
The Tentative Research of Hydrological IoT
Data Processing System Based on Apache Flink

Feng Ye1,2(&), Peng Zhang3, Cheng Hu1, Songjie Zhu1, and Ling Li1

1 College of Computer and Information, Hohai University, Nanjing, China
yefeng1022@hhu.edu.cn

2 Postdoctoral Centre, Nanjing Longyuan Micro-Electronic Company,
Nanjing, China

3 Jiangsu Province Water Resources Department, Nanjing, China

Abstract. With the widespread application of sensor and IoT technology in the
field of water conservancy informatization, the traditional application systems
based on Java EE or pure NoSQL databases for hydrological data processing
and analysis have been difficult to meet the new requirements for processing and
analyzing large-scale hydrological IoT stream data. How to select a suitable big
data processing platform and how to implement application systems for
hydrological IoT stream data requires in-depth theoretical foundations, more
experimental comparisons, effective design paradigm and practical implemen-
tations. This paper summarizes the research status of big data in water conser-
vancy domain, and then proposes a hydrological IoT data processing system
based on Apache Flink. We use the sensor data obtained in Chuhe river as the
experimental dataset, and take the common and daily operations for hydrolog-
ical data as example. The experimental results show that the processing capa-
bility of the hydrological IoT data processing system is far superior to the
traditional multi-tier architecture system based on Java EE or pure NoSQL
databases, and it obviously becomes an appreciable solution for water conser-
vancy informatization.

Keywords: Apache Flink � Stream data �Water conservancy informatization �
IoT

1 Introduction

With the widespread use of Internet of things (IoT) [1] and the rapid development of
the mobile Internet, diverse data has been growing explosively. How to deal with large-
scale IoT data has become a research hotspot [2]. Meanwhile, in the field of water
conservancy informatization, the hydrological IoT data acquisition capability has also
continuously improved. Because of the diversity, dynamics and large-scale of the
hydrological IoT stream data, the traditional multi-tier architecture system based on
Java EE or pure NoSQL databases for hydrological data processing and analysis have
been difficult to meet the new requirements for processing and analyzing these
hydrological IoT stream data. In this context, how to select a suitable big data pro-
cessing platform and how to implement an appreciable solution for hydrological IoT

© Springer Nature Switzerland AG 2019
X. Liu et al. (Eds.): ICSOC 2018 Workshops, LNCS 11434, pp. 161–168, 2019.
https://doi.org/10.1007/978-3-030-17642-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17642-6_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17642-6_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17642-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-17642-6_14

stream data become a key challenge. According to existing research and the present
situation of the information development in water conservancy informatization, we
think it requires in-depth theoretical foundations, more experimental comparisons,
effective design paradigm and practical implementations.

By comparing the mainstream big data processing platforms, we propose a novel
hydrological IoT data processing system based on Apache Flink [3, 4], which is an
open source framework and distributed processing engine for stateful computations
over unbounded and bounded data streams. To our knowledge, though Apache Flink
powers business-critical applications in many companies and enterprises around the
globe, such as Alibaba.com and Ericsson, there are no cases in the field of water
conservancy informatization. Using the sensor data obtained from Chuhe river as the
experimental data, the proposed system is proved to be advanced in water conservancy
informatization domain.

The rest of the paper is organized as follows. Section 2 describes some works
related to this topic of interest. In Sect. 3, after introducing the Apache Flink, the
architecture and components of the proposed hydrological IoT data processing system
is described. In Sect. 4, comparing with the traditional multi-tier architecture system
based on Java EE or pure NoSQL databases, we analyzes the performance of the
proposed the hydrological IoT data processing system using the sensor data obtained in
Chuhe river. At last, conclusion along with the direction for future research is provided
in Sect. 5.

2 Relate Works

According to Feng [5], after long-term application practice, a large number of
heterogeneous business data have been accumulated in water conservancy domain. By
2012, the hydrological data alone had exceeded 100 TB nationwide. With the devel-
opment and widespread application of IoT related technologies such as remote sensing,
sensor and so on, the hydrological IoT data acquisition capability has been continu-
ously improved, and more and more hydrological data have been collected and utilized
in water conservancy informatization. These hydrological IoT data often have the
following characteristics [6]: (1) Multi-source: data is captured by sensors at different
locations; (2) Heterogeneous stream data; (3) Thematic diversity: there are many topics
such as water quality, hydrology and irrigation, and different topics require different
computing patterns. (4) Presence of outliers: observations considerably higher or lower
than most of the data, which infrequently but regularly occur. (5) Autocorrelation:
consecutive observations tend to be strongly correlated with each other. (6) Depen-
dence on other uncontrolled variables: values strongly co-vary with water discharge,
hydraulic conductivity, sediment grain size, or some other variable. From the per-
spective of data type, these massive data includes both batch and stream data. From the
perspective of timeliness, certain hydrological data such as flood warnings require
timely and efficient processing and feedback. Moreover, because the data lineage for
location, environment, weather and other related factors is often missing in the process
of data acquisition, there is a wealth of spatial-temporal correlation information
between data lost. Therefore, when the traditional hydrological data processing systems

