
RESTalk Miner: Mining RESTful
Conversations, Pattern Discovery

and Matching

Ana Ivanchikj, Ilija Gjorgjiev, and Cesare Pautasso(B)

Software Institute, Faculty of Informatics, USI, Lugano, Switzerland
{ana.ivanchikj,ilija.gjorgjiev,cesare.pautasso}@usi.ch

Abstract. REST has become the architectural style of choice for APIs,
where clients need to instantiate a potentially lengthy sequence of
requests to the server in order to achieve their goal, effectively leading
to a RESTful conversation between clients and servers. Mining the logs
of such RESTful conversations can facilitate knowledge sharing among
API designers regarding design best practices as well as API usage and
optimization. In this demo paper, we present the RESTalk Miner, which
takes logs from RESTful services as an input and uses RESTalk, a domain
specific language, to visualize them. It provides interactive coloring to
facilitate graph reading, as well as statistics to compare the relative fre-
quency of conversations performed by different clients. Furthermore, it
supports searching for predefined patterns as well as pattern discovery.

Keywords: REST APIs · RESTful conversations · Mining ·
Pattern search · Visualization

1 Introduction

As the number of RESTful services is growing, with over 15’000 publicly avail-
able REST APIs [5] in the ProgrammableWeb repository1 as of 2018, mining
their logs can bring to interesting insights regarding how different clients actu-
ally use REST APIs. This can help developers detect unexpected usage patterns
of their APIs by comparing different clients’ conversations, or to pinpoint inter-
actions which are worth optimizing as they are being used by most of the clients.
For instance, if there is a sequence of several requests which are frequently fol-
lowed, the API designer might decide to provide in the first request a direct link
of the last request, thus avoiding the clients having to make the intermediary
requests. Bugs might also become evident, such as unauthorized access to some
resources or frequent error messages after a certain sequence of requests. Mining
techniques have been successfully applied in the area of business processes for
almost two decades, resulting in process discovery, conformance checking, pre-
diction of delays, process redesign recommendation etc. [2]. Similar to business
1 http://www.programmableweb.com.

c© Springer Nature Switzerland AG 2019
X. Liu et al. (Eds.): ICSOC 2018 Workshops, LNCS 11434, pp. 470–475, 2019.
https://doi.org/10.1007/978-3-030-17642-6_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17642-6_46&domain=pdf
http://www.programmableweb.com
https://doi.org/10.1007/978-3-030-17642-6_46


RESTalk Miner 471

processes, the use of REST APIs also requires a particular sequence of inter-
actions [3]. In this case they are HTTP request-response interactions between
clients and servers with the goal of retrieving or modifying the state of one or
more resources managed by a service provider [14]. We call the set of all possible
client-server interactions, aimed at achieving a certain goal, a RESTful conversa-
tion [4,7,8]. As process mining builds on data mining and process model-driven
approaches, mining of RESTful services also requires a model-driven approach to
RESTful conversations. To that end, in [9] we have proposed RESTalk, a domain
specific language for modeling and visualization of RESTful conversations and
we use a simplified version of the same in the RESTalk Miner. Although different
mining tools with graph visualization already exist [1,15,16], their visualization
is not REST domain specific nor do they offer pattern searching or pattern dis-
covery functionalities. Patterns [10] represent a systematic form of knowledge
sharing as they establish a common vocabulary to describe recurring RESTful
conversations [11] which is becoming increasingly important in the API-driven
development [6]. Patterns can be used to pinpoint and discuss API design best
practices or the absence of the same.

