q

Check for
updates

Juno: An Intelligent Chat Service for IT
Service Automation

Jin Xiao®), Anup K. Kalia, and Maja Vukovic

IBM T.J. Watson, Yorktown Heights, NY, USA

{jinoaix,anup.kalia,maja}@us.ibm.com

Abstract. Juno is a chat-based service that interacts with user through
natural language, in order to understand, assist and execute the user’s
service request with a IT Service Management (ISM) system.

1 The Need for Juno

IT service request processing and execution makes up a significant portion of
any large enterprise’s I'T operations. Traditionally, IT service request process-
ing is quite labor-intensive involving many personnel of varied IT expertise. A
helpdesk support person is needed to understand and determine the type of IT
service required, generates a IT service ticket and dispatching it to appropriate
systems operation team. Before the systems operation team can operate on the
ticket, the required action or change is scrutinized by various security expert,
client manager and sometimes the client’s operations team, to ensure that the
actions to be performed adhere to the security policies and infrastructure consis-
tencies. Once approved, the systems operation team will pickup the tickets and
attempt to perform the requested actions. Sometimes, the ticket may not con-
tain sufficient information to fulfill all of the parameters of a change (e.g., didn’t
mention which drive a Disk should be mounted on) or contain incidental errors
(e.g., ask to patch a DB2 database “dbinst1” that does not reside on the specified
machine x, although DB2 database “dbinst0” does reside on x). The ticket then
have to be discussed with the requester for further clarity and correction. This
process overall is labor-intensive, error-prone and slow. Over the past few years,
significant strides have been made in making IT service management process
simpler and more automated [1-4]. Automation platforms supports large variety
of change automata ranging from OS support, to databases, hardware configura-
tions, etc. Typically these automata take inputs on the parameters and options
to suite the specific target environment and the particular change request. IT
service management (ISM) systems are created to help streamlining and expe-
diting the request creation, dispatching and approval process. IBM Control Desk
(ICD) is such a representative system IBM Global Technology Service uses for IT
service request management. Moreover, helpdesk support is replaced by a self-
service catalog user interface. A service catalog contains a listing of pre-approved
services a service requester can use to facilitate a service request action. Each
catalog service takes on a web-based form that contains the required parameters

© Springer Nature Switzerland AG 2019
X. Liu et al. (Eds.): ICSOC 2018 Workshops, LNCS 11434, pp. 486-490, 2019.
https://doi.org/10.1007/978-3-030-17642-6_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17642-6_49&domain=pdf
https://doi.org/10.1007/978-3-030-17642-6_49

Juno: An Intelligent Chat Service for I'T Service Automation 487

and configuration options for automata execution. Furthermore, these catalogs
are designed as end-system-centric, whereby a requester should first specify the
end system to be acted on. Over time with the use of these self-service catalogs,
some challenges have emerged: (1) requester may not necessarily know what the
change action they are looking for is called or where it’s located in the catalog.
For instance, “grant user access to mailbox” could be located in User Account
Management, Mailbox Management, or Security Services. This sometimes causes
frustrating browsing experience; (2) requester may not know the name/value of
a parameter that is valid for the change action. Frequently, the requester needs
to look up fully qualified domain names for servers, the exact database name
on a server, etc.; (3) Sometimes, an action’s parameter list and configuration
items can be sizable, and it is difficult for a requester to look up all of the
configuration values and entity names. For instance, to add a MQ channel, the
parameter includes: server name, MQ application name, Queue manager name,
channel name, queue type, etc. The net effect being even with a self-service user
interface, requesters (especially new users) tend to have a lot of questions and
need to do many lookups. Juno is designed and created to be an intelligent self-
service chatbot to address these challenges. Its aim is to be a virtual helpdesk
support agent for a user that can directly engage Juno in a conversational format
that does not require the user to browse the service catalog and to assist the
user in parameter fulfillment through recommendation, auto-fill and validations.
Our experience suggest that Juno serves as a much smoother and guided user
experience to the service requesters.

NL Processing + ML Algorithms

1

Process Manager e
o \ e.g., got an API for me?

Intent Identification and APl Mapping ~+—————— Service Catalog

ICD QuickStart
e NN

Emulating catalog navigation
l Persona | Account Manager (not g gatslognevioel e Backup DB

ICD

__ Emulating TR

Filing —>

CMDB

Fig. 1. The Juno architecture

2 The Juno Architecture

Juno is a collection of micro-services that communicates through APIs. The chat
front-end of Juno (i.e., the chatbot) is built for a specific chat application, and
is independent of the back-end reasoning and execution engines of Juno. The
entire Juno service can operate across multiple chat applications, and service

488 J. Xiao et al.

multiple users at the same time. As depicted in Fig. 1, Juno consists of process
manager, intent identifier, parameter recommender, execution engine, knowledge
base, and persona.

Process manager handles the authentication and authorization process, as
well as session management. It is the interface to the chatbot. When a user
initiates a conversation with Juno via chat, the process manager first authen-
ticates the user. The authentication process involves establishing and linking a
user’s chat identity to his/her back-end ISM identity. Secondly, based on the
user’s ISM identity, the user’s role and access rights to the target infrastructure
and the authorized set of actions are also established. These access rights will
be used throughout the session to ensure the user’s interaction with Juno and
the backend ISM are compliant with security policies. The process manager also
keeps track of ongoing requests the user may have initiated during the session
and is able to therefore bridge the chatbot’s dialogue state to Juno’s internal
processing state.

