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Abstract. Attacks on IoT, Cyber-Physical-Systems (CPS), and other
computing systems are evolving rapidly. As a result, IoT devices used
in critical infrastructures such as energy, health-care, and water supply
systems are vulnerable to attacks. A successful attack on such safety-
critical infrastructures may have life-threatening consequences. On the
other hand, existing security mechanisms are not enough to protect con-
strained IoT devices. Therefore, we need better security mechanisms and
tools to manage and protect IoT devices from malicious use.

In emerging paradigms like Internet-of-Things (IoT) platforms, Indus-
try 4.0, collaborative portals, and many others, we deal with a multi-
tenant architecture. In a multi-tenant architecture, the owners want to
secure their own integrity, confidentiality, and functionality goals with-
out being concerned about the goals of other entities. In this paper,
we present a framework to negotiate, compromise, and inter-operate
between different services or platforms to fulfill a purpose. Furthermore,
to ensure correct and safe operation of IoT systems, we must assure that
the integrity of the underlying systems and processes is properly executed
as intended i.e., the processes cannot be changed in an unauthorized way.

In this paper, we present our Petri Net based workflow specification
and enforcement framework to realize workflow-aware access control and
to protect the process integrity of IoT applications. The Petri Net mod-
els are amenable to formal verification. The resulting workflows have
other properties such as the ability to recover from error conditions. In
addition, we present a method to achieve distributed access control and
accountability integrated with our framework. We allow practitioner-
friendly tools to collect requirements and goals to design secure IoT sys-
tems and processes. Finally, we present a guide to implement our frame-
work with existing development environments and validate the method-
ology using concrete use case scenarios.

1 Introduction

The EU Research Cluster on IoT (IERC) [68] defines Internet of Things (IoT)
as “an infrastructure with self-configuring capabilities based on standard and
interoperable communication protocols where physical and virtual things have
identities, physical attributes, and virtual personalities and use intelligent inter-
faces, and are seamlessly integrated into the information network”.
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Constrained IoT devices are categorized by their ability to process and store
data, energy consumption, and communication capabilities (see [12]). Class 0
devices are really constrained sensor-like motes with less than 10 KB of RAM
and 100 KB of flash memory. Class 1 devices are quite constrained, and cannot
use standard Internet Protocol stack; however, class 1 devices support protocols
designed for constrained devices. Class 2 devices are less constrained, can sup-
port some security functionalities specifically designed for constrained devices.
Finally, the devices with capabilities beyond class 2 support most of the tradi-
tional Internet and security protocols like HTTP and TLS; however, they can still
be constrained by limited energy supply. Generally, IoT devices use both long
and short-range communication technologies such as Zigbee, Bluetooth, LTE,
etc. combined with constrained communication protocols such as Constrained
Application Protocol (CoAP) for Internet connectivity. Constrained IoT devices
are cheap, compact, easy to deploy, and consume less energy. Recently, orga-
nizations use data collected from IoT devices to get insights, predict, and to
optimize their services with the help of Artificial Intelligence (AI) technolo-
gies. This approach is used in various applications such as smart manufacturing,
industrial control systems, financial services, retail, intelligent logistics, trans-
portation, medical and healthcare applications, smart grid, intelligent traffic,
environmental monitoring, smart home, assisted living, agriculture, and many
more.

Constrained IoT devices are vulnerable to attacks because existing state-of-
the-art security mechanisms do not fit within the constrained devices and often
they can be accessed physically by an attacker. For example, modern remote
attestation technique is difficult to achieve in constrained IoT devices because
of the lack of space and processing power [13,61]. Implementing secure key gen-
eration and key storage in constrained IoT devices are hard (see guidelines from
Trusted Computing Group [71]) because these devices lack sufficient entropy to
generate random numbers and are prone to side-channel attacks. Several attacks
on industrial IoT devices are presented in [61]. Due to the vulnerabilities, hack-
ers frequently target IoT devices to escalate attacks on valuable assets. The
21st century has seen a sudden rise of insecure IoT devices in an unexpected
scale which require immediate attention i.e., we must secure those emergent IoT
devices. Now, since IoT devices are used in critical infrastructures, it is evident
that we need better security mechanisms and tools to protect them. Researchers
in academia and industry are working together to secure emergent IoT devices,
protocols, and applications. Furthermore, IoT devices collect personal informa-
tion or data that can be used to infer private activities or habits without proper
consent. As a consequence, the European Union’s privacy regulation GDPR (see
[22]) has enforced strict regulations for handling private information of users.

In emergent IoT applications, the multi-tenant architecture is more promi-
nent. In such applications, different entities provide and consume services from
one another and each entities might want to enforce their own integrity, confiden-
tiality or functionality goals on other entities consuming his service. The main
problem with multi-tenant systems and architecture is the “trust problem”: in
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order to achieve his goals, each party requires that the others behave in a par-
ticular way. Ideally, the party would like to specify a “contract” that declares
his assumptions about the behavior of other entities as well as the guarantees
that he offers to them about his actions. But how can he trust other parties to
behave according to the contract? How can he be sure that they do not “cheat”?
In this paper, we investigate a way to automatically enforce a contract.

This is the purpose of a “smart contract”: it declares what happens if some of
the parties misbehave and what will happen in case of other error or unexpected
conditions. Each party imposes his rules on entities while they interact with his
services. In the case of electronic money, this is easier to enforce: the party that
cheats lose money. In the case where money is not available directly, it may be
difficult to penalize a party that is not complying with the stipulated rules. In
general, those sequences of interactions defined by “smart contracts” may be
seen as a set of allowed actions, or in other words, a workflow. Clearly, there is a
need to negotiate, compromise, and inter-operate the tasks to be completed by
the different entities within such a system.

To enforce such tasks to be executed in a particular order we need a workflow
specification and enforcement method. It is important to notice that securing
the assumption-commitment semantics of a smart contract is also the key for its
verification. The smart contracts are given as a refinement of Petri Nets, which
are subject to verification, see [59].

More specifically, we use the Petri Net based Workflow Specification and
Enforcement method presented in [39,40] to write such smart contracts which
guarantee the integrity of processes. The method also supports dynamic work-
flows that adapt to error conditions by allowing services to create on the fly
sub-workflows. Furthermore, the framework provides accountability and trans-
parency without assuming a central authority.

1.1 Security and Privacy Challenges in IoT

Security and Privacy challenges in IoT and Industrial Internet of Things (IIoT)
are discussed in [61,66,76] where the authors discuss technical, financial and
legal issues involved in IoT and existing solutions. In this paper, we discuss the
technical aspects of security and privacy challenges in IoT/IIoT. The OWASP
(Open Web Application Security Project) presented the Top 10 IoT vulnerabil-
ities and attack surfaces (see [47]), we discuss the topics relevant to this paper
here:

– Authentication and Authorization: the goal of an authentication system is
to verify that entities are correctly identified [11]. After authenticating an
entity, the security mechanism of verifying whether the entity is allowed to
perform certain actions is known as authorization. Existing state-of-the-art
authentication and authorization mechanisms do not fit in constrained IoT
devices; academic and industrial researchers are working towards addressing
them (see IETF ACE working group [32]). Since IoT devices are cheap, they
do not have interactive interfaces to implement traditional authentication
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mechanisms such as a display to present security info to the user, or a keypad
to enter passwords. Sometimes, even when proper security mechanisms are in
place, users do not use them properly. For example, the default password for
many IoT devices is not changed by their users because of its complexity i.e.,
the user needs to connect the device to the local network and login into it via
a web interface using default credentials to change it. For instance, hackers
have used this vulnerability to mount denial-of-service attacks on popular
websites by sending remote commands to billions of IoT devices - see Mirai
botnet attack [4]. On the other hand, most IoT devices implement single-
factor authentication such as the username and password, and authorization
does not consider the context of activities involved like tasks in a workflow.

– Confidentiality and privacy : IoT devices can collect sensitive information,
including personal data. Therefore, the data subjects want their information
to be confidential. Constrained IoT devices cannot use standard encryption
mechanisms, such as Transport Layer Security (TLS). Light-weight proto-
cols, such as Datagram Transport Layer Security (DTLS) over CoAP (See
[24]) have been designed to support the confidentiality and integrity of trans-
ported data. One of the challenges is that for instance, class 1 devices cannot
properly support DTLS, and therefore, packet losses will result in retrans-
mission of messages, affecting the performance of battery powered devices.
Compromised devices holding private data will expose information about the
private life of the data subjects. This demands the need for privacy-preserving
(enhancing) and confidentiality mechanisms integrated with the IoT device
communication [76].

– Integrity : there are at least three aspects of integrity. First, we have data
integrity – the assurance that the data transferred from one entity to another
has not been altered or tampered with. Second, we have the integrity of data
stored in memory – this includes, firmware, key material, data, or programs
stored in memory – is not altered. Third, we have process integrity. A busi-
ness/technical process specified must be executed as it is specified i.e., no one
is able to change, add additional steps or skip steps defined in the process.
This property is called “process integrity”, and it is discussed in detail below.
Security mechanisms such as Message Authenticate Code (MAC) exist to
ensure data integrity, and hardware or software attestation techniques exist
to ensure the integrity of firmware or application code. But achieving process
integrity is difficult, and no solutions exist to enforce it. One of the main goals
of this paper is to specify a process and ensure that it is properly enforced
on the entities executing it.

– Interoperability : IoT devices are heterogeneous in terms of processing power,
memory capacity, and communication technologies. Some IoT devices may
or may not operate with each other because of non-interoperable standards.
Different organizations collaborate to create interoperable standards such as
the Alliance for the Internet of Things Innovation (AIOTI) (see [3]). Also, the
research community such as ACE (see [32]) is working towards standardizing
security protocols to make IoT devices interoperable and secure. In particular,
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we need interoperable security mechanisms that can be implemented on the
majority of IoT devices.

– Self-Configuration and Multi-Tenancy : is evident that IoT devices are get-
ting powerful, cheaper, (see Moore’s law [63]) and energy-efficient day-by-day.
Installing and configuring such advanced IoT devices with existing IoT appli-
cations should not require too much human involvement. The IoT devices
should have self-configuring features i.e., backward compatibility, resilient to
connection loses and device failures, etc. In such error cases, the IoT sys-
tem must re-adapt to the changes and work normally. Multi-tenancy refers
to the fact that devices or services belong to different owners with different
or competing goals. Those parties prefer to cooperate by exchanging infor-
mation with each other such that both parties will profit from information or
activities exchanged. IoT devices need to support such kind of multi-tenant
features without losing the security requirements of parties involved.

Protecting the Process Integrity of IoT Applications. A process is a
set of interrelated activities or tasks that must be carried out to accomplish a
goal [11]. A business/technical process is also called a workflow, but we use the
two words as synonymous. Different owners/stakeholders of devices or services
will probably try optimizing their own results and to secure their own integrity,
confidentiality or functionality goals, without really being concerned about the
goals of other entities. We call this property as Multi-Tenancy. We need a method
to protect the integrity of business processes of each owner/stakeholder without
compromising the integrity of the process of other involved entities.

A workflow can be defined as a pattern of activities or tasks to be completed
in a particular partial order by the involved entities, following predefined rules,
in order to accomplish a specific goal or subgoal. A workflow must be executed
as it is specified i.e., ensuring process-integrity. During the execution of the work-
flow, the participants may exchange with each other documents, information, see
[77]. Confidentiality is not as important as the availability and integrity of the
cybersecurity processes, which is mission-critical. Achieving process integrity of
different owners/stakeholders collaborating with each other is the main focus of
the paper.

