, output ⊥.
– If nmExt′(s) = ⊥, output ⊥.
– If v �= 〈x, s〉K, output ⊥.
– If w �= 〈x, s〉F, output ⊥.
– Otherwise, output m∗, where nmExt(x) = 02k‖m∗.

Let f1, f2, f3, g1, g2, g3, h1 : K → K, h2 : F → F be arbitrary functions, and
let f = (f1, f2, f3) and g = (g1, g2, g3).

Definition 8 (Continuous Tampering Experiment). We will first define
the tampering oracle Tampstatec (f, g, h1, h2), for state ∈ {alive, dead} and for

c = (x1, x2, x3, s1, s2, s3, 〈x, s〉K, 〈x, s〉F).

546 D. Aggarwal et al.

For a tampering function (f, g, h1, h2) define the tampering oracle by

Tampstatec (f, g, h1, h2):
If state = dead output ⊥
If (x, s, 〈x, s〉K, 〈x, s〉F) = (f(x), g(s), h1(〈x, s〉K), h2(〈x, s〉F) output same
If (nmExt′(f(x)) = ⊥)

or (nmExt′(g(s)) = ⊥)
or (〈f(x), g(s)〉K �= h1(〈x, s〉K))
or (〈f(x), g(s)〉F �= h2(〈x, s〉F))
set state ← dead and output ⊥

Otherwise output (f(x), g(s), h1(〈x, s〉K), h2(〈x, s〉F)

Fix some c = (x, s, v, w), with x, s ∈ K
3, v ∈ K, and w ∈ F. We define the

continuous tampering experiment CTr
c by

CTr
c:
state ← alive
For i = 1 to r

Choose functions f1, f2, f3, g1, g2, g3, h1, h2.
ψ ← Tampstatec (f, g, h1, h2).
Output ψ

The following result which shows that continuously tampering a codeword
for 2 c k rounds, for any constant c < 1, does not reveal any useful information
about the codeword.

Theorem 4. Let X,S be uniform in (K \ {0})3 conditioned on the event that
nmExt′(X) �= ⊥ and nmExt′(S) �= ⊥. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F).

For any integer r ≥ 0, we have that

Δ
(

(CTr
C , nmExt(X)) ; (CTr

C , 02k‖Uk)
) ≤ 2−2k · 10 · r,

where Uk is a uniform k-bit string independent from X,S.

The main result of the paper is obtained as an easy corollary of Theorem 4,
as stated below.

Corollary 1. Let m0,m1 ∈ {0, 1}k, and let C(0) ← Enc(m0), and let C(1) ←
Enc(m1). For any integer r ≥ 0, we have that

Δ (CTr
C(0) ; CTr

C(1)) ≤ 2−k · 20 · r.

In particular, for r = 2 c k, for any c < 1, we have that

Δ (CTr
C(0) ; CTr

C(1)) ≤ 2−Ω(k).

Continuous Non-Malleable Codes in the 8-Split-State Model 547

Proof. By Theorem 4, for any r ≥ 0, and the random variable

C = (X,S, 〈X,S〉K, 〈X,S〉F)

we have that

Δ
(

(CTr
C , nmExt(X)) ; (CTr

C , 02k‖Uk)
) ≤ 2−2k · 10 · r,

where X,S are distributed as in Theorem 4. Thus conditioning on the event
that Dec(C) = mi for i = 0, 1, which is the same as the event that nmExt(X) =
02k‖mi and using Lemma 7, we get that

Δ
(
(CTr

C , nmExt(X))|nmExt(X)=02k‖m0
; (CTr

C , 02k‖Uk)|Uk=m0

)
= Δ

(
CTr

C(0) ; CTr
C

)

≤ 2−k · 10 · r,

and

Δ
(
(CTr

C , nmExt(X))|nmExt(X)=02k‖m1
; (CTr

C , 02k‖Uk)|Uk=m1

)
= Δ

(
CTr

C(1) ; CTr
C

)

≤ 2−k · 10 · r,

The result then follows by the triangle inequality. ��
To prove Theorem 4, we will show the more general Theorem 5 which imme-

diately implies Theorem 4. We introduce the following parameters: ρ = 2−40k.
Also, for any sets X ,S ⊆ K

3, V ⊆ K and W ⊆ F, we shorthand

p[X ,S,V,W] := Pr[(˜X, ˜S, 〈 ˜X, ˜S〉K, 〈 ˜X, ˜S〉F) ∈ X × S × V × W]

and

q[X ,S,V,W] := Pr[(˜X, ˜S, 〈 ˜X, ˜S〉K, 〈 ˜X, ˜S〉F) ∈ X × S × V × W |
nmExt′(˜X) �= ⊥, nmExt′(˜S) �= ⊥]

where ˜X, ˜S are uniform in (K \ {0})3.

Remark 1. Our proof will proceed by partitioning the space in a way that the
eight parts of our codeword remain independent. We introduced above the def-
inition of the probability of landing in a particular partition. The reason we
needed two different definitions depending on whether the codeword is a valid
codeword or not is because we want to prove a statement for valid codewords but
the proof technique crucially requires us to prove statements assuming that the
eight parts of the codeword are independent. The following result shows that
as long as q[X ,S,V,W] is not too small, p[X ,S,V,W] and q[X ,S,V,W] are
nearly equal. This statement is required only to overcome the above mentioned
technical annoyance and the proof appears in the full version.

548 D. Aggarwal et al.

Lemma 8. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = (S1,S2,S3). If q[X ,S,V,W] ≥ 2−800k, then

p[X ,S,V,W]
q[X ,S,V,W]

= 1 ± 2−180k,

and
Pr[˜X ∈ X , ˜S ∈ S, Un ∈ V, trK→F(Un) ∈ W]

q[X ,S,V,W]
= 1 ± 2−180k,

where ˜X, ˜S are uniform in (K \ {0})3, and Un is uniform in K.

Theorem 5. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = (S1,S2,S3). Let (X,S) be random variables
uniform in K

6 conditioned on the event that Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3,
nmExt′(X) �= ⊥, nmExt′(S) �= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the
random variable

(X,S, 〈X,S〉K, 〈X,S〉F).
For any integer r ≥ 0, we have that

Δ
(

(CTr
C , nmExt(X)) ; (CTr

C , 02k‖Uk)
) ≤

(

ρ

q[X ,S,V,W]

)
1
8

+ 9 · r · 2−2k, (2)

where Uk is a uniform k-bit string independent from X,S.

We will prove Theorem 5 by partitioning the ambient space into appropriate
subsets such that Eq. 2 holds for each of these partitions. Theorem 5 can then
be shown by the following lemma.

Lemma 9. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = S1,S2,S3. Let (X,S) be random variables
uniform in K

6 conditioned on the event that Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3,
nmExt′(X) �= ⊥, nmExt′(S) �= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the
random variable

(X,S, 〈X,S〉K, 〈X,S〉F).
Let P1,P2, . . . ,Pt be a partitioning of X × S × V × W. Then we have that for
any integer r ≥ 0, if

Δ
(

(CTr
C , nmExt(X))|C∈Pj

; (CTr
C , 02k‖Uk)|C∈Pj

) ≤ εj

then

Δ
(

(CTr
C , nmExt(X)) ; (CTr

C , 02k‖Uk)
) ≤

t
∑

j=1

q[Pj]
q[X ,S,V,W]

· εj ,

where Uk is a uniform k-bit string independent from X,S.

Continuous Non-Malleable Codes in the 8-Split-State Model 549

Proof. Let A be the sample space of (CTr
C , nmExt(X)). Then, by definition,

Δ = Δ
(

(CTr
C , nmExt(X)) ; (CTr

C , 02k‖Uk)
)

is given by

Δ =
1
2

·
∑

a∈A

∣

∣

∣ Pr[(CTr
C , nmExt(X)) = a] − Pr[(CTr

C , 02k‖Uk) = a]
∣

∣

∣

=
1
2

·
∑

a∈A

∣

∣

∣

t
∑

j=1

Pr[(CTr
C , nmExt(X)) = a, C ∈ Pj]−

Pr[(CTr
C , 02k‖Uk) = a, C ∈ Pj]

∣

∣

∣

≤ 1
2

·
∑

a∈A

t
∑

j=1

Pr[C ∈ Pj] ·
∣

∣

∣ Pr[(CTr
C , nmExt(X)) = a | C ∈ Pj]−

Pr[(CTr
C , 02k‖Uk) = a | C ∈ Pj]

∣

∣

∣

=
1
2

·
t

∑

j=1

Pr[C ∈ Pj] ·
∑

a∈A

∣

∣

∣ Pr[(CTr
C , nmExt(X)) = a | C ∈ Pj]−

Pr[(CTr
C , 02k‖Uk) = a | C ∈ Pj]

∣

∣

∣

=
t

∑

j=1

q[Pj]
q[X ,S,V,W]

· εj .

��
We will now partition each of X1,X2,X3,S1,S2,S3 which will induce a par-

titioning of the whole space. The partitions are chosen in a way that if, say, Xi

(respectively, Si) for i ∈ {1, 2, 3} is uniformly distributed over a particular parti-
tion of Xi (respectively, Si), then this gives a precise estimate of ˜H∞(Xi|fi(Xi))
(respectively, ˜H∞(Si|gi(Si))).

Definition 9 (Partition). We partition the set X1 ⊆ {0, 1}n based on the func-
tion f1 as follows.

1. X1,0 = {x ∈ X1 : f1(x) = x}.
2. X1 = X1 \ X1,0.
3. For i = 1, . . . , � − 1, X1,i = {x ∈ X1 : |f−1

1 (f1(x)) ∩ X1| ∈ [2100k·(i−1),
2100k·i)}.

4. X1,� = {x ∈ X1 : |f−1
1 (f1(x)) ∩ X1| ≥ 2100k·(�−1)}

X2,X3,S1,S2,S3 are partitioned similarly as above.

We classify the partitions obtained according to the following types.

550 D. Aggarwal et al.

Definition 10 (Classification of Partitions). Let i1, i2, i3, j1, j2, j3 be one
of {0, 1, . . . , �}. We then classify the partition

P := X1,i1 × X2,i2 × X3,i3 × S1,j1 × S2,j2 × S3,j3 × V × W

of X × S × V × W as follows.

Type−1: P is a Type−1 partition if i1 = i2 = i3 = j1 = j2 = j3 = 0.
Type−2: P is a Type−2 partition if

1. P is not a Type−1 partition, i.e., at least one of i1, i2, i3, j1, j2, j3 > 0.
2. Each of i1, i2, i3, j1, j2, j3 is at most δn

100k − 1.
Type−3: P is a Type−3 partition if the following hold

1. P is not a Type−1 or Type−2 partition, i.e., at least one of i1, i2, i3, j1, j2,
j3 > δn

100k − 1.
2. i1 + i2 + i3 + j1 + j2 + j3 ≤ n

40k .
Type−4: P is a Type−4 partition if

1. P is not a Type−1, 2, or 3 partition, , i.e., i1+ i2+ i3+j1+j2+j3 > n
40k .

2. At least one of i1, i2, i3, j1, j2, j3 is not �.
Type−5: P is a Type−5 partition if i1 = i2 = i3 = j1 = j2 = j3 = �.

In the following we classify partitions of Type−1 and Type−5 further into
subpartitions, but before this, we introduce the following definition.

Definition 11. We define the following subsets of V.

– Vsame = {v ∈ V : h1(v) = v}.
– Vsame = V \ Vsame.
– For all y ∈ {0, 1}n, Vy = {v ∈ V : h1(v) = y}.
– For all y ∈ {0, 1}n, Vy = V \ Vy.

We similarly define Wsame,Wsame,Wz,Wz for all z ∈ F via the function h2.

Using this classification, we now further partition Type−1 and Type−5 parti-
tions.

Definition 12. Let Xsame = X1,0 ×X2,0 ×X3,0 and let Ssame = S1,0 ×S2,0 ×S3,0

Type−1a: We say that Xsame ×Ssame ×Vsame ×Wsame is a Type−1a partition.
Type−1b: We say that the following are Type−1b partitions:
– Xsame × Ssame × V × Wsame.
– Xsame × Ssame × Vsame × Wsame.

Definition 13. For a = (a1, a2, a3) ∈ K
3, let

Xa = {(x1, x2, x3) ∈ X1,� × X2,� × X3,� : f1(x1) = a1, f2(x2) = a2, f3(x3) = a3}.

Similarly, define Sb for b = (b1, b2, b3) ∈ K
3.

Type−5a: We say that Xa × Sb × V〈a,b〉K × W〈a,b〉F is a Type−5a partition.
Type−5b:We say that the following are Type−5b partitions:

Continuous Non-Malleable Codes in the 8-Split-State Model 551

– Xa × Sb × V × W〈a,b〉F .
– Xa × Sb × V〈a,b〉K × W〈a,b〉F .

If a partition P is of Type−T , then we denote it as Type(P) = T , where T ∈
{1a, 1b, 2, 3, 4, 5a, 5b}.

Before bounding the required statistical distance for each partition, we will
prove a few general results.

Lemma 10. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = (S1,S2,S3). Let |Xi| ≥ 2n−100k, |Si| ≥ 2n−100k

for i = 1, 2, 3, and let q[X ,S,V,W] ≥ 2−800k. Let (X,S) be random variables
uniform in K

6 conditioned on the event that Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3,
nmExt′(X) �= ⊥, nmExt′(S) �= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Then

Δ
(

nmExt(X) ; 02k‖Uk

) ≤ 2−990k,

where Uk is a uniform k-bit string independent from X,S.

Proof. Notice that if X and S were independent and uniform then this would
follow trivially from the fact that nmExt is a 3-source extractor (Notice that we
don’t need the non-malleability property of nmExt for this part of the proof).
Thus, in order to show this, it is sufficient to establish that X and S are nearly
independent given partial knowledge about 〈X,S〉K, and 〈X,S〉F. We show this
as follows.

Let X ′, S′ be distributed independently and uniform in X ,S, respectively.
Notice that H∞(X ′) ≥ 3n − 300k, and H∞(S′) ≥ 3n − 300k, and hence
˜H∞(X ′|nmExt(X ′)) ≥ 3n − 303k. By Lemma 4, we get that

(〈X ′, S′〉K, nmExt(X ′), nmExt(S′)) ≈2−2000k (Un, nmExt(X ′), nmExt(S′)),

where we assumed that n ≥ 5000k. Since 〈X ′, S′〉F = trK→F(〈X ′, S′〉K), where
trK→F is the field trace function, we have that

(〈X ′, S′〉K, 〈X ′, S′〉F, nmExt(X ′), nmExt(S′)) ≈2−2000k (Un, trK→F(Un),
nmExt(X ′), nmExt(S′)).

Let (̂X, ̂S) be jointly distributed as (X ′, S′) conditioned on 〈X ′, S′〉K ∈
V, 〈X ′, S′〉F ∈ W. Thus, by Lemma 7, we get that

(nmExt(̂X), nmExt(̂S)) ≈2−1000k (nmExt(X ′), nmExt(S′)).

Also, since H∞(X ′
i) ≥ n − 100k ≥ n(1 − δ), H∞(S′

i) ≥ n − 100k ≥ n(1 − δ) for
i = 1, 2, 3. Thus, by Theorem 3, we have that

(nmExt(X ′), nmExt(S′)) ≈2·2−1000k (U3k, U ′
3k).

By triangle inequality, we get that

(nmExt(̂X), nmExt(̂S)) ≈3·2−1000k (U3k, U ′
3k).

Conditioning on nmExt′(̂X) �= ⊥, and nmExt′(̂S) �= ⊥, and applying Lemma 7,
we obtain the desired result. ��

552 D. Aggarwal et al.

We now show that for any given partition, if the tampering oracle outputs
⊥ with high probability, then the desired statistical distance for that particular
partition is small.

Lemma 11. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = (S1,S2,S3). Let (X,S) be random variables
uniform in K

6 conditioned on the event that Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3,
nmExt′(X) �= ⊥, nmExt′(S) �= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the
random variable

(X,S, 〈X,S〉K, 〈X,S〉F).
If

Pr
C

[TampstateC (f, g, h1, h2) = ⊥] ≥ 1 − ε

then for any integer r ≥ 0

Δ
(

(CTr
C , nmExt(X)) ; (CTr

C , 02k‖Uk)
) ≤ Δ

(

nmExt(X) ; 02k‖Uk

)

+ 2ε,

where Uk is a uniform k-bit string independent from X,S.

Proof. Let TC denote TampstateC (f, g, h1, h2). Notice that for any m ∈ {0, 1}3k,
we have that

Pr[TC = ⊥, nmExt(X) = m] ≤ Pr[nmExt(X) = m].

Since we know that the statistical distance between two random variables A and
B is

∑

a:Pr[A=a]>Pr[B=a]

(Pr[A = a] − Pr[B = a]),

we have that

Δ ((TC , nmExt(X)) ; (⊥, nmExt(X))) = Pr[TC �= ⊥] ≤ ε.

This implies that

Δ ((CTr
C , nmExt(X)) ; (⊥r, nmExt(X))) ≤ ε, (3)

where by ⊥r we mean the tampering oracle outputs ⊥ in the first and hence in
each of the subsequent rounds. By Eq. 3 and Lemma 3, we have that

Δ
(

(CTr
C , 02k‖Uk) ; (⊥r, 02k‖Uk)

)

= Δ (CTr
C ; ⊥r) ≤ ε, (4)

By Eqs. 3 and 4, and the triangle inequality, we get the desired result. ��
It is easy to see that when X,S are restricted to belong to a partition of

Type−1b or 5b, the tampering oracle outputs ⊥ with probability 1, so for par-
titions of this type, the corresponding statistical distance can be bounded using
Lemmas 11 and 10. We now prove a similar result holds for Type 2, 3, and 4.

Continuous Non-Malleable Codes in the 8-Split-State Model 553

Lemma 12. [Type-2 partition] Let X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j2 ,S3,j3 ⊆ K \
{0}, V ⊆ K, and let W ⊆ F. We denote X � = (X1,i1 ,X2,i2 ,X3,i3) and
S� = S1,j1 ,S2,j2 ,S3,j3 . Let (X �,S�,V,W) be a partition of Type−2, and let
q[X �,S�,V,W] ≥ 2−45k. Let (X,S) be random variables uniform in K

6 condi-
tioned on the event that Xt ∈ Xt,it

, St ∈ St,jt
for t = 1, 2, 3, nmExt′(X) �= ⊥,

nmExt′(S) �= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F).
Then,

Pr
C

[TampstateC (f, g, h1, h2) = ⊥] ≥ 1 − 2 · 2−2k.

Proof. In this lemma, the given partition is of Type−2, which means that at
least one of i1, i2, i3, j1, j2, j3 �= 0, and so without loss of generality, let i1 > 0.
If X1,X2,X3 were independent random variables then, by the non-malleability
property of the non-malleable extractor, and the fact that f, g are nearly bijective
functions, nmExt(X) and nmExt(f(X)) are close to being uniform and indepen-
dent. However the constraint that 〈X,S〉K ∈ V and 〈X,S〉F ∈ W might introduce
dependence between X1,X2,X3.

To overcome this hurdle, it is sufficient to establish that X1,X2,X3, S1, S2, S3

are nearly independent given partial knowledge about 〈X,S〉K, and 〈X,S〉F. The
full proof appears in the full version.

��
Lemma 13. [Type-3 partition] Let X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j2 ,S3,j3 ⊆ K \
{0}, V ⊆ K, and let W ⊆ F. We denote X � = (X1,i1 ,X2,i2 ,X3,i3) and
S� = (S1,j1 ,S2,j2 ,S3,j3). Let (X �,S�,V,W) be a partition of Type−3, and let
q[X �,S�,V, W] ≥ 2−45k. Let (X,S) be random variables uniform in K

6 condi-
tioned on the event that Xt ∈ Xt,it

, St ∈ St,jt
for t = 1, 2, 3, nmExt′(X) �= ⊥,

nmExt′(S) �= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F).
Then,

Pr
C

[TampstateC (f, g, h1, h2) = ⊥] ≥ 1 − 2−4k.

Proof. Since the partition is of Type−3, at least one of i1, i2, i3, j1, j2, j3 > δn
100k −

1 and
i1 + i2 + i3 + j1 + j2 + j3 ≤ n

40k
.

Without loss of generality, let i1 > δn
100k − 1.

The intuition behind the proof is that since i1 is not too small, X has enough
entropy given f(X) to ensure that 〈X,S〉F is close to uniform given f(X), S by
using the strong extractor property of the inner product. Hence 〈X,S〉F and
〈f(X), g(S)〉F are close to being independent and so the adversary, in order to
not decode to ⊥, should be able to guess 〈f(X), g(S)〉F in the eighth state without
having any useful information. Also, since i1+i2+i3+j1+j2+j3 is not too small,

554 D. Aggarwal et al.

f(X), g(S) together should have enough entropy to ensure that 〈f(X), g(S)〉F is
close to being uniform again because the inner product is a strong two-source
extractor. This implies that the probability that the decoder does not decode to
⊥ after tampering is close to 0. For this argument, we implicitly assumed that X
and S are independent and formally we need to take into account the condition
that 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W which introduces a limited dependence
between X and S. Working out the exact constant is fairly easy. The full proof
appears in the full version. ��
Lemma 14. [Type-4 partition] Let X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j2 ,S3,j3 ⊆ K \
{0}, V ⊆ K and let W ⊆ F. We denote X � = (X1,i1 ,X2,i2 ,X3,i3) and
S� = (S1,j1 ,S2,j2 ,S3,j3). Let (X �,S�,V,W) be a partition of Type−4, and let
q[X �,S�,V, W] ≥ 2−45k. Let (X,S) be random variables uniform in {0, 1}6n con-
ditioned on the event that Xt ∈ Xt,it

, St ∈ St,jt
for t = 1, 2, 3, nmExt′(X) �= ⊥,

nmExt′(S) �= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F).
Then,

Pr
C

[TampstateC (f, g, h1, h2) = ⊥] ≥ 1 − 2−4k.

Proof. Since the partition is of Type−4, at least one of i1, i2, i3, j1, j2, j3 �= � and

i1 + i2 + i3 + j1 + j2 + j3 >
n

40k
.

Without loss of generality, let i1 ≤ � − 1. Also, without loss of generality, let
i1 + i2 + i3 > n

80k .
The intuition behind the proof is that i1 + i2 + i3 is large enough to ensure

that X has enough entropy given f(X) to ensure that 〈X,S〉K is close to uniform
given f(X), S by using the strong extractor property of the inner product. Hence
〈X,S〉K and 〈f(X), g(S)〉K are close to being independent and so the adversary,
in order to decode to a valid message, can only be able to guess 〈f(X), g(S)〉K in
the seventh state without having any useful information. Also, since i1 ≤ �−1 is
not too small, f1(X1) has a large amount of entropy which in turn implies that
〈f(X), g(S)〉K has a large amount of entropy since g1(S1) �= 0. This implies that
the probability that the decoder does not decode to ⊥ after tampering is close to
0. Of course, for this argument to go through, we implicitly assumed that X and
S are independent and formally we need to take into account the condition that
〈X,S〉K ∈ V, and 〈X,S〉F ∈ W which introduces a limited dependence between
X and S. Working out the exact constant is fairly easy. The full proof appears
in the full version. ��

In the above results, we established that the tampering oracle will output ⊥
with probability very close to 1 for all partitions of Type−2, 3, 4 that are not too
small. If the size of the partition is extremely small then Lemma 9 guarantees
that such a partition does not contribute much to the statistical distance. Also,
for a partition of Type−1b and 5b, the tampering oracle always outputs ⊥.

Continuous Non-Malleable Codes in the 8-Split-State Model 555

The following corollary states the bound on the statistical distance conditioned
on X,S in a partition of Type−1b, 2, 3, 4, 5b. The proof appears in the full
version.

Corollary 2. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F.
We denote X = (X1,X2,X3) and S = (S1,S2,S3). Let q[X ,S,V,W] ≥ 2−40k.
Let (X,S) be random variables uniform in K

6 conditioned on the event that
Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3, nmExt′(X) �= ⊥, nmExt′(S) �= ⊥, 〈X,S〉K ∈ V,
and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F).

Then for any integer r ≥ 0, if

∑

P:Type(P)∈{1b, 2, 3, 4, 5b}

q[P]
q[X ,S,V,W]

· Δ
(

(CTr
C , nmExt(X))|C∈P ;

(CTr
C , 02k‖Uk)|C∈P

) ≤ 5 · 2−2k,

where Uk is a uniform k-bit string independent from X,S.

Lemma 15. [Type-5 partition] Let X1,�,X2,�,X3,�,S1,�,S2,�,S3,� ⊆ K\{0}, V ⊆
K, and let W ⊆ F. We denote X � = (X1,�,X2,�,X3,�) and S� = (S1,�,S2,�,S3,�).
Let (X �,S�,V,W) be a partition of Type−5, and let q[X �,S�,V,W] ≥ 2−45k.
Let (X,S) be random variables uniform in K

6 conditioned on the event that Xi ∈
X1,�, Si ∈ Si,� for i = 1, 2, 3, nmExt′(X) �= ⊥, nmExt′(S) �= ⊥, 〈X,S〉K ∈ V, and
〈X,S〉F ∈ W. Then,

∑

a,b

(

q[Xa,Sb,V〈a,b〉K ,W〈a,b〉F]
q[X1,�,S1,�,V,W]

)7/8

≤
∑

a,b

Pr[h1(〈X,S〉K) = 〈a,b〉K, f(X) = a,

g(S) = b]
7
8

≤ 1 + 2−50k.

Proof. Since the partition is of Type−5, we have

i1 = i2 = i3 = j1 = j2 = j3 = �.

By Lemma 8, we have that

p[X �,S�,V,W] ≥ 2−45k−1,

and
Pr[˜X ∈ X �, ˜S ∈ S�, Un ∈ V, trK→F(Un) ∈ W] ≥ 2−45k−1.

Let X ′, S′ be distributed independently and uniform in X �,S�, respectively. We
have that

˜H∞(X ′|f(X ′), nmExt(X ′)) ≥ 100k(3� − 3) − 3k = 3n − 303k , and

556 D. Aggarwal et al.

H∞(S′) ≥ 3n − 45k − 1.

Thus, by Lemma 4,

Δ (〈X ′, S′〉K ; Un | f(X ′), nmExt(X ′), S′) ≤ 2−1000k,

where we have used that n ≥ 5000k. This implies using Lemma 3 that

Δ (〈X ′, S′〉K ; Un | 〈f(X ′), g(S′)〉K, nmExt(X ′), nmExt(S′)) ≤ 2−1000k.

Also, ˜H∞(X ′
i|fi(X ′

i)) ≥ 100k(� − 1) ≥ n(1 − δ), and ˜H∞(S′
i|gi(S′

i)) ≥ 100k(� −
1) ≥ n(1 − δ) for i = 1, 2, 3. Thus, by Theorem 3,

Δ ((nmExt(X ′), nmExt(S′)) ; (U3k, U ′
3k) | 〈f(X ′), g(S′)〉K) ≤ 2 · 2−1000k.

Using triangle inequality, we get that

Δ
(
(〈X ′, S′〉K, nmExt(X ′), nmExt(S′)); (Un, U3k, U ′

3k)|〈f(X ′), g(S′)〉K
) ≤ 3 · 2−1000k.

Conditioning on nmExt′(X ′) �= ⊥, nmExt′(S′) �= ⊥, 〈X ′, S′〉K ∈ V, and trK→F

(〈X ′, S′〉K) ∈ W, by Lemma 7, we get that

Δ ((〈f(X), g(S)〉K, 〈X,S〉K) ; (〈f(X ′), g(S′)〉K, V)) ≤ 2−950k, (5)

where V is distributed as Un conditioned on Un ∈ V, and trK→F(Un) ∈ W.
Now using Lemma 5 on vector pair (f1(X ′

1), f2(X
′
2), f3(X

′
3),−1) and (g1(S′

1),
g2(S′

2), g3(S
′
3), h1(V)), and t = 4, we obtain

∑

(a1,a2,a3,b1,b2,b3,c) :
〈(a1,a2,a3,−1), (b1,b2,b3,c)〉K=0

Pr[(f(X ′), g(S′), h1(V)) = (a,b, c)]
7
8 ≤ 1.

Notice that the number of different possible values of the tuple (a1, a2, a3, b1,
b2, b3, c) such that Pr[(f(X ′), g(S′), h1(V)) = (a,b, c)] �= 0 is at most 2600k.
Thus, using Lemma 6 and the inequality 5, we get that
∑

a,b

Pr[h1(〈X,S〉K) = 〈a,b〉K, f(X) = a, g(S) = b]
7
8 ≤ 1 + 2600k· 18 · 2−950k· 78

≤ 1 + 2−50k.

Finally,

∑

a,b

(

q[Xa,Sb,V〈a,b〉K ,W〈a,b〉F]
q[X1,�,S1,�,V,W]

)7/8

=
∑

a,b

Pr[h1(〈X,S〉K) = 〈a,b〉K, h2(〈X,S〉F) = 〈a,b〉F, f(X) = a, g(S) = b]
7
8

≤
∑

a,b

Pr[h1(〈X,S〉K) = 〈a,b〉K, f(X) = a, g(S) = b]
7
8 ≤ 1 + 2−50k.

��

Continuous Non-Malleable Codes in the 8-Split-State Model 557

Lemma 16. [Type-1 or Type-5 partition] Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0},
V ⊆ K, and let W ⊆ F. We denote X = (X1,X2,X3) and S = (S1,S2,S3). Let
q[X ,S,V,W] ≥ 2−40k. Let (X,S) be random variables uniform in K

6 conditioned
on the event that Xt ∈ Xt, St ∈ St for t = 1, 2, 3, nmExt′(X) �= ⊥, nmExt′(S) �=
⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Then,

Pr[Xt ∈ Xt,0, St ∈ St,0 for t = 1, 2, 3]1/2 + Pr[Xt ∈ Xt,�, St ∈ St,� for t = 1, 2, 3]1/2

≤ 1 + 2−90k,

and hence,

Pr[Xt ∈ Xt,0, St ∈ St,0 for t = 1, 2, 3]7/8 + Pr[Xt ∈ Xt,�, St ∈ St,� for t = 1, 2, 3]7/8

≤ 1 + 2−90k.

Proof. By Lemma 8, we have that

p[X ,S,V,W] ≥ 2−40k−1,

and
Pr[˜X ∈ X , ˜S ∈ S, Un ∈ V, trK→F(Un) ∈ W] ≥ 2−40k−1.

Let X ′, S′ be distributed independently and uniform in X ,S, respectively. Let
i1, i2, i3, j1, j2, j3 : K → {0, 1, . . . , �} be as defined in the partitioning procedure,
i.e., i1 is a function of X ′

1 that indicates the partition in which X ′
1 belongs

depending on the function f1, etc.
Since ˜H∞(X ′|nmExt(X ′), i1, i2, i3) ≥ 3n − 40k − 1 − 3 log(� + 1) ≥ 3n − 41k,

using Lemma 4, we have that

Δ (〈X ′, S′〉K ; Un | nmExt(X ′), nmExt(S′), i1, i2, i3, j1, j2, j3) ≤ 2−250k.

Additionally, since ˜H∞(X ′
t|it) ≥ n − 40k − 1 − log(� + 1) ≥ n(1 − δ) and

H∞(S′
t|jt) ≥ n − 40k − 1 − log(� + 1) ≥ n(1 − δ), for t = 1, 2, 3, by Theorem 3,

we have that

Δ ((nmExt(X ′), nmExt(S′)) ; (U3k, U ′
3k) | i1, i2, i3, j1, j2, j3) ≤ 2 · 2−1000k.

Thus, the triangle inequality implies that

Δ((〈X ′, S′〉K, nmExt(X ′), nmExt(S′)) ; (Un, U3k, U ′
3k) | i1, i2, i3, j1, j2, j3)

≤ 3 · 2−250k.

Conditioning on nmExt′(X ′) �= ⊥, nmExt′(S′) �= ⊥, 〈X ′, S′〉K ∈ V, and trK→F

(〈X ′, S′〉K) ∈ W and using Lemma 7, we get that

Δ((i1(X
′
1), i2(X

′
2), i3(X

′
3), j1(S

′
1), j2(S

′
2), j3(S

′
3)) ;

(i1(X1), i2(X2), i3(X3), j1(S1), j2(S2), j3(S3))) ≤ 3 · 2−200k.(6)

558 D. Aggarwal et al.

We introduce the following notation. For r ∈ {0, �}, let

pr := Pr[X ′
t ∈ Xt,r for t = 1, 2, 3] = Pr[i1(X ′

1) = i2(X ′
2) = i3(X ′

3) = r],

and

qr := Pr[S′
t ∈ St,r for t = 1, 2, 3] = Pr[i1(S′

1) = i2(S′
2) = i3(S′

3) = r].

Then clearly, p0 + p� ≤ 1, and q0 + q� ≤ 1. This implies

Pr[X ′
t ∈ Xt,0, S′

t ∈ St,0 for t = 1, 2, 3]1/2 + Pr[X ′
t ∈ Xt,�, S′

t ∈ St,� for t = 1, 2, 3]1/2

=
√

p0 · q0 +
√

p� · q�

≤ √
p0 · q0 +

√
(1 − p0) · (1 − q0)

≤ 1,

using the Cauchy-Schwarz inequality. Thus, using Lemma 6 and the inequality 6,
we get that

Pr[Xt ∈ Xt,0, St ∈ St,0 for t = 1, 2, 3]1/2 + Pr[Xt ∈ Xt,�, St ∈ St,� for t = 1, 2, 3]1/2

≤ 1 + 2
1
2 · (3 · 2−200k)

1
2 ≤ 1 + 2−90k.

��

3.1 Proof of Theorem 5

Proof. Now, we prove Theorem 5 by induction on the number of rounds r. For
r = 0, i.e., when there is no tampering, we need to show that nmExt(X) is
statistically close to 02k‖Uk, which follows by Lemma 10. Using Corollary 2, we
have that

∑

P:Type(P)∈{1b,2,3,4,5b}

q[P]

q[X , S, V, W]
· Δ

(
(CTr

C , nmExt(X))|C∈P ; (CTr
C , 02k‖Uk)|C∈P

)

≤ 5 · 2−2k.

Let Q1 be a partition of Type−1a (note that there is only one such partition),
and let Q2, . . . ,Qm be partitions of Type−5a. Let X � = (X1,�,X2,�,X3,�), and
S� = (S1,�,S2,�,S3,�). We consider two cases.

CASE 1: q[X �,S�,V,W] < 2−45k. In this case, the total probability of falling in
a partition of Type−5 is small, and so intuitively the only useful information
that can be learnt is by landing in a partition of Type−1a. In this case,
by Lemma 9 and the induction hypothesis we have that the statistical distance

Continuous Non-Malleable Codes in the 8-Split-State Model 559

Δ
(

(CTr
C , nmExt(X)) ; (CTr

C , 02k‖Uk)
)

is upper bounded by

≤ 5 · 2−2k +
q[X �, S�, V, W]

q[X , S, V, W]
1 +

q[Q1]

q[X , S, V, W]

((
ρ

q[Q1]

) 1
8

+ 9 · (r − 1) · 2−2k

)

≤ 5 · 2−2k + 2−5k +

(
q[Q1]

q[X , S, V, W]

) 7
8

·
(

ρ

q[X , S, V, W]

) 1
8

+ 9 · (r − 1) · 2−2k

≤
(

ρ

q[X , S, V, W]

) 1
8

+ 9 · r · 2−2k.

CASE 2: q[X �,S�,V,W] ≥ 2−45k. In this case, by Lemma 9, and the induc-
tion hypothesis we have that the statistical distance Δ((CTr

C , nmExt(X)) ;
(CTr

C , 02k‖Uk)) is upper bounded by

≤ 5 · 2−2k +
m

∑

i=1

q[Qi]
q[X ,S,V,W]

·
(

(

ρ

q[Qi]

)
1
8

+ 9 · (r − 1) · 2−2k

)

≤ 5 · 2−2k +
m

∑

i=1

(

q[Qi]
q[X ,S,V,W]

)
7
8

·
(

ρ

q[X ,S,V,W]

)
1
8

+ 9 · (r − 1) · 2−2k

≤ 5 · 2−2k +
(

ρ

q[X ,S,V,W]

)
1
8

(1 + 2−2k) + 9 · (r − 1) · 2−2k

≤
(

ρ

q[X ,S,V,W]

)
1
8

+ 9 · r · 2−2k,

where the second to last inequality uses Lemmas 15 and 16.

��

References

1. Aggarwal, D.: Affine-evasive sets modulo a prime. Inf. Process. Lett. 115(2), 382–
385 (2015)

2. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 15

3. Aggarwal, D., Briët, J.: Revisiting the Sanders-Bogolyubov-Ruzsa theorem in fnp
and its application to non-malleable codes. In: 2016 IEEE International Symposium
on Information Theory (ISIT), pp. 1322–1326. IEEE (2016)

4. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Leakage-resilient nonmalleable
codes. In: The 47th ACM Symposium on Theory of Computing (STOC) (2015)

5. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC. ACM (2014)

6. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 17

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-46494-6_17

560 D. Aggarwal et al.

7. Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes
stronger. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 319–
343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 10

8. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
375–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 16

9. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes resistant to permutations. In: Advances in Cryptology - CRYPTO
(2015)

10. Bogdanov, I.: Deathzone generation lemma (2016). https://mathoverflow.net/
questions/252396/inner-product-over-finite-fields

11. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, pp. 285–298. ACM (2016)

12. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes in the constant split-state
model. In: FOCS (2014)

13. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ITCS (2014)
14. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-

state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 19

15. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

16. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis and Nielsen [17], pp.
532–560

17. Dodis, Y., Nielsen, J.B. (eds.): TCC 2015. LNCS, vol. 9014. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6

18. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

19. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

20. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–
452. Tsinghua University Press (2010)

21. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

22. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–
603. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 26

23. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 7

https://doi.org/10.1007/978-3-319-70503-3_10
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-46494-6_16
https://mathoverflow.net/questions/252396/inner-product-over-finite-fields
https://mathoverflow.net/questions/252396/inner-product-over-finite-fields
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-662-46494-6
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-642-55220-5_7

Continuous Non-Malleable Codes in the 8-Split-State Model 561

24. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

25. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis and Nielsen [17], pp. 451–480

26. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1144–1156. ACM (2017)

27. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

28. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–53 (1996)

https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-642-32009-5_30

Correlated-Source
Extractors and Cryptography
with Correlated-Random Tapes

Vipul Goyal and Yifan Song(B)

Carnegie Mellon University, Pittsburgh, USA
{vipul,yifans2}@cmu.edu

Abstract. In this paper, we consider the setting where a party uses
correlated random tapes across multiple executions of a cryptographic
algorithm. We ask if the security properties could still be preserved in
such a setting. As examples, we introduce the notion of correlated-tape
zero knowledge, and, correlated-tape multi-party computation, where, the
zero-knowledge property, and, the ideal/real model security must still
be preserved even if a party uses correlated random tapes in multiple
executions.

Our constructions are based on a new type of randomness extractor
which we call correlated-source extractors. Correlated-source extractors
can be seen as a dual of non-malleable extractors, and, allow an adversary
to choose several tampering functions which are applied to the random-
ness source. Correlated-source extractors guarantee that even given the
output of the extractor on the tampered sources, the output on the orig-
inal source is still uniformly random. Given (seeded) correlated-source
extractors, and, resettably-secure computation protocols, we show how
to directly get a positive result for both correlated-tape zero-knowledge
and correlated-tape multi-party computation in the CRS model. This is
tight considering the known impossibility results on cryptography with
imperfect randomness.

Our main technical contribution is an explicit construction of a
correlated-source extractor where the length of the seed is independent of
the number of tamperings. Additionally, we also provide a (non-explicit)
existential result for correlated source extractors with almost optimal
parameters.

1 Introduction

Randomness is known to be crucial for cryptography. It is known that several
basic tasks in cryptography become impossible in the absence of randomness
[GO94,DOPS04]. Given this, a natural and well motivated direction is to develop
an understanding of the extent to which randomness is necessary. Towards that
end, we study the following natural question.

Research supported in part by a grant from Northrop Grumman, a gift from DOS
Networks, and, a Cylab seed funding award.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 562–592, 2019.
https://doi.org/10.1007/978-3-030-17653-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_19

Correlated-Source Extractors and Cryptography 563

Suppose that a party uses correlated random tapes in multiple executions of a
cryptographic algorithm. Can the security still be preserved? As a concrete exam-
ple, suppose that the prover uses correlated random tapes in multiple executions
with an adversarial verifier. Can the zero-knowledge property still be preserved?
What about encrypting multiple times (under a randomized encryption scheme)
using correlated random tapes? The above question can be motivated by, e.g., a
scenario where a party has a defective random number generator which outputs
correlated tapes under multiple invocations (even though each individual tape
may have high min-entropy or even be close to uniform).

The well-known line of research on resettable security can be seen as a
special case of our general problem. In resettable zero-knowledge [CGGM00],
the prover uses the same random tape across multiple executions. By vary-
ing the set of parties whose random tape is fixed, one can get various variants
such as resettably-sound zero-knowledge [BGGL01], simultanous resettable zero-
knowledge [DGS09], and, resettably secure computation [GS09,GM11].

In this work, we initiate a systematic study of the above question. The
central object of our study will be a new notion of randomness extractors
which we call correlated-source extractors. Very informally, a (seeded) corre-
lated source extractor csExt on input a seed s, and a source X produces
an output csExt(X, s) which is guaranteed to be close to uniform even given
csExt(X1, s), ..., csExt(Xt, s) where for all i, Xi �= X and Xi could be arbi-
trarily correlated with X. One could also view Xi as a result of tampering
the original source X. Correlated-source extractors can be seen as a dual of
non-malleable extractors [DW09], where the adversary is allowed to tamper the
seed instead of the source. Non-malleable extractors have played an important
role in cryptography and complexity in problems such as privacy amplification
[DW09], designing two-source extractors [CZ16], and in designing non-malleable
codes [CG14a,CGL16]. Correlated-source extractors are also closely related to
two-source non-malleable extractors [CG14a,CGL16].

1.1 Our Results

We introduce the notion of correlated-tape zero-knowledge. We model correla-
tions among the different random tapes by consider an adversary which may
have limited control over the random tape of the honest parties. In correlated-
tape zero-knowledge, the adversary is able to specify t tampering functions
f1, f2, ..., ft at the beginning of the protocol such that in the i-th execution,
the prover uses fi(X) as its random tape (where X is uniformly random and
can be viewed as the original random tape). Other notions like correlated-tape
secure multi-party computation (MPC) and correlated-tape secure encryption
schemes could also be defined analogously. We also define the main object of our
study: correlated-source extractors. Specifically,

Definition 1 (Seeded Correlated-Source Extractor). A function csExt :
{0, 1}∗ ×{0, 1}d → {0, 1}m is a seeded correlated-source extractor if the following
holds: There exists a polynomial k(·, ·, ·) and a negligible function ε(·), such that

564 V. Goyal and Y. Song

for any polynomial t(·), t = t(d) arbitrary functions A1,A2, ...,At, whose output
has the same length as the input, with no fixed points, and, a source X with
min-entropy k(t,m, d),

|csExt(X, Ud)◦{csExt(Ai(X), Ud)}t
i=1 ◦Ud −Um ◦{csExt(Ai(X), Ud)}t

i=1 ◦Ud| < ε(d)

where Um and Ud are uniform strings of length m and d respectively.

Jumping ahead, in our cryptographic applications, the seed will serve as the
CRS while the source X will be the local random tape generated by the party. We
require the output length, and, the source length (and hence the min-entropy)
to be (unbounded) polynomial in the length of the seed. Thus, fixing the CRS
(i.e., the seed) doesn’t necessarily fix the number of executions (represented by
t). One could also define a weaker notion of correlated-source extractors where
the seed fixes a bound on the number of executions. Specifically,

Definition 2 (Weak t-Correlated-Source Extractor). A function wcsExt :
{0, 1}n × {0, 1}d → {0, 1}m is a weak t-correlated-source extractor for min-
entropy k and error ε if the following holds: If X is a source in {0, 1}n with
min-entropy k, and, A1,A2, ...,At are arbitrary functions whose output has the
same length as the input, with no fixed points, then

|wcsExt(X, Ud)◦{wcsExt(Ai(X), Ud)}t
i=1 ◦Ud −Um ◦{wcsExt(Ai(X), Ud)}t

i=1 ◦Ud| < ε

where Um and Ud are uniform strings of length m and d respectively.

Our first main result is a construction of a correlated-source extractor:

Theorem 1. There exists an explicit correlated-source extractor csExt with

k(t,m, d) = Θ(t3d + t2m)

ε(d) = Θ(2−√
d)

where m is the length of the output.

Note that it is necessary for the entropy of the source to grow with the
number of executions t if the tampered sources may be arbitrarily correlated
with the original source. This is because the entropy of the original source may
reduce given the output of the extractor on a tampered source. In Sect. 5.4 we
generalize the entropy requirements on the sources. In particular, we define what
we call closed-set correlated sources and show correlated set extractors for such
sources. For closed-set correlated source, the entropy of each individual source
does not necessarily grow with the number of invocations t. Hence, this would
allow us to get constructions where neither the seed length, nor the source length
or its entropy grows with the number of invocations.

Correlated-Source Extractors and Cryptography 565

Going to Correlated-Tape Zero-Knowledge and Secure Computation. We note
that correlated-source extractors can only allow us to handle the random tapes
where each random tape differs from every other one. We relax this constraint
by relying on techniques from resettable zero-knowledge [CGGM00,BGGL01],
and, resettably secure computation [GS09]. In resettable zero-knowledge, the
prover uses the same random tape across multiple executions. In our setting,
the random tape could either be the same or arbitrarily correlated with another
random tape. Very informally, relying on resettable security would allow us to
achieve security in case the random tape is the same as another one, and, relying
on correlated source extractor would guarantee security in case the random tape
is different from every other tape but maybe arbitrarily correlated.

This allows us to obtain positive results for correlated-tape zero-knowledge
and multi-party computation in the CRS model where the only (necessary)
requirement on the random tape would be sufficient min-entropy; otherwise
each random tape could be arbitrarily correlated to or even the same as other
random tapes. The seed required for the correlated source extractor would be
a part of the CRS. Each party in the protocol would first apply correlated-
source extractor on its (potentially tampered) random tape, and, use the result-
ing string as the random tape to execute a resettable secure MPC (or zero-
knowledge) protocol. We note that correlated-tape zero-knowledge and similar
primitives such as correlated-tape encryption are impossible to obtain in the
plain model. This holds even for a single execution and follows from the known
impossibility results on cryptography with imperfect and tamperable random-
ness [DOPS04,ACM+14] (see Sect. 4 for more details). We also give stronger
impossibility results in Sect. 4.

Weak Correlated-Source Extractors. Note that basic positive result for weak
correlated-source extractor follows from the construction of two-source non-
malleable extractors in [CGL16]. In fact, two-source non-malleable extractors
allow the adversary to also tamper the second source (the random seed) and
only requires the second source (the random seed) to have enough min-entropy.
However, directly using two-source non-malleable extractor or similar techniques
cannot give a positive result for correlated source extractor. This is because two-
source non-malleable extractor will require the seed length to be either as long
as that of the source or linear in t. Note that this would give a positive result
only for bounded correlated-tape zero-knowledge and secure computation where
the number of executions must be fixed before choosing the CRS. We note that
obtaining a construction where the seed length is independent of the number
of tamperings has been a challenging problem in this line of research. In par-
ticular, obtaining such an explicit construction for non-malleable extractors still
remains an open problem. An existential result has however been shown very
recently [BACD+18].

566 V. Goyal and Y. Song

Correlated-Source Extractors with Almost Optimal Parameters. Next, we turn
our attention to the following natural question: what is the optimal entropy and
source length that a correlated-source extractor requires? Towards that end, we
prove the following existential result:

Theorem 2 (Existence of Correlated-Source Extractor). There exists a
correlated-source extractor csExt as long as

k(t,m, d) = Θ(tm + d) (1)
ε(d) = Θ(2−d) (2)

where m is the length of the output.

For an overview of our techniques, please refer to Sect. 2.

Related Works. Designing randomness extractors has been a rich line of works.
Most relevant to our work are non-malleable extractors [DW09], and, two
source non-malleable extractors [CG14a,CGL16]. After the initial construc-
tions, a number of works have focused on improving the entropy requirements
and the seed length [Li12a,Li12b,DLWZ14,Li15,CL16,Coh16b,Coh16c,Coh16a,
Li16,Li17]. However, all known explicit constructions of non-malleable and two-
source non-malleable extractors require the length of the seed to grow with the
number of tamperings t. Two-source non-malleable extractors from [CGL16]
were used crucially in a recent breakthrough on constructing two-source extrac-
tors [CZ16].

A number of works have studied simulating randomized algorithms using
weak sources with small min-entropy [VV85,CG88,Zuc96,SSZ95,ACRT97].
Andreev et al. [ACRT97] gave a simulation of any BPP algorithm with an
(n, nO(1))-source. In contrast, we focus on multiple executions with correlated
random tapes and have weaker entropy requirements.

A rich line of works have studied resettable secure protocols [CGGM00],
[BGGL01,DGS09,GM11,BP13,CPS16,COPV13,COP+14], where a party may
use the same random tape in multiple executions. The class of correlations we
handle is more general. Kalai et al. [KLRZ08] introduced network extractor
protocols where there are a number of parties each having independent (but
imperfect) random tapes. Their result required a strong variant of the Decisional
Diffie-Hellman Assumption, and, a polylogarithmic number of parties.

Goldreich and Oren [GO94] showed that constructing zero-knowledge argu-
ments where the prover is deterministic is impossible. Dodis et al. [DOPS04]
showed that a number of basic cryptographic primitives like encryption and zero-
knowledge are impossible with imperfect randomness. Austrin et al. [ACM+14]
similarly showed a number of impossibility results (including for zero-knowledge)
in the setting of tampering randomness. These results focus on the plain model
and in the setting of a single execution. Moving to the CRS model allows us
to bypass these negative results. A line of research also explores cryptography
with related keys and related inputs (see [ABP15] and the references therein),
typically for a special class of tampering functions (such as affine functions).

Correlated-Source Extractors and Cryptography 567

2 Technical Overview

Explicit Construction with Fixed Seed Length. In this section, we will give a high
level idea of our construction of correlated-source extractors. We use X for the
original source and Xi for the tampered source. We use Y for the random seed.

Why Existing Techniques Fail. All the construction ideas related to two-source
non-malleable extractors (which imply the existence of weak correlated-source
extractors) somehow separate the original seed into several independent and
uniformly random “slices”. A general framework to constructing non-malleable
extractors (and two-source non-malleable extractors) followed by several works
is based on alternating extraction [DW09] and generating an advice (which is
unique w.h.p. across all the tampered executions). A critical step in such con-
structions is to view the original seed as a second source. In the beginning, a
slice of the seed is used to extract from the source. Next, the result is used
as a seed to extract from the original seed. Next, the result is again used as a
seed to extract from the source, and so on. This technique relies on the length
of the original seed to be long enough. In particular, during the analysis, each
tampering would “fix” a part of the random seed. This means that, the effective
entropy of the seed reduces as the number of tampered executions increase. By
using alternating extraction where the seed plays the role of one of the source,
it seems that the seed length must be linear in t.

Overview of the Construction. Our idea is to generate two (or multiple) indepen-
dent sources from the original source itself. A straightforward idea is to generate
(X1,X2) from X, such that the distribution of {X1,X1

1 , ...,X1
t } is independent

of {X2,X2
1 , ...,X2

t } (here Xi is the i-th tampering source and (X1
i ,X2

i) are gen-
erated from Xi). Then we may discard the original seed and use a two-source
non-malleable extractor on X1 and X2. However, we don’t know how to prove
the joint distributions of two sets are independent. Our starting idea would be
to use the given random seed in obtaining such a “decomposition” of the original
source. We use one part of the seed Y1 to generate X1 = Ext(X,Y1) and another
part of the seed Y2 to generate X2 = Ext(X,Y2). By assuming the source X has
enough entropy, we can guarantee that, given {X2,X2

1 , ...,X2
t }, X1 is uniformly

random. Note that the joint distribution of {X1,X1
1 , ...,X1

t } may be dependent
on that of {X2,X2

1 , ...,X2
t }, while two-source non-malleable extractors require

the adversary tampers both sources separately. Thus, it is not sufficient to use
two-source non-malleable extractors.

We first generate an advice adv from the source X (and advi from Xi) such
that it is unique w.h.p. across all the tampered executions. Let � denote the
length of the advice. Then, instead of just generating (X1,X2) from X, we
generate 2� sources (X1,X2, ...,X2�) from X such that, for every i ∈ {1, ..., 2�},
Xi is uniformly random given {Xj ,Xj

1 , ...,X
j
t }j �=i.

Let advi denote the i-th bit of adv. Each bit advi corresponds to a pair of
sources (X2i−1,X2i). The extractor first uses one piece of the original seed as the
seed and extracts randomness from one source of the first pair (X1,X2) decided

568 V. Goyal and Y. Song

by the value of adv1, then uses the result as the seed and extracts randomness
from one source of the second pair (X3,X4) and so on. Specifically, in the i-th
iteration, we choose X2i−1+advi

. This process can be described by a function
F = F (advi,X2i−1,X2i, Y, Zi−1), where Zi−1 is the result in the last iteration
and initially, Z0 is one piece of the original seed.

Note that, in the case that adv is different from all tampered adv1, ..., advt,
for all j ∈ {1, ..., t}, there exists at least one iteration (denoted by the i-th
iteration) such that the i-th bits of adv and advj are different. We note that

X2i−1+advi

is in fact independent of X
2i−1+advi

j

j . Thus, hopefully, we can break
the correlation between X and Xj in this iteration, i.e., Zi is independent of Zi

j .
We also need this independence to be preserved in all later iterations. Therefore,
in the end, since adv is different from all tampered advice, Z� is independent of
Z�
1, ..., Z

�
t .

Now we are ready to state our construction overview in more detail. It can
be divided into two steps.

Step 1: Generating advice adv and limited correlated parts X1, ...,X2�

In the beginning, we generate an advice adv for the source X such that, with
high probability, adv is different from adv1, ..., advt (the advice of X1,X2, ...,Xt).
This idea is not new and is widely used in the constructions of non-malleable
extractors (e.g. in [Coh15,CGL16]).

Recall that � is the length of adv. We generate X1,X2, ...,X2� by using a fresh
seed Y i

1 for each part Xi. Specifically, Xi = Ext(X,Y i
1) (and Xi

j = Ext(Xj , Y
i
1)).

Note that the random seeds in all executions are the same.
These sources X1,X2, ...,X2� directly satisfy our requirement, i.e., for every

i ∈ {1, ..., 2�}, Xi is uniformly random given {Xj ,Xj
1 , ...,X

j
t }j �=i. To see this,

let X i = {Xi,Xi
1, ...,X

i
t}. In the case that X has enough min-entropy and

X1, ...,X2� are comparatively short, X still has enough min-entropy when
fixing X 1, ...,X i−1,X i+1, ...,X 2�. Also, Y i is a fresh piece from the seed.
Thus, by the property of Ext, Xi is uniformly random and independent of
X 1, ...,X i−1,X i+1, ...,X 2�.

Step 2: Breaking correlation between sources by induction
Let SAMEi be the set of indices of sources whose advice is different from adv in
at least one bit of the first (i − 1) bits but is the same in the i-th bit, and DIFFi

be the set of indices of sources whose advice is different from adv in the i-th bit.
Then after the (i−1)-th iteration, Zi−1 should have been uniformly random and
independent of {Zi−1

j }j∈SAMEi . So for j ∈ SAMEi, we want this independence to
be preserved in the i-th iteration. And we want to further break the correlation
with the j-th tampered result where j ∈ DIFFi in the i-th iteration.

In the (i − 1)-th iteration, we should have already achieved that

|Zi−1 ◦ {Zi−1
j }j∈SAMEi−1

⋃
DIFFi−1 − Uz ◦ {Zi−1

j }j∈SAMEi−1
⋃

DIFFi−1 | < ε

where z is the length of Zi−1. A critical fact is that the above inequality still holds
even given X 2i−1 and X 2i. Because what we need to prove the above property
is that Xj is uniformly random when given {X k}k �=j for every j ∈ {1, ..., 2i−2}.

Correlated-Source Extractors and Cryptography 569

Fixing X 2i−1 and X 2i does not break this condition by the way how we generated
X1, ...,X2i−2.

For a series of correlated sources X,X1, ...,Xt, there are two ways to break
the correlation. If the random seeds are independent and uniformly random for
different sources, then the output is uniformly random and independent of others
in the case that X has enough min-entropy. If X given X1,X2, ...,Xt still has
enough min-entropy, then even if the seeds are not independent, the output of
extractor is still uniformly random and independent of others. This idea is also
used in the recent construction of non-malleable extractors (e.g. in [CL16]).

We note that, for the executions whose indices j ∈ SAMEi, they will use

X
2i−1+advi

j

j where 2i−1+advi
j = 2i−1+advi. It means that {X

2i−1+advi
j

j }j∈SAMEi

may be highly correlated with X2i−1+advi

. However, since SAMEi ⊆ SAMEi−1
⋃

DIFFi−1, Zi−1 is uniformly random and independent of {Zi−1
j }j∈SAMEi . If we use

Zi−1 as the seed to do extraction on X2i−1+advi

, the result is independent of
those of executions whose indices j ∈ SAMEi. Specifically,

Sub-Step 2.1: Breaking correlation with sources in SAMEi

Let Ext be a strong seeded extractor. Compute W i = Ext(X2i−1+advi

, Zi−1)
(and W i

j for the result in the j-th tampered execution). Then, given {W i
j }j∈SAMEi ,

W i is uniformly random.
Now, we want to further break the correlation with the j-th tampered result

where j ∈ DIFFi. Currently, W i may be correlated with {W i
j}j∈DIFFi . However,

We note that we can fix X 2i−1+(1−advi) in Sub-Step 2.1 without breaking the

property of the result. Since, for j ∈ DIFFi, W i
j only depends on X

2i−1+advi
j

j and

Zi−1
j , and X

2i−1+advi
j

j has already been fixed (because advi
j = 1−advi), W i will

have enough min-entropy even fixing {Zi−1
j }j∈DIFFi if we choose the length of

W i to be much longer than that of Zi. It also means that W i given {W i
j}j∈DIFFi

still has enough min-entropy. Therefore, we can simply use a fresh piece of the
original seed as the seed to do extraction on W i. The result will be independent
of those of executions whose indices are in SAMEi

⋃
DIFFi. Specifically,

Sub-Step 2.2: Breaking correlation with sources in DIFFi

We use a fresh piece Y i
2 from the original random seed Y . Compute Zi =

Ext(W i, Y i
2) as the output of the i-th iteration.

3 Preliminaries

We use capital letters to denote random variables. We use Ur to denote the
uniform distribution over {0, 1}r. For random variable X, we use x ∼ X to
denote that x is sampled from the distribution of X.

570 V. Goyal and Y. Song

3.1 Statistical Distance, Convex Combination of Distributions
and Probability Lemma

Definition 3 (Statistical Distance). Let D1 and D2 be two distributions on
a set S. The statistical distance between D1 and D2 is defined to be:

|D1 − D2| = max
T⊆S

|D1(T) − D2(T)| =
1
2

∑

s∈S

|Pr[D1 = s] − Pr[D2 = s]|

D1 is ε–close to D2 if |D1 − D2| ≤ ε.

Definition 4 (Convex Combination). A distribution D on a set S is a con-
vex combination of distributions D1,D2, ...,D� on S if there exists non-negative
constants (called weights) w1, w2, ..., w� with

∑l
i=1 wi = 1 such that Pr[D =

s] =
∑�

i=1 wi Pr[Di = s] for all s ∈ S. We use the notation D =
∑�

i=1 wiDi

to denote the fact that D is a convex combination of the distributions D1, ...,D�

with weights w1, ..., w�.

3.2 Min-entropy and Flat Distribution

The min-entropy of a source X is defined as

H∞(X) = − log(max
x∈support(X)

(1/Pr[X = x]))

A distribution D is a flat distribution (source) if it is uniformly random over a
set S. An (n, k)-source is a distribution over {0, 1}n with min-entropy at least
k. It is well known that any (n, k)-source is a convex combination of flat sources
supported on sets of size 2k.

3.3 Seeded Extractors, Non-malleable Extractors, Two-Source
Non-malleable Extractors and Previous Construction

Definition 5 (Strong seeded Extractor). A function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is called a strong seeded extractor for min-entropy k and
error ε if for any (n, k)–source X and an independent uniformly random string
Ud, we have

|Ext(X,Ud) ◦ Ud − Um ◦ Ud| < ε,

where Um is independent of Ud and m is the output length of Ext.

The following definition of t-non-malleable extractors is from [CRS14], which
generalizes the definition in [DW09].

Definition 6 (Non-malleable Extractor). A function snmExt : {0, 1}n ×
{0, 1}d → {0, 1}m is a seeded t-non-malleable extractor for min-entropy k and
error ε if the following holds: If X is a source on {0, 1}n with min-entropy k and

Correlated-Source Extractors and Cryptography 571

A1,A2, ...,At are arbitrary (tampering) functions defined on {0, 1}n → {0, 1}n

with no fixed points, then

|snmExt(X,Ud) ◦ {snmExt(X,Ai(Ud))}t
i=1 − Um ◦ {snmExt(X,Ai(Ud))}t

i=1| < ε,

where Um is independent of Ud and X.

The following definition of two-source non-malleable extractors is from
[CGL16], which generalizes the definition in [CG14a].

Definition 7 (Two-source Non-malleable Extractor). A function nmExt :
{0, 1}n × {0, 1}n → {0, 1}m is a two-source t-non-malleable extractor for min-
entropy k and error ε if the following holds: If X,Y are independent sources on
{0, 1}n with min-entropy k and A1 = (f1, g1),A2 = (f2, g2), ...,At = (ft, gt) are
arbitrary 2-split-state tampering functions where fi, gi are defined on {0, 1}n →
{0, 1}n such that for any i, at least one of fi, gi has no fixed points, then

|nmExt(X,Y) ◦ {nmExt(fi(X), gi(X))}t
i=1 − Um ◦ {nmExt(fi(X), gi(X))}t

i=1| < ε

Theorem 3 ([GUV09]). For any constant α > 0, and all integers n, k > 0
there exists a polynomial time computable strong seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m with d = O(log n + log(1/ε)) and m = (1 − α)k.

3.4 Conditional Min-entropy

Definition 8. The average conditional min-entropy is defined as

H̃∞(X|W) = log
(
Ew∼W [max

x
Pr[X = x|W = w]]

)
= − log

(
Ew∼W [2−H∞(X|W=w)]

)

The following result on conditional min-entropy was proved in [MW97].

Lemma 1. Let X,Y be random variables such that the random variable Y takes
at most l values. Then

Pr
y∼Y

[H∞(X|Y = y) ≥ H∞(X) − log l − log(
1
ε
)] > 1 − ε

We recall some results on conditional min-entropy from [DRS04].

Lemma 2 ([DRS04]). If a random variable B can take at most 2� values, then
H̃∞(A|BC) ≥ H̃∞(A|C) − �.

Lemma 3 ([DRS04]). For any δ > 0, if Ext is a (k, ε)–extractor then it is also
a (k + log(1/δ), ε + δ) average case extractor.

572 V. Goyal and Y. Song

4 Our Model

In this section, we introduce a new model of cryptographic protocol where a party
may be involved in multiple executions with correlated random tapes. We first
focus on zero-knowledge and later generalize to secure multi-party computation.
This captures the setting where an honest party may have a defective random
number generator G which may output highly correlated strings in different
executions. In the worst case, the output of G after the first execution may fully
depend on the output in the first execution. Then an adversary may use the
messages it received in the first execution to get information about the random
tape of the honest parties in the subsequent executions.

We will formalize the above setting by considering an experiment where an
adversary is given limited control of the random tape of the honest party and
can interact with the honest party in multiple sessions.

Correlated-Tape Zero-Knowledge. For every {(xi, wi)}t
i=1 where wi ∈ RL(xi),

the verifier V ∗ will sequentially interact with the actual prover P . V ∗ can
specify t tampering functions f1, f2, ..., ft. To overcome known impossibility
results [DOPS04] as discussed later, we also assume the existence of a CRS.
In the beginning, P has a private random tape X distributed uniformly at
random. In the j-th execution, P uses fj(X) as its random tape. We use
τ(P, V ∗, CRS, {(xi, wi)}t

i=1) to denote the transcripts of t consecutive executions
and the total view of V ∗ where in the j-th execution, P takes (xj , wj), CRS as
input and uses fj(X) as random tape, and V ∗ takes xj , CRS, all previous tran-
scripts and its previous view as input.

Definition 9. A pair of algorithms (P, V) is a correlated-tape zero-knowledge
proof system for language L, if there exist polynomials len(·), k(·, ·) such that for
any polynomial t(·), the following conditions hold:

– Completeness: For every security parameter κ, x ∈ L,w ∈ RL(x),

Pr[< P (w,X), V > (x,Ulen(κ)) = 1] = 1

Here w is the private input for P and X is the private random tape of P .
By < P, V > (x,Ulen(κ)), we denote the output of V when P and V interact
on the common input x and a common reference string distributed uniformly
random over {0, 1}len(κ).