162 F. Ye et al.

based on Java EE or pure NoSQL databases cannot effectively face the large-scale
hydrological IoT data, it is necessary to adopt a suitable big data processing engine to
improve the processing capabilities of such data [7].

Currently, there are already many typical big data processing platforms. The Map-
Reduce [8] framework has become a de facto standard for big data technology and is
widely used to manage large clusters. Hadoop [9] is an open source implementation of
the MapReduce framework and plays an active role in the big data technology system.
However, in practice, industry and academia also gradually find that the MapReduce
framework and Hadoop implementation are not one-size-fits-all big data processing
solutions [10]. For example, the Hadoop platform is not suitable for second - or micro-
second interactive queries [11]. Therefore, Map-Reduce and Hadoop are difficult to
apply to hydrological IoT data processing effectively. Apache Spark [12, 13], is an
another large data parallel computing framework based on in-memory computing that
can be used to build large, low-latency data analysis applications. On the speed side,
Apache Spark extends the popular Map-Reduce model to efficiently support ore types
of computations, including interactive queries and stream processing. On the generality
side, Apache Spark is designed to cover a wide range of workloads that previously
required separate distributed systems, including batch applications, iterative algorithms,
interactive queries and streaming. Although the throughput has improved, the biggest
problem is that Apache Spark lacks low end-to-end latency with exactly-once guar-
antees [14–16]. Obviously, they are unable to satisfy some high throughput and low
latency processing scenarios, such as flood warning and forecasting.

Compared with mainstream big data platforms like Apache Spark and Hadoop,
Apache Flink is considered to be the fourth generation and the latest generation big
data processing engine. Specifically speaking, Apache Flink is a framework and dis-
tributed processing engine for stateful computations over bounded and unbounded data
streams. It has been designed to run in all common cluster environments, perform
computations at in-memory speed and at any scale. The core computational fabric of
Apache Flink, labeled “Flink runtime” in Fig. 1, is a distributed system that accepts
streaming dataflow programs and executes them in a fault-tolerant manner in one or
more machines. Apache Flink also offers developer-friendly APIs that layer on top of
the runtime and generate these streaming dataflow programs.

As far as I know, though Apache Flink powers business-critical applications in
many companies and enterprises around the globe, such as Alibaba.com and Ericsson,
there are no cases in the field of water conservancy informatization. Therefore, from the
above, we can see that Apache Flink is a versatile processing framework that can
handle any kind of stream, and it is necessary to study how to design and implement
IoT data processing system in combination with Apache Flink in water conservancy
domain.

The Tentative Research of Hydrological IoT Data Processing System 163

3 The Proposed Hydrological IoT Data Processing System

The system architecture proposed is shown in Fig. 2, and there are four tiers: infras-
tructure layer, virtualization layer, dataset processing layer and visualization layer. The
infrastructure layer provides the hardware foundation for big data processing, such as
PCs, various servers and network equipment. Various resources are abstracted into
different resource pools, such as data resource pool, network resource pool.

In virtualization layer, Apache CloudStack is installed, configured and deployed to
construct virtual machines cluster and then used to manage the infrastructure resource.
Hadoop, NoSQL, relational databases and other tools can be installed in virtual
machines cluster. In this layer, according to a variety of business requirements, multiple
data management solutions can be coexist, such as MySQL cluster, HBase or Hadoop
Distributed File System (HDFS). Different data management solutions and diverse
storage tools are applicable for different scale or types of data. For example, if local
resource of single virtual machine is sufficient for data processing, it is not necessary to
use YARN [17].

