
Programming Z3

Nikolaj Bjørner1(B), Leonardo de Moura1, Lev Nachmanson1,
and Christoph M. Wintersteiger2

1 Microsoft Research, Redmond, USA
nbjorner@microsoft.com

2 Microsoft Research, Cambridge, UK

Abstract. This tutorial provides a programmer’s introduction to the
Satisfiability Modulo Theories Solver Z3. It describes how to use Z3
through scripts, provided in the Python scripting language, and it
describes several of the algorithms underlying the decision procedures
within Z3. It aims to broadly cover almost all available features of Z3
and the essence of the underlying algorithms.

1 Introduction

Satisfiability Modulo Theories (SMT) problem is a decision problem for logical
formulas with respect to combinations of background theories such as arith-
metic, bit-vectors, arrays, and uninterpreted functions. Z3 is an efficient SMT
solver with specialized algorithms for solving background theories. SMT solving
enjoys a synergetic relationship with software analysis, verification and symbolic
execution tools. This is in many respects thanks to the emphasis on support-
ing domains commonly found in programs and specifications. There are several
scenarios where part of a query posed by these tools can be cast in terms of
formulas in a supported logic. It is then useful for the tool writer to have an
idea of what are available supported logics, and have an idea of how formulas
are solved. But interacting with SMT solvers is not always limited to posing a
query as a single formula. It may require a sequence of interactions to obtain
a usable answer and the need emerges for the tool writer for having an idea of
what methods and knobs are available. In summary, this tutorial aims to answer
the following types of questions through examples and a touch of theory:

– What are the available features in Z3, and what are they designed to be used
for?

– What are the underlying algorithms used in Z3?
– How can I program applications on top of Z3?

Figure 1 shows an overall systems diagram of Z3, as of version 4.8. The top
left summarizes the interfaces to Z3. One can interact with Z3 over SMT-LIB2
scripts supplied as a text file or pipe to Z3, or using API calls from a high-level
programming language that are proxies for calls over a C-based API. We focus

c© Springer Nature Switzerland AG 2019
J. P. Bowen et al. (Eds.): SETSS 2018, LNCS 11430, pp. 148–201, 2019.
https://doi.org/10.1007/978-3-030-17601-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17601-3_4&domain=pdf
http://orcid.org/0000-0003-0102-4381
https://doi.org/10.1007/978-3-030-17601-3_4

Programming Z3 149

Fig. 1. Overall system architecture of Z3

on using the Python front-end as a means of interfacing with Z3, and start out
describing the abstract syntax of terms and formulas accepted by Z3 in Sect. 2.
Formulas draw from symbols whose meaning are defined by a set of Theories,
Sect. 3. Solvers, Sects. 4, 5 and 6, provide services for deciding satisfiability of
formula. Tactics, Sect. 7, provide means for pre-processing simplification and
creating sub-goals. Z3 also provides some services that are not purely satisfi-
ability queries. Optimization, Sect. 8, services allow users to solve satisfiability
modulo objective functions to maximize or minimize values. There are also spe-
cialized procedures for enumerating consequences (backbone literals) described
in Sect. 4.6.6.

1.1 Resources

The main point of reference for Z3 is the GitHub repository
https://github.com/z3prover/z3

There is an interactive tutorial using the SMT-LIB2 front-end on
https://rise4fun.com/Z3/tutorial/guide

Examples from this tutorial that are executable can be found on
https://github.com/Z3Prover/doc/tree/master/programmingz3/code

https://github.com/z3prover/z3
https://rise4fun.com/Z3/tutorial/guide
https://github.com/Z3Prover/doc/tree/master/programmingz3/code

150 N. Bjørner et al.

There are several systems that program with Z3. They use a variety of front-ends,
some use OCaml, others C++, and others use the SMT-LIB2 text interfaces. A
few instances that use the Python front-end include

– Dennis Yurichev assembled a significant number of case studies drawn from
puzzles and code analysis and presents many of the examples using the Python
front-end https://yurichev.com/writings/SAT_SMT_by_example.pdf.

– The Ivy system is written in Python and uses Z3
https://github.com/Microsoft/ivy.

– The binary analysis kit Angr system is written in Python and uses Z3
https://docs.angr.io/.

– There was an online interactive Python tutorial. It is discontinued as it ended
up being a target for hacks. A snapshot of the web pages, including the non-
interactive examples can be found at

http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py

1.2 Sources

The material in this tutorial is assembled from several sources. Some of the
running examples originate from slides that have circulated in the SAT and SMT
community. The first SAT example is shamelessly lifted from Armin Biere’s SAT
tutorials and other examples appear in slides by Natarajan Shankar.

2 Logical Interfaces to Z3

Z3 takes as input simple-sorted formulas that may contain symbols with pre-
defined meanings defined by a theory. This section provides an introduction to
logical formulas that can be used as input to Z3.

As a basis, propositional formulas are built from atomic variables and logical
connectives. An example propositional logical formula accepted by Z3 is:

from z3 import *
Tie, Shirt = Bools(’Tie Shirt’)
s = Solver()
s.add(Or(Tie, Shirt),

Or(Not(Tie), Shirt),
Or(Not(Tie), Not(Shirt)))

print(s.check())
print(s.model())

The example introduces two Boolean variables Tie and Shirt. It then creates a
Solver object and adds three assertions.

(Tie ∨ Shirt) ∧ (¬Tie ∨ Shirt) ∧ (¬Tie ∨ ¬Shirt)

https://yurichev.com/writings/SAT_SMT_by_example.pdf
https://github.com/Microsoft/ivy
https://docs.angr.io/
http://www.cs.tau.ac.il/{~}msagiv/courses/asv/z3py

Programming Z3 151

The call to s.check() produces a verdict sat; there is a satisfying assignment
for the formulas. A satisfying model, where Tie is false and Shirt is true, can be
extracted using s.model(). For convenience the Python front-end to Z3 contains
some shorthand functions. The function solve sets up a solver, adds assertions,
checks satisfiability, and prints a model if one is available.

Propositional logic is an important, but smaller subset of formulas handled
by Z3. It can reason about formulas that combine symbols from several theories,
such as the theories for arrays and arithmetic:

Z = IntSort()
f = Function(’f’, Z, Z)
x, y, z = Ints(’x y z’)
A = Array(’A’, Z, Z)
fml = Implies(x + 2 == y, f(Store(A, x, 3)[y - 2]) == f(y - x + 1))
solve(Not(fml))

The formula fml is valid. It is true for all values of integers x, y, z, array A, and no
matter what the graph of the function f is. Note that we are using array[index]
as shorthand for Select(array, index). We can manually verify the validity
of the formula using the following argument: The integer constants x and y are
created using the function Ints that creates a list of integer constants. Under
the assumption that x + 2 = y, the right side of the implication simplifies to

f(Store(A, x, 3)[x]) == f(3)

as we have replaced occurrences of y by x - 2. There are no restrictions on what
f is, so the equality with f on both sides will only follow if the arguments to f
are the same. Thus, we are left to establish

Store(A, x, 3)[x] == 3

The left side is a term in the theory of arrays, which captures applicative maps.
Store updates the array A at position x with the value 3. Then ...[x] retrieves
the contents of the array at index x, which in this case is 3. Dually, the negation
of fml is unsatisfiable and the call to Z3 produces unsat.

Formulas accepted by Z3 generally follow the formats described in the SMT-
LIB2 standard [3]. This standard (currently at version 2.6) defines a textual
language for first-order multi-sorted logic and a set of logics that are defined by
a selection of background theories. For example, the logic of quantifier-free linear
integer arithmetic, known in SMT-LIB2 as QF_LIA, is a fragment of first-order
logic, where formulas are quantifier free, variables range over integers, interpreted
constants are integers, the allowed functions are +, −, integer multiplication,
division, remainder, modulus with a constant, and the allowed relations are,
besides equality that is part of every theory, also <, <=, >=, >. As an example,
we provide an SMT-LIB and a Python variant of the same arbitrary formula:

(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)

152 N. Bjørner et al.

(assert (> (+ (mod x 4) (* 3 (div y 2))) (- x y)))
(check-sat)

Python version:

solve((x % 4) + 3 * (y / 2) > x - y)

It is also possible to extract an SMT-LIB2 representation of a solver state.

from z3 import *
x, y = Ints(’x y’)
s = Solver()
s.add((x % 4) + 3 * (y / 2) > x - y)
print(s.sexpr())

produces the output

(declare-fun y () Int)
(declare-fun x () Int)
(assert (> (+ (mod x 4) (* 3 (div y 2))) (- x y)))

2.1 Sorts

Generally, SMT-LIB2 formulas use a finite set of simple sorts. It includes the
built-in sort Bool, and supported theories define their own sorts, noteworthy
Int, Real, bit-vectors (_ BitVec n) for every positive bit-width n, arrays
(Array Index Elem) for every sort Index and Elem, String and sequences
(Seq S) for every sort S. It is also possible to declare new sorts. Their domains
may never be empty. Thus, the formula

S = DeclareSort(’S’)
s = Const(’s’, S)
solve(ForAll(s, s != s))

is unsatisfiable.

2.2 Signatures

Formulas may include a mixture of interpreted and free functions and con-
stants. For example, the integer constants 0 and 28 are interpreted, while
constants x, y used in the previous example are free. Constants are treated
as nullary functions. Functions that take arguments can be declared, such as
f = Function(’f’, Z, Z) creates the function declaration that takes one inte-
ger argument and its range is an integer. Functions with Boolean range can be
used to create formulas.

2.3 Terms and Formulas

Formulas that are used in assertions or added to solvers are terms of Boolean
sort. Otherwise, terms of Boolean and non-Boolean sort may be mixed in any
combination where sorts match up. For example

Programming Z3 153

B = BoolSort()
f = Function(’f’, B, Z)
g = Function(’g’, Z, B)
a = Bool(’a’)
solve(g(1+f(a)))

could produce a solution of the form

[a = False, f = [else -> 0], g = [else -> True]]

The model assigns a to False, the graph of f maps all arguments to 0, and the
graph of g maps all values to True. Standard built-in logical connectives are
And, Or, Not, Implies, Xor. Bi-implication is a special case of equality, so
from Python, when saying a == b for Boolean a and b it is treated as a logical
formula for the bi-implication of a and b.

A set of utilities are available to traverse expressions once they are created.
Every function application has a function declaration and a set of arguments
accessed as children.

x = Int(’x’)
y = Int(’y’)
n = x + y >= 3
print("num args: ", n.num_args())
print("children: ", n.children())
print("1st child:", n.arg(0))
print("2nd child:", n.arg(1))
print("operator: ", n.decl())
print("op name: ", n.decl().name())

2.4 Quantifiers and Lambda Binding

Universal and existential quantifiers bind variables to the scope of the quantified
formula. For example

solve([y == x + 1, ForAll([y], Implies(y <= 0, x < y))])

has no solution because no matter what value we assigned to x, there is a value
for y that is non-positive and smaller than that value. The bound occurrence
of y is unrelated to the free occurrence where y is restricted to be x + 1. The
equality constraint y == x + 1 should also not be mistaken for an assignment
to y. It is not the case that bound occurrences of y are a synonym for x + 1.
Notice that the slightly different formula

solve([y == x + 1, ForAll([y], Implies(y <= 0, x > y))])

has a solution where x is 1 and the free occurrence of y is 2.
Z3 supports also λ-binding with rudimentary reasoning support based on a

model-constructing instantiation engine. λs may be convenient when expressing
properties of arrays and Z3 uses array sorts for representing the sorts of lambda
expressions. Thus, the result of memset is an array from integers to integers,

154 N. Bjørner et al.

that produces the value y in the range from lo to hi and otherwise behaves
as m outside the range. Z3 reasons about quantifier free formulas that contains
memset by instantiating the body of the λ.

m, m1 = Array(’m’, Z, Z), Array(’m1’, Z, Z)
def memset(lo, hi, y, m):

return Lambda([x], If(And(lo <= x, x <= hi), y, Select(m, x)))
solve([m1 == memset(1, 700, z, m), Select(m1, 6) != z])

Lambda binding is convenient for creating closures. Recall that meaning of
Lambda([x,y], e), where e is an expression with free occurrences of x and
y is as a function that takes two arguments and substitutes their values for x
and y in e. Z3 uses Lambda lifting, in conjunction with Reynold’s defunctional-
ization, to reduce reasoning about closures to universally quantified definitions.
Z3 treats arrays as general function spaces. All first-order definable functions
may be arrays. Some second-order theorems can be established by synthesizing
λ terms by instantiation. Thus,

Q = Array(’Q’, Z, B)
prove(Implies(ForAll(Q, Implies(Select(Q, x), Select(Q, y))),

x == y))

is provable. Z3 synthesizes an instantiation corresponding to Lambda(z, z == x)
for Q.