We describe a small case study to gather the requirements, study the chal-
lenges, and to formulate the goals of our work. Let us consider the following use
case scenario (UC1): a manufacturing company requires continuous monitoring
and maintenance of equipment in its factory. For example, IoT devices are used
to monitor temperature, smoke, and fire, etc. IoT devices can also be used as
actuators to control access to doors, equipment, and emergency exits. The prove-
nance of IoT devices, quality, and maintenance of the manufacturing plant are
strictly enforced by predefined processes (workflows) defined by the manufactur-
ing owner. The integrity of such processes must be enforced to ensure quality
products being produced in the plant. Usually, a manufacturing plant consists
of different equipment or systems from different manufacturers, each will have
their own maintenance processes. If the production stops because of an equip-
ment malfunction or a supply chain problem or a worker who failed to follow
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the predefined rules, etc., then the problem must be identified and addressed as
soon as possible. To ensure the integrity of the processes strict access control
methods must be used. With this use case, we will formulate the requirements,
challenges, and goals of our work.

1.2 Goals of Our Framework

We want our framework to have a workflow-driven access control in contrast
to the commonly used mandatory (MAC), discretionary (DAC), or role-based
access control (RBAC), which have been well-studied in the literature, see [62].
Thus, the goals of our framework are:

– To provide a generic, interoperable, and distributed workflow-aware access
control method that restricts the entities to execute tasks in a predefined
order defined in the workflow. By doing this, we can guarantee the process
integrity of that particular workflow.

– Our Petri Net based workflow specification and enforcement method should
be interoperable i.e., it should support existing authorization standards such
as OAuth.

– Our method should support dynamic workflows that adapt to error conditions
i.e., allowing services to interact with each other and create on the fly sub-
workflows without changing the objective of the main workflow.

– Our framework should be extendable and support the integration of
practitioner-friendly tools.

– Our framework should support distributed accountability i.e., when necessary,
we can prove the actions of entities executing the workflow.

In this paper, we extend our Petri Net based workflow specification and
enforcement framework presented in [39,40] to present a comprehensive access
control security framework for the Internet of Things (IoT); however, this app-
roach can be applied to any generic computing system. The main contributions
of this paper are: first, we summarize our Petri Net extensions such as timeout
transitions contracts and open Petri Net places; second, we extend our frame-
work to support requirement elicitation methods with practitioner-friendly tools,
distributed accountability, and generation of Petri Net based smart contracts for
Blockchain; third, we use our framework to solve three use case scenarios; finally,
we present a high-level guide to implement our framework with existing systems.

To summarize, we present a method:

– To specify processes as workflows that can be created in a stepwise man-
ner using standard software engineering processes and tools. Such workflows
specified as Petri Nets are amenable to formal verification.

– To constrain an entity using an application/services to obey a prescribed
workflow with fine-grained authorization constraints based on least privilege
and need to access principle.

– That allows entities participating in a workflow to have a choice, for example,
to accept (or reject) “contracts” or conditions.
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– That allows services and entities executing a workflow to handle error con-
ditions by supporting the creation of dynamic workflows, and that provides
accountability without assuming a central authority.

– To exchange authorization tokens in a secure and privacy-enhanced way. Note:
this method can also be used to transfer other tokens (such as money, infor-
mation, etc.) not just authorization tokens.

– To support distributed accountability while executing the workflow i.e.,
actions executed by entities executing the workflow is recorded in an
immutable database.

– To support the generation of Petri Net based smart contracts to be deployed
in a Blockchain.

The Rest of the Paper is Organized as Follows: Section 2 describes secu-
rity and privacy requirements of IoT and motivates the need for advanced secu-
rity mechanisms such as workflow-aware access control methods for emergent
IoT applications; Sect. 3 describes the evolution and background of Petri Nets;
Sect. 4 describes the existing background work published in the literature; Sect. 5
presents the contributions of our work; Sect. 6 describes three different use case
scenarios where we apply our method and solve them; Sect. 7 describes a high-
level summary of our method and a guide to implement our method with existing
systems; finally, we present limitations of our approach in Sect. 8 and conclusion
in Sect. 9.

2 Security and Privacy Requirements for IoT
Applications

The technical challenges of securing emerging IoT applications were described
in Sect. 1.1. Now, we discuss the relevant security and privacy requirements for
securing the emergent IoT applications. In particular, we refer to the mainte-
nance of manufacturing plant use case scenario UC1 to formulate the following
requirements.

2.1 Requirements Elicitation

The requirements engineering process can be divided into four tasks namely the
elicitation, negotiation, specification/documentation, and verification/validation
of requirements [55]. When we want to solve a problem, first, we need to gather
more information about the problem i.e., elicitation of the requirements, needs,
and constraints about the system. Often, information about the problem (or sys-
tem) is distributed among many stakeholders i.e., the knowledge is not available
from one source (user or customer). Therefore, the identification of the rele-
vant sources during the elicitation task is crucial. Modern tools such as Unified
Modeling Language (UML) or Systems Modeling Language (SysML) allow us
to collect requirements, use cases, draw activity diagrams, and finally to val-
idate requirements of a complete system. In particular, SysML provides tight
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integration of both software and hardware components. Thus, requirement elic-
itation is important to understand the problem and to gather requirements. For
example, in UC1, we need to understand which processes are critical and the
actors involved in the manufacturing plant. A detailed interview with managers
and workers handling the production equipment and IoT devices will give the
required information to define a workflow.

2.2 Distributed Authorization

Distributed authorization mechanisms are important to support a growing num-
ber of IoT devices. Authorization in distributed systems is complex to achieve
[25] as the resources are spread across a network of devices under different
domains, multi-tenant systems, and they might know each other or not. As
described earlier in the introduction, this is a trust problem. A smart lock
installed in a smart home opens or closes the door based on the access con-
trol (AC) policies defined by the owner. The owner may use his smartphone
to present his credentials to the smart lock. The smart lock may use OAuth
based mechanism to verify authorization tokens and update its AC policies peri-
odically. From the perspective of an IoT device (i.e., smart lock), whenever a
request from a Client (i.e., in this case, the owner’s smartphone) arrives, the IoT
device evaluates the authorization token attached with the request and sends
an appropriate response. This standard approach (for instance, IETF ACE [32])
ensures interoperability. In our work, we introduce changes only to the clients
and to the authorization service, but not to the IoT devices. For example, in
UC1 there could be several scenarios where we need distributed authorization.
For example, scenario 1: a worker wants to update some software in an IoT
device; for this purpose, the administrator authorizes the worker. Scenario 2: an
IoT device needs to authenticate, present authorization credentials to a secured
server to write some data; for this purpose, the IoT device needs to get an autho-
rization token from an authorization server. The role of the client and resource
server from the context of OAuth ACE protocol changes depending on the use
case but clearly we need distributed authorization. More information about this
topic is presented in Sect. 4.1.

2.3 Device Commissioning and Secure Software Updates

Often, IoT devices are deployed in large scale. To protect that infrastructure,
it is important to deploy devices with unique authentication credentials. Secure
device commissioning i.e., key-provisioning, device hardening, etc. helps to pro-
tect the device from attacks, and also perform secure software updates. Software
updates are often required to fix the software bugs or vulnerabilities in any com-
puter software. In particular, firmware updates can patch vulnerable IoT devices,
but an update from an untrusted source can install a Trojan or malware into
the device. Various commercial software update solutions exist, but they are not
interoperable and may not work with constrained devices. The IETF working
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group - ‘software updates for IoT’ [72] is working towards creating an interoper-
able and secure software update solution for IoT devices (class 1 or above) with
approximately 100 KB of flash memory. Commissioning a large number of IoT
devices is still a challenge, we need automated tools, protocols for secure device
commissioning (see Enrollment over Secure Transport (EST) is used as a certifi-
cate provisioning protocol over HTTPS [67]. For example, in UC1, secure device
commissioning is crucial to ensure that deployed manufacturing equipment and
IoT devices are malware free, credentials provisioned are safe, etc. After deploy-
ing the equipment or IoT device, it is important to have the ability to provide
updates i.e., for introducing new features, roll back to the previous stable state,
or apply security-patches for the existing software, etc.

2.4 Attack Escalation Resilience

Compromising one IoT device means that the attacker can escalate the attack on
other IoT devices or systems connected to the same network. Attack escalation
is a serious problem, and we need resilience mechanisms. Authorization coupled
with the context of task execution workflow stops the attack escalation problem.
In this work, we describe a workflow-aware access control method which pre-
vents attack escalation to an extent. On the other hand, when multicast security
is used i.e., a group key is used for controlling a set of IoT devices. The IETF
RFC [26] specifies requirements and security considerations for generic group key
management protocols. The IETF draft [74] specifies a secure group communi-
cation for IoT devices that use the Constrained Application Protocol (CoAP).
In this work, we do not focus on multicast security. For example, in UC1, let us
assume that one of the IoT devices is physically accessible at the perimeter of
the manufacturing plant and the IoT device is compromised by an attacker (how
it is compromised is out of scope). For instance, the attacker may plan to esca-
late the attack by accessing other devices via the network. Therefore, we need
proper security mechanisms to restrict the attacker from compromising other
devices or equipment via a weak compromised device. Let us assume that there
exists a workflow for initializing software update or updating the configuration
of devices inside the manufacturing plant, then the attacker cannot perform his
attack unless he was able to execute that workflow and reach the state which
allows him to perform a software update. Note: at the first place, we should
have proper access control and authorization mechanisms for initializing and
executing the workflow.

2.5 Fine-Grained Access Control

In common Access Control (AC) methods such as role-based access control
(RBAC) see [62], access control and authorization is given to an entity based on
a Role. A role like admin is very powerful and has (almost all) permissions such
as to change, add, and delete features of a system. If such an entity (with admin
role) is compromised, then the attacker can do a lot of damage. Therefore, we
want to limit the set of permissions (fine-grained) given to an entity based on
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a workflow i.e., an entity can complete/execute a legitimate set of actions/tasks
in a particular order defined in the workflow. This motivates the need for a fine-
grained access control model such as the workflow-aware access control. Such
access control methods can protect the assets to an extent even if an entity is
compromised i.e., the entity should be executing the workflow in order to access
a particular service. For example, in UC1, it is a bad idea to give access to all
equipment and IoT devices to one single administrator account, because if that
admin credential is stolen or misused, then the attacker is able to access entire
system associated with the credential.

To achieve this, we need a least privilege principle for task authorizations
within each workflow. The least privilege principle is a security concept where
every computer module (such as a process, user, or program, depending on the
subject) may be able to access only the information and resources that are
necessary for its legitimate purpose. As a particular case, the principle “Need
to Know” is a confidentiality policy which states that no subject should be able
to read objects unless reading them is necessary for that subject to perform its
functions [11]. What we need is a similar policy, but regarding integrity. We
call this principle “Need to Access”: it states that no subject should be able to
write or change objects unless it is necessary to complete the required task of
a process or workflow at that particular state. By enforcing the need to access
principle, an entity can get privileges to execute a task only at the required step
of the workflow. This provides workflow-driven (workflow-aware) access control.