– Soundness: For every algorithm A and every x �∈ L, there exists a negligible
function μ(·) such that for every security parameter κ,

Pr[< A, V > (x,Ulen(κ)) = 1] < μ(κ)

– Correlated-Tape Zero Knowledge: There exists a simulator S, such that for
any t = t(κ) functions f1, f2, ..., ft, whose output has the same length as input,
such that H∞(fi(X)) ≥ k(t(κ), κ), any V ∗ and (xi, wi) where wi ∈ RL(xi) and
i ∈ [t] the following two distributions are computationally indistinguishable:

{CRS ∼ Ulen(κ) : τ(P, V ∗, CRS, {(xi, wi)}t
i=1)}

S({xi}t
i=1, V

∗)

Correlated-Source Extractors and Cryptography 573

One could consider a variant of the above definition where there is no CRS.
One could also define the complementary setting where the random number
generator of the verifier (rather than the prover) is defective (and one would like
to ensure soundness in the correlated tape setting).

Correlated-Tape Secure Multi-party Computation. Now let us consider the case
of a multi-party computation protocol. We use Pi to denote the i-th party and
A to denote the adversary. Suppose there are n parties in total. We use F to
represent the desired functionality. Let T ⊆ [n] to be the set of indices of parties
that are corrupted.

Our ideal model will be the same as that in a standard definition of MPC.
Specifically,

Ideal Model.There is a trusted party which computes the desired functionality
based on the inputs of all parties. An execution in the ideal model proceeds as
follows:

– Inputs. All parties (including the corrupted parties) will send their inputs to
the trusted party. An honest party always sends its real input. A corrupted
party may send modified value depending on the strategy of the adversary.
We use xi to denote the input sent by Pi.

– Trusted Party Computes the Result. The trusted party will use
the inputs from all parties to compute the desired functionality. Let
(y′

1, y
′
2, ..., y

′
n) = F (x1, x2, ..., xn)

– Trusted Party Sends out the result. For i = 1, 2, ..., n, the trusted party
asks A whether it wants to abort. If A does not abort, then the trusted party
will send y′

i to Pi. Otherwise, for all j ≥ i, Pj will receive nothing from the
trusted party.

– Outputs. An honest party Pi always outputs the response it received from
the trusted party (it will output ⊥ if it receives nothing) together with its
input xi. The adversary A outputs an arbitrary function of its entire view so
far (including the views in the previous executions).

We use IDEALF,A({xj
i : i �∈ T}t

j=1) to represents the outputs of t consecutive
sequential executions in the ideal world with functionality F , adversary A and
input xj

i for honest party Pi in the j-th execution.

Real Model. In the real model, the adversary A is allowed to specify t tampering
functions for each honest party. We use f j

i to represent the j-th tampering
function for Pi. Then there will be a trusted party generating a uniform string
as CRS. In the beginning, each party has a private random tape distributed
uniformly random. Denote Xi to be the initial random tape of Pi. In the j-th
execution in the real model, an honest party Pi uses f j

i (Xi) as its random tape.
The outputs of a protocol π in the real model include the inputs and outputs of
all honest parties together with the full view of the adversary so far (including
the view in the previous executions). We use REALπ

F,A({xj
i : i �∈ T}t

j=1, {Xj
i : i �∈

T}t
j=1, CRS) to represents the outputs of π in t consecutive sequential executions

574 V. Goyal and Y. Song

in the real world for functionality F , adversary A, common reference string CRS
and input xj

i for honest party Pi with random tape Xj
i in the j-th execution.

Definition 10. A protocol π is a secure correlated-tape multi-party computation
protocol for functionality F of n parties, if there exist polynomials len(·), k(·, ·)
such that for any polynomial t(·), adversary A which corrupts (n−�) parties with
the set of indices T ⊂ [n] and security parameter κ, there exists an ideal attacker
A′ such that, for all inputs {xj

i : i �∈ T}t(κ)
j=1 and functions {f j

i : i �∈ T}t(κ)
j=1, whose

output has the same length as input, such that H∞(f j
i (Xi)) ≥ k(t(κ), κ), the

following two distributions are computationally indistinguishable:

{CRS ∼ Ulen(κ) : REALF,A({xj
i : i �∈ T}t(κ)

j=1, {f j
i (Xi) : i �∈ T}t(κ)

j=1, CRS)}

IDEALF,A′({xj
i : i �∈ T}t(κ)

j=1)

Note that in the above definitions, we use the min-entropy condition to con-
strain the tampering functions that the adversary may choose to avoid known
impossibility results on deterministic zero-knowledge [GO94].

Impossibility without CRS. We stress that a common public random string as
auxiliary input is necessary for our construction. In the work [DOPS04] of Dodis,
Ong, Prabhakaran and Sahai, they studied the model which uses imperfect ran-
dom tape in a zero knowledge protocol without CRS. The result is negative. Note
that in Definition 9 and when we set t = 1, one can view f1(X) as an imper-
fect random tape and f1(X) can be all possible flat source with min-entropy
k(t(κ), κ). Thus, if there is no CRS as auxiliary input, it is also impossible to
construct a protocol satisfying Definition 9.

Notice that even in the CRS model, the (tampering) functions f1, f2, ..., ft

must not depend on the CRS to allow for a positive result. We give a proof
sketch as following. The idea is very similar to that in [DOPS04].

We focus on the case where t(·) = 1. Without loss of generality, we can
assume that the length of random tape N ≥ k(1, κ) + κ (It can be achieved by
simply padding κ random bits and never use them). Suppose the length of the
transcript is bounded by q(κ) where q is a polynomial. Consider a distinguisher
Di which just outputs the i-th bit of the transcript. Now for a fixed CRS and a
fixed random tape of V ∗, we want to show one of the following cases happens:

– There exists two tampering functions f and f ′ such that f(UN) and f ′(UN)
are both (N, k(1, κ))–flat sources but two distributions of the transcripts can
be distinguished by some Di with noticeable probability.

– The distribution of the transcript is deterministic except for a negligible prob-
ability.

Now consider the distribution of the transcript where the prover just uses the
uniform random tape X. If it is deterministic except for a negligible probability,
then we are done. Otherwise, there exists some i such that the i-th bit in the
transcript is not almost deterministic. Then we may find two sets S, S′ of size

Correlated-Source Extractors and Cryptography 575

2k(1,κ) such that for every X ∈ S, the i-th bit of the transcript is always 0,
and for every X ∈ S′, the i-th bit of the transcript is always 1. Let f and f ′

be functions such that f(UN) is a flat distribution over S and f ′(UN) is a flat
distribution over S′. Note that Di can distinguish these two distributions with
probability 1.

Then, we fix the random tape of V ∗ and consider all possible CRS. We
may construct f(·, CRS) and f ′(·, CRS) such that one of the above cases happens.
We say a CRS is good if the second case happens, i.e. the distribution of the
transcript is deterministic except for a negligible probability. We say a CRS is
bad otherwise. Note that, for a bad CRS, there exists some Di such that it
will always output 0 when using f and output 1 when using f ′. It means that
each bad CRS corresponds to one distinguisher. Since there are in total q(k)
distinguisher, then there exists Di∗ where over 1/q(k) bad CRS corresponds to
it. If all but a negligible portion of CRS is good, then the prover’s behavior
almost fully depends on CRS and the random tape of V ∗. Otherwise, Di∗ may
distinguish two distributions with a noticeable probability.

Therefore, except for a negligible probability, the randomness of the prover
only comes from CRS and the random tape of V ∗, which is impossible for a
non-trivial language L.

Correlated-Source Extractors. The construction of correlated tape secure proto-
cols is closely related to the question of designing what we call correlated-source
extractors. Informally, correlated-source extractors csExt have power to break
correlations between sources with a unique random seed, i.e.,

|csExt(fi(X), Y)◦{csExt(fj(X), Y)}j �=i◦Y −U ◦{csExt(fj(X), Y)}j �=i◦Y | < ε,

where U is the uniform distribution and we use Y to refer the CRS. With
this object and CRS, the prover can obtain a fresh uniformly random tape in
each execution. Formally, we define the notion correlated-source extractor as
following:

Definition 1 (Seeded Correlated-Source Extractor). A function csExt :
{0, 1}∗ ×{0, 1}d → {0, 1}m is a seeded correlated-source extractor if the following
holds: There exists a polynomial k(·, ·, ·) and a negligible function ε(·), such that
for any polynomial t(·), t = t(d) arbitrary functions A1,A2, ...,At, whose output
has the same length as the input, with no fixed points, and, a source X with
min-entropy k(t,m, d),

|csExt(X, Ud)◦{csExt(Ai(X), Ud)}t
i=1 ◦Ud −Um ◦{csExt(Ai(X), Ud)}t

i=1 ◦Ud| < ε(d)

where Um and Ud are uniform strings of length m and d respectively.

576 V. Goyal and Y. Song

5 Explicit Construction of Correlated-Source Extractor

In this section, we will describe our construction of correlated-source extractors.
To this end, we first give an explicit construction of a weak t-correlated source
extractor in Sects. 5.1 and 5.2. Then we show that it is indeed a correlated-source
extractor in Sect. 5.3. In Sect. 5.4, we introduce a special kind of sources which
we can further lower the requirement of min-entropy.

5.1 Explicit Construction of Weak Correlated-Source Extractor

We will frequently use the following lemma in the proof.

Lemma 4. Suppose X,X ′, Y, Y ′ are random variables such that |X ◦ Y − X ′ ◦
Y ′| ≤ ε. Then, for any function f(x, y),

|f(X,Y) ◦ Y − f(X ′, Y ′) ◦ Y ′| ≤ ε

Especially, when Y is an empty string, we have |f(X)−f(X ′)| ≤ ε. A formal
proof can be found in the full version of this paper [GS19] in Appendix A.

Before we give our construction, we need to point out an important fact
about weak correlated-source extractor:

Theorem 4. If wcsExt is a weak t-correlated-source extractor for min entropy
k and output length m, then (t + 1)m ≤ k.

We give a formal proof in the full version [GS19] of this paper in Appendix B.
In Theorem 4, it gives us an upper bound of t, i.e. t < n. We will use this

fact in our construction.

Theorem 5. There exists an explicit weak t-correlated-source extractor wcsExt
for min-entropy k ≥ O(t3(log2 n + log2(1/ε))), seed length d = O(log2 n +
log2(1/ε)) and output length m = O(log n + log(1/ε)).

Proof. Suppose the length of adv is �. We separate Y into several parts. Specif-
ically, let

Y = Yadv ◦ Y 1
1 ◦ Y 2

1 ◦ ... ◦ Y 2�
1 ◦ Y 1

2 ◦ Y 2
2 ◦ ... ◦ Y �

2 ◦ Ystart

The first part Yadv is used to generate adv for X. Then we will use Y 1
1 , Y 2

1 , ..., Y 2�
1

to generate X1,X2, ...,X2�. Y 1
2 , Y 2

2 , ..., Y �
2 and Ystart will be used in the construc-

tion of function F . Let dadv = |Yadv|, d1 = |Y i
1 |, d2 = |Y i

2 | and dstart = |Ystart|.
Step 1: Construction of adv.
We separate X into n/dadv parts such that each part is of length dadv. Suppose

X = X1 ◦ X2 ◦ ... ◦ Xn/dadv . Construct a polynomial in the field GF (2dadv):

FX(n) =
n/dadv∑

i=1

Xini−1

Correlated-Source Extractors and Cryptography 577

Let adv = FX(Yadv) as the advice of X. Then,

|adv| = � = dadv. (3)

For different sources X and X ′, FX(n) and FX′(n) are different. Then,
FX(n) − FX′(n) �≡ 0. It is known that, FX(n) − FX′(n) = 0 has at most n/dadv
roots. Since Yadv is uniformly random and independent of sources X,X ′, with
probability at most n/(dadv2dadv), FX(Yadv) = FX′(Yadv).

Let advi = FXi
(Yadv) be the advice of the i-th tampering source. By

union bound, with probability at least 1 − tn/(dadv2dadv), adv is different from
adv1, ..., advt. We set

dadv = log(tn/ε1) (4)

Then ε1 = tn/2dadv > tn/(dadv2dadv). Thus, with probability 1 − ε1, we can suc-
cessfully generate a unique advice for source X.

Let ADV = {adv, adv1, ..., advt, Yadv}. By lemma 1, we have

Pr[H∞(X|ADV) ≥ H∞(X) − (t + 2)dadv − log
1
ε2

] > 1 − ε2

Thus, by union bound, with probability at least 1 − ε1 − ε2,

H∞(X|ADV) ≥ H∞(X) − (t + 2)dadv − log
1
ε2

(5)

and adv is different from adv1, ..., advt. We say such ADV is good.
Now, we fix a good ADV. For simplicity, we omit the condition ADV.

Step 2: Generating X1,X2, ...,X2�.
The idea is very simple, we just apply a strong-seeded extractor with seed Y i

1

to generate Xi. Let q be the length of Xi. According to Theorem3, there exists
a strong-seeded extractor Ext1 for min-entropy 2q, d = c(log n + log 1

ε3
) and ε3,

where c is some constant. We set

d1 = c(log n + log
1
ε3

). (6)

By Lemma 3, Ext1 is also a (2q + log(1/ε3), 2ε3) average case extractor. Let

Xi = Ext1(X,Y i
1)

Recall that X i = {Xi,Xi
1, ...,X

i
t}. For every i, when we fix

X 1, ...,X i−1,X i+1, ...,X 2� and the seeds Y 1
1 , ..., Y i−1

1 , Y i+1
1 , ..., Y 2�

1 , by Lemma 1,
(let Seti = {X j , Y j

1 }j �=i)

H̃∞(X|Seti) ≥ H∞(X) − (2� − 1)(t + 1)q − (2� − 1)d1

Here we need

H∞(X) − (2� − 1)(t + 1)q − (2� − 1)d1 ≥ 2q + log(1/ε3). (7)

578 V. Goyal and Y. Song

Thus,
|Ext1(X,Y i

1) ◦ Y i
1 ◦ Seti − Uq ◦ Y i

1 ◦ Seti| ≤ 2ε3

Step 3: Construction of F .
Now we will construct a suitable function F . Recall that, we use advi for the

i-th bit of adv. Let Z0 = Ystart and Zi = F (advi,X2i−1,X2i, Y i
2 , Zi−1).

The function F include two parts. First, we will apply a strong-seeded extrac-
tor on the source X2i−1+advi

and seed Zi−1. We use W i to denote the output of
the extractor. Then, we apply another strong-seeded extractor on the source W i

and seed Y i
2 . The output will be the final output of F (advi,X2i−1,X2i, Y i

2 , Zi−1).
Let z be the length of Zi. Then z = |Z0| = |Ystart| = dstart. Let w be the length
of W i.

According to Theorem 3, there exists a strong-seeded extractor Ext2 for min-
entropy 2w, d = c(log n+log 1

ε4
) and ε4, where c is some constant. Similarly, there

exists a strong-seeded extractor Ext3 for min-entropy 2z, d = c(log n + log 1
ε5

)
and ε5. (For simplicity, we use the same constant in Ext1, Ext2, Ext3. One can
choose the largest constant.) By Lemma 3, Ext2 is also a (2w + log(1/ε4), 2ε4)
average case extractor, Ext3 is also a (2z+log(1/ε5), 2ε5) average case extractor.
We set

dstart = z = c(log n + log
1
ε4

) (8)

and
d2 = |Y i

2 | = c(log n + log
1
ε5

). (9)

Then

F (advi,X2i−1,X2i, Y i
2 , Zi−1) = Ext3(Ext2(X2i−1+advi

, Zi−1), Y i
2)

To show correctness, we will use induction on the length of adv. Note that,
we only consider the case that adv is different from adv1, adv2, ..., advt. We have
already fixed all advice and Yadv.

We need the following lemma:

Lemma 5. Suppose we have the following conditions:

– For random variables X (of length n) and W , |X ◦ W − Un ◦ W | ≤ ε1
– Random variable Z of length z is correlated with X and W
– Y is uniformly random and independent of X,W,Z.

Then, if Ext is a (k, ε2) average case extractor with output length m where k ≤
n − z and d ≤ |Y |, we have that

|Ext(X,Y) ◦ Y ◦ W ◦ Z − Um ◦ Y ◦ W ◦ Z| < 2ε1 + ε2

We give a formal proof in the full version [GS19] of this paper in Appendix C.
Before we state the main lemma, we need to define a class of sets. Let DIFF0 =

SAME0 = ∅. For i ≥ 1,

DIFFi = {j|advi
j �= advi}

SAMEi = (DIFFi−1
⋃

SAMEi−1)/DIFFi

Correlated-Source Extractors and Cryptography 579

Actually, DIFFi is the set of indices of the advice whose i-th bit is different
from that of the advice of X. And SAMEi is the set of indices of the advice whose
first i − 1 bits are different from that of the advice of X, but the i-th bit is the
same.

Recall that, W i = Ext2(X2i−1+advi

, Zi−1) and F (advi,X2i−1,X2i, Y i
2 ,

Zi−1) = Ext3(W i, Y i
2). In the i-th step, we want to show that Zi is uniformly

random and independent of {Zi
j}j∈(DIFFi

⋃
SAMEi). By induction hypothesis, we

have that Zi−1 is uniformly random and independent of {Zi−1
j }j∈SAMEi . We hope

we can keep this property after computing W i, i.e., to show that W i is uni-
formly random and independent of {W i

j}j∈SAMEi . Then, in the second extraction,
we want to break the correlation with Zi and {Zi

j}j∈DIFFi .
We have the following main lemma:

Lemma 6. Suppose DIFFi and SAMEi are the same as above. Let ηi = 4i−1
3 (8ε3+

4ε4 + 2ε5). Then we have

|Z0 ◦ {Xs}2�
s=1 ◦ {Y s

1 }2�
s=1 − Uz ◦ {Xs}2�

s=1 ◦ {Y s
1 }2�

s=1| = 0

and for every 1 ≤ i ≤ �, we have

|Zi ◦ {Zi
j}j∈(DIFFi

⋃
SAMEi) ◦ {Xs}2�

s=2i+1 ◦ {Y s
1 }2�

s=1 ◦ Z0 ◦ {Y s
2 }i

s=1

−Uz ◦ {Zi
j}j∈(DIFFi

⋃
SAMEi) ◦ {Xs}2�

s=2i+1 ◦ {Y s
1 }2�

s=1 ◦ Z0 ◦ {Y s
2 }i

s=1| ≤ ηi

Proof. We prove the lemma by induction. When i = 0, DIFF0
⋃
SAME0 = ∅. We

want to show that

|Z0 ◦ {Xs}2�
s=1 ◦ {Y s

1 }2�
s=1 − Uz ◦ {Xs}2�

s=1 ◦ {Y s
1 }2�

s=1| = 0

Note that Z0 = Ystart and Ystart is uniformly random and independent of X
and {Y s

1 }2�
s=1. Thus, given {Xs}2�

s=1 and {Y s
1 }2�

s=1, Z0 is uniformly random. The
statement holds.

For i = 1, we want to show that

|Z1 ◦ {Z1
j }j∈(DIFF1

⋃
SAME1) ◦ {Xs}2�

s=3 ◦ {Y s
1 }2�

s=1 ◦ Z0 ◦ Y 1
2

−Uz ◦ {Z1
j }j∈(DIFF1

⋃
SAME1) ◦ {Xs}2�

s=3 ◦ {Y s
1 }2�

s=1 ◦ Z0 ◦ Y 1
2 | ≤ η1

Without loss of generality, assume adv1 = 0. Then, for j ∈ DIFF1, adv1j = 1
and SAME1 = ∅.

In step 2, we have

|X1 ◦ X2 ◦ {Xs}2�
s=3 ◦ {Y s

1 }2�
s=1 − Uq ◦ X2 ◦ {Xs}2�

s=3 ◦ {Y s
1 }2�

s=1| ≤ 2ε3

Note that Z0 is uniformly random and independent of X2◦{Xs}2�
s=3◦{Y s

1 }2�
s=1.

By Lemma 5, (here X is X1, W is X2 ◦ {Xs}2�
s=3 ◦ {Y s

1 }2�
s=1, Z is empty, Y is Z0

and Ext2 is a (2w + log(1/ε4), 2ε4) average case extractor),

|W 1 ◦Z0 ◦X2 ◦{Xs}2�
s=3 ◦{Y s

1 }2�
s=1 −Uw ◦Z0 ◦X2 ◦{Xs}2�

s=3 ◦{Y s
1 }2�

s=1| < 4ε3 +2ε4

580 V. Goyal and Y. Song

Here, we require that

|X1| = q ≥ 2w + log(1/ε4). (10)

Since for every j ∈ DIFF1, W 1
j = Ext2(X2

j , Z0) is a deterministic function of
Z0 and X2. Thus

|W 1 ◦ Z0 ◦ {W 1
j }j∈DIFF1 ◦ {Xs}2�

s=3 ◦ {Y s
1 }2�

s=1

−Uw ◦ Z0 ◦ {W 1
j }j∈DIFF1 ◦ {Xs}2�

s=3 ◦ {Y s
1 }2�

s=1| < 4ε3 + 2ε4

Note that Y 1
2 is uniformly random and independent of W 1 and Z0 ◦

{W 1
j }j∈DIFF1 ◦ {Xs}2�

s=3 ◦ {Y s
1 }2�

s=1. By Lemma 5, (here X is W 1, W is Z0 ◦
{W 1

j }j∈DIFF1 ◦ {Xs}2�
s=3 ◦ {Y s

1 }2�
s=1, Z is empty, Y is Y 1

2 and Ext3 is a (2z +
log(1/ε5), 2ε5) average case extractor),

|Z1 ◦ Y 1
2 ◦ Z0 ◦ {W 1

j }j∈DIFF1 ◦ {Xs}2�
s=3 ◦ {Y s

1 }2�
s=1

−Uz ◦ Y 1
2 ◦ Z0 ◦ {W 1

j }j∈DIFF1 ◦ {Xs}2�
s=3 ◦ {Y s

1 }2�
s=1| < 8ε3 + 4ε4 + 2ε5

Here, we require that

|W 1| = w ≥ 2z + log(1/ε5). (11)

Since for every j ∈ DIFF1, Z1
j = Ext3(W 1

j , Y 1
2) is a deterministic function of

Y 1
2 and {W 1

j }j∈DIFF1 . Thus

|Z1 ◦ Y 1
2 ◦ Z0 ◦ {Z1

j }j∈DIFF1 ◦ {Xs}2�
s=3 ◦ {Y s

1 }2�
s=1

−Uz ◦ Y 1
2 ◦ Z0 ◦ {Z1

j }j∈DIFF1 ◦ {Xs}2�
s=3 ◦ {Y s

1 }2�
s=1| < 8ε3 + 4ε4 + 2ε5

Note that SAME1 = ∅. It is exactly what we want to prove in the case i = 1.
Now suppose the lemma is correct for i−1, consider the case for i. According

to induction hypothesis, we have that

|Zi−1 ◦ {Zi−1
j }j∈SAMEi ◦ {Xs}2�

s=2i−1 ◦ {Y s
1 }2�

s=1 ◦ Z0 ◦ {Y s
2 }i−1

s=1

−Uz ◦ {Zi−1
j }j∈SAMEi ◦ {Xs}2�

s=2i−1 ◦ {Y s
1 }2�

s=1 ◦ Z0 ◦ {Y s
2 }i−1

s=1| ≤ ηi−1

For simplicity, we define

Xi = {Xs}2�
s=2i+1, T = {Y s

1 }2�
s=1 ◦ Z0, Yi = {Y s

2 }i
s=1

Thus, we may rewrite the induction hypothesis for the case i − 1 by

|Zi−1 ◦ {Zi−1
j }j∈SAMEi ◦ Xi−1 ◦ T ◦ Yi−1 − Uz ◦ {Zi−1

j }j∈SAMEi ◦ Xi−1 ◦ T ◦ Yi−1| ≤ ηi−1

Let Z ′ be a uniformly random string over {0, 1}z and independent of
X,X1, ...,Xt and Y . Then, we may use Z ′ instead of Uz, i.e.,

|Zi−1 ◦ {Zi−1
j }j∈SAMEi ◦ Xi−1 ◦ T ◦ Yi−1 − Z′ ◦ {Zi−1

j }j∈SAMEi ◦ Xi−1 ◦ T ◦ Yi−1| ≤ ηi−1

Correlated-Source Extractors and Cryptography 581

Without loss of generality, assume advi = 0. Then, advi
j = 1 for j ∈ DIFFi

and advi
j = 0 for j ∈ SAMEi. We have

W i = Ext2(X2i−1, Zi−1)

Note that, in step 2, we have

|X2i−1 ◦ X2i ◦ Xi ◦ {Y s
1 }2�

s=1 − Uq ◦ X2i ◦ Xi ◦ {Y s
1 }2�

s=1| ≤ 2ε3

Also note that Yi−1 is independent of X2i−1 ◦ X2i ◦ Xi ◦ {Y s
1 }2�

s=1. Therefore,

|X2i−1 ◦ X2i ◦ Xi ◦ {Y s
1 }2�

s=1 ◦ Yi−1 − Uq ◦ X2i ◦ Xi ◦ {Y s
1 }2�

s=1 ◦ Yi−1| ≤ 2ε3

Since Z ′ is independent of X and Y , it is independent of X2i−1 ◦ X2i ◦ Xi ◦
{Y s

1 }2�
s=1 ◦ Yi−1 and {W i

j }j∈SAMEi ◦ {Zi−1
j }j∈SAMEi ◦ Z0. By Lemma 5, (here X is

X2i−1, W is X2i ◦Xi ◦ {Y s
1 }2�

s=1 ◦ Yi−1, Z is {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Z0, Y
is Z ′ and Ext2 is a (2w + log(1/ε4), 2ε4) average case extractor),

|Ext2(X2i−1, Z ′) ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1

−Uw ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1| < 4ε3 + 2ε4

Here, we require that

|X2i−1| − |{W i
j }j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Z0|
≥ q − (tw + tz + z) ≥ 2w + log(1/ε4) (12)

Recall that,

|Zi−1 ◦ {Zi−1
j }j∈SAMEi ◦ Xi−1 ◦ T ◦ Yi−1 − Z′ ◦ {Zi−1

j }j∈SAMEi ◦ ◦Xi−1 ◦ T ◦ Yi−1| ≤ ηi−1

Notice that {W i
j}j∈SAMEi is a deterministic function of {Zi−1

j }j∈SAMEi and
X2i−1. Also, W i = Ext2(X2i−1, Zi−1).

Thus, by reordering the composition parts, we have

|W i ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j }j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1

−Ext2(X2i−1, Z ′) ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j }j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1|
≤ ηi−1

Still, since {W i
j}j∈SAMEi is a deterministic function of {Zi−1

j }j∈SAMEi and X2i−1,
we have

|Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1

−Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1|
≤ |Z ′ ◦ Xi−1 ◦ T ◦ {W i

j}j∈SAMEi ◦ {Zi−1
j }j∈SAMEi ◦ Yi−1

−Zi−1 ◦ Xi−1 ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1|
= |Z ′ ◦ Xi−1 ◦ T ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1

−Zi−1 ◦ Xi−1 ◦ T ◦ {Zi−1
j }j∈SAMEi ◦ Yi−1|

< ηi−1

582 V. Goyal and Y. Song

In total, we have

|W i ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1

−Uw ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1|
≤ |W i ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i

j}j∈SAMEi ◦ {Zi−1
j }j∈SAMEi ◦ Yi−1

−Ext2(X2i−1, Z ′) ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1|
+|Ext2(X2i−1, Z ′) ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i

j}j∈SAMEi ◦ {Zi−1
j }j∈SAMEi ◦ Yi−1

−Uw ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1|
+|Uw ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i

j}j∈SAMEi ◦ {Zi−1
j }j∈SAMEi ◦ Yi−1

−Uw ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1|
< ηi−1 + 4ε3 + 2ε4

+|Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j }j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1

−Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi ◦ Yi−1|
≤ 2ηi−1 + 4ε3 + 2ε4

Note that Y i
2 is uniformly random and independent of W i and Zi−1 ◦ X2i ◦

Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1

j }j∈SAMEi
⋃

DIFFi ◦ Yi−1. By Lemma 5, (here X is W i,
W is Zi−1 ◦ X2i ◦Xi ◦ T ◦ {W i

j}j∈SAMEi ◦ {Zi−1
j }j∈SAMEi ◦ Yi−1, Z is {Zi−1

j }j∈DIFFi ,
Y is Y i

2 and Ext3 is a (2z + log(1/ε5), 2ε5)), we have

|Zi ◦ Y i
2 ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i

j}j∈SAMEi ◦ {Zi−1
j }j∈SAMEi

⋃
DIFFi ◦ Yi−1

−Uz ◦ Y i
2 ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i

j}j∈SAMEi ◦ {Zi−1
j }j∈SAMEi

⋃
DIFFi ◦ Yi−1|

< 4ηi−1 + 8ε3 + 4ε4 + 2ε5 = ηi

Here, we need

|W i| − |{Zi−1
j }j∈DIFFi | ≥ w − tz ≥ 2z + log(1/ε5). (13)

Note that {Zi
j}j∈SAMEi is a deterministic function of Y i

2 and {W i
j}j∈SAMEi . And

{Zi
j}j∈DIFFi is a deterministic function of Y i

2 , {Zi
j}j∈DIFFi and X2i. Thus, we have

(We will discard {W i
j}j∈SAMEi and Zi−1)

|Zi ◦ Y i
2 ◦ {Zi

j}j∈SAMEi
⋃

DIFFi ◦ Xi ◦ T ◦ Yi−1

−Uz ◦ Y i
2 ◦ {Zi

j}j∈SAMEi
⋃

DIFFi ◦ Xi ◦ T ◦ Yi−1| < ηi

It is exactly what we want. Thus the statement is true for the case i. ��
By assumption, all advice are different. Then DIFF�

⋃
SAME� include all

indices of advice. Therefore,

|Z� ◦ {Z�
j}t

j=1 ◦ {Y s
1 }2�

s=1 ◦ {Y s
2 }�

s=1 ◦ Z0 − Uz ◦ {Z�
j}t

j=1 ◦ {Y s
1 }2�

s=1 ◦ {Y s
2 }�

s=1 ◦ Z0|

<
4� − 1

3
(8ε3 + 4ε4 + 2ε5)

Correlated-Source Extractors and Cryptography 583

So far, we are in the condition that ADV is good. Make everything together,

|Z� ◦ {Z�
j}t

j=1 ◦ {Y s
1 }2�

s=1 ◦ {Y s
2 }�

s=1 ◦ Z0 ◦ ADV

−Uz ◦ {Z�
j}t

j=1 ◦ {Y s
1 }2�

s=1 ◦ {Y s
2 }�

s=1 ◦ Z0 ◦ ADV|

< Pr[ADV is bad] + Pr[ADV is good] · 4� − 1
3

(8ε3 + 4ε4 + 2ε5)

< ε1 + ε2 +
4� − 1

3
(8ε3 + 4ε4 + 2ε5)

The total error is ε1 + ε2 + 4�−1
3 (8ε3 + 4ε4 + 2ε5). Let

ε1 = ε2 =
ε

e2
= O(ε).

By (3), (4) and the fact that t < n, we have

� = dadv = log(tn/ε1) = O(log n + log(1/ε))

Let

ε3 = ε4 = ε5 =
ε

14e2�
= O(

ε3

t2n2
)

Then we have

ε1 + ε2 +
4� − 1

3
(8ε3 + 4ε4 + 2ε5) < ε

By (6), (8), (9) and the fact that t < n, we have

d1 = d2 = dstart = O(log n + log(1/ε))

Therefore, the length of the seed

|Y | = dadv + 2�d1 + �d2 + dstart = O(�(log n + log(1/ε))) = O(log2 n + log2(1/ε))

All requirements for the min-entropy of X|ADV are (7), (10), (11), (12), (13), i.e.

H∞(X|ADV) − (2� − 1)(t + 1)q − (2� − 1)d1 ≥ 2q + log(1/ε3)
q ≥ 2w + log(1/ε4)
w ≥ 2z + log(1/ε5)

q − (tw + tz + z) ≥ 2w + log(1/ε4)
w − tz ≥ 2z + log(1/ε5)

Therefore, we have

z = O(log n + log(1/ε))
w = O(t(log n + log(1/ε)))
q = O(t2(log n + log(1/ε)))

H∞(X|ADV) ≥ O(t3(log2 n + log2(1/ε)))

584 V. Goyal and Y. Song

Note that in (5), for a good ADV, we have

H∞(X|ADV) ≥ H∞(X) − (t + 2)dadv − log(1/ε2)

Thus, we set

H∞(X) = O(t3(log2 n + log2(1/ε))) + (t + 2)dadv + log(1/ε2)
= O(t3(log2 n + log2(1/ε)))

Note that the final output is Z�. Then, the output length m = z = O(log n+
log(1/ε)).

Thus, there exists an explicit construction of wcsExt for

H∞(X) ≥ O(t3(log2 n + log2(1/ε)))
|Y | = O(log2 n + log2(1/ε))
m = O(log n + log(1/ε))

��
Also, we may generalize our result to an average case weak t-correlated-source

extractor.

Definition 11 (Average Case weak t-Correlated-Source Extractor).
A function wcsExt : {0, 1}n × {0, 1}d → {0, 1}m is an average case weak
t-correlated-source extractor for average conditional min-entropy k and error ε if
the following holds: If X is a source in {0, 1}n, W is some random variable such
that H̃∞(X|W) ≥ k, A1,A2, ...,At are arbitrary tampering functions defined on
{0, 1}n → {0, 1}n with no fixed points, then

|wcsExt(X,Ud) ◦ {wcsExt(Ai(X), Ud)}t
i=1 ◦ Ud ◦ W

−Um ◦ {wcsExt(Ai(X), Ud)}t
i=1 ◦ Ud ◦ W | < ε

where Um is independent of Ud and X.

We have the following lemma.

Lemma 7. For any δ, if wcsExt is a weak t-correlated-source extractor for min-
entropy k and error ε, then it is also an average case t-correlated source extractor
for average conditional min-entropy k + log 1/δ and error ε + δ.

The proof can be easily generalized from Lemma 2.3 in [DRS04].
Therefore, combining Theorem 5 and Lemma 7 by setting δ = ε, we have

Theorem 6. There exists an explicit average case weak t-correlated source
extractor wcsExt for average conditional min-entropy k ≥ O(t3(log2 n +
log2(1/ε))), seed length d = O(log2 n + log2(1/ε)) and output length m =
O(log n + log(1/ε)).

Correlated-Source Extractors and Cryptography 585

5.2 Boosting the Output Length

In the above construction, a major limitation is that the output length is only
O(log n + log 1/ε). To boost the output length, we separate X into 2� + 1 parts
instead of 2� parts in Theorem 5. We may set the length of the last part to be
long enough. It can be viewed as the case that we append 0 to all advice. Then
the length of the advice becomes � + 1. Since the last bit is 0, we will never
choose X2�+2. Thus, we only need one more part.

In Lemma 6, we have shown that, for every i, W i given {W i
j}j∈SAMEi is uni-

formly random. When i = � + 1, SAME�+1 = [t]. Thus, W �+1 given {W i
j}j∈[t] is

uniformly random. W �+1 will be the final output of our extractor.
Denote the length of W �+1 to be m. We need the length of X2�+1 to be O(tm).

Then, the min-entropy requirement for the original source becomes O(t3(log2 n+
log2(1/ε)) + t2m).

We have the following theorem.

Theorem 7. There exists an explicit weak t-correlated-source extractor wcsExt
where k ≥ O(t3(log2 n + log2(1/ε)) + t2m) and d = O(log2 n + log2(1/ε)), where
m is the output length.

A formal proof can be found in the full version [GS19] of this paper in
Appendix D.

5.3 Explicit Construction of Correlated-Source Extractor

We show that, our explicit construction in Theorem7 is indeed a correlated-
source extractor.

To see this, we set
ε(d) = Θ(2−√

d)

and
k(t,m, d) = Θ(t3d + t2m)

Clearly, ε(·) is a negligible function and k(·, ·, ·) is a polynomial. Then, we only
need to show that d ≥ O(log2 n + log2(1/ε)) and k(t,m) ≥ O(t3(log2 n +
log2(1/ε)) + t2m). Note that the source length is bounded by a polynomial of
d, and log2(1/ε) = Θ(d). Therefore, d ≥ O(log2 n + log2(1/ε)). Further, we have
k(t,m, d) = Θ(t3d + t2m) ≥ O(t3(log2 n + log2(1/ε)) + t2m).

Thus, we have the following theorem.

Theorem 1. There exists an explicit correlated-source extractor csExt with

k(t,m, d) = Θ(t3d + t2m)

ε(d) = Θ(2−√
d)

where m is the length of the output.

586 V. Goyal and Y. Song

We can also define what we call an average case correlated-source extractor
in a similar way.

Definition 12 (Average Case Correlated-Source Extractor). A function
csExt : {0, 1}∗ ×{0, 1}d → {0, 1}m is an average case correlated-source extractor
if the following holds: There exists a polynomial k(·, ·, ·) and a negligible function
ε(·), such that for any polynomial t(·), t = t(d) arbitrary functions A1,A2, ...,At,
whose output has the same length as the input, with no fixed points, a source X
and a random variable W such that H̃∞(X|W) ≥ k(t,m, d),

|csExt(X,Ud) ◦ {csExt(Ai(X), Ud)}t
i=1 ◦ Ud ◦ W

−Um ◦ {csExt(Ai(X), Ud)}t
i=1 ◦ Ud ◦ W | < ε(d)

where Um is independent of Ud and X.

If we are using an average case weak t-correlated source extractor, then we
will get an average case correlated source extractor.

Theorem 8. There exists an explicit average case correlated-source extractor
csExt with

k(t,m, d) = Θ(t3d + t2m)

ε(d) = Θ(2−√
d)

where m is the length of the output.

5.4 Generalizing the Entropy Requirements

In our construction, the min-entropy requirement on the source (denoted by k)
grows with t. This is inherent since the total entropy of all the sources together
may only be k (since each source may have zero min-entropy given any other
source) which must be at least t · m where m is the size of the output of the
extractor. A natural question is: could we place a stronger independence condi-
tion on the different sources which allows us to obtain a construction requiring
the sources to have lower min-entropy? We outline such an extension in this
section.

Definition 13 (Closed-Set Correlated Sources). We say a sequence of
sources X1,X2, ...,X� is a (t, k)–closed-set correlated sources if for every Xi,

– There exists a set of sources Si such that Xi ∈ Si and |Si| ≤ t

– When given all sources outside Si, Xi still has enough min-entropy, i.e.,

H̃∞(Xi|{Xj}�
j=1/Si) ≥ k

For a (t, k)–closed-set correlated sources, we can use an average case cor-
related source extractor on the set Si, viewing Xi as the original source and
Xj ∈ Si as the tampering source. Thus, we have the following corollary.

Correlated-Source Extractors and Cryptography 587

Corollary 1. Let csExt be an average case correlated-source extractor con-
structed in Theorem6. Let Y be a random seed of length specified in Theorem8.
For a closed-set correlated sources X1,X2, ...,X�,

|csExt(Xi, Y) ◦ {csExt(Xj , Y)}j �=i − Um ◦ {csExt(Xj , Y)}j �=i| < ε

6 Constructing Secure Correlated-Tape Multi-party
Computation Protocol

We use correlated-source extractor and resettable multi-party computation pro-
tocol based on [GS09] as building blocks. Suppose csExt is a correlated-source
extractor, π′ is a resettably secure multi-party computation protocol for ideal
functionality F (in the standard setting). We construct a correlated-tape secure
MPC π as follows:

In the protocol π, each party will first run csExt with its secret random tape
and CRS. Then use the output of csExt as the new random tape and follow the
steps in π′. We have the following theorem.

Theorem 9. Let π, π′ be defined as above. For every security parameter κ,
suppose q(κ) is the length of the random tape that π′ needs. Let csExt be a
correlated-source extractor in Theorem1 with d = κ,m = q(κ) and polynomials
k′(·, ·, ·), ε′(·). Let len(κ) = κ and k(t, κ) = k′(t, q(κ), κ) + tκ. Then π is a
correlated-tape multi-party computation protocol.

Proof. Let T be the set of corrupted parties which controlled by the adversary.
We define a pattern S = (s1, s2, ..., st) where sj ∈ [t]. If for two patterns S,S′,
there exists a permutation p : [t] → [t] such that sj = p(s′

j) for every j ∈ [t], we
view them as the same pattern. We say an input Xi is consistent with S respect
to {f j

i }t
j=1, if for every j1, j2 ∈ [t], f j1

i (Xi) = f j2
i (Xi) if and only if sj1 = sj2 .

Let

Pattern[S, i] = {Xi| Xi is consistent with S respect to {f j
i }t

j=1}

Note that there are at most tt = 2t log t = 2o(tκ) patterns in total. Let
ratio[S, i] ∈ [0, 1] be the ratio of Xi which is consistent with S respect to
{f j

i }t
j=1. Indeed {Pattern[S, i]}S is a partition of all Xi and thus

∑

S

ratio[S, i] = 1

After sampling Xi for Pi, we will reveal the pattern information to the adver-
sary. Let

BADi = {S : ratio[S, i] ≤ 1
2tκ

}

588 V. Goyal and Y. Song

Then, we show that, for every {Si : Si �∈ BADi}i�∈T , there exists an adversary
A′ in π′ such that the following two distributions are computationally indistin-
guishable:

{CRS ∼ Ulen(κ) : REALF,A′({xj
i : i �∈ T}t

j=1, {Xj
i : i �∈ T}t

j=1, CRS)}

{CRS ∼ Ulen(κ) : REALF,A({xj
i : i �∈ T}t

j=1, {f j
i (Xi) : i �∈ T}t

j=1, CRS)}
where {Xj

i : i �∈ T}t
j=1 is sampled based on the strategy of A′ we will mention

later.
We design A′ to follow the strategy: After receiving {Si : Si �∈ BADi}i�∈T , for

party Pi, in the j-th round, if there exists j∗ ∈ [j − 1] such that (Si)j = (Si)j∗ ,
then let Pi use the same random tape as the j∗-th round, otherwise let Pi use a
fresh random tape.

Since the random tapes of each parties are independent, we only need to
show that, for Si , we have:

{Xi ∼ Pattern[Si , i], CRS ∼ Ulen(κ) : {csExt(f j
i (Xi), CRS)}t

j=1} =c {Xj
i }t

j=1

Let Index(S) = {j : ∀j′ ∈ [j − 1], sj �= sj′}. Then it is sufficient to show that

|{csExt(f j
i (Xi), CRS)}j∈Index(Si) − Uq(κ)|Index(S)|| ≤ μ(κ)

where μ(·) is a negligible function. Note that, for every possible output y of f j
i ,

Pr[f j
i (Xi) = y] ≥ Pr[f j

i (Xi) = y and Xi ∈ Pattern[Si , i]]

= Pr[f j
i (Xi) = y| Xi ∈ Pattern[Si , i]] Pr[Xi ∈ Pattern[Si , i]]

≥ 1
2tκ

Pr[f j
i (Xi) = y| Xi ∈ Pattern[Si , i]]

By condition, H∞(f j
i (Xi)) ≥ k(t, κ). Thus Pr[f j

i (Xi) = y] ≤ 1
2k(t,κ) . We have

Pr[f j
i (Xi) = y| Xi ∈ Pattern[Si , i]] ≤ 1

2k(t,κ)−tκ
=

1
2k′(t,q(κ),κ)

Therefore, given Xi ∈ Pattern[Si , i], f j
i (Xi) still has enough min-entropy to use

correlated-source extractor csExt. For every j ∈ Index(Si),

|csExt(f j
i (Xi), CRS) ◦ {csExt(f j′

i (Xi), CRS)}j′ �=j,j′∈Index(Si)

−Uq(κ) ◦ {csExt(f j′
i (Xi), CRS)}j′ �=j,j′∈Index(Si)| ≤ ε′(κ)

By union bound,

|{csExt(f j
i (Xi), CRS)}j∈Index(Si) − Uq(κ)|Index(S)|| ≤ |Index(Si)|ε′(κ) ≤ tε′(κ)

Therefore, if Si �∈ BADi, the error is bounded by some negligible probability
and further, A′ satisfies our requirement.

Correlated-Source Extractors and Cryptography 589

Note that

Pr[Xi ∈ Pattern[S, i] where S ∈ BADi] ≤ 2t log(t)

2tκ
=

1
2O(tκ)

Thus, the distinguishable advantage is bounded by the sum of the probability
that some Si ∈ BADi and the probability that one can distinguish the two dis-
tributions generated by A′ and A given all Si �∈ BADi, which is still a negligible
probability over security parameter κ. ��

Correlated-Source Extractors with Almost Optimal Parameters. We give a non-
explicit construction of correlated-source extractors with almost optimal param-
eters. For lack of space, this result can be found in the full version [GS19] of this
paper in Appendix E.

References

[ABP15] Abdalla, M., Benhamouda, F., Passelègue, A.: An algebraic framework
for pseudorandom functions and applications to related-key security. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 388–409. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 19

[ACM+14] Austrin, P., Chung, K.-M., Mahmoody, M., Pass, R., Seth, K.: On the
impossibility of cryptography with tamperable randomness. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 462–479.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2 26

[ACRT97] Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P., Trevisan, L.: Weak ran-
dom sources, hitting sets, and BPP simulations. In: Proceedings 38th
Annual Symposium on Foundations of Computer Science, pp. 264–272,
October 1997

[BACD+18] Ben-Aroya, A., Chattopadhyay, E., Doron, D., Li, X., Ta-Shma, A.: A
new approach for constructing low-error, two-source extractors. In: Pro-
ceedings of the 33rd Computational Complexity Conference, CCC 2018,
Germany, pp. 3:1–3:19. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2018)

[BGGL01] Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound
zero-knowledge and its applications. In: Proceedings 2001 IEEE Interna-
tional Conference on Cluster Computing, pp. 116–125, October 2001

[BP13] Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation
and applications to resettable cryptography. In: Proceedings of the Forty-
Fifth Annual ACM Symposium on Theory of Computing, STOC 2013,
pp. 241–250. ACM, New York (2013)

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput. 17(2),
230–261 (1988)

[CG14a] Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise
and split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol.
8349, pp. 440–464. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54242-8 19

https://doi.org/10.1007/978-3-662-47989-6_19
https://doi.org/10.1007/978-3-662-47989-6_19
https://doi.org/10.1007/978-3-662-44371-2_26
https://doi.org/10.1007/978-3-662-44371-2_26
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-642-54242-8_19

590 V. Goyal and Y. Song

[CGGM00] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge (extended abstract). In: Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, STOC 2000, pp. 235–
244. ACM, New York (2000)

[CGL16] Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes,
with their many tampered extensions. In: Proceedings of the Forty-Eighth
Annual ACM Symposium on Theory of Computing, STOC 2016, pp. 285–
298. ACM, New York (2016)

[CL16] Chattopadhyay, E., Li, X.: Explicit non-malleable extractors, multi-source
extractors, and almost optimal privacy amplification protocols. In: 2016
IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 158–167, October 2016

[Coh15] Cohen, G.: Local correlation breakers and applications to three-source
extractors and mergers. In: 2015 IEEE 56th Annual Symposium on Foun-
dations of Computer Science, pp. 845–862, October 2015

[Coh16a] Cohen, G.: Making the most of advice: new correlation breakers and their
applications. In: 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 188–196, October 2016

[Coh16b] Cohen, G.: Non-malleable extractors - new tools and improved construc-
tions. In: Raz, R. (ed.) 31st Conference on Computational Complexity
(CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 50, pp. 8:1–8:29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl (2016)

[Coh16c] Cohen, G.: Non-malleable extractors with logarithmic seeds. Electron.
Colloquium Comput. Complex. (ECCC) 23, 30 (2016)

[COP+14] Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Vis-
conti, I.: 4-round resettably-sound zero knowledge. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 192–216. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54242-8 9

[COPV13] Chung, K.M., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous reset-
tability from one-way functions. In: 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, pp. 60–69, October 2013

[CPS16] Chung, K.-M., Pass, R., Seth, K.: Non-black-box simulation from one-
way functions and applications to resettable security. SIAM J. Comput.
45(2), 415–458 (2016)

[CRS14] Cohen, G., Raz, R., Segev, G.: Nonmalleable extractors with short seeds
and applications to privacy amplification. SIAM J. Comput. 43(2), 450–
476 (2014)

[CZ16] Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and
resilient functions. In: Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, STOC 2016, pp. 670–683. ACM,
New York (2016)

[DGS09] Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability
conjecture and a new non-black-box simulation strategy. In: 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, pp. 251–
260, October 2009

[DLWZ14] Dodis, Y., Li, X., Wooley, T.D., Zuckerman, D.: Privacy amplification
and nonmalleable extractors via character sums. SIAM J. Comput. 43(2),
800–830 (2014)

https://doi.org/10.1007/978-3-642-54242-8_9

Correlated-Source Extractors and Cryptography 591

[DOPS04] Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility
of cryptography with imperfect randomness. In: Annual Symposium on
Foundations of Computer Science, pp. 196–205 (2004)

[DRS04] Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong
keys from biometrics and other noisy data. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 31

[DW09] Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In: Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, STOC 2009, pp. 601–610.
ACM, New York (2009)

[GM11] Goyal, V., Maji, H.K.: Stateless cryptographic protocols. In: 2011 IEEE
52nd Annual Symposium on Foundations of Computer Science, pp. 678–
687, October 2011

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge
proof systems. J. Cryptol. 7(1), 1–32 (1994)

[GS09] Goyal, V., Sahai, A.: Resettably secure computation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 54–71. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 3

[GS19] Goyal, V., Song, Y.: Correlated-source extractors and cryptography with
correlated-random tapes. Cryptology ePrint Archive (2019)

[GUV09] Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and ran-
domness extractors from Parvaresh-Vardy codes. J. ACM 56(4), 20:1–
20:34 (2009)

[KLRZ08] Kalai, Y.T., Li, X., Rao, A., Zuckerman, D.: Network extractor protocols.
In: 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, pp. 654–663, October 2008

[Li12a] Li, X.: Non-malleable extractors, two-source extractors and privacy ampli-
fication. In: 2012 IEEE 53rd Annual Symposium on Foundations of Com-
puter Science, pp. 688–697, October 2012

[Li12b] Li, X.: Design extractors, non-malleable condensers and privacy amplifi-
cation. In: Proceedings of the Forty-Fourth Annual ACM Symposium on
Theory of Computing, STOC 2012, pp. 837–854. ACM, New York (2012)

[Li15] Li, X.: Non-malleable condensers for arbitrary min-entropy, and almost
optimal protocols for privacy amplification. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9014, pp. 502–531. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6 21

[Li16] Li, X.: Improved two-source extractors, and affine extractors for polylog-
arithmic entropy. In: 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 168–177, October 2016

[Li17] Li, X.: Improved non-malleable extractors, non-malleable codes and inde-
pendent source extractors. In: Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, pp. 1144–
1156. ACM, New York (2017)

[MW97] Maurer, U., Wolf, S.: Privacy amplification secure against active adver-
saries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–
321. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052244

[SSZ95] Saks, M., Srinivasan, A., Zhou, S.: Explicit dispersers with polylog degree.
In: Proceedings of the Twenty-Seventh Annual ACM Symposium on The-
ory of Computing, STOC 1995, pp. 479–488. ACM, New York (1995)

https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-3-642-01001-9_3
https://doi.org/10.1007/978-3-662-46494-6_21
https://doi.org/10.1007/BFb0052244

592 V. Goyal and Y. Song

[VV85] Vazirani, U.V., Vazirani, V.V.: Random polynomial time is equal to
slightly-random polynomial time. In: 26th Annual Symposium on Foun-
dations of Computer Science (SFCS 1985), pp. 417–428, October 1985

[Zuc96] Zuckerman, D.: Simulating BPP using a general weak random source.
Algorithmica 16(4), 367–391 (1996)

Revisiting Non-Malleable Secret Sharing

Saikrishna Badrinarayanan1(B) and Akshayaram Srinivasan2

1 UCLA, Los Angeles, USA
saikrishna@cs.ucla.edu

2 UC Berkeley, Berkeley, USA
akshayaram@berkeley.edu

Abstract. A threshold secret sharing scheme (with threshold t) allows
a dealer to share a secret among a set of parties such that any group
of t or more parties can recover the secret and no group of at most
t − 1 parties learn any information about the secret. A non-malleable
threshold secret sharing scheme, introduced in the recent work of Goyal
and Kumar (STOC’18), additionally protects a threshold secret sharing
scheme when its shares are subject to tampering attacks. Specifically,
it guarantees that the reconstructed secret from the tampered shares is
either the original secret or something that is unrelated to the original
secret.

In this work, we continue the study of threshold non-malleable secret
sharing against the class of tampering functions that tamper each share
independently. We focus on achieving greater efficiency and guaranteeing
a stronger security property. We obtain the following results:
– Rate Improvement. We give the first construction of a threshold

non-malleable secret sharing scheme that has rate > 0. Specifically,
for every n, t ≥ 4, we give a construction of a t-out-of-n non-malleable
secret sharing scheme with rate Θ(1

t log2 n
). In the prior constructions,

the rate was Θ(1
n logm

) where m is the length of the secret and thus,
the rate tends to 0 as m → ∞. Furthermore, we also optimize the
parameters of our construction and give a concretely efficient scheme.

– Multiple Tampering. We give the first construction of a threshold
non-malleable secret sharing scheme secure in the stronger setting
of bounded tampering wherein the shares are tampered by multiple
(but bounded in number) possibly different tampering functions. The
rate of such a scheme is Θ(1

k3t log2 n
) where k is an apriori bound on

the number of tamperings. We complement this positive result by
proving that it is impossible to have a threshold non-malleable secret
sharing scheme that is secure in the presence of an apriori unbounded
number of tamperings.

– General Access Structures. We extend our results beyond thresh-
old secret sharing and give constructions of rate-efficient, non-
malleable secret sharing schemes for more general monotone access
structures that are secure against multiple (bounded) tampering
attacks.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 593–622, 2019.
https://doi.org/10.1007/978-3-030-17653-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_20

594 S. Badrinarayanan and A. Srinivasan

1 Introduction

A t-out-of-n threshold secret sharing scheme [Sha79,Bla79] allows a dealer to
share a secret among n parties such that any subset of t or more parties can
recover the secret but any subset of t − 1 parties learn no information about the
secret. Threshold secret sharing schemes are central tools in cryptography and
have several applications such as constructing secure multiparty computation
protocols [GMW87,BGW88,CCD88], threshold cryptographic systems [DF90,
Fra90,DDFY94] and leakage resilient circuit compilers [ISW03,FRR+10,Rot12]
to name a few.

Most of the threshold secret sharing schemes in literature are linear. This
means that if we multiply each share by a constant c, we get a set of shares that
correspond to a new secret that is c times the original secret. This property has
in fact, been crucially leveraged in most of the applications including designing
secure multiparty computation protocols and constructing threshold cryptosys-
tems. However, this highly desirable feature becomes undesirable if our primary
goal is to protect the shares against tampering attacks. More specifically, this
linearity property allows an adversary to tamper (or maul) each share indepen-
dently and output a new set of shares that reconstruct to a related secret (for
example, two times the original secret). Indeed, if the shares of the secret are
stored on a device such as a smart card, an adversary could potentially tamper
with the smart card and change the value of the share that is being stored by
overwriting it with a new value or maybe flipping a few bits. Notice that in the
above tampering attack, the adversary need not learn the actual secret. How-
ever, the adversary is guaranteed to produce a set of shares that reconstruct
to a related secret. Such an attack could be devastating when the shares, for
example, correspond to a cryptographic secret key (such as a signing key) as it
allows an adversary to mount related-key attacks (see [BDL01]). In fact, most of
the known constructions of threshold signatures use Shamir’s secret sharing to
distribute the signing key among the parties and hence they are all susceptible
to such attacks.

Non-Malleable Secret Sharing. To protect a secret sharing scheme against
such share tampering attacks, Goyal and Kumar [GK18a,GK18b] introduced
the notion of Non-Malleable Secret Sharing. Roughly, a secret sharing scheme
(Share,Rec) is non-malleable against a tampering function class F if for every
f ∈ F and every secret s, Rec(f(shares)) where shares ← Share(s) is either s or
something that is unrelated to s.1 Of course, we cannot hope to protect against
all possible tampering functions as a function can first reconstruct the secret
from the shares, multiply it by 2 and then share this value to obtain a valid
sharing of a related secret. Thus, the prior works placed restrictions on the set
of functions that can tamper the shares. A natural restricted family of tampering
functions that we will consider in this work is Find which consists of the set of
all functions that tamper each share independently.

1 See Sect. 3 for a precise definition.

Revisiting Non-Malleable Secret Sharing 595

Connection to Non-Malleable Codes. Non-malleable secret sharing is related to
another cryptographic primitive called as Non-Malleable Codes which was intro-
duced in an influential work by Dziembowski, Pietrzak and Wichs [DPW10].2

A non-malleable code relaxes the usual notion of error correction by requir-
ing that the decoding procedure outputs either the original message or some-
thing that is independent of the message when given a tampered codeword
as input. A beautiful line of work, starting from [DPW10], has given sev-
eral constructions of non-malleable codes with security against various tam-
pering function classes [LL12,DKO13,FMNV14,FMVW14,ADL14,AGM+15,
FMNV15,JW15,CKR16,CGM+16,AAG+16,CGL16,BDKM16,Li17,KOS17,
CL17,KOS18,BDKM18,GMW17,OPVV18,KLT18,BDG+18].

We now elaborate on the connection between non-malleable codes and non-
malleable secret sharing. A tampering function family in the literature of non-
malleable codes that is somewhat similar to Find is the k-split-state function
family. A k-split-state function compartmentalizes a codeword into k-parts and
applies a tampering function to each part, independent of the other parts. Seeing
the similarity between Find and k-split-state functions, it might be tempting
to conclude that a non-malleable code against a k-split-state function family
is in fact a k-out-of-k non-malleable secret sharing. However, as demonstrated
in [GK18a], this might not be true in general. In particular, [GK18a] showed that
even a 3-split-state non-malleable code need not be a 3-out-of-3 non-malleable
secret sharing as non-malleable codes may not always protect the secrecy of the
message. In particular, the first few bits of the codeword could reveal some bits of
the message and still, this coding scheme could be non-malleable. Nevertheless,
for the special case of 2, Aggarwal et al. [ADKO15] showed that any 2-split-state
non-malleable code is indeed a 2-out-of-2 non-malleable secret sharing scheme.
In the other direction, we note that any k-out-of-k non-malleable secret sharing
scheme against Find is in fact a k-split-state non-malleable code.

Rate of Non-Malleable Secret Sharing. One of the main efficiency parameters in
any secret sharing scheme is its rate which is defined as the ratio between the
length of the secret and the maximum size of a share. In the prior work, Goyal
and Kumar [GK18a] gave an elegant construction of t-out-of-n non-malleable
secret sharing from any 2-split-state non-malleable code. However, the rate of
this scheme is equal to O(1

n log m) where m is the length of the secret. The rate
tends to 0 as the length of the secret m tends to ∞ and hence, a natural question
to ask is:

Can we obtain a construction of threshold non-malleable secret sharing with
rate > 0?

The problem of improving the rate was mentioned as an explicit open ques-
tion in [GK18a].
2 We refer the reader to [GK18a,GK18b] for a thorough discussion on the connection

between non-malleable secret sharing and related notions such as verifiable secret
sharing [CGMA85] and AMD codes [CDF+08].

596 S. Badrinarayanan and A. Srinivasan

Multiple Tamperings. In the real world, a tampering adversary could poten-
tially mount more than one tampering attack. In particular, if each share of
a cryptographic secret key is stored on a small device (such as smart cards),
the adversary could potentially clone these devices to obtain multiple copies
of the shares. The adversary could then apply a different tampering func-
tion on each copy and obtain information about related secrets. Thus, a more
realistic security definition would be to consider multiple tampering functions
f1, . . . , fk ∈ F , and require that for every secret s, the joint distribution
(Rec(f1(shares)), . . . ,Rec(fk(shares))) where shares ← Share(s) is independent
of s.3 For the case of non-malleable codes, security against multiple tamperings
has already been considered in [FMNV14,JW15,CGL16,OPVV18]. However, for
the case of non-malleable secret sharing, the prior work [GK18a] only considered
a single tampering function and a natural question would be:

Can we obtain a construction of threshold non-malleable secret sharing against
multiple tamperings?

1.1 Our Results

In this work, we obtain the following results.

Rate Improvement. We give the first construction of a threshold non-
malleable secret sharing scheme that has rate > 0. Specifically, the rate of our
construction is Θ(1

t log2 n
) where t is the threshold and n is the number of parties.

More formally,

Theorem 1. For any n, t ≥ 4 and any ρ > 0, there exists a construction of
t-out-of-n non-malleable secret sharing scheme against Find for sharing m-bit
secrets for any m > log n with rate Θ(1

t log2 n
) and simulation error 2−Ω(m

log1+ρ m
)
.

The running times of the sharing and reconstruction algorithms are polynomial
in n and m.

Local Leakage Resilient Secret Sharing. One of the main tools used in proving
Theorem 1 (which may be of independent interest) is an efficient construction
of local leakage-resilient threshold secret sharing scheme [GK18a,BDIR18]. A t-
out-of-n secret sharing scheme is said to be local leakage-resilient (parameterized
by a leakage bound μ and set size s), if the secrecy holds against any adversary
who might obtain at most t − 1 shares in the clear and additionally, for any
set S ⊆ [n] of size at most s, the adversary obtains μ bits from each share
belonging to a party in the set S. Goyal and Kumar [GK18a] gave a construction
of a 2-out-of-n local leakage resilient secret sharing scheme. In this work, we
give an efficient construction of t-out-of-n local leakage resilient secret sharing
3 As in the case of single tampering, a tampering function could just output the same

shares and in which the reconstructed secret will be s. Our definition also captures
this property and we refer to Sect. 3 for a precise definition.

Revisiting Non-Malleable Secret Sharing 597

scheme when t is a constant. This result must be contrasted with a recent result
by Benhamouda et al. [BDIR18] who showed that the Shamir’s secret sharing
scheme is local leakage resilient when the field size is sufficiently large and the
threshold t = n− o(log n). A more precise statement of our construction of local
leakage resilient secret sharing scheme appears below.

Theorem 2. For any ε > 0, t, n ∈ N, and parameters μ ∈ N, s ≤ n, there exists
an efficient construction of t-out-of-n secret sharing scheme for sharing m-bit
secrets that is (μ, s)-local leakage resilient with privacy error ε. The size of each
share when t is a constant is O ((m + sμ + log(log n/ε)) log n).

Concrete Efficiency. A major advantage of our result is its concrete efficiency. In
the prior work, the constant hidden inside the big-O notation was large and was
not explicitly estimated. We have optimized the parameters of our construction
and we illustrate the size of shares for various values of (n, t) in Table 1.4

Table 1. Share sizes for simulation error of at most 2−80.

(# of Parties, Threshold) Secret length (in bits) Share size (in KB)

(7, 4) 812 273.73

(9, 5) 812 399.85

(25, 13) 812 1757.53

(100, 51) 812 12.34 ×103

(7, 4) 1024 345.19

(9, 5) 1024 504.24

(25, 13) 1024 2216.40

(100, 51) 1024 15.56 ×103

Comparison with [GK18a]. When compared to the result of [GK18a] which could
support thresholds t ≥ 2, our construction can only support threshold t ≥ 4.
However, getting a rate > 0 non-malleable secret sharing scheme for threshold
t = 2 would imply a 2-split-state non-malleable code with rate > 0 which is a
major open problem. For the case of t = 3, though we know constructions of
3-split-state non-malleable codes with rate > 0 [KOS18,GMW17], they do not
satisfy the privacy property of a 3-out-of-3 secret sharing scheme. In particular,
given two states of the codeword, some information about the message is leaked.
Thus, getting a 3-out-of-n non-malleable secret sharing scheme with rate > 0
seems out of reach of the current techniques and we leave this as an open problem.

4 812 bits is the minimal message length that gives 80 bits of security.

598 S. Badrinarayanan and A. Srinivasan

Multiple Tampering. We initiate the study of non-malleable secret sharing
under multiple tampering. Here, the shares can be subject to multiple (possibly
different) tampering functions and we require that the joint distribution of the
reconstructed secrets to be independent of s. For this stronger security notion, we
first prove a negative result that states that a non-malleable secret sharing cannot
exist when the number of tamperings (also called as the tampering degree) is
apriori unbounded. This result generalizes a similar result for the case of a split-
state non-malleable codes. Formally,

Theorem 3. For any n, t ∈ N, there does not exist a t-out-of-n non-malleable
secret sharing scheme against Find that can support an apriori unbounded tam-
pering degree.

When the tampering degree is apriori bounded, we get constructions of
threshold non-malleable secret sharing scheme. Formally,

Theorem 4. For any n, t ≥ 4, and K ∈ N, there exists a t-out-of-n non-
malleable secret sharing scheme with tampering degree K for sharing m-bit secrets
for a large enough5 m against Find with rate = Θ(1

K3t log2 n
) and simulation

error 2−mΩ(1)
. The running time of the sharing and reconstruction algorithms

are polynomial in n and m.

General Access Structures. We extend our techniques used in the proof of
Theorems 1, 4 to give constructions of non-malleable secret sharing scheme for
more general monotone access structures rather than just threshold structures.
Before we state our result, we give some definitions.

Definition 1. An access structure A is said to be monotone if for any set S ∈ A,
any superset of S is also in A. A monotone access structure A is said to be
4-monotone if for any set S ∈ A, |S| ≥ 4.