2 RESTalk Miner

The input to RESTalk Miner2 is a log file from a given server containing log
entries of interactions with different clients, complying to the following format:

Date
︷ ︸︸ ︷

DD/MM/Y Y Y Y

Time
︷ ︸︸ ︷

HH : MM : SS
Client IP Address
︷ ︸︸ ︷

3.171.112.202
Method
︷ ︸︸ ︷

POST

URI
︷︸︸︷

/job

Status Code
︷︸︸︷

202

Additionally there is an optional input, i.e., a file which contains the URI
templates derived from an Open API specification of the API. For instance, to
abstract the following URI /content/serial/ title /issn/03029743 this URI tem-
plate can be used /content/serial/ title /issn/:id. Such abstraction ensures that
identical method calls to the same type of resource are visualized as one request.
The main default output of the RESTalk Miner is a simplified RESTalk graph
showing all the conversations different clients have initiated with the server.
Alternatively, the user can select to visualize only the conversations of clients of
interest. Most of the nodes in the graph take the form of a juxtaposed request-
response containing information about the HTTP method, URI, response status
code and the number of log entries in which this request/response pair has
appeared. If different log entries indicate that the server has used different
responses to the same request, the request and the responses are represented
as separate nodes with an exclusive gateway node in-between to emphasize the
existence of alternative responses. An exclusive gateway node is also used to show
alternative paths that clients have taken during their interactions with the server.
A node with a round form is used to mark the start and the end of a conversa-
tion of a particular client, while edges depict the sequence flow between nodes.
2 https://github.com/USI-INF-Software/RESTfulConversationMining.

https://github.com/USI-INF-Software/RESTfulConversationMining


472 A. Ivanchikj et al.

Based on user’s preference, the graph can be flattened by abstracting from the
URI information and showing only the methods that have been called and the
response status codes. For the RESTalk visualization, dagre-d3 library [12,13]
has been used to render the internal data structure into an SVG DOM tree which
is displayed by the Web browser.

RESTalk Graph and Comparative Statistics Visualization. Once the
above mentioned graph has been generated, the user can activate or deacti-
vate different interactive visualizations: node frequency coloring which colors
nodes from red to yellow depending on the number of log entries that contain
the particular request/response pair; edge frequency thickness which adjusts
the thickness of the edges based on how many clients follow the same path; edge
delay coloring which colors the edges from red to yellow depending on the time
difference between the nodes that the edge connects; edge probability which
shows a probability of an alternative path being taken after an exclusive gateway;
status coloring which colors responses based on their status codes; conversa-
tion path coloring which colors in a unique color all the requests made by the
same client and in a mix of colors the nodes which are shared between clients in
case multiple clients are selected (Fig. 1). The tool also provides the user with
pie chart visualization of statistical data regarding the analyzed clients of the
RESTful service. The number of nodes pie chart shows how many request/re-
sponse nodes belong to each individual client as a percentage of the total number
of nodes, i.e., how lengthy each conversation is; the uniqueness of nodes pie
chart shows how many nodes are unique to just one client, how many are shared
between two, three clients etc. Clicking on a certain slice of the pie colors in
the same color in the graph the nodes it refers to; the shared nodes pie chart
shows the number of nodes shared between specific clients; while the dynamic
sharing pie chart uses the same computation as the shared nodes pie charts,
but only for the clients selected by the user.

Pattern Discovery, Matching and Visualization. RESTalk Miner sup-
ports two types of pattern searches. Searching for unknown patterns, i.e., pattern
discovery, and searching for known patterns, i.e., pattern matching. The pattern
discovery can help identify new API design approaches and best practices, while
the pattern matching can allow to search for patterns of interest. When search-
ing for unknown patterns the user specifies the number of request/response
nodes the pattern should contain and the minimal number of clients that must
have used that pattern. If patterns that match these criteria are identified, they
appear in a dropdown list and the user can decide to visualize them and/or save
them. Saved patterns can be used later as known patterns to be searched for
in other conversations. The user can also upload patterns she knows based on
her experience or best practices and search for them in the given conversation.
Such patterns need to be described in JSON with a log object describing the
conversation pattern to be matched (Fig. 2). Each log entry has the same struc-
ture as the logs described above, with the difference that any of the elements
(Method, Status Code, URI, etc.) can be substituted by a * symbol, meaning



RESTalk Miner 473

Fig. 1. Overlapping vs. unique parts of conversations



474 A. Ivanchikj et al.

Fig. 2. Pattern matching

that any value of that element will be considered a match when searching for the
pattern. URI values can also be used as placeholders, i.e., ensuring that the same
URI is used in different requests without precisely specifying the URI value. An
optional separator element in the pattern description allows for log entries not to
be direct successors. For instance, if we are searching for a pattern with two log
entries (POST /example/1, DELETE /example/1), if we use this separator ele-
ment in the pattern description (POST /example/1 ... DELETE /example/1),
an occurrence of POST /example/1 followed by PUT /example/1 followed by
DELETE /example/1 will also be considered a match. Such description of the
pattern we are searching for allows for greater expressiveness to match targeted
patterns.