3 Theories

We will here summarize the main theories supported in Z3. In a few cases we
will give a brief taste of decision procedures used for these theories. Readers who
wish to gain a more in-depth understanding of how these decision procedures
are implemented may follow some of the citations.

3.1 EUF: Equality and Uninterpreted Functions

The logic of equality and uninterpreted function, EUF, is a basic ingredient for
first-order predicate logic. Before there are theories, there are constants, func-
tions and predicate symbols, and the built-in relation of equality. In the following
example, f is a unary function, x a constant. The first invocation of solve is
feasible with a model where x is interpreted as an element in S and f is an iden-
tify function. The second invocation of solve is infeasible; there are no models
where f maps x to anything but itself given the two previous equalities.

S = DeclareSort(’S’)
f = Function(’f’, S, S)
x = Const(’x’, S)
solve(f(f(x)) == x, f(f(f(x))) == x)
solve(f(f(x)) == x, f(f(f(x))) == x, f(x) != x)

Programming Z3 155

Decision procedures for quantifier-free EUF formulas are usually based on union-
find [57] to maintain equivalence classes of terms that are equated. Pictorially, a
sequence of equality assertions a = b, b = c, b = s produce one equivalence class
that captures the transitivity of equality.

a = b, b = c, d = e, b = s, d = t : a, b, c, s d, e, t

It is possible to check for satisfiability of disequalities by checking whether the
equivalence classes associated with two disequal terms are the same or not.
Thus, adding a �= d does not produce a contradiction, and it can be checked
by comparing a’s class representative with d’s representative.

a = b, b = c, d = e, b = s, d = t, a �= d : a, b, c, s d, e, t

On the other hand, when asserting c �= s, we can deduce a conflict as the two
terms asserted to be disequal belong to the same class. Class membership with
union-find data-structures is amortized nearly constant time.

a = b, b = c, d = e, b = s, d = t, c �= s : a, b, c, s d, e, t

Union-find alone is insufficient when function symbols are used, as with the
following example,

a = b, b = c, d = e, b = s, d = t , f (a, g(d)) �= f (b, g(e))

In this case decision procedures require reasoning with the congruence rule

x1 = y1 · · · xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

As a preparation for solving our example, let us introduce constants that can
be used as shorthands for sub-terms. Thus, introduce constants v1, v2, v3, v4 as
representatives for the four compound sub-terms.

a = b, b = c, d = e, b = s, d = t, v3 �= v4 v1 := g(e), v2 := g(d), v3 :=
f(a, v2), v4 := f(b, v1)

Having only the equality information available we obtain the equivalence
classes:

a, b, c, s d, e, t v1 v2 v3 v4

Working bottom-up, the congruence rule dictates that the classes for v1 and v2
should be merged. Thus,

e = d ⇒ g(e) = g(d)

156 N. Bjørner et al.

implies the following coarser set of equivalences.

a, b, c, s d, e, t v1, v2 v3 v4

At this point, the congruence rule can be applied a second time,

a = b, v2 = v1 ⇒ f(a, v2) = f(b, v1)

producing the equivalence classes

a, b, c, s d, e, t v1, v2 v3, v4

The classes for v3 and v4 are now merged. As our original formula required
these to be distinct, congruence closure reasoning determines that the formula
is unsatisfiable.

3.1.1 Congruence Closure
We have implicitly used the notion of congruence closure [20] to check satisfi-
ability of equalities. Let us more formally define this notion. Let T be a set of
terms and E set of equalities over T . A congruence closure over T modulo E is
the finest partition cc of T , such that:

– if (s = t) ∈ E , then s, t are in the same partition in cc.
– for s := f(s1, . . . , sk), t := f(t1, . . . , tk) ∈ T ,

• if si, ti are in same partition of cc for each i = 1, . . . k,
• then s, t are in the same partition under cc.

Definition 1. cc : T → 2T , maps term to its equivalence class.

3.1.2 EUF Models
A satisfiable version of the running example is:

a = b, b = c, d = e, b = s, d = t, f(a, g(d)) �= f(g(e), b)
It induces the following definitions and equalities: a = b, b = c, d = e, b =

s, d = t, v3 �= v4
v1 := g(e), v2 := g(d), v3 := f(a, v2), v4 := f(v1, b) and we can associate a
distinct value with each equivalence class.

�0 : a, b, c, s �1 : d, e, t �2 : v1, v2 �3 : v3 �4 : v4

When presenting the formula to Z3 as

Programming Z3 157

S = DeclareSort(’S’)
a, b, c, d, e, s, t = Consts(’a b c d e s t’, S)
f = Function(’f’, S, S, S)
g = Function(’g’, S, S)
solve([a == b, b == c, d == e, b == s,

d == t, f(a, g(d)) != f(g(e), b)])

it produces a model, that may look as follows:

[s = S!val!0, b = S!val!0, a = S!val!0,
c = S!val!0, d = S!val!1, e = S!val!1, t = S!val!1,
f = [(S!val!2, S!val!0) -> S!val!4, else -> S!val!3],
g = [else -> S!val!2]]

In the model the value S!val!0 is a fresh constant that is distinct from S!val!1.
The graph for f maps the arguments (S!val!2, S!val!0) to S!val!4. All other
arguments are mapped by the else clause to S!val!3. The else clause is used as
the default interpretation of arguments that are not listed in the interpretation.
The interpretation of S is a finite set

{S!val!0, S!val!1, S!val!2, S!val!3, S!val!4}.

3.2 Arithmetic

Arithmetical constraints are nearly ubiquitous in software models. Even though
mainstream software operates with finite precision arithmetic, that is modeled
precisely using bit-vectors, arithmetic over unbounded integers can often be used
in a sound way to model software. Furthermore, arithmetic over the reals has
been used for diverse areas such as models of cyber-physical systems or for
axiomatic economics.

3.2.1 Solving LRA: Linear Real Arithmetic
We provide an outline of Z3’s main procedure for solving formulas over linear real
arithmetic [21]. It maintains a (dual) Simplex tableau that encodes equalities of
the form Ax = 0. Feasibility of the equalities depends on bounds, loj ≤ xj ≤ hij ,
currently associated with the variables. For the following formula

x, y = Reals(’x y’)
solve([x >= 0, Or(x + y <= 2, x + 2*y >= 6),

Or(x + y >= 2, x + 2*y > 4)])

Z3 introduces auxiliary variables s1, s2 and represents the formula as

s1 ≡ x + y , s2 ≡ x + 2y ,
x ≥ 0, (s1 ≤ 2 ∨ s2 ≥ 6), (s1 ≥ 2 ∨ s2 > 4)

Only bounds (e.g., s1 ≤ 2) are asserted during search.
The first two equalities form the tableau. Thus, the definitions s1 ≡ x+y, s2 ≡

x + 2y produce the equalities

s1 = x + y, s2 = x + 2y

158 N. Bjørner et al.

They are equivalent to the normal form:

s1 − x − y = 0, s2 − x − 2y = 0

where s1, s2 are basic (dependent) and x, y are non-basic. In dual Simplex
tableaux, values of a non-basic variable xj can be chosen between loj and hij .
The value of a basic variable is a function of non-basic variable values. It is
the unique value that satisfies the unique row where the basic variable occurs.
Pivoting swaps basic and non-basic variables and is used to get values of basic
variables within bounds. For example, assume we start with a set of initial values
x = y = s1 = s2 = 0 and bounds x ≥ 0, s1 ≤ 2, s1 ≥ 2. Then s1 has to be 2 and
it is made non-basic. Instead y becomes basic:

y + x − s1 = 0, s2 + x − 2s1 = 0

The new tableau updates the assignment of variables to x = 0, s1 = 2, s2 =
4, y = 2. The resulting assignment is a model for the original formula.

3.2.2 Solving Arithmetical Fragments
The solvers available to reason about arithmetical constraints are wildly different
depending on what fragments of arithmetic is used. We summarize the main
fragments, available decision procedures, and examples in Table 1 where x, y
range over reals and a, b range over integers.

There are many more fragments of arithmetic that benefit from special-
ized solvers. We later discuss some of the fragments where integer variables
are restricted to the values {0, 1} when describing Pseudo-Boolean constraints.
Other fragments that are not currently handled in Z3 in any special way include
fragments listed in Table 2.

Table 1. Arithmetic theories

Logic Description Solver Example

LRA Linear Real Arithmetic Dual simplex [21] x+ 1
2
y ≤ 3

LIA Linear Integer Arithmetic Cuts + Branch a+ 3b ≤ 3

LIRA Mixed Real/Integer [7,11,13,19,21] x+ a ≥ 4

IDL Integer Difference Logic Floyd-Warshall a − b ≤ 4

RDL Real Difference Logic Bellman-Ford x − y ≤ 4

UTVPI Unit two-variable/inequality Bellman-Ford x+ y ≤ 4

NRA Polynomial Real Arithmetic Model based CAD
[34]

x2 + y2 < 1

NIA Non-linear Integer Arithmetic CAD + Branch [33]
Linearization [14]

a2 = 2

Programming Z3 159

Table 2. Fragments of arithmetic

Description Example

Horn Linear Real Arithmetic
at most one variable is positive

3y + z − 1
2
x ≤ 1

Two-variable per inequality [15] 3x+ 2y ≥ 1

Min-Horn [17] x ≥ min(2y + 1, z)

Bi-linear arithmetic 3xx′ + 2yy′ ≥ 2

Transcendental functions e−x ≥ y

Modular linear arithmetic a+ 3b+ 2 ≡ 0 mod 5

A user of Z3 may appreciate that a domain can be modeled using a frag-
ment of the theory of arithmetic that is already supported, or belongs to a class
where no special support is available. On a practical side, it is worth noting
that Z3 uses infinite precision arithmetic by default. Thus, integers and ratio-
nals are represented without rounding. The benefit is that the representation
ensures soundness of the results, but operations by decision procedures may end
up producing large numerals taking most of the execution time. Thus, users
who produce linear arithmetic constraints with large coefficients or long decimal
expansions may face performance barriers.

3.3 Arrays

The declaration

A = Array(’A’, IntSort(), IntSort())

introduces a constant A of the array sort mapping integers to integers. We can
solve constraints over arrays, such as

solve(A[x] == x, Store(A, x, y) == A)

which produces a solution where x necessarily equals y.
Z3 treats arrays as function spaces, thus a function f(x, y) can be converted

to an array using a λ

Lambda([x, y], f(x, y))

If f has sort A × B → C, then Lambda([x, y], f(x, y)) has sort
Array(A, B, C). A set of built-in functions are available for arrays. We sum-
marize them together with their representation using Lambda bindings.

a[i] # select array ’a’ at index ’i’
Select(a, i)

Store(a, i, v) # update array ’a’ with value ’v’ at index ’i’
= Lambda(j, If(i == j, v, a[j]))

160 N. Bjørner et al.

K(D, v) # constant Array(D, R), where R is sort of ’v’.
= Lambda(j, v)

Map(f, a) # map function ’f’ on values of ’a’
= Lambda(j, f(a[j]))

Ext(a, b) # Extensionality
Implies(a[Ext(a, b)] == b[Ext(a, b)], a == b)

3.3.1 Deciding Arrays by Reduction to EUF
Formulas using the combinators Store, K, Map, Ext are checked for satisfia-
bility by expanding the respective λ definitions on sub-terms. We illustrate how
occurrences of Store produce constraints over EUF. In the following, assume we
are given a solver s with ground assertions using arrays.