We also give the definition of a minimal authorized set.

Definition 2. For a monotone access structure A, a set S ∈ A is a minimal
authorized set if any strict subset of S is not in A. We denote tmax to be max |S|
where S is a minimal authorized set of A.

We now state our extension to general access structures.

Theorem 5. For any n,K ∈ N and 4-monotone access structure A, if there
exists a statistically private (with privacy error ε) secret sharing scheme for
A that can share m-bit secrets for a large enough m with rate R, there exists a
non-malleable secret sharing scheme for sharing m-bit secrets for the same access
structure A with tampering degree K against Find with rate Θ(R

K3tmax log2 n
) and

simulation error ε + 2−mΩ(1)
.

Thus, starting with a secret sharing scheme for monotone span pro-
grams [KW93] or for more general access structures [LV18], we get non-malleable
secret sharing schemes for the same access structures with comparable rate.
5 See the main body for the precise statement.

Revisiting Non-Malleable Secret Sharing 599

Comparison with [GK18b]. In the prior work [GK18b], the rate of the non-
malleable secret sharing for general access structures also depended on the length
of the message and thus, even when R is constant, their construction could
only achieve a rate of 0. However, unlike our construction, they could support
all monotone access structures (and not just 4-monotone) and they could even
start with a computational secret sharing scheme for an access structure A and
convert it to a non-malleable secret sharing scheme for A.

Concurrent Work. In a concurrent and independent work, Aggarwal et al.
[ADN+18] consider the multiple tampering model and give constructions of non-
malleable secret sharing for general access structures in this model. There are
three main differences between our work and their work. Firstly, the rate of their
construction asymptotically tends to 0 even for the threshold case. However, the
rate of our construction is greater than 0 when we instantiate the compiler with
a rate > 0 secret sharing scheme. Secondly, their work considers a stronger
model wherein each tampering function can choose a different reconstruction
set. We prove the security of our construction in a weaker model wherein the
reconstruction set is the same for each tampering function. We note that the
impossibility result for unbounded tampering holds even if the reconstruction
set is the same. Thirdly, their construction can give non-malleable secret sharing
scheme for any 3-monotone access structure whereas our construction can only
work for 4-monotone access structure. In another concurrent and independent
work, Kumar et al. [KMS18] gave a construction of non-malleable secret shar-
ing in a stronger model where the tampering functions might obtain bounded
leakage from the other shares.

2 Our Techniques

In this section, we give a high level overview of the techniques used to obtain
our results.

2.1 Rate Improvement

Goyal and Kumar [GK18a] Approach. We first give a brief overview of the con-
struction of threshold non-malleable secret sharing of Goyal and Kumar [GK18a]
and then explain why it could achieve only a rate of 0. At a high level, Goyal
and Kumar start with any 2-split-state non-malleable code and convert it into a
t-out-of-n non-malleable secret sharing scheme. We only explain their construc-
tion for the case when t ≥ 3, and for the case of t = 2, they gave a slightly
different construction. For the case when t ≥ 3, the sharing procedure does the
following. The secret is first encoded using a 2-split-state non-malleable code
to obtain the two states L and R. L is now shared using any t-out-of-n secret
sharing scheme, say Shamir’s secret sharing to get the shares SL1, . . . ,SLn and
R is shared using a 2-out-of-n local leakage resilient secret sharing scheme to get
the shares SR1, . . . ,SRn. The share corresponding to party i includes (SLi,SRi).

600 S. Badrinarayanan and A. Srinivasan

To recover the secret given at least t shares, the parties first use the recovery pro-
cedures of the threshold secret sharing scheme and local leakage resilient secret
sharing scheme to recover L and R respectively. Later, the secret is obtained
by decoding L and R using the decoding procedure of the non-malleable code.
The correctness of the construction is straightforward and to argue secrecy, it
can been seen that given any set of t − 1 shares, L is perfectly hidden and this
follows from the security of Shamir’s secret sharing. Now, using the fact that
any 2-split-state non-malleable code is a 2-out-of-2 secret sharing scheme, it can
be shown that the right state R statistically hides the secret.

To argue the non-malleability of this construction, Goyal and Kumar showed
that any tampering attack on the secret sharing scheme can be reduced to a
tampering attack on the underlying 2-split-state non-malleable code. The main
challenge in designing such a reduction is that the tampering functions against
the underlying non-malleable code must be split-state, meaning that the tam-
pering function against L (denoted by f) must be independent of R and the
tampering function against R (denoted by g) must be independent of L. To
make the tampering function g to be independent of L, [GK18a] made use of
the fact that there is an inherent difference in the parameters used for secret
sharing L and R. Specifically, since R is shared using a 2-out-of-n secret sharing
scheme, the tampered right state ˜R can be recovered from any two tampered
shares, say ˜SR1, ˜SR2. Now, since L is shared using a t-out-of-n secret sharing
scheme and t ≥ 3, the shares SL1 and SL2 information theoretically provides no
information about L. This, in particular means that we can fix the shares SL1
and SL2 independent of L and the tampering function g could use these fixed
shares to output the tampered right state ˜R. Now, when f is given the actual L,
it can sample SL3, . . . ,SLn as a valid secret sharing of L that is consistent with
the fixed SL1,SL2. This allowed them to argue one-sided independence i.e., g is
independent of L. On the other hand, making the tampering function f to be
independent of R is a lot trickier. This is because any two shares information
theoretically fixes R and in order to recover ˜L, we need at least t (≥3) shares.
Hence, we may not be able to argue that f is independent of R. To argue this
independence, Goyal and Kumar used the fact that R is shared using a local leak-
age resilient secret sharing scheme. In particular, they made the size of SRi to
be much larger than the size of SLi and showed that even when we leak |SLi| bits
from each share SRi, R is still statistically hidden. This allowed them to define
leakage functions leak1, . . . , leakn where leaki had SLi hardwired in its descrip-
tion, it applies the tampering function on (SLi,SRi) and outputs the tampered
˜SLi. Now, from the secrecy of the local leakage resilient secret sharing scheme,
the distribution ˜SL1, . . . , ˜SLn (which completely determines ˜L) is independent
of R and thus ˜L is independent of R. This allowed them to obtain two-sided
independence.

A drawback of this approach is that the rate of this scheme is at least as
bad as that of the underlying 2-split-state non-malleable code. As mentioned
before, obtaining a 2-split-state non-malleable code with rate > 0 is a major
open problem. Thus, this construction could only achieve a rate of 0.

Revisiting Non-Malleable Secret Sharing 601

Our Approach. While constructing 2-split-state non-malleable code with
rate >0 has been notoriously hard, significant progress has been made for the
case of 3-split-state non-malleable codes. Very recently, independent works of
Gupta et al. [GMW17] andKanukurthi et al. [KOS18] gave constructions of 3-split-
state non-malleable codes with an explicit constant rate. The main idea behind our
rate-improved construction is to use a constant rate, 3-split-state non-malleable
code instead of a rate 0, 2-split-state non-malleable code. To be more precise, we
first encode the secret using a 3-split-state non-malleable code to get the three
states (L,C,R). We then share the first state L using a t-out-of-n secret shar-
ing scheme to get (SL1, . . . ,SLn) as before. Then, we share C using a t1-out-of-n
secret sharing scheme to get (SC1, . . . ,SCn) and R using a t2-out-of-n secret shar-
ing scheme to get (SR1, . . . ,SRn). Here, t1, t2 are some parameters that we will
fix later. The share corresponding to party i includes (SLi,SCi,SRi). While the
underlying intuition behind this idea is natural, proving that this construction is
a non-malleable secret sharing scheme faces several barriers which we elaborate
below.

First Challenge. The first barrier that we encounter is, unlike a 2-split-state non-
malleable code which is always a 2-out-of-2 secret sharing scheme, a 3-split-state
non-malleable code may not be a 3-out-of-3 secret sharing scheme. In particular,
we will not be able use the [GK18a] trick of sharing the 3-states using secret
sharing schemes with different thresholds to gain one-sided independence. This
is because given t − 1 shares, complete information about two states will be
revealed, and we could use these two states to gain some information about the
underlying message. Thus, the privacy of the scheme breaks down. Indeed, as
mentioned in the introduction, the constructions of Kanukurthi et al. [KOS18]
and Gupta et al. [GMW17] are not 3-out-of-3 secret sharing schemes.

The main trick that we use to solve this challenge is that, while these
constructions [KOS18,GMW17] are not 3-out-of-3 secret sharing schemes, we
observe that there exist two states (let us call them C and R) such that these
two states statistically hide the message. This means that we can potentially
share these two states using secret sharing schemes with smaller thresholds and
may use it to argue one-sided independence.

Second Challenge. The second main challenge is in ensuring that the tampering
functions we design for the underlying 3-split-state non-malleable code are indeed
split-state. Let us call the tampering functions that tamper L,C, and R as f, g,
and h respectively. To argue that f, g and h are split-state, we must ensure f
is independent of C and R and similarly, g is independent of L and R and h is
independent of L and C. For the case of 2-split-state used in the prior work, this
independence was achieved by using secret sharing with different thresholds and
relying on the leakage resilience property. For the case of 3-split-state, we need
a more sophisticated approach of stratifying the three secret sharing schemes so
that we avoid circular dependence in the parameters. We now elaborate more
on this solution.

602 S. Badrinarayanan and A. Srinivasan

To make g and h to be independent of L, we choose the thresholds t1 and
t2 to be less than t. This allows us to fix a certain number of shares indepen-
dent of L and use these shares to extract ˜C and ˜R. Similarly, to make h to be
independent of C, we choose the threshold t2 < t1. This again allows us to fix
certain shares C and use them to extract ˜R. Thus, by choosing t > t1 > t2,
we could achieve something analogous to one-sided independence. Specifically,
we achieved independence of g from L and independence of h from (L,C). For
complete split-state property, we still need to make sure that f is independent
of (C,R) and g is independent of R. To make the tampering function f to be
independent of C, we rely on the local leakage resilience property of the t1-out-
of-n secret sharing scheme. That is, we make the size of the shares SCi to be
much larger than SLi such that, in spite of leaking |SLi| bits from each share SCi,
the secrecy of C is maintained. We can use this to show that the joint distribu-
tion (˜SL1, . . . , ˜SLn) (which completely determines ˜L) is independent of C. Now,
to argue that both f and g are independent of R, we rely on the local leakage
resilience property of the t2-out-of-n secret sharing scheme. That is, we make
the shares of SRi to be much larger than (SLi,SCi) so that, in spite of leaking
|SLi| + |SCi| bits from each share SRi, the secrecy of R is maintained. We then
use this property to argue that the joint distribution (˜SL1, ˜SC1), . . . , (˜SLn, ˜SCn)
is independent of R. Thus, the idea of stratifying the three threshold secret shar-
ing schemes with different parameters as described above allows to argue that
f , g and h are split-state. As we will later see, this technique of stratification is
very powerful and it allows us to easily extend this construction to more general
monotone access structures.

Third Challenge. The third and the more subtle challenge is the following. To
reduce the tampering attack on the secret sharing scheme to a tampering attack
on the underlying non-malleable code, we must additionally ensure consistency
i.e., the tampered message output by the split-state functions must be statisti-
cally close to the message output by the tampering experiment of the underlying
secret sharing scheme. To illustrate this issue in some more detail, let us consider
the tampering functions f and g in the construction of Goyal and Kumar [GK18a]
for the simple case when n = t = 3. Recall that the tampering function g sam-
ples SR1,SR2 such that it is a valid 2-out-of-n secret sharing of R and uses the
fixed SL1,SL2 (independent of L) to extract the tampered ˜R from (˜SR1, ˜SR2).
However, note that g cannot use any valid secret sharing of SR1,SR2 of R. In
particular, it must also satisfy the property that the tampering function applied
on SL1,SR1 gives the exact same ˜SL1 that f uses in the reconstruction (a similar
condition for position 2 must be satisfied). This is crucial, as otherwise there
might be a difference in the distributions of the tampered message output by
the split-state functions and the message output in the tampering experiment of
the secret sharing scheme. In case there is a difference, we cannot hope to use
the adversary against the non-malleable secret sharing to break the underlying
non-malleable code. This example illustrates this issue for a simple case when
t = n = 3. To ensure consistency for larger values of n and t, Goyal and Kumar

Revisiting Non-Malleable Secret Sharing 603

fixed (SL1, . . . ,SLt−1) (instead of just fixing SL1,SL2) and the function g ensures
consistency of each of the tampered shares ˜SL1, . . . , ˜SLt−1. However, this app-
roach completely fails when we move to 3 states. For the case of 3-states, the
tampering function, say h, must sample SR1, . . . ,SRn such that it is consistent
with ˜SL1, . . . , ˜SLt−1 used by f . However, even to check this consistency, h would
need the shares SC1, . . . ,SCt−1 which completely determines C. In this case, we
cannot argue that h is independent of C.

To tackle this challenge, we deviate from the approach of Goyal and
Kumar [GK18a] and have a new proof strategy that ensures consistency and
at the same time maintains the split-state property. In this strategy, we only fix
the values (SL1,SL2,SL3) for the first secret sharing scheme, (SC1,SC2) for the
second secret sharing scheme and fix SR3 for the third secret sharing scheme.
Note that we consider t ≥ 4, t1 ≥ 3 and t2 ≥ 2 and thus, the fixed shares are
independent of L, C, and R respectively.6 We design our split-state functions in
such a way that the tampering function f need not do any consistency checks,
the tampering function g has to do the consistency check only on ˜SL3 (which it
can do since SL3 and SR3 are fixed) and the function h needs to do a consis-
tency check only on {˜SLi, ˜SCi}i∈[1,2] (which it can do since SL1,SC1,SL2,SC2 are
fixed). This approach of reducing the number of checks to maintain consistency
helps us in arguing independence between the tampering functions. However, this
approach creates additional problems in extracting ˜L as the tampering function
f needs to use the shares (SR4, . . . ,SRn) and (SC4, . . . ,SCn) (which completely
determines C and R respectively). We solve this by letting f extract ˜L using
shares of some arbitrary values of C and R and we then use the leakage resilience
property to ensure that the outputs in the split-state tampering experiment and
the secret sharing tampering experiment are statistically close.

Completing the Proof. This proof strategy helps us in getting a rate > 0 con-
struction of a t-out-of-n non-malleable secret sharing scheme for t ≥ 4. However,
there is one crucial block that is still missing. Goyal and Kumar [GK18a] only
gave a construction of 2-out-of-n local leakage resilient secret sharing scheme.
And, for this strategy to work we also need a construction of t1-out-of-n local
leakage resilient secret sharing scheme for some t1 > 2. As mentioned in the
introduction, the recent work by Benhamouda et al. [BDIR18] only gives a con-
struction of local leakage resilient secret sharing when the threshold value is
large (in particular, n− o(log n)). To solve this, we give an efficient construction
of a t-out-of-n local leakage resilient secret sharing scheme when t is a constant.
This is in fact sufficient to get a rate > 0 construction of non-malleable secret
sharing scheme. We now give details on the techniques used in this construction.

Local Leakage Resilient Secret Sharing Scheme. The starting point of our con-
struction is the 2-out-of-2 local leakage resilient secret sharing from the work
of Goyal and Kumar [GK18a] based on the inner product two-source extrac-
tor [CG88]. We first extend it to a k-out-of-k local leakage resilient secret sharing
6 This is the reason why we could only achieve thresholds t ≥ 4.

604 S. Badrinarayanan and A. Srinivasan

scheme for any arbitrary k. Let us now illustrate this for the case when k is even
i.e., k = 2p. To share a secret s, we first additively secret share s into s1, . . . , sp

and we encode each si using the 2-out-of-2 leakage resilient secret sharing scheme
to obtain the shares (share2i−1, share2i). We then give sharei to party i for each
i ∈ [k]. Note that given t − 1 shares, at most p − 1 additive secret shares can
be revealed. We now rely on the local leakage resilience property of the 2-out-
of-2 secret sharing to argue that the final additive share is hidden even when
given bounded leakage from the last share. This helps us in arguing the k-out-k
local leakage resilience property. The next goal is to extend this to a k-out-of-n
secret sharing scheme. Since we are interested in getting good rate, we should
not increase the size of the shares substantially. A näıve way of doing this would
be to share the secret

(

n
k

)

times (one for each possible set of k-parties) using the
k-out-of-k secret sharing scheme and give the respective shares to the parties.
The size of each share in this construction would blow up by a factor

(

n
k−1

)

when
compared to the k-out-of-k secret sharing scheme. Though, this is polynomial
in n when k is a constant, this is clearly sub-optimal when n is large and would
result in bad concrete parameters. We note that Goyal and Kumar [GK18a] used
a similar approach to obtain a 2-out-of-n local leakage resilient secret sharing.

In this work, we use a very different approach to construct a k-out-of-n
local leakage resilient secret sharing from a k-out-of-k local leakage resilient
secret sharing. The main advantage of this transformation is that it is substan-
tially more rate efficient than the näıve solution. Our transformation makes use
of combinatorial objects called as perfect hash functions [FK84].7 A family of
functions mapping {1, . . . , n} to {1, . . . , k} is said to be a perfect hash func-
tion family if for every set S ⊆ [n] of size at most k, there exists at least one
function in the family that is injective on S. Let us now illustrate how this prim-
itive is helpful in extending a k-out-of-k secret sharing scheme to a k-out-of-n
secret sharing scheme. Given a perfect hash function family {hi}i∈[�] of size �,
we share the secret s independently � times using the k-out-of-k secret sharing
scheme to obtain (sharei

1, . . . , share
i
k) for each i ∈ [�]. We now set the shares

corresponding to party i as (share1h1(i), . . . , share
�
h�(i)

). To recover the secret from
some set of k shares given by S = {s1, . . . , sk}, we use the following strategy.
Given any subset S of size k, perfect hash function family guarantees that there
is at least one index i ∈ [�] such that hi is injective on S. We can now use
{sharei

hi(s1), . . . , share
i
hi(sk)

} = {sharei
1, . . . , share

i
k} to recover the secret using

the reconstruction procedure of the k-out-of-k secret sharing.
We show that this transformation additionally preserves local leakage

resilience. In particular, if we start with a k-out-of-k local leakage resilient secret
sharing scheme then we obtain a k-out-of-n local leakage resilient secret sharing.
The size of each share in our k-out-of-n leakage resilient secret sharing scheme
is � times the share size of k-out-of-k secret sharing scheme. Thus, to minimize

7 We note that using perfect hash function families for constructing threshold secret
sharing scheme is not new (see [Bla99,SNW01] for a comprehensive discussion).
However, to the best of our knowledge, this is the first application of this technique
to construct local leakage resilient secret sharing scheme.

Revisiting Non-Malleable Secret Sharing 605

rate we must minimize the size of the perfect hash function family. Constructing
perfect hash function family of minimal size for all k ∈ N is an interesting and
a well-known open problem in combinatorics. In this work, we give an efficient
randomized construction (with good concrete parameters) of a perfect hash func-
tion family for a constant k with size O(log n + log(1/ε)) where ε is the error
probability. Alternatively, we can also use the explicit construction (which is
slightly less efficient when compared to the randomized construction) of size
O(log n) (when k is a constant) given by Alon et al. [AYZ95]. Combining either
the randomized/explicit construction of perfect hash function family with a con-
struction of k-out-of-k local leakage resilient secret sharing scheme, we get an
efficient construction of k-out-of-n local leakage resilient secret sharing scheme
when k is a constant.

2.2 Multiple Tampering

We also initiate the study of non-malleable secret sharing under multiple tam-
perings. As discussed in the introduction, this is a much stronger model when
compared to that of a single tampering.

Negative Result. We first show that when the number of tampering functions that
can maul the secret sharing scheme is apriori unbounded, there does not exist
any threshold non-malleable secret sharing scheme. This generalizes a similar
result for the case of split-state non-malleable code (see [GLM+04,FMNV14] for
details) and the main idea is inspired by these works. The underlying intuition
behind the negative result is simple: we come up with a set of tampering functions
such that each tampering experiment leaks one bit of a share. Now, given the
outcomes of t · s such tampering experiments where s is the size of the share,
the distinguisher can clearly learn every bit of t shares and thus, learn full
information about the underlying secret and break non-malleability.

For the tampering experiment to leak one bit of the share of party i, we
use the following simple strategy. Let us fix an authorized set of size t say,
{1, . . . , t}. We choose two sets of shares: {share1, . . . , sharei, . . . , sharet} and
{share1, . . . , share′

i, . . . , sharet} such that they reconstruct to two different secrets.
Note that the privacy of a secret sharing scheme guarantees that such shares
must exist. Whenever the particular bit of the share of party i is 1, the tamper-
ing function fi outputs share′

i whereas the other tampering functions, say fj will
output sharej . On the other hand, if the particular bit is 0 then the tampering
function fi outputs sharei and the other tampering functions still output sharej .
Observe that the reconstructed secret in the two cases reveals the particular bit
of the share of party i. We can use a similar strategy to leak every bit of all the
t shares which completely determine the secret.

Positive Result. We complement the negative result by showing that when the
number of tamperings is apriori bounded, we can obtain an efficient construction
of a threshold non-malleable secret sharing scheme. A natural approach would
be to start with a split-state non-malleable code that is secure against bounded

606 S. Badrinarayanan and A. Srinivasan

tamperings and convert it into a non-malleable secret sharing scheme. To the
best of our knowledge, the only known construction of split-state non-malleable
code that is secure in the presence of bounded tampering is that of Chattopad-
hyay et al. [CGL16]. However, the rate of this code is 0 even when we restrict
ourselves to just two tamperings. In order to achieve a better rate, we modify
the constructions of Kanukurthi et al. [KOS18] and Gupta et al. [GMW17] such
that we obtain a 3-split-state non-malleable code that secure in the setting of
bounded tampering. The rate of this construction is O(1

k) where k is the apriori
bound on the number of tamperings. Fortunately, even in this construction, we
still maintain the property that there exists two states that statistically hide the
message. We then prove that the same construction described earlier is a secure
non-malleable secret sharing under bounded tampering when we instantiate the
underlying code with a bounded tampering secure 3-split-state non-malleable
codes.

2.3 General Access Structures

To obtain a secret sharing scheme for more general access structures, we start
with any statistically secure secret sharing scheme for that access structure, and
use it to share L instead of using a threshold secret sharing scheme. We require
that the underlying access structure to be 4-monotone so that we can argue
the privacy of our scheme. Recall that a 4-monotone access structure is one in
which the size of every set in the access structure is at least 4. Even in this more
general case, the technique of stratifying the secret sharing schemes allows us
to prove non-malleability in almost an identical fashion to the case of threshold
secret sharing. We remark that the work of [GK18b] which gave constructions
of non-malleable secret sharing scheme for general monotone access structures
additionally required their local leakage resilient secret sharing scheme to satisfy
a security property called as strong local leakage resilience. Our construction
does not require this property and we show that “plain” local leakage resilience
is sufficient for extending to more general monotone access structures.

Organization. We give the definitions of non-malleable secret sharing and non-
malleable codes in Sect. 3. In Sect. 4, we present the construction of the k-out-
of-n leakage resilient secret sharing scheme. In Sect. 5, we describe our rate-
efficient threshold non-malleable secret sharing scheme for the single tampering.
We give the impossibility result for unbounded many tamperings in the full
version. Finally, in Sect. 6, we describe our result on non-malleable secret sharing
for general access structures against multiple bounded tampering. Note that the
result in Sect. 6 implicitly captures the result for threshold non-malleable secret
sharing against bounded tampering. We present this more general result for ease
of exposition.

Revisiting Non-Malleable Secret Sharing 607

3 Preliminaries

Notation. We use capital letters to denote distributions and their support, and
corresponding lowercase letters to denote a sample from the same. Let [n] denote
the set {1, 2, . . . , n}, and Ur denote the uniform distribution over {0, 1}r. For
any i ∈ [n], let xi denote the symbol at the i-th co-ordinate of x, and for any
T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates indexed
by T . We write ◦ to denote concatenation. We give the standard definitions of
min-entropy, statistical distance and seeded extractors in the full version.

3.1 Threshold Non-Malleable Secret Sharing Scheme

We first give the definition of a sharing function, then define a threshold secret
sharing scheme and finally give the definition of a threshold non-malleable secret
sharing. These three definitions are taken verbatim from [GK18a]. We define non-
malleable secret sharing for more general access structures in the full version.

Definition 3 (Sharing Function). Let [n] = {1, 2, . . . , n} be a set of identities
of n parties. Let M be the domain of secrets. A sharing function Share is a
randomized mapping from M to S1×S2×. . .×Sn, where Si is called the domain of
shares of party with identity i. A dealer distributes a secret m ∈ M by computing
the vector Share(m) = (S1, . . . ,Sn), and privately communicating each share Si

to the party i. For a set T ⊆ [n], we denote Share(m)T to be a restriction of
Share(m) to its T entries.

Definition 4 ((t, n, εc, εs)-Secret Sharing Scheme). Let M be a finite set of
secrets, where |M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of
n parties. A sharing function Share with domain of secrets M is a (t, n, εc, εs)-
secret sharing scheme if the following two properties hold:

– Correctness: The secret can be reconstructed by any t-out-of-n parties. That
is, for any set T ⊆ [n] such that |T | ≥ t, there exists a deterministic recon-
struction function Rec : ⊗i∈T Si → M such that for every m ∈ M,

Pr[Rec(Share(m)T) = m] = 1 − εc

where the probability is over the randomness of the Share function. We will
slightly abuse the notation and denote Rec as the reconstruction procedure that
takes in T and Share(m)T where T is of size at least t and outputs the secret.

– Statistical Privacy: Any collusion of less than t parties should have
“almost” no information about the underlying secret. More formally, for any
unauthorized set U ⊆ [n] such that |U | < t, and for every pair of secrets
m0,m1 ∈ M , for any distinguisher D with output in {0, 1}, the following
holds:

|Pr[D(Share(m0)U) = 1] − Pr[D(Share(m1)U) = 1]| ≤ εs

608 S. Badrinarayanan and A. Srinivasan

We define the rate of the secret sharing scheme as

lim
|m|→∞

|m|
maxi∈[n] |Share(m)i|

Definition 5 (Threshold Non-Malleable Secret Sharing [GK18a]). Let
(Share,Rec) be a (t, n, εc, εs)-secret sharing scheme for message space M. Let F
be some family of tampering functions. For each f ∈ F , m ∈ M and authorized
set T ⊆ [n] containing t indices, define the tampered distribution Tamperf,T

m as
Rec(f(Share(m))T) where the randomness is over the sharing function Share. We
say that the (t, n, εc, εs)-secret sharing scheme, (Share,Rec) is ε′-non-malleable
w.r.t. F if for each f ∈ F and any authorized set T consisting of t indices, there
exists a distribution Df,T over M ∪ {same�} such that:

|Tamperf,T
m − copy(Df,T ,m)| ≤ ε′

where copy is defined by copy(x, y) =

{

x if x �= same�

y if x = same�
.

Many Tampering Extension. We now extend the above definition to capture
multiple tampering attacks. Informally, we say that a secret sharing scheme
is non-malleable w.r.t. family F with tampering degree K if for any set of K
functions f1, . . . , fK ∈ F , the output of the following tampering experiment is
independent of the shared message m: (i) we first share a secret m to obtain the
corresponding shares, (ii) we tamper the shares using f1, . . . , fK, (iii) we finally,
output the K-reconstructed tampered secrets. Note that in the above experiment
the message m is secret shared only once but is subjected to K (possibly different)
tamperings. We refer to the full version for the formal definition.

3.2 Non-Malleable Codes

Dziembowski, Pietrzak and Wichs [DPW10] introduced the notion of non-
malleable codes which generalizes the usual notion of error correction. In par-
ticular, it guarantees that when a codeword is subject to tampering attack, the
reconstructed message is either the original one or something that is independent
of the original message.

Definition 6 (Non-Malleable Codes [DPW10]). Let Enc : {0, 1}m → {0, 1}n

and Dec : {0, 1}n → {0, 1}m ∪ {⊥} be (possibly randomized) functions, such that
Dec

(

Enc(s)
)

= s with probability 1 for all s ∈ {0, 1}m. Let F be a family of
tampering functions and fix ε > 0. We say that (Enc,Dec) is ε−non-malleable
w.r.t. F if for every f ∈ F , there exists a random variable Df on {0, 1}m ∪
{same�}, such that for all s ∈ {0, 1}m,

|Dec(f(Xs)) − copy(Df , s)| ≤ ε

where Xs ← Enc(s) and copy is defined by copy(x, y) =

{

x if x �= same�

y if x = same�
. We

call n the length of the code and m/n the rate.

Revisiting Non-Malleable Secret Sharing 609

Chattopadhyay, Goyal and Li [CGL16] defined a stronger notion of non-
malleability against multiple tampering. We recall this definition in the full
version of the paper.

Split-state Tampering Functions. We focus on the split-state tampering model
where the encoding scheme splits s into c states: Enc(s) = (S1, . . . ,Sc) ∈ S1 ×
S2 . . . × Sc and the tampering family is Fsplit =

{

(f1, . . . , fc)
∣

∣fi : Si → Si

}

. We
will call such a code as c-split-state non-malleable code.

Augmented Non-Malleable Codes. We recall the definition of augmented, 2-split-
state non-malleable codes [AAG+16].

Definition 7 (Augmented Non-Malleable Codes [AAG+16]). A coding
scheme (Enc,Dec) with code length 2n and message length m is an augmented
2-split-state non-malleable code with error ε if for every function f, g : {0, 1}n →
{0, 1}n, there exists a random variable D(f,g) on {0, 1}n × ({0, 1}m ∪ {same�})
such that for all messages s ∈ {0, 1}m, it holds that

|(L,Dec(f(L), g(R))) − S(D(f,g), s)| ≤ ε

where (L,R) = Enc(s), (L, m̃) ← Df,g and S((L, m̃), s) outputs (L, s) if m̃ =
same� and otherwise outputs (L, m̃).

Explicit Constructions. We now recall the constructions of split-state non-
malleable codes.

Theorem 6 ([Li17]). For any n ∈ N, there exists an explicit construction of
2-split-state non-malleable code with efficient encoder/decoder, code length 2n,
rate O(1

log n) and error 2−Ω(n
log n).

Theorem 7 ([KOS18,GMW17]). For every n ∈ N and ρ > 0, there
exists an explicit construction of 3-split-state non-malleable code with efficient
encoder/decoder, code length (3+ o(1))n, rate 1

3+o(1) and error 2−Ω(n/ log1+ρ(n)).

Theorem 8 ([CGL16]). There exists a constant γ > 0 such that for every
n ∈ N and t ≤ nγ , there exists an explicit construction of 2-split-state non-
malleable code with an efficient encoder/decoder, tampering degree t, code length
2n, rate 1

nΩ(1) and error 2−nΩ(1)
.

Theorem 9 ([GKP+18]). There exists a constant γ > 0 such that for every
n ∈ N and t ≤ nγ , there exists an explicit construction of an augmented, split-
state non-malleable code with an efficient encoder/decoder, tampering degree t,
code length 2n, rate 1

nΩ(1) and error 2−nΩ(1)
.

Theorem 10. There exists a constant γ > 0 such that for every n ∈ N and
t ≤ nγ , there exists an explicit construction of 3-split-state non-malleable code
with an efficient encoder/decoder, tampering degree t, code length 3n, rate Θ(1t)
and error 2−nΩ(1)

.

We give the proof of this theorem in the full version.

610 S. Badrinarayanan and A. Srinivasan

Additional Property. We show in the full version that the construction given in
[KOS18,GMW17] satisfies the property that given two particular states of the
codeword, the message remains statistically hidden.

4 k-out-of-n Leakage Resilient Secret Sharing Scheme

In this section, we give a new, rate-efficient construction of k-out-of-n leakage
resilient secret sharing scheme for a constant k. Later, in Sect. 5, we will use this
primitive along with a 3-split-state non-malleable code with explicit constant
rate (see Theorem 7) from the works of Kanukurthi et al. [KOS18] and Gupta
et al. [GMW17] to construct a t-out-of-n non-malleable secret sharing scheme
with the above mentioned rate.

We first recall the definition of a leakage resilient secret sharing scheme from
[GK18a].

Definition 8 (Leakage Resilient Secret Sharing [GK18a]). A (t, n, εc, εs)
(for t ≥ 2) secret sharing scheme (Share,Rec) for message space M is said to be
ε-leakage resilient against a leakage family F if for all functions f ∈ F and for
any two messages m0,m1 ∈ M:

|f(Share(m0)) − f(Share(m1))| ≤ ε

Leakage Function Family. We are interested in constructing leakage resilient
secret sharing schemes against the specific function family Fk,k,−→μ = {fK,K,−→μ :
K ⊆ [n], |K| = k,K ⊆ K, |K| ≤ k} where fK,K,−→μ on input (share1, . . . , sharen)
outputs sharei for each i ∈ K in the clear and outputs fi(sharei) for every
i ∈ K \ K such that fi is an arbitrary function outputting μi bits. When we
just write μ (without the vector sign), we mean that every function fi outputs
at most μ bits.

Organization. The rest of this section is organized as follows: we first construct
a k-out-of-k leakage resilient secret sharing scheme against Fk,k−1,μ (in other
words, k − 1 shares are output in the clear and μ bits are leaked from the
k-th share) in Sect. 4.1. In Sect. 4.2, we recall the definition of a combinatorial
object called as perfect hash function family and give a randomized construction
of such a family. Next, in Sect. 4.3, we combine the construction of k-out-of-k
leakage resilient secret sharing scheme and a perfect hash function family to
give a construction of k-out-of-n leakage resilient secret sharing scheme (for a
constant k).

4.1 k-out-of-k Leakage Resilient Secret Sharing

In this subsection, we will construct a k-out-k leakage resilient secret sharing
scheme against Fk,k−1,μ for an arbitrary k ≥ 2 (and not just for a constant
k). As a building block, we will use a 2-out-of-2 leakage resilient secret sharing
which was constructed in [GK18a]. We first recall the lemma regarding this
construction.

Revisiting Non-Malleable Secret Sharing 611

Lemma 1 ([GK18a]). For any ε > 0 and μ,m ∈ N, there exists a con-
struction of (2, 2, 0, 0) secret sharing scheme for sharing m-bit secrets that is
ε-leakage resilient against F2,1,μ such that the size of each share is O(m +
μ + log 1

ε). The running time of the sharing and reconstruction procedures are
poly(m,μ, log(1/ε)).

Let us denote the secret sharing scheme guaranteed by Lemma 1 as
(LRShare(2,2), LRRec(2,2)). We will use this to construct a k-out-of-k leakage
resilient secret sharing scheme for k > 2.

Lemma 2. For any ε > 0, k ≥ 2 and μ,m ∈ N, there exists a con-
struction of (k, k, 0, 0) secret sharing scheme for sharing m-bit secrets that is
ε-leakage resilient against Fk,k−1,μ such that the size of each share is O(m+μ+
log 1

ε). The running time of the sharing and the reconstruction procedures are
poly(m,μ, k, log(1/ε)).

We give the proof of this Lemma in the full version.

4.2 Perfect Hash Function Family

In this subsection, we recall the definition of the combinatorial objects called as
perfect hash function family and give an efficient randomized construction for
constant k.

Definition 9 (Perfect Hash Function Family [FK84]). For every n, k ∈ N,
a set of hash functions {hi}i∈[�] where hi : [n] → [k] is said to be (n, k)-perfect
hash function family if for each subset S ⊆ [n] of size k there exists an i ∈ [�]
such that hi is injective on S.

Before we give the randomized construction, we will state and prove the
following useful lemma.

Lemma 3. For every ε > 0, n, k ∈ N, the set of functions {hi}i∈[�] where each hi

is chosen randomly from the set of all functions mapping [n] → [k] is a perfectly

hash function family with probability 1 − ε when � =
log (n

k)+log 1
ε

log 1
1− k!

kk

. Specifically,

when k is constant, we can set � = O(log n + log 1
ε).

Proof. Let us first fix a subset S ⊆ [n] of size k. Let us choose a function h
uniformly at random from the set of all functions mapping [n] → [k].

Pr[h is not injective over S] = 1 − k!
kk

Let us now choose h1, . . . , h� uniformly at random from the set of all functions
mapping [n] → [k].

Pr[∀ i ∈ [�], hi is not injective over S] = (1 − k!
kk

)�

612 S. Badrinarayanan and A. Srinivasan

By union bound,

Pr[∃ S s.t.,∀ i ∈ [�], hi is not injective over S] =
(

n

k

)

(1 − k!
kk

)�

We want
(

n
k

)

(1 − k!
kk)� = ε. We get the bound for � by rearranging this equation.

Randomized Construction for Constant k. For any k, n and some error parameter
ε, set � as in Lemma 3. Choose a function hi : [n] → [k] uniformly at random for
each i ∈ [�]. From Lemma 3, we infer that {hi}i∈[�] is a perfect hash function
family except with probability ε. The construction is efficient since the number
of random bits needed for choosing each hi is n log k which is polynomial in n
when k is a constant.

Explicit Construction. Building on the work of Schmidt and Siegal [SS90], Alon
et al. [AYZ95] gave an explicit construction of (n, k)-perfect hash function family
of size 2O(k) log n. We now recall the lemma from [AYZ95].

Lemma 4 ([AYZ95,SS90]). For every n, k ∈ N, there exists an explicit and
efficiently computable construction of (n, k)-perfect hash function family {hi}i∈[�]

where � = 2O(k) log n.

The explicit construction is obtained by brute forcing over a small bias proba-
bility space [NN93] and finding such a family is not as efficient as our randomized
construction. On the positive side, the explicit construction is error-free unlike
our randomized construction.

4.3 Construction of k-out-n Leakage Resilient Secret Sharing

In this subsection, we will use a k-out-of-k leakage resilient secret sharing scheme
from Sect. 4.1 and a perfect hash function family from Sect. 4.2 to construct a
k-out-of-n leakage resilient secret sharing scheme against Ft,k−1,−→μ for an arbi-
trary t ≤ n (recall the definition of Fk,k,−→μ from Definition 8). We give the
description in Fig. 1.

Theorem 11. For every εc, εs > 0, n, k,m ∈ N and −→μ ∈ N
n, the con-

struction given in Fig. 1 is a (k, n, εc, 0) secret sharing scheme for sharing
m-bit secrets that is εs-leakage resilient against leakage functions Ft,k−1,−→μ for
any t ≤ n. The running times of the sharing and reconstruction algorithms
are poly(n,m,

∑

i μi, log(1/εcεs)) when k is a constant. In particular, when
εs = εc = 2−m, the running times are poly(n,m,

∑

i μi). The size of each share
when k is a constant is O((m + maxT

∑

i∈T,T⊆[n],|T |=t μi + log(log n/εs)) log n).

We give the proof of this theorem in the full version.

Remark 1. In Fig. 1, we cannot directly set the size � = O(log n + log 1
εc

) and
perform a single sampling to find a perfect hash function family. This is because
when we want εc = 2−m, the size of the function family grows with m and this
affects the rate significantly. That is why, it is important to set ε = 1/2 and do
log 1

εc
independent repetitions in the LRShare(k,n) function to reduce the error

to εc.

Revisiting Non-Malleable Secret Sharing 613

Fig. 1. (k, n, εc, 0) Leakage resilient secret sharing scheme

5 Non-Malleable Secret Sharing for Threshold Access
Structures

In this section, we give a construction of t-out-of-n (for any t ≥ 4) Non-Malleable
Secret Sharing scheme with rate Θ(1

t log2 n
) against tampering function family

Find that tampers each share independently. We first give the formal description
of the tampering function family.

Individual Tampering Family Find. Let Share be the sharing function of the secret
sharing scheme that outputs n-shares in S1 × S2 . . . × Sn. The function family
Find is composed of functions (f1, . . . , fn) where each fi : Si → Si.

5.1 Construction

Building Blocks. The construction uses the following building blocks. We instan-
tiate them with concrete schemes later:

– A 3-split-state non-malleable code (Enc,Dec) where Enc : M → L × C × R
and the simulation error of the scheme is ε1. Furthermore, we assume that for
any two messages m,m′ ∈ M, (C,R) ≈ε2 (C′,R′) where (L,C,R) ← Enc(m)
and (L′,C′,R′) ← Enc(m′).

– A (t, n, 0, 0) secret sharing scheme (SecShare(t,n),SecRec(t,n)) with perfect pri-
vacy for message space L. We will assume that the size of each share is m1.

614 S. Badrinarayanan and A. Srinivasan

– A (3, n, ε′
3, 0) secret sharing scheme (LRShare(3,n), LRRec(3,n)) that is ε3-

leakage resilient against leakage functions Ft,2,m1
8 for message space C. We

assume that the size of each share is m2.
– A (2, n, ε′

4, 0) secret sharing scheme (LRShare(2,n), LRRec(2,n)) for message
space R that is ε4-leakage resilient against leakage functions Ft,1,−→μ where
maxT

∑

i∈T,T⊆[n],|T |=t μi = O(m2 + tm1). We assume that the size of each
share is m3.

Construction. We give the formal description of the construction in Fig. 2 and
give an informal overview below. To share a secret s, we first encode s to (L,C,R)
using the 3-split-state non-malleable code. We first encode L to (SL1, . . . ,SLn)
using the t-out-of-n threshold secret sharing scheme. We then encode C into
(SC1, . . . ,SCn) using the 3-out-of-n leakage resilience secret sharing scheme
LRShare(3,n). We finally encode R into (SR1, . . . ,SRn) using the 2-out-of-n leak-
age resilient secret sharing scheme LRShare(2,n). We set the i-th share sharei

to be the concatenation of SLi,SCi and SRi. In order to reconstruct, we using
the corresponding reconstruction procedures SecRec, LRRec(3,n) and LRRec(2,n)

to compute L, C and R respectively. We finally use the decoding procedure of
3-split-state non-malleable code to reconstruct the secret s from L,C and R.

Theorem 12. For any arbitrary n ∈ N and threshold t ≥ 4, the construction
given in Fig. 2 is a (t, n, ε′

3 + ε′
4, ε2) secret sharing scheme. Furthermore, it is

(ε1 + ε3 + ε4)-non-malleable against Find.

We give the proof of this theorem in the full version.

5.2 Rate Analysis

We now instantiate the primitives and provide the rate analysis.

1. We instantiate the three split state non-malleable code from the works
of [KOS18,GMW17] (see Theorem 7). Using their construction, the |L| =
|C| = |R| = O(m) bits and the error ε1 = 2−Ω(m/ log1+ρ(m)) for any ρ > 0.

2. We use Shamir’s secret sharing [Sha79] as the t-out-of-n secret sharing scheme.
We get m1 = O(m) whenever m > log n.

3. We instantiate (LRShare(3,n), LRRec(3,n)) and (LRShare(2,n), LRRec(2,n)) from
Theorem 11. We get m2 = O(mt log n) and m3 = O(mt log2 n) by setting ε3
and ε4 to be 2−Ω(m/ log m).

Thus the rate of our construction is Θ(1
t log2 n

) and the error is

2−Ω(m/ log1+ρ(m)).
We defer the concrete optimization of the rate of our construction to the full

version of the paper.

8 Recall that this denotes that the function can choose to leak at most m1 bits from
each share in a set of size t − 2 apart from the two that are completely leaked.

Revisiting Non-Malleable Secret Sharing 615

Fig. 2. Construction of t-out-of-n non-malleable secret sharing scheme

6 NMSS for General Access Structures with Multiple
Tampering

We first define non-malleable secret sharing for general access structures in the
next subsection and then give the construction in the subsequent subsection.

6.1 Definitions

First, we recall the definition of a secret sharing scheme for a general monotone
access structure A - a generalization of the one defined for threshold access
structures in Definition 4.

Definition 10 ((A, n, εc, εs)-Secret Sharing Scheme). Let M be a finite set
of secrets, where |M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of
n parties. A sharing function Share with domain of secrets M is a (A, n, εc, εs)-
secret sharing scheme with respect to monotone access structure A if the following
two properties hold:

– Correctness: The secret can be reconstructed by any set of parties that are
part of the access structure A. That is, for any set T ∈ A, there exists a
deterministic reconstruction function Rec : ⊗i∈T Si → M such that for every
m ∈ M,

Pr[Rec(Share(m)T) = m] = 1 − εc

616 S. Badrinarayanan and A. Srinivasan

where the probability is over the randomness of the Share function. We will
slightly abuse the notation and denote Rec as the reconstruction procedure that
takes in T ∈ A and Share(m)T as input and outputs the secret.

– Statistical Privacy: Any collusion of parties not part of the access struc-
ture should have “almost” no information about the underlying secret. More
formally, for any unauthorized set U ⊆ [n] such that U /∈ A, and for every
pair of secrets m0,m1 ∈ M , for any distinguisher D with output in {0, 1}, the
following holds:

|Pr[D(Share(m0)U) = 1] − Pr[D(Share(m1)U) = 1]| ≤ εs

We define the rate of the secret sharing scheme as |m|
maxi∈[n] |Share(m)i|

We now define the notion of a non-malleable secret sharing scheme for general
access structures which is a generalization of the definition for threshold access
structures given in Definition 5.

Definition 11 (Non-Malleable Secret Sharing for General Access
Structures [GK18b]). Let (Share,Rec) be a (A, n, εc, εs)-secret sharing scheme
for message space M and access structure A. Let F be a family of tampering
functions. For each f ∈ F , m ∈ M and authorized set T ∈ A, define the tam-
pered distribution Tamperf,T

m as Rec(f(Share(m))T) where the randomness is over
the sharing function Share. We say that the (A, n, εc, εs)-secret sharing scheme,
(Share,Rec) is ε′-non-malleable w.r.t. F if for each f ∈ F and any authorized
set T ∈ A, there exists a distribution Df,T over M ∪ {same�} such that:

|Tamperf,T
m − copy(Df,T ,m)| ≤ ε′

where copy is defined by copy(x, y) =

{

x if x �= same�

y if x = same�
.

Many Tampering Extension. Similar to the threshold case, in the full version,
we extend the above definition to capture multiple tampering attacks.

6.2 Construction

In this section, we show how to build a one-many non-malleable secret sharing
scheme for general access structures.

First, let (SecShare(A,n),SecRec(A,n)) be any statistically private secret shar-
ing scheme with rate R for a 4-monotone access structure A over n parties. We
refer the reader to [KW93,LV18] for explicit constructions.

Let tmax denote the maximum size of a minimal authorized set of A.9 We give
a construction of a Non-Malleable Secret Sharing scheme with tampering degree
K for a 4-monotone access structure A with rate O(R

K3tmax log2 n
) with respect to

a individual tampering function family Find.
9 We refer the reader to Definition 1, Definition 2 for definitions of 4-monotone access

structures and minimal authorized set.

Revisiting Non-Malleable Secret Sharing 617

Building Blocks. The construction uses the following building blocks. We instan-
tiate them with concrete schemes later:

– A one-many 3-split-state non-malleable code (Enc,Dec) where Enc : M → L×
C×R, the simulation error of the scheme is ε1 and the scheme is secure against
K tamperings. Furthermore, we assume that for any two messages m,m′ ∈ M,
(C,R) ≈ε2 (C′,R′) where (L,C,R) ← Enc(m) and (L′,C′,R′) ← Enc(m′).

– A (A, n, 0, 0) (where A is 4-monotone) secret sharing scheme (SecShare(A,n),
SecRec(A,n)) with perfect privacy for message space L.10 We will assume that
the size of each share is m1.

– A (3, n, ε′
3, 0) secret sharing scheme (LRShare(3,n), LRRec(3,n)) that is ε3-

leakage resilient against leakage functions Ftmax,2,Km1 for message space C.
We assume that the size of each share is m2.

– A (2, n, ε′
4, 0) secret sharing scheme (LRShare(2,n), LRRec(2,n)) for message

space R that is ε4-leakage resilient against leakage functions Ftmax,1,−→μ where
maxT

∑

i∈T,T∈A,|T |=tmax
μi = O(Km2 + Ktmaxm1). We assume that the size of

each share is m3.

Fig. 3. Construction of non-malleable secret sharing scheme for general access struc-
tures against multiple tampering

10 We note that our proof of security goes through even if this secret sharing scheme
only has statistical privacy.

618 S. Badrinarayanan and A. Srinivasan

Construction. The construction is very similar to the construction of non-
malleable secret sharing for threshold access structures given in Sect. 5 with
the only difference being that we now use the (A, n, 0, 0) secret sharing scheme.
Note that in the construction we additionally need a procedure to find a mini-
mal authorized set from any authorized set. This procedure is efficient if we can
efficiently test the membership in A. We point the reader to [GK18b] for details
of this procedure. We give the formal description of the construction in Fig. 3
for completeness.

Theorem 13. There exists a constant γ > 0 such that, for any arbitrary
n,K ∈ N and 4-monotone access structure A, the construction given in Fig. 3 is a
(A, n, ε′

3 + ε′
4, ε2) secret sharing scheme for messages of length m where m ≥ Kγ .

Furthermore, it is (ε1 + ε3 + ε4) one-many non-malleable with tampering degree
K with respect to tampering function family Find.

We give the proof of this theorem and the rate analysis in the full version.

Acknowledgements. The first author’s research supported in part by the IBM PhD
Fellowship. The first author’s research also supported in part from a DARPA /ARL
SAFEWARE award, NSF Frontier Award 1413955, and NSF grant1619348, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an equip-
ment grant from Intel, an Okawa Foundation Research Grant, NSF-BSF grant 1619348,
DARPA SafeWare subcontract to Galois Inc., DARPA SPAWAR contract N66001-15-
1C-4065, US-Israel BSF grant 2012366, OKAWA Foundation Research Award, IBM
Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Founda-
tion Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. This material is based upon work supported by the Defense Advanced Research
Projects Agency through the ARL under Contract W911NF-15-C- 0205. The sec-
ond author’s research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA
and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research grants
by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC,
UC Berkeley) of Sanjam Garg. The views expressed are those of the authors and do
not reflect the official policy or position of the funding agencies.

The authors thank Pasin Manurangsi for pointing to the work of Alon et al. [AYZ95]
for the explicit construction of perfect hash function family. The authors also thank
Sanjam Garg, Peihan Miao and Prashant Vasudevan for useful comments on the
write-up.

References

[AAG+16] Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O.,
Prabhakaran, M.: Optimal computational split-state non-malleable codes.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 393–417. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49099-0 15

[ADKO15] Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reduc-
tions and applications. In: STOC, pp. 459–468 (2015)

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-662-49099-0_15

Revisiting Non-Malleable Secret Sharing 619

[ADL14] Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive
combinatorics. In: STOC, pp. 774–783 (2014)

[ADN+18] Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret-
sharing schemes for general access structures. Cryptology ePrint Archive,
Report 2018/1147 (2018). https://eprint.iacr.org/2018/1147

[AGM+15] Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit
non-malleable codes against bit-wise tampering and permutations. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 538–557. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 26

[AYZ95] Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856
(1995)

[BDG+18] Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.-Y.: Non-
malleable codes for small-depth circuits. In: FOCS (2018, to appear)

[BDIR18] Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage
resilience of linear secret sharing schemes. In: Shacham, H., Boldyreva, A.
(eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 531–561. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 18

[BDKM16] Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable
codes for bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 31

[BDKM18] Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable
codes from average-case hardness: AC0, decision trees, and streaming space-
bounded tampering. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10822, pp. 618–650. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 20

[BDL01] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating
errors in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: STOC, pp. 1–10 (1988)

[Bla79] Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS
1979 National Computer Conference, vol. 48, pp. 313–317 (1979)

[Bla99] Blackburn, S.R.: Combinatorics and Threshold Cryptography. Chapman
and Hall CRC Research Notes in Mathematics, pp. 49–70 (1999)

[CCD88] Chaum, D., Crepeau, C., Damgaard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: STOC, pp. 11–19. ACM (1988)

[CDF+08] Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of alge-
braic manipulation with applications to robust secret sharing and fuzzy
extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
471–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 27

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput. 17(2),
230–261 (1988)

[CGL16] Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and
codes, with their many tampered extensions. In: Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, 18–21 June 2016, pp. 285–298 (2016)

https://eprint.iacr.org/2018/1147
https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-319-96884-1_18
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/978-3-540-78967-3_27

620 S. Badrinarayanan and A. Srinivasan

[CGM+16] Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-
wise non-malleable codes. In: ICALP (2016)

[CGMA85] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing
and achieving simultaneity in the presence of faults (extended abstract).
In: 26th Annual Symposium on Foundations of Computer Science,
pp. 383–395. IEEE Computer Society Press, October 1985

[CKR16] Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic
local non-malleable codes and their applications. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 367–392.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-
0 14

[CL17] Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-
depth circuits, and affine functions. In: Hatami, H., McKenzie, P., King,
V. (eds.) 49th Annual ACM Symposium on Theory of Computing,
pp. 1171–1184. ACM Press, June 2017

[DDFY94] De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a func-
tion securely. In: 26th Annual ACM Symposium on Theory of Computing,
pp. 522–533. ACM Press, May 1994

[DF90] Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 28

[DKO13] Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from
two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 14

[DPW10] Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Pro-
ceedings of Innovations in Computer Science - ICS 2010, Tsinghua Univer-
sity, Beijing, China, 5–7 January 2010, pp. 434–452 (2010)

[FK84] Fredman, M.L., Komlós, J.: On the size of separating systems and families
of perfect hash functions. SIAM J. Algebraic Discrete Methods 5(1), 61–68
(1984)

[FMNV14] Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-
malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 465–488. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54242-8 20

[FMNV15] Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage
resilient von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 579–603. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46447-2 26

[FMVW14] Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable
codes and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 7

[Fra90] Frankel, Y.: A practical protocol for large group oriented networks. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol.
434, pp. 56–61. Springer, Heidelberg (1990). https://doi.org/10.1007/3-
540-46885-4 8

[FRR+10] Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protect-
ing circuits from leakage: the computationally-bounded and noisy cases.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 7

https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/3-540-46885-4_8
https://doi.org/10.1007/3-540-46885-4_8
https://doi.org/10.1007/978-3-642-13190-5_7

Revisiting Non-Malleable Secret Sharing 621

[GK18a] Goyal, V., Kumar, A.: Non-malleable secret sharing. In: STOC, pp. 685–698
(2018)

[GK18b] Goyal, V., Kumar, A.: Non-malleable secret sharing for general access
structures. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
I. LNCS, vol. 10991, pp. 501–530. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96884-1 17

[GKP+18] Goyal, V., Kumar, A., Park, S., Richelson, S., Srinivasan, A.: Non-
malleable commitments from non-malleable extractors. Manuscript,
accessed via personal communication (2018)

[GLM+04] Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algo-
rithmic tamper-proof (ATP) security: theoretical foundations for security
against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol.
2951, pp. 258–277. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24638-1 15

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
A completeness theorem for protocols with honest majority. In: Aho, A.
(ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 218–229.
ACM Press, May 1987

[GMW17] Gupta, D., Maji, H.K., Wang, M.: Constant-rate non-malleable codes in
the split-state model. Cryptology ePrint Archive, Report 2017/1048 (2017).
https://eprint.iacr.org/2017/1048

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45146-4 27

[JW15] Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable
codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 451–480. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46494-6 19

[KLT18] Kiayias, A., Liu, F.-H., Tselekounis, Y.: Non-malleable codes for partial
functions with manipulation detection. In: Shacham, H., Boldyreva, A.
(eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 577–607. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 20

[KMS18] Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing. Cryp-
tology ePrint Archive, Report 2018/1138 (2018). https://eprint.iacr.org/
2018/1138

[KOS17] Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes
with explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part
II. LNCS, vol. 10678, pp. 344–375. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70503-3 11

[KOS18] Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness
encoders and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 589–617. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 19

[KW93] Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the
Eigth Annual Structure in Complexity Theory Conference, San Diego, CA,
USA, 18–21 May 1993, pp. 102–111 (1993)

[Li17] Li, X.: Improved non-malleable extractors, non-malleable codes and inde-
pendent source extractors. In: STOC (2017)

https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-540-24638-1_15
https://eprint.iacr.org/2017/1048
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-319-96878-0_20
https://eprint.iacr.org/2018/1138
https://eprint.iacr.org/2018/1138
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-78372-7_19

622 S. Badrinarayanan and A. Srinivasan

[LL12] Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 517–532. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32009-5 30

[LV18] Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret
sharing. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th Annual
ACM Symposium on Theory of Computing, pp. 699–708. ACM Press, June
2018

[NN93] Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions
and applications. SIAM J. Comput. 22(4), 838–856 (1993)

[OPVV18] Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-
malleable codes in the split-state model from minimal assumptions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 608–639. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96878-0 21

[Rot12] Rothblum, G.N.: How to compute under AC0 leakage without secure hard-
ware. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 552–569. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32009-5 32

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[SNW01] Safavi-Naini, R., Wang, H.: Robust additive secret sharing schemes over

ZM. In: Lam, K.-Y., Shparlinski, I., Wang, H., Xing, C. (eds.) Cryptogra-
phy and Computational Number Theory, pp. 357–368. Birkhäuser, Basel
(2001)

[SS90] Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash
functions. SIAM J. Comput. 19(5), 775–786 (1990)

https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-319-96878-0_21
https://doi.org/10.1007/978-3-319-96878-0_21
https://doi.org/10.1007/978-3-642-32009-5_32
https://doi.org/10.1007/978-3-642-32009-5_32

Blockchain and Consensus

Multi-party Virtual State Channels

Stefan Dziembowski1(B), Lisa Eckey2, Sebastian Faust2, Julia Hesse2,
and Kristina Hostáková2

1 University of Warsaw, Warsaw, Poland
stefan.dziembowski@crypto.edu.pl

2 Technische Universität Darmstadt, Darmstadt, Germany
{lisa.eckey,sebastian.faust,julia.hesse,kristina.hostakova}@crisp-da.de

Abstract. Smart contracts are self-executing agreements written in pro-
gram code and are envisioned to be one of the main applications of
blockchain technology. While they are supported by prominent cryp-
tocurrencies such as Ethereum, their further adoption is hindered by
fundamental scalability challenges. For instance, in Ethereum contract
execution suffers from a latency of more than 15 s, and the total number
of contracts that can be executed per second is very limited. State chan-
nel networks are one of the core primitives aiming to address these chal-
lenges. They form a second layer over the slow and expensive blockchain,
thereby enabling instantaneous contract processing at negligible costs.

In this work we present the first complete description of a state chan-
nel network that exhibits the following key features. First, it supports
virtual multi-party state channels, i.e. state channels that can be created
and closed without blockchain interaction and that allow contracts with
any number of parties. Second, the worst case time complexity of our
protocol is constant for arbitrary complex channels. This is in contrast
to the existing virtual state channel construction that has worst case
time complexity linear in the number of involved parties. In addition to
our new construction, we provide a comprehensive model for the modular
design and security analysis of our construction.

1 Introduction

Blockchain technology emerged recently as a promising technique for distributing
trust in security protocols. It was introduced by Satoshi Nakamoto in [22] who
used it to design Bitcoin, a new cryptographic currency which is maintained
jointly by its users, and remains secure as long as the majority of computing
power in the system is controlled by honest parties. In a nutshell, a blockchain
is a system for maintaining a joint database (also called the “ledger”) between
several users in such a way that there is a consensus about its state.

In recent years the original ideas of Nakamoto have been extended in several
directions. Particularly relevant to this paper are systems that support so-called
smart contracts [26], also called contracts for short (see Sect. 2.1 for a more
detailed introduction to this topic). Smart contracts are self-executing agree-
ments written in a programming language that distribute money according to
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 625–656, 2019.
https://doi.org/10.1007/978-3-030-17653-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_21

626 S. Dziembowski et al.

the results of their execution. The blockchain provides a platform where such
contracts can be written down, and more importantly, be executed according
to the rules of the language in which they are encoded. The most prominent
blockchain system that offers support for rich smart contracts is Ethereum, but
many other systems are currently emerging.

Unfortunately, the current approach of using blockchain platforms for exe-
cuting smart contracts faces inherent scalability limitations. In particular, since
all participants of such systems need to reach consensus about the blockchain
contents, state changes are costly and time consuming. This is especially true
for blockchains working in the so-called permissionless setting (like Bitcoin or
Ethereum), where the set of users changes dynamically, and the number of par-
ticipants is typically large. In Ethereum, for example, it can take minutes for
a transaction to be confirmed, and the number of maximum state changes per
second (the so-called transaction throughput) is currently around 15–20 trans-
actions per second. This is unacceptable for many applications, and in particu-
lar, prohibits use-cases such as “microtransactions” or many games that require
instantaneous state changes.

Arguably one of the most promising approaches to tackle these problems are
off-chain techniques (often also called “layer-2 solutions”), with one important
example being payment channels [2]. We describe this concept in more detail in
Sect. 2.1. For a moment, let us just say that the basic idea of a payment channel
is to let two parties, say Alice and Bob, “lock” some coins in a smart contract on
the blockchain in such a way that the amount of coins that each party owns in the
contract can be changed dynamically without interacting with the blockchain.
As long as the coins are locked in the contract the parties can then update
the distribution of these coins “off-chain” by exchanging signatures of the new
balance that each party owns in the channel. At some point the parties can decide
to close the channel, in which case the latest signed off-chain distribution of coins
is realized on the blockchain. Besides for creation and closing, the blockchain is
used only in one other case, namely, when there is a dispute between the parties
about the current off-chain balance of the channel. In this case the parties can
send their latest signed balance to the contract, which will then resolve the
dispute in a fair way.

This concept can be extended in several directions. Channel networks (e.g.,
the Lightning network over Bitcoin [24]) are an important extension which allows
to securely “route” transactions over a longer path of channels. This is done in
a secure way, which means that intermediaries on the path over which coins are
routed cannot steal funds. Another extension is known under the name state
channels [1]. In a state channel the parties can not only send payments but
also execute smart contracts off-chain. This is achieved by letting the channel
maintain in addition to the balance of the users a “state” variable that stores the
current state of an off-chain contract. Both extensions can be combined resulting
into so-called state channel networks [5,7,10], where simple state channels can be
combined to create longer state channels. We write more about this in Sect. 2.1.

Multi-party Virtual State Channels 627

Before we describe our contribution in more detail let us first recall the termi-
nology used in [10] on which our work relies. Dziembowski et al. [10] distinguish
between two variants of two-party state channels – so-called ledger and virtual
state channels1. Ledger state channels are created directly over the ledger, while
virtual state channels are built over multiple existing (ledger/virtual) state chan-
nels to construct state channels that span over multiple parties. Technically, this
is done in a recursive way by building a virtual state channel on top of two other
state channels. For instance, given two ledger state channels between Alice and
Ingrid, and Ingrid and Bob respectively, we may create a virtual state channel
between Alice and Bob where Ingrid takes the role of an intermediary. Compared
to ledger state channels, the main advantage of virtual state channels is that
they can be opened and closed without interaction with the blockchain.

1.1 Our Contribution

Our main contribution is to propose a new construction for generalized state
channel networks that exhibit several novel key features. In addition, we present
a comprehensive modeling and a security analysis of our construction. We discuss
further details below. The comparison to related work is presented in Sect. 1.2.

Multi-party state channels. Our main contribution is the first full specifica-
tion of multi-party virtual state channels. A multi-party state channel allows
parties to off-chain execute contracts that involve > 2 parties. This greatly
broadens the applicability of state channel networks since many use cases such
as online games or exchanges for digital assets require support for multi-party
contracts. Our multi-party state channels are built “on top” of a network of
ledger channels. Any subset of the parties can form multi-party state channels,
where the only restriction is that the parties involved in the multi-party state
channel are connected via a path in the network of ledger channels. This is an
important distinctive feature of our construction because once a party is con-
nected to the network it can “on-the-fly” form multi-party state channels with
changing subsets of parties. An additional benefit of our construction is that
our multi-party state channels are virtual, which allows opening and closing of
the channel without interaction with the blockchain. As a consequence in the
optimistic case (i.e., when there is no dispute between the parties) channels can
be opened and closed instantaneously at nearly zero-costs.

At a more technical level, virtual multi-party state channel are built in a
recursive way using 2-party state channels as a building-block. More concretely,
if individual parties on the connecting path do not wish to participate in the
multi-party state channel, they can be “cut out” via building virtual 2-party
state channels over them.

1 The startup L4 and their project Counterfactual [7] use a different terminology:
virtual channels are called “meta channels”, but the concepts are the same.

628 S. Dziembowski et al.

Virtual state channels with direct dispute. The second contribution of
our work is to introduce the concept of “direct disputes” to virtual state chan-
nels. To better understand the concept of direct disputes let us recall the basic
idea of the dispute process from [10]. While in ledger state channels disputes
are always directly taken to the ledger, in the 2-party virtual state channels
from [10] disputes are first attempted to be resolved by the intermediary Ingrid
before moving to the blockchain. There are two advantages of such an “indirect”
dispute process. First, it provides “layers of defense” meaning that Alice is forced
to go to the blockchain only if both Bob and Ingrid are malicious. Second, “indi-
rect” virtual state channels allow for cross-blockchain state channels because the
contracts representing the underlying ledger state channels always have to deal
with a single blockchain system only.

These features, however, come at the price of an increased worst case time
complexity. Assuming a blockchain finality of Δ,2 the virtual channel construc-
tion of [10] has worst case dispute timings of order O(nΔ) for virtual state
channels that span over n parties. We emphasize that these worst case timing
may already occur when only a single intermediary is corrupt, and hence may
frequently happen in state channel networks with long paths.