A screencast of the main functionalities of RESTalk Miner is available at
https://youtu.be/N94clNa5Mlg. Future work includes providing full support of
the RESTalk constructs, such as the hyperlink flow, which will require additional
input collected in the logs. We also plan to release the tool as a Web Application
with user registration functionality so that the user can save the mined RESTful
conversations and the discovered patterns.

References

1. Disco. https://fluxicon.com/disco/. Accessed 20 Aug 2018
2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement

of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19345-3

3. van der Aalst, W.M.P., Song, M.: Mining social networks: uncovering interaction
patterns in business processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM
2004. LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-25970-1 16

4. Benatallah, B., Casati, F., et al.: Web service conversation modeling: a cornerstone
for E-business automation. IEEE Internet Comput. 8(1), 46–54 (2004)

https://youtu.be/N94clNa5Mlg
https://fluxicon.com/disco/
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-540-25970-1_16
https://doi.org/10.1007/978-3-540-25970-1_16


RESTalk Miner 475

5. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California, Irvine (2000)

6. Goteti, H.: API driven development, bridging the gap between providers and
consumers. Technical report, CA Technologies (2015). http://rewrite.ca.com/
us/articles/application-economy/apis-bridging-the-gap-between-providers-and-
consumers.html

7. Haupt, F., Leymann, F., Pautasso, C.: A conversation based approach for modeling
REST APIs. In: Proceedings of the 12th WICSA 2015, Montreal, May 2015

8. Hohpe, G.: Let’s have a conversation. IEEE Internet Comput. 11(3), 78–81 (2007)
9. Ivanchikj, A., Pautasso, C., Schreier, S.: Visual modeling of RESTful conversations

with RESTalk. Softw. Syst. Model. 17(3), 1031–1051 (2018)
10. Meszaros, G., Doble, J.: A pattern language for pattern writing. Pattern Lang.

Program Des. 3, 529–574 (1998)
11. Pautasso, C., Ivanchikj, A., Schreier, S.: A pattern language for RESTful conver-

sations. In: Proceedings of EuroPLoP, p. 4. ACM (2016)
12. Pettitt, C.: Directed graph layout for Javascript (2012–2014). https://github.com/

dagrejs/dagre
13. Pettitt, C.: A D3-based renderer for Dagre (2013). https://github.com/dagrejs/

dagre-d3
14. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. O’Reilly, Sebastopol

(2013)
15. Stroinski, A., et al.: RESTful web service mining: simple algorithm supporting

resource-oriented systems. In: Proceedings of ICWE, pp. 694–695. IEEE (2014)
16. Verbeek, H., Buijs, J., Van Dongen, B., van der Aalst, W.M.: Prom 6: the process

mining toolkit. Proc. BPM Demonstration Track 615, 34–39 (2010)

http://rewrite.ca.com/us/articles/application-economy/apis-bridging-the-gap-between-providers-and-consumers.html
http://rewrite.ca.com/us/articles/application-economy/apis-bridging-the-gap-between-providers-and-consumers.html
http://rewrite.ca.com/us/articles/application-economy/apis-bridging-the-gap-between-providers-and-consumers.html
https://github.com/dagrejs/dagre
https://github.com/dagrejs/dagre
https://github.com/dagrejs/dagre-d3
https://github.com/dagrejs/dagre-d3

	RESTalk Miner: Mining RESTful Conversations, Pattern Discovery and Matching
	1 Introduction
	2 RESTalk Miner
	References