The intent identifier employs natural-language processing, feature extraction
and classification techniques to map a requester’s requested action to a service
catalog entry if there exists one. The service catalog entries are a priori onboarded
to Juno as a meta catalog. The meta catalog entry for a service entry consists of:
API descriptions of the automata associated with the service entry, the action
utterances, the parameter key-values, parameter utterances, and types of the
parameters. This design facilitates a dynamic approach to onboarding new ser-
vice catalog entries to Juno. The Intent identifier creates a weighed feature map
of the API parameters and actions. When a request is received, for example,
“backup database db001 on server xyz”. The intent identifier does NL-based
preprocessing, tokenization and lemmatization to generate list of likely action
and parameter related phrases (e.g., “backup”, “database”, “db001”, etc.). The
phrases are further searched with Intent identifier’s word dictionary to identify
normalized tokens for them (e.g., “back up”, “backup” maps to “backup”; “db”,
“database” maps to “database”, etc.). The normalized tokens are used to fit the
weighed feature maps of APIs for classification. Furthermore, likely parameter
value word phrases such as “db001” are also searched in Juno’s knowledge base
to determine if they exist, and what type of parameter they are. This informa-
tion is also fed into the classifier. The resulting top ranked matches are then
returned to the chatbot.

The parameter recommender is involved for further interaction with the
requester via process manager. Based on what the requester selects, the parame-
ter recommender takes the features generated by the intent identifier and loads
the service API corresponding to the selected service entry. Different from the
meta catalog entry, the service API associated with the entry contains further
technical details on the parameter key-values, types of parameters, associated con-
cepts in the knowledge base, value constraints (e.g., Integer) and defaults, as well
as mapping information to generate backend data payload to the backend ISMs

Juno: An Intelligent Chat Service for IT Service Automation 489

(this demo uses ICD as the ISM that takes in a structured XML payload). The
parameter recommender first fits the word tokens into parameters required, it
does verification with the knowledge base to ensure the word tokens are entities
exists in the target infrastructure, the requester have access rights to it, have the
right concept (e.g., “db001” is indeed a database), and the right system dependen-
cies (e.g. “xyz” is indeed a server and “db001” is hosted on “xyz”). The outcome
of this step produces a valid partially complete API payload. Then the recom-
mender does auto-fulfillment on parameters where it can conclusively determine
the value for. In the instance of “backup database db001 on server xyz”, the API
also requires a database application name. Since the recommender is able to deter-
mine the existence and validity of “db001” and “xyz”, also “db001” is hosted on
“xyz”, it performs a lookup in the knowledge base for the name of the database
application that hosts “db001” on server “xyz”, and fulfills that parameter. In
the case, where there’s an inconsistency on the requester’s provided values. For
example, “xyz” is not a valid server, or “xyz” does not host any database called
“db001”, then the user is provided recommendations for the valid candidate server
that hosts “db001”, and the valid databases that is hosted on “xyz”. The param-
eter recommender interacts with the user via process manager to systematically
recommend parameters (as we'll see in the demo), until all parameters of the API
is fulfilled.

The execution engine serves as the interface to the backend ISM system. It
takes a completed service API and translates into the native payload the backend
ISM expects. For this demo, XML payloads are generated to create and process
requests in ICD. The execution engine can also pull request status from the
ISM, and pull configuration items from Configuration Management Database
(CMDB). The CMDB is the ISM’s representation of the target infrastructure.

The persona service is persistent across sessions. It records a requester’s
identity, access rights (cached from ISM), request history, ongoing request status,
as well as any linguistic utterance associations specific to the user (e.g., server
“xyz” is referred to by the requester as “ICD test server”).

The knowledge base is a service that is heavily used by the intent identifier
and parameter recommender service to: search for existence of an entity, under-
stand the concept type of the entity, and how the entity is situated in the target
infrastructure. The CMDB of a ISM is injested to automatically generate/update
the knowledge base.

3 What Is in the Demo

In this quick demo of Juno we have a Slack chatbot built that communicates with
the Juno service. The dialogue management for the Slack chatbot is minimal,
mostly passing process manager’s response directly to the user.

First, users issue browsing command to retrieve the list of target systems
they have access to. Notice that the user “Anup” and user “Jin” have access
to different systems. Then, Juno guides user through a series of commands,
many of which requires Juno to auto-fill parameters, correct user errors, and/or

490 J. Xiao et al.

recommend parameter values. Because ISM system interaction takes time, we
only show the ISM path once during this demo.

4 How to View This Demo

The demo file is titled “Juno.DEMO_ICSOC_2018.mp4”. It is a MP4 video for-
mat, no sound, any MP4 viewer should be able to play this video. Thank you.

References

1. Ales, Z., Duplessis, G.D., Serban, O., Pauchet, A.: A methodology to design human-
like embodied conversational agents. In: International Workshop on Human-Agent
Interaction Design and Models, Valencia, pp. 1-16 (2012)

2. Ayachitula, N., et al.: I'T service management automation - a hybrid methodology to
integrate and orchestrate collaborative human centric and automation centric work-
flows. In: Proceedings of the 4th International Conference on Services Computing,
Salt Lake City, pp. 574-581. IEEE (2007)

3. Kalia, A.K., Telang, P.R., Xiao, J., Vukovic, M.: Quark: a methodology to transform
people-driven processes to chatbot services. In: Maximilien, M., Vallecillo, A., Wang,
J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 53-61. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69035-3 4

4. Kalia, A.K., Xiao, J., Bulut, M.F., Vukovic, M., Anerousis, N.: Cataloger: catalog
recommendation service for IT change requests. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 545-560. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_40

https://doi.org/10.1007/978-3-319-69035-3_4
https://doi.org/10.1007/978-3-319-69035-3_40

	Juno: An Intelligent Chat Service for IT Service Automation
	1 The Need for Juno
	2 The Juno Architecture
	3 What Is in the Demo
	4 How to View This Demo
	References