Above the virtualization layer, it is dataset processing layer, and Apache Flink is
the most direct support for building this layer. It provides three layered APIs, and each
API offers a different trade-off between conciseness and expressiveness and targets
different use cases. ProcessFunctions is used to process individual events from one or
two input streams or events that were grouped in a window and has fine-grained control
over time and state. The DataStream API provides primitives for many common stream
processing operations, such as windowing, record-at-a-time transformations, and
enriching events by querying an external data store. Table API and SQL are used for
unified stream and batch processing. Apache Flink features several libraries for

Fig. 1. The key components of the Apache Flink stack

164 F. Ye et al.

common data processing use cases. The libraries are typically embedded in an API and
not fully self-contained. Based on such a rich API, we can implement many business
functions and perform computations for hydrological IoT stream data at in-memory
speed and at any scale. In addition, in order to implement an effective stream-first
architecture and to gain the advantages of using Apache Flink, a common pattern is to
implement a streaming architecture by using a message transport such as Apache Kafka
[18], which can collect and deliver data from continuous events from a variety of
sources (producers) and make this data available to applications and services that
subscribe to it (consumers). Thus, having a message-transport system that decouples
producers from consumers is better because it can support a micro-services approach
and allows processing steps to hide their implementations, and provides them with the
freedom to change those implementations.

Fig. 2. The architecture of hydrological IoT data processing system

The Tentative Research of Hydrological IoT Data Processing System 165

In visualization layer, there are two main aspects to be considered: services and user
interface. Firstly, based on the idea of service-oriented, many data query, data pro-
cessing and analyzing are implemented into services. Secondly, the system provides
WYSIWYG Web-based user interface for users.

4 Experiments and Discussion

The IoT dataset of real-time water level of Chuhe river from January 1, 2015 to June
30, 2017 is selected, with a total of 18,910,865 records. The experimental environment
is a cluster made up of three same PC, and its configuration as follows: CPU is Intel(R)
Xeon(R) CPU E5645@2.40 GHz dual-core 24 CPU; memory is Kingston DDR3
1333 MHz 8G, 500 GB SSD Flash Memory. Software tools are Ubuntu 6.04 64-bit,
and Linux 3.11.0 kernel. For different storage mechanisms, our choice is MySQL 5.7.x,
Kafka 1.1.0, MongoDB 2008 plus 3.6.3[19] and HBase 1.2.6 [20].

In the field of water conservancy informatization, traditional multi-tier architecture
system based on Java EE or pure NoSQL databases are common and usually have the
normal functions of finding specific value, finding extreme value and adding or deleting
data. Therefore, the following experiments compare the differences between the pro-
posed IoT data processing systems based on Apache Flink with traditional multi-tier
architecture system based on Java EE or pure NoSQL databases under these common
and daily operations.

The first experiment is to find out specific IoT value of water level, such as records
of river water level above “5.5”. It takes 8.41 s to access the MySQL database table in
Java EE system. The same operation to access the IoT dataset in MongoDB directly
takes 7.46 s. However, in our system based on Apache Flink, it only takes about 0.03 s
to get the same results from HBase through Kafka.

In the second experiment, our purpose is to find out the extreme value in IoT data,
such as finding out the records of the lowest water level in more than 70 hydrological
monitoring stations. It takes 16.2 s to access the MySQL database table in Java EE
system. The same operation to access the IoT dataset in MongoDB directly takes
10.3 s. In our system based on Apache Flink, it only takes about 0.07 s to finish the
task from HBase through Kafka.

In the third experiment, the deletion operation for IoT data is tested. For large-scale
IoT stream data, it does not need to be maintained for a long time, and it is often
cleaned up after a period of time. For this reason, taking 5 million records as an
example, we verify the effect. It only takes 3.22 s using the IoT data processing
systems based on Apache Flink and HBase, far less than the 122 s needed to use
MySQL logic in Java EE system and the 55 s needed to use logic for accessing
MongoDB.

The experimental results are shown in Fig. 3. below, and it is not hard to see that
the system based on Apache Flink platform makes full use of the parallelization
mechanism, and significantly improves the execution efficiency of common operations.

166 F. Ye et al.

5 Summary and Prospect

In this paper, we summarize the characters of big data of water conservancy domain,
and then propose a hydrological IoT data processing system based on Apache Flink.
Then, we analyze the performance of the proposed the hydrological IoT data pro-
cessing system using the IoT data obtained in Chuhe river. By comparing the efficiency
of common operations, our proposed system is significantly superior to the traditional
application based on Java EE or pure NoSQL databases system.

In follow-up studies, we will focus on study the machine learning algorithms
combined with the analysis of the hydrological IoT data on Apache Flink platform,
especially for real-time analysis of stream data, and provide more support for flood
control and drought control.