For each occurrence in s of Store(a, i, v) and b[j], add the following
assertions:

– s.add(Store(a, i, v)[j] == If(i == j, v, a[j]))
– s.add(Store(a, i, v)[i] == v)

The theory of arrays is extensional. That is, two arrays are equal if they behave
the same on all selected indices. When Z3 produces models for quantifier free
formulas in the theory of extensional arrays it ensures that two arrays are equal in
a model whenever they behave the same on all indices. Extensionality is enforced
on array terms a, b in s by instantiating the axiom of extensionality.

– s.add(Implies(ForAll(i, a[i] == b[i]), a == b))

Since the universal quantifier occurs in a negative polarity we can introduce a
Skolem function Ext that depends on a and b and represent the extensionality
requirement as:

– s.add(Implies(a[Ext(a, b)] == b[Ext(a, b)], a == b))

We can convince ourselves that asserting these additional constraints force mod-
els of a solver s to satisfy the array axioms. Suppose we are given a model
M satisfying all the additional asserted equalities. These equalities enforce the
axioms for Store on all indices that occur in s. They also enforce extensionality
between arrays: Two arrays are equal if and only if they evaluate to the same
value on all indices in s.

3.4 Bit-Vectors

Let us play with some bit-fiddling. The resource

https://graphics.stanford.edu/~seander/bithacks.html,

https://graphics.stanford.edu/{~}seander/bithacks.html

Programming Z3 161

Fig. 2. Bit-vector addition circuit

lists a substantial repertoire of bit-vector operations that can be used as alter-
natives to potentially more expensive operations. Note that modern compilers
already contain a vast set of optimizations that automatically perform these con-
versions and Z3 can be used to check and synthesize such optimizations [38]. For
example, to test whether a bit-vector is a power of two we can use a combination
of bit-wise operations and subtraction:

def is_power_of_two(x):
return And(x != 0, 0 == (x & (x - 1)))

x = BitVec(’x’, 4)
prove(is_power_of_two(x) == Or([x == 2**i for i in range(4)]))

The absolute value of a variable can be obtained using addition and xor with a
sign bit.

v = BitVec(’v’,32)
mask = v >> 31
prove(If(v > 0, v, -v) == (v + mask) ^ mask)

Notice that the Python variable mask corresponds to the expression v >> 31,
the right arithmetic (signed) shift of v. Notice also, that in classical first-order
logic, all operations are total. In particular, for bit-vector arithmetic -v is fully
specified, in contrast to, say C, which specifies that -v is undefined when v is a
signed integer with the value −231.

3.4.1 Solving Bit-Vectors
Z3 mostly uses a bit-blasting approach to deciding bit-vectors. By bit-blasting we
refer to a reduction of bit-vector constraints to propositional logic by treating

162 N. Bjørner et al.

each bit in a bit-vector as a propositional variable. Let us illustrate how bit-
vector addition is compiled to a set of clauses. The expression v + w, where v
and w are bit-vectors is represented by a vector out of output bits. The relation
between v, w and out is provided by clauses the encode a ripple-carry adder seen
in Fig. 2. The encoding uses an auxiliary vector of carry bits that are internal to
the adder.

3.4.2 Floating Point Arithmetic
Floating points are bit-vectors with an interpretation specified by the IEEE
floating point standard.

x = FP(’x’, FPSort(3, 4))
print(10 + x)

It declares a floating point number x with 3 bits in the exponent and 4 for the
significand. The result of adding 10 to x is 1.25*(2**3) + x. We see that 10 is
represented as a floating point number with exponent 3, that is the bit-vector
011. The significand is 1010.

3.5 Algebraic Datatypes

The theory of first-order algebraic data-types captures the theory of finite trees.
It is characterized by the properties that:

– All trees are finite (occurs check).
– All trees are generated from the constructors (no junk).
– Two trees are equal if and only if they are constructed exactly the same way

(no confusion).

A basic example of a binary tree data-type is given in Fig. 3.
It may produce the solution

[t = Node(Empty, 0, Empty)]

Similarly, one can prove that a tree cannot be a part of itself.

prove(t != Tree.Node(t, 0, t))

Fig. 3. Binary tree datatypes

Programming Z3 163

3.6 Sequences and Strings

The theory of strings and sequences extend on the theory of the free monoid
with a few additional functions that are useful for strings and sequences. A
length operation is built-in for strings and sequences, and there are operations
for converting strings to natural numbers and back.

If the lengths of a prefix and suffix of a string add up to the length of the
string, the string itself must be the concatenation of the prefix and suffix:

s, t, u = Strings(’s t u’)
prove(Implies(And(PrefixOf(s, t), SuffixOf(u, t),

Length(t) == Length(s) + Length(u)),
t == Concat(s, u)))

One can concatenate single elements to a sequence as units:

s, t = Consts(’s t’, SeqSort(IntSort()))
solve(Concat(s, Unit(IntVal(2))) == Concat(Unit(IntVal(1)), t))
prove(Concat(s, Unit(IntVal(2))) != Concat(Unit(IntVal(1)), s))

There are two solvers available in Z3 for strings. They can be exchanged by
setting the parameter

– s.set("smt.string.solver","seq") with contributions by Thai Trinh, or
– s.set("smt.string.solver","z3str3") by Murphy Berzish.

4 Interfacing with Solvers

Solvers maintain a set of formulas and supports satisfiability checking, and scope
management: Formulas that are added under one scope can be retracted when
the scope is popped. In this section we describe the interface to solvers. Section 5
provides a set of use cases and Sect. 6 describes the underlying solver implemen-
tations available in Z3.

4.1 Incrementality

Solvers can be used to check satisfiability of assertions in an incremental way.
An initial set of assertions can be checked for satisfiability followed by additional
assertions and checks. Assertions can be retracted using scopes that are pushed
and popped. Under the hood, Z3 uses a one-shot solver during the first check.
If further calls are made into the solver, the default behavior is to switch to an
incremental solver. The incremental solver uses the SMT core, see Sect. 6.1.1,
by default. For use-cases that don’t require all features by the SMT core, it may
be beneficiary to use specialized solvers, such as solvers for finite domains (bit-
vectors, enumeration types, bounded integers, and Booleans) as specified using
the QF_FD logic.

164 N. Bjørner et al.

4.2 Scopes

The operations push and pop create, respectively revert, local scopes. Asser-
tions that are added within a push are retracted on a matching pop. Thus, the
following session results in the verdicts sat, unsat, and sat.

p, q, r = Bools(’p q r’)
s = Solver()
s.add(Implies(p, q))
s.add(Not(q))
print(s.check())
s.push()
s.add(p)
print(s.check())
s.pop()
print(s.check())

4.3 Assumptions

Alternative to scopes, it is possible to check satisfiability under the assumption
of a set of literals. Thus, the session

s.add(Implies(p, q))
s.add(Not(q))
print(s.check(p))

also produces the verdict unsat as the conjunction of p → q, ¬q, p is
unsat. The method assert_and_track(q, p) has the same effect of adding
Implies(p, q), and it adds p as an implicit assumption. Our running example
becomes

p, q = Bools(’p q’)
s = Solver()
s.add(Not(q))
s.assert_and_track(q, p)
print(s.check())

4.4 Cores

We can extract a subset of assumptions used to derive unsatisfiability. Such
subsets of assumptions are known as unsatisfiable cores, or simply as a core.
In the following example, the unsatisfiable core has the single element p. The
unrelated assumption v does not appear in the core.

p, q, r, v = Bools(’p q r v’)
s = Solver()
s.add(Not(q))
s.assert_and_track(q, p)
s.assert_and_track(r, v)

Programming Z3 165

print(s.check())
print(s.unsat_core())

Note that we invoke s.check() prior to extracting a core. Cores are only avail-
able after the last call to s.check() produced unsat.

By default solvers do not return minimal cores. A core is minimal if there is
no proper subset that is also a core. The default behavior can be changed when
the solver corresponds to either the SMT Core or SAT Core (if the underlying
solver is created from a sequence of pre-processing tactics, core minimization
is not guaranteed to take effect). To force core minimization users can rely on
setting the following parameters:

def set_core_minimize(s):
s.set("sat.core.minimize","true") # For Bit-vector theories
s.set("smt.core.minimize","true") # For general SMT

4.5 Models

When s.check() returns sat Z3 can provide a model that assigns values to the
free constants and functions in the assertions. The current model is accessed
using s.model() and it offers access to an interpretation of the active assertions
in s. Consider the example:

f = Function(’f’, Z, Z)
x, y = Ints(’x y’)
s.add(f(x) > y, f(f(y)) == y)
print(s.check())
print(s.model())

A possible model for s is:

[y = 0, x = 2, f = [0 -> 3, 3 -> 0, else -> 1]]

You can access models. They have a set of entries. Each entry maps a constant
or function declaration (constants are treated as nullary functions) to an inter-
pretation. It maps constants to a constant expression and it maps functions to
a function interpretation. The stub

m = s.model()
for d in m:

print(d, m[d])

iterates over the assignments in a model and produces the output

y 0
x 2
f [0 -> 3, 3 -> 0, else -> 1]

Function interpretations comprise a set of entries that specify how the func-
tion behaves on selected argument combinations, and a else_value that covers
arguments not listed in the entries.

166 N. Bjørner et al.

num_entries = m[f].num_entries()
for i in range(num_entries):

print(m[f].entry(i))
print("else", m[f].else_value())

It produces the output

[0, 3]
[3, 0]
else 1

The easiest way to access a model is to use the eval method that lets you
evaluate arbitrary expressions over a model. It reduces expressions to a constant
that is consistent with the way the model interprets the constants and functions.
For our model from above

print(m.eval(x), m.eval(f(3)), m.eval(f(4)))

produces the output 2, 0, 1.

4.6 Other Methods

4.6.1 Statistics
You can gain a sneak peak at what the solver did by extracting statistics. The
call

print(s.statistics())

displays values of internal counters maintained by the decision procedures. They
are mostly valuable when coupled with a detailed understanding of how the
decision procedures work, but may be used as an introductory view into the
characteristics of a search.

4.6.2 Proofs
Proof objects, that follow a natural deduction style, are available from the Solver
interface [42]. You have to enable proof production at top level in order to retrieve
proofs.

s.set("produce-proofs", True)
s.add(ϕ)
assert unsat == s.check()
print(s.proof())

The granularity of proof objects is on a best-effort basis. Proofs for the SMT
Core, are relatively fined-grained, while proofs for procedures that perform quan-
tifier elimination, for instance QSAT described in Sect. 6.4, are exposed as big
opaque steps.

Programming Z3 167

4.6.3 Retrieving Solver State
You can retrieve the current set of assertions in a solver using s.assertions(),
the set of unit literals using s.units() and literals that are non-units using
s.non_units(). The solver state can be printed to SMT-LIB2 format using
s.sexpr().

4.6.4 Cloning Solver State
The method s.translate(ctx) clones the solver state into a new solver based
on the context that is passed in. It is useful for creating separate non-interfering
states of a solver.

4.6.5 Loading Formulas
The methods s.from_file and s.from_string adds constraints to a solver state
from a file or string. Files are by default assumed to be in the SMT2 format. If a
file name ends with dimacs they are assumed to be in the DIMACS propositional
format.