The workflow-aware access control needs an error-free workflow (free from
deadlocks) and a device to execute it. A powerful computing device like a smart-
phone is used to execute the workflow, not a constrained IoT device. Any generic
application logic or process that we want to enforce is represented as one or more
workflows. We elaborate further the requirements of the workflow-aware access
control below.

Verification of Workflows. Formal methods refer to mathematically rigor-
ous techniques and tools for specification, design, verification of software and
hardware systems. Formal verification is the act of proving or disproving the
correctness of a system with respect to a certain formal specification or property
[82]. A verified system may satisfy safety and liveness properties such as no dead-
locks, mutual exclusion is satisfied, each request will have a response, freedom
from starvation, etc. Therefore, we need a modeling language with which we
can verify some properties such as deadlocks in a workflow. A survey of formal
verification of business process modeling is presented in [49].

Adapt and Recover from Error Situations. An error-resilient IoT appli-
cation should be capable of recovering from unforeseen error situations to an
extent. Therefore, it is important to allow human interaction to solve a problem
that cannot be fixed by the system itself. A workflow may allow the owner of the
services to create on the fly sub-workflows without changing the main workflow
to recover from error conditions. This requirement is necessary to build a usable
security in an IoT application.
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2.6 Distributed Accountability

Accountability is a fact or condition where an entity is accountable for actions
committed directly or indirectly. To enforce accountability in a system, we must
record (e.g., log) all important actions/interactions of an entity with the sys-
tem, including solicitation and execution. Logging is a standard feature in many
computing systems, it records system activities, process executions, user inter-
actions, etc. with relevant information such as timestamps and user identifier.
Thus, logging helps to achieve accountability. An accountability system needs
more than just logging i.e, it should satisfy integrity requirements of logs gener-
ated and stored by all processes. For example, the logs cannot be tampered or
destroyed in case of an attack i.e., mirroring logs on different servers or backup
solutions is necessary. Such accountability information is commonly used to per-
form various analysis such as auditing and forensic security analysis. Auditing is
an independent analysis of accounting records i.e., in a computer system, it can
be a program trace, log information, etc. Forensic security analysis is performed
to investigate a computer attack i.e., to find bugs in software processes, irreg-
ularities, and frauds committed by people, malware, etc. For example, in UC1,
in case of an attack or system/equipment failure, the production plant auditors
must have the capability to find the root cause of the incident. For this purpose,
we need proper accountability mechanisms by default. An accountability system
records every major decision (e.g., change logs, etc.) taken by the administrators
or workers.

3 Evolution of Petri Nets

In this section, we introduce Petri Nets and evolution over the decades since
their inception on the year 1966. In traditional Petri Nets (PN) (see [54]), there
are places, tokens, and transitions.

A place in a traditional Petri Net can hold one or more tokens (markings)
of the same type. A transition may have one or more input and output places.
A transition fires if its input places have sufficient tokens and as a result, it
produces tokens in output places. We recall the classical definition of a Petri
Net (P/T net) from [60,78]:

A Petri Net is a triple (P, T, F ), where

– P is a finite set of places,
– T is a finite set of transitions (P ∩ T = �)
– F ⊆ (P × T ) ∪ (T × P ) is a finite set of arcs (the flow relation)

A transition t has input and output places. A place p is input or output for
transition t based on the directed arc from p to t or from t to p. A place can
contain zero or more tokens. A token is represented by a black dot •. The global
state of a Petri Net, also called a marking, is the distribution of tokens over
places. Formally, a state or marking M is a function M : P → N that assigns to
every place p the number of tokens M (p) that reside in p. We use the notation



110 P. Kasinathan and J. Cuellar

LEGEND

a place

a transition an activated transition

PN − step(a)

t2t1

PN − step(b)

t2t1

Fig. 1. PN-Step(a) shows the initial state of a Petri Net and PN-Step(b) shows the
state of the Petri Net after transitions t1 and t2 have fired.

•t to denote the set of input places for a transition t ; similarly, t•, •p and p•.
Figure 1 shows a simple Petri Net in two steps: first, in step(a) transitions t1 and
t2 are activated because •t1 and •t2 have sufficient tokens; second, in step(b) t1
and t2 fire to produce tokens in output places of t1• and t2•.

Several extensions of Petri Nets such as Time Petri Nets and Colored Petri
Nets have enabled us to model different constraints such as time and types of
tokens, and so on. Thus, Petri Nets were widely used in various application
areas to verify network protocols, supply chain, etc. For a deeper understanding
of Petri Nets, we recommend the book of Reisig [60] to the readers. We briefly
present the most important extensions of Petri Net relevant for our work below.

Time Petri Nets (TPN) is used to model and simulate real systems as it is
often important to describe the temporal behavior of the system, i.e., we need
a way to model duration and delays (time) of transition firing (see [46]). The
classical Petri Net is not capable of handling this.

Colored Petri Nets (CPN) is an extension of Petri Nets where different
types of tokens can exist in the same place (see [34,35]). In a colored Petri
Net, each token is represented by specific colors (types). CPN have the same
kind of concurrency properties as Place/Transition Nets. Different tools such as
CPN-Tools [37] are available to model and validate concurrent systems.

High-level Petri Nets simplify the process of creating complex workflows by
breaking them into smaller partial workflows. At a high-level, it provides an
overall description of the process without considering all details. As we navigate
to a lower level, it provides in-depth description that particular component. The
extension of Petri Net with color, time and hierarchy allows us to model complex
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industrial systems with several layers of hierarchy without losing the details (see
[2,36]).

Workflow Nets (WF-net) are used to model a typical business process work-
flow using Petri Nets. Research advancements in the area of workflow nets con-
tributed to our research. Most of the research discusses about mapping workflow
concepts such as task execution, synchronization (split and join) actions, etc. into
Petri Nets (see [1,78]). Workflow Nets showed that Petri Nets can be used to
design and model complex workflows. In addition, Petri Net tools can be used
to verify traditional Petri Net properties such as liveness, etc. in Workflow Nets.

Open Petri Nets provide interfaces that enable two or more workflows to
exchange information in the form of tokens. Open Petri Nets provide entry and
exit points via Open Petri Net places to exchange information between workflows
(see [27]). One of the goals of this work is to support multi-tenancy, i.e., to
support activities, tasks from different organizations. Composition is a common
approach in software engineering i.e., to assemble small systems into larger ones.
Reisig in [60] describes the composition of nets using interfaces that can be used
for asynchronous and directed communication between Petri Nets.

Petri Nets and its applications are well studied in the literature. Petri Nets
enable us to create verified workflows with properties like guaranteed termina-
tion, separation-of-duties, reachability, liveness (deadlock-free), and coverability
[1,19,51]. In this section, we presented the important extensions of Petri Net
that help us to specify and verify workflows. By enforcing verified workflows
with fine-grained access control, we achieve workflow-aware access control.

4 Background Work

In this section, we present relevant background and existing work on the three
topics we focus in this paper.

4.1 Authorization for Constrained IoT Devices

Authorization mechanisms are important to restrict or allow an entity to access
a resource in an IoT device. One of the important goals of our workflow-aware
access control is to use appropriate authorization tokens within the workflow.
Therefore, we present the state-of-the-art authorization methods for IoT in this
section.

The OAuth 2.0 was developed for the web to create and transfer authoriza-
tion tokens to an authenticated entity that wants to access a resource from the
server. For instance, a browser is typically the client and a resource in OAuth
2.0 can be a restricted web-page (that needs special access rights) hosted on a
server. The IETF working group (WG) Authentication and Authorization for
constrained devices (ACE) [32] is specifying a framework for authentication and
authorization in IoT environments called “ACE-OAuth” [65].
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Fig. 2. An example ACE-OAuth scenario and actors involved. The numbers explain
the sequence of an authorization process and resource request between three actors.
Notations: K is a shared secret and {encrypted message}.

ACE-OAuth is based on OAuth 2.0 and CoAP. The motivation of ACE-
OAuth is to create an authorization solution suitable for IoT devices. To describe
the ACE-OAuth actors, let us consider an example use case. John owns a smart-
watch (a typical IoT consumer device), and with that he wants to track, store
his steps, heartbeat, etc. John wants complete control over his data i.e., deleting
information stored on the device or in the cloud. John uses his smartphone to
access or modify information stored on his smartwatch. For special access i.e.,
deleting information or changing the owner information on his smartwatch, John
needs an access token from the cloud service provided by the smartwatch man-
ufacturer. Thus, we can map the use case actors with the ACE-OAuth actors:
the smartphone is a client (C), the smartwatch is the resource server (RS), the
cloud service is the authorization server (AS), and John is the resource owner
(RO). Below, we describe the simple ACE-OAuth messages exchanges to create
the access token required by the client to access a resource on a resource server.

In Fig. 2, we show three important actors of ACE scenario. ACE-OAuth uses
the term Resource Server (RS) to represent an IoT Device with several resources,
i.e., typically sensors such as temperature, heartbeat recognizing sensor, gyro-
scope, etc. A smart lock, smart bulb, or a building automation device is a typical
example of a resource server. The term Client (C) is used to represent the device
that the resource owner (RO) uses to access the resource on an IoT device. Some-
times, simple client functionalities are embedded into the IoT device itself. For
example, a user can access or modify certain functions on his smartwatch via
the on-board display. Typically, an authorization server (AS) creates an access
token and transfers it to the client. Now, we describe a particular ACE scenario
as shown in Fig. 2: to access a resource on a Resource Server (RS), a Client (C)
should request an access-token (AT) from AS, either directly or using its Client
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Authorization Server (CAS). For the sake of simplicity, we do not consider intro-
spective calls between the resource server and the authorization server or client
authorization server.

Based on the above described scenario, a simple ACE OAuth message flow
as shown in Fig. 2 can be described as follows:

– A C may perform a resource-request to RS without a valid access-token, then
RS will reject, and it may provide AS information to the C in the response.
Such that, the C may go to the AS to get a valid access-token. The Resource
Owner (RO) may define access control policies on the Authorization Server
(AS) describing who can access the resources on a RS.

– (1) A common secret (k) is shared between the AS and RS while device
commissioning. We assume that RS stays offline after deployment and cannot
perform introspective calls to AS to verify the access token presented by the
C.

– (2) The C performs an Access-Request to AS to ask for an access token (AT)
that allows accessing the required resource (R) on RS. The AS checks if C
can access the resource (R) on RS or not, based on permissions assigned by
the RO.

– (3) If C has sufficient permissions, then AS generates an Access-Token (AT)
plus a proof-of-possession (PoP) key bounded to the access-token and the
secret (k). AS sends both the AT and the PoP key to C via a secure encrypted
channel.

– (4) After receiving AT and PoP key, C performs a resource-request to RS by
ACE-OAuth token construction method defined in one of the ACE profiles.
For example, the client may use privacy enhanced token construction method
as described below.

– (5) The RS can reconstruct the PoP key from the AT and verifies the received
AT. If it is valid, RS encrypts the response with the PoP key.

In the ACE working group, several other proposals with different profiles
exist to solve specific problems. One of the proposed profile is Privacy-Enhanced
Authorization token (PAT) profile. Note: at the time of writing this paper PAT
profile was expired.

Privacy-Enhanced Authorization tokens (PAT) is a profile specified for
ACE-OAuth [16] with a special focus on creating privacy-enhanced unlinkable
authorization tokens. The PAT profile for ACE-OAuth provides unlinkability
features even when a client performs non-encrypted authorization requests (i.e.,
sending request without network or transport layer encryption such as DTLS).
PAT was designed such that the Resource Server (RS) is able to verify the access
tokens without performing the introspective call to the Authorization server (AS)
to verify and validate the client authorization token.