In this work we build virtual state channels with direct disputes. Similar to
ledger state channels, virtual state channels with direct dispute allow the mem-
bers of the channel to resolve conflicts in time O(Δ), and thus, independent of
the number of intermediaries involved. We call our new construction virtual state
channels with direct dispute to distinguish them from their “indirect” counter-
part [10]. To emphasize the importance of this improvement, notice that already
for relatively short channels spanning over 13 ledger channels the worst case
timings reduce from more than 1 day for the dispute process in [10] to less than
25 min in our construction. A comparison of the two types of two party state
channels is presented in the following table.

Ledger Direct virtual Indirect virtual

Creation on chain via subchannels via subchannels

Dispute on chain on chain via subchannels

Closure on chain via subchannels via subchannels

Our final construction generalizes the one of [10] by allowing an arbitrary
composition of: (a) 2-party virtual state channels with direct and indirect dis-
putes, and (b) multi-party virtual state channels with direct disputes. We leave
the design of multi-party virtual state channels with indirect dispute as an impor-
tant open problem for future work.

2 In Ethereum typically Δ equal to 6 min is assumed to be safe.

Multi-party Virtual State Channels 629

Modeling state channel networks. Our final contribution is a comprehensive
security model for designing and analysing complex state channel networks in
a modular way. To this end, we use the Universal Composability framework of
Canetti [3] (more precisely, its global variant [4]), and a recursive composition
approach similar to [10]. One particular nice feature of our modeling approach
is that we are able to re-use the ideal state channel functionality presented
in [10]. This further underlines the future applicability of our approach to design
complex blockchain-based applications in a modular way. Or put differently: our
functionalities can be used as subroutines for any protocol that aims at fast and
cheap smart contract executions.

1.2 Related Work

One of the first constructions of off-chain channels in the scientific literature was
the work of Wattenhofer and Decker [8]. Since then, there has been a vast number
of different works constructing protocols for off-chain transactions and channel
networks with different properties [12,15–18,25]. These papers differ from our
work as they do not consider off-chain execution of arbitrary contract code, but
instead focus on payments. Besides academic projects, there are also many indus-
try projects that aim at building state channel networks. Particular relevant to
our work is the Counterfactual project of L4 [7], Celer network [5] and Magmo [6].
The whitepapers of these projects typically do not offer full specification of full
state channel networks and instead follow a more “engineering-oriented” app-
roach that provides descriptions for developers. Moreover, non of these works
includes a formal modeling of state channels nor a security analysis.

To the best of our knowledge, most related to our work is [10], which we
significantly extend (as described above), and the recent work of Sprites [21]
and its extensions [19,20] on building multi-party ledger state channels. At a
high-level in [19–21] a set of parties can open a multi-party ledger state channel
by locking a certain amount of coins into a contract. Then, the execution of
this contract can be taken “off-chain” by letting the parties involved in the
channel sign the new states of the contract. In case a dispute occurs among
the parties, the dispute is taken on-chain. The main differences to our work are
twofold: first [19–21] do not support virtual channels, and hence opening and
closing state channels requires interaction with the blockchain. Second, while we
support full concurrent execution of multiple contracts in a single channel, [19–
21] focuses on the off-chain execution of a single contract. Moreover, our focus
is different: while an important goal of our work is formal modeling, [21] aims
at improving the worst case timings in payment channel networks, and [19,20]
focus on evaluating practical aspects of state channels.

630 S. Dziembowski et al.

2 Overview of Our Constructions

Before we proceed with the more technical part of this work, we provide some
background on the ledger and virtual state channels in Sect. 2.1 (we follow the
formalism of [10]). In Sect. 2.2 we give an overview of our construction for han-
dling “direct disputes”, while in Sect. 2.3, we describe how we build and main-
tain multi-party virtual state channels. Below we assume that the parties that
interact with the contracts own some coins in their accounts on the ledger. We
emphasize that the description in this section is very simplified and excludes
many technicalities.

2.1 Background on Contracts and State Channels [10]

Contracts. As already mentioned in Sect. 1, contracts are self-executing agree-
ments written in a programming language. More formally, a contract can be
viewed as a piece of code that is deployed by one of the parties, can receive
coins from the parties, store coins on its account, and send coins to them. A
contract never “acts by itself” – in other words: by default it is in an idle state
and activates only when it is “woken up” by one of the parties. Technically, this
is done by calling a function from its code. Every function call can have some
coins attached to it (meaning that these coins are deduced from the account of
the calling party and added to the contract account).

To be a bit more formal, we use two different terms while referring to a
“contract”: (i) “contract code” C – a static object written in some programming
language (and consisting of a number of functions); and (ii) “contract instance”
ν, which results from deploying the contract code C. Each contract instance ν
maintains during its lifetime a (dynamically changing) storage, where the current
state of the contract is stored. One of the functions in contract code, called a
constructor, is used to create an instance and its initial storage. These notions
are defined formally in Sect. 3. Here, let us just illustrate them by a simple
example of a contract Csell for selling a pre-image of some fixed function H. More
concretely, suppose that we have two parties: Alice and Bob, and Bob is able
to invert H, while Alice is willing to pay 1 coin for a pre-image of H, i.e., for
any x such that H(x) = y (where y is chosen by her). Moreover, if Bob fails
to deliver x, then he has to pay a “fine” of 2 coins. First, the parties deploy
the contract by depositing their coins into it (Alice deposits 1 coins, and Bob
deposits 2 coins).3 Denote the initial storage of the contract instance as G0. Alice
can now challenge Bob by requesting him to provide a pre-image of y. Let G1

be the storage of the contract after this request has been recorded. If now Bob
sends x such that H(x) = y to the contract, 1 + 2 = 3 coins are paid to Bob,
and the contract enters a terminal state of storage G2. If Bob fails to deliver

3 Technically, this is done by one of the parties, Alice, say, calling a constructor func-
tion, and then Bob calling another function to confirm that he agrees to deploy this
contract instance. To keep our description simple, we omit these details here.

Multi-party Virtual State Channels 631

x in time, i.e. within some time t > Δ, and the contract has still storage G1,
then Alice can request the contract to pay the 3 coins to her, and the contract
enters into a terminal state of storage G3.

The contract code Csell consists of functions used to deploy the contract (see
footnote 3), a function that Alice uses to send y to the contract instance, a
function used by Bob to send x, and a function that Alice calls to get her coins
back if Bob did not send x in time.

Functionality of state channels. State channels allow two parties Alice and Bob to
execute instances of some contract code C off-chain, i.e., without interacting with
the ledger. These channels offer four sub-protocols that manage their life cycles:
(i) channel create for opening a new channel; (ii) channel update for updating
the state of a channel; (iii) channel execute for executing contracts off-chain; and
finally (iv) channel close for closing a channel when it is not needed anymore.
In [10] the authors consider two types of state channels: ledger state channels
and virtual state channels. The functionality offered by these two variants is
slightly different, which we discuss next.

Ledger state channels. Ledger state channels are constructed directly on the
ledger. To this end, Alice and Bob create the ledger state channel γ by deploy-
ing an instance of a state channel contract (denoted SCC) on the ledger. The
contract SCC will take the role of a judge, and resolve disputes when Alice and
Bob disagree (we will discuss disputes in more detail below). During channel
creation, Alice and Bob also lock a certain amount of coins into the contract.
These coins can then be used for off-chain contracts. For instance, Alice and Bob
may each transfer 10 coins to SCC, and hence in total 20 coins are available in
the channel γ. Once the channel γ is established, the parties can update the state
of γ (without interacting with the state channel contract). These updates serve
to create new contract instances “within the channel”, e.g., Alice can buy from
Bob a pre-image of H and pay for it using her channel funds by deploying an
instance of the Csell contract in the channel. At the end the channel is closed, and
the coins are transfered back to the accounts of the parties on the ledger. The
state channel contract guarantees that even if one of the parties is dishonest she
cannot steal the coins of the honest party (i.e.: get more coins than she would
get from an honest execution of the protocol). The mechanism behind this is
described a bit later (see “Handling disputes in channels” on page 8).

Virtual state channels. The main novelty of [10] is the design of virtual state
channels. A virtual state channel offers the same interface as ledger state chan-
nels (i.e.: channel creation, update, execute, and close), but instead of being
constructed directly over the ledger, they are built “on top of” other state chan-
nels. Consider a setting where Alice and Bob are not directly connected via a
ledger state channel, but they both have a ledger channel with an intermediary
Ingrid. Call these two ledger state channels α and β, respectively (see Fig. 1, page
8). Suppose now that Alice and Bob want to execute the pre-image selling proce-
dure using the contract Csell according to the same scenario as the one described

632 S. Dziembowski et al.

above. To this end, they can create a virtual state channel γ with the help of
Ingrid, but without interacting with the ledger. In this process the parties “lock”
their coins in channels α and β (so that they cannot be used for any other pur-
pose until γ is closed). The amounts of “locked” coins are as follows: in α Alice
locks 1 coin and Ingrid locks 2 coins, and in β Bob locks 2 coins, and Ingrid locks
1 coin. The requirement that Ingrid locks 2 coins in α and 1 coin in β corresponds
to the fact that she is “representing” Bob in channel α and “representing” Alice
in channel β. Here, by “representing” we mean that she is ready to cover their
commitments that result from executing the contract in γ.

Once γ is created, it can be used exactly as a ledger state channel, i.e.,
Alice and Bob can open a contract instance ν of Csell in γ via the virtual state
channel update protocol and execute it. As in the ledger state channels, when
both Alice and Bob are honest, the update and execution of ν can be done without
interacting with the ledger or Ingrid. Finally, when γ is not needed anymore, it is
closed, where closing is first tried peacefully via the intermediary Ingrid (in other
words: Alice and Bob “register” the latest state of γ at Ingrid).

For example: suppose the execution of Csell ends in the way that Alice receives
0 coins, and Bob receives 3 coins. The effect on the ledger channels is as follows:
in channel α Alice receives 0 coins, and Ingrid receives 3 coins, and in channel
β Bob receives 3 coins, and Ingrid receives 0 coins. Note that this is financially
neutral for Ingrid who always gets backs the coins that she locked (although the
distribution of these coins between α and β can be different from the original
one). This situation is illustrated on Fig. 1. If the peaceful closing fails, the parties
enter into a dispute which we describe next.

Fig. 1. Virtual channel γ built over ledger channels α and β. The labels “x/y” on the
channels denote the fact that a given party locked x coins for the creation of γ, and
got y coins as a result of closing γ.

Handling disputes in channels. The description above considered the case when
both Alice and Bob are honest. Of course, we also need to take into account
conflicts between the parties, e.g., when Alice and Bob disagree on a state update,
or refuse to further execute a contract instance. Resolving such conflicts in a fair
way is the purpose of the dispute resolution mechanism. The details of this
mechanism appear in [10].

In order to better understand the dispute handling, we start by providing
some more technical details on the state channel off-chain execution mechanism.
Let ν be a contract instance of the pre-image selling contract Csell, say, and denote
by G0 its initial state. To deploy ν in the state channel both parties exchange
signatures on (G0, 0), where the second parameter in the tuple will be called the

Multi-party Virtual State Channels 633

version number. The rest of the execution is done by exchanging signatures on
further states with increasing version number. For instance, suppose that in the
pre-image selling contract Csell (described earlier in this section) the last state
on which both parties agreed on was (G1, 1) (i.e., both parties have signatures
on this state tuple), and Bob wants to provide x such that H(x) = y. To this
end, he locally evaluates the contract instance to obtain the new state (G2, 2),
and sends it together with his signature to Alice. Alice verifies the correctness
of both the computation and the signature, and if both checks pass, she replies
with her signature on (G2, 2).

Let us now move to the dispute resolution for ledger channels and consider
a setting where a malicious Alice does not reply with her signature on (G2, 2)
(for example because she wants to avoid “acknowledging” that she received x).
In this case, Bob can force the execution of the contract instance ν on-chain
by registering in the state channel contract SCC the latest state on which both
parties agreed on. To this end, Bob will send the tuple (G2, 2) together with the
signature of Alice to SCC. Of course, SCC cannot accept this state immediately
because it may be the case that Bob cheated by registering an outdated state.4

Hence, the ledger contract SCC gives Alice time Δ to reply with a more recent
signed state (recall that in Sect. 1.1 we defined Δ to be a constant that is suf-
ficiently large so that every party can be sure her transaction is processed by
the ledger within this time). When Δ time has passed, SCC finalizes the state
registration process by storing the version with the highest version number in its
storage. Once registration is completed, the parties can continue the execution
of the contract instance on-chain.5

The dispute process for virtual state channels is much more complex than the
one for the ledger channels. In particular, in a virtual state channel Alice and Bob
first try to resolve their conflicts peacefully via the intermediary Ingrid. That is,
both Alice and Bob first send their latest version to Ingrid who takes the role of
the judge, and attempts to resolve the conflict. If this does not succeed because
a dishonest Ingrid is not cooperating, then the parties resolve their dispute on-
chain using the underlying ledger state channels α and β (and the virtual state
channel contracts VSCC).

Longer virtual state channels via recursion. So far, we only considered virtual
state channels that can be built on top of 2 ledger state channels. The authors
of [10] show how virtual state channels can be used in a recursive way to build
virtual state channels that span over n ledger state channels. The key feature
that makes this possible is that the protocol presented in [10] is oblivious of
whether the channels α or β underlying γ are ledger or virtual state channels.
Hence, given a virtual state channel α between P0 and Pn/2 and a virtual state
channel β between parties Pn/2 and Pn, we can construct γ, where Pn/2 takes
the role of Ingrid.
4 Notice that SCC is oblivious to what happened inside the ledger state channel γ after

it was created.
5 In the example that we considered, Bob can now force Alice bear the consequences

that he revealed x to the contract instance.

634 S. Dziembowski et al.

As discussed in the introduction, one main shortcoming of the recursive app-
roach used by [10] is that even if only one intermediary is malicious6, the worst-
case time needed for dispute resolution is significantly prolonged. Concretely,
even a single intermediary that works together with a malicious Alice can delay
the execution of a contract instance in γ for up to Ω(nΔ) time before it eventually
is resolved on the ledger.

2.2 Virtual State Channel with Direct Dispute

The first contribution of this work is to significantly reduce the worst case timings
of virtual state channels. To this end, we introduce virtual state channels with
direct dispute, where in case of disagreement between Alice and Bob the parties do
not contact the intermediaries over which the virtual state channel is constructed,
but instead directly move to the blockchain. This reduces worst case timings for
dispute resolution to O(Δ), and hence makes it independent of the number of
parties over which the virtual channel is spanned. Let us continue with a high-
level description of our construction, where we call the virtual state channels
constructed in [10] virtual state channels with indirect dispute or indirect virtual
state channels to distinguish them from our new construction.

Overview of virtual state channels with direct dispute. The functionality offered
by virtual state channels with direct dispute can be described as a “hybrid”
between ledger and indirect virtual state channels. On the one hand – similar to
virtual state channels from [10] – creation and closing involves interaction with
the intermediary over which the channel is built. On the other hand – similar
to ledger state channels – the update and execution, in case of dispute between
the end parties, is directly moved to the ledger. The latter is the main differ-
ence to indirect virtual state channels, where dispute resolution first happens
peacefully via an intermediary. The advantage of our new approach is that the
result of a dispute is visible to all parties and contracts that are using the same
ledger. Hence, the other contracts can use the information about the result of
this dispute in order to speed up the execution of their own dispute resolution
procedure. This process is similar to the approach used in the Sprites paper [21],
but we extend it to the case of virtual (multi-party) channels.

Before we describe in more detail the dispute process, we start by giving a
high-level description of the creation process. To this end, consider an initial
setting with two indirect virtual state channels α and β. Both α and β have
length n/2, where α is spanned between parties P0 and Pn/2, while β is spanned
between parties Pn/2 and Pn (assume that n is a power of 2). Using the channels
α and β, parties P0 and Pn can now create a direct virtual state channel γ of
length n. At a technical level this is done in a very similar way to creating an
indirect virtual state channel. In a nutshell, with the help of the intermediary

6 While it is sufficient that only one intermediary is malicious, it has to be the inter-
mediary that was involved in the last step of the recursion, i.e., in the example from
above: party Pn/2.

Multi-party Virtual State Channels 635

Pn/2 the parties update their subchannels α and β by opening instances of a
special so-called direct virtual state channel contract dVSCC. The role of dVSCC is
similar to the role of the indirect virtual state channel contract presented in [10].
It (i) guarantees balance neutrality for the intermediary (here for Pn/2), i.e., an
honest Pn/2 will never loose money; and (ii) it ensures that what was agreed
on in γ between the end users P0 and Pn can be realized in the underlying
subchannels α and β during closing or dispute.

Once γ is successfully created P0 and Pn can update and execute contract
instances in γ using a 2-party protocol, which is similar to the protocol used for
ledger state channels (i.e., using the version number approach outlined above) as
long as P0 and Pn follow the protocol. The main difference occurs in the dispute
process, which we describe next.

Direct dispute via the dispute board. Again, suppose that P0 and Pn want to
execute the pre-image selling procedure. Similarly to the example on page 8
uppose that during the execution of the contract P0 (taking the role of Alice)
refuses to acknowledge that Pn (taking the role of Bob) revealed the pre-image.
Unlike in indirect virtual state channels, where Pn would first try to resolve
his conflict peacefully via Pn/2, in our construction Pn registers his latest state
directly on the so-called dispute board – denoted by D. Since the dispute board
D is a contract running directly on the ledger whose state can be accessed by
anyone, we can reduce timings for dispute resolution from O(nΔ) to O(Δ). At
a technical level, the state registration process on the dispute board is similar
to the registration process for ledger channels described above. That is, when
Pn registers his latest state regarding channel γ on D, P0 gets notified and is
given time Δ to send her own version to D. While due to the global nature of D
all parties can see the final result of the dispute, only the end parties of γ can
dispute the state of γ on D. Our construction for direct virtual state channels
uses this novel dispute mechanism also as subroutine during the update. This
enables us to reduce the worst case timings of these protocols from O(nΔ) in
indirect virtual state channels to O(Δ).

The above description omits many technical challenges that we have to
address in order to make the protocol design work. In particular, the closing
procedure of direct virtual state channels is more complex because sometimes
it needs to refer to contents on the public dispute board. Concretely, during
closing of channel γ, the end parties P0 and Pn first try to close γ peacefully via
the intermediary. To this end, P0 and Pn first attempt to update the channels
α and β, respectively, in such a way that the updated channels will reflect the
last state of γ. If both update requests come with the same version of γ then
Pn/2 confirms the update request, and the closing of γ is completed peacefully.
Otherwise Pn/2 gives the end parties some time to resolve their conflict on the
dispute board D, and takes the final result of the state registration from D to
complete the closing of γ. Of course, also this description does not present all the
details. For instance, how to handle the case when both P0 and Pn are malicious
and try to steal money from Pn/2, or a malicious Pn/2 that does not reply to a
closing attempt. Our protocol addresses these issues.

636 S. Dziembowski et al.

Interleaving direct and indirect virtual state channels. A special feature of our
new construction is that users of the system can mix direct and indirect virtual
state channels in an arbitrary way. For example, they may construct an indirect
virtual γ over two subchannels α and β which are direct (or where α is direct
and β is indirect). This allows them to combine the benefits of both direct
and indirect virtual channels. If, for instance, γ is indirect and both α and β
are direct, then in case of a dispute, P0 and Pn will first try to resolve it via
the intermediary Pn/2, and only if this fails they use the dispute board. The
advantage of this approach is that, as long as Pn/2 is honest, disputes between
P0 and Pn can be resolved almost instantaneously off-chain (thereby saving
fees and time). On the other hand, even if Pn/2 is malicious, then disputes can
be resolved fast, since the next lower level of subchannels α and β are direct,
and hence a dispute with a malicious Pn/2 will be taken directly to the ledger.
We believe that the optimal composition of direct and indirect virtual channels
highly depends on the use-case and leave a detailed discussion on this topic for
future research.

2.3 Multi-party Virtual State Channels

The main novelty of this work is a construction of multi-party virtual state
channels. As already mentioned in Sect. 1, multi-party virtual state channels are
a natural generalization of 2-party channels presented in the previous sections
and have two distinctive features. First, they are multi-party, which means that
they can execute contracts involving multiple parties. Consider for instance a
multi-party extension of Csell – denoted by Cmsell – where parties P1, . . . Pt−1

each pay 1 coin to Pt for a pre-image of a function H, but if Pt fails to deliver
a pre-image, Pt has to pay a “fine” of 2 coins to each of P1, . . . , Pt−1 (and
the contract stops). Our construction allows the parties to create an off-chain
channel for executing this contract, pretty much in the same way as the standard
(bilateral) channels are used for executing Csell. The second main feature of our
construction is that our multi-party channels are virtual. This means that they
are built over 2-party ledger channels, and thus their creation process does not
require interaction with the ledger. Our construction has an additional benefit
of being highly flexible. Given ledger channels between parties Pi and Pi+1 for
i ∈ {0, . . . , n − 1}, we can build multi-party state channels involving any subset
of parties. Technically, this is achieved by cutting out individual parties Pj that
do not want to participate in the multi-party state channel by building 2-party
virtual state channels “over them”. Moreover, we show how to generalize this
for an arbitrary graph (V,E) of ledger channels, where the vertices V are the
parties, and the edges E represent the ledger channels connecting the parties.

An example: a 4-party virtual state channel. To get a better understanding of
our construction, we take a look at a concrete example, which is depicted in
Fig. 2. We assume that five parties P1, . . . , P5, are connected by ledger state
channels (P1 ⇔ P2 ⇔ P3 ⇔ P4 ⇔ P5). Suppose P1, P3, P4 and P5 want to
create a 4-party virtual state channel γ. Party P2 will not be part of the channel

Multi-party Virtual State Channels 637

γ but is needed to connect P1 and P3. In order to “cut out” P2, parties P1 and
P3 first construct a virtual channel denoted by P1 ↔ P3.

Now the channel γ can be created on top of the subchannels P1 ↔ P3,
P3 ⇔ P4 and P4 ⇔ P5.7 Assume for simplicity that each party invests one coin
into γ. Now in each subchannel, they open an instance of the special “multi-
party virtual state channel contract” denoted as mpVSCC, which can be viewed
as a “copy” of γ in the underlying subchannels. Note, that some parties have to
lock more coins into the subchannel mpVSCC contract instances than others. For
example in the channel P4 ⇔ P5, party P4 has to lock three coins while P5 only
locks one coin. This is necessary, since P4 additionally takes over the role of the
parties P1 and P3 in this subchannel copy of γ. In other words, we require that
in each mpVSCC contract instance, each party has to lock enough coins to match
the sum of the investments of all “represented” parties.

Fig. 2. Example of a multi-party virtual state channel γ between parties P1, P3, P4 and
P5. In each subchannel a contract instance of mpVSCC is opened. Initially every party
invests one coin and when the channel is closed, party P5 owns all coins. The figure
depicts the initial/final balance of parties in each of these contract instances.

After γ was successfully created, the parties P1, P3, P4 and P5 can open and
execute multiple contracts ν in γ without talking to P2. Let us assume that at
the end of the channel lifetime party P5 is the rightful owner of all four coins.
Then after γ is successfully closed, the coins locked in the contract instances
mpVSCC in the subchannels are unlocked in a way that reflects the final balance
of γ. This means, for example, that all coins locked in subchannel P4 ⇔ P5

go to P5. Since party P4 now lost 3 coins in this subchannel, she needs to be
compensated in the subchannel P3 ⇔ P4. Hence, the closing protocol guarantees
that all four coins locked in P3 ⇔ P4 go to P4. Since P4 initially locked 2+3 = 5
coins in the subchannels and received 4+0 = 4 coins at the closing of γ, she lost
1 coin which corresponds to the final distribution in γ. As shown in Fig. 2 this
process is repeated for the other subchannel P1 ↔ P3 as well.

Key ideas of the multi-party state channel update and execution. As for 2-party
channels, our multi-party construction consists of 4 sub-protocol and a state reg-
istration process that is used by the parties in case of dispute. For registration
7 To keep things simple we do not allow the recursion to build virtual channels on

top on n-party channels for n > 2. We leave describing this extension as a possible
future research direction.

638 S. Dziembowski et al.

our construction uses the direct dispute process outlined in Sect. 2.2, where all
involved parties can register their latest state on the dispute board. One of the
main differences between the 2-party and multi-party case is the way in which
they handle state channel updates. Recall that in the two party case the initiat-
ing party sends an update request to the other party of the state channel, who
can then confirm or reject the update request. Hence, in the two-party case it
is easy for two honest parties to reach agreement whether an update was suc-
cessfully completed or not.8 In the multi-party case the protocol is significantly
more complex. When the initiating party, say P1, requests an update, she sends
her update request to all other parties P3, P4 and P5. The challenge is now that
a malicious P1 may for instance send a different update request to P3 and P4.
At this point honest P3 and P4 have a different view on the update request. To
resolve this inconsistency we may use standard techniques from the literature on
authenticated broadcast protocols [9]. The problem with such an approach, how-
ever, is that it is well known [13] that broadcast has communication complexity
of O(n) in case most parties are dishonest. Our protocol circumvents this impos-
sibility by a simple approach, where agreement can be reached in O(1) rounds
by relying on the ledger as soon as an honest party detects inconsistencies.

Let us now consider the contract execution protocol. The first attempt for
constructing a protocol for multi-party state channel execution might be to use
a combination of our new update protocol from above together with the con-
tract execution protocol for the 2-party setting. In this case the initiating party
P would locally execute the contract instance, and request an update of the
multi-party state channel γ according to the new state of the contract instance.
Unfortunately, this naive solution does not take into account a concurrent exe-
cution from two or more parties. For example, it may happen that P1 and P4

simultaneously start different contract instance executions, thereby leading to a
protocol deadlock. For 2-party state channels this was resolved by giving each
party a different slot when it is allowed to start a contract instance execution.
In the multi-party case this approach would significantly decrease the efficiency
of our protocol and in particular make its round complexity dependent on the
number of involved parties. Our protocol addresses this problem by introduc-
ing a carefully designed execution scheduling, which leads to a constant time
protocol.

Combining different state channel types. Finally, we emphasize that due to our
modular modeling approach, all different state channel constructions that we
consider in this paper can smoothly work together in a fully concurrent man-
ner. That is, given a network of ledger state channels, parties may at the same
time be involved in 2-party virtual state channels with direct or indirect dis-
pute, while also being active in various multi-party state channels. Moreover,
our construction guarantees strong fairness and efficiency properties in a fully
concurrent setting where all parties except for one are malicious and collude.

8 In case one party behaves maliciously, an agreement is reached via the state regis-
tration process.

Multi-party Virtual State Channels 639

3 Definitions and Notation

We formally model security of our construction in the Universal Composability
framework [3]. Coins are handled by a global ledger ̂L(Δ), where Δ is an upper
bound for the blockchain delay. We will next present the general notation used
in this paper. More details about our model and background on it can be found
in the full version of this paper [11].

We assume that the set P = {P1, . . . , Pm} of parties that use the system is
fixed. In addition, we fix a bijection OrderP : P → [m] which on input a party
Pi ∈ P returns its “order” i in the set P. Following [10,12] we present tuples
of values using the following convention. The individual values in a tuple T are
identified using keywords called attributes, where formally an attribute tuple is a
function from its set of attributes to {0, 1}∗. The value of an attribute identified
by the keyword attr in a tuple T (i.e. T (attr)) will be referred to as T.attr. This
convention will allow us to easily handle tuples that have dynamically changing
sets of attributes. We assume the existence of a signature scheme (Gen,Sign,Vrfy)
that is existentially unforgeable against a chosen message attack (see, e.g., [14]).
The ECDSA scheme used in Ethereum is believed to satisfy this definition.

3.1 Definitions of Multi-party Contracts and Channels

We now present our syntax for describing multi-party contracts and state chan-
nels (it has already been introduced informally in Sect. 2.1). We closely follow
the notation from [10,12].

Contracts. Let n be the number of parties involved in the contract. A con-
tract storage is an attribute tuple σ that contains at least the following
attributes: (1) σ.users : [n] → P that denotes the users involved in the con-
tract (sometimes we slightly abuse the notation and understand σ.users as
the set {σ.users(1), . . . , σ.users(n)}), (2) σ.locked ∈ R≥0 that denotes the total
amount of coins that is locked in the contract, and (3) σ.cash : σ.users → R

that denotes the amount of coins assigned to each user. It must hold that
σ.locked ≥ ∑

P∈σ.users σ.cash(P). Let us explain the above inequality on the fol-
lowing concrete example. Assume that three parties are playing a game where
each party initially invests 5 coins. During the game, parties make a bet, where
each party puts 1 coin into the “pot”. The amount of coins locked in the game
did not change, it is still equal to 15 coins. However, the amount of coins assigned
to each party decreased (each party has only 4 coins now) since it is not clear
yet who wins the bet.

We say that a contract storage σ is terminated if σ.locked = 0. Let us empha-
size that a terminated σ does not imply that σ.cash maps to zero for every user.
In fact, the concept of a terminated contract storage with non-zero cash values
is important for our work since it represents “payments” performed between the
users. Consider, for example, a terminated three party contract storage σ with
σ.cash(P1) = 1, σ.cash(P2) = 1 and σ.cash(P3) = −2. This means that both P1

and P2 paid one coin to P3.

640 S. Dziembowski et al.

A contract code consists of constructors and functions. They take as input:
a contract storage σ, a party P ∈ σ.users, round number τ ∈ N and input
parameter z ∈ {0, 1}∗, and output: a new contract storage σ̃, information about
the amount of unlocked coins add : σ.users → R≥0 and some additional output
message m ∈ {0, 1}∗. Importantly, no contract function can ever change the set
of users or create new coins. More precisely, it must hold that σ.users = σ̃.users
and σ.locked − σ̃.locked ≥ ∑

P∈σ.users add(P).
As described already in Sect. 2.1, a contract instance represents an instan-

tiation of a contract code. Formally, a contract instance is an attribute tuple
ν consisting of the contract storage ν.storage and the contract code ν.code. To
allow parties in the protocol to update contract instances off-chain, we also define
a signed contract instance version of a contract instance which in addition to
ν.storage and ν.code contains two additional attributes ν.version and ν.sign. The
purpose of ν.version ∈ N is to indicate the version of the contract instance.
The attribute ν.sign is a function that on input P ∈ ν.storage.users outputs the
signature of P on the tuple (ν.storage, ν.code, ν.version).

Two-party ledger and virtual state channels. Formally, a two-party state channel
is an attribute tuple γ = (γ.id, γ.Alice, γ.Bob, γ.cash, γ.cspace, γ.length, γ.Ingrid,
γ.subchan, γ.validity, γ.dispute). The attribute γ.id ∈ {0, 1}∗ is the identifier
of the two-party state channel. The attributes γ.Alice ∈ P and γ.Bob ∈ P
identify the two end-parties using γ. For convenience, we also define the set
γ.end−users := {γ.Alice, γ.Bob} and the function γ.other−party as γ.other−
party(γ.Alice) := γ.Bob and γ.other−party(γ.Bob) := γ.Alice. The attribute
γ.cash is a function mapping the set γ.end−users to R≥0 such that γ.cash(T)
is the amount of coins the party T ∈ γ.end−users has locked in γ. The attribute
γ.cspace is a partial function that is used to describe the set of all contract
instances that are currently open in this channel. It takes as input a contract
instance identifier cid ∈ {0, 1}∗ and outputs a contract instance ν such that
ν.storage.users = γ.end−users. We refer to γ.cspace(cid) as the contract instance
with identifiercid in γ. The attribute γ.length ∈ N denotes the length of the
two-party state channel.

If γ.length = 1, then we call γ a two-party ledger state channel. The attributes
γ.Ingrid and γ.subchan do not have any meaning in this case and it must hold
that γ.validity = ∞ and γ.dispute = direct. Intuitively, this means that a ledger
state channel has no intermediary and no subchannel, there is no a priory fixed
round in which the channel must be closed, and potential disputes between the
users are resolved directly on the blockchain.

If γ.length > 1, then we call γ a two-party virtual state channel and the
remaining attributes have the following meaning. The attribute γ.Ingrid ∈ P
denotes the identity of the intermediary of the virtual channel γ. For conve-
nience, we also define the set γ.users := {γ.Alice, γ.Bob, γ.Ingrid}. The attribute
γ.subchan is a function mapping the set γ.end−users to channel identifiers
{0, 1}∗. The value of γ.subchan(γ.Alice) refers to the identifier of the two-
party state channel between γ.Alice and γ.Ingrid. Analogously, for the value
of γ.subchan(γ.Bob). The attribute γ.validity ∈ N denotes the round in which

Multi-party Virtual State Channels 641

the virtual state channel γ will be closed. Intuitively, the a priory fixed clo-
sure round upper bounds the time until when party γ.Ingrid has to play the
role of an intermediary of γ.9 At the same time, the γ.validity lower bounds the
time for which the end-users can freely use the channel. Finally, the attribute
γ.dispute ∈ {direct, indirect} distinguishes between virtual state channel with
direct dispute, whose end-users contact the blockchain immediately in case they
disagree with each other, and virtual state channel with indirect dispute, whose
end-users first try to resolve disagreement via the subchannels of γ.10

Multi-party virtual state channel. Formally, an n-party virtual state channel γ
is a tuple γ := (γ.id, γ.users, γ.E, γ.subchan, γ.cash, γ.cspace, γ.length, γ.validity,
γ.dispute). The pair of attributes (γ.users, γ.E) defines an acyclic connected undi-
rected graph, where the set of vertices γ.users ⊆ P contains the identities of the
n parties of γ, and the set of edges γ.E denotes which of the users from γ.users
are connected with a two-party state channel. Since (γ.users, γ.E) is an undi-
rected graph, elements of γ.E are unordered pairs {P,Q} ∈ γ.E. The attribute
γ.subchan is a function mapping the set γ.E to channel identifiers {0, 1}∗ such
that γ.subchan({P,Q}) is the identifier of the two-party state channel between
P and Q. For convenience, we define the function γ.other−party which on input
P ∈ γ.users outputs the set γ.users \ {P}, i.e., all users of γ except for P . In
addition, we define a function γ.neighbors which on input P ∈ γ.users outputs
the set consisting of all Q ∈ γ.users for which {P,Q} ∈ γ.E. Finally, we define
a function γ.split which, intuitively works as follows. On input the ordered pair
(P,Q), where {P,Q} ∈ γ.E, it divides the set of users γ.users into two subsets
VP , VQ. The set VP contains P and all nodes that are “closer” to P than to Q
and the set VQ contains Q and all nodes that are “closer” to Q than to P . The
attribute γ.cash is a function mapping γ.users to R≥0 such that γ.cash(P) is the
amount of coins the party P ∈ γ.users possesses in the channel γ. The attributes
γ.length, γ.cspace and γ.validity are defined as for two-party virtual state chan-
nels. The value γ.dispute for multi-party channels will always be equal to direct,
since we do not allow indirect multi-party channels. We leave adding this fea-
ture to future work. In the following we will for brevity only write multi-party
channels instead of virtual multi-party state channels with direct dispute. Addi-
tionally, we note that since multi-party channels cannot have intermediaries, the
sets γ.users and γ.end−users are equal.

We demonstrate the introduced definitions on two concrete examples
depicted in Fig. 3. In the 6-party channel on the left, the neighbors of party
P4 are γ.neighbors(P4) = {P3, P5, P6} and γ.split({P3, P4}) = ({P1, P2, P3},
{P4, P5, P6}). In the 4-party channel on the right, the neighbors of P4 are
γ.neighbors(P4) = {P1, P5, P6} and γ.split({P1, P4}) = ({P1}, {P4, P5, P6}).

9 In practice, this information would be used to derive fees charged by the intermediary
for its service.

10 Recall from Sect. 2 that disagreements in channels with indirect dispute might require
interaction with the blockchain as well. However this happen only in the worst case
when all parties are corrupt.

642 S. Dziembowski et al.

P1 P2 P3 P4 P5

P6

γ

P1 P2 P3 P4 P5

P6

γ

γ2

γ3

Fig. 3. Examples of multi-party channel setups: A 6-party channel on top of 5 ledger
channels (left) and a 4-party channel on 2 ledger and a virtual channel γ3 (right).

3.2 Security and Efficiency Goals

In the previous section, we formally defined what state channels are. Let us now
give several security and efficiency goals that we aim for when designing state
channels. The list below can be seen as an extension of the one from [10].

Security goals. We define security goals that guarantee that an adversary cannot
steal coins from honest parties, even if he corrupts all parties except for one.

(S1) Consensus on creation: A state channel γ can be successfully created
only if all users of γ agree with its creation.

(S2) Consensus on updates: A contract instance in a state channel γ can be
successfully updated (this includes also creation of the contract instances)
only if all end-users of γ agree with the update.

(S3) Guarantee of execution: An honest end-user of a state channel γ can
execute a contract function f of an opened contract instance in any round
τ0 < γ.validity on an input value z even if all other users of γ are corrupt.

(S4) Balance security: If the channel γ has an intermediary, then this inter-
mediary never loses coins even if all end-users of γ are corrupt and collude.

Let us stress that while creation of a state channel has to be confirmed by all
users of the channel, this includes the intermediary in case of a two-party virtual
state channel, the update of a contract instance needs confirmation only from the
end -users of the state channel. In other words, the intermediary of a two-party
virtual state channel has the right to refuse being an intermediary but once he
agrees, he can not influence how this channel is being used by the end-users.
Let us also emphasize that the last property, (S4), talks only about two-party
virtual state channels since, by definition, ledger and multi-party channels do
not have any intermediary.

Efficiency goals. We identify four efficiency requirements. Table 1 defines which
property is required from what type of channel.

(E1) Creation in O(1) rounds: Successful creation of a state channel γ takes
a constant number of rounds.

(E2) Optimistic update/execute in O(1) rounds: In the optimistic case
when all end-users of a state channel γ are honest, they can update/execute
a contract instance in γ within a constant number of rounds.

Multi-party Virtual State Channels 643

(E3) Pessimistic update/execute in O(Δ) rounds: In the pessimistic case
when some end-users of a state channel γ are dishonest, the time complexity
of update/execution of a contract instance in γ depends only on the ledger
delay Δ but is independent of the channel length.

(E4) Optimistic closure in O(1) rounds: In the optimistic case when all users
of γ.users are honest, the channel γ is closed in round γ.validity + O(1).

Table 1. Summary of the efficiency goals for state channels. Above, “Ledger” stands
for ledger state channels, “Direct/Indirect” stand for a two party virtual state channels
with direct/indirect dispute and “MP” stands for multi-party channels.

Ledger Virtual

Direct Indirect MP

(E1) Creation in O(1) � � �
(E2) Opt. update/execute in O(1) � � � �
(E3) Pess. update/execute in O(Δ) � � �
(E4) Opt. closing in O(1) � � �

It is important to note that in the optimistic case when all users of any virtual
state channel (i.e. multi-party, two-party with direct/indirect dispute) are hon-
est, the time complexity of channel creation, update, execution and closure must
be independent of the blockchain delay; hence in this case there cannot be any
interaction with the blockchain during the lifetime of the channel.

4 State Channels Ideal Functionalities

Recall that the main goal of this paper is to broaden the class of virtual state
channels that can be constructed. Firstly, we want virtual state channels to sup-
port direct dispute meaning that end-users of the channel can resolve disputes
directly on the blockchain, and secondly, we want to design virtual multi-party
state channels that can be built on top of any network of two-party state chan-
nels. In order to formalize these goals, we define an ideal functionality F ̂L(Δ)

mpch(i, C)
which describes what it means to create, maintain and close multi-party as well
as two-party state channels of length up to i in which contract instances from the
set C can be opened. The functionality has access to a global ledger functionality
̂L(Δ) keeping track of account balances of parties in the system.

The first step towards defining F ̂L(Δ)

mpch(i, C) has already been done in [10],
where the authors describe an ideal functionality, F ̂L(Δ)

ch (i, C), for ledger state
channels and two-party virtual state channels with indirect dispute. The second
step is to extend the ideal functionality F ̂L(Δ)

ch (i, C) such that it additionally

644 S. Dziembowski et al.

describes how virtual state channels with direct dispute are created, maintained
and closed. We denote this extended functionality F ̂L(Δ)

dch (i, C) and describe it in
more detail in Sect. 4.1. As a final step, we define how multi-party channels are
created, maintained and closed. This is discussed in Sect. 4.2.

Before we proceed with the description of the novel ideal functionalities, let
us establish the following simplified notation. In the rest of this paper, we write
F instead of F ̂L(Δ), for F ∈ {Fch ,Fdch ,Fmpch}.

4.1 Virtual State Channels with Direct Dispute

In this section we introduce our ideal functionality Fdch(i, C) that allows to build
any type of two party state channel (ledger state channel, virtual state channel
with direct dispute and virtual state channel with indirect dispute) of length
up to i in which contract instances with code from the set C can be opened.
The ideal functionality Fdch(i, C) extends the ideal functionality Fch(i, C) in the
following way:

– Messages about ledger state channels and virtual state channels with indirect
dispute are handled as in Fch(i, C).

– Virtual state channels with direct dispute are created (resp. closed) using
the procedure of Fch(i, C) for creating (resp. closing) virtual channels with
indirect dispute.

– Update (resp. execute) requests of contract instances in channels with direct
dispute are handled as Fch(i, C) handles such queries for ledger state chan-
nels.

Hence, intuitively, a virtual state channel γ with direct dispute is a “hybrid”
between a ledger state channel and a virtual state channel with indirect dispute,
meaning that it is created and closed as a virtual state channel with indirect
dispute and its contract instances are updated and executed as if γ would be a
ledger state channel. In the remainder of this section, we explain how Fdch(i, C)
works in more detail and argue that it satisfies all the security and efficiency
goals listed in Sect. 3.2. The formal description of the ideal functionality can be
found in the full version of this paper [11].

If Fdch(i, C) receives a message about a ledger state channel or a virtual state
channel with indirect dispute, then Fdch(i, C) behaves exactly as Fch(i, C). Since
Fch(i, C) satisfies all the security goals and the efficiency goals (E1)–(E2) (see
[10]), Fdch(i, C) satisfies them as well in this case. It is thus left to analyze the
properties in the novel case, i.e., for virtual state channels with direct dispute.

Create and close a virtual state channel with direct dispute. The users of the
virtual state channel γ, which are the end-users of the channel γ.Alice and
γ.Bob and the intermediary γ.Ingrid, express that they want to create γ by
sending the message (create, γ) to Fdch(i, C). Once Fdch(i, C) receives such a
message, it records it into the memory and locks coins in the corresponding sub-
channel. For example, if the sender of the message is γ.Alice, Fdch(i, C) locks

Multi-party Virtual State Channels 645

γ.cash(γ.Alice) coins of γ.Alice and γ.cash(γ.Bob) coins of γ.Ingrid in the sub-
channel γ.subchan(γ.Alice). If Fdch(i, C) records the message (create, γ) from all
three parties within three rounds, then the channel γ is created. The ideal func-
tionality informs both end-users of the channel about the successful creation by
sending the message (created, γ) to them. Since all three parties have to agree
with the creation of γ, the security goal (S1) is clearly met. The successful cre-
ation takes 3 rounds, hence (E1) holds as well.

Once the virtual state channel is successfully created, γ.Alice and γ.Bob can
use it (open and execute contract instance) until round γ.validity when the clos-
ing of the channel γ begins. In round γ.validity, Fdch(i, C) first waits for τ rounds,
where τ = 3 if all users of γ are honest and is set by the adversary otherwise,11

and then distributes the coins locked in the subchannels according to the final
state of the channel γ. It might happen that the final state of γ contains unter-
minated contract instances, i.e. contract instances that still have locked coins,
in which case it is unclear who owns these coins. In order to guarantee the bal-
ance security for the intermediary, the property (S4), Fdch(i, C) gives all of these
locked coins to γ.Ingrid in both subchannels. The goal (E4) is met because γ is
closed in round γ.validity + 3 in the optimistic case.

Update a contract instance. A party P that wants to update a contract instance
with identifier cid in a virtual state channel γ sends the message (update, γ.id,
cid , σ, C) to Fdch(i, C). The parameter σ is the proposed new contract instance
storage and the parameter C is the code of the contract instance. Fdch(i, C)
informs the party Q := γ.other−party(P) about the update request and com-
pletes the update only if Q confirms it. If the party Q is honest, then it has to
reply immediately. In case Q is malicious, Fdch(i, C) expects the reply within
3Δ rounds. Let us emphasize that the confirmation time is independent of the
channel length. This models the fact that disputes are happening directly on
the blockchain and not via the subchannels. In the optimistic case the update
procedure takes 2 rounds and in the pessimistic case 2 + 3Δ rounds; hence both
update efficiency goals (E2) and (E3) are satisfied. The security property (S2)
holds as well since without Q’s confirmation the update fails.

Execute a contract instance. When a party P wants to execute a contract
instance with identifier cid in a virtual state channel γ on function f and input
parameters z, it sends the message (execute, γ.id, cid , f, z) to Fdch(i, C). The
ideal functionality waits for τ rounds, where τ ≤ 5 in case both parties are honest
and τ ≤ 4Δ+5 in case one of the parties is corrupt. The exact value of τ is deter-
mined by the adversary. Again, let us stress that the pessimistic time complexity
is independent of channel length which models the fact that registration and force
execution takes place directly on the blockchain. After the waiting time is over,
Fdch(i, C) performs the function execution and informs both end-users of the
channel about the result by outputting the message (execute, γ.id, cid , σ̃, add,m).

11 The value of τ can be set by the adversary as long as it is smaller than some upper
bound T which is of order O(γ.length · Δ).

646 S. Dziembowski et al.

Here σ̃ is the new contract storage after the execution, add contains information
about the amount of coins unlocked from the contract instance and m is some
additional output message. Since the adversary can not stop the execution, and
only delay it, the guarantee of execution, security property (S3), is satisfied by
Fdch(i, C). From the description above it is clear that the two execute efficiency
goals (E2) and (E3) are fulfilled as well.

Two-party state channels of length one. Before we proceed to the description
of the ideal functionality Fmpch(i, C), let us state one simple but important
observation which follows from the fact that the minimal length of a virtual
state channel is 2 and the ideal functionality Fdch(1, C) accepts only messages
about a state channel of length 1.

Observation 1. For any set of contract codes C it holds that Fdch(1, C) is equiv-
alent to Fch(1, C).

4.2 Virtual Multi-party State Channels

We now introduce the functionality Fmpch(i, C) which allows to create, maintain
and close multi-party as well as two-party state channels of length up to i in
which contract instances from the set C can be opened. Here we provide its high
level description and argue that all security and efficiency goals identified in
Sect. 3.2 are met.

The ideal functionality Fmpch(i, C) extends the functionality Fdch(i, C), which
we described in Sect. 4.1, in the following way. In case Fmpch(i, C) receives a mes-
sage about a two-party state channel, then it behaves exactly as the function-
ality Fdch(i, C). Since the functionality Fdch(i, C) satisfies all the security and
efficiency goals for two-party state channels, these goals are met by Fmpch(i, C)
as well. For the rest of this informal description, we focus on the more interesting
case, when Fmpch(i, C) receives a message about a multi-party channel.

Create and close a multi-party channel. Parties express that they want to cre-
ate the channel γ by sending the message (create, γ) to the ideal function-
ality Fmpch(i, C). Once the functionality receives such message from a party
P ∈ γ.users, it locks coins needed for the channel γ in all subchannels of
γ party P is participating in. Let us elaborate on this step in more detail.
For every Q ∈ γ.neighbors(P) the ideal functionality proceeds as follows. Let
(VP , VQ) := γ.split({P,Q}) which intuitively means that VP contains all the user
of γ that are “closer” to P than to Q. Analogously for VQ. Then

∑

T∈VP
γ.cash(T)

coins of party P and
∑

T∈VQ
γ.cash(T) coins of party Q are locked in the sub-

channel between P and Q by the ideal functionality. If the functionality receives
the message (create, γ) from all parties in γ.users within 4 rounds, then the chan-
nel γ is created. The ideal functionality informs all parties about the successful
creation by outputting the message (created, γ). Clearly, the security goal (S1)
and the efficiency goal (E1) are both met.

Multi-party Virtual State Channels 647

Once the multi-party channel is successfully created, parties can use it (open
and execute contract instances in it) until the round γ.validity comes. In round
γ.validity, the ideal functionality first waits for τ rounds, where τ = 3 if all parties
are honest and is set by the adversary otherwise,12 and then unlocks the coins
locked in the subchannels of γ. The coin distribution happens according to the
following rules (let γ̂ denote the final version of γ): If there are no unterminated
contract instances in γ̂.cspace, then the ideal functionality simply distributes the
coins back to the subchannels according to the function γ̂.cash. The situation is
more subtle when there are unterminated contract instances in γ̂.cspace. Intu-
itively, this means that some coin of the channel are not attributed to any of the
users. Our ideal functionality distributes the unattributed coins equally among
the users13 and the attributed coins according to γ̂.cash. Once the coins are dis-
tributed back to the subchannels, the channel γ is closed which is communicated
to the parties via the message (closed, γ.id). Since in the optimistic case, γ is
closed in round γ.validity + 3, the goal (E4) is clearly met.

Update/Execute a contract instance. The update and execute parts of the ideal
functionality Fmpch(i, C) in case of multi-party channels are straightforward gen-
eralizations of the update and execute parts of the ideal functionality Fdch(i, C)
in case of two-party virtual state with direct dispute (see Sect. 4.1).

Towards realizing the ideal functionality. For the rest of the paper, we focus on
realization of our novel ideal functionality Fmpch(i, C). Our approach of realizing
the ideal functionality Fmpch(i, C) closely follows the modular way we use for
defining it. On a very high level, we first show how to construct any two party
state channel, in other words, how to realize the ideal functionality Fdch . This
is done in Sect. 5. Thereafter, in Sect. 6, we design a protocol for multi-party
channels using two party state channels in a black box way.

5 Modular Approach

In this section, we introduce our approach of realizing Fdch(i, C). We do not want
to realize Fdch(i, C) from scratch, but find a modular approach which lets us reuse
existing results. We give a protocol Πdch(i, C, π) for building two-party state
channels supporting direct dispute which uses three ingredients: (1) a protocol π
for virtual state channels with indirect dispute up to length i, which was shown
in [10] how to build recursively from subchannels, (2) the ideal functionality Fdch

12 In case at least one user is corrupt, the value of τ can be set by the adversary as
long as it is smaller that some upper bound T which is of order O(γ.length · Δ).

13 Let us emphasize that this design choice does not necessarily lead to a fair coin
distribution. For example, when users of the multi-party channel play a game and
one of the users is “about to win” all the coins when round γ.validity comes. Hence,
honest parties should always agree on new contract instances only if they can enforce
contract termination before time γ.validity or if they are willing to take this risk.

648 S. Dziembowski et al.

for virtual channels with direct dispute up to length i−1 and (3) an ideal dispute
board. Πdch(i, C, π) can roughly be described by distinguishing three cases:

Case 1: If a party receives a message about a two-party state channel of length
j < i, then it forwards the request to Fdch .

Case 2: If a party receives a message about a virtual state channel with indirect
dispute and of length exactly i, then it behaves as in the protocol π.

Case 3: For the case when a party receives a message about a virtual state
channel γ with direct dispute of length exactly i, we describe a new protocol
using Fdch and an ideal dispute board FDB which we will detail shortly.
Central element of the new protocol will be a special contract dVSCC used for
creating and closing γ.

The protocol is formally described in the full version of this paper [11]. In par-
ticular, there we describe the special contract dVSCC whose instances are opened
in the subchannels of γ during the creation process and guarantee that the final
state of γ will be correctly reflected to the subchannels.

Ideal dispute board. Let us now informally describe our ideal functionality
FDB (C) for directly disputing about contract instances whose code is in some set
C. On a high level, the functionality models an ideal judge which allows the users
to achieve consensus on the latest valid version of a contract instance. For this,
FDB (C) maintains a public “dispute board”, which is a list of contract instances
available to all parties. FDB (C) admits two different procedures: registration of
a contract instance and execution of a contract instance. The registration pro-
cedure works as follows: whenever a party determines a dispute regarding a
specific instance whose code is in the set C, it can register this contract instance
by sending its latest valid version to FDB (C). The dispute board gives the other
party14 of the contract instance some time to react and send her latest version.
FDB (C) compares both versions and adds the latest valid one to the dispute
board. Once a contract instance is registered on the dispute board, a user of
the contract instance can execute it via FDB (C). Upon receiving an execution
request, FDB (C) executes the called function and updates the contract instance
on the dispute board according to the outcome. We stress that the other party
of the contract instance cannot interfere and merely gets informed about the
execution.

Unfortunately, we cannot simply add an ideal dispute board as another
hybrid functionality next to one for constructing shorter channels. In a nutshell,
the reason is that the balances of virtual channels that are created via subchan-
nels might be influenced by contracts that are in dispute. Upon closing these
virtual channel, the dispute board needs to be taken into account. However, in
the standard UC model it is not possible that ideal functionalities communicate
their state. Thus, we will artificially allow state sharing by merging both ideal
functionalities. Technically, this is done by putting a wrapper Wdch around both
14 For simplicity, we describe here how FDB handles a dispute about a two-party con-

tract. FDB handles disputes about multi-party contracts in a similar fashion.

Multi-party Virtual State Channels 649

functionalities, which can be seen just as a piece of code distributing queries to
the wrapped functionalities. The formal descriptions of the wrapper as well as
the dispute board can be found in the full version of this paper [11].

Now that we described all ingredients, we formally state what our protocol
Πdch achieves and what it assumes. On a high level, our protocol gives a method
to augment a two-party state channel protocol π with indirect dispute, to also
support direct dispute. Our transformation is case-tailored for channel protocols
π that are build recursively out of shorter channels. That is, we do not allow
an arbitrary protocol π for channels up to length i, but only one that is itself
recursively build out of shorter channels.15

Theorem 1. Let C0 be a set of contract codes, let i > 1 and Δ ∈ N. Suppose the
underlying signature scheme is existentially unforgeable against chosen message
attacks. Let π be a protocol that realizes the ideal functionality Fch(i, C0) in the
Fch(i−1, C′

0)-hybrid world. Then protocol Πdch(i, C0, π) (cf. [11]) working in the
Wdch(i − 1, C1, C0)-hybrid model, for C1 := C0 ∪ C′

0 ∪ dVSCCi, emulates the ideal
functionality Fdch(i, C1).

Remaining technicalities. Remember that our goal is to add direct dispute
to a two-party state channel protocol that is itself recursively build from
shorter subchannels. We still need to solve two technicalities. Firstly, note that
Theorem 1 yields a protocol realizing Fdch for length up to i, while it requires
a wrapped Fdch of length up to i − 1. Thus, to be able to apply Theorem1
recursively, we introduce a technical Lemma 2 which shows how to modify the
protocol Πdch(i, C0, π) so that it realizes the wrapped Fdch . Secondly, we can
apply Theorem 1 on any level except for ledger channels. In a nutshell, the rea-
son is that Theorem 1 heavily relies on using subchannels, which simply do not
exist in case of ledger channels. Fortunately, this can quite easily be resolved by
adding our dispute board to a protocol for ledger channels and to its hybrid ideal
functionality. In Lemma1 we show how to do this with a protocol π1 from [10].
Their ledger channel protocol assumes an ideal functionality Fscc which models
state channel contracts on the blockchain.16 The description of functionality and
protocol wrappers as well as the proofs of both lemmas can be found in the full
version of this paper [11].

Lemma 1 (The Blue Lemma). Let C and C0 be two arbitrary sets of contract
codes and let π1 be a protocol that UC-realizes the ideal functionality Fch(1, C)
in the Fscc(C)-hybrid world. Then the protocol Wprot(1, C0,Π1) UC-realizes the
ideal functionality Wch(1, C, C0) in the Wscc(C, C0)-hybrid world.

15 For the sake of correctness, in this section we include details about contract sets that
each channel is supposed to handle. In order to understand our modular approach,
their relations can be ignored. The reader can just assume that each subchannel can
handle all contracts required for building all the longer channels.

16 Adding the dispute board to any functionality again works by wrapping functionality
Fx and FDB within a wrapper Wx.

650 S. Dziembowski et al.

Lemma 2 (The Red Lemma). Let i ≥ 2 and let C be a set of contract
codes. Let Πi be a protocol that UC-realizes the ideal functionality Fdch(i, C)
in the Wdch(i − 1, C′, C)-hybrid world for some set of contract codes C′. Then
for every C0 ⊆ C the protocol Wprot(i, C0,Πi) UC-realizes the ideal functionality
Wdch(i, C, C0) in the Wdch(i − 1, C′, C)-hybrid world.

We finish this section with the complete picture of our approach of building
any two-party state channel of length up to 3 (Fig. 4). The picture demonstrates
how we recursively realize Fdch functionalities of increasing length, as well as
their wrapped versions Wdch which additionally comprise the ideal dispute board
functionality. While already being required for recursively constructing Fdch ,
Wdch will also serve us as a main building block for our protocol for multi-party
channels in the upcoming section.

6 Protocol for Multi-party Channels

In this section we describe a concrete protocol that realizes the ideal functionality
Fmpch(i, C0) for i ∈ N and any set of contract codes C0 in the Wdch(i, C1, C0)-
hybrid world. Recall that Wdch(i, C1, C0) is a functionality wrapper (cf. Sect. 5)
combining the dispute board FDB (C0) and the ideal functionality Fdch(i, C1) for
building two-party state channels of length up to i supporting contract instances
whose codes are in C1. Our strategy of constructing a protocol Πmpch(i, C0) for
multi-party channels is to distinguish two cases. These cases also outline the
minimal requirements on the set of supported contracts C1:

–Case 1: If a party receives a message about a two-party state channel, it forwards
the request to the hybrid ideal functionality. Thus, we require C0 ⊂ C1.

–Case 2: For the case when a party receives a message about a multi-party
channel γ, we design a new protocol that uses (a) the dispute board for fair
resolution of disagreements between the users of γ and (b) two-party state
channels as a building block that provides monetary guarantees. For (b) we
need the subchannels of γ to support contract instances of a special code
mpVSCCi; hence, mpVSCCi ∈ C1.

We now discuss case 2 in more detail, by first describing the special contract code
mpVSCCi and then the protocol for multi-party channels. Since case 1 is rather
straightforward, we refer the reader to the full version of this paper [11] where
also the formal description of our protocol can be found.

Multi-party Virtual State Channels 651

Legend

∼ is (UC-)realized by
accesses hybrid functionality

⇔ equivalent functionalities
⇒ implication

Indirect Virtual
State Channels

Fscc(C2)

π1∼Fch(1, C2)

π2∼Fch(2, C1)

π3∼Fch(3, C0)

Wscc(C2, C1)

Fscc(C2)
FDB (C1)

Wscc(C2, C1)

Fscc(C2) FDB (C1)

Wprot(1, C1, π1)∼Wch(1, C2, C1)

Fch(1, C2)
FDB (C1)

Wch(1, C2, C1)

Fch(1, C2) FDB (C1)

Wdch(1, C2, C1)

Fdch(1, C2)
FDB (C1)

Wdch(1, C2, C1)

Fdch(1, C2) FDB (C1)

Π2∼Fdch(2, C1)

Wprot(2, C0, Π2)∼
Wdch(2, C1, C0)

Fdch(2, C1)
FDB (C0)

Wdch(2, C1, C0)

Fdch(2, C1) FDB (C0)

Π3∼Fdch(3, C0)

Lem
ma 1

Lemma 2
Theorem 1

Theorem 1

Obs. 1 �

Fig. 4. The complete approach of building virtual state channels with direct dispute
of length up to 3 (top left), from channels with indirect dispute (gray background).
Theorem 1 and Lemma 1 allow to add direct dispute to channels. Note that the resulting
recursion chain for building longer channels is disconnected due to Theorem 1 requiring
FDB . Lemma 2 then reconnects the recursion chain. C0 is an arbitrary contract set. To
build longer channels recursively, we have to allow the necessary channel contracts in
each level. Thus, C1 := C0 ∪ C′, where C′ is a special contract used for opening our
target channel (i.e., longer channel supporting direct dispute, or multi-party channel).
Similarly, C2 := C1 ∪ C′′, where again C′′ is a special contract that is needed for the
target channel. Note that it holds that C0 ⊂ C1 ⊂ C2, and also that the length of the
channels as well as the target contract set have to be known in advance.

6.1 Multi-party Channel Contract

In order to create a multi-party channel γ, parties of the channel need to open a
special two-party contract instance in each subchannel of γ (recall the example
depicted in Fig. 2 in Sect. 2.3). We denote the code of these instances mpVSCCi,
where i ∈ N is the maximal length of the channel in which an instance of mpVSCCi

can be opened. A contract instance of mpVSCCi in a subchannel of γ between two
parties P and Q can be understood as a “copy” of γ, where P plays the role
of all parties from the set VP and Q plays the role of parties from the set VQ,

652 S. Dziembowski et al.

where (VP , VQ) := γ.split({P,Q}). The purpose of the mpVSCCi contract instances
is to guarantee to every user of γ that he gets the right amount of coins back
to his subchannels when γ is being closed in round γ.validity. And this must be
true even if all other parties collude.17

The contract has in addition to the mandatory attributes users, locked, cash
(see Sect. 3.1) one additional attribute virtual−channel storing the initial version
of the multi-party channel γ. The contract has one constructor Initmpi which
given a multi-party channel γ and identities of two parties P and Q as input,
creates a “copy” of γ as described above. The only contract function, Closempi ,
is discussed together with the protocol Πdch(i, C0, π) later in this section.

6.2 Protocol Description

Create a multi-party channel. Parties are instructed by the environment to create
a multi-party channel γ via the message (create, γ). As already explained before,
parties have to add an instance of mpVSCCi to every subchannel of γ. This is, on
high level, done as follows. Let P and Q be the two parties of a two party channel
α which is a subchannel of γ. Let us assume for now that OrderP(P) < OrderP(Q)
(see Sect. 3.1 for the definition of OrderP). If P receives the message (create, γ)
in round τ0, it requests an update of a contract instance in the state channel
α via the hybrid ideal functionality. As parameters of this request, P chooses
the channel identifier cid := P ||Q||γ.id, the contract storage Initmpi (P,Q, τ0, γ)
and contract code mpVSCCi. Recall that Initmpi is the constructor of the special
contract mpVSCCi. If the party Q also received the message (create, γ) in round
τ0, it knows that it should receive an update request from the hybrid ideal
functionality in round τ0 + 1. If this is indeed the case, Q inspects P ’s proposal
and confirms the update.

Assume that the environment sends (create, γ) to all users of γ in the same
round τ0. If all parties follow the protocol, in round τ0 + 2 all subchannels of γ
should contain a new contract instance with the contract code mpVSCCi. However,
note that a party P ∈ γ.users only has information about subchannels it is part
of, i.e. about subchannels SP := {α ∈ γ.subchan | P ∈ α.end−users}. To this
end, every honest party P sends a message “create−ok” to every other party if
all subchannels in SP contain a new mpVSCCi instance in round τ0 + 2. Hence, if
all parties are honest, latest in round τ0 +3 every party knows that the creation
process of γ is completed successfully. However, if there is a malicious party P
that sends the “create−ok” to all parties except for one, let us call it Q, then in
round τ0 +3 only Q thinks that creation failed. In order to reach total consensus
on creation among honest parties, Q signals the failure by sending a message
“create−not−ok” to all other parties.

To conclude, an honest party outputs (created, γ) to the environment if (1)
it received “create−ok” from all parties in round τ0 + 3 and (2) did not receive
any message “create−not−ok” in round τ0 + 4.
17 This statement assumes that the only contract instances that can be opened in the

multi-party channel are the ones whose code allows any user to enforce termination
before time γ.validity.

Multi-party Virtual State Channels 653

Register a contract instance in a multi-party channel. As long as users of
the multi-party channel γ behave honestly, they can update/execute contract
instances in the channel γ by communicating with each other. However, once the
users disagree, they need some third party to fairly resolve their disagreement.
The dispute board, modeled by the hybrid ideal functionality Wdch(i, C1, C0),
plays the role of such a judge.

Parties might run into dispute when they update/execute the contract
instance or when they are closing the channel γ. In order to avoid code rep-
etition, we define the dispute process as a separate procedure mpRegister(P, id ,
cid). The input parameter P denotes the initiating party of the dispute process,
the parameter id identifies the channel γ and cid is the identifier of the con-
tract instance parties disagree on. The initiating party submits its version of the
contract instance, νP , to the dispute board which then informs all other par-
ties about P ’s registration request. If a party Q has a contract instance version
with higher version number, i.e. νQ.version > νP .version, then Q submits this to
the dispute board. After a certain time, which is sufficient for other parties to
react to P ’s registration request, any party can complete the process by sending
“finalize” to the dispute board which then informs all parties about the result.

Update a contract instance in a multi-party channel. In order to update the stor-
age of a contract instance in a multi-party channel from σ to σ̃, the environment
sends the message (update, id , cid , σ̃, C) to one of the parties P , which becomes
the initiating party. Let τ0 denote the round in which P receives this message.
On a high level the update protocol works as follows. P sends the signed new
contract storage σ̃ to all other parties of γ. Each of these parties Q ∈ γ.other−
party(P) verifies if the update request is valid (i.e., if P ’s signature is correct)
and outputs the update request to the environment. If the environment confirms
the request, Q also signs the new contract storage σ̃ and sends it as part of the
“update−ok” message to the other channel parties. In case the environment does
not confirm, Q sends a rejection message “update−not−ok” which contains Q’s
signature on the original storage σ but with a version number that is increased
by two, i.e., if the original version number was w, then Q signs σ with w + 2.