4.6.6 Consequences
Product configuration systems use constraints to describe the space of all legal
configurations. As parameters get fixed, fewer and fewer configuration options
are available. For instance, once the model of a car has been fixed, some options
for wheel sizes become unavailable. It is furthermore possible that only one
option is available for some configurations, once some parameters are fixed. Z3
can be used to answer queries of the form: Given a configuration space of values
V , when fixing values V0 ⊆ V , what is the largest subset V0 ⊆ V1 ⊆ V of values
that become fixed? Furthermore, for some value v1 that is fixed, provide an
explanation, in terms of the values that were fixed in V0, for why v1 got fixed.
The functionality is available through the consequences method.

a, b, c, d = Bools(’a b c d’)

s = Solver()
s.add(Implies(a, b), Implies(c, d)) # background formula
print(s.consequences([a, c], # assumptions

[b, c, d])) # what is implied?

produces the result:

(sat, [Implies(c, c), Implies(a, b), Implies(c, d)])

In terms for SAT terminology, consequence finding produces the set of all back-
bone literals. It is useful for finding fixed parameters [29] in product configuration
settings.

Z3 relies on a procedure that integrates tightly with the CDCL, Conflict
Driven Clause Learning [56], algorithm, and it contains two implementations

168 N. Bjørner et al.

Fig. 4. Basic cube and conquer

of the procedure, one in the SAT core, another in the SMT core. Section 6.1.1
expands on CDCL and integrations with theories (Fig. 4).

4.6.7 Cubes
You can ask Z3 to suggest a case split or a sequence of case splits through
the cubing method. It can be used for partitioning the search space into sub-
problems that can be solved in parallel, or alternatively simplify the problem for
CDCL engines.

When the underlying solver is based on the SAT Core, see Sect. 6.2, it uses
a lookahead solver to select cubes [25]. By default, the cuber produces two
branches, corresponding to a case split on a single literal. The SAT Core based
cuber can be configured to produce cubes that represent several branches. An
empty cube indicates a failure, such as the solver does not support cubing (only
the SMT and SAT cores support cubing, and generic solvers based on tactics
do not), or a timeout or resource bound was encountered during cubing. A cube
comprising of the Boolean constant true indicates that the state of the solver is
satisfiable. Finally, it is possible for the s.cube() method to return an empty
set of cubes. This happens when the state of s is unsatisfiable. Each branch is
represented as a conjunction of literals. The cut-off for branches is configured
using

– sat.lookahead.cube.cutoff

Programming Z3 169

Table 3. Lookahead parameters

sat.lookahead Used when
cube.cutoff is

Description

cube.depth 1 depth A fixed maximal size of cubes is
returned

cube.freevars 0.8 freevars The depth of cubes is governed
by the ratio of non-unit literals
in a branch compared to
non-unit variables in the root

cube.fraction 0.4 adaptive_freevars
adaptive_psat

Adaptive fraction to create
lookahead cubes

cube.psat.
clause_base

2 psat Base of exponent used for clause
weight

We summarize some of the configuration parameters that depend on the value
of cutoff in Table 3.

Heuristics used to control which literal is selected in cubes can be configured
using the parameter:

– sat.lookahead.reward

5 Using Solvers

We now describe a collection of algorithms. They are developed on top of the
interfaces described in the previous section.

5.1 Blocking Evaluations

Models can be used to refine the state of a solver. For example, we may wish to
invoke the solver in a loop where new calls to the solver blocks solutions that
evaluate the constants to the exact same assignment.

def block_model(s):
m = s.model()
s.add(Or([f() != m[f] for f in m.decls() if f.arity() == 0]))

5.2 Maximizing Satisfying Assignments

Another use of models is to use them as a guide to a notion of optimal model. A
maximal satisfying solution, in short mss, for a set of formulas ps is a subset of
ps that is consistent with respect to the solver state s and cannot be extended to
a bigger subset of ps without becoming inconsistent relative to s. We provide a
procedure, from [40], for finding a maximal satisfying subset in Fig. 5. It extends
a set mss greedily by adding as many satisfied predicates from ps in each round

170 N. Bjørner et al.

Fig. 5. An algorithm for computing maximal satisfying subsets

as possible. If it finds some predicate p that it cannot add, it notes that it is
a backbone with respect to the current mss. As a friendly hint, it includes the
negation of p when querying the solver in future rounds.

Exercise 5a: Suppose ps is a list corresponding to digits in a binary number
and ps is ordered by most significant digit down. The goal is to find an mss
with the largest value as a binary number. Modify get_mss to produce such a
number.

5.3 All Cores and Correction Sets

The Marco procedure [37] combines models and cores in a process that enumer-
ates all unsatisfiable cores and all maximal satisfying subsets of a set of formulas
ps with respect to solver s. It maintains a map solver that tells us which subsets
of ps are not yet known to be a superset of a core or a subset of an mss.

Efficiently enumerating cores and correction sets is an active area of research.
Many significant improvements have been developed over the above basic imple-
mentation [1,2,40,49,53].

5.4 Bounded Model Checking

Figure 7 illustrates a bounded model checking procedure [4] that takes a tran-
sition system as input and checks if a goal is reachable. Transition systems are
described as

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/mss.py

Programming Z3 171

Fig. 6. The MARCO algorithm for computing cores and maximal satisfying assign-
ments

〈Init ,Trans,Goal ,V,Y〉
where Init is a predicate over V, that describes the initial states, Trans is a tran-
sition relation over V × Y × V ′. The set of reachable states is the set inductively
defined as valuations s of V, such that either s |= Init or there is a reachable
s0 and values v for Y, such that s0, v, s |= Trans. A goal is reachable if there is
some reachable state where s |= Goal (Fig. 6).

In Python we provide the initial condition as init, using variables xs, the
transition trans that uses variables xs, xns, fvs, and goal using variables
xs. Bounded model checking unfolds the transition relation trans until it can
establish that the goal is reachable. Bounded model checking diverges if goal is
unreachable. The function substitute(e, subst) takes an expression e and a
list of pairs subst of the form [(x1, y1), (x2, y2),..] and replaces variables
x1, x2,.. by y1, y2,.. in e.

Example 1. Let us check whether there is some k, such that 3 + 3 + . . . + 3
︸ ︷︷ ︸

k

=

10 when numbers are represented using 4 bits. The corresponding transition
system uses a state variable x0 which is named x1 in the next state. Initially
x0 == 0 and in each step the variable is incremented by 3. The goal state is
x0 == 10.

x0, x1 = Consts(’x0 x1’, BitVecSort(4))
bmc(x0 == 0, x1 == x0 + 3, x0 == 10, [], [x0], [x1])

Bounded model checking is good for establishing reachability, but does not
produce certificates for non-reachability (or safety). The IC3 [9] algorithm is

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/marco.py

172 N. Bjørner et al.

Fig. 7. Bounded model checking of a transition system

complete for both reachability and non-reachability. You can find a simplistic
implementation of IC3 using the Python API online

https://github.com/Z3Prover/z3/blob/master/examples/python/mini_ic3.py

5.5 Propositional Interpolation

It is possible to compute interpolants using models and cores [12]. A procedure
that computes an interpolant I for formulas A, B, where A ∧ B is unsatisfiable
proceeds by initializing I = true and saturating a state �A,B, I� with respect
to the rules:

�A, B , I � =⇒ �A, B , I ∧ ¬L� if B � ¬L, A ∧ I �� ¬L

I if A � ¬I

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/bmc.py
https://github.com/Z3Prover/z3/blob/master/examples/python/mini_ic3.py

Programming Z3 173

The partial interpolant I produced by pogo satisfies B � I. It terminates when
A � ¬I. The condition A∧I �� ¬L ensures that the algorithm makes progress and
suggests using an implicant L′ ⊇ L of A ∧ I in each iteration. Such an implicant
can be obtained from a model for A ∧ I (Fig. 8).

Fig. 8. Propositional interpolation

Example 2. The (reverse) interpolant between A : x1 = a1 �= a2 �= x2 and
B : x1 = b1 �= b2 = x2 using vocabulary x1, x2 is x1 �= x2. It is implied by B and
inconsistent with A.

A = SolverFor("QF_FD")
B = SolverFor("QF_FD")
a1, a2, b1, b2, x1, x2 = Bools(’a1 a2 b1 b2 x1 x2’)
A.add(a1 == x1, a2 != a1, a2 != x2)
B.add(b1 == x1, b2 != b1, b2 == x2)
print(list(pogo(A, B, [x1, x2])))

5.6 Monadic Decomposition

Suppose we are given a formula ϕ[x, y] using variables x and y. When is it
possible to rewrite it as a Boolean combination of formulas ψ1(x), . . . , ψk(x) and
θ1(y), . . . , θn(y)? We say that the formulas ψj and θj are monadic; they only
depend on one variable. An application of monadic decomposition is to convert
extended symbolic finite transducers into regular symbolic finite transducers.
The regular versions are amenable to analysis and optimization. A procedure
for monadic decomposition was developed in [58], and we here recall the Python
prototype (Fig. 9).

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/interp.py

174 N. Bjørner et al.

Fig. 9. Monadic decomposition

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/mondec.py

Programming Z3 175

Example 3. A formula that has a monadic decomposition is the bit-vector
assertion for x, y being bit-vectors of bit-width 2k.

y > 0 ∧ (y&(y − 1)) = 0 ∧ (x&(y%((1 � k) − 1))) �= 0

We can compute the monadic decomposition

def test_mondec(k):
R = lambda v:And(v[1] > 0, (v[1] & (v[1] - 1)) == 0,

(v[0] & (v[1] % ((1 << k) - 1))) != 0)
bvs = BitVecSort(2*k) #use 2k-bit bitvectors
x, y = Consts(’x y’, bvs)
res = mondec(R, [x, y])
assert(isUnsat(res != R([x, y]))) #check correctness
print("mondec1(", R([x, y]), ") =", res)

test_mondec(2)

6 Solver Implementations

There are five main solvers embedded in Z3. The SMT Solver is a general purpose
solver that covers a wide range of supported theories. It is supplemented with
specialized solvers for SAT formulas, polynomial arithmetic, Horn clauses and
quantified formulas over theories that admit quantifier-elimination.

6.1 SMT Core

The SMT Solver is a general purpose solver that covers a wide range of sup-
ported theories. It is built around a CDCL(T) architecture where theory solvers
interact with a SAT + EUF blackboard. Theory solvers, on the right in Fig. 10,
communicate with a core that exchanges equalities between variables and assign-
ments to atomic predicates. The core is responsible for case splitting, which is
handled by a CDCL SAT solver, and for letting each theory learn constraints
and equalities that are relevant in the current branch.

To force using the SMT solver a user can create a simple solver using the
function SimpleSolver.

The SMT solver integrates two strategies for quantifier instantiation. By
default, both strategies are enabled. To disable them, one has to disable auto-
matic configuration mode and then disable the instantiation strategy:

s.set("smt.auto_config", False) # disable automatic SMT core
configuration

s.set("smt.mbqi", False) # disable model based
quantifier instantiation

s.set("smt.ematching", False) # disable ematching based
quantifier instantiation

176 N. Bjørner et al.

Fig. 10. Architecture of Z3’s SMT core solver.