History based Capability systems for IoT (HCAP) proposes a history-
based capability system for enforcing permission sequencing constraints in a
distributed authorization environment [70]. The authors formally establish the
security guarantees of HCAP, and empirically evaluate its performance. In their
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work, permission sequencing constraints are encoded as a Security Automaton
and embedded in a capability.

4.2 Modeling Workflows for Access Control Systems

In the literature, we can find extensive work on the specification and enforcement
of workflows; in particular, Bertino et al. [10] studied how to model and enforce
workflow authorization constraints such as separation-of-duties in workflows,
but using a centralized workflow management system. Workflow based access
control is also well-known (Knorr [41] calls them “Dynamic access control”), but
this requires a centralized WF enforcement engine. Basin et al. [9] model the
business process activities as workflows with a special focus on optimizing the
authorizations permissions.

Petri Nets [54] provide a graphical modeling tool used to describe pro-
cesses performing an orchestrated activity, or in other words, a workflow [1,78].
Petri Nets have the advantage that many properties such as liveness (deadlock-
freeness), reachability are easy to verify [19,51,58]. Atluri et al. [5,6] studied
how to model workflows using Petri Nets, but did not describe the implemen-
tation details. Huang et al. [28] presented a web-enabled workflow management
system, and Compagna et al. [15] presented an automatic enforcement of secu-
rity policies based on workflow-driven web application, but both work presented
a centralized architecture. Heckel [27] showed how open Petri Nets are suit-
able for modeling workflows spanning different enterprises. No existing work
discusses about how to handle error conditions during workflow execution, sup-
port or integrate practitioner-friendly design and specification tools, enforcing
cross-organizational agreements or commitments (i.e., process integrity) and to
enforce them to achieve workflow-aware access control with a special focus on
modern IoT systems.

Wolter et al. [79] showed a model-driven transformation approach from mod-
eled security goals in the context of business process models into concrete security
implementation. Their work focuses on service-oriented architecture. The secu-
rity annotated business processes are transformed into platform specific security
access control or policy languages such as XACML; in particular, they consid-
ered security goals such as confidentiality, authentication, and data integrity.
Basin et al. [44] presented SecureUML, an UML based modeling language for
model-driven security, their approach is based on role-based access control with
additional support for specifying authorization constraints. Similarly, Jürjens
[38] presented UMLsec (an extension of UML) for secure software development.

Mortensen [50] presented a method for automatic implementation of systems
based on Colored Petri Nets (CP-nets or CPN) models. The paper does not
describe the algorithms and data structures used to implement the code gener-
ation tool, but rather the context of the tool. The paper shows that the method
introduced reduces the development time and cost compared with prevailing sys-
tem development methods where system implementation is accomplished man-
ually by evaluating it on a real-world access control system. We refer to the
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concepts presented in this work for generating smart contract code from our
Petri Net workflows.

Linhares et al. in [43] presented an empirical evaluation of OMG SysML’s
to model an industrial automation unit using the open source modeling tool
Modelio [48] but not in the context of modeling workflows for access control.

4.3 Distributed Accountability and Smart Contracts

To achieve accountability in a system, we need to record all system activities
and store them in a database with data properties such as availability, integrity,
persistence, and consistency. Distributed database management systems (DDBS)
provide data consistency, reliability, and availability (see [53]). In addition, with
strong access control systems integrated with a DDBS, we could enforce who
can access (read and write) the database. Just integrating access control is not
enough to provide accountability in a system i.e., a person with access to the
database may insert/update/delete malicious data into the database. Such that
the person with access to the DDBS could tamper the data without being noticed
by other entities.

The Blockchain technology provides availability, data integrity, non-
repudiation (if public-key signatures are used), and persistence properties i.e.,
once a data block is added by a user and becomes a valid block of the Blockchain,
it is impossible to update/delete it without being noticed by others participat-
ing in the Blockchain. There are two main types of Blockchain: permissioned
and permissionless. A permissioned Blockchain includes an access control layer
that can enforce who can read, publish, or approve transactions in a block chain
(see IBM Hyperledger [29]). A classic example of permissionless Blockchain is
bitcoin [52] i.e., anyone can participate (publish and verify transactions) in the
Blockchain. To approve a transaction or a block consisting of many transactions
different consensus methods exist such as proof-of-work, but it is not the focus
of the paper.

Smart Contracts, introduced in [69], have become popular with the advance-
ments in Blockchain technology. Smart contracts are often written to ensure fair-
ness between participating entities even when one entity may attempt to cheat
the other entity in arbitrary ways (see [17]). Smart contracts (SC) deployed in a
Blockchain can be seen as arbitrary code expressing one or more business logic,
and they are automatically triggered if some preconditions defined in the SC
match. A smart contract is executed, the results are verified by the nodes par-
ticipating in the Blockchain. In [14] and [7] an example of an IoT application
using Smart Contracts and Blockchains is presented. The Bitcoin blockchain
has a simple stack language to express the rules and conditions for a successful
transaction and how new coins are produced and consumed. Ethereum, which
has popularized the use of smart contracts, uses a Turing complete language to
specify them. In [45], the authors have studied the security of running smart con-
tracts based on Ethereum, and presented some problems in Ethereum’s smart
contract language solidity; they also show some ways to enhance the operational
semantics of Ethereum to make smart contracts less vulnerable.
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5 Contributions

In this paper, we present a security framework that addresses the follow-
ing security requirements of constrained IoT environment described in Sect. 2:
distributed authorization, requirements elicitation, fine-grained access control,
secure software updates, attack escalation resilience, and distributed account-
ability.

We present a security framework to design, specify, verify, and enforce IoT
processes or workflows using Petri Nets. Our framework adapts to error condi-
tions during workflow execution, supports the integration of practitioner-friendly
design and specification tools, and enforces cross-organizational agreements or
commitments (i.e., the process integrity) as workflows. Thereby, we achieve
workflow-aware access control for multi-tenant IoT systems.

We presented our Petri Net based Workflow Specification and Enforcement
framework earlier in [39,40]. In this paper, besides summarizing the basic ideas,
we extend our framework to support the generation of blockchain-based smart
contracts from Petri Nets and to achieve distributed accountability. Furthermore,
we demonstrate the applicability of the method by solving three use cases. We
also present a high-level guide to implement the framework with practitioner-
friendly tool and development systems.

5.1 Petri Nets for Workflow Specification

We use Petri Nets and its extensions for specifying workflows. Existing solutions
and methods for modeling workflows are described in Sect. 4.2. Petri Nets were
chosen to specify workflows for the following advantages and properties. Petri
Nets (PN)provide the formal semantics for designing workflows such that PN
workflows are amenable to verification of certain properties such as being dead-
lock free. The expressiveness of Petri Nets and the state-transition model of Petri
Nets support all primitives needed to model a workflow process precisely. Exten-
sions of Petri Nets enable us to specify and model complex workflows by solving
different workflow issues including concurrent task execution and separation-of-
duties between different processes interacting with each other. Petri Nets are a
graphical language and as a result, it is simple to design workflows using graph-
ical tools. Also, other practitioner-friendly tools that collect requirements and
create activity diagrams can be integrated to generate Petri Net workflows. Petri
Nets workflows are technology or platform-independent, therefore, it can be used
to implement and integrate platform or technology dependent multi-tenant pro-
cesses. Overall, it satisfies all requirements that we need to achieve the integrity
of the process. Thus, we use Petri nets to enforcing workflow-aware access control
(Fig. 3).

In addition to the classical and existing Petri Net extensions, we introduce
additional concepts in our Petri Net model:

– Permissions, endorsements, money (crypto coins), signature, or any informa-
tion that is required for the workflow execution can be represented as tokens
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LEGEND

a place an oracle

a transition an activated transition

WF-step(a) WF-step(b)

Fig. 3. WF-step(a) shows the initial state of a Petri Net workflow specification with
an Oracle. WF-step(b) shows the state of the workflow after the first two activated
transitions have fired.

within the Petri Net. Thanks to CPN, different types of tokens can be used
in the same Petri Net to model workflows where entities exchange different
information between them. In particular, OAuth tokens are used to enforce
access control in a stepwise manner as specified in the workflow.

– An Oracle is a type of place, represented in star shape that can receive tokens
(as described earlier) from an external source. In classical Petri Nets, places
are represented as circles and always receive tokens from a transition. An
oracle is drawn on the boundary of a Petri Net to represent that it receives
information from an external source. Note: the term oracle is used in different
computer science fields including cryptography, blockchain, and smart con-
tracts, etc. Our concept of an Oracle is similar to the Oracles introduced in
Ethereum blockchain, i.e., it is used to receive external information into a
blockchain smart contract. The difference is: an Oracle in our method need
not be a contract that is accessed by other contracts to pull information as
described in [8,83]. If blockchain is implemented in an IoT application as a
back end distributed database, then an external service can push some infor-
mation into the blockchain. The published information in the blockchain can
be accessed by the Oracle via a predefined URL. Note: it is critical to enforce
strict access control that restricts who can publish such information in the
blockchain.

Our PN workflows are designed to solve use cases that include interaction
with real world IoT devices and actors. In such cases, a workflow should handle
error conditions or unexpected situations to an extent. We introduce dynamic
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Workflows to handle such special situation with authorized user decisions and
so on. Note: such dynamic workflows must also be verified together with the
main workflow (at least during its creation) i.e., without changing the goal or
purpose of the main workflow. Protecting the integrity of the processes and
allowing dynamic workflows may be competing goals, but, it must be assured
that only “authorized” entity can create dynamic workflow and any misuse must
be penalized. Therefore, we also need a system to provide accountability of
actions performed by the participants executing the workflow.

LEGEND
a place

an open place

an oracle

a transition

an activated transition
WF (a)

=
oa

=
ob

WF (b)

Fig. 4. Two different workflows WF (a) and (b) exchange information using Open Petri
Net places (oa and ob)

Thanks to Open Petri Nets (see [27]), we apply this concept to create an entry
and exit points i.e., Open Petri Net places to exchange information between
Petri Net workflows. Exchanging information in the form of tokens simplifies
the integrating of two or more PN workflows. Open Petri Nets enable to satisfy
one of our goal i.e., interaction between different stakeholders’ processes. For
instance, Fig. 4 shows two different workflows WF (a) and WF (b) exchanging
tokens via the open place (oa and ob). An open place exists on the boundary of
the workflow, and the equivalence (=) sign identifies the entry and exit places
between two workflows. The open place (oa) is an exit place for WF (a) and
entry place for WF (b). The main difference between an oracle and an open
place is: an oracle can receive information from external sources whereas, the
open places are mainly used to exchange tokens between workflows. Open Petri
net places are particularly useful when creating a dynamic workflow to exchange
information with the main workflow.