Acknowledgement. This work is partly supported by the 2018 Jiangsu Province Key Research
and Development Program (Modern Agriculture) Project under Grant No.BE2018301, the 2017
Jiangsu Province Postdoctoral Research Funding Project under Grant No. 1701020C, the 2017
Six Talent Peaks Endorsement Project of Jiangsu under Grant No. XYDXX-078, and the Fun-
damental Research Funds for the Central Universities under Grant No. 2013B01814.

References

1. Yu, R., Yang, X., Huang, J., et al.: QoS-aware service selection in virtualization-based cloud
computing. In: Proceedings of 14th Asia-Pacific Network Operations and Management
Symposium:Management in theBigData and IoTEra, pp. 1–8. IEEEComputer Society (2012)

2. Walker, S.J.: Big data: a revolution that will transform how we live, work, and think. Math.
Comput. Educ. 47(17), 181–183 (2013)

Fig. 3. Comparison of execution time in different experiments

The Tentative Research of Hydrological IoT Data Processing System 167

3. Friedman, E., Tzoumas, K.: Introduction to Apache Flink: Stream Processing for Real Time
and Beyond. O’Reilly Media, Sebastopol (2016)

4. Deshpande, T.: Learning Apache Flink. Packt Publishing, Birmingham (2017)
5. Feng, J., Xu, X., Tang, Z., et al.: Research on key technology of water big data and resource

utilization. Water Resour. Informatiz. 8, 6–9 (2013)
6. Helsel, D.R., Hirsch, R.M.: Statistical Methods in Water Resources. http://water.usgs.gov/

pubs/twri/twri4a3/
7. Gong, H., Liu, W., et al.: Water resources data center construction based on big data. In: 3rd

Water Conservancy Information and Digital Water Conservancy Technology Forum,
pp. 243–248. Hohai University Press, Nanjing (2015)

8. Qin, X., Wang, H., Du, X., et al.: Big data analysis-competition and symbiosis of RDBMS
and MapReduce. J. Software 23(1), 32–45 (2012)

9. Lam, C.: Hadoop in Action. Manning Publications, Stamford (2011)
10. Bajaber, F., Elshawi, R., Batarfi, O., et al.: Big data 2.0 processing systems: taxonomy and

open challenges. J. Grid Comput. 14, 379–405 (2016)
11. Sakr, S., Liu, A., Fayoumi, A.G.: The family of MapReduce and large-scale data processing

systems. ACM Comput. Surv. 46(1), 10–11 (2013)
12. Zhao, S., Jiang, J.: Typical big data computing frameworks. ZTE Technol. J. 22(2), 14–18

(2016)
13. Estrada, R., Ruiz, I.: Big Data SMACK: A Guide to Apache Spark, Mesos, Akka,

Cassandra, and Kafka. Apress, New York (2016)
14. Zhang, P., Li, P., Ren, Y., et al.: Distributed stream processing and technologies for big data:

a review. J. Comput. Res. Develop. 51(Suppl), 1–9 (2014)
15. Sakr, S.: Big Data 2.0 Processing Systems: A Survey, pp. 74–89. Springer, Cham (2016).

https://doi.org/10.1007/978-3-319-38776-5
16. Liu, X., Iftikhar, N., Xie, X.: Survey of real-time processing systems for big data. In:

Proceedings of the 18th International Database Engineering and Applications Symposium.
Association for Computing Machinery, pp. 356–361 (2014)

17. Chintapalli, S., Dagit, D., Evans, B., et al.: Benchmarking streaming computation engines:
storm, Flink and spark streaming. In: Proceedings of IEEE 28th International Parallel and
Distributed Processing Symposium Workshops, pp. 1789–1792. IEEE Computer Society
(2016)

18. Narkhede, N., Shapira, G., Palino, T.: Kafka: The Definitive Guide. O’Reilly Media,
Sebastopol (2017)

19. Tiwari, S.: Professional NoSQL. Wiley, Indianapolis (2011)
20. George, L.: HBase: The Definitive Guide. O’Reilly Media, Sebastopol (2011)

168 F. Ye et al.

http://water.usgs.gov/pubs/twri/twri4a3/
http://water.usgs.gov/pubs/twri/twri4a3/
http://dx.doi.org/10.1007/978-3-319-38776-5

	The Tentative Research of Hydrological IoT Data Processing System Based on Apache Flink
	Abstract
	1 Introduction
	2 Relate Works
	3 The Proposed Hydrological IoT Data Processing System
	4 Experiments and Discussion
	5 Summary and Prospect
	Acknowledgement
	References