6.1.1 CDCL(T): SAT + Theories
The architecture of mainstream SMT solvers, including Z3’s SMT core, uses
a SAT solver to enumerate combinations of truth assignments to atoms. The
truth assignments satisfy a propositional abstraction of the formula. Theory
solvers are used to check if assignment admit a model modulo the theories. The
resulting architecture is known as DPLL(T) [52], but we refer to this as CDCL(T)
because it really relies on SAT solvers that incorporate Conflict Driven Clause
Learning [56], which goes beyond the algorithm associated with DPLL [18].
Importantly, CDCL supplies facilities for learning new clauses during search. The
learned clauses block future case splits from exploring the same failed branches.
Take the following example

s.add(x >= 0, y == x + 1, Or(y > 2, y < 1))

by introducing the names:

p1, p2, p3, p4 = Bools(’p1 p2 p3 p4’)
= x >= 0, y == x + 1, y > 2, y < 1

we obtain a propositional formula

And(p1, p2, Or(p3, p4))

It is satisfiable and a possible truth assignment is

p1, p2, p3, p4 = True, True, False, True

It requires satisfiability of the following conjunction:

Programming Z3 177

Fig. 11. Simple CDCL(T)

x >= 0, y == x + 1, Not(y > 2), y < 1

It is already the case that

x >= 0, y == x + 1, y < 1

is unsat. To avoid this assignment we require also satisfying the blocking clause

Or(Not(p1), Not(p2), Not(p4))

The new truth assignment

p1, p2, p3, p4 = True, True, True, False

produces

x >= 0, y == x + 1, y > 2, Not(y < 1)

which is satisfiable. The example illustrates the steps used in a CDCL(T) integra-
tion where the Theory Solver processes the final result of a SAT Solver. We can
simulate this procedure using Z3’s API. Figure 11 shows a CDCL(T) solver that
leverages a propositional solver prop to check a propositional abstraction and a
theory solver theory whose role is to check conjunctions of literals produced by
prop. Figure 12 lists auxiliary routines required to create the abstraction.

We call it a simple CDCL(T) solver as it does not expose important features
to drive performance. Importantly, efficient CDCL(T) solvers integrate theory

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/cdclT.py

178 N. Bjørner et al.

Fig. 12. Auxiliary routines for lazy CDCL(T)

propagation that let theories interact with the SAT solver to propagate assign-
ments to atoms. Instead of adding blocking clauses by the time the SAT solver is
done the theory solver interacts tightly with the SAT solver during back-jumping.

Exercise 6a

Dual Propagation and Implicants: The propositional assignment produced
by prop is not necessarily minimal. It may assign truth assignments to literals
that are irrelevant to truth of the set of clauses. To extract a smaller assignment,
one trick is to encode the negation of the clauses in a separate dual solver. A truth
assignment for the primal solver is an unsatisfiable core for the dual solver. The
exercise is to augment simple_cdclT with a dual solver to reduce assignments
sent to the theory solver.

6.1.2 Theories + Theories
In practice we need to solve a combination of theories. The formulas we used in
the initial example

x + 2 == y, f(Store(A, x, 3)[y - 2]) != f(y - x + 1)

Programming Z3 179

integrate several theory solvers. For modularity, it is desirable to maintain sep-
arate solvers per theory. To achieve this objective the main questions that an
integration needs to address are:

– Determine when the union of two theories T1 ∪ T2 is consistent.
– Given solvers for T1 and T2, how can we build a solver for T1 ∪ T2.

We can address this objective when there is an effective theory T0 over the shared
signature of T1, T2, that when embedable into T1, T2 implies T1∪ T2 is consistent.
Sufficient conditions for this setting were identified by Nelson and Oppen [50]:

Theorem 1. The union of two consistent, disjoint, stably infinite theories is
consistent.

Let us define the ingredients of this theorem.

Disjoint Theories. Two theories are disjoint if they do not share func-
tion/constant and predicate symbols. = is the only exception. For example,

– The theories of arithmetic and arrays are disjoint.
• Arithmetic symbols: 0, -1, 1, -2, 2, +, -, *, >, <, ==, >=.
• Array symbols: Select, Store

The process of purification can be used as a formal tool to bring formulas into
signature-disjoint form. It introduces fresh symbols for shared sub-terms. A puri-
fied version of our running example is:

Functions: f(v1) != f(v2)
Arrays: v1 == v3[v4], v3 == Store(x, y, v5)
Arithmetic: x + 2 == y, v2 == y - x + 1, v4 == y - 2, v5 == 2

In reality, purification is a no-op: the fresh variables correspond directly to nodes
in the abstract syntax trees for expressions.

Stably Infinite Theories. A theory is stably infinite if every satisfiable quantifier-
free formula is satisfiable in an infinite model.

– EUF and arithmetic are stably infinite.
– Bit-vectors are not.

Nelson-Oppen Combination. Let T1 and T2 be consistent, stably infinite theo-
ries over disjoint (countable) signatures. Assume satisfiability of conjunction of
literals can be decided in O(T1(n)) and O(T2(n)) time respectively. Then

1. The combined theory T is consistent and stably infinite.
2. Satisfiability of quantifier free conjunction of literals can be decided in O(2n

2×
(T1(n) + T2(n))).

3. If T1 and T2 are convex, then so is T and satisfiability in T can be decided in
O(n3 × (T1(n) + T2(n))).

180 N. Bjørner et al.

Convexity. A theory T is convex if for every finite sets S of literals, and every
disjunction a1 = b1 ∨ . . . ∨ an = bn:

S |= a1 = b1 ∨ . . . ∨ an = bn iff S |= ai = bi for some 1 ≤ i ≤ n.

Many theories are convex and therefore admit efficient theory combinations

– Linear Real Arithmetic is convex.
– Horn equational theories are convex.

• Horn equations are formulas of the form a1 �= b1 ∨ . . . an �= bn ∨ a = b.

Finally note that every convex theory with non trivial models is stably infinite.
But, far from every theory is convex. Notably,

– Integer arithmetic
• 1 ≤ a ≤ 2, b = 1, c = 2 implies a = b ∨ a = c.

– Real non-linear arithmetic
• a2 = 1, b = 1, c = −1 implies a = b ∨ a = c.

– The theory of arrays
• Store(a, i, v)[j] == v implies i == j or a[j] == v.

A Reduction Approach to Theory Combination[35,43]. Theory Combination in
Z3 is essentially by reduction to a set of core theories comprising of Arithmetic,
EUF and SAT. Bit-vectors and finite domains translate to propositional SAT.
Other theories are reduced to core theories. We provided an example of this
reduction in Sect. 3.3.

6.1.3 E-Matching Based Quantifier Instantiation
E-matching [46] based quantifier instantiation uses ground terms to find candi-
date instantiations of quantifiers. Take the example

a, b, c, x = Ints(’a b c x’)
f = Function(’f’, Z, Z)
g = Function(’g’, Z, Z, Z)
prove(Implies(And(ForAll(x, f(g(x, c)) == a), b == c, g(c, b) == c),

f(b) == a))

The smallest sub-term that properly contains x is g(x, c). This pattern contains
all the bound variables of the universal quantifier. Under the ground equality
b == c and instantiation of x by c, it equals g(c, b). This triggers an instan-
tiation by the following tautology

Implies(ForAll(x, f(g(x, c)) == a), f(g(c, c)) == a))

Chasing the equalities f(g(c, c)) == a, g(c, b) == c, b == c we derive
f(b) == a, which proves the implication.

The example illustrated that E-matching takes as starting point a pattern
term p, that captures the variables bound by a quantifier. It derives an substitu-
tion θ, such that pθ equals some useful term t, modulo some useful equalities. A

Programming Z3 181

useful source of useful terms are the current ground terms T maintained during
search, and the current asserted equalities during search may be used as the
useful equalities. The congruence closure structure cc introduced in Sect. 3.1.1
contains relevant information to track ground equalities. For each ground term
it represents an equivalence class of terms that are congruent in the current con-
text. Now, given a pattern p we can compute a set of substitutions modulo the
current congruence closure by invoking

⋃

t∈T
match(p, t, ∅)

where E-matching is defined by recursion on the pattern p:

match(x , t , S) = { θ[x �→ t] | θ ∈ S , x �∈ θ}
∪ { θ | θ ∈ S , x ∈ θ, θ(x) ∈ cc(t) }

match(c, t , S) = ∅ if c �∈ cc(t)
match(c, t , S) = S if c ∈ cc(t)
match(f (p), t , S) =

⋃

f (t) ∈cc(t) match(pn , tn , . . . , match(p1, t1, S))

It is not always possible to capture all quantified variables in a single pattern.
For this purpose E-matching is applied to a sequence of patterns, known as a
multi-pattern, that collectively contains all bound variables.

The secret sauce to efficiency is to find instantiations

– with as little overhead as possible,
– across large sets of terms, and
– incrementally.

Z3 uses code-trees [54] to address scale bottlenecks for search involving thousands
of patterns and terms.

6.1.4 Model-Based Quantifier Instantiation
E-matching provides a highly syntactic restriction on instantiations. An alterna-
tive to E-matching is based on using a current model of the quantifier-free part
of the search state. It is used to evaluate the universal quantifiers that have to
be satisfied in order for the current model to extend to a full model of the con-
junction of all asserted constraints. We call this method Model-Based Quantifier
Instantiation [8,22,47,59]. Take the following example:

from z3 import *
Z = IntSort()
f = Function(’f’, Z, Z)
g = Function(’g’, Z, Z)
a, n, x = Ints(’a n x’)
solve(ForAll(x, Implies(And(0 <= x, x <= n), f(x + a) == g(x))),

a > 10, f(a) >= 2, g(3) <= -10)

It may produce a model of the form

182 N. Bjørner et al.

Fig. 13. Model-Based Quantifier Instantiation algorithm. Notice that this proto-
algorithm code is not directly executable.

[a = 11,
n = 0,
f = [else -> 2],
g = [3 -> -10, else -> f(Var(0) + 11)]]

The interpretation of g maps 3 to −10, and all other values x are mapped to
however f(11 + x) is interpreted (which happens to be the constant 2).

The method that allowed finding this satisfying assignment is based on a
model evaluation loop. At a high level it can be described as the following pro-
cedure, which checks satisfiability of

ψ ∧ ∀x . ϕ[x]

where ψ is quantifier free and for sake of illustration we have a single quantified
formula with quantifier free body ϕ. The Model-Based Quantifier Instantiation,
MBQI, procedure is described in Fig. 13:

We use the notation tM to say that t is partially evaluated using interpreta-
tion M , for example:

– Let M := [y �→ 3, f(x) �→ if x = 1 then 3 else 5], and
– t := y + f(y) + f(z), then
– tM = 3 + 5 + if z = 1 then 3 else 5

For our example formula assume we have a model of the quantifier-free con-
straints as follows

[a = 11, n = 0, f = [else -> 2], g = [else -> -10]]

The negated body of the quantifier, instantiated to the model is

And(0 <= x, x <= 0, [else -> 2](x + 11) != [else -> -10](x))

Programming Z3 183

It is satisfied with the instantiation x = 0, which is congruent to n under the
current model. We therefore instantiate the quantifier with x = n and add the
constraint

Implies(And(0 <= n, n <= n), f(n + a) == g(n))

But notice a syntactic property of the quantifier body. It can be read as a
definition for the graph of g over the range 0 <= x, x <= n. This format is an
instance of guarded definitions [28]. Hence, we record this reading when creating
the next model for g. In the next round, a, n, and f are instantiated as before, and
g(3) evaluates to −10 as before, but elsewhere follows the graph of f(x + a),
and thus the model for g is given by [3 -> -10, else -> f(11 + Var(0))].

Model-Based Quantifier Instantiation is quite powerful when search space for
instantiation terms is finite. It covers many decidable logical fragments, including
EPR (Effectively Propositional Reasoning), UFBV (uninterpreted functions and
bit-vectors), the Array property fragment [10] and extensions [22]. We will here
only give a taste with an example from UFBV [59]:

Char = BitVecSort(8)
f = Function(’f’, Char, Char)
f1 = Function(’f1’, Char, Char)
a, x = Consts(’a x’, Char)
solve(UGE(a, 0), f1 (a + 1) == 0,

ForAll(x, Or(x == a + 1, f1(x) == f(x))))

The following model is a possible solution:

[a = 0, f = [else -> 1], f1 = [1 -> 0, else -> f(Var(0))]]

UFBV is the quantified logic of uninterpreted functions of bit-vectors. All sorts
and variables have to be over bit-vectors, and standard bit-vector operations are
allowed. It follows that the problem is finite domain and therefore decidable.
It isn’t easy, however. The quantifier-free fragment is not only NP hard, it is
NEXPTIME hard; it can be encoded into EPR [55]. The quantified fragment
is another complexity jump. Related to UFBV, decision procedures for quantified
bit-vector formulas were developed by John and Chakraborty in [31,32], and by
Niemetz et al. in [51].