We showed how workflows can be specified using Petri Nets, but we need
a mechanism to enforce them on entities executing it. For this purpose, we use
small smart contracts written in the transitions of Petri Net. A brief introduction
of Smart Contracts is presented in the previous Sect. 4.3. For our requirements
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Fig. 5. Petri Net with transition contracts t1 and t2.

both Bitcoin and Ethereum languages are not suitable. Bitcoin’s stack language
is not flexible therefore, we cannot express workflow conditions on it. Ethereum’s
solidity language could be vulnerable (see [45]), and we cannot verify such con-
tracts. Therefore, a smart contract language that is flexible to specify conditions
and at the same time verifiable is required. To clarify, a complete Petri Net
workflow can be seen as a big smart contract comparable to a blockchain based
smart contract. The conditions that are written in the transitions of Petri Nets
workflows are called transition contract.

5.2 Transition Contracts

To implement a workflow-driven access control system in Petri Nets, the tran-
sitions should be able to verify conditions and evaluate information encoded in
the tokens. The conditions written on a single transition using a simple smart
contract language is called a transition contract. We use a simple guarded com-
mand (a conditionally executed statement) language (similar to [18]) to write
transition contracts.

Figure 5 shows a simple Petri Net where two transitions (T1 and T2 ) have a
pointer to the transition contracts (TC (a) and TC (b)) respectively. Note: smart
contracts do not always have to run on blockchain, they can also be implemented
between two or more parties without blockchain technology.

The properties (or rules) for each transition can be seen as small smart
contracts that restrict the choices of the participants of the workflow for this
step, or they impose additional conditions. The combination of a few transition
contracts allows us to create multi-step smart contracts: say, the first transition
creates a token based on some conditions (which may verify authentication or
authorization status of participants), and then the second transition produces
an OAuth token that can only be used in a subsequent transition in a particular
way. The allowed actions, permissions of workflow participants are determined
by the Petri Net and the next transition contracts. We use the combination
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Fig. 6. Timeout transitions in Petri Net workflows

of Petri Nets and transition contracts to specify, enforce sequences of atomic
transitions (transactions), and properties that must be satisfied in a workflow.

A transition performs three steps before firing:

– First, it takes tokens from the input places (could be a normal place, open
place, or an oracle).

– Next, it verifies the validity, properties of input tokens.
– Finally, it evaluates the conditions described (as guarded commands) in the

transition contract and produces the output tokens in output places (could
be a normal place, open place, or an oracle).

An output produced by the transition contract can be a token representing
information or a workflow for one or more entities. When our workflow-aware
access control method is used, compromising one device may not compromise
other devices. To explain, let us consider a workflow that is defined by a com-
pany for updating Firmware on its IoT devices. Assume that the devices could be
triggered to update its Firmware Over-the-Air (OTA) whenever a new Firmware
is available. Assume that an attacker compromises one device (how he compro-
mises is not relevant here) and updates a malicious firmware on it. The attacker
broadcast the new (malicious) firmware to other legitimate devices such that he
could take control over other devices too. This attack is mitigated because the
corresponding firmware update workflow as specified by the company must be
initiated and a legitimate service person needs to do several steps (for exam-
ple, provide authorization credentials) before the devices may get into the state
where it will accept firmware via the broadcasts channel.

By default, the Petri Net transitions fire when the input places have enough
tokens. In many real-world use cases, it is important to have the notion of time
required for a task completion. Some tasks in the real-world might require just
10 min, and others might need some hours. If a transition is waiting for a token
to arrive in one of its input places, probably it does not want to wait indefinitely.
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Timeout Transitions are required to stop transitions from waiting indefinitely.
Sometimes, a user or an entity may fail to complete a task in a workflow that
is expected to be completed within a certain time. That transition may wait
forever to get a token in one of its input places. To solve this, we introduce
timeout transitions i.e., after a predefined time expires, the timeout transition
executes set of predefined timeout conditions (in contrast to the regular condi-
tions) and fires a timeout token in its output place. These timeout tokens may
contain or invoke the dynamic workflows. It is important to specify when the
timeout timer should start and stop in the timeout transition. If all the input
tokens are available before the timeout occurs, then conditions of regular transi-
tion contract is executed to produce tokens. Therefore, every timeout transition
has two instructions: first, a timeout instruction (timeout contract) is enforced
when timeout occurs and some of the input tokens are not available; second, a
regular instruction (transition contract) is enforced when all the input tokens
are available before timeout.

The example workflow is shown in Fig. 6 explains a simple use case of a
timeout transition. Consider that the task t2 must be completed within some
time (x minutes) after the task t1 is completed. When task t1 is completed,
then transition t1 produces a token in place (a). A token in place (a) triggers
the timer to start in transition t2. Now, the timeout transition t2 executes one
of the three possible cases:

– Case 1: the timer expires after x minutes (timeout) and place (b) has no
token then, the timeout transition contract is executed. A timeout transition
contract is similar to a traditional contract but is used only to defined what
happens after a timeout.

– Case 2: the timer has not expired and place (b) has a token then, the regular
transition contract is executed.

– Case 3: place (b) has already a token before task t1 is completed then, the
transition t2 waits until task t1 is completed. When both the input tokens (a
and b) are available, the regular transition contract is executed.

5.3 Systems Modeling Language (SysML) - Activity Diagram

We investigated how a practitioner (a software developer or engineer) could use
our method with existing and familiar tools. It could be complex to design and
model a multi-organizational, human interactive process that includes different
software and hardware components using Petri Net tools only. Therefore, an
existing practitioner-friendly tool is used to model a high-level activity diagram
of complex processes and systems. Later, this activity diagram is translated into
Petri Net workflows.

Software developers, engineers, and similar practitioners are familiar with
UML, since, SysML is an extension to UML, it is easy to understand and learn
SysML’s notations. The generally accepted method is to refine the specifica-
tion in a stepwise manner using software engineering tools such as the object



122 P. Kasinathan and J. Cuellar

management group (OMG) system modeling language’s (SysML) activity dia-
gram presented in [73]. The Object Management Group’s OMG SysML [73] is
a general-purpose graphical modeling language that supports the specification,
design, analysis, and verification of systems that may include different software
and hardware components, people, tasks, and other entities. SysML supports
the practice of model-based systems engineering (MBSE) and is an extension of
Unified Modeling Language (UML) version 2.

SysML is used to develop system solutions to solve technologically challenging
problems. One of the challenges is interconnectivity among systems. Therefore,
systems can no longer be treated as stand-alone, but behave as part of a larger
ecosystem including humans. Such complex systems are known as the system of
systems (SoS) [23].

SysML can represent different aspects of systems, components, and other
entities [23] such as:

– Structural composition, interconnection, and classification.
– Function-based, message-based, and state-based behavior.
– Constraints on the physical and performance properties.
– Allocations between behavior, structure, and constraints.
– Requirements and their relationship to other requirements, design elements,

and test cases.

SysML uses nine diagrams including the Activity diagram to represent the
relationships between entities in a complex SoS. In particular, the SysML Activ-
ity diagram (modified from UML) represents the business/technical process in
a defined order i.e., a sequence of actions to be executed based on the availabil-
ity of their inputs, outputs, and control. Moreover, SysML’s activity diagram
describes how the actions transform the inputs to outputs. As this is a stan-
dardized approach, it is easy for practitioners to use SysML Activity to describe
complex systems and processes (both technical and business).

Furthermore, SysML activities are based on token-flow semantics related
to Petri-Nets [59]. Thus, SysML provides a semantic foundation for modeling
system requirements, and the SysML’s activity diagram can be transformed
intuitively into a Petri Nets model. The Petri Net tokens hold the values of
inputs, outputs, and controls that flow from one action to another. Therefore,
it is easy to transfer the SysML activity diagram into Petri Net workflows. For
our purposes, we use only the SysML’s activity diagram to model the process or
workflow.

We use the open source modeling tool known as “Modelio” [48] to draw
SysML activity diagrams. Modelio implements all SysML features according to
the OMG’s specification, and it can also be used to model BPMN and UML
diagrams. An example screenshot of the Modelio tool is presented in Fig. 10.

The requirements and SysML activity diagrams lack mathematical semantics
to check for inconsistencies, but the SysML activity diagrams can be converted
into Petri Nets (for example, colored) and then can be verified using model
checking tools [33,57].
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5.4 Petri Net Execution Engine

We use the open source Python library called “Snakes” [56] to implement basic
Petri Net functions. We extended the Petri Net library to represent different
types of tokens, places, and conditions. Furthermore, we present future require-
ments to extend the standard Petri Net Markup Language (PNML) exchange
format. Similarly, there are several Petri Net libraries available for other pro-
gramming languages such as Java, C, etc.

We implemented and evaluated the core part of the above simple use case
scenario application using Snakes and other Python library. For doing this, we
have extended the Snakes library to realize additional functions and modules
that can recognize our new types of tokens, places, and conditions (guarded
expressions). The Snakes library is extended to support features such as oracles,
open places, timeout transitions, and different types of tokens. The Petri Net
workflow evaluates transitions with conditions – for example, validates security
tokens from an oracle –, and if necessary, produce tokens in a specific format
that will be required for subsequent transitions. The prototype implementation
was developed with Ubuntu operating system and Python libraries for imple-
menting REST services, and Petri Net functions. In our current implementation,
the transition contracts are expressed with limited features of Snakes library’s
arc notations, expressions. Note: extreme caution must be taken to avoid side
effects – by calling native Python functions to evaluate input tokens and pro-
duce required tokens. Further implementation work is required to realize a smart
phone application with an integrated Petri Net execution engine.

We need additional XML tags to represent workflow and its rules i.e., expres-
sions and conditions written in a Transition, token types, open Petri Net places,
and how they could interact or interface with dynamic or sub-workflows. We
implemented a part of building automation use case presented in Sect. 5.6. Our
future work is to extend the standard PNML with additional tags for exchanging
Petri Net workflows between different entities and users of any platform.

5.5 Petri Net Based Smart Generation Framework

In our next investigation, we looked at various problems in traditional Blockchain
based Smart Contracts. We noticed that we could use our method to create
safe and understandable Smart Contracts (SC). In this section, we introduce
a framework that can create Blockchain based smart contracts from Petri Net
workflows.

Blockchain-based applications use open source blockchain implementations
such as IBM’s Hyperledger Fabric [30], and Ethereum [21]. The corresponding
business logic is written using Smart Contracts (SC) in their respective languages
i.e., Chaincode [31], and Solidity [20]. Solidity is a Turing-complete computer
programming language specifically designed to write Smart Contracts (i.e., to
write the business logic). Chaincode is (used synonymous with Smart Contracts)
also used to write smart contracts for IBM’s Hyperledger Fabric. But, Chaincode
can be written using popular Turing complete languages such as GO, Java, etc.
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Fig. 7. Components of Blockchain based Smart Contract generation framework

Turing complete languages are known to have problems such as undecidability
[17].

With Petri Net workflows (which can be seen as high level Smart Contracts),
it is possible to check the properties such as deadlock, etc. Therefore, if a Petri
Net is verified (properties are checked), then translating the verified Petri Net
into a solidity code is also safe. We present the software prototype architecture
below.

The requirements of a smart contract (SC) should be as follows:

– A SC should be easy to understand and write.
– A SC should be amenable to verification of process integrity i.e., it should

only allow what it is specified to do.
– If necessary, the SC should support human interaction for example, to approve

or reject conditions specified in a SC. Also, the smart contracts should allow
recovering from error conditions by allowing dynamic workflows.

The Smart Contract can be a standalone contract, or a part of a big con-
tract consisting of many small SCs. Our proposed Blockchain based SC genera-
tion framework consists of three main modules: Petri Net workflow specification
GUI, Petri Net verification engine and the Petri Net translation engine into
Smart Contract translation engine. Figure 7 shows the main components of the
proposed Framework.