If in round τ0 +2 a party P ∈ γ.users is missing a correctly signed reply from
at least one party, it is clear that someone misbehaved. Thus, P initiates the
registration procedure to resolve the disagreement via the dispute board.

If P received at least one rejection message, it is unclear to P if there is
a malicious party or not. Note that from P ’s point of view it is impossible to
distinguish whether (a) one party sends the “update−not−ok” message to P and
the message “update−ok” to all other parties, or (b) one honest party simply
does not agree with the update and sends the “update−not−ok” message to
everyone. To resolve this uncertainty, P communicates to all other parties that
the update failed by sending the signed message (update−not−ok, σ, w + 2) to
all other parties. If all honest parties behave as described above, in round τ0 + 3
party P must have signatures of all parties on the original storage with version
number w + 2; hence, consensus on rejection is reached. If P does not have all
the signatures at this point, it is clear that at least one party is malicious. Thus,
P initiates the registration which enforces the consensus via the dispute board.

654 S. Dziembowski et al.

If P receives a valid “update−ok” from all parties in round τ0 +2, she knows
that consensus on the updated storage σ̃ will eventually be reached. This is
because in worst case, P can register σ̃ on the dispute board. Still, P has to wait
if no other party detects misbehavior and starts the dispute process or sends a
reject message in which case P initiates the dispute. If none of this happens, all
honest parties output the message “updated” in round τ0 + 3. Otherwise they
output the message after the registration is completed.

Execute a contract instance in a multi-party channel. The environment triggers
the execution process by sending the instruction (execute, id , cid , f, z) to a party
P in round τ0. P first tries to perform the execution of the contract instance with
identifier cid in a channel γ with identifier id peacefully, i.e. without touching
the blockchain. An intuitive design of this process would be to let P compute
f(z) locally and send her signature on the new contract storage (together with
the environment’s instruction) to all other users of γ. Every other user Q would
verify this message by recomputing f(z) and confirm the new contract storage
by sending her signature on it to the other users of γ.

It is easy to see that this intuitive approach fails when two (or more) parties
want to peacefully execute the same contract instance cid in the same round.
While in two party channels this can be solved by assigning “time slots” for each
party, this idea cannot be generalized to the n-party case, without blowing up
the number of rounds needed for peaceful execution from O(1) to O(n). To keep
the peaceful execution time constant, we let each contract instance have its own
execution period which consists of four rounds:

Round 1: If P received (execute, id , cid , f, z) in this or the previous 3 rounds,
it sends (peaceful−request, id , cid , f, z, τ0) to all other parties.

Round 2: P locally sorts18 all requests it received in this round (potentially
including its own from the previous round), locally performs all the executions
and sends the signed resulting contract storage to all other parties.

Round 3: If P did not receive valid signatures on the new contract storage from
all other parties, it starts the registration process.

Round 4: Unless some party started the registration process, P outputs an
execution success message.

If the peaceful execution fails, i.e. one party initiates registration, all execution
requests of this period must be performed forcefully via the dispute board.

Close a multi-party channel. The closing procedure of a multi-party channel
begins automatically in round γ.validity. Every pair of parties {P,Q} ∈ γ.E tries
to peacefully update the mpVSCCi contract instance, let us denote its identifier
cid , in their subchannel α := γ.subchan({P,Q}). More precisely, both parties
locally execute the function Closempi of contract instance cid with input param-
eter z := γ.cspace – the tuple of all contract instances that were ever opened in
γ. The function Closempi adjusts the balances of users in cid according to the
provided contract instances in z and unlocks all coins from cid back to α.

18 We assume a fixed ordering on peaceful execution requests.

Multi-party Virtual State Channels 655

If the peaceful update fails, then at least one party is malicious and either
does not communicate or tries to close the channel γ with a false view on the
set γ.cspace. In this case, users have to register all contract instances of γ on
the dispute board. This guarantees a fixed global view on γ.cspace. Once the
registration process is over, the mpVSCCi contract instances in the subchannels
can be terminated using the execute functionality of Wdch(i, C1, C0) on func-
tion Closempi . Since the set γ.cspace is now publicly available on the dispute
board, the parameter z will be the same in all the mpVSCCi contract instance
executions in the subchannels. Technically, this is taken care of by the wrapper
Wch(i, C1, C0) which overwrites the parameter z of every execution request with
function Closempi to the relevant content of the dispute board.

Let us emphasize that the high level description provided in this section
excludes some technicalities which are explained in the full version of the paper.

Theorem 2. Suppose the underlying signature scheme is existentially unforge-
able against chosen message attacks. For every set of contract codes C0, every
i ≥ 1 and every Δ ∈ N, the protocol Πmpch(i, C0) in the Wdch(i, C1, C0)-hybrid
model emulates the ideal functionality Fmpch(i, C0).

7 Conclusion

We presented the first full specification and construction of a state channel net-
work that supports multi-party channels. The pessimistic running time of our
protocol can be made constant for arbitrary complex channels. While we believe
that this is an important contribution by it self, we also think that it is very likely
that the techniques developed by us will have applications beyond the area of
off-chain channels. In particular, the modeling of multiparty state channels that
we have in this paper can be potentially useful in other types of off-chain proto-
cols, e.g., in Plasma [23]. We leave extending our approach to such protocols as
an interesting research direction for the future.

Acknowledgments. This work was partly supported by the German Research Foun-
dation (DFG) Emmy Noether Program FA 1320/1-1, the DFG CRC 1119 CROSSING
(project S7), the Ethereum Foundation grant Off-chain labs: formal models, construc-
tions and proofs, the Foundation for Polish Science (FNP) grant TEAM/2016-1/4, the
German Federal Ministry of Education and Research (BMBF) iBlockchain project, by
the Hessen State Ministry for Higher Education, Research and the Arts (HMWK) and
the BMBF within CRISP, and by the Polish National Science Centre (NCN) grant
2014/13/B/ST6/03540, Polish NCBiR Prokrym project.

References

1. Allison, I.: Ethereum’s Vitalik Buterin explains how state channels address privacy
and scalability (2016)

2. Bitcoin Wiki: Payment Channels (2018). https://en.bitcoin.it/wiki/Payment
channels

https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels

656 S. Dziembowski et al.

3. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS (2001)

4. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

5. Celer Network (2018). https://www.celer.network
6. Close, T.: Nitro protocol. Cryptology ePrint Archive, Report 2019/219 (2019).

https://eprint.iacr.org/2019/219
7. Counterfactual (2018). https://counterfactual.com
8. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin

duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

9. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

10. Dziembowski, S., et al.: General state channel networks. In: ACM CCS 2018 (2018)
11. Dziembowski, S., et al.: Multi-party virtual state channels. Cryptology ePrint

Archive (2019). https://eprint.iacr.org/2019
12. Dziembowski, S., et al.: Perun: virtual payment hubs over cryptographic currencies.

In: Conference Version Accepted to the 40th IEEE Symposium on Security and
Privacy (IEEE S&P) 2019 (2017)

13. Garay, J.A., et al.: Round complexity of authenticated broadcast with a dishonest
majority. In: 48th FOCS (2007)

14. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chapman & Hall/Crc
Cryptography and Network Security Series) (2007)

15. Khalil, R., Gervais, A.: NOCUST - a non-custodial 2nd-layer financial intermedi-
ary. Cryptology ePrint Archive, Report 2018/642 (2018). https://eprint.iacr.org/
2018/642

16. Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In:
ACM CCS 2017 (2017)

17. Lind, J., et al.: Teechain: reducing storage costs on the blockchain with offline
payment channels. In: Proceedings of the 11th ACM International Systems and
Storage Conference, SYSTOR 2018 (2018)

18. Malavolta, G., et al.: Concurrency and privacy with payment-channel networks.
In: ACM CCS 2017 (2017)

19. McCorry, P., et al.: Pisa: arbitration outsourcing for state channels. Cryptology
ePrint Archive, Report 2018/582 (2018). https://eprint.iacr.org/2018/582

20. McCorry, P., et al.: You sank my battleship! A case study to evaluate state channels
as a scaling solution for cryptocurrencies (2018)

21. Miller, A., et al.: Sprites: payment channels that go faster than lightning. CoRR
(2017)

22. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009). http://
bitcoin.org/bitcoin.pdf

23. Poon, J., Buterin, V.: Plasma: Scalable Autonomous Smart Contracts (2017)
24. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-

ments. Draft version 0.5.9.2 (2016). https://lightning.network/lightning-network-
paper.pdf

25. Roos, S., et al.: Settling payments fast and private: efficient decentralized routing
for path-based transactions. In: NDSS (2018)

26. Szabo, N.: Smart contracts: building blocks for digital markets. Extropy Mag.
(1996)

https://doi.org/10.1007/978-3-540-70936-7_4
https://www.celer.network
https://eprint.iacr.org/2019/219
https://counterfactual.com
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://eprint.iacr.org/2019
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2018/582
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf

Aggregate Cash Systems:
A Cryptographic Investigation

of Mimblewimble

Georg Fuchsbauer1,2(B), Michele Orrù1,2, and Yannick Seurin3

1 Inria, Paris, France
2 École normale supérieure, CNRS, PSL, Paris, France

{georg.fuchsbauer,michele.orru}@ens.fr
3 ANSSI, Paris, France
yannick.seurin@m4x.org

Abstract. Mimblewimble is an electronic cash system proposed by an
anonymous author in 2016. It combines several privacy-enhancing tech-
niques initially envisioned for Bitcoin, such as Confidential Transac-
tions (Maxwell, 2015), non-interactive merging of transactions (Saxena,
Misra, Dhar, 2014), and cut-through of transaction inputs and outputs
(Maxwell, 2013). As a remarkable consequence, coins can be deleted once
they have been spent while maintaining public verifiability of the ledger,
which is not possible in Bitcoin. This results in tremendous space savings
for the ledger and efficiency gains for new users, who must verify their
view of the system.

In this paper, we provide a provable-security analysis for Mimblewim-
ble. We give a precise syntax and formal security definitions for an
abstraction of Mimblewimble that we call an aggregate cash system. We
then formally prove the security of Mimblewimble in this definitional
framework. Our results imply in particular that two natural instanti-
ations (with Pedersen commitments and Schnorr or BLS signatures)
are provably secure against inflation and coin theft under standard
assumptions.

Keywords: Mimblewimble · Bitcoin · Commitments ·
Aggregate signatures

1 Introduction

Bitcoin and the UTXO model. Proposed in 2008 and launched early 2009,
Bitcoin [Nak08] is a decentralized payment system in which transactions are
registered in a distributed and publicly verifiable ledger called a blockchain. Bit-
coin departs from traditional account-based payment systems where transactions
specify an amount moving from one account to another. Instead, each transac-
tion consists of a list of inputs and a list of outputs.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 657–689, 2019.
https://doi.org/10.1007/978-3-030-17653-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_22

658 G. Fuchsbauer et al.

Each output contains a value (expressed as a multiple of the currency unit,
10−8 bitcoin) and a short script specifying how the output can be spent. The
most common script is Pay to Public Key Hash (P2PKH) and contains the hash
of an ECDSA public key, commonly called a Bitcoin address. Each input of a
transaction contains a reference to an output of a previous transaction in the
blockchain and a script that must match the script of that output. In the case
of P2PKH, an input must provide a public key that hashes to the address of the
output it spends and a valid signature for this public key.

Each transaction spends one or more previous transaction outputs and cre-
ates one or more new outputs, with a total value not larger than the total value
of coins being spent. The system is bootstrapped through special transactions
called coinbase transactions, which have outputs but no inputs and therefore cre-
ate money (and also serve to incentivize the proof-of-work consensus mechanism,
which allows users to agree on the valid state of the blockchain).

To avoid double-spending attacks, each output of a transaction can only be
referenced once by an input of a subsequent transaction. Note that this implies
that an output must necessarily be spent entirely. As transactions can have
multiple outputs, change can be realized by having the sender assign part of the
outputs to an address she controls. Since all transactions that ever occurred since
the inception of the system are publicly available in the blockchain, whether an
output has already been spent can be publicly checked. In particular, every trans-
action output recorded in the blockchain can be classified either as an unspent
transaction output (UTXO) if it has not been referenced by a subsequent trans-
action input so far, or a spent transaction output (STXO) otherwise. Hence, the
UTXO set “encodes” all bitcoins available to be spent, while the STXO set only
contains “consumed” bitcoins and could, in theory, be deleted.

The validation mechanics in Bitcoin requires new users to download and
validate the entire blockchain in order to check that their view of the system is
not compromised.1 Consequently, the security of the system and its ability to
enroll new users relies on (a significant number of) Bitcoin clients to persistently
store the entire blockchain. Once a new node has checked the entire blockchain,
it is free to “prune” it2 and retain only the freshly computed UTXO set, but it
will not be able to convince another newcomer that this set is valid.

Consider the following toy example. A coinbase transaction creates an output
txo1 for some amount v associated with a public key pk1. This output is spent
by a transaction T1 creating a new output txo2 with amount v associated with
a public key pk2. Transaction T1 contains a valid signature σ1 under public key
pk1. Once a node has verified σ1, it is ensured that txo2 is valid and the node
can therefore delete the coinbase transaction and T1. By doing this, however, he
cannot convince anyone else that output txo2 is indeed valid.

1 Simplified Verification Payment (SPV) clients only download much smaller pieces of
the blockchain allowing them to verify specific transactions. However, they are less
secure and do not contribute to the general security of the system [GCKG14,SZ16].

2 This functionality was introduced in Bitcoin Core v0.11, see https://github.com/
bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning.

https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning

Aggregate Cash Systems 659

At the time of writing, the size of Bitcoin’s blockchain is over 200 GB.3 Down-
loading and validating the full blockchain can take up to several days on standard
hardware. In contrast, the size of the UTXO set, containing around 60 millions
elements, is only a couple of GB.

Bitcoin privacy. Despite some common misconception, Bitcoin offers a very
weak level of privacy. Although users can create multiple pseudonymous
addresses at will, the public availability of all transaction data often allows to
link them and reveals a surprisingly large amount of identifying information, as
shown in many works [AKR+13,MPJ+13,RS13,KKM14].

Several protocols have been proposed with the goal of improving on Bitcoin’s
privacy properties, such as Cryptonote [vS13] (implemented for example by Mon-
ero), Zerocoin [MGGR13] and Zerocash [BCG+14]. On the other hand, there are
privacy-enhancing techniques compatible with Bitcoin, for example coin mixing
[BBSU12,BNM+14,RMK14,HAB+17], to ensure payer anonymity. Below we
describe three specific proposals that have paved the way for Mimblewimble.

Confidential Transactions. Confidential Transactions (CT), described by
Maxwell [Max15], based on an idea by Back [Bac13] and now implemented by
Monero, allow to hide the values of transaction outputs. The idea is to replace
explicit amounts in transactions by homomorphic commitments: this hides the
value contained in each output, but the transaction creator cannot modify this
value later on.4

More specifically, the amount v in an output is replaced by a Pedersen com-
mitment C = vH +rG, where H and G are generators of an (additively denoted)
discrete-log-hard group and r is a random value. Using the homomorphic prop-
erty of the commitment scheme, one can prove that a transaction does not create
money out of thin air, i.e., that the sum of the outputs is less than the sum of
the inputs. Consider a transaction with input commitments Ci = viH + riG,
1 ≤ i ≤ n, and output commitments Ĉi = v̂iH + r̂iG, 1 ≤ i ≤ m. The trans-
action does not create money iff

∑n
i=1 vi ≥ ∑m

i=1 v̂i. This can be proved by
providing an opening (f, r) with f ≥ 0 for

∑n
i=1 Ci − ∑m

i=1 Ĉi, whose valid-
ity can be publicly checked. The difference f between inputs and outputs are
so-called fees that reward the miner that includes the transaction in a block.

Note that arithmetic on hidden values is done modulo p, the order of the
underlying group. Hence, a malicious user could spend an input worth 2 and
create two outputs worth 10 and p−8, which would look the same as a transaction
creating two outputs worth 1 each. To ensure that commitments do not contain
large values that cause such mod-p reductions, a non-interactive zero-knowledge
(NIZK) proof that the committed value is in [0, vmax] (a so-called range proof)
is added to each commitment, where vmax is small compared to p.

CoinJoin. When a Bitcoin transaction has multiple inputs and outputs, noth-
ing can be inferred about “which input goes to which output” beyond what is
3 See https://www.blockchain.com/charts/blocks-size.
4 Commitments are actually never publicly opened; however the opening information

is used when spending a coin and remains privy to the participants.

https://www.blockchain.com/charts/blocks-size

660 G. Fuchsbauer et al.

imposed by their values (e.g., if a transaction has two inputs with values 10 BTC
and 1 BTC, and two outputs with values 10 BTC and 1 BTC, all that can be said
is that at least 9 BTC flowed from the first input to the first output). CoinJoin
[Max13a] builds on this technical principle to let different users create a single
transaction that combines all of their inputs and outputs. When all inputs and
outputs have the same value, this perfectly mixes the coins. Note that unlike CT,
CoinJoin does not require any change to the Bitcoin protocol and is already used
in practice. However, this protocol is interactive as participants need all input
and output addresses to build the transaction. Saxena et al. [SMD14] proposed
a modification of the Bitcoin protocol which essentially allows users to perform
CoinJoin non-interactively and which relies on so-called composite signatures.5

Cut-through. A basic property of the UTXO model is that a sequence of two
transactions, a first one spending an output txo1 and creating txo2, followed
by a second one spending txo2 and creating txo3, is equivalent to a single cut-
through transaction spending txo1 and creating txo3. While such an optimization
is impossible once transactions have been included in the blockchain (as men-
tioned before, this would violate public verifiability of the blockchain), this has
been suggested [Max13b] for unconfirmed transactions, i.e., transactions broad-
cast to the Bitcoin network but not included in a block yet. As we will see, the
main added benefit of Mimblewimble is to allow post-confirmation cut-through.

Mimblewimble. Mimblewimble was first proposed by an anonymous author
in 2016 [Jed16]. The idea was then developed further by Poelstra [Poe16]. At
the time of writing, there are at least two independent implementations of Mim-
blewimble as a cryptocurrency: one is called Grin,6 the other Beam.7

Mimblewimble combines in a clever way CT, a non-interactive version of
CoinJoin, and cut-through of transaction inputs and outputs. As with CT, a coin
is a commitment C = vH+rG to its value v using randomness r, together with a
range proof π. If CT were actually employed in Bitcoin, spending a CT-protected
output would require the knowledge of the opening of the commitment and, as
for a standard output, of the secret key associated with the address controlling
the coin. Mimblewimble goes one step further and completely abandons the
notion of addresses or more generally scripts: spending a coin only requires
knowledge of the opening of the commitment. As a result, ownership of a coin
C = vH + rG is equivalent to the knowledge of its opening, and the randomness
r of the commitment now acts as the secret key for the coin.

Exactly as in Bitcoin, a Mimblewimble transaction specifies a list C =
(C1, . . . , Cn) of input coins (which must be coins existing in the system) and
a list Ĉ = (Ĉ1, . . . , Ĉm) of output coins, where Ci = viH + riG for 1 ≤ i ≤ n

5 An earlier, anonymous version of the paper used the name one-way aggregate signa-
ture (OWAS), see https://bitcointalk.org/index.php?topic=290971. Composite sig-
natures are very similar to aggregate signatures [BGLS03].

6 See http://grin-tech.org and https://github.com/mimblewimble/grin/blob/master/
doc/intro.md.

7 See https://www.beam-mw.com.

https://bitcointalk.org/index.php?topic=290971
http://grin-tech.org
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://www.beam-mw.com

Aggregate Cash Systems 661

and Ĉi = v̂iH + r̂iG for 1 ≤ i ≤ m. We will detail later how exactly such a
transaction is constructed. Leaving fees aside for simplicity, the transaction is
balanced (i.e., does not create money) iff

∑
v̂i − ∑

vi = 0, which, letting
∑

C
denote

∑n
i=1 Ci, is equivalent to

∑
Ĉ − ∑

C =
∑

(v̂iH + r̂iG) − ∑
(viH + riG) = (

∑
r̂i − ∑

ri) G.

In other words, knowledge of the opening of all coins in the transaction and bal-
ancedness of the transaction implies knowledge of the discrete logarithm in base
G of E :=

∑
Ĉ−∑

C, called the excess of the transaction in Mimblewimble jar-
gon. Revealing the opening (0, r :=

∑
r̂i −∑

ri) of the excess E as in CT would
leak too much information (e.g., together with the openings of the input coins
and of all output coins except one, this would yield the opening of the remaining
output coin); however, knowledge of r can be proved by providing a valid signa-
ture (on the empty message) under public key E using some discrete-log-based
signature scheme. Intuitively, as long as the commitment scheme is binding and
the signature scheme is unforgeable, it should be infeasible to compute a valid
signature for an unbalanced transaction.

Transactions (legitimately) creating money, such as coinbase transactions,
can easily be incorporated by letting the supply s (i.e., the number of mone-
tary units created by the transaction) be explicitly specified and redefining the
excess of the transaction as E :=

∑
Ĉ− ∑

C− sH. All in all, a Mimblewimble
transaction is a tuple

tx = (s,C, Ĉ,K) with K := (π,E, σ), (1)

where s is the supply, C is the input coin list, Ĉ is the output coin list, and K is
the so-called kernel, which contains the list π of range proofs for output coins,8

the (list of) transaction excesses E (as there can be several; see below), and a
signature σ.9

Such transactions can now easily be merged non-interactively à la CoinJoin:
consider tx0 = (s0,C0, Ĉ0, (π0, E0, σ0)) and tx1 = (s1,C1, Ĉ1, (π1, E1, σ1)); then
the aggregate transaction tx resulting from merging tx0 and tx1 is simply

tx :=
(
s0 + s1,C0 ‖C1, Ĉ0 ‖ Ĉ1,

(
π0 ‖π1, (E0, E1), (σ0, σ1)

))
. (2)

Moreover, if the signature scheme supports aggregation, as for example the BLS
scheme [BGLS03,BNN07], the pair (σ0, σ1) can be replaced by a compact aggre-
gate signature σ for the public keys E := (E0, E1).

An aggregate transaction (s,C, Ĉ, (π,E, σ)) is valid if all range proofs verify,
σ is a valid aggregate signature for E and if

∑
Ĉ − ∑

C − sH =
∑

E. (3)
8 Since inputs must be coins that already exist in the system, their range proofs are

contained in the kernels of the transactions that created them.
9 A transaction fee can easily be added to the picture by making its amount f explicit

and adding fH to the transaction excess. For simplicity, we omit it in this paper.

662 G. Fuchsbauer et al.

As transactions can be recursively aggregated, the resulting kernel will contain
a list E of kernel excesses, one for each transaction that has been aggregated.

The main novelty of Mimblewimble, namely cut-through, naturally emerges
from the way transactions are aggregated and validated. Assume that some coin
C appears as an output in tx0 and as an input in tx1; then, one can erase C from
the input and output lists of the aggregate transaction tx, and tx will still be
valid since (3) will still hold. Hence, each time an output of a transaction tx0 is
spent by a subsequent transaction tx1, this output can be “forgotten” without
losing the ability to validate the resulting aggregate transaction.

In Mimblewimble the ledger is itself a transaction of the form (1), which
starts out empty, and to which transactions are recursively aggregated as they
are added to the ledger. We assume that for a transaction to be allowed onto
the ledger, its input list must be contained in the output list of the ledger (this
corresponds to the natural requirement that only coins that exist in the ledger
can be spent). Then, it is easy to see that the following holds:

(i) the supply s of the ledger is equal to the sum of the supplies of all transac-
tions added to the ledger so far;

(ii) the input coin list of the ledger is always empty.

Property (i) follows from the definition of aggregation in (2). Property (ii) follows
inductively. At the inception of the system the ledger is empty (thus the first
transaction added to the ledger must be a transaction with an empty input
coin list and non-zero supply, a minting transaction). Any transaction tx added
to the ledger must have its input coins contained in the output coin list of
the ledger; thus cut-through will remove all of them from the joint input list,
hence the updated ledger again has no input coins (and the coins spent by tx are
deleted from its outputs). The ledger in Mimblewimble is thus a single aggregate
transaction whose supply s is equal to the amount of money that was created
in the system and whose output coin list Ĉ is the analogue of the UTXO set in
Bitcoin. Its kernel K allows to cryptographically verify its validity. The history
of all transactions that have occurred is not retained, and only one kernel excess
per transaction (a very short piece of information) is recorded.

Our contribution. We believe it is crucial that protocols undergo a formal
security assessment and that the cryptographic guarantees they provide must be
well understood before deployment. To this end, we provide a provable-security
treatment for Mimblewimble. A first attempt at proving its security was partly
undertaken by Poelstra [Poe16]. We follow a different approach: we put for-
ward a general syntax and a framework of game-based security definitions for an
abstraction of Mimblewimble that we dub an aggregate cash system.

Formalizing security for a cash system requires care. For example, Zerocoin
[MGGR13] was recently found to be vulnerable to denial-of-spending attacks
[RTRS18] that were not captured by the security model in which Zerocoin was
proved secure. To avoid such pitfalls, we keep the syntax simple, while allowing
to express meaningful security definitions. We formulate two natural properties
that define the security of a cash system: inflation-resistance ensures that the
only way money can be created in a system is explicitly via the supply contained

Aggregate Cash Systems 663

in transactions; resistance to coin theft guarantees that no one can spend a user’s
coins as long as she keeps her keys safe. We moreover define a privacy notion,
transaction indistinguishability, which states that a transaction does not reveal
anything about the values it transfers from its inputs to its outputs.

We then give a black-box construction of an aggregate cash system, which
naturally generalizes Mimblewimble, from a homomorphic commitment scheme
COM, an (aggregate) signature scheme SIG, and a NIZK range-proof system
Π. We believe that such a modular treatment will ease the exploration of post-
quantum instantiations of Mimblewimble or related systems.

Note that in our description of Mimblewimble, we have not yet explained how
to actually create a transaction that transfers some amount ρ of money from a
sender to a receiver. It turns out that this is a delicate question. The initial
description of the protocol [Jed16] proposed the following one-round procedure:

– the sender selects input coins C of total value v ≥ ρ; it creates change coins
C′ of total value v − ρ and sends C, C′, range proofs for C′ and the opening
(−ρ, k) of

∑
C′ − ∑

C to the receiver (over a secure channel);
– the receiver creates additional output coins C′′ (and range proofs) of total

value ρ with keys (k′′
i), computes a signature σ with the secret key k +

∑
k′′

i

and defines tx =
(
0,C,C′ ‖C′′,

(
π, E =

∑
C′ +

∑
C′′ − ∑

C, σ
))

.

However, a subtle problem arises with this protocol. Once the transaction has
been added to the ledger, the change outputs C′ should only be spendable by the
sender, who owns them. It turns out that the receiver is also able to spend them
by “reverting” the transaction tx. Indeed, he knows the range proofs for coins
in C and the secret key (−k − ∑

k′′
i) for the transaction with inputs C′ ‖C′′

and outputs C. Arguably, the sender is given back her initial input coins in the
process, but (i) she could have deleted the secret keys for these old coins, making
them unspendable, and (ii) this violates any meaningful formalization of security
against coin theft.

A natural way to prevent such a malicious behavior would be to let the
sender and the receiver, each holding a share of the secret key corresponding to
public key E :=

∑
C′ ‖C′′ −∑

C, engage in a two-party interactive protocol to
compute σ. Actually, this seems to be the path Grin is taking, although, to the
best of our knowledge, the problem described above with the original protocol
has never been documented.

We show that the spirit of the original non-interactive protocol can be sal-
vaged, so a sender can make a payment to a receiver without the latter’s active
involvement. In our solution the sender first constructs a full-fledged transaction
tx spending C and creating change coins C′ as well as a special output coin
C = ρH + kG, and sends tx and the opening (ρ, k) of the special coin to the
receiver. (Note that, unlike in the previous case, k is now independent from the
keys of the coins in C and C′.) The receiver then creates a second transaction tx′

spending the special coin C and creating its own output coins C′′ and aggregates
tx and tx′. As intended, this results in a transaction with inputs C and outputs
C′ ‖C′′ since C is removed by cut-through. The only drawback of this procedure
is that the final transaction, being the aggregate of two transactions, has two
kernel excesses instead of one for the interactive protocol mentioned above.

664 G. Fuchsbauer et al.

After specifying our protocol MW[COM,SIG,Π], we turn to proving its secu-
rity in our definitional framework. To this end, we first define two security
notions, EUF-NZO and EUF-CRO, tying the commitment scheme and the signa-
ture scheme together (cf. Page 12). Assuming that proof system Π is simulation-
extractable [DDO+01,Gro06], we show that EUF-NZO-security for the pair
(COM,SIG) implies that MW is resistant to inflation, while EUF-CRO-security
implies that MW is resistant to coin theft. Transaction indistinguishability fol-
lows from zero-knowledge of Π and COM being hiding.

Finally, we consider two natural instantiations of MW[COM,SIG,Π]. For each,
we let COM be the Pedersen commitment scheme [Ped92]. When SIG is instanti-
ated with the Schnorr signature scheme [Sch91], we show that the pair (COM,SIG)
is EUF-NZO- and EUF-CRO-secure under the Discrete Logarithm assumption.
When SIG is instantiated with the BLS signature scheme [BLS01], we show that
the pair (COM,SIG) is EUF-NZO- and EUF-CRO-secure under the CDH assump-
tion. Both proofs are in the random-oracle model. BLS signatures have the addi-
tional benefit of supporting aggregation [BGLS03,BNN07], so that the ledger ker-
nel always contains a short aggregate signature, independently of the number of
transactions that have been added to the ledger. We stress that, unlike Zerocash
[BCG+14], none of these two instantiations require a trusted setup.

2 Preliminaries

2.1 General Notation

We denote the (closed) integer interval from a to b by [a, b]. We use [b] as short-
hand for [1, b]. A function μ : N → [0, 1] is negligible (denoted μ = negl) if for
all c ∈ N there exists λc ∈ N such that μ(λ) ≤ λ−c for all λ ≥ λc. A function ν
is overwhelming if 1 − ν = negl. Given a non-empty finite set S, we let x ←$ S
denote the operation of sampling an element x from S uniformly at random. By
y := M(x1, . . . ; r) we denote the operation of running algorithm M on inputs
x1, . . . and coins r and letting y denote the output. By y ← M(x1, . . .), we denote
letting y := M(x1, . . . ; r) for random r, and [M(x1, . . .)] is the set of values that
have positive probability of being output by M on inputs x1, . . . If an algorithm
calls a subroutine which returns ⊥, we assume it stops and returns ⊥ (this does
not hold for an adversary calling an oracle which returns ⊥).

A list L = (x1, . . . , xn), also denoted (xi)
n
i=1, is a finite sequence. The length

of a list L is denoted |L|. For i = 1, . . . , |L|, the i-th element of L is denoted L[i],
or Li when no confusion is possible. By L0 ‖L1 we denote the list L0 followed by
L1. The empty list is denoted (). Given a list L of elements of an additive group,
we let

∑
L denote the sum of all elements of L. Let L0 and L1 be two lists, each

without repetition. We write L0 ⊆ L1 iff each element of L0 also appears in L1.
We define L0 ∩ L1 to be the list of all elements that simultaneously appear in
both L0 and L1, ordered as in L0. The difference between L0 and L1, denoted
L0 −L1, is the list of all elements of L0 that do not appear in L1, ordered as in
L0. So, for example (1, 2, 3) − (2, 4) = (1, 3). We define the cut-through of two
lists L0 and L1, denoted cut(L0,L1), as

cut(L0,L1) := (L0 − L1,L1 − L0).

Aggregate Cash Systems 665

Fig. 1. The games for hiding and binding of a commitment scheme COM.

2.2 Cryptographic Primitives

We introduce the three building blocks we will use to construct an aggregate
cash system: a commitment scheme COM, an aggregate signature scheme SIG,
and a non-interactive zero-knowledge proof system Π. For compatibility rea-
sons, the setup algorithms for each of these schemes are split: a common algo-
rithm MainSetup(1λ) first returns main parameters mp (specifying e.g. an abelian
group), and specific algorithms COM.Setup, SIG.Setup, and Π.Setup take as input
mp and return the specific parameters cp, sp, and crs for each primitive. We
assume that mp is contained in cp, sp, and crs.

Commitment scheme. A commitment scheme COM consists of the following
algorithms:

– cp ← COM.Setup(mp): the setup algorithm takes as input main parameters
mp and outputs commitment parameters cp, which implicitly define a value
space Vcp, a randomness space Rcp, and a commitment space Ccp;

– C := COM.Cmt(cp, v, r): the (deterministic) commitment algorithm takes as
input commitment parameters cp, a value v ∈ Vcp and randomness r ∈ Rcp,
and outputs a commitment C ∈ Ccp.

In most instantiations, given a value v ∈ Vcp, the sender picks r ←$ Rcp uni-
formly at random and computes the commitment C = COM.Cmt(cp, v, r).
To open the commitment, the sender reveals (v, r) so anyone can verify that
COM.Cmt(cp, v, r) = C.

We require commitment schemes to be hiding, meaning that commitment C
reveals no information about v, and binding, which means that the sender cannot
open the commitment in two different ways.

Definition 1 (Hiding). Let game HID be as defined Fig. 1. A commitment
scheme COM is hiding if for any p.p.t. adversary A:

AdvhidCOM,A(λ) := 2 · ∣∣ Pr
[
HIDCOM,A(λ) = true

] − 1
2

∣
∣ = negl(λ).

666 G. Fuchsbauer et al.

Definition 2 (Binding). Let game BND be as defined in Fig. 1. A commitment
scheme COM is binding if for any p.p.t. adversary A:

AdvbndCOM,A(λ) := Pr
[
BNDCOM,A(λ) = true

]
= negl(λ).

Lemma 3 (Collision-resistance). Let COM be a (binding and hiding)
commitment scheme. Then for any (v0, v1) ∈ V 2

cp, the probability that
Cmt(cp, v0, r0) = Cmt(cp, v1, r1) for r0, r1 ←$ Rcp is negligible.

The proof of the lemma is straightforward: for v0 �= v1 this would break binding
and for v0 = v1 it would break hiding.

A commitment scheme is (additively) homomorphic if the value, randomness,
and commitment spaces are groups (denoted additively) and for any commitment
parameters cp, any v0, v1 ∈ Vcp, and any r0, r1 ∈ Rcp, we have:

COM.Cmt(cp, v0, r0) + COM.Cmt(cp, v1, r1) = COM.Cmt(cp, v0 + v1, r0 + r1).

Recursive aggregate signature scheme. An aggregate signature scheme
allows to (publicly) combine an arbitrary number n of signatures (from poten-
tially distinct users and on potentially distinct messages) into a single (ide-
ally short) signature [BGLS03,LMRS04,BNN07]. Traditionally, the syntax of
an aggregate signature scheme only allows the aggregation algorithm to take as
input individual signatures. We consider aggregate signature schemes supporting
recursive aggregation, where the aggregation algorithm can take as input aggre-
gate signatures (supported for example by the schemes based on BLS signatures
[BGLS03,BNN07]). A recursive aggregate signature scheme SIG consists of the
following algorithms:

– sp ← SIG.Setup(mp): the setup algorithm takes as input main parameters mp
and outputs signature parameters sp, which implicitly define a secret-key
space Ssp and a public-key space Psp (we let the message space be {0, 1}∗);

– (sk, pk) ← SIG.KeyGen(sp): the key generation algorithm takes signature
parameters sp and outputs a secret key sk ∈ Ssp and a public key pk ∈ Psp;

– σ ← SIG.Sign(sp, sk,m): the signing algorithm takes as input parameters sp,
a secret key sk ∈ Ssp, and a message m ∈ {0, 1}∗ and outputs a signature σ;

– σ ← SIG.Agg
(
sp, (L0, σ0), (L1, σ1)

)
: the aggregation algorithm takes parame-

ters sp and two pairs of public-key/message lists Li =
(
(pki,j ,mi,j)

)|Li|
j=1

and
(aggregate) signatures σi, i = 0, 1; it returns an aggregate signature σ;

– bool ← SIG.Ver(sp,L, σ): the (deterministic) verification algorithm takes
parameters sp, a list L =

(
(pki,mi)

)|L|
i=1

of public-key/message pairs, and
an aggregate signature σ; it returns true or false, indicating validity of σ.

Correctness of a recursive aggregate signature scheme is defined recur-
sively. An aggregate signature scheme is correct if for every λ, every message
m ∈ {0, 1}∗, every mp ∈ [MainSetup(1λ)], sp ∈ [SIG.Setup(mp)], (sk, pk) ∈
[SIG.KeyGen(sp)] and every (L0, σ0), (L1, σ1) with SIG.Ver(sp,Li, σi) = true for
i = 0, 1 we have

Aggregate Cash Systems 667

Fig. 2. The EUF-CMA security game for an aggregate signature scheme SIG.

Pr
[
SIG.Ver

(
sp, ((pk,m)) ,SIG.Sign(sp, sk,m)

)
= true

]
= 1 and

Pr
[
SIG.Ver

(
sp,L0 ‖L1,SIG.Agg

(
sp, (L0, σ0), (L1, σ1)

))
= true

]
= 1.

Note that for any recursive aggregate signature scheme, one can define
an aggregation algorithm SIG.Agg′ that takes as input a list of triples(
(pki,mi, σi)

)n

i=1
and returns an aggregate signature σ for

(
(pki,mi)

)n

i=1
, which

is the standard syntax for an aggregate signature scheme. Algorithm SIG.Agg′

calls SIG.Agg recursively n − 1 times, aggregating one signature at a time.
The standard security notion for aggregate signature schemes is existential

unforgeability under chosen-message attack (EUF-CMA) [BGLS03,BNN07].

Definition 4 (EUF-CMA). Let game EUF-CMA be as defined in Fig. 2.
An aggregate signature scheme SIG is existentially unforgeable under chosen-
message attack if for any p.p.t. adversary A,

Adveuf-cma
SIG,A (λ) := Pr

[
EUF-CMASIG,A(λ) = true

]
= negl(λ).

Note that any standard signature scheme can be turned into an aggregate
signature scheme by letting the aggregation algorithm simply concatenate signa-
tures, i.e., SIG.Agg(sp, (L0, σ0), (L1, σ1)) returns (σ0, σ1), but this is not compact.
Standard EUF-CMA-security of the original scheme implies EUF-CMA-security
in the sense of Definition 4 for this construction. This allows us to capture stan-
dard and (compact) aggregate signature schemes, such as the ones proposed
in [BGLS03,BNN07], in a single framework.

Compatibility. For our aggregate cash system, we require the commitment
scheme COM and the aggregate signature scheme SIG to satisfy some “combined”
security notions. We say that COM and SIG are compatible if they use the same
MainSetup and if for any λ, any mp ∈ [MainSetup(1λ)], cp ∈ [COM.Setup(mp)]
and sp ∈ [SIG.Setup(mp)], the following holds:

– Ssp = Rcp, i.e., the secret-key space of SIG is the same as the randomness
space of COM;

– Psp = Ccp, i.e., the public-key space of SIG is the commitment space of COM;
– SIG.KeyGen draws sk ←$ Rcp and sets pk := COM.Cmt(cp, 0, sk).

668 G. Fuchsbauer et al.

We define two security notions for compatible commitment and aggregate signa-
ture schemes. The first one roughly states that only commitments to zero can
serve as signature-verification keys; more precisely, a p.p.t. adversary cannot
simultaneously produce a signature for a (set of) freely chosen public key(s) and
a non-zero opening of (the sum of) the public key(s).

Fig. 3. The EUF-NZO security game for a pair of compatible additively homomorphic
commitment and aggregate signature schemes (COM, SIG).

Definition 5 (EUF-NZO). Let game EUF-NZO be as defined in Fig. 3. A
pair of compatible homomorphic commitment and aggregate signature schemes
(COM,SIG) is existentially unforgeable with non-zero opening if for any p.p.t.
adversary A,

Adveuf-nzoCOM,SIG,A(λ) := Pr
[
EUF-NZOCOM,SIG,A(λ) = true

]
= negl(λ).

EUF-NZO-security of the pair (COM,SIG) implies that COM is binding, as shown
in the full version [FOS18].

The second security definition is more involved. It roughly states that, given a
challenge public key C∗, no adversary can produce a signature under −C∗. More-
over, we only require the adversary to make a signature under keys X1, . . . , Xn

of its choice, as long as it knows an opening to the difference between their sum
and −C∗. This must even hold if the adversary is given a signing oracle for keys
related to C∗. Informally, the adversary is faced with the following dilemma:
either it picks public keys X1, . . . , Xn honestly, so it can produce a signature but
it cannot open

∑
Xi + C∗; or it includes −C∗ within the public keys, allowing

it to open
∑

Xi + C∗, but then it cannot produce a signature.

Definition 6 (EUF-CRO). Let game EUF-CRO be as defined in Fig. 4. A
pair of compatible homomorphic commitment and aggregate signature schemes
(COM,SIG) is existentially unforgeable with challenge-related opening if for any
p.p.t. adversary A,

Adveuf-croCOM,SIG,A(λ) := Pr
[
EUF-CROCOM,SIG,A(λ) = true

]
= negl(λ).

NIZK. Let R be an efficiently computable ternary relation. For triplets
(mp, u, w) ∈ R we call u the statement and w the witness. A non-interactive
proof system Π for R consists of the following three algorithms:

Aggregate Cash Systems 669

Fig. 4. The EUF-CRO security game for a pair of compatible additively homomorphic
commitment and aggregate signature schemes (COM, SIG).

– crs ← Π.Setup(mp): the setup algorithm takes as input main parameters mp
and outputs a common reference string (CRS) crs;

– π ← Π.Prv(crs, u, w): the prover algorithm takes as input a CRS crs and a
pair (u,w) and outputs a proof π;

– bool ← Π.Ver(crs, u, π): the verifier algorithm takes a CRS crs, a statement u,
and a proof π and outputs true or false, indicating acceptance of the proof.

Proof system Π is complete if for every λ and every adversary A,

Pr
[

mp ← MainSetup(1λ) ; crs ← Π.Setup(mp)
(u,w) ← A(crs) ;π ← Π.Prv(crs, u, w) :

(mp, u, w) ∈ R ⇒
Π.Ver(crs, u, π) = true

]

= 1.

A proof system Π is zero-knowledge if proofs leak no information about the
witness. We define a simulator Π.Sim for a proof system Π as a pair of algorithms:

– (crs, τ) ← Π.SimSetup(mp): the simulated setup algorithm takes main param-
eters mp and outputs a CRS together with a trapdoor τ ;

– π∗ ← Π.SimPrv(crs, τ, u): the simulated prover algorithm takes as input a
CRS, a trapdoor τ , and a statement u and outputs a simulated proof π∗.

Definition 7 (Zero-knowledge). Let game ZK be as defined in Fig. 5. A proof
system Π for relation R is zero-knowledge if there exists a simulator Π.Sim such
that for any p.p.t. adversary A,

AdvzkΠ,R,A(λ) := 2 · ∣∣ Pr
[
ZKΠ,R,A(λ) = true

] − 1
2

∣
∣ = negl(λ).

Fig. 5. The non-interactive zero-knowledge game for a proof system Π.

670 G. Fuchsbauer et al.

Fig. 6. The (multi-statement) simulation-extractability game for a proof system Π.

Note that the zero-knowledge advantage can equivalently be defined as

AdvzkΠ,R,A(λ) =
∣
∣ Pr

[
ZK1

Π,R,A(λ) = 1
] − Pr

[
ZK1

Π,R,A(λ) = 1
]∣
∣,

where the game ZKi
Π,R,A(λ) is defined as ZKΠ,R,A(λ) except b ←$ {0, 1} is

replaced by b := i and the game returns b′.
The central security property of a proof system is soundness, that is, no adver-

sary can produce a proof for a false statement. A stronger notion is knowledge-
soundness, meaning that an adversary must know a witness in order to make a
proof. This is formalized via an extraction algorithm defined as follows:

– w := Π.Ext(crs, τ, u, π): the (deterministic) extraction algorithm takes a CRS,
a trapdoor τ , a statement u, and a proof π and returns a witness w.

Knowledge-soundness states that from a valid proof for a statement u output
by an adversary, Π.Ext can extract a witness for u. In security proofs where the
reduction simulates certain proofs knowledge-soundness is not sufficient. The
stronger notion simulation-extractability guarantees that even then, from every
proof output by the adversary, Π.Ext can extract a witness. Note that we define
a multi-statement variant of simulation extractability: the adversary returns a
list of statements and proofs and wins if there is a least one statement such that
the corresponding proof is valid and the extractor fails to extract a witness.

Definition 8 (Simulation-Extractability). Let game S-EXT be as defined
in Fig. 6. A non-interactive proof system Π for R with simulator Π.Sim is (multi-
statement) simulation-extractable if there exists an extractor Π.Ext such that for
any p.p.t. adversary A,

Advs-extΠ,R,A(λ) := Pr
[
S-EXTΠ,R,A(λ) = true

]
= negl(λ).

In the instantiation of our cash system, we will deal with families of relations,
i.e. relations Rδ parametrized by some δ ∈ N. For those, we assume that the proof
system Π is defined over the family of relations R = {Rδ }δ and that the setup
algorithm Π.Setup takes an additional parameter δ which specifies the particular

Aggregate Cash Systems 671

relation used during the protocol (and which is included in the returned CRS).
For instance, in the case of proofs for a certain range [0, vmax], the proof system
will be defined over a relation Rvmax , where vmax is the maximum integer allowed.

3 Aggregate Cash System

3.1 Syntax

Coins. The public parameters pp set up by the cash system specify a coin space
Cpp and a key space Kpp. A coin is an element C ∈ Cpp; to each coin is associated
a coin key k ∈ Kpp, which allows spending the coin. The value v of a coin is
an integer in [0, vmax], where vmax is a system parameter. We assume that there
exists a function mapping pairs (v, k) ∈ [0, vmax]×Kpp to coins in Cpp; we do not
assume this mapping to be invertible or even injective.

Ledger. Similarly to any ledger-based currency such as Bitcoin, an aggregate
cash system keeps track of available coins in the system via a ledger. We assume
the ledger to be unique and available at any time to all users. How users are kept
in consensus on the ledger is outside the scope of this paper. In our abstraction, a
ledger Λ simply provides two attributes: a list of all coins available in the system
Λ.out, and the total value Λ.sply those coins add up to. We say that a coin C
exists in the ledger Λ if C ∈ Λ.out.

Transactions. Transactions allow to modify the state of the ledger. Formally,
a transaction tx provides three attributes: a coin input list tx.in, a coin output
list tx.out, and a supply tx.sply ∈ N specifying the amount of money created by
tx. We classify transactions into three types. A transaction tx is said to be:

– a minting transaction if tx.sply > 0 and tx.in = (); such a transaction creates
new coins of total value tx.sply in the ledger;

– a transfer transaction if tx.sply = 0 and tx.in �= (); such a transaction transfers
coins (by spending previous transaction outputs and creating new ones) but
does not increase the overall value of coins in the ledger;

– a mixed transaction if tx.sply > 0 and tx.in �= ().

Pre-transactions. Pre-transactions allow users to transfer money to each other.
Formally, a pre-transaction provides three attributes: a coin input list ptx.in, a
list of change coins ptx.chg, and a remainder ptx.rmdr. When Alice wants to
send money worth ρ to Bob, she selects coins of hers of total value v ≥ ρ and
specifies the desired values for her change coins when v > ρ. The resulting pre-
transaction ptx has therefore some input coin list ptx.in with total amount v,
a change coin list ptx.chg, and some remainder ρ = ptx.rmdr. Alice sends this
pre-transaction (via a secure channel) to Bob, who, in turn, finalizes it into a
valid transaction and adds it to the ledger.

Aggregate cash system. An aggregate cash system CASH consists of the fol-
lowing algorithms:

672 G. Fuchsbauer et al.

– (pp, Λ) ← Setup(1λ, vmax): the setup algorithm takes as input the security
parameter λ in unary and a maximal coin value vmax and returns public
parameters pp and an initial (empty) ledger Λ.

– (tx,k) ← Mint(pp,v): the mint algorithm takes as input a list of values v
and returns a minting transaction tx and a list of coin keys k for the coins in
tx.out, such that the supply of tx is the sum of the values v.

– (ptx,k′) ← Send(pp, (C,v,k),v′): the sending algorithm takes as input a list
of coins C together with the associated lists of values v and secret keys k and
a list of change values v′ whose sum is at most the sum of the input values
v; it returns a pre-transaction ptx and a list of keys k′ for the change coins
of ptx, such that the remainder of ptx is the sum of the values v minus the
sum of the values v′.

– (tx,k′′) ← Rcv(pp, ptx,v′′): the receiving algorithm takes as input a pre-
transaction ptx and a list of values v′′ whose sum equals the remainder of
ptx; it returns a transfer transaction tx and a list of secret keys k′′ for the
fresh coins in the output of tx, one for each value in v′′.

– Λ′ ← Ldgr(pp, Λ, tx): the ledger algorithm takes as input the ledger Λ and a
transaction tx to be included in Λ; it returns an updated ledger Λ′ or ⊥.

– tx ← Agg(pp, tx0, tx1): the transaction aggregation algorithm takes as input
two transactions tx0 and tx1 whose input coin lists are disjoint and whose
output coin lists are disjoint; it returns a transaction tx whose supply is the
sum of the supplies of tx0 and tx1 and whose input and output coin list is the
cut-through of tx0.in ‖ tx1.in and tx0.out ‖ tx1.out.

We say that an aggregate cash system CASH is correct if its procedures
Setup, Mint, Send, Rcv, Ldgr, and Agg behave as expected with overwhelming
probability (that is, we allow that with negligible probability things can go wrong,
typically, because an algorithm could generate the same coin twice). We give a
formal definition that uses two auxiliary procedures: Cons, which checks if a list
of coins C is consistent with respect to values v and keys k; and Ver, which given
as input a ledger or a (pre-)transaction determines if they respect some notion
of cryptographic validity.

Definition 9 (Correctness). An aggregate cash system CASH is correct if
there exist procedures Ver(·, ·) and Cons(·, ·, ·, ·) such that for any vmax ∈ N and
(not necessarily p.p.t.) AMint,ASend,ARcv,AAgg and ALdgr the following functions
are overwhelming in λ: Pr

[
(pp, Λ) ← Setup(1λ, vmax) : Ver(pp, Λ)

]

Pr

⎡
⎣
(pp, Λ) ← Setup(1λ, vmax)
v ← AMint(pp, Λ)
(tx,k) ← Mint(pp,v)

: v ∈ [0, vmax]∗ ⇒
⎛
⎝

Ver(pp, tx) ∧ tx.in = () ∧
tx.sply =

∑
v ∧

Cons(pp, tx.out,v,k)

⎞
⎠

⎤
⎦

Pr

⎡
⎢⎢⎢⎢⎣

(pp, Λ) ← Setup(1λ, vmax)
(C,v,k,v′) ← ASend(pp, Λ)

(ptx,k′) ← Send(pp, (C,v,k),v′) :

(
Cons(pp,C,v,k) ∧ v ‖v′ ∈ [0, vmax]∗
∧ ∑

v − ∑
v′ ∈ [0, vmax]

)

⇒
⎛
⎝

Ver(pp, ptx) ∧ ptx.in = C ∧
ptx.rmdr =

∑
v − ∑

v′ ∧
Cons(pp, ptx.chg,v′,k′)

⎞
⎠

⎤
⎥⎥⎥⎥⎦

Aggregate Cash Systems 673

Fig. 7. Game formalizing resistance to inflation of a cash system CASH.

Pr

⎡
⎢⎢⎣

(pp, Λ) ← Setup(1λ, vmax)
(ptx,v′′) ← ARcv(pp, Λ)
(tx,k′′) ← Rcv(pp, ptx,v′′) :

(
Ver(pp, ptx) ∧ v′′ ∈ [0, vmax]∗ ∧ ptx.rmdr =

∑
v′′)

⇒
⎛
⎝

Ver(pp, tx) ∧ tx.sply = 0 ∧
tx.in = ptx.in ∧ ptx.chg ⊆ tx.out ∧
Cons(pp, tx.out − ptx.chg,v′′,k′′)

⎞
⎠

⎤
⎥⎥⎦

Pr

⎡
⎢⎢⎢⎢⎣

(pp, Λ) ← Setup(1λ, vmax)
(tx0, tx1) ← AAgg(pp, Λ)
tx ← Agg(pp, tx0, tx1) :

(
Ver(pp, tx0) ∧ tx0.in ∩ tx1.in = () ∧
Ver(pp, tx1) ∧ tx0.out ∩ tx1.out = ()

)

⇒
⎛
⎝

Ver(pp, tx) ∧ tx.sply = tx0.sply + tx1.sply ∧
tx.in = (tx0.in ‖ tx1.in) − (tx0.out ‖ tx1.out) ∧
tx.out = (tx0.out ‖ tx1.out) − (tx0.in ‖ tx1.in)

⎞
⎠

⎤
⎥⎥⎥⎥⎦

Pr

⎡
⎢⎢⎢⎢⎣

(pp, Λ) ← Setup(1λ, vmax)
(Λ, tx) ← ALdgr(pp, Λ)
Λ′ ← Ldgr(pp, Λ, tx) :

(
Ver(pp, Λ) ∧ Ver(pp, tx) ∧
tx.in ⊆ Λ.out ∧ tx.out ∩ Λ.out = ()

)

⇒
⎛
⎝

Λ′ 	= ⊥ ∧ Ver(pp, Λ′) ∧
Λ′.out = (Λ.out − tx.in) ‖ tx.out ∧
Λ′.sply = Λ.sply + tx.sply

⎞
⎠

⎤
⎥⎥⎥⎥⎦

3.2 Security Definitions

Security against inflation. A sound payment system must ensure that the only
way money can be created is via the supply of transactions, typically minting
transactions. This means that for any tx the total value of the output coins
should be equal to the sum of the total value of the input coins plus the supply
tx.sply of the transaction. Since coin values are not deducible from a transaction
(this is one of the privacy features of such a system), we define the property at
the level of the ledger Λ.

We say that a cash system is resistant to inflation if no adversary can spend
coins from Λ.out worth more than Λ.sply. The adversary’s task is thus to create
a pre-transaction whose remainder is strictly greater than Λ.sply; validity of the
pre-transaction is checked by completing it to a transaction via Rcv and adding
it to the ledger via Ldgr. This is captured by the definition below.

Definition 10 (Inflation-resistance). We say that an aggregate cash system
CASH is secure against inflation if for any vmax and any p.p.t. adversary A,

AdvinflCASH,A(λ, vmax) := Pr
[
INFLCASH,A(λ, vmax) = true

]
= negl(λ),

where INFLCASH,A(λ, vmax) is defined in Fig. 7.

674 G. Fuchsbauer et al.

Fig. 8. Game formalizing resistance to coin theft of a cash system CASH.

Security against coin theft. Besides inflation, which protects the soundness
of the system as a whole, the second security notion protects individual users.
It requires that only a user can spend coins belonging to him, where ownership
of a coin amounts to knowledge of the coin secret key. This is formalized by
the experiment in Fig. 8, which proceeds as follows. The challenger sets up the
system and maintains the ledger Λ throughout the game (we assume that the
consensus protocol provides this). The adversary can add any valid transaction
to the ledger through an oracle Ledger.

The challenger also simulates an honest user and manages her coins; in par-
ticular, it maintains a list Hon, which represents the coins that the honest user
expects to own in the ledger. The game also maintains two hash tables Val and
Key that map coins produced by the game to their values and keys. We write e.g.
Val(C) := v to mean that the pair (C, v) is added to Val and let Val(C) denote
the value v for which (C, v) is in Val. This naturally generalizes to lists letting
Val(C) be the list v such that (Ci, vi) is in Val for all i.

Aggregate Cash Systems 675

The adversary can interact with the honest user and the ledger using the
following oracles:

– Mint is an oracle that mints coins for the honest user. It takes as input a
vector of values v, creates a minting transaction tx together with the secret
keys of the output coins, adds tx to the ledger and appends the newly created
coins to Hon.

– Receive lets the adversary send coins to the honest user. The oracle takes
as input a pre-transaction ptx and output values v; it completes ptx to a
transaction tx creating output coins with values v, adds tx to the ledger, and
appends the newly created coins to Hon.

– Send lets the adversary make an honest user send coins to it. It takes as
input a list C of coins contained in Hon and a list of change values v′; it
also checks that none of the coins in C has been queried to Send before (an
honest user does not double-spend). It returns a pre-transaction ptx spending
the coins from C and creating change output coins with values v′. The oracle
only produces a pre-transaction and returns it to the adversary, but it does
not alter the ledger. This is why the list Hon of honest coins is not altered
either; in particular, the sent coins C still remain in Hon.

– Ledger lets the adversary commit a transaction tx to the ledger. If the trans-
action output contains the (complete) set of change coins of a pre-transaction
ptx previously sent to the adversary, then these change coins are added to Hon,
while the input coins of ptx are removed from Hon.

Note that the list Hon represents the coins that the honest user should con-
sider hers, given the system changes induced by the oracle calls: coins received
directly from the adversary via Receive or as fresh coins via Mint are added
to Hon. Coins sent to the adversary in a pre-transaction ptx via Send are only
removed once all change coins of ptx have been added to the ledger via Ledger.
Note also that, given these oracles, the adversary can simulate transfers between
honest users. It can simply call Send to receive an honest pre-transaction ptx
and then call Receive to have the honest user receive ptx.

The winning condition of the game is now simply that Hon does not reflect
what the honest user would expect, namely Hon is not fully contained in the
ledger (because the adversary managed to spend a coin that is still in Hon,
which amounts to stealing it from the honest user).

Definition 11 (Theft-resistance). We say that an aggregate cash system
CASH is secure against coin theft if for any vmax and any p.p.t. adversary A,

AdvstealCASH,A(λ, vmax) := Pr
[
STEALCASH,A(λ, vmax) = true

]
= negl(λ),

where STEALCASH,A(λ, vmax) is defined in Fig. 8.

Transaction indistinguishability. An important security feature that Mim-
blewimble inherits from Confidential Transactions [Max15] is that the amounts
involved in a transaction are hidden so that only the sender and the receiver

676 G. Fuchsbauer et al.

Fig. 9. Game formalizing transaction indistinguishability of a cash system CASH.

know how much money is involved. In addition, a transaction completely hides
which inputs paid which outputs and which coins were change and which were
added by the receiver.

We formalize this via the following game, specified in Fig. 9. The adversary
submits two sets of values (v0,v′

0,v
′′
0) and (v1,v′

1,v
′′
1) representing possibles

values for input coins, change coins and receiver’s coins of a transaction. The
game creates a transaction with values either from the first or the second set and
the adversary must guess which. For the transaction to be valid, we must have∑

vb =
∑

v′
b +

∑
v′′

b for both b = 0, 1. Moreover, transactions do not hide the
number of input and output coins. We therefore also require that |v0| = |v1| and
|v′

0| + |v′′
0 | = |v′

1| + |v′′
1 | (note that e.g. the number of change coins can differ).

Definition 12 (Transaction indistinguishability). We say that an aggre-
gate cash system CASH is transaction-indistinguishable if for any vmax and any
p.p.t. adversary A,

Advtx-indCASH,A(λ, vmax) := 2 · ∣
∣ Pr

[
TX-INDCASH,A(λ, vmax) = true

] − 1
2

∣
∣ = negl(λ),

where TX-INDCASH,A(λ, vmax) is defined in Fig. 9.

4 Construction of an Aggregate Cash System

4.1 Description

Let COM be an additively homomorphic commitment scheme such that for cp ←
COM.Setup(MainSetup(1λ)) we have value space Vcp = Zp with p of length λ
(such as the Pedersen scheme). Let SIG be an aggregate signature scheme that
is compatible with COM. For vmax ∈ N, let Rvmax be the (efficiently computable)
relation on commitments with values at most vmax, i.e.,

Aggregate Cash Systems 677

Rvmax :=
{(

mp, (cp, C), (v, r)
) ∣∣ mp=mpcp ∧ C=COM.Cmt(cp, v, r) ∧ v ∈ [0, vmax]

}

where mpcp are the main parameters contained in cp (recall that we assume
that for cp ∈ [COM.Setup(mp)], mp is contained in cp). Let Π be a simulation-
extractable NIZK proof system for the family of relations R = {Rvmax }vmax

.
For notational simplicity, we will use the following vectorial notation for COM,

R, and Π: given C, v, and r with |C| = |v| = |r|, we let

COM.Cmt(cp,v, r) :=
(
COM.Cmt(cp, vi, ri)

)|v|
i=1,

Rvmax((cp,C), (v, r)) :=
∧|C|

i=1 Rvmax(mpcp, (cp, Ci), (vi, ri)),

Π.Prv(crs, (cp,C), (v, r)) :=
(
Π.Prv(crs, (cp, Ci), (vi, ri))

)|C|
i=1,

Π.Ver(crs, (cp,C),π) :=
∧|C|

i=1 Π.Ver(crs, (cp, Ci), πi),

and likewise for Π.SimPrv. We also assume that messages are the empty string ε if
they are omitted from SIG.Ver and SIG.Agg; that is, we overload notation and let

SIG.Ver(sp, (Xi)n
i=1, σ) := SIG.Ver(sp, ((Xi, ε))n

i=1, σ)

and likewise for SIG.Agg
(
sp, ((X0,i)n0

i=1, σ0), ((X1,i)n1
i=1, σ1)

)
.

From COM, SIG and Π we construct an aggregate cash system
MW[COM,SIG,Π] as follows. The public parameters pp consist of commitment
and signature parameters cp, sp, and a CRS for Π. A coin key k ∈ Kpp is an ele-
ment of the randomness space Rcp of the commitment scheme, i.e., Kpp = Rcp.
A coin C = COM.Cmt(cp, v, k) is a commitment to the value v of the coin using
the coin key k as randomness. Hence, Cpp = Ccp.

A transaction tx = (s,C, Ĉ,K) consists of a supply tx.sply = s, an input
coin list tx.in = C, an output coin list tx.out = Ĉ, and a kernel K. The kernel
K is a triple (π,E, σ) where π is a list of range proofs for the output coins, E
is a non-empty list of signature-verification keys (which are of the same form
as commitments) called kernel excesses, and σ is an (aggregate) signature. We
define the excess of the transaction tx, denoted Exc(tx), as the sum of outputs
minus the sum of inputs, with the supply s converted to an input coin with
k = 0:

Exc(tx) :=
∑

Ĉ − ∑
C − COM.Cmt(cp, s, 0). (4)

Intuitively, Exc(tx) should be a commitment to 0, as the committed input and
output values of the transaction should cancel out; this is evidenced by giving a
signature under key Exc(tx) (which could be represented as the sum of elements
(Ei) due to aggregation; see below).

A transaction tx = (s,C, Ĉ,K) with K = (π,E, σ) is said to be valid if all
range proofs are valid, Exc(tx) =

∑
E, and σ is a valid signature for E (with all

messages ε).10

10 If E in a transaction tx consists of a single element, it must be E = Exc(tx), so E
could be omitted from the transaction; we keep it for consistency.

678 G. Fuchsbauer et al.

Fig. 10. Auxiliary algorithms for the MW aggregate cash system.

When a user wants to make a payment of an amount ρ, she creates a trans-
action tx with input coins C of values v with

∑
v ≥ ρ and with output coins a

list of fresh change coins of values v′ so that
∑

v′ =
∑

v − ρ. She also appends
one more special coin of value ρ to the output. The pre-transaction ptx is then
defined as this transaction tx, the remainder ptx.rmdr := ρ and the key for the
special coin.

When receiving a pre-transaction ptx = (tx, ρ, k), the receiver first checks
that tx is valid and that k is a key for the special coin C ′ := tx.out[|tx.out|] of
value ρ. He then creates a transaction tx′ that spends C ′ (using its key k) and
creates coins of combined value ρ. Aggregating tx and tx′ yields a transaction tx′′

with tx′′.sply = 0, tx′′.in = ptx.in and tx′′.out containing ptx.chg and the freshly
created coins. The receiver then submits tx′′ to the ledger.

Aggregate Cash Systems 679

Fig. 11. The MW aggregate cash system. (Recall that algorithms return ⊥ when one
of their subroutines returns ⊥.)

The ledger accepts a transaction if it is valid (as defined above) and if its
input coins are contained in the output coin list of the ledger (which corresponds
to the UTXO set in other systems). We do not consider any other conditions
related to the consensus mechanism, such as fees being included in a transaction
to incentivize its inclusion in the ledger or a proof-of-work being included in a
minting transaction.

In Fig. 10 we first define auxiliary algorithms that create coins and transac-
tions and verify their validity by instantiating the procedures Ver and Cons from
Definition 9. Using these we then formally define MW[COM,SIG,Π] in Fig. 11.