Recall that EPR is a fragment of first-order logic where formulas have the
quantifier prefix ∃x∀y, thus a block of existential quantified variables followed
by a block of universally quantified variables. The formula inside the quantifier
prefix is a Boolean combination of equalities, disequalities between bound vari-
ables and free constants as well as predicate symbols applied to bound variables
or free constants. Noteworthy, EPR formulas do not contain functions. It is easy
to see that EPR is decidable by first replacing the existentially quantified vari-
ables by fresh constants and then instantiate the universally quantified variables
by all combinations of the free constant. If the resulting ground formula is satis-
fiable, we obtain a finite model of the quantified formula by bounding the size of
the universe by the free constants. The formula ∃x∀y.(p(x, y) ∨ q(a, y) ∨ y = a),
where a is a free constant, is in EPR.

184 N. Bjørner et al.

6.2 SAT Core

The SAT Core is an optimized self-contained SAT solver that solves proposi-
tional formulas. It takes advantage of the fact that it operates over propositional
theories and performs advanced in-processing steps. The SAT solver also acts
as a blackboard for select Boolean predicates that express cardinality and arith-
metical (pseudo-Boolean) constraints over literals.

Generally, theories that are finite domain, are solved using the SAT solver.
Z3 identifies quantifier-free finite domain theories using a designated logic QF_FD.
It supports propositional logic, bit-vector theories, pseudo-Boolean constraints,
and enumeration data-types. For example, the following scenario introduces an
enumeration type for color, and bit-vectors u, v. It requires that at least 2 out
of three predicates u + v <= 3, v <= 20, u <= 10 are satisfied.

from z3 import *
s = SolverFor("QF_FD")
Color, (red, green, blue) = EnumSort(’Color’, [’red’,’green’,’blue’])
clr = Const(’clr’, Color)
u, v = BitVecs(’u v’, 32)
s.add(u >= v,

If(v > u + 1, clr != red, clr != green),
clr == green,
AtLeast(u + v <= 3, v <= 20, u <= 10, 2))

print(s.check())
print(s.model())

is satisfiable, and a possible model is:

[v = 4, u = 2147483647, clr = green]

Figure 14 shows the overall architecture of Z3’s SAT solver.
There are four main components. Central to the SAT solver is an engine that

performs case splits, lemma learning and backtracking search. It is the main
CDCL engine and is structured similar to mainstream CDCL solvers. It can
draw on auxiliary functionality.

6.2.1 In-processing
In-processing provides a means for the SAT solver to simplify the current set of
clauses using global inferences. In-processing is performed on a periodic basis. It
integrates several of the techniques that have been developed in the SAT solving
literature in the past decade, known as Blocked Clause Elimination, Asymmetric
Literal Addition, Asymmetric Covered Clause Elimination, Subsumption, Asym-
metric Branching [24].

6.2.2 Co-processing
A set of co-processors are available to support alternative means of search. The
SAT Core solver can also be a co-processor of itself.

Programming Z3 185

Fig. 14. Architecture of Z3’s SAT Solver

– s.set("sat.local_search_threads", 3) spawns 3 concurrent threads that
use walk-sat to find a satisfying assignment while the main CDCL solver
attempts to find either a satisfying assignment or produce an empty clause.

– s.set("sat.threads", 3) spawns 2 concurrent threads, in additional to the
main thread, to find a proof of the empty clause or a satisfying assignment.
The threads share learned unit literals and learned clauses.

– s.set("sat.unit_walk_threads", 1) spawns 1 concurrent thread that uses
a local search heuristic that integrates unit propagation.

– s.set("sat.lookahead_simplify", True) enables the lookahead solver as
a simplifier during in-processing. It enables slightly more powerful techniques
for learning new units and binary clauses.

The lookahead solver is used to find case splits through the Cube features,
described in Sect. 4.6.7.

6.2.3 Boolean Theories
Three classes of Boolean functions are supported using specialized Boolean the-
ory handlers. They are optional, as many problems can already be solved using
the SAT core where the functions have been clausified. The cardinality and
Pseudo-Boolean theory handlers are suitable for constraints where the encoding
into clauses causes a significant overhead. The Xor solver is unlikely to be worth
using, but is available for evaluation.

186 N. Bjørner et al.

Cardinality Constraints. Cardinality constraints are linear inequalities of the
form

n
∑

i=1

Fi ≥ k,

n
∑

i=1

Fi ≤ k

where Fi are formulas and k is a constant between 1 and n. They say that at
least k of the Fi;s have to hold, and at most k of the Fi’s hold, respectively.
Cardinality constraints do not have to appear at top-level in formulas. They can
be nested in arbitrary sub-formulas and they can contain arbitrary formulas. For
instance,

p, q, r, u = Bools(’p q r u’)
solve(AtMost(p, q, r, 1), u,

Implies(u, AtLeast(And(p, r), Or(p, q), r, 2)))

has no solution.
The cardinality solver is enabled by setting the parameter

– s.set("sat.cardinality.solver", True)

If the parameter is false, cardinality constraints are compiled to clauses. A few
alternative encoding methods are made available, and they can be controlled
using the parameter sat.cardinality.encoding.

Pseudo-Boolean Constraints. Pseudo-Boolean constraints generalize cardinality
constraints by allowing coefficients in the linear inequalities. They are of the
form

n
∑

i=1

aiFi ≥ k,

n
∑

i=1

aiFi ≤ k

where ai are positive natural numbers. A value of ai above k is legal, but can be
safely truncated to k without changing the meaning of the formulas.

The constraints

p + 2q + 2r ≤ 2 ∧ p + 2u + 3r ≥ 4 ∧ u

can be written as

solve(PbLe([(p,1),(q,2),(r,2)], 3),
PbGe([(p,1),(u,2),(r,3)], 4),
u)

and have a solution

[q = False, u = True, r = True]

The pseudo-Boolean solver is enabled by setting the parameter

– s.set("sat.pb.solver", "solver")

Other available options for compiling Pseudo-Boolean constraints are circuit,
sorting, and totalizer. They compile Pseudo-Booleans into clauses.

Programming Z3 187

6.3 Horn Clause Solver

The Horn Solver contains specialized solvers for Constrained Horn Clauses
[5,23,26,27,39]. As a default it uses the SPACER Horn clause solver by Arie
Gurfinkel to solve Horn clauses over arithmetic [36]. A Constrained Horn Clause
is a disjunction of literals over a set of uninterpreted predicates and interpreted
functions and interpreted predicates (such as arithmetical operations + and rela-
tions <=). The uninterpreted predicates, may occur negatively without restric-
tions, but only occur positively in at most one place.

The solver also contains a Datalog engine that can be used to solve Datalog
queries (with stratified negation) over finite domains and “header spaces” that
are large finite domains, but can be encoded succinctly using ternary bit-vectors.
The Fixedpoint context contains facilities for building Horn clauses, and gen-
erally a set of stratified Datalog rules, and for querying the resulting set of rules
and facts. Additional information on the Fixedpoint engine can be found on
https://rise4fun.com/z3/tutorial/fixedpoints.

We provide a very simple illustration of Horn clause usage here. McCarthy’s
91 function illustrates nested recursion in a couple of lines, but otherwise makes
no sense: It computes a function that can be described directly as

If(x > 101, 91, x - 10).

We will pretend this is a partial and interesting specification and prove this
automatically using Horn clauses.

def mc(x):
if x > 100:

return x - 10
else:

return mc(mc(x + 11))

def contract(x):
assert(x > 101 or mc(x) == 91)
assert(x < 101 or mc(x) == x - 10)

Rewriting the functional program into logical form can be achieved by introduc-
ing a binary relation between the input and output of mc, and then representing
the functional program as a logic program, that is, a set of Horn clauses. The
assertions are also Constrained Horn Clauses: they contain the uninterpreted
predicate mc negatively, but have no positive occurrences of mc.

s = SolverFor("HORN")
mc = Function(’mc’, Z, Z, B)
x, y, z = Ints(’x y z’)
s.add(ForAll(x, Implies(x > 100, mc(x, x - 10))))
s.add(ForAll([x, y, z],

Implies(And(x <= 100, mc(x + 11, y), mc(y, z)),
mc(x, z))))

s.add(ForAll([x, y], Implies(And(x <= 101, mc(x, y)), y == 91)))
s.add(ForAll([x, y], Implies(And(x >= 101, mc(x, y)), x == y + 10)))
print(s.check())

https://rise4fun.com/z3/tutorial/fixedpoints

188 N. Bjørner et al.

Fig. 15. Given a supply of 5 and 7 cent stamps. Is there a lower bound, after which
all denominations of stamps can be produced? Thus, find v, such that every u larger
or equal to v can be written as a non-negative combination of 5 and 7.

Fig. 16. The set of reals is dense

Z3 finds a solution for mc that is a sufficient invariant to establish the assertions.
We get a better view of the invariant for mc by evaluating it on symbolic

inputs x and y.

print(s.model().eval(mc(x, y)))

produces the invariant

And(Or(Not(y >= 92), Not(x + -1*y <= 9)),
Not(x + -1*y >= 11),
Not(y <= 90))

6.4 QSAT

The QSAT Solver is a decision procedure for satisfiability of select theories that
admit quantifier elimination. It can be used to check satisfiability of quantified
formulas over Linear Integer (Fig. 15), Linear Real (Fig. 16), Non-linear (poly-
nomial) Real arithmetic (Fig. 17), Booleans, and Algebraic Data-types (Fig. 18).
It is described in [6]. It is invoked whenever a solver is created for one of the
supported quantified logics, or a solver is created from the qsat tactic.

Figure 18 encodes a simple game introduced in [16]. There is no SMT-LIB2
logic for quantified algebraic data-types so we directly instantiate the solver
that performs QSAT through a tactic. Section 7 provides a brief introduction to
tactics in Z3.

Programming Z3 189

Fig. 17. Quantified non-linear real polynomial arithmetic

Fig. 18. Checking for winning positions in a game of successors

The solver builds on an abstraction refinement loop, originally developed for
quantifier elimination in [41]. The goal of the procedure is, given a quantifier-
free f , find a quantifier free G, such that G ≡ ∃v . F . It assumes a tool, project,
that eliminates v from a conjunction M into a satisfiable strengthening. That
is, project(v,M) ⇒ ∃v . M . The procedure, uses the steps:

– Initialize: G ← ⊥
– Repeatedly: find conjunctions M that imply F ∧ ¬G
– Update: G ← G ∨ project(v,M).

An algorithm that realizes this approach is formulated in Fig. 19.
QESTO [30] generalizes this procedure to nested QBF (Quantified Boolean

Formulas), and the implementation in Z3 generalizes QESTO to SMT. The
approach is based on playing a quantifier game. Let us illustrate the game for
Boolean formulas. Assume we are given:

190 N. Bjørner et al.

Fig. 19. Quantifier elimination by core extraction and projection. Notice that this
proto-algorithm code is not directly executable

G = ∀u1, u2 ∃e1, e2 . F

F = (u1 ∧ u2 → e1) ∧ (u1 ∧ ¬u2 → e2) ∧ (e1 ∧ e2 → ¬u1)

Then the game proceeds as follows:

– ∀: starts. u1, u2, e1, e2 |= ¬F .
– ∃: strikes back. u1, u2, e1, e2 |= F .
– ∀: has to backtrack. It doesn’t matter what u1 is assigned to. It is already

the case that u2, e1, e2 |= F .
– ∀: learns ¬u2.
– ∀: u2, u1, e1, e2 |= ¬F .
– ∃: counters - u2, u1, e1, e2 |= F .
– ∀: has lost!. It is already the case that u2, e1, e2 |= F .