In this paper, we provide a brief overview of our proposed framework. In
our forthcoming paper, we will describe the specifics of implementation, user
interfaces, etc. in detail.

Petri Net Workflow Specification GUI provides the user with a simplified
GUI interface to the practitioners. The GUI interface consists of places, tran-
sitions, and arcs to connect places and transitions. PNML is the standard and
recognized format for exchanging Petri Nets.
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Petri Net verification engine simulates and evaluates whether the Petri Net
satisfies the properties such as no deadlocks, etc. We propose to use any standard
Petri Net tool or library to implement this functionality.

Petri Net to Smart Contract Translation Engine works by mapping places
and transitions from the specified Petri Net into blockchain based smart con-
tracts. We are currently working on a prototype that can translate a PN workflow
into an Ethereum’s based Solidity code - details will be discussed in our forth-
coming paper. Nevertheless, the translation engine can be extended to translate
the Petri Net smart contracts into other types of blockchain executable smart
contact code (executable byte-code = compiled smart contract) such as IBM’s
Hyperledger fabric’s chain code.

Once the Petri Net is translated into a Smart Contract (SC), a workflow
expert reviews the generated SC code and published it in the blockchain.

5.6 Distributed Accountability and Access Control

Our framework uses a distributed blockchain network for achieve accountability
and transparency. A private blockchain is used to set access control restrictions
i.e., who can participate in the blockchain. For instance, the user publishes the
status of every task when he/she is executing the workflow – i.e., the state of the
Petri Net workflow – in the private blockchain. The stakeholders will verify and
approve the transactions in the blockchain, and this provides transparency and
accountability in an immutable database without assuming a trusted centralized
entity.

Distributed access control is achieved by enforcing token validation on the
handhelds. Usually, a PN workflow is executed by one or more entities with the
help of a handheld or more powerful device capable of executing a Petri Net
workflow. We use a trusted application installed on entity’s handheld enforcing
the validity of the tokens generated and received. Sometimes, the handhelds may
also delegate some tasks to a cloud service, for example, to check the blockchain
for updates, or, to pull information tokens from an oracle, etc.

Distributed access control is generally used in web technologies. Typically,
a browser is a client accessing a service hosted on (cloud based) web servers.
For instance, in an IoT scenario, the authorization server (AS) evaluates (or
delegates evaluation of) the client credentials – the user submits the credentials
to AS via a handheld device – and if those client credentials are valid, then the
AS presents the client with an authorization token to access the IoT device (or
its services).

Our method introduces Workflow aware access control, and it is enforced by
restricting the users to perform tasks as specified (in an order) in the workflow.
Each user uses a handheld device to execute the workflow. The user executing
the workflow needs to authenticate to the App (i.e., to prove that the user can
execute the workflow). The handheld uses an App that binds a secret with a
workflow – note: we assume that the client is not able to extract this secret from
the handheld or the workflow. The IETF draft “Privacy Enhanced Tokens” a
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profile for OAuth 2.0 for constrained devices [16] provides an example of how
these proof-of-possession tokens can be generated using the secret. Some actions
or tasks that the user needs to perform are enforced on the resource servers. The
resource server can verify the tokens without having to communicate with the
authorization server.

Publishing and distributing the Workflow or Smart contracts through a
contract store (i.e., a distributed database) similar to existing smartphone app
store or browser add-on/extensions store. The users can download preferred
Petri Net workflows and contracts from the Petri Net smart contract store – we
use a single contract store based on one distributed database technology. The
contract store enforcing a strict process that analyses and validates the contract
before publishing it. The distributed database similar to a blockchain can be
used to store the Petri Net workflows based smart contracts. We propose to use
a single blockchain for publishing contracts. If necessary, access to these contracts
may also be restricted by using a permissioned blockchain. For example, IBM’s
Hyperledger can be deployed as a permissioned blockchain where entities require
permissions to access and publish information in the blockchain.

Verification of Petri Net Workflow : we use the term verification in terms of
verifying the properties of the workflow by simulation, model checking, theo-
rem proving, etc. Verification of Petri Nets must not be confused with validity
checking (=validation) of validity tokens as described in Sect. 5.6.

The author of the Petri Net workflow is responsible for verifying the cor-
rectness of the workflow’s application or the process itself. The Petri Net (PN)
engine assists the authors while creating the Workflow in terms of simulating
and verifying Petri Net properties. The PN engine simulates the workflow after
saving and provides a comprehensive report to the author about potential prob-
lems such as deadlocks, etc. via a notification panel. This feature minimizes the
errors while creating the workflow and provides a detailed analysis when the
workflow is completed.

Workflow expert : the author requests to publish the PN workflow through a
process. The objective of the workflow expert is to have “/Quality Control/”. A
trusted entity (a workflow expert) checks whether the workflow is designed prop-
erly and represents the process defined. Additionally, the workflow expert may
use automated tools to check whether the contract follows standard guidelines
or not.

Even when the properties of the Petri Nets satisfy, the workflow could per-
form unnecessary steps not related to the goal of the process. So far, the best
process to solve this human problem is to use the four-eyes principle [80,81].
The four-eyes principle means that a certain activity, i.e., a decision, transac-
tion, etc., must be approved by at least two people with expertise. Therefore,
before publishing the contract, a workflow expert analyses the process or activ-
ity requirements, and verifies whether the designed workflow does the same as
described.

Enforcing AC, validating tokens and conditions by delegation is a valid-
ity checking process that includes checking the validity of an access token, vali-
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Fig. 8. Building automation - Petri Net workflow enforcement - access denied or
granted based on the workflow specification.

dating the signature, integrity checks, etc. By enforcing proper validity checking
we enforce access control. Some IoT applications perform this process by dele-
gating validation tasks to trusted (more powerful) devices. We call those devices
handhelds. Handhelds are more powerful in terms of connectivity, power supply
and processing capacity than constrained IoT devices.

Consider a simple use case where a building owner delegates installation
or maintenance work to a contracting company. The RFC 7744 [64], provides
a summary of authorization problems that emerge during the device life-cycle
(commissioning, maintenance, re-commissioning, decommissioning). In addition
to the authorization problems, the building owners may wish to ensure that only
products with a certain provenance or quality are installed, and that the process
complies to standard operating procedures. The building owner may also wish
that the contractor obeys other conditions written on a contract. This use case
is described in detail in Sect. 6.

The workflow (WF) is created and signed by the building owner. Next, the
WF is provided to the contractor. The contractor uses his handheld device as
shown in Fig. 8 to execute the WF. The workflow contains a secret material with
which the authorization tokens are constructed, please refer to [16] for more
details on token construction. We assume that the secret cannot be extracted by
the contractor. The building automation devices use the standard ACE-OAuth
[32] protocol to validate the token that it receives, and if the tokens are valid,
then access to resource is granted otherwise not. If the IoT device receives a
request that it is unable to process, it may also delegate this request to an
authorization server or other trusted entity. All these three types of response
are shown in Fig. 8. The IoT devices can evaluate the validity of the proof-of-
possession tokens (i.e., whether this token is constructed based on the shared
secret or not) and can respond appropriately to the client device.

Enforcing Accountability using Blockchain is possible with our method.
When some tasks of a workflow are executed, all information related to that
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task including who is executing the task, when it started, when it stopped, and
what were the outcomes of the tasks must be logged for future reference. It is
important that only authorized persons can write into the log, and no one can
tamper with the logging information. For this purpose, we propose to enable the
workflow execution application to append relevant logging information into the
blockchain.

6 Use Cases

6.1 Connected Mobility Lab (CML)

The Connected Mobility Lab (CML) is a public funded project that integrates
the services from different stakeholders – such as mobility, financial, and IT
services – to provide a comprehensive mobility solution by seamlessly exchanging
data and analytics (see [42]). The CML has core services such as IT security,
accounting, data management, and identity management that integrate data and
processes from different mobility providers. The CML mobile application (CML
App) assists users (i.e., travelers) to experience the CML mobility solution with
an intuitive user interface. A complete overview of CML is shown in Fig. 9.

The users of CML can be private persons or employees of a company that
has a service agreement with the CML. A user may want to use different mobil-
ity services to complete one single journey. In CML, different mobility service
providers have different specifications and implement “equivalent” tasks differ-
ently. For example, validating a ticket or a payment is done differently by each
mobility service provider. It is important to guarantee the process integrity of
such processes defined by each service provider therefore, we need a workflow-
driven access control and a high-level workflow specification language to express
those processes.

Consider a simple use case: a user might use a car sharing service from his
home to the main train station, then park the car in one of the available parking
lots and take a train to reach the final destination. During the trip, the user must
obey the rules and conditions specified by that particular mobility provider. The
CML mobility service enforces a global workflow specified using our method.

Now, let us consider a more complex business mobility use case scenario: two
companies A and B decide to use the mobility services offered by CML to enforce
some public funded project-specific travel restrictions on its employees. The use
case requirements are:

– Every business travel must be approved by the respective managers of partic-
ipating companies, and in special cases, the public funding project manager
approval is also required.

– Special conditions whenever necessary could be inserted by authorized per-
sons (i.e., the Managers)

– Travelers/Users using CML should be able to recover from error conditions,
for instance, if a train or flight is canceled then rebooking should be possible.

– Reimbursement of travel cost after a successful trip should be automated.
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Fig. 9. The Connected Mobility Lab (CML) offers a comprehensive mobility service
by integrating different mobility service provides, partners using its core services and
CML App.

– Actions executed by the users/travelers must be recorded in a distributed
immutable database for accountability.

As the first step, the requirement engineering experts perform the elicitation
process i.e., to collect information from the involved stakeholders. The business
mobility process and conditions are defined after consulting with participating
companies (A and B) and the public funding project manager. The collected
use case requirements are used to create the OMG SysML’s activity diagram.
The open-source modeling tool “Modelio”, for example, can be used to create
a SysML activity diagram. Figure 10 shows the SysML activity diagram of the
above mentioned CML business mobility use case. An employee (e) is able to
make a travel request which can be approved or rejected by his manager (mA).
In case of a special request, the public funded project manager (mP) must also
approve. The CML calendar service provides information about the meeting such
as location, time, etc. If the trip is approved, then the employee (i.e., the traveler)
may choose the transportation type (for example, public transport, car sharing,
and so on) and get the tickets from the CML App. Finally, when the trip comes
to an end, the reimbursement process is initiated. Later, the workflow expert
transforms the SysML activity diagram into a Petri Net workflow specification
as shown in Fig. 11. Finally, the Petri Net workflow is executed by the employee
using the CML App.

Let us assume the following:

– The CML App has access to CML core services including the CML calendar
service.
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Fig. 10. SysML activity diagram of the CML business mobility use case

– The WF (a), (b) and (c) as shown in Fig. 11 are the resulting Petri Net
workflow created by the workflow experts and are available in the central
CML repository or the Contract Store. These PN workflows can be accessed
by CML App i.e., the users are able to download the required workflows and
execute them in the CML App. The sub-workflow (c) is a dynamic workflow
and can be invoked to manage unexpected (error) situations. Notice that
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Fig. 11. Petri Net workflows of the business mobility use case

all three workflows are pre-defined, the workflow experts have created one
sub-workflow to manage all unexpected (or error) situations.