680 G. Fuchsbauer et al.

Correctness. We start with showing some properties of the auxiliary algo-
rithms in Fig. 10. For any v ∈ [0, vmax]∗ and (C,k,π) ← Coin(pp,v), we have
Cons(pp,C,v,k) with overwhelming probability due to Lemma3. Moreover, cor-
rectness of SIG and Π implies that MkTx run on consistent (C,v,k) and values
v̂ ∈ [0, vmax]∗ with

∑
v̂ ≥ ∑

v produces a tx which is accepted by Ver with
overwhelming probability and whose supply is the difference

∑
v − ∑

v̂.
We now show that the protocol MW[COM,SIG,Π] described in Fig. 11 satisfies

Definition 9. It is immediate that an empty ledger output by Setup(1λ, vmax)
verifies. As Mint invokes MkTx on empty inputs and output values v, correctness
of Mint follows from correctness of MkTx. Correctness of Send also follows from
correctness of MkTx when the preconditions on the values, consistency of the
coins and the supply, and

∑
v−∑

v′ = ρ ∈ [0, vmax] hold (note that ptx.rmdr =
ρ). Therefore, with overwhelming probability the pre-transaction is valid, and
the change coins are consistent. Correctness of Agg is straightforward: it returns
a transaction with the desired supply, input, and output coin list whose validity
follows from correctness of SIG.Agg and Π.Ver and

∑
E0+

∑
E1 = Ĉ0−∑

C0−
Cmt(cp, s0, 0) + Ĉ1 − ∑

C1 − Cmt(cp, s1, 0) =
∑

Ĉ− ∑
C− Cmt(cp, s0 + s1, 0),

where the first equation follows from Ver(pp, tx0) and Ver(pp, tx0) and the second
from the properties of cut-through.

For any adversary ALdgr returning (Λ, tx), if Ver(pp, Λ) = true, then Λ.in = ()
and Λ is valid when interpreted as a transaction. Since the input list of Λ is empty,
Ldgr(pp, Λ, tx) = Agg(pp, Λ, tx) and so Ldgr is correct because Agg is.

Finally, we consider Rcv, which is slightly more involved. Consider an
adversary ARcv returning (ptx,v′′) with ptx = (tx, ρ, k′) and let (tx′′,k′′) ←
MW.Rcv(pp, ptx,v′′). First, the preconditions trivially guarantee that the out-
put is not ⊥. Consider the call (tx′,k′′) ← MW.MkTx(pp, (C ′, ρ, k′),v′′)
inside MW.Rcv. We claim that with overwhelming probability, (tx.in ‖ tx′.in) ∩
(tx.out ‖ tx′.out) = (C ′). First, tx.in∩tx.out = (), as otherwise Ver(pp, tx) = false
and Ver(pp, ptx) = false. By definition of MkTx, tx′.in = (C ′) and by Lemma 3,
tx′.out ∩ (tx.in ‖ (C ′)) = () with overwhelming probability. Hence,

(tx.in ‖ tx′.in) ∩ (tx.out ‖ tx′.out) = (C ′) ∩ tx.out = (C ′)

and by correctness of Agg, C ′ is the only coin removed by cut-through during
the call tx′′ ← MW.Agg(pp, tx, tx′). Thus, the input coin list of tx′′ is the same
as that of ptx and the change is contained in the output coin list of tx′′. The
pre-conditions Ver(pp, ptx) and

∑
v′′ = ρ imply that tx.sply = 0 and tx′.sply =

0, respectively. Hence, tx′′.sply = 0 by correctness of Agg. Validity of tx′′ and
consistency of the new coins follow from correctness of Agg (and validity of the
output of MkTx).

4.2 Security

We show that MW[COM,SIG,Π] is inflation-resistant, resistant to coin theft and
that it satisfies transaction indistinguishability.

Aggregate Cash Systems 681

Theorem 13 (Inflation-resistance (Definition 10)). Assume that (COM,
SIG) is EUF-NZO-secure and that Π is zero-knowledge and simulation-
extractable. Then the aggregate cash system MW[COM,SIG,Π] is secure against
inflation. More precisely, for any vmax and any p.p.t. adversary A, there exists
a negligible function νA and p.p.t. adversaries B, Bzk and Bse such that

AdvinflMW,A(λ, vmax)

≤ Adveuf-nzoCOM,SIG,B(λ) + AdvzkΠ,Rvmax ,Bzk
(λ) + Advs-extΠ,Rvmax ,Bse

(λ) + νA(λ).

The full proof can be found in the full version [FOS18]; we give a sketch
here. Inflation-resistance follows from EUF-NZO security and extractability of
Π (we do not actually require simulation-extractability, but instead of formally
defining extractability we simply relied on Definitions 7 and 8 implying it).

Consider an adversary A in game INFLMW in Fig. 7. To win the game, A
must return a valid ledger Λ, a valid ptx and v with

(i) ptx.in ⊆ Λ.out and (ii)
∑

v = ptx.rmdr

(otherwise Rcv and/or Ldgr return ⊥). All coins in Λ.out, ptx.in and ptx.chg
have valid range proofs: the former two in the ledger’s kernel KΛ = (πΛ,EΛ, σΛ)
(by (i)), and ptx.chg in the kernel of txptx contained in ptx. From these proofs
the reduction extracts the values vΛ.out,vptx.in,vptx.chg ∈ [0, vmax]∗ and keys
kΛ.out,kptx.in,kptx.chg ∈ K∗

pp of every coin. We first argue that

(iii)
∑

vΛ.out − Λ.sply = 0 and (iv)
∑

vptx.chg + ptx.rmdr − ∑
vptx.in = 0.

If (iii) was not the case then (v∗ :=
∑

vΛ.out − Λ.sply, k∗ :=
∑

kΛ.out) would
be a non-zero opening of the excess Exc of Λ. Since furthermore Exc =

∑
EΛ and

σΛ is valid for EΛ, the tuple (EΛ, σΛ, (v∗, k∗)) would be an EUF-NZO solution.
Likewise, a non-zero left-hand side of (iv) can be used together with the

kernel of txptx to break EUF-NZO. From (i)–(iv) we now get

∑
v

(ii)
= ptx.rmdr

(iv)
=

∑
vptx.in − ∑

vptx.chg ≤ ∑
vptx.in

(i)

≤ ∑
vΛ.out

(iii)
= Λ.sply,

which contradicts the fact that A won INFLMW, as this requires
∑

v > Λ.sply.
(The function νA accounts for (iii) (or (iv)) only holding over Zp but not over Z;
this would imply |Λ.out| ≥ p/vmax, which can only happen with negligible prob-
ability νA for a p.p.t. A.)

Theorem 14 (Theft-resistance (Definition 11)). Assume that the pair
(COM,SIG) is EUF-CRO-secure and that Π is zero-knowledge and simulation-
extractable. Then the aggregate cash system MW[COM,SIG,Π] is secure against
coin theft. More precisely, for any vmax and any p.p.t. adversary A, which, via
its oracle calls, makes the challenger create at most hA coins and whose queries
(C,v′) to Send satisfy |v′| ≤ nA, there exists a negligible function ν, a p.p.t.

682 G. Fuchsbauer et al.

adversary B making a single signing query, and p.p.t. adversaries Bzk and Bse

such that

AdvstealMW,A(λ, vmax)

≤ hA(λ)·nA(λ)·(Adveuf-croCOM,SIG,B(λ)+AdvzkΠ,Rvmax ,Bzk
(λ)+Advs-extΠ,Rvmax ,Bse

(λ)
)
+ν(λ).

The proof can be found in the full version [FOS18]. Here we give some proof
intuition. We first assume that all coins created by the challenger are different.
By Lemma 3 the probability ν(λ) that two coins collide is negligible.

Since in game STEAL the ledger is maintained by the challenger we have:

(i) the kernel of Λ contains a valid range proof for each coin in Λ.out.

In order to win the game, the adversary must at some point steal some coin C̃
from the challenger, by creating a transaction tx∗ with C̃ among its inputs, that
is, tx∗ = (s,C, Ĉ, (π,E, σ)) with C̃ ∈ C. For tx∗ to be accepted to the ledger,
we must have:

(ii) C ⊆ Λ.out;
(iii) tx∗ is valid, meaning

(a) the signature σ verifies under key list E;
(b)

∑
E =

∑
Ĉ − ∑

C − Cmt(cp, s, 0);
(c) all proofs π for coins Ĉ are valid.

From (i), (ii) and (iii)(c) we have that all coins in C and Ĉ have valid proofs,
which means we can extract (except for C̃, as we will see later) their values v
and v̂ and keys k and k̂. This means, we can write (iii)(b) as:

∑
E = −C̃ + Cmt(cp,

∑
v̂ − ∑

v − s
︸ ︷︷ ︸

=:v∗

,
∑

k̂ − ∑
k

︸ ︷︷ ︸
=:k∗

). (5)

Now, if we had set C̃ = C∗ with C∗ a challenge for EUF-CRO then (iii)(a) and
Eq. (5) together would imply that (E, σ, (v∗, k∗)) is a solution for C∗ in EUF-
CRO. So the basic proof idea is to embed a challenge C∗ as one of the honest
coins C̃ created in the system and hope that the adversary will steal C̃. When
C̃ is first created, it can be during a call to Mint, Send or Receive, each of
which will create a transaction tx using MW.MkTx; we thus set tx.out[j] = C̃ for
some j. Now tx must contain a range proof for C̃, which we produce using the
zero-knowledge simulator, and a signature under verification key

∑
tx.out − ∑

tx.in =
(∑

i�=j tx.out[i] − ∑
tx.in

)
+ C̃. (6)

The coin keys of tx.in are input to MW.MkTx and those of (tx.out[i])i�=j are
created by it. So we know the secret key a for the expression in parentheses in
(6) and can therefore make a query Sign′(a) to the related-key signing oracle to
obtain the signature.

Aggregate Cash Systems 683

While this shows that simulating the creation of coin C̃ is easily dealt with,
what complicates the proof is when the adversary queries Send(C,v′) with
C̃ ∈ C, which should produce a pre-transaction p̃tx. Since C̃ is a (say the j-th)
input of p̃tx, this would require a signature related to −C∗ for which we cannot
use the Sign′ oracle. Instead, we pick one random, say the ı̃-th, change coin C
and embed the challenge C∗ in C as well. (If there are no change coins, we abort;
we justify this below.) To complete p̃tx, we now need a signature for key

∑
i�=ı̃ tx.out[i] + C − ∑

i�=j tx.in[i] − C̃,

and since the two occurrences of C∗ cancel out, the simulation knows the signing
key of the above expression. (The way the reduction actually embeds C∗ in
a coin C̃ which in the game is supposed to have value v is by setting C̃ :=
C∗ + Cmt(cp, v, k).)

Let’s look again at the transaction tx∗ with which the adversary steals C̃:
for tx∗ to actually steal C̃, we must have p̃tx.chg �⊆ tx∗.out (where p̃tx was the
pre-transaction sending C̃) as otherwise tx∗ could simply be a transaction that
completes p̃tx. If we were lucky when choosing C and C is one of the coins that
the adversary did not include in tx∗.out, then tx∗ satisfies all the properties in
(iii) above, in particular (5), meaning we have a solution to EUF-CRO.

Unfortunately, there is one more complication: the adversary could have
included C as one of the inputs of tx∗, in which case we cannot solve EUF-CRO,
since (5) would be of the form

∑
E = −2 · C̃ + Cmt(cp, v∗, k∗). (7)

But intuitively, in this case the adversary has also “stolen” C and if we had
randomly picked C when first embedding C∗ then we could also solve EUF-
CRO.

Unfortunately, “stealing” a change output that has not been added to Hon
yet does not constitute a win according to game STEAL. To illustrate the issue,
consider an adversary making the following queries (where all coins C1 through
C5 have value 1), which the sketched reduction cannot use to break EUF-CRO:

– Ledger(tx) with tx = (2, (), (C1, C2),K) → Λ.out = (C1, C2), Hon = ()
– Mint((1)), creating coin C3 → Λ.out = (C1, C2, C3), Hon = (C3)
– Send((C3), (1, 1)), creating C4, C5 → Λ.out = (C1, C2, C3), Hon = (C3)
– Ledger((0, (C1), (C4),K ′)) → Λ.out = (C2, C3, C4), Hon = (C3)
– Ledger((0, (C2), (C5),K ′′)) → Λ.out = (C3, C4, C5), Hon = (C3)
– Ledger((0, (C3, C4, C5), (C6),K∗) =: tx∗) → Λ.out = (C6), Hon = (C3)

Note that all calls Ledger(txi) leave Hon unchanged, since for ptx created during
the Send call we have (C4, C5) = ptx.chg �⊆ txi.out. The adversary wins the game
since it stole C3, so the reduction must have set C̃ = C3; moreover, in order to
simulate the Send query, it must set C to C4 or C5. But now tx∗ is of the form
as in (7), which the reduction cannot use to break EUF-CRO.

684 G. Fuchsbauer et al.

The solution to making the reduction always work is to actually prove a
stronger security notion, where the adversary not only wins when it spends a
coin from Hon (in a way that is not simply a completion of a pre-transaction
obtained from Send), but also if the adversary spends a change output which
has not been included in Hon yet. Let us denote the set of all such coins by
Chg and stress that if the adversary steals a coin from Chg, which the reduction
guessed correctly, then there exists only one coin with the challenge embedded
in it and so the situation as in (7) cannot arise.

In the proof of this strengthened notion the reduction now guesses the first
coin that was stolen from Chg or Hon and if both happen in the same transaction
it only accepts a coin from Chg as the right guess. (In the example above, the
guesses C̃ = C4 or C̃ = C5 would be correct.)

It remains to argue that the reduction can abort when the adversary makes
a query Send(C, ()) with C̃ ∈ C: in this case its guess C̃ must have been wrong:
for ptx returned by this oracle call we have ptx.chg ⊆ tx.out for any tx, so ptx.in
and thus C̃ is removed from Hon whenever A makes a Ledger call (which it
must make in order to steal a coin), assuming w.l.o.g. that the adversary stops
as soon as it has made its stealing transaction.

Finally, what happens if the adversary makes a query Send(C,v′) with C ∈
C? We could embed the challenge a third time, in one of the change coins of
the pre-transaction we need to simulate. Instead of complicating the analysis,
the reduction can actually safely abort if such a query is made, since its guess
must have been wrong: Send must be queried on honest coins, so we must have
C ∈ Hon. As only the Ledger oracle can add existing coins to Hon, it must have
been queried with some tx such that p̃tx.chg ⊆ tx.out, as then p̃tx.chg C would
be added to Hon; however at the same time this removes p̃tx.in C̃ from Hon,
which means that C̃ cannot be the coin the adversary steals, because C̃ cannot
be included in Hon a second time. (As just analyzed for C above, the only way
to add an existing coin C̃ to Hon is if C̃ was created as change during a query
ptx ← Send(C,v). But since C̃ had already been in Hon, there must have been
a call Ledger(tx) with tx completing ptx, after which ptx is discarded from the
list Ptx of pre-transactions awaiting inclusion in the ledger; see Fig. 8).

Theorem 15 (Transaction indistinguishability (Definition 12)). Assume
that COM is a homomorphic hiding commitment scheme, SIG a compatible sig-
nature scheme, and Π is a zero-knowledge proof system. Then the aggregate
cash system MW[COM,SIG,Π] is transaction-indistinguishable. More precisely,
for any vmax and any p.p.t. adversary A which makes at most qA queries to its
oracle Tx, there exist p.p.t. adversaries Bzk and Bhid such that

Advtx-indMW,A(λ, vmax) ≤ AdvzkΠ,Rvmax ,Bzk
(λ) + qA · AdvhidCOM,Bhid

(λ).

The proof can be found in the full version [FOS18] and intuitively follows
from commitments being hiding and proofs zero-knowledge, and that the coin
C∗ = Cmt(cp, ρ, k∗) that is contained in a pre-transaction together with its key
k∗ (C∗ is then spent by Rcv and eliminated from the final transaction by cut-
through) acts as a randomizer between E′ and E′′. We moreover use the fact

Aggregate Cash Systems 685

that because COM is homomorphic, for any values with
∑

v′
0 +

∑
v′′
0 − ∑

v0 =∑
v′
1 +

∑
v′′
1 − ∑

v1, the tuple
(
C := Cmt(cp,vb,k),C′ := Cmt(cp,v′

b,k
′) ‖C′′ := Cmt(cp,v′′

b , k′′), k
)

(8)

hides the bit b even though k :=
∑

k′ +
∑

k′′ − ∑
k is revealed.

We prove Theorem 15 by showing that transactions returned by oracle Tx
when b = 0 are indistinguishable from transactions returned when b = 1. These
are of the form

tx∗ =
(
0,C,C′ ‖C′′, (π′ ‖π′′, (E′, E′′), σ∗)

)
, (9)

where E′ =
∑

C′ + C∗ − ∑
C and E′′ =

∑
C′′ − C∗, and σ∗ is an aggregation

of signatures σ′ and σ′′ under keys r′ :=
∑

k′ + k∗ − ∑
k and r′′ :=

∑
k′′ − k∗,

respectively. We thus have E′ = Cmt(cp, 0, r′) and E′′ = Cmt(cp, 0, r′′).
Together with the fact that k∗ is uniform and never revealed, indistinguisha-

bility of (8) implies indistinguishability of tx∗, as we can create a tuple as in
(9) from a tuple as in (8): simulate the proofs π′ ‖π′′, choose a random r∗

and set E′ = Cmt(cp, 0, r∗), E′′ = Cmt(cp, 0, k − r∗), σ′ ← Sign(sp, r∗, ε) and
σ′′ ← Sign(sp, k − r∗, ε) and aggregate σ′ and σ′′.

5 Instantiations

We consider two instantiations of our system MW. In both of them the commit-
ment scheme is instantiated by the Pedersen scheme PDS. The signature scheme
is instantiated either by the Schnorr signature scheme SCH or by the BLS sig-
nature scheme BLS. We recall these three schemes, as well as the Discrete Loga-
rithm and the CDH assumptions, on which they rely, in the full version [FOS18].
In contrast to COM and SIG, there are no compatibility or joint security require-
ments for the proof system. In practice, the Bulletproofs scheme [BBB+18] could
be used, although under which assumptions it satisfies Definition 8 remains to
be studied.

Security of Pedersen-Schnorr. Our security proofs for the combination
Pedersen-Schnorr are in the random oracle model and make use of the standard
rewinding technique of Pointcheval and Stern [PS96] for extracting discrete log-
arithms from a successful adversary. This requires some particular care since in
both the EUF-NZO and the EUF-CRO games, the adversary can output mul-
tiple signatures for distinct public keys for which the reduction must extract
discrete logarithms. Fortunately, a generalized forking lemma by Bagherzandi,
Cheon, and Jarecki [BCJ08] shows that for Schnorr signatures, one can perform
multiple extractions efficiently. From this, we can prove the following two lem-
mas, whose proofs can be found in the full version [FOS18].

Lemma 16. The pair (PDS,SCH) is EUF-NZO-secure in the random oracle
model under the DL assumption. More precisely, for any p.p.t. adversary A
making at most qh random oracle queries and returning a forgery for a list

686 G. Fuchsbauer et al.

of size at most N , there exists a p.p.t. adversary B running in time at most
8N2qh/δA · ln(8N/δA) · tA, where δA = Adveuf-nzoPDS,SCH,A(λ) and tA is the running
time of A, such that

Adveuf-nzoPDS,SCH,A(λ) ≤ 8 · AdvdlGrGen,B(λ).

Lemma 17. The pair (PDS,SCH) is EUF-CRO-secure in the random oracle
model under the DL assumption. More precisely, for any p.p.t. adversary A
making at most qh random oracle queries and qs signature queries, returning a
forgery for a list of size at most N , and such that δA = Adveuf-croPDS,SCH,A(λ) ≥ 2qs/p,
there exists a p.p.t. adversary B running in time at most 16N2(qh + qs)/δA ·
ln(16N/δA) · tA, where tA is the running time of A, such that

Adveuf-croPDS,SCH,A(λ) ≤ 8 · AdvdlGrGen,B(λ) +
qs + 8

p
.

Corollary 18. MW[PDS,SCH,Π] with Π zero-knowledge and simulation-
extractable is inflation-resistant and theft-resistant in the random oracle model
under the DL assumption.

Security of Pedersen-BLS. The security proofs for the Pedersen-BLS pair are
also in the random oracle model but do not use rewinding. They are reminiscent
of the proof of [BGLS03, Theorem 3.2] and can be found in the full version
[FOS18]. Note that EUF-CRO-security is only proved for adversaries making
a constant number of signing queries. Fortunately, adversary B constructed in
Theorem 14 makes a single signing query.

Lemma 19. The pair (PDS,BLS) is EUF-NZO-secure in the random oracle
model under the CDH assumption. More precisely, for any p.p.t. adversary A
making at most qh random oracle queries and returning a forgery for a list
of size at most N , there exists a p.p.t. adversary B running in time at most
tA + (qh + N + 2)tM , where tA is the running time of A and tM is the time of
a scalar multiplication in G, such that

AdvcdhGrGen,B(λ) = Adveuf-nzoPDS,BLS,A(λ).

Lemma 20. The pair (PDS,BLS) is EUF-CRO-secure in the random oracle
model under the CDH assumption. More precisely, for any p.p.t. adversary A
making at most qh random oracle queries and qs = O(1) signature queries and
returning a forgery for a list of size at most N , there exists a p.p.t. adversary B
running in time at most tA + (2qh + 3qs + N + 2)tM , where tA is the running
time of A and tM is the time of a scalar multiplication in G, such that

AdvcdhGrGen,B(λ) ≥ 1
4 · (2N)qs

· Adveuf-croPDS,BLS,A(λ).

Corollary 21. MW[PDS,BLS,Π] with Π zero-knowledge and simulation-
extractable is inflation-resistant and theft-resistant in the random oracle model
under the CDH assumption.

Aggregate Cash Systems 687

Acknowledgements. The first author is supported by the French ANR EfTrEC
project (ANR-16-CE39-0002) and the MSR-Inria Joint Centre. The second author
is supported by ERC grant 639554 (project aSCEND).

References

[AKR+13] Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Eval-
uating user privacy in Bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol.
7859, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39884-1 4

[Bac13] Back, A.: Bitcoins with homomorphic value (validatable but encrypted),
October 2013. BitcoinTalk post. https://bitcointalk.org/index.php?
topic=305791.0

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bul-
letproofs: short proofs for confidential transactions and more. In: S&P 2018,
pp. 315–334 (2018)

[BBSU12] Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better—how to make
Bitcoin a better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 399–414. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32946-3 29

[BCG+14] Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from
Bitcoin. In: S&P 2014, pp. 459–474 (2014)

[BCJ08] Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the
discrete logarithm assumption and a generalized forking lemma. In: ACM
CCS 2008, pp. 449–458 (2008)

[BGLS03] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably
encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-39200-9 26

[BLS01] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pair-
ing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 30

[BNM+14] Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.:
Mixcoin: anonymity for Bitcoin with accountable mixes. In: Christin, N.,
Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 31

[BNN07] Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures.
In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 411–422. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73420-8 37

[DDO+01] De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.:
Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44647-8 33

[FOS18] Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: a crypto-
graphic investigation of Mimblewimble. Cryptology ePrint Archive, Report
2018/1039 (2018). https://eprint.iacr.org/2018/1039

[GCKG14] Gervais, A., Capkun, S., Karame, G.O., Gruber, D.: On the privacy pro-
visions of bloom filters in lightweight Bitcoin clients. In: ACSAC 2014, pp.
326–335 (2014)

https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1007/978-3-642-39884-1_4
https://bitcointalk.org/index.php?topic=305791.0
https://bitcointalk.org/index.php?topic=305791.0
https://doi.org/10.1007/978-3-642-32946-3_29
https://doi.org/10.1007/978-3-642-32946-3_29
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://eprint.iacr.org/2018/1039

688 G. Fuchsbauer et al.

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and con-
stant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/
10.1007/11935230 29

[HAB+17] Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tum-
bleBit: an untrusted Bitcoin-compatible anonymous payment hub. In:
NDSS (2017)

[Jed16] Jedusor, T.E.: Mimblewimble (2016). https://download.wpsoftware.net/
bitcoin/wizardry/mimblewimble.txt

[KKM14] Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in Bitcoin
using P2P network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 469–485. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45472-5 30

[LMRS04] Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate
signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L.
(eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24676-3 5

[Max13a] Maxwell, G.: CoinJoin: Bitcoin privacy for the real world, August 2013.
BitcoinTalk post. https://bitcointalk.org/index.php?topic=279249.0

[Max13b] Maxwell, G.: Transaction cut-through, August 2013. BitcoinTalk post.
https://bitcointalk.org/index.php?topic=281848.0

[Max15] Maxwell, G.: Confidential Transactions (2015). https://people.xiph.org/
∼greg/confidential values.txt

[MGGR13] Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous dis-
tributed E-cash from Bitcoin. In: S&P 2013, pp. 397–411 (2013)

[MPJ+13] Meiklejohn, S., et al.: A fistful of Bitcoins: characterizing payments among
men with no names. In: Internet Measurement Conference, IMC 2013, pp.
127–140 (2013)

[Nak08] Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008).
http://bitcoin.org/bitcoin.pdf

[Ped92] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable
secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
46766-1 9

[Poe16] Poelstra, A.: Mimblewimble (2016). https://download.wpsoftware.net/
bitcoin/wizardry/mimblewimble.pdf

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 33

[RMK14] Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentral-
ized coin mixing for Bitcoin. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11212-1 20

[RS13] Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transac-
tion graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 2

[RTRS18] Ruffing, T., Thyagarajan, S.A., Ronge, V., Schröder, D.: Burning zerocoins
for fun and for profit: a cryptographic denial-of-spending attack on the zero-
coin protocol. IACR Cryptology ePrint Archive, Report 2018/612 (2018)

[Sch91] Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991)

https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://doi.org/10.1007/978-3-662-45472-5_30
https://doi.org/10.1007/978-3-662-45472-5_30
https://doi.org/10.1007/978-3-540-24676-3_5
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=281848.0
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-642-39884-1_2

Aggregate Cash Systems 689

[SMD14] Saxena, A., Misra, J., Dhar, A.: Increasing anonymity in Bitcoin. In:
Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol.
8438, pp. 122–139. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44774-1 9

[SZ16] Sompolinsky, Y., Zohar, A.: Bitcoin’s security model revisited (2016).
Manuscript http://arxiv.org/abs/1605.09193

[vS13] van Saberhagen, N.: CryptoNote v 2.0 (2013). Manuscript https://
cryptonote.org/whitepaper.pdf

https://doi.org/10.1007/978-3-662-44774-1_9
https://doi.org/10.1007/978-3-662-44774-1_9
http://arxiv.org/abs/1605.09193
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

Proof-of-Stake Protocols
for Privacy-Aware Blockchains

Chaya Ganesh1(B), Claudio Orlandi1, and Daniel Tschudi1,2

1 Department of Computer Science, DIGIT, Aarhus University, Aarhus, Denmark
{ganesh,orlandi,tschudi}@cs.au.dk

2 Concordium, Aarhus, Denmark

Abstract. Proof-of-stake (PoS) protocols are emerging as one of the
most promising alternative to the wasteful proof-of-work (PoW) proto-
cols for consensus in Blockchains (or distributed ledgers). However, cur-
rent PoS protocols inherently disclose both the identity and the wealth
of the stakeholders, and thus seem incompatible with privacy-preserving
cryptocurrencies (such as ZCash, Monero, etc.). In this paper we initiate
the formal study for PoS protocols with privacy properties. Our results
include:
1. A (theoretical) feasibility result showing that it is possible to con-

struct a general class of private PoS (PPoS) protocols; and to add
privacy to a wide class of PoS protocols,

2. A privacy-preserving version of a popular PoS protocol, Ouroboros
Praos.

Towards our result, we define the notion of anonymous verifiable random
function, which we believe is of independent interest.

1 Introduction

Popular decentralized cryptocurrencies like Bitcoin [Nak08] crucially rely on the
existence of a distributed ledger, known as the Blockchain. The original protocols
used to build and maintain the Blockchain were based on proof-of-work consensus
protocols (PoW). While blockchain protocols mark a significant breakthrough in
distributed consensus, reliance on expensive PoW components result in enormous
waste of energy [OM14,CDE+16], therefore it is an important open problem
to find alternative consensus mechanisms which are less wasteful than PoW
but at the same time maintain the positive features offered by PoW. Proof-
of-stake consensus protocols (PoS) are one of the most promising technology to
replace PoW and still preserve similar robustness properties: while PoW provides
robustness assuming that a (qualified) majority of the computing power is honest,

This work was supported by the Danish Independent Research Council under Grant-ID
DFF-6108-00169 (FoCC), the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation program under grant agreement No
669255 (MPCPRO) and No 803096 (SPEC), and the Concordium Blockchain Research
Center, Aarhus University, Denmark.
c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 690–719, 2019.
https://doi.org/10.1007/978-3-030-17653-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_23

Proof-of-Stake Protocols for Privacy-Aware Blockchains 691

PoS instead relies on the assumption that a majority of the wealth in the system
is controlled by honest participants. The rationale behind PoS is that users who
have significant stakes in the system have an economic incentive in keeping the
system running according to the protocol specification, as they risk that their
stakes will become worthless if trust in the cryptocurrency vanishes. As is usual
in this research space, the initial idea of proof-of-stake appeared informally in
an online Bitcoin forum [bit11], and since then, there have been a series of
candidates for such protocols [KN12,BLMR14,BGM16]. Recently, there have
been works on formal models for proof-of-stake and protocols with provable
security guarantees [BPS16,KRDO17,GHM+17,DGKR18,BGK+18].

Consensus based on lottery. Very informally, a lottery-based consensus pro-
tocol works in the following way: some publicly verifiable “lottery” mechanism
is implemented to elect the next committee or a block “leader” who is then
allowed to add the next block to the blockchain. The probability of a user being
elected is proportional to the amount of some “scarce resource” owned by the
user. In PoW, the probability is proportional to the computing power of the
user, while in PoS it is proportional to the amount of coins the user owns. Since
the resource is scarce and cannot be replicated, Sybil attacks are prevented (e.g.,
a user cannot inflate its probability of become the block leader). This, combined
with the assumption that some majority of the resource is controlled by honest
parties guarantees that the honest participants are in charge of the blockchain,
thus guaranteeing integrity of the stored information.

Proof-of-work. In PoW, such as Bitcoin, for every block, all users try to solve
some computationally challenging puzzle. The first user to have solved the puzzle
publishes the solution together with the new block, and often together with a new
address that allows to collect the transaction fees and the block reward, which
act as economic incentives for users to participate in the consensus protocol. All
other participants can verify that the received block is valid (e.g., contains a valid
solution to the puzzle) and, if so, append it to their local view of the Blockchain.
Note that, if we assume that users are connected to each other using anonymous
communication channels (e.g., Tor), then PoW provides full anonymity i.e., given
two blocks it is hard to tell whether they came from the same user or not.

Proof-of-stake. On the other hand, PoS systems follow a different approach:
here we must assume that the Blockchain contains information about the wealth
owned by the users in the system. Then, for every block, each user has a way to
locally compute (using a pseudorandom process) whether they won the lottery.
The lottery has the property that the higher the stakes in the system, the higher
the probability of becoming the block leader or committee member. If a user
wins, then, in the case of block leadership, they publish a block together with a
proof of winning the lottery, and in the case of committee membership publish
a message along with proof of lottery win. As in PoW, it is important that
the other users in the system can efficiently verify the correctness of this claim,
that is, the user claiming to be the block leader has in fact won the lottery.

692 C. Ganesh et al.

Unfortunately, in existing PoS protocols, this requires the users to be able to
link the newly generated block with some account in the system. Thus, everyone
in the system will learn the identity of the block producer (and their wealth).
Privacy in PoS? As privacy-preserving cryptocurrencies (such as ZCash, Mon-
ero, Dash, etc.) increase in popularity, it is natural to ask the following question:

Is it possible to design consensus protocols which
are as energy-efficient as PoS, but as private as PoW?

In this paper we address this problem and provide the first positive results in
this direction. In particular we offer two contributions: (1) we provide a feasibility
result showing that it is possible to construct a Private PoS (PPoS) protocol,
that is one where the identity of the lottery winner (and their wealth) is kept
secret by the protocol; and (2) we show how to adapt a popular PoS protocol,
Ouroboros Praos [DGKR18], to satisfy our anonymity requirement. In doing so,
we introduce a novel cryptographic primitive – anonymous verifiable random
function (AVRF) which might be of independent interest.
Related Work. In a recent independent and concurrent work [KKKZ18], the
authors present a privacy-preserving proof-of-stake protocol. While our work
is more modular and treats privacy of proof-of-stake consensus independently
of the cryptocurrency layer, the work of [KKKZ18] builds an overall private
transaction ledger system. Additionally, our construction guarantees full privacy
(at the cost of assuming anonymous channels), while [KKKZ18] allows for the
leakage of a function of the stake.

1.1 Technical Overview

All current proof-of-stake proposals rely on stake distribution being available in the
clear. As a first step, let us consider how to hide the wealth of the lottery winner:
a simple idea that might come to mind is to encrypt the stakes on the blockchain,
and to replace the proof of winning the lottery (e.g. in form of a correct block)
with a proof that uses the encrypted stakes instead. However, this falls short of our
goal in at least two ways. For instance, in case of block leaders: (1) it is still pos-
sible to distinguish (for instance) whether two blocks were generated by the same
block leader or not and, crucially (2) since the probability of being elected as block
leader is proportional to one’s wealth, the frequency with which a user wins the
lottery indirectly leaks information about their stakes (i.e., a user who is observed
to win t out of n blocks has relative stakes in the system close to t/n). Thus, we con-
clude that even if block leaders are only interested in hiding their wealth, a PPoS
must necessarily hide their identity as well. Similar concerns are true for commit-
tee based protocols as well, where the number of times a user becomes a committee
member reveals information about their wealth.

In Sect. 4 we provide a framework for VRF-based private stake lottery. Our
framework is parametrized by a lottery mechanism, and allows therefore to con-
struct PPoS protocols for some of the most popular lottery mechanisms used
in current (non-private) PoS protocols (e.g., Algorand [GHM+17], Ouroboros
Praos [DGKR18], etc.).

Proof-of-Stake Protocols for Privacy-Aware Blockchains 693

After having established the first feasibility result in this area, in Sect. 5 we
investigate how to efficiently implement PPoS. Our starting point is one of the
main PoS candidates which comes with a rigorous proof of security, namely
Ouroboros Praos.

In a nutshell, Ouroboros Praos works as follows: Every user in the system
registers a verification key for a verifiable random function e.g., a PRF for which
it is possible to prove that a given output is in the image of the function relative
to the verification key. Then, at every round (or slots), users can apply the VRF
to the slot number and thus receive a (pseudorandom) value. If the value is less
than (a function of) their wealth, then that user has won the election process
and can generate a new block. Thanks to the VRF property, all other users can
verify that the VRF has been correctly computed, and since the wealth of the
user is public as well, every other user can compare the output of the VRF with
the (function of) the user’s wealth.

Using the private stake lottery of Sect. 4, it would be possible for the elected
leader to prove correctness of all steps above (without revealing any further infor-
mation) using the necessary zero-knowledge proofs. However, this would result
in a very inefficient solution. To see why, we need to say a few more words about
the winning condition of Ouroboros Praos: one of the goals of Ouroboros Praos
is to ensure that a user cannot artificially increase their probability of winning
the lottery, therefore Ouroboros Praos compares the output of the VRF with a
function of the wealth that satisfies the “independent aggregation” property i.e.,
a function such that the probability that two users win the lottery is the same
as the probability of winning for a single user who owns the same wealth as the
two users combined. In particular, the function used by Ouroboros Praos has
the form

φf (x) = 1 − (1 − f)stk/Stake

where stk is wealth of the user, Stake is the total amount of stakes in the system
and f is a difficulty parameter. Implementing such a function using the circuit
representation required by zero-knowledge proofs would be very cumbersome,
due to the non-integer division and the exponentiation necessary to evaluate φ.
Finally, the variable difficulty level would require to update the circuit in the
ZK-proof as the difficulty changes.

One of our insights is to exploit the “independent aggregation” property of
the function for efficiency purpose, and in fact our solution uses the function φ in
a completely black-box way, and thus allows to replace the specific function above
with any other function that satisfies the “independent aggregation” property.
Thanks to the independent aggregation property, we can let the users commit to
their wealth in a bit-by-bit fashion, thus effectively splitting their account into
a number of “virtual parties” such that party i has wealth 0 or 2i. Then, the
values Vi = φ(2i) can be publicly computed (outside of the ZK-proof) and what
is left to do for the user is to prove that the output of the VRF (for at least one
of the virtual parties i), is less than the corresponding public value Vi (without
revealing which one).

694 C. Ganesh et al.

The solution as described so far allows to prove that one has won the election
for a “committed” stake but, as described above, the frequency with which an
account wins the election reveals information about the user’s wealth as well.
Therefore we need to replace the VRF with an “anonymous VRF” or AVRF.
In a nutshell, an AVRF is a VRF in which there exist multiple verification keys
for the same secret key, and where it is hard, given two valid proofs for different
inputs under different verification keys, to tell whether they were generated by
the same secret key or not. We show that it is possible to turn existing efficient
VRF constructions into anonymous VRF with an very small efficiency loss, and
we believe that AVRF is a natural cryptographic primitive which might have
further applications.

2 Preliminaries

Notation. We use [1, n] to represent the set of numbers {1, 2, . . . , n}. If A is
a randomized algorithm, we use y ← A(x) to denote that y is the output of A
on x. We write x

R← X to mean sampling a value x uniformly from the set X .
We write PPT to denote a probabilistic polynomial-time algorithm. Throughout
the paper, we use κ to denote the security parameter or level. A function is
negligible if for all large enough values of the input, it is smaller than the inverse
of any polynomial. We use negl to denote a negligible function. We denote by H
a cryptographic hash function.

2.1 Zero-Knowledge Proofs

Let R be an efficiently computable binary relation which consists of pairs of the
form (x, w) where x is a statement and w is a witness. Let L be the language
associated with the relation R, i.e., L = {x | ∃w s.t. R(x, w) = 1}. L is an NP
language if there is a polynomial p such that every w in R(x) has length at most
p(x) for all x.

A zero-knowledge proof for L lets a prover P convince a verifier V that x ∈ L
for a common input x without revealing w. A proof of knowledge captures not
only the truth of a statement x ∈ L, but also that the prover “possesses” a
witness w to this fact. This is captured by requiring that if P can convince V
with reasonably high probability, then a w can be efficiently extracted from P
given x.

Non-interactive Zero-knowledge Proofs. A model that assumes a trusted
setup phase, where a string of a certain structure, also called the public param-
eters of the system is generated, is called the common reference string (CRS)
model. Non-interactive zero-knowledge proofs (NIZKs) in the CRS model were
introduced in [BFM88]. We give a formal definition of NIZKs in Appendix B.1.
In this paper, we will be concerned with non-interactive proofs.

Proof-of-Stake Protocols for Privacy-Aware Blockchains 695

2.2 Commitment Schemes

A commitment scheme for a message space is a triple of algorithms (Setup, Com,
Open) such that Setup(1κ) outputs a public commitment key; Com given the
public key and a message outputs a commitment along with opening information.
Open given a commitment and opening information outputs a message or ⊥ if the
commitment is not valid. We require a commitment scheme to satisfy correctness,
hiding and binding properties. Informally, the hiding property guarantees that no
PPT adversary can generate two messages such that it can distinguish between
their commitments. The binding property guarantees that, informally, no PPT
adversary can open a commitment to two different messages.

2.3 Sigma Protocols

A sigma protocol for a language L is a three round public-coin protocol between
a prover P and a verifier V . P ’s first message in a sigma protocol is denoted by
a ← P (x; R). V ’s message is a random string r ∈ {0, 1}κ. P ’s second message is
e = P (w, a, r, R). (a, r, e) is called a transcript, and if the verifier accepts, that
is V (x, a, r, e) = 1, then the transcript is accepting for s.

Definition 1 (Sigma protocol). An interactive protocol 〈P, V 〉 between prover
P and verifier V is a Σ protocol for a relation R if the following properties are
satisfied:

1. It is a three move public coin protocol.
2. Completeness: If P and V follow the protocol then Pr[〈P (w), V 〉 (x) = 1] = 1

whenever (x, w) ∈ R.
3. Special soundness: There exists a polynomial time algorithm called the extrac-

tor which when given s and two transcripts (a, r, e) and (a, r′, e′) that are
accepting for s, with r �= r′, outputs w′ such that (x, w′) ∈ R.

4. Special honest verifier zero knowledge: There exists a polynomial time sim-
ulator which on input s and a random r outputs a transcript (a, r, e) with
the same probability distribution as that generated by an honest interaction
between P and V on (common) input s.

Sigma protocols and NIZK. The Fiat-Shamir transform [FS87] may be used
to compile a Σ protocol into a non-interactive zero-knowledge proof of knowledge
in the random oracle model. In this paper, we will be concerned with transfor-
mations in the CRS model [Dam00,Lin15]. The transformation of [Dam00] gives
a 3-round concurrent zero-knowledge protocol, while [Lin15] is non-interactive.

OR composition of Σ-protocols. In [CDS94], the authors devise a compo-
sition technique for using sigma protocols to prove compound OR statements.
Essentially, a prover can efficiently show ((x0 ∈ L) ∨ (x1 ∈ L)) without reveal-
ing which xi is in the language. More generally, the OR transform can handle
two different relations R0 and R1. If Π0 is a Σ-protocol for R0 and Π1 a Σ-
protocol for R1, then there is a Σ-protocol ΠOR for the relation ROR given by
{((x0, x1), w) : ((x0, w) ∈ R0) ∨ ((x1, w) ∈ R1)}.

696 C. Ganesh et al.

Pedersen Commitment. Throughout the paper, we use an algebraic com-
mitment scheme that allows proving polynomial relationships among committed
values. The Pedersen commitment scheme [Ped92] is one such example that pro-
vides computational binding and unconditional hiding properties based on the
discrete logarithm problem. It works in a group of prime order q. Given two
random generators g and h such that logg h is unknown, a value x ∈ Zq is com-
mitted to by choosing r randomly from Zq, and computing Cx = gxhr. We write
Comq(x) to denote a Pedersen commitment to x in a group of order q. There are
Sigma protocols in literature to prove knowledge of a committed value, equality
of two committed values, and so on, and these protocols can be combined in
natural ways. In particular, Pedersen commitments allow proving polynomial
relationships among committed values: Given Com(x) and Com(y), prove that
y = ax + b for some public values a and b. In our constructions, we make use of
existing sigma protocols for proving statements about discrete logarithms, and
polynomial relationships among committed values [Sch91,FO97,CS97,CM99].
Throughout, we use the following notation:

PK{(x, y, . . .) : statements about x, y, . . .}

In the above, x, y, . . . are secrets (discrete logarithms), the prover claims knowl-
edge of x, y, . . . such that they satisfy statements. The other values in the protocol
are public.

2.4 Merkle Tree

A Merkle tree is a hash based data structure that is used both to generically
extend the domain of a hash function and as a succinct commitment to a large
string. To construct a Merkle tree from a string m ∈ {0, 1}n, we split the string
into blocks bi ∈ {0, 1}k. Each block is then a leaf of the tree, and we use a hash
function H to compress two leaves into an internal node. Again, at the next level,
each pair of siblings is compressed into a node using the hash function, and this
is continued until a single node is obtained which is the root of the Merkle tree.
In order to verify the membership of a block in a string represented by a Merkle
tree root, it is sufficient to provide a path from the leaf node corresponding to
the claimed block all the way up to the public root node. This is easily verified
given the hash values along the path together with the hash values of sibling
nodes.

2.5 Decisional Diffie-Hellman Assumption

Let G be the description of cyclic group of prime order q for q = Θ(2κ) output
by a PPT group generator algorithm G on input 1κ. Let g be a generator of
G. The decisional Diffie-Hellman (DDH) problem for G is the following: given
group elements (α, β, γ), distinguish whether they are independent and uniformly
random in G or whether α = ga and β = gb are independent and uniformly
random and γ = gab.

Proof-of-Stake Protocols for Privacy-Aware Blockchains 697

The DDH assumption is said to hold in G if there exists a function negl
such that no PPT algorithm A can win in the above distinguishing game with
probability more that 1/2 + negl(κ).

3 Model
In this section, we define certain functionalities that are used in our later proto-
cols.
Stake Distribution. We assume that parties have access to a list of (static)
stakeholder accounts. Each such account consists of the committed stake or
voting-power and a signature verification key. Each stakeholder additionally has
access to his own stake value, the signing key, and the randomness used for the
stake commitment. In our protocols the functionality FCom,SIG

Init is used to provide
the static stake information. In practice, this information could for instance be
stored in the genesis block of a blockchain.

More generally, the stake distribution is dynamic and can be read from the
blockchain. We discuss the extension to dynamic stake in Sect. 4.4.

Functionality FCom,SIG
Init

The functionality is parametrized by a commitment scheme Com and a
signature scheme SIG = (KeyGen,Sign,Ver).
Initialization
The functionality initially contains a list of stakeholder id’s pid and their
relative stake αpid. For each stakeholder pid, the functionality does:

1. Compute commitment Com(αpid; rpid) with fresh randomness rpid;
2. Pick a random secret key skpid and compute vkpid = KeyGen(skpid).

Information

• Upon receiving input (GetPrivateData, sid) from a stakeholder pid
(or the adversary in the name of corrupted stakeholder) output
(GetPrivateData, sid, αpid, rpid, skpid).

• Upon receiving (GetList, sid) from a party (or the adversary in the
name of corrupted party) output the list L = {(Com(αpid), vkpid)pid}.

Common reference string. In our protocols stakeholders use zero-knowledge
proofs to show that they won the stake lottery. The functionality FD

crs provides
the common reference string required for those zero-knowledge proofs.

698 C. Ganesh et al.

Functionality FD
crs

The functionality is parametrized by a distribution D.

• Sample a CRS, crs ← D
• Upon receiving (Setup, sid) from a party, output (Setup, sid, crs).

Verifiable pseudorandom function. In our protocols, stakeholders use the
VRF functionality FCom

VRF to get the randomness in the stake lottery. The func-
tionality allows a stakeholder to generate a key and then evaluate the VRF under
that key. The evaluation returns a value and a commitment of that value. The
commitment can then used by parties to verify the claimed FCom

VRF evaluation.
The functionality also offers Verify queries, where anyone can check if a given
output of the VRF was computed correctly. Note that the Verify queries do not
disclose the identity of the party who have generated the output. In other words,
Verify checks if a given output is in the combined image of all the registered
VRF keys.

The VRF functionality FCom
VRF is defined as follows.

Functionality FCom
VRF

The functionality maintains a table T (·, ·) which is initially empty.
Key Generation
Upon input (KeyGen, sid) from a stakeholder pid generate a unique “ideal”
key vid, record (pid, vid). Return (KeyGen, sid, vid) to pid.
VRF Evaluation
Upon receiving a message (Eval, sid, vid, m) from stakeholder pid, verify
that pair (pid, vid) has been recorded. If not, ignore the request.

1. If T (vid, m) is undefined, pick random values y, r from {0, 1}�VRF and set
T (vid, m) = (y,Com(y; r), r).

2. Return (Evaluated, sid, T (vid, m)) to pid.

VRF Verification
Upon receiving a message (Verify, sid, m, c) from some party, do:

1. If there exists a vid such that T (vid, m) = (y, c, r) for some y, r then set
f = 1.

2. Else, set f = 0.

Output (Verified, sid, m, c, f) to the party.

Proof-of-Stake Protocols for Privacy-Aware Blockchains 699

Anonymous Broadcast. Stakeholders cannot publish their messages over a
regular network as this would reveal their identity. We therefore assume that
stakeholders use an anonymous broadcast channel. The functionality FABC allows
a party to send messages anonymously to all parties. The adversary is allowed
to send anonymous messages to specific parties.

Functionality FABC

Any party can register (or deregister). For each registered party the func-
tionality maintains a message buffer.
Send Message
Upon receiving (Send, sid, m) from registered party P add m to the mes-
sage buffers of all registered parties. Output (Sent, sid, m) to the adversary.
Receive Message
Upon receiving (Receive, sid) from registered party P remove all message
from P ’s message buffer and output them to P .
Adversarial Influence
Upon receiving (Send, sid, m, P ′) from A on behalf some corrupted regis-
tered party add m to the message buffer of registered party P ′. Output
(Sent, sid, m, P ′) to the adversary.

4 Feasibility of Private Proof-of-Stake

In order to make a proof-of-stake protocol private, a first solution that comes
to mind is to have the parties prove in zero-knowledge that they indeed won
the lottery (either for a slot or committee membership). This does hide the
identity, but it reveals the stake of the winning account. It might seem like one
can hide the stake too by having the parties commit to their stakes and give a
zero-knowledge proof of winning on committed stake. While this indeed hides
the stake in a single proof, it leaks how often a given account wins. One can infer
information about the stake in a given account from the frequency with which
an account participates in a committee or wins a slot. Therefore, the actual
statement that one needs to prove in a private lottery needs to take the list of
all accounts as input. Now, a party proves knowledge of corresponding secret
key of some public key in a list, and the stake in that account won the lottery.
We employ this idea to give a general framework for constructing a private
proof-of-stake protocol. The framework applies to proof-of-stake protocols that
work with lottery functions which are locally verifiable, that is, a party can
locally determine whether it wins or not. The lottery is a function of the party’s
stake and may depend on other parameters like slot, role etc that we call entry

700 C. Ganesh et al.

parameters. The set E of entry parameters for the lottery depends on the type
of proof of stake. In a slot-based proof-of-stake, for instance, the lottery elects a
leader for a particular slot that allows the leader to publish a block for that slot.
Ouroboros Praos [KRDO17] is an example of such a slot-based proof-of-stake. In
protocols such as Algorand [GHM+17], where the protocol is committee-based,
the lottery is for determining a certain role in a committee, and our framework
applies to both type of protocols.

4.1 Private Lottery Functionality
The private lottery functionality is an abstraction that we introduce to capture
the privacy requirements discussed above. The functionality FLE,E

Lottery is parame-
trized by the set E of allowed entry parameters, and a predicate function LE.
The predicate LE takes as input the relative stake and randomness. It allows
stakeholder pid to locally check whether they won the lottery for entry e. If yes,
they can publish pairs of the form (e, m) where m is an allowed message as
determined and verified by the proof-of-stake protocol that uses the lottery; for
instance, when slot-based, m is a block, when committee-based, m is a committee
message.

Functionality FLE,E
Lottery

The functionality is parametrized by a set E of entries, and a predicate
function LE which takes as input the relative stake (represented by a bit
string in {0, 1}�α) and randomness (in {0, 1}�VRF).
Registered Parties. The functionality maintains a list P of registered
parties. For each registered party the functionality maintains a message
buffer.
Stakeholders. The functionality maintains a list of (the initial) stakehold-
ers pid1, . . . , pidk and their relative stakes pid1.α, . . . , pidk.α. Finally, the
functionality also manages a table T (,) where the entry T (pid, e) defines
whether pid is allowed to publish a message relative to entry e. Initially,
the table T is empty.

• Upon receiving (lottery, sid, e) from a stakeholder pid (or the adver-
sary in the name of corrupted participant pid) do the following:
1. If T (pid, e) is undefined sample a random value r ∈ {0, 1}� and set

T (pid, e) = LE(pid.α; r).
2. Output (lottery, sid, e, T (pid, e)) to pid (or the adversary).

• Upon receiving (send, sid, e, m) from a stakeholder pid (or the adversary
in the name of corrupted stakeholder pid) do the following:
1. If T (pid, e) = 1 add (e, m) to the message buffers of all registered

parties and output (send, sid, e, m) to the adversary.

Proof-of-Stake Protocols for Privacy-Aware Blockchains 701

• Upon receiving (send, sid, e, m, P ′) from the adversary in the name of
corrupted stakeholder pid) do the following:
1. If T (pid, e) = 1 add (e, m) to the message buffer of P ′ and output

(send, sid, e, m, P ′) to the adversary.

• Upon receiving (fetch-new, sid) from a party P (or the adversary on
behalf of P) do the following:
1. Output the content of P ’s message buffer and empty it.

Get Information

• Upon receiving (get-stake, sid) from a stakeholder pid (or the adver-
sary on behalf of pid) return (get-stake, sid, pid.α).

4.2 Private Lottery Protocol

The high level idea to implement FLE,E
Lottery is as follows. Parties collect information

available on the blockchain about the public keys and the corresponding stake of
stakeholders. A list L = {(Cstk1 , vk1), · · · , (Cstkn

, vkn)} is compiled with tuples of
the form (Cstk, vk) where vk is a verification key for a signature scheme (KeyGen,
Sign, Ver), and Cstk is a commitment to the stake.

The lottery is defined relative to a lottery predicate LE. A stakeholder pid
wins the lottery for entry e, if LE(stk, r(e, pid)) = 1, where r is randomness that
depends on the entry e and stakeholder identity, ensuring that the lottery for dif-
ferent stakeholders is independent. The randomness for the lottery is generated
by the VRF functionality FCom

VRF . Winning the lottery for e allows a stakeholder
to publish messages for e.

To ensure privacy, the stakeholder proves in zero-knowledge that he indeed
won the lottery, and as part of this proof it is necessary to prove ownership of his
stake. We can do this by proving that the tuple containing the same committed
stake and a signing key is in the public list L (without revealing which one it
is), and ownership of the key by proving knowledge of the corresponding secret
key. The statement to prove is of the form “I know sk, vk, stk such that (vk, sk)
is a valid signature key pair, (Cstk, vk) ∈ L, and I won the lottery with stake stk
for entry e”. In addition, there needs to be a signature σ on (e, m) to ensure that
no other message can be published with this proof, and this signature is also
verified inside the zero-knowledge proof with respect to the verification key in
the same tuple. Note that since the proof is used to verify the correctness of the
signature, the proof itself (and public values for the statement) are not included
in the information that is signed. More formally, the proof is of the following
form.

702 C. Ganesh et al.

PK{(Cstk, stk, σ,vk, sk, r) : LE(stk; r) = 1 ∧ Cstk = Com(stk)
∧ Vervk((e, m), σ) = 1 ∧ vk = KeyGen(sk) ∧ (Cstk, vk) ∈ L}

The published information now consists of entry e, the message m, zero-
knowledge proof for the above statement, and certain public values that form
the statement. We assume that the zero-knowledge proof requires a CRS which
is given by the functionality FD

crs. The actual publication of the message is done
via anonymous broadcast FABC to protect the identity of the stakeholder.

The detailed construction of the private lottery Lottery ProtocolE,LE is given
below. The protocol Lottery ProtocolE,LE is run by parties interacting with ideal
functionalities FABC, FCom,SIG

Init , FD
crs, FCom

VRF and among themselves. Let the algo-
rithms (Setup, Prove, Verify) be a non-interactive zero-knowledge argument sys-
tem. Lottery ProtocolE,LE proceeds as follows.

Protocol Lottery ProtocolE,LE

This describes the protocol from the viewpoint of a party P . If the party is
a stakeholder, it additionally has stakeholder-id pid.
Initialization

• Send (GetList, sid) to FCom,SIG
Init to get the list L of stakeholders with

committed stake and verification key.

• Send (Setup, sid) to FD
crs and get the crs.

• If you are a stakeholder, send (GetPrivateData, sid) to functionality
FCom,SIG

Init and get αpid, rα,pid, skpid send (KeyGen, sid) to functionality
FCom

VRF and get vid; and initialize an empty table V (·).

Lottery and Publishing

• As a stakeholder upon receiving (lottery, sid, e) from the environment
do the following.
1. If e is not in E ignore the request.
2. If V (e) is undefined:

(a) Send (Eval, sid, vid, e) to functionality FCom
VRF and receive

response (Evaluated, sid, (y, c, r)).
(b) Compute b = LE(αpid, y), and set V (e) = (b, y, c, r).

3. Return (lottery, sid, e, b) where V (e) = (b, y, c, r).

• As a stakeholder upon receiving (send, sid, e, m) from the environment
do the following:
1. Ignore the request if V (e) = (0, · · ·) or is undefined.

Proof-of-Stake Protocols for Privacy-Aware Blockchains 703

2. Let V (e) = (1, y, c, r). Create the tuple (e, m, πzk) in the following
way:
(a) Compute a signature σ on (e, m) under skpid.
(b) πzk is a non-interactive zero-knowledge proof of knowledge

obtained by running Prove using crs for the following statement.

PK{(αpid, rα,pid, vkpid, skpid, cα,pid, σ, y, r) : Vervkpid((e, m), σ) = 1
∧ LE(αpid, y) = 1 ∧ vkpid = KeyGen(skpid) ∧ c = Com(y; r)
∧ cα,pid = Com(αpid; rα,pid) ∧ (cα,pid, vkpid) ∈ L}

3. Send (send, sid, (e, m, c, πzk)) to FABC.

• Upon receiving (fetch-new, sid) from the environment do the following:
1. Send (Receive, sid) to FABC and receive as message vector �m.
2. For each (e, m, c, πzk) ∈ �m do:

(a) Check that e ∈ E .
(b) Send (Verify, sid, e, c) to functionality FCom

VRF . For response
(Verified, sid, e, c, b) from FCom

VRF , verify that b = 1.
(c) Verify the correctness of zero-knowledge proof πzk, i.e., check

that Verify(crs, πzk) = 1.
(d) If all check pass add (e, m, c, πzk) to �o.

3. Output (fetch-new, sid, �o).

Get Information

• As a stakeholder upon receiving (get-stake, sid) from the environment
output (get-stake, sid, αpid) where α is your lottery power.

Theorem 1. The protocol Lottery ProtocolE,LE realizes the FLE,E
Lottery functional-

ity in the (FABC, FCom,SIG
Init , FD

crs, FCom
VRF)-hybrid world in the presence of a PPT

adversary.
Proof. Let Szk = (S1, S2) be the simulator of the zero-knowledge proof system
used in the protocol Lottery-ProtocolE,LE.

We construct a simulator Slottery and argue that the views of the adversary in
the simulated execution and real protocol execution are computationally close.
Here, we provide a high-level idea of simulation. The full description of the
simulator Slottery can be found in Appendix A. At the beginning, the simulator
gets the stake of dishonest stakeholders from FLE,E

Lottery and internally emulates the
FCom,SIG

Init . The simulator generates a CRS (with trapdoor) and emulates FD
crs.

Similarly, the VRF functionality FCom
VRF is emulated by the simulator. If a dishon-

est stakeholder ask the VRF for an entry e ∈ E , the simulator first asks FLE,E
Lottery

704 C. Ganesh et al.

if the stakeholder wins for this entry and then samples the output accordingly.
The simulation of FABC consists of two parts. First, if the adversary wants to
send a message the simulator checks if the message is a valid tuple of the form
m′ = (e, m, c, πzk). If this is the case, the simulator submits (e, m) to FLE,E

Lottery
for publication. Second, if an honest stakeholder publishes a tuple (e, m) the
simulator creates a tuple (e, m, c, πzk) which contains a simulated proof πzk and
adds it to the message buffers of dishonest parties. ��

4.3 Flavors of Proof-of-Stake
As seen above any proof-of-stake lottery can be made private. In the following
we discuss how this process applies to two widely-used types of proof-of-stake
lotteries.
Slot-based PoS. In slot-based PoS protocols (e.g., the Ouroboros Praos pro-
tocol [KRDO17]), time is divided into slots and blocks are created relative to a
slot. Parties with stake can participate in a slot lottery, and winning the lottery
allows a stakeholder to create a block in a particular slot. Here, the set of lot-
tery entries are slots, i.e. E = N+. An (honest) lottery winner will publish one
message in the form of a new block via FLE,E

Lottery.
Committee-based PoS. In committee-based PoS protocols, such as Algo-
rand [GHM+17], a stakeholder wins the right to take part in a committee which
for example determines the next block. In such a protocol, the set of lottery
entries could be of the form (cid, role) where cid is the id of the committee and
role is the designated role of the winner. An (honest) lottery winner will then
publish his messages for the committee protocol via FLE,E

Lottery.

4.4 Dynamic Stake
Our protocol in Sect. 4.2 assumes that the stake distribution is fixed at the onset
of the computation (in the form of FCom,SIG

Init), which is the static stake setting. In
the following we give an intuition on how the protocol can be made to support
the dynamic stake setting where the set of stakeholders and the distribution
evolve over time.
Protocol idea. The idea is to collect information about the public keys and the
corresponding stake of stakeholders on the blockchain instead of using FCom,SIG

Init .
We assume that for each entry e the (honest) parties agree on the corresponding
stake distribution Le. This stake distribution might not be known from the
beginning of the protocol1. We assume that (if defined) Le can be computed
efficiently from the blockchain. The parties then use Le in the lottery protocol
when dealing with e.

Observe that computation of Le is completely separated from the actual
lottery protocol. The protocol therefore remains secure even in the dynamic
stake setting.
1 If, for example, the entries are slots (cf. Sect. 4.3) the stake distribution for a par-

ticular entry is only defined once the blockchain has grown far enough.

Proof-of-Stake Protocols for Privacy-Aware Blockchains 705

4.5 Rewards

In many proof-of-stake based cryptocurrencies a stakeholder will include some
sort of identification (e.g. his verification key) in his messages (e.g. in a new
block) so that the rewards such as transaction fees are appropriately paid out.
This, of course leaks the identity of the lottery winner and thus also informa-
tion about his stake. This leakage can be prevented if the cryptocurrency allows
for anonymous transactions and anonymous account creation. For instance, one
could think of ZCash [BCG+14], which though not based on proof-of-stake allows
for such mechanisms. Each stakeholder maintains a list of fresh accounts. When-
ever the stakeholder needs to provide information for rewards, the stakeholder
uses one of the accounts as the reward destination. Since the account was created
anonymously it cannot be linked to the stakeholder. Later on, the stakeholder can
anonymously transfer the money from that account to any of its other accounts.

5 Making Ouroboros Praos Private

In this section, we look at the Ouroboros Praos proof-of-stake protocol from
[DGKR18], and apply the technique from our private lottery framework. In par-
ticular, we describe how the zero-knowledge proofs necessary for πzk are instan-
tiated for the Ouroboros Praos lottery.

5.1 Ouroboros Praos Leader Election

Recall that the VRF leader election scheme in Ouroboros Praos works as follows.
The probability p that a stakeholder pid is elected as leader in a slot sl is indepen-
dent of other stakeholders. It depends only on pid’s relative stake α = stk/Stake
where Stake is the total stake in the system. More precisely, the probability p is
given by,

p = φf (α) � 1 − (1 − f)α

where f is the difficulty parameter. A stakeholder pid can evaluate the VRF
using private key k along with a proof of evaluation that can be verified using a
public key. To check if they are a leader in slot sl, the stakeholder computes their
threshold T = 2�αp where α is the output length of the VRF. The stakeholder
wins if y < T where (y, π) = VRF(k, sl). The proof π allows any party to verify
pid’s claim given pid’s verification key. In other words, the LE predicate function
for Ouroboros Praos is given by:

LE(stk; y) =
{

1, if y < 2�α ·
(

1 − (1 − f) stk
Stake

)
0, otherwise

.

Ouroboros Praos VRF. Ouroboros Praos uses the 2-Hash VRF of [JKK14]
based on the hardness of the computational Diffie-Hellman problem. Let G = 〈g〉

706 C. Ganesh et al.

be a group of order q. VRF uses two hash functions H1 and H2 modeled as
random oracles. H1 has range {0, 1}�α and H2 has range G. Given a key k ∈ Zq,
the public key is v = gk, and (y, π) = VRF(m) is given by y = H1(m, u) where
u = H2(m)k, and π : PK{(k) : logH2(m)(u) = logg(v)}.

5.2 Anonymous Verifiable Random Function

We define a primitive that we call an anonymous VRF that captures a require-
ment necessary in the proof πzk; which is roughly that verification should not
reveal the public key. The high level idea is that there are many public keys asso-
ciated with a secret key, and two different evaluations (on different messages)
under the same secret key cannot be linked to a public key. The verifiability prop-
erty is still preserved, that is, there is a public key, which allows to verify the
correctness of output with respect to a proof. We now give a formal definition.

Definition 2. A function family F(·)(·) : {0, 1}k → {0, 1}�(k) is a family of
anonymous VRFs, if there is a tuple of algorithms (Gen, Update, VRFprove,
VRFverify) such that: Gen(1k) generates a key pair (pk, k); Update takes the public
key pk and outputs an updated public key pk′; VRFprovek(pk′, x) outputs a tuple
(Fk(x), πk(x)) where πk(x) is the proof of correct evaluation; VRFverifypk′(x, y, π)
verifies that y = Fk(x) using the proof π. We require that the following properties
are satisfied.

– Pseudorandomness. For any pair of PPT (A1, A2), the following probability
is 1/2 + negl(k).

Pr

⎛
⎜⎝ b = b′

∧x �∈ Q1 ∪ Q2

∣∣∣∣∣∣∣
(pk, k) ← Gen(1k); (Q1, x, state) ← A

VRFprove(·)
1 (pk);

y0 = Fk(x); y1 ← {0, 1}�;
b ← {0, 1}; (Q2, b′) ← A

VRFprove(·)
2 (yb, state)

⎞
⎟⎠ .

The sets Q1, Q2 contain all the queries made to the Prove oracle. The random
variable state stores information that A1 can save and pass on to A2.

– Uniqueness. There do not exist values (pk, x, y1, y2, π1, π2) such that y1 �= y2
and

VRFverifypk(x, y1, π1) = VRFverifypk(x, y2, π2) = 1

– Provability. VRFverifypk′(x, y, π) = 1 for (y, π) = VRFprovek(pk′, x), pk′ ←
Update(pk)

– Anonymity. For any PPT algorithm A, the following probability is 1/2 +
negl(k).