To summarize the approach:

– There are two players
• ∀ - tries to satisfy ¬F
• ∃ - tries to satisfy F

– Players control their variables. For example, take ∃x1∀x2∃x3∀x4 . . . F at
round 2:

• value of x1 is already fixed,
• ∀ fixes value of x2,
• ∀ fixes value of x4, but can change again at round 4,
• ∀ can guess values of x3 to satisfy ¬F .

Programming Z3 191

– Some player loses at round i + 2:
• Create succinct no-good to strengthen F resp. ¬F depending on who lost.
• Backjump to round i (or below).

The main ingredients to the approach is thus projection and strategies.

– Projections are added to learn from mistakes. Thus, a player avoids repeating
same losing moves.

– Strategies prune moves from the opponent.

We will here just illustrate an example of projection. Z3 uses model based pro-
jection [36,44] to find a satisfiable quantifier-free formula that implies the exis-
tentially quantified formula that encodes the losing state.

Example 4. Suppose we would want to compute a quantifier-free formula that
implies ∃x . (2y ≤ x ∧ y − z ≤ x ∧ x ≤ z). Note that the formula is equivalent to
a quantifier free formula:

∃x . (2y ≤ x ∧ y − z ≤ x ∧ x ≤ z) ≡ (y − z ≤ 2y ≤ z) ∨ (2y ≤ y − z ≤ z)
but the size of the equivalent formula is quadratic in the size of the original

formula. Suppose we have a satisfying assignment for the formula inside of the
existential quantifier. Say M = [x �→ 3, y �→ 1, z �→ 6]. Then 2yM = 2 and
(y − z)M = −5, and therefore 2y > y − z under M . The greatest lower bound
for x is therefore 2y and we can select this branch as our choice for elimination
of x. The result of projection is then y − z ≤ 2y ≤ z.

6.5 NLSat

The solver created when invoking SolverFor(’QF_NRA’) relies on a self-
contained engine that is specialized for solving non-linear arithmetic formulas
[34]. It is a decision procedure for quantifier-free formulas over the reals using
polynomial arithmetic.

s = SolverFor("QF_NRA")
x, y = Reals(’x y’)
s.add(x**3 + x*y + 1 == 0, x*y > 1, x**2 < 1.1)
print(s.check())

The NLSat solver is automatically configured if the formula is syntactically in
the QF_NRA fragment. So one can directly use it without specifying the specialized
solver:

set_option(precision=30)
print "Solving, and displaying result with 30 decimal places"
solve(x**2 + y**2 == 3, x**3 == 2)

192 N. Bjørner et al.

7 Tactics

In contrast to solvers that ultimately check the satisfiability of a set of assertions,
tactics transform assertions to sets of assertions, in a way that a proof-tree is
comprised of nodes representing goals, and children representing subgoals. Many
useful pre-processing steps can be formulated as tactics. They take one goal and
create a subgoal.

7.1 Tactic Basics

You can access the set of tactics

print(tactics())

and for additional information obtain a description of optional parameters:

for name in tactics():
t = Tactic(name)
print(name, t.help(), t.param_descrs())

We will here give a single example of a tactic application. It transforms a goal to a
simplified subgoal obtained by eliminating a quantifier that is trivially reducible
and by combining repeated formulas into one.

x, y = Reals(’x y’)
g = Goal()
g.add(2 < x, Exists(y, And(y > 0, x == y + 2)))
print(g)

t1 = Tactic(’qe-light’)
t2 = Tactic(’simplify’)
t = Then(t1, t2)
print(t(g))

Additional information on tactics is available from [45], https://rise4fun.com/
Z3/tutorial/strategies and http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py/
strategies-examples.htm.

7.2 Solvers from Tactics

Given a tactic t, the method t.solver() extracts a solver object that applies
the tactic to the current assertions and reports sat or unsat if it is able to
reduce subgoals to a definite answer.

7.3 Tactics from Solvers

There is no method that corresponds to producing a tactic from a solver. Instead
Z3 exposes a set of built-in tactics for the main solvers. These are accessed
through the names sat, smt, qsat (and nlqsat for quantified non-linear real
arithmetic, e.g., the logic NRA), qffd for QF_FD and nlsat for QF_NRA.

https://rise4fun.com/Z3/tutorial/strategies
https://rise4fun.com/Z3/tutorial/strategies
http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py/strategies-examples.htm
http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py/strategies-examples.htm

Programming Z3 193

7.4 Parallel Z3

The parameter set_param("parallel.enable", True) enables Z3’s parallel
mode. Selected tactics, including qfbv, that uses the SAT solver for sub-goals
the option, when enabled, will cause Z3 to use a cube-and-conquer approach
to solve subgoals. The tactics psat, psmt and pqffd provide direct access to
the parallel mode, but you have to make sure that "parallel.enable" is true
to force them to use parallel mode. You can control how the cube-and-conquer
procedure spends time in simplification and cubing through other parameters
under the parallel name-space.

The main option to toggle is parallel.threads.max. It caps the maximal
number of threads. By default, the maximal number of threads used by the
parallel solver is bound by the number of processes.

8 Optimization

Depending on applications, learning that a formula is satisfiable or not, may not
be sufficient. Sometimes, it is useful to retrieve models that are optimal with
respect to some objective function. Z3 supports a small repertoire of objective
functions and invokes a specialized optimization module when objective func-
tions are supplied. The main approach for specifying an optimization objective
is through functions that specify whether to find solutions that maximize or
minimize values of an arithmetical (in the case of Z3, the term has to a lin-
ear arithmetic term) or bit-vector term t. Thus, when specifying the objective
maximize(t) the solver is instructed to find solutions to the variables in t that
maximizes the value of t. An alternative way to specify objectives is through soft
constraints. These are assertions, optionally annotated with weights. The objec-
tive is to satisfy as many soft constraints as possible in a solution. When weights
are used, the objective is to find a solution with the least penalty, given by the
sum of weights, for unsatisfied constraints. From the Python API, one uses the
Optimize context to specify optimization problems. The Optimize context relies
on the built-in solvers for solving optimization queries. The architecture of the
optimization context is provided in Fig. 20.

The Optimize context provides three main extensions to satisfiability
checking:

o = Optimize()

x, y = Ints(’x y’)
o.maximize(x + 2*y) # maximizes LIA objective

u, v = BitVecs(’u v’, 32)
o.minimize(u + v) # minimizes BV objective

o.add_soft(x > 4, 4) # soft constraint with
optional weight

194 N. Bjørner et al.

Fig. 20. Optimization engines in Z3

Using soft assertions is equivalent to posing an 0-1 optimization problem. Thus,
the following formulations are equivalent and Z3 detects the second variant and
turns it into a set of weighted soft assertions.

a, b = Bools(’a b’)
o.add_soft(a, 3)
o.add_soft(b, 4)

is equivalent to

o.minimize(If(a, 0, 3) + If(b, 0, 4))

8.1 Multiple Objectives

It is possible to add multiple objectives. There are three ways to combine objec-
tive functions.

Box(x, y) vx := max{x | ϕ(x, y)}
vy := max{y | ϕ(x, y)}

Lex(x, y) vx := max{x | ϕ(x, y)}
vy := max{y | ϕ(vx, y)}

Pareto(x, y)
{

(vx, vy) | ϕ(vx, vy), ∀x, y.
ϕ(x, y) → x ≤ vx ∨ y ≤ vy

}

For instance, Pareto objectives can be specified as follows:

x, y = Ints(’x y’)
opt = Optimize()
opt.set(priority=’pareto’)
opt.add(x + y == 10, x >= 0, y >= 0)
mx = opt.maximize(x)
my = opt.maximize(y)
while opt.check() == sat:

print (mx.value(), my.value())

Programming Z3 195

8.2 MaxSAT

The conventional definition of MaxSAT is to minimize the number of violated
soft assertions. There are several algorithms for MaxSAT, and developing new
algorithms is a very active area of research. We will here describe MaxRes from
[48]. It is also Z3’s default solver for MaxSAT/MaxSMT problems. As an illus-
tration assume we are given an unweighted (all soft constraints have weight 1)
MaxSAT problem F, F1, . . . , F5, where the first four soft constraints cannot be
satisfied in conjunction with the hard constraint F . Thus, we have the case:

A : F, F1, F2, F3, F4
︸ ︷︷ ︸

core

, F5

The system is transformed to a weakened MaxSAT problem as follows:

A′ : F, F2 ∨ F1, F3 ∨ (F2 ∧ F1), F4 ∨ (F3 ∧ (F2 ∧ F1)), F5

The procedure is formalized in Fig. 21. We claim that by solving A′, we can find
an optimal solution to A. For this purpose, consider the cost of a model with
respect to a MaxSAT problem. The cost, written cost(M,A) is the number of
soft constraints in A that are false under M . More precisely,

Lemma 1. For every model M of F , cost(M,A) = 1 + cost(M,A′)

Proof (of Lemma 1). To be able to refer to the soft constraints in the trans-
formed systems A′ we will give names to the new soft constraints, such that F ′

1 is
a name for F2∨F1, F ′

2 names F3∨(F2∧F1), F ′
3 is the name for F4∨(F3∧(F2∧F1))

and F ′
4 is the new name of F5.

Consider the soft constraints in the core. Since it is a core, at least one has
to be false under M . Let j be the first index among where M(Fj) is false. Then
M evaluates all other soft constraints the same, e.g., ∀i < j : M(F ′

i) = M(Fi),
and ∀i > j : M(F ′

i−1) = M(Fi). �

Thus, eventually, it is possible to satisfy all soft constraints (weakening could
potentially create 0 soft constraints), and a solution to the weakened system is
an optimal solution.

Weighted assertions can be handled by a reduction to unweighted MaxSAT.
For example,

a, b, c = Bools(’a b c’)
o = Optimize()
o.add(a == c)
o.add(Not(And(a, b)))
o.add_soft(a, 2)
o.add_soft(b, 3)
o.add_soft(c, 1)
print(o.check())
print(o.model())

196 N. Bjørner et al.

Fig. 21. Core based MaxSAT using MaxRes

Efficient implementations of MaxSAT flatten weights on demand. Given a core of
soft constraints it is split into two parts: In one part all soft constraints have the
same coefficient as the weight of the soft constraint with the minimal weight.
The other part comprises of the remaining soft constraints. For our example,
a, b is a core and the weight of a is 2, while the weight of b is 3. The weight of
b can therefore be split into two parts, one where it has weight 2, and the other
where it has weight 1. Applying the transformation for the core we obtain the
simpler MaxSAT problem:

a, b, c = Bools(’a b c’)
o = Optimize()
o.add(a == c)
o.add(Not(And(a, b)))
o.add_soft(Or(a, b), 2)
o.add_soft(b, 1)
o.add_soft(c, 1)
print(o.check())
print(o.model())

9 Summary

This tutorial has presented an overview of main functionality exposed by Z3.
By presenting some of the underlying algorithms in an example driven way we
have attempted to give a taste of the underlying decision procedures and proof

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/maxres.py

Programming Z3 197

engines. By presenting examples of programming queries on top of Z3 we have
attempted to provide an introduction to turning SMT solving into a service
for logic queries that go beyond checking for satisfiability of a single formula.
Tuning extended queries on top of the basic services provided by SAT and SMT
solvers is a very active area of research with new application scenarios and new
discoveries.