– The CML services (such as mobility, parking, etc.) provide tickets, parking
lot information, visiting passes for authorized requests similar to an OAuth
resource request.

We use the following notations in Fig. 11: employee as e, manager of company
A, B, and public funded project as mA, mB, and mP respectively, and CML
calendar service as cal. The Petri Net places and transitions are marked with
corresponding identifiers such as at1 for WF (a) transition 1 and bt1 for WF
(b) transition respectively. Below, we describe step by step process the business
mobility use case involving three workflows (a), (b) and (c) as shown in Fig. 11.
Assume that the employee (e) from company A wants to attend a business
meeting organized by the manager (mB) in company B.

– The project manager of company B (mB) creates a meeting with an identifier
(mID) in the CML calendar. This identifier is required by the employee (e)
of company A to initiate the travel request using the CML App.

– The employee (e) of Company A makes a travel request using the meeting
identifier mID in his CML App.

– When a travel request is raised, the CML App executes the WF (a) as shown
in Fig. 11 i.e., it sends an approval request to his manager (mA).



132 P. Kasinathan and J. Cuellar

– The manager (mA) approves the request by placing a token in the place mA
in Fig. 11.

– Next, the Oracle place cal performs a GET request with meeting mID to the
CML calendar service’s REST interface to retrieve event information such as
location, time, etc.

– Assuming that all input tokens are available for the transition (at1) of WF
(a), transition at1 evaluates whether the mID, employee email address, and
approval from his manager are valid or not. Assume that this is a special
trip that requires additional approval from mP. Given this special case, the
transition (at1) executes the transition contract that fires a token in the open
place (oa) and in the normal output place as shown in Fig. 11.

– Alternatively, if this trip doesn’t require additional approval, then transition
at1 generates a token only in the normal out place and not in the open place
(oa). The token generated by at1 has information for next transition at2 e.g.,
oAuth token with a secret with which that transition at2 doesn’t need a token
from open place (ob). Therefore, the transition at2 fires only with its normal
input place. Similarly, it is possible to execute WF (a) without invoking WFs
(b and c). This scenario describes that was no need for a special approval and
there was no error. Note: the tokens generated by each transition contain the
information for the next transition i.e., whether the next transition should
expect tokens from its respective open places or not.

– Note: we continue the discussion considering that this trip needs a special
approval from mP as described earlier.

– The CML workflow enforcement engine processes the token from the WF (a)
open place (oa) and downloads the workflow WF (b) from CML repository to
be executed in special cases. The project manager (mP) approves or rejects
the trip request. As a result, WF (b) transition contract (bt1) evaluates and
fires output tokens in the open place (ob).

– The token in place (ob) provides a secret (similar to an OAuth access-token)
required by the transition at2 to get the tickets from CML mobility services.

– In case of unforeseen circumstances (delay or cancellation of chosen mobility
service), the traveler can request an alternative transportation option via
CML App. The oracle place (err) monitors the information of selected train
from the mobility service provider. The transition (at3) evaluates the error
token, if the traveler wants to end the trip, then it places a token in place
(end) and places a cancellation/new tickets request in open place (oc).

– If the traveler requests alternative tickets, then transition (at3) places this
request in the open place (oc). This token is processed by a dynamically gen-
erated WF (c) of the mobility service provider. If the error conditions cannot
be solved in an automated fashion, then a human intervention is invoked.
Thus, new tickets are delivered via the open place (od). Note: Fig. 11 shows
the workflow only until this stage, the rest of the workflow steps can be exe-
cuted with more transitions and places.

– Thanks to the transition contracts in Petri Net based workflows, fine-grained
access – such as, temporary access valid during the meeting period – can be
granted to enter company B (for example, access to meeting rooms), reim-
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bursements can be automated i.e., after a successful trip a waiting time is
introduced using timeout transition, if the trip is not successful then a default
process is initiated.

– In the end, the organizer of the meeting mB can confirm the attendees through
his CML mobile App, therefore the payment transition is activated such that
payment to mobility providers, reimbursements to the employees can be han-
dled appropriately.

A private blockchain can be used in the CML for accountability. Every Petri
Net transitions’ input and output tokens are recorded as transactions on the
blockchain. This feature provides data immutability and opportunity for future
auditing in case of any fraud without a centralized trusted entity. There are
several advantages for companies to enforce such business mobility conditions
on its employees. The companies could restrict its employees from using trans-
portation service for private purposes. Further, the employees can only use the
cost-effective transportation available. By automating this process, the over-
head for the employees and its managers is reduced. The companies can satisfy
regional policies such as reducing the carbon footprint.

6.2 Building Automation

Modern buildings use building automation systems to control lighting, heat-
ing, ventilation, and physical safety systems within the building. These building
automation systems consist of embedded devices equipped with sensors and actu-
ators, and can collaborate autonomously. For example, the lighting system can
adjust the light intensity and color of a room based on the ambient light avail-
able in the room; the security system can alert the nearest emergency responders
or fire-stations in case of an emergency. In such a scenario, often it is required
to perform software-updates, quality-control inspection, fix security patches and
upgrade the firmware on the devices. Usually, the building owner delegates the
installation or maintenance work to a contracting company. The RFC 7744 [64],
provides a summary of authorization problems that emerge during the device
life-cycle (commissioning, maintenance, recommissioning, decommissioning). In
addition to the authorization problems, the building owners may wish to ensure
that only products with a certain provenance or quality are installed, and that
the process complies to standard operating procedures.

The building owner also wants that the contractor to obey the conditions
agreed in the contract, for instance, the building owner:

– Wants to track the status of the work in progress remotely.
– Wants to configure the installed devices with custom-rules such that the newly

installed devices are interoperable with existing systems and devices.
– Automatically enforce the contract conditions agreed with the contractor.

For instance, a penalty if the contractor breaks any agreed condition, or a
complete payment if agreed conditions were satisfied.

– Wants to control authorization permissions given to the contractors enforcing
fine-grained access control i.e., the least privilege principle.
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Fig. 12. SysML activity diagram of building automation

First, the requirements elicitation process is conducted to gather the require-
ments; second, as a result, a SysML activity diagram is created as shown in
Fig. 12.

Finally, the building owner with the help of workflow experts has created the
Petri Net workflow (BA) as shown in Fig. 13. The workflow is published in a
private blockchain i.e., in a decentralized contract store as described in Sect. 5.6
after performing strict evaluation. The workflow mobile application certified by
the building is downloaded and used by the contractor to execute the workflow.
We refer to the similar example described earlier in Fig. 8, where the person
executing the workflow gets (security access) tokens for accessing services which
are otherwise restricted.
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Fig. 13. Open PN workflow of building automation

Below, we explain the steps involved in the workflow:

– Once the contract is published, the contractors can evaluate the contract,
the workflow, and the requirements to decide whether to participate in the
workflow or not. The interested contractor places his decision as a token using
the mobile application. The contractor signs the token using his private key,
this signed-token is placed in the place (CO).

– Next, let us assume that the building owner selects one of the contrac-
tors based on provenance and credibility of the contractor. The building
owner uses the mobile application to approve the selected contractor to begin
the work. This event creates a token signed by the building owner in the
place (BO). The token contains information about the chosen contractor and
enables a transition (T1).

– The transition (T1) verifies the tokens in the input places (BO and CO), verify
the signature of the token using pre-configured certificates. If both tokens are
valid, then T1’s transition contract creates an OAuth-token in place (a). This
token in place (a) permits the contractor to access the devices for maintenance
purposes as defined in the next steps of the workflow. As expected, only one
contractor can be selected i.e., the T1 places the input tokens of contractors
not chosen in the output place (Xa).
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– A valid token in place (a) triggers Transition (T2). T2 verifies token in place
(a). Now, the selected contractor once again confirms by placing a signed
token in place (c). By doing this he/she binds to the agreed conditions and
begins the work. The transition (T3) requires a token from the selected con-
tractor and creates proof-of-possession OAuth ACE tokens in places (d1, d2,
and d3). Tokens in d1, d2, and d3 gives the contractor access to three differ-
ent tasks/services in the devices, for example, d1 token to perform tests, d2
token to perform firmware updates, and d3 token to configure.

– The Contractor may also delegate one or more tasks to his employees or
subordinates by creating his own dynamic workflow. The tokens of completed
tasks are exchanged to the main workflow using open places pointing to the
transitions expecting the task completion tokens. For example, in the Fig. 13
task d3’s token is expected by transition T6. Task d3 is split into three sub-
tasks (d3.1, d3.2, and d3.3) and delegated to the subordinates via open place
(op1). After completion, the resulting tokens are given as input tokens to the
transition T6 via the open place (op2).

– Once all the tasks are completed, the transitions (T4, T5 and T6) evaluate
the input tokens and place three tokens in the place (e). The oracle place
(test) has a valid token if the automated tests results are successful. If the
places (e, and test) have valid tokens then transition (T7) can trigger the
payment for the contractor in place (p). If tests were not successful, a token
in place (Xp) is placed and requires external evaluation.

The contracting company might want to enforce specific conditions by creat-
ing dynamic workflows on their employees (to handle special or error conditions).
The open places introduced in the main contract must not change the main
objective of the workflow. To enable this feature, the building owner may allow
some transitions (for example, T3 and T6 in Fig. 13) to allow open places from
authorized participants. Figure 13 shows the owner of the task (the contractor)
can create dynamic workflows for other entities to complete a task or resource
that he owns. In this way, we have realized a distributed workflow management
system. This use case shows how we can execute and enforce a workflow in a
distributed setting.

6.3 Car Sharing

Car sharing services such as DriveNow and Car2Go are popular for short-term
car rental. For instance, DriveNow and Car2Go have their own workflow to rent
a car, finish the rental, and for payment. A customer must first register to the
service with his/her driving license, proof of address, payment method (credit
card or bank account details), and personal identity. The customer is provided
with either a card, login credentials, or other means of authentication credentials
to access the service. Most car sharing services provide a web-service and mobile
application.

Our aim was to apply our framework and methods to solve a real use case.
Therefore, as an example, we chose the car hire process of DriveNow and applied
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Fig. 14. SysML activity diagram of DriveNow car sharing platform

our methods to solve it. Note: the rental process described in this use case is
only based on our experience, and this process can be updated (or outdated)
anytime by the service provider and might not be valid anymore. A SysML
activity diagram describing the rental process of DriveNow is shown in Fig. 14.

We translate the SysML activity diagram of DriveNow car hire process into
our Petri Network workflows as shown in Fig. 15.

The customer chooses one of the two available methods to rent a car: (a)
using the DriveNow card; (b) using the DriveNow mobile application (App).
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Fig. 15. Petri Net workflow specification of DriveNow use case

– Method(a): the customer finds a DriveNow car in the street with Green LED
blinking on car’s windshield. Green LED means the DriveNow car is avail-
able and Red LED means it is not available. Now, the customer can use his
DriveNow card to open the car.

– Method(b): the customer can plan ahead, reserve a DriveNow car for 15 min
using his DriveNow mobile application (App). First, an available car is
selected in the App. Second, the customer must use his login credentials to
authenticate and reserve the car for 15 min. The customer should open the
reserved car within 15 min otherwise the reservation is canceled.

– Step1: Assume that the customer used one of the two available methods (a or
b) as described above to get inside the car. This action is depicted as placing
a token at place cus by the customer in Fig. 15. The Transition (at1) process
this token in place (cus), availability of the car (with inbuilt car information)
in place (car) and opens the door.