Pr

⎛
⎜⎜⎝b = b′

∣∣∣∣∣∣∣∣
(pk0, k0) ← Gen(1k); (pk1, k1) ← Gen(1k);

x ← A(pk0, pk1); pk′
0 ← Update(pk0);

(y0, π0) = VRFprovek0(pk′
0, x); pk′

1 ← Update(pk1);
(y1, π1) = VRFprovek1(pk′

1, x); b ← {0, 1}; b′ ← A(pk′
b, yb, πb)

⎞
⎟⎟⎠ .

Proof-of-Stake Protocols for Privacy-Aware Blockchains 707

Intuitively, the above definition says that no adversary can tell which key an
output came from, given two public keys.

Anonymous VRF construction. We show how to instantiate the AVRF
primitive by adapting the 2-Hash VRF. Let AVRF be the tuple of algorithms
(Gen,VRFprove,VRFverify) which are defined as follows.

– Gen(1k): Choose a generator g of a group of order q such that q = Θ(2k), and
sample a random k ∈ Zq and output (pk, k), where pk = (g, gk).

– Update(pk): Let pk be (g, v). Choose a random r ∈ Zq, let g′ = gr, v′ = vr,
set pk′ = (g′, v′), output pk′.

– VRFprovek(pk′, x): Let pk′ be (g, v). Compute u = H2(x)k, y = H1(x, u), and
π′ : PK{(k) : logH2(x)(u) = logg(v)}. Output (pk′, y, π = (u, π′))

– VRFverifypk′(x, y, π): Output 1 if y = H1(x, u) and π verifies, and 0 otherwise.

It is clear that the above construction satisfies the standard properties of a
VRF. For anonymity, we reduce to DDH; we show that any adversary who
breaks anonymity can be used to break DDH. Let A be the adversary who
wins the anonymity game in Definition 2. We now show how to use A to break
DDH. Let B be an adversary who receives a challenge (g, ga, gb, gc) and has
to determine whether it is a DDH tuple or not. B works as follows: it chooses
random k0, k1 ∈ Zq, sets k0 = k0, pk0 = (ga, gk0a), k1 = k1, pk1 = (gb, gk1b) and
return pk0, pk1 to A. On receiving a x, B chooses β ∈ {0, 1} at random and
returns (pk′

β , yβ , πβ) to A, where pk′
β = (gc, gkβc) and yβ , πβ are evaluated with

key kβ . Let β′ be the output of A. If β = β′, B returns DDH tuple, otherwise B
decides not a DDH tuple.

Note that while AVRF gives the anonymous verifiability property, it does
not guarantee that the key used to evaluate comes from one of the two keys that
the adversary sees at the onset of the game. In applications, it is desirable to
satisfy this “key membership” property. Indeed, the FCom

VRF functionality that was
defined in Sect. 3 has the property that verification does not leak a public key
and also guarantees that it is one of the registered keys. The FCom

VRF functionality
also allows verifiability of y while keeping y secret. We use other techniques on
top of the AVRF primitive to realize the FCom

VRF functionality; in general, proving
membership of the corresponding AVRF secret key in a list of committed secret
keys will suffice for membership and we preserve privacy by committing to the
output and proving correct evaluation in zero-knowledge. We elaborate on this
in the next section.

“Approval Voting” via AVRF. To demonstrate the usefulness of AVRF
outside of the context of PPoS, here is a simple example application, namely
approval voting. In approval voting, a group of users can vote (e.g., approve)
any number of candidates, and the winner of the election is the candidate who
is approved by the highest number of voters. To implement such voting with
cryptographic techniques, one needs to ensure anonymity of the voters and, at
the same time, that each voter can approve each candidate at most once. This
can be easily done using our AVRF abstraction: Each user registers an AVRF
public key pk1, . . . , pkn. To vote on option x, user i publishes pk′ = Update(pki)

708 C. Ganesh et al.

and gives a ZK-proof that ∃i : (pk′, pki) ∈ L (in our AVRF the language L
is simply the language of DDH tuple). Then the user computes and publishes
(y, π) = VRFprovek(pk′, x). If the proof π does not verify or if the value y has
already appeared in this poll, then the other users discard this vote. Otherwise,
they register a new vote for option x. Now, due to the anonymity and indistin-
guishability properties of the VRF, it is unfeasible to link any two casted votes,
except if the same user tries to approve the same candidate more than once,
since the value y is only a function of k and x.

5.3 Private Ouroboros Praos

Recall that our private lottery protocol now needs to prove that LE(stk; y) = 1
in zero-knowledge. For this, we need to prove y < T in zero knowledge, that
is, without revealing y or T 2. Note that, in addition, we need to prove the
correct computation of T which involves evaluating φ on a secret α involving
floating-point arithmetic. Using generic zero-knowledge proofs for a statement
like above would be expensive. We show how to avoid this and exploit the specific
properties of the statement. In particular, we take advantage of the “independent
aggregation” property that is satisfied by the above function φ to construct a
zero-knowledge proof for leader election i.e., that the function φ satisfies the
following property:

1 − φ

(∑
i

αi

)
=

∏
i

(1 − φ(αi))

The above implies that if a party were to split its stake among virtual parties,
the probability that the party is elected for a particular slot is identical to the
probability that one of the virtual parties is elected for that slot.

Remark 1. Due to rounding performed when evaluating the predicate LE, the
probability of winning is not identical under redistribution of stakes. However,
by setting the precision α appropriately we can always ensure that the difference
between the winning probabilities above is at most negligible.

Proof of correct evaluation of LE predicate πLE. The idea behind our proof
is to split the stake among virtual parties and prove that one of the virtual
parties wins without revealing which one of them won. We also use the 2-hash
AVRF instantiation in the LE since we want to achieve verifiability of correct
evaluation without disclosing a public key. More precisely, each stakeholder has a
key pair (vk, sk) of a signature scheme (KeyGen,Sign,Ver), and a key pair (pk, k)
for an AVRF family F . To realize the key membership property for the AVRF,
we now include the public key for the AVRF in a stakeholder’s tuple. Thus, the
list L now consists of tuples (Cstk, vk, pk).
2 Since T is a direct function of stk, it should be clear why T should stay private. At

the same time, revealing the value y and the fact that LE output 1 allows to rule
out that stk = s for any value s such that LE(s; y) = 0.

Proof-of-Stake Protocols for Privacy-Aware Blockchains 709

Let pid be a stakeholder with (absolute) stake stk, and wants to prove that it
won the election, that is LE(stk; Fk(sl)) = 1, where F is the AVRF function. Let
bi, ∀i ∈ [0, s−1] be the bits of the stake of stakeholder pid, where stk =

∑s−1
i=0 2ibi

and the maximum stake in the system is represented in s-bits. Now, the stake
is split among s virtual parties “in the head” where the stake of the ith virtual
party is 2ibi. We now have by the aggregation property, that the probability
of winning with stake stk is equal to the probability of winning with one of
the above s stakes. Let the probability of winning with stake 2ibi be pi, let
(yi, πi) = VRFprovek(pki, i||sl), for pki ← Update(pk). Let Ti be the threshold
corresponding to the ith divided stake, Ti = 2�αpi. We use the AVRF key of the
stakeholder to evaluate yi corresponding to the ith stake by including the index
i along with the slot number in the evaluation, and prove that yi < Ti for at
least one i. Note that now, the thresholds Ti in the statement are public values,
in contrast to private threshold prior to the stake being split among virtual
parties. In addition, the statement only uses the function φ in a blackbox way
and is independent of the difficulty parameter f . The zero-knowledge proofs,
therefore do not have to change with tuning of the difficulty parameter of the
leader election function. The proof is for the statement that there exists at least
one bit such that the bit is one, the corresponding virtual party won the lottery,
bits combine to yield the committed stake and correct evaluation of the AVRF.
The following is a proof that LE was evaluated correctly on stk.

PK{(y1, · · · ys, b1, · · · , bs, i∗, k, stk) :(
s∧

i=1
(bi ∈ {0, 1})

)
∧ (bi∗ = 1 ∧ yi∗ < Ti∗ ∧ yi∗ = Fk(i∗||sl)) ∧ stk =

∑
2jbj}

Proof πLE is about the correct evaluation of the predicate LE on private stake
and randomness, and correct evaluation of the yi’s. The above proof convinces
that a committed stake wins the lottery. It is still necessary to prove ownership
of this stake. We can do this by proving that the tuple containing the same
committed stake, signature verification key, and an APRF key is in the list L,
and ownership of the signature key by proving knowledge of the corresponding
signing key.
Proof of ownership πown. We represent the list L as a Merkle tree, where the
leaf are the tuples (Cstkpid , vkpid, pkpid)pid ∈ L. We can now prove membership
by proving a valid path to the public root given a commitment to a leaf. Let
L(root) denote the Merkle tree representation of the list L. Given the root of a
Merkle tree, an AVRF public key, and commitments to the signature verification
key, and stake, we want a party proposing a new block to prove that the stake
used in the proof of winning lottery corresponds to the signature key and AVRF
key it “owns”. That is, prove knowledge of (vk, stk, pk) such that Cstk||vk||pk is a
leaf of the Merkle tree with root root. To prove membership, one can reveal the
path along with the values of the sibling nodes up to the root. We want to prove

710 C. Ganesh et al.

membership without disclosing the leaf node and therefore use a zero knowledge
proof πpath to prove a valid path from a committed leaf to a public root. Let li
be Cstk||vk||pk, H be the hash function function used to construct the Merkle
tree, and let sib1, . . . , sibt be the sibling nodes of the nodes on the path from li
to the root of a tree with depth t. πpath proves li ∈ L(root).

PK{(li, sib1, . . . , sibt) : H(· · ·H(H(li||sib1)||sib2) · · ·) = root}

Using the above proof πpath, we can prove ownership. Given root, we denote by
πown the following proof.

PK{(vk, stk, k, pk, Cstk) : (Cstk||vk||pk) ∈ L(root) ∧ pk = gk}

Proof of signature on a block under the winning key πsig. πzk also consists
of a proof that a block signature verifies under the winning key. πsig denotes the
following proof, where M is the public block information that is signed.

PK{(vk, sk, σ) : vk = KeyGen(sk) ∧ Vervk(σ, M) = 1}

Overall proof. The detailed construction of proof πzk is given below. If the com-
mitment to stake Cstk is an extended Pedersen commitment (e.g., hr ·Πs

i=1(gi)bi)
where the stakes are already committed bit by bit, the proof πLE is a standard
sigma protocol. If instead, it is a Pedersen commitment to the entire stake, one
can publish fresh commitments to bits and prove correct recombination. The
range proofs that are used in πLE allow one to prove that x ∈ [0, R] for a public
R and committed x. Range proofs may be instantiated using several known tech-
niques [CCs08,Bou00]. More recently, the technique of bulletproof [BBB+18]
results in very efficient range proofs when the interval is [0, 2n − 1] for some
n. Since we use SNARKs for other statements, we also implement the range
check inside a SNARK resulting in short proofs. The proof πLE also relies on
the OR composition of sigma protocols. πown may be realized efficiently using
SNARKs when the Merkle tree hash function H is non-algebraic. While it might
seems like such a statement would result in inefficient proofs, this can in fact be
done efficiently in practice, and is implemented by ZCash’s private-pool trans-
actions [BCG+14]. The predicate Eq that tests if two public keys comes from
the same key is the following predicate for the concrete 2-Hash AVRF: it out-
puts 1 if pk and pk′ form a DDH tuple. For a public pk′ and private pk as in
our case, this can be implemented using double discrete logarithm sigma proto-
col proofs [CS97,MGGR13]. The proof for part of the statement represented as
a circuit (the hash functions) in the 2-Hash AVRF can be implemented using
SNARKs, and we can use the construction of [AGM18] for SNARK on alge-
braically committed input and output so we can work with Pedersen commit-
ments and sigma protocols for other parts of the proof. The rest of the proof
components may be implemented using standard sigma protocol techniques.

Proof-of-Stake Protocols for Privacy-Aware Blockchains 711

Protocol Constructing πzk

– Given a list L = {(Cstkpid , vkpid, pkpid)pid}, construct a Merkle tree repre-
sentation. Let root be the root of the tree.

– For stakeholder pid, let b1, . . . , bs represent the bits of the stake stk. Let
the private information be (stk, Cstk, Ck, vk, sk, k). Let M be the part
of the block that is signed. Compute signature σ = Sign(sk, M). To
construct a proof πzk for submitting a new block:

• Compute pk′ ← Update(pk) and (yi, πi) = VRFprovek(pk′, i||sl).
Then publish pk′. Compute and publish Cσ = Com(σ), Cvk =
Com(vk), Csk = Com(sk). There is a predicate Eq(pki, pk, k) which
outputs 1 if pki, pk have the same secret key k. Compute proof of
correct evaluation of LE predicate πLE :

PK{(y1, · · · ys, b1, · · · , bs, πj , stk, Cstk) :
(∀i (bi ∈ {0, 1}))

∧ (∃j
(
bj = 1 ∧ yj < Tj ∧ VRFverifypk′(j||sl, yj , πj) = 1

))
∧stk =

∑
2jbj ∧ Cstk = Com(stk)}

• Compute proof of signature on a block under the winning key πsig:

PK{(vk, sk, σ) : vk = KeyGen(sk)∧Cvk = Com(vk)∧Csk = Com(sk)
∧ Cσ = Com(σ) ∧ Vervk(σ, M) = 1}

• Compute proof of ownership of signature and AVRF key πown:

PK{(vk, stk, k, pk, Cstk) : (Cstk||vk||pk) ∈ L(root) ∧ Cvk = Com(vk)
∧ Eq(pk′, pk, k) = 1 ∧ Cstk = Com(stk)}

Set πzk to be (πLE, πsig, πown).

Usage of πzk in Ouroboros Praos. If a stakeholder has won the lottery for
slot sl, they will create a new block of the form (pt, sl, st, c, πzk) where pt is a
reference to a previous block, st the block payload, c is a commitment to y, the
output of the AVRF, and πzk is the proof as described above. The stakeholder
then publishes the block using an anonymous broadcast.

Corollary 1. Ouroboros Praos used with the private lottery protocol results in
a private proof-of-stake protocol.

Proof. The proof easily follows from the properties of the underlying building
blocks. Note that overall protocol remains the same as in the original Ouroboros
Praos, with only small differences: Instead of using a VRF, a stakeholder uses

712 C. Ganesh et al.

an AVRF to determine whether they win the slot-lottery. Then, a slot leader
will publish a block with a zero-knowledge proof of the above form (instead
of adding his verification key and a VRF-proof). Due to the soundness of the
zero-knowledge protocol and the uniqueness property of the AVRF, the modified
protocol still has the same security properties as Ouroboros Praos i.e., the pro-
tocol still reaches consensus under the same security guarantees as the original
protocol.

The proof that the resulting protocol is a private proof of stake follows
directly from the proof of Theorem 1.

We give an estimate of the proof size that determines the overhead that is
incurred by privacy preserving Ouroboros Praos compared to the non-private
version. The size of πLE is dominated by O(s) group/field elements due to the
sigma protocol OR composition, with the rest of the components resulting in suc-
cinct SNARK proofs. πsig for the key-evolving signature scheme may be imple-
mented by using SNARK on committed input together with sigma protocols
with only a slight overhead in size over the SNARK proof. The size of πown is
dominated by the proof size for the predicate Eq which is O(κ) elements for a
statistical security parameter κ. The size of πzk is therefore roughly (ignoring the
size of proofs for statements that use SNARKs and standard sigma protocols),
O(s) + O(κ) group/field elements where s is the number of bits to represent the
stake in the system, κ is the statistical security parameter. We remark that the
actual complexity depends on the implementation of the signature scheme, and
potentially the hash functions of the VRF.

Appendix

A Private Proof of Stake Lottery

Theorem 1. The protocol Lottery ProtocolE,LE realizes the FLE,E
Lottery functionality

in the (FABC, FCom,SIG
Init , FD

crs, FCom
VRF)-hybrid world in the presence of a PPT adver-

sary.

Proof. Let Szk = (S1, S2) be the simulator of the zero-knowledge proof system
used in Lottery-ProtocolE,LE. We construct a simulator Slottery and argue that the
views of the adversary in the simulated execution and real protocol execution
are computationally close. Consider the simulator Slottery.

Simulator Slottery

Initialization
Upon first activation the simulator does the following.

Proof-of-Stake Protocols for Privacy-Aware Blockchains 713

1. For each dishonest stakeholder pid the simulator queries functionality
FLE,E

Lottery (using (get-stake, sid)) to get the lottery powers α. Then, the
simulator creates (cpid = Com(αpid; rpid), rpid, skpid, vkpid) the same way
as FCom,SIG

Init would do.
2. For each honest stakeholder pid the simulator creates the tuple (cpid =

Com(0), rpid, skpid, vkpid) similar to FCom,SIG
Init except that the relative stake

is set to 0.

Simulation of FD
crs

• Call S1 to generate a simulated CRS scrs and a trapdoor τ .

• Upon receiving (Setup, sid), output (Setup, sid, scrs).

Simulation of FCom,SIG
Init

• Upon receiving (GetPrivateData, sid) from the adversary in the name
of the dishonest stakeholder pid output (GetPrivateData, sid, αpid,
rpid, skpid).

• Upon receiving (GetList, sid) from the adversary in the name of a
dishonest party output the list L = {(cpid, vkpid)pid}.

Simulation of FCom
VRF

The simulator maintains a table T (·, ·) and a list of vids.

• Upon input (KeyGen, sid) from the adversary in the name of dishonest
stakeholder pid generate a unique key vid, record (pid, vid), and initialise
the table T (vid, ·) to be empty. Return (KeyGen, sid, vid) to the adver-
sary.

• Upon input (Eval, sid, vid, x) from the adversary in the name of dishon-
est stakeholder pid do the following:

Abort and ignore the request if (pid, vid) is undefined.
if T (vid, x) is undefined then

if If x ∈ E then
Send (lottery, sid, x) in the name of pid to FLE,E

Lottery.
Denote by (lottery, sid, x, b) the answer from FLE,E

Lottery.
Pick random value y from {0, 1}�VRF such that b = LE(αpid, y).a

else
Pick random value y from {0, 1}�VRF .

end if
Pick random value r from {0, 1}�VRF and set table T (vid, x) =

(y,Com(y; r), r).
end if

714 C. Ganesh et al.

Output (Evaluated, sid, T (vid, x)).

• Upon receiving a message (Verify, sid, x, c) from the adversary in the
name of a dishonest party do the following:
1. If there exists a vid such that T (vid, x) = (y, c, r) for some y, r then

set f = 1.
2. Else, set f = 0.
3. Output (Verified, sid, x, c, f) to the adversary.

Simulation of FABC

The simulator maintains for each dishonest party a message buffer.

• Upon receiving (send, sid, e, m) from FLE,E
Lottery do the following:

1. Create an entry (⊥, vid) with unique vid for the internal FCom
VRF .

2. Pick random values y, r from {0, 1}�VRF and set table T (vid, e) =
(y,Com(y; r), r).

3. Create simulated proof πzk by calling the simulator S2 on (scrs, τ).

4. Add (e, m,Com(y; r), πzk) to the message buffers of all dishonest par-
ties.

5. Output (send, sid, (e, m,Com(y; r), πzk)) to the adversary.

• Upon receiving (send, sid, m′) from the adversary do the following:
1. Add m′ to all message buffers of dishonest parties.

2. If m′ = (e, m, c, πzk) do:
(a) Check that e ∈ E .

(b) Check that there is vid such that T (vid, e) = (y, c, r) for some
y, r.

(c) Check that Verify(scrs, πzk) = 1.

(d) If all checks pass send (send, sid, e, m) to FLE,E
Lottery.

3. Output (Sent, sid, m′) to the adversary.

• Upon receiving (Send, sid, m′, P ′) from the adversary do the following:
1. Add m′ to message buffers of dishonest party P ′.

2. If m′ = (e, m, c, πzk) do:
(a) Check that e ∈ E
(b) Check that there is vid such that T (vid, e) = (y, c, r) for some

y, r.

(c) Check that Verify(scrs, πzk) = 1.

Proof-of-Stake Protocols for Privacy-Aware Blockchains 715

(d) If all checks pass and P ′ is honest send (send, sid, e, m, P ′) to
FLE,E

Lottery.

3. Output (Sent, sid, m′, P ′) to the adversary.

• Upon receiving (Receive, sid) from the adversary in the name of cor-
rupted party P . Remove all message from P ’s message buffer and output
them to P .

a This requires that it is possible to efficiently sample randomness r satisfying
LE(stk, r) = b for given stake stk.

Let HYB0 be the (distribution) of the protocol execution (in the hybrid
world where the auxiliary functionalities are available). We consider the world
HYB1 which is the same as the protocol execution except for the following: calls
to FCom

VRF are answered as is done by the simulator Slottery consistent with the
outcome returned by FLE,E

Lottery. It follows that distributions of HYB0 and HYB1
are indistinguishable. We now argue that the world HYB1 is computationally
indistinguishable from the ideal world simulation.

Simulation of FCom,SIG
Init . The only difference between HYB1 and the simulation

is that the list L consists of commitments to honest stakes in the protocol,
whereas the commitments are to 0 in the interaction with the simulator. By
the hiding property of the commitment scheme Com, the two distributions are
identical.

Simulation of FD
crs. The CRS in HYB1 is distributed the same as in the simu-

lation.

Simulation of FCom
VRF . The key-generation and evaluation queries by the adver-

sary are distributed the same. The same holds for verification queries where the
adversary verifies a commitment which was created by an evaluation query by
the adversary. In HYB1, any other commitment message pair will be verified as
true only if the commitment was part of an honest tuple (e, m, c, πzk) which was
sent to the adversary via FABC. Similarly, in the simulation any other commit-
ment message pair will only be evaluated as true if the commitment was part of
a simulated honest tuple.

Simulation of FABC. If the adversary sends a tuple (e, m, c, πzk) in HYB1,
parties will accept it only if it is valid with respect to the information of
FCom,SIG

Init , FD
crs, and FCom

VRF . In the ideal world, the simulator does the same checks
with respect to the simulated functionalities. The simulator will then submit
(e, m) to FLE,E

Lottery which will send it to honest parties. The soundness of the zero-
knowledge proof system and the binding property of the commitment scheme
guarantee that the adversary can only submit tuples (e, m, c, πzk) where the dis-
honest stakeholder won the lottery for e. Thus the distribution of HYB1 and
the ideal world is indistinguishable.

716 C. Ganesh et al.

If in HYB1 an honest stakeholder wins the lottery for entry e and publishes a
message m via FABC, the adversary will receive a tuple of the form (e, m, c, πzk).
In the ideal world, the simulator gets (e, m) and creates a simulated tuple. By
the zero-knowledge property of the proof system the distribution of HYB1 and
the ideal-world is indistinguishable. ��

B Extended Preliminaries

B.1 Non-interactive Zero-Knowledge

Definition 3 (Non-interactive Zero-knowledge Argument). A non-inter-
active zero-knowledge argument for an NP relation R consists of a triple of
polynomial time algorithms (Setup,Prove,Verify) defined as follows.

– Setup(1κ) takes a security parameter κ and outputs a common reference string
σ.

– Prove(σ, x, w) takes as input the CRS σ, a statement x, and a witness w, and
outputs an argument π.

– Verify(σ, x, π) takes as input the CRS σ, a statement x, and a proof π, and
outputs either 1 accepting the argument or 0 rejecting it.

The algorithms above should satisfy the following properties.

1. Completeness. For all κ ∈ N, (x, w) ∈ R,

Pr
(
Verify(σ, x, π) = 1 : σ ← Setup(1κ)

π ← Prove(σ, x, w)

)
= 1.

2. Computational soundness. For all PPT adversaries A, the following proba-
bility is negligible in κ:

Pr
(
Verify(σ, x̃, π̃) = 1

∧ x̃ �∈ L
: σ ← Setup(1κ)

(x̃, π̃) ← A(1κ, σ)

)
.

3. Zero-knowledge. There exists a PPT simulator (S1, S2) such that S1 outputs
a simulated CRS Σ and trapdoor τ ; S2 takes as input σ, a statement s and
τ , and outputs a simulated proof π; and, for all PPT adversaries (A1, A2),
the following probability is negligible in κ:∣∣∣∣∣∣Pr

⎛
⎝ (x, w) ∈ R ∧

A2(π, st) = 1 :
σ ← Setup(1κ)

(x, w, st) ← A1(1κ, σ)
π ← Prove(σ, x, w)

⎞
⎠ −

Pr

⎛
⎝ (x, w) ∈ R ∧

A2(π, st) = 1 :
(σ, τ) ← S1(1κ)

(x, w, st) ← A1(1κ, σ)
π ← S2(σ, τ, x)

⎞
⎠

∣∣∣∣∣∣ .

Proof-of-Stake Protocols for Privacy-Aware Blockchains 717

References

[AGM18] Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge
proofs for composite statements. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. Part III. LNCS, vol. 10993, pp. 643–673. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96878-0 22

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer
Society Press, May 2018. https://doi.org/10.1109/SP.2018.00020

[BCG+14] Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from
bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474.
IEEE Computer Society Press, May 2014. https://doi.org/10.1109/SP.
2014.36

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and
its applications (extended abstract). In: 20th ACM STOC, pp. 103–112.
ACM Press, May 1988. https://doi.org/10.1145/62212.62222

[BGK+18] Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros
genesis: composable proof-of-stake blockchains with dynamic availability.
Cryptology ePrint Archive, Report 2018/378 (2018). https://eprint.iacr.
org/2018/378

[BGM16] Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of
work. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 142–157. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 10

[bit11] Proof of stake instead of proof of work, July 2011. https://bitcointalk.
org/index.php?topic=27787.0

[BLMR14] Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extend-
ing bitcoin’s proof of work via proof of stake [extended abstract] y. ACM
SIGMETRICS Perform. Eval. Rev. 42(3), 34–37 (2014)

[Bou00] Boudot, F.: Efficient proofs that a committed number lies in an interval.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 31

[BPS16] Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake.
Cryptology ePrint Archive, Report 2016/919 (2016). http://eprint.iacr.
org/2016/919

[CCs08] Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set
membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008.
LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-89255-7 15

[CDE+16] Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J.,
Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53357-4 8

[CDS94] Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48658-5 19

https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1145/62212.62222
https://eprint.iacr.org/2018/378
https://eprint.iacr.org/2018/378
https://doi.org/10.1007/978-3-662-53357-4_10
https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
https://doi.org/10.1007/3-540-45539-6_31
http://eprint.iacr.org/2016/919
http://eprint.iacr.org/2016/919
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/3-540-48658-5_19

718 C. Ganesh et al.

[CM99] Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is
the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48910-X 8

[CS97] Camenisch, J., Stadler, M.: Efficient group signature schemes for large
groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–
424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

[Dam00] Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string
model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 418–430. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 30

[DGKR18] David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos:
an adaptively-secure, semi-synchronous proof-of-stake blockchain. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. Part II. LNCS, vol.
10821, pp. 66–98. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78375-8 3

[FO97] Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove
modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0052225

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[GHM+17] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand:
scaling byzantine agreements for cryptocurrencies. Cryptology ePrint
Archive, Report 2017/454 (2017). http://eprint.iacr.org/2017/454

[JKK14] Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-
protected secret sharing and T-PAKE in the password-only model. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. Part II. LNCS, vol. 8874,
pp. 233–253. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45608-8 13

[KKKZ18] Kerber, T., Kohlweiss, M., Kiayias, A., Zikas, V.: Ouroboros crypsinous:
privacy-preserving proof-of-stake. Cryptology ePrint Archive, Report
2018/1132 (2018). To appear at IEEE Symposium on Security and Pri-
vacy - S&P 2019. https://eprint.iacr.org/2018/1132

[KN12] King, S., Nadal, S.: PPcoin: peer-to-peer crypto-currency with proof-of-
stake (2012)

[KRDO17] Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably
secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. Part I. LNCS, vol. 10401, pp. 357–388. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 12

[Lin15] Lindell, Y.: An efficient transform from sigma protocols to NIZK with
a CRS and non-programmable random Oracle. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. Part I. LNCS, vol. 9014, pp. 93–109. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 5

[MGGR13] Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous dis-
tributed E-cash from Bitcoin. In: 2013 IEEE Symposium on Security and
Privacy, pp. 397–411. IEEE Computer Society Press, May 2013. https://
doi.org/10.1109/SP.2013.34

https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://eprint.iacr.org/2017/454
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://eprint.iacr.org/2018/1132
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1109/SP.2013.34
https://doi.org/10.1109/SP.2013.34

Proof-of-Stake Protocols for Privacy-Aware Blockchains 719

[Nak08] Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
[OM14] O’Dwyer, K.J., Malone, D.: Bitcoin mining and its energy footprint. In:

ISSC 2014/CIICT 2014, pp. 280–285 (2014). https://doi.org/10.1049/cp.
2014

[Ped92] Pedersen, T.P.: Non-interactive and information-theoretic secure verifi-
able secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1 9

[Sch91] Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991)

https://doi.org/10.1049/cp.2014
https://doi.org/10.1049/cp.2014
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9

Consensus Through Herding

T.-H. Hubert Chan1(B), Rafael Pass2, and Elaine Shi2

1 The University of Hong Kong, Lung Fu Shan, Hong Kong
hubert@cs.hku.hk

2 Cornell and Thunder Research, New York, USA
{rafael,elaine}@cs.cornell.edu

Abstract. State Machine Replication (SMR) is an important abstrac-
tion for a set of nodes to agree on an ever-growing, linearly-ordered log
of transactions. In decentralized cryptocurrency applications, we would
like to design SMR protocols that (1) resist adaptive corruptions; and (2)
achieve small bandwidth and small confirmation time. All past approaches
towards constructing SMR fail to achieve either small confirmation time or
small bandwidth under adaptive corruptions (without resorting to strong
assumptions such as the erasure model or proof-of-work).

We propose a novel paradigm for reaching consensus that departs sig-
nificantly from classical approaches. Our protocol is inspired by a social
phenomenon called herding, where people tend to make choices consid-
ered as the social norm. In our consensus protocol, leader election and
voting are coalesced into a single (randomized) process: in every round,
every node tries to cast a vote for what it views as the most popular
item so far: such a voting attempt is not always successful, but rather,
successful with a certain probability. Importantly, the probability that
the node is elected to vote for v is independent from the probability it is
elected to vote for v′ �= v. We will show how to realize such a distributed,
randomized election process using appropriate, adaptively secure cryp-
tographic building blocks.

We show that amazingly, not only can this new paradigm achieve con-
sensus (e.g., on a batch of unconfirmed transactions in a cryptocurrency
system), but it also allows us to derive the first SMR protocol which,
even under adaptive corruptions, requires only polylogarithmically many
rounds and polylogarithmically many honest messages to be multicast
to confirm each batch of transactions; and importantly, we attain these
guarantees under standard cryptographic assumptions.

T.-H. Hubert Chan—This research was partially done in a consultancy agreement with
Thunder Research.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-17653-2 24) contains supplementary material, which is
available to authorized users.

c© International Association for Cryptologic Research 2019
Y. Ishai and V. Rijmen (Eds.): EUROCRYPT 2019, LNCS 11476, pp. 720–749, 2019.
https://doi.org/10.1007/978-3-030-17653-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17653-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-17653-2_24
https://doi.org/10.1007/978-3-030-17653-2_24
https://doi.org/10.1007/978-3-030-17653-2_24

Consensus Through Herding 721

1 Introduction

State Machine Replication (SMR), also called consensus, is a core abstraction
in distributed systems [5,21,25]: a set of nodes would like to agree on a lin-
early ordered log of transactions (e.g., in a public ledger or decentralized smart
contract application), such that two important security properties, consistency
and liveness, are satisfied. Loosely speaking, consistency requires that all honest
nodes’ logs are prefixes of one another and that no node’s log will ever shrink;
and liveness requires that if a client submits a transaction, the transaction will
appear in every honest node’s log in a bounded amount of time.

The classical literature on distributed systems typically considers deployment
of consensus in a single organization (e.g., Google or Facebook), and on a small
scale (e.g., a dozen nodes). Typically these nodes are connected through fast,
local-area network where bandwidth is abundant. Thus the classical consensus
literature typically focuses on optimizating the protocol’s round complexity which
is directly related to the confirmation time—it is well-known that we can design
consensus protocols where confirmation happens in expected constant rounds
(i.e., independent of the number of players) even in the presence of adaptive
corruptions [10,14].

In the past decade, due to new blockchain systems such as Bitcoin and
Ethereum, SMR protocols have been deployed in a decentralized setting in an
open network. In such a blockchain setting, we typically have a large number
n of nodes who communicate over a diffusion network (where nodes multicast
messages to the whole network); and it is simply not practical to have protocols
where the number of messages to be multicast grows linearly with the number of
nodes. In this paper, we care about achieving SMR in a communication-efficient
way: we want both the confirmation time and the number of bits multicast (to
confirm each batch of transactions) to be polylogarithmic (or even just sublinear)
in the number of nodes. More precisely, we refer to an n-party protocol as being
communication efficient if the total number the bits multicast is o(n) · |TXs| · κ,
and the confirmation time is o(n) · κ where κ is a security parameter such that
the protocol’s security must be respected except with negligible in κ probability.
Achieving communication efficiency under static security is easy: one could ran-
domly elect a small committee of poly log κ size and next run any SMR protocol
that may have polynomial bandwidth overhead to confirm a batch of trans-
actions. If the committee election is random and independent of the choice of
corrupt nodes, then except with negligible in κ probability, the committee’s
corrupt fraction approximates the overall corrupt fraction due to the Chernoff
bound. Moreover, under honest majority assumptions, non-committee members
can always be convinced of a decision as long as it is vouched for by the majority
of the committee.

However, in typical blockchain applications (such as cryptocurrencies where
the participating nodes are on an open network), the static corruption model is
insufficient for security. Rather, we need to protect the protocol against adap-
tive corruptions, where an attacker may, based on the protocol execution so
far, select which parties to attack. The above-mentioned “näıve” committee

722 T.-H. Hubert Chan et al.

election approach miserably fails in the presence of adaptive corruptions: the
adversary can always corrupt all committee members after having observed who
they are and completely violate the security of the protocol. Indeed, obtaining
a communication-efficient SMR protocol which withstands adaptive corruptions
has been a long-standing open problem:

Does there exists a communication-efficient SMR protocol that withstands
adaptive corruptions?

Nakamoto’s beautiful blockchain protocol (through its analysis in [11,19,20]) was
the first protocol to achieve communication-efficient SMR with adaptive secu-
rity. This protocol, however, requires using proofs of work [9], and in particular
requires honest players to “waste” as much computation as the total computa-
tional power of adversarial players. Consequently, in recent years, the research
community has focused on removing the use of proofs-of-work and instead rely
on standard bounds on the fraction of adversarial players (e.g., honest major-
ity). In particular, the recent work by Chen and Micali [6] (see also David
et al. [8], and Pass and Shi [23]) demonstrates communication-efficient SMR
protocols with adaptive security without the use of proof-of-work in the so-
called erasures model : in the erasure model, we assume that honest players have
the ability to completely erase/dispose of some parts of their local state (such
that if some player later on gets corrupted, the erased state cannot be recovered
by the attacker). However, as discussed in Canetti et al. [4] (and the references
therein) such erasures are hard to perform in software, without resorting to phys-
ical intervention, and the security of the heuristics employed in practice are not
well understood. As such, solutions in the erasure model may not provide an
adequate level of security and thus ideally, we would like to avoid the use of
strong erasure assumptions.

In this work, we focus on the design of communication-efficient SMR pro-
tocols without proof-of-work and without assuming the possibility of erasures.
As far as we know, the design of such protocols is open even in the PKI model
and even if assuming, say, 99% of the nodes are honest. We remark that very
recently, a communication-efficient “single-shot” version of consensus, referred
to as “multi-value agreement” (MVA), was achieved by Abraham et al. [2]; as
we discuss in detail in Sect. 1.2, the validity conditions for MVA is much weaker
and thus it is not clear how to extend these protocols to SMR.

1.1 Our Results

We propose the first communication-efficient SMR protocol with adaptive secu-
rity (without assuming erasures or proof-of-work), solving the above-mentioned
open problem. Our protocol works in a public-key-infrastructure (PKI) model,
assuming a synchronous network, and standard cryptographic assumptions. The
protocol tolerates 1

3 − ε fraction of adaptive corruptions where ε is an arbitrarily
small constant, and moreover to achieve a failure probability that is negligible in
the security parameter κ, every transaction tx gets confirmed in poly log κ·Δ time

Consensus Through Herding 723

where Δ is the maximum network delay, and requiring at most |tx| · poly log κ
bits of honest messages to be multicast (assuming that |tx| is at least as large as
a suitable computational security parameter).

Theorem 1.1 (Adaptively secure, communication efficient synchronous
state machine replication). Under standard cryptographic hardness assump-
tions (more precisely, assuming standard bilinear group assumptions), there exists
a synchronous state machine replication protocol which, except with negligible in κ
probability, satisfies consistency and confirms transactions in poly log κ · Δ time
where Δ is the maximum network delay—as long as the adversary corrupts no more
than 1

3 − ε fraction of nodes. Moreover, (except with negligible in κ, χ probability)
honest nodes only need to multicast poly log κ · (χ + |TXs|) bits of messages to con-
firm every batch of transactions denoted TXs where χ is a computational security
parameter related to the strength of the cryptographic building blocks involved.1

We remark that our communication complexity bound is asymtotically the
same as that achieved by earlier protocols using either proofs of work or in the
erasure model.

1.2 Technical Highlights

Why the problem is more challenging in SMR than in single-shot
consensus. We stress that achieving communication efficiency under adaptive
corruptions is more difficult in SMR than in single-shot consensus. In the latter, a
designated sender aims to “broadcast”, for once only, a (possibly multi-bit) value
to everyone, retaining consistency even when the sender is corrupt, and achiev-
ing validity should the sender be honest. Henceforth we refer to the single-shot
version as Multi-Valued Agreement (MVA). In MVA, if the sender is adaptively
corrupt, typically no validity is necessary (or even attainable depending on the
concrete definition). Thus it is not clear how to compose adaptively secure MVA
to achieve adaptively secure SMR while preserving communication efficiency:
if the “leader” who is supposed to broadcast the next block (of transactions)
becomes corrupt, the adversary can cause a “bad block” to be confirmed (e.g., a
block that censors some to all outstanding transactions). If only a small number
of such “leaders” speak at any point of time, the adversary can continuously
corrupt all leaders that speak until it has exhausted its corruption budget—such
an attack will cause confirmation time to be large.

For this reason, we stress that adaptively secure, communication-efficient
MVA does NOT lead to adaptively secure, communication-efficient SMR in any
straightforward manner2. Also note that even for single-shot consensus, the only
1 If assuming subexponential security of the underlying cryptographic building blocks,

χ can be set to poly log κ.
2 If communication efficiency is not a concern, we could have n broadcast instances

(composed either sequentially or in parallel) where everyone is given the chance to
act as the leader and suggest the next batch of transactions to confirm; we can then
concatenate the outputs of these n broadcasts and treat it as the next block.

724 T.-H. Hubert Chan et al.

known solution that is communication efficient and does not assume erasures is
the recent work by Abraham et al. [2].

Defining “batch agreement” with a quality metric. As mentioned, the
validity definition in the classical notion of MVA is too weak if we wish to
construct communication-efficient state machine replication. One contribution
of our paper is to propose a new abstraction which we call “batch agreement”—
on the surface it looks very much like MVA since nodes seek to agree on the
next batch of transactions. However, batch agreement is defined with a quality
metric that is lacking in the standard definition of MVA. We say that a block
has good quality iff it contains all transactions that have been outstanding for
a while; and our batch agreement notion requires that a batch with good quality
be chosen even when the “leader” is adaptively corrupt (and upon corruption it
can inject many blocks).

Constructing batch agreement. To understand the novelty of our approach,
we first briefly review existing work. In classical approaches, if only a few number
of leaders are elected to speak, all of them can be adaptively corrupt and made
to propose multiple blocks in the same round. Even if the adversary is not fast
enough to erase the good block that leader already proposed while still honest
(i.e., just before it was adaptively corrupted), it can succeed in diverging honest
nodes’ voting efforts. For example, newly corrupt node may propose many good
blocks and delivering them in different order to different honest nodes. At this
moment, using classical techniques, it does not seem easy for the honest nodes
to coordinate and vote on the same block. As a result, some classical approaches
adopt an approach [18] where nodes jointly discover that no block has gained
popular votes (e.g., by computing a grade), and then they initiate a binary
agreement process to jointly decide to fall back to outputting a default value.
Obviously the default value is pre-determined and cannot contain the set of
outstanding transactions and thus does not have good quality.

Our approach departs from all known classical approaches: at the core we
describe a new randomized process through which the network can jointly make
a selection and converge to a good choice, when presented with polynomially
many choices. During a batch agreement, a small set of nodes get elected to
propose a block. All of these nodes may be adaptively corrupt and then made
to propose more good or bad blocks. Thus honest nodes are faced with these
polynomially many blocks to choose from, and moreover at any snapshot of time,
the set of blocks observed by different honest nodes may differ, since the blocks
do not necessarily arrive at the honest nodes at the same time.

To converge to a good choice, we start with an initial scoring function that
is used to evaluate the quality of each block itself—basically a block that con-
tains all sufficiently long outstanding transactions scores high, and a block that
censors some of them will score very low. Since nodes may receive outstanding
transactions at slightly different times, honest nodes may end up calculating
different initial scores even for the same block—we carefully craft a initial score
function to make sure that this difference is not too large as long as transactions

Consensus Through Herding 725

are propagated to honest nodes around the same time (indeed, we show that
this can be accomplished with small communication too).

Nodes then are randomly elected to vote on the blocks over time; the votes
can serve to strengthen a block’s score in an additive fashion. At any point of
time, an honest node will always try to vote on the most popular block in its
view (i.e., the one with the highest score), but the voting attempt only succeeds
with somewhat small probability such that not too many people need to send
votes. If a node is randomly elected to vote for some block B in some time
step, it does not mean that it is eligible to vote for other blocks; thus adaptively
corrupting a node that is elected to vote does not help the adversary. Since all
honest nodes always choose the most popular item so far, honest nodes’ voting
efforts must be somewhat concentrated. After roughly polylogarithmically many
steps, polylogarithmically many honest votes will have been cast. Although at
any snapshot of time, nodes may never agree on the precise score or set of votes
for each block, (except with negligible probability) it must be the case that
everyone sees that the same highest-scoring block at the end, because its final
score is significantly larger than the second-best choice. Finally, a block with
an initial score that is too low will also not be selected (except with negligible
probability) because it is too unlikely for it to ever collect enough votes (even
when counting corrupt nodes’ votes) to compete with the blocks with good
quality.

With our approach, the ability to corrupt a leader on the fly and making it
propose many additional blocks (on top of the good block it already proposed)
does not help the adversary; nor does adaptively corrupting a voter help as
mentioned.

2 Technical Roadmap

In this section, we begin by explaining our construction and proofs (of the pri-
mary building block) informally. We then give a more detailed comparison with
related work.

2.1 Informal Description of Our Protocol

At the core of our SMR construction is a new abstraction called “batch agree-
ment”. Every time a batch agreement instance is invoked, the nodes reach agree-
ment on a set of transactions such that transactions that are sufficiently long-
pending are guaranteed to be included (except with negligible probability). The
entire SMR protocol simply runs multiple sequential instances of the batch agree-
ment protocol.

As mentioned earlier, although on the surface it seems similar to the classical
notion of Multi-Valued Agreement (MVA), our notion has a much stronger valid-
ity property that is lacking in classical MVA—specifically, we require that the
confirmed block have good quality even when everyone who is randomly elected
to speak is adaptively corrupt.

726 T.-H. Hubert Chan et al.

A herding-inspired protocol. Our protocol is inspired a social phenomenon
called herding where people follow the popular social choice. We show how herd-
ing can be leveraged for reaching consensus. Recall that the adversary controls
1
3 − ε fraction. At a high level, nodes cast votes for batches of transactions over
time. Imagine that in any round t, a node has a certain probability p = 1

λΔn
of being elected to vote for a particular batch TXs where λ is sufficiently large
such that λ = ω(log κ

ε2)—henceforth if a node is elected to vote for TXs in round
t, we say that the node “mines” a vote for TXs in round t. Importantly, the
probability that a node mines a vote for TXs and round r is independent of its
success probability for TXs′ and round r′ as long as (TXs, r) �= (TXs′, r′)—this is
important for achieving adaptive security: if the adversary adaptively corrupts
a node that has just cast a vote for TXs, corrupting this node does not make it
more or less likely for the adversary to mine a vote for TXs′ �= TXs in the same
round than corrupting any other node.

In every round, an honest node would always pick the most popular batch
(where popularity will be defined later) in its view, and it will only attempt to
vote for this most popular batch—it will not cast a vote for any other batch even
if it might be eligible. If a voting attempt for TXs is successful in some round,
the node multicasts the new vote as well as all existing votes it has seen observed
for TXs to all other nodes. After some time, every node outputs a batch that
has collected “ample” number of votes (where “ample” will be defined later in
Sect. 2.2); if no such batch is found, output nothing.

Realizing “mining” with cryptography. So far in the above protocol, we did
not fully specify how to realize the random eligibility election. As we explain later
in the paper, this can be instantiated assuming a Verifiable Random Function
(VRF) with appropriate adaptive security properties.

Assume that every player i has a VRF public key denoted pki that is common
knowledge, and the corresponding VRF secret key ski is known only to player
i. For i to determine its eligibility to vote for TXs in round r, it evaluates
(μ, π) := VRF(ski,TXs, r) where μ is the VRF evaluation outcome and π is a
proof attesting to the evaluation outcome. If μ < Dp where Dp is an appropriate
difficulty parameter, node i is deemed eligible to vote for TXs in round r. While
only the secret-key owner can evaluate the VRF, anyone can verify the evaluation
outcome. More specifically, any node that receives the tuple (TXs, r, μ, π) can
verify with pki that indeed μ is the correct VRF evaluation outcome and verify
i’s eligibility to vote for TXs in round r. Importantly, a vote received is only
considered valid if its purported round is no greater than the current round
number (this prevents corrupt nodes from mining into the future).

Later in Sect. 7, we will describe how to instantiate such an adaptively-secure
VRF that satisfies our needs, using techniques from Abhraham et al. [2].

Popularity and initial score. It remains to specify how nodes determine the
popularity of a batch TXs of transactions. The popularity is the sum of an initial
score and the number of valid votes collected so far for TXs. To make sure that
the protocol will preferentially select an all-inclusive batch TXs that omits no

Consensus Through Herding 727

long-pending transaction, we design an initial score function that relies on a
discounting mechanism to punish batches that omit long-pending transactions.

Specifically, we say that node i perceives the age of a transaction tx to be α,
if at the start of the batch agreement protocol, exactly α rounds have elapsed
since node i first observed tx. We assume that the underlying network medium
satisfies the following “transaction diffusion” assumption: if any forever honest
node observes a transaction tx in round r, then by round r + Δ, all so-far hon-
est nodes must have observed tx too3. In this way, we are guaranteed that the
perceived age of a transaction tx must be somewhat consistent among all honest
nodes. Now, imagine that the maximum initial score a batch can gain is Smax (to
be parametrized later). We will discount the initial score of a batch TXs expo-
nentially fast w.r.t. the oldest transaction that TXs omits. Specifically, imagine
that node i computes the score of TXs as follows:

scorei(TXs) := Smax ·
(

1 − 1
λSmax

) α∗
3Δ

(1)

where α∗ is the age (as perceived by node i) of the oldest transaction that is
omitted from TXs. Given the transaction diffusion assumption, it is not diffi-
cult to see that every two so-far honest nodes’ initial score difference for any
batch TXs must be less than 1

λ , i.e., honest nodes score every batch somewhat
consistently.

2.2 Intuitive Analysis

We can now intuitively argue why such a herding-based protocol satisfies con-
sistency and liveness under appropriate parameters. Imagine that the protocol
is parametrized in the following way where λ is chosen such that ε2λ = ω(log κ)
— for example if ε is a(n arbitrarily small) constant, then λ may be any super-
logarithmic function:

– in an all-honest execution, in expectation, every λΔ rounds, some node mines
a new vote. This means that each individual mining attempt is successful with
probability 1

λΔn ;
– the protocol is executed for Tend := λ2Δ rounds, i.e., in an all-honest execu-

tion, in expectation a total of λ votes are mined; and
– at the end of the protocol, a node would only output a batch that has gained

2λ
3 or more valid votes, i.e., a threshold of 2λ

3 is considered ample.

Consistency. To argue consistency, it suffices to argue that any two differ-
ent batches TXs and TXs′ cannot both gain ample votes by Tend. This follows
from the following observation: forever honest nodes make only a single mining
attempt per round; while eventually corrupt nodes can make a mining attempt

3 As discussed in the Supplemental Materials this assumption can be removed in a
synchronous network while preserving communication efficiency.

728 T.-H. Hubert Chan et al.

for TXs and one for TXs′ corresponding for each round r (note that once corrupt,
a node can retroactively make mining attempts for past rounds). Thus the total
number of mining attempts made for either TXs or TXs′ must be upper bounded
by 4

3 · n · Tend. As mentioned earlier, adaptively corrupting a node that has just
mined a vote for TXs does not increase the adversary’s chance of mining a vote
for TXs′ �= TXs (for any round). Thus by Chernoff bound, we have that except
with exp(−Ω(ε2λ)) probability (which is negligible in κ), the total number of
successfully mined votes (including honest and adversarial) for TXs or TXs′ must
be strictly less than 4λ

3 —this means that the two different batches cannot both
have ample votes. To complete the argument, we need to take a union bound over
all pairs of batches. If the adversary and all nodes are polynomially bounded,
then the only batches we care about are those that appear in some honest node’s
view at some point in the execution. Since there are at most polynomially many
such batches, the union bound has only polynomial loss.

Liveness. Liveness crucially relies on the fact that the mining difficulty is large
enough, such that the average time till some node finds the next vote (set to
be λΔ) is much larger than the maximum network delay Δ. Intuitively, this
condition is necessary for honest nodes to “concentrate” their voting efforts on
the same batch. Recall that honest nodes would score each batch somewhat
consistently. This means that if a so-far honest node mines a vote for what he
thinks is the most popular batch TXs—if the network delay is small, very soon
all so-far honest nodes would find TXs the most popular batch too, and would
mine votes only for TXs. As long as all forever honest nodes concentrate their
mining efforts, by Chernoff bound some batch would attract ample votes and
thus liveness ensues. On the other hand, if the network delay is large w.r.t. to the
time it takes to mine a vote, honest nodes will be mining on different batches and
likely no batch will gain enough votes at the end. We defer a formal argument
to the later technical sections.

Validity. For validity, we would like to argue that any batch that honest nodes
agree on cannot omit “long-pending” transactions. To see this, note that except
with negligible in κ probability, the total number of valid votes any batch TXs
can gain is at most 1.1λ. Now, if we let Smax := 3λ, then any batch TXs that
omits transactions of age cλ2Δ or higher for an appropriate constant c must
have an initial score less than 1.5λ as perceived by any honest node (recall that
honest nodes would always assign somewhat consistent scores to every batch).
This means that no honest node should ever attempt to mine a vote for such a
batch TXs; and thus TXs cannot gain ample votes.

2.3 Additional Related Work

In the past, the only known protocol that achieves both small bandwidth and small
confirmation time under adaptive corruptions is the celebrated Nakamoto con-
sensus protocol [11,19,20,22], however, at the price of making very strong, ideal-
ized, proof-of-work assumptions. Constrained to making standard cryptographic

Consensus Through Herding 729

assumptions, it is known how to construct adaptively-secure SMR that achieves
either small confirmation time or small bandwidth, but not both.

First, if we allow many nodes to speak at any point of time (i.e., if we
did not care about bandwidth consumption), we can easily construct protocols
that achieve small round complexity. Specifically, it is easy to compose multi-
ple instances of small-round MVA protocols [2,10,14] to attain SMR with small
confirmation time (while retaining adaptive security). Basically, in every round,
we can fork n instances of MVA where each node i acts as the designated sender
in the i-th instance, and the log of the SMR is derived by concatenating all
instances of all rounds, ordered first by the round and then by the instance
within the round. However, even if the underlying MVA achieved small band-
width [2], the derived SMR protocol would be expensive in bandwidth.

In a second class of approaches, we would like to have only a small num-
ber of players speak at any given point of time [1,6–8,15,16,23,26]—this is in
fact necessary to achieve our notion of communication efficiency. Past work has
suggested multiple ways to construct such protocols:

– One possible approach [1,7,8,15,16,23,26], is inspired by Nakamoto’s longest-
chain protocol but removing the proof-of-work in a permissioned setting
assuming a public-key infrastructure (PKI). Specifically, in such protocols,
in every time slot, a node has a chance of being elected leader. When it is
elected leader, it signs the next block extending the current longest chain. For
such protocols to retain consistency and liveness [1,7,8,15,16,23,26], some
additional constraints have to be imposed on the validity of timestamps con-
tained in a blockchain. Among these works, some use a randomized leader
election strategy [7,16,16,23]; and some use a deterministic leader election
process [1,15,26].

– Another approach, represented by Algorand [6] and improved in subsequent
works [2,18], is to rely on a classical-style consensus protocol, but in every
round, randomly subsample a small, polylogarithmically size committee to
cast votes (e.g., by employing a verifiable random function).

No matter which approach is taken, an adaptive adversary can continuously
corrupt the small number of players selected to speak until it exhausts its cor-
ruption budget. Once corrupt, these players can cast ambiguous votes or propose
equivocating blocks (e.g., those that censor certain transactions). In all of the
above approaches (without assuming erasure), when such an adaptive-corruption
attack is taking place, all blocks confirmed may have bad quality (e.g., censoring
certain transactions), causing confirmation time to be at least Θ(n/s) where s
denotes an upper bound on the number of players who speak in every round.

Communication-efficient single-shot consensus. The recent work by Abra-
ham et al. [2] achieves adaptive security and communication efficiency without
erasures or PoW, but their approach works only for MVA and does not extend, in
any non-trivial fashion, to SMR. As mentioned sequential or parallel repetition
of MVA fails to work for this purpose due to the much weaker validity require-
ment of MVA (see the Supplemental Materials for additional explanations).

730 T.-H. Hubert Chan et al.

As will be obvious soon, although our paper adopts the vote-specific committee
election technique from Abraham et al. [2], we require vastly new techniques to
simultaneously achieve both adaptive security and communication efficiency for
SMR.

3 Protocol Execution Model

A protocol refers to an algorithm for a set of interactive Turing Machines (also
called nodes) to interact with each other. The execution of a protocol Π that
is directed by an environment Z(1κ) (where κ is a security parameter), which
activates a number of nodes as either honest or corrupt nodes. Honest nodes
faithfully follow the protocol’s prescription, whereas corrupt nodes are controlled
by an adversary A(1κ) which reads all their inputs/message and sets their out-
puts/messages to be sent.

A protocol’s execution proceeds in rounds that model atomic time steps. At the
beginning of every round, honest nodes receive inputs from an environment Z; at
the end of every round, honest nodes may send outputs to the environment Z.

Corruption model. Z spawns n number of nodes upfront, a subset of which
may be corrupt upfront, and the remaining are honest upfront. During the execu-
tion, Z may adaptively corrupt any honest node. When a node becomes corrupt,
A gets access to its local state, and subsequently, A controls the corrupt node.
Henceforth, at any time in the protocol, nodes that remain honest so far are
referred to as so-far honest nodes; and nodes that remain honest till the end of
the protocol are referred to as forever honest nodes4.

Communication model. We assume that there is a function Δ(κ, n) that is
polynomial in κ and n, such that every message sent by a so-far honest node in
round r is guaranteed to be received by a so-far honest recipient at the beginning
of round r+Δ (if not earlier). The adversary can delay honest message arbitrarily
but up to Δ rounds at the maximum.

All of our protocols will work in the multicast model: honest nodes always
send the same message M to everyone. We assume that when a so-far honest node
i multicasts a message M in some round r, it can immediately become corrupt
in the same round and made to send one or more messages in the same round.
However, the message M that was already multicast before i became corrupt
cannot be retracted, and all nodes that are still honest in round r + Δ will
have received the message M . In our paper we will also account for a protocol’s
communication efficiency by upper bounding how many bits of honest messages
must be multicast during the protocol. Any message that is sent by a so-far
honest node is an honest message—but if the node becomes corrupt in the same
round and sends another message in the same round, the latter message is treated
as a corrupt message. Since corrupt nodes can send any polynomially many
messages, we do not seek to bound corrupt messages.
4 Note that “forever honest” is in fact defined w.r.t. the protocol we are concerned

with.

Consensus Through Herding 731

In this paper we consider synchronous protocols where the protocol is
parametrized with Δ, i.e., Δ is hard-wired in the protocol’s description.

Notational convention. Protocol execution is assumed to be probabilistic in
nature. We would like to ensure that certain security properties such as consis-
tency and liveness hold for almost all execution traces, assuming that both A
and Z are polynomially bounded.

Henceforth in the paper, we use the notation EXECΠ(A,Z, κ) to denote a
sample of the randomized execution of the protocol Π with A and Z, and security
parameter κ ∈ N. The randomness in the experiment comes from honest nodes’
randomness, A, and Z, each sampling of EXECΠ(A,Z, κ) produces an execution
trace. We would like that the fraction of execution traces that fail to satisfy
relevant security properties be negligibly small in the security parameter κ. A
function negl(·) is said to be negligible if for every polynomial p(·), there exists
some κ0 such that negl(κ) ≤ 1/p(κ) for every κ ≥ κ0.

Throughout the paper, we assume that n is a polynomial function in κ and
Δ is a polynomial function in κ and n—we note in the most general setting, Δ
may be dependent on n if, for example, the network layer builds some kind of
diffusion tree or graph to propagate messages.

Definition 3.1 ((ρ,Δ)-respecting). We say that (A,Z) is (ρ,Δ)-respecting
w.r.t. protocol Π iff for every κ ∈ N, with probability 1 in EXECΠ(A,Z, κ), every
honest message is delivered within Δ rounds and moreover (A,Z) adaptively
corrupts at most ρ fraction of nodes.

When the context is clear, we often say that (A,Z) is (ρ,Δ)-respecting omitting
saying which protocol Π is of interest.

4 Scoring Agreement

We define an abstraction called scoring agreement—this is at the of our batch
agreement construction. We rely on a herding-based protocol to achieve it. In a
scoring agreement protocol, each node starts with an element from some known
universe U . Each node can evaluate an initial score for each element from U .
The scoring agreement protocol seeks to reach agreement on some element with
from U that is scored relatively highly by (almost) all forever honest nodes.

4.1 Definition of Scoring Agreement

Syntax. A scoring agreement protocol, henceforth denoted Πscore is parametrized
with a universe U that defines valid values. Moreover, suppose that there is a
publicly known, polynomial-time computable function (also denoted U for con-
venience) for verifying whether a value v belongs to U .

732 T.-H. Hubert Chan et al.

The environment Z instructs all nodes to start the protocol at the same time
(treated as round 0 for the current protocol instance). When a node is instructed
to start by Z, it additionally receives the following as input from Z:

1. a value vi ∈ U ;
2. an efficiently computable function scorei : U → R that can assign an initial,

real-valued score for any value v ∈ U ; note that different nodes can receive
different scoring functions.

Later when employed in our batch agreement, the value will be blocks of
transactions.

Constraints on Z. We require that the following conditions hold with proba-
bility 1:

– ϑ-somewhat-consistent initial scoring: for every v ∈ U , for any initially honest
i and j, it holds that |scorei(v) − scorej(v)| < ϑ.

– High initial scores: for every forever honest i, let vi be i’s input—it must be
that there is no v′ ∈ U such that scorei(v′) > scorei(vi).

The first condition above requires that initially honest nodes receive relatively
consistent scoring functions from Z, i.e., they assign somewhat consistent initial
scores for every element in the universe. The second condition requires that every
forever honest node’s input must be the highest scoring element in the universe
(as perceived by the node itself).

Security properties. We want a protocol where nodes reach agreement on a
value in U . We say that a protocol Πscore (parametrized with U and Δ) satisfies
a certain property w.r.t. (A,Z), iff there exists some negligible function negl(·)
such that for all κ ∈ N, for all but negl(κ) fraction of the execution traces sampled
from EXECΠscore(A,Z, κ), that property holds. In particular, we care about the
following properties.

– Consistency. If a so-far honest node i outputs v ∈ U and a so-far honest node
j outputs v′ ∈ U , it must hold that v = v′.

– d-Validity. Suppose that for some B ∈ R, there exists subset S of forever
honest nodes of size at least (13 + 0.5ε)n, such that for every i ∈ S, i received
an input value vi satisfying scorei(vi) ≥ B. Then, if any so-far honest node
outputs v∗ ∈ U , then there must exist an initially honest node i∗ such that
scorei∗(v∗) ≥ B − d.
In other words, if sufficiently many forever honest nodes receive a high-scoring
input value and some honest node outputs v, then it cannot be that all honest
nodes assign v a relatively low initial score.

– Tend-Liveness. Every forever honest node terminates and outputs a value in
round Tend.

Consensus Through Herding 733

4.2 Message-Specific Random Eligibility Election

To achieve small communication bandwidth, we use a technique proposed in
Abraham et al. [2] for vote-specific, random eligibility election. A node with the
identifier i should only send a message m if it is determined to be eligible for
sending m—otherwise the message m will be discarded by so-far honest nodes.

Random eligibility election with cryptography. Imprecisely speaking such
random eligibility election is performed with the help of a Verifiable Random
Function (VRF) [17]: assume that every player i has a VRF public key denoted
pki that is common knowledge, and the corresponding VRF secret key ski is
known only to player i. For i to determine its eligibility for sending m, it eval-
uates (μ, π) := VRF(ski,m) where μ is the VRF evaluation outcome and π is a
proof attesting to the evaluation outcome. If μ < Dp where Dp is an appropri-
ate difficulty parameter, node i is deemed eligible for sending the message m.
While only the secret-key owner can evaluate the VRF, anyone can verify the
evaluation outcome. More specifically, suppose that node i additionally attaches
the pair (μ, π) when sending the message m; then, any node that receives the
tuple (m, μ, π) can verify with pki that indeed μ is the correct VRF evaluation
outcome and verify i’s eligibility for m.

Now for technical reasons we will, for the time being, assume that such a
VRF exists and moreover can resist adaptive attacks: specifically, even when
the adversary can selectively open the secret keys of a subset of the honest
nodes, the remaining honest nodes’ VRFs will still give pseudo-random evalu-
ation outcomes. Later in Sect. 7, we will describe how to instantiate such an
adaptively-secure VRF that satisfies our needs, using techniques from Abraham
et al. [2].

Remark 4.1 (Subtleties regarding the use of VRF). Although earlier works such
as Algorand [6] and others [8,13,23] also rely on a VRF; they do not use the
vote-specific election technique; and this is why these earlier works must rely on
erasures to achieve adaptive security. Abraham et al. [2] relies on vote-specificity
to remove the erasure assumption, but their technique works only for agree-
ment on a single bit as explained in Sect. 2.3 and the Supplemental Materials.
Finally, although not explicitly noted, Algorand [6] and other prior works [8]
also require that the VRF be adaptively secure (i.e., honest VRF evaluations
must remain pseudorandom even when the adversary can selectively open hon-
est nodes’ keys)—these earlier works rely on a random oracle to achieve such
adaptive security. In our work, we instantiate such an adaptively secure VRF
without relying on random oracles.

Random eligibility election in an idealized model. Henceforth for simplic-
ity, in our protocol description we will abstract away the cryptographic details
and instead assume that an idealized oracle Fmine exists that takes care of eli-
gibility election—but later in Sect. 7, we will explain how to instantiate Fmine

with adaptively secure cryptographic primitives. Specifically, Fmine is a trusted
(i.e., incorruptible) party that performs the following—we assume that Fmine

has been parametrized with an appropriate probability p:

734 T.-H. Hubert Chan et al.

1. Upon receiving mine(m) from node i, if the coin Coin[m, i] has not been
recorded, flip a random coin b that is 1 with probability p and is 0 with
probability 1 − p. Record Coin[m, i] := b and return Coin[m, i]

2. Upon receiving verify(m, i) from any node, if the coin Coin[m, i] has been
recorded, return its value; else return 0.

Basically, for node i to check its eligibility for the message m, it calls
Fmine.mine(m)—henceforth for simplicity we also call this act “mining a vote
for m”.

4.3 Herding-Based Scoring Agreement Protocol

The protocol Πscore is parametrized with some universe U . We describe the
protocol in the Fmine-hybrid world, and later in Sect. 7 we show how to remove
the Fmine idealized assumption.

1. Parameters. Recall that the adversary controls 1
3 − ε fraction. Let λ be large

enough such that ε2λ = ω(log κ); e.g., if ε is a(n arbitrarily small) constant
then λ can be any super-logarithmic function.
The mining difficulty parameter is set such that if all nodes were honest, on
average exactly 1 vote (among all nodes) would be successfully mined every
λΔ number of rounds. In other words, each mining attempt is successful with
probability 1

λΔn where n is the total number of nodes.
2. Mining. In each round t, for every value v ∈ U node i has observed so-far,

node i computes its popularity by adding v’s initial score and the number of
valid votes seen so far for v. Next, node i picks the most popular value v ∈ U
that has been observed (breaking ties arbitrarily). The node i then contacts
Fmine.mine(v, t) to mine a vote for the message (v, t)—if successful, node i
multicasts (v, t, i) as well as all valid votes that it has observed so far for the
value v.