References

1. Alviano, M.: Model enumeration in propositional circumscription via unsatisfiable
core analysis. TPLP 17(5–6), 708–725 (2017)

2. Bacchus, F., Katsirelos, G.: Finding a collection of MUSes incrementally. In: Quim-
per, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 35–44. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-33954-2_3

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

4. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 457–481. IOS Press (2009). https://doi.org/10.3233/
978-1-58603-929-5-457

5. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2

6. Bjørner, N., Janota, M.: Playing with alternating quantifier satisfaction. In: LPAR
Short Presentation Papers (2015)

7. Bjørner, N., Nachmanson, L.: Theorem recycling for theorem proving. In: Kovács,
L., Voronkov, A. (eds.) Vampire 2017, Proceedings of the 4th Vampire Workshop.
EPiC Series in Computing, vol. 53, pp. 1–8. EasyChair (2018). https://doi.org/10.
29007/r58f, https://easychair.org/publications/paper/qGfG

8. Bonacina, M.P., Lynch, C., de Moura, L.M.: On deciding satisfiability by theorem
proving with speculative inferences. J. Autom. Reason. 47(2), 161–189 (2011)

9. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of counterex-
amples to induction. In: Formal Methods in Computer-Aided Design, 7th Interna-
tional Conference, FMCAD 2007, Austin, Texas, USA, 11–14 November 2007, Pro-
ceedings, pp. 173–180 (2007). https://doi.org/10.1109/FAMCAD.2007.15

10. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Veri-
fication, Model Checking, and Abstract Interpretation, 7th International Confer-
ence, VMCAI 2006, Charleston, SC, USA, 8–10 January 2006, Proceedings, pp.
427–442 (2006). https://doi.org/10.1007/11609773_28

11. Bromberger, M., Weidenbach, C.: New techniques for linear arithmetic: cubes and
equalities. Form. Methods Syst. Des. 51(3), 433–461 (2017). https://doi.org/10.
1007/s10703-017-0278-7

12. Chockler, H., Ivrii, A., Matsliah, A.: Computing interpolants without proofs. In:
Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 72–85. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-3_12

13. Christ, J., Hoenicke, J.: Cutting the mix. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 37–52. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21668-3_3

https://doi.org/10.1007/978-3-319-33954-2_3
www.SMT-LIB.org
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.29007/r58f
https://doi.org/10.29007/r58f
https://easychair.org/publications/paper/qGfG
https://doi.org/10.1109/FAMCAD.2007.15
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/s10703-017-0278-7
https://doi.org/10.1007/s10703-017-0278-7
https://doi.org/10.1007/978-3-642-39611-3_12
https://doi.org/10.1007/978-3-319-21668-3_3
https://doi.org/10.1007/978-3-319-21668-3_3

198 N. Bjørner et al.

14. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on
solving nonlinear integer arithmetic with incremental linearization. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 383–398. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_23

15. Cohen, E., Megiddo, N.: Improved algorithms for linear inequalities with two vari-
ables per inequality. SIAM J. Comput. 23(6), 1313–1347 (1994). https://doi.org/
10.1137/S0097539791256325

16. Colmerauer, A., Dao, T.-B.-H.: Expressiveness of full first order constraints in the
algebra of finite or infinite trees. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894,
pp. 172–186. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45349-
0_14

17. Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration
algorithm for computing fixed points in static analysis of programs. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988_46

18. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Commun. ACM 5, 394–397 (1962)

19. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical technique
for solving linear inequalities over integers. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4_20

20. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27(4), 758–771 (1980). https://doi.org/10.1145/322217.322228

21. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963_11

22. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4_25

23. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2012, Beijing, China, 11–16 June
2012, pp. 405–416 (2012). https://doi.org/10.1145/2254064.2254112

24. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015). https://doi.org/10.1613/
jair.4694

25. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.)
HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34188-5_8

26. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8_13

27. Hoder, K., Bjørner, N., de Moura, L.: µz– an efficient engine for fixed points
with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_36

https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1137/S0097539791256325
https://doi.org/10.1137/S0097539791256325
https://doi.org/10.1007/3-540-45349-0_14
https://doi.org/10.1007/3-540-45349-0_14
https://doi.org/10.1007/11513988_46
https://doi.org/10.1007/978-3-642-02658-4_20
https://doi.org/10.1007/978-3-642-02658-4_20
https://doi.org/10.1145/322217.322228
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1613/jair.4694
https://doi.org/10.1613/jair.4694
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-642-22110-1_36

Programming Z3 199

28. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verifica-
tion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
265–281. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-
3_19

29. Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of
propositional formulae. AI Commun. 28(2), 161–177 (2015). https://doi.org/10.
3233/AIC-140640

30. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 325–331 (2015). http://ijcai.
org/Abstract/15/052

31. John, A.K., Chakraborty, S.: A quantifier elimination algorithm for linear modular
equations and disequations. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_39

32. John, A.K., Chakraborty, S.: A layered algorithm for quantifier elimination from
linear modular constraints. Form. Methods Syst. Des. 49(3), 272–323 (2016).
https://doi.org/10.1007/s10703-016-0260-9

33. Jovanović, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani,
A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 330–346. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_18

34. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

35. Kapur, D., Zarba, C.: A reduction approach to decision procedures. Techni-
cal report, University of New Mexico (2006). https://www.cs.unm.edu/~kapur/
mypapers/reduction.pdf

36. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_2

37. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible mus enumer-
ation. Constraints 21(2), 223–250 (2016)

38. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Practical verification of
peephole optimizations with alive. Commun. ACM 61(2), 84–91 (2018). https://
doi.org/10.1145/3166064

39. McMillan, K.L.: Lazy annotation revisited. In: Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, 18–22 July 2014, Proceedings, pp. 243–259 (2014).
https://doi.org/10.1007/978-3-319-08867-9_16

40. Mencía, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 1973–1979
(2015). http://ijcai.org/Abstract/15/280

41. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol.
5330, pp. 243–257. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-89439-1_18

https://doi.org/10.1007/978-3-540-78800-3_19
https://doi.org/10.1007/978-3-540-78800-3_19
https://doi.org/10.3233/AIC-140640
https://doi.org/10.3233/AIC-140640
http://ijcai.org/Abstract/15/052
http://ijcai.org/Abstract/15/052
https://doi.org/10.1007/978-3-642-22110-1_39
https://doi.org/10.1007/978-3-642-22110-1_39
https://doi.org/10.1007/s10703-016-0260-9
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-642-31365-3_27
https://www.cs.unm.edu/~kapur/mypapers/reduction.pdf
https://www.cs.unm.edu/~kapur/mypapers/reduction.pdf
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1145/3166064
https://doi.org/10.1145/3166064
https://doi.org/10.1007/978-3-319-08867-9_16
http://ijcai.org/Abstract/15/280
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-540-89439-1_18

200 N. Bjørner et al.

42. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: Rudnicki, P.,
Sutcliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings of the LPAR
2008 Workshops, Knowledge Exchange: Automated Provers and Proof Assistants,
and the 7th International Workshop on the Implementation of Logics, Doha, Qatar,
22 November 2008, CEUR Workshop Proceedings, vol. 418. CEUR-WS.org (2008).
http://ceur-ws.org/Vol-418/paper10.pdf

43. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, 15–18 November 2009, Austin, Texas, USA, pp.
45–52 (2009). https://doi.org/10.1109/FMCAD.2009.5351142

44. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_1

45. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 15–44. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8_2

46. de Moura, L., Bjørner, N.: Efficient E-Matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3_13

47. de Moura, L., Bjørner, N.: Bugs, moles and skeletons: symbolic reasoning for soft-
ware development. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI),
vol. 6173, pp. 400–411. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14203-1_34

48. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSat
resolution. In: Brodley, C.E., Stone, P. (eds.) AAAI 2014, 27–31 July 2014, Quebec
City, Quebec, Canada, pp. 2717–2723. AAAI Press (2014)

49. Narodytska, N., Bjørner, N., Marinescu, M., Sagiv, M.: Core-guided minimal cor-
rection set and core enumeration. In: Lang, J. (ed.) Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–
19 July 2018, Stockholm, Sweden, pp. 1353–1361. ijcai.org (2018). https://doi.org/
10.24963/ijcai.2018/188

50. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979). https://doi.org/10.1145/
357073.357079

51. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified
bit-vectors using invertibility conditions. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10982, pp. 236–255. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96142-2_16

52. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

53. Previti, A., Mencía, C., Järvisalo, M., Marques-Silva, J.: Improving MCS enumera-
tion via caching. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
184–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_12

54. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 1853–
1964. Elsevier and MIT Press (2001)

http://ceur-ws.org/Vol-418/paper10.pdf
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-642-14203-1_34
https://doi.org/10.1007/978-3-642-14203-1_34
https://doi.org/10.24963/ijcai.2018/188
https://doi.org/10.24963/ijcai.2018/188
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/357073.357079
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-66263-3_12

Programming Z3 201

55. Seidl, M., Lonsing, F., Biere, A.: qbf2epr: a tool for generating EPR formulas from
QBF. In: Third Workshop on Practical Aspects of Automated Reasoning, PAAR-
2012, Manchester, UK, 30 June–1 July 2012, pp. 139–148 (2012). http://www.
easychair.org/publications/paper/145184

56. Silva, J.P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satis-
fiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

57. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975). https://doi.org/10.1145/321879.321884

58. Veanes, M., Bjørner, N., Nachmanson, L., Bereg, S.: Monadic decomposition. J.
ACM 64(2), 14:1–14:28 (2017). https://doi.org/10.1145/3040488

59. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. Form. Methods Syst. Des. 42(1), 3–23 (2013)

http://www.easychair.org/publications/paper/145184
http://www.easychair.org/publications/paper/145184
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/3040488

	Programming Z3
	1 Introduction
	1.1 Resources
	1.2 Sources

	2 Logical Interfaces to Z3
	2.1 Sorts
	2.2 Signatures
	2.3 Terms and Formulas
	2.4 Quantifiers and Lambda Binding

	3 Theories
	3.1 EUF: Equality and Uninterpreted Functions
	3.1.1 Congruence Closure
	3.1.2 EUF Models

	3.2 Arithmetic
	3.2.1 Solving LRA: Linear Real Arithmetic
	3.2.2 Solving Arithmetical Fragments

	3.3 Arrays
	3.3.1 Deciding Arrays by Reduction to EUF

	3.4 Bit-Vectors
	3.4.1 Solving Bit-Vectors
	3.4.2 Floating Point Arithmetic

	3.5 Algebraic Datatypes
	3.6 Sequences and Strings

	4 Interfacing with Solvers
	4.1 Incrementality
	4.2 Scopes
	4.3 Assumptions
	4.4 Cores
	4.5 Models
	4.6 Other Methods
	4.6.1 Statistics
	4.6.2 Proofs
	4.6.3 Retrieving Solver State
	4.6.4 Cloning Solver State
	4.6.5 Loading Formulas
	4.6.6 Consequences
	4.6.7 Cubes

	5 Using Solvers
	5.1 Blocking Evaluations
	5.2 Maximizing Satisfying Assignments
	5.3 All Cores and Correction Sets
	5.4 Bounded Model Checking
	5.5 Propositional Interpolation
	5.6 Monadic Decomposition

	6 Solver Implementations
	6.1 SMT Core
	6.1.1 CDCL(T): SAT + Theories
	6.1.2 Theories + Theories
	6.1.3 E-Matching Based Quantifier Instantiation
	6.1.4 Model-Based Quantifier Instantiation

	6.2 SAT Core
	6.2.1 In-processing
	6.2.2 Co-processing
	6.2.3 Boolean Theories

	6.3 Horn Clause Solver
	6.4 QSAT
	6.5 NLSat

	7 Tactics
	7.1 Tactic Basics
	7.2 Solvers from Tactics
	7.3 Tactics from Solvers
	7.4 Parallel Z3

	8 Optimization
	8.1 Multiple Objectives
	8.2 MaxSAT

	9 Summary
	References