– Step2: The customer must enter his secondary authentication PIN in place
(apn) using the car’s touch interface in the dashboard. The transition (at2)
checks the PIN entered via the information available from DriveNow server.
If the PIN is valid, transition at2 places the token in place (drv). Now, the
customer can start and use the car.
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– Dashboard information for the driver: if the car leaves the DriveNow business
area of city it belongs to, then a warning notification appears on the dash-
board i.e., it is not possible to end the rental outside the business area – park
and keep option is allowed, but with probably different charges. DriveNow
is also offering rental packages for hours and days and with this contract
business area restriction does not apply.

– Step3: the customer can park and keep the car or end the car rental via
the App or car’s dashboard. This decision is recorded and processed by the
transition (at3).

• Step3.1: if the customer parks and keeps the car using park and keep
option, then he can re-enter the car using his App or DriveNow card
using the same steps described in step1 to continue.

• Step3.2: Note: this step is not available within the described car sharing
service. We included this to show that our method can handle error con-
ditions. Assume an error condition such as breakdown or malfunction,
the transition at3 allows the customer to report it via the App and that
can be processed by DriveNow to allow new business logic that can help
the customer to reach his destination via other methods, etc.

– Step4: the customer can end car rental if the car is in the business area (geo-
fenced area). If the conditions are valid, then transition (at4) allows to end
the rental and places a token in place (inv). The trip invoice is calculated and
sent to his email based on his usage. If automatic payment is enabled, then
the amount is billed to his credit card.

Figure 15 shows the Petri Net workflow of DriveNow use case. The interaction
between the customer and a DriveNow car is described on WF (a), and WF (b)
describes the DriveNow (DN) server processing the car sharing requests (i.e., in
the form of tokens) from WF (a) via open Petri Net places. As you can see, when
using a particular service the customer must download an application provided
by that particular service provider. If our method is applied, a common workflow
application can be used to rent cars from different service providers - only the
car hire process and their specific workflows must be modeled and provided to
our workflow application.

7 A High-Level Summary and Implementation Guide

So far, we presented our method and solved some specific use cases using our
framework. Now, we want to summarize the ideas, present a simple guide for
solving any generic use case, and a high-level guide to implementation.

First, a use case that one wants to implement must be identified. Next, the
process including technical and business details is discussed and finalized with
relevant stakeholders. Once the process is defined, an engineer uses a SysML
activity diagram using tools such as Modelio to describe the process. Later, this
activity diagram can be exported to a Petri Net workflow. Next, a Petri Net
simulator is used to check properties of the exported Petri Net Workflow such as
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deadlocks, etc. Then a Petri Net library such as Snakes can be used for imple-
menting Petri Net functionalities into the existing software application. After
this, a workflow expert should check if the Petri Net workflow and the tran-
sition contract conditions represent the process defined. Now, this verified PN
workflow is published in a distributed database with appropriate access control
such that only authorized persons can access the PN workflow. Now, an entity
that needs to execute the process should download the corresponding PN work-
flow and the workflow execution application. With our framework, we provide
workflow-aware access control by enforcing the process integrity. Additionally,
for blockchain based solutions, we presented a framework to translate verified
Petri Net workflow into Blockchain based smart contracts.

To explain a simple implementation guide, consider a simple use case that
includes one or more stakeholders. All stakeholders provide their services as
Representational State Transfer (REST) based web services. The workflows are
created by practitioners (for example, engineers) and are verified by workflow
experts, and finally, approved by the stakeholders. The approved workflow is
available within a centralized (or a distributed) repository. A participant can
download the application (Trusted App) in his handheld and the required work-
flow from the repository, and then he may start executing the workflow. The
APP provides the communication interface with the core services – standard
security protocols are used to protect the communication channel. How partici-
pants authenticate with the back end is out of scope. A secret material is used
to verify the validity tokens and to create tokens to represent the entity that is
executing the workflow, how this secret material is delivered to the App is out
of scope. The enforcement of the Petri Net tokens is implemented in the App.
We suggest using the ACE-OAuth based protocol to create such tokens. These
proof-of-possession tokens are used by the client to prove to the resource server
that the client is the valid entity to access the resources. The workflows are
executed i.e., transitions and tokens are precisely processed in the Trusted Exe-
cution Environment (TEE) of the handheld. We assume that the participants
are not able to extract or modify any secrets from the workflow. The Snakes
Python library is used in the App to execute the Petri Nets workflows. Weber
et al. [75] introduced Petri Net Markup Language (PNML) which is based on
XML, and in this work, we propose to use PNML to express Petri Net workflows.

8 Limitations of Our Approach

8.1 Error Free Petri Net Workflow vs Design Flaw in the Process

A Petri Net simulator cannot detect a design problem or a flaw in the process
itself. For example, assume that a Petri Net workflow is developed to protect
some assets in the building. For instance, if the process does not include closing
the secure door after accessing the assets, so this is a major design flaw and
cannot be detected by the Petri Net. Therefore, designing workflows using Petri
Nets does not guarantee error freeness.
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Fig. 16. The token in open place ob of WF (b) can be consumed either by t2 of WF
(a) or t1 of WF (c). This prevents either WFs (a or c) to proceed forward.

The four-eyes principle is used to verify any process designed using another
expert in the same field. This approach could find significant obvious problems
in the process itself. The process can be improved without errors when it is
reviewed by several experts. Once the process is designed without obvious design
flaws, then it can be evaluated with Petri Nets simulators for properties such as
deadlocks, etc.

8.2 Open Petri Nets and Deadlocks by Merging Different Processes

Consider three small individual processes a, b, and c designed and verified for
Petri Nets properties. We can use open Petri Nets to create interfaces between
those three different processes a, b and c. This enables us to create a main
workflow consisting of two or three sub-workflows.

It is possible to have deadlocks when merging two or more sub-workflows
without proper validation. For example, when we combine only two of them (a
and b) or (b or c) then there may not be any deadlock but, when all three
workflows (a, b, and c) are combined then there could be a deadlock. Figure 16
shows such an example with three WFs a, b, and c where the WF(b) is in a
state after producing a token in its open place ob, then the token in ob can be
either consumed by WF(a) via transition t2 or WF(c) via transition t1. If one
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WF consumes the token in ob then the other WF cannot proceed. Therefore, it
is important to validate and verify the properties before merging sub-workflows
with the main workflow.

9 Conclusion

In this paper, we presented the Petri Net based workflow specification and
enforcement framework and extended it to support emergent IoT applications.
We demonstrated how the method can protect the integrity of processes defined
as Petri Nets, and how it can be applied to solve different use cases.

We showed that access control permissions should be granted to entities in
the form: ‘You are allowed to execute this task in this workflow ’ instead of ‘You
are authorized to access this service during this period of time’. The permission
to execute a step in a workflow depends on having executed the required previous
steps (i.e., based on the history).

We extended the framework to integrate with practitioner-friendly tools, to
support the generation of blockchain based smart contracts from Petri Nets, and
to achieve distributed accountability. We showed how the workflow specified in
Petri Nets may handle error situations by exchanging information via open Petri
Net places. Finally, we demonstrated that our framework provides workflow-
aware access control and also enforces the integrity of processes specified as
Petri Nets.

Acknowledgements. We thank Professor Jonathan P. Bowen for his suggestions and
reviewing this article.

References

1. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
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53. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn.
Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8834-8

54. Petri, C.A.: Communication with automata (1966). http://edoc.sub.uni-hamburg.
de/informatik/volltexte/2010/155/

55. Pohl, K.: Requirements Engineering: An Overview. RWTH, Fachgruppe
Informatik, Aachen (1996). ftp://ftp8.de.freebsd.org/pub/packages/CREWS/
CREWS-96-02.pdf

https://doi.org/10.1007/978-3-319-98989-1_1
https://doi.org/10.1109/ACSAC.2000.898869
https://doi.org/10.1109/ACSAC.2000.898869
https://zentrum-digitalisierung.bayern/connected-mobility-lab/
https://doi.org/10.1109/ETFA.2006.355190
http://ieeexplore.ieee.org/document/4178305/
http://ieeexplore.ieee.org/document/4178305/
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/TCOM.1976.1093424
https://doi.org/10.1109/TCOM.1976.1093424
https://www.modelio.org/
https://www.modelio.org/
https://doi.org/10.1007/978-3-540-69387-1_58
https://doi.org/10.1007/978-3-540-69387-1_58
https://doi.org/10.1007/3-540-44988-4_21
https://doi.org/10.1007/3-540-44988-4_21
https://doi.org/10.1109/5.24143
http://ieeexplore.ieee.org/document/24143/
http://ieeexplore.ieee.org/document/24143/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-1-4419-8834-8
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2010/155/
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2010/155/
ftp://ftp8.de.freebsd.org/pub/packages/CREWS/CREWS-96-02.pdf
ftp://ftp8.de.freebsd.org/pub/packages/CREWS/CREWS-96-02.pdf


146 P. Kasinathan and J. Cuellar

56. Pommereau, F.: SNAKES: a flexible high-level Petri nets library (tool paper). In:
Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 254–265.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19488-2 13

57. Rahim, M., Boukala-Ioualalen, M., Hammad, A.: Petri nets based approach for
modular verification of SysML requirements on activity diagrams. In: Proceedings
of the International Workshop on Petri Nets and Software Engineering (PNSE),
Tunis, Tunisia, 23–24 June 2014, pp. 233–248 (2014). http://ceur-ws.org/Vol-
1160/paper14.pdf

58. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science, vol. 4. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-
642-69968-9

59. Reisig, W.: A Primer in Petri Net Design. Springer Compass International.
Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-75329-9

60. Reisig, W.: Understanding Petri Nets – Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-33278-4

61. Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in
industrial internet of things. In: Proceedings of the 52nd Annual Design Automa-
tion Conference on - DAC 2015, pp. 1–6. ACM Press, New York (2015). https://
doi.org/10.1145/2744769.2747942

62. Sandhu, R.S., Samarati, P.: Access control: principles and practice. IEEE
Commun. Mag. 32(9), 40–48 (1994). https://doi.org/10.1109/35.312842.
http://ieeexplore.ieee.org/document/312842/

63. Schaller, R.: Moore’s law: past, present and future. IEEE Spectr. 34(6), 52–59
(1997). https://doi.org/10.1109/6.591665

64. Seitz, L., Gerdes, S., Selander, G., Mani, M., Kumar, S.: Use cases for authen-
tication and authorization in constrained environments (2016). ISSN 2070-1721.
https://tools.ietf.org/html/rfc7744

65. Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., Tschofenig, H.: Authentica-
tion and authorization for constrained environments (ACE) using the OAuth 2.0
framework (ACE-OAuth). Technical report, IETF (2018)

66. Sicari, S., Rizzardi, A., Grieco, L., Coen-Porisini, A.: Security, privacy and trust in
internet of things: the road ahead. Comput. Netw. 76, 146–164 (2015). https://doi.
org/10.1016/J.COMNET.2014.11.008. https://www.sciencedirect.com/science/
article/pii/S1389128614003971

67. van der Stok, P., Kampanakis, P., Kumar, S., Richardson, M., Furuhed, M., Raza,
S.: EST over secure CoAP (EST-coaps). Technical report, IETF (2018). https://
datatracker.ietf.org/doc/draft-ietf-ace-coap-est/

68. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S. (eds.): Vision and Challenges
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