3. Vote validity. A node can verify the validity of a received vote (v, t, i), by
calling Fmine.verify(v, t, i). If a vote (v, t, i) is received where t is greater
than the node’s round number, discard the vote.

4. Terminate. Every node runs the protocol for Tend = λ2Δ number of rounds, at
the end of which the node attempts to output a value based on the following
rule: the node has observed at least 2λ

3 valid votes for any value v ∈ U , then
output v; else output nothing.

4.4 Theorem Statements for Scoring Agreement

We summarize this section with the following theorem statements, the proofs of
which are deferred to Sect. 8.

Theorem 4.2 (Security of scoring agreement). Assume that ε2λ =
ω(log κ). The above Fmine-hybrid scoring agreement protocol satisfies consis-
tency, 2λ

3 -validity, and λ2Δ-liveness against any (13 − ε,Δ)-respecting, non-
uniform p.p.t. (A,Z) that satisfies the constraints5 specified in Sect. 4.1.
5 See the “Syntax” and “Constraints on Z” paragraphs.

Consensus Through Herding 735

When the choice of λ is polylogarithmic in κ, the protocol achieves poly-
logarithmic multicast communication complexity, i.e., only polylogarithmically
many honest messages are multicast regardless of how (A,Z) behaves.

Theorem 4.3 (Communication efficiency of scoring agreement). Sup-
pose that log1.1 κ ≤ λ ≤ log2 κ and that n is polynomial in κ. Then, for any
(A,Z), there is a negligible function negl(·) such that except with negl(κ) prob-
ability over the choice of EXECΠscore(A,Z, κ) where Πscore denotes the above
Fmine-hybrid scoring agreement protocol, honest nodes multicast no more than
log3 κ · Θ(� + log κ) bits of messages where � is the number of bits for encoding
each element in U .

5 Batch Agreement

In this section, we first define a new abstraction called batch agreement, a primi-
tive that allows nodes to agree on a batch of transactions, such that long-pending
transactions (for some notion of long-pending) must be included in the output
batch. Our state machine replication protocol will simply sequentially compose
multiple instances of batch agreement to agree on batches of transactions over
time (see Sect. 6).

We show that one can construct batch agreement from scoring agreement by
choosing an appropriate scoring function that severely discounts batches that
omit sufficiently old transactions.

5.1 Formal Definition of Batch Agreement

Syntax. Suppose that nodes receive transactions as input from the environ-
ment Z over time. We assume that Z respects the following transaction dif-
fusion assumption with probability 1—later in the Supplemental Materials we
shall describe how to remove this assumption while preserving communication
efficiency:

Transaction diffusion assumption: If some forever honest node receives a
transaction tx as input in some round t, then all so-far honest nodes must
have received tx as input by the end of round t + Δ.

Remark 5.1 (About the transaction diffusion assumption). One way to remove
this assumption is to have every node echo the tx upon first seeing it—in real-
world peer-to-peer networks such as those adopted by Bitcoin or Ethereum,
everyone echoing the same message should charge only once to the communica-
tion cost. Later in the Supplemental Materials we discuss how to remove this
assumption for synchronous networks requiring only a small number of so-far
honest nodes to echo each tx.

736 T.-H. Hubert Chan et al.

The environment Z starts all nodes in the same round denoted rstart. When
starting an initially honest node i, Z informs node i a set of transactions that are
already confirmed—the same set of confirmed transactions, henceforth denoted
TXsconfirmed must be provided to all honest nodes.

At the end of the batch agreement protocol, every forever honest node must
have output a batch of transactions.

Security properties. We require the following security properties. Specifically,
there is a negligible function negl(·) such that for all but negl(κ) fraction of
execution traces, the following properties must hold:

– Consistency. If a so-far honest node outputs TXs and another so-far honest
node outputs TXs′ in the batch agreement protocol, it must be that TXs =
TXs′.

– Tend-Liveness. Let Tend = poly(κ, n,Δ) be a polynomial function in κ, n, and
Δ. Every node that remains honest in round rstart + Tend must have output
a batch by round rstart + Tend.

– D-Validity. If D ≤ rstart and some forever honest node has observed a trans-
action tx /∈ TXsconfirmed by round rstart − D where rstart is the start of the
batch agreement protocol, then tx must appear in any forever honest node’s
output batch.

5.2 Batch Agreement from Scoring Agreement

Intuition. It is easy to construct a batch agreement protocol from scoring agree-
ment in the synchronous setting. The idea is to rely on a scoring function such
that a batch would receive a significant penalty if long-pending transactions were
excluded. To obtain liveness, we also need that initially honest nodes assign some-
what consistent initial scores to every batch. This is guaranteed by leveraging
transaction diffusion assumption: a fresh transaction is propagated to all nodes
at most Δ apart. This means that so-far honest nodes have a somewhat consis-
tent view of any transaction’s age. We design our scoring function to make sure
that if the transaction diffusion assumption holds, then all honest nodes would
assign somewhat consistent initial scores to every batch. Finally, we also need
that initially honest nodes receive high-scoring inputs — this is also guaranteed
because an honest node always tries to include all pending transactions observed
so far in its input batch.

Detailed protocol. We now describe the batch agreement protocol which is
build from a scoring agreement instance denoted Πscore.

– Input. Start a scoring agreement instance denoted Πscore, and choose the
input to Πscore as follows: let TXs be the set of outstanding transactions in
the node’s view so far. Input TXs\TXsconfirmed to Πscore.

– Initial scoring function. Given a set of transactions TXs, its initial score is
computed as the following by node i. Let tx /∈ TXs ∪ TXsconfirmed be the
earliest transaction (not in TXs ∪ TXsconfirmed) which node i has observed so

Consensus Through Herding 737

far, and suppose that node i observed tx in round t—if there is no such tx,
we simply let t := rstart. Then, the initial score of TXs is computed as:

scorei(TXs) := 3λ ·
(

1 − 1
3λ2

)� rstart−t
3Δ 	

– Output. Now execute the scoring agreement protocol Πscore for Tend number
of rounds, and output whatever it outputs.

Theorem 5.2 (Synchronous batch agreement). Suppose that λ(κ) > 0.5
for sufficiently large κ. For any 0 < ρ < 1, any Δ, suppose that (A,Z) is non-
uniform p.p.t. and (ρ,Δ)-respecting and also respects the assumptions stated
in Sect. 5.1. Assume that the scoring agreement protocol employed in the above
batch agreement construction satisfies consistency, λ-validity, and Tend-liveness
against (A,Z). Then the above batch agreement protocol in the Fmine-hybrid
world achieves consistency, Tend-liveness, and Θ(λΔ)-validity against (A,Z).

Proof. Consistency follows directly from the consistency of the scoring agree-
ment. Tend-liveness of the batch agreement would follow if the scoring agreement
also satisfies Tend-liveness—to show the latter, observe that

1. Due to the transaction diffusion assumption, for any valid batch TXs any two
initially honest nodes’ scores are at most 1

λ apart; and
2. All initially honest nodes score their own input 3λ.

It remains to prove Θ(λΔ)-validity. If some forever honest node has observed
a transaction tx ∈ TXsconfirmed by round rstart − cλΔ ≥ 0 for some appropriate
constant c, then for any initially honest node i, it must have observed tx by
round t = rstart − cλΔ + Δ, by the transaction diffusion assumption; for any
batch TXs that does not contain tx, we have that

scorei(TXs) = 3λ ·
(

1 − 1
3λ

)� rstart−t
3Δ 	

≤ 3λ ·
(

1 − 1
3λ

) cλΔ−Δ
3Δ

For an appropriate constant c = 20 we have that
(
1 − 1

3λ

)(cλ−1)/3 ≤ 0.5 for any
λ > 0.5; therefore scorei(TXs) ≤ 1.5λ. Recall that every initially honest node will
score its own input value 3λ. Thus cλΔ-validity of the batch agreement follows
from the λ-validity of the scoring agreement instance.

Communication efficiency. Suppose that the above synchronous batch agree-
ment adopts the scoring agreement protocol devised in Sect. 4; and further,
assume that log1.1 κ ≤ λ ≤ log2 κ. Then, due to Theorem 4.3, it is not difficult
to see that regardless of (A,Z)’s behavior, except with negligible in κ proba-
bility, forever honest nodes multicast no more than log3 κ · Θ(|TXactive| + log κ)
bits of messages in the synchronous batch agreement protocol where TXactive :=
TXsall\TXsconfirmed denotes the set of all transactions each of which observed
by at least one so-far honest node by the end of the batch agreement protocol

738 T.-H. Hubert Chan et al.

(denoted TXsall), subtracting those that were already confirmed prior to the
start of the batch agreement instance (denoted TXsconfirmed). Recall that the
environment Z informs nodes of the TXsconfirmed set prior to starting a batch
agreement instance.

6 SMR from Batch Agreement

6.1 Definition of State Machine Replication

State machine replication has been a central abstraction in the 30 years of dis-
tributed systems literature. In a state machine replication protocol, a set of
nodes seek to agree on an ever-growing log over time. We require two critical
security properties: (1) consistency, i.e., all forever honest nodes’ logs agree with
each other although some nodes may progress faster than others; (2) liveness,
i.e., transactions received by initially honest nodes as input get confirmed in all
forever honest nodes’ logs quickly. We now define what it formally means for a
protocol to realize a “state machine replication” abstraction.

Syntax. In a state machine replication protocol, in every round, a node receives
as input a set of transactions txs from Z at the beginning of the round, and
outputs a LOG collected thus far to Z at the end of the round. As before, we
assume that Z respects the transaction diffusion assumption with probability
1. In other words, two so-far honest nodes observe any transaction tx within Δ
rounds apart.

Security. Let Tconfirm(κ, n,Δ) be a polynomial function in the security param-
eter κ, the number of nodes n, and the maximum network delay Δ.

Definition 6.1. We say that a state machine replication protocol Π satisfies
consistency (or Tconfirm-liveness resp.) w.r.t. some (A,Z), iff there exists a neg-
ligible function negl(·), such that for any κ ∈ N, except with negl(κ) probability
over the choice of view ← EXECΠ(A,Z, κ), consistency (or Tconfirm-liveness
resp.) is satisfied:

– Consistency: A view satisfies consistency iff the following holds:
• Common prefix. Suppose that in view, a so-far honest node i outputs LOG

to Z in round t, and a so-far honest node j outputs LOG′ to Z in round t′

(i and j may be the same or different), it holds that either LOG � LOG′ or
LOG′ � LOG. Here the relation � means “is a prefix of”. By convention
we assume that ∅ � x and x � x for any x.

• Self-consistency. Suppose that in view, a node i is honest during rounds
[t, t′], and outputs LOG and LOG′ in rounds t and t′ respectively, it holds
that LOG � LOG′.

– Liveness: A view satisfies Tconfirm-liveness iff the following holds: if in some
round t ≤ |view| − Tconfirm, some forever honest node either received from Z
an input set txs that contains some transaction tx or has tx in its output log
to Z in round t, then, for any node i honest in any round t′ ≥ t + Tconfirm,
let LOG be the output of node i in round t′, it holds that tx ∈ LOG.

Consensus Through Herding 739

Intuitively, liveness says that transactions input to an initially honest node
get included in forever honest nodes’ LOGs within Tconfirm time; and further,
if a transaction appears in some forever honest node’s LOG, it will appear in
every forever honest node’s LOG within Tconfirm time.

6.2 Constructing State Machine Replication from Batch Agreement

It is relatively straightforward how to construct state machine replication from
batch agreement: basically, all nodes start a batch agreement instance in round
0 henceforth denoted Πbatch[0]; as soon as the i-th batch agreement instance
Πbatch[i] outputs a batch, a node immediately starts a next batch agreement
instance denoted Πbatch[i+1]. At any time, a node outputs a sequential concate-
nation of all batches that have been output so far by batch agreement instances6.
For every instance of batch agreement, the confirmed set TXsconfirmed provided
as input consists of all transactions that have been output by previous instances
(i.e., these transactions need not be confirmed again).

Theorem 6.2 (State machine replication). Let Δ be any polynomial func-
tion in κ and n and let 0 < ε < 1 be any positive constant. Suppose that
(A,Z) is (13 − ε,Δ)-respecting and moreover respects the assumptions stated in
Sect. 6.1. Assume that the batch agreement protocol adopted satisfies consistency,
T -liveness, and D-validity w.r.t. (A,Z), then the above state machine replication
protocol satisfies consistency and (2T + D)-liveness w.r.t. (A,Z).

Proof. Consistency follows directly from the consistency of batch agreement.
Moreover, (2T + D)-liveness follows from the fact that if Z inputs a tx to some
forever honest node in round r, then consider the first batch agreement instance
that is started (by some honest node) in round r + D or after: it takes up to
T time till the this batch agreement instance ends by T -liveness of the batch
agreement, and the immediate next batch agreement instance will surely output
tx if tx is not output earlier by D-validity of the batch agreement.

Communication efficiency. For analyzing communication efficiency, let us
assume that we adopt the batch agreement protocol described in Sect. 5; further,
assume that ε is an arbitrarily small constant and that λ = log1.1 κ. For some
transaction tx, suppose that round r is the first round in which some forever
honest node observes tx. Then, starting from round r, the transaction tx will be
confirmed after poly log κ number of batch agreement instances, and thus it will
contribute to the TXactive set of poly log κ number of such instances. Recall that

6 The state machine replication protocol above invokes many instances of batch agree-
ment which may then invoke one or more instances of scoring agreement. Recall
that each scoring agreement instance calls Fmine. For composition, calls to Fmine are
tagged with an instance identifier. Here the instance identifier contains a pair: first
the identifier of the batch agreement instance and then the identifier of the scoring
agreement.

740 T.-H. Hubert Chan et al.

for each batch agreement instance, except with negligible in κ probability, only
log3 κ ·Θ(|TXactive|+log κ) bits of honest messages are multicast. Thus, the bits
of honest messages multicast, amortized to each tx, is bounded by |tx| ·poly log κ
for some suitable polynomial poly(·) except with negligible in κ probability.

7 Removing the Idealized Functionality Fmine

So far, all our protocols have assumed the existence of an Fmine ideal functional-
ity. In this section, we describe how to instantiate the protocols in the real world.
Our techniques follow the approach described by Abraham et al. [2]. Although
this part is not a contribution of our paper, for completeness, we describe all the
building blocks and the approach in a self-contained manner, borrowing some
text from Abraham et al. [2].

7.1 Preliminary: Adaptively Secure Non-Interactive
Zero-Knowledge Proofs

We use f(k) ≈ g(k) to mean that there exists a negligible function ν(κ) such
that |f(κ) − g(κ)| < ν(κ).

A non-interactive proof system henceforth denoted nizk for an NP language
L consists of the following algorithms.

– crs ← Gen(1κ,L): Takes in a security parameter κ, a description of the lan-
guage L, and generates a common reference string crs.

– π ← P(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that
(stmt, w) ∈ L, and produces a proof π.

– b ← V(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and
outputs 0 (reject) or 1 (accept).

Perfect completeness. A non-interactive proof system is said to be perfectly
complete, if an honest prover with a valid witness can always convince an honest
verifier. More formally, for any (stmt, w) ∈ L, we have that

Pr [crs ← Gen(1κ,L), π ← P(crs, stmt, w) : V(crs, stmt, π) = 1] = 1

Non-erasure computational zero-knowledge. Non-erasure zero-knowledge
requires that under a simulated CRS, there is a simulated prover that can pro-
duce proofs without needing the witness. Further, upon obtaining a valid witness
to a statement a-posteriori, the simulated prover can explain the simulated NIZK
with the correct witness.

We say that a proof system (gen,P,V) satisfies non-erasure computa-
tional zero-knowledge iff there exists a probabilistic polynomial time algorithms
(gen0,P0,Explain) such that

Pr
[
crs ← gen(1κ), AReal(crs,·,·)(crs) = 1

] ≈ Pr
[
(crs0, τ0) ← gen0(1

κ), AIdeal(crs0,τ0,·,·)(crs0) = 1
]
,

Consensus Through Herding 741

where Real(crs, stmt, w) runs the honest prover P(crs, stmt, w) with randomness
r and obtains the proof π, it then outputs (π, r); Ideal(crs0, τ0, stmt, w) runs
the simulated prover π ← P0(crs0, τ0, stmt, �) with randomness � and without a
witness, and then runs r ← Explain(crs0, τ0, stmt, w, �) and outputs (π, r).

Perfect knowledge extraction. We say that a proof system (gen,P,V) sat-
isfies perfect knowledge extraction, if there exists probabilistic polynomial-time
algorithms (gen1,Extr), such that for all (even unbounded) adversary A,

Pr [crs ← gen(1κ) : A(crs) = 1] = Pr [(crs1, τ1) ← gen1(1
κ) : A(crs1) = 1] ,

and moreover,

Pr
[

(crs1, τ1) ← gen1(1
κ); (stmt, π) ← A(crs1);

w ← Extr(crs1, τ1, stmt, π) :
V(crs1, stmt, π) = 1
but (stmt, w) /∈ L

]
= 0

7.2 Adaptively Secure Non-Interactive Commitment Scheme

An adaptively secure non-interactive commitment scheme consists of the follow-
ing algorithms:

– crs ← Gen(1κ): Takes in a security parameter κ, and generates a common
reference string crs.

– C ← com(crs, v, �): Takes in crs, a value v, and a random string �, and outputs
a committed value C.

– b ← ver(crs, C, v, �): Takes in a crs, a commitment C, a purported opening
(v, �), and outputs 0 (reject) or 1 (accept).

Computationally hiding under selective opening. We say that a commit-
ment scheme (gen, com, ver) is computationally hiding under selective opening,
iff there exists a probabilistic polynomial time algorithms (gen0, com0,Explain)
such that

Pr
[
crs ← gen(1κ), AReal(crs,·)(crs) = 1

]
≈ Pr

[
(crs0, τ0) ← gen0(1

κ), AIdeal(crs0,τ0,·)(crs0) = 1
]

where Real(crs, v) runs the honest algorithm com(crs, v, r) with randomness r
and obtains the commitment C, it then outputs (C, r); Ideal(crs0, τ0, v) runs the
simulated algorithm C ← comm0(crs0, τ0, �) with randomness � and without v,
and then runs r ← Explain(crs0, τ0, v, �) and outputs (C, r).

Perfectly binding. A commitment scheme is said to be perfectly binding iff
for every crs in the support of the honest CRS generation algorithm, there does
not exist (v, �) �= (v′, �′) such that com(crs, v, �) = com(crs, v′, �′).

Theorem 7.1 (InstantiationofourNIZKandcommitment schemes [12]).
Assume standard bilinear group assumptions. Then, there exists a proof system that
satisfies perfect completeness, non-erasure computational zero-knowledge, and per-
fect knowledge extraction.Further, there exist a commitment scheme that is perfectly
binding and computationally hiding under selective opening.

742 T.-H. Hubert Chan et al.

Proof. The existence of such a NIZK scheme was shown by Groth et al. [12]
via a building block that they called homomorphic proof commitment scheme.
This building block can also be used to achieve a commitment scheme with the
desired properties.

7.3 NP Language Used in Our Construction

In our construction, we will use the following NP language L. A pair (stmt, w) ∈
L iff

– parse stmt := (μ, c, crscomm,m), parse w := (sk, s);
– it must hold that c = comm(crscomm, sk, s), and PRFsk(m) = μ.

7.4 Compilation to Real-World Protocols

We can remove the Fmine oracle by leveraging cryptographic building blocks
including a pseudorandom function family, a non-interactive zero-knowledge
proof system that satisfies computational zero-knowledge and computational
soundness, a perfectly correct and semantically secure public-key encryption
scheme, and a perfectly binding and computationally hiding commitment
scheme.

Earlier in Sect. 4, we informally have described the intuition behind our app-
roach. In this section we provide a formal description of how to compile our
Fmine-hybrid protocols into real-world protocols using cryptography. Using this
compilation technique, we can compile our Fmine-hybrid state machine repli-
cation protocol to the real world. Our techniques are essentially the same as
Abraham et al. [2], but we describe it in full for completeness.

– Trusted PKI setup. Upfront, a trusted party runs the CRS generation
algorithms of the commitment and the NIZK scheme to obtain crscomm and
crsnizk. It then chooses a secret PRF key for every node, where the i-th node
has key ski. It publishes (crscomm, crsnizk) as the public parameters, and each
node i’s public key denoted pki is computed as a commitment of ski using a
random string si. The collection of all users’ public keys is published to form
the PKI, i.e., the mapping from each node i to its public key pki is public
information. Further, each node i is given the secret key (ski, si). Remark 7.2
later mentions how multiple protocol instances can share the same PKI.

– Instantiating Fmine.mine. Recall that in the ideal-world protocol a node i
calls Fmine.mine(m) to mine a vote for a message m. Now, instead, the node
i calls μ := PRFski

(m), and computes the NIZK proof

π := nizk.P((μ, pki, crscomm,m), (ski, si))

where si the randomness used in committing ski during the trusted setup.
Intuitively, this zero-knowledge proof proves that the evaluation outcome μ
is correct w.r.t. the node’s public key (which is a commitment of its secret
key).

Consensus Through Herding 743

The mining attempt for m is considered successful if μ < Dp where Dp is an
appropriate difficulty parameter such that any random string of appropriate
length is less than Dp with probability p—the probability p is selected in the
same way as the earlier Fmine-hybrid world protocols.
Recall that earlier in our Fmine-hybrid protocols, every message multicast by
a so-far honest node i is a mined message of the form (m : i) where node i
has successfully called Fmine.mine(m). Each such mined message (m, i) that
node i wants to multicast is translated to the real-world protocol as follows:
we rewrite (m : i) as (m, i, μ, π) where the terms μ and π are those generated
by i in place of calling Fmine.mine(m) in the real world (as explained above).
Note that in our Fmine-hybrid protocols a node j �= i may also relay a message
(m : i) mined by i—in the real world, node j would be relaying (m, i, μ, π)
instead.

– Instantiating Fmine.verify. In the ideal world, a node would call
Fmine.verify to check the validity of mined messages upon receiving them,
In the real-world protocol, we perform the following instead: upon receiving
the mined message (m, i, μ, π), a node can verify the message’s validity by
checking:
1. μ < Dp where p is an appropriate difficulty parameter that depends on

the type of the mined message; and
2. π is indeed a valid NIZK for the statement formed by the tuple

(μ, pki, crscomm,m). The tuple is discarded unless both checks pass.

Remark 7.2 (Protocol composition in the real world). The real-world protocol
may invoke multiple instances of scoring agreement each with a unique instance
identifier. In the real world, all instances share the same PKI. Recall that in the
Fmine-hybrid world, every call to Fmine is prefixed with the instance identifier.
Specifically, in the calls Fmine.mine(m) and Fmine.verify(m, i), one can imagine
that the m part is tagged with the instance identifier. In the real world, this
means that the message m passed to the PRF and the NIZK’s prover and verifier
is prefixed with the instance identifier too.

Now using the same proofs as Abraham et al. [2], we can prove that the
compiled real-world protocols enjoy the same security properties as the Fmine-
hybrid protocols. Since the proofs follow identically, we omit the details and
simply refer the reader to Abraham et al. [2]. We thus obtain the following
theorem, by observing that in the real world protocol, each vote is of the form
(TXs, r, i, μ, π) where μ and π has length χ where χ is a cryptographic security
parameter.

Theorem 7.3 (Real-world protocol: synchronous state machine repli-
cation). Under standard cryptographic hardness assumptions (more precisely,
the existence of universally composable, adaptively secure non-interactive zero-
knowledge and commitments [12]), there exists a synchronous state machine
replication protocol that satisfies consistency and poly log κ · Δ-liveness against
any non-uniform p.p.t., (13 − ε,Δ)-respecting (A,Z) where poly(·) is a suitable
polynomial function and ε is an arbitrarily small positive constant. Moreover,

744 T.-H. Hubert Chan et al.

honest nodes only need to multicast poly log κ · (χ + |TXs|) bits of messages to
confirm every batch of transactions denoted TXs where χ is a computational
security parameter related to the strength of the cryptographic building blocks
involved.

Proof. Note our techniques for instantiating Fmine with actual cryptography
is borrowed from Abraham et al. [2]. Their proof for showing that the real-
world protocol preserves the security properties proved in the ideal world is
immediately applicable to our case.

8 Deferred Proofs for Scoring Agreement

In all of our proofs, we will by default assume that (A,Z) is non-uniform p.p.t.,
(13 − ε,Δ)-respecting, and moreover, respects the assumptions stated in Sect. 4.1
(see the “Syntax” and “Constraints on Z” paragraphs).

8.1 Consistency

We first prove that the protocol satisfies consistency.

Lemma 8.1 (Consistency). Except with at most poly(κ)·exp(−Θ(ε2λ)) prob-
ability, no two so-far honest nodes can output different values in U .

Proof. We fix two values v �= v′, and give an upper bound on the probability
that both values are output by so-far honest nodes. Observe that this happens
only if there are at least 2λ

3 votes for each of the values, which means in total
there are at least 4λ

3 votes for either value.
We next consider how many mining attempts there can be for value v or v′

among the T := λ2Δ rounds. Observe that each forever honest node attempts to
mine for at most one vote labeled with each round, where a (possibly adaptively)
corrupted node can mine for both v and v′ labeled with each round. Since the
fraction of forever honest node is at least 2

3 + ε, the total number of vote mining
attempts for either v or v′ is at most (23 + ε) ·n ·T +(13 − ε) ·2n ·T = (43 − ε) ·nT .

Observing that the mining difficulty probability is 1
λΔn and the mining events

over different values, rounds and nodes are independent, by Chernoff Bound,
the probability that there are at least 4λ

3 votes for either v or v′ is at most
exp(−Θ(ε2λ)).
Independence Remark. Note that the outcome of a vote mining can affect what
values an adaptively corrupted node will mine for. However, the important point
is that the outcomes of the mining are independent, and there is a sure upper
bound on the number of mining attempts, such that the Chernoff Bound can be
applied above.

Since each node can perform only polynomial-time computation, and the
entire transcript is polynomally bounded, it suffices to take union bound over
poly(κ) number of unordered pairs of values to give the desired probability.

Consensus Through Herding 745

8.2 Validity

We next prove that the protocol satisfies d-validity for d = 2λ
3 . When an exe-

cution is fixed, we can define B to be the largest value such that there exists a
subset S of forever-honest nodes of size at least (13 + 0.5ε)n, such that for every
i ∈ S, i received an input value vi satisfying scorei(vi) ≥ B.

Lemma 8.2 (d-Validity). Fix d = 2λ
3 , the following event happens with at

most poly(κ) · exp(−Θ(ε2λ)) probability: there is some so-far honest node that
outputs some value v∗ ∈ U , but for every initially honest node j, it holds that
scorej(v∗) < B − d.

Proof. Fix some value v∗ such that some so-far honest node outputs v∗. Suppose
S is the set of (13 + 0.5ε)n forever honest nodes in the hypothesis such that each
i ∈ S has some vi such that scorei(vi) ≥ B, but scorei(v∗) < B − d. Then, we
first show that the event in the lemma implies that there must be at least d = 2λ

3
votes for v∗ from nodes outside S.

Observe that for the first node i in S to vote for v∗, there must be at least
d votes nodes outside S to compensate for the difference between scorei(vi) and
scorei(v∗). On the other hand, if there are no votes from S for v∗, then any so-far
honest node that outputs v∗ must see at least 2λ

3 = d votes, which must all come
from nodes outside S.

Recall that there are at most (23−0.5ε)n nodes outside S. Within the T = λ2Δ
rounds, the mining difficulty for each node for v∗ is 1

λΔn . Hence, the expected
number of votes for v∗ from nodes outside S is at most (23 − 0.5ε)λ. By Chernoff
Bound, the probability that these nodes can produce at least d = 2λ

3 votes for
v∗ is at most exp(−Θ(ε2)λ).

Taking union bound over poly(κ) possible values contained in the polynomi-
ally sized transcript gives the result.

8.3 Liveness

For proving liveness, we assume that the “somewhat consistent initial score”
condition is satisfied with the parameter ϑ = 1

λ (see also Sect. 4.1).

Convergence Opportunity. We say that a round t ≥ λΔ is a convergence
opportunity, if there is exactly one so-far honest node that successfully mines a
vote in round t; moreover, no so-far honest nodes successfully mine votes within
Δ rounds after t. No condition is placed on corrupted nodes.

The following lemma relates the number of convergence opportunities to the
number of votes observed by a node for its most popular value.

Henceforth in Lemma 8.3 Corollary 8.4, when the execution we refer to is
clear from the context, we use I to denote the set of initially honest nodes, and
let M := minj∈I scorei(vj).

Lemma 8.3 (Convergence Opportunities and Votes). Consider any exe-
cution: for each r ≥ 1, after Δ rounds following the r-th convergence opportunity,
any so-far honest node i has observed at least M − scorei(v) + r(1 − ϑ) votes for
its most popular value v.

746 T.-H. Hubert Chan et al.

Proof. We show by induction on r. For r = 0, in order for a value v to be the
most popular for node i, node i must have observed enough votes to compensate
for the difference scorei(vi) − scorei(v) ≥ M − scorei(v).

Assume that claim is true for some r ≥ 0. Suppose the (r+1)-st convergence
opportunity due to a vote for value v by the so-far honest node i.

For node i, right before the (r + 1)-st convergence opportunity, at least Δ
rounds must have passed since the r-th convergence opportunity. The induction
hypothesis says that node i has observed at least M − scorei(v) + r(1 − ϑ)
votes for its most popular value v. Together with the new vote that node i has
mined for the (r + 1)-st convergence opportunity, node i has observed at least
M −scorei(v)+1+r(1−ϑ) votes for v. Observe that for any value v′ to overtake v
to be node i’s most popular value, it will need at least M −scorei(v′)+1+r(1−ϑ)
votes; hence, the result holds for node i.

For any other so-far honest node j, after Δ rounds following the (r + 1)-st
convergence opportunity, all the votes for v associated with the r-th convergence
opportunity due to node i will have reached node j. Hence, if v̂ is a most popular
value for node j at this moment, it must be the case that its popularity implies
that the number of votes for v̂ observed by node j is at least:

(M−scorei(v)+1+r(1−ϑ))+scorej(v)−scorej(v̂) ≥ M−scorej(v̂)+(r+1)(1−ϑ)

where the last inequality follows because scorej(v) − scorei(v) ≥ −ϑ. Similarly,
for any other value v′ to overtake v̂ and become node j’s most popular value, it
must need at least M − scorej(v′) + (r + 1)(1 − ϑ) votes to be seen by node j.
This completes the inductive step and the proof of the lemma.

Corollary 8.4 (Liveness). Suppose ϑ ≤ 1
λ ≤ Θ(ε). Except with at most

exp(−Θ(ε2λ)) probability, every forever-honest honest will have output some
value by the end of round Tend.

Proof. For any forever-honest node i, from our “high initial scores” assumption
that it will not see any value v′ such that scorei(v′) > scorei(vi), it follows that
for any u ∈ U , M − scorei(u) ≥ scorei(vi) − scorei(u) − ϑ ≥ −ϑ, where the
inequality M ≥ scorei(vi) − ϑ follows from the following:

M = min
j∈I

scorej(vj) ≥ min
j∈I

(scorei(vj) − ϑ) ≥ scorei(vi) − ϑ

where the first inequality follows from the “ϑ-somewhat-consistent initial scor-
ing” assumption.

In view of Lemma 8.3, it suffices to show that except with at most
exp(−Θ(ε2λ)) probability, the number of convergence opportunities is at least
2λ
3 (1 + Θ(ε)), which implies that for each node, its most popular value has

received at least 2λ
3 votes.

Observe that if h is the number of so-far honest nodes not in S, the probability
that a round is a convergence opportunity is around hp(1−p)h·Δ+h−1 ≥ 2

3λΔ (1+
Θ(ε))(1−Θ(1

λ)), where the inequality holds because h ≥ (23 + 1
3ε)n, and p = 1

nλΔ

Consensus Through Herding 747

Hence, the expected number of convergence opportunities over the Tend − λΔ
rounds is at least 2λ

3 (1 + Θ(ε)).
Even though that the events of different rounds being convergence opportu-

nities are not independent, Lemma8.5 shows that a measure concentration result
still holds. Setting the parameters h = (23 + ε)n, H = n, p = 1

λΔn , T = λ2Δ in
Lemma 8.5, we have that except with exp(−Θ(ε2λ)) probability, the number of
convergence opportunities is at least 2λ

3 (1 + Θ(ε)).
Finally, during the last convergence opportunity by a so-far honest node, all

the votes will be multicast to all nodes. Hence, all so-far honest nodes will see
some value with at least 2λ

3 votes after Δ more rounds.

Lemma 8.5 (Measure Concentration for Convergence Opportunities).
Suppose in each of T +Δ rounds, each of at least h but at most H so-far honest
nodes mines a vote successfully with probability p.

Then, except with probability at most exp(−Θ(ε2Tp0), the number of rounds
in which there is exactly one successful vote and followed by Δ rounds of no votes
is at least (1 + Θ(ε) − 2HpΔ)Tp0, where p0 := hp(1 − p)H .

Proof. The proof is adapted from [24, Lemma 1].
Let Y be the number of rounds within [1..T] in which there is exactly one

successful vote. Since the probability that a round has exactly one vote is at
least p0 := hp(1 − p)H and the events for different rounds are independent, by
Chernoff Bound, except with probability exp(−Θ(ε2Tp0)), the random variable
Y is at least (1 − ε

100)Tp0.
For 1 ≤ i ≤ R := �(1 + ε)Tp0�, define the indicator random variable Zi ∈

{0, 1} that equals 1 iff after the i-th round that has exactly one successful vote,
there is at least one successful vote within the next Δ rounds. By the union
bound, Pr[Zi = 1] ≤ HpΔ. Define Z :=

∑R
i=1 Zi.

Next, observe that the random variables Zi’s are independent. The reason is
that right after the ith round in which there is exactly one successful vote, when
the next successful vote happens will determine the value of Zi, but the i + 1st
round with exactly one successful vote will happen afterwards.

By Hoeffding’s Inequality, we have that

Pr[Z ≥ HpΔR +
ε

100
· R] ≤ exp(−Θ(ε2R))

By the union bound, except with probability at most exp(−Θ(ε2Tp0),
Y − Z ≥ (1 − ε

10 − 2HpΔ)Tp0, which is also a lower bound on the number
of convergence opportunities.

8.4 Communication Efficiency

We now prove the communication efficiency of our scoring agreement protocol
described in Sect. 4.3, that is, Theorem4.3.

Recall that log1.1 κ ≤ λ ≤ log2 κ. By Chernoff bound, for every value v ∈ U ,
except with negligible in κ probability. at most 1.1λ votes (honest or adversarial)
are successfully mined for the value v during the course of execution.

748 T.-H. Hubert Chan et al.

So-far honest nodes only multicast a message whenever it successfully mines
a vote. When it multicasts, it not only multicasts the newly mined vote, but also
all votes it has already observed for the relevant value in U—recall that except
with negligible in κ probability, there are at most 1.1λ such votes. Obviously, in
the Fmine-hybrid world, every vote can be encoded with Θ(log κ + �) bits since
both n and the number of rounds are polynomial in κ.

Summarizing the above, except with negligible probability, the total number
of honest votes multicast is upper bounded by log3 κ for sufficiently large κ, and
thus the total number of bits multicast by so-far honest nodes is upper bounded
by log3 κ · Θ(log κ + �).

9 Conclusion and Open Questions

In this paper, we proposed a novel paradigm for reaching consensus that is
inspired by a social phenomenon called herding. Through this novel paradigm,
we construct a state machine replication protocol that simultaneously achieves
communication efficiency and adaptive security—to the best of our knowledge
this was previously not possible with classical-style approaches without making
strong assumptions such as erasures or the existence of proof-of-work oracles.

Our work naturally leaves open several questions:

1. Can we achieve a similar result for partially synchronous or asynchronous
networks?

2. The best known small-round, communication-inefficient synchronous state
machine replication protocol can tolerate minority corruptions [3,14,18].
Therefore, another natural question is: can we have a similar result for syn-
chronous networks, but tolerating up to minority corruptions (thus matching
the resilience of the best known small-round but communication inefficient
protocol)?

References

1. Aura - authority round. https://wiki.parity.io/Aura
2. Abraham, I., et al.: Communication complexity of byzantine agreement, revisited.

CoRR, abs/1805.03391 (2018)
3. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Efficient synchronous

byzantine consensus. In: Financial Cryptography (2019)
4. Canetti, R., Eiger, D., Goldwasser, S., Lim, D.-Y.: How to protect yourself without

perfect shredding. Cryptology ePrint Archive, Report 2008/291 (2008). https://
eprint.iacr.org/2008/291

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI (1999)
6. Chen, J., Micali, S.: Algorand: the efficient and democratic ledger (2016). https://

arxiv.org/abs/1607.01341
7. Daian, P., Pass, R., Shi, E.: Snow white: robustly reconfigurable consensus and

applications to provably secure proofs of stake. In: Financial Cryptography (2019).
First appeared on Cryptology ePrint Archive, Report 2016/919

https://wiki.parity.io/Aura
https://eprint.iacr.org/2008/291
https://eprint.iacr.org/2008/291
https://arxiv.org/abs/1607.01341
https://arxiv.org/abs/1607.01341

Consensus Through Herding 749

8. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

9. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

10. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzan-
tine agreement. SIAM J. Comput. 26, 873–933 (1997)

11. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

12. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

13. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series consen-
sus system. https://dfinity.org/tech

14. Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agree-
ment. J. Comput. Syst. Sci. 75(2), 91–112 (2009)

15. Kiayias, A., Russell, A.: Ouroboros-BFT: a simple byzantine fault tolerant consen-
sus protocol. Cryptology ePrint Archive, Report 2018/1049 (2018). https://eprint.
iacr.org/2018/1049

16. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

17. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: FOCS (1999)
18. Micali, S., Vaikuntanathan, V.: Optimal and player-replaceable consensus with an

honest majority. MIT CSAIL Technical Report, 2017–004 (2017)
19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
20. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

21. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
In: DISC (2017)

22. Pass, R., Shi, E.: Rethinking large-scale consensus (invited paper). In: CSF (2017)
23. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.

(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

24. Pass, R., Shi, E.: Rethinking large-scale consensus. IACR Cryptology ePrint
Archive 2018:302 (2018)

25. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

26. Shi, E.: Analysis of deterministic longest-chain protocols. https://eprint.iacr.org/
2018/1079.pdf

https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://dfinity.org/tech
https://eprint.iacr.org/2018/1049
https://eprint.iacr.org/2018/1049
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70697-9_14
https://eprint.iacr.org/2018/1079.pdf
https://eprint.iacr.org/2018/1079.pdf

Author Index

Abusalah, Hamza II-277
Agarwal, Navneet II-381
Aggarwal, Divesh I-531, II-442
Agrawal, Shweta I-191
Aharonov, Dorit III-219
Alamati, Navid II-55
Albrecht, Martin R. II-717
Alwen, Joël I-129
Anand, Sanat II-381
Ananth, Prabhanjan II-532
Applebaum, Benny II-504, III-441
Aragon, Nicolas III-728
Asharov, Gilad II-214
Attrapadung, Nuttapong I-34
Aviram, Nimrod II-117

Backes, Michael III-281
Badrinarayanan, Saikrishna I-593
Băetu, Ciprian II-747
Ball, Marshall I-501
Barak, Boaz I-226
Bar-On, Achiya I-313
Bartusek, James III-636
Beimel, Amos III-441
Ben-Sasson, Eli I-103
Bernstein, Daniel J. II-409
Bitansky, Nir III-667
Blazy, Olivier III-728
Boyle, Elette II-3
Brakerski, Zvika II-504, III-219, III-619

Canteaut, Anne III-585
Chen, Hao II-34
Cheu, Albert I-375
Chiesa, Alessandro I-103
Chillotti, Ilaria II-34
Choudhuri, Arka Rai II-351, II-532
Chung, Kai-Min II-442, III-219
Coladangelo, Andrea III-247
Coretti, Sandro I-129
Couteau, Geoffroy II-473, II-562

Dachman-Soled, Dana I-501
De Feo, Luca III-759

Dinur, Itai I-343, III-699
Dodis, Yevgeniy I-129
Döttling, Nico I-531, II-292, III-281
Ducas, Léo II-717
Dunkelman, Orr I-313
Durak, F. Betül II-747
Dutta, Avijit I-437
Dziembowski, Stefan I-625

Eckey, Lisa I-625

Farràs, Oriol III-441
Faust, Sebastian I-625
Fehr, Serge III-472
Fisch, Ben II-324
Fuchsbauer, Georg I-657

Gaborit, Philippe III-728
Galbraith, Steven D. III-759
Ganesh, Chaya I-690
Garg, Sanjam III-33
Gay, Romain III-33
Gellert, Kai II-117
Genise, Nicholas II-655
Ghosh, Satrajit III-154
Goel, Aarushi II-532
Goyal, Vipul I-562, II-351
Green, Ayal III-219
Grilo, Alex B. III-247
Guan, Jiaxin III-500

Haitner, Iftach III-667
Hajiabadi, Mohammad III-33
Hamlin, Ariel II-244
Hanrot, Guillaume II-685
Hanzlik, Lucjan III-281
Hauck, Eduard III-345
Hauteville, Adrien III-728
Herold, Gottfried II-717
Hesse, Julia I-625
Hoang, Viet Tung II-85
Hofheinz, Dennis II-562
Hong, Cheng III-97
Hopkins, Samuel B. I-226

Hostáková, Kristina I-625
Hubert Chan, T.-H. I-720, II-214
Huguenin-Dumittan, Loïs II-747

Jaeger, Joseph I-467
Jager, Tibor II-117
Jain, Aayush I-226, I-251
Jain, Abhishek II-351, II-532
Jeffery, Stacey III-247
Jost, Daniel I-159

Kales, Daniel I-343
Kamara, Seny II-183
Kamath, Chethan II-277
Katsumata, Shuichi II-622, III-312
Katz, Jonathan III-97
Keller, Nathan I-313
Kiltz, Eike III-345
Kirshanova, Elena II-717
Klein, Karen II-277
Klooß, Michael I-68
Kluczniak, Kamil III-281
Kohl, Lisa II-3
Kolesnikov, Vladimir III-97
Kölsch, Lukas I-285
Komargodski, Ilan III-667
Kothari, Pravesh I-226
Kowalczyk, Lucas I-3
Kulkarni, Mukul I-501

Lai, Ching-Yi III-219
Lai, Russell W. F. II-292
Lallemand, Virginie III-585
Lange, Tanja II-409
Leander, Gregor III-585
Lehmann, Anja I-68
Lepoint, Tancrède III-636
Leurent, Gaëtan III-527
Li, Ting III-556
Lin, Han-Hsuan II-442
Lin, Huijia I-251, I-501
Liu, Qipeng III-189
Loss, Julian III-345
Lu, Wen-jie III-97
Lyubashevsky, Vadim III-619

Ma, Fermi III-636
Malavolta, Giulio II-292
Malkin, Tal I-501

Martindale, Chloe II-409
Matt, Christian I-251
Maurer, Ueli I-159
Micciancio, Daniele II-655, III-64
Miller, David II-85
Moataz, Tarik II-183
Montgomery, Hart II-55
Mularczyk, Marta I-159

Nadler, Niv III-699
Nandi, Mridul I-437
Nayak, Kartik II-214
Neumann, Patrick III-585
Nielsen, Jesper Buus I-531
Nilges, Tobias III-154
Nir, Oded III-441
Nishimaki, Ryo II-622

Obremski, Maciej I-531
Orlandi, Claudio I-690
Orrù, Michele I-657
Ostrovsky, Rafail II-244

Panny, Lorenz II-409
Pass, Rafael I-720, II-214
Patranabis, Sikhar II-55
Pellet-Mary, Alice II-685
Persiano, Giuseppe I-404
Peter, Naty III-441
Peyrin, Thomas III-527
Pietrzak, Krzysztof II-277
Pinkas, Benny III-122
Polyakov, Yuriy II-655
Postlethwaite, Eamonn W. II-717
Prabhakaran, Manoj II-381
Promitzer, Angela I-343
Purwanto, Erick I-531

Quach, Willy II-593

Ramacher, Sebastian I-343
Rechberger, Christian I-343
Ren, Ling II-214
Riabzev, Michael I-103
Rothblum, Ron D. II-593
Roy, Arnab II-55
Rupp, Andy I-68

Sahai, Amit I-226, I-251
Sattath, Or III-219

752 Author Index

Schneider, Jonas III-281
Schneider, Thomas III-122
Scholl, Peter II-3
Seurin, Yannick I-657
Shi, Elaine I-720, II-214
Shumow, Dan II-151
Smith, Adam I-375
Song, Yifan I-562
Song, Yongsoo II-34
Spooner, Nicholas I-103
Srinivasan, Akshayaram I-593
Stehlé, Damien II-685
Stevens, Marc II-717
Sun, Yao III-556

Talayhan, Abdullah II-747
Talnikar, Suprita I-437
Tessaro, Stefano I-467
Tkachenko, Oleksandr III-122
Trieu, Ni II-85
Tsabary, Rotem II-504
Tschudi, Daniel I-690

Ullman, Jonathan I-375

Vaikuntanathan, Vinod III-619
Vaudenay, Serge II-747

Vidick, Thomas II-442, III-247
Virza, Madars I-103

Walter, Michael II-277
Wang, Xiao III-97
Ward, Nicholas P. I-103
Wee, Hoeteck I-3
Weiss, Mor II-244
Weizman, Ariel I-313
Wesolowski, Benjamin III-379
Wichs, Daniel II-244, II-593, III-619
Wiemer, Friedrich III-585
Woodage, Joanne II-151

Yamada, Shota II-622, III-312
Yamakawa, Takashi II-622
Yanai, Avishay III-122
Yeo, Kevin I-404
Yogev, Eylon III-667
Yuan, Chen III-472

Zeber, David I-375
Zémor, Gilles III-728
Zhandary, Mark III-500
Zhandry, Mark III-3, III-189, III-408, III-636
Zhilyaev, Maxim I-375

Author Index 753

	Preface
	Eurocrypt 2019
	Abstracts of Invited Talks
	Differential Privacy and the People’s Data
	Towards an Open Approach to Secure Cryptographic Implementations
	Fully Homomorphic Encryption from the Ground Up
	Contents – Part I
	Contents – Part II
	Contents – Part III
	ABE and CCA Security
	Compact Adaptively Secure ABE for NC1 from k-Lin
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Monotone Boolean Formulas and NC1
	2.2 Secret Sharing
	2.3 Attribute-Based Encryption
	2.4 Prime-Order Bilinear Groups and the Matrix Diffie-Hellman Assumption

	3 Piecewise Guessing Framework for Adaptive Security
	4 Pebbling Strategy for NC1
	4.1 Pebbling Rules
	4.2 Pebbling Strategy
	4.3 Analysis

	5 Core Adaptive Security Component
	5.1 Linear Secret Sharing for NC1
	5.2 Core 1-ABE Security Game
	5.3 Adaptive Security for Core 1-ABE Component
	5.4 CPA-Secure Symmetric Encryption

	6 Our KP-ABE Scheme
	6.1 The Scheme
	6.2 Correctness
	6.3 Adaptive Security

	References

	Unbounded Dynamic Predicate Compositions in Attribute-Based Encryption
	1 Introduction
	2 Intuition and Informal Overview
	3 Preliminaries
	3.1 Definitions for General ABE
	3.2 Pair Encoding Scheme Definition
	3.3 Symbolic Property of PES
	3.4 Definitions for Some Previous Predicates

	4 Admissible Pair Encodings
	5 Ciphertext-Policy Augmentation
	6 Key-Policy Augmentation
	7 Direct Sum and Augmentation over Predicate Set
	7.1 Simple Direct Sum by Parameter Concatenation
	7.2 Efficient Direct Sum with Parameter Reuse

	8 Predicative Automata
	9 Applications
	9.1 ABE for New Predicates
	9.2 Revisiting Known Predicates

	References

	(R)CCA Secure Updatable Encryption with Integrity Protection
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Symmetric and Tidy Encryption
	2.3 Updatable Encryption

	3 CCA and CTXT Secure Updatable Encryption
	3.1 Security Model
	3.2 Generic Transformation for Secure Updatable Encryption
	3.3 An Encrypt-and-MAC Construction

	4 RCCA and PTXT Secure Updatable Encryption
	4.1 Security Model
	4.2 RCCA and PTXT Secure Construction

	References

	Succinct Arguments and Secure Messaging
	Aurora: Transparent Succinct Arguments for R1CS
	1 Introduction
	1.1 The Need for a Transparent Setup
	1.2 Our Goal
	1.3 Our Contributions
	1.4 Prior Implementations of Transparent SNARGs

	2 Techniques
	2.1 Our Interactive Oracle Proof for R1CS
	2.2 A Sumcheck Protocol for Univariate Polynomials
	2.3 Efficient Zero Knowledge from Algebraic Techniques
	2.4 Perspective on Our Techniques

	3 Roadmap
	4 Evaluation
	4.1 Performance of Aurora
	4.2 Comparison of Ligero, Stark, and Aurora

	5 libiop: A Library for IOP-Based Non-interactive Arguments
	5.1 Library for IOP Protocols
	5.2 BCS Transformation
	5.3 Portfolio of IOP Protocols and Sub-Components

	6 Aurora: An IOP for Rank-One Constraint Satisfaction (R1CS)
	References

	The Double Ratchet: Security Notions, Proofs, and Modularization for the Signal Protocol
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Game-Based Security and Notation
	2.2 Cryptographic Primitives

	3 Secure Messaging
	3.1 Syntax
	3.2 Security

	4 Building Blocks
	4.1 Continuous Key Agreement
	4.2 Forward-Secure AEAD
	4.3 PRF-PRNGs

	5 Secure Messaging Scheme
	5.1 The Scheme
	5.2 Differences to Signal
	5.3 Security of the SM Scheme

	References

	Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging
	1 Introduction and Motivation
	1.1 Motivation
	1.2 Contributions
	1.3 Further Related Work

	2 Towards Optimal Security Guarantees
	2.1 Authentication
	2.2 Confidentiality
	2.3 A First Efficient Scheme
	2.4 Post-Impersonation Authentication
	2.5 Post-Impersonation Confidentiality
	2.6 The Almost-Optimal Scheme

	3 Unidirectional Authentication
	3.1 Key-Updating Signatures
	3.2 Construction
	3.3 Other Definitions of Key-Updating Signatures

	4 Unidirectional Confidentiality
	4.1 Secretly Key-Updatable Public-Key Encryption
	4.2 Construction

	5 Sesquidirectional Confidentiality
	5.1 Healable and Key-Updating Public-Key Encryption
	5.2 Construction

	6 Overall Security
	6.1 Almost-Optimal Security of Secure Messaging
	6.2 Construction

	References

	Obfuscation
	Indistinguishability Obfuscation Without Multilinear Maps: New Methods for Bootstrapping and Instantiation
	1 Introduction
	1.1 Bootstrapping, The Ideal
	1.2 Instantiation: The Ideal
	1.3 Our Techniques: Bootstrapping
	1.4 Related Work: Bootstrapping
	1.5 Our Techniques: Direct Construction of NLinFE
	1.6 Related Work: Instantiation

	2 Noisy Linear Functional Encryption
	3 Broader Classes of Randomness Generators
	3.1 Correlated Noise Generators
	3.2 Non Boolean Pseudorandom Generators

	4 Functional Encryption for NC1
	4.1 Construction
	4.2 Correctness
	4.3 Efficiency and Security

	References

	Sum-of-Squares Meets Program Obfuscation, Revisited
	1 Introduction
	1.1 Basing iO on Bilinear Maps and Our Results
	1.2 Our Results

	2 Our Techniques
	3 Preliminaries
	3.1 RGs (Ananth-Jain-Sahai)

	4 Candidates for Quadratic PRGs
	4.1 Candidate for RG
	4.2 Candidate for Pseudo Flawed-Smudging Generators (Lin-Matt)

	5 Inverting Linear Matrix Maps
	5.1 Incoherent Linear Measurements
	5.2 Invertible Linear Matrix Maps

	6 Experiments
	6.1 Experimental Cryptanalysis of Dense or Sparse Polynomials
	6.2 Attacking [Lin-Matt18] Candidate Polynomials
	6.3 Attacking Polynomials of the Form S+S+MQ

	7 Cubic Assumption
	A Julia Code
	References

	How to Leverage Hardness of Constant-Degree Expanding Polynomials over R to build iO
	1 Introduction
	2 Technical Overview
	3 Preliminaries
	3.1 Indistinguishability Obfuscation (iO)
	3.2 Bilinear Maps and Assumptions
	3.3 Canonical Function Hiding Inner Product FE

	4 Key Notion 1: (d+2)-restricted FE
	4.1 Semi-functional Security

	5 Key Notion 2: Perturbation Resilient Generator
	5.1 RG Implementable by (d+2)-Restricted FE
	5.2 Pseudo Flawed-Smudging Generators

	6 dRG Candidates
	6.1 dRG Candidate
	6.2 Instantiations
	6.3 Simplifying Assumptions

	7 Constructing (d+2) Restricted FE from Bilinear Maps
	7.1 Construction

	8 Construction of iO
	References

	Block Ciphers
	XOR-Counts and Lightweight Multiplication with Fixed Elements in Binary Finite Fields
	1 Introduction
	2 XOR-Counts
	3 Efficient Multiplication Matrices in Finite Fields
	4 Quantifying the Gap Between the Optimal Implementation and the Naive Implementation
	5 Open Problems
	References

	DLCT: A New Tool for Differential-Linear Cryptanalysis
	1 Introduction
	1.1 Background and Previous Work
	1.2 Our Results
	1.3 Organization of the Paper

	2 The Differential-Linear Connectivity Table
	2.1 The Differential-Linear Attack
	2.2 The Differential-Linear Connectivity Table and Its Properties
	2.3 Relation of the DLCT to the Fourier Transform

	3 Differential-Linear Cryptanalysis of Ascon, Revisited
	4 Differential-Linear Cryptanalysis of Serpent, Revisited
	5 Improved Differential-Linear Attack on ICEPOLE
	5.1 A Short Description of ICEPOLE-128
	5.2 Huang et al.'s Differential-Linear Attack on ICEPOLE-128/ICEPOLE-128a
	5.3 Our New Results on ICEPOLE-128/ICEPOLE-128a
	5.4 Experimental Verification of Our Attack

	6 Improved Differential-Linear Attack on 8-Round DES
	6.1 The DL Attack of BihamDK02 on 8-Round DES
	6.2 Our Improved DL Attack on 8-Round DES

	7 Summary and Conclusions
	References

	Linear Equivalence of Block Ciphers with Partial Non-Linear Layers: Application to LowMC
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Generalized LowMC Ciphers
	2.3 Breaking Down the Linear Layers
	2.4 Complexity Evaluation

	3 Optimized Round Key Computation and Constant Addition
	3.1 Compressing the Round Keys and Constants
	3.2 Optimizing the Key Schedule

	4 Linear Algebra Properties
	4.1 General Matrix Notation
	4.2 Invertible Binary Matrices
	4.3 Normalized Matrices
	4.4 Matrix-Vector Product

	5 Optimized Linear Layer Evaluation
	5.1 Basic 2-Round Encryption Algorithm
	5.2 Optimized 2-Round Encryption Algorithm
	5.3 Towards an Optimized r-Round Encryption Algorithm
	5.4 Optimized r-Round Encryption Algorithm

	6 Applications to LowMC in Picnic and Garbled Circuits
	6.1 LowMC
	6.2 Picnic
	6.3 Garbled Circuits

	7 Optimized Sampling of Linear Layers
	7.1 Breaking Dependencies Among Different Round Matrices
	7.2 Reduced Sampling Space
	7.3 Breaking Dependencies Between Round Sub-Matrices
	7.4 Optimized Sampling of the Bottom Sub-Matrix

	8 Optimality of Linear Representation
	8.1 Basic Assumptions
	8.2 Model Formalization
	8.3 Proof of Theorem 1

	9 Conclusions
	References

	Differential Privacy
	Distributed Differential Privacy via Shuffling
	1 Introduction
	1.1 Background and Related Work

	2 Overview of Results
	2.1 Algorithmic Results
	2.2 Negative Results
	2.3 Comparison to ErlingssonFMRTT19

	3 Model and Preliminaries
	3.1 Differential Privacy
	3.2 Differential Privacy in the Shuffled Model

	4 A Protocol for Boolean Sums
	4.1 The Protocol
	4.2 Privacy Analysis
	4.3 Setting the Randomization Parameter
	4.4 Accuracy Analysis

	5 A Protocol for Sums of Real Numbers
	5.1 The Protocol
	5.2 Privacy Analysis
	5.3 Accuracy Analysis

	6 Lower Bounds for the Shuffled Model
	6.1 One-Message Randomizers Satisfy Local Differential Privacy
	6.2 Applications of Theorem 25

	References

	Lower Bounds for Differentially Private RAMs
	1 Introduction
	1.1 Our Results
	1.2 Previous Works
	1.3 Overview of Our Proofs

	2 Differentially Private Cell Probe Model
	3 First Lower Bound
	3.1 A Tradeoff Between Tw<i(Q) and Tri(Q)
	3.2 Using Differential Privacy
	3.3 Completing the Proof of Theorem 2
	3.4 An Encoding Argument Using Tw<i(Q) and Tri(Q)

	4 Main Result
	4.1 First Epoch Construction
	4.2 Second Epoch Construction

	5 Discussion
	References

	Bounds for Symmetric Cryptography
	Beyond Birthday Bound Secure MAC in Faulty Nonce Model
	1 Introduction
	1.1 Beyond Birthday Bound Security with Graceful Degradation
	1.2 Our Contribution

	2 Preliminaries
	2.1 Security Definitions
	2.2 A Brief Revisit to the Expectation Method

	3 Design and Security Result of nEHtM and CWC+
	3.1 Encrypt-then-MAC: Generic Composition Result
	3.2 Encryption Modes Used in Encrypt-then-MAC-based AE
	3.3 MACs Used in Encrypt-then-MAC-based AEs
	3.4 Security Result of nEHtM: A Nonce-Based Version of EHtM
	3.5 CWC+: A Beyond Birthday Bound Variant of CWC

	4 Mirror Theory
	5 Mutlicollision in Universal Hash Function
	6 Proof of Theorem 1
	6.1 Definition and Probability of Bad Transcripts
	6.2 Analysis of Good Transcripts
	6.3 Security Bound Using the Coefficients-H Technique

	7 Proof of Theorem 2
	References

	Tight Time-Memory Trade-Offs for Symmetric Encryption
	1 Introduction
	2 Definitions
	2.1 Model of Computation
	2.2 Information-Theoretic Preliminaries
	2.3 Cryptographic Preliminaries

	3 The Switching Lemma
	3.1 Streaming Indistinguishability
	3.2 Sampling with and Without Replacement
	3.3 Proof of Theorem1
	3.4 Application: The Switching Lemma and Counter-Mode Encryption
	3.5 Validity of Conjecture1

	4 Randomized Encryption
	4.1 Streaming Distributions for CTR$
	4.2 Proof of Theorem3
	4.3 Application: CTR$ with a PRF and Weak PRFs
	4.4 CTR$ with a PRP and Weak PRPs
	4.5 Other Results

	5 Open Questions
	References

	Non-malleability
	Non-Malleable Codes Against Bounded Polynomial Time Tampering
	1 Introduction
	1.1 Our Results
	1.2 Background on Assumptions
	1.3 Technical Overview
	1.4 Related Work

	2 Definitions
	2.1 Notation
	2.2 Non-Malleable Codes
	2.3 Non-Interactive Commitment Scheme
	2.4 Incomputable and Incompressible Functions

	3 Construction for Multi-Bit Messages
	4 Multi-Bit NMC Against Bounded Poly Adversaries
	4.1 The Hard Distribution Db (instance length n, hard against t(n)-time adversaries)
	4.2 Commitment scheme C = (Com, Open) (length n, hiding for poly-time adversaries, and quasi non-malleable against adversaries in BPtime(Tcom(n)) SIZE(tcom(n)))
	4.3 Non-Interactive Simulatable Proof System (Sound against uniform ppt adversaries, ZK against adversaries running in time TZK(n))
	4.4 Main Theorem

	References

	Continuous Non-Malleable Codes in the 8-Split-State Model
	1 Introduction
	2 Preliminaries
	2.1 Entropy and Statistical Distance
	2.2 Extractors
	2.3 Trace Function
	2.4 Definitions Related to Non-Malleable Codes
	2.5 Some Useful Results

	3 The New Construction
	3.1 Proof of Theorem 5

	References

	Correlated-Source Extractors and Cryptography with Correlated-Random Tapes
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	3 Preliminaries
	3.1 Statistical Distance, Convex Combination of Distributions and Probability Lemma
	3.2 Min-entropy and Flat Distribution
	3.3 Seeded Extractors, Non-malleable Extractors, Two-Source Non-malleable Extractors and Previous Construction
	3.4 Conditional Min-entropy

	4 Our Model
	5 Explicit Construction of Correlated-Source Extractor
	5.1 Explicit Construction of Weak Correlated-Source Extractor
	5.2 Boosting the Output Length
	5.3 Explicit Construction of Correlated-Source Extractor
	5.4 Generalizing the Entropy Requirements

	6 Constructing Secure Correlated-Tape Multi-party Computation Protocol
	References

	Revisiting Non-Malleable Secret Sharing
	1 Introduction
	1.1 Our Results

	2 Our Techniques
	2.1 Rate Improvement
	2.2 Multiple Tampering
	2.3 General Access Structures

	3 Preliminaries
	3.1 Threshold Non-Malleable Secret Sharing Scheme
	3.2 Non-Malleable Codes

	4 k-out-of-n Leakage Resilient Secret Sharing Scheme
	4.1 k-out-of-k Leakage Resilient Secret Sharing
	4.2 Perfect Hash Function Family
	4.3 Construction of k-out-n Leakage Resilient Secret Sharing

	5 Non-Malleable Secret Sharing for Threshold Access Structures
	5.1 Construction
	5.2 Rate Analysis

	6 NMSS for General Access Structures with Multiple Tampering
	6.1 Definitions
	6.2 Construction

	References

	Blockchain and Consensus
	Multi-party Virtual State Channels
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Overview of Our Constructions
	2.1 Background on Contracts and State Channels CCS:DziFauHos18
	2.2 Virtual State Channel with Direct Dispute
	2.3 Multi-party Virtual State Channels

	3 Definitions and Notation
	3.1 Definitions of Multi-party Contracts and Channels
	3.2 Security and Efficiency Goals

	4 State Channels Ideal Functionalities
	4.1 Virtual State Channels with Direct Dispute
	4.2 Virtual Multi-party State Channels

	5 Modular Approach
	6 Protocol for Multi-party Channels
	6.1 Multi-party Channel Contract
	6.2 Protocol Description

	7 Conclusion
	References

	Aggregate Cash Systems: A Cryptographic Investigation of Mimblewimble
	1 Introduction
	2 Preliminaries
	2.1 General Notation
	2.2 Cryptographic Primitives

	3 Aggregate Cash System
	3.1 Syntax
	3.2 Security Definitions

	4 Construction of an Aggregate Cash System
	4.1 Description
	4.2 Security

	5 Instantiations
	References

	Proof-of-Stake Protocols for Privacy-Aware Blockchains
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Zero-Knowledge Proofs
	2.2 Commitment Schemes
	2.3 Sigma Protocols
	2.4 Merkle Tree
	2.5 Decisional Diffie-Hellman Assumption

	3 Model
	4 Feasibility of Private Proof-of-Stake
	4.1 Private Lottery Functionality
	4.2 Private Lottery Protocol
	4.3 Flavors of Proof-of-Stake
	4.4 Dynamic Stake
	4.5 Rewards

	5 Making Ouroboros Praos Private
	5.1 Ouroboros Praos Leader Election
	5.2 Anonymous Verifiable Random Function
	5.3 Private Ouroboros Praos

	A Private Proof of Stake Lottery
	B Extended Preliminaries
	B.1 Non-interactive Zero-Knowledge

	References

	Consensus Through Herding
	1 Introduction
	1.1 Our Results
	1.2 Technical Highlights

	2 Technical Roadmap
	2.1 Informal Description of Our Protocol
	2.2 Intuitive Analysis
	2.3 Additional Related Work

	3 Protocol Execution Model
	4 Scoring Agreement
	4.1 Definition of Scoring Agreement
	4.2 Message-Specific Random Eligibility Election
	4.3 Herding-Based Scoring Agreement Protocol
	4.4 Theorem Statements for Scoring Agreement

	5 Batch Agreement
	5.1 Formal Definition of Batch Agreement
	5.2 Batch Agreement from Scoring Agreement

	6 SMR from Batch Agreement
	6.1 Definition of State Machine Replication
	6.2 Constructing State Machine Replication from Batch Agreement

	7 Removing the Idealized Functionality blackFmine
	7.1 Preliminary: Adaptively Secure Non-Interactive Zero-Knowledge Proofs
	7.2 Adaptively Secure Non-Interactive Commitment Scheme
	7.3 NP Language Used in Our Construction
	7.4 Compilation to Real-World Protocols

	8 Deferred Proofs for Scoring Agreement
	8.1 Consistency
	8.2 Validity
	8.3 Liveness
	8.4 Communication Efficiency

	9 Conclusion and Open Questions
	References

	Author Index

